
ABSTRACT

SCHOLTEN, GEORGY HENDRIK. Combinatorial and Real Algebraic Structures in Statistics and
Optimization. (Under the direction of Cynthia Vinzant.)

In recent years, mathematicians working in nonlinear algebra have actively explored the use of
algebraic geometry, combinatorics and symbolic computations to answer questions in a diverse field of
applications, with an emphasis on statistics and optimization. This dissertation is comprised of three
projects, all of which relied on techniques from real algebraic geometry and combinatorics and have
connections to applications coming from statistics, optimization and population genetics.

The first project is about image of a linear space under partial coordinate inversion. The structure
of an affine variety constructed in that way is governed by an underlying hyperplane arrangement. We
show that circuit polynomials form a universal Gröbner basis for the ideal of polynomials vanishing on
this variety. To prove this, we rely on a degeneration to the Stanley–Reisner ideal of a simplicial complex
solely determined by the matroid of the linear space and the set of inverted coordinates. If the linear
space is real, then the semi-inverted linear space is also an example of a hyperbolic variety, meaning that
all of its intersection points with a large family of linear spaces are real.

In the second project, we study the problem of maximum likelihood estimation restricted to log-
concave probability density functions. We explore in what sense exact solutions to this problem, which
take the form of the exponential of a piecewise linear function, are possible. First, we show that the heights
given by themaximum likelihood estimate are generically transcendental. For a cell in one dimension, the
maximum likelihood estimator is expressed in closed form using the generalized W-Lambert function.
Even more, we show that finding the log-concave maximum likelihood estimate is equivalent to solving
a collection of polynomial-exponential systems of a special form. Even in the case of two equations, very
little is known about solutions to these systems. As an alternative, we use Smale’s alpha-theory to refine
approximate numerical solutions and to certify solutions to log-concave density estimation.

In the third project, we study the univariate truncated moment problem of piecewise-constant density
functions on the interval [0, 1] and its consequences for an inference problem in population genetics.
We show that, up to closure, any collection of = moments is achieved by a step function with at most
= − 1 breakpoints and that this bound is tight. We use this to show that any point in the =-th coalescence
manifold in population genetics can be attained by a piecewise constant population history with at most
= − 2 changes. Both the moment cones and the coalescence manifold are projected spectrahedra and we
describe the problem of finding a nearest point on them as a semidefinite program.
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Chapter 1

Introduction

The purpose of this chapter is to introduce the necessary background notations and references on
algebraic geometry, polyhedral geometry, convexity theory and algebraic combinatorics required for the
understanding of further chapters.

1.1 Background from Algebraic Geometry

In this section, we define a few fundamental concepts in algebraic geometry required to work with affine
and projective varieties, that is, the vanishing sets of systems of polynomial equations. For an in-depth
introduction to the concepts introduced in this section, we refer the reader to [24, 40, 46, 47]. Let us
work over a graded ring ' with a direct sum decomposition

' =

∞⊕
8=0

'8 ,

endowed with a multiplicative structure '8' 9 ⊂ '8+ 9 for all 8, 9 ∈ Z+. Furthermore, we require ' to be
Noetherian, that is, any ascending chain of ideals in ' eventually stabilizes. In this thesis, we will work
over the polynomial ring K[G1, . . . , G=], where K will be specified to be the field of complex numbers C
or real numbers R. Later in this section, we will introduce notions from projective geometry, in which
case we work with projective coordinates and homogeneous polynomials over the ringK[G0, G1, . . . , G=].

Definition 1.1.1. Let ' = K[G1, . . . , G=] and ( be a subset of K=. We define I(() ⊂ ' to be the
polynomial ideal vanishing on (:

I(() = { 5 ∈ ' : 5 (B) = 0 for all B ∈ (} .

Definition 1.1.2. The algebraic variety of an ideal � ⊂ C[G1, . . . , G=] is a collection of points where the
ideal vanishes

V(�) = {G ∈ C= : 5 (G) = 0 for all 5 ∈ �} .
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The real algebraic varietyVR(�) is the restriction to the real part ofV(�)

VR(�) = {G ∈ R= : 5 (G) = 0 for all 5 ∈ �} .

We say that an ideal � ⊆ ' is proper if it does not equal the whole ring '. An ideal � of a ring ' is
called prime if 5 6 ∈ � implies 5 ∈ � or 6 ∈ � and is primary if 5 6 ∈ � implies 5 ∈ � or 6< ∈ � for some
< ∈ N.

Definition 1.1.3. The Zariski topology on K= is a topological space where closed sets are defined to
be algebraic varieties in K= and open sets are their complements. The Zariski-closure of a set ( ⊂ K=,
denoted cl((), is the smallest algebraic variety that contains (.

Definition 1.1.4 ([40]). The Krull dimension dim(') of a ring ' is the supremum of the lengths of
chains of distinct prime ideals in ', in other words, it is the largest 3 such that the following chain of
primes ideals exists:

%0 ( %1 ( . . . ( %3 ( '.

The dimension of the ideal � ⊂ ' and of the varietyV(�) is equal to the Krull dimension of the quotient
ring '/�. Equivalently, dim(V(�)) is the largest 3 such that a chain of irreducible subvarieties ofV(�)
exists:

+0 ⊂ +1 ⊂ . . . ⊂ +3 ⊂ V(�).

Example 1.1.5. The polynomial ring R[G1, . . . , G=] has dimension =:

〈0〉 ⊂ 〈G1〉 ⊂ . . . ⊂ 〈G1, . . . , G=−1〉 ⊂ 〈G1, . . . , G=〉.

Furthermore, we observe that there is never a prime ideal properly contained between 〈G1, . . . , G8−1〉 and
〈G1, . . . , G8〉. Meaning there is no additional ideal that could be inserted into this sequence, hence the
dimension of the ring is equal to =.

Definition 1.1.6. The radical of � is denoted
√
� and defined as

√
� = { 5 ∈ ' : 5 < ∈ � for some < ∈ N}

Proposition 1.1.7. Any ideal � ⊂ ' admits an irredundant primary decomposition into a finite inter-
section of primary ideals &8 minimal with respect to inclusion:

� = &1 ∩&2 ∩ . . . ∩&A such that & 9 + &1 ∩ . . . ∩& 9−1 ∩& 9+1 ∩ . . . ∩&A .

The prime ideals
√
&8 are called the associated minimal primes of �. The radical ideal

√
� is the

intersection of the associated minimal primes of �. The ideal � is said to be equidimensional if all its
associated minimal primes are of equal dimension.

Proposition 1.1.8. Suppose � ⊆ � ⊂ ' are both equidimensional of dimension 3 and � is radical. If &8
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is a primary ideal appearing in a minimal primary decomposition of � of the form &1 ∩ . . . ∩ &A , with
dim(&8) = 3, then &8 is prime.

Definition 1.1.9. An ideal < ( ' is said to be maximal if no ideal � distinct from < can be properly
contained in between < and the whole ring '

< ( � ( '.

Definition 1.1.10 ( § 9.3 of [24]). Let � be an ideal in ' = K[G1, . . . , G=]. The affine Hilbert function
HF� : Z→ Z is the function on nonnegative integers B defined by:

HF� (B) = dim '≤B/�≤B = dim '≤B − dim �≤B

where '≤B denotes the set of polynomials of total degree ≤ B in '. Similarly, we let

�≤B = � ∩ '≤B

denote the set of polynomials in � of total degree ≤ B.
The affine Hilbert polynomial of � is the polynomial ℎ� (B) that agrees with HF� (B) for sufficiently

large B ∈ N and it takes the form

ℎ� (B) =
3∑
8=0

18

(
B

3 − 8

)
where 18 ∈ Z and 3 ∈ Z>0.

Given a nonnegative integer =, the binomial notation used above denotes a polynomial in B of the form(
B

=

)
=


B(B − 1) . . . (B − = + 1)/=! if = > 0

1 if = = 0
.

Theorem 1.1.11 (Hilbert’s Nullstellensatz). Let � ⊆ C[G1, . . . , G=] be an ideal, a polynomial ? vanishes
onV(�) if and only if there exists an = ∈ N such that ?= ∈ �. Put more concisely,

I(V(�)) =
√
� .

1.1.1 Projective Space

Projective geometry was first thought of in the arts, most notably when painters started to study perspec-
tive. Projective space was introduced in more mathematical terms along the 17-th century, in order to
incorporate points at infinity into Euclidean space in a consistent way. It is about 200 years later (1830)
that Julius Plücker introduced coordinate systems for projective spaces. Projective space is a fundamen-
tal concept in algebraic geometry and is found throughout applications, such as computer vision and
polynomial optimization. The complex projective space P= consists of all lines through the origin in
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C=+1 and the real projective space PR=, of all lines through the origin in R=+1. That is,

P= = (C=+1 − {0})/∼

PR= = (R=+1 − {0})/∼

where the equivalence relation ∼ denotes equality between (G0, . . . , G=) and _(G0, . . . , G=), for all _ ≠ 0.
A set of points {[F1], . . . , [F<]} ⊂ P= is linearly dependent if {F1, . . . , F<} ⊂ C=+1 is linearly
dependent.

Definition 1.1.12. A homogeneous ideal � ⊆ ' = ⊕'3 is an ideal generated by a set of elements
{ 51, . . . , 5A }, where each 5 9 is contained in a single '3 . In other words, if ' = K[G0, . . . , G=], then the
polynomial 5 9 ∈ '3 is homogeneous of total degree 3 in the variables G0, G1, . . . G=.

Definition 1.1.13. A projective variety - = V(�) is the vanishing locus of a homogeneous ideal �. In a
more abstract reformulation, - is a subset of P= whose intersection with every set *8 = {[G0, . . . , G=] :
G8 ≠ 0} is an affine variety, for all 8 ∈ [0, 1, . . . , =].

Definition 1.1.14. Given a projective variety - ⊂ P=, let J (-) denote the ideal of homogeneous
polynomials vanishing on - . The coordinate ring of a projective variety - is the quotient ring
C[G0, . . . , G=]/J (-).

Definition 1.1.15 (§9.3 of [24]). Given a homogeneous ideal � ⊆ ' = K[G0, . . . , G=] and B a nonnegative
integer, we let

�B = � ∩ 'B

denote the set of homogeneous polynomials in � of total degree B. The Hilbert function of � is given by

HF'/� (B) = dim 'B/�B .

For B large enough, the Hilbert function HF'/� (B) agrees with the Hilbert polynomial

ℎ� (B) =
3∑
8=0

18

(
B

3 − 8

)
,

where 18 ∈ Z for all 8 ∈ [3] and 10 ≥ 0.

The dimension of a projective variety - is equal to the degree of the Hilbert polynomial of J (-)
and the degree of - is equal to 10, the leading term coefficient of Hilbert polynomial of J (-).

Remark 1.1.16 (Definition 18.1 [46]). Over an algebraically closed field, the degree of a variety - ⊂ C=

is equal to the number of intersection points of - with a linear space in general position of dimension
codim(-) = = − dim(-).

Let � be a homogeneous ideal and let - = V(�) be the associated variety in P=. The projective
variety - is said to be non-degenerate if - is not contained in any hyperplane � ⊂ P=. The degree of

4



the projective variety - of dimension < is equal to the number of complex intersection points between
- and a general subspace of dimension = − <.

Proposition 1.1.17 (Proposition 9.16 in [47]). Let + ⊂ C= ' *0 ⊂ P= be an affine variety embedded in
projective space, with ideal I(+) ⊂ C[H1, . . . , H=]. Let � ⊂ C[G0, . . . , G=] denote the homogenization of
I(+). Then J (+) = � and - (�) = cl(+).

Theorem 1.1.18 (Bertini). Let - ⊂ P= be irreducible and non-degenerate of dimension < ≥ 1 and � a
hyperplane in general position, then the following hold:

1. dim(- ∩ �) = < − 1

2. - ∩ � is non-degenerate in �

3. - ∩ � is irreducible if < ≥ 2.

1.1.2 Rational Maps

Definition 1.1.19. Given a ring ' over a field K, the ring of rational functions over ' is defined to be

K(G1, . . . , G=) = { 5 /6 : 5 , 6 ∈ K[G1, . . . , G=] and 6 ≠ 0}.

Definition 1.1.20. A rational map d : K= d K<, for =, < ∈ N is defined by

d(G) = (d1(G), . . . , d<(G)) ,

where d8 ∈ K(G1, . . . , G=) for each 8 ∈ {1, . . . , <}.

Example 1.1.21. [Page 150 [47]] An important rational map we will use in Chapter 4 is the truncated
moment map W : R→ R=+1,

W(C) =
(
1, C, C2, . . . , C=

)
.

The projective multivariate analogue of this map is known as the Veronese map. Given some 3 ≥ 0, the
3-th Veronese morphism a3 : P= → P(=+33 )−1 is given by

a3 ( [G0 : . . . : G=]) = [<1 : . . . : <(=+33 )],

where
{
<1, . . . , <(=+33 )

}
is the collection of all monomials of degree 3 in = + 1 variables.

Proposition 1.1.22 (Corollary 11.13 of [46]). Let - be an irreducible projective variety and d : - d P=

a rational map; let . = d(-) be its image. For any @ ∈ . , let _(@) denote the dimension of the fiber over
@ in - , that is _(@) = dim

(
d−1(@)

)
. We denote by _ the minimum value attained by _(@) on . , then the

following holds:
dim(-) = dim(. ) + _.
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1.1.3 Semialgebraic Sets

In this section, we direct our attention to subsets of R= defined by regions of non-negativity for systems
of polynomials in R[G1, . . . , G=], which are called semialgebraic sets. Semialgebraic sets are particularly
nice because, unlike real varieties, they are closed under projection and taking complements. For more
on semialgebraic sets, we refer the reader to Chapter 2 of [19].

Definition 1.1.23. A basic semialgebraic set ( in R= is a set of the form

( = {G ∈ R= : 51(G) > 0, . . . , 5 9 (G) > 0 and 61(G) = 0, . . . , 6: (G) = 0},

where 51, . . . , 5 9 , 61, . . . , 6: ∈ R[G1, . . . , G=].

Definition 1.1.24. The closure of a set ( ⊂ R=, denoted cl(() is the intersection of all closed sets in R=

containing (. A basic closed semialgebraic set ( in R= is a set of the form

( = {G ∈ R= : 51(G) ≥ 0, . . . , 5 9 (G) ≥ 0},

where 51, . . . , 5 9 ∈ R[G1, . . . , G=].

Definition 1.1.25. A general semialgebraic set ( ⊂ R= is obtained by taking a finite number of unions,
intersections and complements of basic semialgebraic sets.

Definition 1.1.26. To a semialgebraic set ( we can associate the ideal of real polynomials vanishing on
(:

I(() = { 5 ∈ R[G1, . . . , G=] : 5 (B) = 0 for all B ∈ (}.

The dimension of a semialgebraic set ( ⊂ R= is equal to the Krull dimension of '/I((), the ring of
real polynomials defined on (.

Remark 1.1.27. The dimension of an affine linear space !, denoted dim(!) is equal to the cardinality of
the basis of !. This property is invariant under translation, hence it agreeswith our intuitive understanding
of dimension: a 0-dimensional affine space is a point, a 1-dimensional space is a line, a 2-dimensional
space is a plane and a (= − 1)-dimensional space is a hyperplane.

1.1.4 Real Algebraic Geometry and Nonnegative Polynomials

When we choose to work over the reals, we lose the algebraic closed property and with it, a lot of the
powerful machinery introduced in algebraic geometry. In this section, we go over a few notions about
real varieties and semialgebraic sets.

Proposition 1.1.28 (Descartes’ rule of signs). Let ? ∈ R[G] be a univariate polynomial with real
coefficients. The number of positive real roots of ?, counting multiplicity, is bounded above by the
number of consecutive sign changes in the nonzero coefficients of ?.
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Theorem 1.1.29 (Tarski-Seidenberg). Let ( ⊂ R= be a semialgebraic set and let Π : R= → R=−1 denote
the projectionmapwhich takes (G1, . . . , G=) to (G1, . . . , G=−1). The projectionΠ(() is also a semialgebraic
set in R=−1.

Definition 1.1.30. The pre-ordering %$ generated by a set of polynomials { 51, . . . 5A } ∈ R[G1, . . . , G=]
is

%$ ( 51, . . . , 5A ) =


∑
U∈{0,1}A

BU 5
U1

1 . . . 5 UAA

 ,
where BU ∈ R[G1, . . . , G=] is a sum of squares.

Theorem 1.1.31 (Positivestellensatz). Let ( ⊆ R= be a closed semialgebraic set defined by the inequal-
ities 51(B) ≥ 0, . . . , 5A (B) ≥ 0 and let ) = %$ ( 51, . . . , 5A ) be the associated pre-ordering. For any
5 ∈ R[G1, . . . , G=], the following are equivalent:

1. 5 (B) > 0 for all B ∈ (

2. there exists 6, ℎ ∈ ) such that 6 5 = 1 + ℎ.

Theorem 1.1.32 (Schmüdgen). Suppose ( is a compact semialgebraic set defined by the inequal-
ities 51(B) ≥ 0, . . . , 5A (B) ≥ 0 and that some 5 ∈ R[G1, . . . , G=] is strictly positive on (, then
5 ∈ %$ ( 51, . . . , 5A ).

1.2 Convexity

Convexity is a geometric property that plays a central role in optimization theory and is a reoccurring
property throughout the subsequent chapters of this dissertation.

1.2.1 Convex Sets

A convex set � is a subset of R= which, for any pair of points in �, contains the line segment connecting
them. That is, for all G, H ∈ � and _ ∈ [0, 1] we have

_G + (1 − _)H ∈ �.

Definition 1.2.1. The convex hull of a subset ( of R= is the intersection of all convex sets containing �

conv(() =
⋂
(⊆�

� is convex

�.

We let � = � (;, I) denote the (affine) hyperplane in R= and �+ the associated halfspace defined by
a linear form ; ∈ (R=)∗ and constant I ∈ R:

� = {G ∈ R= : ; (G) = I}

�+ = {G ∈ R= : ; (G) ≥ I} .
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Definition 1.2.2. The affine span of ( ⊂ R= is the set of all possible linear combinations of points in (

Aff (() =
{
:∑
8=1

_8G8 : : > 0, G8 ∈ (, _8 ∈ R,
:∑
8=1

_8 = 1

}
.

