
ABSTRACT

WOODSTOCK, ZEV. Construction of Functions from Nonlinear Transformations. (Under the
direction of Patrick L. Combettes.)

This thesis focuses on modeling, analyzing, and solving problems involving nonlinear equality

constraints from the novel perspective of fixed point theory and monotone operator theory. It is

shown that the class of nonlinearities involving firmly nonexpansive operators is broad enough

to represent many equations arising in applications, even when the original equations feature

non-Lipschitzian or even discontinuous operators. Adopting this model leads to feasibility and

best approximation algorithms which are proven to converge to an exact solution of such

equations from any initial point. Best approximation problems subjected to these nonlinear

equations are solved with a new strongly convergent block-iterative algorithm that features an

extrapolated relaxation scheme which exploits the presence of affine constraints. To address

potentially inconsistent feasibility problems involving firmly nonexpansive equations, we propose

a relaxation in the form of a variational inequality problem. Conditions for the existence of

solutions to the relaxed problem are derived and a block-iterative algorithm is proposed for its

solution. Next, block-iterative algorithms for fully nonsmooth convex minimization are analyzed,

and their relative performance on concrete large-scale problems is assessed. Throughout, the

theoretical and numerical aspects of this work are illustrated by applications to image processing,

signal processing, and machine learning.

This thesis was supported by the National Science Foundation under grants DGE-1746939

and CCF-1715671.



© Copyright 2021 by Zev Woodstock

All Rights Reserved



Construction of Functions from Nonlinear Transformations

by
Zev Woodstock

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2021

APPROVED BY:

C. Tim Kelley Kazufumi Ito

Eric Chi Ryan Murray

Patrick L. Combettes
Chair of Advisory Committee



DEDICATION

To my cat, Jim.

ii



BIOGRAPHY

The author graduated summa cum laude with a B. S. in Mathematics from James Madison

University in Harrisonburg, Virginia. He was admitted to North Carolina State University in 2016,

and received his M.S. in Applied Mathematics from N.C. State in 2018. After being awarded

the National Science Foundation Graduate Research Fellowship (NSF-GRFP) in 2018, he was

admitted to doctoral candidacy in 2020.

iii



ACKNOWLEDGEMENTS

I would like to thank my advisor Patrick Combettes, who devoted a significant amount of

time and effort to ensuring that I receive an excellent training. In addition to mathematical

techniques, facts, and results, he also taught me about the philosophy of investigating, writing,

and presenting mathematics. I would like to thank my committee members for their help and

advice throughout this process. I would also like to thank my friends and colleagues Farid

Benmouffok, Minh N. Bùi, Steven Gilmore, Lilian Glaudin, Ethan King, and Georgy Scholten

for their helpful conversations and insights. Finally, I thank my family for their support and

kindness.

This thesis was supported by the National Science Foundation under grants DGE-1746939

and CCF-1715671.

iv



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

NOTATION AND DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 A FIXED POINT FRAMEWORK FOR RECOVERING SIGNALS FROM NON-
LINEAR TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Introduction and context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Article: A fixed point framework for recovering signals from nonlinear transfor-

mations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Fixed point model and algorithm . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3.1 Restoration from distorted signals . . . . . . . . . . . . . . . . . 16
2.2.3.2 Reconstruction from thresholded scalar products . . . . . . . . . 18
2.2.3.3 Image recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Inconsistent problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 3 RECONSTRUCTION OF FUNCTIONS FROM PRESCRIBED PROXIMAL
POINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Introduction and context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Article: Reconstruction of functions from prescribed proximal points . . . . . . . 26

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Prescribed values as proximal points . . . . . . . . . . . . . . . . . . . . . 30

3.2.2.1 Prescriptions derived from firmly nonexpansive operators . . . . 30
3.2.2.2 Prescriptions derived from cocoercive operators . . . . . . . . . . 33
3.2.2.3 Prescriptions derived from non-cocoercive operators . . . . . . . 37

3.2.3 A block-iterative extrapolated algorithm for best approximation . . . . . . 40
3.2.4 Fixed point model and algorithm for Problem 3.2.1 . . . . . . . . . . . . . 48
3.2.5 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 4 A VARIATIONAL INEQUALITY MODEL FOR THE CONSTRUCTION OF SIG-
NALS FROM INCONSISTENT NONLINEAR EQUATIONS . . . . . . . . . . . 59

4.1 Introduction and context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Article: A variational inequality model for the construction of signals from incon-

sistent nonlinear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Notation, background, and preliminary results . . . . . . . . . . . . . . . . 63

4.2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

v



4.2.2.2 Variational inequalities . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Composite sums of monotone operators . . . . . . . . . . . . . . . . . . . 66

4.3 Firmly nonexpansive Wiener models . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.0.1 Projection operators . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.0.2 Proximity operators . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.0.3 General firmly nonexpansive operators . . . . . . . . . . . . . . 69
4.3.0.4 Proxification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.0.5 Operators arising from monotone equilibria . . . . . . . . . . . . 73

4.3.1 Analysis and numerical solution of Problem 4.2.3 . . . . . . . . . . . . . . 73
4.3.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2.1 Image recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.2.2 Signal recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.2.3 Sparse image recovery . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.2.4 Source separation . . . . . . . . . . . . . . . . . . . . . . . . . . 84

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 5 BLOCK-ACTIVATED ALGORITHMS FOR MULTICOMPONENT FULLY NON-
SMOOTH MINIMIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Introduction and context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Article: Block-activated algorithms for multicomponent fully nonsmooth mini-

mization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.2 Instantiations of Problem 5.2.1 . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.3 Algorithms: presentation and discussion . . . . . . . . . . . . . . . . . . . 94
5.2.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.4.1 Experiment 1: group-sparse binary classification . . . . . . . . . 99
5.2.4.2 Experiment 2: image recovery . . . . . . . . . . . . . . . . . . . 99
5.2.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vi



LIST OF FIGURES

Figure 1.1 (a): Original signal. (b): Clipping nonlinearity. (c): Clipped signal. . . . . 3

Figure 2.1 Signals in Section 2.2.3.1. Top to bottom: original signal x, distorted
signal r2, distorted signal r3, recovered signal. . . . . . . . . . . . . . . . 17

Figure 2.2 Distortion operator θ3 in Section 2.2.3.1. . . . . . . . . . . . . . . . . . . 18
Figure 2.3 Original signal x (top) and recovery (bottom) in Section 2.2.3.2. . . . . . 19
Figure 2.4 The thresholder (2.17) of [15] (red) and the soft thresholder (blue) used

in Section 2.2.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 2.5 Images from Section 2.2.3.3. (a) Original image x. (b) Compressed image

W ∗r4. (c) Down-sampled 8× 8 image r5. (d) Recovered image. . . . . . . 22

Figure 3.1 Original signal x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 3.2 Solution x∞ to (3.90). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 3.3 Solution x∞ (red) and the approximate recovery obtained with 1000

iterations of algorithm (3.86), which exploits affine constraints (blue). . 53
Figure 3.4 Solution x∞ (red) and the approximate recovery obtained with 1000

iterations of algorithm (3.88), which does not exploit affine constraints
(green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.5 Normalized error ‖xn − x∞‖/‖x0 − x∞‖ versus iteration count n ∈
{0, . . . , 1000} for algorithm (3.86) (blue) and algorithm (3.88) (green). . 54

Figure 4.1 Illustration of Problem 4.2.1 with m prescriptions (pi)16i6m. The ith
prescription pi is the output produced when the ideal signal x is input to
a Wiener system Wi = Fi ◦ Li, i.e., the concatenation of a linear system
Li and a nonlinear system Fi [49]. In the proposed model, Fi is a firmly
nonexpansive operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.2 Illustration of the variational inequality principle. The point x solves
(4.22) because it lies in C and, for every y ∈ C, the angle between y − x
and Bx is acute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.3 Proximal soft clipping operators on R with saturation at ±1: η 7→
sign (η)(1 − exp(−|η|)) [53, Section 10.6.3] (blue), η 7→ 2 arctan(η)/π
[25] (red), and η 7→ η/(1 + |η|) [39] (green). . . . . . . . . . . . . . . . . 69

Figure 4.4 The distortion operator F in Example 4.3.8 for m = 2. . . . . . . . . . . . 70
Figure 4.5 Experiment of Section 4.3.2.1: (a) Original image x. (b) Degraded image

p1. (c) Recovered image. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 4.6 Experiment of Section 4.3.2.2: (a): Original signal x. (b): Piecewise

constant approximation p1. (c): Recovered signal. . . . . . . . . . . . . . 81
Figure 4.7 Experiment of Section 4.3.2.2: Relative error 20 log10(‖xn − x∞‖/‖x0 −

x∞‖) (dB) versus execution time (seconds) for full activation (red) and
cyclic activation (4.70) (green). . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 4.8 Experiment of Section 4.3.2.3: (a) Original image x. (b) Degraded image
q1. (c) Recovered image. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.9 Experiment of Section 4.3.2.3: Recovered image with logarithmic thresh-
olding instead of soft thresholding. . . . . . . . . . . . . . . . . . . . . . 83

vii



Figure 4.10 Experiment of Section 4.3.2.3: Relative error 20 log10(‖xn − x∞‖/‖x0 −
x∞‖) (dB) versus execution time (seconds) for full-activation (red) and
block activation (4.71) (green). . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 4.11 Experiment of Section 4.3.2.4: (a) Original image x1 + x2. (b) Low-rank
compression of x1 + x2. (c) Recovered background (stars). (d) Recovered
foreground (galaxy). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.12 Experiment of Section 4.3.2.4: Relative error 20 log10(‖xn − x∞‖/‖x0 −
x∞‖) (dB) versus execution time (seconds) for full-activation (red) and
block activation (4.71) (green). . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 5.1 Normalized error 20 log10(‖xn − x∞‖/‖x0 − x∞‖) (dB), averaged over
20 runs, versus epoch count in Experiment 1. The variations around the
averages were not significant. The computational load per epoch for both
algorithms is comparable. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 5.2 Experiment 2: (a) Original x. (b) Observation b. (c) Observation c. (d)
Recovery (all recoveries were visually indistinguishable). . . . . . . . . . 101

Figure 5.3 Normalized error 20 log10(‖xn − x∞‖/‖x0 − x∞‖) (dB) versus epoch
count in Experiment 2. Top: Algorithm 5.2.6. The horizontal axis starts
at 140 epochs to account for the auxiliary tasks (see Remark 5.2.10(i)).
Bottom: Algorithm 5.2.8. The computational load per epoch for Algo-
rithm 5.2.8 was about twice that of Algorithm 5.2.6. . . . . . . . . . . . . 102

viii



NOTATION AND DEFINITIONS

The following notation are used throughout the thesis.

General notation

• H,G: Real Hilbert spaces.

• 〈· | ·〉: Scalar product of a real Hilbert space.

• ‖ · ‖: Norm of a Hilbert space.

• Let (Hi)i∈I be real Hilbert spaces.
⊕

i∈I Hi =
{

(xi)i∈I ∈×i∈I Hi
∣∣ ∑

i∈I ‖xi‖2 < +∞
}

is

the Hilbert direct sum of (Hi)i∈I .

• B(x; ρ): Closed ball with center x ∈ H and radius ρ ∈ ]0,+∞[.

• Id : Identity operator.

• 2H: The family of all subsets of H.

• Γ0(H): The set of all proper, convex, lower semicontinuous functions from H to ]−∞,+∞].

• B (H,G): The space of bounded linear operators from H to G.

• B (H) = B (H,H).

• L∗: The adjoint of L ∈ B (H,G).

• ‖L‖ = sup
{
‖Lx‖

∣∣ x ∈ B(0; 1)
}

: The norm of L ∈ B (H,G).

• → : Strong convergence.

• ⇀ : Weak convergence.

Notation relative to a subset C of H

• ιC : Indicator function of C:

ιC : H → [−∞,+∞] : x 7→

0, if x ∈ C;

+∞, if x 6∈ C.

• 1C : Characteristic function of C:

1C : H → [−∞,+∞] : x 7→

1, if x ∈ C;

0, if x 6∈ C.
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• coneC =
{
λx
∣∣ λ ∈ ]0,+∞[ , x ∈ C

}
: Conical hull of C.

• intC: Interior of C.

• C: Closure of C.

• riC =
{
x ∈ C

∣∣ cone (C − x) = span (C − x)
}

: Relative interior of C.

• sriC =
{
x ∈ C

∣∣ cone (C − x) = span (C − x)
}

: Strong relative interior of C.

• dC : H → [0,+∞] : x 7→ inf
p∈C
‖x− p‖: Distance function to C.

• Suppose that C is nonempty, closed, and convex. projC : H → H : x 7→ argmin
p∈C

‖x − p‖:

Projection operator onto C.

Notation relative to an operator T : H → H

• FixT =
{
x ∈ H

∣∣ Tx = x
}

: Fixed points of T .

• Let β ∈ ]0,+∞[. T is Lipschitz continuous with constant β, or β-Lipschitzian, if

(∀x ∈ H)(∀y ∈ H) ‖Tx− Ty‖ 6 β‖x− y‖. (1)

• T is nonexpansive if it is Lipschitz continuous with constant 1.

• Let α ∈ ]0, 1]. T is α-averaged if

(∀x ∈ H)(∀y ∈ H) ‖Tx− Ty‖2 6 ‖x− y‖2 − 1− α
α
‖(Id −T )x− (Id −T )y‖2.

• Let β ∈ ]0,+∞[. T is β-cocoercive if

(∀x ∈ H)(∀y ∈ H) 〈x− y | Tx− Ty〉 > β‖Tx− Ty‖2.

• T is firmly nonexpansive if it is 1-cocoercive, that is,

(∀x ∈ H)(∀y ∈ H) 〈x− y | Tx− Ty〉 > ‖Tx− Ty‖2. (2)

• Let u ∈ H. T is demi-closed at u if, for every sequence (xn)n∈N in H and every x ∈ H
such that xn ⇀ x and Txn → u, we have Tx = u. Furthermore, T is demi-closed if it is

demi-closed at every point in H.
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Notation relative to a set-valued operator M : H → 2H

• domM =
{
x ∈ H

∣∣Mx 6= ∅
}

: Domain of M .

• graM =
{

(x, u) ∈ H ×H
∣∣ u ∈Mx

}
: Graph of M .

• M−1 : H → 2H : u 7→
{
x ∈ H

∣∣ u ∈Mx
}

: Inverse of M .

• zerM =
{
x ∈ H

∣∣ 0 ∈Mx
}

: Zeros of M .

• ranM =
{
u ∈ H

∣∣ (∃x ∈ H) u ∈Mx
}

: Range of M .

• s : domM → H such that (∀x ∈ domM) s(x) ∈Mx: Selection of M .

• M is monotone if

(∀(x1, u1) ∈ graM)(∀(x2, u2) ∈ graM) 〈x1 − x2 | u1 − u2〉 > 0.

• M is maximally monotone if M is monotone and there is no monotone operator from H
to 2H, the graph of which strictly contains graM .

• JM = (Id +M)−1: Resolvent of M .

Notation relative to a function f ∈ Γ0(H)

• dom f =
{
x ∈ H

∣∣ f(x) < +∞
}

: Domain of f .

• epi f =
{

(x, η) ∈ H × R
∣∣ f(x) 6 ξ

}
: Epigraph of f .

• epis f =
{

(x, η) ∈ H × R
∣∣ f(x) < ξ

}
: Strict epigraph of f .

• lev6ξf =
{
x ∈ H

∣∣ f(x) 6 ξ
}

: Lower level set of f at height ξ ∈ R.

• lev<ξf =
{
x ∈ H

∣∣ f(x) < ξ
}

: Strict lower level set of f at height ξ ∈ R.

• dom f =
{
x ∈ H

∣∣ f(x) < +∞
}

: Domain of f .

• Argminf : The set of minimizers of f over H.

• f is convex if epi f is convex. Equivalently,

(∀(x, y, α) ∈ H ×H× ]0, 1[) f(αx+ (1− α)y) 6 αf(x) + (1− α)f(y). (3)

•
⊕

i∈I fi :
⊕

i∈I Hi : (xi)i∈I 7→
∑

i∈I fi(xi) is the direct sum of finitely many functions

(fi)i∈I which respectively map from Hi to ]−∞,+∞].
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• f∗ : H → ]−∞,+∞] : u 7→ sup
x∈H

(
〈x | u〉 − f(x)

)
: Conjugate of f .

• ∂f : H → 2H : x 7→
{
u ∈ H

∣∣ (∀y ∈ H) 〈y − x | u〉+ f(x) 6 f(y)
}

: Subdifferential of f .

• For every x ∈ H, proxfx is the unique minimizer of f(·) + ‖x − ·‖2/2. The mapping

x 7→ proxfx is the proximity operator of f .

• f is smooth if dom f = H, f is differentiable, and ∇f is Lipschitzian.

• Let f : H → R be continuous and convex, let s be a selection of ∂f , and suppose that

lev60f 6= ∅. The subgradient projector onto lev60f is given by

(∀x ∈ H) Tx = sprojCx =

x−
f(x)

‖s(x)‖2
s(x), if f(x) > 0;

x, if f(x) 6 0.

(4)

Notation relating to Fourier analysis

• Suppose that H = RN and let x ∈ H. DFT (x) or x̂: Discrete Fourier transform of x.

• Suppose that H = RN and let x ∈ H. IDFT (x): Inverse discrete Fourier transform of x.

• Let ξ ∈ C. We write ξ = |ξ| exp (i(∠ξ)).
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Chapter 1
INTRODUCTION

1.1 Overview

This thesis focuses on modeling, analyzing, and solving problems involving nonlinear equality

constraints from the novel perspective of fixed point theory and monotone operator theory.

Nonlinear equations appear in classical and contemporary best approximation problems, as well

as in a wide array of applications such as interpolation theory, optimization, machine learning,

signal and image processing, and statistics [1,2,4,5,7,18,20,21,24,25,30,35–39,43,45–47,49].

Despite the great deal of effort devoted to this field, there are still many classes of nonlinear

equations for which there are no provenly-convergent methods for their solution within the

context of feasibility, best approximation, or optimization problems. This thesis contributes

to this pursuit by identifying and analyzing one such class, which is broad enough to model

many nonlinearities arising in applications, and simultaneously leads to algorithms which are

guaranteed to converge to an exact solution from any initial point.

It is often the case that a function x in a real Hilbert space H is observed through a nonlinear

process F : H → H, say Fx = p [19,22,23,25,26,28,29,33,42,45,46]. However, the task of

recovering x from its nonlinear transformation p is typically difficult or impossible. Therefore, in

various scenarios, be they in synthesis or inverse problems, the constraint on a solution x ∈ H
corresponding to this nonlinear transformation is given by

Fx = p. (1.1)

In synthesis problems, this equation models a specification imposed on the solution, whereas in

inverse problems it models an observation of the true function of interest. We propose modeling

the underlying nonlinearity via a firmly nonexpansive operator, i.e., F satisfies

(∀(x, y) ∈ H ×H) ‖Fx− Fy‖2 6 〈x− y | Fx− Fy〉. (1.2)

As will be shown in Chapters 2, 3, and 4, this model covers many concrete situations. Even

1



though (1.2) requires that F be Lipschitz continuous with constant 1, this work demonstrates

that many constraints of the form (1.1) where F is non-Lipschitzian and even discontinuous

can be equivalently modeled via firmly nonexpansive operators [14–16]. While we frequently

assume that the operator F in (1.1) satisfies (1.2), we never assume that F is smooth. This is

because, even for simple examples in R, e.g., when F is the projector onto an interval, F fails

to be differentiable. In fact, even in R2, simple operators satisfying (1.2), such as the projector

onto a closed convex set, may not even be directionally differentiable [44]. This means that

common methods for solving smooth nonlinear equations such as Newton methods cannot be

applied here [31]. Other methods for solving nonsmooth nonlinear equations have a different

set of requirements [32] which are not assumed in this thesis.

In many applications, there are several operator-specification/observation pairs (Fk, pk)k∈K

as well as constraints in the form of closed convex subsets (Cj)j∈J of H which model a priori

information on the desired solution [4,10,13,43]. It is therefore natural to seek a vector x ∈ H
which is consistent with all of the observations and constraints. This task is modeled as follows.

Problem 1.1.1 Let J and K be at most countable sets such that J ∩K = ∅ and J ∪K 6= ∅.

For every j ∈ J , let Cj be a closed convex subset of H and, for every k ∈ K, let pk ∈ H and let

Fk : H → H be a firmly nonexpansive operator. The goal is to

find x ∈
⋂
j∈J

Cj such that (∀k ∈ K) Fkx = pk, (1.3)

under the assumption that such a solution exists.

Note that if K = ∅, then Problem 1.1.1 reduces to the standard convex feasibility problem,

which is well-understood and has many solution methods [10]. On the other hand, Problem 1.1.1

has a rich history for the setting when (Fk)k∈K are linear [3,13,27,34,36,37,40,49]. For instance,

there are classical algorithms which solve Problem 1.1.1 when (Cj)j∈J are described by convex

inequality constraints and the operators (Fk)k∈K in the equality constraints are linear [41].

On the other hand, when the transformations (Fk)k∈K are nonlinear, we are not aware of an

algorithm which, under no further assumptions, possesses the ability to converge to an exact

solution of Problem 1.1.1 from any initial point. The central challenge is enforcing constraints of

the form (1.1) and, in particular, those in Problem 1.1.1. For instance, conventional approaches

such as minimizing ‖F ( ·)− p‖ typically lead to nonconvex problem formulations, which make it

difficult to guarantee that a numerical method will globally converge to a solution.

Example 1.1.2 In signal declipping problems, the goal is to recover a function from its clipped

values (see Figure 1.1). The nonlinearity in this problem models a sensor which records only

values within an interval D ⊂ R. This sensor is therefore the projector onto the set of functions

whose range is contained in D. In the discrete setting, the nonlinearity is modeled via F : RN →
RN : (ξi)16i6N 7→ (projDξi)16i6N and the clipped signal by p ∈ DN . Many approaches to solving
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this task have been proposed; for instance, see the recent survey [50] and its references. Among

them, many arrive at nonconvex problem formulations, do not guarantee convergence to a

solution of Problem 1.1.1, rely on a parameterization of the signal, and/or make an assumption

about the solution (e.g., sparsity or autoregressiveness) [2,17,19,25]. In fact, to our knowledge,

the only method which is proven to converge at all in this case [39] assumes that the underlying

signal is sparse and converges to a minimizer of

x 7→ ϕ(x) + d2
C(x), (1.4)

where ϕ : RN → R promotes sparsity, and d2
C is the squared distance to C =

{
x ∈ H

∣∣ Fx = p
}

.

It should be noted that a similar methodology also appears in quantization problems [42,48].

The issue with this type of approach is that it requires access to the projection operator projC ,

as it appears in the evaluation of d2
C and its gradient. When a nonlinearity applies univariate

componentwise transformations, as is the case for clipping or quantization, projC can often be

computed in closed form. On the other hand, outside of the univariate case, computing this

operation is either impossible or numerically expensive.

x(t)

t

F (ξ)

ξ

p(t)

t

(a) (b) (c)

Figure 1.1 (a): Original signal. (b): Clipping nonlinearity. (c): Clipped signal.

Many problems arising in approximation theory, harmonic analysis, signal processing, and

optics also require the ability the select a particular point in the solution set of Problem 1.1.1

[3,13,27,34,36,37,40,49]. For instance, to reduce oscillations in a recovery, one may seek the

minimal norm solution. More generally, given a point x0 ∈ H, it is often desirable to find the

solution which is closest to x0, i.e., its best approximation from the solution set of Problem 1.1.1.

This leads to the following formulation.

Problem 1.1.3 Let x0 ∈ H and let J and K be at most countable sets such that J ∩ K = ∅
and J ∪K 6= ∅. For every j ∈ J , let Cj be a closed convex subset of H and, for every k ∈ K,

let pk ∈ H and let Fk : H → H be a firmly nonexpansive operator. Suppose that there exists
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x ∈
⋂
j∈J Cj such that (∀k ∈ K) Fkx = pk. The task is to

minimize ‖x− x0‖ subject to x ∈
⋂
j∈J

Cj and (∀k ∈ K) Fkx = pk. (1.5)

The fully linear setting of Problem 1.1.3 has been studied in [13,34]. While nonlinearities

appear in the sets (Cj)j∈J in [8,21,24], in all of these settings, the (Fk)k∈K remain linear. To

our knowledge, this problem has not been solved with a provenly-convergent algorithm in full

generality, even for the case when (Fj)j∈J are all projections onto nonempty closed convex sets.

