
ABSTRACT

MISRA, PRATIK. Combinatorial Problems in Trees and Graphical Models. (Under the
direction of Seth Sullivant.)

Algebraic statistics is a relatively new area of research which explores the connection

between algebraic geometry and statistics. This thesis deals with problems based on the

expected distance between phylogenetic trees and characterization of undirected and di-

rected Gaussian graphical models having toric vanishing ideals. Although these problems

seem disjoint at the surface, they can be considered as combinatorial problems at their

core.

In phylogenetics, di↵erent tree reconstruction methods, and di↵erent datasets on the

same set of species, can lead to the reconstruction of di↵erent trees. In such cases, it is

important to measure the distance between di↵erent trees constructed. In Chapter 2, we

focus on the maximum agreement subtree as a measure of discrepancy between trees.

We study the distribution of the maximum agreement subtree of trees that are uniformly

sampled from all trees with the same shape and prove that the expected size is of the

order of
p
n in this case. We also show results of simulations that suggest that our ideas

based on “blobs” could be used to improve lower bounds on the expected value of the

maximum agreement subtree for other distributions of random trees.

Gaussian graphical models are used throughout the natural sciences and computa-

tional biology as they explicitly capture the statistical relationships between the variables

of interest in the form of a graph. Sturmfels and Uhler conjectured that the vanishing

ideal of an undirected Gaussian graphical model is generated in degree at most 2 if and

only if each connected component of the graph G is a 1-clique sum of complete graphs.

We prove this conjecture in Chapter 3. We exploit the connection between the generating

sets of toric ideals and connectivity properties of the fiber graphs to prove the conjecture.

We also formulate a way to write the vanishing ideal of G in terms of smaller graphs G1

and G2 when G is a 1-clique sum of G1 and G2 where G1 and G2 are not necessarily

complete.

In Chapter 4, we try to get a similar characterization as in Chapter 3 for Gaussian

graphical models represented by directed acyclic graphs. The problem of characterizing

DAGs having toric vanishing ideal is more complicated than its undirected counterpart as

it is not only dependent on the structure of the graph but also depends on the direction



of its edges. We develop three techniques to construct DAGs having toric vanishing

ideal from smaller DAGs which have toric vanishing ideal. We call these techniques safe

gluing, gluing at sinks and adding a new sink. We conjecture that if two DAGs have

toric vanishing ideals, then any of the three operations would yield us a new DAG whose

vanishing ideal is also toric. We further conjecture that every DAG whose vanishing ideal

is toric can be obtained as a combination of these three operations on complete DAGs.

We analyze an example and prove some other results which provide evidence to these

conjectures.
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Chapter 1

Introduction

Algebraic statistics is a relatively new area of research which explores the connection

between algebraic geometry and statistics. The study of algebraic statistics began in

1990s with the work of Diaconis and Sturmfels [7] when they established a connection

between random walks and generating sets of toric ideals. Since then, this area of research

has developed rapidly [11; 35].

This thesis deals with problems based on the expected distance between phylogenetic

trees and characterization of undirected and directed Gaussian graphical models having

toric vanishing ideals. Although these problems seem disjoint at the surface, they can be

considered as combinatorial problems at their core. Before going into the details of the

chapters, we first provide the elementary background on a number of concepts that are

used throughout this thesis.

1.1 Basic definitions and results in graph theory

In this section, we look at the basic definitions and results in graph theory which will

be used extensively in the upcoming chapters. Graphs arise throughout this thesis in

both phylogenetics and Gaussian graphical models. In phylogenetics, we use trees to

represent the evolutionary processes of a set of species. In Gaussian graphical models, we

use undirected and directed acyclic graphs to study the models and characterize them.

Definition 1.1.1. A graph G = (V,E) is pair where V is the set of vertices or nodes

and E is the set of edges. Each edge e 2 E is a set e = {v1, v2} of two vertices v1, v2 2 V

1



with v1 6= v2 (unless specified otherwise). When e = {v1, v2} 2 E, we say that v1 and v2

are adjacent to each other.

In a graph G, a path of length n from vertex v0 to vertex vn is a sequence of distinct

vertices v0, v1, v2, ..., vn such that each vi is adjacent to vi+1. A graph is said to be con-

nected if there is a path between any two distinct vertices. Similarly, a graph is said to

be complete if there is an edge between any two vertices of G.

Definition 1.1.2. Let G = (V,E) be a graph.

i) A set C ✓ V is called a clique of G if the subgraph induced by C is a complete

graph.

ii) Let A,B, and C be disjoint subsets of the vertex set of G with A [ B [ C = V .

Then C separates A and B if for any a 2 A and b 2 B, any path from a to b passes

through a vertex in C.

iii) The graph G is said to be a c-clique sum of smaller graphs G1 and G2 if there exists

a partition (A,B,C) of its vertex set such that

a) C is a clique with |C| = c,

b) C separates A and B,

c) G1 and G2 are the subgraphs induced by A [ C and B [ C respectively.

In the case that G is a c-clique sum, we call the corresponding partition (A,B,C)

a c-clique partition of G.

Definition 1.1.3. A graph G is called a block graph (also known as 1-clique sum of

complete graphs) if there exists a partition (A,B,C) of its vertex set such that

i) |C| = 1,

ii) C separates A and B,

iii) the subgraphs induced by A [ C and B [ C are either complete graphs or block

graphs.

We illustrate the definitions above with an example.

Example 1.1.4. Let G = ([6], E) be the block graph as shown in Figure 1.1. Clearly,

the graph is connected as there exists a path between any two vertices of G. It is also a

block graph as there exists a partition (A,B,C) = ({1, 2}, {4, 5, 6}, {3}) which satisfies

the following conditions :

2
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2

3

5

6

Figure 1.1: Example of a block graph G

i) |C| = 1,

ii) The vertex 3 separates {1, 2} and {4, 5, 6} as every path from {1, 2} to {4, 5, 6}
passes through 3,

iii) The subgraph induced by {1, 2, 3} is a complete graph of 3 vertices and the subgraph

induced by {3, 4, 5, 6} is also a block graph with C = {4}.

The graph G also has three more 1-clique partitions apart from the one already shown

above:

Partition 2 : A = {1, 2, 3}, B = {5, 6}, C = {4}

Partition 3 : A = {1, 2, 3, 5}, B = {6}, C = {4},

Partition 4 : A = {1, 2, 3, 6}, B = {5}, C = {4}.

We study block graphs and the Gaussian graphical models represented by them in

Chapter 3. One of the important properties of block graphs which we use extensively

throughout Chapter 3 is as follows :

Proposition 1.1.5. If G is a block graph, then for any two vertices i and j there exists

a unique shortest path in G connecting them. Further, if (A,B,C) is a 1-clique partition

of G with c 2 C and if i 2 A and j 2 B, then the unique shortest path from i to j can be

decomposed into the unique shortest paths from i to c and c to j.

Proof. We prove this by applying induction on the number of vertices in G. If i and j

are connected by a single edge, then that is the unique shortest path. If they are not

connected by a single edge, then there exists a 1-clique partition (A,B,C) with C = {c}

3



1 2 4

3

Figure 1.2: A Directed acyclic graph G

which separates them. But as A [ C and B [ C are also block graphs and have fewer

vertices than G, by induction there exist unique shortest paths from i to c and from c

to j. But as any path from i to j must pass through c, the concatenation of the unique

shortest paths from i to c and c to j would be the unique shortest path from i to j.

The second part follows from a property of unique shortest paths that if c is a point

on the path, then the subpaths from i to c and c to j are the unique shortest paths from

i to c and c to j respectively.

We end this section by giving a brief description of directed graphs. So far we have

only talked about graphs where there is no sense of direction. Directed graphs are the

graphs where each edge has a specified direction. Each edge {i, j} is denoted by either

i! j or j ! i depending on the direction.

Definition 1.1.6. Let G be a directed graph. A directed path is a path in G with

directed edges. A directed graph which does not have any directed cyclic path of the

form i1 ! i2 ! · · · ! in ! i1 is called a directed acyclic graph (commonly known as

DAG).

Directed acyclic graphs arise in Chapter 4 where we find the vanishing ideal of Gaus-

sian graphical models represented by DAGs. We use the properties of DAGs to charac-

terize the models which have a toric vanishing ideal. Below is an example of a DAG with

4 vertices.

Example 1.1.7. Let G be a directed graph as shown in Figure 1.2. We observe that

there is only one directed cycle in G, which is 2 ! 3 ! 4  2. As it is not of the form

i1 ! i2 ! · · ·! in ! i1, G is a directed acyclic graph (DAG).

4



1.2 Basic definitions in phylogenetics

Rooted binary trees are used in evolutionary biology to represent the evolution of a set

of species where the leaves denote the existing species and the internal nodes denote

the unknown ancestors. The study of methods to reconstruct evolutionary trees from

biological data is the area called phylogenetics [14; 27]. The major goal of phylogenetics

is to reconstruct this evolutionary tree from the data obtained from the existing species

at the leaves.

Before the development of sequencing technology, primary methods for reconstruct-

ing phylogenetic trees were to look for morphological similarities between species and

group species together that had similar characteristics. Unfortunately, focusing only on

morphological features resulted in grouping organisms together that developed similar

characteristics through di↵erent pathways. Modern methods for reconstructing phyloge-

netic trees use sequencing technology to compare sequences for genes that appear in all

species under consideration.

This section gives the necessary background on phylogenetics needed for Chapter 2.

More details on this topic can be found in [2; 30]

Definition 1.2.1. Let G = (V,E) be a graph with vertex set V and edge set E. A cycle

is a sequence of vertices v0, v1, ..., vn = v0 which are distinct (other than vn = v0) with

n � 3 and vi adjacent to vi+1. A tree T = (V,E) is a connected graph with no cycles.

Theorem 1.2.2. If v0 and v1 are any two vertices in a tree T , then there is a unique

path from v0 to v1.

If a vertex lies in two or more distinct edges of a tree, then it is called an interior

vertex. If it lies in only one edge, then we call it a terminal vertex or a leaf. Further,

trees can be categorized as rooted and unrooted. A rooted tree is a tree in which one of

the nodes is specified to be the root. This allows us to determine a direction of ancestral

relationship. An unrooted tree has no pre-determined root but can be turned into a

rooted tree by inserting a new node which functions as the root.

In this thesis, we use rooted binary trees to represent evolutionary processes. The

leaves represent the existing species, interior vertices represent the unknown ancestors

and the edges indicate the lines of direct evolutionary relationships among the species.

We explain this with an example.

5



Birds Crocodiles Rabbits Primates Frogs Fish Sharks

Eggs with shells Hair

Amniotic egg

Four limbs

Bony skeleton

Vertebrae

Figure 1.3: A Phlyogenetic tree depicting evolutionary processes [12]

Example 1.2.3. In Figure 1.3 we observe a phylogenetic tree representing the evolu-

tionary processes of the existing species of Birds, Crocodiles, Rabbits, Primates, Frogs,

Fish and Sharks. The classification of these species is done in the following way: All the

existing species are vertebrates but at some point in time an ancestor evolved into two

di↵erent species where one of the species did not have bony skeleton (sharks) and the

other did have a bony skeleton. Later on, that species evolved into two di↵erent species

where one did have four limbs and the other did not (fish), and so on.

1.2.1 Counting binary trees

Definition 1.2.4. Let X denote a finite set of labels. Then a phylogenetic X-tree is a

tree T = (V,E) together with a bijective correspondence ' : X ! L, where L ✓ V

denotes the set of leaves of the tree. We call ' the labeling map. Such a tree is also called

a leaf-labeled tree.

Example 1.2.5. In Figure 1.4, we see a rooted binary phylogenetic [6]-tree T where

X = [6] and ' : [6]! L is the map through which we label the leaves.

Definition 1.2.6. Two phylogenetic X-trees are isomorphic if there is a bijective corre-

spondence between their vertices that respects adjacency and their leaf labeling.

6



1 6 2 3 4 5

⇢

T

Figure 1.4: A rooted binary phylogenetic [6]-tree

Isomorphism between the trees is independent of the way the trees are drawn in the

plane. Let b(n) denote the number of distinct (up to isomorphism) unrooted binary trees

with n leaves leaf labelled by [n] = {1, 2, . . . , n}. Then we know that b(2) = 1, b(3) = 1,

and b(4) = 3. To construct unrooted binary trees with 5 leaves, we can select any of the

three trees of b(4) and add a new edge to any of the 5 existing edges. This gives us that

b(5) = 3 ·5 = 15. So, in order to obtain a general formula for b(n), we also need a formula

for the number of edges in these trees.

Theorem 1.2.7. An unrooted binary tree with n � 2 leaves has 2n�2 vertices and 2n�3
edges.

Proof. We prove this by applying induction on the number of leaves. Clearly, the state-

ment is true for n = 2. Let the statement be true for all trees with n � 1 leaves. Now,

for any tree T with n � 3 leaves, let v1 be one of the leaves of T . Then v1 lies on a

unique edge {v1, v2} while v2 lies on two other edges {v2, v3} and {v2, v4}. Removing the

vertex v1 and suppressing the internal vertex v2 gives us a new binary tree T 0 with n� 1

leaves. Since both the number of vertices and edges have been decreased by 2, T must

have (2(n� 1)� 2) + 2 = 2n� 2 vertices and (2(n� 1)� 3) + 2 = 2n� 3 edges.

Theorem 1.2.8. For n � 3, there are b(n) = (2n� 5)!! = 1 · 3 · 5 · · · (2n� 5) number of

distinct unrooted binary leaf labelled trees.

Proof. We again use induction to prove this statement. The base case for n = 3 is clear.

Now, let T be an unrooted tree with n leaves and let T 0 be the tree with n � 1 leaves

7



as constructed in Theorem 1.2.7. Then with v1 fixed, the map T 7! (T 0, {v3, v4}) is a

bijection from n-leaf trees to pairs of (n � 1)-leaf trees and edges. Counting these pairs

gives us that b(n) = b(n� 1) · (2(n� 1)� 3) = b(n� 1) · (2n� 5). But from the inductive

hypothesis we know that b(n�1) = (2(n�1)�5)!! = (2n�7)!!. So, b(n) = (2n�5)!!.

The proof of the last theorem can be used to get a count for rooted binary trees

as well. We observe that by adjoining a new edge at the root, we can form a bijective

correspondence between rooted binary trees with n leaves and unrooted binary trees with

n+ 1 leaves. Hence, we have the following result :

Corollary 1.2.9. The number of rooted binary trees with n leaves leaf labelled by [n] =

{1, 2, . . . n} is given by b(n+ 1) = (2n� 3)!! = 1 · 3 · 5 · · · (2n� 3).

1.3 Basics of algebraic geometry

This section gives the necessary background on algebraic geometry. The concepts and

results reviewed here are mainly used in Chapter 3 and 4 where we study the vanishing

ideal of Gaussian graphical models. We use the tools from Algebraic Geometry to char-

acterize the graphical models based on their vanishing ideals. More details on algebraic

geometry can be found in [15].

All rings in this thesis are assumed to be commutative. Let K be a field and let

K[x1, . . . , xn] denote the polynomial ring over K in n indeterminates. We assume the

field K to be algebraically closed for most parts the thesis and hence replace it with the

field of complex numbers C in the later chapters. We use the notation xu := xu1
1 . . . xun

n

to denote monomials in K[x1, . . . , xn].

1.3.1 Gröbner bases

In this subsection, we study the properties of the Gröbner basis of an ideal and focus on

its construction.

Definition 1.3.1. Let R be any arbitrary ring. An ideal I in R is a subset of R which

satisfies the following conditions :

i) I is a subring, and

ii) if f 2 I and g 2 R, then fg 2 I.
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For a given subset F of R, the ideal generated by F is denoted by hF i. Given an ideal

I, any subset F ✓ K[x1, . . . , xn] for which hF i = I is called a generating set of I. The

following theorem says that every ideal I ✓ K[x1, . . . , xn] has a finite generating set. A

proof for this can be found in [15].

Theorem 1.3.2 (Hilbert basis theorem). Every ideal I 2 K[x1, . . . , xn] can be finitely

generated.

Definition 1.3.3. A monomial order > on K[x1, . . . , xn] is a total order on monomials

which satisfy the following conditions :

i) If x↵ > x� then x↵x� > x�x� for any ↵, �, �.

ii) An arbitrary set of monomials {x↵}↵2A has a least element.

Definition 1.3.4. Let f = ⌃↵c↵x↵ be any polynomial in K[x1, . . . xn]. Then for a fixed

monomial order, the leading monomial of f (denoted by LM(f)) is defined as the largest

monomial x↵ for which c↵ 6= 0. The leading term of f (denoted by LT (f)) is the corre-

sponding term c↵x↵.

Example 1.3.5. Lexicographic order: In this ordering, we have x↵ > x� if the first

nonzero entry of (↵1 � �1,↵2 � �2, . . . ,↵n � �n) is positive. For example,

x1 >lex x
3
2 >lex x2x3 >lex x

100
3 .

A monomial ideal I ⇢ K[x1, . . . xn] is an ideal generated by a set of monomials

{x↵}↵2A. For a fixed monomial order > on K[x1, . . . xn], the ideal of leading terms is

defined as

LT (I) := hLT (g) : g 2 Ii.

Let > be a fixed monomial order on K[x1, . . . , xn] and f1, . . . , fr 2 K[x1, . . . , xn] be

a set of nonzero polynomials. Then for any arbitrary polynomial g 2 K[x1, . . . , xn], we

apply the Division algorithm (Algorithm 2.7, [15]) to determine if g lies in hf1, . . . , fri.
The algorithm is as follows :

Step 0 : Substitute g0 = g. If there exists no fj such that LM(fj)|LM(g0), then we

stop. Else, we pick such an fj0 and cancel the leading terms by putting

g1 = g0 � fj0LT (g0)/LT (fj0).
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. . .

Step i : Given gi, if there exists no fj with LM(fj)|LM(gi) then we stop. Else, we

pick such an fji and cancel the leading terms by putting

gi+1 = gi � fjiLT (gi)/LT (fji).

If the procedure does not stop, then gN must be 0 for some N and hence g lies in

hf1, . . . , fri. Unfortunately, this algorithm does not always work as even when g 2
hf1, . . . , fri, the leading monomial of g may not always be divisible by some LM(fj).

We use this algorithm later while computing the Gröbner basis of an ideal.

Definition 1.3.6. Let I ⇢ K[x1, . . . , xn] be any ideal. Then for a fixed monomial or-

der > on K[x1, . . . , xn], a Gröbner basis for I is a collection of nonzero polynomials

{f1, . . . , fr} ⇢ I such that LT (f1), . . . , LT (fr) generate LT (I).

Although not mentioned in the definition, any Gröbner basis of I is also a generating

set of I (Cor 2.14, [15]). The next theorem shows the existence of a Gröbner basis for

any given ideal and any term order.

Theorem 1.3.7 (Existence theorem). Let I ⇢ K[x1, . . . , xn] be any arbitrary nonzero

ideal. Then for any fixed monomial order >, I admits a finite Gröbner basis.

The Existence theorem can be seen as an application of the Hilbert Basis theorem.

The proof follows from the Hilbert Basis theorem and Dickson’s Lemma (Proposition

2.23, [15]) as it reduces the Existence theorem to the case of monomial ideals.

Now, for a given ideal I ⇢ K[x1, . . . , xn], any arbitrary generating set of I is not

necessarily a Gröbner basis. Thus, it is important to have an algorithm for finding a

Gröbner basis for I. We describe the Buchberger’s algorithm for constructing a Gröbner

basis. But before that, we need to define the terms like least common multiple and S-

polynomial. The least common multiple of two monomials x↵ and x� is defined as

LCM(x↵, x�) = xmax(↵1,�1)
1 . . . xmax(↵n,�n)

n .

For a fixed monomial order on K[x1, . . . , xn], let f1 and f2 be two arbitrary polynomials.

We set x�(12) = LCM(LM(f1), LM(f2)). Then the S-polynomial S(f1, f2) is defined as

S(f1, f2) := (x�(12)/LT (f1))f1 � (x�(12)/LT (f2))f2.
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The purpose of the construction of S-polynomial is to have the desired cancellations

required in the division algorithm.

Example 1.3.8. Let f1 = 2x1x2 � x2
3 and f2 = 3x2

1 � x3. Then the S-polynomial with

respect to lexicographic order is

S(f1, f2) =
x2
1x2

2x1x2
(2x1x2 � x2

3)�
x2
1x2

3x2
1

(3x2
1 � x3) =

�1
2x1x2

3

+
1

3x2x3
.

Theorem 1.3.9 (Buchberger’s Criterion). Fix a monomial order and polynomials f1, . . . , fr

in K[x1, . . . , xn]. Then the following are equivalent :

i) f1, . . . , fr form a Gröbner basis for hf1, . . . , fri.
ii) Each S-polynomial S(fi, fj) gives remainder zero on applying division algorithm.

Corollary 1.3.10 (Corollary 2.29, [15]). For a fixed monomial order and polynomials

f1, . . . , fr 2 K[x1, . . . , xn], a Gröbner basis for hf1, . . . , fri is obtained by iterating the

following procedure :

For each i, j we apply the diision algorithm to the S-polynomials to get the expressions

S(fi, fj) = ⌃r
l=1h(ij)lfl + r(ij), LM(S(fi, fj)) � LM(h(ij)lfl)

where each LM(r(ij)) is not divisible by any of the LM(fl). If all the remainders r(ij) = 0

then f1, . . . , fr are already a Gröbner basis. Else, let fr+1, . . . , fr+s denote the nonzero

r(ij) and adjoin these to get a new set of generators

{f1, . . . , fr, fr+1, . . . , fr+s}.

We illustrate this algorithm with an example.

Example 1.3.11. We compute the Gröbner basis of I = hf1, f2i = hx2
1 � x2, x3

1 � x3i
with respect to lexicographic order. Computing the first S-polynomial gives us

S(f1, f2) = x1f1 � f2 = x1(x
2
1 � x2)� (x3

1 � x3) = �x1x2 + x3.

We observe that its leading term is not contained in

hLM(f1), LM(f2)i = hx2
1i.
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Therefore, we add

f3 = x1x2 � x3

to the Gröbner basis. The next S-polynomial is given by

S(f1, f3) = x2f1 � x1f3 = x1x3 � x2
2.

Again we see that its leading term is not contained in

hLM(f1), LM(f2), LM(f3)i = hx2
1, x1x2i.

So, we add

f4 = x1x3 � x2
2

to the Gröbner basis. Now, if we compute S(f3, f4), we get

S(f3, f4) = x3f3 � x2f4 = x3
2 � x2

3.

As its leading term is not contained in

hLM(f1), . . . , LM(f4)i = hx2
1, x1x2, x1x3i,

we add

f5 = x3
2 � x2

3

to the Gröbner basis. Computing all the S-polynomials involving f5, we get

S(f1, f5) = (x1x3 + x2
2)f4

S(f2, f5) = x2
1x3f3 + x2x3f1

S(f3, f5) = x3f4

S(f4, f5) = x2
3f4 � x2

2f5.

Hence, by Buchberger’s criterion we can conclude that {f1, f2, f3, f4, f5} is a Gröbner

basis of I.
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1.3.2 Varieties and ideals

In this subsection, we look at the concepts of “vanishing ideal” and “variety” and their

properties. An a�ne space of dimension n over K is defined as

An(K) = {(a1, . . . , an) : ai 2 K}.

Definition 1.3.12. For a given set S ⇢ An(K), the vanishing ideal of the set S is defined

as

I(S) := {f 2 K[x1, . . . , xn] : f(s) = 0 for each s 2 S}.

Similarly, for a given set of polynomials F ⇢ K[x1, . . . , xn], the a�ne variety is defined

as the collection of points where each f 2 F vanishes, i.e,

V (F ) := {a 2 An(K) : f(a) = 0 for each f 2 F}.

For the rest of the thesis, we use term ‘variety’ to denote a�ne variety. We look at

an example to explain the two concepts.

Example 1.3.13. Let S = {(1, 1), (2, 3)} ⇢ A2(Q). Then

I(S) = h(x� 1)(y � 3), (x� 1)(x� 2), (y � 1)(x� 2), (y � 1)(y � 3)i.

Similarly, if F = {f1, f2} = {x3� x2 + y2, x� 2}, then V (F ) ⇢ A2(C) is the set of points
where both f1 and f2 vanish. We substitute x = 2 in f1 to get y = ±2i. So,

V (f1, f2) = {(2, 2i), (2,�2i)}.

From the definition above, we have two inclusion-reversing properties of vanishing

ideals and varieties.

i) If S1 and S2 are two collection of points in An(K) with S1 ⇢ S2, then I(S2) ⇢ I(S1).

ii) If F1 and F2 are two collection of polynomials in K[x1, . . . , xn] with F1 ⇢ F2, then

V (F2) ⇢ V (F1).

It can be shown that the variety defined by a collection of polynomials only depends on

the ideal they generate. Hence, we have the following proposition :
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Proposition 1.3.14 (Proposition 3.8, [15]). Let F be a collection of polynomials in

K[x1, . . . , xn]. If I is the ideal generated by the polynomials in F , i.e, I = hf : f 2 F i,
then V (F ) = V (I).

From the definition, it follows that for any ideal I ⇢ K[x1, . . . , xn],

I ⇢ I(V (I)).

But the equality depends on the field K and the properties of V (I). We come back to

this in Section 1.3.4 where we give a precise description of I(V (I)) in terms of I when K
is algebraically closed.

1.3.3 Morphims and rational maps

A morphism � of a�ne spaces is a map given by the rule

� : An(K)! Am(K)

�(x1, . . . , xn) = (�1(x1, . . . , xn), . . . ,�m(x1, . . . , xn)),

with each �i 2 K[x1, . . . , xn]. Now, for any f 2 K[y1, . . . , ym], the pull-back map of � is

defined as

�⇤f = f � � = f(�1(x1, . . . , xn), . . . ,�m(x1, . . . , xn)).

This gives us a ring homomorphism

�⇤ : K[y1, . . . , ym] ! K[x1, . . . , xn]

yj 7! �j(x1, . . . , xn),

with the property that �⇤(c) = c for each constant c 2 K (also called a K-algebra ho-

momorphism). Let V ⇢ An(K) be any subset with vanishing ideal I(V ). If we restrict

polynomial functions on An(K) to V , then the elements of I(V ) are zero along V and

hence can be identified with the quotient ring K[x1, . . . , xn]/I(V ) (also called the coordi-

nate ring).

Example 1.3.15. Let V = {(x, y) : x2+y2 = 1} ⇢ A2(R) be the locus of the unit circle.
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Then I(V ) = hx2 + y2 � 1i and hence the polynomials x2 and 1 � y2 define the same

function on the circle as

x2 ⌘ 1� y2 mod I(V ).

Definition 1.3.16. Let K(x1, . . . , xn) denote the fraction field of K[x1, . . . , xn] which

consists of quotients of the form f/g where f, g 2 K[x1, . . . , xn] and g 6= 0. Then a

rational map ⇢ : An(K) 99K Am(K) is defined as

⇢(x1, . . . , xn) = (⇢1(x1, . . . , xn), . . . , ⇢m(x1, . . . . , xn)), ⇢j 2 K(x1, . . . , xn).

The rational map is represented by a dashed arrow as it is not a well-defined function

from An(K) to Am(K). Each component ⇢j is represented as a fraction fj/gj where

fj, gj 2 K[x1, . . . , xn] and we assume that fj and gj do not have any common irreducible

factors. Every rational map also induces a K-algebra homomorphism

⇢⇤ : K[y1, . . . , ym] ! K(x1, . . . , xn),

yj 7! ⇢j(x1, . . . , xn).

If W ⇢ Am(K) is a variety, then a rational map ⇢ : An(K) 99K W is a rational map

⇢ : An(K) 99K Am(K) with ⇢⇤I(W ) = 0. We illustrate this with an example.

Example 1.3.17. Let

W = {(�11, �12, �13, �22, �23, �33) : �11 = k22k33 � k2
23, �12 = k12k33,

�13 = k12k23, �22 = k11k33, �23 = k11k23, �33 = k11k22 � k2
12 : kij 2 R}.

The rational map ⇢ can be written as

⇢ : A5 99K W

⇢(K) = (⇢11(K), ⇢12(K), ⇢13(K), ⇢22(K), ⇢23(K), ⇢33(K)),

where K = (k11, k12, k22, k23, k33) ✓ A5. Now, ⇢⇤ is the map given by

⇢⇤(p(�11, . . . , �33)) = p(k22k33 � k2
23, k12k33, . . . , k11k22 � k2

12),
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where p(�11, . . . , �33) is any polynomial in variables �11, . . . , �33. The ideal I(W ) is gen-

erated by h�12�23 � �13�22i. So, computing ⇢⇤I(W ) gives us

⇢⇤(�12�23 � �13�22) = (k12k33)(k11k23)� (k12k23)(k11k33) = 0.