Definition 1.2.3. A face � of a convex set � ⊂ R= is a convex subset which, for any given pair G, H ∈ �,
satisfies

1
2
(G + H) ∈ � ⇒ G, H ∈ �.

An exposed face � of � is the intersection of � with a supporting hyperplane �, meaning that ( is
contained in the halfspace ( ⊆ �+ and � = �∩�. The dimension of the face � is equal to the dimension
of its affine span Aff (�).

Figure 1.1 The projection of a cylinder.

Example 1.2.4. The projected cylinder of figure 1.1 is a convex semialgebraic set. The two rounded
boundaries, including the red points, are all extreme points. The two flat faces are 1-dimensional exposed
faces but the 4 red points are non-exposed 0-dimensional faces.

Definition 1.2.5. An extreme point of a convex set� is a 0-dimensional face of�. It can not be expressed
as the convex combination of any two elements in � distinct from itself:

G = _H1 + (1 − _)H2 for some H1, H2 ∈ ( and _ ∈ (0, 1) ⇒ G = H1 = H2.

Proposition 1.2.6. Let � ⊂ R= be a convex set and ℓ ∈ (R=)∗ a linear functional we want to maximize
(respectively minimize) over �. Either ℓ is a constant function or its maximum (respectively minimum)
over � is attained on the boundary of �.

Theorem 1.2.7 (Minkowski). Let ( ⊆ R= be a compact convex set, it can be expressed as the convex
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hull of its extreme points.

( =

{
_1G1 + . . . + _:G: : _8 ≥ 0,

∑
8

_8 = 1, G8 an extreme point of (

}
.

Theorem 1.2.8 (Carathéodory’s Theorem). Given a subset ( ⊆ R= and let � = conv(() be the convex
hull of (, then any point in � can be written as a convex combination of at most = + 1 points in (.

1.2.2 Convex Cones

The cone  is a convex cone if for all G, H ∈  and _1, _2 ≥ 0 we have _1G + _2H ∈  . A subset � of  
is called a face of the cone if for all G, H ∈ � and _ ∈ R≥0, we have _G ∈ � and G + H ∈ �. The extremal
rays of and =-dimensional cone are the faces of dimension 1. A cone is said to be pointed if G ∈  and
−G ∈  implies G = 0, in other words,  contains no lines. A closed pointed convex cone  admits a
compact base, that is, there exists an affine hyperplane � which cuts out a compact cross section � ∩  
of the cone away from the origin. The extremal rays of  are in one-to-one correspondence with the
extreme points of the compact base � ∩  .

Definition 1.2.9. Given a set ( ⊂ R=, we denote by  the cone over (

 = cone(() = {_G : _ ≥ 0, G ∈ (} .

Proposition 1.2.10 (Colollary of theorem 1.2.7). Given a convex cone  ⊆ R= with a compact base,
any point in  is a conical combination of at most = extreme rays of  .

Definition 1.2.11. We define  ∗ to be the dual cone to  as the set of all non negative linear functionals
on  :

 ∗ = {; ∈ R∗ : ; (G) ≥ 0 for all G ∈  } .

Proposition 1.2.12. A closed convex cone is pointed if and only if its dual cone is full dimensional.

Theorem 1.2.13 (Bipolarity Theorem). Let  be a convex cone, the dual of the dual of  is equal to the
closure of  :

 ∗∗ = cl( ).

Example 1.2.14. [[16]] Let P=,23 denote the cone of nonnegative polynomials on R=, homogeneous of
degree 23,

P=,23 = {? ∈ R[G1, . . . , G=] : deg(?) = 23 and ?(G) ≥ 0 ∀G ∈ R=} .

The dual cone to P=,23 isM=,23 , the conic hull of the image of the unit sphere S=−1 under the Veronese
map 1.1.21 of degree 23.

M=,23 = ConicalHull
{
a23 (B) : B ∈ S=−1} .

This object is also know as the Veronese Orbitope [84]. We refer the reader to [15] for an in depth
explanation of why this relation holds true.
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1.2.3 Polyhedra and Polytopes

Polyhedra are in some sense the most fundamental type of semialgebraic convex sets, cut out in R=

by finitely many linear inequalities. Yet they are by no means simple objects and their combinatorial
structures are intricate and fascinating. Polyhedra are central to geometry and optimization over the reals.
As we will see in the following sections and chapters, polytopes and special arrangements thereof can
record combinatorial information about algebraic objects, geometric objects and optimization problems.
For an extensive journey into the world of polytopes, we refer the reader to Ziegler [104].

Definition 1.2.15 (From [104]). A polyhedron % ⊆ R= is a semialgebraic set given by the intersection
of < closed halfspaces, for some < ∈ N

% =

<⋂
8=1
{G ∈ R= : ;8 (G) ≤ I8} where ;8 ∈ (R=)∗ and I8 ∈ R

= {G ∈ R= : �G ≤ I} where � ∈ R<×=, I ∈ R<.

A polytope is a bounded polyhedron. There are two ways equivalent ways to think about polytopes,
either as just stated, a bounded set defined by finitely many linear inequalities or the convex hull of a
finite set of points E8 ∈ R=.

Theorem 1.2.16 (Main theorem for polytopes [104]). A subset % ⊆ R= is the convex hull of a finite
collection of points + ∈ R=

% = conv(+)

if and only if it is a bounded intersection of halfspaces defined by some � ∈ R<×= and I ∈ R<

% = {G ∈ R= : �G ≤ I} .

Definition 1.2.17. Given a point configuration - in R=, a subdivision Δ of - is a finite collection of
=-dimensional polytopes f8 , such that the union of polytopes in Δ equals conv(-), the vertex set of
polytopes in Δ is contained in - and any two distinct polytopes f1, f2 in Δ are either disjoint or they
intersect along the lower dimensional face f1 ∩ f2.

1.2.4 Spectrahedra

Spectrahedra are a family of convex bodies defined by linear matrix inequalities. They play a central
role in convex optimization. For a more in depth, yet very concise introduction to spectrahedra, we
recommend the AMS notices article [99].

Proposition 1.2.18. Given a symmetric real matrix � ∈ R3×3 , the following are equivalent:

1. � is positive semidefinite: � < 0

2. G) �G ≥ 0 for all G ∈ R3
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3. All of the eigenvalues _8 (�) are nonnegative, for 8 = 1 . . . 3.

4. � admits an eigenvalue decomposition � = *�*) , where * is an orthogonal matrix, i.e.
*)* = Id(3), and � a diagonal matrix with nonnegative entries on the diagonal.

5. All principal minors of � are nonnegative.

Definition 1.2.19. Let S3+ denote the cone of 3 × 3 positive semidefinite (PSD) matrices.

Proposition 1.2.20. The cone of PSD matrices is closed and convex of dimension =(= + 1)/2. The
boundary of this cone consists of singular positive semidefinite matrices and the extreme rays of the cone
correspond to rank-one PSD matrices.

A spectrahedron S is a linear slice of the cone of symmetric positive semidefinite matrices S3+ .

S = {G ∈ R= : �(G) < 0} ,

where �(G) = �0 +
∑=
8=1 G8�8 , where each �8 ∈ R3×3 .

Example 1.2.21. The moment curve is the image of the map W : R→ R= given by

W(C) =
(
1, C, C2, . . . , C=−1

)
.

This curve segment is the collection of moments of Dirac measures XC for C ∈ [0, 1]:∫
5 (G)XC (G) = 5 (C).

We refer to those Dirac measures supported on a single point in [0, 1] as point masses on [0, 1].
The convex hull of this curve segment is the spectrahedron depicted in Figure 1.2. The dual to this
spectrahedron is the collection of univariate polynomials nonnegative on [0, 1] of degree at most three.

1.2.5 Applications to Optimization

We briefly introduce two important classes of convex optimization problems, which both consist of
maximizing a linear functional over a convex semialgebraic set. The first type being Linear Programming
(LP), where  is a polyhedral cone and the second type being Semi-Definite Programming (SDP), where
 is the cone of semidefinite matrices. Both LP and SDP problems are solvable in polynomial time via
interior point methods. For a thorough foray into convex optimization and semidefinite programming,
we recommend the book [17].

Definition 1.2.22. Linear Programming is the process of maximizing a linear functional subject to linear
constraints, which can be re-stated as:

max 2) G s.t. �G ≤ 1,

where 2 ∈ R=, � ∈ R<×= and 1 ∈ R<.
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Figure 1.2 Affine slice of the convex hull of W : [0, 1] → R4, for W(C) = (1, C, C2, C3).

If the linear functional 2) G is non-constant on the polyhedron defined by �G ≤ 1, then the optimal
solution G∗ is attained on the boundary of the feasible set.

Definition 1.2.23. In semidefinite programming, we optimize over the cone of positive semidefinite real
symmetric 3 × 3-matrices. The feasibility sets of semidefinite programs are spectrahedra.

A function 5 : ( → R, with a convex domain of definition (, is said to be convex if its epigraph is
convex. That is, for any two points G1, G2 ∈ (, 5 has to satisfies

5 (C G1 + (1 − C)G2) ≤ C 5 (G1) + (1 − C) 5 (G2) for all C ∈ [0, 1] .

A function 5 : ( → R is said to be concave if (− 5 ) is convex.

1.3 Discrete Geometry and Algebraic Combinatorics

In this section, we introduce a few concepts at the intersection of combinatorics and algebraic geometry.
We refer the reader to [68] for an introduction to algebraic combinatorics.

1.3.1 Simplicial Complexes

We introduce simplicial complexes, first as purely combinatorial abstractions and then as arrangements of
simplices inR=. These complexeswill play a particularly useful role in Chapter 2when generating square-
free monomial ideals, and in Chapter 3 in the form of maximal subdivisions of point configurations. One
of the classical motivation for working with simplicial complexes is rooted in the study of topological
spaces in algebraic topology [48].We refer to [53] for a deeper dive into the world of simplicial complexes
and their applications.

12



Definition 1.3.1. An abstract simplex f on the ground set [<] = {1, . . . , <} of dimension : ∈ N,
also referred to as an abstract :-simplex, is a subset of [<] of cardinality : + 1. An abstract simplicial
complex Δ on [<] is a finite collection of abstract simplices f ⊆ [<], called faces of Δ. A simplicial
complex has to be closed under containment and intersection:

1. given a face f1 ∈ Δ and f2 ( f1, then f2 also has to be an element of Δ.

2. if f1, f2 ∈ Δ, then their intersection f1 ∩ f2 also must belong to Δ.

Definition 1.3.2. The dimension of a face f ∈ Δ is equal to dim(f) = |f | − 1. The dimension of the
simplicial complex Δ is given by the largest dimension of its faces:

dim(Δ) = max
f∈Δ
(dim(f)).

The maximal faces in Δ, those properly contained in no other face, are called facets of Δ.

Definition 1.3.3. Given a simplicial complex Δ on [<]\{8}, let the cone of Δ over 8 be:

cone(Δ, 8) = Δ ∪ {f ∪ {8} : f ∈ Δ},

which is a simplicial complex on the ground set [<] and whose facets are in bijection with the facets of
Δ. The link of a face ( in Δ is defined as

linkΔ(() = {f ∈ Δ : f ∩ ( = ∅, f ∪ ( ∈ Δ} .

We define the neighborhood N( 9) of a vertex 9 in Δ to be the set of vertices

N( 9) = {8 : {8, 9} ⊆ f for some f ∈ Δ} .

Definition 1.3.4. A :-simplex f in R= is the convex hull of : + 1 points in general position in R=. A
simplicial complex in R= is a finite collection of =-simplices satisfying analogous properties to the ones
of an abstract simplicial complex, that is, two distinct faces f1, f2 of Δ can only be disjoint or intersect
along the lower dimensional face f1 ∩ f2.

The =-simplex in R= is the full dimensional polytope in R= with the fewest vertices and fewest facets.
It can be equivalently expressed as the compact intersection of = + 1 half-spaces.

Definition 1.3.5. Let % be the convex hull of a point configuration - = (G1, G2, . . . , G<) ⊂ R=. For a
fixed real vector H ∈ R<, we define a function ℎ-,H on R=, called the tent function, as the smallest
concave function such that

ℎ-,H (G8) ≥ H8 for all 8 ∈ [<] .

The tent function ℎ-,H is piecewise linear on % with linear pieces equal to upper facets of the convex
hull of the points (G1, H1), (G2, H2), . . . , (G<, H<) in R=+1. We define ℎ-,H (G) = −∞ at all points G ∈ R=

outside %. If ℎ-,H (G8) = H8 for 8 = 1, . . . , <, then H is called relevant.
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Estimation of a Multi-dimensional Log-concave Density 547

Fig. 1. ‘Tent-like’ structure of the graph of the logarithm of the maximum likelihood estimator for bivariate
data

that were described in Groeneboom et al. (2008). Walther (2009) provides a nice recent review
of inference and modelling with log-concave densities. Other recent related work includes
Seregin and Wellner (2010), Schuhmacher et al. (2009), Schuhmacher and Dümbgen (2010) and
Koenker and Mizera (2010). For univariate data, it is also well known that there are maximum
likelihood estimators of a non-increasing density supported on [0, ∞/ (Grenander, 1956) and
of a convex, decreasing density (Groeneboom et al., 2001).

Fig. 1 gives a diagram illustrating the structure of the maximum likelihood estimator on the
logarithmic scale. This structure is most easily visualized for two-dimensional data, where we
can imagine associating a ‘tent pole’ with each observation, extending vertically out of the plane.
For certain tent pole heights, the graph of the logarithm of the maximum likelihood estimator
can be thought of as the roof of a taut tent stretched over the tent poles. The fact that the
logarithm of the maximum likelihood estimator is of this ‘tent function’ form constitutes part
of the proof of its existence and uniqueness.

In Sections 3.1 and 3.2, we discuss the computational problem of how to adjust the n tent
pole heights so that the corresponding tent functions converge to the logarithm of the maximum
likelihood estimator. One reason that this computational problem is so challenging in more than
one dimension is the fact that it is difficult to describe the set of tent pole heights that corres-
pond to concave functions. The key observation, which is discussed in Section 3.1, is that it is
possible to minimize a modified objective function that is convex (though non-differentiable).
This allows us to apply the powerful non-differentiable convex optimization methodology of
the subgradient method (Shor, 1985) and a variant called Shor’s r-algorithm, which has been
implemented by Kappel and Kuntsevich (2000).

As an illustration of the estimates obtained, Fig. 2 presents plots of the maximum likelihood
estimator, and its logarithm, for 1000 observations from a standard bivariate normal distri-
bution. These plots were created using the LogConcDEAD package (Cule et al., 2007, 2009) in R
(R Development Core Team, 2009).

Theoretical properties of the estimator f̂ n are presented in Section 4. We describe the asymp-
totic behaviour of the estimator both in the case where the true density is log-concave, and where
this model is misspecified. In the former case, we show that f̂ n converges in certain strong norms
to the true density. The nature of the norm that is chosen gives reassurance about the behaviour
of the estimator in the tails of the density. In the misspecified case, f̂ n converges to the log-
concave density that is closest to the true underlying density (in the sense of minimizing the
Kullback–Leibler divergence). This latter result amounts to a desirable robustness property.

Figure 1.3 A Tent Function appearing in [79].

Definition 1.3.6 ([29]). Given a point configuration - = (G1, G2, . . . , G<) ⊂ R=, a triangulation of - is
a simplicial complex Δ = {f1, . . . , f: } with all vertices contained in - , satisfying

conv(-) =
:⋃
8=1

f8 .

A triangulation Δ of the point configuration - is said to be maximal if every element of - appears in
the vertex set of Δ. A subdivision is called regular if its full dimensional cells f8 are combinatorially
equivalent to the regions of linearity of a tent function on - for some height vector H ∈ R<.

1.3.2 Initial Ideals

For F ∈ (R≥0)= and 5 =
∑
U 2UxU ∈ C[G1, . . . , G=], where xU denotes GU1

1 . . . G
U=
= , define the degree

and initial form of 5 with respect to F to be

degF ( 5 ) = max{F) U : 2U ≠ 0} and inF ( 5 ) =
∑

U:F) U=degF ( 5 )
2UxU.

In that sense, every choice of weight vector F defines a monomial order on [G1, . . . , G=].

Definition 1.3.7. inF (�) is the ideal generated by initial forms of polynomials in �, i.e.

inF (�) = 〈inF ( 5 ) : 5 ∈ �〉.

A nice property that we will make use of in next chapter is the following.

Proposition 1.3.8 (Proposition 4, §9.3 of [24]). An ideal � ⊂ C[G1, . . . , G=] and its initial ideal inF (�),
for all F ∈ R=+1≥0 , share the same affine Hilbert function

HF� (B) = HFinF (� ) (B).

It follows that dim('/�) = dim('/inF (�)), thus the Krull dimension of the rings '/� and '/inF (�)
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coincide.

As we will see in the next section, initial ideals are a key concept in defining Gröbner bases.

1.3.3 Connections with Algebraic Geometry

A set of polynomials � = {61, . . . , 6: } ⊂ � satisfying inF (�) = 〈inF (61), . . . inF (6:)〉 defines a
Gröbner basis of � with respect to F. A finite subset � of an ideal � ⊂ C[G1, . . . , G=] is a universal
Gröbner basis for � if it is a Gröbner basis with respect to every monomial order on C[G1, . . . , G=]. An
equivalent definition using weight vectors is given as follows: A finite collection of polynomials � ⊂ �
is a universal Gröbner basis for � if and only if for every F ∈ (R≥0)=, the polynomials inF (�) generate
inF (�). See [95, Chapter 1].

For homogeneous �, inF (�) is a flat degeneration of �. For 5 ∈ C[G1, . . . , G=], F ∈ Z=, define

CF · 5 = CdegF ( 5 ) 5 (C−F1G1, . . . , C
−F=G=) ∈ C[C, G1, . . . , G=] and �

F
= 〈CF · 5 : 5 ∈ �〉 ⊂ C[C±, G1, . . . , G=] .

The ideal �F defines an ideal in A1(C) × P=−1(C), namely the Zariski-closure

V(�F ) = cl
({
(C, [CF1G1 : . . . : CF=G=]) such that C ∈ C∗, G ∈ V(�)

})
.