It may be the case that noise or inaccurate modeling can cause Problem 1.1.1 to have no

solutions. Therefore, we are in need of a relaxed problem in the sense that, whenever Prob-

lem 1.1.1 is feasible, the relaxation is actually equivalent to the original problem. Furthermore,

even if there is no solution to the original problem, we seek a problem which satisfies (1.1) in

some approximate sense and is guaranteed to possess solutions under mild, verifiable conditions.

To address this task, we consider the following variant of Problem 1.1.1 where the observation

model is more structured.

Problem 1.1.4 Let C ⊂ H be nonempty, closed, and convex. Let (Gi)i∈I be a finite collection of

real Hilbert spaces and, for every i ∈ I, let Li ∈ B(H,Gi), let pi ∈ Gi, and let Fi : H → H be a

firmly nonexpansive operator. The goal is to

find x ∈ C such that (∀i ∈ I) Fi(Lix) = pi, (1.6)

While Problem 1.1.4 may lack solutions, we show in Chapter 4 that the following relaxed

problem frequently has solutions and, whenever solutions to Problem 1.1.4 exist, both problems

are equivalent.

Problem 1.1.5 Let I be a nonempty finite set, let (ωi)i∈I real numbers in ]0, 1] such that∑
i∈I ωi = 1, and let C be a nonempty closed convex subset of a real Hilbert space H. For

every i ∈ I, let Gi be a real Hilbert space, let pi ∈ Gi, let Li : H → Gi be a nonzero bounded

linear operator, and let Fi : Gi → Gi be a firmly nonexpansive operator. The task is to

Find x ∈ C such that (∀y ∈ C)
∑
i∈I

ωi〈Li(y − x) | Fi(Lix)− pi〉 > 0. (1.7)

It is shown in Chapter 4 that Problem 1.1.5 captures classical relaxations of inconsistent

convex feasibility problems, e.g., the least-squares relaxation [9], as a special case.

Fixed point theory and monotone operator theory are used in a slightly different context in

Chapter 5, where we transition from enforcing nonlinear equations to analyzing block-iterative

algorithms for solving fully nonsmooth multicomponent convex minimization problems. While

algorithms for optimization problems with at least one smooth term in the objective function

are well-understood, few block-activated methods are available for the fully-nonsmooth case,
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and their relative merits have not been thoroughly investigated. It is determined that only two

block-activated algorithms [11, 12] possess a list of desirable features needed for large-scale

applications. For the first time, the merits of both algorithms are analyzed and their numerical

performance is compared.

1.2 Organization

Chapter 2 presents a method for solving Problem 1.1.1, under the assumptions that J and K

are finite in the setting of a Euclidean space. This method is guaranteed to converge to an exact

solution of Problem 1.1.1 from any initial point. Several examples in signal and image processing

are used to demonstrate the process of proxification, by which we mean the replacement of

a nonlinear equation with an equivalent one involving a firmly nonexpansive operator. It is

shown that, even for transformations of the form (1.1) for which F is discontinuous or non-

Lipschitzian, there is frequently an equivalent formulation involving a firmly nonexpansive

operator. A relaxation for Problem 1.1.1 is introduced as well.

While Chapter 2 has several examples of proxification, Chapter 3 develops in Section 3.2.2

generic strategies for constructing and modeling prescribed proximal points, i.e., extending the

notion of “proxification” from Chapter 2. In Section 3.2.3, a new best approximation algorithm

is proposed and proven to converge strongly; it is then used to solve Problem 1.1.3. Additionally,

Remark 3.2.25(ii) provides an algorithm to solve Problem 1.1.1 in full generality.

Chapter 4 contains a detailed analysis of Problem 1.1.5 including common, mild, and

verifiable guarantees of existence of its solutions. An efficient block-iterative algorithm for the

solution of Problem 1.1.5 is presented. Finally, the theory of proxification from the previous

chapters is extended with new results concerning matrix-valued and hypomonotone operators.

Chapter 5 concerns solving large-scale multicomponent nonsmooth optimization problems.

It is determined that there are apparently only two algorithms possessing all of our required

features for this class of problems. The merits of both algorithms are compared, and their relative

numerical performance is evaluated in unexplored settings.

1.3 Main contributions

This work produced the articles [6,14–16]. The main contributions and novelties are outlined

below.

• A framework for modeling nonlinear equations with firmly nonexpansive operators. This

class is shown to capture to many nonlinearities in applications, even when an observation

operator fails to be continuous. (Chapters 2, 3, and 4)

• Provenly-convergent algorithms in the real Hilbert space setting for enforcing a countable

number of closed convex set constraints and a countable number of firmly nonexpansive

nonlinear equations of the form (1.1) in Problem 1.1.1 and Problem 1.1.3. (Chapter 3)
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• A best approximation algorithm for solving Problem 1.1.3 which is block-iterative, strongly

convergent, and whose extrapolation strategy is more general than other methods in

the literature. This extrapolation strategy is shown numerically to significantly improve

performance. (Chapter 3)

• Problem 1.1.5 is developed and shown to be a relaxation of Problem 1.1.4 in the sense

that both problems are equivalent when Problem 1.1.4 has a solution. (Chapters 2 and 4)

• Existence theory showing that Problem 1.1.5 possess solutions under several mild and

easily verifiable conditions. (4)

• A operator-theoretic methodology for promoting properties such as sparsity or smoothness

in a solution. (Chapter 4)

• Block-activated fully proximal splitting algorithms for convex minimization are investigated

in previously-unexplored settings. (Chapter 5)

• Throughout the thesis, theoretical and numerical aspects of this work are demonstrated by

applications in bandlimited extrapolation, source separation, phase reconstruction, matrix

completion, compression, sparse signal recovery, minimal-norm interpolation, classification

problems in data science, image interpolation, image super-resolution, image deblurring,

signal declipping, and multi-objective minimization.
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Chapter 2
A FIXED POINT FRAMEWORK FOR
RECOVERING SIGNALS FROM
NONLINEAR TRANSFORMATIONS

2.1 Introduction and context

This chapter solves the feasibility Problem 1.1.1 and demonstrates its applications in concrete

problems from signal processing. The methods introduced here are further generalized in the

setting of best-approximation problems in Chapter 3. The inconsistent formulation presented in

Section 2.2.4 is later generalized in Chapter 4.

This chapter presents the following article.

P. L. Combettes and Z. C. Woodstock, A fixed point framework for recovering

signals from nonlinear transformations, Proceedings of the 2020 European Signal

Processing Conference, pp. 2120–2124. Amsterdam, The Netherlands, January

18–22, 2021.

2.2 Article: A fixed point framework for recovering signals from

nonlinear transformations

Abstract. We consider the problem of recovering a signal from nonlinear transformations, under

convex constraints modeling a priori information. Standard feasibility and optimization methods

are ill-suited to tackle this problem due to the nonlinearities. We show that, in many common

applications, the transformation model can be associated with fixed point equations involving

firmly nonexpansive operators. In turn, the recovery problem is reduced to a tractable common

fixed point formulation, which is solved efficiently by a provably convergent, block-iterative
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algorithm. Applications to signal and image recovery are demonstrated. Inconsistent problems

are also addressed.

2.2.1 Introduction

Under consideration is the general problem of recovering an original signal x in a Euclidean

space H from a finite number of transformations (rk)k∈K of the form

rk = Rkx ∈ Gk, (2.1)

where Rk : H → Gk is an operator mapping the solution space H to the Euclidean space Gk. In

addition to these transformations, some a priori constraints on x are available in the form of a

finite family of closed convex subsets (Cj)j∈J of H [4,14,17,18,20]. Altogether, the recovery

problem is to

find x ∈
⋂
j∈J

Cj such that (∀k ∈ K) Rkx = rk. (2.2)

One of the most classical instances of this formulation was proposed by Youla in [19], namely

find x ∈ V1 such that projV2x = r2, (2.3)

where V1 and V2 are vector subspaces of H and projV2 is the projection operator onto V2.

As shown in [19], (2.3) covers many basic signal processing problems, such as band-limited

extrapolation or image reconstruction from diffraction data, and it can be solved with a simple

alternating projection algorithm. The extension of (2.3) to recovery problems with several

transformations modeled as linear projections rk = projVkx is discussed in [9,13]. More broadly,

if the operators (Rk)k∈K are linear, reliable algorithms are available to solve (2.2). In particular,

since the associated constraint set is an affine subspace with an explicit projection operator,

standard feasibility algorithms can be used [4]. Alternatively, proximal splitting methods can be

considered; see [6] and its references.

In the present paper we consider the general situation in which the operators (Rk)k∈K

in (2.1) are not necessarily linear, a stark departure from common assumptions in signal

recovery problems. Examples of such nonlinearly generated data (rk)k∈K in (2.1) include hard-

thresholded wavelet coefficients of x, the positive part of the Fourier transform of x, a mixture

of best approximations of x from closed convex sets, a maximum a posteriori denoised version

of x, or measurements of x acquired through nonlinear sensors.

A significant difficulty one faces in the nonlinear context is that the constraint (2.1) is

typically not representable by an exploitable convex constraint; see, e.g., [2, 3]. As a result,

finding a solution to (2.2) with a provenly convergent and numerically efficient algorithm

is a challenging task. In particular, standard convex feasibility algorithms are not applicable.

Furthermore, variational relaxations involving a penalty of the type
∑

k∈K φk(‖Rkx − rk‖)

12



typically lead to nonconvex problems, even for choices as basic as φk = | · |2 and Rk taken as the

projection operator onto a closed convex set.

Our strategy to solve (2.2) is to forego the feasibility and optimization approaches in favor of

the flexible and unifying framework of fixed point theory. Our first contribution is to show that,

while Rk in (2.1) may be a very badly conditioned (possibly discontinuous) operator, common

transformation models can be reformulated as fixed point equations with respect to an operator

with much better properties, namely a firmly nonexpansive operator. Next, using a suitable

modeling of the constraint sets (Cj)j∈J , we rephrase (2.2) as an equivalent common fixed

point problem and solve it with a reliable and efficient extrapolated block-iterative fixed point

algorithm. This strategy is outlined in Section 2.2.2, where we also provide the algorithm. In

Section 2.2.3, we present several numerical illustrations of the proposed framework to nonlinear

signal and image recovery. Finally, inconsistent problems are addressed in Section 2.2.4.

2.2.2 Fixed point model and algorithm

For background on the tools from fixed point theory and convex analysis used in this section, we

refer the reader to [1]. Let us first recall that an operator T : H → H is firmly nonexpansive if

(∀x ∈ H)(∀y ∈ H) ‖Tx− Ty‖2 6 ‖x− y‖2 − ‖(Id −T )x− (Id −T )y‖2, (2.4)

and firmly quasinonexpansive if

(∀x ∈ H)(∀y ∈ FixT ) 〈y − Tx | x− Tx〉 6 0, (2.5)

where FixT =
{
x ∈ H

∣∣ Tx = x
}

. Finally, the subdifferential of a convex function f : H → R at

x ∈ H is

∂f(x)=
{
u ∈ H

∣∣(∀y ∈ H) 〈y − x | u〉+ f(x)6f(y)
}
. (2.6)

As discussed in Section 2.2.1, the transformation model (2.1) is too general to make finding a

solution to (2.2) via a provenly convergent method possible. We therefore assume the following.

Assumption 2.2.1 The problem (2.2) has at least one solution, J ∩K = ∅, and the following
hold:

(i) For every k ∈ K, Sk : Gk → H is an operator such that Sk ◦Rk is firmly nonexpansive and(
∀x ∈

⋂
j∈J

Cj

)
Sk(Rkx) = Skrk ⇒ Rkx = rk. (2.7)

(ii) For every j ∈ J1 ⊂ J , the operator projCj
is easily implementable.

(iii) For every j ∈ J r J1, fj : H → R is a convex function such that Cj =
{
x ∈ H

∣∣ fj(x) 6 0
}

.

13



In view of Assumption 2.2.1(i), let us replace (2.2) by the equivalent problem

find x ∈
⋂
j∈J

Cj such that (∀k ∈ K) Sk(Rkx) = Skrk. (2.8)

Concrete examples of suitable operators (Sk)k∈K will be given in Section 2.2.3 (see also [10]).

The motivation behind (2.8) is that it leads to a tractable fixed point formulation. To see this, set

(∀k ∈ K) Tk = Skrk + Id −Sk ◦Rk (2.9)

and let x ∈
⋂
j∈J Cj . Then, for every k ∈ K, (2.1)⇔ Sk(Rkx) = Skrk ⇔ x = Skrk+x−Sk(Rkx)

⇔ x ∈ FixTk. A key observation at this point is that (2.4) implies that the operators (Tk)k∈K are

firmly nonexpansive, hence firmly quasinonexpansive.

If j ∈ J1, per Assumption 2.2.1(ii), the set Cj will be activated in the algorithm through the

use of the operator Tj = projCj
, which is firmly nonexpansive [1, Proposition 4.16]. On the

other hand, if j ∈ J r J1, the convex inequality representation of Assumption 2.2.1(iii) will lead

to an activation of Cj through its subgradient projector. Recall that the subgradient projection of

x ∈ H onto Cj relative to uj ∈ ∂fj(x) is

Tjx =


x− fj(x)

‖uj‖2
uj , if fj(x) > 0;

x, if fj(x) 6 0,

(2.10)

and that Tj is firmly quasinonexpansive, with FixTj = Cj [1, Proposition 29.41]. The advantage

of the subgradient projector onto Cj is that, unlike the exact projector, it does not require

solving a nonlinear best approximation problem, which makes it much easier to implement in

the presence of convex inequality constraints [5]. Altogether, (2.2) is equivalent to the common

fixed point problem

find x ∈
⋂

i∈J∪K
FixTi, (2.11)

where each Ti is firmly quasinonexpansive. This allows us to solve (2.2) as follows.

Theorem 2.2.2 [10] Consider the setting of problem (2.2) under Assumption 2.2.1. Let x0 ∈ H,
let 0 < ε < 1/card(J ∪K), and set (∀k ∈ K) pk = Skrk and Fk = Sk ◦Rk. Iterate
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for n = 0, 1, . . .

∅ 6= In ⊂ J ∪K
{ωi,n}i∈In ⊂ [ε, 1],

∑
i∈In ωi,n = 1

for every i ∈ In

if i ∈ J1⌊
yi,n = projCi

xn − xn
if i ∈ J r J1
ui,n ∈ ∂fi(xn)

yi,n =


− fi(xn)

‖ui,n‖2
ui,n if fi(xn) > 0

0, if fi(xn) 6 0

else
byi,n = pi − Fixn
νi,n = ‖yi,n‖

νn =
∑

i∈In ωi,nν
2
i,n

if νn = 0⌊
xn+1 = xn

else
yn =

∑
i∈In ωi,nyi,n

Λn = νn/‖yn‖2

λn ∈ [ε, (2− ε)Λn]

xn+1 = xn + λnyn.

(2.12)

Suppose that there exists an integer M > 0 such that

(∀n ∈ N)

M−1⋃
m=0

In+m = J ∪K. (2.13)

Then (xn)n∈N converges to a solution to (2.2).

When K = ∅, (2.12) coincides with the extrapolated method of parallel subgradient projec-

tions (EMOPSP) of [5]. It has in addition the ability to incorporate the constraints (2.1), while

maintaining the attractive features of EMOPSP. First, it can process the operators in blocks of vari-

able size. The control scheme (2.13) just imposes that every operator be activated at least once

within any M consecutive iterations. Second, because the extrapolation parameters (Λn)n∈N can

attain large values in [1,+∞[, large steps are possible, which lead to fast convergence compared

to standard relaxation schemes, where Λn ≡ 1.

2.2.3 Applications

We illustrate several instances of (2.2), develop tractable reformulations of the form (2.8),

and solve them using (2.12), where x0 = 0 and the relaxation strategy is that recommended
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in [4, Chapter 5], namely

(∀n ∈ N) λn =

Λn/2, if n = 0 mod 3;

1.99Λn, otherwise.
(2.14)

2.2.3.1 Restoration from distorted signals

The goal is to recover the original form of the N -point (N = 2048) signal x from the following

(see Fig. 2.1):

• A bound γ1 on the energy of the finite differences of x, namely ‖Dx‖ 6 γ1, where

D : (ξi)i∈{0,...,N−1} 7→ (ξi+1 − ξi)i∈{0,...,N−2}. The bound is given from prior information as

γ1 = 1.17.

• A distortion r2 = R2x, where R2 clips componentwise to [−γ2, γ2] (γ2 = 0.1) [16, Sec-

tion 10.5].

• A distortion r3 = R3x of a low-pass version of x, where R3 = Q3 ◦ L3. Here L3 ban-

dlimits by zeroing all but the 83 lowest-frequency coefficients of the Discrete Fourier

Transform, and Q3 induces componentwise distortion via the operator [16, Section 10.6]

θ3 = (2/π) arctan(γ3 ·), where γ3 = 10 (see Fig. 2.2).

16



0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000
−1

−0.5

0

0.5

1

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000

−0.1

0

0.1

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000

−1

−0.5

0

0.5

1

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000
−1

−0.5

0

0.5

1

Figure 2.1 Signals in Section 2.2.3.1. Top to bottom: original signal x, distorted signal r2, distorted
signal r3, recovered signal.

The solution space is the standard Euclidean space H = RN . To formulate the recovery problem

as an instance of (2.2), set J = {1}, J1 = ∅, K = {2, 3}, and C1 =
{
x ∈ H

∣∣ f1(x) 6 0
}

, where
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f1 = ‖D · ‖ − γ1. Then the objective is to

find x ∈ C1 such that R2x = r2 and R3x = r3. (2.15)

Next, let us verify that Assumption 2.2.1(i) is satisfied. On the one hand, sinceR2 is the projection

onto the closed convex set [−γ2, γ2]N , it is firmly nonexpansive, so we set S2 = Id . On the other

hand, if we set S3 = γ−1
3 L3, then S3 ◦ R3 is firmly nonexpansive and satisfies (2.7) [10]. We

thus obtain an instance of (2.8), to which we apply (2.12) with (2.14) and (∀n ∈ N) In = J ∪K
and (∀i ∈ In) ωi,n = 1/3. The recovered signal shown in Fig. 2.1 effectively incorporates the

information from the prior constraint and the nonlinear distortions.

1

−1

Figure 2.2 Distortion operator θ3 in Section 2.2.3.1.

2.2.3.2 Reconstruction from thresholded scalar products

The goal is to recover the original form of the N -point (N = 1024) signal x shown in Fig. 2.3

from thresholded scalar products (rk)k∈K given by

(∀k ∈ K) rk = Rkx, withRk : H → R : x 7→ Qγ〈x | ek〉, (2.16)

where

• (ek)k∈K is a collection of normalized vectors in RN with zero-mean i.i.d. entries.

• Qγ (γ = 0.05) is the thresholding operator

Qγ : ξ 7→

sign (ξ)
√
ξ2 − γ2, if |ξ| > γ;

0, if |ξ| 6 γ
(2.17)

of [15] (see Fig. 2.4).
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• K = {1, . . . ,m}, where m = 1200.

The solution space H is the standard Euclidean space RN , and (2.16) gives rise to the special

case of (2.2)

find x ∈ H such that (∀k ∈ K) rk = Qγ〈x | ek〉, (2.18)

in which J = ∅.
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Figure 2.3 Original signal x (top) and recovery (bottom) in Section 2.2.3.2.

Note that the standard soft-thresholder on [−γ, γ] can be written as

softγ : ξ 7→ sign (Qγξ)

(√
(Qγξ)2 + γ2 − γ

)
. (2.19)

To formulate (2.8) we set, for every k ∈ K,

Sk : R→ H : ξ 7→ sign (ξ)
(√

ξ2 + γ2 − γ
)
ek, (2.20)

which fulfills Assumption 2.2.1(i) and yields Sk ◦Rk = ( softγ 〈· | ek〉)ek [10]. We apply (2.12)
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with (2.14) and the following control scheme. We split K into 12 blocks of 100 consecutive

indices, and select In by periodically sweeping through the blocks, hence satisfying (2.13) with

M = 12. Moreover, ωi,n ≡ 1/100. The reconstructed signal shown in Fig. 2.3 illustrates the

ability of the proposed approach to effectively exploit nonlinearly generated data.

γ

−γ

Figure 2.4 The thresholder (2.17) of [15] (red) and the soft thresholder (blue) used in Section 2.2.3.2.

2.2.3.3 Image recovery

The goal is to recover the N ×N (N = 256) image x from the following (see Fig. 2.5):

• The Fourier phase ∠DFT (x) (DFT (x) denotes the 2D Discrete Fourier Transform of x).

• The pixel values of x reside in [0, 255].

• An upper bound γ3 on the total variation tv(x) [8]. In this experiment, γ3 = 1.2 tv(x) =

1.10× 106.

• A compressed representation r4 = R4x. Here, R4 = Q4 ◦W , where W is the 2D Haar

wavelet transform and Q4 performs componentwise hard-thresholding via (ρ = 325)

(∀ξ ∈ R) hardρ ξ =

ξ, if |ξ| > ρ;

0, if |ξ| 6 ρ.
(2.21)

• A down-sampled blurred image r5 = R5x. Here R5 = Q5 ◦ H5, where the linear oper-

ator H5 : RN×N → RN×N convolves with a 5 × 5 Gaussian kernel with variance 1, and

Q5 : RN×N → R8×8 maps the average of each of the 64 disjoint 32×32 blocks of an N ×N
image to a representative pixel in an 8× 8 image [12].

The solution space is H = RN×N equipped with the Frobenius norm ‖ · ‖. To cast the re-

covery task as an instance of (2.2), we set J = {1, 2, 3}, J1 = {1, 2}, K = {4, 5}, C1 =
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{
x ∈ H

∣∣ ∠DFT (x) = ∠DFT (x)
}

, C2 = [0, 255]N×N , f3 = tv−γ3, and C3 =
{
x ∈ H

∣∣ f3(x) 6 0
}

.

Expressions for projC1
and ∂f3 are provided in [11] and [8], respectively. The objective is to

find x ∈
3⋂
j=1

Cj such that

R4x = r4;

R5x = r5.
(2.22)

Let us verify that Assumption 2.2.1(i) holds. For every ξ ∈ R,

softρ ξ = hardρ ξ +


−ρ, if hardρ ξ > ρ;

0, if − ρ 6 hardρ ξ 6 ρ;

ρ, if hardρ ξ < −ρ.

(2.23)
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(a) (b)

(c) (d)

Figure 2.5 Images from Section 2.2.3.3. (a) Original image x. (b) Compressed image W ∗r4. (c) Down-
sampled 8× 8 image r5. (d) Recovered image.

We construct S4 such that S4◦R4 = W−1◦T ◦W , where T applies softρ componentwise. In turn,

recalling that r4 is the result of hard-thresholding, S4r4 is built by first adding the quantity on the

right-hand side of (2.23) to r4 componentwise, and then applying the inverse Haar transform.

This guarantees that S4 satisfies Assumption 2.2.1(i) [10]. Next, we let D5 ⊂ H be the subspace

of 32× 32-block-constant matrices and construct an operator S5 satisfying Assumption 2.2.1(i)

and the identity S5 ◦R5 = H5 ◦ projD5
◦H5 [10]. In turn, S5r5 = H5s5, where s5 ∈ D5 is built

by repeating each pixel value of r5 in the block it represents. We thus arrive at an instance of
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(2.8), which we solve using (2.12) with (2.14) and

(∀n ∈ N) In = J ∪K and (∀i ∈ In) ωi,n = 1/5. (2.24)

The resulting image displayed in Fig. 2.5(d) shows that our framework makes it possible to

exploit the information from the three prior constraints and from the transformations r4 and r5

to obtain a quality recovery.

2.2.4 Inconsistent problems

Inaccuracies and unmodeled dynamics may cause (2.2) to admit no solution. In such instances,

we propose the following relaxation for (2.2) [10].

Assumption 2.2.3 For every j ∈ J , the operator projCj
is easily implementable and, for every

k ∈ K, Assumption 2.2.1(i) holds. In addition, {ωj}j∈J ⊂ ]0, 1] and {ωk}k∈K ⊂ ]0, 1] satisfy∑
j∈J ωj +

∑
k∈K ωk = 1.