We use a rational map ⇢ and its pullback ⇢⇤ in Chapter 3 to express the vanishing

ideal of the Gaussian graphical model as the kernel of ⇢⇤. We further use the pullback

map as a motivation to construct a new monomial map which is used to prove the main

results in Chapter 3.

1.3.4 More concepts on algebraic geometry

In this section we look at the definition of quotient ideal, saturation and some related

concepts. We also state some known results based on these concepts which will be mainly

used in Section 3.6 of Chapter 3 for formulating a way to write the vanishing ideal of an

undirected graph in terms of smaller subgraphs.

Definition 1.3.18. Let I ⇢ K[x1, . . . , xn] be any ideal. Then the radical of I is defined

as

p
I := {g 2 K[x1, . . . , xn] : g

N 2 I for some N 2 N}.

It can be shown that the radical of any ideal is also an ideal. If K is algebraically

closed, we have the following result :

Theorem 1.3.19 (Hilbert Nullstellensatz). If K is algebraically closed and I ⇢ K[x1, . . . , xn]

is an ideal then I(V (I)) =
p
I.

Example 1.3.20. Let I = hx2 + y2 + 1i be an ideal in R[x, y]. Then V (I) = ; as there
are no real solutions to x2 + y2 = �1. This implies that I(V (I)) = R[x, y]. But as 1 /2 I,

we have
p
I 6= R[x, y] and hence

p
I  I(V (I)).

We now state a Corollary to Hilbert Nullstellensatz which we use in proving one of

the main results in Section 3.6.
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Corollary 1.3.21. Let I and J be two ideals in K[x1, . . . , xn]. If K is algebraically closed

and V (I) = V (J), then I and J are equal up to radicals, i.e,
p
I =
p
J .

The Zariski closure of a subset S ⇢ An(K) is defined as

S = {a 2 An(K) : f(a) = 0 for each f 2 I(S)} = V (I(S)).

A subset S ⇢ An(K) is closed if S = S and is open if its compliment is closed.

Definition 1.3.22. For any two ideals I, J ⇢ K[x1, . . . , xn], the quotient ideal is defined

as

I : J = {f 2 K[x1, . . . , xn] : fg 2 I for each g 2 J}.

A quotient ideal satisfies the following properties which we use in the later chapters :

i) I : J ⇢ I(V (I) \ V (J));

ii) V (I : J) � V (I) \ V (J) ;

iii) I(V ) : I(W ) = I(V \W ).

A nonzero polynomial f = ⌃↵1,...,↵nc↵1,...,↵nx
↵1
1 . . . x↵n

n of degree d is said to be ho-

mogeneous if c↵1,...,↵n = 0 when c↵1...↵n = 0 whenever ↵1 + · · · + ↵n < d. An ideal

I ⇢ K[x1, . . . , xn] is homogeneous if it has a generating set of homogeneous polynomials.

Definition 1.3.23. For any given variable xi, dehomogenization with respect to xi is

defined as the homomorphism

µi : K[x1, . . . , xn] ! K[y0, . . . , yi�1, yi+1, . . . , yn]

xi ! 1

xj ! yj, j 6= 1.

Similarly, for any f 2 K[y0, . . . , yi�1, yi+1, . . . , yn], the homogenization of f with respect

to xi is defined as

F (x0, . . . , xn) := xdeg(f)
i f(x0/xi, . . . , xi�1/xi, xi+1/xi, . . . , xn/xi).

The homogenization of an ideal I ⇢ K[y0, . . . , yi�1, yi+1, . . . , yn] is defined as the ideal

generated by the homogenizations of each f 2 I.
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For a given ideal I = hf1, . . . , fri, the homogenization J is not necessarily generated

by the homogenizations of fis. We illustrate this with an example.

Example 1.3.24. Let

I = hy2 � y21, y3 � y1y2i = hf1, f2i

be an ideal in K[y1, y2, y3] and let J be its homogenization. The homogenization of f1

and f2 gives us the ideal

hx2x0 � x2
1, x3x0 � x1x2i ( J.

If we consider the polynomial h = x2
2 � x1x3, then h 2 J as h is the homogenization of

y22 � y1y3 with respect to x0 and y22 � y1y3 = y2f1 � y1f2 2 I. But h is not contained in

the ideal generated by the homogenizations of f1 and f2.

Theorem 1.3.25 (Theorem 9.6, [15]). Let I ⇢ K[y1, . . . , yn] be an ideal and J ⇢
K[x0, . . . , xn] its homogenization with respect to x0. Suppose that f1, . . . , fr is a Gröbner

basis for I with respect to some graded order >. Then the homogenizations F1, . . . , Fr of

f1, . . . , fr generate J .

Definition 1.3.26. For any two ideals I, J ⇢ K[x1, . . . , xn], the saturation of I with

respect to J is defined as the set of elements f 2 K[x1, . . . , xn] such that JN · f is

contained in I for some large value of N . The saturation forms an ideal and is denoted

by (I : J1). For any variable xi, the saturation of I with respect to xi is given by

(I : x1
i ) = {f 2 K[x1, . . . , xn] : xn

i f 2 I for some n 2 N}.

Example 1.3.27. Let I = hx3
1 � x2x2

4, x
4
1 � x3x3

4i be an ideal in K[x1, x2, x3, x4]. Then

saturating I with respect to x4 gives us

(I : x1
4 ) = hx1x2 � x3x4, x

2
1x3 � x2

2x4, x
3
2 � x1x

2
3, x

3
1 � x2x

2
4i.

Now, if we want to introduce the inverse of any variable say x1, in the ideal I ⇢
K[x1, . . . , xn], then it same as adding a new generator of the form zx1�1 and intersecting

the new ideal with K[x1, . . . , xn]. We have the following lemma in which we write the

new ideal in terms of saturation.
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Lemma 1.3.28. Let I be any ideal in K[x1, . . . , xn]. Then

I + hzx1 � 1i \K[x1, . . . , xn] = (I : x1
1 ).

Proof. Let r be any arbitrary element in (I : x1
1 ). Then r · xn

1 2 I for some n 2 N.
This implies that r · xn

1 · zn 2 I + hzx1 � 1i ⇢ K[x1, . . . , xn, z]. But as z · x1 = 1,

r 2 I + hzx1 � 1i \K[x1, . . . , xn].

Conversely, if r 2 I + hzx1 � 1i, then

r = g1(x1, . . . , xn, z) · h(x1, . . . , xn) + g2(x1, . . . , xn, z) · (zx1 � 1) 2 K[x1, . . . , xn, z],

where g1(x1, . . . , xn, z), g2(x1, . . . , xn, z) 2 K[x1, . . . , xn, z] and h(x1, . . . , xn) 2 I. Substi-

tuting z = 1/x1, we get

r =

✓
g11(x1, . . . , xn) + g12(x1, . . . , xn) ·

1

x1
+ · · ·+ g1n(x1, . . . , xn) ·

1

xn
1

◆
·h(x1, . . . , xn)+0,

where g1(x1, . . . , xn, z) = g11(x1, . . . , xn) + g12(x1, . . . , xn) · z + ... + g1n(x1, . . . , xn) · zn.
This implies that

r·xn
1 = (g11(x1, . . . , xn)·xn

1+g12(x1, . . . , xn)·xn�1
1 +· · ·+g1n(x1, . . . , xn))·h(x1, . . . , xn) 2 I,

i.e r 2 (I : x1
1 ).

1.4 Toric ideals and SAGBI bases

In this section, we talk about toric ideals and the properties satisfied by these ideals. The

results stated here are specifically used in Chapter 3 and 4 where we characterize the

graphical models having toric vanishing ideals. More details on this topic can be found

in [31].
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1.4.1 Toric ideals

Definition 1.4.1. Let A = {a1, a2, ..., an} be a fixed subset of Zd. We consider the

homomorphism

⇡ : Nn ! Zd, u = (u1, ..., un) 7! u1a1 + ...+ unan.

This map ⇡ lifts to a homomorphism of subgroup algebras:

⇡̂ : R[x1, ..., xn]! R[t1, ..., td, t�1
1 , ..., t�1

d ], xi 7! tai .

The kernel of ⇡̂ is called the toric ideal of A and is denoted by IA.

Let u+ be the vector which has the same positive entries as u and zero elsewhere, i.e,

u+
i =

8
<

:
ui ui � 0

0 ui < 0.

Similarly, we define u� as

u�
i =

8
<

:
�ui ui  0

0 ui > 0.

So, we can write u = u+ � u�. Now, the following lemma gives us the structure of a

generating set of any toric ideal.

Lemma 1.4.2 (Corollary 4.3, [31]). The toric ideal IA can be generated by the set of

binomials of the form xu+ � xu�
where u 2 ker(⇡), i.e,

IA = hxu+ � xu�
: u 2 Nn with ⇡(u) = 0i.

From the construction above we observe that any monomial map can be written as

⇡̂ for some given set of vectors A. This gives us that the kernel of every monomial map

is a toric ideal. We illustrate the construction of toric ideals with an example.
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Example 1.4.3. Let

A =

2

666666666666664

0 0 0 0 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

1 0 1 1 0 0 0 1 1 1

0 0 0 0 0 1 1 0 0 0

1 1 0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0 1 0

1 1 1 0 1 1 0 1 0 0

3

777777777777775

be a 8⇥ 10 matrix where {a1, . . . , a10} are the columns of A. Computing the toric ideal

IA gives us that

IA = hx24x33 � x23x34, x14x33 � x13x34, x14x23 � x13x24i.

Observe that x24x33 � x23x34 can be written as xu+
1 � xu�

1 where

u1 = (0, 0, 0, 0, 0,�1, 1, 1,�1, 0) 2 ker(⇡) = ker(A).

Similarly,

x14x33 � x13x34 = xu+
2 � xu�

2 , where u2 = (0, 0,�1, 1, 0, 0, 0, 1,�1, 0) and

x14x23 � x13x24 = xu+
3 � xu�

3 , where u3 = (0, 0,�1, 1, 0, 1,�1, 0, 0, 0),

where both u2, u3 2 ker(A).

If each ai is assumed to be nonzero and non-negative, then the set ⇡�1(b) = {u 2 Nn :

⇡(u) = b} is finite for any b 2 Nd. The set ⇡�1(b) is called the fiber of A over b. Now, let

F be any finite subset of ker(⇡). Then the fiber graph of ⇡�1(b)F is defined as follows :

The nodes of this graph are the elements of ⇡�1(b) and any two nodes are connected by

an edge if u� u0 2 F or u0 � u 2 F . The following theorem gives a relation between the

connectivity of fiber graphs and the generating set of IA.

Theorem 1.4.4 (Theorem 5.3, [31]). Let F ⇢ ker(⇡). The graphs ⇡�1(b)F are connected

for all b 2 NA if and only if the set {xv+ � xv� : v 2 F} generates the toric ideal IA.
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Let Ad = {ei + ej : 1  i < j  d}, where ei are the standard basis vectors of Rd.

This can be considered as the column vectors of the vertex-edge incidence matrix of the

complete graph Kd. The toric ideal IAd
obtained from this matrix can be written as the

kernel of the map

� : K[xij : 1  i < j  d]! K[t1, . . . , td], xij 7! titj.

The variables xij here correspond to the edges of the complete graph Kd. The vertices of

Kd are identified with the vertices of a regular d-gon in the plane labelled clockwise from

1 to d. So, there are two paths between any two vertices of Kd which only use the edges

of of the d-gon. The circular distance between any two vertices is defined as the length

of the shorter path.

The term edge is used to denote the closed line segment joining any two vertices in the

d-gon. The weight of the variable xij is defined as the number of edges of Kd which do not

meet the edge (i, j). Let � be any term order that refines the partial order on monomials

specified by these weights. So for any given pair of non-intersecting edges (i, j), (k, l)

of Kd, one of two pairs (i, k), (j, l) or (i, l), (j, k) meet at a point. If (i, l), (j, k) is the

intersecting pair, then we associate the binomial xijxkl� xilxjk with the pair (i, j), (k, l).

Let C is the set of all such binomials obtained in this way. We show later in Chapter ??

that for each binomial xijxkl�xilxjk in C, the initial term with respect to � corresponds

to the disjoint edges. We thus have the following theorem :

Theorem 1.4.5 (Theorem 2.1, [6]). The set C is the reduced Gröbner basis of IAd
with

respect to �.

1.4.2 SAGBI bases

In this section we look at the Subalgebra Analogue to Gröbner Bases for Ideals ( com-

monly known as the SAGBI bases ) and its connection with the toric ideals.

Definition 1.4.6. Let R be a finitely generated subalgebra of the polynomial ring

K[t1, . . . , td]. For a fixed term order � on K[t1, . . . , td], the initial algebra in�(R) is the

K-vector space spanned by {in�(f) : f 2 R}. A subset C of R is called a SAGBI basis if

in�(R) is generated as a K-algebra by the set of monomials {in�(f) : f 2 C}.

The main di↵erence between Gröbner bases for ideals and SAGBI bases for subal-

gebras is that the initial algebra in�(R) is not always finitely generated. If in�(R) is
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not finitely generated, then there is no SAGBI basis for R with respect to �. So, in this

section we only consider the case where in�(R) is finitely generated.

We fix a set of polynomials F = {f1, . . . , fn} in K[t1, . . . , td] and let R = K[F ] be

the subalgebra that they generate. Then for a fixed term order � on K[t1, . . . , td], we are

interested in finding a criterion for deciding if F forms a SAGBI basis for R with respect

to �. Now, let in�(fi) = tai and A = {a1, . . . , an} ⇢ Nd. We introduce a new polynomial

ring K[x1, . . . , xn] and consider the epimorphism from K[x1, . . . , xn] onto R which maps

xi to fi for each i = 1, . . . , n. We denote I to be the kernel of this map. Similarly, we

consider another map from K[x1, . . . , xn] onto in�(R) defined by xi 7! in�(fi) = tai . The

kernel of this map is the toric ideal IA.

We select a weight vector ! 2 Rd which represents the term order � for the poly-

nomials in F . If A is a d ⇥ n matrix, then AT! is a vector in Rn which can be used as

the weight vector for forming an initial ideal of I ⇢ K[x1, . . . , xn]. The following theorem

gives us the required criterion for SAGBI basis :

Theorem 1.4.7 (Theorem 11.4, [31]). The set F ⇢ K[t1, . . . , td] is a SAGBI basis if and

only if inAT!(I) = IA.

Example 1.4.8. Consider two polynomial rings R[x11, x12, ..., x44] and R[k11, k12, ..., k44].
Let K be the matrix 2

66664

k11 k12 k13 0

k12 k22 k23 0

k13 k23 k33 k33

0 0 k34 k44

3

77775

and F = {f11, f12, ..., f44} where each fij is defined as

f11 = k22k33k44 � k22k
2
34 � k2

23k44

f22 = k11k33k44 � k11k
2
34 � k2

13k44

f33 = k11k22k44 � k44k
2
12

f44 = k11k22k33 � k11k
2
23 � k2

12k33

+ k12k13k23 + k13k12k23 � k2
13k22

f12 = kk12k33k44 � k12k
2
34 � k23k13k44

f13 = �k13k22k44 + k12k23k44

f14 = �k13k34k22 + k12k23k34

f23 = k23k11k44 � k12k13k44

f24 = k23k34k11 � k34k13k12

f34 = k34k11k22 � k34k
2
12

These fijs are obtained from the map R[x11, x12, ..., x44] 7! R[k11, k12, ..., k44] which takes

each xij to det(K)·((ij)th entry of K�1). We fix the partial term order on R[k11, k12, ..., k44]
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by defining the degree of a monomial as the number of diagonal elements kii in that mono-

mial. Then the initial term of each fij is as follows:

in�(f11) = k22k33k44, in�(f12) = k12k33k44, in�(f13) = k13k22k44,

in�(f14) = k13k34k22, in�(f22) = k11k33k44, in�(f23) = k23k11k44,

in�(f24) = k23k34k11, in�(f33) = k11k22k44, in�(f34) = k34k11k22,

in�(f44) = k11k22k33

Denoting the initial terms in�(fij) as kaij where each aij are vectors in N10, we get the

8⇥ 10 matrix A as

A =

2

666666666666664

0 0 0 0 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

1 0 1 1 0 0 0 1 1 1

0 0 0 0 0 1 1 0 0 0

1 1 0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0 1 0

1 1 1 0 1 1 0 1 0 0

3

777777777777775

The weight vector ! 2 R8 represents the term order � for the polynomials in F . In this

case,

! = (1, 0, 0, 1, 0, 1, 0, 1).

So,

AT! =

2

666666666666664

0 0 0 0 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

1 0 1 1 0 0 0 1 1 1

0 0 0 0 0 1 1 0 0 0

1 1 0 0 1 0 0 0 0 1

0 0 0 1 0 0 1 0 1 0

1 1 1 0 1 1 0 1 0 0

3

777777777777775

T 2

666666666666664

1

0

0

1

0

1

0

1

3

777777777777775

=

2

66666666666666666664

3

2

2

1

3

2

1

3

2

3

3

77777777777777777775
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Computing the kernel of the map which takes each xij to fij, we get

I = hx24x33 � x23x34, x14x33 � x13x34, x14x23 � x13x24i.

Similarly, computing the toric ideal IA gives us that IA = I. Now, if we compute the

degree of each monomial in the generators of I using our new partial term order defined

by AT!, we get

d(�24�33) = (0, 0, 0, 0, 0, 0, 1, 1, 0, 0).AT! = 4,

d(�23�34) = (0, 0, 0, 0, 0, 1, 0, 0, 1, 0).AT! = 4,

d(�14�33) = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0).AT! = 4,

d(�13�34) = (0, 0, 1, 0, 0, 0, 0, 0, 1, 0).AT! = 4,

d(�14�23) = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0).AT! = 3,

d(�13�24) = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0).AT! = 3,

where d(�ij) denotes the degree of �ij. We observe that the initial term of each of the

generators of I is the entire term itself and hence inAT!(I) = I = IA in this case. Hence,

by Theorem 1.4.7 we can conclude that F is a SAGBI basis for R[F ].

1.5 Outline of the thesis

Now that we have all the necessary background, we give an outline of the upcoming

chapters.

1.5.1 Bounds on expected size of the maximum agreement sub-

tree for a given tree shape

Chapter 2 is based on the problem of determining the expected size of maximum agree-

ment subtree for a given tree shape. The content of this chapter was joint work with Seth

Sullivant and it was published in SIAM Journal of Discrete Mathematics [24].

In phylogenetics, di↵erent tree reconstruction methods, and di↵erent datasets on the

same set of species, can lead to the reconstruction of di↵erent trees. In such cases, it is

important to measure the distance between di↵erent trees constructed. There are various

25



distances between trees that are used including Robinson-Foulds distance, distances based

on tree rearrangements, and the geodesic distance. This chapter focuses on the maximum

agreement subtree as a measure of discrepancy between trees.

Let MAST(T1, T2) (defined in chapter-2) denote the number of leaves of a maximum

agreement subtree of T1 and T2. We study the distribution of MAST(T1, T2) where T1

and T2 are trees that are uniformly sampled from all trees with the same shape. In other

words, T2 is obtained from T1 by applying a random permutation of the leaf labels. We

prove that E[MAST(T1, T2)] = ⇥(
p
n) in this case. Our proof of the lower bound is

based on a structural result about general trees where we decompose arbitrary trees into

substructures we call blobs. The proof of the upper bound is based on a strengthening of

the previously mentioned result of [3].

1.5.2 Undirected Gaussian graphical models with toric vanish-

ing ideals

Chapter 3 is concerned with the problem of characterizing the undirected Gaussian graph-

ical models having toric vanishing ideals. We mainly focus on proving the conjecture of

Sturmfels and Uhler [32] on undirected Gaussian graphical models. The results in this

part was joint work with Seth Sullivant and it will be published in Annals of the Institute

of Statistical Mathematics [25].

Gaussian graphical models are used throughout the natural sciences and especially in

computational biology as seen in [20; 21]. These models explicitly capture the statistical

relationships between the variables of interest in the form of a graph. Sturmfels and Uhler

[32] conjectured that the vanishing ideal PG of an undirected Gaussian graphical model

is generated in degree at most 2 if and only if each connected component of the graph G

is a 1-clique sum of complete graphs. We prove the conjecture in this chapter by using

the connection between the generating sets of toric ideals and connectivity properties of

the fiber graphs. We also formulate a way to write the vanishing ideal of G in terms of

smaller graphs G1 and G2 when G is a 1-clique sum of G1 and G2 where G1 and G2 are

not necessarily complete.
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1.5.3 Directed acyclic Gaussian graphical models with toric

vanishing ideals

In Chapter 4, we try to get a similar characterization as in Chapter 3 for Gaussian graph-

ical models represented by directed acyclic graphs. The main objective in this chapter is

to construct DAGs having toric vanishing ideal and understand the generating set of the

ideal. We develop three techniques to construct such DAGs from smaller DAGs. These

are called safe gluing, gluing at sinks and adding a new sink.

We conjecture that if two DAGs have toric vanishing ideals, then any of the three

operations would yield us a new DAG whose vanishing ideal is also toric. Further, we

conjecture that every DAG whose vanishing ideal is toric can be obtained as a combi-

nation of these three operations on complete DAGs. We analyze an example and prove

some other results which provide evidence to these conjectures.
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Chapter 2

Bounds on the expected size of the

maximum agreement subtree for a

given tree shape

Rooted binary trees are used in evolutionary biology to represent the evolution of a set

of species where the leaves denote the existing species and the internal nodes denote the

unknown ancestors. Di↵erent tree reconstruction methods, and di↵erent datasets on the

same set of species, can lead to the reconstruction of di↵erent trees. In such cases, it is

important to measure the distance between di↵erent trees constructed. In this chapter,

we focus on the maximum agreement subtree as a measure of discrepancy between trees.

If T is a rooted binary tree with n leaves leaf labeled by [n] = {1, 2, . . . , n} and S is a

subset of [n], then the binary restriction tree T |S is defined as the subtree of T obtained

after deleting all the leaves that are not in S and suppressing the internal nodes of degree

2. The new tree T |S is rooted at the most recent common ancestor of the set S. If T1 and

T2 are two trees leaf labeled by X, then a subset S ✓ X is said to be an agreement set

of T1 and T2 if T1|S = T2|S. A maximum agreement subtree is a subtree that is obtained

from an agreement set of T1 and T2 and is of maximal size. Figures 2.1 and 2.2 give an

example of two trees and a maximum agreement subtree.

A maximum agreement subtree of a pair of binary trees can be computed in poly-

nomial time in n [29]. Let MAST(T1, T2) denote the number of leaves of a maximum

agreement subtree of T1 and T2. We know from [22] that if T1 and T2 are any unrooted

binary trees with n leaves, then MAST(T1, T2) = ⌦(
p
log n). This contrasts with the
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1 5 3 2 4 6 

 

1 3 2 6 4 5 

Figure 2.1: Two rooted trees T1 and T2

 

1 3 2 4 

Figure 2.2: A maximum agreement subtree for T1 and T2

rooted case where there can be pairs of rooted trees where MAST(T1, T2) = 2. For ex-

ample, if we take T1 and T2 to be two comb trees with n leaves, then labeling the leaves

of T2 in the reverse order as that of T1 gives us that MAST(T1, T2) = 2. Martin and

Thatte [22] also conjectured that if T1 and T2 are balanced rooted binary trees with n

leaves, then MAST(T1, T2) �
p
n. But in [4], Bordewich et al. disproved the conjecture

by showing that for any c > 0, there exist two balanced rooted binary trees with n leaves

such that any MAST for these two trees has size less than c
p
n.

For the purposes of hypothesis testing, it is important to understand the distribu-

tion of MAST(T1, T2) for trees generated from reasonable distributions of random trees.

Simulations by Bryant, McKenzie, and Steel [5] suggest that under the uniform and

Yule Harding distribution on the rooted binary trees with n leaves, the expected size of

MAST(T1, T2) is of the order ⇥(na) with a ⇡ 1/2. It is known that for any sampling con-

sistent and exchangeable distribution on rooted binary trees with n leaves (including the

uniform and Yule-Harding distributions), the expected size of the maximum agreement

subtrees is less than �
p
n (for some constant � > e

p
2) [3]. Lower bounds of order cn↵

are also shown in [3] for the Yule-Harding and the uniform distribution. In [1], Aldous
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improved the lower bound of the expected size of the MAST to n0.366 under the uniform

distribution.

In this chapter, we study the distribution of MAST(T1, T2) where T1 and T2 are trees

that are uniformly sampled from all trees with the same shape. In other words, T2 is

obtained from T1 by applying a random permutation of the leaf labels. We prove that

E[MAST(T1, T2)] = ⇥(
p
n) in this case, which provides some further evidence towards

the problems posed in [5] for random trees. Our proof of the lower bound is based on a

structural result about general trees where we decompose arbitrary trees into substruc-

tures we call blobs. The proof of the upper bound is based on a strengthening of the

previously mentioned result of [3]. We also show results of simulations that suggest that

our ideas based on blobs could be used to improve lower bounds on the expected value

of MAST(T1, T2) for other distributions of random trees.

2.1 Lower bound: Blobification

In this section we derive a lower bound on the expected size of the maximum agreement

subtree of two uniformly random trees on n leaves with same tree shape. We do this by

dividing the trees into what we call as blobs, which helps us in constructing an agreement

subtree between the two trees.

Let T be a rooted binary tree leaf-labeled by [n]. A cherry blob is a set of leaves in T

consisting of all leaves below a vertex in the tree. Cherry blobs are also called clades in

other phylogenetic contexts. An edge blob is a nonempty set of leaves of the form C1 \C2

where C1 and C2 are two nonempty cherry blobs. A blob in T is either a cherry blob or

an edge blob.

Definition 2.1.1. Given an integer k and a tree T , a k-blobification of T is a collection

B of blobs of T such that, for all distinct blobs B1, B2 2 B, B1 \ B2 = ; and for all

B 2 B, k  |B|  2k � 2.

Definition 2.1.2. Let T be a binary tree, and B a k-blobification. Let S be a set of

leaves consisting of one element from each of the blobs in B. The sca↵old tree of the

blobification is the unlabelled tree T 0 obtained as the unlabelled version of the induced

tree T |S.

Let T be any rooted binary leaf-labeled tree with n leaves. We construct a k-blobification

B of T using the following greedy procedure.
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First, throw in as many cherry blobs into B as possible. Specifically, among all the

cherry blobs C with k  |C|  2k � 2, we can take the set C to consist of all of those

cherry blobs that are minimal, i.e., that do not contain any other cherry blobs that have

between k and 2k � 2 leaves.

The set of cherry blobs C, that we have constructed induces a labeled tree that we call

the presca↵old tree. This tree has as leaves all the elements of C, and can be obtained as

an (unlabeled version of the) induced subtree T |S where S is any set of leaves that contain

exactly one leaf from each of the cherry blobs in C. If the root of T |S is not the root of

T , then we also add an edge onto the presca↵old tree at the root. This is illustrated in

Figure 2.4. Now we can think about the tree T as consisting of all the leaves grouped

into blobs of various sizes, each of which attaches somewhere onto the presca↵old tree.

The leaves that are not part of any of the cherry blobs will belong to blobs of size k � 1

or less that connect onto the presca↵old tree.

On each edge of the presca↵old tree are some number of smaller blobs hanging o↵ of

size k � 1 or less. Working up from the bottom edges of the presca↵old, we can group

small blobs together until they produce an edge blob of size between k and 2k � 2. This

is possible because each of the small blobs has size < k, so when we are grouping blobs

together we have an edge blob with size < k that we add < k more elements to, we stop

when we have formed an edge blob of size between k and 2k � 2. Let E be the resulting

set of edge blobs that are produced, that all have size between k and 2k� 2. This greedy

k-blobification algorithm stops with a blobification B = C [ E where on each edge of the

sca↵old tree there are leftover small blobs whose total number of leftover leaves is at

most k � 1. The set B = C [ E is called the greedy k-blobification.

Starting with the presca↵old tree T 0 and adding a leaf attached to an edge for each

time an edge blob gets formed, we arrive at an unlabelled tree we call the sca↵old tree.

