
ABSTRACT

YAN, JUN. Well-Balanced Schemes for the Non-Hydrostatic Saint-Venant System and Atmospheric
Flow Equations with Gravity. (Under the direction of Dr. Alina Chertock.)

In this dissertation, we focus on numerical solutions describing two types of PDE models: a

non-hydrostatic Saint-Venant system describing tsunami-like waves and gravitationally stratified

atmospheric flows governed by the compressible Euler equations with gravity.

In the introductory chapter, we describe the exact Riemann solver for one-dimensional Euler

equations to introduce shock, rarefaction, and contact waves that can help to understand the

nature of hyperbolic PDEs. Then we present the efficient and robust second-order semi-discrete

central-upwind scheme with an anti-diffusion term. This scheme is at the center of our study.

The second chapter is concerned with numerical schemes for tsunami-like waves and tests

for their long-time performance and on-shore behaviors. The classical Saint-Venant system is a

depth-averaged system that can be derived from Euler equations and is usually used to model the

flows of coastal areas, lakes, and rivers in a relatively short time or spatial scale. Tsunami waves

in deep water, however, travel very long distances without too much decay in their amplitudes.

The non-hydrostatic Saint-Venant system derived by M.-O. Bristeau and J. Sainte-Marie(2008),

work well for characterizing the long-time propagation of tsunami-like waves. Compared with

the classical Saint-Venant system, the non-hydrostatic Saint-Venant model has non-hydrostatic

pressure terms that need special treatments. These non-hydrostatic pressure terms will make the

non-hydrostatic model dispersive, but they can also keep wave shape during long-time propagation.

In our numerical simulations, we can capture the on-shore arrival of tsunami-like waves in which

the front of the non-hydrostatic solution is about 10-20km behind the hydrostatic one, suggesting

that non-hydrostatic terms are necessary to be included in an accurate tsunamis model.

In the third chapter, we simulate gravitationally stratified atmospheric flows governed by the

compressible Euler equations with gravity in irregular domains. We consider irregular domains in

2-D. At the early stage of this research, we used Cartesian grids for irregular domains and solved

the local Riemann problem for cells near irregular boundaries. The numerical results, however,

showed incorrect airflow velocities when they passed irregular boundaries. The reason should

be that the use of regular rectangular grids that intersect with irregular boundaries leads to the

generation of arbitrarily small and highly distorted computational cells adjacent to boundaries of

domains. The scheme itself might be easy to implement, but it fails to describe flows past boundaries

accurately. A recently developed second-order central-upwind numerical scheme on quadrilateral

meshes is introduced in this chapter to overcome this challenge. In addition, to make the scheme

well-balanced, we rewrite the governing equations in terms of equilibrium variables representing

perturbations of the physically relevant equilibrium. In our numerical simulations, we show how to

design an appropriate quadrilateral mesh on irregular domains and demonstrate high resolution

and robustness of the central-upwind numerical scheme on quadrilateral meshes.
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CHAPTER

1

INTRODUCTION

In this dissertation, we study two types of systems: the non-hydrostatic Saint-Venant system and

gravitationally stratified atmospheric flows model governed by the compressible Euler equations

with gravity.

Non-hydrostatic Saint-Venant models work quite well for tsunami waves in deep water. These

tsunami waves usually travel a very long distance without too much decrease in wave amplitudes

until they reach the shore. They are hard to be noticed offshore, but contain a tremendous amount

of kinetic energy, because of their relatively large wave speed and wavelength. During the on-shore

arrival stage, tsunamis slow down, and their wavelength decrease. In order to conserve energy, part

of their kinetic energy will become potential energy, and the wave amplitudes increase. This will

release a disastrous impact when the waves come to shore. Therefore, it’s very important to predict

the arrival time of tsunami waves and how long they will last.

Gravitationally stratified atmospheric flows governed by the compressible Euler equations have

lots of applications in predicting weather and climate changes. Hydrostatics is the branch of fluid

mechanics that studies fluids at rest. It can offer physical explanations of many phenomena of daily

life, such as why atmospheric pressure and density change with altitude. These flows are called

gravitationally stratified flows. In many applications, solutions of the system are small perturbations

of gravitationally stratified flows. To understand the dynamics of such flows, we consider the fully

compressible system of Euler equations with gravity as our model.
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1.1 Models

The study of fluid dynamics is important in a variety of scientific scenarios, including forecasting

tsunami waves, predicting climate changes, controlling pollution, and explaining the behaviors of

nebulae in interstellar space. The formulation of the equations describing fluid dynamics stands

among the greatest achievements in science. Here, we focus our attention on the Euler equations,

the hyperbolic system of conservation/balance laws.

The derivation of the Euler equations without gravity is based on 3 conservation laws: con-

servation of mass, conservation of momentum, and conservation of energy. And a description of

conservation laws is provided below.

1.2 Hyperbolic Conservation/Balance Laws

In this dissertation, we will denote bold symbols as vector functions and plain symbols as scalar

functions. For example, x, q and F are vector functions(or variables) and x , q and F are scalar

functions(or variables).

Conservation laws describe a type of PDEs that have the property of conserving certain quantities

during time evolution. In mathematics, it has the following differential form in d dimensions:

∂

∂ t
q(x, t ) +

d
∑

i=1

∂ Fi (q(x, t ))
∂ xi

= 0, (1.2.1)

where x= (x1, ..., xd )T ∈Ω are spatial variables, time variable t , q = q(x, t ) are m unknown functions

q(x, t ) : Ω×R+ −→Rm , and the flux functions Fi (q(x, t )) : Ω×R+ −→Rm . Here, 1 ≤ i ≤ d and the

computational domain is Ω ∈Rd . If d = 1 and m = 1, q (x , t ) is a scalar function, and then the flux

function becomes a scalar-valued function:

∂

∂ t
q (x , t ) +

∂

∂ x
F (q (x , t )) = 0. (1.2.2)

The above equation is called a scalar conservation law. When m ≥ 2, q(x, t ) and F (q(x, t )) :=

(Fi (q(x, t )))1≤i≤d are vector-valued, the equation (1.2.1) is called a system of conservation laws:

∂

∂ t
q(x, t ) +∇·F (q(x, t )) = 0. (1.2.3)

The initial conditions should be given: q(x, 0) = q0(x) for x ∈Ω. The boundary conditions in this

dissertation are usually wall boundary conditions or periodic boundary conditions.

The concept of conservation laws is derived from the fact that in an isolated system without

external force, some quantities of the whole system remain unchanged regardless of time evolution.

Later, we will show the role of conservation laws in deriving Euler equations.
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In this dissertation, we also discuss hyperbolic systems of balance laws:

∂

∂ t
q(x, t ) +∇·F (q(x, t )) =S(q), (1.2.4)

where S(q) is the vector of source terms. Compared with (1.2.3), the system of balance laws is the

system of conservation laws with additional source terms.

1.3 Euler Equations

Euler equations were introduced in Leonhard Euler’s famous work "Principes généraux du mou-

vement des fluides" in 1757. These equations play a central role in studying fluid dynamics and

describe the time evolution of inviscid and adiabatic flows in space.

Euler equations study 3 quantities of fluids: density, velocity and energy. Originally, Leonhard

Euler found 2 differential equations for conservation laws of mass and momentum. But conservation

laws of momentum involves pressure term, which should be closed by another state variable. So the

conservation law of energy is developed.

First, let’s derive the conservation of mass(the continuity equation). In a control volume Ωwith

its boundary ∂ Ω, we can express ρ as its fluid density. The rate of change of total mass in Ω is

∂

∂ t

∫

Ω

ρd V . (1.3.1)

Meanwhile, we let u denote the fluid velocities in x direction, n the outward normal vector on

surface ∂ Ω. The rate of change of total mass should equal to the net density flow rate(density flux)

ρu into ∂ Ω:
∂

∂ t

∫

Ω

ρd V =−
∫

∂ Ω

(ρu ) ·nd A. (1.3.2)

Applying the Divergence Theorem to right side of (1.3.2), we have

∂

∂ t

∫

Ω

ρd V =−
∫

Ω

∇· (ρu )d V . (1.3.3)

Rearrange all terms into the integral of Ω,

∫

Ω

�

∂

∂ t
ρ+∇· (ρu )

�

d V = 0. (1.3.4)

By the assumption of continuum mechanics, any arbitrary small control volume can be applied to

this equation. So we have derived the conservation of mass:

∂

∂ t
ρ+∇· (ρu ) = 0. (1.3.5)

3



It is a special case of a scalar conservation law when q =ρ and density flux function F (q ) =ρu :

∂

∂ t
q +∇· F (q ) = 0, (1.3.6)

Second, in a system with no external force, we need to consider the flux function of momen-

tum ρu . Momentum flux is made up with two components: advective momentum flux ρu 2 and

microscopic momentum flux due to pressure P . Thus we have the conservation law of momentum:

∂ ρu

∂ t
+∇·

�

ρu 2+P

�

= 0. (1.3.7)

Third, if we are studying idea gas, total energy can be expressed as E = 1
2ρu 2+ P

γ−1 . Apparently,

we have macroscopic energy flux E u . Meanwhile, microscopic momentum flux P mentioned before

will lead to microscopic energy flux P u . Thus we have the conservation law of energy:

∂ E

∂ t
+∇·

�

(E +p )u

�

= 0. (1.3.8)

3 conservation laws mentioned above make up the one-dimensional Euler equation:































ρt + (ρu )x = 0,

(ρu )t +

�

ρu 2+p

�

x

= 0,

Et +

�

(E +p )u

�

x

= 0,

(1.3.9)

The multi-dimensional Euler equation without gravity(or external source) can be given as:



























∂

∂ t
ρ+∇· (ρu) = 0,

∂ ρu

∂ t
+∇· (ρu⊗u+pI) = 0,

∂ E

∂ t
+∇· ((E +p )u) = 0,

(1.3.10)

whereuare fluid velocity in multi-dimension,⊗ is the tensor product that if we have v = [v1, v2, · · · , vn ]

and w = [w1, w2, · · · , wm ],

v ⊗w =

















v1w1 v1w2 · · · v1wm

v2w1 v2w2 · · · v2wm

...
...

...
...

vn w1 vn w2 · · · vn wm

















,

and I is the identity matrix.

4



1.4 Saint-Venant Systems

The classical and non-hydrostatic Saint-Venant systems can be derived from the Euler equations

mentioned above. Here, we will derive these 2 systems as an introductory part. In chapter 2, we will

discuss numerical schemes of these systems in details.

Similar to the Euler equations in conservation laws(without force) mentioned in (1.3.10), we

start from the Euler equations with gravitational source in two dimensional cases:



























∂

∂ t
ρ+ (ρu )x + (ρv )y = 0,

∂ ρu

∂ t
+ (ρu 2+p )x + (ρu v )y = 0,

∂ ρv

∂ t
+ (ρv u )x + (ρv 2+p )y =−ρg .

(1.4.1)

where x and y are spatial variables, u and v represent horizontal and vertical velocities, respectively,

and g is the acceleration due to gravity.

Since water is usually treated as homogeneous:

∇ρ = 0, (1.4.2)

and incompressible:

∇·u = 0, (1.4.3)

we can derive:
∂ ρ

∂ t
=−ρ(ux + vy )− (uρx + vρy ) = 0, (1.4.4)

from the first equation(the conservation law of mass) in (1.4.1). This suggests homogeneous incom-

pressible flows have constant density:

ρ = constant. (1.4.5)

So, water density is constant for both classical and non-hydrostatic systems. The Euler equations

with gravity then becomes:































∂ u

∂ x
+
∂ v

∂ y
= 0,

∂ u

∂ t
+u

∂ u

∂ x
+ v
∂ u

∂ y
+

1

ρ

∂ p

∂ x
= 0,

∂ v

∂ t
+u

∂ v

∂ x
+ v
∂ v

∂ y
+

1

ρ

∂ p

∂ y
=−g .

(1.4.6)

Then this system (1.4.6) is complete with boundary conditions. We denote the bottom as B (x ),

the free surface η(x , t ) and water depth measured vertically from the bottom topography h (x , t ) =

5



x

u (x , y , t )≈ u (x , t )

B (x )

h (x , t )

η(x , t )

Bottom

Free Surface

Figure 1.4.1 Shallow water model: bottom B (x ), free surface, η(x , t ) and water height h (x , t ),

η(x , t )−B (x ) in Figure 1.4.1.

Two kinematic boundary conditions are given here. At the bottom y = B (x ), we have no normal

flow:
∂ B

∂ t
+ub

∂ B

∂ x
− vb = 0, (1.4.7)

with ub and vb the horizontal and vertical velocities at the bottom.

At the surface y =η(x , t ), we have no normal flow:

∂ η

∂ t
+uη

∂ η

∂ x
− vη = 0, (1.4.8)

with uη and vη the horizontal and vertical velocities at the surface.

6



1.4.1 Classical Saint-Venant System

The classical Saint-Venant system is a kind of shallow water equations describing a thin layer of

homogeneous incompressible flow with its vertical height much less than its horizontal length

scale of the computational domain. From this shallow water assumption, the vertical velocity of the

fluid v (x , y , t )whould be negligible, and the velocity are roughly constant regardless of its depth y :

u (x , y , t )≈ u (x , t ). Related discussion and rescaled system can be seen in [Bri08]. And below is the

related definition of averaged quanties:

u (x , t ) :=
1

η−B

∫ η

B

u (x , y , t )d y , u 2(x , t ) :=
1

η−B

∫ η

B

u 2(x , y , t )d y . (1.4.9)

Using Leibniz integral rule for differentiation in A, we can derive the continuity equation for the

classical Saint-Venant system:

∂ h

∂ t
+
∂

∂ x
(h u ) =

∂ (η−B )
∂ t

+
∂

∂ x

�∫ η

B

u (x , y , t )d y

�

=
∂ η

∂ t
−
∂ B

∂ t
+

∫ η

B

∂ u

∂ x
d y +uη

∂ η

∂ x
−ub

∂ B

∂ x

=
∂ η

∂ t
+uη

∂ η

∂ x
−
∫ η

B

∂ v

∂ y
d y −

∂ B

∂ t
−ub

∂ B

∂ x
(1.4.10)

=
��

���
���

�:0
∂ η

∂ t
+uη

∂ η

∂ x
− vη+���

���
���:

0
vb −

∂ B

∂ t
−ub

∂ B

∂ x

= 0.

For the third equation of (1.4.6),

∂ v

∂ t
+u

∂ v

∂ x
+ v
∂ v

∂ y
+

1

ρ

∂ p

∂ y
=−g , (1.4.11)

Classic shallow water equation use the hydrostatic approximation by setting the material derivative

of the vertical velocity v to be 0:

D v

D t
:=
∂ v

∂ t
+u

∂ v

∂ x
+ v
∂ v

∂ y
= 0. (1.4.12)

Pressure can thus be approximated using hydrostatic equation:

∂ p

∂ y
=−ρg . (1.4.13)

At the free surface of y =η, the pressure is equal to air pressure p a . The classic hydrostatic pressure:

p = p a +ρg (η− y ), (1.4.14)
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Then we can derive the horizontal momentum equation for classic shallow water system:

∂ (h u )
∂ t

+
∂

∂ x
(h u 2) =

∂

∂ t

�∫ η

B

u (x , y , t )d y

�

+
∂

∂ x

�∫ η

B

u 2(x , y , t )d y

�

=ηt uη−Bt ub +

∫ η

B

∂ u

∂ t
d y +ηx u 2

η−Bx u 2
b +

∫ η

B

2u ux d y

=ηt uη+ηx u 2
η−Bt ub −Bx u 2

b +

∫ η

B

u ux d y +

∫ η

B

∂ u

∂ t
d y +

∫ η

B

u ux d y

=ηt uη+ηx u 2
η−Bt ub −Bx u 2

b −
∫ η

B

u vy d y +

∫ η

B

∂ u

∂ t
d y +

∫ η

B

u ux d y

=ηt uη+ηx u 2
η−Bt ub −Bx u 2

b −
�

uηvη−ub vb −
∫ η

B

��>
0

v u y d y

�

+

∫ η

B

∂ u

∂ t
d y +

∫ η

B

u ux d y

= uη
��

���
���

�:0�

ηt +ηx uη− vη

�

−ub
��

���
���

�:0�

Bt +Bx ub − vb

�

+

∫ η

B

�

∂ u

∂ t
+u ux

�

d y

=

∫ η

B

�

∂ u

∂ t
+u ux

�

d y

=−
∫ η

B

�

��>
0

v
∂ u

∂ y
+

1

ρ

∂ p

∂ x

�

d y

=−g

∫ η

B

�

∂ η

∂ x

�

d y

=−g

∫ η

B

�

hx +Bx

�

d y

=−g h

�

hx +Bx

�

d y

=−
∂

∂ x

�

1

2
g h 2

�

− g h Bx .

Above all, the classic Saint-Venant system is derived by replacing depth average value u with u







ht + (h u )x = 0,

(h u )t +
�

h u 2+
g

2
h 2
�

x
=−g h Bx .

(1.4.15)

Remark 1.4.1 Notice that h u 2 is approximated by h u 2 because u (x , y , t )≈ u (x , t )(See [Bri08; Fal93]

for more details).
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1.4.2 Non-Hydrostatic Saint-Venant System

Let’s start with the 2-dimensional Euler equation with gravity (1.4.1):































∂ u

∂ x
+
∂ v

∂ y
= 0,

∂ u

∂ t
+u

∂ u

∂ x
+ v
∂ u

∂ y
+

1

ρ

∂ p

∂ x
= 0,

∂ v

∂ t
+u

∂ v

∂ x
+ v
∂ v

∂ y
+

1

ρ

∂ p

∂ y
=−g ,

(1.4.16)

with kinematic boundary conditions:











∂ B

∂ t
+ub

∂ B

∂ x
− vb = 0,

∂ η

∂ t
+uη

∂ η

∂ x
− vη = 0,

(1.4.17)

The continuity equation of non-hydrostatic Saint-Venant system can be derived in a same way

as in (1.4.10):
∂ (h u )
∂ t

+
∂

∂ x

�

h u 2+
1

2
g h 2

�

=−g h Bx ,

Compared with classic Saint-Venant system, non-hydrostatic Saint-Venant system requires more

discussion about pressure term p . The pressure term is not simply characterized by hydrostatic

relation (1.4.13).

We can express pressure p from the third equation of the Euler equation (1.4.16),

∂ v

∂ t
+
∂ (u v )
∂ x

+
∂ (v 2)
∂ y

+
1

ρ

∂ p

∂ y
=−g ,

∂ p

∂ y
=−ρg −ρ

�

∂ v

∂ t
+
∂ (u v )
∂ x

+
∂ (v 2)
∂ y

�

,

then

p = p a +ρg (η− y ) +ρ

∫ η

y

�

∂ v

∂ t
+
∂ (u v )
∂ x

+
∂ (v 2)
∂ y

�

d y

= p a +ρg (η− y ) +ρ

��∫ η

y

∂ v

∂ t
d y

�

+

�∫ η

y

∂ (u v )
∂ x

d y

�

+ v 2
η − v 2

�

= p a +ρg (η− y ) +ρ

�

∂

∂ t

�∫ η

y

v d y

�

−ηt vη+
∂

∂ x

�∫ η

y

u v d y

�

−ηx uηvη+ v 2
η − v 2

�

= p a +ρg (η− y ) +ρ

�

∂

∂ t

�∫ η

y

v d y

�

+
∂

∂ x

�∫ η

y

u v d y

�

− v 2

�

. (1.4.18)

From (1.4.14), we have hydrostatic pressure p h = p a +ρg (η− y ). To make an analysis of components
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of pressure p , we denote non-hydrostatic pressure p nh and a new variable α, then

p nh :=ρ

�

∂

∂ t

∫ η

y

v d y +α

�

,

α≈
∂

∂ x

�∫ η

y

u v d y

�

− v 2, (1.4.19)

p ≈ p h +p nh = p a +ρg (η− y ) +ρ

�

∂

∂ t

�∫ η

y

v d y

�

+α

�

.