Under Assumption 2.2.3, the goal is to

find x ∈ H such that
∑
j∈J

ωj(x− projCj
x) +

∑
k∈K

ωk(SkRkx− Skrk) = 0. (2.25)

When K = ∅, the solutions of (2.25) are the minimizers of the least squared-distance proximity

function
∑

j∈J ωjd
2
Cj

[4]. If (2.2) does have solutions, then it is equivalent to (2.25). The

algorithm of [7] can be used to solve (2.25) block-iteratively.
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Chapter 3
RECONSTRUCTION OF FUNCTIONS
FROM PRESCRIBED PROXIMAL
POINTS

3.1 Introduction and context

The main contribution in this chapter is developing constructive techniques for modeling

nonlinear equations with firmly nonexpansive operators. This approach is shown to capture

many applications and leads to provenly-convergent solution algorithms. These techniques

capture the specific instances of proxification in Chapter 2 as a special case. We also design a new

algorithm for solving the best approximation Problem 1.1.3. As will be seen in Remark 3.2.25(ii),

this chapter also extends the work of Chapter 2 by presenting a method for solving Problem 1.1.1

in the Hilbert space setting with a countable number of requirements.

This chapter presents the following article.

P. L. Combettes and Z. C. Woodstock, Reconstruction of functions from prescribed

proximal points, Journal of Approximation Theory, resubmitted with minor revi-

sions.

3.2 Article: Reconstruction of functions from prescribed proximal

points

Dedicated to the memory of Noli N. Reyes (1963–2020)

Abstract. Under investigation is the problem of finding the best approximation of a function

in a Hilbert space subject to convex constraints and prescribed nonlinear transformations. We

show that in many instances these prescriptions can be represented using firmly nonexpansive
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operators, even when the original observation process is discontinuous. The proposed framework

thus captures a large body of classical and contemporary best approximation problems arising

in areas such as harmonic analysis, statistics, interpolation theory, and signal processing. The

resulting problem is recast in terms of a common fixed point problem and solved with a new

block-iterative algorithm that features approximate projections onto the individual sets as well

as an extrapolated relaxation scheme that exploits the possible presence of affine constraints. A

numerical application to signal recovery is demonstrated.

3.2.1 Introduction

Let H be a real Hilbert space with scalar product 〈· | ·〉 and associated norm ‖ · ‖, let x0 ∈ H, let

U and V be closed vector subspaces of H with projection operators projU and projV , respectively,

and let p ∈ V . The basic best approximation problem

minimize ‖x− x0‖ subject to x ∈ U and projV x = p (3.1)

covers a wide range of scenarios in areas such as harmonic analysis, signal processing, interpo-

lation theory, and optics [3,22,32,35,38,40,43,52,59]. In this setting, a function of interest

x ∈ H is known to lie in the subspace U and its projection p onto the subspace V is known. The

goal of (3.1) is then to find the best approximation to x0 that is compatible with these two pieces

of information. For example, band-limited extrapolation [49] aims at recovering a minimum

energy band-limited function x ∈ H = L2(R) from the knowledge of its values on an interval

A. This corresponds to the instance of (3.1) in which x0 = 0, V is the subspace of functions

vanishing outside of A, U is the subspace of functions with Fourier transform supported by a

compact interval around the origin, and p = 1Ax, where 1A denotes the characteristic function

of A. As shown in [59], if (3.1) is feasible (see [22] for necessary and sufficient conditions),

then the sequence (xn)n∈N constructed by iterating

(∀n ∈ N) xn+1 = p+ projUxn − projV (projUxn) (3.2)

converges strongly to its solution. The extension of (3.1) to finitely many vector subspaces

(Uj)j∈J and (Vk)k∈K investigated in [22] is to

minimize ‖x−x0‖ subject to x ∈
⋂
j∈J

Uj and (∀k ∈ K) projVkx = pk, where pk ∈ Vk, (3.3)

and it can be solved using affine projection methods. In many applications, the constraint

sets [12–14, 17, 27, 30, 41, 48] or the operators yielding the prescribed values (pk)k∈K [2, 7,

31, 39, 51, 57, 58] may not be linear. Our objective is to extend the linear formulation (3.3)

by employing closed convex constraint subsets (Cj)j∈J , together with prescriptions (pk)k∈K
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resulting from nonlinear operators (Fk)k∈K , i.e.,

minimize ‖x− x0‖ subject to x ∈
⋂
j∈J

Cj and (∀k ∈ K) Fkx = pk. (3.4)

In view of (3.3), projection operators onto closed convex sets constitute a natural class of

candidates for the operators (Fk)k∈K . For instance, in [51,54,58], Fk is the projection operator

onto a hypercube. However, many prescriptions (pk)k∈K found in the literature, in particular

those of [7,31,39,57], do not reduce to best approximations from closed convex sets, and a more

general formalism must be considered to represent them. A generalization of the notion of a best

approximation was proposed by Moreau [44], who called the proximal point of x ∈ H relative

to a proper lower semicontinuous convex function fk : H → ]−∞,+∞] the unique minimizer

pk ∈ H of the function

y 7→ fk(y) +
1

2
‖x− y‖2, (3.5)

and wrote pk = proxfkx. This mechanism defines the proximity operator proxfk : H → H of

fk. The case of a projector onto a nonempty closed convex set Dk ⊂ H is recovered by letting

fk = ιDk
, where

(∀x ∈ H) ιDk
(x) =

0, if x ∈ Dk;

+∞, if x /∈ Dk

(3.6)

is the indicator function of Dk. Proximity operators were initially motivated by applications

in mechanics [9, 45, 47] and have become a central tool in the analysis and the numerical

solution of numerous data processing tasks [21, 23]. We shall see later that they also model

various nonlinear observation processes. The properties of proximity operators are detailed

in [5, Chapter 24], among which is the fact that the operator proxfk can be expressed as the

resolvent of the subdifferential of fk, that is, proxfk = (Id +∂fk)
−1, where

(∀x ∈ H) ∂fk(x) =
{
u ∈ H

∣∣ (∀y ∈ H) 〈y − x | u〉+ fk(x) 6 fk(y)
}
. (3.7)

As shown by Moreau [46], the set-valued operator Ak = ∂fk is maximally monotone, i.e.,

(∀x ∈ H)(∀u ∈ H)
[
u ∈ Akx ⇔ (∀y ∈ H)(∀v ∈ Aky) 〈x− y | u− v〉 > 0

]
. (3.8)

This property prompted Rockafellar [53] to generalize the notion of a proximal point as follows:

given a maximally monotone set-valued operator Ak : H → 2H, the proximal point of x ∈ H
relative to Ak is the unique point pk ∈ H such that x − pk ∈ Akpk, i.e., pk = JAk

x, where

JAk
= (Id +Ak)

−1 : H → H is the resolvent of Ak. As stated in [5, Corollary 23.9], a remarkable

consequence of Minty’s theorem [42] is that an operator Fk : H → H is the resolvent of a

maximally monotone operator Ak : H → 2H if and only if it is firmly nonexpansive, meaning that

(∀x ∈ H)(∀y ∈ H) ‖Fkx− Fky‖2 + ‖(Id −Fk)x− (Id −Fk)y‖2 6 ‖x− y‖2. (3.9)
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In view of this equivalence, we call pk a proximal point of x ∈ H relative to a firmly nonexpansive

operator Fk : H → H if pk = Fkx. As we shall show in Section 3.2.2, firmly nonexpansive

operators constitute a powerful device to represent a variety of nonlinear processes to generate

the prescriptions (pk)k∈K in (3.4). In light of these considerations, we propose to investigate the

following nonlinear best approximation framework.

Problem 3.2.1 Let x0 ∈ H and let J and K be at most countable sets such that J ∩ K = ∅
and J ∪K 6= ∅. For every j ∈ J , let Cj be a closed convex subset of H and, for every k ∈ K,

let pk ∈ H and let Fk : H → H be a firmly nonexpansive operator. Suppose that there exists

x ∈
⋂
j∈J Cj such that (∀k ∈ K) Fkx = pk. The task is to

minimize ‖x− x0‖ subject to x ∈
⋂
j∈J

Cj and (∀k ∈ K) Fkx = pk. (3.10)

In Problem 3.2.1, the function of interest lies in the intersection of the sets (Cj)j∈J , and its

proximal points (pk)k∈K relative to firmly nonexpansive operators (Fk)k∈K are prescribed. The

objective is to obtain the best approximation to a function x0 ∈ H from the set of functions

which satisfy these properties.

As noted above, the numerical solution of the linear problem (3.3) is rather straightforward

with existing projection techniques, while characterizing the existence of solutions for any

choices of the prescribed values (pk)k∈K – the so-called inverse best approximation property – is

a more challenging task that was carried out in [22]. In the nonlinear setting, this property is of

limited interest since it fails in simple scenarios [22, Remark 1.2]. Our objectives in the present

paper are to demonstrate the far reach and the versatility of Problem 3.2.1, and to devise an

efficient and flexible numerical method to solve it.

The remainder of the paper consists of four sections. In Section 3.2.2, we show the ability of

our proximal point modeling to capture a variety of observation processes arising in practice,

including some which result from discontinuous operators. In Section 3.2.3, we propose a

new block-iterative algorithm to construct the best approximation to a reference point from a

countable intersection of closed convex sets. The algorithm features approximate projections

onto the individual sets as well as an extrapolated relaxation scheme that exploits the possible

presence of affine subspaces in the constraint sets (Cj)j∈J . In Section 3.2.4, Problem 3.2.1 is

rephrased in terms of a common fixed point problem and the algorithm of Section 3.2.3 is used

to solve it. A numerical illustration of our framework is presented in Section 3.2.5.

Notation. H is a real Hilbert space with scalar product 〈· | ·〉, associated norm ‖ · ‖, and identity

operator Id . The family of all subsets of H is denoted by 2H. The expressions xn ⇀ x and

xn → x denote, respectively, the weak and the strong convergence of a sequence (xn)n∈N to x

in H. The distance function to a subset C of H is denoted by dC . Γ0(H) is the class of all lower

semicontinuous convex functions from H to ]−∞,+∞] which are proper in the sense that they

are not identically +∞. The conjugate of f ∈ Γ0(H) is denoted by f∗ and the infimal convolution

operation by � . The set of fixed points of an operator T : H → H is FixT =
{
x ∈ H

∣∣ Tx = x
}

.
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The Hilbert direct sum of a family of real Hilbert spaces (Hi)i∈I is denoted by
⊕

i∈IHi. For

background on convex and nonlinear analysis, see [5].

3.2.2 Prescribed values as proximal points

We illustrate the fact that the proximal model adopted in Problem 3.2.1 captures a wealth of

scenarios encountered in various areas to represent information on the ideal underlying function

x ∈ H obtained through some observation process. We discuss firmly nonexpansive observation

processes in Section 3.2.2.1 and cocoercive ones in Section 3.2.2.2. In Section 3.2.2.3, we move

to more general models in which the operators need not be Lipschitzian or even continuous.

3.2.2.1 Prescriptions derived from firmly nonexpansive operators

We start with an instance of a proximal point prescription arising in a decomposition setting.

Proposition 3.2.2 Let (Hi)i∈I be an at most countable family of real Hilbert spaces, let H =⊕
i∈IHi, let x ∈ H, and let (xi)i∈I be its decomposition, i.e., (∀i ∈ I) xi ∈ Hi. For every i ∈ I,

let Fi : Hi → Hi be a firmly nonexpansive operator. If I is infinite, suppose that there exists
z = (zi)i∈I ∈ H such that

∑
i∈I ‖Fizi − zi‖2 < +∞. Set F : H → H : x = (xi)i∈I 7→ (Fixi)i∈I and

p = (Fixi)i∈I. Then p is the proximal point of x relative to F .

Proof. If I is infinite, we have

(∀x ∈ H)
1

3

∑
i∈I
‖Fixi‖2 6

∑
i∈I
‖Fixi − Fizi‖2 +

∑
i∈I
‖Fizi − zi‖2 +

∑
i∈I
‖zi‖2

6
∑
i∈I
‖xi − zi‖2 +

∑
i∈I
‖Fizi − zi‖2 + ‖z‖2

= ‖x− z‖2 +
∑
i∈I
‖Fizi − zi‖2 + ‖z‖2

< +∞. (3.11)

This shows that, in all cases, F is well defined and p ∈ H. Furthermore,

(∀x ∈ H)(∀y ∈ H) ‖Fx− Fy‖2 =
∑
i∈I
‖Fixi − Fiyi‖2

6
∑
i∈I
‖xi − yi‖2 −

∑
i∈I
‖(Id− Fi)xi − (Id− Fi)yi‖2

= ‖x− y‖2 − ‖(Id −F )x− (Id −F )y‖2. (3.12)

Thus, F is firmly nonexpansive.

Corollary 3.2.3 Let (Hi)i∈I be an at most countable family of real Hilbert spaces, let H =
⊕

i∈I Hi,
let x ∈ H, and let (xi)i∈I be its decomposition. For every i ∈ I, let fi ∈ Γ0(Hi) and, if I is infinite,
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suppose that fi > 0 = fi(0). Then p = (proxfixi)i∈I is a proximal point of x, namely, p = proxfx,
where f : H → ]−∞,+∞] : x = (xi)i∈I 7→

∑
i∈I fi(xi).

Proof. We first note that f is proper since the functions (fi)i∈I are. Furthermore, we observe that,

for every i ∈ I, the function fi : H → ]−∞,+∞] : x 7→ fi(xi) lies in Γ0(H). We therefore derive

from [5, Corollary 9.4] that f =
∑

i∈I fi is lower semicontinuous and convex. This shows that

f ∈ Γ0(H) and consequently that proxf is well defined. For every i ∈ I, let us introduce the

firmly nonexpansive operator Fi = proxfi . If I is infinite, since 0 is a minimizer of each of the

functions (fi)i∈I, we derive from [5, Proposition 12.29] that (∀i ∈ I) proxfi0 = 0. In turn, the

condition
∑

i∈I ‖Fizi − zi‖2 < +∞ holds with (∀i ∈ I) zi = 0. In view of Proposition 3.2.2, p is

the proximal point of x relative to F : H → H : x 7→ (proxfixi)i∈I. Finally, since

f(proxfx) +
1

2
‖x− proxfx‖2 = min

y∈H

(
f(y) +

1

2
‖x− y‖2

)
= min

y∈H

∑
i∈I

(
fi(yi) +

1

2
‖xi − yi‖2

)
=
∑
i∈I

min
yi∈Hi

(
fi(yi) +

1

2
‖xi − yi‖2

)
=
∑
i∈I

(
fi(proxfixi) +

1

2
‖xi − proxfixi‖

2

)
= f(p) +

1

2
‖x− p‖2, (3.13)

we conclude that p = proxfx.

Corollary 3.2.4 Suppose that H is separable, let (ei)i∈I be an orthonormal basis of H, and let
x ∈ H. For every i ∈ I, let βi ∈ ]0,+∞[ and let %i : R→ R be increasing and 1/βi-Lipschitzian. If I
is infinite, suppose that (∀i ∈ I) %i(0) = 0. Then p =

∑
i∈I βi%i(〈x | ei〉)ei is a proximal point of x.

Proof. For every i ∈ I, βi%i is increasing and nonexpansive, hence firmly nonexpansive. We

then deduce from Proposition 3.2.2 that Φ: `2(I) → `2(I) : (ξi)i∈I 7→ (βi%i(ξi))i∈I is firmly

nonexpansive. Now set L : H → `2(I) : x 7→ (〈x | ei〉)i∈I and F = L∗ ◦ Φ ◦ L. Since ‖L‖ = 1, it

follows from [5, Corollary 4.13] that F is firmly nonexpansive. This shows that p = L∗(Φ(Lx))

is the proximal point of x relative to F .

Example 3.2.5 In the context of Corollary 3.2.4, for every i ∈ I, let ωi ∈ [0, 1], let ηi ∈ ]0,+∞[,

let δi ∈ ]0,+∞[, and set %i : ξ 7→ (2ωi/π)arctan(ηi ξ)+(1−ωi)sign (ξ)(1−exp(−δi|ξ|)). Then, for

every i ∈ I, %i is increasing and (2ωiηi/π + (1− ωi)δi)-Lipschitzian with %i(0) = 0. The resulting

proximal point

p =
∑
i∈I

%i(〈x | ei〉)
(2ωiηi/π + (1− ωi)δi

ei (3.14)

models a parallel distortion of the original signal x [56, Sections 10.6 & 13.5].
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Example 3.2.6 (shrinkage) In signal processing and statistics, a powerful idea is to decompose

a function x ∈ H in an orthonormal basis (ei)i∈I and to transform the coefficients of the

decomposition to construct nonlinear approximations with certain attributes such as sparsity

[11,20,23,25,26,28,55]. As noted in [23], a broad model in this context is

p =
∑
i∈I

(
proxφi〈x | ei〉

)
ei (3.15)

where, for every i ∈ I, the function φi ∈ Γ0(R) satisfies φi > 0 = φi(0) and models prior

information on the coefficient 〈x | ei〉. The problem is then to reconstruct x given its shrunk

version p. For instance, in the classical work of [28], (ei)i∈I is a wavelet basis and (∀i ∈ I)
φi = ω| · |, with ω ∈ ]0,+∞[. This yields p =

∑
i∈I(sign (〈x | ei〉) max{|〈x | ei〉| − ω, 0})ei. In

general, to see that p in (3.15) is a proximal point of x, it suffices to apply Corollary 3.2.4 with,

for every i ∈ I, βi = 1 and %i = proxφi , whence %i(0) = 0 by [5, Proposition 12.29]. More

precisely, [5, Proposition 24.16] entails that p is the proximal point of x relative to the function

f : H → ]−∞,+∞] : x 7→
∑

i∈I φi(〈x | ei〉).

Example 3.2.7 (partitioning) Let (Ω,F, µ) be a measure space and let (Ωi)i∈I be an at most

countable F-partition of Ω. Let us consider the instantiation of Proposition 3.2.2 in which

H = L2(Ω,F, µ) and, for every i ∈ I, Hi = L2(Ωi,Fi, µ), where Fi =
{

Ωi ∩ S
∣∣ S ∈ F

}
. Let

x ∈ H and (∀i ∈ I) xi = x|Ωi . Moreover, for every i ∈ I, φi is an even function in Γ0(R) such

that φi(0) = 0 and φi 6= ι{0}, and we set ρi = max ∂φi(0). Then we derive from Corollary 3.2.3

and [8, Proposition 2.1] that the proximal point of x relative to f : x 7→
∑

i∈I φi(‖xi‖) is

p =
((

proxφi‖xi‖
)
uρi(xi)

)
i∈I
, where uρi : Hi → Hi : xi 7→

xi/‖xi‖, if ‖xi‖ > ρi;

0, if ‖xi‖ 6 ρi.
(3.16)

For each i ∈ I, this process eliminates the ith block xi if its norm is less than ρi ∈ ]0,+∞[.

Example 3.2.8 (group shrinkage) In Example 3.2.7, suppose that Ω = {1, . . . , N}, F = 2Ω,

and µ is the counting measure. ThenH is the standard Euclidean space RN , which is decomposed

in m factors as RN = RN1 × · · · × RNm , where
∑m

i=1Ni = N . Now suppose that (∀i ∈ I =

{1, . . . ,m}) φi = ρi| · |, where ρi ∈ ]0,+∞[. Then it follows from [5, Example 14.5] that the

proximal point p of (3.16) is obtained by group-soft thresholding the vector x = (x1, . . . , xm) ∈
RN , that is [60],

p =

((
1− ρ1

max{‖x1‖, ρ1}

)
x1, . . . ,

(
1− ρm

max{‖xm‖, ρm}

)
xm

)
. (3.17)
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3.2.2.2 Prescriptions derived from cocoercive operators

Let us first recall that, given a real Hilbert space G and β ∈ ]0,+∞[, an operator Q : G → G is

β-cocoercive if

(∀x ∈ G)(∀y ∈ G) 〈x− y | Qx−Qy〉 > β‖Qx−Qy‖2, (3.18)

which means that βQ is firmly nonexpansive [5, Section 4.2]. In the following proposition, a

proximal point is constructed from a finite family of nonlinear observations (qi)i∈I of linear

transformations of the function x ∈ H, where the nonlinearities are modeled via cocoercive

operators. Item (ii) below shows that this proximal point contains the same information as the

observations (qi)i∈I.

Proposition 3.2.9 Let (Gi)i∈I be a finite family of real Hilbert spaces and let x ∈ H. For every
i ∈ I, let βi ∈ ]0,+∞[, let Qi : Gi → Gi be βi-cocoercive, let Li : H → Gi be a nonzero bounded
linear operator, and define qi = Qi(Lix). Set

β =
1∑

i∈I

‖Li‖2

βi

, p = β
∑
i∈I

L∗i qi, and F = β
∑
i∈I

L∗i ◦Qi ◦ Li. (3.19)

Then the following hold:

(i) p is the proximal point of x relative to F .

(ii) (∀x ∈ H) Fx = p⇔ (∀i ∈ I) Qi(Lix) = qi.

Proof. (i): It is clear that p = Fx. In addition, the firm nonexpansiveness of F follows from [5,

Proposition 4.12].

(ii): Take x ∈ H such that Fx = p. Then Fx = Fx and (4.11) yields

0 =
〈Fx− Fx | x− x〉

β

=
∑
i∈I
〈Qi(Lix)−Qi(Lix) | Lix− Lix〉

>
∑
i∈I

βi‖Qi(Lix)−Qi(Lix)‖2

=
∑
i∈I

βi‖Qi(Lix)− qi‖2, (3.20)

and therefore (∀i ∈ I) Qi(Lix) = qi. The reverse implication is clear.

Next, we consider the case when the observations (qi)i∈I in Proposition 3.2.9 are obtained

through proximity operators.

Proposition 3.2.10 Let (Gi)i∈I be a finite family of real Hilbert spaces and let x ∈ H. For every i ∈ I,
let gi ∈ Γ0(Gi), let Li : H → Gi be a nonzero bounded linear operator, and define qi = proxgi(Lix).
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Suppose that β = 1/(
∑

i∈I ‖Li‖2), and set p = β
∑

i∈I L
∗
i qi and F = β

∑
i∈I L

∗
i ◦ proxgi ◦ Li. Then

the following hold:

(i) p is the proximal point of x relative to F .

(ii) (∀x ∈ H) Fx = p⇔ (∀i ∈ I) proxgi(Lix) = qi.

(iii) If β > 1, then

F = β proxf , where f =

(∑
i∈I

(
g∗i �

‖ · ‖2Gi
2

)
◦ Li

)∗
−
‖ · ‖2H

2
. (3.21)

Proof. (i)–(ii): Apply Proposition 3.2.9 with (∀i ∈ I) Qi = proxgi and βi = 1.

(iii): This follows from [18, Proposition 3.9].

Example 3.2.11 (scalar observations) We specialize the setting of Proposition 3.2.10 by as-

suming that, for some i ∈ I, Gi = R and Li = 〈· | ai〉, where 0 6= ai ∈ H. Let us denote by

χi = proxgi〈x | ai〉 the resulting observation. This scenario allows us to recover various nonlinear

observation processes used in the literature.

(i) Set gi = ιD, where D is a nonempty closed interval in R with δ = infD ∈ [−∞,+∞[ and

δ = supD ∈ ]−∞,+∞]. Then we obtain the hard clipping process

χi = projD〈x | ai〉 =


δ, if 〈x | ai〉 > δ;

〈x | ai〉, if 〈x | ai〉 ∈ D;

δ, if 〈x | ai〉 < δ,

(3.22)

which shows up in several nonlinear data collection processes; see for instance [2,31,54,

58]. It models the inability of the sensors to record values above δ and below δ.

(ii) Let Ω be a nonempty closed interval of R and let softΩ be the associated soft thresholder,

i.e.,

softΩ : R→ R : ξ 7→


ξ − ω, if ξ > ω;

0, if ξ ∈ Ω;

ξ − ω, if ξ < ω,

with

ω = sup Ω

ω = inf Ω.
(3.23)

Further, let ψ ∈ Γ0(R) be differentiable at 0 with ψ′(0) = 0, and set gi = ψ+ σΩ, where σΩ

is the support function of Ω. Then it follows from [20, Proposition 3.6] that

χi = proxψ
(

softΩ 〈x | ai〉
)

=


proxψ(〈x | ai〉 − ω), if 〈x | ai〉 > ω;

0, if 〈x | ai〉 ∈ Ω;

proxψ(〈x | ai〉 − ω), if 〈x | ai〉 < ω.

(3.24)
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In particular, if Ω = [−ω, ω] and ψ = 0, we obtain the standard soft thresholding operation

χi = sign (〈x | ai〉) max{|〈x | ai〉| − ω, 0} (3.25)

of [28]. On the other hand, if Ω = ]−∞, ω] and ψ = 0, we obtain a nonlinear sensor model

from [37].