Example 2.1.3. Consider the binary tree on 17 leaves pictured in Figure 2.3. We first

consider the greedy 2-blobification. Note that the cherry blobs are exactly the cherries in

this case. These are the sets {1, 2}, {7, 8}, {11, 12}, {13, 14}. The presca↵old tree is shown

on the left of Figure 2.4. Note that there is an edge that hangs o↵ the root. The edge

blobs in this example are {3, 4}, {5, 6}, {15, 16}. The resulting sca↵old tree is the tree on

the right in Figure 2.4. Note that leaves 9, 10, and 17 do not end up in any blob.

On the other hand, consider the greedy 3-blobification of the same tree. There are

two cherry blobs, {1, 2, 3} and {11, 12, 13, 14}. The edge blobs are {4, 5, 6}, {7, 8, 9}, and
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 2.3: A tree

Figure 2.4: Presca↵old and sca↵old tree for the 2-blobification (The labels indicate the
cherry blobs on the presca↵old tree, and all blobs on the sca↵old tree.)

{15, 16, 17}.

Proposition 2.1.4. Let T be a rooted binary leaf-labeled tree with n leaves. Then for all

k � 2, T has a k-blobification with at least n
4k blobs.

Proof. We apply the k-blobification algorithm on T . Let the final collection B of blobs

contain a cherry blobs and b edge blobs. Since the presca↵old tree is a binary rooted tree

with a leaves, there are at most 2a�1 edges (potentially there is a root edge), each having

at most k � 1 leaves unassigned to any blob. Taking everything at its most extreme, we

see that the total number of leaves, n is at most

n  (a+ b)(2k � 2) + (k � 1)(2a� 1) = (4a+ 2b� 1)(k � 1)  (4a+ 4b)k
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where the first part comes from the contribution from each of the a + b blobs, and the

second term is the leftover leaves. The total number of blobs is a + b, which is greater

than n/4k from the above inequality.

Lemma 2.1.5. Let S1 and S2 be uniformly random subsets of [n], each of size at least
p
n. The probability that S1 \ S2 6= ; is at least 1� e�1.

Proof. The probability that S1 \ S2 6= ; is clearly minimized when both S1 and S2 have
p
n elements. In this case, the probability that S1 \ S2 = ; is given by the formula

�n�p
np

n

�
�

np
n

� =

p
nY

i=1

⇣
1�

p
n

n�i+1

⌘


⇣
1� 1p

n

⌘p
n

 e�1

This shows that the probability that S1 \ S2 6= ; is at least 1� e�1.

Theorem 2.1.6. Let T1 and T2 be two uniformly random trees on n leaves among all

trees with the same tree shape (i.e. T2 is a random leaf relabeling of T1). Then the expected

size of MAST(T1, T2) is at least
p
n(1� e�1)/4.

Proof. Consider the
p
n-blobification of T1 and T2, which we denote by B1 and B2. Since

the trees have the same tree shape, this blobification has the same sca↵old tree T 0. We

can order the blobs in B1 = {B11, . . . , B1s} and B2 = {B21, . . . , B2s} so that B1i and B2i

correspond to the same leaf in the sca↵old tree T 0.

If for each i, we had that B1i \B2i 6= ;, we could take one leaf `i 2 B1i \B2i, and let

S = {`1, . . . , `s}, we would have T1|S = T2|S and this common agreement subtree would

have the same shape as the sca↵old tree T 0.

Note that, since our trees are uniformly random among all trees with a given fixed

shape, the probability that B1i \ B2i 6= ; is at least 1 � e�1 by Lemma 2.1.5, so that

the expected number of i where B1i \ B2i 6= ; is at least s(1 � e�1). This set of index

positions gives an agreement subtree of expected size at least s(1 � e�1), which will be

isomorphic to an induced subtree of the sca↵old tree. Since s �
p
n/4 by Proposition

2.1.4 we see that the expected size of MAST(T1, T2) is at least
p
n(1� e�1)/4.
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The same argument can be used to show that if T1 and T2 are uniformly random trees

among all trees that have the same
p
n-blobification, the expected value of MAST(T1, T2)

will also be at least
p
n(1� e�1)/4.

2.2 Upper bound: Eliminating sampling consistency

In this section we generalize the result obtained from [3] that if T1 and T2 are generated

from any sampling consistent and exchangeable distribution on rooted binary trees with

n leaves, the expected size of the MAST is less than �
p
n (for some constant � > e

p
2).

We show that the result holds true even if we remove sampling consistency as one of the

conditions. Since the distribution of random trees with the same shape is exchangeable,

this will prove an O(
p
n) bound on the expected size of the maximum agreement subtree

for uniformly random trees with the same shape.

Let RB(n) denote the set of all rooted binary trees with n leaves. For a set S let

RB(S) denote the set of all rooted binary trees with leaf label set S.

Definition 2.2.1. A distribution on RB(n) is said to be exchangeable if any two trees

which di↵er only by a permutation of leaves have the same probability.

For each n = 1, 2, . . . , we can consider a probability distribution Pn on RB(n). We

denote the probability of a tree t 2 RB(n) by Pn[t]. The notion of sampling consistency

is concerned with a probability model for random trees that describes probability distri-

butions for random trees for all n. For example, the uniform distribution on trees gives

a probability distribution Pn for each n, where Pn[t] =
1

(2n�3)!! for all t 2 RB(n). The

property of sampling consistency is one that concerns the entire family of probability

distributions Pn, n = 1, 2, . . ..

Definition 2.2.2. A distribution of random trees is said to satisfy sampling consistency

if for all n, all s < n, all S ✓ [n] with |S| = s, and all t 2 RB(S),

Ps[t] =
X

T2RB(n):T |S=t

Pn[T ].

In other words, in a sampling consistent distribution if we take a random tree T and

restrict to any subset of the leaves, the resulting tree has the same distribution as if we
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had just chosen a random tree on that subset of leaves, directly. Our goal in this section

is to remove the restriction of sampling consistency for the following theorem from [3].

Theorem 2.2.3. Consider an exchangeable and sampling consistent distribution on rooted

binary trees. Then for any � > e
p
2 there is a value m such that, for all n � m,

E[MAST(T1, T2)]  �
p
n

where T1, T2 are sampled from this distribution.

Let Pn be an exchangeable distribution on RB(n). Since we do not have a family

of distributions Ps for s < n, we can not talk about sampling consistency. To prove an

analogue of Theorem 2.2.3 without sampling consistency depends on defining some new

probability distributions on RB(s) for s < n. Specifically, for any s < n, and t 2 RB(s)

we define

Ps[t] =
X

T2RB(n):T |[s]=t

Pn[T ].

We can also use the notation Ps[t] = Pn[T |[s] = t] to denote this same probability.

Proposition 2.2.4. Let Pn be an exchangeable distribution defined on RB(n). Then for

any s < n, Ps satisfies exchangeability property on RB(s).

Proof. Let t and t0 be two trees in RB(s) with same tree shape, and let s < n. By

definition, Ps[t] = Pn[T |[s] = t] and Ps[t0] = Pn[T |[s] = t0]. We define a bijection � : [s]!
[s] from [s] to itself such that �(t) = t0 and extend the map � : [n]! [n] from [n] to itself

with �(a) = a, for all a > s. This map can also be seen as a bijection between RB(s) to

RB(s) ( similarly between RB(n) to RB(n) ) by acting on the leaf set of the trees.

So, for any two trees T, T 0 in RB(n) with T |[s] = t and T 0|[s] = t0, we have

�(T )|[s] = �(t) = t0 and ��1(T 0)|{1,2,...,s} = ��1(t0) = t.

Hence T |[s] = t if and only if �(T )|[s] = t0 since any bijection from [n] to [n] induces a

bijection from RB(n) to RB(n) by acting on the leaves of the trees. Also, as T and �(T )

have the same tree shape and Pn is exchangeable, we have Pn[T ] = Pn[�(T )]. Hence we

can conclude that Ps[t] = Ps[t0].
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Lemma 2.2.5. Suppose that phylogenetic trees T1 and T2 in RB(n) are randomly gen-

erated under a model that satisfies exchangeability. Then

P [MAST (T1, T2) � s]   n,s =

✓
n

s

◆ X

t2RB(s)

Ps[t]
2,

where Ps[t] is defined as Ps[t] = Pn[T |[s] = t] for t 2 RB(s).

Proof. This theorem can be proved exactly the way Lemma 4.1 of [5] is proved with

the last equality following from the way we have defined Ps[t] instead of using sampling

consistency. The details are included here for completeness.

Given a subset S of [n] let

XS =

(
1, if T1|S = T2|S
0, otherwise.

The number of agreement subtrees with s leaves for T1 and T2 is counted by

X(s) =
X

S✓[n]:|S|=s

XS.

The event MAST (T1, T2) � s is equivalent to the event X(s) � 1, so

P [MAST (T1, T2) � s] = P [X(s) � 1]

 E[X(s)]

=
X

S✓[n]:|S|=s

E[XS]

=
X

S✓[n]:|S|=s

P [XS = 1]

=

✓
n

s

◆
P [X[s] = 1],
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where the last equality is by exchangeability. Now,

P [X[s] = 1] = Pn[T1|[s] = T2|[s]]

=
X

t2RB(s)

Pn[T1|[s] = t and T2|[s] = t]

=
X

t2RB(s)

Pn[T1|[s] = t]2

=
X

t2RB(s)

Ps[t]
2

where the last equality follows from the way we have defined Ps[t]. Upon substituting

back for this term, we obtain the upper bound as stated in the lemma.

We now state a proposition from [3].

Proposition 2.2.6 (Proposition 4.2, [3]). Let Ps be any exchangeable distribution on

rooted binary trees with s leaves. Then

X

t2RB(s)

Ps(t)
2  2s�1

s!
.

Now we can combine these results to deduce the strengthened version of Theorem

2.2.3 that does not require sampling consistency.

Theorem 2.2.7. Then for any � > e
p
2 there is a value m such that, for all n � m,

E[MAST(T1, T2)]  �
p
n.

where T1 and T2 are sampled from any exchangeable distribution on RB(n).

Proof. This theorem can be proved exactly the way as Theorem 4.3 in [3] is proved as

we have already shown that Ps is exchangeable by Proposition 2.2.4.

We explore the asymptotic behaviour of the quantity �n,s =
�
n
s

�
2s�1

s! . Using the in-

equality
�
n
s

�
 ns

s! and Stirling’s approximation, we have:

�n,s 
1

4⇡s

✓
2e2n

s2

◆s

✓(s)
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where ✓(s) ⇠ 1. Hence, �n,s tends to zero as an exponenential function of n as n ! 1.

Since �n,s �  n,s, we see that P [MAST(T1, T2) � �
p
n] tends to zero as an exponential

function of n. Since MAST(T1, T2)  n, this implies that E[MAST(T1, T2)]  �
p
n.

Now we can deduce the main result for trees with the same shape.

Corollary 2.2.8. Let T1 and T2 be generated from the uniform distribution on rooted

binary trees with n leaves with same tree shape (that is, T2 is a random leaf relabeling of

T1). Then for any � > e
p
2 there is a value m such that, for all n � m,

E[MAST(T1, T2)]  �
p
n.

Proof. This follows immediately from Theorem 2.2.7 since the uniform distribution on

trees with the same shape is exchangeable.

Combining Theorem 2.1.6 and Corollary 2.2.8 we deduce the main result of the chap-

ter.

Theorem 2.2.9. Let T1 and T2 be generated from the uniform distribution on rooted

binary trees with n leaves with same tree shape (that is, T2 is a random leaf relabeling of

T1). Then

E[MAST(T1, T2)] = ⇥(
p
n).

2.3 Simulations with blobification

The blobification idea has the potential to be useful for proving lower bounds on the

expected size of the maximum agreement subtree in other contexts. For example, suppose

we have a model for random trees on n leaves and we can show that the sca↵old tree

of the
p
n-blobification of a random tree has depth � f(n) with high probability p > 0

that does not depend on n. Then under this model, using Lemma 2.1.5, we see that two

random trees will have an agreement subtree of expected size at least f(n)(1 � e�1)p2.

Such a tree would be obtained as a comb tree by comparing blobs that are matched along

the path from the root to the deepest leaf in each sca↵old tree. Hence, understanding the

distribution of the depth of the sca↵old trees in the
p
n-blobification could give improved

lower bounds on the expected size of the maximum agreement subtree in some random

tree models.
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One specific application where this perspective might prove useful is for uniformly

randomly trees. The current best lower bound for the expected size of the maximum

agreement subtree for two uniformly random trees on n leaves is ⌦(n0.366) [1]. To see

if this blobification idea might be useful for improving the lower bound, we simulated

a lower bound for the depth of the sca↵old tree of a uniformly random tree using the

following greedy procedure.

Algorithm 2.3.1 (Greedy Comb Sca↵old).

Input: A binary tree T and an integer k.

Output: A sca↵old tree in shape of a comb, whose leaves correspond to blobs of size

� k.

• Set u = ().

• While T has more than one leaf Do:

– Let T1 and T2 be the left and right subtrees of the root in T .

– Append min(#(T1),#(T2)) to u.

– Set T equal to the larger of T1 and T2.

• Set v = (0).

• While u 6= () do

– If the last element of v is greater than or equal to k, append the last element

of u to v.

∗ Else, add the last element of u to the last element of v.

– Delete the last element of u.

• Output v, a vector of sizes of blobs in T , all except the last one having size � k,

which have a sca↵old that is a comb tree.

Note that the length of the vector v (or possibly the length minus 1) gives the number

of leaves in the greedy comb sca↵old where all blobs will have size greater than k.

We applied the greedy comb sca↵old algorithm to uniformly random binary trees with

k =
p
n on 2n leaves for n = 4, . . . , 11, with 1000 samples for each value of n. The results

of these simulations are displayed in the log-log plot of Figure 2.5. The slope of the line of

best fit is approximately .466. These data suggest that a strategy based on blobification

could yield an ⌦(n.466) lower bound on the size of the maximum agreement subtree for

uniformly random trees. This would be a significant improvement on our estimates of the
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Figure 2.5: Log-log plot of the simulated expected size of the greedy comb sca↵old

expected size of the maximal agreement subtree for uniformly random trees, given the

current best known lower bound of ⌦(n.366).
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Chapter 3

Undirected Gaussian graphical

models with toric vanishing ideals

Any positive definite n⇥nmatrix ⌃ can be seen as the covariance matrix of a multivariate

normal distribution in Rn. The inverse matrix K = ⌃�1 is called the concentration

matrix of the distribution, which is also positive definite. The statistical models where

the concentration matrix K can be written as a linear combination of some fixed linearly

independent symmetric matrices K1, K2, ..., Kd are called linear concentration models.

Let Sn denote the vector space of real symmetric matrices and let L be a linear

subspace of Sn generated by K1, K2, ..., Kd. The set L�1 is defined as

L�1 = {⌃ 2 Sn : ⌃�1 2 L}.

The homogeneous ideal of all the polynomials in R[⌃] = R[�11, �12, ..., �nn] that vanish

on L�1 is denoted by PL. Note that PL is prime because it is the vanishing ideal of L�1,

which is the image of the irreducible variety L under the rational inversion map. In this

chapter, we study the problem of finding a generating set of PL for the special case of

Gaussian graphical models.

Gaussian graphical models are used throughout the natural sciences and especially in

computational biology as seen in [20], [21]. These models explicitly capture the statisti-

cal relationships between the variables of interest in the form of a graph. The undirected

Gaussian graphical model is obtained when the subspace L of Sn is defined by the vanish-

ing of some o↵-diagonal entries of the concentration matrixK. We fix a graphG = ([n], E)
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with vertex set [n] = {1, 2, ..., n} and edge set E, which is assumed to contain all self

loops. The subspace L is generated by the set {Kij|(i, j) 2 E} of matrices Kij with 1

entry at the (i, j)th and (j, i)th position and 0 in all other positions. We denote the ideal

PL as PG in this model.

One way to compute PG is to eliminate the entries of an indeterminate symmetric

n⇥ n matrix K from the following system of equations:

⌃ ·K = Idn, K 2 L,

where Idn is the n ⇥ n identity matrix. However, this elimination is computationally

expensive, and we would like methods to identify generators of PG directly in terms of

the graph.

Various methods have been proposed for finding some generators in the ideal PG and

for trying to build PG from smaller ideals associated to subgraphs. These approaches are

based on separation criteria in the graph G.

If G is a c-clique sum of G1 and G2, the ideal

PG1 + PG2 + h(c+ 1)⇥ (c+ 1)-minors of ⌃A[C,B[Ci (3.1)

is contained in PG. Here ⌃A[C,B[C denotes the submatrix of ⌃ obtained by taking all

rows indexed by A [ C and columns indexed by B [ C, and so

h(c+ 1)⇥ (c+ 1)-minors of ⌃A[C,B[Ci

is the conditional independence ideal associated to the conditional independence state-

ment A??B|C. Though the ideal (3.1) fails to equal PG, (or even have the same radical

as that of PG) for c � 2, [32] conjectured it to be equal to PG for c = 1.

Conjecture 3.0.1 (Sturmfels-Uhler Conjecture, [32]). Let G be a 1-clique sum of two

smaller graphs G1 and G2. If (A,B,C) is the 1-clique partition of G where G1 and G2

are the subgraphs induced by A [ C and B [ C respectively, then

PG = PG1 + PG2 + h2⇥ 2-minors of ⌃A[C,B[Ci.

In Section 3.1, we give counterexamples to this conjecture, and even a natural strength-

ening of it. We also give a corrected version of the formula by using the idea of saturation
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in Section 3.6. However, the motivation for Conjecture 3.0.1 was to use it as a tool to

prove a di↵erent conjecture characterizing the graphs for which the vanishing ideal PG is

generated in degree  2. To explain the details of this conjecture we need some further

notions.

Let X = (X1, X2, . . . , Xn) be a Gaussian random vector. If A,B,C ✓ [n] are pairwise

disjoint subsets, then from Proposition 4.1.9 of [35] we know that XA is conditionally

independent of XB given XC (i.e A |= B|C) if and only if the submatrix ⌃A[C,B[C of the

covariance matrix ⌃ has rank |C|. The Gaussian conditional independence ideal for the

conditional independence statement A |= B|C is given by

JA |= B|C = h(|C|+ 1)⇥ (|C|+ 1) minors of ⌃A[C,B[Ci.

If G is an undirected graph and (A,B,C) is a partition with C separating A from B,

then the conditional independence statement A |= B|C holds for all multivariate normal

distributions where the covariance matrix ⌃ is obtained from G (by the global Markov

property). The conditional independence ideal for the graph G is defined by

CIG =
X

A |= B|C holds for G

JA |= B|C .

Proposition 3.0.2. For any given graph G, CIG ✓ PG.

Proof. As the rank of the submatrices ⌃A[C,B[C of the covariance matrix ⌃ is |C| for all
partitions (A,B,C) of G, the generators of CIG vanish on the matrices in L�1.

The second conjecture in [32] which we prove in this chapter is as follows:

Theorem 3.0.3. (Conjecture 4.4, [32]) The prime ideal PG of an undirected Gaussian

graphical model is generated in degree  2 if and only if each connected component of the

graph G is a 1-clique sum of complete graphs.

The “only if” part of the conjecture is proved in [32]. That is, it is shown there that

a graph that is not the 1-clique sum of complete graphs (commonly known as block

graphs) must have a generator of degree � 3. Such a generator comes from a conditional

independence statement with #C � 2.
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For block graphs, the conditional independence ideal can be written as

CIG = h
[

(A,B,C)2C1(G)

2⇥ 2 minors of ⌃A[C,B[Ci,

where C1(G) denotes the set of all 1-clique partitions of G. In this chapter, our main

result will be a proof that CIG = PG when G is a block graph.

One important property of block graphs as shwon in Proposition 1.1.5 is that there

is a unique locally shortest path between any pair of vertices in a connected component

of a block graph.

Example 3.0.4. We illustrate the structure of Theorem 3.0.3 with an example. Let

G = ([6], E) be the block graph as shown in Figure 1.1. In Example 1.1.4, we saw that

G has four 1-clique partitions. The matrices associated to each of the four partitions are

as follows:

For 1 : ⌃A[C,B[C =

2

64
�13 �14 �15 �16

�23 �24 �25 �26

�33 �34 �35 �36

3

75 , 2 : ⌃A[C,B[C =

2

66664

�14 �15 �16

�24 �25 �26

�34 �35 �36

�44 �45 �46

3

77775

3 : ⌃A[C,B[C =

2

6666664

�14 �16

�24 �26

�34 �36

�44 �46

�45 �56

3

7777775
, 4 : ⌃A[C,B[C =

2

6666664

�14 �15

�24 �25

�34 �35

�44 �45

�46 �56

3

7777775
.
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The ideal CIG = PG is the ideal generated by the 2⇥ 2 minors of all four matrices:

CIG = h�13�24 � �14�23, �13�25 � �15�23, �13�26 � �16�23, �14�25 � �15�24, �23�34 � �24�33,

�23�35 � �25�33, �23�36 � �26�33, �24�35 � �25�34, �24�36 � �26�34, �25�36 � �26�35,

�13�34 � �14�33, �13�35 � �15�33, �13�36 � �16�33, �14�35 � �15�34, �14�36 � �16�34,

�15�36 � �16�35, �14�45 � �15�44, �14�46 � �16�44, �15�46 � �16�45, �24�45 � �25�44,

�24�46 � �26�44, �25�46 � �26�45, �34�45 � �35�44, �34�46 � �36�44, �35�46 � �36�45,

�14�56 � �16�45, �24�56 � �26�45, �34�56 � �36�45, �44�56 � �46�45, �14�56 � �15�46,

�24�56 � �25�46, �34�56 � �35�46, �44�56 � �45�46, �14�26 � �16�24, �15�26 � �16�25i.

The history of trying to characterize constraints on the covariance matrices in Gaus-

sian graphical models goes back to [19] and the discovery of the pentad constraints in

the factor analysis model. Since then, the study of the constraints on Gaussian graphical

models has seen many results including the deeper study of the factor analysis model

in [10], the study of directed graphical models and characterization of tree models in

[34], and the complete characterization of the determinantal constraints that apply to

Gaussian graphical models in [36].

The study of the generators of the ideals PG is an important problem for constraint-

based inference for inferring the structure of the underlying graph from data. Elements of

the vanishing ideal are tested to determine if the graph has certain underlying features,

which are then used to reconstruct the entire graph. A prototypical example of this

method is the TETRAD procedure in [28] which specifically tests the degree 2 generators

(tetrads) of the vanishing ideals of Gaussian graphical models for directed graphs. Our

main result in this chapter gives a characterization of which undirected graphs the tetrads

are su�cient to characterize all distributions from the model, and is a key structural result

for trying to use constraint based inference for undirected Gaussian graphical models.

Developing characterizations of the vanishing ideals of Gaussian graphical models by

higher order constraints (for example, determinantal constraints in [9] and [36] ) has the

potential to extend constraint-based inference beyond tetrad constraints.

This chapter is organized as follows. We give two counterexamples to Conjecture 3.0.1

in Section 3.1. In Section 3.2 we define a rational map ⇢ and its pullback map ⇢⇤, whose

kernel is the ideal PG. Using this uniqueness property of block graphs, we define the

“shortest path map”  and the initial term map � and show that the two maps have the
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Figure 3.1: A counterexample to Conjecture 3.0.1

same kernel. We prove that the kernel of  is equal to the ideal CIG for block graphs with

one central vertex in Section 3.3. This result is generalized for all block graphs in Section

3.4. Finally, in Section 3.5 we put all the pieces together to prove Theorem 3.0.3 using

the results proved in the previous sections. We also show that the set F forms a SAGBI

basis ( Subalgebra Analog to Gröbner Basis for Ideals ) using the initial term map. We

end this chapter with Section 3.6 where we give a rectified version of the formula given

in Conjecture 3.0.1.

3.1 Counterexamples to the Sturmfels-Uhler Con-

jecture

We first begin with some counterexamples to Conjecture 3.0.1. Initial counterexamples

suggest a modification of Conjecture 3.0.1 might be true, but we show that that strength-

ened version is also false. This last counterexample suggests that it is unlike that there

is a repair for the conjecture.

Example 3.1.1. Let G = ([6], E) be the graph as shown in Figure 3.1. Here A =

{1, 2}, B = {4, 5, 6} and C = {3}. Computing the ideals PG and PG1 + PG2 + h2 ⇥
2 minors of ⌃A[C,B[Ci, we get

PG = h�14�25�46 � �14�26�45 � �15�24�46 + �15�26�44 + �16�24�45 � �16�25�44,

�24�45�56 � �24�46�55 � �25�44�56 + �25�46�45 + �26�44�55 � �26�2
45i

+PG1 + PG2 + h2⇥ 2 minors of ⌃A[C,B[Ci.

Note that even for some small block graphs Conjecture 3.0.1 is false.
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Example 3.1.2. Consider the graph G = ([4], E) which is a path of length 4. Taking

c = {3}, we get a decomposition of G into G1 and G2 which are paths of length 3 and

2 respectively. A quick calculation in Macaulay2 [13] shows that PG = CIG is generated

by 5 quadratic binomials. However,

PG1 + PG2 + h2⇥ 2-minors of ⌃{1,2,3},{3,4}i

has only 4 minimal generators.

Although PG is not equal to PG1 + PG2 + h2 ⇥ 2 minors of ⌃A[C,B[Ci in these ex-

amples, we observe that the extra generators of PG are also determinantal conditions

arising from submatrices of ⌃. Furthermore, they can be seen as being implied by the

original rank conditions in PG1 and PG2 plus the rank conditions that are implied by

h2⇥ 2 minors of ⌃A[C,B[Ci.
For instance, in Example 3.1.2, the idealRG = PG1+PG2+h2⇥2-minors of ⌃{1,2,3},{3,4}i

is generated by the 2⇥ 2 minors of the two matrices

 
�12 �13

�22 �23

!
and

0

B@
�13 �14

�23 �24

�33 �34

1

CA .

Whereas the PG is generated by the 2⇥ 2 minors of the two matrices.

 
�12 �13 �14

�22 �23 �24

!
and

0

B@
�13 �14

�23 �24

�33 �34

1

CA .

However, we can take the generators of RG and assuming that �33 is not zero (which is

valid since ⌃ is positive definite), we observe that

 
�12 �13 �14

�22 �23 �24

!

must be a rank 1 matrix.

Similarly, in Example 3.1.1, we know that ({3}, {6}, {4, 5}) is a separating partition

for the subgraph G2. So, the ideal J{3} |= {6}|{4,5} is contained in PG2 , which implies that
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rank of the submatrix ⌃{3,4,5},{4,5,6} is 2. Similarly, ({1, 2}, {4, 5, 6}, {3}) is a separating

partition of G, which implies that rank of the submatrix ⌃{1,2,3},{3,4,5,6} is 1. Now, as

⌃{1,2,3},{4,5,6} is a submatrix of ⌃{1,2,3},{3,4,5,6}, we can say that ⌃{1,2,3},{4,5,6} also has rank

1. Hence, from these two rank constraints and the added assumption that �33 is not zero

we can conclude that the submatrix ⌃{1,2,4,5},{4,5,6} has rank 2.

The details of these examples suggest that a better version of the conjecture might

be

PG = Lift(PG1) + Lift(PG2) + h2⇥ 2 minors of ⌃A[C,B[Ci.

Here Lift(PG1) denotes some operation that takes the generators of PG1 and extends them

to the whole graph, analogous to how the toric fiber product in [33] lifts generators for

reducible hierarchical models on discrete variables [8; 17]. We do not make precise what

this lifting operation could be, because if it preserves the degrees of generating sets the

following example shows that no precise version of this notion could make this conjecture

be true.

Example 3.1.3. LetG = ([7], E) be the graph as shown in Figure 3.2 and let (A,B,C) be

the partition ({1, 2, 3}, {5, 6, 7}, {4}). Computing the vanishing ideal, we get PG = CIG,

but that among the minimal generators of PG is one degree 4 polynomial m where

m = �2
17�23�56 � �13�17�27�56 � �12�17�37�56 + �11�27�37�56 � �16�17�23�57

+ �13�16�27�57 + �12�16�37�57 � �11�26�37�57 � �15�17�23�67 + �13�15�27�67

+ �12�15�37�67 � �11�25�37�67 � �12�13�57�67 + �11�23�57�67 + �15�16�23�77

� �13�15�26�77 � �12�15�36�77 + �11�25�36�77 + �12�13�56�77 � �11�23�56�77.

As both PG1 and PG2 are generated by polynomials of degree 3, this degree 4 polynomial

could not be obtained from a degree preserving lifting operation.