Letting C vary from 1 to 0 gives a flat deformation from V(�) to the variety V(inF (�)). Formally,
for any W ∈ C, let �F (W) denote the ideal in C[G1, . . . , G=] obtained by substituting C = W. Then
�
F (1) equals �, �F (0) equals inF (�), and for W ∈ C∗, the variety of �F (W) consists of the points
{[WF1G1 : . . . : WF=G=] : G ∈ V(�)}. All the ideals �F (W) have the same Hilbert series. In particular,
taking W = 0, 1 shows that � and inF (�) have the same Hilbert series.

1.4 Contents of the Following Chapters

The underlying common theme to the 3 following chapters is the combinatorial approach to studying
geometric objects arising from algebraic geometry and optimization. In chapter 2, we study the image
of linear spaces under partial coordinate inversion. Through a combinatorial construction, we are able
to compute universal Gröbner bases for the vanishing ideals of these semialgebraic sets.

In chapter 3, we study the exact solutions to log-concave maximum likelihood estimation problems.
We pay particular attention to how the accuracy on the output of this optimization problem is affected
by the regular subdivision it induces on the ground set.

In chapter 4, we study a variation of the classical truncated moment problem on a compact subset of
R, a classical problem in functional analysis and real algebraic geometry [86]. We expand this question
to moments of step function and a finite subset � ⊂ N. Our main objects of interest are the full moment
cone " (�) and the moment cone of step functions with at most : steps ": (�). The motivation to
study the moment cone " (�) is rooted in population genetics, through its connection to the coalescence
manifold [80]. The moment cone " (�) is a convex semi algebraic set [93], we provide a semidefinite
program to compute the minimal distance to the boundary of the moment cone.
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Chapter 2

Semi-Inverted Linear Spaces

The content of this chapter is based on joint work with C. Vinzant appearing in Algebraic Combina-
torics [88]. The variety of interest in this chapter is the image of a linear space L ⊆ C= under partial
coordinate inversion, that is, we apply the map G8 → 1/G8 to the subset of coordinates indexed by the
set � ⊆ {1, . . . , =}. We denote the variety obtained in this manner inv� (L). We draw connections to two
well studied objects in algebraic combinatorics: the hyperplane arrangement [2, 32] defining L and the
associated matroid " (L) [2, 32, 34, 69]. We construct a universal Gröbner basis of the vanishing ideal
of inv� (L) in theorem 2.2.1,

2.1 Background

In 2006, Proudfoot and Speyer showed that the coordinate ring of a reciprocal linear space (i.e. the
closure of the image of a linear space under coordinate-wise inversion) has a flat degeneration into the
Stanley-Reisner ring of the broken circuit complex of a matroid [73]. This completely characterizes
the combinatorial data of these important varieties, which appear across many areas of mathematics,
including in the study of matroids and hyperplane arrangements [96], interior point methods for linear
programming [30], and entropy maximization for log-linear models in statistics [67].

2.1.1 Reciprocal Linear Spaces

In the special case of � = [=], the variety inv� (L) is well-studied in the literature. Proudfoot and Speyer
study the coordinate ring of the variety inv[=] (L) and relate it to the broken circuit complex of a matroid
[73]. One of their motivations is connections with the cohomology of the complement of a hyperplane
arrangement [96] and the close relationship with the Orlik-Terao algebra [74], [96]. These varieties
also appear in the algebraic study of interior point methods for linear programming [30] and entropy
maximization for log-linear models in statistics [67].

If the linearspace L is invariant under complex conjugation, the variety inv[=] (L) also has a special
real-rootedness property. Specifically, if L⊥ denotes the orthogonal complement of L, then for any
D ∈ R=, all the intersection points of inv[=] (L) and the affine space L⊥ + D are real. This was first
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shown in different language by Varchenko [98] and used extensively in [30]. One implication of this
real-rootedness is that the discriminant of the projection away from L⊥ is a nonnegative polynomial
[85]. Another is that inv[=] (L) is a hyperbolic variety, in the sense of [90]. In fact, the Chow form of
the variety inv[=] (L) has a definite determinantal representation, certifying its hyperbolicity [56]. We
generalize some of this results to inv� (L).

In closely related work [3], Ardila and Boocher study the closure of a linear space L inside of (P1)=.
For any � ⊆ [=], inv� (L) can be considered an affine chart of this projective closure. Specifically, let
- ⊆ (P1)= denote the closure of the image of L under the map

(G1, . . . , G=) ↦→ ([G1 : H1], [G2 : H2], . . . , [G= : H=]),

with H1 = . . . = H= = 1. The restriction of - to the affine chart G8 = 1 for 8 ∈ � and H 9 = 1 for 9 ∈ [=]\�
is isomorphic to inv� (L).

2.1.2 Matroids

Matroids are a combinatorial generalization of the notion of independence relations we know from
linear algebra. The motivation for using matroids in chapter is to build an analogue of the broken-
circuit complex, a special simplicial complex which maximal non-faces are in correspondence with the
circuits of a given matroid. Matroids are a classical tool in combinatorial geometry with a multitude
of applications and variations, such as oriented matroids [13] and valuated matroids [34]. For a more
in depth source of information on matroids and their applications to algebra and geometry, we refer to
[2, 69].

We introduce four cryptomorphic definitions of the concept of matroids. Traditionally, matroids are
defined over some abstract ground set � , but we do not require such level of generality, hence we fix �
to be equal to [=] = [1, 2, . . . , =].

Definition 2.1.1. A matroid " = ( [=],I) is a collection I of independent subsets of [=] satisfying:

1. ∅ ∈ I

2. if � ∈ I and � ⊂ � then � ∈ I

3. if �, � ∈ I and |�| < |�| then there exists an element 1 ∈ � − � such that � ∪ 1 ∈ I.

Maximal independent sets of a matroid are called bases and minimal dependent sets are called
circuits.

Definition 2.1.2. A matroid " = ( [=],B) is a collection B of bases on [=] satisfying the exchange of
basis axioms:

1. B ≠ ∅

2. For any �, � ∈ B if 0 ∈ � − � then there exists some 1 ∈ � − � such that (� ∪ 1 − 0) ∈ B.
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Definition 2.1.3. Amatroid " = ( [=], C) is a collection C of circuits on [=] satisfying the exchange of
circuits axioms:

1. ∅ ∉ C.

2. If � ∈ C and �∗ is a proper subset of �, then �∗ ∉ C.

3. If �1, �2 ∈ C are two distinct circuits with 2 ∈ �1∩�2, then there exist a circuit �3 ∈ C contained
in �1 ∪ �2 − 2.

Notation 2.1.4. Given - ⊂ [=], let us denote by -2 the set [=] − - .

Definition 2.1.5. [69] A matroid " = ( [=], F ) is a collection F of flats on [=] satisfying:

1. [=] ∈ F .

2. If �1, �2 ∈ F , then �1 ∩ �2 ∈ F .

3. Let � ∈ F and {�1, �2, . . . , �: } be the set of minimal members of F which properly contain �.
The set {�1 − �, . . . , �: − �} forms a partition of �2 .

We use B("), C(") and F (") to denote the set of bases, circuits, and flats of a matroid " .
For ease of notation, we drop the (") when it is clear what matroid is referred to. To summarize our
notations: Let " be a matroid on the ground set [=]

1. I is the collection of independent subsets of "

2. C is the collection of circuits of "

3. B is the collection of bases of "

4. F is the collection of flats of "

Lemma 2.1.6. Given the collection of circuits C of a matroid " and a set � ⊂ [=], we have that � ∈ C
if and only if � ∉ I and (� − G) ∈ I, for all G ∈ �.

Corollary 2.1.7 (1.2.6 [69]). Let � be a basis of " and if 4 belongs to �2 , then (� ∪ 4) contains a
unique circuit �, and that circuit must contain 4.

An element 8 ∈ [=] is called a loop if {8} is a circuit, and a co-loop if 8 is contained in every basis of
" . The rank of a subset ( ⊆ [=] is the largest size of an independent set in (. A flat is a set � ⊆ [=]
that is maximal for its rank, meaning that rank(�) < rank(� ∪ {8}) for any element 8 ∈ [=] that is not
already contained in �.

Given a matroid " on a ground set [=] and some element 8 ∈ [=], the deletion of " by 8, denoted
"\8, is the matroid on the ground set [=]\8 whose independent sets are subsets � ⊂ [=]\8 that are
independent in " . If 8 is not a co-loop of " , then

B("\8) = {� ∈ B(") : 8 ∉ �} and C("\8) = {� ∈ C(") : 8 ∉ �}.
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More generally, the deletion of " by a subset ( ⊂ [=], denoted "\(, is the matroid obtained from " by
successive deletion of the elements of (. The restriction of " to a subset (, denoted " |( , is the deletion
of " by [=]\(.

If 8 is not a loop of " , then the contraction of " by 8, denoted "/8, is the matroid on the ground set
[=]\{8} whose independent sets are subsets � ⊂ [=]\8 for which � ∪ {8} is independent in " . Then

B("/8) = {�\8 : � ∈ B("), 8 ∈ �} and C("/8) = min. elts. of {�\8 : � ∈ C(")}.

If 8 is a loop of " , then we define the contraction of "/8 to be the deletion "\8. The contraction of "
by a subset ( ⊂ [=], denoted "/(, is obtained from " by successive contractions by the elements of (.

2.1.3 Linear Matroids

Given a 3-dimensional linearspace L ⊂ C= we can associate to it a matroid " (L) as follows: Write the
linearspace L ⊂ C= as the rowspan of a 3 × = matrix � = (01, . . . , 0=). A set � ⊆ [=] is independent in
" (L) if the vectors {08 : 8 ∈ �} are linearly independent in C3 . For any invertible matrix* ∈ C3×3 , the
vectors {08 : 8 ∈ �} are linearly independent if and only if the vectors {*08 : 8 ∈ �} are also independent,
meaning that this condition is independent of the choice of basis for L. Indeed, � ⊆ [=] is independent
in " (L) if and only if the coordinate linear forms {G8 : 8 ∈ �} are linearly independent when restricted
to L.

For linear matroids, deletion corresponds to projection and contraction corresponds to intersection
in the following sense. For ( ⊂ [=], let L\( denote the linear subspace of C[=]\( obtained by projecting
L away from the coordinate space C( = span{48 : 8 ∈ (}. Let L/( denote the intersection of L with
C[=]\( . Then

" (L)\( = " (L\() and " (L)/( = " (L/().

The following definition will play a central role in the next Chapter. We will extend this definition by
introducing I -broken circuit complexes.

Definition 2.1.8. Given amatroid" = " ( [=], C) with the standard ordering 1 < 2 < . . . < =, a broken-
circuit of " is a subset of the form �\min(�) where � ∈ C(").

2.1.4 Stanley Reisner Ideals

A Stanley-Reisner ideal is a square-free monomial ideal that we define from a simplicial complex Δ.

Definition 2.1.9 ([68, Def. 1.6]). Let Δ be a simplicial complex on vertices {1, . . . , =}. The Stanley-
Reisner ideal of Δ is the square-free monomial ideal

IΔ =
〈
x( : ( ⊆ [=], ( ∉ Δ

〉
generated by monomial corresponding to the non-faces of Δ. The Stanley-Reisner ring of Δ is the
quotient ring C[x]/IΔ.
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An interesting observation is that combinatorial properties of amatroid can be encoded in a simplicial
complex, called the broken circuit complex. The broken-circuit complex of a matroid " ( [=], C), with
the usual ordering 1 < 2 < . . . < = on [=], is the simplicial complex with vertices 1 through =, whose
faces are the subsets of [=] not containing any broken circuit.

The ideal IΔ is radical and it equals the intersection of prime ideals

IΔ =
⋂

� a facet of Δ
〈G8 : 8 ∉ �〉.

This writes the varietyV(IΔ) as the union of coordinate subspaces span{48 : 8 ∈ �} where � is a facet
of Δ. In particular, if Δ has : facets of dimension 3 − 1, then V(IΔ) is a variety of dimension 3 and
degree : . See [68, Chapter 1] for more.

2.2 Main Results

We extend the results of Proudfoot and Speyer to the image of a linear space L ⊂ C= under inversion of
some subset of coordinates. For � ⊆ {1, . . . , =}, consider the rational map inv� : C= d C= defined by

(inv� (G))8 =


1/G8 if 8 ∈ �

G8 if 8 ∉ � .

Let inv� (L) denote the Zariski-closure of the image of L under this map, which is an affine variety in
C=. One can interpret inv� (L) as an affine chart of the closure of L in the product of projective spaces
(P1)=, as studied in [3], or as the projection of the graph of L under the map G ↦d inv[=] (G), studied in
[41], onto complementary subsets of the 2= coordinates. We give a degeneration of the coordinate ring
of inv� (L) to the Stanley-Reisner ring of a simplicial complex generalizing the broken circuit complex
of a matroid. This involves constructing a universal Gröbner basis for the ideal of polynomials vanishing
on inv� (L).

Let C[x] denote the polynomial ring C[G1, . . . , G=] and for any U ∈ (Z≥0)=, let xU denote
∏=
8=1 G

U8
8
.

For a subset ( ⊆ [=], we will also use x( to denote
∏
8∈( G8 . As in [73], the circuits of the matroid

" (L) corresponding to L give rise to a universal Gröbner basis for the ideal of polynomials vanishing
on inv� (L). We say that a linear form ℓ(G) = ∑

8∈[=] 08G8 vanishes on L if ℓ(G) = 0 for all G ∈ L. The
support of ℓ, supp(ℓ), is {8 ∈ [=] : 08 ≠ 0}. The minimal supports of linear forms vanishing on L are
the circuits of the matroid " (L). For every circuit � ⊂ [=] of " (L), there is a unique (up to scaling)
linear form ℓ� =

∑
8∈� 08G8 vanishing on L with support �. To each circuit, we associate the polynomial

5� (x) = x�∩� · ℓ� (inv� (x)) =
∑
8∈�∩�

08x�∩�\{8 } +
∑
8∈�\�

08x�∩�∪{8 } . (2.1)

Theorem 2.2.1. Let L ⊆ C= be a 3-dimensional linearspace and let I ⊆ C[x] be the ideal of
polynomials vanishing on inv� (L). Then { 5� : � is a circuit of " (L)} is a universal Gröbner basis for
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I. In particular, for F ∈ (R+)= with distinct coordinates, the initial ideal inF (I) is the Stanley-Reisner
ideal of the semi-broken circuit complex ΔF (" (L), �).

The simplicial complex ΔF (" (L), �) will be defined in Section 2.3. For real linear spaces L, the
variety inv� (L) relates to the regions of a hyperplane arrangement as follows.

Theorem 2.2.2. Let L ⊂ C= be invariant under complex conjugation. The following are equal:

1. the degree of the affine variety inv� (L),

2. the number of facets of the semi-broken circuit complex ΔF (" (L), �), and

3. for generic D ∈ R=, the number of regions in (L⊥ + D)\{G8 = 0}8∈� whose recession cones have
trivial intersection with R� = {G ∈ R= : G 9 = 0 for 9 ∉ �}.

In Section 2.3 we define the simplicial complex ΔF (" (L), �) and show that it satisfies a deletion-
contraction relation analogous to that of the broken circuit complex of a matroid. Section 2.4 contains the
proof of Theorem 2.2.1. We characterize the strata of inv� (L) given by its intersection with coordinate
subspaces in Section 2.5. Finally, in Section 2.6, we show that for a real linear space L, inv� (L) is a
hyperbolic variety, in the sense of [56, 90], and prove Theorem 2.2.2.

2.3 A Semi-Broken Circuit Complex

Let " be a matroid on elements [=] and suppose � ⊆ [=]. A vector F ∈ R= with distinct coordinates
gives an ordering on [=], where 8 < 9 whenever F8 < F 9 . Without loss of generality, we can assume
F1 < . . . < F=, which induces the usual order 1 < . . . < =. Given a circuit � of " we define an
�-broken circuit " to be

1� (�) =


�\min(�) if � ⊆ �

(� ∩ �) ∪max(�\�) if � * � .

Now we define the �-broken circuit complex of " to be

ΔF (", �) = {g ⊆ [=] : g does not contain an �-broken circuit of "}. (2.2)

Note that an [=]-broken circuit is a broken circuit in the usual sense and ΔF (", [=]) is the well-studied
broken circuit complex of " . The �-broken circuit complex shares many properties with the classical
one.

Theorem 2.3.1. Let ΔF (", �) be the �-broken circuit complex defined in (2.2).

(a) If 8 ∈ � is a loop of " , then ΔF (", �) = ∅.

(b) If 8 ∈ � is a coloop of " , then ΔF (", �) is isomorphic to the cone(ΔF ("/8, �\8), 8).
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(c) If 8 = max(�) is neither a loop nor a coloop of " , then

ΔF (", �) = ΔF ("\8, �\8) ∪ cone(ΔF ("/8, �\8), 8).

Proof. (a) If 8 ∈ � is a loop, then � = {8} is a circuit of " with 1� (�) = ∅.
(b) If 8 ∈ � is a coloop, then no circuit of " , and hence no �-broken circuit, contains 8. The circuits

of " are exactly the circuits of the contraction "/8 and the �-broken circuits of " are the (�\8)-broken
circuits of "/8. Therefore g is a face of ΔF (", �) if any only if g\8 is a face of ΔF ("/8, �\8).

(c) (⊆) Let g be a face of ΔF (", �). We will show that if 8 ∉ g, then g is a face of ΔF ("\8, �\8) and
if 8 ∈ g, then g\8 is a face of ΔF ("/8, �\8).

If 8 ∉ g and � is a circuit of the deletion "\8, then � is a circuit of " , and 1� (�) = 1�\8 (�) is an
�-broken circuit of " and therefore is not contained in g. If 8 ∈ g and � is a circuit of the contraction
"/8, then either � or � ∪ {8} is a circuit of " . In the first case, we again have that 1� (�) = 1�\8 (�)
is not contained in g and thus not contained in g\8. Secondly, suppose that � ∪ {8} is a circuit of " . If
� ⊆ �, then 1� (� ∪ {8}) is equal to � ∪ {8}\min(� ∪ {8}). Since 8 is the maximum element of �, this
equals�\min(�) ∪ {8}. This set is not contained in g. Therefore 1� (�) = �\min(�) is not contained in
g\8. If� * �, then the �-broken circuit of� ∪ {8} is (� ∩ �) ∪ {8} ∪max(�\�), which equals 1� (�) ∪ {8}.
Since g cannot contain an �-broken circuit of " , g\8 does not contain 1� (�).