(iii) In (ii) suppose that ψ = ιD, where D is as in (i) and contains 0 in its interior. Then (3.24)

becomes

χi =



δ, if 〈x | ai〉 > δ + ω;

〈x | ai〉 − ω, if ω < 〈x | ai〉 < δ + ω;

0, if 〈x | ai〉 ∈ Ω;

〈x | ai〉 − ω, if δ + ω < 〈x | ai〉 < ω;

δ, if 〈x | ai〉 6 δ + ω.

(3.26)

This operation combines hard clipping and soft thresholding.

(iv) Set

gi : ξ 7→


(1 + ξ) ln(1 + ξ) + (1− ξ) ln(1− ξ)− ξ2

2
, if |ξ| < 1;

ln(2)− 1/2, if |ξ| = 1;

+∞, if |ξ| > 1.

(3.27)

Then it follows from [21, Example 2.12] that χi = tanh(〈x | ai〉). This soft clipping model

is used in [2,29].

(v) Set

gi : ξ 7→

−
2

π
ln
(

cos
(πξ

2

))
− ξ2

2
, if |ξ| < 1;

+∞, if |ξ| > 1.
(3.28)

Then it follows from [21, Example 2.11] that χi = (2/π) arctan(〈x | ai〉). This soft clipping

model appears in [2].

(vi) Set

gi : ξ 7→

−|ξ| − ln(1− |ξ|)− ξ2/2, if |ξ| < 1;

+∞, if |ξ| > 1.
(3.29)

Then it follows from [21, Example 2.15] that χi = 〈x | ai〉/(1+ |〈x | ai〉|). This soft clipping

model is found in [29,39].
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(vii) Set

gi : ξ 7→


|ξ|+ (1− |ξ|) ln

∣∣1− |ξ|∣∣− ξ2/2, if |ξ| < 1;

1/2, if |ξ| = 1;

+∞, if |ξ| > 1.

(3.30)

For every ξ ∈ ]−1, 1[ = dom g′i = ran proxgi , we have ξ + g′i(ξ) = −sign (ξ) ln(1 − |ξ|).
Hence, (

Id +g′i
)−1

= proxgi : ξ 7→ sign (ξ)
(
1− exp(−|ξ|)

)
(3.31)

and, therefore, χi = sign (〈x | ai〉)(1 − exp(−|〈x | ai〉|)). This distortion model is found

in [56, Section 10.6.3].

(viii) Let ηi ∈ ]0,+∞[ and set

gi : ξ 7→ ηiξ +



ξ ln(ξ) + (1− ξ) ln(1− ξ)− ξ2/2, if ξ ∈ ]0, 1[ ;

0, if ξ = 0;

−1/2, if ξ = 1;

+∞, if ξ ∈ Rr [0, 1].

(3.32)

Proceeding as in (vii), we obtain

χi =
1

1 + exp(ηi − 〈x | ai〉)
, (3.33)

which is an encoding scheme used in [36].

Example 3.2.12 In Proposition 3.2.10 suppose that, for some i ∈ I, gi = φi ◦ dDi , where

φi ∈ Γ0(R) is even with φi(0) = 0, and Di ⊂ Gi is nonempty, closed, and convex. Then it follows

from [8, Proposition 2.1] that qi is the nonlinear observation defined as follows:

(i) Suppose that φi = ι{0}. Then

qi = projDi
(Lix) (3.34)

captures several applications. Thus, if H = RN and

Di =
{

(ξi)16i6N ∈ RN
∣∣ ξ1 6 · · · 6 ξN

}
, then qi is the best isotonic approximation to

Lix [24]. On the other hand, if Di is the closed ball with center 0 and radius ρi ∈ ]0,+∞[,

then (3.34) reduces to the hard saturation process

qi =


ρi
‖Lix‖

Lix, if ‖Lix‖ > ρi;

Lix, if ‖Lix‖ 6 ρi,
(3.35)

which can be viewed as an infinite dimensional version of Example 3.2.11(i).
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(ii) Suppose that φi 6= ι{0} and set ρi = max ∂φi(0). Then

qi =

Lix+
proxφ∗i dDi(Lix)

dDi(Lix)

(
projDi

(Lix)− Lix
)
, if dDi(Lix) > ρi;

projDi
(Lix), if dDi(Lix) 6 ρi.

(3.36)

In particular, assume that Di = {0}. Then (3.36) reduces to the abstract soft thresholding

process

qi =

Lix−
proxφ∗i ‖Lix‖
‖Lix‖

Lix, if ‖Lix‖ > ρi;

0, if ‖Lix‖ 6 ρi,
(3.37)

which cannot record inputs with norm below a certain value. Let us further specialize to

the setting in which φi = ρi| · | with ρi ∈ ]0,+∞[. Then φ∗i = ι[−ρi,ρi], ∂φi(0) = [−ρi, ρi],
and (3.37) becomes

qi =


(

1− ρi
‖Lix‖

)
Lix, if ‖Lix‖ > ρi;

0, if ‖Lix‖ 6 ρi,
(3.38)

which can be viewed as an infinite dimensional version of (3.25).

3.2.2.3 Prescriptions derived from non-cocoercive operators

Here, we exemplify observation processes which are not cocoercive, and possibly not even con-

tinuous, but that can still be represented by proximal points relative to some firmly nonexpansive

operator, as required in Problem 3.2.1. The results in this section constructively provide the

proximal points and phrase the evaluation of each firmly nonexpansive operator in terms of the

nonlinearity in the observation process.

Example 3.2.13 In the spirit of the shrinkage ideas of Corollary 3.2.4 and Example 3.2.6, a

prescription involving more general transformations (%i)i∈I can be used to derive an equivalent

prescribed proximal point. Let us adopt the setting of Corollary 3.2.4, except that (%i)i∈I are now

arbitrary operators from R to R such that, for some δ ∈ ]0,+∞[, supi∈I |%i| 6 δ| · |. Since∑
i∈I

∣∣%i(〈x | ei〉)∣∣2 6 δ2
∑
i∈I
|〈x | ei〉|2 = δ2‖x‖2 < +∞, (3.39)

the prescription q =
∑

i∈I %i(〈x | ei〉)ei is well defined. While q is not a proximal point in general,

an equivalent proximal point p can be constructed from it in certain instances. To illustrate this

process, let us first compute (∀i ∈ I) χi = 〈q | ei〉 = %i(〈x | ei〉). In both examples to follow, for

every i ∈ I, we construct an operator σi : R→ R such that ϕi = σi ◦ %i is firmly nonexpansive,

ϕi(0) = 0, and no information is lost when σi is applied to the prescription χi = %i(〈x | ei〉) in
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the sense that

(∀ξ ∈ R)
[
χi = %i(ξ) ⇔ σi(χi) = σi

(
%i(ξ)

)
= ϕi(ξ)

]
. (3.40)

Using Corollary 3.2.4 with the firmly nonexpansive operators (ϕi)i∈I, this implies that p =∑
i∈I σi(χi)ei is a proximal point of x.

(i) Let i ∈ I, let ωi ∈ ]0,+∞[, and consider the non-Lipschitzian sampling operator [1,55]

%i : ξ 7→

sign (ξ)
√
ξ2 − ω2

i , if |ξ| > ωi;

0, if |ξ| 6 ωi.
(3.41)

It is straightforward to verify that (3.40) holds with

σi : ξ 7→ sign (ξ)

(√
ξ2 + ω2

i − ωi
)
, (3.42)

in which case ϕi = σi ◦ %i is the soft thresholder on [−ωi, ωi] of (3.23).

(ii) Let i ∈ I, let ωi ∈ ]0,+∞[, and consider the discontinuous sampling operator [55]

%i = hard[−ωi,ωi] : ξ 7→

ξ, if |ξ| > ωi;

0, if |ξ| 6 ωi,
(3.43)

which is also known as the hard thresholder on [−ωi, ωi]. This operator is used as a sensing

model in [7] and as a compression model in [57]. Then (3.40) is satisfied with

σi : ξ 7→ ξ − ωisign (ξ), (3.44)

in which case ϕi = σi ◦ %i turns out to be the soft thresholder on [−ωi, ωi] of (3.23).

Next, we revisit Proposition 3.2.2 by relaxing the firm nonexpansiveness of the observa-

tion operators and constructing an equivalent proximal point via some transformation. This

equivalence is expressed in (iii) below.

Proposition 3.2.14 Let (Hi)i∈I be an at most countable family of real Hilbert spaces, let H =⊕
i∈I Hi, let x ∈ H, and let (xi)i∈I be its decomposition, i.e., (∀i ∈ I) xi ∈ Hi. In addition, for every

i ∈ I, let Qi : Hi → Hi and let qi = Qixi. Suppose that there exist operators (Si)i∈I from Hi to Hi

such that the operators (Fi)i∈I = (Si ◦ Qi)i∈I satisfy the following:

(i) The operators (Fi)i∈I are firmly nonexpansive.

(ii) If I is infinite, there exists (zi)i∈I ∈ H such that
∑

i∈I ‖Fizi − zi‖2 < +∞.

(iii) (∀i ∈ I)(∀ xi ∈ Hi)
[
Fixi = Siqi ⇔ Qixi = qi

]
.
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Then p = (Siqi)i∈I is the proximal point of x relative to F : H → H : (xi)i∈I 7→ (Fixi)i∈I.

Proof. This follows from Proposition 3.2.2.

The following result illustrates the process described in Proposition 3.2.14, through a general-

ization of the discontinuous hard thresholding operator of Example 3.2.13(ii), which corresponds

to the case when Hi = R and Ci = {0} in (3.45) below.

Proposition 3.2.15 Let (Hi)i∈I be an at most countable family of real Hilbert spaces, let H =⊕
i∈I Hi, let x ∈ H, and let (xi)i∈I be its decomposition. For every i ∈ I, let ωi ∈ ]0,+∞[, let Ci be a

nonempty closed convex subset of Hi, set

Qi : Hi → Hi : xi 7→

xi, if dCi
(xi) > ωi;

projCi
xi, if dCi

(xi) 6 ωi,
(3.45)

and let qi = Qixi be the associated prescription. If I is infinite, suppose that (∀i ∈ I) 0 ∈ Ci. Further,
for every i ∈ I, set

Si : Hi → Hi : xi 7→


xi +

ωi
dCi

(xi)
(projCi

xi − xi), if xi 6∈ Ci;

xi, if xi ∈ Ci

and

Fi = Si ◦ Qi
pi = Siqi.

(3.46)

Finally, set p = (pi)i∈I and f : H → ]−∞,+∞] : (xi)i∈I 7→
∑

i∈I ωidCi
(xi). Then the following

hold:

(i) For every i ∈ I, Fi = proxωidCi
.

(ii) p is the proximal point of x relative to f .

(iii) Let x = (xi)i∈I ∈ H. Then
[

(∀i ∈ I) Qixi = qi
]
⇔ proxfx = p.

Proof. We derive from (3.45), (3.46), and [5, Proposition 3.21] that

(∀i ∈ I)(∀xi ∈ Hi) Fixi =

projCi
xi +

(
1− ωi

dCi
(xi)

)(
xi − projCi

xi
)
/∈ Ci, if dCi

(xi) > ωi;

projCi
xi ∈ Ci, if dCi

(xi) 6 ωi.
(3.47)

(i): This is a consequence of (3.47) and [5, Example 24.28].

(ii): If I is infinite, 0 ∈ Ci ⇒ dCi
(0) = 0 ⇒ Fi(0) = 0 by (3.47). In turn, the claim follows

from Corollary 3.2.3 and (i).

(iii): We first note that Corollary 3.2.3 and (i) imply that

(Fixi)i∈I = (proxωidCi
xi)i∈I = proxfx. (3.48)

Now, suppose that (∀i ∈ I) Qixi = qi. Then (∀i ∈ I) Fixi = Si(Qixi) = Siqi = pi. In turn, (3.48)

yields proxfx = (Fixi)i∈I = p. Conversely, suppose that proxfx = p and fix i ∈ I. We derive from
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(3.48) and (3.46) that

Fixi = pi = Siqi = Si(Qixi) = Fixi. (3.49)

We must show that Qixi = qi. It follows from (3.45), (3.47), and (3.49) that

dCi
(xi) 6 ωi ⇔ Qixi = projCi

xi = Fixi = Fixi ∈ Ci ⇒

dCi
(xi) 6 ωi

Qixi = projCi
xi = Qixi = qi.

(3.50)

On the other hand, (3.45) yields

dCi
(xi) > ωi ⇒ Qixi = xi, (3.51)

while (3.49) and (3.47) yield

dCi
(xi) > ωi ⇒ pi = Fixi = Fixi = projCi

xi +

(
1− ωi

dCi
(xi)

)(
xi − projCi

xi
)
/∈ Ci (3.52)

⇒ Fixi = projCi
xi +

(
1− ωi

dCi
(xi)

)(
xi − projCi

xi
)

and dCi
(xi) > ωi(3.53)

⇒ qi = Qixi = xi. (3.54)

Therefore, in view of (3.51), it remains to show that xi = xi. Set ri = projCi
pi. We deduce from

(3.52), (3.53), and [5, Proposition 3.21] that ri = projCi
xi = projCi

xi. Thus, (3.52) and (3.53)

yield

pi − ri =

(
1− ωi
‖xi − ri‖

)
(xi − ri) =

(
1− ωi
‖xi − ri‖

)
(xi − ri). (3.55)

Taking the norm of both sides yields ‖xi − ri‖ = ‖xi − ri‖ and hence xi = xi.

3.2.3 A block-iterative extrapolated algorithm for best approximation

We propose a flexible algorithm to solve the following abstract best approximation problem. This

new algorithm, which is of interest in its own right, will be specialized in Section 3.2.4 to the

setting of Problem 3.2.1.

Problem 3.2.16 Let H be a real Hilbert space, let (Ci)i∈I be an at most countable family of

closed convex subsets of H with nonempty intersection C, and let x0 ∈ H. The goal is to find

projCx0, i.e., to

minimize ‖x− x0‖ subject to x ∈
⋂
i∈I

Ci. (3.56)

In 1968, Yves Haugazeau proposed in his unpublished thesis [34] an iterative method to

solve Problem 3.2.16 when I is finite. His algorithm proceeds by periodic projections onto the

individual sets.

Proposition 3.2.17 [34, Théorème 3-2] In Problem 3.2.16, suppose that I is finite, say I =
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{0, . . . ,m− 1}, where 2 6 m ∈ N. Given (s, t) ∈ H2 such that

D =
{
x ∈ H

∣∣ 〈x− s | x0 − s〉 6 0 and 〈x− t | s− t〉 6 0
}
6= ∅, (3.57)

set χ = 〈x0 − s | s− t〉, µ = ‖x0 − s‖2, ν = ‖s− t‖2, and ρ = µν − χ2, and define

Q(x0, s, t) = projDx0 =


t, if ρ = 0 and χ > 0;

x0 +

(
1 +

χ

ν

)
(t− s), if ρ > 0 and χν > ρ;

s+
ν

ρ

(
χ(x0 − s) + µ(t− s)

)
, if ρ > 0 and χν < ρ.

(3.58)

Construct a sequence (xn)n∈N by iterating

for n = 0, 1, . . .⌊
tn = projCn(mod m)

xn

xn+1 = Q(x0, xn, tn).

(3.59)

Then xn → projCx0.

Haugazeau’s algorithm uses only one set at each iteration. The following variant due to Guy

Pierra uses all of them simultaneously.

Proposition 3.2.18 [50, Théorème V.1] In Problem 3.2.16, suppose that I is finite, let Q be as in
Proposition 3.2.17, set ω = 1/card I, and fix ε ∈ ]0, 1[. Construct a sequence (xn)n∈N by iterating

for n = 0, 1, . . .

for every i ∈ I⌊
ai,n = projCi

xn

θi,n = ‖ai,n − xn‖2

θn = ω
∑

i∈I θi,n

if θn = 0⌊
tn = xn

else
dn = ω

∑
i∈I ai,n

yn = dn − xn
λn = θn/‖yn‖2

tn = xn + λnyn

xn+1 = Q(x0, xn, tn).

(3.60)

Then xn → projCx0.

Remark 3.2.19 An attractive feature of Pierra’s algorithm (3.60) is that, by convexity of ‖ · ‖2,
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the relaxation parameter λn can extrapolate beyond 1, hence attaining large values that induce

fast convergence [17,50].

Propositions 3.2.17 and 3.2.18 were unified and extended in [15, Section 6.5] in the form of

an algorithm for solving Problem 3.2.16 which is block-iterative in the sense that, at iteration

n ∈ N, only a subfamily of sets (Ci)i∈In needs to be activated, as opposed to all of them in

(3.60). Block-iterative structures save time per iteration in two ways: firstly, they do not require

that every constraint be activated; secondly, at every n ∈ N, activation of each constraint

indexed in In can be performed in parallel and hence it is common to select card In equal to

the number of available processors. Furthermore, in [15, Section 6.5], the sets (Ci)i∈I were

specified as lower level sets of certain functions and were activated by projections onto supersets

instead of exact ones as in (3.59) and (3.60). Below, we propose an alternative block-iterative

scheme (Algorithm 3.2.24) which is more sophisticated in that it leverages the affine structure

of some sets (Ci)i∈I′ to produce deeper relaxation steps, hence providing extra acceleration to

the algorithm. Such affine-convex extrapolation techniques were first discussed in [6], where

a weakly convergent method was designed to solve convex feasibility problems, i.e., to find

an unspecified point in the intersection of closed convex sets. Additionally, as will be seen in

Section 3.2.4, this new algorithm will be better suited to solve Problem 3.2.1 to the extent that

it utilizes a fixed point model for the activation of the sets. The following notions and facts lay

the groundwork for developing our best approximation algorithm.

Definition 3.2.20 [5, Section 4.1] T is the class of firmly quasinonexpansive operators from H
to H, i.e.,

T =
{
T : H → H

∣∣ (∀x ∈ H)(∀y ∈ FixT ) 〈y − Tx | x− Tx〉 6 0
}
. (3.61)

Example 3.2.21 [4,5] Let T : H → H and set C = FixT . Then T ∈ T in each of the following

cases:

(i) T is the projector onto a nonempty closed convex subset C of H.

(ii) T is the proximity operator of a function f ∈ Γ0(H). Then C = Argminf .

(iii) T is the resolvent of a maximally monotone operator A : H → 2H. Then

C =
{
x ∈ H

∣∣ 0 ∈ Ax
}

is the set of zeros of A.

(iv) T is firmly nonexpansive.

(v) R = 2T − Id is quasinonexpansive: (∀x ∈ H)(∀y ∈ FixR) ‖Rx − y‖ 6 ‖x − y‖. Then

C = FixR.

(vi) T is a subgradient projector onto the lower level set C =
{
x ∈ H

∣∣ f(x) 6 0
}
6= ∅ of a

continuous convex function f : H → R, that is, given a selection s of the subdifferential of
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f ,

(∀x ∈ H) Tx = sprojCx =

x−
f(x)

‖s(x)‖2
s(x), if f(x) > 0;

x, if f(x) 6 0.

(3.62)

Lemma 3.2.22 [4,5] Let T : H → H. If T ∈ T, then FixT is closed and convex. Conversely, if C
is a nonempty closed convex subset of H, then C = FixT , where T = projC ∈ T.

Lemma 3.2.23 Let (Tn)n∈N be a sequence of operators in T such that ∅ 6= C ⊂
⋂
n∈N FixTn, let

x0 ∈ H, let Q be as in Proposition 3.2.17, and for every n ∈ N, set xn+1 = Q(x0, xn, Tnxn). Then
the following hold:

(i) (xn)n∈N is well defined.

(ii)
∑

n∈N ‖xn+1 − xn‖2 < +∞.

(iii)
∑

n∈N ‖Tnxn − xn‖2 < +∞.

(iv) xn → projCx0 if and only if all the weak sequential cluster points of (xn)n∈N lie in C.

Proof. In the case when ∅ 6= C =
⋂
n∈N FixTn, the results are shown in [4, Proposition 3.4(v)

and Theorem 3.5]. However, an inspection of these proofs reveals that they remain true in our

context.

We are now in a position to introduce our best approximation algorithm for solving Prob-

lem 3.2.16. It incorporates ingredients of the best approximation method of [15, Section 6.5]

and of the convex feasibility method of [6].

Algorithm 3.2.24 Consider the setting of Problem 3.2.16 and denote by (Ci)i∈I′ a subfamily of

(Ci)i∈I of closed affine subspaces the projectors onto which are easy to implement; this subfamily

is assumed to be nonempty as H can be included in it. Let Q be as in Proposition 3.2.17, fix
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ε ∈ ]0, 1[, and iterate

for n = 0, 1, . . .

take i(n) ∈ I ′

zn = projCi(n)
xn

take a nonempty finite set In ⊂ I
for every i ∈ In take Ti,n ∈ T such that FixTi,n = Ci

ai,n = Ti,nzn

θi,n = ‖ai,n − zn‖2

take jn ∈ In such that θjn,n = maxi∈Inθi,n
take {ωi,n}i∈In ⊂ [0, 1] such that

∑
i∈In ωi,n = 1 and ωjn,n > ε

I+
n =

{
i ∈ In

∣∣ ωi,n > 0
}

θn =
∑

i∈I+n ωi,nθi,n

if θn = 0⌊
tn = zn

else
dn =

∑
i∈I+n ωi,nai,n

yn = projCi(n)
dn − zn

take λn ∈
[
εθn/‖dn − zn‖2, θn/‖yn‖2

]
tn = zn + λnyn

xn+1 = Q(x0, xn, tn).

(3.63)

Remark 3.2.25 Let us highlight some special cases and features of Algorithm 3.2.24.

(i) If the only closed affine subspace is H then, for every n ∈ N, zn = xn, and the resulting

algorithm has a structure similar to that of [15, Section 6.5], except that the operators

(Ti,n)i∈In are chosen differently. In particular, this setting captures (3.59) and (3.60).

(ii) Suppose that the last step of the algorithm at iteration n ∈ N is replaced by xn+1 = tn.

Then we recover an instance of the (weakly convergent) convex feasibility algorithm of [6]

to find an unspecified point in C =
⋂
i∈I Ci.

(iii) At iteration n ∈ N, a block of sets (Ci)i∈In is selected and each of its elements is activated

via a firmly quasinonexpansive operator. Example 3.2.21 provides various options to choose

these operators, depending on the nature of the sets.

(iv) If nontrivial affine sets are present then, at iteration n ∈ N, we have zn 6= xn in general.

Thus, as discussed in [10] and its references in the context of feasibility algorithms (see

(ii)), the resulting step tn is larger than when zn = xn, which typically yields faster conver-

gence. This point will be illustrated numerically for our best approximation algorithm in

Section 3.2.5.
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We now establish the strong convergence of an arbitrary sequence (xn)n∈N generated by

Algorithm 3.2.24 to the solution to Problem 3.2.16. The last component of the proof relies on

Lemma 3.2.23(iv), i.e., showing that the weak sequential cluster points of (xn)n∈N lie in C. The

same property is required in [6, Theorem 3.3] to show the weak convergence of the variant

described in Remark 3.2.25(ii). This parallels the weak-to-strong convergence principle of [4],

namely the transformation of weakly convergent feasibility methods into strongly convergent

best approximation methods.

Theorem 3.2.26 In the setting of Problem 3.2.16, let (xn)n∈N be generated by Algorithm 3.2.24.
Suppose that the following hold:

[a] There exist strictly positive integers (Mi)i∈I such that

(∀i ∈ I)(∀n ∈ N) i ∈
n+Mi−1⋃
l=n

{i(l)} ∪ Il. (3.64)

[b] For every i ∈ I r I ′, every x ∈ H, and every strictly increasing sequence (rn)n∈N in N,
i ∈
⋂
n∈N Irn

projCi(rn)
xrn ⇀ x

Ti,rn
(
projCi(rn)

xrn
)
− projCi(rn)

xrn → 0

⇒ x ∈ Ci. (3.65)

Then xn → projCx0.

Proof. Let us fix n ∈ N temporarily. Define

Ln : H → R : z 7→


∑

i∈I+n ωi,n‖Ti,nz − z‖
2∥∥∑

i∈I+n ωi,nTi,nz − z
∥∥2 , if z /∈

⋂
i∈I+n Ci;

1, if z ∈
⋂
i∈I+n Ci

(3.66)

and

Sn : H → H : z 7→ z + Ln(z)

(∑
i∈I+n

ωi,nTi,nz − z

)
. (3.67)

We derive from [16, Proposition 2.4] that Sn ∈ T and FixSn =
⋂
i∈I+n FixTi,n =

⋂
i∈I+n Ci.