Then we can derive the momentum equation for the non-hydrostatic Saint-Venant system

below:
∂

∂ t
(h u ) +

∂

∂ x
(h u 2) +

1

ρ

∂

∂ x
(hp ) =

1

ρ

�

−p |b
∂ B

∂ x
+p a ∂ η

∂ x

�

, (1.4.20)

where


















































v :=−(y −B )
∂ u

∂ x
+
∂ B

∂ x
u ,

p :=
1

h

∫ η

B

p d y ,

hp = hp a +
1

2
g h 2+

∂

∂ t

�∫ η

B

∫ η

y

v d y

�

+

∫ η

B

αd z ,

p |b = p a + g h +
∂

∂ t

�∫ η

B

v d z

�

+α|b .

(1.4.21)

Note that
∫ η

B
αd z and α|b will be to be described later.

Proof. Let’s start from the second equation of the Euler equations (1.4.16),

∂ u

∂ t
+u

∂ u

∂ x
+ v
∂ u

∂ y
+

1

ρ

∂ p

∂ x
= 0, (1.4.22)

∂ u

∂ t
+
∂ (u 2)
∂ x

+
∂ (u v )
∂ y

+
1

ρ

∂ p

∂ x
= 0, (1.4.23)

implies

∫ η

B

∂ u

∂ t
d y +

∫ η

B

∂ (u 2)
∂ x

d y +

∫ η

B

∂ (u v )
∂ y

d y +
1

ρ

∫ η

B

∂ p

∂ x
d y = 0,

∂

∂ t

�∫ η

B

ud y

�

−ηt uη+Bt ub +
∂

∂ x

�∫ η

B

u 2d y

�

−ηx u 2
η+Bx u 2

b

+uηvη−ub vb +
1

ρ

�

∂

∂ x

�∫ η

B

p d y

�

−ηx p a +Bx pb

�

= 0,

∂

∂ t
(h u )−ηt uη+Bt ub +

∂

∂ x
(h u 2)−ηx u 2

η+Bx u 2
b

+uηvη−ub vb +
1

ρ

�

∂

∂ x
(hp )−ηx p a +Bx pb

�

= 0,
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∂

∂ t
(h u ) +

∂

∂ x
(h u 2) +

1

ρ

∂

∂ x
(hp )−uη(

���
���

��:0
ηt +ηx uη− vη) +ub (���

��
���:

0
Bt +Bx ub − vb ) =

1

ρ

�

ηx p a −Bx pb

�

,

∂

∂ t
(h u ) +

∂

∂ x
(h u 2) +

1

ρ

∂

∂ x
(hp ) =

1

ρ

�

ηx p a −Bx pb

�

. (1.4.24)

For the term hp , we can derive from (1.4.18) and (1.4.19):

hp =

∫ η

B

p d y =

∫ η

B

�

p a +ρg (η− y ) +ρ

�

∂

∂ t

�∫ η

y

v d y

�

+α

��

d y

= hp a +
1

2
ρg h 2+ρ

∫ η

B

∂

∂ t

�∫ η

y

v d y

�

d y +ρ

∫ η

B

αd y

= hp a +
1

2
ρg h 2+ρ

∂

∂ t

�∫ η

B

∫ η

y

v d y d y

�

−ρ���
0

Bt ·
∫ η

B

v d y +ρ

∫ η

B

αd y

≈ hp a +
1

2
ρg h 2+ρ

∂

∂ t

�∫ η

B

∫ η

y

v d y d y

�

+ρ

∫ η

B

αd y . (1.4.25)

The reason v ≈ v is given below. From the first equation of (1.4.16), using the Leibniz integral

rule and the kinematic boundary condition at free surface in (1.4.8), we have

v = vb +

∫ y

B

vy d y

= vb −
∫ y

B

ux d y

= vb − (
∂

∂ x

∫ y

B

ud y +Bx ub )

= Bt −
∂

∂ x

∫ y

B

ud y

=−
∂

∂ x

∫ y

B

ud y .

Then using u (x , y , t )≈ u (x , t ) from our assumption of shallow water mentioned above,

v ≈−
∂

∂ x

∫ y

B

ud y

=−
∂

∂ x

�

(y −B )u

�

=−(y −B )
∂ u

∂ x
+
∂ B

∂ x
u = v ,

It’s important to mention that although v and v are small, v (x , y , t ) =−(y −B ) ∂ u
∂ x +

∂ B
∂ x u as an linear

approximate of v (x , y , t ) in the variable y .
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For the term pb in (1.4.24), we can apply the formula of pressure p mentioned in (1.4.19),

pb = p a +ρg h +ρ

�

∂

∂ t

�∫ η

B

v d y

�

+α|b

�

. (1.4.26)

Then use v ≈ v , we can approximate pb using p |b :

p |b = p a +ρg h +ρ

�

∂

∂ t

�∫ η

B

v d y

�

+α|b

�

. (1.4.27)

Above all, we have derived all formulas in (1.4.20) and (1.4.21). But it remains to find the explicit

form for αmentioned above(in (1.4.19)).

Meanwhile, the 2-dimensional Euler equation with gravity (1.4.16) with kinematic boundary

conditions (1.4.17) admits an energy equation:

∂

∂ t

∫ η

B

�

u 2

2
+

w 2

2
+

1

ρ

�

g y +p a

��

d y +
∂

∂ x

∫ η

B

u

�

u 2

2
+

w 2

2
+

1

ρ

�

g y +p

��

d y =
h

ρ

∂ p a

∂ t
, (1.4.28)

where LHS represents the change of kinematic and potential energy of this system divided by density

and RHS represents the energy supply coming from the variations of the atmospheric pressure p a

divided by density. It’s balance laws in total energy.

Proof. The time derivative of (kinetic and potential) energy in LHS of (1.4.28) is

∂

∂ t

∫ η

B

�

u 2

2
+

w 2

2
+

1

ρ

�

g y +p a

��

d y

=ηt

u 2
η

2
−Bt

u 2
b

2
+

∫ η

B

u ut d y

+ηt

v 2
η

2
−Bt

v 2
b

2
+

∫ η

B

v vt d y

+
g

ρ
(ηηt −B Bt ) +

1

ρ

∂ (hp a )
∂ t

=ηt

u 2
η

2
−Bt

u 2
b

2
+

∫ η

B

u ut d y

+ηt

v 2
η

2
−Bt

v 2
b

2
+

∫ η

B

v vt d y

+
g

ρ
(ηηt −B Bt ) +

1

ρ

�

ηt p a −Bt p a +h
∂ p a

∂ t

�

.

The spatial derivative of (kinetic and potential) energy flux in LHS of (1.4.28) is

∂

∂ x

∫ η

B

u

�

u 2

2
+

v 2

2
+

1

ρ

�

g y +p

��

d y
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=ηx

u 3
η

2
−Bx

u 3
b

2
+

∫ η

B

�

1

2
u 2ux +u 2ux

�

d y

+ηx

uηv 2
η

2
−Bx

ub v 2
b

2
+

∫ η

B

�

ux v 2

2
+u v vx

�

d y

+
g

ρ

�

ηx uηη−Bx ub B +

∫ η

B

y ux d y

�

+
1

ρ

�

ηx uηp a −Bx ub pb +

∫ η

B

�

ux p +upx

�

d y

�

=ηx

u 3
η

2
−Bx

u 3
b

2
+

∫ η

B

�

u 2ux

�

d y −
1

2

∫ η

B

u 2d v

+ηx

uηv 2
η

2
−Bx

ub v 2
b

2
+

∫ η

B

�

u v vx

�

d y −
1

2

∫ η

B

v 2d v

+
g

ρ

�

ηηx uη−B Bx ub −
∫ η

B

y d v

�

+
1

ρ

�

ηx uηp a −Bx ub pb +

∫ η

B

(upx )d y −
∫ η

B

p d v

�

=ηx

u 3
η

2
−Bx

u 3
b

2
+

∫ η

B

�

u 2ux

�

d y −
1

2
u 2
ηvη+

1

2
u 2

b vb +

∫ η

B

v u u y d y

+ηx

uηv 2
η

2
−Bx

ub v 2
b

2
+

∫ η

B

�

u v vx

�

d y −
1

2
v 3
η +

1

2
v 3

b +

∫ η

B

v 2vy d y

+
g

ρ

�

ηηx uη−B Bx ub −ηvη+B vb +

∫ η

B

v d y

�

+
1

ρ

�

ηx uηp a −Bx ub pb +

∫ η

B

(upx )d y −p a vη+p b vb +

∫ η

B

v py d y

�

.

Combine two terms in the LHS, we have

∂

∂ t

∫ η

B

�

u 2

2
+

w 2

2
+

1

ρ

�

g y +p a

��

d y +
∂

∂ x

∫ η

B

u

�

u 2

2
+

v 2

2
+

1

ρ

�

g y +p

��

d y

=
1

2
u 2
η���

���
���:

0�

ηt +ηx uη− vη

�

−
1

2
u 2

b���
���

���:
0�

Bt +Bx ub − vb

�

+
1

2
v 2
η��

���
���

�:0�

ηt +ηx uη− vη

�

−
1

2
v 2

b���
���

���:
0�

Bt +Bx ub − vb

�

+
gη

ρ ���
��

���
�:0�

ηt +ηx uη− vη

�

−
g B

ρ ���
���

���:
0�

Bt +Bx ub − vb

�

+
p a

ρ���
��

���
�:0�

ηt +ηx uη− vη

�

−
p a

ρ���
��

���
�:0�

Bt +Bx ub − vb

�

+
h

ρ

∂ p a

∂ t

+

∫ η

B

�

u
���

���
���

���:0�

ut +u ux + v u y +px

�

+ v
���

���
���

��:0�

vt +u vx + v vy +py

��

d y +
g

ρ

∫ η

B

��>
0

v d y
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=
h

ρ

∂ p a

∂ t
. (1.4.29)

Thus, we have proved the energy equation for non-hydrostatic equation in (1.4.28).

A similar energy equation for the depth-averaged non-hydrostatic Saint-Venant system (1.4.20)

with (1.4.21) exists. The non-hydrostatic Saint-Venant system satisfies the following energy balance

equation:

∂

∂ t

∫ η

B

�

u 2

2
+

w 2

2
+

1

ρ

�

g y +p a

��

d y +
∂

∂ x

�

h u 2

2
+hp +

1

ρ

�

η2−B 2

2

��

=
h

ρ

∂ p a

∂ t
(1.4.30)

+
1

2

∂ η

∂ t
(v |η)2+

∫ η

B

v
∂ α

∂ y
d y .

For details, we refer readers to [Bri11; Bri08]. These 2 systems should admit same energy condition,

which implies:
1

2

∂ η

∂ t
(v |η)2+

∫ η

B

v
∂ α

∂ y
d y = 0. (1.4.31)

From the analysis of (1.4.19), we have

α≈
∂

∂ x

�∫ η

y

u v d y

�

− v 2

α|η = lim
y→η

∂

∂ x

�∫ η

y

u v d y

�

− v 2

= lim
y→η

�

∂

∂ x

�∫ η

y

u v d y

�

− v 2

�

= lim
y→η

�

ηx uηvη+

�∫ η

y

∂ u v

∂ x
d y

�

− v 2
η

�

= lim
y→η

�

−ηt vη− v 2
η +

�∫ η

y

∂ u v

∂ x
d y

��

=−
∂ η

∂ t
vη

≈−
∂ η

∂ t
v |η.

Above all, we can set equations for α,















1

2

∂ η

∂ t
(v |η)2+

∫ η

B

v
∂ α

∂ y
d y = 0

α|η =−
∂ η

∂ t
v |η.

(1.4.32)

If we denote

β :=−
∂ α

∂ y
, (1.4.33)
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Then from (1.4.19), the third equation of (1.4.16) and u ≈ u , v ≈ v (the assumption of shallow

water), we have

β =−
∂ α

∂ y
≈−

∂

∂ y

�

(p −p a )
ρ

− g (η− y )−
�

∂

∂ t

�∫ η

y

v d y

���

=−
1

ρ

∂ p

∂ y
+ g +

∂

∂ t

�

∂

∂ y

∫ η

y

v d y

�

=−
1

ρ

∂ p

∂ y
+ g −ρ

∂ v

∂ t

= u
∂ v

∂ x
+ v
∂ v

∂ y

≈ u
∂ v

∂ x
+ v
∂ v

∂ y
.

Since v is linear in y , it’s natural to assume

β = a1(x , t ) · (y −B ) +a2(x , t ). (1.4.34)

From the first equation of (1.4.32),

1

2

∂ η

∂ t
(w |η)(−h

∂ u

∂ x
+
∂ B

∂ x
u )−

∫ η

B

�

−(y −B )
∂ u

∂ x
+
∂ B

∂ x
u

��

a1(y −B ) +a2

�

d y = 0,

∂ u

∂ x

�

−
1

2

∂ η

∂ t
w ηh +a1

h 3

3
+a2

h 2

2

�

+
∂ B

∂ x
u

�

1

2

∂ η

∂ t
w η−a1

h 2

2
−a2h

�

= 0.

Then a1 and a2 can be derived:

a1 =
3w η

h 2

∂ η

∂ t
, a2 =−

w η

h

∂ η

∂ t
. (1.4.35)

And using the formula for α to satisfy (1.4.32):

α=−
∂ η

∂ t
w η+

∫ η

y

βd y , (1.4.36)

the depth-integrated non-hydrostatic Saint-Venant system (1.4.20) and (1.4.21) satisfies the following

energy equation:

∂

∂ t

∫ η

B

�

u 2

2
+

w 2

2
+

1

ρ

�

g y +p a

��

d y +
∂

∂ x

�

h u 2

2
+hp +

1

ρ

�

η2−B 2

2

��

=
h

ρ

∂ p a

∂ t
. (1.4.37)

And α related values are ready for (1.4.21):

∫ η

B

αd y =
1

2

∂ η

∂ t
h w η , α|b =−

1

2

∂ η

∂ t
w η. (1.4.38)
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Then the non-hydrostatic Saint-Venant system is derived:







ht + (h u )x = 0,

(h u )t +Mt +
�

h u 2+
g

2
h 2
�

x
+N =−g h Bx +p a wx ,

(1.4.39)

with

M =
�

−
1

3
h 3ux +

1

2
h 2Bx u

�

x
+Bx

�

−
1

2
h 2ux +Bx h u

�

, (1.4.40)

and

N =

�

(h 2)t (h ux −Bx u )

�

x

+2Bx ht (h ux −Bx u )−Bx t

�

−
1

2
h 2ux +Bx h u

�

. (1.4.41)

When M and N are ignored, (1.4.39) reduces to classic Saint-Venant system((1.4.15)). In chapter 2,

we will propose a central-upwind scheme to solve this non-hydrostatic Saint-Venant system and

discuss the effects of M and N in the long-time propagation and on-shore arrival of tsunami-like

waves.

1.4.3 Steady States of Saint-Venant System

Steady state solutions are solutions that do not change in time. In many physical applications,

solutions of a system are small perturbations of the steady states. These perturbations may be smaller

than the size of the numerical truncation error on a coarse grid. Capturing these perturbations is one

of the major interests and difficulties of solving different systems of PDEs. To overcome this difficulty,

one can use a very fine grid, but in many physically relevant situations, it might be computationally

unaffordable or time-consuming.

A numerical scheme is called well-balanced if it can preserve a (particular) steady-state solution

exactly(without any numerical error). Different well-balanced schemes will be further discussed in

chapter 2 and 3.

The classic Saint-Venant system (1.4.15) and non-hydrostatic Saint-Venant system (1.4.39) have

steady state solutions. In this section, we derive some of their steady state solutions.

For the classic Saint-Venant system, since steady state doesn’t change in time, we have (1.4.15)

reduced to







(h u )x = 0,
�

h u 2+
g

2
h 2
�

x
=−g h Bx .

(1.4.42)

From the first equation of (1.4.42), we have

h u ≡ constant. (1.4.43)
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For the second equation of (1.4.42), we have

��
��(h u )x u + (h u )ux + g hhx =−g h Bx ,

u ux + g (h +B )x = 0,
�

u 2

2
+ g (h +B )

�

x

= 0.

This implies that
u 2

2
+ g (h +B )≡ constant. (1.4.44)

So the classic Saint-Venant system (1.4.15) admits steady state solutions satisfying

h u ≡ constant,
u 2

2
+ g (h +B )≡ constant. (1.4.45)

One of the most important steady states satisfying (1.4.45) is the stationary steady state. It is also

called the ’lake-at-rest’ solution that describes a motionless lake:

u ≡ 0, w := h +B ≡ constant. (1.4.46)

For non-hydrostatic Saint-Venant system (1.4.39), the steady state solution satisfies











(h u )x = 0,
�

h u 2+ 1
2 g h 2

�

x

+N =−g h Bx ,
(1.4.47)

with

N (h , u ) =
�

(h 2)t (h ux −Bx u )
�

x
+2Bx ht (h ux −Bx u ).

Here, N = 0 for its assumption of being steady state solutions. So (1.4.47) becomes











(h u )x = 0,
�

h u 2+ 1
2 g h 2

�

x

=−g h Bx ,
(1.4.48)

which is the same as (1.4.42).

We have same steady state solution (1.4.45) and stationary steady state solution (1.4.46) for

non-hydrostatic Saint-Venant system (1.4.39).
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1.5 Compressible Euler Equation for Ideal Gas

In chapter 3, we will discuss atmospheric flow equations with gravity. It has the following form:























ρt + (ρu )x + (ρv )y = 0,

(ρu )t + (ρu 2+p )x + (ρu v )y = 0,

(ρv )t (ρv u )x + (ρv 2+p )y =−ρg ,

(ρθ )t + (ρθu )x + (ρθ v )y = 0,

(1.5.1)

where θ is potential energy and equation of state is

P = (ρθ )γ. (1.5.2)

Here, we provide two approaches to derive this system.

In the first approach, we can start from the multi-dimensional Euler equation with gravity:







































∂

∂ t
ρ+ (ρu )x + (ρv )y = 0,

∂ ρu

∂ t
+ (ρu 2+p )x + (ρu v )y = 0,

∂ ρv

∂ t
+ (ρv u )x + (ρv 2+p )y =−ρg ,

∂ E

∂ t
+ [(E +p )u ]x + [(E +p )v ]y =−ρv g ,

(1.5.3)

with total energy E = 1
2ρ(u

2+ v 2) + p
γ−1 .

The (fourth) energy balance equation of classic Euler equation (1.5.3) is expressed in terms of

total energy E . But we can express the conservation of energy in terms of potential temperature,

especially in atmospheric flow equations with gravity.