(⊇) Let g be a face of ΔF ("\8, �\8) and suppose � is a circuit of " . If 8 ∉ �, then � is also a circuit
of "\8, meaning that 1� (�) is not contained in g. If 8 ∈ � and � ⊆ �, then 8 = max(�). Since 8 is not
a loop, this implies that 8 ∈ 1� (�), which cannot be contained in g. Similarly, if 8 ∈ � and � ⊄ �, then
8 ∈ 1� (�) and 1� (�) ⊄ g.

Finally, let g be a face of ΔF ("/8, �\8) and let � be a circuit of " . If 8 ∈ �, then �\8 is a circuit
of "/8. Then 1� (�) equals 1� \8 (�\8) ∪ {8}. Since g cannot contain 1� (�\8), g ∪ {8} does not contain
1� (�). If 8 ∉ �, then � is a union of circuits of "/8, see [69, §3.1, Exercise 2]. If � ⊆ �, then there is a
circuit � ′ ⊆ � of "/8 containing min(�). Then � ′ ⊆ �\8 and 1�\8 (� ′) is a subset of 1� (�). Similarly, if
� * �, then there is a circuit � ′ ⊆ � of "/8 containing max(�\�), giving 1� \8 (� ′) ⊆ 1� (�). In either
case, g is a face of ΔF ("/8, �\8) and cannot contain the broken circuit 1�\8 (� ′) and therefore g ∪ {8}
cannot contain 1� (�). �

Corollary 2.3.2. If " is a matroid of rank 3 with no loops in �, then ΔF (", �) is a pure simplicial
complex of dimension 3 − 1.

Proof. We induct on the size of �. If � = ∅, then for every circuit �, the broken circuit 1� (�) is the
maximum element max(�). In this case, the simplicial complex ΔF (", �) consists of one maximal face
�, where � is the lexicographically smallest basis of " (L). Here � consists of the elements 8 ∈ [=]
for which the rank of [8] in " (L) is strictly larger than the rank of [8 − 1]. Every other element is the
maximal element of some circuit of " .

Now suppose |� | > 0. If 8 ∈ � is a coloop of " , then the contraction "/8 is a matroid of rank 3 − 1
with no loops in �\8. Then by induction and Theorem 2.3.1(b), ΔF (", �) = cone(ΔF ("/8, �\8), 8) is
a pure simplicial complex of dimension 3 − 1. Finally, suppose 8 ∈ � is neither a loop nor a coloop of
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" . Then the deletion "\8 is a matroid of rank 3 and no element of �\8 is a loop of "\8. It follows that
ΔF ("\8, �\8) is a pure simplicial complex of dimension 3 − 1. The contraction "/8 is a matroid of rank
3 − 1, meaning that ΔF ("/8, �\8) is either empty (if �\8 contains a loop of "/8), or a pure simplicial
complex of dimension 3 − 2. In either case the decomposition in Theorem 2.3.1 finishes the proof. �

We can also see this via connections with the external activity complex defined by Ardila and
Boocher [3]. Following their convention, for subsets (, ) ⊆ [=], we use G(H) to denote the set {G8 : 8 ∈
(} ∪ {H 9 : 9 ∈ )}.

Definition 2.3.3. [3, Theorem 1.9] Let " be a matroid and suppose D ∈ R= has distinct coordinates.
Then D induces an order on [=] where 8 < 9 if and only if D8 < D 9 . The external activity complex
�D (") is the simplicial complex on the ground set {G8 , H8 : 8 ∈ [=]} whose minimal non-faces are
{Gmin<D (�) H�\min<D (�) : � ∈ C}.

Given a weight vector F ∈ (R≥0)= with distinct coordinates, define D ∈ R=

D8 = F8 for 8 ∈ � and D 9 = −F 9 for 9 ∉ � .

With this translation of weights, we can realize the semi-broken circuit complex ΔF (", �) as the link of
a face in the external activity complex �D ("). Formally, the link of a face f in the simplicial complex
Δ is the simplicial complex

linkΔ(f) = {g ∈ Δ : g ∪ f ∈ Δ and g ∩ f = ∅}.

It is the set of faces that are disjoint from f but whose unions with f lie in Δ.

Proposition 2.3.4. Define weight vectors D, F ∈ R= as above. If the matroid " has no loops in �, then
the semi-broken circuit complex ΔF (", �) is isomorphic to the link of the face G� H [=]\� in the external
activity complex �D (").

Proof. First we show that f = G� H [=]\� is actually a face of �D (") by arguing that f does not contain
the minimal non-face Gmin<D (�) H�\min<D (�) for any circuit � of " . If � is contained in �, then so is
�\min<D (�). Since " has no loops in �, this is nonempty and we can take 8 ∈ �\min<D (�). Then H8
belongs to the non-face Gmin<D (�) H�\min<D (�) , but not f. On the other hand, if � is not contained in �,
we know min<D (�) is contained in the complement of �, since the weight vector entries satisfy D 9 < D8
for all 8 ∈ � and 9 ∉ �. Hence Gmin<D (�) , an element of the minimal non-face associated to �, does not
belong to f.

Now we argue that ΔF (", �) and the link of f in �D (") are isomorphic by identifying their non-
faces. Note that the link of f is supported on the vertex set G [=]/� H� . The bijection of vertices is then
just 9 ↔ G 9 for 9 ∉ � and 8 ↔ H8 for 8 ∈ �. Note that g ⊆ G [=]\� H� is a face of the link of f in �D (") if
and only if for every circuit �, g does not contain the intersection of the non-face Gmin<D (�) H�\min<D (�)

with G [=]\� H� . It suffices to check that these intersections are exactly the �-broken circuits of " .
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If � is contained in �, then F and D give the same order on elements of � and 1� (�) equals
�\min<D (�) = �\min<F (�). Since Gmin<D (�) ∈ f, we find that

1� (�) = �\min<D (�) ↔ H�\min<D (�) = Gmin<D (�) H�\min<D (�)\f.

If� is not contained in �, then 1� (�) equals (�∩ �) ∪max<F (�\�). Since D reverses the order on [=]\�,
this equals (� ∩ �) ∪min<D (�\�). Then

1� (�) = (� ∩ �) ∪min<D (�\�) ↔ Gmin<D (�\� ) H�∩� = Gmin<D (�) H�\min<D (�)\f,

where the equality Gmin<D (�\� ) = Gmin<D (�) holds because D 9 < D8 for all 8 ∈ � and 9 ∉ �. This shows that
under this bijection of the vertices, the semi-broken circuit complex equals the link of f in the external
activity complex. �

Corollary 2.3.5. The semi-broken circuit complex is shellable.

Proof. In [4], Ardila, Castillo, and Sampler show that the external activity complex, �D ("), is shellable.
Then by [14, Prop. 10.14], the link of any face in �D (") is also shellable. �

Example 2.3.6. Let " be the matroid from Example 2.4.3, � = {1, 2, 3}, and D be the weight vector
associated to F as described above. It induces the linear order 5 < 4 < 1 < 2 < 3 on the ground set of
the matroid " (L).

We outline the connection between the external activity complex �D (") and the semi-broken circuit
complex by tracking two bases �1 = {1, 3, 4}, �2 = {2, 3, 5} of the matroid " (L) in the construction of
the two simplicial complexes. For each basis, we split the complement [5]\�8 into externally active and
externally passive elements. (See [3, §2.5] for the definitions of externally active and passive.) For �1, {2}
is externally passive and {5} is externally active. Then by [3, Theorem 5.1], the associated facet of �D (")
is �1 = G1G2G3G4H1H3H4H5. By deleting f = G1G2G3H4H5 from �1, we obtain the facet G4H1H3 of linkΔ(f),
corresponding to the facet {1, 3, 4} of ΔF (", �). For �2 = {2, 3, 5}, the externally passive elements are
the entire complement {1, 4}, hence the associated facet of �D (") is �2 = G1G2G3G4G5H2H3H5. Since �2

does not contain f, it does not contribute a facet to the link of f in �D (").

The connection between this simplicial complex and the semi-inverted linear space inv� (L) is that
when F ∈ (R+)= has distinct coordinates, the ideal generated by the initial forms

{inF ( 5�) : � is a circuit of " (L)}

is the Stanley-Reisner ideal of ΔF (", �). In fact, the initial form of 5� is inF ( 5�) = x1� (�) . The ideal
generated by these initial forms is then the Stanley-Reisner ideal IΔF (",� ) = 〈inF ( 5�) : � ∈ C(")〉.
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2.4 Proof of the Main Theorem

In this section, we prove Theorem 2.2.1. To do this, we first use a flat degeneration of inv� (L) to establish
a recursion for its degree.

Proposition 2.4.1. Suppose L is a linear subspace of C= and � ⊆ [=]. Let � (L, �) denote the degree of
the affine variety inv� (L). Then � (L, �) satisfies the following recurrence:

(a) If 8 ∈ � is a loop of " (L), then inv� (L) is empty and � (L, �) = 0.

(b) If 8 ∈ � is a co-loop of " (L), then � (L, �) = � (L/8, �\8).

(c) If 8 ∈ � is neither a loop nor a coloop of " (L) then

� (L\8, �\8) + � (L/8, �\8) ≤ � (L, �).

The proof of Theorem 2.2.1 will show that there is actually equality in part (c).

Proof. Without loss of generality, take 8 = 1.
(a) If 1 ∈ � is a loop of " (L) then L is contained in the hyperplane {G1 = 0}. Therefore the map

inv� is undefined at every point of L and the image inv� (L) is empty. By convention, we take the degree
of the empty variety to be zero.

(b) If 1 is a co-loop of " (L), then L is a direct sum of span(41) and L/1, meaning that any element
in L can be written as 041 + 1 where 0 ∈ C and 1 ∈ L/1. For points at which the map inv� is defined,
inv� (041 + 1) = 0−141 + inv�\1(1). From this, we see that inv� (L) is the direct sum of span(41) and
inv� \1(L/1), meaning that inv� (L) and inv� \1(L/1) have the same degree.

(c) LetI denote the ideal of polynomials vanishing on inv� (L) andJ = I denote its homogenization
inC[G0, G1, . . . , G=]. TakeF = 41 ∈ R=+1 and consider inF (J), as defined in Section 1.3.3,Wewill show
that the variety of inF (J) contains the image in P= of both {0}× inv� \1(L\1) andA1(C) × inv� \1(L/1).
Since both these varieties have dimension equal to dim(L), the degree of the variety of inF (J) is at
least the sum of their degrees. The claim then follows by the equality of the Hilbert series of J and
inF (J).

If 9 ∈ �\1 is a loop of " (L), then 9 is a loop of " (L\1) and � (L\1, �\1) = 0. Otherwise the set
*� is Zariski-dense in L, where*� denotes the intersection of L with (C∗)� × C[=]\� .

Let c� denote the coordinate projection C= → C� . On*� , the maps c�\1 ◦ inv� and inv�\1 ◦c� \1 are
equal:

c� \1(inv� (G)) = inv� \1(c� \1(G)) =
∑
9∈�\1

G−1
9 4 9 +

∑
9∉�

G 94 9 .

In particular, the points inv� \1(c� \1(*� )) are Zariski dense in inv� \1(L\1). Now let G be a point of
inv� (*� ). Then [1 : G] belongs to the variety of J and, for every C ∈ C, the point (C, C41 · [1 : G]) belongs
to the variety of JF , as defined in Section 1.3.3. Taking C → 0, we see that [1 : 0 : c� \1(G)] belongs to
the variety of in41 (J).

25



If 9 ∈ �\1 is a loop of " (L/1), then inv�\1(L/1) is empty and the claim follows. Otherwise the
intersection *�\1 of L/1 with {0} × (C∗)�\1 × C[=]\� is nonempty and Zariski-dense in L ∩ {G ∈ C= :
G1 = 0} � L/1. Let G ∈ *� \1. Since 1 is not a loop of " (L), there is a point E ∈ L with E1 = 1. Then for
any _, C ∈ C∗, G + (C/_)E belongs to L and for all but finitely many values of C, H(C) = inv� (G + (C/_)E)
is defined and has first coordinate H1(C) = _/C. Then [1 : H(C)] ∈ V(J) and (C, C41 · [1 : H(C)]) belongs
to V

(
JF

)
. Note that the limit of C41 · [1 : H(C)] = [1 : _ : H2(C) : . . . : H= (C)] as C → 0 equals

[1 : _ : inv� \1(G)]. Therefore for every point (_, D) ∈ A1(C) × inv� \1(L/1), the point [1 : _ : D] belongs
toV

(
in41 (J)

)
. �

Lemma 2.4.2. Let � ⊆ � ⊆ C[x] be equidimensional homogeneous ideals of dimension 3. If � is radical
and deg(�) ≤ deg(�), then � and � are equal.

Proof. Let � = %1 ∩ . . . ∩ %A and � = &1 ∩ . . . ∩&B be irredundant primary decompositions of � and �.
Without loss of generality, we can assume that dim(&8) = 3 for 1 ≤ 8 ≤ D, and sinceV(�) ⊆ + (�), the
prime ideals %8 can be reindexed such that %8 =

√
&8 , meaning &8 ⊆ %8 . For all 1 ≤ 8 ≤ D, there exists

an element 0 ∈ (∩ 9≠8% 9) ∩ (∩ 9≠8
√
& 9) with 0 ∉ %8 . Then the saturation � : 〈0〉∞ = %8 is contained in

� : 〈0〉∞ = &8 , implying %8 = &8 . This writes the ideal � as � = %1 ∩ . . . ∩ %D ∩ &D+1 ∩ . . . ∩ &B.
The degree of an ideal is equal to the sum of the degrees of the top dimensional ideals in its primary
decomposition, hence

deg(�) =
A∑
8=1

deg(%8) and deg(�) =
D∑
8=1

deg(&8) =
D∑
8=1

deg(%8).

The assumption that deg(�) ≤ deg(�) implies that A = D, which gives the reverse containment
� = %1 ∩ . . . ∩ %D ⊇ �. �

Proof of Theorem 2.2.1. We proceed by induction on |� |. If |� | = 0, then inv� (L) is just the linearspace
L. Then Theorem 2.2.1 reduces to the statement that the linear forms supported on circuits form a
universal Gröbner basis for I(L). See e.g. [95, Prop. 1.6].

Now take |� | ≥ 1, F ∈ (R+)= with distinct coordinates, and let " denote the matroid " (L). If "
has a loop 8 in �, then for the circuit � = {8}, the circuit polynomial 5� equals 1, which is a Gröbner
basis for the ideal of polynomials vanishing on the empty set inv� (L). Therefore we may suppose that
" has no loops in �, in which case inv� (L) is a 3-dimensional affine variety of degree � (L, �).

Let Δ denote the �-broken circuit complex ΔF (", �) defined in Section 2.3 and let Δ0 denote the
simplicial complex on elements {0, . . . , =} obtained from Δ by coning over the vertex 0. Let IΔ0 denote
the Stanley-Reisner ideal of Δ0, as in Section 2.1.4.

Let I ⊂ C[x] be the ideal of polynomials vanishing on inv� (L) and let J ⊂ C[G0, G1, . . . , G=] be
its homogenization with respect to G0. For a circuit polynomial 5� , its homogenization 5� belongs to J
and since F ∈ (R+)=,

in(0,F) ( 5�) = inF ( 5�) =

0:x�\: if � ⊆ � and : = argmin{F 9 : 9 ∈ �}

0:x�∩�∪: if � * � and : = argmax{F 9 : 9 ∈ �\�}.
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Up to a scalar multiple, inF ( 5�) equals the square-free monomial corresponding to the �-broken circuit
of �, namely x1� (�) . It follows that

〈inF ( 5�) : � ∈ C(")〉 = IΔ and 〈in(0,F) ( 5�) : � ∈ C(")〉 = IΔ0 .

From this we see that IΔ0 ⊆ in(0,F) (J).
Let 8 = argmax{F 9 : 9 ∈ �}. By the inductive hypothesis, � (L\8, �\8) and � (L/8, �\8) are the

number of facets of ΔF ("\8, �\8) and ΔF ("/8, �\8), respectively. Therefore by Theorem 2.3.1, Δ and
thusΔ0 each have � (L/8, �\8) facets if 8 is a coloop of" and � (L\8, �\8)+� (L/8, �\8) facets otherwise.
By Proposition 2.4.1, it follows that Δ0 has at most � (L, �) facets and that the Stanley-Reisner ideal IΔ0

has degree ≤ � (L, �).
SinceΔ0 is a pure simplicial complex of dimension 3,IΔ0 is an equidimensional ideal of dimension 3.

The ideal J is a prime ideal of dimension 3, meaning that its initial ideal in(0,F) (J) is equidimensional
of the same dimension, see [60, Prop. 2.4.2].

The ideals IΔ0 and in(0,F) (J) then satisfy the hypotheses of Lemma 2.4.2, and we conclude that
they are equal. By [60, Prop. 2.6.1], restricting to G0 = 1 gives that

IΔ = 〈inF ( 5�) : � ∈ C(")〉 = inF (I).

As this holds for every F ∈ (R+)= with distinct coordinates, it will also hold for arbitrary F ∈ (R≥0)=

(see [95, Prop. 1.13]). It follows from [95, Cor. 1.9, 1.10] that the circuit polynomials { 5� : � ∈ C(")}
form a universal Gröbner basis for the ideal I. �

Example 2.4.3. Consider the 3-dimensional linear space in C5:

L = rowspan
©«
1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

ª®®¬ .
The circuits of the matroid " (L) are C = {124, 135, 2345}. Take � = {1, 2, 3}. Then

5124 = G1 + G2 − G1G2G4, 5135 = G1 + G3 − G1G3G5, and 52345 = G2 − G3 + G2G3G4 − G2G3G5.