We also observe that

θn = 0 ⇔ Snzn = zn ⇔ zn ∈
⋂
i∈I+n

Ci = FixSn. (3.68)
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Now define

Kn : H → R : x 7→


∥∥Sn(projCi(n)

x
)
− projCi(n)

x
∥∥2∥∥projCi(n)

(
Sn
(
projCi(n)

x
))
− projCi(n)

x
∥∥2 , if projCi(n)

x /∈
⋂
i∈I+n Ci;

1, if projCi(n)
x ∈

⋂
i∈I+n Ci

(3.69)

and

Tn : H → H : x 7→ projCi(n)
x+ γn(x)

(
projCi(n)

(
Sn
(
projCi(n)

x
))
− projCi(n)

x
)
,

where γn(x) ∈ [ε,Kn(x)] . (3.70)

Then it follows from [6, Theorem 2.8] that Tn ∈ T and

∅ 6= C ⊂ Ci(n) ∩
⋂
i∈I+n

Ci = Ci(n) ∩ FixSn = FixTn. (3.71)

If θn 6= 0, using (3.63), (3.67), and the fact that projCi(n)
is an affine operator [5, Corol-

lary 3.22(ii)], we obtain

projCi(n)

(
Sn
(
projCi(n)

xn
))
− projCi(n)

xn = projCi(n)
(Snzn)− zn

= projCi(n)

((
1− Ln(zn)

)
zn + Ln(zn)dn

)
− zn

=
(
1− Ln(zn)

)
projCi(n)

zn + Ln(zn)projCi(n)
dn − zn

= Ln(zn)
(
projCi(n)

dn − zn
)

= Ln(zn)yn (3.72)

and, therefore, ∥∥projCi(n)
(Snzn)− zn

∥∥ = Ln(zn)‖yn‖. (3.73)

Hence, (3.69) and (3.67) yield

Kn(xn) =


‖Sn(zn)− zn‖2∥∥projCi(n)

(
Snzn

)
− zn

∥∥2 =
‖Ln(zn)(dn − zn)‖2

‖Ln(zn)yn‖2
=
‖dn − zn‖2

‖yn‖2
, if θn 6= 0;

1, if θn = 0.

(3.74)

At the same time, we derive from (3.66), (3.63), and (3.68) that

Ln(zn) =


θn

‖dn − zn‖2
, if θn 6= 0;

1, if θn = 0.

(3.75)
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Altogether, it results from (3.70), (3.74), and (3.75) that, if θn 6= 0,

γn(xn)Ln(zn) ∈
[
εLn(zn),Kn(xn)Ln(zn)

]
=
[
εθn/‖dn − zn‖2, θn/‖yn‖2

]
(3.76)

and, in view of (3.63), we can therefore set λn = γn(xn)Ln(zn). Thus, it follows from (3.63)

and (3.72) that

θn 6= 0 ⇒ tn = zn + λnyn

= zn + γn(xn)Ln(zn)yn

= projCi(n)
xn + γn(xn)

(
projCi(n)

(
Sn
(
projCi(n)

xn
))
− projCi(n)

xn

)
= Tnxn. (3.77)

On the other hand, (3.63) and (3.68) yield

θn = 0 ⇒ tn = zn = Snzn = Tnxn. (3.78)

Combining (3.77) and (3.78), we obtain

xn+1 = Q(x0, xn, Tnxn). (3.79)

Turning back to (3.70) and (3.63), we deduce from [5, Corollary 3.22(i)] that

‖Tnxn − xn‖2 =
∥∥zn − xn + γn(xn)

(
projCi(n)

(Snzn)− zn
)∥∥2

= ‖zn − xn‖2 + 2γn(xn)〈projCi(n)
xn − xn | projCi(n)

(Snzn)− projCi(n)
xn〉

+ |γn(xn)|2
∥∥projCi(n)

(Snzn)− zn
∥∥2

= ‖zn − xn‖2 + |γn(xn)|2
∥∥projCi(n)

(Snzn)− zn
∥∥2

> ‖zn − xn‖2 + ε2
∥∥projCi(n)

(Snzn)− zn
∥∥2
. (3.80)

Since (3.71) implies that

∅ 6= C ⊂
⋂
n∈N

FixTn, (3.81)

we derive from (3.79) and Lemma 3.2.23(i) that (xn)n∈N is well defined. Furthermore, (3.80)

and Lemma 3.2.23(iii) guarantee that∑
n∈N
‖zn − xn‖2 < +∞ (3.82)

and ∑
n∈N
‖projCi(n)

(Snzn)− zn‖2 < +∞. (3.83)
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Finally, in view of (3.81) and Lemma 3.2.23(iv), to conclude the proof, it is enough to show that

all the weak sequential cluster points of (xn)n∈N lie in C. Since we have at our disposal [a], [b],

(3.82), and (3.83), showing this inclusion can be done by following the same steps as in the

proof of [6, Theorem 3.3(vi)].

Remark 3.2.27 Condition [a] in Theorem 3.2.26 states that, for each i ∈ I, the set Ci should

be involved at least once every Mi iterations. Condition [b] in Theorem 3.2.26 is discussed

in [6, Section 3.4], where concrete scenarios that satisfy it are described.

3.2.4 Fixed point model and algorithm for Problem 3.2.1

To solve Problem 3.2.1, we are going to reformulate it as an instance of Problem 3.2.16. To this

end, let us set

(∀k ∈ K) Ck =
{
x ∈ H

∣∣ Fkx = pk
}

and Tk = pk + Id −Fk. (3.84)

Then it follows from (3.9) that

(∀k ∈ K) Tk is firmly nonexpansive and FixTk = Ck. (3.85)

We therefore deduce from Lemma 3.2.22 that (Ck)k∈K are closed convex subsets of H. Thus,

upon setting I = J ∪K, we recast Problem 3.2.1 is an instantiation of Problem 3.2.16. This

leads us to the following solution method based on Algorithm 3.2.24.

Proposition 3.2.28 In the setting of Problem 3.2.1, let Q be as in Proposition 3.2.17, fix ε ∈ ]0, 1[,
and denote by (Ci)i∈I′ a subfamily of (Ci)i∈J of closed affine subspaces the projectors onto which
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are easy to implement; this subfamily is assumed to be nonempty as H can be included in it. Iterate

for n = 0, 1, . . .

take i(n) ∈ I ′

zn = projCi(n)
xn

take a nonempty finite set In ⊂ J ∪K
for every i ∈ In

if i ∈ J⌊
take Ti,n ∈ T such that FixTi,n = Ci

ai,n = Ti,nzn

if i ∈ K⌊
ai,n = pi + zn − Fizn

θi,n = ‖ai,n − zn‖2

take jn ∈ In such that θjn,n = maxi∈Inθi,n
take {ωi,n}i∈In ⊂ [0, 1] such that

∑
i∈In ωi,n = 1 and ωjn,n > ε

I+
n =

{
i ∈ In

∣∣ ωi,n > 0
}

θn =
∑

i∈I+n ωi,nθi,n

if θn = 0⌊
tn = zn

else
dn =

∑
i∈I+n ωi,nai,n

yn = projCi(n)
dn − zn

take λn ∈
[
εθn/‖dn − zn‖2, θn/‖yn‖2

]
tn = zn + λnyn

xn+1 = Q(x0, xn, tn).

(3.86)

Suppose that condition [a] in Theorem 3.2.26 holds with I = J ∪K, as well as the following:

[c] For every i ∈ J r I ′, every x ∈ H, and every strictly increasing sequence (rn)n∈N in N, (3.65)

holds.

Then (xn)n∈N converges strongly to the solution to Problem 3.2.1.

Proof. Let us bring into play (3.84) and (3.85). As discussed above, Problem 3.2.1 is an instance

of Problem 3.2.16, where I = J ∪K. Now set

(∀k ∈ K)(∀n ∈ N) Tk,n = Tk = pk + Id −Fk. (3.87)

Then (3.63) reduces to (3.86) and, in view of condition [c] above, to conclude via Theo-

rem 3.2.26, it suffices to check that condition [b] in Theorem 3.2.26 holds for every k ∈ K.

Towards this goal, let us fix k ∈ K and a strictly increasing sequence (rn)n∈N in N such that

k ∈
⋂
n∈N Irn , and let us set (∀n ∈ N) un = projCi(rn)

xrn . Suppose that un ⇀ x ∈ H and that
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Tk,rnun − un → 0. Then (3.87) yields Tkun − un → 0 and, since Tk is nonexpansive by (3.85), it

follows from Browder’s demiclosedness principle [5, Corollary 4.28] that x ∈ FixTk = Ck, which

concludes the proof.

As was mentioned in Remark 3.2.25(iv) and will be illustrated in Section 3.2.5, exploiting the

presence of affine subspaces typically leads to faster convergence. Problem 3.2.1 can nonetheless

be solved without taking the affine subspaces into account. Formally, this amounts to considering

that (Ci)i∈I′ consists solely of H, in which case Proposition 3.2.28 leads to the following

implementation.

Corollary 3.2.29 In the setting of Problem 3.2.1, letQ be as in Proposition 3.2.17, and fix ε ∈ ]0, 1[.
Iterate

for n = 0, 1, . . .

take a nonempty finite set In ⊂ J ∪K
for every i ∈ In

if i ∈ J⌊
take Ti,n ∈ T such that FixTi,n = Ci

ai,n = Ti,nxn

if i ∈ K⌊
ai,n = pi + xn − Fixn

θi,n = ‖ai,n − xn‖2

take jn ∈ In such that θjn,n = maxi∈Inθi,n
take {ωi,n}i∈In ⊂ [0, 1] such that

∑
i∈In ωi,n = 1 and ωjn,n > ε

I+
n =

{
i ∈ In

∣∣ ωi,n > 0
}

θn =
∑

i∈I+n ωi,nθi,n

if θn = 0⌊
tn = xn

else
yn =

∑
i∈I+n ωi,nai,n − xn

take λn ∈
[
εθn/‖yn‖2, θn/‖yn‖2

]
tn = xn + λnyn

xn+1 = Q(x0, xn, tn).

(3.88)

Suppose that the following hold:

[d] There exist strictly positive integers (Mi)i∈J∪K such that (∀i ∈ J ∪ K)(∀n ∈ N) i ∈⋃n+Mi−1
l=n Il.

[e] For every i ∈ J , every x ∈ H, and every strictly increasing sequence (rn)n∈N in N,[
i ∈

⋂
n∈N

Irn , xrn ⇀ x, and Ti,rnxrn − xrn → 0

]
⇒ x ∈ Ci. (3.89)
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Then (xn)n∈N converges strongly to the solution to Problem 3.2.1.

3.2.5 Numerical illustration

Let H be the standard Euclidean space RN , where N = 1024. The goal is to recover the original

form of the signal x ∈ H shown in Figure 3.1 from the following:

(i) x resides in the subspace C1 of signals which are band-limited in the sense that their

discrete Fourier transform vanishes outside of the 103 lowest frequency components.

(ii) Let tv : H → R : x = (ξi)16i6N 7→
∑

16i6N−1 |ξi+1 − ξi| be the total variation function.

An upper bound γ ∈ ]0,+∞[ on tv (x) is available. The associated constraint set is C2 ={
x ∈ H

∣∣ tv (x)− γ 6 0
}

. For this experiment, γ = 1.5tv (x).

(iii) 25 observations (qk)k∈K are available where, for every k ∈ K = {3, . . . , 27}, qk is the

isotonic regression of the coefficients of x in a dictionary (ek,j)16j610 of vectors in H. More

precisely (see Example 3.2.12(i)), set G = R10 and D =
{

(ξj)16j610 ∈ G
∣∣ ξ1 6 · · · 6 ξ10

}
.

Then, for every k ∈ K, qk = projD(Lkx), where Lk : H → G : x 7→ (〈x | ek,j〉)16j610.

We seek the minimal-energy signal consistent with the information above, i.e., we seek to

minimize ‖x‖ subject to x ∈ C1 ∩ C2 and (∀k ∈ K) projD(Lkx) = qk. (3.90)

Let us set x0 = 0, J = {1, 2}, and, for every k ∈ K, pk = ‖Lk‖−2L∗kqk, and Fk = ‖Lk‖−2L∗k ◦
projD ◦ Lk. For every k ∈ K, applying Proposition 3.2.9 with I = {k}, Gk = G, βk = 1, and

Qk = projD shows that pk is the proximal point of x relative to Fk and, for every x ∈ H, Fkx = pk

⇔ projD(Lkx) = qk. We therefore arrive at an instance of Problem 3.2.1 which is equivalent to

(3.90), namely

minimize ‖x‖ subject to x ∈ C1 ∩ C2 and (∀k ∈ K) Fkx = pk. (3.91)

With an eye towards algorithm (3.86), since C1 is an affine subspace with a straightforward

projector [59], set I ′ = {1}. At iteration n ∈ N, the constraint (ii) is activated by the subgradient

projector T2,n = sprojC2
of (3.62) (see [19] for its computation) since the direct projector

is hard to implement. The fact that condition [c] in Proposition 3.2.28 is satisfied follows

from [5, Proposition 29.41(vi)(a)]. We solve (3.91) with algorithm (3.86) to obtain the solution

x∞ shown in Figure 3.2 (see [33, Algorithm 8.1.1] for the computation of projD).

To demonstrate the benefits of exploiting the presence of affine subspaces in algorithm

(3.86), we show in Figure 3.3 the approximate solution it generates after 1000 iterations. For the

sake of comparison, we display in Figure 3.4 the approximate solution generated by algorithm

(3.88) after 1000 iterations. The following parameters are used:
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• Algorithm (3.86): For every n ∈ N, i(n) = 1, and whenever θn 6= 0,

λn =


θn

2‖yn‖2
, if n ≡ 0 mod 3;

θn
‖yn‖2

, if n 6≡ 0 mod 3.

(3.92)

Additionally, In is selected to activate C2 at every iteration and periodically sweep through

one entry of K per iteration, hence satisfying condition [a] in Theorem 3.2.26 with

M1 = M2 = 1, and, for every k ∈ K, Mk = 25. Moreover, for every i ∈ In, ωi,n = 1/2.

• Algorithm (3.88): Iteration n ∈ N is executed with the same relaxation scheme (3.92) as

in algorithm (3.86), and the same choice of the activation set In, with the exception that

In also activates C1 at every iteration. In addition, for every i ∈ In, ωi,n = 1/3.

While both approaches are equivalent means of solving (3.91), Figures 3.3 and 3.4 demon-

strate qualitatively that algorithm (3.86) yields faster convergence to the solution x∞ than

algorithm (3.88). This is confirmed quantitatively by the error plots of Figure 3.5.
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Figure 3.1 Original signal x.
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Figure 3.2 Solution x∞ to (3.90).
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Figure 3.3 Solution x∞ (red) and the approximate recovery obtained with 1000 iterations of algorithm
(3.86), which exploits affine constraints (blue).
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Figure 3.4 Solution x∞ (red) and the approximate recovery obtained with 1000 iterations of algorithm
(3.88), which does not exploit affine constraints (green).
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Figure 3.5 Normalized error ‖xn−x∞‖/‖x0−x∞‖ versus iteration count n ∈ {0, . . . , 1000} for algorithm
(3.86) (blue) and algorithm (3.88) (green).
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Chapter 4
A VARIATIONAL INEQUALITY MODEL
FOR THE CONSTRUCTION OF SIGNALS
FROM INCONSISTENT NONLINEAR
EQUATIONS

4.1 Introduction and context

Due to noise or modeling errors, it may be the case that Problems 1.1.1, 1.1.3, or 1.1.4 have

no solution. Furthermore, if no solution exists, then the algorithms for solving these problems

in Chapters 2 and 3 are known to diverge. This chapter analyzes the relaxed formulation

Problem 1.1.5 and presents an efficient block-iterative algorithm for its solution. It is worth

noting that this relaxation captures the one proposed in Chapter 2 as a special case. In addition,

further proxification results pertaining to matrix-valued operators are presented.

This chapter presents the following article.

P. L. Combettes and Z. C. Woodstock, A variational inequality model for the

construction of signals from inconsistent nonlinear equations, submitted.

4.2 Article: A variational inequality model for the construction of

signals from inconsistent nonlinear equations

Abstract. Building up on classical linear formulations, we posit that a broad class of problems

in signal synthesis and in signal recovery are reducible to the basic task of finding a point in a

closed convex subset of a Hilbert space that satisfies a number of nonlinear equations involving

firmly nonexpansive operators. We investigate this formalism in the case when, due to inaccurate
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modeling or perturbations, the nonlinear equations are inconsistent. A relaxed formulation of

the original problem is proposed in the form of a variational inequality. The properties of the

relaxed problem are investigated and a provenly convergent block-iterative algorithm, whereby

only blocks of the underlying firmly nonexpansive operators are activated at a given iteration,

is devised to solve it. Numerical experiments illustrate robust recoveries in several signal and

image processing applications.

4.2.1 Introduction

Signal construction encompasses forward problems such as image synthesis, holography, filter

design, time-frequency distribution synthesis, and radiation therapy planning, as well as inverse

problems such as density estimation, signal denoising, image interpolation, signal extrapolation,

audio declipping, image reconstruction, or deconvolution; see, e.g., [4,16,19,29,31,32,45,47,48,

51,58]. Essential components in the mathematical modeling of signal construction problems are

equations tying the ideal solution x in a space H to given prescriptions in a space G, say Wx = p,

where W is an operator mapping H to G. The prescription p can be a design specification in

forward problems, or an observation in inverse problems.

In 1978, Youla [60] elegantly brought to light the simple geometry that underlies many

classical problems in signal construction by reducing them to the following formulation: given

closed vector subspaces C and D in a real Hilbert space H, and a point p ∈ D,

find x ∈ C such that projDx = p, (4.1)

where projD denotes the projection operator onto D. In the context of signal recovery, the

original signal of interest x is known to lie in C and some observation p of it is available in

the form of its projection onto D. A natural nonlinear extension of this setting is obtained by

considering nonempty closed convex sets C in H and D in a real Hilbert space G, a bounded

linear operator L : H → G, a point p ∈ D, and setting as an objective to

find x ∈ C such that projD(Lx) = p. (4.2)

An early instance of this model appears in [1], where C is a set of bandlimited signals and p is

an observation of N clipped samples of the original signal. Thus, L : H → RN is the sampling

operator and D =
{
y ∈ RN

∣∣ ‖y‖∞ 6 ρ} for some ρ ∈ ]0,+∞[. A key property of projectors onto

closed convex sets is their firm nonexpansiveness. Recall that an operator F : G → G is firmly

nonexpansive if [6]

(∀x ∈ G)(∀y ∈ G) 〈x− y | Fx− Fy〉 > ‖Fx− Fy‖2. (4.3)

In [26,27], it was shown that many nonlinear observation processes found in signal processing,

machine learning, and inference problems can be represented through such operators. This
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prompts us to consider the following formulation, whereby the prescriptions are modeled via

Wiener systems (see Figure 4.1).

x

p1

pm

pi

...

...

L1 F1

Lm Fm

Li Fi

Figure 4.1 Illustration of Problem 4.2.1 with m prescriptions (pi)16i6m. The ith prescription pi is the
output produced when the ideal signal x is input to a Wiener system Wi = Fi ◦ Li, i.e., the concatenation
of a linear system Li and a nonlinear system Fi [49]. In the proposed model, Fi is a firmly nonexpan-
sive operator.

Problem 4.2.1 Let I be a nonempty finite set and let C be a nonempty closed convex subset of

a real Hilbert space H. For every i ∈ I, let Gi be a real Hilbert space, let pi ∈ Gi, let Li : H → Gi
be a nonzero bounded linear operator, and let Fi : Gi → Gi be a firmly nonexpansive operator.

The task is to

find x ∈ C such that (∀i ∈ I) Fi(Lix) = pi. (4.4)

The work of [26, 27] assumes that the prescription equations in Problem 4.2.1 are exact

and hence that a solution exists. In many instances, however, the prescription operators may

be imperfectly known or the model may be corrupted by perturbations, so that Problem 4.2.1

may not have solutions, e.g., [17,18,31]. A dramatic consequence of this lack of feasibility is

that the algorithms proposed [26,27] are known to diverge in such situations. To deal robustly

with possibly inconsistent equations, one must therefore come up with an appropriate relaxed

formulation of Problem 4.2.1, i.e., one that seeks a point in C that satisfies the nonlinear

equations in an approximate sense, and coincides with the original problem (4.4) if it happens to

be consistent. To guide our design of a relaxed problem, let us consider a classical instantiation

of Problem 4.2.1.

Example 4.2.2 Specialize Problem 4.2.1 by setting, for every i ∈ I,

pi = 0 and Fi = Id −projDi
, where Di is a nonempty closed convex subset of Gi, (4.5)

and note that the operators (Fi)i∈I are firmly nonexpansive [6, Corollary 4.18]. In this context,
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(4.4) reduces to the convex feasibility problem [15,19,62]

find x ∈ C such that (∀i ∈ I) Lix ∈ Di. (4.6)

Let (ωi)i∈I be real numbers in ]0, 1] such that
∑

i∈I ωi = 1 and, for every i ∈ I, let dDi be

the distance function to Di. As seen in [23] (see also [16–18, 22, 32, 61] for special cases), a

relaxation of (4.6) when it may be inconsistent is the least-squares problem

minimize
x∈C

f(x), where f : x 7→ 1

2

∑
i∈I

ωid
2
Di

(Lix) =
1

2

∑
i∈I

ωi‖Lix− projDi
(Lix)‖2. (4.7)

An important property of this formulation is that f is a smooth convex function since [6,

Corollary 12.31] asserts that

(∀i ∈ I) ∇
d2
Di
◦ Li
2

= L∗i ◦ (Id −projDi
) ◦ Li = L∗i ◦ Fi ◦ Li − L∗i pi. (4.8)

It can therefore be solved by the projection-gradient algorithm [6, Corollary 28.10]. Let us

also note that (4.7) is a valid relaxation of (4.6). Indeed, if the latter has solutions, then f

vanishes on C at those points only, and (4.7) is therefore equivalent to (4.6). Historically, the

first instance of the above relaxation process seems to be Legendre’s least-squares methods [37].

There, H = RN = C and, for every i ∈ I, Gi = R, Di = {βi}, and Li = 〈· | ai〉, where βi ∈ R
and 0 6= ai ∈ RN . Set b = (βi)i∈I , let A be the matrix with rows (ai)i∈I , and let (∀i ∈ I)

ωi = 1/card I. Then (4.6) consists of solving the linear system Ax = b and (4.7) of minimizing

the function x 7→ ‖Ax− b‖2.

In general, there is no suitable relaxation of Problem 4.2.1 in the form of a tractable convex

minimization problem such as (4.7). For instance, in Example 4.2.2, we can rewrite (4.7) as

minimize
x∈C

f(x), where f : x 7→ 1

2

∑
i∈I

ωi‖Fi(Lix)− pi‖2. (4.9)

However, beyond the special case (4.5), f is typically a nonconvex and nondifferentiable

function [4, 43, 64], which makes it impossible to guarantee the construction of solutions.

Another plausible formulation that captures (4.7) would be to introduce in Problem 4.2.1 the

closed convex sets (∀i ∈ I) Di =
{
y ∈ Gi

∣∣ Fiyi = pi
}

. However the resulting minimization

problem (4.7) is intractable because we typically do not know how to evaluate the operators

(projDi
)i∈I , and therefore cannot evaluate f and its gradient.

Our strategy to relax (4.4) is to forego the optimization approach in favor of the broader

framework of variational inequalities. To motivate this approach, let us go back to Example 4.2.2.

Then it follows from Lemma 4.2.7 below and (4.8) that (4.7) equivalent to finding x ∈ C

such that (∀y ∈ C)
∑

i∈I ωi〈Li(y − x) | Fi(Lix)− pi〉 > 0. We shall show that this variational

inequality constitutes an appropriate relaxed formulation of Problem 4.2.1 in the presence of
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general firmly nonexpansive operators (Fi)i∈I , and that it can be solved iteratively through

an efficient block-iterative fixed point algorithm. Here is a precise formulation of our relaxed

problem.