The equation of state of an ideal gas:

p = (ρθ )γ, (1.5.4)

where p is pressure, θ is potential temperature and γ= 1.4 is the specific heat ratio.

Let’s first derive the identity below using only the first 3 equations of (1.5.3):

[
1

2
ρ(u 2+ v 2)]t +px u + [

1

2
ρ(u 2+ v 2)u ]x +py v + [

1

2
ρ(u 2+ v 2)v ]y =−ρv g . (1.5.5)
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Proof:

[
1

2
ρ(u 2+ v 2)]t +px u + [

1

2
ρ(u 2+ v 2)u ]x +py v + [

1

2
ρ(u 2+ v 2)v ]y

=
1

2
[(ρu )t u +ρu ut + (ρv )t v +ρv vt ] +px u + [

1

2
ρ(u 2+ v 2)u ]x +py v + [

1

2
ρ(u 2+ v 2)v ]y

=
1

2
[(ρu )t u + (ρu )t u −ρt u 2+ (ρv )t v + (ρv )t v −ρt v 2] +px u + [

1

2
ρ(u 2+ v 2)u ]x +py v + [

1

2
ρ(u 2+ v 2)v ]y

= (ρu )t u + (ρv )t v −
1

2
ρt [u

2+ v 2] +px u + [
1

2
ρ(u 2+ v 2)u ]x +py v + [

1

2
ρ(u 2+ v 2)v ]y

= (ρu )t u +px u + (ρv )t v +py v −
1

2
ρt [u

2+ v 2] + [
1

2
ρ(u 2+ v 2)u ]x + [

1

2
ρ(u 2+ v 2)v ]y

=−(ρu 2)x u − (ρu v )y u −ρv g − (ρu v )x v − (ρv 2)y v

−
1

2
ρt [u

2+ v 2] + [
1

2
ρ(u 2+ v 2)u ]x + [

1

2
ρ(u 2+ v 2)v ]y

=−ρv g − (ρu 2)x u − (ρu v )y u − (ρu v )x v − (ρv 2)y v +
1

2
[(ρu )x + (ρv )y ][u

2+ v 2]

+
1

2
[ρ(u 2+ v 2)u ]x +

1

2
[ρ(u 2+ v 2)v ]y

=−ρv g −ρx u 3−2ρu 2ux −ρy u 2v −ρu y v u −ρu 2vy

−ρx u v 2−ρux v 2−ρu vx v −ρy v 3−2ρv 2vy

+
1

2
[ρx u +ρux +ρy v +ρvy ][u

2+ v 2]

+
1

2
[ρx u 3+ρ3u 2ux +ρx v 2u +2ρv vx u +ρv 2ux ]

+
1

2
[ρy u 2v +2ρu u y v +ρu 2vy +ρy v 3+3ρv 2vy ]

=−ρv g −ρx u 3−2ρu 2ux −ρy u 2v −ρu y v u −ρu 2vy

−ρx u v 2−ρux v 2−ρu vx v −ρy v 3−2ρv 2vy

+
1

2
[ρx u 3+ρux u 2+ρy v u 2+ρvy u 2+ρx u v 2+ρux v 2+ρy v 3+ρvy v 2]

+
1

2
[ρx u 3+3ρu 2ux +ρx v 2u +2ρv vx u +ρv 2ux ]

+
1

2
[ρy u 2v +2ρu u y v +ρu 2vy +ρy v 3+3ρv 2vy ]

=−ρv g .

�
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Thus we can derive the fourth equation of (1.5.1) with potential θ from (1.5.3):

∂ E

∂ t
+ [(E +p )u ]x + [(E +p )v ]y =−ρv g ,

∂

∂ t

�

1

2
ρ(u 2+ v 2) +

p

γ−1

�

+

��

1

2
ρ(u 2+ v 2) +

γp

γ−1

�

u

�

x

+

��

1

2
ρ(u 2+ v 2) +

γp

γ−1

�

v

�

y

=−ρv g ,

∂

∂ t

�

1

2
ρ(u 2+ v 2) +

p

γ−1

�

+

��

1

2
ρ(u 2+ v 2) +

γp

γ−1

�

u

�

x

+

��

1

2
ρ(u 2+ v 2) +

γp

γ−1

�

v

�

y

− [
1

2
ρ(u 2+ v 2)]t −px u − [

1

2
ρ(u 2+ v 2)u ]x −py v − [

1

2
ρ(u 2+ v 2)v ]y =−ρv g +ρv g ,

�

p

γ−1

�

t

+

�

p

γ−1

�

x

u +

�

p +
p

γ−1

�

ux +

�

p

γ−1

�

y

v +

�

p +
1

γ−1
p

�

vy = 0,

pt +px u +γp ux +py v +γp vy = 0,

γ(ρθ )γ−1(ρθ )t +γ(ρθ )
γ−1(ρθ )x u +γ(ρθ )γ−1ρθux +γ(ρθ )

γ−1(ρθ )y v +γ(ρθ )γ−1ρθ vy = 0,

(ρθ )t + (ρθ )x u +ρθux + (ρθ )y v +ρθ vy = 0,

(ρθ )t + (ρθu )x + (ρθ v )y = 0.

In the second approach, we can start from an isentropic process. It’s a thermodynamics process

that is both adiabatic and reversible. If a material undergoes a change in its physical state like

pressure, volume or temperature without any heat being added to it or withdrawn from it, the

change is called adiabatic. Here, we focus on its property of being adiabatic.

For an adiabatic transformation,

d q = 0. (1.5.6)

Here d (·) indicates differentiation or small change and q means heat. So no heat change in this

system.

From the first law of thermodynamics we have

d q = cp d T −αd p , (1.5.7)

where, cp is heat capacity at constant pressure, T is temperature, p is pressure, and α is volume.

Using the gas equation pα=RT , we have

cp d T −
RT

p
d p = 0 or

d T

T
=

R

cp

d p

p
. (1.5.8)

The potential temperature θ of an air parcel is the temperature that the parcel of air would have if

it were expanded or compressed adiabatically from its existing pressure p to a standard(ground)
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pressure of p0. We then can derive:

∫ T

θ

d T

T
=

R

cp

∫ p

p0

d p

p
,

l n (
T

θ
) =

R

cp
l n (

p

p0
),

θ = T

�

p

p0

�−κ

,

where κ= R
cp

. Then

d q

T
= cp

d T

T
−R

d p

p
= cp

dθ

θ
, (1.5.9)

indicates dθ = 0 for the diabatic process. We have material derivative of potential temperature θ

Dθ

D t
:=
∂ θ

∂ t
+u

∂ θ

∂ x
+ v
∂ θ

∂ y
= 0. (1.5.10)

Thus we can derive (ρθ )t + (ρθu )x + (ρθ v )y = 0.

Above all, the 2-dimensional compressible Euler equation for ideal gas using potential tempera-

ture:






















ρt + (ρu )x + (ρv )y = 0,

(ρu )t + (ρu 2+p )x + (ρu v )y = 0,

(ρv )t (ρv u )x + (ρv 2+p )y =−ρg ,

(ρθ )t + (ρθu )x + (ρθ v )y = 0.

(1.5.11)

The numerical scheme and simulations based on this model will be discussed in chapter 3.

1.6 Numerical Methods

1.6.1 Finite Volume Method

Finite volume methods are among the most efficient algorithms to solve PDEs. They enjoy the

advantages of capturing numerical solutions in an accurate and non-oscillatory manner. The reason

is that finite volume method is a way of representing and evaluating PDEs by introducing volume(cell)

average values and numerical(edge) flux instead of point value in finite difference methods. Thus

it can represent the fluxes near adjacent volumes(cells) and further extend its applications to

unstructured meshes at ease.

For simplicity, we start with the scalar conservation law in (1.2.2),

∂

∂ t
q (x , t ) +

∂

∂ x
F (q (x , t )) = 0. (1.6.1)

Here, q is a scalar known function with spatial and time variables, x and t , F (q (x , t )) is the flux
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function. It can be easily written in an integral form:

d

d t

∫ b

a

q (x , t )d x + F (q (b , t ))− F (q (a , t )) = 0. (1.6.2)

When this interval is changed to a cell x ∈ [x j− 1
2

, x j+ 1
2
] when t = tn , we can define volume(cell)

average

q n
j :=

1

∆x

∫ x
j+ 1

2

x
j− 1

2

q (x , t n )d x , (1.6.3)

If we integrate the above integral form of conservation laws in time form t n to t n+1 and divide whole

equation by∆x , we have

1

∆x





∫ x
j+ 1

2

x
j− 1

2

q (x , t n+1)d x −
∫ x

j+ 1
2

x
j− 1

2

q (x , t n )d x



+
1

∆x





∫ t n+1

t n

F (q (x j+ 1
2

, t ))d t −
∫ t n+1

t n

F (q (x j− 1
2

, t ))d t



= 0,

(1.6.4)

and it can be rewritten as

q n+1
j −q n

j =−
1

∆x





∫ t n+1

t n

F (q (x j+ 1
2

, t ))d t −
∫ t n+1

t n

F (q (x j− 1
2

, t ))d t



 , (1.6.5)

it can be further simplified by introducing numerical(edge) flux:

F n
j+ 1

2
=

1

∆t

∫ t n+1

t n

F (q (x j+ 1
2

, t ))d t , (1.6.6)

Finally this differential equation becomes the fully-discrete form of finite volume method for general

conservation law,

q n+1
j −q n

j =−
∆t

∆x

h

F n
j+ 1

2
− F n

j− 1
2

i

, (1.6.7)

Another important form is the semi-discrete form of the finite volume method for general

conservation law
d q n

j

d t
+

1

∆x

h

F n
j+ 1

2
− F n

j− 1
2

i

= 0, (1.6.8)

which we will discuss later.

Deriving a stable approximation of the numerical flux F n
j+ 1

2
in (1.6.6) is necessary. Note that

(1.6.7) involves cell averages on the LHS of the equation and numerical fluxes to be calculated on

the right. Numerical fluxes in (1.6.6) are time integrals of the flux function from time t n to t n+1 that

require an appropriate approximation of the evolution of q (x j+ 1
2

, t ). Since this time integral contain

the numerical solution at t n+1, numerical flux need to be estimated consistent and stable.

In Figure 1.6.1, the points in the numerical flux F n
j+ 1

2
is {x j+ 1

2
} × [t n , t n+1]. Tracing back char-

acteristic of these points to the line t = t n , stability requires the domain of dependence is fully

22



q n
j+1

x j+ 1
2

q n
j

q n+1
j

x j− 1
2

q n
j−1

t n

t n+1

Figure 1.6.1 Domain of Dependence from Different Cells

contained in adjacent cells C j and C j+1. This process is usually denoted as:

F̂j+ 1
2
(q n

j , q n
j+1) = F n

j+ 1
2

. (1.6.9)

If q n
j = q n

j ≡ constant := c , it’s easy to test consistency by checking

F̂j+ 1
2
(c , c ) = F (c ). (1.6.10)

In order for the designed numerical scheme to be stable, it is necessary to introduce the Courant-

Friederichs-Lewy(CFL) condition here.

For one-dimensional advection equation:

∂ q

∂ t
+a
∂ q

∂ x
= 0, (1.6.11)

where numerical flux F (q ) = a q and finite wave speed a . The CFL condition then has the following

form:

C =
a∆t

∆x
≤ 1, (1.6.12)

where C is the Courant number, typically it’s less than 1.

For multi-dimensional cases,
∂ q

∂ t
+∇x ·F (q) = 0, (1.6.13)

where λi is i-th eigenvalues of Jacobian matrix ∂ F∂ q , the Courant number

C =∆t max
i

|λi |
∆xi

(1.6.14)

should be restricted to determine time step∆t in computation.
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1.6.2 Semi-Discrete Central-Upwind Scheme

Godunov-type schemes offer a framework to solve finite volume methods. In Sergei Godunov’s

pioneer work [God59], he approximated numerical solution at t n as piecewise constant over the

grid volumes(cells), then evolved the solution by solving local Riemann problems at the cell in-

terfaces(edges) exactly and eventually projected the solution at t n+1 by averaging state variables

obtained in Riemann problems. One of his great contributions is that his work can be extended for a

general nonlinear system of equations in an upwind style. Godunov-type schemes are also referred

to as REA algorithm(1d as an example):

1. Reconstruct a piecewise polynomial function q̃(x , t n ) from cell averages qn
j in cell [x j− 1

2
, x j+ 1

2
]

at time t n .

If the scheme is first order, a piecewise constant reconstruction is enough:

q̃ (x , t n ) = q n
j , x ∈ [x j− 1

2
, x j+ 1

2
]. (1.6.15)

If the scheme is 2nd order, a piecewise linear reconstruction is enough:

q̃ (x , t n ) = q n
j + (qx )

n
j (x − x j ) , x ∈ [x j− 1

2
, x j+ 1

2
]. (1.6.16)

2. Evolve the exact or approximate Riemann solution at cell interfaces x j+ 1
2

and then compute

numerical fluxes and update hyperbolic equations(like in (1.6.7) and (1.6.8)).

3. Average the piecewise polynomial function q̃(x , t n+1) over [x j− 1
2

, x j+ 1
2
] to obtain new cell

averages q n+1
j :

q n+1
j =

∫ x
j+ 1

2

x
j− 1

2

q̃ (x , t n+1)d x . (1.6.17)

Noted that the first and third steps can be treated as a same step, sometimes it is called a

projection stage leaving the second step as evolution stage.

Semi-discrete finite volume method in (1.6.8) with numerical flux introduced in (1.6.6),

d q n
j

d t
+

1

∆x

h

F n
j+ 1

2
− F n

j− 1
2

i

= 0, (1.6.18)

F n
j+ 1

2
=

1

∆t

∫ t n+1

t n

F (q (x j+ 1
2

, t ))d t .

Godunov proposed classical upwind schemes in his work [God59]. Figure 1.6.2(a) illustrates, in

upwind schemes, the space-time control volume is [x j− 1
2

, x j+ 1
2
]× [t n , t n+1]. One need to calculate or

approximate the integral of the flux function at cell interface x j± 1
2

. If the reconstruction is piecewise

constant or linear, the solution q (x , t ) at interfaces (x j± 1
2

, t n ) is likely to be discontinues. Thus, an

exact or approximate Riemann solver can be applied here. The advantages of upwind schemes are
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2
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Figure 1.6.2 (a) Upwind control volume (b) Central control volume (c) Central-upwind control volumes
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highly accurate, less diffusive and dissipative than central schemes(they will be mentioned later).

The disadvantages of upwind schemes is the requirement of the existence of such Riemann solvers

and their expensive computational costs.

The Lax–Friedrichs method, named after Peter Lax and Kurt O. Friedrichs is explicit and first order

central scheme. Central schemes serves as an alternative to Godunov’s scheme. As demonstrated in

Figure 1.6.2(b), it is Riemann-problem-solver-free at each cell interfaces. Since it’s simple and costs

less computation, the solution is usually less accurate than those of Godunov method. It has also

developed recently including staggered and non-staggered variants and higher order. Readers can

check [Arm97; Bia99; Chr08; Jia98; Kur00a; Kur00b; Kur01a; Kur00c; Kur00d; Lev99] for more details.

Central-upwind schemes are recently developed to enjoy the benefits of avoiding Riemann

solvers from central schemes and high accuracy and less dissipation from upwind schemes. They

are introduced in [Kur07a; Kur00d; Kur01b]. The main idea behind central-upwind schemes is

to use upwinding information at interfaces to better describe numerical flux at interfaces with

discontinuities. As shown in Figure 1.6.2(c), we need to study how Riemann problem evolves in 3

regions(rectangles). As a review of construction step, we know that inside a cell like [x j− 1
2

, x j+ 1
2
], if

q (x , t n ) can be chosen to be a piecewise linear or constant function, it’s likely that discontinues will

occur at interface x j± 1
2

, which will be local Riemann problems. Thus, from Figure 1.6.2(c), in the most

left rectangle and most right rectangle that contains the interfaces x j± 1
2

, Riemann problems occur

and characteristics intersect. The solution in these 2 rectangles are called (informal) nonsmooth,

when the solution inside the middle rectangle is called (informal) smooth since no characteristics

from other cells can reach this part.

One-Dimensional Central Upwind Scheme for the Scalar Conservation Law

Here we derive a one-dimensional central upwind scheme for scalar conservation laws, which was

originally developed in [Kur00c; Kur00d; Kur01b]. Noted that here we use pain symbol like q , F as

scalar functions.

Given
∂

∂ t
q (x , t ) +

∂

∂ x
F (q (x , t )) = 0, (1.6.19)

consider the cell C j := [x j− 1
2

, x j+ 1
2
] at t = t n . From (1.6.5), we have

q n+1
j −q n

j =−
1

∆x





∫ t n+1

t n

F (q (x j+ 1
2

, t ))d t −
∫ t n+1

t n

F (q (x j− 1
2

, t ))d t



 . (1.6.20)

As mentioned before, cell averages q j can be used to construct piecewise linear function q̃ (x , t n )

inside Ci :

q̃ (x , t n ) = Pn
j (x ) := q j + (qx )

n
j (x − x j ) , x j− 1

2
< x < x j+ 1

2
. (1.6.21)
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Pn
j−1 Pn

j+1

m n
j−1 m n

j+1

x j− 1
2 ,rx j− 1

2 ,l x j+ 1
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Figure 1.6.3 Control volumes selected according to smooth and nonsmooth areas

A more general form is

q̃ (x , t n ) =
∑

j

[q j + (qx )
n
j (x − x j )] ·χ [x

j− 1
2

,x
j+ 1

2
] =

∑

j

Pn
j (x ) ·χ [x

j− 1
2

,x
j+ 1

2
], (1.6.22)

whereχ [x
j− 1

2
,x

j+ 1
2
] is a characteristic function in [x j− 1

2
, x j+ 1

2
]. Here, the spatial derivative (qx )nj can

be approximated by an appropriate slope limiter, for example, generalized minmod limiter(check

[Lie03; Jia98; Swe84] for details):

�

qx

�n

j
:= s n

j =minmod

�

θ
q n

j −q n
j−1

∆x
,

q n
j+1−q n

j−1

2∆x
, θ

q n
j+1−q n

j

∆x

�

, θ ∈ [1, 2], (1.6.23)

where the minmod function defined as

minmod(z1, z2, . . . ) :=



















min
j
{z j }, if z j > 0 ∀ j ,

max
j
{z j }, if z j < 0 ∀ j ,

0, otherwise,

(1.6.24)

and θ can control the amount of numerical dissipation and oscillation: larger value of θ corresponds

to less dissipation but more oscillation in numerical results.