We come back to this problem in Section 3.6 where we give a revised formula for

representing PG in terms of PG1 and PG2 .
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Figure 3.2: Graph with a degree 4 generator

3.2 Shortest path in block graphs

Our goal for the rest of the chapter is to prove Theorem 3.0.3. To do this, we need to

phrase some parts in the language of commutative algebra. The vanishing ideal is the

kernel of a certain ring homomorphism, or the presentation ideal of a certain R-algebra.
We will show that we can pass to a suitable initial algebra and analyze the combinatorics

of the resulting toric ideal. This is proven in this section and those that follow.

We begin this section by defining a rational map ⇢ such that the kernel of its pullback

map gives us the ideal PG. We also use the existence of a unique shortest path between

any two vertices of a block graph (as shown in Proposition 1.1.5) to define the “shortest

path map”.

Let R[K] = R[k11, k12, ..., knn] denote the polynomial ring in the entries of the con-

centration matrix K, and R(K) its fraction field.

We define the rational map ⇢ : L 99K L�1 as follows:

⇢(K) = ⇢(k11, k12, . . . , knn)

= (⇢11(k11, k12, . . . , knn), ⇢12(k11, k12, . . . , knn), ..., ⇢nn(k11, k12, . . . , knn)),

where ⇢ij 2 R(K) is the (i, j) coordinate of K�1. The rational map does not yield a well

defined function from L to L�1 as every matrix in L is not invertible (chapter 3, [15]).

Also note that the definition of ⇢ depends on the underlying graph G, since the zero

pattern of K is determined by G.

The pull-back map of ⇢ is

⇢⇤ : R[⌃]! R(K), �ij 7! ⇢ij(K).
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So, for each p 2 R[⌃] and K 2 L,

⇢⇤(p)(K) = p � ⇢(K) = p(⇢11(K), ⇢12(K), ..., ⇢nn(K)).

Hence, we have

PG = I(L�1) = ker(⇢⇤).

For a given graph G = ([n], E), let fij 2 R[K] be the polynomial defined as det(K)

times the (i, j) coordinate of the matrix K�1. Let F = {fij : 1  i  j  n}. So, the
map ⇢⇤ can be written as

⇢⇤ : R[⌃]! R(K) ⇢⇤(�ij) =
1

det(K)
· fij.

As 1/ det(K) is a constant which is present in the image of every �ij, removing that

factor from every image would not change the kernel of ⇢⇤. Hence, we change the map

⇢⇤ as

⇢⇤ : R[⌃]! R[F ], ⇢⇤(�ij) = fij,

where R[F ] = R[f11, f12, ..., fnn] ✓ R[K].

Example 3.2.1. Let G = ([4], E) be a graph with 4 vertices as shown in Fig 3.3. The

matrices ⌃ and K for this graph are:

⌃ =

2

66664

�11 �12 �13 �14

�12 �22 �23 �24

�13 �23 �33 �34

�14 �24 �34 �44

3

77775
, K =

2

66664

k11 k12 k13 0

k12 k22 k23 0

k13 k23 k33 k34

0 0 k34 k44

3

77775
.

The ideal PG can be calculated by using the equation ⌃ · K = Id4 and eliminating

the K variables.

h⌃ ·K � Id4i = h�11k11 + �12k12 + �13k13 � 1, �11k12 + �12k22 + �13k23, . . . ,

�14k13 + �24k23 + �34k33 + �44k34, �34k33 + �44k44 � 1i.
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Figure 3.3: A block graph with 4 vertices

Eliminating the K variables, we get

PG = h⌃ ·K � Id4i \ R[⌃] = h�13�34 � �14�33, �23�34 � �24�33, �14�23 � �13�24i.

From the map ⇢⇤, we have

f11 = k22k33k44 � k22k
2
34 � k2

23k44

f22 = k11k33k44 � k11k
2
34 � k2

13k44

f33 = k11k22k44 � k44k
2
12

f44 = k11k22k33 � k11k
2
23 � k2

12k33

+ k12k13k23 + k13k12k23 � k2
13k22

f12 = �k12k33k44 � k12k
2
34 � k23k13k44

f13 = �k13k22k44 + k12k23k44

f14 = k13k34k22 � k12k23k34

f23 = �k23k11k44 + k12k13k44

f24 = k23k34k11 � k34k13k12

f34 = �k34k11k22 + k34k
2
12

(3.2)

where fij is det(K) times the (i, j) coordinate of K�1. Evaluating the kernel of ⇢⇤, we

get

ker(⇢⇤) = h�13�34 � �14�33, �23�34 � �24�33, �14�23 � �13�24i

which is same as the ideal PG. Note that G is a block graph with a single 1-clique sum

decomposition. As the generators of PG are the 2⇥2 minors of ⌃{1,2,3},{3,4}, the conjecture

holds for this example.

Observe that in Example 3.2.1, each fij contains a monomial which corresponds to

the shortest path from i to j in the graph G along with loops at the vertices not in

the path. For example, f24 has the monomial k23k34k11 where k23k34 corresponds to the

shortest path from 2 to 4 and k11 corresponds to the loop at the vertex 1. In (3.2), the

underlined terms are this special terms. This turns out to be important in our proofs,

and we formalize this observation in Proposition 3.2.3.
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For the rest of the chapter, we assume that G is a block graph and the shortest path

from i to j in G is denoted by i $ j. We use (i0, j0) 2 i $ j to indicate that the edge

(i0, j0) appears in the path i $ j. We let `(i, j) denote the length of the shortest path

from i to j. We now state a result from [18] which will be used to prove Proposition 3.2.3.

Theorem 3.2.2. (Theorem 1, [18]) Consider an n�dimensional multivariate normal

distribution with a finite and non-singular covariance matrix ⌃, with precision matrix

K = ⌃�1. Let K determine the incidence matrix of a finite, undirected graph on vertices

{1, ..., n}, with nonzero elements in K corresponding to edges. The element of K corre-

sponding to the covariance between variables x and y can be written as a sum of path

weights over all paths in the graph between x and y:

�xy =
X

P2Pxy

(�1)m+1kp1p2kp2p3 ...kpm�1pm

det(K\P )

det(K)
,

where Pxy represents the set of paths between x and y, so that p1 = x and pm = y for

all P 2Pxy and K\P is the matrix with rows and columns corresponding to variables in

the path P omitted, with the determinant of a zero-dimensional matrix taken to be 1.

Proposition 3.2.3. Let G = ([n], E) be a block graph with the corresponding concentra-

tion matrix K. If fxy denote det(K) times the (x, y) coordinate of K�1, then fxy has the

monomial

(�1)`(i,j)
Y

(x0,y0)2x$y

kx0y0

Y

t/2x$y

ktt

as one of its terms. Furthermore, this term has the highest number of diagonal entries

ktt among all the monomials of fxy.

Proof. From Theorem 3.2.2, we have

fxy = det(K) · �xy =
X

P2Pxy

(�1)m+1kp1p2kp2p3 ...kpm�1pmdet(K\P ).

From Proposition 1.1.5 we know that if G is a block graph, then for any two vertices

x and y, there exists a unique shortest path between x and y. If z 2 x$ y with z 6= x, y,

then there exists a 1-clique partition (A,B,C) of G with C = {z} and x 2 A, y 2 B. By

the definition of 1-clique partition we know that any path from x to y must pass through

z. As z is arbitrarily chosen, any path in G from x to y must pass through all the vertices
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in x $ y. This gives us that the unique shortest path has the least number of vertices

among all the other paths from x to y. So, the matrix K\x$y has the highest dimension

among all the other matrices K\P , P 2Pxy.

Now, for any P 2 Pxy, det(K\P ) contains the monomial
Q

t/2P ktt as G is assumed

to have self loops. This monomial has the highest number of diagonals among all the

monomials in det(K\P ) as the degree of det(K\P ) is same as the degree of
Q

t/2P ktt. So,

the monomial Y

(x0,y0)2P

kx0y0

Y

t/2P

ktt

has the highest number of diagonal terms among all the monomials in
Q

(x0,y0)2P kx0y0det(K\P ).

As K\x$y has the highest dimension, we can conclude that the monomial

Y

(x0,y0)2x$y

kx0y0

Y

t/2x$y

ktt

has the maximum number of diagonal terms among all the monomials in fxy.

We call the monomial defined above as the shortest path monomial of fij. As the

shortest path monomial in each fij has the highest power of diagonals ktt among all the

other monomials in fij, we can define a weight order on R[K] where the weight of any

monomial is the number of diagonal entries of the monomial. The initial term of fij in

this order will be precisely the shortest path monomial.

Definition 3.2.4. Let G be a block graph. Define the R-algebra homomorphism

� : R[⌃]! R[K], �ij 7!
Y

(i0,j0)2i$j

ki0j0
Y

t/2i$j

ktt.

This monomial homomorphism is called the initial term map.

The map � is the initial term map of ⇢⇤, but with the sign (�1)`(i,j) omitted. We will

use this to show that the set F forms a SAGBI basis of R[F ] by using this term order,

as part of our proof of Theorem 3.0.3. This appears in Section 3.5. To do this we must

spend some time proving properties of � and ker�.

Note that the kernel of � is the same with or without the signs (�1)`(i,j). This is

because the monomials that appear are graded by the number of diagonal terms that
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appear, which is also counted by the (�1)`(i,j). Any binomial relation �u � �v 2 ker�

much also lead to the same power of negative one on both sides of the equation.

From the standpoint of proving results about this monomial map based on shortest

paths in a block graph, it turns out to be easier to work with a related map that we call

the shortest path map.

Definition 3.2.5. Let G = ([n], E) be a block graph. The shortest path map  is defined

as

 : R[⌃]! R[a1, ..., an, k12, ..., kn�1,n] = R[A,K]

 (�ij) =

(
aiaj

Q
(i0,j0)2i$j ki0j0 i 6= j

a2i i = j.

Example 3.2.6. Let G be the graph in Example 3.2.1. Let  be the shortest path map

and � the initial monomial map as given in Definitions 3.2.4 and 3.2.5. So for example,

�(�11) = k22k33k44,�(�12) = k12k33k44, . . .

 (�11) = a21, (�12) = a1a2k12, . . . .

As is typical for monomial parametrizations, we can represent them by matrices whose

columns are the exponent vectors of the monomials appearing in the parametrization. In

this case, we get the following matrices corresponding to � and  respectively.

M� =

2

666666666666664

0 0 0 0 1 1 1 1 1 1

1 0 1 1 0 0 0 1 1 1

1 1 0 0 1 0 0 0 0 1

1 1 1 0 1 1 0 1 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 1 0 0 1 0 1 0

3

777777777777775

M =

2

666666666666664

2 1 1 1 0 0 0 0 0 0

0 1 0 0 2 1 1 0 0 0

0 0 1 0 0 1 0 2 1 0

0 0 0 1 0 0 1 0 1 2

0 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 1 0 0 1 0 1 0

3

777777777777775

.

The rows of M� are ordered as {k11, k22, k33, k44, k12, k13, k23, k34} and the rows of M are

ordered as {a1, a2, a3, a4, k12, k13, k23, k34}.

In fact, these two monomial maps have the same kernel for block graphs.
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Proposition 3.2.7. Let G be a block graph and let � and  be the initial term map and

the shortest path map, respectively. Then ker( ) = ker(�).

Proof. Both ker(�) and ker( ) are toric ideals. To show that they have the same kernel,

it su�ces to show that the associated matrices of exponent vectors have the same kernel,

or equivalently, that they have the same row span. Let M� and M denote those ma-

trices. As  (�ij) = aiaj
Q

(i0,j0)2i$j ki0j0 and �(�ij) =
Q

(i0,j0)2i$j ki0j0
Q

s/2i$j kss, the rows

corresponding to kij with i 6= j remain the same in both the matrices. So, we only need

to write the kii rows of M� as a linear combination of the rows of M and vice versa.

The row vector corresponding to kii in M� is 1 at the �pq coordinates where i /2 p$ q

and is 0 elsewhere. Similarly, the row vector corresponding to ai in M is 2 at the �ii

coordinate, 1 at the �pq coordinates where either of the end points is i (either p = i or

q = i) and 0 elsewhere.

We observe that the kii rows of M� can be written as a linear combination of the rows

of M using the following relation:

2kii =
X

j 6=i

aj �
X

s:i$s is an edge

kis. (3.3)

Here we are using kii to denote the row vector of M� corresponding to the indeterminate

kii, and similarly for aj and kis. We have

X

j 6=i

aj = paths ending at i+ 2( paths not ending at i)� i$ i,

X

s:i$s is an edge

kis = paths ending at i+ 2( paths containing i but not ending at i)� i$ i.

So, X

j 6=i

aj �
X

s:i$s is an edge

kis = 2( paths not containing i) = 2kii.

As this relation is true for any i, the row space of M� is contained in the row space of

M . So, ker( ) ✓ ker(�).

To get the reverse containment, we need to write the ai rows of M as a linear

combination of the rows of M�. From (3.3), we get

X

j 6=i

aj = 2kii +
X

s:i$s is an edge

kis.
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Writing these n equations in the matrix form, we get an n ⇥ n matrix in the left hand

side which has 0 in its diagonal entries and 1 elsewhere. As this matrix is invertible for

any n > 1, we can conclude that the row space of M is contained in the row space of

A. Hence, ker( ) = ker(�).

Our goal in the next two sections will be to characterize the vanishing ideal of the

shortest path map for block graphs.

Definition 3.2.8. Let G be a block graph. Let SPG = ker( ) = ker(�) be the kernel of

the shortest path map. This ideal is called the shortest path ideal.

As the shortest path map is a monomial map, we know that the shortest path ideal

is a toric ideal. We will eventually show that SPG = CIG = PG, however we find it useful

to have di↵erent notation for these ideals while we have not yet proven the equality.

3.3 Shortest path map for block graphs with 1 cen-

tral vertex

In this section we show that SPG = CIG in the case that G is a block graph with

only one central vertex. This will be an important special case and tool for proving that

SPG = CIG for all block graphs, which we do in Section 3.4. Our proof for graphs with

only one central vertex depends on reducing the study of the ideal SPG in this case to

related notions of edge rings in [6] and [16].

Definition 3.3.1. If G is a block graph, a vertex c in G is called a central vertex if there

exists a 1-clique partition (A,B,C) of G such that C = {c}.

Example 3.3.2. Let G be the block graph with 5 vertices as in Figure 3.4. There are

three possible 1-clique partitions of G,

({1, 2}, {4, 5}, {3}), ({1, 2, 4}, {5}, {3}) and ({1, 2, 5}, {4}, {3}).

We see that 3 is the only central vertex of G as C = {3} for all the three partitions. Now
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Figure 3.4: A block graph with 1 central vertex

computing SPG for this graph, we get

ker( ) = h�34�35 � �33�45, �24�35 � �23�45, �14�35 � �13�45, �25�34 � �23�45,

�15�34 � �13�45, �25�33 � �23�35, �24�33 � �23�34, �15�33 � �13�35,

�14�33 � �13�34, �15�24 � �14�25, �15�23 � �13�25, �14�23 � �13�24i.

We observe that in Example 3.3.2, none of the generators of SPG contain the terms

�12, �11, �22, �44 and �55. These terms correspond to the edges in G which cannot be

separated by any 1-clique partition of G. This property is true for all block graphs with

one central vertex as we prove it in the next Lemma.

Lemma 3.3.3. Let G be a block graph with one central vertex c and let D be the set

of variables �pq, where the shortest path p $ q does not intersect c. Then none of the

variables appearing in D appear in any of the minimal generators of the kernel of  .

Proof. Since  is a monomial parametrization, the kernel of  is a homogeneous binomial

ideal. Let

f = �u � �v

be an arbitrary binomial in any generating set for the kernel of SPG. In particular, this

implies that �u and �v have no common factors. Suppose by way of contradiction that

�pq is some variable in D that divides one of the terms of f , say �u. Then  (�u) would

have kpq as a factor. But kpq appears only in the image of �pq as no other shortest path

between any two vertices in G contains the edge (p, q). This would imply that �pq is also

a factor of �v contradicting the fact that �u and �v have no common factors.

57



Similarly, if �pp is a factor of �u where p is not the central vertex, then  (�u) would

have a2p as a factor. In order to have a2p as a factor of  (�v), it would require two variables

in �v to have p as one of their end points. As p is not a central vertex, we will have k2
cp as

a factor of  (�v). But then this means that there must be two variables in �u that touch

vertex p. Which in turn forces another factor of a2p to divide  (�u). Which in turn forces

another two variables in �v to touch vertex p, and so on. This process never terminates,

showing that it is impossible that �pp is a factor of �u.

Hence we can conclude that none of the variables in D appear in any of the generators

of SPG.

Note that the proof of Lemma 3.3.3 also applies to any block graph with multiple

central vertices. Hence, we can eliminate some of the variables in the computation of the

shortest path ideal.

We let R[⌃ \ D] denote the polynomial ring with the variables D eliminated. Here

we are always taking D to the be set of variables corresponding to paths that do not

touch the central vertex x. Lemma 3.3.3 shows that it su�ces to consider the problem of

finding a generating set of SPG inside of R[⌃ \D].

The next step in our analysis of SPG for block graphs with one central vertex will

be to relate this ideal to a simplified parametrization which we can then relate to edge

ideals.

Let G be a block graph with one central vertex. Consider the map

 ̂ : R[⌃ \D]! R[a], �ij 7! aiaj.

Proposition 3.3.4. Let G be a block graph with one central vertex. Then ker  ̂ = ker .

Proof. Note that because we only consider �pq 2 R[⌃ \D] then any time  (�pq) contains

kpc it will automatically contain ap as well, and vice versa. Hence, the apkpc always occurs

as a factor together in  (�pq). So we can eliminate the kpc from the parametrization

without a↵ecting the kernel of the homomorphism.

In order to analyze SPG = ker  ̂ = ker , we find it useful to first extend the map to

all of R[⌃], where the kernel is well understood. In particular, we associate an edge in

the graph K�
n to each variable in R[⌃], where K�

n denotes the complete graph Kn with a

loop added to each vertex. We embed K�
n in the plane so that the vertices are arranged
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to lie on a circle. We consider the map

 ̂ : R[⌃]! R[a], �ij = aiaj

and its kernel SPK�
n
= ker  ̂. We describe a Gröbner basis for this ideal, based on the

combinatorics of the embedding of the graph K�
n. We consider a pair of edges (i, j), (k, l)

to be intersecting if the two edges share a vertex or the edges intersect each other in the

circular embedding of K�
n.

The circular distance between two vertices ofKn is defined as the length of the shorter

path among the two paths present along the edges of the n-gon. We define the weight of

the variable �ij as the number of edges of K�
n that do not intersect the edge (i, j). Let

� denote any term order that refines the partial order on monomials specified by these

weights. Now, for any pair of non-intersecting edges (i, j), (k, l) of K�
n, one of the pairs

(i, k), (j, l) or (i, l)(j, k) is intersecting. If (i, k), (j, l) is the intersecting pair, we associate

the binomial �ij�kl��ik�jl with the non intersecting pair of edges (i, j), (k, l). We denote

by S 0 the set of all binomials obtained in this way.

Lemma 3.3.5. For any binomial �ij�kl � �ik�jl, where (i, j), (k, l) are non-intersecting

edges and (i, k), (j, l) intersect, the initial term with respect to � corresponds to the non

intersecting edges in K�
n.

Proof. We divide the set of vertices in K�
n into four di↵erent parts (excluding the vertices

i, j, k and l). Let P1 denote the set of vertices that are present in the path between i

and j along the edges of the n-gon that do not contain k and l. Similarly, let P2, P3 and

P4 denote the set of vertices between j and k, k and l and l and i respectively. Let the

cardinality of each Pi be pi for i = 1, 2, 3, 4. Then, the weight of the four variables are as
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follows:

w(�ij) =
4X

i=1

✓
pi
2

◆
+ p2p3 + p2p4 + p3p4 + 2(p2 + p3 + p4) + 1 + (n� 2)

w(�kl) =
4X

i=1

✓
pi
2

◆
+ p1p2 + p1p4 + p2p4 + 2(p1 + p2 + p4) + 1 + (n� 2)

w(�ik) =
4X

i=1

✓
pi
2

◆
+ p1p2 + p3p4 + p1 + p2 + p3 + p4 + (n� 2)

w(�jl) =
4X

i=1

✓
pi
2

◆
+ p1p4 + p2p3 + p1 + p2 + p3 + p4 + (n� 2).

This gives us

w(�ij) + w(�kl)� (w(�ik) + w(�jl)) = 2p2p4 + 2(p2 + p4) + 2 > 0.

Hence, the initial term of �ij�kl��ik�jl with respect to � is �ij�kl. Further, if k = l then

we have the binomial �ij�kk � �ik�jk where

w(�kk) =

✓
n� 1

2

◆
+ n� 1 and

w(�jk) =
4X

i=1

✓
pi
2

◆
+ p1p4 + p1p3 + p3p4 + 2(p1 + p3 + p4) + 1 + (n� 2).

This gives us

w(�ij) + w(�kk)� (w(�ik) + w(�jk)) =
4X

i=2

pi
2
+ 2(p2p3 + p2p4) +

3

2
(p2 + p3 + p4)

+p2 + 4 > 0.

So, the initial term of �ij�kk � �ik�jk with respect to � is �ij�kk.

Lemma 3.3.6. Let S 0 be the set of binomials obtained from all the pairs of non-intersecting

edges of K�
n. Then S 0 is the reduced Gröbner basis of SPK�

n
with respect to �.

Proof. By lemma 3.3.5 we know that for any binomial �ij�kl � �il�jk 2 S 0, where

(i, j), (k, l) are non-intersecting edges and (i, l), (j, k) intersect, the initial term with re-

spect to� corresponds to the non intersecting edges inK�
n. Clearly, �ij�kl��il�jk 2 SPK�

n
.
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The proof follows the basic outline as the proof of Theorem 9.1 in [31]. For any even

closed walk � = (i1, i2, ..., i2k�1, i2k, i1) in K�
n we associate the binomial

b� :=
kY

l=1

�i2l�1,i2l �
kY

l=1

�i2l,i2l+1

which belongs to SPK�
n
. To prove that S 0 is a Gröbner basis, it is enough to prove that

the initial monomial of any binomial b� is divisible by some monomial �ij�kl which is the

initial term of some binomial in S 0, where (i, j) and (k, l) are a pair of non intersecting

edges. Let there exist a binomial b� = �u � �v 2 SPK�
n
with in�(b�) = �u which con-

tradicts the assertion. Then assuming that b� has minimal weight, we can say that each

pair of edges appearing in �v intersects.

The edges of the walk are labeled as even or odd, where even edges look like (i2r, i2r+1)

and the odd edges are of the form (i2r�1, i2r). We pick an edge (s, t) of the walk � which

has the least circular distance between s and t. The edge (s, t) separates the vertices

of K�
n except s and t into two disjoint sets P and Q where |P | � |Q|. We start � at

(s, t) = (i1, i2). From our assertion on b� we have that each pair of odd (resp. even) edges

intersect. Also, it can be proved that if P contains an odd vertex i2r�1, then it contains

all the subsequent odd vertices i2r+1, i2r+3, ..., i2k�1. As the circular distance between s

and t is the least, we need to have i3 to be in P . So, all the odd vertices except i1 lie in P

and all the even vertices lie in Q [ {i1, i2}. This gives us that the two even edges (i2, i3)

and (i2k, i1) do not intersect, which is a contradiction.

Our goal next is to use Lemma 3.3.6, to prove that SPG = CIG for block graphs with

one central vertex. Recall that the set D consisted of all variables �ij such that in the

graph G i$ j does not touch the central vertex. As the �ij appearing in D do not appear

in any generators of SPG, let us construct an associated subgraph of K�
n without those

edges. Specifically, let G� be the graph obtained by removing the edges (i, j) from K�
n

such that �ij 2 D. Note that we choose an embedding of G� so that each maximal clique

minus c forms a contiguous block on the circle. The placement of c can be anywhere that

is between the maximal blocks.

Figure 3.5 illustrates the construction of the graph G� in an example.

Example 3.3.7. LetG be a block graph with 5 vertices in Figure 3.5. There are 3 possible

1-clique partitions of G, each of them having C = {3}. The edges in K�
5 which cannot
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Figure 3.5: Construction of the graph G�. The dark lines in K�
5 correspond to the edges

in G whereas a dotted line between i and j tells us that there is no edge between i and j
in G. The dotted line basically corresponds to the shortest path between the two vertices
in G. Note that the addition of extra edges gives us K�

5 and the deletion of some edges
gives us G�.

be separated by any 1-clique partition of G are D = {(1, 2), (1, 1), (2, 2), (4, 4), (5, 5)}. So
we remove them from K�

5 to get G�.

Lemma 3.3.8. For any non intersecting pair of edges (i, j), (k, l) in G�, there exists a

1-clique partition (A,B,C) of G such that i, l 2 A [ C and j, k 2 B [ C.

Proof. We first prove this for the non intersecting edges (i, j), (k, l) with i, j, k, l 6= c.

Without loss of generality we can assume that i < j < k < l. We know that for each

edge (i, j) in G� there exists a 1-clique partition (A,B,C) of G such that i 2 A [C and

j 2 B [ C. This implies that i and j (similarly k and l) lie in di↵erent maximal cliques

of G. As the vertices of G� are labeled counter-clockwise, there are only three ways how

the vertices i, j, k, l can be placed:

i) i, l 2 C1, j, k 2 C2, ii) i, l 2 C1, j 2 C2, k 2 C3,

iii) i 2 C1, j 2 C2, k 2 C3, l 2 C4,

where Ci are the di↵erent maximal cliques of G. In all the three cases i and k (similarly j

and l) are in di↵erent maximal cliques. Hence there exists a 1-clique partition (A,B,C)

such that i, l 2 A [ C and k, j 2 B [ C.

A similar argument can be given for the non intersecting edges (i, c), (k, l) and (c, c), (i, j).
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Lemma 3.3.9. Let S 0 be the Gröbner basis for SPK�
n
✓ R[⌃] as defined in Lemma 3.3.6.

Then the set S 0 \ R[⌃ \D] forms a Gröbner basis for SPG.

Proof. Let g = �u � �v be an arbitrary binomial in SPG = ker  ̂. This implies that the

initial term of g is contained in R[⌃ \ D]. Since S 0 is a Gröbner basis for SPK�
n
with

respect to �, there must exist some f 2 S 0 such that in�(f) divides in�(g). This gives

us that the initial term of f is contained in R[⌃ \D].

So it is enough to show that for every f 2 S 0 whose leading term is in R[⌃ \ D] is

actually contained in R[⌃ \D]. Let

f = �ij�kl � �ik�jl

be a binomial in S 0 whose leading term is contained in R[⌃\D]. Let �ij�kl be the leading

term. Then the edges (i, j), (k, l) are non intersecting as the initial term of each binomial

in S 0 corresponds to the non intersecting edges. So by Lemma 3.3.8, there must exist

a 1-clique partition (A,B,C) of G which separates the edges (i, j) and (k, l), that is,

i, l 2 A [ C and j, k 2 B [ C. This implies that (A,B,C) also separates the edges (i, k)

and (j, l). Hence we can say that �ik, �jl /2 D and �ij�kl � �ik�jl 2 R[⌃ \D].

Now that we have all the required results, we prove the main result of this section.

Theorem 3.3.10. Let G be a block graph with n vertices having only one central vertex.

Then the set of all 2⇥ 2 minors of ⌃A[C,B[C for all possible 1-clique partitions (A,B,C)

of G form a Gröbner basis for SPG. In particular, SPG = CIG.

Proof. We rearrange the graph by placing the vertices in K�
n such that there is no inter-

section among the edges of G in A [ C and B [ C for any 1-clique partition (A,B,C)

(with C = {c}). We complete the graph by drawing the remaining edges with dotted

lines.

The complete graph K�
n gives us a partial term order on R[⌃] by defining the weight

of the variable �ij as the number of edges of K�
n which do not intersect the edge (i, j).

Let � denote the term order that refines the partial order on monomials specified by

the weights. Let S be the set of all 2 ⇥ 2 minors of ⌃A[C,B[C for all possible 1-clique

partitions of G. Any binomial in S has one of the three forms:

i) �ij�kl � �ik�jl with i, l 2 A [ C and j, k 2 B [ C
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ii) �ij�kl � �il�jk with i, k 2 A [ C and j, l 2 B [ C

iii) �il�jk � �ik�jl with i, j 2 A [ C and k, l 2 B [ C.