Problem 4.2.3 Let I be a nonempty finite set, let (ωi)i∈I be real numbers in ]0, 1] such that∑
i∈I ωi = 1, and let C be a nonempty closed convex subset of a real Hilbert space H. For every

i ∈ I, let Gi be a real Hilbert space, let pi ∈ Gi, let Li : H → Gi be a nonzero bounded linear

operator, and let Fi : Gi → Gi be a firmly nonexpansive operator. The task is to

find x ∈ C such that (∀y ∈ C)
∑
i∈I

ωi〈Li(y − x) | Fi(Lix)− pi〉 > 0. (4.10)

The paper is organized as follows. Section 4.2.2 provides the notation and the necessary

background, as well as preliminary results. It covers in particular the basics of monotone operator

theory, which will play an essential role in the paper. In Section 4.3, we illustrate the flexibility

and the breadth the proposed firmly nonexpansive Wiener model. In Section 4.3.1, we analyze

various properties of Problem 4.2.3, in particular as a relaxation of Problem 4.2.1. We also

provide in that section a block-iterative algorithm to solve Problem 4.2.3. Section 4.3.2 is devoted

to numerical experiments in the area of signal and image processing.

4.2.2 Notation, background, and preliminary results

4.2.2.1 Notation

Our notation follows [6], to which one can refer for background on monotone operators and

convex analysis. Let H be a real Hilbert space with scalar product 〈· | ·〉, associated norm ‖ · ‖,
and identity operator Id . The family of all subsets of H is denoted by 2H. The Hilbert direct sum

of a family of real Hilbert spaces (Hi)i∈I is denoted by
⊕

i∈I Hi.
Let T : H → H. Then T is cocoercive if there exists β ∈ ]0,+∞[ such that

(∀x ∈ H)(∀y ∈ H) 〈x− y | Tx− Ty〉 > β‖Tx− Ty‖2, (4.11)

and firmly nonexpansive if β = 1 above. The set of fixed points of T is FixT =
{
x ∈ H

∣∣ Tx = x
}

.

Let A : H → 2H. The graph of A is graA =
{

(x, x∗) ∈ H ×H
∣∣ x∗ ∈ Ax}, the domain of

A is domA =
{
x ∈ H

∣∣ Ax 6= ∅
}

, the range of A is ranA =
{
x∗ ∈ H

∣∣ (∃x ∈ H) x∗ ∈ Ax
}

,

the set of zeros of A is zerA =
{
x ∈ H

∣∣ 0 ∈ Ax
}

, the inverse of A is A−1 : H → 2H : x∗ 7→{
x ∈ H

∣∣ x∗ ∈ Ax}, and the resolvent of A is JA = (Id +A)−1. Further, A is monotone if

(
∀(x, x∗) ∈ graA

)(
∀(y, y∗) ∈ graA

)
〈x− y | x∗ − y∗〉 > 0, (4.12)

and maximally monotone if, for every (x, x∗) ∈ H ×H,

(x, x∗) ∈ graA ⇔
(
∀(y, y∗) ∈ graA

)
〈x− y | x∗ − y∗〉 > 0. (4.13)

63



If A is maximally monotone, then JA is a single-valued firmly nonexpansive operator defined on

H. If A is monotone and satisfies

(∀(x, x∗) ∈ domA× ranA) sup
{
〈x− y | y∗ − x∗〉

∣∣ (y, y∗) ∈ graA
}
< +∞, (4.14)

then it is 3∗ monotone.

Γ0(H) is the class of all lower semicontinuous convex functions from H to ]−∞,+∞] which

are proper in the sense that they are not identically +∞. Let f ∈ Γ0(H). The domain of f is

dom f =
{
x ∈ H

∣∣ f(x) < +∞
}

, the conjugate of f is the function

Γ0(H) 3 f∗ : x∗ 7→ sup
x∈H

(
〈x | x∗〉 − f(x)

)
, (4.15)

and the subdifferential of f is the maximally monotone operator

∂f : H → 2H : x 7→
{
x∗ ∈ H

∣∣ (∀y ∈ H) 〈y − x | x∗〉+ f(x) 6 f(y)
}
. (4.16)

The Moreau envelope of f is

f̃ : H → R : x 7→ inf
y∈H

(
f(y) +

‖x− y‖2

2

)
. (4.17)

For every x ∈ H, the infimum in (4.17) is achieved at a unique point, which is denoted by

proxfx. This defines the proximity operator proxf = J∂f of f .

Let C be a nonempty closed and convex subset of H. The distance from x ∈ H to C is

dC(x) = infy∈C ‖x− y‖, the indicator function of C is

ιC : H → ]−∞,+∞] : x 7→

0, if x ∈ C;

+∞, if x /∈ C,
(4.18)

the normal cone to C at x ∈ H is

NCx = ∂ιC(x) =


{
x∗ ∈ H

∣∣ (∀y ∈ C) 〈y − x | x∗〉 6 0
}
, if x ∈ C;

∅, otherwise,
(4.19)

and the projection operator onto C is projC = proxιC = JNC
.

The following facts will also come into play.

Lemma 4.2.4 Let A : H → 2H be maximally monotone, let µ ∈ ]0,+∞[, and let γ ∈ ]0, 1/µ[.
Set B = A − µ Id and β = 1 − γµ. Then JγB : H → H is β-cocoercive. Furthermore, JγB =

Jβ−1γA ◦ (β−1 Id ).

Proof. Let x and q be in H. Since β−1γA is maximally monotone, its resolvent is single-valued

64



with domain H. Therefore,

q ∈ JγBx⇔ x− q ∈ γBq

⇔ x− βq ∈ γAq

⇔ β−1x− q ∈ β−1γAq

⇔ q = Jβ−1γA

(
β−1x

)
, (4.20)

which shows that JγB = Jβ−1γA ◦ (β−1 Id ) is single-valued with domain H. Finally, since M =

βγA is maximally monotone, it follows from [6, Corollary 23.26] that JγB = Jβ−2M ◦ (β−1 Id )

is β-cocoercive.

Lemma 4.2.5 ([6, Proposition 24.68]) Let H be the real Hilbert space of N ×M matrices under
the Frobenius norm, and set s = min{N,M}. Denote the singular value decomposition of x ∈ H by
x = Ux diag (σ1(x), . . . , σs(x))V >x . Let φ ∈ Γ0(R) be even, and set

F : H → H : x 7→ Ux diag
(

proxφ
(
σ1(x)

)
, . . . , proxφ

(
σs(x)

))
V >x . (4.21)

Then F is firmly nonexpansive.

4.2.2.2 Variational inequalities

The following notion of a variational inequality was formulated in [12] (see Figure 4.2).

Definition 4.2.6 Let C be a nonempty closed convex set ofH and let B : H → H be a monotone

operator. The associated variational inequality problem is to

find x ∈ C such that (∀y ∈ C) 〈y − x | Bx〉 > 0. (4.22)

x y

CBx

Figure 4.2 Illustration of the variational inequality principle. The point x solves (4.22) because it lies
in C and, for every y ∈ C, the angle between y − x and Bx is acute.
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Variational inequalities are used in various areas of mathematics and its applications [8,30,

35,65]. They are also central in constrained minimization problems.

Lemma 4.2.7 [6, Proposition 27.8] Let f : H → R be a differentiable convex function, let C be a
nonempty closed convex subset of H, and let x ∈ H. Then x minimizes f over C if and only if it
satisfies the variational inequality

x ∈ C and (∀y ∈ C) 〈y − x | ∇f(x)〉 > 0. (4.23)

4.2.3 Composite sums of monotone operators

We shall require the following Brézis–Haraux-type theorem, which remains valid in general

reflexive Banach spaces (see [10, Théorème 3] for the special case of the sum of two monotone

operators).

Lemma 4.2.8 Let H be a real Hilbert space and let (Gi)i∈I be a finite family of real Hilbert spaces.
Let A : H → 2H be a 3∗ monotone operator and, for every i ∈ I, let Bi : Gi → 2Gi be a 3∗ monotone
operator and let Li : H → Gi be a bounded linear operator. Suppose that A+

∑
i∈I L

∗
i ◦Bi ◦ Li is

maximally monotone. Then
int
(
ranA+

∑
i∈I L

∗
i (ranBi)

)
= int ran

(
A+

∑
i∈I L

∗
i ◦Bi ◦ Li

)
ranA+

∑
i∈I L

∗
i (ranBi) = ran

(
A+

∑
i∈I L

∗
i ◦Bi ◦ Li

)
.

(4.24)

Proof. Clearly, ran (A+
∑

i∈I L
∗
i ◦Bi ◦ Li) ⊂ (ranA+

∑
i∈I L

∗
i (ranBi)). It is therefore enough

to show that int
(
ranA+

∑
i∈I L

∗
i (ranBi)

)
⊂ ran

(
A+

∑
i∈I L

∗
i ◦Bi ◦ Li

)
ranA+

∑
i∈I L

∗
i (ranBi) ⊂ ran

(
A+

∑
i∈I L

∗
i ◦Bi ◦ Li

)
.

(4.25)

Without loss of generality, set I = {1, . . . ,m} and introduce the Hilbert direct sum H =

H ⊕ G1 ⊕ · · · ⊕ Gm. Furthermore, introduce the bounded linear operator L : H → H : x 7→
(x, L1x, . . . , Lmx) and the operator M : H → 2H : (x, y1, . . . , ym) 7→ Ax × B1y1 × · · · ×
Bmym, which is 3∗ monotone since A and (Bi)i∈I are. Note also that, since L∗ : H →
H : (x, y1, . . . , ym) 7→ x+

∑
i∈I L

∗
i yi, the operator

L∗ ◦M ◦L = A+
∑
i∈I

L∗i ◦Bi ◦ Li (4.26)

is maximally monotone. We can therefore apply [42, Theorem 5] to obtainintL∗(ranM) ⊂ ran (L∗ ◦M ◦L)

L∗(ranM) ⊂ ran (L∗ ◦M ◦L),
(4.27)

66



which is precisely (4.25).

We consider below a monotone inclusion problem involving several operators.

Problem 4.2.9 Let (ωi)i∈I be a finite family of real numbers in ]0, 1] such that
∑

i∈I ωi = 1, let

A0 : H → 2H be maximally monotone and, for every i ∈ I, let βi ∈ ]0,+∞[ and let Ai : H → H
be βi-cocoercive. The task is to find x ∈ H such that 0 ∈ A0x+

∑
i∈I ωiAix.

Proposition 4.2.10 [24, Proposition 4.9] Consider the setting of Problem 4.2.9 under the as-
sumption that it has a solution. Let K be a strictly positive integer and let (In)n∈N be a sequence of
nonempty subsets of I such that (∀n ∈ N)

⋃K−1
k=0 In+k = I. Let γ ∈ ]0, 2 min16i6m βi[, let x0 ∈ H,

and let (∀i ∈ I) ti,−1 ∈ H. Iterate

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = xn − γAixn

for every i ∈ I r In⌊
ti,n = ti,n−1

xn+1 = JγA0

(∑
i∈I

ωiti,n

)
.

(4.28)

Then (xn)n∈N converges weakly to a solution to Problem 4.2.9.

4.3 Firmly nonexpansive Wiener models

The proposed Wiener model (see Figure 4.1) involves a linear operator followed by a firmly non-

expansive operator acting on a real Hilbert space G. Typical examples of linear transformations

in the context of signal construction include the Fourier transform, the Radon transform, wavelet

decompositions, frame decompositions, audio effects, or blurring operators. We show that firmly

nonexpansive operators model many useful nonlinearities in this context. Key examples based on

those of [27] are recalled and new ones are proposed. Following [27], we call p ∈ G a proximal

point of y ∈ G relative to a firmly nonexpansive operator F : G → G if Fy = p.

4.3.0.1 Projection operators

As seen in Section 4.2.2.1, the projection operator onto a nonempty closed convex set is firmly

nonexpansive.

Example 4.3.1 For every j ∈ {1, . . . ,m}, let Gj be a real Hilbert space and let Dj ⊂ Gj be

nonempty closed and convex. Suppose that G =
⊕

16j6m Gj . The operator

F : (yj)16j6m 7→ (projDj
yj)16j6m, (4.29)
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which is also the projection onto the closed convex set D =×16j6mDj , is the hard clipper

of [27, Example 2.11]. If we specialize to the case when, for every j ∈ {1, . . . ,m}, Gj = R, we

obtain the standard hard clipping operators of [1,31,55].

Example 4.3.2 Let K ⊂ G be a nonempty closed convex cone. The operator F = projK
is used as a distortion model when K is the positive orthant [53, Section 10.4.1]. An-

other instance of a conic projection operator arises in isotonic regression [5], where K ={
(ξi)16i6N ∈ RN

∣∣ ξ1 6 · · · 6 ξN
}

.

Example 4.3.3 Compression schemes such as downsampling project a high-dimensional object

of interest onto a closed convex subset of a low-dimensional subspace of G [41].

4.3.0.2 Proximity operators

As seen in Section 4.2.2.1, the proximity operator of a function in Γ0(G) is firmly nonexpansive.

The following construction will be particularly useful.

Example 4.3.4 For every j ∈ {1, . . . ,m}, let Gj be a real Hilbert space and let gj ∈ Γ0(Gj).

Suppose that G =
⊕

16j6m Gj and set F : G → G : (yj)16j6m 7→ (proxgiyj)16j6m. Then [6,

Proposition 24.11] asserts that

F = proxg, where g : G → ]−∞,+∞] : (yj)16j6m 7→
m∑
j=1

gj(yj). (4.30)

Example 4.3.5 In Example 4.3.4 suppose that, for every j ∈ {1, . . . ,m}, gj = φj ◦ ‖ · ‖, where

φj is an even function in Γ0(R) such that φj(0) = 0 and φj 6= ι{0}. Set (∀j ∈ {1, . . . ,m})
ρj = max ∂φj(0). Then we derive from [11, Proposition 2.1] that

F : G → G : (yj)16j6m 7→
((

proxφj‖yj‖
)
byjcρj

)
16j6m

,

where byjcρj =

yj/‖yj‖, if ‖yj‖ > ρj ;

0, if ‖yj‖ 6 ρj .
(4.31)

Example 4.3.6 Consider the special case of Example 4.3.5 in which, for some j ∈ {1, . . . ,m},
φj is not differentiable at the origin, which implies that ρj > 0. Then proxgj acts as a thresholder

with respect to the jth variable in the sense that, if ‖yj‖ 6 ρj , then the jth coordinate of Fy is

zero. For instance, suppose that, for every j ∈ {1, . . . ,m}, φj = ρj | · |, hence ∂φj(0) = [−ρj , ρj ]
and gj = ρj‖ · ‖. Then Fy = p is acquired though the group-shrinkage operation [63]

p =

((
1− ρj

max{‖yj‖, ρj}

)
yj

)
16j6m

. (4.32)
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Example 4.3.7 In contrast to the hard clipping operations of Example 4.3.1, soft clipping

operators are not projection operators in general, but many turn out to be proximity operators

[27] (see Figure 4.3). For instance, consider the setting of Example 4.3.5 with

(∀j ∈ {1, . . . ,m}) φj : η 7→

−|η| − ln(1− |η|)− η2

2
, if |η| < 1;

+∞, if |η| > 1.
(4.33)

Then we obtain the soft clipping operator

F : (yj)16j6m 7→
(

yj
1 + ‖yj‖

)
16j6m

(4.34)

used in [39]. Soft clipping operators model sensors in signal processing [4,39,53] and activation

functions in neural networks [25].

−4 −3 −2 −1 1 2 3 4

1

−1

Figure 4.3 Proximal soft clipping operators on R with saturation at ±1: η 7→ sign (η)(1− exp(−|η|)) [53,
Section 10.6.3] (blue), η 7→ 2 arctan(η)/π [25] (red), and η 7→ η/(1 + |η|) [39] (green).

4.3.0.3 General firmly nonexpansive operators

Not all firmly nonexpansive operators are proximity operators [21].

Example 4.3.8 Let (Rj)16j6m be nonexpansive operators on G. Then the operator

F =
Id +R1 ◦ · · · ◦Rm

2
(4.35)

is firmly nonexpansive [6, Proposition 4.4] but it is not a proximity operator [21, Example 3.5].

A concrete instance of (4.35) is found in audio signal processing. Consider a distortion p ∈ G of
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a linearly degraded audio signal Lx ∈ G modeled by

F (Lx) = p, (4.36)

where L produces effects such as echo or reverberation [53, Chapter 11], and F comprises several

simpler operations (Rj)16j6m which are actually firmly nonexpansive (see, e.g., Example 4.3.2,

[27], and [53, Section 10.6.2]). These simpler distortion operators are then used in series and

blended with a proportion of the input signal [53, Section 10.9], so that the overall process

is described by (4.35) (see Figure 4.4). More generally F remains firmly nonexpansive when

R1 ◦ · · · ◦Rm is replaced by any nonexpansive operator.

1/2

Input

1/2

+
Output

R1R2

Figure 4.4 The distortion operator F in Example 4.3.8 for m = 2.

4.3.0.4 Proxification

In some instances, a prescription q ∈ G may be given by an equation of the form Qy = q, where

Q : G → G is not firmly nonexpansive. In this section, we provide constructive examples of

proxification, by which we mean the replacement of the equality Qy = q with an equivalent

equality Fy = p, where p ∈ G and F : G → G is firmly nonexpansive.

Definition 4.3.9 Let Q : G → G and let q ∈ ranQ. Then (Q, q) is proxifiable if there exists a

firmly nonexpansive operator F : G → G and p ∈ ranF such that (∀y ∈ G) Qy = q ⇔ Fy = p. In

this case (F, p) is a proxification of (Q, q).

We begin with a necessary condition describing when this technique is possible.

Proposition 4.3.10 Let Q : G → G and q ∈ ranQ be such that (Q, q) is proxifiable. Then

Q−1
(
{q}
)

=
{
y ∈ G

∣∣ Qy = q
}

is closed and convex. (4.37)

Proof. The proxification assumption means that there exists a firmly nonexpansive operator

F : G → G and p ∈ ranF such that Q−1({q}) = F−1({p}). Now set T = Id −F + p. Then

it follows from [6, Proposition 4.4] that T is firmly nonexpansive, and therefore from [6,

Corollary 4.24] that Q−1({q}) = F−1({p}) = FixT is closed and convex.
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Interestingly, condition (4.37) is also assumed in various nonlinear recovery problems

[45,46,56]. However, the solution techniques of these papers require the ability to project onto

Q−1({q}) – a capability which rarely occurs when dimG > 1. The numerical approach proposed

in Section 4.3.1 will circumvent this requirement and lead to provenly-convergent algorithms

which instead rely on evaluating the associated firmly nonexpansive operator F : G → G.

Example 4.3.11 ([27, Proposition 2.14]) For every j ∈ {1, . . . ,m}, let Gj be a real Hilbert

space, let Dj be a nonempty closed convex subset of Gj , let γj ∈ ]0,+∞[, and set

Qj : Gj → Gj : yj 7→

yj , if dDj
(yj) > γj ;

projDj
yj , if dDj

(yj) 6 γj
(4.38)

and

Sj : Gj → Gj : yj 7→


yj +

γj
dDj

(yj)
(projDj

yj − yj), if yj 6∈ Dj ;

yj , if yj ∈ Dj .

(4.39)

Suppose that G =
⊕

16j6m Gj , setQ : G → G : (yj)16j6m 7→ (Qjyj)16j6m, and let q ∈ ranQ. Even

thoughQ is discontinuous, (Q, q) is proxifiable. Indeed, set S : G → G : (yj)16j6m 7→ (Sjyj)16j6m,

F : G → G : (yj)16j6m 7→ (Sj(Qjyj))16j6m, and p = Sq. Then (F, p) is a proxification of (Q, q).

In particular if, for every j ∈ {1, . . . ,m}, Dj = {0}, then Q is the block thresholding estimation

operator of [34, Section 2.3].

Example 4.3.12 Consider Example 4.3.11 with, for every j ∈ {1, . . . ,m}, Gj = R, Dj = {0},
and γj = γ ∈ ]0,+∞[. Then each operator Qj in (4.38) reduces to the hard thresholder

hardγ : η 7→

η, if |η| > γ;

0, if |η| 6 γ,
(4.40)

Sj : η 7→ η − γsign (η), and

Sj ◦ hardγ = softγ : η 7→ sign (η) max{|η| − γ, 0} (4.41)

is the soft thresholder on [−γ, γ]. Furthermore, it follows from Example 4.3.11 that (F, p) is a

proxification of (Q, q). The resulting transformation Q is used for signal compression in [28,54],

and as a sensing model in [9].

Next, we combine Example 4.3.12 with Lemma 4.2.5 to address low rank matrix approxima-

tion. Note the properties of φ in Lemma 4.2.5 imply that proxφ0 = 0. Therefore, operators of the

form (4.21) cannot increase the rank of a matrix.

Example 4.3.13 Let G be the real Hilbert space of N × M matrices under the Frobenius

norm, set s = min{N,M}, and let us denote the singular value decomposition of y ∈ G by
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y = Uy diag (σ1(y), . . . , σs(y))V >y . Let ρ ∈ ]0,+∞[, let hardρ be given by (4.40), set S : R →
R : η 7→ η − ρsign (η), and set

Q : G → G : y 7→ Uy diag
(

hardρ
(
σ1(y)

)
, . . . , hardρ

(
σs(y)

))
V >y

S : G → G : y 7→ Uy diag
(
S
(
σ1(y)

)
, . . . ,S

(
σs(y)

))
V >y .

(4.42)

Let q ∈ ranQ, and set F = S ◦Q and p = Sq. Since softρ = proxρ| · | and ρ| · | is even, it follows

from Example 4.3.12 and Lemma 4.2.5 that (F, p) is a proxification of (Q, q). The operator

Q is used in image compression to produce low rank approximations [3, 36, 44, 59], and the

associated firmly nonexpansive operator F soft-thresholds singular values at level ρ.

Remark 4.3.14 In the setting of Example 4.3.13, consider the compression technique performed

by the nonconvex projection operator R : G → G [13] which truncates singular values at a

given rank r ∈ {1, . . . , s − 1}, i.e., R : y 7→ Uy diag
(
σ1(y), . . . , σr(y), 0, . . . , 0

)
V >y . Let y ∈ G

and set q = Ry. Then, for every ρ ∈ ]σr+1(y), σr(y)[, Qy = q. Therefore, knowledge of the

low rank approximation q to y can be exploited in our framework by proxifying (Q, q) using

Example 4.3.13. Note that ρ can be estimated from q since one has access to σr(q) = σr(y).

Our last example illustrates how proxification can be used to handle a prescription arising

from an extension of the notion of a proximity operator for nonconvex functions.

Example 4.3.15 Let µ ∈ ]0,+∞[, let γ ∈ ]0, 1/µ[, set β = 1− γµ, and let g : G → ]−∞,+∞] be

proper, lower semicontinuous, and µ-weakly convex in the sense that g+ µ‖ · ‖2/2 is convex. For

every y ∈ G, g+‖y−·‖2/(2γ) is a strongly convex function in Γ0(G) and, by [6, Corollary 11.17],

it therefore admits a unique minimizer Qγgy, which defines the operator Qγg : G → G. Now

let q ∈ ranQγg and set A = ∂(g + µ‖ · ‖2/2), B = A − µ Id , F = βQγg, and p = βq. Then A

is maximally monotone but in general, since g is not convex, Qγg is not firmly nonexpansive.

However,

(
∀(y, p) ∈ G × G

)
Qγgy = p⇔ p ∈ zer

(
∂
(
γg +

γµ

2
‖ · ‖2 − γµ

2
‖ · ‖2 +

1

2
‖y − ·‖2

))
⇔ p ∈ zer (γA+ β Id −y) = zer (Id +γB − y)

⇔ JγBy = p, (4.43)

so Lemma 4.2.4 implies that Qγg = JγB is β-cocoercive. Thus, (F, p) is a proxification of

(Qγg, q). Operators of the form Qγg are used for shrinkage in [7,38,50] in the same spirit as in

Example 4.3.6. For instance, for G = R and ρ ∈ ]0,+∞[, the penalty g = ln(ρ+ | · |) of [38,50]
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is ρ−2-weakly convex and yields

Qγg : y 7→



1

2

(
y − ρ+

√
|y + ρ|2 − 4γ

)
, if y >

γ

ρ
;

0, if |y| 6 γ

ρ
;

1

2

(
y + ρ−

√
|y − ρ|2 − 4γ

)
, if y < −γ

ρ
.

(4.44)

4.3.0.5 Operators arising from monotone equilibria

The property that the object of interest is a zero of the sum of two monotone operators can be

modeled in our framework as follows.