If F ∈ (R+)5 with F1 < . . . < F5, then the ideal 〈inF ( 5�) : � ∈ C〉 is 〈G1G2G4, G1G3G5, G2G3G5〉. The
corresponding simplicial complex ΔF (", �) is 2-dimensional and has seven facets:

facets(ΔF (", �)) = {123, 125, 134, 145, 234, 245, 345}.

Indeed, the variety of 〈G1G2G4, G1G3G5, G2G3G5〉 is the union the seven coordinate linear spaces span{48 , 4 9 , 4: }
where {8, 9 , :} is a facet of ΔF (", �).

Interestingly, it is not true that the homogenizations 5� form a universal Gröbner basis for the
homogenization I. Indeed, consider the weight vector (2, 0, 0, 1, 1, 1). The ideal generated by the
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initial forms of circuit polynomials 〈inF ( 5�) : � ∈ C〉 is 〈G2
0G1 + G2

0G2, G
2
0G3〉, whereas inF (I) =

〈G2G3G4 − G1G3G5 − G2G3G5, G
2
0G1 + G2

0G2, G
2
0G3〉. Nevertheless, upon restriction to G0 = 1, the two ideals

become equal.

Corollary 2.4.4. If dim(L) = 3, then the affine Hilbert series of the ideal I ⊆ C[x] of polynomials
vanishing on inv� (L) is

∞∑
<=0

dimC(C[x]≤</I≤<) C< =
1

(1 − C)3+1
3∑
8=0

58−1C
8 (1 − C)3−8 = ℎ0 + ℎ1C + . . . + ℎ3C3

(1 − C)3+1
.

where ( 5−1, . . . , 53−1) and (ℎ0, . . . , ℎ3) are the 5 and ℎ vectors of ΔF (", �). In particular, its degree is
the number of facets 53−1 = ℎ0 + ℎ1 + . . . + ℎ3 .

Proof. The affine Hilbert series of I equals the classical Hilbert series of its homogenization I, which
equals the Hilbert series of in(0,F) (I) for any F ∈ R=. When the coordinates of F are distinct and
positive, in(0,F) (I) is the Stanley-Reisner ideal of Δ0 = cone(ΔF (", �), 0). Since the Stanley-Reisner
ideals of Δ = ΔF (", �) and Δ0 are generated by the same square-free monomials, their Hilbert series
differ by a factor of 1/(1 − C). The result then follows from well known formulas for the Hilbert series
of IΔ, [68, Ch. 1]. �

Theorem 2.2.1 shows that there is equality in Proposition 2.4.1(c), namely that if 8 ∈ � is neither
a loop nor a coloop of " (L), then � (L, �) = � (L\8, �\8) + � (L/8, �\8). From this we can derive an
explicit formula for the degree of inv� (L) in the uniform matroid case.

Corollary 2.4.5. For a generic 3-dimensional linear space L ⊆ C= and � ⊆ [=] of size |� | = : , the
degree of inv� (L) equals

� (L, �) =
3∑

9=:+3−=

(
:

9

)
−

(
: − 1
3

)
,

where we take
(0
1

)
= 0 whenever 0 < 0 or 1 < 0. In particular, for = ≥ : + 3, the degree only depends

on 3 and : .

Proof. By assumption :, 3, = satisfy the inequalities 0 ≤ : ≤ = and 0 ≤ 3 ≤ =. We proceed by induction
on : . In the extremal cases, � (L, �) satisfies

� (L, �) =


1 if : = 0,

1 if 3 = =,

0 if 3 = 0 and : ≥ 1.

Indeed, if � = ∅, then inv� (L) = L and � (L, �) = 1. If 3 = =, then inv� (L) is all ofC= and � (L, �) = 1.
Finally, if 3 = 0 and |� | ≥ 1, then = ≥ |� | ≥ 1, and L = {(0, . . . , 0)} in C=. The map inv� is not defined
at this point so inv� (L) is empty and thus has degree 0.

Suppose : ≥ 1 and 0 < 3 < =. Any 8 ∈ � is neither a loop nor a coloop, so Proposition 2.4.1(c) and
the proof of Theorem 2.2.1 imply that � (L, �) = � (L\8, �\8) + � (L/8, �\8). Recall that L\8 and L/8
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are subspaces in C=−1 of dimensions 3 and 3 − 1, respectively. Since |�\8 | = : − 1, by induction we get
that

� (L\8, �\8) =
3∑

9=:+3−=

(
: − 1
9

)
−

(
: − 2
3

)
and � (L/8, �\8) =

3−1∑
9=:+3−=−1

(
: − 1
9

)
−

(
: − 2
3 − 1

)
.

Since
(:−1
9

)
+

(:−1
9−1

)
=

(:
9

)
and

(:−2
3

)
+

(:−2
3−1

)
=

(:−1
3

)
, the sum � (L\8, �\8) + � (L/8, �\8) is the desired

formula for � (L, �). �

Example 2.4.6. The number of facets of the complex ΔF (", �) gives the degree � (L, �) and if "
is the uniform matroid of rank 3 on [=], we can write out these facets explicitly. Let F = (1, 2 . . . , =)
and consider � = {1, 2, . . . , :}. If : ≤ 3, no circuit is contained in the inverted set �, meaning that
every broken circuit has the form (� ∩ �) ∪ max{�\�}. Then every facet of ΔF (", �) has the form
( ∪ {: + 1, . . . , : + 3 − 9} where ( ⊆ � and |( | = 9 ≤ 3. For fixed 9 , the number of possibilities are

(:
9

)
,

and the constraints on 9 are : + 3 − 9 ≤ = and 0 ≤ 9 ≤ : ≤ 3. If : > 3, then every subset of {2, . . . , :}
of size 3 is a semi-broken circuit. From the list of facets ( ∪ {: + 1, . . . , : + 3 − 9}, we need to remove
those for which ( ⊂ {2, . . . , :} and |( | = 3, of which there are

(:−1
3

)
.

2.5 Supports

In this section, we characterize the intersection of the variety inv� (L) with the coordinate hyperplanes.
These are exactly the points in the closure of, but not the actual image of, the map inv� . Given a point
p ∈ C=, its support is the set of indices of its nonzero coordinates: supp(p) = {8 : ?8 ≠ 0}. For a subset
( ⊆ [=], we will use C( to denote the set of points p with supp(p) ⊆ ( and ( to denote the complement
[=]\(.

Theorem 2.5.1. Suppose that the matroid " = " (L) has no loops in �. For ( ⊆ [=], let ) = ( ∪ �. If
) is a flat of " , then the restriction of inv� (L) to C( is given by

inv� (L) ∩ C( = inv(∩�
(
c) (L) ∩ C(

)
,

where c) denotes the coordinate projection C= → C) . Moreover, there exists p ∈ inv� (L) with
supp(p) = ( if and only if ) is a flat of " and )\( is a flat of " |) .

We build up to the proof of Theorem 2.5.1 by considering the cases � ⊆ ( and � ⊆ (.

Lemma 2.5.2. If ( ⊆ [=] is a flat of " with � ⊆ (, then

inv� (L) ∩ C( = inv(∩� (c( (L)) ,

where c( denotes the coordinate projection C= → C( .
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Proof. Recall that � ⊂ [=] is a flat of " if and only if |� ∩� | ≠ 1 for all circuits � of " . Suppose that
( is a flat of " and consider the restriction of the circuit polynomials 5� to C( . Note that ( ⊆ �, so that
for any circuit � with |� ∩ ( | ≥ 2, |� ∩ � | ≥ 2 and the circuit polynomial 5� is zero at every point of C( .

The circuits for which |� ∩ ( | = 0 are exactly the circuits contained in (, which are the circuits of
the matroid restriction " |( . Moreover the projection c( (L) is cut out by the vanishing of the linear
forms {ℓ� : � ∈ C("), � ⊆ (}, which are exactly the linear forms {ℓ�′ : � ′ ∈ C(" |()}. It follows
that the circuit polynomials { 5�′ : � ′ ∈ C(" |()} are a subset of a circuit polynomials of L, namely
{ 5� : � ∈ C("), � ⊆ (}. By Theorem 2.2.1, the variety of circuit polynomials is the variety of the
semi-inverted linear space, giving that

inv� (L) ∩ C( = V({ 5� : � ∈ C("), � ⊆ (}) ∩ C( = V({ 5�′ : � ′ ∈ C(" |()}) = inv(∩� (c( (L)).

�

Lemma 2.5.3. If ( ⊆ [=] with � ⊆ (, then inv� (L) ∩ C( = inv�
(
L ∩ C(

)
.

Proof. (⊇) The affine variety inv�
(
L ∩ C(

)
is the Zariski-closure of L ∩C( under the map inv� . Since

L ∩ C( is contained in L, inv�
(
L ∩ C(

)
is a subset of inv� (L). Moreover inv� (p) ∈ C( for any point

p ∈ C( . The inclusion follows.
(⊆) For this we show the reverse inclusion of the ideals of polynomials vanishing on these varieties.

Now let� ′ be a circuit L∩C( and ℓ�′ =
∑
8∈�′ 08G8 its corresponding linear form. Then for some circuit

� of " , � ′ = � ∩ ( and ℓ�′ equals the restriction ℓ� (c( (x)). Applying inv� and clearing denominators
then gives

5�′ (x) = x�
′∩� ℓ�′ (inv� (x)) = x�∩� ℓ� (inv� (c( (x))) = 5� (c( (x)).

The middle equation holds because � ⊆ (, meaning that �\� ′ ⊆ ( ⊆ �. �

Proof of Theorem 2.5.1. Suppose that) is a flat of" . Since � ⊆ ) , Lemma 2.5.2 says that the restriction
inv� (L)|C) equals inv)∩� (c) (L)). Furthermore since ) ∩ � = ( ∩ � ⊆ (, we can apply Lemma 2.5.3
to find the intersection of inv)∩� (c) (L)) with C( . All together this gives

inv� (L) ∩ C( = (inv� (L) ∩ C) ) ∩ C( = inv(∩� (c) (L)) ∩ C( = inv(∩�
(
c) (L) ∩ C(

)
. (2.3)

Suppose further that )\( is a flat of the matroid " |) . This implies that the contraction of " |) by
)\( has no loops. This is the matroid of the linearspace c) (L) ∩ C( , which is therefore not contained
in any coordinate subspace {G8 = 0} for 8 ∈ (. It follows that there is a point p ∈ c) (L) ∩ C( of full
support supp(p) = (. Equation (2.3) then shows that inv(∩� (p) is a point of support ( in inv� (L).

Conversely, suppose that ( = supp(p) for some point p ∈ inv� (L). Then ) is a flat of " . To see this,
suppose for the sake of contradiction that for some circuit � of " , � ∩ ) = { 9}. Then 9 is the unique
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element of � ∩ � for which ? 9 = 0, and evaluating the circuit polynomial 5� at the point p gives

5� (p) =
∑
8∈�∩�

08p�∩�\{8 } +
∑
8∈�\�

08p�∩�∪{8 } = 0 9p�∩� \{ 9 } ≠ 0,

contradicting p ∈ inv� (L). Therefore ) is a flat of " and (2.3) holds. It follows that p, or more precisely
c) (p), is a point of support ( in c) (L). Therefore c) (L) ∩ C( contains a point of full support, the
contraction of the matroid " |) by )\( has no loops, and )\( is a flat of the matroid " |) . �

Example 2.5.4. Suppose L is a generic 3-dimensional subspace of C=, meaning that " = " (L) is the
uniform matroid of rank 3 on [=]. Its flats are the subsets � ⊆ [=] of size |� | < 3, along with the full
set [=]. Consider ( ⊆ [=] and ) = ( ∪ �. If ) is a flat of " , then either |) | < 3, implying |� | < 3, or
) = [=], in which case � ⊆ (. If |) | < 3, then " |) is the uniform matroid of rank |) | on the elements ) .
Then every subset of ) is a flat of " |) , meaning that ( is the support of a point in inv� (L). If ) = [=],
then )\( = ( is a flat of " |) = " if and only if |( | < 3 or |( | = =. Since ( contains �, |( | = = only
when � = ( = ∅. Therefore if � ≠ ∅, we have |( | > = − 3. Putting these together gives

( ∈ supp(inv� (L)) ⇐⇒


( = ∅ or |( | > = − 3 if � = ∅

� ⊆ ( and |( | > = − 3 if 0 < |� | ≤ = − 3

|( ∪ � | < 3 or � ⊆ ( if = − 3 < |� |.

2.6 Real Points and Hyperplane Arrangements

In this section, we explore a slight variation of inv� that preserves a real-rootedness property of certain
intersections. For � ⊆ [=], define the rational map inv−

�
: C= d C= by

(inv−� (G))8 =

−1/G8 if 8 ∈ �

G8 if 8 ∉ � .

Equivalently this is the composition of inv� with the map that scales coordinates G8 for 8 ∈ � by −1. Note
that the varieties inv� (L) and inv−

�
(L) are isomorphic, and in particular they have the same degree. For

any linearspace L ⊂ C=, let L⊥ denote the subspace of vectors E for which
∑=
8=1 E8G8 = 0 for all G ∈ L.

Proposition 2.6.1. If L ⊂ C= is invariant under complex conjugation, then for any D ∈ R=, all of the
intersection points of inv−

�
(L) with L⊥ + D are real.

Proof. If L is contained in a coordinate hyperplane {G8 = 0} where 8 ∈ �, then inv−
�
(L) is empty and

the claim trivially follows. Otherwise, the points G ∈ inv−
�
(L) with G8 ≠ 0 for 8 ∈ � are necessarily

Zariski-dense, and for a generic point D ∈ R=, the intersection points of inv−
�
(L) with L⊥ + D belongs

to (C∗)� × C[=]\� . Showing that these intersection points are real for generic D implies it for all.
Suppose that a point 0 + i1 belongs to the intersection of inv−

�
(L) with L⊥ + D where 0, 1 ∈ R= and

0 9 + i1 9 ≠ 0 for every 9 ∈ �. Then (0 − D) + i1 belongs to L⊥. Since L⊥ is conjugation invariant, it
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follows that 1 ∈ L⊥. In particular, 1) G = 0 for all G ∈ L. Since 0 + i1 belongs to inv−
�
(L), inv−

�
(0 + i1)

belongs to L, meaning that 1) inv−
�
(0 + i1) = 0. Taking imaginary parts gives

0 = Im

(∑
9∈�

−1 9
0 9 + i1 9

+
∑
9∉�

1 9 (0 9 + i1 9)
)
=

∑
9∈�

12
9

02
9
+ 12

9

+
∑
9∉�

12
9 .

Since every term is nonnegative and their sum is zero, each term must be zero, meaning that 1 9 = 0 for
all 9 and the point 0 + i1 is real. �

Remark 2.6.2. Propostion 2.6.1 shows that inv−
�
(L) is hyperbolic with respect to L⊥, in the sense of

[90]. In fact, one can replace L⊥ in this statement by any linear space of the same dimension whose
non-zero Plücker coordinates agree in sign with those ofL⊥. This shows that inv−

�
(L) is a stable variety.

See [56, Section 2] for more.

Proposition 2.6.3. For generic D ∈ R=, the intersection points of inv−
�
(L) with L⊥ + D are the minima

of the function

5 (G) =
1
2

∑
9∉�

G2
9 −

∑
9∈�

log |G 9 | (2.4)

over the regions in the complement of the hyperplane arrangement {G8 = 0}8∈� in L⊥ + D.

Proof. On (R∗)� ×R[=]\� , 5 is infinitely differentiable and we examine its behavior on each orthant. For
a sign pattern f : � → {±1}, let R�f denote the orthant of points in (R∗)� with f(8)G8 > 0 for all 8 ∈ �.
Inspecting the Hessian of 5 shows that it is also strictly convex on R�f × R[=]\� . Indeed, the Hessian of
5 is a diagonal matrix whose ( 9 , 9)th entry is equal to 1/G2

9
for 9 ∈ � and 1 for 9 ∉ � and is therefore

positive definite on (R∗)� × R[=]\� .
Define the (open) polyhedron Pf to be the intersection of R�f ×R[=]\� with the affine space L⊥ + D.

The function 5 is strictly convex on Pf , meaning that any critical point of 5 over Pf is a global
minimum. The affine span of Pf is L⊥ + D, so ? ∈ Pf is a critical point of 5 when ∇ 5 (?) belongs to
(L⊥)⊥ = L. Since ∇ 5 (?) = inv−

�
(?) and inv−

�
is an inversion, this implies that ? belongs to inv−

�
(L).

Putting this all together, we find that for a point ? ∈ Pf ,

? attains the minimum of 5 over Pf ⇔ ∇ 5 (?) ∈ L ⇔ ? ∈ inv−� (L).

�

We can characterize which connected components of (L⊥ + D)\{G8 = 0}8∈� contains a point in
inv−

�
(L) in terms of the recession cone rec(Pf) = (R�f × R[=]\� ) ∩ L⊥.

Lemma 2.6.4. The infimum of 5 over Pf is attained if and only if the intersection of R� with the
recession cone of Pf is trivial, i.e. rec(Pf) ∩ R� = {0}.

Proof. (⇒) Suppose rec(Pf) ∩ R� contains E ≠ 0. Then for any ? ∈ Pf , the univariate function
5 (? + CE) = 1

2
∑
9∉� ?