The discontinuity at x j+ 1
2

(for example) propagate with maximum speed that can be bounded
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by the eigenvalues of the Jacobian of the flux with the maximal magnitude:

a+
j+ 1

2
:= max

q∈C (q−
j+ 1

2
,q+

j+ 1
2
)

§

λN (
∂ F

∂ q
), 0

ª

, (1.6.25)

a−
j+ 1

2
:= min

q∈C (q−
j+ 1

2
,q+

j+ 1
2
)

§

λ1(
∂ F

∂ q
), 0

ª

, (1.6.26)

where λ1 <λ2 < ...<λN are N eigenvalues of the Jacobian ∂ F
∂ q , when it is a system of conservation

law of dimension N .

q±
j+ 1

2
mentioned above are values at different side of same interface x j+ 1

2
, and evaluated from

different piecewise construction:

q+
j+ 1

2
= Pn

j+1(x j+ 1
2
+0) and q−

j+ 1
2
= Pn

j (x j+ 1
2
−0), (1.6.27)

and C (q−
j+ 1

2
, q+

j+ 1
2
) is the Riemann admissible curve in phase space that connects q±

j+ 1
2

and are usually

treated as all possible values between q−
j+ 1

2
, q+

j+ 1
2

. We refer the reader to [Kur07d; Wan99] for more

details.

As Figure 1.6.3 illustrated, [x j− 1
2 ,l , x j− 1

2 ,r ]× [t n , t n+1] and [x j+ 1
2 ,l , x j+ 1

2 ,r ]× [t n , t n+1] are nons-

mooth area that has characteristics from adjacent cells and [x j− 1
2 ,r , x j+ 1

2 ,l ]× [t n , t n+1] are smooth

area that has characteristics only from the cell C j :

x j+ 1
2 ,l := x j+ 1

2
+a−

j+ 1
2
∆t , x j+ 1

2 ,r := x j+ 1
2
+a+

j+ 1
2
∆t . (1.6.28)

In order to fix x j+ 1
2 ,l inside [x j , x j+ 1

2
] and x j+ 1

2 ,r inside [x j+ 1
2

, x j+1], we can build up a CFL condition:

∆t ·max
j

n

max(a+
j+ 1

2
,−a−

j+ 1
2
)
o

<
∆x

2
. (1.6.29)

Here, we define cell averages over smooth region in time tn :

m n
j =

1

x j+ 1
2 ,l − x j− 1

2 ,r

∫ x
j+ 1

2 ,l

x
j− 1

2 ,r

Pn
j (x )d x . (1.6.30)

In a similar way as the computation of (1.6.20), we can use midpoint quadrature for temporal

integrals:

m n+1
j −m n

j =−
1

x j+ 1
2 ,l − x j− 1

2 ,r





∫ t n+1

t n

F (q (x j+ 1
2 ,l , t ))d t −

∫ t n+1

t n

F (q (x j− 1
2 ,r , t ))d t



 ,

m n+1
j =

1

x j+ 1
2 ,l − x j− 1

2 ,r







∫ x
j+ 1

2 ,l

x
j− 1

2 ,r

Pn
j (x )d x −

�

F (q (x j+ 1
2 ,l , t n+ 1

2 ))− F (q (x j− 1
2 ,r , t n+ 1

2 ))
�







,
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m n+1
j = q n

j +
s n

j

2
(a+

j+ 1
2
+a−

j+ 1
2
)∆t −

∆t

∆x − (a+
j+ 1

2
+a−

j+ 1
2
)∆t

�

F (q (x j+ 1
2 ,l , t n+ 1

2 ))− F (q (x j− 1
2 ,r , t n+ 1

2 ))
�

.

(1.6.31)

For cell averages over nonsmooth region in time tn+1:

m n
j+ 1

2
=

1

x j+ 1
2 ,r − x j+ 1

2 ,l





∫ x
j+ 1

2

x
j+ 1

2 ,l

Pn
j (x )d x +

∫ x
j+ 1

2 ,r

x
j+ 1

2

Pn
j+1(x )d x



 . (1.6.32)

In a similar way as the computation of (1.6.20), we can use midpoint quadrature for temporal

integrals:

m n+1
j+ 1

2
−m n

j+ 1
2
=−

1

x j+ 1
2 ,r − x j+ 1

2 ,l





∫ t n+1

t n

F (q (x j+ 1
2 ,r , t ))d t −

∫ t n+1

t n

F (q (x j+ 1
2 ,l , t ))d t



 ,

m n+1
j =

1

x j+ 1
2 ,r − x j+ 1

2 ,l

�∫ x
j+ 1

2

x
j+ 1

2 ,l

P n
j (x )d x +

∫ x
j+ 1

2 ,r

x
j+ 1

2

P n
j+1(x )d x

−
�

F (q (x j+ 1
2 ,l , t n+ 1

2 ))− F (q (x j− 1
2 ,r , t n+ 1

2 ))
�

�

,

m n+1
j =

1

a+
j+ 1

2
−a−

j+ 1
2

�

q n
j+ 1

2 ,r
a+

j+ 1
2
−

s n
j+1

2
(a+

j+ 1
2
)2∆t −q n

j+ 1
2 ,l

a−
j+ 1

2
+

s n
j

2
(a−

j+ 1
2
)2∆t

−
�

F (q (x j+ 1
2 ,r , t n+ 1

2 ))− F (q (x j+ 1
2 ,l , t n+ 1

2 ))
�

�

. (1.6.33)

At projection step, we can use a piecewise linear function to describe nonsmooth and smooth

solution at time t = t n+1:

m̃ (x , t n+1) =







m n+1
j + s n+1

j+ 1
2
(x −

x
j+ 1

2 ,l
+x

j− 1
2 ,r

2 ), x ∈ [x j− 1
2 ,r , x j+ 1

2 ,l ],

m n+1
j+ 1

2
, x ∈ [x j+ 1

2 ,l , x j+ 1
2 ,r ].

(1.6.34)

Here slope s n+1
j+ 1

2
can be estimated using the minmod limiter:

s n+1
j+ 1

2
=

minmod(m n+1
j+ 1

2
−q n+1

j+ 1
2 ,l

, q n+1
j+ 1

2 ,r
−m n+1

j+ 1
2
)

∆t
2 (a

+
j+ 1

2
−a−

j+ 1
2
)

, (1.6.35)

More approaches about numerical slope s n+1
j+ 1

2
can be found in [Kur01b; Kur00c].

Thus we can derive cell averages of [x j− 1
2

, x j+ 1
2
] as:

q n+1
j =λa+

j− 1
2

m n+1
j− 1

2
+ [1+λ(a−

j+ 1
2
−a+

j− 1
2
)]m n+1

j− 1
2
−λa−

j+ 1
2

m n+1
j+ 1

2
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+
λ∆t

2

h

s n+1
j+ 1

2
a+

j+ 1
2

a−
j+ 1

2
+ s n+1

j− 1
2

a+
j− 1

2
a−

j− 1
2

i

, (1.6.36)

After we put (1.6.36), nonsmooth average in (1.6.33) and smooth average in (1.6.31) to differential

equation:

d

d t
q n

j = lim
∆t−→0

q n+1
j −q n

j

∆t
, (1.6.37)

We can finally get the 1-D semi-discrete central-upwind scheme:

d

d t
q j (t ) =−

H j+ 1
2
(t )−H j− 1

2
(t )

∆x
, (1.6.38)

computed in terms of the Central-Upwind numerical flux,

H j+ 1
2
(t ) :=

a+
j+ 1

2
F (q−

j+ 1
2
)−a−

j+ 1
2

F (q+
j+ 1

2
)

a+
j+ 1

2
−a−

j+ 1
2

+α j+ 1
2
(q+

j+ 1
2
−q−

j+ 1
2
−δq j+ 1

2
), (1.6.39)

with the coefficient

α j+ 1
2
=

a+
j+ 1

2
a−

j+ 1
2

a+
j+ 1

2
−a−

j+ 1
2

, (1.6.40)

and anti-diffusion term

δq j− 1
2
=

a+
j+ 1

2
−a−

j+ 1
2

2
lim
∆t→0

n

∆t s n+1
j+ 1

2

o

=minmod(q+
j+ 1

2
−q ∗

j+ 1
2

, q ∗
j+ 1

2
−q−

j+ 1
2
), (1.6.41)

with an intermediate state

q ∗
j+ 1

2
= lim
∆t→0

m n+1
j+ 1

2
=

a+
j+ 1

2
q+

j+ 1
2
−a−

j+ 1
2

q−
j+ 1

2
−
h

F (q+
j+ 1

2
)− F (q−

j+ 1
2
)
i

a+
j+ 1

2
−a−

j+ 1
2

. (1.6.42)

Two-Dimensional Central Upwind Scheme for a System of Balance Laws

Noted that here we use bold symbol like q, F , G, and S as vector functions.

For completeness, we describe 2-dimensional second-order semi-discrete central-upwind

scheme for the system of hyperbolic balance laws given by

∂

∂ t
q(x , y , t ) +

∂

∂ x
F (q(x , y , t ))+

∂

∂ y
G(q(x , y , t )) =S(q(x , y , t )), (1.6.43)

where q represents The computation domain is broken into a rectangular grid, C j ,k := [x j− 1
2

, x j+ 1
2
]×

[yk− 1
2

, yk+ 1
2
]with |C j ,k |=∆x∆y centered at (x j , yk ) for j = 1, ..., M and k = 1, ..., N being the indices

of the grid in the x -direction and y -direction, respectively. The cell averages of C j ,k of the computed
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numerical solution

q j ,k (t ) :=
1

∆x∆y

∫∫

C j ,k

q(x , y , t )dx dy , (1.6.44)

S j ,k (t ) :=
1

∆x∆y

∫∫

C j ,k

S(x , y , t )dx dy , (1.6.45)

are available at time level t . The second order 2-D semi-discrete the central upwind scheme to (1.6.43)

is the following system of ODEs:

d

d t
q j (t ) =−

H x
j+ 1

2 ,k
(t )−H x

j− 1
2 ,k
(t )

∆x
−
H

y

j ,k+ 1
2
(t )−H y

j ,k− 1
2
(t )

∆y
+S j ,k (t ), (1.6.46)

where H x
j± 1

2 ,k
(t ) and H

y

j ,k± 1
2
(t ) are the central-upwind numerical fluxes given by

H x
j+ 1

2 ,k
(t ) :=

a+
j+ 1

2 ,k
F (q−

j+ 1
2 ,k
)−a−

j+ 1
2 ,k

F (q+
j+ 1

2 ,k
)

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

+α j+ 1
2 ,k (q

+
j+ 1

2 ,k
−q−

j+ 1
2 ,k
−δq j+ 1

2 ,k ),

H
y

j ,k+ 1
2
(t ) :=

b+
j ,k+ 1

2
G(q−

j ,k+ 1
2
)− b−

j ,k+ 1
2
G(q+

j ,k+ 1
2
)

b+
j ,k+ 1

2
− b−

j ,k+ 1
2

+β j ,k+ 1
2
(q+

j ,k+ 1
2
−q−

j ,k+ 1
2
−δq j ,k+ 1

2
), (1.6.47)

with the coefficients

α j+ 1
2 ,k =

a+
j+ 1

2 ,k
a−

j+ 1
2 ,k

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

,

β j ,k+ 1
2
=

b+
j ,k+ 1

2
b−

j ,k+ 1
2

b+
j ,k+ 1

2
− b−

j ,k+ 1
2

, (1.6.48)

and anti-diffusion term

δq j+ 1
2 ,k =minmod(q+

j+ 1
2 ,k
−q∗

j+ 1
2 ,k

,q∗
j+ 1

2 ,k
−q−

j+ 1
2 ,k
),

δq j ,k+ 1
2
=minmod(q+

j ,k+ 1
2
−q∗

j ,k+ 1
2

,q∗
j ,k+ 1

2
−q−

j ,k+ 1
2
), (1.6.49)

(1.6.50)

with intermediate states

q∗
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
q+

j+ 1
2 ,k
−a−

j+ 1
2 ,k

q−
j+ 1

2 ,k
−
h

F (q+
j+ 1

2 ,k
)−F (q−

j+ 1
2 ,k
)
i

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

,

q∗
j ,k+ 1

2
=

b+
j ,k+ 1

2
q+

j ,k+ 1
2
− b−

j ,k+ 1
2
q−

j ,k+ 1
2
−
h

F (q+
j ,k+ 1

2
)−F (q−

j ,k+ 1
2
)
i

b+
j ,k+ 1

2
− b−

j ,k+ 1
2

. (1.6.51)
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Here, in (1.6.47),q±
j+ 1

2 ,k
andq±

j ,k+ 1
2

are interpolated point values at different sides of cell interfaces

(x j+ 1
2

, yk ) and (x j , yk+ 1
2
) from piecewise linear reconstructions:

q̃(x , y ) =
∑

i

[q j ,k + (qx ) j ,k (x − x j ) + (qy ) j ,k (y − xk )] ·χ [x
j− 1

2
,x

j+ 1
2
]×[y

k− 1
2

,y
k+ 1

2
]. (1.6.52)

The formulas are given below:

q+
j+ 1

2 ,k
= q j+1,k −

∆x

2
(qx ) j+1,k , q−

j+ 1
2 ,k
= q j ,k +

∆x

2
(qx ) j ,k ,

q+
j ,k+ 1

2
= q j ,k+1−

∆y

2
(qy ) j ,k+1 , q−

j ,k+ 1
2
= q j ,k +

∆y

2
(qy ) j ,k . (1.6.53)

Generalized minmod limiter is used here for slopes:

(qx ) j ,k =minmod

�

θ
q j ,k −q j−1,k

∆x
,
q j+1,k −q j−1,k

2∆x
, θ

q j+1,k −q j ,k

∆x

�

,

�

qy

�

j ,k
=minmod

�

θ
q j ,k −q j ,k−1

∆y
,
q j ,k+1−q j ,k−1

2∆y
, θ

q j ,k+1−q j ,k

∆y

�

, (1.6.54)

where the minmod function defined as

minmod(z1, z2, . . . ) :=



















min
j
{z j }, if z j > 0 ∀ j ,

max
j
{z j }, if z j < 0 ∀ j ,

0, otherwise,

(1.6.55)

and θ ∈ [1,2] can control the amount of numerical dissipation and oscillation: larger value of θ

corresponds to less dissipation but more oscillation in numerical results.

The local propagation speeds a±
j+ 1

2 ,k
and b±

j ,k+ 1
2

are computed same way using the eigenvalues

λi of ∂ F∂ q and ∂G
∂ q , where λ1 <λ2 < ...<λN :

a+
j+ 1

2 ,k
:=max

§

λN

�

∂ F

∂ q
(q−

j+ 1
2 ,k
)
�

, λN

�

∂ F

∂ q
(q+

j+ 1
2 ,k
)
�

, 0
ª

,

a−
j+ 1

2 ,k
:=max

§

λ1

�

∂ F

∂ q
(q−

j+ 1
2 ,k
)
�

, λ1

�

∂ F

∂ q
(q+

j+ 1
2 ,k
)
�

, 0
ª

,

b+
j ,k+ 1

2
:=max

§

λN

�

∂G

∂ q
(q−

j ,k+ 1
2
)
�

, λN

�

∂G

∂ q
(q+

j ,k+ 1
2
)
�

, 0
ª

,

b−
j ,k+ 1

2
:=max

§

λ1

�

∂G

∂ q
(q−

j ,k+ 1
2
)
�

, λ1

�

∂G

∂ q
(q+

j ,k+ 1
2
)
�

, 0
ª

. (1.6.56)

32



The time step can be chosen to satisfy the CFL condtion below:

∆t ·max

�max
j

�

|a±
j+ 1

2 ,k
|
�

∆x
,

max
k

�

|b±
j ,k+ 1

2
|
�

∆y

�

<
1

4
. (1.6.57)

33



CHAPTER

2

NON-HYDROSTATIC SAINT-VENANT

SYSTEM

The main part of this chapter have been accepted in Proceedings of the XVII International Conference

on Hyperbolic Problems: Theory, Numerics and Applications,[Che20]

In this chapter, we will discuss non-hydrostatic Saint-Venant System. It’s proposed in [M.-O.

BRISTEAU AND J. SAINTE-MARIE, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), pp. 733–759]. The phys-

ical background of this equation is tsunami waves. We are interested in its long-time performance

in deep water and on-shore behaviors of tsunami-like waves. Classical Saint-Venant system[SV71],

however, works well in model lakes, rivers and coastal areas in a relative short time spacial scale.

Over long time, solutions of the Saint-Venant system break down, dissipate in an unphysical manner,

shock waves develop, and the system fails to capture small, trailing waves that are seen in nature

and laboratory experiments [MI06].

Non-hydrostatic models(the celebrated Green-Naghdi equation [Gre76; Bar04; Bon02; Bon04])

work well for long-time propagation of tsunami-like waves because they allow the wave to travel for

long distances without decaying in amplitude. In addition, since these systems are dispersive, they

give rise to trailing waves that are observed to follow tsunamis in nature. However, it is necessary

to achieve some balance between dispersion observed with a non-hydrostatic model and the

dissipation seen in the classical Saint-Venant system.
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2.1 Mathematical Model

The non-hydrostatic Saint-Venant system presented in [Bri11; Bri08] is given by







ht + (h u )x = 0,

(h u )t +Mt +
�

h u 2+
g

2
h 2
�

x
+N =−g h Bx +p a wx −4(νux )x −κ(h , h u )u ,

(2.1.1)

where h (x , t ) is the water depth measured vertically from the bottom topography, described by

function B (x , t ), u (x , t ) is the vertically averaged velocity, h u is the horizontal momentum or

discharge, p a = p a (x , t ) is the atmospheric pressure function, w := h +B is the free surface, ν is the

viscosity coefficient, κ is the friction function, and M and N are defined as

M (h , h u , B ) =
�

−
1

3
h 3ux +

1

2
h 2Bx u

�

x
+Bx

�

−
1

2
h 2ux +Bx h u

�

,

and

N (h , h u , B ) =
�

(h 2)t (h ux −Bx u )
�

x
+2Bx ht (h ux −Bx u )−Bx t

�

−
1

2
h 2ux +Bx h u

�

. (2.1.2)

Here, M and N are terms that arise when the system is derived from the Euler equations and include

non-hydrostatic pressure terms [Bri08].

One of the goals of the current work is to numerically study the effects of the dispersion terms

present in the non-hydrostatic model (2.1.1). To this end, we introduce the new scaling parameters

αM and αN as coefficients to M and N in (2.1.1). For the purpose of this work we will neglect fluid

viscosity and friction by settingν andκ(h , h u ) to be identically zero and also assume that the bottom

topography function is independent of time, i.e., B = B (x ). In addition, we follow the approach in

[Kur02; Kur07c] and rewrite our system in terms of the equilibrium variables w = h +B and q := h u :











wt +qx = 0,

qt +αM Mt +

�

q 2

w −B
+

g

2
(w −B )2

�

x

+αN N =−g (w −B )Bx +p a wx .
(2.1.3)

When αM = αN = p a ≡ 0, (2.1.3) reduces to the classical Saint-Venant system, and as we increase

these parameters, the amount of dispersion in our model increases and the effects of the lack of the

hydrostatic pressure assumption should be apparent.

2.1.1 Central-Upwind Scheme

We develop a new well-balanced positivity preserving scheme for (2.1.3), which is based on the

semi-discrete central-upwind scheme from [Kur01b] (see also [Kur07c; Kur09]). For simplicity, we

introduce a uniform grid x j = j∆x where∆x is a small spatial scale, and denote the computational

cells centered at x j by I j := [x j− 1
2

, x j+ 1
2
].
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Here, in order not to cause confusion, we use U instead of q to represent the unknowns. Then

we rewrite the system (2.1.3) in the following form:

Ut +M (U , B )t +F (U , B )x +N (U , B ) =S(U , B ), U := (w , q )T , (2.1.4)

where

F (U , B ) =
�

q ,
q 2

w −B
+

g

2
(w −B )2

�T
, S(U , B ) = (0,−g (w −B )Bx +p a wx )

T ,

M (U , B ) = (0,αM M (U , B ))T , N (U , B ) = (0,αN N (U , B ))T .