Example 4.3.16 Let A : G → 2G be maximally monotone, let β ∈ ]0,+∞[, and let B : G → G be

β-cocoercive. Let γ ∈ ]0, 2β[ and set

F =

(
1− γ

4β

)(
Id −JγA ◦ (Id −γB)

)
and p = 0. (4.45)

Then F is firmly nonexpansive and, for every y ∈ G, Fy = p ⇔ y ∈ zer (A + B). Indeed, set

R = JγA ◦ (Id −γB). By [6, Proposition 26.1(iv)], R is (2 − γ/2β)−1-averaged and zerF =

FixR = zer (A+B). It follows from [6, Proposition 4.39] that Id −R is (1− γ/(4β))-cocoercive,

which makes F firmly nonexpansive.

Example 4.3.17 Let f ∈ Γ0(G), let β ∈ ]0,+∞[, and let g : G → R be a convex and differentiable

function such that ∇g is β−1-Lipschitzian. Consider the task of enforcing the property

y ∈ Argmin(f + g). (4.46)

Set A = ∂f and B = ∇g. Then B is β-cocoercive [6, Corollary 18.17], and (4.46) holds if and

only if y ∈ zer (A+B). Therefore, Example 4.3.16 yields a proximal point representation (F, p)

of (4.46).

4.3.1 Analysis and numerical solution of Problem 4.2.3

We first show that Problem 4.2.3 is an appropriate relaxation of Problem 4.2.1.

Proposition 4.3.18 Suppose that the set of solutions to Problem 4.2.1 is nonempty. Then it
coincides with that of solutions to Problem 4.2.3.

Proof. Let x be a solution to Problem 4.2.1. Then it is clear that x solves Problem 4.2.3. Now let

x be a solution to Problem 4.2.3. Then x ∈ C and

(∀y ∈ C)
∑
i∈I

ωi〈Li(x− y) | Fi(Lix)− pi〉 6 0. (4.47)
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Therefore, since x ∈ C and, for every i ∈ I, Fi(Lix) = pi, we obtain∑
i∈I

ωi〈Lix− Lix | Fi(Lix)− Fi(Lix)〉 6 0 (4.48)

and, by firm nonexpansiveness of the operators (Fi)i∈I ,∑
i∈I

ωi‖Fi(Lix)− Fi(Lix)‖2 6
∑
i∈I

ωi〈Lix− Lix | Fi(Lix)− Fi(Lix)〉 6 0. (4.49)

We conclude that (∀i ∈ I) Fi(Lix) = Fi(Lix) = pi.

Remark 4.3.19 Consider the setting of Problem 4.2.3 and set G =
⊕

i∈I Gi, L : H → : G : x 7→
(Lix)i∈I , F : G → G : (yi)i∈I 7→ (Fiyi)i∈I , and p = (pi)i∈I . Note that

Problem 4.2.1 admits a solution if and only if p ∈ F
(
L(C)

)
. (4.50)

Thus, the quantity dF (L(C))(p) provides a measure of inconsistency of Problem 4.2.1. We can

actually use a solution to Problem 4.2.3 to estimate it. Indeed, suppose that x1 and x2 are

solutions to (4.10). Then (4.3) yields∑
i∈I

ωi‖Fi(Lix1)− Fi(Lix2)‖2 6
∑
i∈I

ωi〈Lix1 − Lix2 | Fi(Lix1)− Fi(Lix2)〉

=
∑
i∈I

ωi〈Li(x1 − x2) | Fi(Lix1)− pi〉

+
∑
i∈I

ωi〈Li(x2 − x1) | Fi(Lix2)− pi〉

6 0. (4.51)

Hence, for every i ∈ I, there exists a unique pi ∈ Gi such that every solution x to Problem 4.2.3

satisfies

Fi(Lix) = pi. (4.52)

In turn, if x is any solution to Problem 4.2.3, then

dF (L(C))(p) = inf
x∈C
‖p− F (Lx)‖ 6 ‖p− F (Lx)‖ = ‖p− p‖ =

√∑
i∈I
‖pi − pi‖2. (4.53)

Next, we turn to the existence of solutions.

Proposition 4.3.20 Problem 4.2.3 admits a solution in each of the following instances.

(i)
∑

i∈I ωiL
∗
i pi ∈ ran (NC +

∑
i∈I ωiL

∗
i ◦ Fi ◦ Li).

(ii) C is bounded.
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(iii) ranNC +
∑

i∈I ωiL
∗
i (ranFi) = H.

(iv) For some i ∈ I, L∗i is surjective and one of the following holds:

a) L∗i (ranFi) = H.

b) Fi is surjective.

c) ‖Fi(y)‖ → +∞ as ‖y‖ → +∞.

d) ran (Id −Fi) is bounded.

e) There exists a continuous convex function gi : Gi → R such that Fi = proxgi .

Proof. Set A = NC and (∀i ∈ I) Bi = ωiFi. Then the operators (Bi)i∈I are cocoercive. Now

define

M = A+
∑
i∈I

L∗i ◦Bi ◦ Li. (4.54)

It follows from [6, Proposition 4.12] thatB =
∑

i∈I L
∗
i ◦Bi◦Li is cocoercive and hence maximally

monotone by [6, Example 20.31], with domB = H. On the other hand, [6, Example 20.26]

asserts that A is maximally monotone. We therefore derive from [6, Corollary 25.5(i)] that

M is maximally monotone. (4.55)

(i): Let x ∈ H. In view of (4.19), x solves Problem 4.2.3 if and only if

−
∑
i∈I

ωiL
∗
i

(
Fi(Lix)− pi

)
∈ NCx, (4.56)

that is,
∑

i∈I ωiL
∗
i pi ∈Mx.

(ii): Since domM = domA = C is bounded, it follows from (4.55) and [6, Corollary 21.25]

that M is surjective, so (i) holds.

(iii): It follows from [6, Example 25.14] that A is 3∗ monotone and from [6, Exam-

ple 25.20(i)] that the operators (Bi)i∈I are likewise. Hence, in view of (4.55) we invoke

Lemma 4.2.8 to get

int ranM = int ran
(
A+

∑
i∈I

L∗i ◦Bi ◦ Li
)

= int
(

ranA+
∑
i∈I

L∗i (ranBi)
)

= H. (4.57)

So M is surjective and (i) holds.

(iv)b)⇒(iv)a)⇒(iii): Clear.

(iv)c)⇒(iv)b): Since Fi is maximally monotone by [6, Example 20.30], this follows from [6,

Corollary 21.24].

(iv)d)⇒(iv)c): Set ρ = supy∈Gi ‖y − Fiy‖. Then ‖Fiy‖ > ‖y‖ − ‖y − Fiy‖ > ‖y‖ − ρ→ +∞
as ‖y‖ → +∞.

(iv)e)⇒(iv)b): We derive from [6, Proposition 16.27] that Gi = int dom gi ⊂ dom ∂gi =

dom (Id +∂gi) = ran (Id +∂gi)
−1 = ran proxgi .
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Example 4.3.21 A simple instance when Problem 4.2.1 has no solution, while the relaxed

Problem 4.2.3 does, is the following. Take disjoint nonempty closed convex subsets C and

D of H such that C is bounded, and let I = 1, G1 = H, L1 = Id , F1 = Id −projD, and

p1 = 0. Then the solution set of Problem 4.2.1 is C ∩ D = ∅, while that of Problem 4.2.3 is

Fix (projC ◦ projD) 6= ∅ [33].

We have described in Example 4.2.2 an instance of the relaxed Problem 4.2.3 which is

in fact a minimization problem. The next proposition describes a general setting in which a

minimization problem underlies Problem 4.2.3. It involves the Moreau envelope of (4.17).

Proposition 4.3.22 Consider the setting of Problem 4.2.3 and suppose that, for every i ∈ I, there
exists gi ∈ Γ0(Gi) such that Fi = proxgi . Then the objective of Problem 4.2.3 is to

minimize
x∈C

f(x), where f : x 7→ 1

2

∑
i∈I

ωi

(
g̃∗i (Lix)− 〈Lix | pi〉

)
. (4.58)

Proof. We derive from [6, Proposition 24.4] that (∀i ∈ I)∇g̃∗i = proxgi . In turn, f is differentiable

and

(∀x ∈ H) ∇f(x) =
∑
i∈I

ωiL
∗
i

(
proxgi(Lix)− pi

)
=
∑
i∈I

ωiL
∗
i

(
Fi(Lix)− pi

)
. (4.59)

Consequently, (4.10) is equivalent to finding a solution to (4.23), i.e., by Lemma 4.2.7, to

minimizing f over C.

Next, we present a block-iterative algorithm for solving Problem 4.2.3.

Proposition 4.3.23 Consider the setting of Problem 4.2.3 under the assumption that it has a
solution. Let K be a strictly positive integer and let (In)n∈N be a sequence of nonempty subsets of I
such that

(∀n ∈ N)

K−1⋃
k=0

In+k = I. (4.60)

Let x0 ∈ H, let γ ∈ ]0, 2[, and, for every i ∈ I, let ti,−1 ∈ H and set γi = γ/‖Li‖2. Iterate

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = xn − γiL∗i

(
Fi(Lixn)− pi

)
for every i ∈ I r In⌊
ti,n = ti,n−1

xn+1 = projC

(
m∑
i=1

ωiti,n

)
.

(4.61)

Then (xn)n∈N converges weakly to a solution to Problem 4.2.3.
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Proof. Set A0 = NC and (∀i ∈ I) Ai = ‖Li‖−2(L∗i ◦ Fi ◦ Li − L∗i pi). For every i ∈ I, since Fi is

firmly nonexpansive, it follows from [6, Proposition 4.12] that Ai is firmly nonexpansive, i.e.,

cocoercive with βi = 1. Thus, (4.61) is a special case of (4.28), and the conclusion follows from

Proposition 4.2.10.

An attractive feature of (4.61) is its ability to activate only a subblock of operators (Fi)i∈In at

iteration n, as opposed to all of them as in classical algorithms dealing with inconsistent common

fixed point problems [16–18,20]. This flexibility is of the utmost relevance for very large-scale

applications. It will also be seen in Section 4.3.2 to lead to more efficient implementations.

Condition (4.60) regulates the frequency of activation of the operators. Since K can be chosen

arbitrarily, it is actually quite mild.

4.3.2 Numerical experiments

In this section, we illustrate the ability of the proposed framework to efficiently model and solve

various signal and image recovery problems with inconsistent nonlinear prescriptions. Each

instance will use the block-iterative algorithm (4.61) which was shown in Proposition 4.3.23 to

produce an exact solution of Problem 4.2.3 from any initial point in H. Here, we implement it

with x0 = 0.

Remark 4.3.24 In the modeling of signal construction problems as minimization problems, it is

common practice to add a function g to the objective in order to promote desirable properties in

the solutions. Several functions are thus averaged and contribute collectively to defining solutions.

A prominent example is the promotion of sparsity through the addition of a penalty such as

the `1 norm in RN [14,57]. In the more general variational inequality setting of Problem 4.2.3,

this template can be mimicked by adding the prescription Fy = 0, where F = Id −proxg, i.e.,

by Moreau’s decomposition, F = proxg∗ [6, Remark 14.4]. Note that exact satisfaction of the

equality Fy = 0 would just mean that one minimizes g since Fix proxg = Argming. In general,

when incorporated to Problem 4.2.3, the pair (F, p) = (Id −proxg, 0) is intended to promote the

properties g would in a standard minimization problem. We investigate in Sections 4.3.2.3 and

4.3.2.4 this technique to encourage sparsity in RN through the incorporation of the operator

F = projB∞(0;ρ) = Id −proxρ‖·‖1 , where B∞(0; ρ) is the `∞ ball of RN centered at the origin and

with radius ρ ∈ ]0,+∞[.

4.3.2.1 Image recovery

The goal is to recover the original image x ∈ H = RN (N = 2562) shown in Figure 4.5(a) from

the following.

• Bounds on pixel values: x ∈ C = [0, 255]N .

• The degraded image p1 ∈ G1 = H shown in Figure 4.5(b), which is modeled as follows.

The image x is blurred by L1 : H → G1, which performs discrete convolution with a
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15× 15 Gaussian kernel with standard deviation of 3.5, then corrupted by an additive noise

w1 ∈ G1. The blurred image-to-noise ratio is 20 log10(‖L1x‖/‖w1‖) = 24.0 dB. Pixel values

beyond 60 are then clipped. Altogether, p1 = projD1
(L1x+ w1), where D1 = [0, 60]N . This

process models a low-quality image acquired by a device which cannot detect photon

counts beyond a certain threshold. We therefore use F1 = projD1
in (4.10).

• An approximation of the mean pixel value ρ2 = 138 of x. To enforce this information,

following Example 4.2.2, we set G2 = H, L2 = Id , p2 = 0, and

F2 : (ηk)16k6N 7→ x−
(∑N

k=1 ηk
N

− ρ2

)
1. (4.62)

• The phase θ ∈ [−π, π]N of the 2-D discrete Fourier transform of a noise-corrupted

version of x, i.e., θ = ∠DFT (x + w3), where w3 ∈ H yields an image-to-noise ratio

20 log10(‖x‖/‖w3‖) = 49.0 dB. To model this information, we set G3 = H, L3 = Id , p3 = 0,

and

F3 : y 7→ y − IDFT
(∣∣DFT y

∣∣max
{

cos
(
∠(DFT y)− θ

)
, 0
}

exp(iθ)

)
. (4.63)

Due to the noise present in p1 and θ, and the inexact estimation of ρ2, this instance of Prob-

lem 4.2.1 (I = {1, 2, 3}) is inconsistent. We thus arrive at the relaxed Problem 4.2.3 by setting

ω1 = ω2 = ω3 = 1/3. By Proposition 4.3.20(ii), since C is bounded, Problem 4.2.3 is guaranteed

to possess a solution. The solution shown in Figure 4.5(c) is computed using algorithm (4.61)

with γ = 1.9 and (∀n ∈ N) In = I. This experiment illustrates a nonlinear recovery scenario with

inconsistent measurements which nonetheless produces realistic solutions obtained by exploiting

all available information.

(a) (b) (c)

Figure 4.5 Experiment of Section 4.3.2.1: (a) Original image x. (b) Degraded image p1. (c) Recovered
image.
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4.3.2.2 Signal recovery

The goal is to recover the original signal x ∈ H = C = RN (N = 1024) shown in Figure 4.6(a)

from the following.

• A piecewise constant approximation p1 of x, given by p1 = projD1
(x+ w1), where w1 ∈ G1

represents noise and D1 is the subspace of signals in G1 = H which are constant by blocks

along each of the 16 sets of 64 consecutive indices in {1, . . . , N} (see Figure 4.6(b)). The

signal-to-noise ratio is 20 log10(‖x‖/‖w1‖) = −2.3 dB. We model this observation by setting

L1 = Id and F1 = projD1
.

• A bound ρ2 = 0.025 on the magnitude of the finite differences of x. To enforce this

information, following Example 4.2.2, we set G2 = RN−1, L2 : H → G2 : (ξi)16i6N 7→
(ξi+1 − ξi)16i6N−1, p2 = 0, and F2 = Id −projD2

, where D2 =
{
y ∈ G2

∣∣ ‖y‖∞ 6 ρ2

}
, that

is, using (4.41),

F2 : (ηk)16k6N−1 7→
(

softγ (ηk)
)

16k6N−1
. (4.64)

• A collection of m = 1200 noisy thresholded scalar observations r3 = (χj)j∈J ∈ Rm of x,

where J = {3, . . . ,m+ 2}. The true data formation model is

(∀j ∈ J) χj = R(〈x | ej〉) + νj , (4.65)

where (ej)j∈J is a dictionary of random vectors in RN with zero-mean i.i.d. entries, the

noise vector w3 = (νj)j∈J yields a signal-to-noise ratio of 20 log10(‖r3‖/‖w3‖) = 17.8 dB,

and R is the thresholding operator of the type found in [2,52] (ρ = 0.05), namely

R : R→ R : η 7→

sign (η) 4
√
η4 − ρ4, if |η| > ρ;

0, if |η| 6 ρ.
(4.66)

We assume that R is misspecified and that the presence of noise is unknown, so that the

data acquisition process is incorrectly modeled as

(∀j ∈ J) χj = Q(〈x | ej〉), (4.67)

where

Q : R→ R : η 7→

sign (η)
√
η2 − ρ2, if |η| > ρ;

0, if |η| 6 ρ.
(4.68)

Note that Q is not Lipschitzian. Nonetheless, with

S : R→ R : η 7→ sign (η)
(√

η2 + ρ2 − ρ
)
, (4.69)

it is straightforward to verify that S ◦ Q = softρ and that, for every j ∈ J , (Fj , pj) =
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( softρ , Sχj) is a proxification of (Q,χj). Also, for every j ∈ J , set Gj = R and Lj = 〈· | ej〉.

We thus obtain an instantiation of Problem 4.2.3 with I = {1, 2} ∪ J and, for every i ∈ I,

ωi = 1/(card I). Since (ej)j∈J is overcomplete and, for every j ∈ J , Fj is surjective, it follows that

H =
{∑

j∈J ωjηjej
∣∣ ηj ∈ ranFj

}
=
∑

j∈J ωjL
∗
j (ranFj) ⊂

∑
i∈I ωiL

∗
i (ranFi), so Problem 4.2.3

is guaranteed to possess a solution by Proposition 4.3.20(iii). Algorithm (4.61) produces the

signal shown in Figure 4.6(c) with γ = 1.9 and the following activation strategy. At every

iteration, F1 and F2 are activated, while we partition J into four blocks of 300 elements and

cyclically activate one block per iteration, i.e.,

(∀n ∈ N)(∀j ∈ {0, 1, 2, 3}) I4n+j = {1, 2, 3 + 300j, . . . , 2 + 300(j + 1)}, (4.70)

which satisfies condition (4.60) with K = 4. This shows that, even when the data is noisy and

poorly modeled, Problem 4.2.3 produces quite robust recoveries. The execution time savings

resulting from the use of (4.70) compared to the full activation strategy (i.e., In = I for

every n ∈ N) are displayed in Figure 4.7. Note that in very large-scale scenarios in which all

data cannot be simultaneously loaded into memory, activation strategies such as (4.70) make

algorithm (4.61) implementable.
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Figure 4.6 Experiment of Section 4.3.2.2: (a): Original signal x. (b): Piecewise constant approximation
p1. (c): Recovered signal.
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Figure 4.7 Experiment of Section 4.3.2.2: Relative error 20 log10(‖xn − x∞‖/‖x0 − x∞‖) (dB) versus
execution time (seconds) for full activation (red) and cyclic activation (4.70) (green).

4.3.2.3 Sparse image recovery

The goal is to recover the original image x ∈ H = RN (N = 2562) shown in Figure 4.8(a) from

the following.

• Bounds on pixel values: x ∈ C = [0, 255]N .

• The low rank approximation q1 ∈ G1 = H displayed in Figure 4.8(b) of a blurred noisy

version of x modeled as follows. The blurring operator L1 : H → G1 applies a discrete

convolution with a uniform 7 × 7 kernel, and the operators Q and S are as in Exam-

ple 4.3.13, with threshold ρ = 500. Then q1 = Q(L1x + w1) is a rank-85 compression,

where w1 ∈ G1 induces a blurred image-to-noise ratio of 20 log10(‖L1x‖/‖w1‖) = 17.6 dB.

By Example 4.3.13, we obtain a proxification of (Q, q1) with (F1, p1) = (S ◦Q,Sq1).

• x is sparse. To promote this property in the solutions to (4.10), following Remark 4.3.24,

we set G2 = H, L2 = Id , p2 = 0, ρ2 = 1.5, and F2 = projB∞(0;ρ2).

We therefore arrive at an instance of Problem 4.2.3 with I = {1, 2} and ω1 = ω2 = 1/2. Since C

is bounded, Proposition 4.3.20(ii) guarantees that a solution exists. Algorithm (4.61) with γ = 1

yields the recovery in Figure 4.8(c). Even though computing F1 requires only one singular value

decomposition (not two, as (4.42) may suggest), it is the most numerically expensive operator

in this problem. Therefore, we choose to activate F1 only every 5 iterations, i.e.,

In =

I r {1}, if n 6≡ 0 mod 5;

I, if n ≡ 0 mod 5.
(4.71)
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Figure 4.10 displays the time savings resulting from the use of (4.71) compared to full activation

(both activation strategies yield visually indistinguishable recoveries). Notice that, while the ob-

servation in Figure 4.8(b) is virtually illegible, many of the words in the recovery of Figure 4.8(c)

can be discerned.

(a) (b) (c)

Figure 4.8 Experiment of Section 4.3.2.3: (a) Original image x. (b) Degraded image q1. (c) Recovered
image.

Finally, we examine the use of the non firmly nonexpansive sparsity-promoting operator of

Example 4.3.15. Specifically, Qγg is given by (4.44), which is induced by the logarithmic penalty

with parameters ρ = ρ2 and γ = 0.05/ρ2
2. This implies that 0.95Qγg is firmly nonexpansive

and hence that Id −0.95Qγg is likewise. Figure 4.9 displays the result when F2 is replaced by

componentwise applications of Id −0.95Qγg. In this experiment, the `1 penalty-based operator

F2 yields a sharper recovery in Figure 4.8(c) than the recovery in Figure 4.9, which is induced

by the logarithmic penalty.

Figure 4.9 Experiment of Section 4.3.2.3: Recovered image with logarithmic thresholding instead of
soft thresholding.
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Figure 4.10 Experiment of Section 4.3.2.3: Relative error 20 log10(‖xn − x∞‖/‖x0 − x∞‖) (dB) versus
execution time (seconds) for full-activation (red) and block activation (4.71) (green).

4.3.2.4 Source separation

This experiment incorporates nonlinear compression to a problem in astronomy, which seeks to

separate a background image x1 ∈ RN (N = 6002) of stars from a galaxy image x2 ∈ RN [40].

The goal is to construct the image pair (x1, x2) ∈ H = RN × RN given the following.

• Bounds on pixel values: (x1, x2) ∈ C = [0, 255]N × [0, 255]N .

• The low rank approximation q1 ∈ G1 = RN shown in Figure 4.11(b) of the original

superposition x1 + x2 shown in Figure 4.11(a), which is modeled as follows. Set L1 : H →
G1 : (x1, x2) 7→ x1 + x2, and let Q and S be as in Example 4.3.13 with ρ = 1500. The

resulting rank-22 approximation of x1 + x2 is given by q1 = Q(L1(x1, x2)). It follows from

Example 4.3.13 that (F1, p1) = (S ◦Q,Sq1) is a proxification of (Q, q1).

• x1 is sparse, and x2 admits a sparse representation relative to the 2-D discrete co-

sine transform L : RN → RN [40]. To encourage these properties, as discussed in Re-

mark 4.3.24, we set G2 = H, L2 : (x1, x2) 7→ (x1, Lx2), p2 = 0, and F2 : (y1, y2) 7→
(projB∞(0;10)y1, projB∞(0;45)y2). In view of Example 4.3.1, F2 is firmly nonexpansive.

Thus, we arrive at an instance of Problem 4.2.3 with I = {1, 2} and ω1 = ω2 = 1/2. By

Proposition 4.3.20(ii) this problem is guaranteed to possess a solution, since C is bounded.

Algorithm (4.61) with γ = 1 provides the solution shown in Figure 4.11(c)–(d). To improve

algorithmic performance, we adopt the activation strategy (4.71); see Figure 4.12 for time

savings compared to the full activation strategy. As can be seen from Figure 4.11, this approach

produces effective recoveries. Even though this problem involves a discontinuous observation
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process, we can nonetheless solve it with algorithm (4.61), which exploits all of the information

at hand.

(a) (b)

(c) (d)

Figure 4.11 Experiment of Section 4.3.2.4: (a) Original image x1 + x2. (b) Low-rank compression of
x1 + x2. (c) Recovered background (stars). (d) Recovered foreground (galaxy).

85



0 100 200 300 400 500 600 700 800 900
−30

−25

−20

−15

−10

−5

0

Figure 4.12 Experiment of Section 4.3.2.4: Relative error 20 log10(‖xn − x∞‖/‖x0 − x∞‖) (dB) versus
execution time (seconds) for full-activation (red) and block activation (4.71) (green).
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Chapter 5
BLOCK-ACTIVATED ALGORITHMS FOR
MULTICOMPONENT FULLY
NONSMOOTH MINIMIZATION

5.1 Introduction and context

As seen in Chapters 2, 3, and 4, provenly-convergent and block-iterative algorithms are essential,

especially for large-scale problems. This chapter considers algorithms with these properties

which are designed for fully nonsmooth multicomponent convex minimization problems. We

set out a list of requirements for large-scale minimization tasks in data science, and for the first

time we compare the only algorithms which satisfy our requirements. Numerical experiments

supplement our findings.