2
9
−∑

8∈� log |?8 + CE8 | is strictly decreasing as C → ∞ and the infimum of 5 is not
attained on Pf .
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(⇐) Suppose that rec(Pf) ∩ R� = {0}. Then the quadratic form
∑
9∉� G

2
9
is positive definite on

the recession cone rec(Pf). We can write Pf as & + rec(Pf), where & is a compact polytope. Let
( denote the section of the recession cone, ( = {E ∈ rec(Pf) : | |E | |1 = 1}. For any point ? ∈ &
and E ∈ (, consider the univariate function C ↦→ 5 (? + CE), which is strictly convex and continuous on
{C : ? + CE ∈ Pf}. Its derivative

3

3C
5 (? + CE) =

∑
9∉�

E 9 ? 9 + C
∑
9∉�

E2
9 −

∑
8∈�

E8

?8 + CE8

has a unique root C ∈ R for ?+CE ∈ Pf . Indeed, by assumption
∑
9∉� E

2
9
> 0. Then, since 32

3C2
5 (?+CE) > 0

where defined, 3
3C
5 (?+CE) is strictly increasing on {C : ?+CE ∈ Pf}. If E ∈ R[=]\� , then this set is all ofR

and 3
3C
5 (?+ CE) is linear. Otherwise, there is a minimum C for which ?+ CE ∈ Pf and 3

3C
5 (?+ CE) → −∞

as C approaches this minimum, whereas 3
3C
5 (? + CE) > 0 for sufficiently large C. Let C∗(?, E) denote this

unique root of 3
3C
5 (? + CE). This is a continuous function in ? and E. Let ) denote the maximum of

C∗(?, E) over (?, E) ∈ & × (.
Now we claim that when minimizing 5 over Pf , it suffices to minimize over the compact set

& + [0, )](. Indeed, if H ∈ Pf , then H = ? + CE for some ? ∈ &, E ∈ ( and C ∈ R>0. If C > ) , then the
point G = ? + )E ∈ & + [0, )]( satisfies 5 (G) < 5 (H). In particular, the minimum of 5 is bounded from
below and is therefore attained on the compact set & + [0, )](. �

Proposition 2.6.5. For generic D ∈ R=, there is exactly one point of inv−
�
(L) in each region of

(L⊥ + D)\{G8 = 0}8∈� whose recession cone has trivial intersection with R� . The degree of inv−
�
(L)

equals the number of these regions.

Proof. First we show that for generic D ∈ R=, the number of intersection points of inv−
�
(L) with L⊥ + D

equals the degree of inv−
�
(L). To do this, we show that the closure inv−

�
(L) in P= (C) has no points in

common with L⊥ + G0D with G0 = 0. For the sake of contradiction suppose that for some 0 ∈ L⊥, the
point [0 : 0] belongs to inv−

�
(L) and let ( = supp(0).

It follows that 0) x =
∑
8∈( 08G8 vanishes on L, 6 = x(∩� · 0) inv−

�
(x) vanishes on inv−

�
(L), and

the homogenezation 6hom with respect to G0 vanishes on the closure inv−
�
(L) ⊆ P= (C). In particular,

6hom(0, 0) = 0. If ( ⊆ �, this contradicts the evaluation

6hom = 6 =
∑
9∈(

0 9x(\ 9 given by 6hom(0, 0) =
∑
9∈(

0( = 0( · |( | ≠ 0.

Similarly, since inv−
�
(L) is invariant under complex conjugation, we also have 6hom(0, 0) = 0, where 0

is the complex conjugate of 0. If ( * �, this contradicts the evaluation of

6hom = −G2
0

∑
9∈(∩�

0 9x(∩� \ 9 + x(∩�
∑
9∈(\�

0 9G 9 given by 6hom(0, 0) = 0(∩�
∑
9∈(\�

0 90 9 ≠ 0.

Therefore all the intersection points of inv−
�
(L) with L⊥ + G0D have G0 ≠ 0. Then for generic D, the

number of intersection points of inv−
�
(L) and L⊥ + D equals the degree of inv−

�
(L).
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Figure 2.1 Intersections of L⊥ + D with inv−
�
(L) from Example 2.6.7.

By Propositions 2.6.1 and 2.6.3, each of these intersection points is real and thus is a minimizer of the
function 5 (G) of (2.4) over some connected component Pf of (L⊥ + D)\{G8 = 0}8∈� . By Lemma 2.6.4,
the components Pf contains a minimizer if and only if rec(Pf) ∩ R� = {0}. �

This together with Corollary 2.4.4 constitutes the proof of Theorem 2.2.2. For special cases of �, we
find a simpler characterization of the regions counted by deg(inv� (L)).

Corollary 2.6.6. Let D ∈ R= be generic. If � is independent in the matroid " (L), then the degree of
inv� (L) equals the total number of regions in (L⊥ + D)\{G8 = 0}8∈� . If � = [=], then the degree of
inv� (L) equals the number of bounded regions in (L⊥ + D)\{G8 = 0}8∈� .

Proof. If � is independent in " (L), then � is contained in a basis � of " (L), and [=]\� is a basis
of " (L⊥) contained in [=]\�. In particular, if G ∈ L⊥ has G 9 = 0 for all 9 ∈ [=]\�, then G = 0. So
R� ∩ L⊥ = {0}. The recession cone of any region of (L⊥ + D)\{G8 = 0}8∈� is contained in L⊥, so its
intersection with R� is trivial.

If � = [=], then R� = R=. The recession cone of a region in (L⊥ + D)\{G8 = 0}8∈� contains a
non-zero vector if and only if it is unbounded. Therefore the regions whose recession cones have trivial
intersection with R� are those which are bounded. �

Example 2.6.7. Consider the 3-dimensional linearspace L from Example 2.4.3 and take the vector
D = (0, 0, 1, 2, 2). The two-dimensional affine space L⊥ + D consists of points of the form (G1, G2, G1 −
G2 +1,−G2 +2,−G1 + G2 +2). Since � = {1, 2, 3} is independent in " (L), each of the seven regions in the
complement of the hyperplane arrangement {G8 = 0}8∈� contains a point of inv−

�
(L). For � = {1, 2, 3, 4},

there are four regions whose recession cones intersect {G5 = 0} nontrivially. The remaining six regions
each contain a unique point in inv−

�
(L). Finally, for � = {1, 2, 3, 4, 5}, R� is all of R5 so the recession

cone of Pf intersects R� nontrivially if and only if Pf is unbounded, meaning that the four bounded
regions of the hyperplane arrangement {G8 = 0}8∈� in L⊥ + D are precisely those that contain points in
inv−

�
(L). These hyperplane arrangements and intersection points are shown in Figure 2.1.
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Chapter 3

Log-Concave Maximum Likelihood
Estimation

The work presented in this chapter is based on a joint project with A. Grosdos, A. Heaton, K. Kubjas,
O. Kuznetsova and M-S. Sorea and has been submitted for peer review. The preprint is accessible at:
https://arxiv.org/abs/2003.04840. The code for computations appearing in this chapter can be
found at: https://github.com/agrosdos/Computing-the-Exact-LogConcave-MLE. We study
the process of inferring a log-concave probability density function from a weighted point configuration
(-, F) by maximizing the likelihood of observing this data as a sample from said probability density
function. We consider a non-parametric approach [102] to Maximum Likelihood Estimation (MLE);
instead of specifying a statistical model, we impose a log-concave shape constraint on the density
function. Log-concavity is a geometric property appearing frequently in statistics [7, 35] and in algebraic
combinatorics [52]. We study probability density functions that are log-concave. Despite the space of
all such densities being infinite-dimensional, the maximum likelihood estimate is the exponential of a
piecewise linear function determined by finitely many quantities, namely the function values, or heights,
at the data points. We explore in what sense exact solutions to this problem are possible. First, we show
that the heights given by the maximum likelihood estimate are generically transcendental. For a cell
in one dimension, the maximum likelihood estimator is expressed in closed form using the generalized
,-Lambert function. We show that finding the log-concave maximum likelihood estimate is equivalent
to solving a collection of polynomial-exponential systems of a special form. We use Smale’s U-theory to
refine approximate numerical solutions and to certify solutions to log-concave density estimation.

3.1 Motivations and Background

Nonparametric methods in statistics emerged in the 1950-1960s [42, 81, 71, 6] and fall into two main
streams: smoothing methods and shape constraints. Examples of smoothing methods include delta
sequence methods such as kernel, histogram and orthogonal series estimators [100], and penalized
maximum likelihood estimators, e.g., spline methods [39]. Their defining feature is the need to choose
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the smoothing or tuning parameters. It is a delicate process because smoothing parameters depend
on the unknown probability density function. In contrast to smoothing methods, shape constrained
nonparametric density estimation is fully automatic and does not depend on the underlying probability
distribution, though this comes at the expense of worse !1 convergence rates for smooth densities [38].
Some previously studied classes of functions include non-increasing [43], convex [45], :-monotone [9,
10] and B-concave [33]. For general references on nonparametric statistics we refer the reader to [92, 89,
97, 44].

We focus on the class of log-concave densities, which is an important special case of B-concave
densities. The choice of log-concavity is attractive for several reasons. First of all, most common
univariate parametric families are log-concave, including the normal, Gamma with shape parameter
greater than one, Beta densities with parameters greater than 1, Weibull with parameter greater than 1
and others. Furthermore, log-concavity is used in reliability theory, economics and political science [7].
In addition to this, log-concave densities have several desirable statistical properties. For example,
log-concavity implies unimodality but log-concave density estimation avoids the spiking phenomenon
common in general unimodal estimation [35]. Moreover, this class is closed under convolutions and
taking pointwise limits [26]. We refer the reader to [83] for an overview of the recent progress in the
field.

Let - = (G1, G2, . . . , G<) be a point configuration in R= with weights F = (F1, F2, . . . , F<) such
that F8 ≥ 0 and F1 + F2 + · · · + F< = 1. The log-concave maximum likelihood estimation (MLE)
problem aims to find a Lebesgue density that solves

max
<∑
8=1

F8 log( 5 (G8)) s.t. log( 5 ) is concave and
∫
R=
5 (G)3G = 1. (3.1)

It has been shown that the solution exists with probability 1 and is unique, and its logarithm is a
tent function, i.e., a piecewise linear function with regions of linearity inducing a subdivision of the
convex hull of - [101, 70, 27, 79], see Figure 3.1 for an example. While MLE is the most widely studied
estimator in this setting, it is not the only one, for examples see [31, 28].

The maximum likelihood estimator is attractive because of its consistency under general assump-
tions [70, 35, 26, 37] and superior performance compared to kernel-based methods with respect to mean
integrated squared error, as observed in simulations [27]. At the same time, the convergence rate is still
an open question and only lower [55, 57] and upper [55, 21] bounds are known. Further theoretical
properties have been studied for some special cases of log-concave densities, e.g., :-affine densities [54]
and totally positive densities [78].

Example 3.1.1. Consider the sample of 14 points in R2 with uniform weights:

- = ((0, 1), (0, 9), (1, 4), (2, 4), (2, 6), (3, 3), (5, 5), (6, 3), (6, 9), (7, 6), (7, 8), (8, 9), (9, 5), (9, 9)) .

How many cells does the subdivision induced by the logarithm of the optimal log-concave density have?
Using the R package LogConcDEAD with default parameters, one obtains that the logarithm of the

37



maximum likelihood estimate is a piecewise linear function with seven unique linear pieces. However,
when one investigates the optimal density more closely, it appears that several linear pieces are similar.
For example, a visual inspection of the optimal density depicted in Figure 3.1 suggests that there are only
four unique linear pieces. The true number of unique linear pieces of the optimal density is hard to find.

Theoretically, the algorithmused in LogConcDEADfinds the true optimal density, however, in practice,
the answer is a numerical approximation. By changing the parameter sigmatol from default value 10−8

to 10−10, LogConcDEAD outputs four unique linear pieces, exactly as we observed in Figure 3.1. Although
it might seem obvious that four is the correct number of linear pieces, in reality the situation is more
complicated, see Example 3.4.16.

Figure 3.1 The optimal tent function for the sample of 14 points in Example 3.1.1.

3.2 Geometry of log-concave maximum likelihood estimation

Westart by reviewing the geometry of log-concavemaximum likelihood estimationmostly following [79].
Recall from definition 1.3.5 that given a point configuration - = (G1, G2, . . . , G<) ⊂ R= and a fixed

real vector H ∈ R<, we define the tent function ℎ-,H : R= → R to be the smallest concave function
such that ℎ-,H (G8) ≥ H8 for 8 = 1, . . . , <. The tent function ℎ-,H is piecewise linear on % = conv(-)
with linear pieces equal to upper facets of the convex hull of the points (G1, H1), (G2, H2), . . . , (G<, H<)
in R<+1. We define ℎ-,H (G) = −∞ at all points G ∈ R= outside %. If ℎ-,H (G8) = H8 for 8 = 1, . . . , =, then
H is called relevant.

It was shown by Cule, Samworth and Stewart for uniform weights [27] and by Robeva, Sturmfels
and Uhler in general [79] that the constrained optimization problem (3.1) of finding the log-concave
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maximum likelihood estimate is equivalent to the unconstrained optimization problem

max
H∈R<

F · H −
∫
%

4ℎ-,H (C)3C. (3.2)

In [79], Robeva, Sturmfels and Uhler applied the Legendre-Fenchel transformation to the convex function∫
%
4ℎ-,H (C)3C in order to recast the optimization problem (3.2) as maximizing a linear functional over

a convex set called the Samworth body of - . Moreover, the log-concave maximum likelihood estimate
is a tent function with tent poles at some of the G8 . Therefore finding the log-concave density which
maximizes the likelihood of (-, F) is equivalent to finding a unique optimal height vector H∗.

Corollary 3.2.1. [79, Corollary 2.6] To find the optimal height vector H∗ in (3.2) is to maximize the
following rational-exponential objective function over H ∈ R<:

((H1, . . . , H<) = F · H −
∑
f∈Δ

∑
8∈f

vol(f) · 4H8∏
U∈f\8 (H8 − HU)

, (3.3)

where Δ is any regular triangulation that refines the regular subdivision induced by the tent function
ℎ-,H .

If H induces a regular subdivision Δ that is not a maximal regular triangulation, then we can consider
any maximal regular triangulation that refines Δ. Thus if there are " maximal regular triangulations
of - , then to find the optimal H∗ we must compare the optimal values H∗

Δ1
, H∗
Δ2
, . . . , H∗

Δ"
which are

obtained by solving the optimization problem (3.3)" times, once for each maximal regular triangulation
Δ1,Δ2, . . . ,Δ" .

Notation 3.2.2. We will denote by (Δ the function given by the right hand side of (3.3) for a fixed
triangulation Δ.

Example 3.2.3. Fix 3 = 1, < = 3 and - = (2, 5, 7). The configuration - has two triangulations
Δ1 = {13} and Δ2 = {12, 23}, which are both regular triangulations. Only Δ2 is a maximal triangulation.
Hence solving the optimization problem (3.2) is equivalent to maximizing the objective function

(Δ2 = F · H − 3
4H1 − 4H2

H1 − H2
− 2

4H2 − 4H3

H2 − H3
. (3.4)

If H1 = H2 or H2 = H3, then a denominator on the right hand side of (3.4) becomes zero. However, the
objective function in the formulation (3.2) can be still simplified to

F · H − 34H2 − 2
4H2 − 4H3

H2 − H3
or F · H − 3

(4H1 − 4H2)
H1 − H2

− 24H2 .

To visualize the situation, we consider the Samworth body

S(-) =
{
H ∈ R3 :

∫
%

4ℎ-,H (C)3C ≤ 1
}
,
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Figure 3.2 The Samworth body for - = (2, 5, 7).

which was introduced in [79]. The unconstrained optimization problem (3.2) is equivalent to the con-
strained optimization problem of maximizing the linear functionF ·H over the Samworth body. For differ-
ent choices of weight vector F = (F1, F2, F3), we obtain different optimal height vectors H = (H1, H2, H3)
on the surface of the Samworth body, and the height vector determines the triangulation. The Samworth
body consists of two regions that can be seen in Figure 3.2. The green region comes from the one-simplex
triangulation Δ1 = {13}, while the red region comes from the two-simplex triangulation Δ2 = {12, 23}.
Moreover, one can see lines separating the green region into two pieces and the red region into three
pieces (ignore the curve separating the green and the red regions for now). These lines correspond to
the degenerate cases where H1 = H3, H1 = H2 or H2 = H3, and hence the right hand side of (3.3) is
not defined. Therefore those lines are simply artifacts of the reformulation (3.3) since in the original
unconstrained setting (3.2) these points present no difficulty. The intersection of the three lines is the
point (− log 5,− log 5,− log 5).

Consider the curve separating the green and red regions of the Samworth body. This curve is made of
all the points H that form a relevant tent function, inducing the subdivision Δ1. To understand the green
region, see the piecewise linear functions drawn in Figure 3.3. Since the lowest (dotted) function is not
concave, it is invalid as a tent function. Therefore, if the height H2 is too low, the optimal tent function
will be the (solid-line) linear function. In effect, the optimal tent-function ignores heights H8 if they are
too low. This basic phenomenon is responsible for the green part of the Samworth body being flat in the
H2 direction, meaning that it is a pencil of half-lines parallel to the H2-axis.

The transition from the red region to the green region is not smooth. For every H on the curve between
the green and red regions, there is a two-dimensional cone of weight vectors that give H as an optimal
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Figure 3.3 The red tent function corresponds to a vector H in the red region of the Samworth body. The solid
green tent function corresponds to a vector H on the curve separating red and green regions of the Samworth
body. The dotted green function is not convex. Its height vector H belongs to the green region of the Samworth
body and both green sets of heights give the same tent function.

solution. The generators of this cone are described in [79, Theorem 3.7]. The optimal height vector H∗

for F = ( 13 ,
1
3 ,

1
3 ) lies on the curve between the red and green regions. It is not a critical point of the

function (3.4), because F is not a normal vector to the red region at the point H∗.

We now return to the general situation and consider the specific approach of critical equations for
solving the optimization problem (3.3). Let - = (G1, . . . , G<) be a configuration of = points G8 ∈ R=.
Fixing a maximal regular triangulation Δ of our point configuration - , we can find the optimal H∗

Δ
for (Δ

in (3.3) over H ∈ R< by solving the system of critical equations m(Δ/mH 9 = 0. These partial derivatives
take the form (see [79, Proof of Lemma 3.4]):

m(Δ

mH 9
= F 9 −

∑
f∈Δ,
9∈f

vol(f)4H 9 1∏
U∈f\ 9 (H 9 − HU)

©«1 −
∑
U∈f\ 9

1
(H 9 − HU)

ª®¬
−

∑
f∈Δ
9∈f

vol(f)
∑
8∈f\ 9

4H 9
1∏

U∈f\ 9 (H 9 − HU)
1

(H 9 − H:)
. (3.5)

Definition 3.2.4. For a fixed maximal regular triangulation Δ of - , let � be the matrix such that the
system of = critical equations (3.5) can be written in the form

�4H = F, (3.6)

where 4H is a column vector of exponentials (4H1 , 4H2 , . . . , 4H<)) , and F is a column vector of weights
(F1, . . . , F<)) . The matrix � is called the score equation matrix.