Using the above notations, a semi-discrete central-upwind scheme for (2.1.4) takes the form of

the following system of time-dependent ODEs:

d

d t

�

U j (t ) +M j (t )
�

=−
H j+ 1

2
(t )−H j− 1

2
(t )

∆x
+S j (t )−N j (t ), (2.1.5)

where (·) j (t ) is used to denote the approximated cell averages over the corresponding cells:

U j (t )≈
1

∆x

∫

I j

U (x , t )d x , S j (t )≈
1

∆x

∫

I j

S(U (x , t ), B (x ))d x ,

M j (t )≈
1

∆x

∫

I j

M (U (x , t ), B (x ))d x , N j (t )≈
1

∆x

∫

I j

N (U (x , t ), B (x ))d x ,

and H j+ 1
2
(t ) are the central-upwind numerical fluxes H j+ 1

2
proposed in [Kur07c] (see also [Kur07b;

Kur01b]):

H j+ 1
2
(t ) =

a+
j+ 1

2
F
�

U−
j+ 1

2
, B j+ 1

2

�

−a−
j+ 1

2
F
�

U+
j+ 1

2
, B j+ 1

2

�

a+
j+ 1

2
−a−

j+ 1
2

+
a+

j+ 1
2

a−
j+ 1

2

a+
j+ 1

2
−a−

j+ 1
2

h

U+
j+ 1

2
−U−

j+ 1
2

i

. (2.1.6)

Here, the values U±
j+ 1

2
are the right/left point values at x = x j+ 1

2
of the conservative piecewise linear

reconstruction eU ,
eU (x ) :=U j + (Ux ) j

�

x − x j

�

, x j− 1
2
< x < x j+ 1

2
, (2.1.7)

which is used to approximate U at time t , that is,

U±
j+ 1

2
:= eU

�

x j+ 1
2
±0

�

=U j+ 1
2±

1
2
∓
∆x

2
(Ux ) j+ 1

2±
1
2

. (2.1.8)

The numerical derivatives (Ux ) j are at least first-order accurate component-wise approximations

of Ux (x j , t ), computed using a nonlinear limiter needed to ensure the non-oscillatory nature of

the reconstruction (2.1.7). The right- and left-sided local speeds a±
j+ 1

2
in (2.1.6) are obtained from

the smallest and largest eigenvalues of the Jacobian ∂U
∂U (see Section 2.1.1.1 for details). Notice that
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the terms U±
j+ 1

2
, U j , a±

j+ 1
2
, eU (x ) and (Ux ) j all depend on t , but we suppress this dependence for

simplicity.

We also follow the work of [Kur07c; Kur09] and replace B (x ) in (2.1.6) with its continuous piece-

wise linear approximation by defining

B j+ 1
2

:= B (x j+ 1
2
) and B j :=

1

2
(B j+ 1

2
+B j− 1

2
). (2.1.9)

This will help to ensure the positivity preserving nature of the proposed scheme, as we show below.

2.1.1.1 Positivity-Preserving Reconstruction

The use of a piecewise linear reconstruction (2.1.7) requires the computation of slopes (Ux ) j to

obtain the right/left point values defined in (2.1.8). It is well-known that in order to ensure the

non-oscillatory nature of the reconstruction, the use of a nonlinear limiter is required. We choose to

use the generalized minmod limiter:

(Ux ) j =minmod

�

θ
U j −U j−1

∆x
,
U j+1−U j−1

2∆x
, θ

U j+1−U j

∆x

�

, θ ∈ [1, 2], (2.1.10)

where the minmod function defined as

minmod(z1, z2, . . . ) :=



















min
j
{z j }, if z j > 0 ∀ j ,

max
j
{z j }, if z j < 0 ∀ j ,

0, otherwise,

is applied in a componentwise manner. The parameter θ can be used the control the amount of

numerical viscosity present in the resulting scheme (see, e.g., [Lie03; Nes90; Swe84] for more details

concerning the generalized minmod and other nonlinear limiters).

Even when all of the cell averages h j are nonnegative, the reconstructed right/left point values

at the cell interface h±
j+ 1

2
may be negative. To guarantee positivity of h throughout the entire com-

putational domain, we follow the procedure from [Kur07c] and amend the reconstruction (2.1.7),

(2.1.8), (2.1.10) in the following conservative way:

if w−
j+ 1

2
< B j+ 1

2
, then take (wx ) j :=−

w j

∆x/2
=⇒ w−

j+ 1
2
= B j+ 1

2
, w+

j− 1
2
= 2w j ,

if w+
j− 1

2
< B j− 1

2
, then take (wx ) j :=

w j

∆x/2
=⇒ w−

j+ 1
2
= 2w j , w+

j− 1
2
= B j− 1

2
.

(2.1.11)

It is necessary to compute the nonconservative quantity u = q/h for the computation of nu-

merical fluxes and local propagation speeds. We follow the desingularization procedure outlined in
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[Kur07c; Kur09] to avoid possible division by small values of h :

u :=

p
2(w −B ) ·q

p

(w −B )4+max ((w −B )4,ε)
, (2.1.12)

where ε is a small desingularization parameter (in our numerical experiments, we have taken

ε =min((∆x )3,10−4)). Notice that this procedure will only affect the velocity computations when

h 4 < ε. It is also important to recalculate the values of q at the points where the velocity was

desingularized by setting

q := h ·u .

Since the flux term U in (2.1.4) is equivalent to that of the classical Saint-Venant system, the

local propagation speeds a±
j+ 1

2
are computed the same way using the eigenvalues of ∂U∂U :

a+
j+ 1

2
:=max

§

u+
j+ 1

2
+
r

g h+
j+ 1

2
, u−

j+ 1
2
+
r

g h−
j+ 1

2
, 0
ª

,

a−
j+ 1

2
:=min

§

u+
j+ 1

2
−
r

g h+
j+ 1

2
, u−

j+ 1
2
−
r

g h−
j+ 1

2
, 0
ª

.

Remark 2.1.1 Proof of the positivity preserving property of this reconstruction is available in [Kur02;

Kur07c].

2.1.1.2 Discretization of the Non-hydrostatic Pressure Terms

The dispersive terms M j and N j are computed using the second-order midpoint rule. We first

follow [Bri11] and discretize the terms of M at x j in the following ways:

�

1

3
h 3ux

�

x
(x j )≈

1

3∆x

�u j+1−u j

∆x

�

h j+ 1
2

�3−
u j −u j−1

∆x

�

h j− 1
2

�3
�

=
1

3(∆x )2





�

h j+ 1
2

�3

h j+1

q j+1−

�

h j+ 1
2

�3
+
�

h j− 1
2

�3

h j

q j +

�

h j− 1
2

�3

h j−1

q j−1



 , (2.1.13)

�

1

2
h 2Bx u

�

x
(x j ) =

�

1

2
h Bx q

�

x
(x j )≈

1

2∆x

�

h j+ 1
2
(Bx ) j+ 1

2
q j+ 1

2
−h j− 1

2
(Bx ) j− 1

2
q j− 1

2

�

=
1

4∆x

�

h j+ 1
2
(Bx ) j+ 1

2
q j+1+

�

h j+ 1
2
(Bx ) j+ 1

2
−h j− 1

2
(Bx ) j− 1

2

�

q j −h j− 1
2
(Bx ) j− 1

2
q j−1

�

, (2.1.14)

�

1

2
Bx h 2ux

�

(x j )≈
1

2
(Bx ) j h

2

j (ux ) j ≈
1

2
(Bx ) j h

2

j





1

h j

(qx ) j −
(hx ) j

h
2

j

q j





=
1

4∆x
(Bx ) j

�

h j q j+1−2∆x (hx ) j q j −h j q j−1

�

(2.1.15)
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(B 2
x h u )(x j )≈ (Bx )

2
j q j , (2.1.16)

where u j := q j /h j and

u j+ 1
2

:=
1

2
(u j+1+u j ), h j+ 1

2
:=

1

2
(h j+1+h j ), q j+ 1

2
:=

1

2
(q j+1+q j ),

(Bx ) j :=
B j+ 1

2
−B j− 1

2

∆x
, (Bx ) j+ 1

2
:=

1

2
((Bx ) j+1+ (Bx ) j ), (qx ) j :=

q j+1−q j−1

2∆x
.

(2.1.17)

We then replace the time derivatives ht by its space equivalent −qx and use (2.1.17) to obtain the

following discretization of N :

Nj =−
2

∆x

�

h j+ 1
2
·

q j+1−q j

∆x

�

h j+ 1
2

u j+1−u j

∆x
− (Bx ) j+ 1

2
u j+ 1

2

�

−h j− 1
2
·

q j −q j−1

∆x

�

h j− 1
2

u j −u j−1

∆x
− (Bx ) j− 1

2
u j− 1

2

�

�

−2(Bx ) j (qx ) j
¦

(qx ) j − [(hx ) j + (Bx ) j ]u j

©

(2.1.18)

Remark 2.1.2 In equations (2.1.13)–(2.1.16), (hx ) j are obtained using the limiter as it is described

in Section 2.1.1.1, while (qx ) j are calculated using the centered differences (see (2.1.17)). The latter

is done to avoid the need to solve a nonlinear system of algebraic equations as we explain in Section

2.1.2.

Remark 2.1.3 We would like point out that all of the terms in (2.1.13)–(2.1.16) will be taken at

either t n or t n+1 depending on a particular choice of the time evolution method for the numerical

integration of the system (2.1.5). The manner in which these terms are combined and treated is

presented in Section 2.1.2.

2.1.1.3 Well-Balanced Source Discretization

The physically relevant steady-state solution for (2.1.3) is the “lake-at-rest” solution, corresponding

to the water surface being perfectly flat and stationary:

w = h +B ≡Const, h u ≡ 0. (2.1.19)

Preserving this particular steady state would guarantee that no artificial surface waves are generated.

Our goal is to design a numerical scheme for (2.1.3) that exactly preserves the “lake-at-rest” steady-

state solution (2.1.19). This is achieved by selecting a proper discretization of the geometric source

term S
(2)
j . Such a discretization was derived for the classical Saint-Venant system in [Kur02; Kur07c;

Kur09; CD; Kur18; Che16; Che15; Bol13].
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By q j = q j−1 = q j+1 = 0 and w j =w j+1 =w j−1 = constant , we have

q±
j+ 1

2
= q±

j− 1
2
= 0

u±
j+ 1

2
= u±

j− 1
2
= 0

a+
j+ 1

2
=−a−

j+ 1
2

, a+
j− 1

2
=−a−

j− 1
2

w−
j+ 1

2
=w+

j+ 1
2

, w−
j− 1

2
=w+

j− 1
2

H (2)
j+ 1

2
−H (2)

j− 1
2

∆x
=

1

∆x

�

a+
j+ 1

2

�

( q 2

w−B )
−+ 1

2 g (w 2−2w B +B 2)−
�

j+ 1
2

−a−
j+ 1

2

�

( q 2

w−B )
++ 1

2 g (w 2−2w B +B 2)+
�

j+ 1
2

a+
j+ 1

2
−a−

j+ 1
2

�

+
1

∆x

a+
j+ 1

2
a−

j+ 1
2

a+
j+ 1

2
−a−

j+ 1
2

[q+
j+ 1

2
−q−

j+ 1
2
]

−
1

∆x

�

a+
j− 1

2

�

( q 2

w−B )
−+ 1

2 g (w 2−2w B +B 2)−
�

j− 1
2

−a−
j− 1

2

�

( q 2

w−B )
++ 1

2 g (w 2−2w B +B 2)+
�

j− 1
2

a+
j− 1

2
−a−

j− 1
2

�

−
1

∆x

a+
j− 1

2
a−

j− 1
2

a+
j− 1

2
−a−

j− 1
2

[q+
j− 1

2
−q−

j− 1
2
]

=
1

∆x

�

a+
j+ 1

2

�

(��
��*

0
q 2

w−B )
−+ 1

2 g (w 2−2w B +B 2)−
�

j+ 1
2

−a−
j+ 1

2

�

��
��*

0

( q 2

w−B )
++ 1

2 g (w 2−2w B +B 2)+
�

j+ 1
2

a+
j+ 1

2
−a−

j+ 1
2

�

+
1

∆x

a+
j+ 1

2
a−

j+ 1
2

a+
j+ 1

2
−a−

j+ 1
2

[
���

���:
0

q+
j+ 1

2
−q−

j+ 1
2
]

−
1

∆x

�

a+
j− 1

2

�

��
��*

0

( q 2

w−B )
−+ 1

2 g (w 2−2w B +B 2)−
�

j− 1
2

−a−
j− 1

2

�

��
��*

0

( q 2

w−B )
++ 1

2 g (w 2−2w B +B 2)+
�

j− 1
2

a+
j− 1

2
−a−

j− 1
2

�

−
1

∆x

a+
j− 1

2
a−

j− 1
2

a+
j− 1

2
−a−

j− 1
2

[
��

���
�:0

q+
j− 1

2
−q−

j− 1
2
]

=
1

2∆x

�

g (w 2−2w B +B 2)−
j+ 1

2
− g (w 2−2w B +B 2)+

j− 1
2

�

=−g

�

w−
j+ 1

2
+w+

j− 1
2
−B j+ 1

2
−B j− 1

2

�

2
·
(B j+ 1

2
−B j− 1

2
)

∆x
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Then for classical Saint-Venant system, we have

S
(2)
j =−g

�

w−
j+ 1

2
−B j+ 1

2

�

+
�

w+
j− 1

2
−B j− 1

2

�

2
·
(B j+ 1

2
−B j− 1

2
)

∆x

Meanwhile, for non-hydrostatic Saint-Venant system, both M j and Nj as defined in Section 2.1.1.2

vanish at this steady state. Then we use this discretization along with an additional atmospheric

pressure term for our scheme:

S
(2)
j =−g

�

w−
j+ 1

2
−B j+ 1

2

�

+
�

w+
j− 1

2
−B j− 1

2

�

2
·
(B j+ 1

2
−B j− 1

2
)

∆x
+p a

w−
j+ 1

2
−w+

j− 1
2

∆x
. (2.1.20)

2.1.2 Time Evolution

We solve the semi-discrete system (2.1.5) by applying the third-order strong stability preserving

Runge-Kutta (SSP-RK) method from [Got11; Got01], which can be written as a convex combination

of three forward Euler steps. For the purpose of demonstration, we proceed by fully discretizing

(2.1.5) according to the forward Euler method, and all results obtained from doing so also apply to

the SSP-RK method used in all of our numerical experiments.

When fully discretized by the forward Euler method, the first component of (2.1.5) becomes

w n+1
j =w n

j −λ
�

H (1)
j+ 1

2
−H (1)

j− 1
2

�

, (2.1.21)

where λ=∆t /∆x . Notice that (2.1.21) has no contribution from M , N or S and therefore we may

advance the first component independently of the second one to obtain the cell averages of w at

the new time level, {w n+1
j }Nj=1 (and thus {h

n+1

j }Nj=1 since h
n+1

j := w n+1
j − B j , where B j is given by

(2.1.9)). The fully discretized version of the second component of (2.1.5) then becomes

q n+1
j +αM M n+1

j = q n
j +αM M n

j −λ
�

H (2)
j+ 1

2
−H (2)

j− 1
2

�

+∆t S
(2)
j −∆tαN N n

j , (2.1.22)

where all of the terms on the RHS of (2.1.22) are taken at t = t n .

Combining (2.1.13)–(2.1.16) for the discretization of M at time level t n+1 and inserting this into

the left-hand side (LHS) of (2.1.22) leads to the tridiagonal system T = (τn+1
i , j ), j = 1, . . . , N , i =

j −1, j , j +1 for {q n+1
j }:

q n+1
j +αM M n+1

j =τn+1
j−1, j q n+1

j−1 +τ
n+1
j , j q n+1

j +τn+1
j+1, j q n+1

j+1 , (2.1.23)
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where

τn+1
j−1, j =αM





h
n+1

j (Bx ) j −h n+1
j− 1

2
(Bx ) j− 1

2

4∆x
−

�

h n+1
j− 1

2

�3

3h
n+1

j−1 (∆x )2



 ,

τn+1
j , j = 1+αM

�h n+1
j+ 1

2
(Bx ) j+ 1

2
−h n+1

j− 1
2
(Bx ) j− 1

2

4∆x
+

�

h n+1
j+ 1

2

�3
+
�

h n+1
j− 1

2

�3

3h
n+1

j (∆x )2
+
(Bx ) j (hx )n+1

j

2
+ (Bx )

2
j

�

,

τn+1
j , j+1 =αM





h n+1
j+ 1

2
(Bx ) j+h f −h

n+1

j (Bx ) j

4∆x
−

�

h n+1
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2

�3

3h
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j+1 (∆x )2



 .

Notice that the term q n
j +αM M n

j on the RHS of (2.1.22) is discretized in the same way, but at time

level t = t n .

Remark 2.1.4 The addition of the dispersive terms M and N does not affect the well-balanced

property of the scheme because these terms vanish at the “lake-at-rest” steady state (2.1.19). The

positivity-preserving property of the scheme is also unaffected because these terms do not appear

in the first equation of (2.1.1).

Remark 2.1.5 We may write the LHS of (2.1.22) as described by (2.1.23) as Tqn+1, where qn+1 is

the vector of the unknown cell averages {q n+1
j }Nj=1. When using free boundary conditions, T will be

strictly tridiagonal, and it is well-known that in this case, the linear algebraic system (2.1.22) can

be efficiently solved using the LU decomposition; see, e.g., [Bur05; Tre97] for details. In the case of

periodic boundary conditions, the matrix T becomes circulant and one may still take advantage of

the banded structure of the matrix by implementing the Sherman-Morrison algorithm proposed in

[She50].

2.2 Numerical Experiments

In the following experiments, we will examine the role that the non-hydrostatic pressure terms

play in the long-time propagation of water waves. We will use the classical Saint-Venant system

for comparison, which is simply (2.1.3) with αM =αN = p a ≡ 0. In all of the experiments, we take

p a ≡ 0, take the minmod parameter θ = 1.3, and consider free boundary conditions.

Example 1 — Solitary Wave Propagation

In the first example (taken from [Bri11]), we study propagation of the wave given by the following

initial data:

h (x , 0) = 1+
1

10
sech2

�

√

√ 3

40
(x −70)

�

, u (x , 0) =
p

g

10
sech2

�

√

√ 3

40
(x −70)

�

,
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over a flat bottom topography with B (x ) ≡ −0.1. We take g = 9.81 and divide the computational

domain [0,400] into 3200 finite-volume cells. According to [Bri11], in the case when αM =αN = 1,

these data correspond to a solitary wave, which is a single elevation of water surface above an

undisturbed surrounding, which is neither preceded nor followed by any free surface disturbances.

In nature, solitary waves are a kind of stable wave. It’s a well-studied numerical example for testing

an algorithms to describe waves’ long-time propagation.

Figure 2.2.1 Example 1: Time evolution of the water surface for αM = 0.8 and αN = 0, 1, 2, 3.