Here (i, j), (k, l) and (i, l), (j, k) are the non intersecting pairs of edges and (i, k)(j, l) is

the intersecting pair in G�. So any binomial in S of the form (i) or (iii) is contained in

S 0. If the binomial �ij�kl � �il�jk (of form (ii)) is in S, then by Lemma 3.3.8 we know

that the binomials �ij�kl � �ik�jl and �il�jk � �ik�jl are also in S. As

�ij�kl � �il�jk = �ij�kl � �ik�jl � (�il�jk � �ik�jl),

we can conclude that S and S \ S 0 generate the same ideal. Furthermore, the set S \ S 0

has the same initial terms as S 0 \ R[⌃ \D] so this guarantees that S is a Gröbner basis

for SPG as well.

3.4 The shortest path ideal for an arbitrary block

graph

To generalize the statement in Theorem 3.3.10 for any arbitrary block graph, we further

exploit the toric structure of the ideal SPG. As SPG is the kernel of a monomial map, it

is a toric ideal, a prime ideal generated by binomials. Finding a generating set of SPG

is equivalent to finding a set of binomials that make some associated graphs connected.

We use this perspective to prove that SPG = CIG.

From the shortest path map  , we can obtain the matrix M as shown in Example

3.2.6. So SPG = ker( ) is the toric ideal of the matrix M as

 (�u) = tM u,

where � = (�11, �12, ..., �nn) and t = (a1, a2, ..., an, k12, ..., kn�1n).

Let G = ([n], E) be a block graph. For any vector b 2 N(n+|E|), the fiber of M over

b is the set

M�1
 (b) = {u 2 N(n2+n)/2 : M u = b}.

As the columns of M are non-zero and non-negative, M�1
 (b) is always finite for any

b 2 N(n+|E|). Let F be any finite subset of kerZ(M ). The fundamental theorem of Markov
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bases (Theorem 1.4.4) connects the generating sets of toric ideals to connectivity prop-

erties of the fiber graphs. We state the Theorem explicitly for the shortest path maps.

Theorem 3.4.1. (Thm 5.3, [31]) Let F ⇢ kerZ(M ). The graphs M
�1
 (b)F are connected

for all b 2 NM = {�1M 1+ ...+�n+|E|M n+|E| : �i 2 N,M i are columns of M } if and

only if the set {�v+ � �v� : v 2 F} generates the toric ideal SPG.

As we proved in Theorem 3.3.10 that the set of all 2 ⇥ 2 minors of ⌃A[C,B[C for all

possible 1-clique partitions of G form a Gröbner basis for ker( ) for all block graphs

with one central vertex, by using Theorem 4.4.2 we can say that the graph M�1
 (b)F is

connected for all b 2 NM . Here F is the set of all 2⇥2 minors of ⌃A[C,B[C in the vector

form, for all possible 1-clique partitions of G.

So, to generalize the result in Theorem 3.3.10 for all block graphs, we need to show that

M�1
 (b)F is connected for any b 2 NM . For a fixed b, let u, v 2 M�1

 (b)F . This implies

that both M u and M v are equal to b, which gives us  (�u � �v) = 0. Therefore, it is

enough to show that for any f = �u � �v 2 SPG, �u and �v are connected by the moves

in F .

Let G be a block graph with n vertices. Let u 2 N(n2+n)/2 which is a node in the

graph of M�1
 (b)F . We represent this u, or equivalently �u, as a graph in the following

way: For each factor �ij of �u we draw the shortest path i$ j along G with end points

at i and j. For each �ii we draw a loop at the vertex i. Let degi(�
u) denote the degree

of a vertex i in �u which is defined to be the number of end points of paths in �u. We

count the loops corresponding to �ii as having two endpoints at i.

If f = �u � �v is a homogeneous binomial in SPG, then  (�u) =  (�v) if and only if

the following conditions are satisfied:

i) The graphs of �u and �v both have the same number of paths (as f is homogeneous),

ii) The graphs of �u and �v have the same number of edges between any two adjacent

vertices i and j (as the exponent of kij in  (�u) gives the number of edges between

i and j in the graph of �u),

iii) The degree of any vertex in both the graphs is the same (as the exponent of ai in

 (�u) gives us the degree of the vertex i in the graph of �u).

Next we show how to use the results from Section 3.3 to make moves that bring

�u and �v closer together. This approach works by localizing the computations at each

central vertex in the graph.

65



Let c be a central vertex in G. We define a map ⇢c between the set of vertices as

follows:

⇢c(i) =

8
>>><

>>>:

c i = c

i i is adjacent to c

i0 i0 is adjacent to c and lies in i$ c.

Let Gc be the graph obtained by applying ⇢c to the vertices of G. Note that G can have

multiple vertices mapped to a single vertex in Gc. The map ⇢c can also be seen as a map

between R[⌃] to itself by the rule ⇢c(�ij) = �⇢c(i)⇢c(j).

For a vector u 2 Nn(n+1)/2 and c a central vertex let uc be the vector that extracts all

the coordinates that correspond to shortest paths that touch c. That is,

uc(ij) =

8
<

:
u(ij) c 2 i$ j

0 otherwise.

Proposition 3.4.2. Suppose that �u��v 2 SPG and let c be a central vertex of G. Then

 Gc(⇢c(�
uc))�  Gc(⇢c(�

vc)) = 0.

Note that we use the notation  Gc to denote that we use the  map associated to the

graph Gc. However, the map  associated to G can be used since that will give the same

result.

Proof. We have

⇢c(�ij) =

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

�ij i, j are adjacent to c

�ic i is adjacent to c, j = c

�cj j is adjacent to c, i = c

�i0c i0 is adjacent to c and i0 2 i$ c, j = c

�cj0 j0 is adjacent to c and j0 2 j $ c, i = c

�ij0 i, j0 are adjacent to c and j0 2 c$ j

�i0j i0, j are adjacent to c and i0 2 i$ c

�i0j0 i0, j0 are adjacent to c and i0 2 i$ c, j0 2 j $ c1

�i0i0 i0 is adjacent to c and i0 2 i$ c and j $ c.
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We know that �u and �v have the same number of paths. Also, the degree of each vertex

and the number of edges between any two adjacent vertices is the same. So, it is enough

to show that ⇢c(�uc) and ⇢c(�vc) have the same number of paths and the degree of each

vertex, number of edges between any two adjacent vertices is also the same.

Number of paths in �uc = number of paths in �u ending at c+

number of paths containing c but not ending at c

= degree of ac in  (�
u) + 1/2( number of variables of

the form kic in  (�
u)� degree of ac in  (�

u))

= number of paths in �vc

The number of paths in �uc and ⇢c(�uc) are the same as ⇢c maps monomials of degree 1

to monomials of degree 1.

For any vertex s which is adjacent to c, the degree of s in ⇢c(�uc) is

degs(⇢c(�
uc)) = number of edges s$ c in �u

= number of edges s$ c in �v

= degs(⇢c(�
vc)).

Now, for any two vertices i0 and j0 adjacent to c, the number of edges i0 $ j0 in

⇢c(�uc) is 0 as every path in ⇢c(�uc) contains c. The number of edges i0 $ c in ⇢c(�uc) is

equal to the number of edges i0 $ c in �u, which is equal to the number of edges i0 $ c

in �v.

Hence, we can conclude that  Gc(⇢c(�
uc))�  Gc(⇢c(�

vc)) = 0.

By Theorem 4.4.2 we know that we can reach from ⇢c(�uc) to ⇢c(�vc) by making a

finite set of moves from the set of 2 ⇥ 2 minors of ⌃A[C,B[C , for all possible 1-clique

partitions of Gc. But from the map ⇢c we have that for each move �i0j0�k0l0 � �i0l0�k0j0 in
Gc there exists a corresponding move �ij�kl � �il�kj in G, where i0 $ j0 ✓ i $ j and

k0 $ l0 ✓ k $ l. In fact, there are many such corresponding moves corresponding to all

the ways to pull back ⇢c.

Definition 3.4.3. Let G be a block graph and let c be a central vertex. We call two

monomials �u and �v in the same fiber to be similar at a vertex c if the subgraph over

67



c and its adjacent vertices is the same for both the monomials.

For a given block graph G and a central vertex c, let Sc denote the set of all 2 ⇥ 2

minors of all matrices ⌃A[C,B[C where (A,B,C) is a separation condition that is valid

for G with C = {c}.

Proposition 3.4.4. If a sequence of moves in Gc take ⇢c(�uc) to ⇢c(�vc), then there exist

a corresponding sequence of moves in Sc which takes �u to a monomial which is similar

to �v at c.

Proof. We know that ⇢c(�uc) and �u are similar at c by construction. So, it is enough to

show that if m is a move in Gc and m0 is the corresponding move in G, then m applied

to ⇢c(�uc) and m0 applied to �u are similar at c. Let m = �i0j0�k0l0��i0l0�k0j0 be a move in

Gc acting on the paths �i0j0 , �k0l0 in ⇢c(�uc). Let m0 = �ij�kl� �il�kj be its corresponding
move in Sc acting on the paths �ij, �kl in �u. As i0 $ j0 ✓ i $ j, k0 $ l0 ✓ k $ l and

c 2 i0 $ j0 and k0 $ l0, m and m0 make the same changes at c in both the graphs. So,

we can conclude that m applied to ⇢c(�uc) and m0 applied to �u are similar at c.

Once we have the set of moves which takes �u to a monomial which is similar to �v

at c, we can apply the same procedure at the other central vertices as well. To show

that this ends up producing two monomials that are similar at every central vertex it is

necessary to check that the moves obtained for a di↵erent central vertex c0 do not a↵ect

the structure previously obtained at c.

Proposition 3.4.5. Let m = �ij�kl � �il�kj be a move obtained from a partition with

C = {c}. Let V be the set of vertices in G. Then �u and m applied to �u are similar at

V \ c.

Proof. If s is any vertex which is not in i $ j or k $ l, then �u and m applied to �u

remain similar at s as the move does not make any change at s. If s 6= c is a vertex in

i$ j, we then consider 2 cases:

Case 1: s 2 i$ j and s /2 k $ l

Let s 2 i $ c. As m converts i $ c $ j to i $ c $ l, i $ c is contained in i $ l.

This implies that s and all the vertices in i $ j adjacent to s are also present in i $ l.

A similar argument applies for s 2 c$ j.

Case 2: s 2 i$ j and s 2 k $ l
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Let s 2 i$ c and s 2 k $ c. As m converts i$ c$ j to i$ c$ l and k $ c$ l

to k $ c $ j, i $ c is contained in i $ l and k $ c is contained in k $ j. So s and

all the vertices in i $ j (k $ l) adjacent to s are present in i $ l (k $ j). A similar

argument applies for s 2 c$ j, c$ l.

In both the cases, m preserves the structure of �u around the vertex s. Hence, �u and

m applied to �u are similar at all the vertices in V \ c.

Note an important key feature that follows from the proof of Proposition 4.4.13: If m

can be obtained from two partitions (A1, B1, C1) and (A2, B2, C2) with di↵erent central

vertices, then �u and m applied to �u are similar at the central vertices as well.

We now give a proof for the generalized version of Theorem 3.3.10.

Theorem 3.4.6. Let G be a block graph. Then the shortest path ideal SPG is generated

by the set of all 2 ⇥ 2 minors of ⌃A[C,B[C, for all possible 1-clique partitions of G, i.e,

SPG = CIG.

Proof. Suppose that c1, . . . , ck are the central vertices of G. Let S1, . . . Sk be the corre-

sponding quadratic moves associated to each central vertex. Let f = �u � �v 2 SPG. By

applying Proposition 3.4.4 and Proposition 4.4.13 together with Theorem 3.3.10, we can

assume that �u and �v are similar at every vertex after applying moves from S1, . . . , Sk.

We can assume that �u and �v have no variables in common, otherwise we could

delete this variable from both monomials and do an induction on dimension. So consider

an arbitrary path i$ j in �u which is not present in �v. We select the path in �v which

has the highest number of common edges with i $ j. Let that path be i0 $ j0 and let

s $ t be the common path in both the paths. Let s1 and t1 be the vertices adjacent to

s and t respectively in i $ j. Similarly, let s0 and t0 be the vertices adjacent to s and t

respectively in i0 $ j0. Let p be the vertex in s$ t adjacent to t (see Figure 4.13 for an

illustration of the idea).

If we apply the map ⇢t on both the monomials, we get that there exists a path p$ t1

in ⇢t(�u) which is not in ⇢t(�v). But as �u and �v are similar at t, there must exist a path

x $ y in �v containing p $ t1. So, the move m = �i0j0�xy � �i0y�xj0 is a valid move as

none of the vertices in i0 $ p can be adjacent to any vertex in t1 $ y (as it would form a

closed circuit implying that i0 $ t is not the shortest path). Similarly, none of the vertices

in x $ p can be adjacent to any vertex in t0 $ j0. Further, this move can be obtained

from two di↵erent partitions with central vertices p and t respectively. So, by Proposition
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Figure 3.6: �v and �u and the construction of a move which brings them closer.

4.4.13 and the comment after its proof, we know that the move �i0j0�xy��i0y�xj0 preserves
the similarity of all the vertices.

Applying m on �v increases the length of the common path between i $ j and

i0 $ j0 by at least 1, while keeping the monomials �u and m applied to �v similar at

all the vertices. Repeating this process again, we can continue to shorten the length of

the disagreement until the resulting monomials have a common monomial, in which case

induction implies that we can use moves to connect these smaller degree monomials.

This implies that the set of binomials S1 [ · · · [ Sk generates SPG and hence CIG =

SPG.

3.5 Initial term map and SAGBI bases

In this section we put all our previous results on shortest path maps together to prove

Theorem 3.0.3. We also show that the set of polynomials {fij : 1  i  j  n} obtained

from the inverse of K are a SAGBI basis for the R-algebra they generate in the case of

block graphs.

Proof of Theorem 3.0.3. We have already seen that SPG = CIG ✓ PG. We just need to

show that SPG = PG to complete the proof. Note that both SPG and PG are prime ideals

so it su�ces to show that they have the same dimension.

In both SPG and PG an upper bound on the dimension is equal to the number of

vertices plus the number of edges in the graph. This follows because that is the number

of free parameters in both parametrizations. In the case of PG this upper bound is tight,

because the map that sends ⌃ 7! ⌃�1 is the inverse map that recovers the entries of
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K. Since SPG ✓ PG we have the dimSPG � dimPG. Hence they must have the same

dimension.

Finally, we can show the SAGBI basis property for the polynomials {fij : 1  i 
j  n}. Recall the definition of a SAGBI basis (which stands for Subalgebra Analogue

of Gröbner Basis for Ideals) as given in 1.4.6. See Chapter 11 of [31] for more details.

Let G be a block graph and let F = {fij : 1  i  j  n} be the polynomials

appearing as the numerators in K�1. To prove that F forms a SAGBI basis, we will use

some key result on SAGBI bases. Note that if � is a term order on R[K] induced by a

weight vector !, then this induces a partial term order on R[⌃] by declaring that the

weight of the variable �ij is the weight of the largest monomial appearing in fij. Denote

by !⇤ this induced weight order on R[⌃].
Both the algebras R[F ] and R[{in�(f) : f 2 F}] have presentation ideals in R[⌃]. In

the first case, this presentation ideal is exactly PG, the vanishing ideal of the Gaussian

graphical model. That is, R[F ] = R[⌃]/PG. In the second case, this presentation is exactly

SPG, the shortest path ideal, since that is the ideal of relations among the shortest path

monomials. That is, R[{in�(f) : f 2 F}] = R[⌃]/SPG.

A fundamental theorem on SAGBI bases applied in the specific case of these ideals

says the following.

Theorem 3.5.1. (Thm 11.4, [31]) The set F ✓ R[K] is a SAGBI basis if and only if

in!⇤(PG) = SPG.

Corollary 3.5.2. Let G be a block graph. Then the set F ✓ R[K] is a SAGBI basis of

R[F ].

Proof. We have already shown that SPG = PG. By construction, every one of the bino-

mials in SPG is homogeneous with respect to the weighting !⇤. Indeed, this weighting is

exactly the weighting that counts the multiplicity of each edge of �u and the degi(�
u)

as used in Section 3.4. But then in!⇤(PG) = in!⇤(SPG) = SPG as desired. By Theorem

3.5.1, this shows that F is a SAGBI basis.
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3.6 Revised version of the Sturmfels-Uhler conjec-

ture

In this section, we give the correct expression for the vanishing ideal of a graph G when

it can be written as a 1-clique sum of two smaller graphs G1 and G2. The revised version

of Conjecture 3.0.1 is as follows :

Theorem 3.6.1. Let G be a 1-clique sum of two smaller graphs G1 and G2 attached at

the vertex {c}. Then

PG = (PG1 + PG2 + h2⇥ 2 minors of ⌃A[C,B[Ci) : h�cci1.

We first go through some necessary results required to prove this theorem. Let RG

denote the ideal

RG = PG1 + PG2 + h2⇥ 2 minors of ⌃A[C,B[Ci.

Then, we know that

RG ✓ (RG : �1
cc ) ✓ PG.

This implies that

L�1 ✓ V (PG) ✓ V (RG : �1
cc ) ✓ V (RG).

So, to prove that (RG : �1
cc ) = PG, we first need to show that V (RG : �1

cc ) = V (PG). This

would give us that the two ideals are same at least up to radical (by Corollary 1.3.21).

Now, V (RG : �1
cc ) can be written as V (RG) \ V (�1

cc ). Let M 2 V (RG) \ V (�1
cc ) be

any arbitrary matrix. Then M satisfies all the polynomials in PG1 , PG2 and the rank

constraints obtained from the 2 ⇥ 2 minors of ⌃A[C,B[C , along with the condition that

mcc 6= 0, where mcc is the (c, c)th entry of M . As CIG ✓ PG, we first prove the following:

Lemma 3.6.2. Let G be a 1-clique sum of two graphs G1 and G2 attached at the vertex

{c}. Then every matrix M 2 V (RG) \ V (�1
cc ) satisfies all the conditional independence

statements of CIG.

Proof. Let A0 |= B0|C 0 be a conditional independence statement of G where A0, B0, C 0 are

disjoint subsets of [n]. Then C 0 separates A0 from B0 in G. Let (A,B,C) be the partition
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which separates G1 from G2, i.e A = {vertices in G1 \ c}, B = {vertices in G2 \ c} and

C = {c}.

Case 1: c 2 C 0

We write the sets A0, B0, C 0 as

A0 = A1 [ A2, B0 = B1 [ B2 and C 0 = C1 [ C2 [ {c},

where A1, B1, C1 are vertices in G1 and A2, B2, C2 are vertices in G2. Assuming none

of the sets Ai, Bi, Ci are empty, we arrange the rows of the submatrix MA0[C0,B0[C0

as (A1, C1, c, C2, A2) and the columns as (B1, C1, c, C2, B2). This divides the submatrix

MA0[C0,B0[C0 into four blocks as

M{A1[C1[c},{B1[C1[c}, M{A1[C1[c},{c[C2[B2},

M{c[C2[A2},{B1[C1[c} and M{c[C2[A2},{c[C2[B2}.

The blocksM{A1[C1[c},{c[C2[B2} andM{c[C2[A2},{B1[C1[c} are submatrices ofMA[C,B[C ,

which is of rank 1 (as it corresponds to the partition (A,B, {c})). So, the two blocks have

rank  1. Now, as C 0 separates A0 from B0, we can say that C1 [ {c} separates A1

from B1 in G1 and C2 [ {c} separates A2 from B2 in G2. This gives us that the block

M{A1[C1[c},{B1[C1[c} has rank  |C1| + 1 and the block M{c[C2[A2},{c[C2[B2} has rank 
|C2|+ 1 as they correspond to conditional independent statements in G1 and G2 respec-

tively.

We now use the condition that mcc 6= 0. As the blocks M{A1[C1[c},{c[C2[B2} and

M{c[C2[A2},{B1[C1[c} have rank  1, all the entries of these two blocks (except the

(c, c)�entry) can be turned into 0 by performing row and column operations. This would

give us that the block M{A1[C1},{B1[C1} has rank  |C1| (as the column M{A1[C1[c},{c}

cannot be generated by the remaining columns of M{A1[C1[c},{B1[C1[c}). Similarly, the

block M{C2[A2},{C2[B2} has rank  |C2|. Hence, we can conclude that the submatrix

MA0[C0,B0[C0 has rank  |C1| + 1 + |C2| = |C 0| and that M satisfies the conditional

independence statement A0 |= B0|C 0.

Case 2: c /2 C 0

Let c 2 A0. To show that the submatrix MA0[C0,B0[C0 has rank  |C 0|, we look at

the vectors Mc,B1[C1 and Mc,C2[B2 . If the vector Mc,B1[C1 is non zero, then we can say
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Figure 3.7: The matrix M and the possible ranks of each submatrix

that MA0[C0,B1[C1 has rank  |C1| as MA1[C1[c,B1[C1 has rank  |C1|. Similar argument

follows for the submatrix MA0[C0,C2[B2 if the vector Mc,C2[B2 is non zero. Now, if the

vector Mc,B1[C1 is a zero vector, we look at the submatrix MA0[C0,c[B0[C0 . As the block

Mc[C2[A2,B1[C1[c has rank  1, we can conclude that all the entries in MC2[A2,B1[C1

are zero (as mcc 6= 0). Thus we can say that MA0[C0,B1[C1 has rank  |C1|. Using the

same argument on Mc,C2[B2 , we can say that MA0[C0,C2[B2 has rank  |C2| and hence

MA0[C0,B0[C0 has rank  |C1|+ |C2| = |C 0|.

The cases c 2 A2, B1, B2 and c /2 A0[B0 follow in the similar way. In either case if any

of the set is empty, say A2 = ;, then the blockMc[C2[A2,c[C2[B2 is a |C2|+1⇥|C2|+1+|B2|
matrix which always has rank  |C2|+ 1.

So, by Lemma 3.6.2 we can conclude that V (RG : �1
cc ) ✓ V (CIG), which implies

CIG ✓ (RG : �1
cc ).

We now state a Proposition from [34].

Proposition 3.6.3. (Proposition 6.1, [34]) Let I ✓ C[µ,⌃] be the vanishing ideal for a

Gaussian model. Let H [O = [n] be a partition of the random variables into hidden and

observed variables H and O. Then

IO := I \ C[µi, �ij|i, j 2 O]
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is the vanishing ideal for the partially observed model.

If G is a 1-clique sum of G1 and G2 with central vertex c, then marginalizing over the

vertices in G2 \{c} gives us G1 as there are no edges between the vertices of G1 \{c} and

G2 \ {c}. So, if we take H as the vertices in G2 \ {c} and O as the vertices in G1, then

by Proposition 3.6.3 we can conclude that

PG1 = PG \ C[�ij|i, j 2 G1],

i.e, PG1 is an elimination ideal of PG. A similar result follows for PG2 by interchanging

the sets H and O and we get

PG2 = PG \ C[�ij|i, j 2 G2].

In the next proposition we show that the two ideals PG and (RG : �1
cc ) have the same

varieties.

Proposition 3.6.4. If G is a 1-clique sum of two smaller graphs G1 and G2 with central

vertex c, then V (PG) = V (RG : �1
cc ).

Proof. Let n be the number of vertices in G and n1, n2 be the number of vertices in

G1 and G2 respectively. Then, n1 + n2 = n + 1. Now, as (RG : �1
cc ) ✓ PG, V (PG) ✓

V (RG : �1
cc ). So, we only need to show that V (RG : �1

cc ) ✓ V (PG). We use the fact that

PG = I(L�1), which implies V (PG) is equal to V (I(L�1)) = L�1, the Zariski closure of

L�1. If M 2 V (RG) \ V (�1
cc ) be any arbitrary matrix, then we have the following two

cases :

Case I: M is invertible:

Let i and j be two vertices of G which do not have an edge between them. Then

i |= j|n \ {i, j} is a conditional independence statement of G. So, the n� 1 minors of all

the non edges in G lie in CIG. As CIG ✓ PG, by Lemma 3.6.2 all the non edge positions

of M�1 are 0. Then M�1 can be written as a linear combination of the basis matrices in

L. So, M 2 L�1 ✓ V (PG).

Case II: M is not invertible:

Let L1 and L2 be the subspaces obtained from the subgraphs G1 and G2 respectively.

Then every matrix in V (RG) \ V (�1
cc ) is of the form of M as shown in Figure 3.8, where

An1⇥n1 2 V (PG1) = L�1
1 , Bn2⇥n2 2 V (PG2) = L�1

2 and mcc 6= 0. Again by Lemma 3.6.2,
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we know that M satisfies all the conditional independence statements of the form i |= j|c
for all i 2 G1 \ {c}, j 2 G2 \ {c}. Using the fact that mcc 6= 0, we can replace every entry

mij with the relation

mij =
micmcj

mcc
,

for all i 2 G1 \ {c}, j 2 G2 \ {c}. Now, expanding the determinant of M along the first

column (when n1 < n2) or the last column (when n2 < n1), we get that

detM =
detA · detB

mcc
.

So, if M is non invertible, then either of A or B has to be non-invertible. Let B be

the non-invertible matrix. Then for any given ✏2 > 0, there exists a matrix S2 with

||S2||1 = ✏2 such that B + S2 2 L�1
2 .

Adding S2 with B changes the (n1, n1) position of A. But as A is an interior point

of L�1
1 , for any given ✏1 > 0, there must exist a matrix S1 with ||S1||1 = ✏1 such that

A+ S1 2 L�1
1 . We select the matrix S1 such that S1(n1, n1) = S2(1, 1).

For any given ✏ > 0, our objective is to construct an n ⇥ n matrix S with block

diagonals S1 and S2 (as shown in Figure 3.8) and ||S||1  ✏ such that M + S 2
L�1. This would imply that any neighbourhood of M will contain a matrix from L�1

and M could be approximated by that matrix. As A + S1 2 L�1
1 , its (n1, n1) en-

try cannot be zero. So, we construct the matrix S3 using the fact that C + S3 has

rank one. Equating all the 2 ⇥ 2 minors of C + S3 which contains the nonzero term

C(1, n1) + S3(1, n1)( which is equal to A(n1, n1) + S1(n1, n1)) to zero, we get

S3(i, j) =
(A(i, n1) + S1(i, n1)) · S2(1, j + 1) + S1(i, n1) · B(1, j + 1)� C(i, j) · S1(n1, n1)

A(n1, n1) + S1(n1, n1)

 (||A||1 + ✏1) · ✏2 + ✏1 · ||D||1 + ||B||1 · ✏1
||A||1

< ✏,

for all 1  i  n� n1 and 1  j  n� n2. So, for any given M and ✏ > 0, we can select

✏1 and ✏2 accordingly such that the above inequality holds and ||S||1  ✏. Hence, we can

conclude that M is a limit point of L�1, which implies that M 2 L�1.

Next, we prove that the ideal PG1 + PG2 is a prime ideal. In order to prove this, we

first state a few results.
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A C
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mcc S =

S1 S3

ST
3 S2

Figure 3.8: Non invertible matrix M and perturbation matrix S

Proposition 3.6.5. (Proposition 5.17, [23]) Let K be an algebraically closed field and

let A,B be K-algebras with A finitely generated. If A and B are integral domains, then

so is A⌦K B.

Proposition 3.6.6. Let K be an algebraically closed field and P,Q be finitely gener-

ated prime ideals in the polynomial rings K[x1, x2, ..., xm] and K[y1, y2, ..., yn] respectively.

Then P +Q is a prime ideal in K[x1, x2, ..., xm, y1, y2, ..., yn].

Proof. We know that K[x1, x2, ..., xm, y1, y2, ..., yn] ⇠= K[x1, x2, ..., xm]⌦K[y1, y2, ..., yn] =

K[x]⌦K[y]. Under this isomorphism, the ideal P +Q ⇢ K[x, y] corresponds to the ideal

P ⌦K[y] +K[x]⌦Q. Since P ⌦K[y] +K[x]⌦Q is the kernel of the canonical map

K[x]⌦K[y] ! K[x]/P ⌦K[y]/Q

(f(x)⌦ g(y)) ! (f(x) + P ⌦ g(y) +Q),

P ⌦ K[y] + K[x] ⌦ Q is a prime ideal if and only if K[x]/P ⌦ K[y]/Q is an integral

domain. As P and Q are prime ideals, K[x]/P and K[y]/Q are integral domains. So, by

Proposition 3.6.5 we can conclude that K[x]/P ⌦K[y]/Q is an integral domain and hence

P +Q is a prime ideal.