The entries of � are in the field of rational functions in the variables H1, . . . , H<. Diagonal entries of
� are

� 9 , 9 =
∑
f∈Δ,
9∈f

vol(f) 1∏
U∈f\ 9 (H 9 − HU)

©«1 −
∑
U∈f\ 9

1
(H 9 − HU)

ª®¬
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and off-diagonal entries of � are

�8, 9 =
∑
f∈Δ,
8, 9∈f

vol(f) 1∏
U∈f\ 9 (H 9 − HU)

1
(H 9 − H8)

.

The matrix � can be written as a sum of matrices over maximal simplices f ∈ Δ. This will be described
explicitly in the proof of Theorem 3.3.1.

There are two caveats when solving the optimization problem (3.3) using the method of critical
equations. First, it is not enough to consider the system of critical equations m(Δ/mH 9 = 0 only for each
of the maximal regular triangulations Δ, since the optimization problem (3.3) is not smooth. We will
demonstrate this phenomenon on the point configuration from Example 3.2.3.

Example 3.2.5. Recall that 3 = 1, < = 3 and - = (2, 5, 7). The configuration - has two triangulations
Δ1 = {13} and Δ2 = {12, 23}. Let F = ( 13 ,

1
3 ,

1
3 ). The output from LogConcDEAD suggests that the

optimal tent function is supported on one cell, with heights given by H∗1 = −1.816665, H∗2 = −1.576024
and H∗3 = −1.415597. However, the vector H∗ is neither a critical point of (Δ2 nor of the function

(Δ1 = F · H − 5
4H1 − 4H3

H1 − H3
.

This can be seen by taking partial derivatives of these functions with respect to H1, H2, H3 and
substituting H∗1, H

∗
2, H
∗
3. In the case of m(Δ1/mH 9 = 0, it is particularly easy to see that there are no

solutions, since m(Δ1/mH2 = F2 ≠ 0. In the case of m(Δ2/mH 9 = 0, the system of critical equations fails
to certify in the sense of Section 3.4.

The points (G1, H
∗
1), (G2, H

∗
2), (G3, H

∗
3) being collinear is equivalent to (G2, H

∗
2) = _1(G1, H

∗
1)+_3(G3, H

∗
3)

where_1, _3 ≥ 0,_1+_3 = 1. Since G1 = 2, G2 = 5, G3 = 7, we have_1 =
2
5 , _3 =

3
5 . Hence H2 =

2
5 H1+ 3

5 H3.

Substituting this expression into the objective function (3.4) we get

(̃Δ2 =

(
F1 +

2
5
F2

)
H1 +

(
F3 +

3
5
F2

)
H3 − 5

4H1 − 4H3

H1 − H3

which for uniform weights F = ( 13 ,
1
3 ,

1
3 ) becomes

(̃Δ2 =
7
15
H1 +

8
15
H3 − 5

4H1 − 4H3

H1 − H3
. (3.7)

We will verify in Example 3.4.13 that H∗ is a critical point of the function (̃Δ2 .

The second caveat is that to find the optimal tent function, it is not enough to merely compare the
optimal critical points H∗

Δ
of m(Δ/mH 9 = 0 for each subdivision Δ. Denote by .Δ the set of H that induce

a subdivision that is equal to or coarser than Δ. For each Δ, it also has to be checked that H∗
Δ
is in .Δ. If

the maximum of (Δ over .Δ is not a critical point of (Δ, then the maximum must be on the boundary
of .Δ, see Figure 3.4 for an illustration. The boundary of .Δ is stratified into regions .

Δ̃
corresponding

to the various subdivisions Δ̃ which are refined by Δ. Hence one can consider critical points for strictly
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coarser subdivisions Δ̃. Thus if H∗
Δ
is not in .Δ, then H∗Δ should be discarded.

Figure 3.4 Maximizing (Δ over H restricted to .Δ.

3.3 Transcendentality and closed-form solutions

In this sectionwe use notions from geometric combinatorics to study the structure of (3.2.4). In particular,
we will prove that the matrix � is invertible. This will be our main tool in proving the transcendentality
of log-concave MLE and deriving closed form solutions in the one-dimensional one cell case using
Lambert functions.

3.3.1 Score equation matrix invertibility and transcendentality

Towards proving transcendentality, we first investigate the invertibility of the matrix �.

Theorem 3.3.1. Consider a point configuration - = (G1, . . . , G<) in R3 , let Δ = {f1, . . . , f<} be a
maximal regular triangulation of - . The score equation matrix � from (3.6) is invertible.

Recall definition 1.3.3, given a triangulation Δ, we define the neighborhood N( 9) of a vertex 9 in Δ
to be the set of vertices

N( 9) = {8 : {8, 9} ⊆ f for some f ∈ Δ} .

Before giving the proof of Theorem 3.3.1, we illustrate the construction in the proof with a small
example.

Example 3.3.2. Let - = (G1, G2, G3, G4) be a four point configuration in R2 with Δ = {f1, f2}, where
f1 = {1, 2, 3} and f2 = {2, 3, 4}. Let � be the score equation matrix for the entire regular triangulation
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Δ. Let us denote the difference H8 − H 9 by H8 9 . Then � = �(f1) + �(f2), where

�(f1)
vol(f1)

=



1
H12H13

− 1
H122H13

− 1
H12H132

1
H212H23

1
H312H32

0

1
H122H13

1
H21H23

− 1
H212H23

− 1
H21H232

1
H31H322 0

1
H12H132

1
H21H232

1
H31H32

− 1
H312H32

− 1
H31H322 0

0 0 0 0


,

�(f2)
vol(f2)

=



0 0 0 0

0 1
H23H24

− 1
H232H24

− 1
H23H242

1
H322H34

1
H422H43

0 1
H232H24

1
H32H34

− 1
H322H34

− 1
H32H342

1
H42H432

0 1
H23H242

1
H32H342

1
H42H43

− 1
H422H43

− 1
H42H432


.

We define matrix � to be the matrix � with its 9-th column multiplied by
∏
8∈N( 9) H

2
98
, for all 9 from 1

to 4. We obtain the following matrices

� (f1)
vol(f1)

=



H13H12 − H12 − H13 H24
2H23 H34

2H32 0

H13 H21H23H24
2 − H24

2H21 − H23H24
2 H34

2H31 0

H12 H24
2H21 H31H32H34

2 − H34
2H31 − H34

2H32 0

0 0 0 0


,

� (f2)
vol(f2)

=



0 0 0 0

0 H21
2H23H24 − H21

2H23 − H21
2H24 H31

2H34 H43

0 H21
2H24 H32H31

2H34 − H31
2H32 − H31

2H34 H42

0 H21
2H23 H31

2H32 H43H42 − H42 − H43


.

The product of the diagonal entries of � = �(f1) + �(f2) is a polynomial of degree 12. Whereas a term
in the expansion of the determinant of � with off-diagonal entries has at most degree 10.

Proof of Theorem 3.3.1. The score equation matrix � associated to a maximal regular triangulation Δ
can be written as

� =
∑
f∈Δ

�(f),

where the entries of �(f) for 8 ≠ 9 are

�(f)8, 9 = vol(f) ©«
∏

U∈f\{ 9 }

1
(H 9 − HU)

ª®¬
(

1
H 9 − H8

)
,

�(f) 9 , 9 = vol(f) ©«
∏

U∈f\{ 9 }

1
(H 9 − HU)

ª®¬ ©«1 −
∑

U∈f\{ 9 }

1
(H 9 − HU)

ª®¬ .
The matrix �(f) is sparse: If 8 or 9 does not belong to f then �8, 9 (f) = 0.

Let � (resp. �(f)) be the matrix that is obtained by multiplying the 9-th column of � (resp. �(f))
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by
(∏

U∈N( 9) (H 9 − HU)2
)
for 9 = 1, . . . , =:

�. , 9 = �. , 9
©«

∏
U∈N( 9)

(H 9 − HU)2
ª®¬ =

∑
f∈Δ

�(f). , 9
©«

∏
U∈N( 9)

(H 9 − HU)2
ª®¬ . (3.8)

Fix f ∈ Δ. We describe separately the off-diagonal and diagonal entries of �(f). For 8, 9 ∈ f and
8 ≠ 9 we get

�(f)8, 9 = �(f)8, 9
©«

∏
U∈f\{ 9 }

(H 9 − HU)2
ª®¬ ©«

∏
U∈N( 9)\f

(H 9 − HU)2
ª®¬

=
vol(f)
H 9 − H8

©«
∏

U∈f\{ 9 }

1
(H 9 − HU)

∏
U∈f\{ 9 }

(H 9 − HU)2
ª®¬ ©«

∏
U∈N( 9)\f

(H 9 − HU)2
ª®¬

= vol(f) ©«
∏

U∈f\{8, 9 }
(H 9 − HU)

ª®¬ ©«
∏

U∈N( 9)\f
(H 9 − HU)2

ª®¬ .
And for the diagonal entries

�(f) 9 , 9 = �(f) 9 , 9
©«

∏
U∈N( 9)

(H 9 − HU)2
ª®¬

= vol(f) ©«
∏

U∈f\{ 9 }

1
(H 9 − HU)

ª®¬ ©«1 −
∑

U∈f\{ 9 }

1
(H 9 − HU)

ª®¬ ©«
∏

U∈N( 9)
(H 9 − HU)2

ª®¬
= vol(f) ©«

∏
U∈f\{ 9 }

(H 9 − HU) −
∑

:∈f\{ 9 }

∏
U∈f\{ 9 ,: }

(H 9 − HU)
ª®¬ ©«

∏
U∈N( 9)\f

(H 9 − HU)2
ª®¬ .

Given a polynomial 5 ∈ R[H1, . . . , H<], we can rewrite 5 =
∑3 9

8=0 58H
8
9
as a univariate polynomial in H 9

of degree 3 9 , where 58 ∈ R[H8 : 8 ≠ 9] is a constant with respect to H 9 . We then define the initial form
of 5 with respect to 9 to be

in 9 ( 5 ) = 53 9 H
3 9

9
.

We observe that for the off-diagonal entries �(f)8, 9 , the initial form with respect to 9 is

in 9 (�(f)8, 9) = H
2W 9−3−1
9

,

where W 9 = |N ( 9) | is the number of vertices adjacent to 9 in Δ. Whereas for the diagonal entry �(f) 9 , 9 ,
the initial form is

in 9 (�(f) 9 , 9) = H
2W 9−3
9

.

In both cases, the degree of the initial form is the degree of the polynomial. We sum the matrices �(f)
for f ∈ Δ, to get � and note that the coefficient of the monomial H2W 9−3

9
in � 9 , 9 is the number of simplices
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in Δ containing vertex 9 . Hence, using the Leibniz formula to compute the determinant of �, we get

that the product of diagonal entries is a polynomial of degree ©«
=∑
9=1

2W 9 − 3
ª®¬. All off-diagonal entries in

that column of � are of degree one smaller, thus any monomial in the expanded form of the determinant
with off-diagonal entries must have degree at least two smaller than the product of diagonal entries. The
following equality is a direct consequence of (3.8)

det (�) = det (�)
=∏
9=1

©«
∏

U∈N( 9)
(H 9 − HU)2

ª®¬ .
Since det(�) is not identically 0, det(�) is not identically zero, hence � is invertible over the field of
rational functions. �

The proof of Theorem 3.3.1 inspires the following conjecture about the combinatorial properties of
the determinant.

Conjecture 3.3.3. The highest degree component of the numerator of det(�) is

∏
9=1,...,=

©«
∑

f∈Δ s.t. 9∈f
vol(f)

∏
U∈N( 9): U∉f

(
H 9 − HU

)ª®¬ .
Since � is invertible, (3.6) can be rewritten as

4H = �−1F

where entries of � are rational functions in R(H1, . . . , H<).

Corollary 3.3.4. Fix a maximal triangulation Δ. Then the critical equations (3.5) can be written in the
form

4H1 = ?1(H1, H2, . . . , H<)

4H2 = ?2(H1, H2, . . . , H<)
...

4H< = ?= (H1, H2, . . . , H<)

(3.9)

where ?1, . . . , ?= ∈ R(H1, . . . , H<). If G1, . . . , G< ∈ Q3 , then ?1, . . . , ?= ∈ Q(H1, . . . , H<).

We will explore rational-exponential systems of the form (3.9) further in Sections 3.3.3-3.3.4. The
following is a result from transcendental number theory, for a textbook reference see Theorem 1.4 of [8].

Theorem 3.3.5 (Lindemann-Weierstrass). If H1, . . . , HA are distinct algebraic numbers then the numbers
4H1 , . . . , 4HA are linearly independent over the algebraic numbers.

A special case of the Lindemann-Weierstrass theorem is the Lindemann theorem which states that
4H is transcendental for algebraic H ≠ 0.
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Theorem 3.3.6. Assume that - ⊂ Q3 . If vol(conv(-)) ≠ 1 then at least one coordinate of the optimal
height vector H∗ is transcendental. If vol(conv(-)) = 1, then all coordinates of H∗ are algebraic if and
only if F is in the cone over the secondary polytope Σ(-).

Proof. It follows from the proof of [79, Lemma 3.4] that any relevant H∗ ∈ R< such that 4ℎ-,H∗ is a
density, is a critical point of (Δ(H1, . . . , H<) for a maximal regular triangulation Δ and some weight
vector F. We consider the rational-exponential system (3.9) for this choice of Δ and F. Then we have
4H1 = ?1(H1, . . . , H<) where ?1 is a rational function in Q(H1, . . . , H<). Assume that H1, . . . , H< are
algebraic. By Lindemann’s theorem 4H1 is algebraic if and only if H1 = 0.

However, ?(H1, . . . , H<) is always algebraic, since H1, . . . , H< are algebraic and the algebraic numbers
form a field. Hence H1 = 0. We can argue similarly that H8 = 0 for all 8. The vector H = (0, . . . , 0) belongs
to the boundary of the Samworth body if and only if the volume of the convex hull of - is 1. In this
case, H is the optimal solution for any F in the cone over the secondary polytope Σ(-) by [79, Corollary
3.9]. �

3.3.2 An Alternative Proof of Invertibility for the Simplex Case

In this section, we describe an alternative proof of theorem 3.3.1, for the special case when the convex
hull of the point configuration - forms a full-dimensional simplex Δ = {G1, . . . , G<} ⊂ R<−1. This proof
was suggested to me by professor R. Liu.

Lemma3.3.7. The critical equationmatrix of a single full-dimensional simplexΔ = conv({G1, . . . , G<}) ⊂
R<−1 is invertible for all < ∈ N.

Proof. We specialize the objective function (Δ to a simplex Δ in R<−1 of volume 1:

5 (H) = F · H −
<∑
8=1

4H8∏
9≠8 (H8 − H 9)

.

We compute the 8-th critical function, the partial of 5 with respect to H8 . For the summands for 8 from 1
to <, we have:

m

mH8

(
4H8∏

9≠8 (H8 − H 9)

)
=

(
m4H8

mH8

) (
1∏

9≠8 (H8 − H 9)

)
+ 4H8 m

mH8

(
1∏

9≠8 (H8 − H 9)

)
=

(
4H8∏

9≠8 (H8 − H 9)

)
+ 4H8

(
−∑<

:=1,:≠ 9 (H8 − H1) . . . �(H8 − H:) . . . (H8 − H=)∏
9≠8 (H8 − H 9)2

)
=

(
4H8∏

9≠8 (H8 − H 9)

) ©«1 −
<∑

9=1, 9≠8

1
(H8 − H 9)

ª®¬ .
The second term is

m

mH8

©«
<∑

9=1, 9≠8

(
4H 9∏

:≠ 9 (H 9 − H:)

)ª®¬ = −
<∑

9=1, 9≠8

(
4H 9

(H 9 − H8)
∏
:≠ 9 (H 9 − H:)

)
.
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From here we can construct the matrix �, we change the notation to emphasize that we pay particular
attention the columns. We distinguish entries on the diagonal

� 9 , 9 =
©«

<∏
U=1,U≠ 9

1
(H 9 − HU)

ª®¬ ©«1 −
<∑

U=1,U≠ 9

1
(H 9 − HU)

ª®¬
and off the diagonal for 8 ≠ 9

�8, 9 =
©«

<∏
U=1,U≠ 9

1
(H 9 − HU)

ª®¬
(
−1

H 9 − H8

)
. (3.10)

We introduce a matrix � that is obtained by multiplying the 9−th column of � by
∏<
U=1,U≠ 9 (H 9 − HU) for

all 9 from 1 to <. Because scaling the column of a matrix scales the determinant by that same amount,
we get

det(�) =
<∏
9=1

<∏
U≠ 9

(
H 9 − HU

)
det(�) (3.11)

= (−1)<
<∏
8=1

<∏
8< 9

(
H8 − H 9

)2 det(�). (3.12)

The matrix � we obtain has entries

� 9 , 9 = 1 −
<∑
U≠ 9

1
H 9 − HU

, �8, 9 =
−1

H 9 − H8
.

We subtract the identity matrix from � to get rid of the 1’s on the diagonal, �′ = � − �3<.

� 9 , 9 = −
<∑
U≠ 9

1
H 9 − HU

.

We then observe that the sum of all rows of �′ is the zero vector since, for all 9 from 1 to <

�′9 , 9 =
<∑

8=1,8≠ 9
�′8, 9 . (3.13)

We want the characteristic polynomial of �′ to be zero. Let ! be the Vandermonde matrix associated to
(H1, . . . , H<).

! =


1 H1 H2

1 . . . H<−1
1

1 H2 H2
2 . . . H<−1

2
...

...
...

. . .
...

1 H< H2
< . . . H<−1

<


.

We want to show that �′ has all eigenvalue equal to zero, in other words, the characteristic polynomial
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associated to that matrix is _<.
First we look at �′!.

(�′!)8, 9 =
<∑
;=1

(
�′8,;

)
H;
9−1

= (�′8,8)H
9−1
8
+

<∑
;=1
;≠:

(
�′8,;

)
H;
9−1

=

<∑
;=1
;≠8

−H 9−1
8

H8 − H;
+

<∑
;=1
;≠8

(
−H 9−1

;

H; − H8

)

=

<∑
;=1
;≠8

H
9−1
;
− H 9−1

8

H8 − H;
.