If arbitrary αM and αN are chosen, we have degrees of freedom to be 2. It’s hard to try out every

combination. We will first fix αM = 0.8 and set αN = 0, 1, 2, 3 and then evolve solutions until t = 70.

The numerical result is shown in Figure 2.2.1. The green ’Designed’ wave is the designed solitary

Wave at t = 70. Its top is less than 1. The blue wave faster than solitary wave is with αN = 0. The red

line right above solitary wave is with αN = 1. The yellow and purple wave are with αN = 2 and αN = 3,
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respectively. This means that if αM is fixed, with the increasing of αN , the numerical wave will travel

slower but with an increasing height. This suggests around αN = 1, numerical waves should have

same wave speed as the solitary wave.

Figure 2.2.2 Example 1: Time evolution of the water surface for αN = 0 and αM = 0, 0.2, 0.6, 1.2.

We can fix αN = 0, set αM = 0, 0.2, 0.6, 1.2, and then evolve solutions until t = 70. The numerical

result is shown in Figure 2.2.2. The (fat) light blue ’Designed’ wave is the designed solitary wave at

t = 70. Its top is at 1. The dark blue wave with the lowest height is withαM = 0, namely classical Saint-

Venant system. A significant decay in amplitude can be seen. And the wave eventually becomes a

shock. The red line that reach as 1.04 is with αM = 0.2. This drastic change in amplitude meaning

the appearance of term M in (2.1) introduces dispersion to our numerical results. The yellow and

purple wave are with αM = 0.6 and αN = 1.2, respectively. If we have αM −→ 1, the wave is more

close to the designed solitary wave.
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After trying different pairs of (αM ,αN ), we fix αM =αN so that the choosing of parameters are

not random.

Then we compute the solutions until the final time t = 50 and demonstrate how the speed,

magnitude and shape of the wave is affected by the choice ofαM andαN . We begin with the classical

Saint-Venant system (αM =αN = 0) and then start adding the non-hydrostatic pressure terms by

gradually increasing αM and αN . We first observe that for a very small value of αM =αN = 0.01, the

solutions of hydrostatic and non-hydrostatic systems are almost the same except for a small change

of the shape of the wave at the top; see Figure 2.2.3. We then further increaseαM andαN to 0.02–0.05

and observe that up to the intermediate times (around t = 20) the solution magnitude increases

before decreasing at later times. One can also observe a substantial change in the shape of the wave

as a dispersive wave structure clearly develops for αM =αN = 0.04 and 0.05; see Figure 2.2.4. When

αM and αN are increased up to 0.01, the magnitude of the wave seem to increase up to about t = 30

and then it stabilizes; for even larger values of αM =αN = 0.25 and 0.5, the dispersive wave structure

starts disappearing and the amplitude growth becomes less pronounced; and for αM =αN = 1 the

expected solitary wave structure is numerically recovered; see Figure 2.2.5. Finally, in Figure 2.2.6,

we show the solution obtained for larger dispersive coefficients αM =αN = 2 and 5. As one can see,

in these two cases the magnitude of the wave decreases and a wave train is clearly formed.

Figure 2.2.3 Example 1: Time evolution of the water surface for αM =αN = 0 (left) and 0.01 (right).

We also perform an experimental convergence study of the proposed method. To this end, we

take the solution computed with αM =αN = 1 at time t = 0.1 on different grids and compare them

with the reference solution obtained with 51200 finite-volume cells. The results are reported in

Tables 2.2.1 and 2.2.2 for w and q , respectively. as One can observe, the expected second order of

convergence is achieved in both L∞-, L 1- and L 2-norms.

Example 2 — Large-Scale Tsunami-Like Wave Propagation

In the second example, we consider a wave that was created using a Savage-Hutter type model of

submarine landslides and generated tsunami waves. This model is governed by a two-layer system

45



Figure 2.2.4 Example 1: Time evolution of the water surface for αM =αN = 0.02 (top left), 0.03 (top
right), 0.04 (bottom left) and 0.05 (bottom right).

in which the lower layer is considered to be a fluid-granular mixture that has a larger density than

the upper layer, which is water. The lower layer slides down the slope of the solid bottom, and the

through momentum exchange causes waves to form at the water surface. For more details of this

system and associated numerical methods, see [FN08; Hei01; Kur14].

The initial data are obtained from [Kur14], where a submarine landslide on the ocean floor

creates surface waves traveling to the left and right. We choose the right-moving wave at t = 0.3 as

the initial condition for the non-hydrostatic system (2.1.3) and the following bottom topography

function:

B (x ) =







−5, x < 0,

−5+
∑5

i=1 Ci sin(π(x −Si )/L i ), x ≥ 0,
(2.2.1)

where the parameters Ci , Si and L i are given in Table 2.2.3. The initial water surface w (x ,0) and

velocity u (x , 0) are plotted in Figure 2.2.7 and a nonflat part of the bottom topography is shown in

Figure 2.2.8. In this example, the length scale is kilometers and the time scale is hours, so we take the

corresponding gravity to be g = 271008 km/h2. The computational domain, [−150, 2200], is divided

into 18800 finite-volume cells.

We compute the solutions until the final time t = 2 and as in Example 1 study the dependence

of the computed solutions on the choice of the dispersion parameters αM and αN . We begin with

the classical Saint-Venant system (αM =αN = 0) and plot the obtained results in Figure 2.2.9. As one
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Figure 2.2.5 Example 1: Time evolution of the water surface for αM =αN = 0.1 (top left), 0.25 (top right),
0.5 (bottom left) and 1 (bottom right).

Figure 2.2.6 Example 1: Time evolution of the water surface for αM =αN = 2 (left) and 5 (right).

can see, there are many small waves created behind the large wave as a result of the nonflat bottom

topography, but the structure of the larger waves does not seem to be significantly affected. Figure

2.2.10 shows time snapshots of the numerical solutions of the non-hydrostatic system (2.1.3) with

αM =αN = 0.05, 0.1, 0.15 and 0.2. As expected, dispersive wave trains start appearing and become

more pronounced for larger values of αM and αN .
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Table 2.2.1 L∞-, L 1- and L 2-errors in w and the corresponding experimental rates of convergence.

Number of cells L∞-error Rate L 1-error Rate L 2-error Rate

400 2.94e-04 – 1.97e-04 – 1.47e-04 –

800 9.23e-05 1.67 4.46e-05 2.14 3.54e-05 2.06

1600 1.51e-05 2.61 8.99e-06 2.31 5.53e-06 2.68

3200 2.55e-06 2.56 2.04e-06 2.14 1.01e-06 2.45

6400 6.63e-07 1.94 5.13e-07 1.99 2.31e-07 2.13

12800 1.75e-07 1.92 1.49e-07 1.79 5.88e-08 1.97

Table 2.2.2 L∞-, L 1- and L 2-errors in q and the corresponding experimental rates of convergence.

Number of cells L∞-error Rate L 1-error Rate L 2-error Rate

400 2.28e-04 – 4.12e-04 – 1.90e-04 –

800 5.48e-05 2.06 1.03e-04 2.00 4.62e-05 2.04

1600 1.34e-05 2.04 2.56e-05 2.01 1.12e-05 2.05

3200 2.89e-06 2.21 6.49e-06 1.98 2.78e-06 2.01

6400 7.31e-07 1.98 1.65e-06 1.98 6.94e-07 2.00

12800 1.70e-07 2.10 4.14e-07 1.99 1.71e-07 2.02

Table 2.2.3 Parameters used in for the bottom topography functions (2.2.1) and (2.2.2).

i 1 2 3 4 5

Ci 0.1 0.3 0.5 0.1 1

Si 0 2 3 0 80

L i 40 70 100 10 2500

Figure 2.2.7 Example 2: Initial water surface (left) and discharge (right).

Example 3 — On-Shore Dynamics of the Large Wave

Tsunami waves are characterized by having a relatively low amplitude, large wavelength, and large

characteristic wave speed, see, e.g., [Bry08; LeV11b; Ort00]. The amplitude of a tsunami wave can
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Figure 2.2.8 Example 2: The bottom topography function (2.2.1).

Figure 2.2.9 Example 2: Time evolution of the water surface for the classical Saint-Venant system
(αM =αN = 0).

be so small that it may not even be noticed by a ship traveling through it in deep water. Because of

their speed and wavelength, however, these waves contain a tremendous amount of energy. When

the depth of the water decreases (in the beginning of the on-shore arrival stage of tsunami wave

propagation), tsunamis undergo a process called wave shoaling, in which the wave slows down and

the wavelength decreases. In order to conserve energy, it is transformed from kinetic to potential

energy and the wave amplitude increases. This potential energy can then be released in disastrous

fashion when the wave comes to shore. It is therefore very important to have accurate models and

corresponding numerical methods for tsunami waves in order to mitigate any catastrophe that may

result.

In order to further emphasize the difference between hydrostatic and non-hydrostatic solutions,

we let the computed waves to approach the shore. We take the solutions at time t = 2 shown in Figure

2.2.9 for αM =αN = 0 and Figure 2.2.10 for αM =αN = 0.2 as initial data in the domain [1000, 3000]
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Figure 2.2.10 Example 2: Time evolution of the water surface for αM =αN = 0.05 (top left), 0.1 (top
right), 0.15 (bottom left) and 0.2 (bottom right).

(divided into 16000 finite-volume cells) along with following bottom topography function:

B (x ) =



























−5+
∑5

i=1 Ci sin(π(x −Si )/L i ), x < 2200,

−4.86+2.75e

�

−300

�

1−
x

2600

��

, 2200< x ≤ 2600,

10−10−2.11e

�

−300

� x

2600
−1

��

, x > 2600,

(2.2.2)

where the coefficients Ci , Si , and L i are given in Table 2.2.3. We notice that near the shore, the

function B is simply a smooth curve that increases from −4.86 to almost zero; see Figure 2.2.11.

In order to accurately capture the on-shore arrival of the waves, we have implemented a special

well-balanced reconstruction of wet/dry fronts from [Bol13] and computed both the hydrostatic

and non-hydrostatic solutions until the final time t = 3. We present several time snapshots of the

computed water surface in Figure 2.2.12. As one can see, both dispersive and non-dispersive waves

go through the shoaling process where they slow down and increase in height, and eventually arrive

on shore. If we look closer (Figure 2.2.13), we see that the trailing waves actually impact how the wave

comes to shore: The front of the non-hydrostatic solution is about 10–20 km behind the hydrostatic

one. This suggests that the non-hydrostatic terms must be included in a tsunami model if one wants

to accurately represent the ultimate outcome of the tsunami waves.
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Figure 2.2.11 Example 3: The bottom topography function (2.2.2).

Figure 2.2.12 Example 3: On-shore arrival of the tsunami-like waves in the hydrostatic (αM =αN = 0) and
non-hydrostatic with αM =αN = 0.2 regimes.
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Figure 2.2.13 Example 3: Same as Figure 2.2.12, but zoomed in.
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CHAPTER

3

ATMOSPHERIC FLOW EQUATIONS WITH

GRAVITY

The main part of this chapter have been submitted to Communications in Computational Physics,[Che21]

In this chapter, we simulate gravitationally stratified atmospheric flows governed by the com-

pressible Euler equations in irregular domains. Cartesian grids showed low accuracy and slow(incorrect

compared to reference [Kle09] in our simulation) flow rates near irregular boundaries. The reason

is that the use of such rectangular grids that intersect with the irregular boundaries leads to the

generation of arbitrarily small and highly distorted computational cells adjacent to the boundaries

of the domain. A more stable and accurate scheme is needed.

Several techniques were proposed to address this problem. In the older works, the terrain-

following coordinate approach was widely used in atmospheric simulations; see, e.g., [Phi57; GC75;

Sim81]. It normalizes the vertical coordinate by the fluid depth to incorporate the topography of

domains into the studied models. However, this approach typically leads to significant truncation

errors near boundaries, especially when the flow contains steep gradients; see, e.g., [Jan89; Sun76].

Alternatively, as we mentioned before, one may use Cartesian-grid based methods, which are

relatively simple, but suffer from the appearance of arbitrarily small and highly distorted cells

adjacent to the boundaries of the domain. Such cut cells may lead to stability and efficiency issues

for numerical methods and therefore require special techniques; see, e.g., [Kle09; GB06; Bra20;

Mit05; Gok18; Ber12] and references therein. Triangular, quadrilateral and cell-vertex polygonal

meshes can also be used to conduct simulations in domains with irregular boundaries. It should

be observed that unstructured meshes with different polygons can accurately represent irregular

53



boundaries and thus provide with a flexible tool to handle regions with steep topographic gradients.

In this chapter, we develop a well-balanced method for the system (3.1.1), (3.1.2) in two steps.

We first rewrite the studied system in terms of the perturbation variables and thus ensure that the

resulting method is well-balanced. We then introduce a structured quadrilateral mesh, which is

specifically designed for every considered irregular domain. Finally, the rewritten system is numeri-

cally integrated using the second-order semi-discrete central-upwind scheme, which was introduced

in [Kur07a; Kur01b; Kur00c] as a robust and highly accurate “black-box solver” for general mul-

tidimensional system of hyperbolic conservation and balance laws (including the compressible

Euler equations with gravitation [Che18]) on Cartesian grids, and then extended to structured and

unstructured quadrilateral meshes in [Kur17; Kur20; Shi16].

The proposed method is tested in a number of numerical experiments, including the buoyant

bubble rising and interacting with an (zeppelin) obstacle and the Lee wave generation due to

topography. The obtained numerical results demonstrate high resolution and robustness of the

proposed computational approach.

3.1 Mathematical Model

Gravitationally stratified flows in a compressible medium are widely used in atmospheric models to

predict weather and climate. These models are typically characterized as variants of the compressible

Euler equations with gravity. Here, we focus on studying the following two-dimensional (2-D) system

proposed in [Kle09]:






















ρt + (ρu )x + (ρv )y = 0,

(ρu )t + (ρu 2+p )x + (ρu v )y = 0,

(ρv )t + (ρv u )x + (ρv 2+p )y =−ρg ,

(ρθ )t + (ρθu )x + (ρθ v )y = 0,

(3.1.1)

where x and y are spatial variables, t is a time, ρ(x , y , t ), u (x , y , t ), v (x , y , t ) and θ (x , y , t ) are

the density, horizontal, vertical velocities and potential temperature, respectively, and g is the

acceleration due to gravity. The air flow is assumed to be an ideal gas satisfying the equation of state:

p = (ρθ )γ, (3.1.2)

where p is the pressure and γ= 1.4 is the specific heat ratio.

Time-independent (steady-state or equilibrium) solutions of the system (3.1.1) play an important

role as many atmospheric phenomena are described by small perturbations of the steady states. In

particular, one of the physically relevant equilibria is the motionless hydrostatic one:

u = v ≡ 0, px ≡ 0, py =−ρg . (3.1.3)

Capturing small perturbations of (3.1.3) numerically is a challenging task since at a large scale or on
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a coarse grid the magnitude of such perturbations may be smaller than the size of truncation errors.

3.2 Model Description and Numerical Method

In this section, we follow the idea introduced in [Bot04] and achieve the well-balanced property of

proposed numerical method by rewriting the system (3.1.1), (3.1.2) in terms of the perturbation

variables. To this end, we first denote the steady-state solution (3.1.3) by ρs (y ) and ps (y ) with

the corresponding potential temperature θs (y ) = [ps (y )]1/γ/ρs (y ), and introduce the perturbation

variables ρ′, u ′, v ′ and θ ′ so that

ρ =ρs +ρ
′, u = u ′, v = v ′, θ = θs +θ

′, p ′ =
�

(ρs +ρ
′)(θs +θ

′)
�γ−ps . (3.2.1)

where p ′ is obtained from the equation of state (3.1.2). We then rewrite the system (3.1.1) in the

following form:






















ρ′t + (ρu ′)x + (ρv ′)y = 0,

(ρu ′)t + [ρ(u
′)2+p ′]x + (ρu ′v ′) = 0,

(ρv ′)t + (ρv ′u ′)x + [ρ(v
′)2+p ′]y =−ρ′g ,

(ρθ )t + (ρθu ′)x + (ρθ v ′)y = 0.

(3.2.2)

The main advantage of the system (3.2.2) over its original counterpart (3.1.1) is that when the

solution is at the steady state, the perturbation variables vanish and this makes it easy to design a well-

balanced numerical method. In this chapter, we use the second-order semi-discrete central-upwind

scheme as it is described in [Kur20]with the only exception that the piecewise linear reconstruction

is now performed not for the conservative variables U := (ρ′,ρu ′,ρv ′,ρθ ), but for the perturbation

variables U ′ := (ρ′, u ′, v ′,θ ′), which remain constant (zero) at the steady state (3.1.3).

The central-upwind scheme can be briefly described as follows. Let us assume that the compu-

tational domain is covered with a structured quadrilateral mesh consisting of cells C j ,k with vertices

(x j− 1
2 ,k− 1

2
, yj− 1

2 ,k− 1
2
), (x j− 1

2 ,k+ 1
2

, yj− 1
2 ,k+ 1

2
), (x j+ 1

2 ,k− 1
2

, yj+ 1
2 ,k− 1

2
) and (x j+ 1

2 ,k+ 1
2

, yj+ 1
2 ,k+ 1

2
), the center of

mass (x j ,k , yj ,k ), and area |C j ,k |. We also assume that the computed cell averages,

U j ,k (t )≈
1

|C j ,k |

∫∫

C j ,k

U (x , y , t )dx dy .

are available at a certain time level t and we use them to approximate the corresponding point

values of U ′ at the center of mass of cell C j ,k :

ρ′j ,k = ρ
′
j ,k , u ′j ,k =

(ρu ′) j ,k

ρ j ,k
, v ′j ,k =

(ρv ′) j ,k

ρ j ,k
, θ ′j ,k =

(ρθ ) j ,k

ρ j ,k
−θs (x j ,k , yj ,k ).

Here,ρ j ,k = ρ
′
j ,k+ρs (x j ,k , yj ,k ) and the dependence of the indexed quantities on t has been omitted

for the sake of brevity.
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If we denote Us := (ρs , 0, 0,ρsθs ), then (3.2.2) can be written as

Ut +F (U ,Us )x +G(U ,Us )y =S(U
′), (3.2.3)

where

F (U ,Us ) =
�

ρu ′,ρ(u ′)2+p ′,ρv ′u ′,ρθu ′
�T

,

G(U ,Us ) =
�

ρv ′,ρv ′u ′,ρ(v ′)2+p ′,ρθ v ′
�T

,

S(U ′) = (0, 0,−ρ′g , 0)T .

Equipped with the point values
�

U ′j ,k

	

, we perform the piecewise linear reconstruction from

[Kur20] for U ′ and then obtain all of the required point values of U using (3.2.1). The obtained

point values are, in turn, used to complete the construction of the second-order semi-discrete

central-upwind scheme; see 3.2.1,[Kur20] for details. The resulting system of ODEs is integrated in

time using the three-stage third-order strong stability-preserving Runge-Kutta (SSP-RK3) method;

see, e.g., [Got11; Got01].