Theorem 3.6.7. (Theorem 9.6, [15]) Let I ⇢ K[y1, ..., yn] be an ideal and J ⇢ K[x0, ..., xn]

be its homogenization with respect to x0. Suppose that f1, ..., fr is a Gröbner basis for I

with respect to some graded order >. Then the homogenizations F1, ..., Fr of f1, ..., fr

generate J .

Proposition 3.6.8. If G is a 1-clique sum of G1 and G2 with central vertex c, then

PG1 + PG2 is a prime ideal.
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Proof. Let P1 and P2 be the dehomogenizations of PG1 and PG2 respectively with respect

to �cc. As PG1 and PG2 are prime ideals, so are P1 in C[�ij : i 2 G1, j 2 G1 \ c] and P2 in

C[�ij : i 2 G2, j 2 G2 \ c]. Since P1 and P2 are contained in rings with disjoint variables

and C is algebraically closed, by Proposition 3.6.6 we know that P1 +P2 is a prime ideal

in C[�ij : i, j 2 G].

We now homogenize the ideal P1+P2 with respect to �cc. We need to show that homog-

enizing P1+P2 gets us back to PG1+PG2 . Let {f1, . . . , fr} and {g1, . . . , gs} be the Gröbner

bases of P1 and P2 respectively. As P1 and P2 lie in disjoint rings, {f1, . . . , fr, g1, . . . , gs}
forms a Gröbner basis of P1 + P2. Let f̄i and ḡj be the homogenizations of fis and gjs

respectively. Then each f̄i and ḡj lies in PG1 and PG2 respectively (as PG1 and PG2 are

both prime ideals). If J is the homogenization of P1+P2, then we know that J is a prime

ideal contained in PG1 + PG2 and is generated by {f̄1, . . . , f̄r, ḡ1, . . . , ḡs} (by Theorem

3.6.7).

On the other hand, the homogenization of the dehomoginization of an ideal is always

contains the ideal. Thus, PG1 + PG2 is contained in J . This proves that J = PG1 + PG2 ,

and so PG1 + PG2 is prime.

Now that we have all the necessary results, we give a proof for Theorem 3.6.1.

Proof of Theorem 3.6.1. From Proposition 3.6.4 we know that the two ideals are same

up to radicals, i.e, PG =
p

(RG : �1
cc ). Now, let f 2 PG be any arbitrary polynomial. We

need to show that f 2 (RG : �1
cc ). If f has variables of the form �ij where i 2 G1 \ {c}

and j 2 G2 \ {c}, then by multiplying enough powers of �cc to f , we can replace each

�ij�cc with �ic�cj as the 2⇥ 2 minors of ⌃A[C,B[C lie in PG. This gives us that

f · �n
cc + g = h 2 PG,

where g 2 h2⇥ 2 minors of ⌃A[C,B[Ci and h is a polynomial in PG which does not have

any variable of the form �ij with i 2 G1 \ {c} and j 2 G2 \ {c}.
By the definition of radicals and saturation, we know that hm · �m

cc 2 RG for some

m > 0. But as hm · �m
cc does not have any variable of the form �ij with i 2 G1 \ {c} and

j 2 G2 \ {c}, we can say that hm · �m
cc 2 PG1 + PG2 . Now, by Proposition 3.6.8, we know

that PG1 +PG2 is a prime ideal. So h must lie in PG1 +PG2 as �m
cc /2 PG1 +PG2 . Thus, we

have

h 2 PG1 + PG2 ⇢ RG and g 2 h2⇥ 2 minors of ⌃A[C,B[Ci ✓ RG,

78



which implies that

f · �n
cc = h� g 2 RG.

Hence, we can conclude that f 2 (RG : �1
cc ).
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Chapter 4

Directed acyclic Gaussian graphical

models with toric vanishing ideals

Graphical models can be defined by undirected graphs, directed acyclic graphs, or graphs

that use a mixture of di↵erent types of edges. In this chapter, we only consider those

models which can be defined by directed acyclic graphs (DAGs). A DAG specifies a

graphical model in two ways. The first way is via a combinatorial parametrization of

covariance matrices that belong to the model and the second way is via conditional

independence statements implied by the graph. The factorization theorem (Theorem

3.27,[21]) says that these two methods yield the same family of probability distribution

functions.

The combinatorial parametrization of the covariance matrices for a Gaussian DAG

model is also known as the simple trek rule (see e.g. [36]). The vanishing ideal of the

Gaussian DAG model, IG, is equal to the set of polynomials in the covariances that

are zero when evaluated at the simple trek rule. The algebraic interpretation of the

second method, i.e., the conditional independence statements, give us the conditional

independence ideal CIG. An important question that arises in the algebraic study of

graphical models is to determine the DAGs where the vanishing ideal and the conditional

independence ideal are the same. Although it is still an open problem, some past work

and computational study [34] has been done in this direction.

The study of generators of the vanishing ideal IG is an important problem for constraint-

based inference for inferring the structure of the underlying graph from data. For example,

the TETRAD procedure [28] specifically tests the degree 2 generators (tetrads) of the
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vanishing ideal for directed graphs to determine if the graphs have certain underlying

features. For the undirected case, we showed in chapter 3 that the vanishing ideal is

generated by polynomials of degree at most 2 if and only if G is a 1-clique sum of com-

plete graphs [25]. Our goal in the present chapter is to study the analogous problem for

Gaussian DAG models. While we are not able to give a complete characterization of the

DAGs that have degree two generators, and are toric, we develop methods to construct

DAGs having toric vanishing ideals and understand the generating set of the vanishing

ideal when it is toric. In particular, we develop three techniques to construct such DAGs

with toric vanishing ideals from smaller DAGs with the same property. These are called

safe gluing, gluing at sinks and adding a new sink.

One of the important tools that we use throughout the chapter is the shortest trek

map  G. We show that in some instances, the shortest trek map and the simple trek

map have the same kernel, namely the ideal IG. Being a monomial map, the kernel of

 G, which we denote by STG, is always a toric ideal. Although IG, CIG and STG are not

always equal, we are interested in characterizing the DAGs where these three ideals are

the same. This not only tells us when the vanishing ideals are toric but we also get to

know the structure of the generators of IG from STG. We show that when two DAGs G1

and G2 have toric vanishing ideals then gluing at sinks and adding a new sink always

produces a new graph G with toric vanishing ideal. We also conjecture that the same is

true for the safe gluing of G1 and G2, and prove a number of partial results towards this

conjecture. Further, we conjecture that every DAG whose vanishing ideal is toric can be

obtained as a combination of these three operations starting with complete DAGs.

The chapter is organized as follows. Section 4.1 gives an explicit description of the

simple trek rule. We recall the notion of directed separation, which is used in defining

the conditional independence ideal. We also introduce the shortest trek map, and the

shortest trek ideal STG.

In Section 4.2 we look at some existing results from [21; 25; 34], about gluing graphs

where that preserve nice properties of the vanishing ideals. Using those results as inspi-

ration, we construct a general operation which we call the “safe gluing” of DAGs. Safe

gluing is a type of clique sum for DAGs such that most of the vertices in the clique

are colliders along any paths passing through the clique. We conjecture that when the

vanishing ideals of two DAGs are the same as the kernel of their shortest trek maps, then

a safe gluing of the two DAGs would also have a toric vanishing ideal. We prove this
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conjecture in some special cases.

In Section 4.3 we look at two more ways to construct new DAGs where the toric

property is preserved, which we call gluing at sinks and adding a new sink. We analyze

the generators of STG in Section 4.4 and show that the safe gluing action preserves

the toric property when STG equals CIG for the smaller DAGs, which further provides

evidence for our Conjecture 4.2.14. In Section 4.5, we conclude with some conjectures

which may be used to formulate a complete characterization of all possible DAGs having

toric vanishing ideal.

4.1 Preliminaries

This section primarily is concerned with preliminary definitions that we will use through-

out the chapter. We introduce the Gaussian DAG models, and their vanishing ideals IG.

We explain the concept of d-separation and how this leads to the conditional indepen-

dence ideal CIG. Finally, we introduce the shortest trek map, and the corresponding

shortest trek ideal STG.

Let G = (V,E) be a directed acyclic graph with vertex set V (G) and edge set E(G).

As there are no directed cycles in the graph, we assume that the vertices are numerically

ordered, i.e, i! j 2 E(G) only if i < j. A parent of a vertex j is a node i 2 V (G) such

that i! j is an edge in G. We denote the set of all parents of a vertex j by pa(j). Given

such a directed acyclic graph, we introduce a family of normal random variables that are

related to each other by recursive regressions.

To each node i in the graph, we introduce two random variables Xi and "i. The "i

are independent normal variables "i ⇠ N (0,!i) with !i > 0. For simplicity, we assume

that all our random variables have mean zero. The recursive regression property of the

DAG gives an expression for each Xj in terms of "j, Xi with i < j and some regression

parameters �ij 2 R assigned to the edges i! j in the graph,

Xj =
X

i2pa(j)

�ijXi + "j.

From this recursive sequence of regressions, we can solve for the covariance matrix ⌃ of

the jointly normal random vector X. This covariance matrix is given by a simple matrix

factorization in terms of the regression parameters �ij and the variance parameters !i.
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Let D be the diagonal matrix D =diag(!1,!2, . . . ,!m) and let L be the m ⇥ m upper

triangular matrix with Lij = �ij if i! j is an edge in G and Lij = 0 otherwise.

Proposition 4.1.1. ([26], Section 8). The covariance matrix of the normal random

variable X = N (0,⌃) is given by the matrix factorization

⌃ = (I � L)�TD(I � L)�1. (4.1)

The vanishing ideal of the Gaussian graphical model is denoted by IG and it is an

ideal in the polynomial ring C[⌃] = C[�ij : 1  i  j  n]. This is the ideal of all

polynomials in the entries of the covariance matrix ⌃, that evaluate to zero for every

choice of the parameters !i and �ij. That is:

IG =
�
f 2 C[⌃] : f((I � L)�TD(I � L)�1) = 0

 
.

One way to obtain IG is to eliminate the variables !i and �ij from the following system

of equations:

⌃� (I � L)�TD(I � L)�1 = 0.

Using elimination is computationally expensive, and we are interested in theoretical re-

sults that characterize the generators of IG when possible.

A variant on the parametrization (4.1) is the simple trek rule which is a common and

useful representation of the covariances in a Gaussian DAG model. In order to explain

the simple terk rule, we first need to go through a few definitions. A collider is a pair of

edges i ! k, j ! k with the same head. If a path contains the edges i ! k and j ! k,

then the vertex k is called the collider vertex within that path. A path that does not

repeat any vertex is called a simple path. Let T (i, j) be a collection of simple paths P

in G from i to j such that there is no collider in P . Such a colliderless path is called a

simple trek. For the rest of the chapter, we consider treks to be simple treks. We will

often use the notation i ⌦ j to denote a specific trek between i and j, as this helps to

call attention to the endpoints. When we speak generically of a trek, we often denote it

by P .

Each trek P has a unique topmost element top(P ), which is the point where orien-

tation of the path changes. A trek P between i and j can also be represented by a pair

of sets (Pi, Pj), where Pi corresponds to the path from top(P ) to i and Pj corresponds
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to the path from top(P ) to j. The vertex top(P ) is also called the common source of Pi

and Pj.

To get the simple trek rule, we introduce an alternate parameter ai associated to each

node i in the graph and is defined as the variance ofXi, i.e. �ii = ai. We expand the matrix

product for ⌃ in Proposition 4.1.1 by taking the sum over all treks P 2 T (i, j). Using

this expansion along with the alternate parameters ai, we get the following definition :

Definition 4.1.2. For a given DAG G, the simple trek rule is defined as the rule in

which the covariance �ij is mapped to the sum of all possible simple treks from i to j in

G. We represent the rule as a ring homomorphism �G where

�G : C[�ij : 1  i  j  n] ! C[ai,�ij : i, j 2 [n], i! j 2 E(G)],

�ij 7!
X

P2T (i,j)

atop(P )

Y

k!l2P

�kl.

By Proposition 2.3 [34] we know that the kernel of the homomorphism �G equals the

vanishing ideal IG of the model. We illustrate the simple trek rule with an example.

Example 4.1.3. Let G1 be a directed graph on four vertices with edges 1 ! 2, 1 !
3, 1 ! 4, 2 ! 3 and 2 ! 4 (this is graph G1 in Figure 4.3). The homomorphism �G is

given by

�11 7! a1

�12 7! a1�12

�13 7! a1�13 + a1�12�23

�14 7! a1�14 + a1�12�24

�22 7! a2

�23 7! a2�23 + a1�12�13

�24 7! a2�24 + a1�12�14

�33 7! a3

�34 7! a2�23�24 + a1�13�14

�44 7! a4

The ideal IG is generated by a degree 3 polynomial given by

IG = h�13�14�22 � �12�14�23 � �12�13�24 + �11�23�24 + �2
12�34 � �11�22�34i.

We now look at the notion of directed separation (also known as d-separation). The

d-separation criterion is used to construct the conditional independence ideal CIG.

Definition 4.1.4. Let G be a DAG with n vertices. Let A, B and C be disjoint subsets
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of [n]. Then C d-separates A and B if every path in G connecting a vertex i 2 A to a

vertex j 2 B contains a vertex k that is either

i) a non-collider that belongs to C or

ii) a collider that does not belong to C and has no descendants that belong to C.

A key result for DAG models relates conditional independence to d-separation (see

e.g. Sec. 3.2.2, [21]).

Proposition 4.1.5. The conditional independence statement A |= B|C holds for the di-

rected Gaussian model associated to G if and only if C d-separates A from B in G.

Let A, B and C be disjoint subsets of [n]. The normal random vector X ⇠ N (µ,⌃)

satisfies the conditional independence constraint A |= B|C if and only if the submatrix

⌃A[C,B[C has rank less than or equal to |C|. Combining this result with the definition of

d-separation, we have the following:

Definition 4.1.6. The conditional independence ideal of G is defined as the ideal gen-

erated by the set of all d-separations in G, that is,

CIG = h(#C + 1) minors of ⌃A[C,B[C | C d-separates A from B in Gi.

Note that every covariance matrix in the Gaussian DAG model satisfies the condi-

tional independence constraints obtained by d-separation. This means that CIG ✓ IG.

In fact, the variety of CIG defines the model inside the cone of positive definite matrices.

Still, one would like to understand when CIG = IG. Towards this end, we study the

related question of when IG and, hence, CIG are toric.

Example 4.1.7. Let G be a DAG with 4 vertices as shown in Figure 4.1. Observe that

there exists no trek between the vertices 1 and 2 as the path 1! 3 2 has a collider at

3 and the other path 1! 3! 4 2 has a collider at 4. So, we have that �12 2 CIG.

We now look at the two paths 1 ! 3 ! 4 and 1 ! 3  2 ! 4 between 1 and 4.

In the first path, 3 is the only vertex in the path, which is also a non-collider. So, any

d-separating set of 1 and 4 must contain 3. But {3} is not enough to d-separate 1 from 4

as 3 is a collider vertex in the second path. So, we add the vertex 2 to the d-separating

set which gives us that {2, 3} d-separates 1 from 4. This implies that the 3⇥ 3 minors of

⌃{1,2,3},{2,3,4} 2 CIG.
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1 3 2

4

Figure 4.1: A DAG G with 4 vertices

Computing IG and CIG gives us that

IG = CIG = h�12, �12�23�34 � �12�33�24 � �13�22�34 + �13�23�24 + �14�22�33 � �14�2
23i,

where the second generator of CIG is the determinant of ⌃{1,2,3},{2,3,4}.

Proposition 4.1.8. Let G be a DAG such that there exists a unique simple trek (or no

trek) between any two vertices of G. Then the simple trek rule is a monomial map hence

IG is toric.

Proof. As shown in Definition 4.1.2, the simple trek rule maps �ij to the sum of all

the treks between i and j. So, if there exists a unique trek (or no trek) between any

two vertices of G, then the simple trek rule becomes a monomial map and hence IG is

toric.

Proposition 4.1.8 already shows that the DAGs where IG is a toric ideal can be quite

complicated.

Example 4.1.9. Let G be an undirected graph, and form a DAG by replacing each

undirected edge i � j with two directed edges vi,j ! i and vi,j ! j, where vi,j is a new

vertex. The resulting DAG Ĝ, has a unique simple trek between any pair of vertices, or

no trek, and so the ideal IĜ is toric.

A second natural source of DAGs which have a toric vanishing ideal are DAGs that

have a natural connection to undirected graphs. In the previous chapter, we characterized

the undirected Gaussian graphical models which have toric vanishing ideals (Theorem

3.0.3).

Recall that a clique sum of graphs G1 and G2 is a new graph obtained by identifying

two cliques of the same size in G1 and G2. In a k-clique sum, the cliques identified each

have size k. While Theorem 3.0.3 is a good starting point for the analysis of DAG models,

86
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2
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(i) G1

1 2 4

3

(ii) G2

1 3 2

4

(iii) G3

Figure 4.2: 3 di↵erent DAGs having the same underlying undirected graph.

the underlying undirected structure is not enough to characterize whether a DAG yields

a toric vanishing ideal.

Example 4.1.10. Consider the three DAGs as given in Figure 4.2. Computing the

vanishing ideals IGi , we get

IG1 = h�12, �13i

IG2 = h�12�23 � �13�22, �12�24 � �14�22, �13�24 � �14�23i

IG3 = h�12, �12�23�34 � �12�33�24 � �13�22�34 + �13�23�24 + �14�22�33 � �14�2
23i.

Note that all three DAGs have the same underlying undirected graph, which is a 1-clique

sum of complete graphs. But only the first two DAGs have toric vanishing ideals. In G2,

the generators of IG2 correspond to the 2 ⇥ 2 minors of ⌃12,234 as {2} d-separates {1}
from {3,4}. Similarly, one of the generators of IG3 is the determinant of ⌃123,234 as {2,3}
d-separates {1} from {4}. Observe that the vertex {3} in G3 is a collider within the path

1  3 ! 2  4 and is a non collider within the trek 1  3  4. This is an important

observation for defining safe gluing later in the chapter.

One thing that should be apparent in Example 4.1.10 is that the existence of a unique

simple trek between pairs of vertices is not a necessary condition for IG to be toric. Indeed,

in the DAG G1, there are two simple treks in T (3, 4) and yet the ideal IG1 is still toric.

So in other cases when IG is toric, one way to demonstrate this is to find an alternate

parametrization for the ideal IG that is monomial. Our candidate for this new map is the

shortest trek map. This is defined in a similar manner as the shortest path map which

played an important role in our proof of Theorem 3.0.3.

Definition 4.1.11. Let G be a DAG with n vertices. Suppose that G satisfies the prop-

erty that between any two vertices there is a unique shortest trek connecting them (or
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Figure 4.3: Existence of a shortest trek map

no trek connecting them). For vertices i and j in G, let i $ j denote the shortest trek

from i to j (if it exists). Then the shortest trek map  G is given by

 G : C[�ij : 1  i  j  n]! C[ai, �ij : i, j 2 [n], i! j 2 E(G)]

 G(�ij) =

8
>>><

>>>:

0 if there is no trek from i to j

atop(i$j)

Q
i0!j02i$j �i0j0 if shortest trek from i to j exists

ai i = j.

The shortest trek map is defined only on those DAGs where there exists a unique

shortest trek (or no trek) between any two vertices of G. We call the kernel of  G the

shortest trek ideal and denote it by STG. We illustrate this with an example.

Example 4.1.12. Let G1 and G2 be two DAGs as in Figure 4.3. In G1, there are exactly

two treks of the same length from {3} to {4}. So, the shortest trek map is not defined

for G1. But as there exists a unique shortest trek between any two vertices in G2, the

shortest trek map  G2 is given by

�11 7! a1

�12 7! a1�12

�13 7! a1�12�23

�14 7! a1�12�24

�22 7! a2

�23 7! a2�23

�24 7! a2�24

�33 7! a3

�34 7! a2�34

�44 7! a4.

Computing the vanishing ideal of G1 gives us that IG1 is not toric as there exists a degree

3 minor in the generating set ({1,2} d-separates {3} from {4}). But computing the kernel
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of the shortest trek map of G2 gives us that

ker( G2) = STG2 = h�12�23 � �13�22, �12�24 � �14�22, �13�24 � �14�23i,

which equals IG2 in Example 4.1.10. On the other hand, if we compute STG3 , we get

STG3 = h�14, �12, �13�15 � �11�35, �23�24 � �22�34, �24�45 � �44�25i,

which does not equal IG3 which has a generator of degree 3 corresponding to a 3 ⇥ 3

minor (as {1, 2} d-separates {3} from {5}).

In the example above we see that the shortest trek map does not exist forG1. Although

the existence of the shortest trek map does not ensure that IG would be toric (as seen

in G3), we do believe that IG cannot be toric when the shortest trek map is not well

defined. We look into this in more detail in Section 4.5.

The main problem of our interest is to find a characterization of the DAGs which have

toric vanishing ideal and also understand the structure of its generators. In this context,

it is also an important problem to understand when IG equals CIG as that would give us

a definite structure of a generating set in terms of d-separations and minors. The ideal

STG comes into play here as we believe that IG is generated by monomials and binomials

of degree at most 2 if and only if IG is equal to STG. In the next two sections, we find

ways to construct DAGs where IG = STG.

4.2 Safe gluing of DAGs

As mentioned in the end of Section 4.1, we are interested in those DAGs where IG equals

STG. In this section we look at a specific way to construct such DAGs from smaller DAGs

having the same property. Given two DAGs G1 and G2 whose vanishing ideal is toric,

there are various ways to glue G1 and G2 together. But the resultant DAG does not

always have a toric vanishing ideal. We are interested in those particular types of gluing

operations which give us a toric vanishing ideal for the new DAG. We use the term “safe

gluing” of two DAGs to denote a particular construction which we conjecture to always

preserve the toric property. Considering complete DAGs as the base case (as IG = 0 in

that case), this method can be used to construct many DAGs which have toric vanishing

ideal. The goal of this section is to explain the construction. To motivate the concept
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of safe gluing, we first look at some existing results from the literature that give gluing

operations on DAGs that preserve the property of having a toric vanishing ideal.

Definition 4.2.1. Let G be a DAG. A vertex s in G is called a sink if all the edges

adjacent to s are directed towards s.

Proposition 4.2.2 (Proposition 3.7, [34]). Let G1 and G2 be two DAGs having a common

vertex m that is a sink in both G1 and G2. If G is the new DAG obtained after gluing G1

and G2 at m, then IG can be written as

IG = IG1 + IG2 + h�ij : i 2 V (G1) \ {m}, j 2 V (G2) \ {m}i.

The vertex m in G is a collider vertex within any path from V (G1) \ {m} to V (G2) \
{m}. Further, if IG1 and IG2 are toric, then from Proposition 4.2.2 we can conclude

that gluing G1 and G2 at a vertex m such that m is a collider within any path from

V (G1) \ {m} to V (G2) \ {m} produces a new DAG G whose vanishing ideal is also toric.

In other words, we have the following corollary.

Corollary 4.2.3. Let G1 and G2 be two DAGs having a common vertex m that is a sink

in both G1 and G2. Let G be the new DAG obtained after gluing G1 and G2 at m. If

IG1 and IG2 are toric, then so is IG. Furthermore, if IG1 = STG1 and IG2 = STG2 then

IG = STG.

An example where this can be seen to occur is the graph G1 in Example 4.1.10. In

G1, {4} is a collider between any path from {1} to {2, 3} and the resultant vanishing

ideal IG1 is toric. We will generalize Corollary 4.2.3 in two ways. One is the safe gluing

concept which is a combined generalization of Proposition 4.2.2 and Corollary 4.2.6. The

other is the concept of gluing at sinks which we discuss in Section 4.3.

A second situation where existing results in the literature can give us DAGs with toric

vanishing ideals concerns situations where a DAG gives the same independence structures

as an undirected graph. This is incapsulated in the concept of a perfect DAG.

Definition 4.2.4. Let i, j, k be 3 vertices in a DAG G containing the edges i ! k and

j ! k. Then k is said to be an unshielded collider in G if i and j are not adjacent. A

DAG G is said to be perfect if there are no unshielded colliders in G.

Using the above definition, we state a result from [21].
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Proposition 4.2.5 (Proposition 3.28, [21]). Let G be a perfect DAG and G⇠ be its

undirected version. Then the probability distribution P admits a recursive factorization

with respect to G if and only if it factorizes according to G⇠.

In other words, when G is a perfect DAG, the directed Markov property on G and

the factorization Markov property on its undirected version G⇠ coincide. In particular,

this implies that

IG = PG⇠

for perfect DAGs (where PH denotes the vanishing ideal of Gaussian graphical model

associated to the undirected graph H as seen in chapter 3). On the other hand, we know

from 3 that in the undirected case, PH is toric if H is a block graph. Hence, we have the

following result :

Corollary 4.2.6. Let G be a DAG whose undirected version G⇠ is a block graph. If G

is perfect then IG is toric.

We call a DAG G where G⇠ is a block graph and G is perfect a perfect block DAG.

Note that perfect block DAGs can be obtained by gluing smaller perfect block DAGs

together at a single vertex in such a way that no unshielded colliders are created.

Corollaries 4.2.3 and 4.2.6 give two di↵erent ways to glue DAGs together that have

toric vanishing ideals that preserve the toric property. Both methods consist of gluing

the graphs at cliques of size one, subject to some extra conditions. We generalize these

criteria to obtain the safe gluing criteria in which a DAG is obtained as an n-clique sum

of two smaller DAGs so that the vanishing ideal is toric. To give the general definition of

safe gluing, we first need to recall the definition of a choke point.

Definition 4.2.7 (Definition 4.1, [34]). A vertex c 2 V (G) is a choke point between the

sets I and J if every trek from a vertex in I to a vertex in J contains c and either

i) c is on the I-side of every trek from I to J , or

ii) c is on the J-side of every trek from I to J .

Definition 4.2.8. Let G1 and G2 be two DAGs. Suppose that G1 and G2 share a common

set of vertices C = {c}[D such that the induced subgraphs G1|C and G2|C are the same

and this common subgraph is a complete DAG (hence a clique). The clique sum of G1

and G2 at C is called a safe gluing if
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Figure 4.4: Safe gluing of G1 and G2 at a 3-clique

i) c is a choke point between the sets V (G1) \D and V (G2) \D and

ii) none of the treks between the vertices in V (G1)\D and V (G2)\D contain a vertex

in D.

Remark 4.2.9. Using the definition above, the gluing of G1 and G2 where there are no

treks between the vertices of V (G1) \ C and V (G2) \ C can also be considered as a safe

gluing. Thus, both types of gluing operations implied by Corollaries 4.2.3 and 4.2.6 are

safe gluings.

We further illustrate the definition of safe gluing with an example.

Example 4.2.10. Let G1 and G2 be two DAGs having a common 3-clique at {1, 4, 5}
as shown in the figure 4.4. Thus, G is the DAG obtained after a safe gluing of G1 and G2

at the 3-clique. Note that there is a single trek from {2} to {3} and that passes through

{1}. Any other path from {2} to {3} containing {4}, {5} or both has a collider at {4} or

{5}. Computing the vanishing ideal of G gives us that IG = h�12�13 � �11�23i, which is

a toric ideal.

We now look at some properties obtained from the safe gluing construction.

Definition 4.2.11. Let G1 and G2 be two DAGs, and suppose that G is obtained from

G1 and G2 by a safe gluing at C = {c} [ D. This safe gluing is called a minimal safe

gluing if we cannot find two other DAGs G0
1 and G0

2 such that G is the safe gluing of G0
1

and G0
2 at {c} [D0 with D0 a proper subset of D.

Example 4.2.12. Let G be the DAG as shown in Figure 4.5. If we take G1 = {1 !
3, 1 ! 5, 3 ! 5} and G2 = {2 ! 3, 2 ! 5, 3 ! 5, 4 ! 5}, then G is a safe gluing of
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Figure 4.5: Example of a non minimal gluing

G1 and G2 with C = {3, 5}. But this gluing is not minimal as we can take G0
1 = {1 !

3, 1! 5, 2! 3, 2! 5, 3! 5} and G0
2 = {4! 5} such that G is a safe gluing of G0

1 and

G0
2 with C 0 = {5} ⇢ C.

One useful consequence of having a minimal safe gluing is that for any d 2 D, there

must exist a vertex i 2 V (G1) \C such that i! d is an edge (and analogously there is a

j 2 V (G2) \C). This is because if for some vertex d 2 D there does not exist any vertex

in V (G1) \ C such that i ! d is an edge, then it would mean that we can write G as a

safe gluing of G0
1 and G2 at C 0 = {c}[D \ {d} where V (G0

1) = V (G1) \ {d}. We use this

observation for proving part (ii) of Lemma 4.2.13.