This chapter presents the following article.

M. N. Bùi, P. L. Combettes, and Z. C. Woodstock, Block-activated algorithms for

multicomponent fully nonsmooth minimization, submitted.

5.2 Article: Block-activated algorithms for multicomponent fully

nonsmooth minimization

Abstract. We investigate block-activated proximal algorithms for multicomponent minimization

problems involving a separable nonsmooth convex function penalizing the components individu-

ally, and nonsmooth convex coupling terms penalizing linear mixtures of the components. In the

case of smooth coupling functions, several algorithms exist and they are well understood. By

contrast, in the fully nonsmooth case, few block-activated methods are available and little effort

has been devoted to assessing their merits and numerical performance. The goal of the paper is
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to address this gap. The numerical experiments concern machine learning and signal recovery

problems.

5.2.1 Introduction

The goal of many signal processing and machine learning tasks is to exploit the observed data

and the prior knowledge to produce a solution that represents information of interest. In this

process of extracting information from data, structured convex optimization has established

itself as an effective modeling and algorithmic framework; see for instance [3, 5, 9, 15, 19].

In state-of-the-art applications, the sought solution is often a tuple of vectors which reside in

different spaces [1, 2, 6, 7, 13, 14, 17]. The following multicomponent minimization problem

will be shown to capture a wide range of concrete scenarios. It consists of a separable term

penalizing the components individually, and of coupling terms penalizing linear mixtures of the

components.

Problem 5.2.1 Let (Hi)16i6m and (Gk)16k6p be Euclidean spaces. For every i ∈ {1, . . . ,m}
and every k ∈ {1, . . . , p}, let fi : Hi → ]−∞,+∞] and gk : Gk → ]−∞,+∞] be proper lower

semicontinuous convex functions, and let Lk,i : Hi → Gk be a linear operator. The objective is to

minimize
x1∈H1,...,xm∈Hm

m∑
i=1

fi(xi)︸ ︷︷ ︸
separable term

+

p∑
k=1

gk

(
m∑
i=1

Lk,ixi

)
︸ ︷︷ ︸
kth coupling term

. (5.1)

We denote the solution set by P.

To solve Problem 5.2.1 reliably without adding restrictions on its constituents (for instance

smoothness or strong convexity of some functions involved in the model), we focus on algorithms

that have the following flexible features:

À Nondifferentiability: None of the functions f1, . . . , fm, g1, . . . , gp is assumed to be differ-

entiable.

Á Splitting: The functions f1, . . . , fm, g1, . . . , gp and the linear operators are activated sepa-

rately.

Â Block activation: As m and p can be very large, only a block of the proximity operators of

the functions f1, . . . , fm, g1, . . . , gp is activated at each iteration.

Ã Operator norms: Bounds on the norms of the linear operators involved in Problem 5.2.1

are not assumed.

Ä Convergence: The algorithm produces a sequence which converges (possibly almost

surely) to a solution to (5.1).
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A consequence of features À and Á is that the algorithms under consideration must acti-

vate the functions f1, . . . , fm, g1, . . . , gp via their respective proximity operators (even if some

functions happened to be smooth, proximal activation is often preferable [6, 11]). Feature Â

has a view towards current large-scale problems. In such scenarios, memory and computing

power limitations make the execution of standard proximal splitting algorithms, which require

activating all the proximity operators at each iteration, inefficient or simply impossible. As

a result, we must turn our attention to algorithms which employ, at each iteration n, only

blocks of functions (fi)i∈In and (gk)k∈Kn . If the functions (gk)16k6p were all smooth, one could

use block-activated versions of the forward-backward algorithm proposed in [16,25] and the

references therein; in particular, when m = 1, methods such as those of [12,18,23,26] would

be pertinent. Next, as noted in [16, Remark 5.10(iv)], another candidate of interest could be

the randomly block-activated algorithm of [16, Section 5.2], which leads to block-activated

versions of several primal-dual methods (see [24] for detailed developments and [8] for an

inertial version when m = 1). However, this approach violates requirement Ã because it imposes

bounds on the proximal scaling parameters which depend on the norms of the linear operators.

Finally, requirement Ä rules out methods that guarantee merely minimizing sequences or ergodic

convergence.

To the best of our knowledge, there seems to be two primary methods that fulfill À–Ä:

• Algorithm 5.2.6: The stochastic primal-dual Douglas–Rachford algorithm of [16].

• Algorithm 5.2.8: The deterministic primal-dual projective splitting algorithm of [10].

In the case of smooth coupling functions (gk)16k6p, extensive numerical experience has been

accumulated to understand the behavior of block-activated methods, especially in the case of

stochastic gradient methods. By contrast, to date, very few numerical experiments with the

recent, fully nonsmooth Algorithms 5.2.6 and 5.2.8 have been conducted and no comparison of

their merits and performance has been undertaken. Thus far, Algorithm 5.2.6 has been employed

only in the context of machine learning (see also the variant for partially smooth problems

proposed in [6]). On the other hand, Algorithm 5.2.8 has been used in image recovery in [11],

but only in full activation mode, and in rare feature selection in [22], but with m = 1.

Objectives: This paper aims at filling the above gap by shedding light on the implementation,

the features, and the behavior of the fully nonsmooth Algorithms 5.2.6 and 5.2.8, comparing

their merits, and providing numerical experiments illustrating their performance.

Contributions and outline: In Section 5.2.2, we illustrate the pertinence and the versatility

of the model proposed in Problem 5.2.1 through a panel of examples drawn from various fields.

Algorithms 5.2.6 and 5.2.8 are presented in Section 5.2.3, where we analyze and compare their

features, implementation, and asymptotic properties. This investigation is complemented in

Section 5.2.4 by numerical experiments in the context of machine learning and image recovery.

93



5.2.2 Instantiations of Problem 5.2.1

We illustrate the pertinence and the versatility of the proposed model through a few examples.

Example 5.2.2 Variational models in multispectral imaging naturally involve minimization over

several components. Specific references are [4,7].

Example 5.2.3 In perspective maximum-likelihood type estimation, the goal is to estimate

scale vectors s = (σi)16i6N and t = (τi)16i6P , as well as a regression vector b ∈ Rd [14]. The

minimization problem assumes the form

minimize
s∈RN , t∈RP , b∈Rd

ς(s) +$(t) + θ(b) +
N∑
i=1

Φi

(
σi, Xib

)
+

P∑
i=1

Ψi

(
τi, Lib

)
, (5.2)

where all the functions are convex, (X1, . . . , XN ) are design matrices, and (L1, . . . , LP ) are

linear transformations.

Example 5.2.4 We consider the latent group lasso formulation in machine learning [21]. Let

{p1, . . . , pm} ⊂ [1,+∞], let {G1, . . . , Gm} be a covering of {1, . . . , d}, and define

X =
{

(x1, . . . , xm)
∣∣ xi ∈ Rd, support(xi) ⊂ Gi

}
. (5.3)

The solution is ỹ =
∑m

i=1 x̃i, where (x̃1, . . . , x̃m) solves

minimize
(x1,...,xm)∈X

m∑
i=1

τi‖xi‖pi +

p∑
k=1

gk

(
m∑
i=1

〈xi | uk〉

)
, (5.4)

with τi ∈ ]0,+∞[, uk ∈ Rd, and gk : R→ ]−∞,+∞] convex.

Example 5.2.5 Various signal recovery problems can be modeled as infimal convolution prob-

lems of the form

minimize
x∈H

f(x) +

p∑
k=1

(fk � gk)(Lkx), (5.5)

where all the functions are convex, Lk : H → Gk is linear, and � is the inf-convolution operation,

e.g., [2,11,20]. Under mild conditions, (5.5) can be rephrased as

minimize
x∈H

y1∈G1,...,yp∈Gp

f(x) +

p∑
k=1

fk(yk) +

p∑
k=1

gk(Lkx− yk). (5.6)

5.2.3 Algorithms: presentation and discussion

The subdifferential, the conjugate, and the proximity operator of a proper lower semicontinuous

convex function f : H → ]−∞,+∞] are denoted by ∂f , f∗, and proxf , respectively. Let us
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consider the setting of Problem 5.2.1 and let us set H = H1 × · · · × Hm and G = G1 × · · · × Gp.
A generic element in H is denoted by x = (xi)16i6m. We make the standing assumption that the

Kuhn–Tucker set of Problem 5.2.1 is nonempty, that is, there exist x̃ ∈H and ṽ∗ ∈ G such that
(
∀i ∈ {1, . . . ,m}

)
−
∑p

k=1 L
∗
k,iṽ
∗
k ∈ ∂fi(x̃i)(

∀k ∈ {1, . . . , p}
) ∑m

i=1 Lk,ix̃i ∈ ∂g∗k(ṽ∗k).
(5.7)

This implies that the solution set P of Problem 5.2.1 is nonempty.

As discussed in Section 5.2.1, two primary algorithms seem to fulfill requirements À–Ä. The

first algorithm operates in the product space H×G and employs random activation of the blocks.

To present it, let us introduce

L : H→ G : x 7→

(
m∑
i=1

L1,ixi, . . . ,

m∑
i=1

Lp,ixi

)
(5.8)

and

V =
{

(z,y) ∈H× G
∣∣ y = Lz

}
. (5.9)

Let z ∈H and y ∈ G, and set t = (Id+L∗L)−1(z+L∗y) and s = (Id+LL∗)−1(Lz−y). Then

the projection of (z,y) ∈H× G onto V is [16, Eq. (5.25)]

projV (z,y) = (t,Lt) = (z −L∗s,y + s). (5.10)

The coordinate operators of projV are (Qj)16j6m+p, i.e.,

projV (z,y) =
(
Q1(z,y), . . . , Qm+p(z,y)

)
. (5.11)

Algorithm 5.2.6 ( [16]) Let γ ∈ ]0,+∞[, let x0 and z0 be H-valued random variables (r.v.), let
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y0 and w0 be G-valued r.v. Iterate

for j = 1, . . . ,m+ p

bcompute Qj given by (5.8)–(5.11)

for n = 0, 1, . . .

λn ∈ ]0, 2[

select randomly ∅ 6= In ⊂ {1, . . . ,m} and ∅ 6= Kn ⊂ {1, . . . , p}
for every i ∈ In⌊
xi,n+1 = Qi(zn,yn)

zi,n+1 = zi,n + λn
(
proxγfi(2xi,n+1 − zi,n)− xi,n+1

)
for every i ∈ {1, . . . ,m}r In⌊

(xi,n+1, zi,n+1) = (xi,n, zi,n)

for every k ∈ Kn⌊
wk,n+1 = Qm+k(zn,yn)

yk,n+1 = yk,n + λn
(
proxγgk(2wk,n+1 − yk,n)− wk,n+1

)
for every k ∈ {1, . . . , p}rKn⌊

(wk,n+1, yk,n+1) = (wk,n, yk,n).

(5.12)

Theorem 5.2.7 ( [16]) In the setting of Algorithm 5.2.6, define, for every n ∈ N and every
j ∈ {1, . . . ,m+ p},

εj,n =

1, if j ∈ In or j −m ∈ Kn;

0, otherwise.
(5.13)

Suppose that the following hold:

[a] infn∈N λn > 0 and supn∈N λn < 2.

[b] The r.v. (εn)n∈N are identically distributed.

[c] For every n ∈ N, the r.v. εn and (zj ,yj)06j6n are mutually independent.

[d] (∀j ∈ {1, . . . ,m+ p}) Prob[εj,0 = 1] > 0.

Then (xn)n∈N converges almost surely to a P-valued r.v.

The second algorithm operates by projecting onto hyperplanes which separate the current

iterate from the Kuhn–Tucker set of Problem 5.2.1 and activating the blocks in a deterministic

manner [10].

Algorithm 5.2.8 ( [10]) Set I0 = {1, . . . ,m} and K0 = {1, . . . , p}. For every i ∈ {1, . . . ,m}
and every k ∈ {1, . . . , p}, let {γi, µk} ⊂ ]0,+∞[, xi,0 ∈ Hi, and v∗k,0 ∈ Gk. Iterate
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for n = 0, 1, . . .

λn ∈ ]0, 2[

if n > 0⌊
select ∅ 6= In ⊂ {1, . . . ,m} and ∅ 6= Kn ⊂ {1, . . . , p}

for every i ∈ In x∗i,n = xi,n − γi
∑p

k=1 L
∗
k,iv
∗
k,n

ai,n = proxγifix
∗
i,n

a∗i,n = γ−1
i (x∗i,n − ai,n)

for every i ∈ {1, . . . ,m}r In⌊
(ai,n, a

∗
i,n) = (ai,n−1, a

∗
i,n−1)

for every k ∈ Kn
y∗k,n = µkv

∗
k,n +

∑m
i=1 Lk,ixi,n

bk,n = proxµkgky
∗
k,n

b∗k,n = µ−1
k (y∗k,n − bk,n)

tk,n = bk,n −
∑m

i=1 Lk,iai,n

for every k ∈ {1, . . . , p}rKn⌊
(bk,n, b

∗
k,n) = (bk,n−1, b

∗
k,n−1)

tk,n = bk,n −
∑m

i=1 Lk,iai,n

for every i ∈ {1, . . . ,m}⌊
t∗i,n = a∗i,n +

∑p
k=1 L

∗
k,ib
∗
k,n

τn =
∑m

i=1 ‖t∗i,n‖2 +
∑p

k=1 ‖tk,n‖
2

if τn > 0⌊
πn =

∑m
i=1

(
〈xi,n | t∗i,n〉 − 〈ai,n | a∗i,n〉

)
+
∑p

k=1

(〈
tk,n | v∗k,n

〉
−
〈
bk,n | b∗k,n

〉)
if τn > 0 and πn > 0
θn = λnπn/τn

for every i ∈ {1, . . . ,m}⌊
xi,n+1 = xi,n − θnt∗i,n

for every k ∈ {1, . . . , p}⌊
v∗k,n+1 = v∗k,n − θntk,n

else
for every i ∈ {1, . . . ,m}⌊
xi,n+1 = xi,n

for every k ∈ {1, . . . , p}⌊
v∗k,n+1 = v∗k,n.

(5.14)

Theorem 5.2.9 ( [10]) In the setting of Algorithm 5.2.8, suppose that the following hold:

[a] infn∈N λn > 0 and supn∈N λn < 2.

[b] There exists T ∈ N such that, for every n ∈ N,
⋃n+T
j=n Ij = {1, . . . ,m} and

⋃n+T
j=n Kj =
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{1, . . . , p}.

Then (xn)n∈N converges to a point in P.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
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Alg. 5.2.6-1.0 Alg. 5.2.8-1.0
Alg. 5.2.6-0.7 Alg. 5.2.8-0.7
Alg. 5.2.6-0.4 Alg. 5.2.8-0.4
Alg. 5.2.6-0.1 Alg. 5.2.8-0.1

Figure 5.1 Normalized error 20 log10(‖xn−x∞‖/‖x0−x∞‖) (dB), averaged over 20 runs, versus epoch
count in Experiment 1. The variations around the averages were not significant. The computational
load per epoch for both algorithms is comparable.

Remark 5.2.10 (comparing Algorithms 5.2.6 and 5.2.8)

(i) Auxiliary tasks: Algorithm 5.2.6 requires the construction and storage of the operators

(Qj)16j6m+p of (5.10)–(5.11), which can be quite demanding as they involve inversion of

a linear operator acting on the product space H or G. By contrast, Algorithm 5.2.8 does

not require such tasks.

(ii) Proximity operators: In both algorithms, only the proximity operators of the blocks of

functions (fi)i∈In and (gk)k∈Kn need to be activated at iteration n.

(iii) Linear operators: In Algorithm 5.2.6, the operators (Qi)i∈In and (Qm+k)k∈Kn selected

at iteration n are evaluated at (z1,n, . . . , zm,n, y1,n, . . . , yp,n) ∈H× G. On the other hand,

Algorithm 5.2.8 activates the local operators Lk,i : Hi → Gk and L∗k,i : Gk → Hi once or

twice, depending on whether they are selected. For instance, if we set N = dimH and

M = dimG and if all the linear operators are implemented in matrix form, then the

corresponding load per iteration in full activation mode of Algorithm 5.2.6 is O((M +N)2)

versus O(MN) in Algorithm 5.2.8.
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(iv) Activation scheme: As Algorithm 5.2.6 selects the blocks randomly, the user does not have

complete control of the computational load of an iteration, whereas that of Algorithm 5.2.8

is more predictable because of its deterministic activation scheme.

(v) Parameters: A single scale parameter γ is used in Algorithm 5.2.6, while Algorithm 5.2.8

allows the proximity operators to have their own scale parameters (γ1, . . . , γm, µ1, . . . , µp).

This gives Algorithm 5.2.8 more flexibility, but more effort may be needed to find efficient

parameters. Furthermore, in both algorithms, there is no restriction on the parameter

values.

(vi) Convergence: Algorithm 5.2.8 guarantees sure convergence under the mild sweeping

condition [b] in Theorem 5.2.9, while 5.2.6 guarantees only almost sure convergence.

(vii) Other features: Although this point is omitted for brevity, unlike Algorithm 5.2.6, Al-

gorithm 5.2.8 can be executed asynchronously with iteration-dependent scale parame-

ters [10].

5.2.4 Numerical experiments

We present two experiments which are reflective of our numerical investigations in solving

various problems using Algorithms 5.2.6 and 5.2.8.

5.2.4.1 Experiment 1: group-sparse binary classification

We revisit the problem from [13], which is set as Example 5.2.4 with gk : ξ 7→ max{0, 1− βkξ},
where βk = ωk sign(〈y | uk〉) is the kth measurement of the true vector y ∈ Rd (d = 10000)

and ωk ∈ {−1, 1} induces 25% classification error. There are p = 1000 measurements and

the goal is to reconstruct the group-sparse vector y. There are m = 1429 groups. For every

i ∈ {1, . . . ,m − 1}, each Gi has 10 consecutive integers and an overlap with Gi+1 of length

3. We obtain an instance of (5.1), where Hi = R10, fi = 0.1‖ · ‖2, and Lk,i = 〈 · | uk|Gi
〉.

The auxiliary tasks for Algorithm 5.2.6 (see Remark 5.2.10(i)) are negligible [13]. For each

α ∈ {0.1, 0.4, 0.7, 1.0}, at iteration n ∈ N, In has dαme elements and the proximity operators

of the scalar functions (gk)16k6p are all used, i.e., Kn = {1, . . . , p}. We display in Fig. 5.1

the normalized error versus the epoch, that is, the cumulative number of activated blocks in

{1, . . . ,m} divided by m.

5.2.4.2 Experiment 2: image recovery

We revisit the image interpolation problem from [11, Section 4.3]. The objective is to recover

the image x ∈ C = [0, 255]N (N = 962) of Fig. 5.2(a), given a noisy masked observation

b = Mx + w1 ∈ RN and a noisy blurred observation c = Hx + w2 ∈ RN . Here, M masks all

but q = 39 rows (x(rk))16k6q of an image x, and H is a nonstationary blurring operator, while

w1 and w2 yield signal-to-noise ratios of 28.5 dB and 27.8 dB, respectively. Since H is sizable,
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we split it into s = 384 subblocks: for every k ∈ {1, . . . , s}, Hk ∈ R24×N and the corresponding

block of c is denoted ck. The goal is to

minimize
x∈C

‖Dx‖1,2 + 10

q∑
k=1

∥∥x(rk) − b(rk)
∥∥

2
+ 5

s∑
k=1

‖Hkx− ck‖22, (5.15)

where D : RN → RN × RN models finite differences and ‖·‖1,2 : (y1, y2) 7→
∑N

j=1 ‖(η1,j , η2,j)‖2.

Thus, (5.15) is an instance of Problem 5.2.1, where m = 1; p = q+s+1; for every k ∈ {1, . . . , q},
Lk,1 : RN → R

√
N : x 7→ x(rk) and gk : yk 7→ 10‖yk − b(rk)‖2; for every k ∈ {q + 1, . . . , q + s},

Lk,1 = Hk−q, gk = 5‖· − ck‖22, and gp = ‖·‖1,2; Lp,1 = D; f1 : x 7→ 0 if x ∈ C; +∞ if x 6∈ C.

At iteration n, Kn has dαpe elements, where α ∈ {0.1, 0.4, 0.7, 1.0}. The results are shown in

Figs. 5.2–5.3, where the epoch is the cumulative number of activated blocks in {1, . . . , p} divided

by p.

100



(a) (b)

(c) (d)

Figure 5.2 Experiment 2: (a) Original x. (b) Observation b. (c) Observation c. (d) Recovery (all recov-
eries were visually indistinguishable).
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Figure 5.3 Normalized error 20 log10(‖xn − x∞‖/‖x0 − x∞‖) (dB) versus epoch count in Experiment
2. Top: Algorithm 5.2.6. The horizontal axis starts at 140 epochs to account for the auxiliary tasks (see
Remark 5.2.10(i)). Bottom: Algorithm 5.2.8. The computational load per epoch for Algorithm 5.2.8
was about twice that of Algorithm 5.2.6.

5.2.4.3 Discussion

Our first finding is that, for both Algorithms 5.2.6 and 5.2.8, even when full activation is

possible, it may not be the best strategy (see Figs. 5.1 and 5.3). Second, Remark 5.2.10 and

our experiments strongly suggest that Algorithm 5.2.8 may be preferable to 5.2.6. Let us add
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that, in general, Algorithm 5.2.6 does not scale as well as 5.2.8. For instance, in Experiment 2,

if the image size scales up, Algorithm 5.2.8 can still operate since it involves only individual

applications of the local Lk,i operators, while Algorithm 5.2.6 becomes unmanageable because

of the size of the Qj operators (see Remark 5.2.10(i) and [6]).

Per Remark 5.2.10(vii), we are currently exploring the numerical benefits of implementing

Algorithm 5.2.8 asynchronously.
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Chapter 6
CONCLUSION

6.1 Summary

We have proposed a novel, flexible framework for enforcing firmly nonexpansive nonlinear

equations in a variety of problems. This framework is shown to have utility in a broad range of

pertinent applications. Even for nonlinear equations which are not in this class, many can be

equivalently represented using firmly nonexpansive operators. These nonlinear equations are

incorporated into feasibility problems, best approximation problems, and inconsistent feasibility

problems. We have also developed a new best approximation algorithm, which covers a wider

class of extrapolation strategies than previously available in the literature; furthermore, it is

demonstrated that this strategy can yield significantly improved numerical performance. Also,

for the first time, we identified, analyzed, and compared block-iterative algorithms designed for

large-scale fully nonsmooth multicomponent convex minimization problems.

6.2 Future work

Future research directions suggested by this work are the following.

• The work in Chapter 3 produces the best approximation with respect to the Hilbertian

norm on H. A natural extension of this work would be to compute best approximations

with respect to other norms, or Bregman distances.

• While Chapter 3 solves best approximation problems, developing a strategy for more

general optimization tasks subject to nonlinear equations remains to be done.

• While the numerical experiments in Chapter 4 demonstrate that certain formulations of

Problem 1.1.5 promote sparse recoveries, these formulations are purely based on heuristics.

An extension of this work would be to investigate analytical guarantees concerning when

a recovery will be sparse.
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• Chapter 5 can be extended beyond the minimization setting to the more general setting of

monotone inclusions. Furthermore, recent asynchronous algorithms in this field are yet to

be thoroughly investigated.

• Consider a prescribed point p ∈ H of a firmly nonexpansive operator F : H → H, and set

C =
{
x ∈ H

∣∣ Fx = p
}

. A simple, yet fundamental observation in this work relies on the

fact that, in order to enforce that x ∈ C algorithmically, it suffices to have the ability to

efficiently evaluate at least one operator from the class

C = {T : H → H | T is firmly nonexpansive and FixT = C } . (6.1)

While traditional approaches insist on access to projC ∈ C , which is often costly to

evaluate, we have identified that the operator Id −F + p resides in C and only relies

on computation of the forward operator F . While this leads to a new avenue for the

development of provenly-convergent, tractable algorithms for resolving such nonlinear

equations, the relative behavior of operators in C has not been analyzed or evaluated

numerically. For instance, given two operators in C is it possible to analytically characterize

their relative performance in a given algorithm? In view of Chapter 4, is it possible to

relate how selection of an operator in C may affect the solutions to the relaxed formulation

Problem 1.1.5?

Raleigh, May 17th, 2021
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