Remark 3.2.1 Notice that the gravitational source term on the right-hand side of (3.2.2) vanishes

at the steady state (3.1.3). Therefore, approximating its cell averages using the midpoint rule leads

to a well-balanced discretization. Readers can refer to [Che18; LeV11a; Xin13; Bot04; GB06; Kle09;

Kli19; Käp16; Gab18] for well-balanced numerical methods capable of exactly preserving motionless

hydrostatic steady-states solutions.

3.2.1 Two-Dimensional Semi-Discrete Scheme

3.2.1.1 Structured Mesh Generation

Computational domain is designed to be covered with a structured irregular quadrilateral mesh

consisting of cells C j ,k with area |C j ,k |, and notations of related cell data are given below (see Figure

3.2.1):

z j+ 1
2 ,k+ 1

2
:= (x j+ 1

2 ,k+ 1
2

, yj+ 1
2 ,k+ 1

2
) : cell vertices,

z j ,k := (x j ,k , yj ,k ) : center of mass of C j ,k ,

` j+ 1
2 ,k := |z j+ 1

2 ,k+ 1
2
−z j+ 1

2 ,k− 1
2
| : length of the edge z j+ 1

2 ,k− 1
2
z j+ 1

2 ,k+ 1
2

,

z j+ 1
2 ,k :=

1

2
(z j+ 1

2 ,k+ 1
2
+z j+ 1

2 ,k− 1
2
) : midpoint of the edge z j+ 1

2 ,k− 1
2
z j+ 1

2 ,k+ 1
2

,

n j+ 1
2 ,k := (cos(θ j+ 1

2 ,k ), sin(θ j+ 1
2 ,k )) : the unit outer normal vector to the edge z j+ 1

2 ,k− 1
2
z j+ 1

2 ,k+ 1
2

,

` j ,k+ 1
2

:= |z j+ 1
2 ,k+ 1

2
−z j− 1

2 ,k+ 1
2
| : length of the edge z j− 1

2 ,k+ 1
2
z j+ 1

2 ,k+ 1
2

,

z j ,k+ 1
2

:=
1

2
(z j+ 1

2 ,k+ 1
2
+z j− 1

2 ,k+ 1
2
) : midpoint of the edge z j− 1

2 ,k+ 1
2
z j+ 1

2 ,k+ 1
2

,

n j ,k+ 1
2

:= (cos(θ j ,k+ 1
2
), sin(θ j ,k+ 1

2
)) : the unit outer normal vector to the edge z j− 1

2 ,k+ 1
2
z j+ 1

2 ,k+ 1
2

.
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n j− 1
2 ,k

n j+ 1
2 ,k

n j ,k− 1
2

n j ,k+ 1
2

z j ,k

z j+1,k

z j ,k−1

z j ,k+1

z j−1,k

C j ,k
C j−1,k

C j ,k+1

C j ,k−1

C j+1,k

z j+ 1
2 ,k+ 1

2

z j+ 1
2 ,k− 1

2

z j− 1
2 ,k− 1

2

z j− 1
2 ,k+ 1

2

z j− 1
2 ,k

z j+ 1
2 ,k

z j ,k− 1
2

z j ,k+ 1
2

.

Figure 3.2.1 Quadrilateral cell C j ,k with its four neighbors

3.2.1.2 Reconstruction

We assume cell averages of perturbation variables at time t are given in the cell C j ,k :

U ′ j ,k (t ) :=
1

|C j ,k |

∫∫

C j ,k

U ′(x , y , t )d x d y .

Together with cell data and cell averages, we can first construct a second-order linear piecewise

polynomial interpolation:

P j ,k (x , y ) :=U ′ j ,k + (U
′
x ) j ,k (x − x j ,k ) + (U

′
y ) j ,k (y − yj ,k ), (3.2.4)

P(x , y ) :=
∑

j ,k

P j ,k (x , y )χC j ,k
, (3.2.5)

whereχC j ,k
is the characteristic function of the cell C j ,k and the numerical derivatives (U ′x ) j ,k and

(U ′y ) j ,k are (at least) first-order, componentwise approximations of the x and y -derivatives of U ′ at

z j ,k .

In order to calculate the i -th component of the numerical derivatives of U ′, (U ′x )
(i )
j ,k and (U ′y )

(i )
j ,k ,

we construct four linear interpolations: L (i )±,±
j ,k (x , y ). Each of these linear interpolations is obtained

by the point (z j ,k ,U ′
(i )
j ,k ) and adjacent points in the two neighboring cells. For example, the plane

L (i )+,+
j ,k (x , y ) is uniquely determined by (z j ,k ,U ′

(i )
j ,k ), (z j+1,k ,U ′

(i )
j+1,k ) and (z j ,k+1,U ′

(i )
j ,k+1) and the

plane L (i )+,−
j ,k (x , y ) is uniquely determined by (z j ,k ,U ′

(i )
j ,k ), (z j+1,k ,U ′

(i )
j+1,k ), meanwhile, (z j ,k−1,U ′

(i )
j ,k−1)

To minimize numerical dispersion, one can use any flux limiter. In our numerical experiments
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reported below, we have used the generalized minmod limiter for each component:

(U
′

x )
(i )
j ,k =minmod

�

1

4

�

(L (i )+,+
j ,k )x + (L

(i )−,+
j ,k )x + (L

(i )−,−
j ,k )x + (L

(i )+,−
j ,k )x

�

,

θ (L (i )+,+
j ,k )x ,θ (L (i )−,+

j ,k )x ,θ (L (i )−,−
j ,k )x ,θ (L (i )+,−

j ,k )x

�

;

(U
′

y )
(i )
j ,k =minmod

�

1

4

�

(L (i )+,+
j ,k )y + (L

(i )−,+
j ,k )y + (L

(i )−,−
j ,k )y + (L

(i )+,−
j ,k )y ,

�

,

θ (L (i )+,+
j ,k )y ,θ (L (i )−,+

j ,k )y ,θ (L (i )−,−
j ,k )y ,θ (L (i )+,−

j ,k )y

�

.

(3.2.6)

Here the parameter θ ∈ [1,2] controls the amount of numerical dissipation: larger values of θ

typically result in less dissipative but more dispersive schemes. Meanwhile, the minmod function is

defined by:

minmod(z1, z2, . . .) :=



















min(z1, z2, . . .), if zi > 0 ∀i ,

max(z1, z2, . . .), if zi < 0 ∀i ,

0, otherwise,

Here, we do all numerical reconstruction on perturbation variablesU ′, so no positivity preserving

scheme is applied here.

3.2.1.3 Evolution

(3.2.3) can be further reduced as

Ut +F (U )x +G(U )y =S(U ), (3.2.7)

since we regard Us as underlying information and U ′ can be uniquely determined by U and Us .

The second-order semi-discrete central-upwind scheme on quadrilateral grids are developed in

[Shi16] and here we reduce the numerical dissipation by using the approach presented in [Kur07a]:

d

d t
U j ,k =−

1

|C j ,k |

�

H j+ 1
2 ,k −H j− 1

2 ,k +H j ,k+ 1
2
−H j ,k− 1

2

�

+S j ,k , (3.2.8)

where H j± 1
2 ,k and H j ,k± 1

2
are 4 numerical fluxes crossing 4 cell interfaces/edges. Here we can

represent the numerical flux H j+ 1
2 ,k across cell interface z j+ 1

2 ,k− 1
2

,z j+ 1
2 ,k+ 1

2
:

H j+ 1
2 ,k = ` j+ 1

2 ,k

�

�

cos
�

θ j+ 1
2 ,k

�

H x
j+ 1

2 ,k
+ sin

�

θ j+ 1
2 ,k

�

H
y

j+ 1
2 ,k

�

+
a+

j+ 1
2 ,k

a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

�

U+
j+ 1

2 ,k
−U−

j+ 1
2 ,k
−d j+ 1

2 ,k

�

�

,

(3.2.9)
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where the x - and y -directional fluxes H x
j+ 1

2 ,k
and H

y

j+ 1
2 ,k

are

H x
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
F
�

U−
j+ 1

2 ,k

�

−a−
j+ 1

2 ,k
F
�

U+
j+ 1

2 ,k

�

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

H
y

j+ 1
2 ,k
=

a+
j+ 1

2 ,k
G
�

U−
j+ 1

2 ,k

�

−a−
j+ 1

2 ,k
G
�

U+
j+ 1

2 ,k

�

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

,

(3.2.10)

with built-in anti-diffusion term d j+ 1
2 ,k :

d j+ 1
2 ,k =minmod

�

U+
j+ 1

2 ,k+ 1
2
−U int

j+ 1
2 ,k

, U+
j+ 1

2 ,k− 1
2
−U int

j+ 1
2 ,k

,

U int
j+ 1

2 ,k
−U−

j+ 1
2 ,k+ 1

2
, U int

j+ 1
2 ,k
−U−

j+ 1
2 ,k− 1

2

� (3.2.11)

and the intermediate value U int
j+ 1

2 ,k
:

U int
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
U+

j+ 1
2 ,k
−a−

j+ 1
2 ,k

U−
j+ 1

2 ,k

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

− cos
�

θ j+ 1
2 ,k

�

F
�

U+
j+ 1

2 ,k

�

−F
�

U−
j+ 1

2 ,k

�

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

− sin
�

θ j+ 1
2 ,k

�

G
�

U+
j+ 1

2 ,k

�

−G
�

U−
j+ 1

2 ,k

�

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

.

(3.2.12)

U±
j+ 1

2 ,k
are conservative variables at the same point z j+ 1

2 ,k that can be determined by Us (z j+ 1
2 ,k )

and (U ′)±
j+ 1

2 ,k
.

Similarly,U+
j+ 1

2 ,k± 1
2

andU−
j+ 1

2 ,k± 1
2

are conservative variables at vertices of the edgez j+ 1
2 ,k− 1

2
z j+ 1

2 ,k+ 1
2

that can also be determined by corresponding Us and U ′.

Noted that (U ′)±
j+ 1

2 ,k
are perturbation variables at the same point values z j+ 1

2 ,k of the linear

pieces reconstruction (3.2.5) but from different cells C j ,k and C j+1,k , namely,

(U ′)−
j+ 1

2 ,k
:=P j ,k (z j+ 1

2 ,k ), (U ′)+
j+ 1

2 ,k
:=P j+1,k (z j+ 1

2 ,k ),

and a±
j+ 1

2 ,k
and a±

j ,k+ 1
2

are the directional local speeds of propagation, which, in the case of convex

flux function, can be estimated by

a+
j+ 1

2 ,k
=max

¦

λN

�

V +
j+ 1

2 ,k

�

,λN

�

V −
j+ 1

2 ,k

�

, 0
©

, a−
j+ 1

2 ,k
=min

¦

λ1

�

V +
j+ 1

2 ,k

�

,λ1

�

V −
j+ 1

2 ,k

�

, 0
©

,

a+
j ,k+ 1

2
=max

¦

λN

�

V +
j ,k+ 1

2

�

,λN

�

V −
j ,k+ 1

2

�

, 0
©

, a−
j ,k+ 1

2
=min

¦

λ1

�

V +
j ,k+ 1

2

�

,λ1

�

V −
j ,k+ 1

2

�

, 0
©

,
(3.2.13)

with λ1(V )≤ λ2(V )≤ · · · ≤ λN (V ) being the N eigenvalues of the matrix V = cos(θ ) ∂ F∂U + sin(θ ) ∂G∂U

59



and

V ±
j+ 1

2 ,k
:= cos

�

θ j+ 1
2 ,k

� ∂ F

∂U

�

U±
j+ 1

2 ,k

�

+ sin
�

θ j+ 1
2 ,k

�∂G

∂U

�

U±
j+ 1

2 ,k

�

,

V ±
j ,k+ 1

2
:= cos

�

θ j ,k+ 1
2

� ∂ F

∂U

�

U±
j ,k+ 1

2

�

+ sin
�

θ j ,k+ 1
2

�∂G

∂U

�

U±
j ,k+ 1

2

�

.

(3.2.14)

The numerical fluxes H j− 1
2 ,k and H j ,k± 1

2
can be computed in a similar way like H j+ 1

2 ,k using

eqs. (3.2.9) to (3.2.14).

Finally, the term S j ,k in (3.2.8) represents appropriate discretizations of the cell averages of the

source terms:

S j ,k ≈
1

|C j ,k |

∫∫

C j ,k

S(U (x , y , t ))d x d y . (3.2.15)

Remark 3.2.2 Notice that if both a±
j+ 1

2 ,k
are very close to zero, that is, if a+

j+ 1
2 ,k
− a−

j+ 1
2 ,k
< ε, where

ε > 0 is a small parameter, we replace the numerical fluxes H j+ 1
2 ,k in (3.2.9) with

H j+ 1
2 ,k =

` j+ 1
2 ,k

2

�

cos
�

θ j+ 1
2 ,k

�

�

F
�

U−
j+ 1

2 ,k

�

+F
�

U+
j+ 1

2 ,k

�

�

+ sin
�

θ j+ 1
2 ,k

�

�

G
�

U−
j+ 1

2 ,k

�

+G
�

U+
j+ 1

2 ,k

�

��

.

Similarly, if both a±
j ,k+ 1

2
are very close to zero, we replace the numerical fluxes H j ,k+ 1

2
in (3.2.9) with

H j ,k+ 1
2
=
` j ,k+ 1

2

2

�

cos
�

θ j ,k+ 1
2

�

�

F
�

U−
j ,k+ 1

2

�

+F
�

U+
j ,k+ 1

2

�

�

+ sin
�

θ j ,k+ 1
2

�

�

G
�

U−
j ,k+ 1

2

�

+G
�

U+
j ,k+ 1

2

�

��

.

In all of our numerical experiments, we have used ε = 10−8.

Remark 3.2.3 The ODE systems (3.2.8)–(3.2.15) should be numerically solved by a stable ODE solver

of a proper order. In all of the numerical examples in this chapter, we have used the three-stage

third-order strong stability preserving (SSP) Runge-Kutta method; see, e.g., [Got01; Got11]. The time

step is restricted by the CFL condition, which is

∆t max
j ,k







max
�

|a−
j+ 1

2 ,k
|, |a+

j− 1
2 ,k
|, |a−

j ,k+ 1
2
|, |a+

j ,k− 1
2
|
	

dist(z j ,k ,∂ C j ,k )







≤
1

2
. (3.2.16)

3.3 Numerical Examples

In this section, we demonstrate the performance of the proposed well-balanced central-upwind

scheme on three numerical examples. In all of the experiments, we take the minmod parameter

θ = 1.3; see [Kur20].
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3.3.1 Example 1 (Convergence Test)

In the first example, we experimentally check the accuracy of the proposed method. We take g = 1.

3.3.1.1 Problem Settings

We take a relatively simple computational domain
�

(x , y ) :−1≤ x ≤ 1, 0.1(x +1)≤ y ≤ 2
	

; see Figure

3.3.1 (left).

The steady-state solution satisfying (3.1.3) and (3.1.2) is made of one layer atmosphere and given

by

θs (y ) = e y /4, ps (y ) =
�

1+
8

7

�

e −y /4−1
�

�7/2
, ρs (y ) =

[ps (y )]5/7

θs (y )
.

We introduce a small perturbation in the potential temperature only,

θ ′(x , y , 0) = 0.01e −100(x 2+(y−0.5)2),

while setting

u ′(x , y , 0) = v ′(x , y , 0)≡ 0, ρ′(x , y , 0)≡ 0, p ′(x , y , 0)≡ 0.

In addition, solid wall boundary conditions are applied on all of the four sides of the computational

domain.

Figure 3.3.1 Example 1: Computational domain (left) and structured quadrilateral mesh (right).

3.3.1.2 Mesh Generation

Structured quadrilateral mesh can be easily generated in this example by equally spacing left and

right boundaries for the horizontal distance and top and bottom boundaries for vertical distances;
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see Figure 3.3.1 (right). Then, the constructed cell vertices are











x j+ 1
2 ,k+ 1

2
=−1+

2 j

M
,

yj+ 1
2 ,k+ 1

2
=
�

1−
k

N

�

0.1
�

x j+ 1
2 , 1

2
+1

�

+
2k

N
,

j = 0, · · · , M , k = 0, · · · , N .

3.3.1.3 Results

We measure the experimental convergence rates using the numerical solutions computed with

M =N for N = 50, 100, 200, 400 and 800 at time t = 0.1. The convergence rates are calculated using

the numerical solutions on successively refined grids. For example, let us denote by ρN the density

computed using the N ×N mesh. Then the estimated convergence rate for the density field is

Rate≈ log2

�‖∆ρN /2‖1

‖∆ρN ‖1

�

, ∆ρN := ‖ρN −ρN /2‖1.

The corresponding convergence rates for the other fields can be obtained similarly.

The results of the mesh refinement study are reported in Table 3.3.1. As one can see, the proposed

method achieves the expected second order of accuracy.

Table 3.3.1 Example 1: Experimental convergence rates in the L 1-norm.

N ∆ρN Rate ∆(ρu )N Rate ∆(ρv )N Rate ∆(ρθ )N Rate

100 0.9288E-4 – 0.9354E-5 – 0.1236E-4 – 0.5476E-4 –

200 0.2506E-4 1.89 0.3488E-5 1.42 0.0381E-4 1.70 0.1479E-4 1.89

400 0.0639E-4 1.97 0.0875E-5 2.00 0.0092E-4 2.05 0.0354E-4 2.06

800 0.0162E-4 1.98 0.0210E-5 2.06 0.0024E-4 1.96 0.0089E-4 1.99

3.3.2 Example 2 (Zeppelin Test)

In this test, we consider an example from [Dur86; Kle09], in which the hot air is propagating upward

and flows around a stationary suspended zeppelin. We take g = 1.14.

3.3.2.1 Problem Settings

We solve the studied atmospheric flow equations in a vertically stratified atmosphere with a station-

ary elliptic obstacle suspended in the air. The computational domain is presented in Figure 3.3.2.
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The boundary of the obstacle is given by

x 2

`2
0

+
(y −0.5)2

h 2
0

=
1

4
,

where h0 = 0.333 is the height and `0 = 0.466 is the length of the zeppelin.

In order to minimize gravity wave reflection from the top of the domain, we use the highlighted

upper part of the computational domain as a sponge layer; see Figure 3.3.2. To this end, we replace

the computed solution at every stage of the SSP-RK3 method with the following relaxed values:

U
relax
j ,k =U

0
j ,k +

1

1+ ∆t
10 ŷ

�

U j ,k −U
0
j ,k

�

,

where U
0
j ,k are the initial data and ŷ := max

�

yj ,k − 1,0
�

is the distance from the center of mass

(x j ,k , yj ,k ) of cell C j ,k to the non-sponge part of the computational domain.

Sponge Layer

−1 1
0

1

1.5

`0

h0

Figure 3.3.2 Example 2: Computational domain.
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In this example, the steady-state solution satisfying (3.1.3) and (3.1.2) is

θs (y )≡ 1, ps (y ) =
�

1−
2

7
g y

�7/2
, ρs (y ) =

�

1−
2

7
g y

�5/2
.

We introduce the initial perturbations in the potential temperature and pressure so that

θ ′(x , y , 0) = θB cos2
�πr

2

�

, p ′(x , y , 0) = ps (y )
�

�

1+θB cos2
�πr

2

��7/5
−1

�

, (3.3.1)

while setting

u ′(x , y , 0) = v ′(x , y , 0)≡ 0, ρ′(x , y , 0)≡ 0.