Lemma 4.2.13. Let G1 and G2 be two DAGs and G be the resultant DAG obtained after

a safe gluing of G1 and G2 at an n-clique. Let C = {c}[D be the vertices in the n-clique.

i) Every trek from a vertex in V (G1) \ D to a vertex in V (G2) \ D must have the

topmost vertex (i.e, the source vertex) either always in G1 or always in G2.

ii) For each d 2 D, we must have the edge c! d.

Proof. i) To show this, let us assume that there are two treks i1 ⌦ j1 and i2 ⌦ j2 with

i1, i2 2 V (G1) \D and j1, j2 2 V (G2) \D such that top(i1 ⌦ j1) lies in V (G1) \D and

top(i2 ⌦ j2) lies in V (G2) \D. Since c must lie in these treks, since it is a choke point,

this would imply that c lies in the G2-side of i1 ⌦ j1 and the G1�side of i2 ⌦ j2. That

contradicts that c is a choke point.

ii) Let us assume by way of contradiction that d ! c is an edge for some d 2 D.

Since G is obtained from a safe gluing, there are no edges that go from d to any vertex
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in V (G1) \ C or V (G2)\. For if there were such an edge d ! i, there would be a trek

c d! i contradicting the definition of safe gluing.

Now without loss of generality we can assume that the gluing is minimal. Thus, there

must be vertices s1 and s2 in G1 \ C and G2 \ C, respectively, such that s1 ! d and

s2 ! d are two edges in E(G). By the definition of safe gluing, we know that c must

be a choke point between the sets {s1, c} and {s2, c}. We consider the treks s1 ⌦ c

and c ⌦ s2. As s1 ! d ! c is already a trek, we cannot have any trek of the form

c ! t1 ! t2 ! · · · ! s1 (else it would form a cycle). So, c always lies in the G2-side of

any trek s1 ⌦ c. Similarly, as s2 ! d ! c is already a trek, we cannot have any trek of

the form c! r1 ! r2 ! · · ·! s2. So, c lies in the G1-side of the treks c1 ⌦ s2, which is

a contradiction.

The observations in Lemma 4.2.13 are helpful for ruling out various bad scenarios as

we work to prove results about the preservation of the toric property for DAGs under

safe gluing.

Our main aim in this section is to check that if G1 and G2 have toric vanishing ideals

then a safe gluing of G1 and G2 would give us a DAG G whose vanishing ideal is also

toric. From the structure of G we know that every trek between a vertex i 2 G1 \ C

and j 2 G2 \ C passes through the choke point c. This allows us to decompose the treks

i ⌦ j as i ⌦ c [ c ⌦ j. So, if we assume that IG1 = STG1 and IG2 = STG2 , then this

would imply that the shortest trek map is well defined for G as well. Thus, we give the

following conjecture :

Conjecture 4.2.14. Let G1 and G2 be two DAGs having toric vanishing ideals such that

IG1 equals STG1 and IG2 equals STG2. If G is the DAG obtained by a safe gluing of G1

and G2 at an n-clique, then IG is equal to STG and hence is toric.

Although we do not have a proof of Conjecture 4.2.14, we provide a proof when IG1

and IG2 satisfy an extra condition.

Theorem 4.2.15. Let G1 and G2 be two DAGs such that IG1 equals STG1 and IG2 equals

STG2. Let G be the DAG obtained by a safe gluing of G1 and G2 at an n-clique and c be

the choke point. If the generators of IG1 and IG2 have at most one common variable �cc,

then IG is equal to STG and hence is toric.

94



Proof. Let C = {c}[D be the n-clique where G1 and G2 are glued. We break the problem

into two cases: The first case is when the vertex c lies on some treks from V (G1) \ C to

V (G2) \ C. The second case is when there are no such treks.

Case I : The choke point c 2 C is on some trek from V (G1) \ C to V (G2) \ C. In

particular, it will be a non-collider vertex along that path.

As c is the only vertex in C that can be on some trek from V (G1) \ C to V (G2) \ C,

no trek between any two vertices in V (G1)\C passes through a vertex in V (G2)\C (and

similarly similarly for vertices in V (G2)\C). Further, STG1 equals IG1 , which implies that

there exists a unique shortest trek (or no trek) between any two vertices in G1 (similarly

for G2). Now, from the structure of G we know that every trek between a vertex in

V (G1) \ C and V (G2) \ C must pass through c. So, we can write the shortest trek map

of G as follows :

 G(�ij) =

8
>>><

>>>:

 G1(�ij) : i, j 2 V (G1)

 G2(�ij) : i, j 2 V (G2)
 G1 (�ic). G2 (�cj)

ac
: i 2 V (G1) \ C, j 2 V (G2) \ C.

Also, we know that the conditional independence statement i |= j|c holds for all i 2
V (G1)\C and j 2 V (G2)\C. So �ic�cj��ij�cc lies in both IG and STG for all i 2 V (G1)\C
and j 2 V (G2) \ C.

The vanishing ideals IG1 and IG2 lie in the polynomial rings C[�ij : i, j 2 V (G1)]

and C[�ij : i, j 2 V (G2)] respectively, where the common variables are of the form

�cicj , ci, cj 2 C. But from the assumption, we know that �cc can be the only common

variable among the generators of IG1 and IG2 . So, without loss of generality, we can treat

the ideals IG1 and IG2 as if they lie in other rings, that contain enough variables for all

their generators. In particular, we can treat the ideals as belong to:

IG1 ✓ C[�ij : i, j 2 V (G1) \D] and

IG2 ✓ C[�ij : i, j 2 V (G2)].

Note that there is only the variable �cc common between the two rings C[�ij : i, j 2
V (G1) \D] and C[�ij : i, j 2 V (G2)].

Now, let f = �u��v be any binomial in a generating set of STG consisting of primitive

binomials. Suppose that i 2 V (G1) \C and j 2 V (G2) \C. We can replace �ij with
�ic�cj
�cc
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in both �u and �v. Multiplying enough powers of �cc, we get

�n
ccf = �u1�u2 � �v1�v2�m

cc ,

(modulo the quadratic generators �ic�cj � �ij�cc that belong to IG), where �u1 , �v1 2
C[�ij : i, j 2 V (G1) \D] and �u2 , �v2 2 C[�ij : i, j 2 V (G2)], but none of �u1 , �v1 , �u2 , �v2

involve the variable �cc.

We can split the monomial �m
cc = �m1

cc �
m2
cc so that the two binomials

�u1 � �v1�m1
cc and �u2 � �v2�m2

cc

are homogeneous. Since all the variables appearing in �u1 and �v1 involve parameters

from the graph G1 with no overlap with parameters from G2 (except possibly acc) we see

that if �u1�u2 � �v1�v2�m
cc belongs to STG, it must be the case that �u1 � �v1�m1

cc belongs

to STG1 . Then if �u1�u2 � �v1�v2�m
cc is to belong to STG, then it must also be the case

that �u2 � �v2�m2
cc belongs to STG2 .

Now we have that, modulo the quadratic generators �ic�cj ��ij�cc that belong to IG,

we have that

�n
ccf = �u1(�u2 � �m2

cc �
v2) + �m2

cc �
v2(�u1 � �m1

cc �
v1)

2 STG1 + STG2

= IG1 + IG2 ✓ IG.

Thus, �n
ccf 2 IG. As IG is a prime ideal, that does not contain �cc, we deduce that

f 2 IG. This implies that STG ✓ IG. The vanishing ideal IG is well-known to have

dimension n + e, as the model is identifiable. The dimension of STG equals n + e by

Proposition 4.4.1. But as the dimension of IG equals the dimension of STG, both ideals

are prime, and STG ✓ IG, we can conclude that IG = STG.

Case II: There are no treks between the vertices of V (G1) \ C and V (G2) \ C : In

this case, the shortest trek map  G can be written as :
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 G(�ij) =

8
>>><

>>>:

 G1(�ij) : i, j 2 V (G1)

 G2(�ij) : i, j 2 V (G2)

0 : i 2 V (G1) \ C, j 2 V (G2) \ C.

We claim that STG in this case is

STG = STG1 + STG2 + h�ij : i 2 V (G1) \ C, j 2 V (G2) \ Ci.

We prove this equality in the same way as the proof of Proposition 4.2.2. We have

 G(�ij) = 0 for all i 2 V (G1) \ C and j 2 V (G2) \ C. By our assumption we know

that none of the variables of the form �cd or �d,d0 , with d, d0 2 D can appear among

any of the generators of STG1 . Also in this case, �cc cannot appear in STG1 or STG2 as

 G1(�cc) =  G2(�cc) = ac and no treks involving i 2 V (G1)\C or j 2 V (G2)\C can have c

as its source. So, for any �ij, i 2 V (G1)\C, j 2 V (G1) and �kl, k 2 V (G2), l 2 V (G2)\{c}
which appear in STG,  G(�ij) and  G(�kl) are monomials in two polynomial rings having

disjoint variables. Thus, we have a partition of the variables �ij into three sets

A1 = {�ij : i 2 V (G1), j 2 V (G1) \ C},

A2 = {�ij : i, j 2 V (G2)} and

A3 = {�ij : i 2 V (G1) \ C, j 2 V (G2) \ C},

in which the image  G(�ij) appears in disjoint sets of variables. Further, there can be no

nontrivial relations involving two or more of these three sets of variables. So, the equality

in the above equation holds.

But then, STG1 = IG1 and STG2 = IG2 . Thus, we have

STG = IG1 + IG2 + h�ij : i 2 V (G1) \ C, j 2 V (G2) \ Ci

✓ IG.

As both the ideals are prime and have the same dimension, STG = IG.

Although Theorem 4.2.15 uses the assumption that only �cc appears among the gen-

erators of both IG1 and IG2 , we believe that the safe gluing would yield a toric vanishing
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Figure 4.6: Safe gluing of G1 and G2 at a 2-clique

ideal even without that assumption. We illustrate this point with an example.

Example 4.2.16. Let G1 and G2 be two non chordal cycles as shown in Figure 4.6.

Computing the vanishing ideals IG1 and IG2 , we get

IG1 = h�24, �14, �12, �1,10, �25, �34, �23�2,10 � �22�3,10, �13�15 � �11�35, �45�4,10 � �44�5,10i,

IG2 = h�6,10, �78, �68, �49, �48, �46, �89�8,10 � �88�9,10, �67�69 � �66�79, �47�4,10 � �44�7,10i,

which are both toric ideals. Now, if we perform a safe gluing of G1 and G2 at the 2-clique

C = {4, 10}, we get the resultant DAG G as in the figure. Observe that the variable

�4,10 appears in the vanishing ideal of both G1 and G2. Computing the vanishing ideal

IG gives us

IG = h�14, �12, �6,10, �68, �49, �48, �29, �46, �28, �27, �26, �25, �24, �78, �59, �58, �39, �56, �38,

�1,10, �19, �37, �18, �36, �17, �16, �34, �13�15 � �11�35, �89�8,10 � �88�9,10,

�67�69 � �66�79, �4,10�57 � �47�5,10, �4,10�57 � �45�7,10, �47�4,10 � �44�7,10,

�45�4,10 � �44�5,10, �45�47 � �44�57, �23�2,10 � �22�3,10i,

which is still a toric ideal.
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Figure 4.7: Gluing G1 and G2 at the sinks

4.3 Gluing at sinks and adding a new sink

We now look at two more ways of constructing DAGs which have toric vanishing ideals.

Both methods involve sinks in the DAGs. The first construction we analyze is gluing the

two graphs together at the sinks. The second concept involves adding new sinks to the

DAG.

Definition 4.3.1. Let G1 and G2 be two DAGs and S1, S2 be the set of sinks in G1 and

G2 respectively. If S is the set of all the common vertices in S1 and S2, then gluing G1 and

G2 at the sinks refers to the construction of a new DAG G with vertex set V (G1)[V (G2)

and edge set E(G1) [ E(G2).

We illustrate this construction of gluing at sinks with an example.

Example 4.3.2. Let G1 and G2 be two DAGs as shown in Figure 4.7. Here, the set of

sinks in both G1 and G2 are S1 = S2 = S = {7, 8, 9, 10}. We glue G1 and G2 at the sinks

to form G.

Theorem 4.3.3. Let G1 and G2 be two DAGs. Let S be the set of common sinks in G1

and G2. Let G be the DAG obtained after gluing G1 and G2 at the sinks. Suppose that

for each pair of vertices i, j 2 S, either all treks between i and j lie in G1 or all treks
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between i and j lie in G2. Then

IG = h generators of IG1 \ {�ij : i, j 2 S}i

+h generators of IG2 \ {�ij : i, j 2 S}i

+h�ij : i 2 V (G1) \ S, j 2 V (G2) \ Si

+h�ij : i, j 2 S such that there is no trek between i and ji.

Remark 4.3.4. From the condition mentioned in the statement, we know that at least

one of �G1(�ij) or �G2(�ij) is zero for all i, j 2 S, i 6= j. So, “h generators of IG1 \ {�ij :
i, j 2 S}i”, refers to forming a homogeneous generating set of IG1 that includes those

variables in {�ij : i, j 2 S} which are mapped to zero under �G1 and then removing those

variables from the generating set. Similarly, for “h generators of IG2 \ {�ij : i, j 2 S}i”.

Proof. From the assumption that S is a set of sinks of G, we know that there is no

trek in G between the vertices of G1 \ S and G2 \ S. This implies that �ij 2 IG for all

i 2 V (G1) \S, j 2 V (G2) \S. Further, no two sinks i, j in S can have treks i ⌦ j in both

G1 and G2. So, the map �G can be written as

�G(�ij) =

8
>>>>>><

>>>>>>:

�G1(�ij) : i 2 V (G1), j 2 V (G1) \ S

�G2(�ij) : i 2 V (G2), j 2 V (G2) \ S

�G1(�ij) + �G2(�ij) : i, j 2 S

0 : i 2 V (G1) \ S, j 2 V (G2) \ S.

This allows us to partition the variables �ij into four sets A1, A2, A3, A4 where

A1 = {�ij : i 2 V (G1), j 2 V (G1) \ S or i, j 2 S such that the treks i ⌦ j lie in G1}

A2 = {�ij : i 2 V (G2), j 2 V (G2) \ S or i, j 2 S such that the treks i ⌦ j lie in G2}

A3 = {�ij : i 2 V (G1) \ S, j 2 V (G2) \ S}

A4 = {�ij : i, j 2 S such that there is no trek between i and j}.

In these four sets, �G(�ij) appear in disjoint sets of variables and there can be no nontrivial

100



relations involving two or more of these sets of variables. So,

IG = ker�G

= h generators of IG1 \ {�ij : i, j 2 S}i+ h generators of IG2 \ {�ij : i, j 2 S}i

+h�ij : �ij 2 A3 [ A4i.

This completes the proof.

Example 4.3.5. Going back to Example 4.3.2, we compute the vanishing ideals of the

three DAGs G1, G2, and G. That gives us

IG1 = h�23, �13, �12, �8,10, �7,10, �79, �2,10, �38, �1,10, �37, �19, �27, �39�3,10 � �33�9,10,

�28�29 � �22�89, �17�18 � �11�78i,

IG2 = h�9,10, �89, �78, �69, �5,10, �67, �49, �58, �48, �56, �46, �45, �68�6,10 � �66�8,10,

�47�4,10 � �44�7,10, �57�59 � �55�79i,

IG = h�15, �14, �13, �12, �69, �67, �49, �48, �2,10, �46, �45, �27, �26, �25, �24, �23, �5,10,

�58, �56, �38, �1,10, �19, �37, �36, �35, �16, �34, �68�6,10 � �66�8,10, �28�29 � �22�89,

�47�4,10 � �44�7,10, �57�59 � �55�79, �39�3,10 � �33�9,10, �17�18 � �11�78i

Observe that the variables �27, �79, �37, �7,10, �12, �19, �13, �1,10, �38, �8,10, �23, and �2,10

are mapped to zero by �G1 and the variables �9,10, �89, �78, �69, �5,10, �67, �49, �58, �48, �56, �46

and �45 are mapped to zero by �G2 . Further, the treks 7 ⌦ 8, 8 ⌦ 9 and 9 ⌦ 10 lie within

G1 whereas 7 ⌦ 9, 7 ⌦ 10 and 8 ⌦ 10 lie within G2. Also, no two sinks have treks be-

tween them in both G1 and G2. Hence we are in a position where we can apply Theorem

4.3.3.

Analyzing the generating set of IG, we see that the variables

{�13, �12, �2,10, �27, �23, �38, �1,10, �19, �37} and the binomials

{�28�29 � �22�89, �39�3,10 � �33�9,10, �17�18 � �11�78}

in the generating set of IG are obtained from the generating set of IG1 after removing the
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variables of the form {�ij : i, j 2 S}. Similarly, the variables

{�69, �67, �49, �48, �46, �45, �5,10, �58, �56} and the binomials

{�68�6,10 � �66�8,10, �47�4,10 � �44�7,10, �57�59 � �55�79}

are obtained from the generating set of IG2 after removing the variables {�ij : i, j 2 S}.
The variables

{�15, �14, �26, �25, �24, �36, �35, �16, �34}

correspond to the third set of generators which are variables of the form {�ij : i 2
V (G1) \ S, j 2 V (G2) \ S}. In this example, there are no generators of the form

h�ij : i, j 2 S such that there is no trek between i and ji.

If we add the extra condition in Theorem 4.3.3 that both IG1 and IG2 are toric, then

we get the following result :

Corollary 4.3.6. Let G1 and G2 be two DAGs. Let S be the set of common sinks in G1

and G2. Let G be the DAG obtained after gluing G1 and G2 at the sinks. Suppose that

for each pair of vertices i, j 2 S, either all treks between i and j lie in G1 or all treks

between i and j lie in G2.

i) If IG1 and IG2 are toric, then IG is also toric.

ii) If IG1 = STG1 and IG2 = STG2, then IG is also equal to STG.

Proof. Part i) follows directly from Theorem 4.3.3, since the generating set will be a

union of a set of variables and a collection of binomials. For part ii), the shortest trek

map  G has the same structure as �G as shown in the proof of Theorem 4.3.3.

We now look at a simple construction where instead of gluing two DAGs at the sinks,

we add a new sink vertex to an existing DAG G. We show that the new DAG G0 has the

same vanishing ideal as the existing one.

Theorem 4.3.7. Let G be any arbitrary DAG. Construct a new DAG G0 from G, where

we add another vertex s and all edges i! s for i 2 V (G). Then

IG0 = IG · C[�ij : i, j 2 V (G) [ {s}].
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Proof. Let G have n vertices and e edges. From the construction, we know that G0 has

n+1 vertices and e+n edges. Since the new vertex s is a sink, none of the treks between

any two vertices i, j 2 V (G0)\{s} can pass through s. Further, as s is connected to every

vertex of G, the image of �is has a monomial of the form ai�is for all i 2 G. Thus, the

map �G0 can be written as

�G0(�ij) =

8
>>><

>>>:

�G(�ij) : i, j 2 V (G)

ai�is + other terms : i 2 V (G), j = s

as : i = j = s.

Since �G(�ij) = �G0(�ij) for all i, j 2 V (G0) \ {s}, it is clear that IG ✓ IG0 .

In order to show that IG0 = IG · C[�ij : i, j 2 V (G) [ {s}], we look at the dimension

of the two ideals. We know that the dimension of IG is n + e, whereas the dimension of

IG0 ✓ C[�ij : i, j 2 V (G0)] is (n+1)+(e+n) = 2n+e+1. The only new variables present

in C[�ij : i, j 2 V (G0)] are the variables of the form �is : i 2 V (G0). So, the dimension of

IG in C[�ij : i, j 2 V (G0)] is n + e + (n + 1), which equals the dimension of IG0 . But as

IG ✓ IG0 and both ideals are prime, we can conclude that IG = IG0 .

Again, if we add the extra condition that IG is toric in Theorem 4.3.7, then we get

the following result :

Corollary 4.3.8. Let G be any arbitrary DAG. Construct a new DAG G0 from G, where

we add another vertex s and all edges i! s for i 2 V (G).

i) If IG is toric, then IG0 is also toric.

ii) If IG = STG, then IG0 is also equal to STG0 and hence is toric.

Proof. For part i), since the two ideals have the same generating set, then they are both

toric.

For part ii), using the same argument as in the Proof of Theorem 4.3.7, the shortest

trek map  G0 can be written as

 G0(�ij) =

8
>>><

>>>:

 G(�ij) : i, j 2 V (G)

ai�is : i 2 V (G), j = s

as : i = j = s.
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So it is clear that STG ✓ STG0 . Now, the variable �is only appears in the image of �is

for all i 2 V (G). Similarly, the variable as only appears in the image of �ss. This implies

that the variables of the form �is, i 2 V (G0) can not appear in any generators of STG0 .

Thus STG0 = STG · C[�ij : i, j 2 V (G) [ {s}] as well, so IG0 = STG0 .

Example 4.3.9. Let G be a DAG with four vertices as shown in Figure 4.8. From

Example 4.1.10, we know that IG is a toric ideal. Now, we add another vertex {5} to G

and connect all the existing vertices to 5 by edges pointing towards 5. Here 5 is the sink

in the new DAG G0. Computing the vanishing ideal of G0 gives us that IG0 has the same

generating set as IG.

To this point, we have described three ways to construct DAGs from smaller DAGs

that preserve the toric property: safe gluing, gluing at sinks, and adding a new sink. We

believe that these are the only possible operations that could be done to construct such

DAGs. We know that the vanishing ideal of a complete DAG is zero and hence is toric.

So starting with those examples as a base case, we can combine these three operations to

get many more examples of DAGs with toric vanishing ideals. We explain this idea with

an example.

Example 4.3.10. Let G be the DAG as shown in Figure 4.9. Computing the vanishing
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Figure 4.9: Constructing G as a combination of safe gluing, gluing at sinks and adding
a new sink to complete DAGs

ideal gives us that

IG = h�5,6, �4,7, �4,6, �3,8, �3,6, �3,4, �2,8, �2,6, �2,4, �1,8, �1,6, �1,4, �6,7�6,8 � �6,6�7,8,

�4,5�4,8 � �4,4�5,8, �2,5�3,7 � �2,3�5,7, �1,7�3,5 � �1,3�5,7, �2,5�2,7 � �2,2�5,7,

�2,3�2,7 � �2,2�3,7, �1,7�2,5 � �1,2�5,7, �1,3�2,5 � �1,2�3,5, �1,7�2,3 � �1,2�3,7,

�1,7�2,2 � �1,2�2,7, �1,5�1,7 � �1,1�5,7, �1,3�1,5 � �1,1�3,5, �1,2�1,5 � �1,1�2,5i.

Now, we show that G can be obtained as a combination of safe gluing, gluing at sinks,

and adding a new sink starting from complete DAGs. Let G1 be the DAG with vertices

{1, 2}. Then the vertex 3 can be considered as adding a new sink to G1 to form G2. So,

G2 is the DAG with vertices {1, 2, 3} and IG2 is toric.

Let G3 be the complete DAG with vertices {2, 7}. Then we can make a safe gluing of

G2 with G3 to get G4 as 2 is a choke point between {1, 2, 3} and {2, 7}. Similarly, if G5

is the complete DAG with vertices {1, 5}, then we can make another safe gluing of G4

with G5 to form G6. Observe that G6 has three sinks, which are 3, 7, and 5.

Let G7, G8, G9 and G10 be the complete DAGs with vertices {6, 7}, {6, 8}, {4, 8} and

{4, 5} respectively. Then we can perform multiple safe gluing of these four DAGs to get

G11 with vertices {4, 5, 6, 7, 8}. It can be seen that 5 and 7 are the two sinks in G11. So,

finally we can glue G6 and G11 at the set of common sinks, i.e., 5 and 7. As there exist

only trek between 5 and 7 and that lies in G6, we can conclude that the final DAG G

obtained after gluing G6 and G11 at the sinks must have a toric vanishing ideal.
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4.4 The shortest trek ideal

The shortest trek ideal STG appears to play an important role in the problem of clas-

sifying those DAGs whose vanishing ideal is toric. For this reason, we focus on purely

combinatorial properties of this ideal in this section. In particular, we prove our main

result, Theorem 4.4.15, that if STG1 equals CIG1 and STG2 equals CIG2 , then STG eqauls

CIG where G is a safe gluing of G1 and G2. This result provides further evidence for

Conjecture 4.2.14.

We begin with exploring the structure of the shortest trek map.

Proposition 4.4.1. Let G be a DAG such that the shortest trek ideal STG exists. Then

the dimension of STG is n+ e, the number of vertices plus the number of edges.

Proof. The number of parameters in the ring C[a,�] is n+ e, so n+ e is an upper bound

on the dimension. On the other hand, for each i,  G(�ii) = ai and for edge edge i ! j,

 G(�ij) = ai�ij. This collection of expressions

{ai : i 2 V (G)} [ {ai�ij : i! j 2 E(G)}

is algebraically independent, and has cardinality n+ e which gives a lower bound for the

dimension of STG.

As  G is a monomial map, there is a corresponding matrix M , whose columns are the

exponent vectors in the monomials  G(�ij). So STG is the toric ideal of the matrix M as

 G(�
u) = tMu,

where � = (�11, �12, . . . , �nn) and t = (a1, a2, . . . , an,�12, . . . ,�n�1n). This matrix will be

useful in proving some properties of the ideal STG.

To prove results about the generating sets of toric ideals we look the fiber graph of

M�1(b)F where F ⇢ kerZ(M). The fundamental theorem of Markov bases (Theorem

1.4.4) connects the generating sets of toric ideals to connectivity properties of the fiber

graphs. We state the result again explicitly in the case of the fiber graphs for the shortest

trek maps.
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Theorem 4.4.2 (Theorem 1.4.4). Let F ⇢ kerZ(M). The graphs M�1(b)F are connected

for all b such that M�1(b) is nonempty, if and only if the set {�v+ � �v� : v 2 F}
generates the toric ideal STG.

Now we relate the toric ideal STG to some other familiar toric ideals that are studied

in the combinatorial algebra literature. These results will be useful for proving results on

the generators of STG.

Definition 4.4.3. We define a map called the end point map ⌘G as follows:

⌘G : C[�ij : 1  i  j  n] ! C[d1, . . . , dn]

�ij 7!

8
<

:
didj if there is a trek from i to j

0 otherwise

As ⌘G is also a monomial map, ker(⌘G) is a toric ideal.

Lemma 4.4.4. For any given DAG G where the shortest trek map  G is well defined,

STG ✓ ker(⌘G).

Proof. Let M and N be the matrices corresponding to the maps  G and ⌘G respectively.

Note that we can ignore all pairs i, j where there is no trek between i and j, as these

�ijs are mapped to zero under both the end point map and the shortest trek map. It is

enough to show that the row space of N is contained in the row space of M . We construct

a matrix M1 as follows:

i) M1 is an n⇥ (n+ |E|) matrix, where the rows correspond to the vertices of G (i.e,

the variables di) and the columns correspond to the vertices and edges of G (i.e,

the variables ai and �ij).

ii) For every vertex variable ai, the corresponding column is 2ei and for every edge

variable �ij, the corresponding column is �ei+ej, where ei is the ith standard unit

vector.

Now, let  G(�ij) = ak�ki1�i1i2 · · ·�isi�kj1�j1j2 · · ·�jtj, where k is the topmost vertex
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within the shortest trek i$ j. As  G(�ij) = tMuij where �uij = �ij, we have

M1Muij = 2ek � ek + ei1 � ei1 + ei2 � · · ·� eis + ei � ek + ej1 � ej1 + ej2 � · · ·� ejt + ej

= ei + ej

= Nuij,

for all �ij, 1  i  j  n. This implies that N = M1M , which shows that N is contained

in the row space of M and thus completes the proof.

A consequence of Lemma 4.4.4 is that the ideal STG is homogeneous with respect to

the grading by indices. So, if �u � �v is in STG, and all variables involved correspond to

actual treks, then, for each i, the index i appears the same number of times in both �u

and �v. For example, it is not possible that �11�23 � �13�24 is in any shortest trek ideal

(unless some of these variables correspond to pairs of vertices that are not connected by

treks, i.e, some of the variables are mapped to zero).

Remark 4.4.5. Since the �ij corresponding to pairs of vertices i and j with no trek between

them always appear as generators in the ideal STG, we need a way to ignore those terms

when speaking about binomials in STG. Henceforth, when we speak of a binomial �u��v

in STG, we assume that all variables appearing in this binomial actually correspond to

treks in G.