In (3.3.1), r = min
�

1
RB

p

(x − xB )2+ (y − yB )2,1
	

, with RB = 0.15, (xB , yB ) = (−0.23,0.2) and θB =

0.0333 being the radius, center and magnitude of the initial perturbation.

In addition, solid wall conditions are applied on the boundary of the zeppelin and on the top and

the bottom of the computational domain, while periodic boundary conditions are implemented on

the horizontal domain edges.

3.3.2.2 Mesh Generation

The structured quadrilateral mesh we have used in this example is presented in Figure 3.3.3.

-1 1 

0 

1 

1.5

Figure 3.3.3 Example 2: Structured quadrilateral mesh.

This mesh is constructed as follows. We first consider the mesh in the non-sponge part of the
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computational domain in [−1, 1]× [0, 1] and introduce the cell vertices there:

¦

�

x j+ 1
2 ,k+ 1

2
, yj+ 1

2 ,k+ 1
2

�

©

, j =−M , · · · , M , k =−N , · · · , N .

Our goal is to make the generated mesh structured and avoid flat angles in the mesh cells. The

difficulty is related to the presence of the elliptic obstacle inside the domain, which we split into

several simpler parts using the following four symmetric points on the boundary of the ellipse:

�

x±M ′+ 1
2 ,±N ′+ 1

2
, y±M ′+ 1

2 ,±N ′+ 1
2

�

= (±`,±h +0.5),

where ` < `0/2 and h = h0

r

1
4 −

`2

`2
0

; see Figure 3.3.3. We then consider the cell vertices located below

and above the zeppelin, that is, those vertices whose indices satisfy | j | ≤M ′ and |k | ≥N ′; see Figure

3.3.3. These cell vertices are given by

x j+ 1
2 ,k+ 1

2
=

j `

M ′
, j =−M ′, · · · , M ′,

yj+ 1
2 ,k+ 1

2
=







































N +k

N −N ′







1

2
−h0

√

√

√

√

1

4
−

x 2
j+ 1

2 ,k+ 1
2

`2
0






, k =−N , · · · ,−N ′,

1−
N −k

N −N ′







1

2
−h0

√

√

√

√

1

4
−

x 2
j+ 1

2 ,k+ 1
2

`2
0






, k =N ′, · · · , N .

Similarly, the cell vertices located to the left and to the right of the zeppelin, that is, those vertices

whose indices satisfy | j | ≥M ′ and |k | ≤N ′, are given by

yj+ 1
2 ,k+ 1

2
=

k h

N ′
, k =−N ′, · · · , N ′,

x j+ 1
2 ,k+ 1

2
=































j +M ′

M −M ′
−

M + j

M −M ′
· `0

√

√

√

√

1

4
−

y 2
j+ 1

2 ,k+ 1
2

h 2
0

, j =−M , · · · ,−M ′,

j −M ′

M −M ′
+

M − j

M −M ′
· `0

√

√

√

√

1

4
−

y 2
j+ 1

2 ,k+ 1
2

h 2
0

, j =M ′, · · · , M ;

see Figure 3.3.3. Next, the cell vertices in the four corners of the non-sponge part of the computational
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domain, that is, those whose indices satisfy | j |>M ′ and |k |>N ′, are

x j+ 1
2 ,k+ 1

2
=











j +M ′

M −M ′
− `

M + j

M −M ′
, j =−M , · · · ,−M ′−1,

j −M ′

M −M ′
+ `

M − j

M −M ′
, j =M ′+1, · · · , M ,

yj+ 1
2 ,k+ 1

2
=















N +k

N −N ′

�

1

2
−h

�

, k =−N , · · · ,−N ′−1,

1−
N −k

N −N ′

�

1

2
−h

�

, k =N ′+1, · · · , N ,

Finally, in the sponge layer [−1, 1]× [1, 1.5]we use a uniform mesh with

x j+ 1
2 ,k+ 1

2
= x j+ 1

2 ,N+ 1
2

, j =−M , · · · , M ,

yj+ 1
2 ,k+ 1

2
= 1+

k −N

2Ns
, k =N +1, · · · , N +Ns .

In the numerical simulations reported in 3.3.2.3, we have used `= 0.2. Notice that if ` is chosen to

be close to either 0 or `0/2, flat angles will appear in some of the cells, and this may cause numerical

oscillations.

3.3.2.3 Results

We first compute the solution using the constructed mesh with M = 400, N = 200, Ns = 50, M ′ = 81

and N ′ = 35 until the final time t = 33.55 and plot the time snapshots of the obtained potential

temperature θ in Figure 3.3.4. At t = 0, the warm air circular area is located below the left part of

the zeppelin. As a result of buoyancy effects, warm air rises and by the time t = 5.77 the warm air

“bubble” touches the lower boundary of the zeppelin and then splits into two parts, which move

along the surface of the zeppelin in the opposite directions. Later on, the left part of the “bubble”

takes off the surface of the zeppelin, keeps rising and further splits into smaller pieces, while the

right-going part of the “bubble” keeps sliding along the zeppelin. By the final time t = 33.55, the

left part of the warm air spins counter-clockwise, the middle part spins clockwise and reaches the

absorption layer, and the right part has detached from the zeppelin and started to rise and spin

clockwise.

It should be observed that while the details of the warm air evolution are not the same as in the

computations reported in [Kle09], we find that the results are qualitatively similar. In order to further

validate the proposed numerical method, we refine the mesh and compute the solution at the same

sequence of times, but using M = 800, N = 400, Ns = 100, M ′ = 161 and N ′ = 69. The obtained

results, plotted in Figure 3.3.5, clearly demonstrate that the structure of the fine mesh solution is

the same as the coarse mesh one, while, as expected, more small features are now resolved.
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Figure 3.3.4 Example 2: Potential temperature θ at different times.

3.3.3 Example 3 (Lee Waves)

In the final example taken from [Dur86; GB06; Kle09], we test the capability of the proposed nu-

merical method to accurately capture the Lee waves generated when gravitationally stratified flow

passes a mountain. We take g = 1.14.

3.3.3.1 Problem Settings

The computational domain is

�

(x , y ) :−7.2≤ x ≤ 10.8, h (x )≤ y ≤ 1.28
	

, h (x ) =
h0a 2

x 2+a 2
, (3.3.2)

where a = 1 and h0 = 0.06 represent the characteristic width and the height of the mountain. We set

the solid wall boundary conditions on the top and the bottom of the computational domain, while

the periodicity is imposed on the left and the right boundaries.

A sponge layer is implemented to avoid gravity wave reflection from top of the domain and
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Figure 3.3.5 Same as Figure 3.3.4, but the results are computed using a finer mesh.

transmission across the horizontal boundaries. As illustrated in Figure 3.3.6, the sponge width is 3

both on the left and on the right and its height is 0.63. In the sponge layer, we follow [Kle09] and

replace the computed solution at every stage of the SSP-RK3 method with the following relaxed

values:

U
relax
j ,k =U

0
j ,k +

1

1+∆t max
�

0.83x̂ , 0.17 ŷ
�

�

U j ,k −U
0
j ,k

�

,

where U
0
j ,k are the initial data and x̂ and ŷ are the horizontal and vertical relative distances from the

center of mass (x j ,k , yj ,k ) of cell C j ,k to the non-sponge part of the computational domain, namely,

x̂ :=max
�

x j ,k −7.8,−4.2− x j ,k , 0
�

and ŷ :=max
�

yj ,k −0.65, 0
�

.

In this example, the steady-state solution satisfying (1.3) and (1.2) consists of two layers of

atmosphere (with two different Brunt-Väisälä frequency constants N` and Nu for the lower and
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u0

Sponge Layer

−7.2 −4.2 0 7.8 10.8

Hd

0

0.65

1.28

Figure 3.3.6 Example 3: Computational domain.

upper layers, respectively) separated at height Hd :

θs (y ) =







e N 2
` y /g , y <Hd ,

e [(N
2
` −N 2

u )Hd+N 2
u y ]/g , y ≥Hd ,

ps (y ) =







h

1− 2g 2

7N 2
`

�

1− e −N 2
` y /g

�

i7/2
, y <Hd ,

�

p 2/7
Hd
− 2g 2

7N 2
u

e −N 2
` Hd /g

�

1− e −N 2
u (y−Hd )/g

�

�7/2
, y ≥Hd ,

ρs (y ) =
[ps (y )]5/7

θs (y )
,

where pHd
= lim

y→H −d

ps (y ) =
h

1− 2g 2

7N 2
`

�

1− e −N 2
` Hd /g

�

i7/2
. Similarly to [Kle09; GB06], we will consider

three different combinations of parameters Hd , N` and Nu , given in Table 3.3.2.

Table 3.3.2 Lee-wave parameters.

Parameter Case (a) Case (b) Case (c)

Hd 0.1571 0.3142 0.3142

N` 0.6816 0.6816 0.3408

Nu 0.3408 0.3408 0.6816
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We introduce the constant initial perturbation u ′(x , y ,0) = 0.06816 in the horizontal velocity,

while setting v ′(x , y , 0), ρ′(x , y , 0) and θ ′(x , y , 0) to be zero.

3.3.3.2 Mesh Generation

The structured quadrilateral mesh we have used in this example is presented in Figure 3.3.7.

-7.2 -4.2 7.8 10.8

0 

0.65

1.28

Figure 3.3.7 Example 3: Structured quadrilateral mesh.

This mesh is constructed as follows. We begin with the non-sponge part of the computational

domain, which is

[xmin, xmax]× [h (x ), ymax], xmin :=−4.2, xmax := 7.8, ymax := 0.65,

where h (x ) is defined in (3.3.2). The cell vertices in this part of the domain are given by

x j+ 1
2 ,k+ 1

2
=
�

1−
j

M

�

xmin+
j

M
xmax, j = 0, · · · , M ,

yj+ 1
2 ,k+ 1

2
=
�

1−
k

N

�

h
�

x j+ 1
2 ,k+ 1

2

�

+
k

N
ymax, k = 0, · · · , N .
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Within the sponge layer, we have

x j+ 1
2 ,k+ 1

2
=















xmin+
j

Ms
L s , j =−Ms , · · · ,−1,

xmax+
j −M

Ms
L s , j =M +1, · · · , M +Ms ,

yj+ 1
2 ,k+ 1

2
=











yj+ 1
2 ,k+ 1

2
=
�

1−
k

N

�

h
�

x j+ 1
2 ,k+ 1

2

�

+
k

N
ymax, k = 0, · · · , N ,

ymax+
k −N

Ns
Hs , k =N +1, · · · , N +Ns ,

where L s = 3 and Hs = 0.63.

3.3.3.3 Results

We first compute the solution using the constructed mesh with M = 432, N = 132, Ms = 9 and

Ns = 18 until the final time t = 293.4 and plot the obtained potential temperature θ in Figure

3.3.8. In all three Cases (a), (b) and (c), the results qualitatively match those reported in [Dur86;

GB06; Kle09]. We have also added the contour lines corresponding to different values of θ with the

difference between adjacent contours being 0.01. As one can observe, in all of the three cases the

“density” of contours changes at about y =Hd . One can also see more contours in the lower layer of

atmosphere in Cases (a) and (b), while in Case (c) the situation is opposite: there are less contours in

the lower layer. The location where the rate of potential temperature increase changes corresponds

to the height of the interface between the two layers. It also indicates the place where turbulence

occurs, which provides a useful information for practitioners studying the atmospheric dynamics.

In addition, in Cases (a) and (b), one can observe a sharp drop of potential temperature above the

downhill part (0 ≤ x ≤ 2). In Case (b), the occurrence of vertical oscillation of the perturbed air,

which can be observed at about x ∈ [1, 4], indicates the phenomenon of Lee waves. At the same time,

in Cases (a) and (c), no significant change in gravity waves on the right of the mountain has been

observed.

In order to further validate the proposed numerical method, we refine the mesh and compute

the solution at the same final time, but using M = 864, N = 264, Ms = 18 and Ns = 36. The obtained

results, plotted in Figure 3.3.9, clearly demonstrate that the structure of the fine mesh solution is

the same as the coarse mesh one, which experimentally indicates the convergence of the method.
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Figure 3.3.8 Example 3: Potential temperature θ at t = 293.4 for Cases (a)–(c). Contours are plotted at
intervals of ∆θ = 0.01.
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Figure 3.3.9 Same as Figure 3.3.8, but the results are computed using a finer mesh.
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CHAPTER

4

CONCLUSIONS AND FUTURE WORK

This thesis presents second-order well-balanced central-upwind schemes for 2 different projects:

the non-hydrostatic Saint-Venant system and the compressible system of Euler equations with

gravity in irregular domains. Major contributions of 2 projects are summarized here:

• First, we used a second-order well-balanced positivity-preserving central-upwind scheme to

study how the non-hydrostatic Saint-Venant system characterizes long-time propagation and

on-shore arrival of tsunami-type waves. We discovered that for certain ranges of the dispersive

coefficients, both the shape and amplitude of tsunamis are preserved. We also illustrated

that on-shore arrival of the tsunami-type waves indicates the importance of non-hydrostatic

terms.

• Second, we developed a second-order well-balanced scheme for the compressible Euler

equations with gravity in irregular domains using structured quadrilateral grids. We demon-

strated how quadrilateral grids are construed for different irregular domains. Besides, we

indicated that in numerical experiments, quadrilateral grids perform better than Cartesian

grids, especially in characterizing accurate airflow rates near irregular boundaries.

In the future, we plan to study more realistic geophysical and atmospheric systems and explore

the possibility of using unstructured and adaptive meshes while conducting numerical simulations

in the most general geometry setup.
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APPENDIX

A

LEIBNIZ INTEGRAL RULE

Theorem. Let f (x , t ) be a function such that fx (x , t ) are continuous in t and x in some region of the

(x , t )-plane, including a (x )≤ t ≤ b (x ), x0 ≤ x ≤ x1. Also suppose that the functions a (x ) and b (x )

are both continuous and both have continuous derivatives for x0 ≤ x ≤ x1. Then, for x0 ≤ x ≤ x1,

d

d x

�∫ b (x )

a (x )
f (x , t )d t

�

=

∫ b (x )

a (x )

∂ f (x , t )
∂ x

d t + f (x , b (x )) ·
d

d x
b (x )− f (x , a (x )) ·

d

d x
a (x ). (A.0.1)

81



APPENDIX

B

RANKINE-HUGONIOT JUMP

CONDITION

B.1 Derivation of Rankine-Hugoniot Jump Condition

Here we would like to derive Rankine-Hugoniot jump condition. Suppose there’s a jump across

curve x = ξ(t ) in one dimensional differential equation of conservation laws:

∂ q

∂ t
+
∂ F (q )
∂ x

= 0, (B.1.1)

q (x , 0) = q0(x ),

then q must satisfy this condition:

F (q−)− F (q+)
q−−q+

= ξ′(t ). (B.1.2)

Suppose x1 <ξ(t )< x2, then

∂

∂ t

∫ x2

x1

q (x , t )d x =

∫ x2

x1

∂ q (x , t )
∂ t

d x

=−
∫ x2

x1

∂ F (q )
∂ x

d x

= F (q (x1, t ))− F (q (x2, t )) (B.1.3)

82



∂

∂ t

∫ x2

x1

q (x , t )d x =
∂

∂ t

�∫ ξ(t )−

x1

q (x , t )d x +

∫ x2

ξ(t )+
q (x , t )d x

�

=

∫ ξ(t )−

x1

∂ q (x , t )
∂ t

d x +q (ξ(t )−, t )
d [ξ(t )−]

d t
(B.1.4)

+

∫ x2

ξ(t )+

∂ q (x , t )
∂ t

d x −q (ξ(t )+, t )
d [ξ(t )+]

d t
(B.1.5)

Here, note that if we let x1 → ξ(t )−, x2 → ξ(t )+, we will have q (x1, t ) → q−, q (x2, t ) → q+,

F (q (x1, t ))→ F (q−) and F (q (x2, t ))→ F (q+).

Since slopes at different sides of the jump are assumed to be the same, we have d [ξ(t )−]
d t = d [ξ(t )+]

d t .

Then combine B.1.3 and B.1.5, we have

F −− F + = (q−−q+)
dξ(t )

d t
(B.1.6)

F (q−)− F (q+)
q−−q+

= ξ′(t ) (B.1.7)
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APPENDIX

C

THIRD-ORDER STRONG STABILITY

PRESERVING RUNGE-KUTTA METHODS

We start by considering the following 1-D semi-discrete system of ODE systems:

d

d t
q (t ) =L(q (t )), (C.0.1)

where q is the vector of functions to solve and L (q (t )) is its spatial discretization.

Here, we choose the three-stage third-order strong stability preserving(SSP) Runge-Kutta method(see

[Hig09; Got01; Got11] for details) which is a convex combination of forward Euler steps:

q (1) = q n +∆t L (q n ),

q (2) =
3

4
q n +

1

4

�

q (1)+∆t L (q (1))

�

, (C.0.2)

q n+1 =
1

3
q n +

2

3

�

q (2)+∆t L (q (2))

�

,

where q n = q (·, t n ).

Take one-dimensional balance laws as an example:

d

d t
q j =−

1

∆x

�

H j+ 1
2
−H j− 1

2

�

+S j , (C.0.3)

where j represents the index of cells in the computational domain,q j is the cell average of vector of
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unknowns,S j is numerical discretization of source term, H j± 1
2

is numerical fluxes in j -th cell. We

can rewrite the RHS of (C.0.3) such that

L (q j ) =−
1

∆x

�

H j+ 1
2
−H j− 1

2

�

+S j .

The SSP-RK3 procedure, which entails evolving the system as a convex combination of forward

Euler steps, is given by

q(1) = qn
j +∆t L (qn

j ),

q
(2)
j =

3

4
q n

j +
1

4

�

q
(1)
j +∆t L (q(1)j )

�

, (C.0.4)

qn+1
j =

1

3
qn

j +
2

3

�

q
(2)
j +∆t L (q(2)j )

�

.

For two-dimensional case, recall in (3.2.8), we have

d

d t
Q j ,k =−

1

|C j ,k |

�

H j+ 1
2 ,k −H j− 1

2 ,k +H j ,k+ 1
2
−H j ,k− 1

2

�

+S j ,k , (C.0.5)

where j , k represents the index of cells in the computational domain, Q j ,k is the cell average of

vector of unknowns,S j ,k is the numerical discretization of the source term, H j± 1
2 ,k is numerical

fluxes in the x -direction, H j ,k+± 1
2

is numerical fluxes in the y -direction in ( j , k )-th cell. We can

rewrite the RHS of (C.0.5) such that

L (Q j ,k ) =−
1

|C j ,k |

�

H j+ 1
2 ,k −H j− 1

2 ,k +H j ,k+ 1
2
−H j ,k− 1

2

�

+S j ,k .

The SSP-RK3 procedure, which entails evolving the system as a convex combination of forward

Euler steps, is given by

Q(1) =Qn
j ,k +∆t L (Qn

j ,k ),

Q
(2)
j ,k =

3

4
q n

j ,k +
1

4

�

Q
(1)
j ,k +∆t L (Q(1)j ,k )

�

, (C.0.6)

Qn+1
j ,k =

1

3
Qn

j ,k +
2

3

�

Q
(2)
j ,k +∆t L (Q(2)j ,k )

�

.
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