For a DAG G if we want to show that STG equals CIG, it is enough to show that the

set of 2⇥ 2 minors of ⌃A[C,B[C for all possible d-separations of G form a generating set

for STG. By using Theorem 4.4.2 this is equivalent to show that the graphs M�1(b)F is

connected for all b, where F is the set of all 2⇥ 2 minors of ⌃A[C,B[C in the vector form,

for all possible d-separations of G. Now, for a fixed b, let u, v 2 M�1(b)F . This implies

that both Mu and Mv are equal to b, which gives us  G(�u � �v) = 0. Therefore, it is

enough to show that for any f = �u � �v 2 STG, �u and �v are connected by the moves

in F .

Now, for a DAG G with n vertices, let u 2 N(n2+n)/2 be a node in the graph of

M�1(b)F . We in turn, represent this u, or equivalently the monomial �u, as a multi-

digraph in the following way: For each factor �ij of �u we draw all edges in the shortest

trek i$ j along G with highlighting the top vertices. For each �ii we highlight that it is

a top vertex.

108



Let degi(�
u) denote the degree of a vertex i in �u which is defined to be the number

of end points of paths in �u. We count the loops corresponding to �ii as having two

endpoints at i. If f = �u� �v is a homogeneous binomial in STG, then  G(�u) =  G(�v)

if and only if the following conditions are satisfied:

i) The graphs of �u and �v both have the same number of treks (as f is homogeneous),

ii) The graphs of �u and �v have the same number of edges between any two adjacent

vertices i and j (as the exponent of �ij in  G(�u) gives the number of edges between

i and j in the graph of �u),

iii) The multiset of top vertices in both graphs is the same.

iv) The degree of any vertex in both the graphs is the same (as STG is contained in

the kernel of ⌘G by Lemma 4.4.4 ).

Example 4.4.6. Let G be the DAG as shown in Figure 4.10. From Example 4.1.12 (ii),

we know that

IG = STG = CIG = h�12�23 � �13�22, �12�24 � �14�22, �13�24 � �14�23i.

So, by Theorem 4.4.2, we know that �u and �v are connected by the moves in F for any

�u� �v 2 STG, where F is the set of 2⇥ 2 minors of ⌃A[C,B[C in the vector form for all

possible d-separations of G. Now, let

f = �u � �v = �2
12�24�23 � �2

22�13�14 2 STG.

The multi-digraphs of �u and �v are as shown in Figure 4.11. Observe that the graphs

of both �u and �v four treks each. The number of edges 1! 2, 2! 3 and 2! 4 are 2,1

and 1 respectively in both the graphs. Further, the degree of each vertex {1}, {2}, {3}
and {4} are also 2,4,1 and 1 respectively in both the graphs.

We can reach from �u to �v by first applying the move which takes �12�24 to �22�14

and then applying the move which takes �12�23 to �13�22.

Lemma 4.4.7. Let G be a safe gluing of G1 and G2 such that STG1 = CIG1 and STG2 =

CIG2. Then the set of all the 2⇥ 2 minors of ⌃A[c,B[c lie in STG, where A = V (G1) \C
and B = V (G2) \ C.

Proof. Let M be the set of all the 2⇥ 2 minors of ⌃A[c,B[c. These minors correspond to

the separation criterion that {c} d-separates A from B. Every element in M is of the
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1 2 4

3

Figure 4.10: A DAG G where IG = STG

1 2 4

3

�u

1

2

4

3

�v

Figure 4.11: The multi-digraphs of �u and �v

form �ij�kl��il�kj, where i, l 2 A[ c and j, k 2 B [ c. Now, if all the four shortest treks
i$ j, k $ l, i$ l and k $ j contain c, then each of these four treks can be decomposed

as

i$ j = i$ c [ c$ j,

k $ l = k $ c [ c$ l,

i$ l = i$ c [ c$ l,

k $ j = k $ c [ c$ j.

From this decomposition, it is clear that �ij�kl covers the same set of edges as �il�kj and

hence �ij�kl � �il�kj 2 STG.

If one of these four shortest treks does not pass through c, then we cannot have a

decomposition as above and hence cannot imply that the binomial lies in STG. Thus, we

need to show that such a binomial does not appear in M .

Let f = �ij�kl � �il�kj, where i, l 2 A [ c, k, j 2 B [ c and the shortest trek i $ l

does not pass through c. Then the two monomials �ij�kl and �il�kj do not preserve the

number of edges between adjacent vertices. To illustrate this, let us consider the vertex

c0 which is adjacent to c and lies in i $ c (Fig 4.12 (i)). (The shortest trek i $ l here

passes through the dashed line.) We observe that the multi-digraph of �ij�kl contains the

edge c0 ! c but the multi-digraph of �il�kj does not contain c0 ! c as i $ l does not

110



l

c

(i)
j

i k

c2

c1

c0

l

c

(ii)
j

i k

c2

c1

Figure 4.12: Two possible types of cases where an invalid move is possible

pass through c. So, we need to show that f /2M .

Now, all the possible options for DAGs which could fit in the above situation can

be classified into two categories. This categorization is independent of the directions in

c$ k and c$ j and is as follows :

Case I : The path between i and j containing c has a collider at c :

We illustrate this case in Fig 4.12, (i). Here, the shortest trek i$ l is the trek which

passes through the dashed line. Observe that c can d-separate i from j and k from l but

it cannot d-separate i from l. Similarly, any vertex which lies in c1 $ c2 can d-separate

i from l but they cannot d-separate i from j and k from l simultaneously. So, there does

not exist any 2⇥ 2 minor in M where �il and �ij or �kl can occur together.

Case II: The path between i and j containing c does not have a collider at c :

In this case (Fig 4.12, (ii)), we see that c alone cannot d-separate i and l. So, we

cannot have a binomial in M with �il as one of its terms.

Hence we can conclude that every element in M lies in STG.

Suppose that G can be written as a safe gluing of G1 and G2 at an n-clique. We define

a map ⇢G1 : V (G)! V (G1) as follows:

⇢G1(i) =

8
<

:
i i 2 V (G1)

c i 2 V (G2) \ C

where C is the clique at which G1 and G2 are glued and c is the special vertex (choke

point) in C. We can lift ⇢G1 as a map between from C[⌃] to itself by the rule ⇢G1(�ij) =

�⇢G1 (i)⇢G1 (j)
.
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For a vector u 2 Nn(n+1)/2, let uG1 be the vector that extracts all the coordinates that

correspond to the shortest treks that do not lie within G2. That is,

uG1(ij) =

8
<

:
0 i, j 2 G2 \ C

u(ij) otherwise.

Then we have the following result.

Proposition 4.4.8. Let G be a safe gluing of G1 and G2, with the map ⇢G1 defined

as above. Suppose that �u � �v 2 STG and this binomial only involves �ij variables

corresponding to treks. Then

 G1(⇢G1(�
uG1 ))�  G1(⇢G1(�

vG1 )) = 0.

Note that we use the notation  G1 to denote the shortest trek map associated to the

graph G1. However, the map  G can also be used since that will give the same result.

Proof. We have

⇢G1(�ij) =

8
<

:
�ij i, j 2 V (G1)

�ic i 2 V (G1) and j 2 V (G2) \ C

We know that �u and �v have the same number of treks. Also, the degree of each

vertex and the number of edges between any two adjacent vertices is the same. Moreover,

the power of each ai (which corresponds to the source of every trek) is also the same. So,

it is enough to show that ⇢G1(�
uG1 ) and ⇢G1(�

vG1 ) have the same number of treks (which

corresponds to the sum of all the powers of ai, i 2 V (G1) in the image) and the number

of edges between any two adjacent vertices (which we refer to as the degree of the edge)

is also the same.

From the vector uG1 and the map ⇢G1 , we see that the treks in �u of the form i$ j

are converted to i $ c, where i 2 V (G1) and j 2 V (G2) \ C. As i $ j and i $ c have

the same edges within G1, they do not change the degree of any edge within G1. So, the

degree of each edge in G1 is the same in both �u and ⇢G1(�
uG1 ) and hence is the same in

⇢G1(�
vG1 ).

Now all we need to show is that the power of each ai is the same in both ⇢G1(�
uG1 )

and ⇢G1(�
vG1 ) for each i 2 G1. We observe that for every vertex i 2 V (G1) \ {c}, the
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number of treks in ⇢G1(�
uG1 ) with source ai remain the same as that in �u. The only

change that can occur in ⇢G1(�
uG1 ) is the number of treks with source c. There are four

types of treks in which c can be the source:

i) treks of the form c$ i, where i 2 V (G1) \ C,

ii) treks of the form c$ j, where j 2 V (G2) \ C,

iii) treks of the form i$ j, where i 2 V (G1) \ C and j 2 V (G2) \ C,

iv) c$ ci, ci 2 C.

Case I : The source of each trek of the form i$ j with i 2 G1 and j 2 G2 lies in G1

:

In this case, the treks of the form (i) and (iv) remain as it is whereas the treks of

the form (ii) and (iii) are converted into c $ c and c $ i respectively, keeping the

source of the treks as c. As all the sources lie within G1, there are no treks of the form

i $ j, i 2 G1, j 2 V (G2) \ C with source in G2 which could increase the power of ac in

the image. Hence, the power of ac is preserved.

Case II : The source of each trek of the form i $ j with i 2 G1 and j 2 G2 lies in

G2 :

In this case, the existing treks with source c continue to contribute to the power of ac

as in Case I. But, there is a possibility of increasing the power of ac in ⇢G1(�
uG1 ) as the

treks of the form i$ j, i 2 V (G1), j 2 V (G2)\C with source in V (G2)\C are converted

to c $ i with source c. So, we need to show here that the increase in the power of ac

remains the same in both ⇢G1(�
uG1 ) and ⇢G1(�

vG1 ).

We count the number of variables of the form �dc ( i.e, d < c ) in the image of �u. This

precisely gives us the number of the treks of the form i$ j, i 2 V (G1), j 2 V (G2)\C with

source in V (G2) \C. This is because of the fact that if �ic occurs in the image of �u with

i 2 V (G1)\C, then it would imply that �u has a trek which has an edge i! c, i 2 V (G1).

This would mean the of treks of the form i $ j, i 2 V (G1), j 2 V (G2) \ C cannot have

source in G2. As the number of variables of the form �dc is the same in both �u and �v,

we can conclude that the increase in the power of ac remains the same in ⇢G1(�
uG1 ) and

⇢G1(�
vG1 ).

So,  G1(⇢G1(�
uG1 ))�  G1(⇢G1(�

vG1 )) = 0.

Definition 4.4.9. Let G be a safe gluing of G1 and G2 with STG1 = CIG1 and STG2 =

CIG2 . Then the lifting of any binomial f = �i0j0�k0l0 � �i0l0�k0j0 2 CIG1 is defined as the
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set of binomials having the following form :

lift(f) =

8
>>>>>>>>><

>>>>>>>>>:

�i0j0�k0l0 � �i0l0�k0j0 i0, j0, k0, l0 2 V (G1) \ {c}

�i0j�k0l0 � �i0l0�k0j j0 = c and for any j 2 V (G2) \D with i0 $ c ✓ i0 $ j

�i0j0�k0l � �i0l�k0j0 l0 = c and for any l 2 V (G2) \D with k0 $ c ✓ k0 $ l

�i0p�ql0 � �i0l0�pq j0 = k0 = c and for any p, q 2 V (G2) \D with

a i0 $ c ✓ i0 $ q, c$ l0 ✓ p$ l and c 2 p$ q

We can similarly define the lift operation for binomials in CIG2 . From the definition

above, lift(f) is not necessarily unique and can be lifted to multiple binomials. The lift

operation can be seen as an inverse of the map ⇢G1 (or ⇢G2 , although the ⇢Gi maps are

not invertible). In the next lemma, we show that the set of all binomials in lift(f) lies in

CIG and also in STG for any f = �i0j0�k0l0 � �i0l0�k0j0 2 CIG1 .

Lemma 4.4.10. Let f be any binomial in CIG1 of the form �i0j0�k0l0 � �i0l0�k0j0 2 CIG1.

Then the set of all the binomials in lift(f) lies in both CIG and STG.

Proof. i) We first show that lift(f) 2 CIG for all the four cases given in the definition of

lift.

a) In the first case, as CIG1 ✓ CIG, �i0j0�k0l0 � �i0l0�k0j0 2 CIG when i0, j0, k0, l0 2
V (G1) \ {c}.

b) When j0 = c and i0, k0, l0 2 V (G1)\{c}, then f 2 CIG1 implies that {l0} d-separates

{i0, k0} from {c} (or {i0} d-separates {k0} from {l0, c}). Now, as every trek from i0 and

k0 to any vertex in V (G2) \ C passes through {c}, we can conclude that {l0} d-separates

{i0, k0} from V (G2) \ D. So, �i0j�k0l0 � �i0l0�k0j 2 CIG for any j 2 V (G2) \ D. (Similar

argument follows when {i0} d-separates {k0} from {l0, c}.)
c) A similar argument as in (b) follows here.

d) When j0 = k0 = c and c 2 p$ q, then we know that every trek from i0 to q passes

through c. Similarly, every trek from l0 to p passes through c. Further, as �i0c�cl0��i0l0�cc 2
CIG1 , we know that {c} d-separates {i}0 from {l0}. From the definition of lift, we know

that c lies in p$ q. But as CIG2 = SPG2 , we can also say that {c} d-separates {p} from

{q}. Combining all the separations, we have that {c} d-separates {i0, p} from {l0, q} and

hence �i0p�ql0 � �i0l0�pq 2 CIG.

ii) In each case above, the d-separation criterion forces all the four shortest treks of

each binomial to pass through a particular vertex. So, a decomposition similar to the one
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shown in the proof of Lemma 4.4.7 is always possible and hence lift(f)2 STG for all the

four cases.

Lemma 4.4.11. Let G be a safe gluing of G1 and G2, with the map ⇢G1 defined as above.

Suppose that �u � �v 2 STG and this binomial only involves �ij variables corresponding

to treks. Suppose that STG1 = CIG1. Then, there is a set of quadratic moves in CIG that

will transform �u into a monomial �u0
such that ⇢G1(�

u0
) = ⇢G1(�

v).

Proof. Since STG1 equals CIG1 , by Theorem 4.4.2 we know that either ⇢G1(�
uG1 ) is equal

to ⇢G1(�
vG1 ) or we can reach from ⇢G1(�

uG1 ) to ⇢G1(�
vG1 ) by making a finite set of moves

from the set of 2⇥ 2 minors of ⌃A[C,B[C , for all possible d-separations of G1.

By using the map ⇢G1 we lift each move each move �i0j0�k0l0 � �i0l0�k0j0 in G1 to a

corresponding move �ij�kl � �il�kj in G, where

⇢G1(�ij) = �i0j0 , ⇢G1(�kl) = �k0l0 , ⇢G1(�il) = �i0l0 and ⇢G1(�kj) = �k0j0 .

These moves take �u to �u0
for some u0 such that �u0

and �v have the same subgraph

within G1.

We illustrate the technique used in the proof with an example.

Example 4.4.12. Let G = {1 ! 2, 1 ! 4, 1 ! 6, 1 ! 8, 2 ! 3, 4 ! 5, 6 ! 7, 8 ! 9}
be a DAG with V (G1) = {1, 2, 3, 6, 7} and V (G2) = {1, 4, 5, 8, 9}. Let

f = �u � �v = �56�47�67�28 � �66�27�57�48 2 STG.

Then ⇢G1(�
uG1 ) = �16�17�67�12. We take

m1 = �16�67 � �66�17 2 CIG1

as the first move which takes ⇢G1(�
uG1 ) to �66�2

17�12. As

⇢G1(�56�67 � �66�57) = �16�67 � �66�17,

we lift m1 to m0
1 = �56�67 � �66�57 2 CIG. Now, we take

m2 = �17�12 � �27�11 2 CIG1
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as the second move which takes �66�2
17�12 to �66�17�27�11. Further, as

⇢G1(�47�28 � �27�48) = �17�12 � �27�11,

we lift m2 to m0
2 = �47�28 � �27�48. Observe that applying m0

1 and then m0
2 on �u takes

�u to �v.

In a similar way, we can define the map ⇢G2 and get a set of moves which would take

⇢G2(�
u0
) to ⇢G2(�

v). This in turn would give us a corresponding set of moves in G which

would take �u0
to �v0 for some v0 such that �v0 and �v have the same subgraph within

G2. But before that, it is important to check that the second set of lifted moves obtained

from ⇢G2 does not a↵ect the structure of �u0
within G1.

Proposition 4.4.13. Let m = �ij�kl � �il�kj be a move obtained as a lift of one of the

moves in CIG2 which takes ⇢G2(�
u0
) closer to ⇢G2(�

v). Then ⇢G1(�
u0
) = ⇢G1(m(�u0

)).

Proof. As ⇢G1(�
u0
) = ⇢G1(�

v), the move m corresponds to a d-separation by a vertex in

V (G2) \ C. Let that vertex be c0. Now, if i, j, k, l 2 V (G2) \ C, then clearly m does not

a↵ect the structure of �u0
. So, let i, k 2 V (G1) \ C and j, l 2 V (G2) \ C. Then we have

i$ j = i$ [ c$ c0 [ c0 $ j

k $ l = k $ [ c$ c0 [ c0 $ l

i$ l = i$ [ c$ c0 [ c0 $ l

k $ j = k $ [ c$ c0 [ c0 $ j.

This gives us that the multi-digraph of both ⇢G1(�ij�kl) and ⇢G1(�il�kj) are same. So,

we can conclude that m does not a↵ect the structure of ⇢G1(�
u0
) and hence ⇢G1(�

u0
) =

⇢G1(m(�u0
)).

As the moves obtained from ⇢G2 do not change the structure of ⇢G1(�
uG1 ) (and vice

versa), we see that �v0 and �v have the same subgraph within G1 as well. This brings us

to the next lemma.

Lemma 4.4.14. Let G be a safe gluing of G1 and G2, with the maps ⇢G1 and ⇢G2 defined

as above. Suppose that �u � �v 2 STG and this binomial only involves �ij variables

corresponding to treks. Suppose that ⇢G1(�
u) = ⇢G1(�

v) and ⇢G2(�
u) = ⇢G2(�

v). Then �u

and �v can be connected by quadratic binomials in CIG.
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Proof. We can assume that �u and �v have no variables in common. Since �u and �v

have the same image under ⇢G1 and ⇢G2 this implies that we cannot have any variables

of the form �ij, i, j 2 V (G1) \ {c} or i, j 2 V (G2) \ {c} in the monomial factors. This is

because the variables of this form are mapped to itself by either of the two maps which

would mean that �u and �v would still have some more common factors between them.

So, all the variables appearing in the two factors need to contain c as an end point or as

a vertex in their corresponding shortest treks and both end points not lying within the

same subgraph (i.e, G1 or G2).

Consider an arbitrary trek i $ j in �u which is not present in �v. We select the

trek in �v which has the highest number of common edges with i$ j. Let that trek be

i0 $ j0 and let s$ t be the common trek in both the treks. Let s1 and t1 be the vertices

adjacent to s and t respectively in i$ j. Similarly, let s0 and t0 be the vertices adjacent

to s and t respectively in i0 $ j0. Let p be the vertex in s$ t adjacent to t (see Figure

4.13 for an illustration of the idea).

As  G(�v0 � �v) = 0 there must exist a path x$ y in �v containing the edge t$ t1.

We know that all the variables appearing in both the monomial factors need to contain c.

This implies that c must lie within the common trek s$ t. Let i, i0 and x be in V (G1)\C
and j, j0, y be in V (G2) \C. The move m = �i0j0�xy��i0y�xj0 is now a valid move as none

of the vertices in i0 $ p can have a shorter connection to any vertex in t1 $ y (as every

shortest trek from a vertex in V (G1) \ C to V (G2) \ C must pass through c).

Applying m on �v increases the length of the common trek between i$ j and i0 $ j0

by at least 1. As any move preserves the kernel of  G, m(�u) � �v still lies in STG.

Repeating this process again, we can continue to shorten the length of the disagreement

until the resulting monomials are the same.

Using all the results and observations that we have so far, we give a proof of the main

result of this section, which shows that quadratic generation of the shortest trek ideals

is preserved under the safe gluing operation.

Theorem 4.4.15. Let G1 and G2 be two DAGs such that STG1 = CIG1 and STG2 =

CIG2. If G is the DAG obtained after a safe gluing of G1 and G2 at an n-clique, then

STG is equal to CIG and IG is toric.

Proof of Theorem 4.4.15. Let �u��v be an arbitrary binomial in STG. Then in order to

prove that STG = CIG, we need to show that �u and �v are connected by the moves in

F , where F is the set of all the generators of CIG.
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i s1 s p t t1 j

�v0

Figure 4.13: Graphs of �v and �v0 . We use undirected treks in the figure to represent
treks of unknown direction as the proof is independent of the direction of the treks.

Lemma 4.4.11 shows that we can apply quadratic moves in CIG to transform �u into

a monomial �u0
such that ⇢G1(�

u0
) = ⇢G1(�

v). Applying the analogous result for G2,

we see that we can apply quadratic movies in CIG to transform �u0
into �v0 such that

⇢G1(�
v0) = ⇢G1(�

v) and ⇢G2(�
v0) = ⇢G2(�

v). Then applying Lemma 4.4.14, we see that

�v0 and �v can be connected using binomials in CIG. This shows that STG ✓ CIG ✓ IG.

But as IG and STG are both prime ideals of the same dimension, this shows that all three

ideals are equal.

4.5 Conjectures

We close the chapter by giving some conjectures about the Gaussian DAGs with toric

vanishing ideals. These include some main conjectures, and also conjectures of a more

technical nature that would be important tools for proving the main conjectures. We also

discuss some consequences of these auxiliary conjectures.

Our first main conjecture relates with a running theme throughout the chapter, iden-

tifying the underlying combinatorics of the toric structure when IG is actually a toric

ideal.

Conjecture 4.5.1. A DAG G has a toric vanishing ideal if and only if IG = STG.

Note, as mentioned previously, there are DAGs G such that STG exists, but it not

equal to IG. Our second main conjecture concerns the combinatorial construction of the

DAGs for which IG is toric.

Conjecture 4.5.2. If G is a DAG such that IG is toric, then either:
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1. G is a complete DAG,

2. G is either a safe gluing or the gluing at sinks of two smaller DAGs that also have

toric vanishing ideals, or

3. G is obtained by adding a sink to a smaller DAG.

Important auxialiary conjectures that we have seen so far in the chapter concern

the safe gluing operation, in particular, Conjecture 4.2.14, that safe gluing preserves

the property of IG being equal to STG. Another conjecture that seems key to proving

classification results for toric vanishing ideals is the following conjecture, that would rule

out many graphs from having toric vanishing ideals.

Conjecture 4.5.3. Let G be a DAG and i, j be two vertices in G such that the minimal

size of a d-separating set of i and j is 2 or larger. Then IG is not toric.

Assuming the conjecture is true, we have two results on when the vanishing ideal is

not toric.

Lemma 4.5.4. Suppose that Conjecture 4.5.3 is true. Let G be a DAG and i, j be two

vertices in G having at least 2 di↵erent paths P1 and P2 between them. If P2 is a trek

containing the vertex c and P1 is a path having exactly one collider at c, then IG is not

toric if Conjecture 4.5.3 is true.

Proof. Case I: P1 and P2 have no common vertices except i, c and j :

The proof follows from the d-separation of i and j. As c is the only collider within

P1, any set C which contains c and d-separates i from j has to contain at least one more

vertex from P1. This is because C = {c} is not enough to d-separate i and j. Hence, by

using Conjecture 4.5.3 we can conclude that IG is not toric.

Case II: P1 and P2 have more than 3 common vertices :

Let i1 be the last common vertex before c and j1 be the first common vertex after c

within the two paths. Then following Case I by replacing i and j with i1 and j1 respectively

completes the proof.

Lemma 4.5.5. Suppose that Conjecture 4.5.3 is true. Let G be a DAG where the shortest

trek map cannot be defined. Then IG is not toric.

Proof. The shortest trek map in G is not defined when there is no unique shortest trek

between two vertices. Let i and j be two vertices in G having two treks P1 and P2 between

them of the same length and have no other trek whose length is smaller.
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Case I: There is no common vertex between P1 and P2 except i and j :

In this case, we will have to select at least one vertex from each of the two treks to

d-separate i and j. Hence by Conjecture 4.5.3 we can conclude that IG is not toric.

Case II: P1 and P2 have at least one common vertex :

Without loss of generality, we can assume that i < j. Let c be the first common vertex

between P1 and P2. Then the treks P1 and P2 can be written as

P1 = P1(i ⌦ c) [ P1(c ⌦ j) and

P2 = P2(i ⌦ c) [ P2(c ⌦ j),

where P1(i ⌦ c) and P2(i ⌦ c) denote the trek between i and c within the treks P1 and

P2 respectively. Let the lengths of P1(i ⌦ c), P1(c ⌦ j), P2(i ⌦ c) and P2(c ⌦ j) be

r1, s1, r2 and s2 respectively. Then we have

r1 + s1 = r2 + s2. (4.2)

This gives us two new paths between i and j, namely P3 = P1(i ⌦ c) [ P2(c ⌦ j) and

P4 = P2(i ⌦ c) [ P1(c ⌦ j). If either of P3 or P4 has a collider at c, then by Lemma

4.5.4 we know that IG is not toric. So, we can assume that P3 and P4 are also treks.

Now, let r1 < r2. Then by equation 4.2, we know that s2 < s1. From these inequalities,

we get that the trek P3 is of length r1+s2 which is smaller than r1+s1, a contradiction. (

Similar argument follows for r2 < r1 ). Thus, we have r1 = r2 and s1 = s2. Now replacing

j with c, we can follow the same argument as that in Case I. Hence, IG is not toric.

Recall that an undirected graph is chordal if it has no induced cycles of length � 4.

For the remainder of the section, we consider DAGs G whose undirected version G⇠ is

a chordal graph. In Theorem 4.2.15 we used the condition that IG1 and IG2 can have at

most one common variable �cc. In the next Lemma we show that if Conjecture 4.5.3 is

true, then the above condition of Theorem 4.2.15 is satisfied when at least one of G1 or

G2 is a chordal DAG. So this provides further evidence in favor of Conjecture 4.2.14.

Lemma 4.5.6. Suppose that Conjecture 4.5.3 is true. Let G1 and G2 be two DAGs with

IG1 = STG1 and IG2 = STG2. Let G be the resultant DAG obtained after a safe gluing of

G1 and G2 at an n-clique. Let C = {c} [D be the vertices in the n-clique where c is the

choke point. Let c0 2 C and d 2 D. If G1 is chordal and p1 is a vertex in G1 \ C such
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that the shortest trek p1 $ c0 contains the edge c0 ! d then G can be constructed by safe

gluing two DAGs at an (n� 1)-clique.

Proof. Let p1�p2� · · ·�pm�c0 ! d be the shortest trek between p1 and d, where p1�p2

denotes the edge between p1 and p2 of unknown direction. Then pm � c0 ! d is also the

shortest trek between pm and d. Let us assume that G cannot be constructed by safe

gluing two DAGs at an (n� 1)-clique. Then there must exist another path from pm to d

not containing the edge c0 ! d. We select that path whose vertices are adjacent to either

pm, c0 or d. Let pm � q1 � · · · � qr ! d be such a path. As G1 is chordal, either pm ! d

is an edge or there exists an edge between qr and c0. If pm ! d is an edge, then pm ! d

becomes a shorter trek than pm � c0 ! d, which is a contradiction. If there is an edge

between qr and c0, there must also be an edge between pm and qr (again as G1 is chordal

and IG1 is toric). Independent of the direction of these two edges qr � c0 and pm � qr, we

can say that pm is d-separated from d by at least two vertices c0 and qr. Thus by using

Conjecture 4.5.3 we can imply that IG1 is not toric, which is a contradiction.

So far we have shown that safe gluing preserves the toric property of the vanishing

ideals. But it is an interesting problem to check if a DAG G with toric vanishing ideal

can always be obtained as a safe gluing of smaller DAGs with toric vanishing ideals. We

end this chapter with the conjecture that such a decomposition always exist for chordal

graphs if Conjecture 4.5.3 is true.

Conjecture 4.5.7. Suppose that Conjecture 4.5.3 is true. Let G be a chordal DAG with

toric vanishing ideal. Then there exist G1 and G2 with toric vanishing ideals such that G

can be obtained as a safe gluing of G1 and G2 at an n-clique.
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