In particular, we get �′!8,1 = 0 and �′!8,2 = −(< − 1) for all 8 ∈ [1, . . . , <]. For 9 larger than 1, we can
re-write

(�′!)8, 9 =
<∑
;=1
;≠8

H
9

;
− H 9

8

H8 − H;

= −
<∑
;=1
;≠8

(H8 − H;)
(∑ 9

:=1 H
9−:
;

H:
8

)
H8 − H;

= −
<∑
;=1
;≠8

(
9∑
:=1

H
9−:
;

H:8

)

= −
<∑
;=1
;≠8

∑
U,V≥0
U+V= 9−1

HU8 H
V

;
.

Hence the matrix �′! is of the form

�′! =



0 −< −< H1 − H2 − H3 . . . · · ·
<∑
;=2

(
<−2∑
:=0

H<−2−:
; H:1

)
0 −< −< H2 − H1 − H3 . . . · · ·

<∑
;=1
;≠2

(
<−2∑
:=0

H<−2−:
; H:2

)
...

...
...

. . .
...

0 −< −< H< − H1 − H2 . . . · · ·
<∑
;=1

(
<−2∑
:=0

H<−2−:
; H:<

)


.
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Let %: (H1, . . . , H<) =
<∑
8=1

H:8 . Let � be the (<) × (<) matrix with the following entries

�:, 9 =


−% 9−(:+1) (H1, . . . , H<) : 9 > : + 1

−(< − 9) : 9 = : + 1

0 : 9 ≤ :

. (3.14)

We compute !�

(!�)8, 9 =
<∑
:=1

!8,:�: 9

=

9−2∑
:=1

!8,:�: 9 + !8, 9−1� 9−1, 9 +
<∑
:= 9

!8,:�:, 9

=

9−2∑
:=1

H:8 % 9−(:+1) (H1, . . . , H<) − H 9−1
8
(< − 9) +

<∑
:= 9

0 · �:, 9

= −
(
9−2∑
:=1

H:8

(
H
( 9−1)−:
0 + . . . + H ( 9−1)−:

<

)
+ (< − 9)H 9−1

8

)
= −

(
<∑
;=1

9−2∑
:=1

H:8 H
( 9−1)−:
;

)
− (< − 9)H 9−1

8

= −
©«
<∑
;=1

∑
U≥0,V≥1
U+V= 9−1

HU8 H
V

;

ª®®®¬ − (< − 9)H
9−1
8

= −
©«
<∑
;=1
;≠8

∑
U≥0,V≥1
U+V= 9−1

HU8 H
V

;

ª®®®¬ − ( 9)H
9−1
8
− (< − 9)H 9−1

8

= −
<∑
;=1
;≠8

∑
U,V≥0
U+V= 9−1

HU8 H
V

;

= (�′!)8, 9 .

We showed that !� = �′!, in other words � = !−1�′! and thus the characteristic polynomial of �′ is
equal to _=, the characteristic polynomial of �. Therefore, the score equation matrix of Δ is invertible
over the field of rational function R(H1, . . . H<). �

3.3.3 One cell in one dimension

In this section we apply the invertibility of the score equation matrix to give a closed form solution
to log-concave maximum likelihood estimator in case the logarithm of the optimal density is a linear
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function on the real line. If - = (G1, G2) ⊂ R, then

� = vol(f)
[ 1
H1−H2

− 1
(H1−H2)2

1
(H1−H2)2

1
(H1−H2)2

− 1
H1−H2

− 1
(H1−H2)2

]
and

�−1 =
1

vol(f)

[
1 + H1 − H2 1

1 1 − H1 + H2

]
.

Hence the polynomial-exponential system (3.9) has the form

4H1 =
1

vol(f) ((1 + H1 − H2) F1 + F2) (3.15)

4H2 =
1

vol(f) (F1 + (1 − H1 + H2) F2) (3.16)

Dividing (3.15) by (3.16) and setting H12 = H1 − H2, gives

4H12 =
(1 + H12) F1 + F2
F1 + (1 − H12) F2

. (3.17)

In the rest of the section we will discuss how to solve Equation (3.17) using Lambert functions. The
solutions for H1 and H2 can then be obtained from Equations (3.15) and (3.16) by solving for H12.

Definition 3.3.8 (Section 2 in [66]). For G, C8 , B 9 ∈ R, consider the function

4G
(G − C1) (G − C2) . . . (G − C=)
(G − B1) (G − B2) . . . (G − B<)

.

We denote its (generally multi-valued) inverse function at the point 0 ∈ R by

, (C1, C2, . . . , C=; B1, B2, . . . , B<; 0)

and call it the generalized W-Lambert function. The function , (0) := , (0; ; 0) is called the usual
W-Lambert function.

We have, (; ; 0) = log(0).

Proposition 3.3.9. The tent poles corresponding to a single-cell triangulation in 1 dimension are given
by:

H1 = log(F1, (d + 1;−d−1 − 1;−d) + F1 + F2) − log(vol(f)),

H2 = log(−F2, (d + 1;−d−1 − 1;−d) + F1 + F2) − log(vol(f)),

where d = F1/F2 and , (d + 1;−d−1 − 1;−d) is a value of the multi-valued generalized Lambert ,
function if H1 ≠ H2. Otherwise H = (− log(vol(f)),− log(vol(f))).
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Proof. Recall from Equation (3.17):

4H12 =
F1H12 + F1 + F2
−F2H12 + F1 + F2

or, by setting d = F1/F2, equivalently

H12 − d − 1
H12 + d−1 + 1

4H12 = −d.

Seen as an equation in H12 this has solutions given by the generalized Lambert function, (d + 1;−d−1 −
1;−d). The solutions for H1 and H2 can then be obtained from (3.15) and (3.16) by solving H12. �

Remark 3.3.10. Proposition 3.3.9 generalizes to the case when we have = points on a line and the
optimal tent function is supported on one cell.

Figure 3.5 Generalized Lambert function, (d + 1;−d−1 − 1;−d).

The generally multi-valued generalized ,-Lambert function , (d + 1;−d−1 − 1;−d) is plotted in
Figure 3.5. We explore its branches, i.e., single-valued functions of d, using A-Lambert functions.

Definition 3.3.11 (Section 3.2 in [66]). If A ∈ R, consider the function

G4G + AG.

We denote its inverse function in the point 0 ∈ R by,A (0) and call it the A-Lambert function.

The following theorem makes the connection between the generalized Lambert function and the
A-Lambert function:
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Theorem 3.3.12 (Theorem 3 in [66]). If C, B, 0 ∈ R, the following equality holds:

, (C; B; 0) = C +,−04−C )
(
04−C ) (C − B)

)
.

Hence
, (d + 1;−d−1 − 1;−d) = d + 1 +,d4−d−1

(
− d4−d−1(d + d−1 + 2)

)
.

The number of branches of the A-Lambert function is classified in [66, Theorem 4] and [62, Theorem 4].
For A = d4−d−1, it translates to

1. two branches, if d4−d−1 < 0;

2. three branches, if 0 < d4−d−1 < 4−2;

3. one branch, if d4−d−1 ≥ 4−2.

The second case happens when d > 0, in which case we have the double branch of constant zero function
and an additional branch. This is the branch that is relevant to us in the context of Proposition 3.3.9. The
first case happens when d < 0, in which case there exists a double branch of the constant zero function.
This cannot appear for positive weights F8 . The third case does not happen.

The A-Lambert function can be computed with the C++ implementation [65]. Alternatively, one can
use results about computing roots of polynomial-exponential equations. In [61], a symbolic-numeric
algorithm is proposed for constructing explicitly an interval containing all the real roots of a single real
polynomial-exponential equation, and counting howmany roots are contained in a non-bounded interval.
In [77], the decision problem of the existence of positive roots of such functions is discussed. This subject
is strongly related to quantifier elimination [103], and to transcendentality problems [64, 22, 23]. The
latter problem of the transcendence theory appears in our Theorem 3.3.6.

3.3.4 Two cells in one dimension

Let - = (G1, G2, G3) ⊂ R. Then

� =


E1

(H1−H2)2
− E1
H1−H2

− E1
(H1−H2)2

0
− E1
(H1−H2)2

E1
(H1−H2)2

− E1
H1−H2

+ E2
(H2−H3)2

− E2
H2−H3

− E2
(H2−H3)2

0 − E2
(H2−H3)2

E2
(H2−H3)2

− E2
H2−H3

 .
Recall H12 = H1 − H2 and H23 = H2 − H3. Then

�−1 =
1

E1 (1 + H23) + E2 (1 − H12)


−(1 + H12) (1 + H23) + E2

E1
H2

12 −1 − H23 −1
−1 − H23 (−1 + H12) (1 + H23) −1 + H12
−1 −1 + H12 −(−1 + H12) (−1 + H23) + E1

E2
H2

23

 .

Consider the polynomial-exponential system 4H = �−1F as in (3.9). Dividing the first equality with
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the second one and the second one with the third one gives:
4H12 =

(−(1 + H12) (1 + H23) + E2
E1
H2

12)F1 + (−1 − H23)F2 − F3

(−1 − H23)F1 + (−1 + H12) (1 + H23)F2 + (−1 + H12)F3
,

4H23 =
(−1 − H23)F1 + (−1 + H12) (1 + H23)F2 + (−1 + H12)F3

−F1 + (H12 − 1)F2 − ((H12 − 1) (H23 − 1) + E1
E2
H2

23)F3
.

(3.18)

Hence we could reduce a polynomial-exponential system with three equations and three variables to
a polynomial-exponential system with two equations and two variables. Systems of two rational bivariate
polynomial-exponential equations such as (3.18) are studied in [61]. An algorithm giving the number
of solutions of such a system is provided, where all the solutions are contained in a generalized open
rectangle of type �1 × �2 ⊂ R2, under the hypothesis that at least one of the intervals �1 or �2 is bounded.

Remark 3.3.13. Let - ⊂ R. If we consider tent functions ℎ-,H that are supported on two cells such that
ℎ-,H is a constant function on one of the two cells, then one can use methods similar to the one cell case
(see Section 3.3.3) to give the optimal solution using the Lambert function.

3.3.5 Optimization for the One Dimensional Case

Several algorithms have been developed to compute the log-concave MLE in one dimension [82] and in
higher dimensions [27, 5, 76]. Software implementations include R packages such as logcondens [36]
and cnmlcd [59] in one dimension, and LogConcDEAD [25] and fmlogcondens [75] in higher di-
mensions. Nevertheless, we formulate our own algorithm to the log-concave MLE of an arbitrary
one-dimensional weighted sample using convex optimization.

For a given set of points - = {G1, . . . , G<} ⊂ R, there exists a unique induced maximal subdivision,
which is Δ = {{G1, G2}, . . . , {G<−1, G<}}.

Lemma 3.3.14. Let Δ be the maximal subdivision Δ = {{G1, G2}, . . . , {G<−1, G<}}. The maximum log-
likelihood estimate for the sample (-, F) can be obtained by maximizing (Δ subject to H being contained
in the polyhedral cone

� =

{
H8 ≥

H8+1 − H8−1
G8+1 − G8−1

(G8 − G8−1) + H8−1

}
8∈[2,...,<]

. (3.19)

Proof. Recall from [79] that finding the log-likelihood estimate is equivalent to solving the following
optimization problem

max
H∈R<

F · H −
∫
%

4(ℎ-,H (C))3C. (3.20)

where ℎ-,H : R → R is the least concave function satisfying ℎ-,H (G8) ≥ H8 for all 8 = 1, . . . , <. We
observe that the optimal solution must satisfy the inequalities{

H8 ≥
H8+1 − H8−1
G8+1 − G8−1

(G8 − G8−1) + H8−1

}
8∈[2,...,<]

, (3.21)
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thus adding that polyhedral cone as a constraint does not affect the optimal solution. In order to solve
the original optimization problem, we use the equivalent formulation from [79] of maximizing 3.3

((H1, . . . , H<) = F · H −
∑
f∈Δ

∑
8∈f

vol(f) · exp(H8)∏
U∈f\8 (H8 − HU)

, (3.22)

where H is contained in the secondary cone of Δ.
In the one-dimensional case, Δ = {{G1, G2}, . . . , {G<−1, G<}} is the unique maximal triangulation,

all H inducing a coarser subdivision Δ′ are contained in the boundary of the secondary cone over Δ.
Hence, adding the polyhedral constraints � restricts the search space to only height vectors H inducing
a relevant tent function, and does not exclude any potentially valid solution to the original optimization
problem. �

Figure 3.6 The tent function and log-concave MLE on a sample of 100 points from a Beta(2,2) distribution.

Figure 3.7 The tent function and log-concave MLE on a sample of 100 points from a Laplace(0,4) distribution.

Example 3.3.15. We test our optimizationmethod of computing the log-concaveMLEon small examples
sampled from well known log-concave distributions. In figure 3.6, we sample 100 point from the Beta
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distribution with parameters 2, 2 and in figure 3.7, we sample from the Laplace distribution with
parameters 0, 4. In either cases, we set Δ to be the maximal subdivision on the interval of interest and we
maximize ((H1, . . . , H<) using the built-in NLPSolve command in Maple. We display the tent function
and associated log-concave probability density function associated to the numerical optimal solution H∗.

3.4 Certifying solutions with Smale’s U-theory

As explained in Section 3.2, our task is to maximize the objective function ((H1, . . . , H<) defined in
Corollary 3.2.1. For a subdivision Δ, we can find the optimal H∗

Δ
by considering (Δ′ (H1, . . . , H<) for

any maximal triangulation Δ′ that refines Δ, substituting H8 that can be expressed in terms of other
H’s for the subdivision Δ and solving the system of critical equations m(̃Δ/mH8 = 0 for the resulting
function (̃Δ. For maximal triangulations, we have (̃Δ = (Δ and the system of critical equations is given
by (3.5). We will write (Δ instead of (̃Δ also when talking about general subdivisions and for brevity
we denote the system of critical equations by ∇(Δ(H) = 0. We say the system is square because we
have = equations m(Δ/mH8 = 0 in = variables H1, . . . , H<. Usually it will be impossible to write down
exact solutions to these systems, but there is a way forward. In what follows we discuss the computation
of certified solutions to this system of equations. To do so, we discuss Smale’s U-theory, which makes
mathematically rigorous the idea of approximate zeros in the sense of quadratic convergence of Newton
iterations. The following influential definition was given in [18, 94].

Definition 3.4.1 (Chapter 8 of [18]). Let � 5 (G) be the = × = Jacobian matrix of the square system of
complex-analytic equations 5 (G) = 0 ∈ C=, where 5 : C= → C= is written as a column vector of its
component functions

5 (G) = [ 51(G1, . . . , G<), . . . , 5= (G1, . . . , G<)]) .

A point I ∈ C= is an approximate zero of 5 if there exists a zero I∗ ∈ C= of 5 such that the sequence of
Newton iterates

I:+1 = I: − � 5 (I:)−1 5 (I:)

satisfies
‖I:+1 − I∗‖ ≤

1
2
‖I: − I∗‖2

for all : ≥ 1 where I0 = I. If this holds, then we call I∗ the associated zero of I. Here ‖G‖ := (∑=
8=1 G8G8)

1
2

is the standard norm in C=, and the zero I∗ is assumed to be nonsingular, meaning that det� 5 (I∗) ≠ 0.

Therefore the problem becomes two-fold. Given a system of equations 5 , we need a way to (1)
generate approximate solutions, and (2) certify their quadratic convergence under Newton iterations.
The methods of Smale’s U-theory solve exactly this second problem. This is accomplished using the
constants U( 5 , G), V( 5 , G) and W( 5 , G), which we will discuss in Section 3.4.1. Typically W is difficult to
compute, since it is defined as the supremum of infinitely many quantities depending on higher-order
derivatives of our system of equations. However, explicit upper bounds on W were calculated in [49]
which we can specialize to the system required for log-concave density estimation. These upper bounds
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have the advantage that they are easily computed from our system ∇( = 0, and can therefore be used to
U-certify approximate solutions coming from numerical software. In Section 3.4.1, we make this precise,
discussing recent work on the subject [49, 50, 91, 94] and how it applies in our context.

Remark 3.4.2. One might wonder why we do not directly evaluate the equations in question to the
approximate height values given by statistical packages. The reason is that we want to have a measure of
how accurate this solution is, which is also very sensitive to the system. Consider for example the system
consisting of the single polynomial 5 (G) = G. We would not accept 1/2 as a solution. But if we consider
the system 5 (G) = G10 and we evaluate at G = 1/2, we get a value that is less than 0.001. This could have
been tempting, but note that in both cases the difference between actual solution and approximation is
the same.

Another example that illustrates the potential difficulties involved in judging a numerical solution
based on its evaluation into the original system of equations comes from [11]. Consider the univariate
polynomial

5 (I) = I10 − 30I9 + 2.

A solution which is accurate within 9.4 × 10−12 of the true solution is

I∗ = 30.00000000000142 − 0.000000000000478,

but evaluating the polynomial at this solution yields a complex number 5 (I∗)with norm | 5 (I∗) | = 31.371,
which certainly seems far from zero. However, refining the accuracy of this solution to

I∗∗ = 29.9999999999998983894731343124 + 0.00000000000000000000000628,

we find that | 5 (I∗∗) | = 0.00000000032, which is much better.

3.4.1 Smale’s U-theory

The intuition behind U-theory is as follows. The size of the initial Newton iteration step combined with
the size of the derivatives control how quickly Newton iteration converges to a true solution. We can
calculate the size of the Newton iteration step, so if we have some control over the higher order derivatives
of 5 , then we should be able to certify whether a solution satisfies the criterion of Definition 3.4.1. This
motivates the definition of the following constants U, V, W ∈ R, associated to a system of equations 5 at
a point G. These constants measure quantities relevant to certifying approximate zeros.

Definition 3.4.3. Let 5 : C= → C= be a system of complex-analytic functions and let G ∈ C=. We define
U( 5 , G) to be the product of V( 5 , G) and W( 5 , G):

U( 5 , G) = V( 5 , G)W( 5 , G).
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The constant V( 5 , G) measures the size of the Newton iteration step applied at G, namely:

V( 5 , G) = ‖� 5 (G)−1 5 (G)‖,

while W( 5 , G) bounds the sizes of the following quantities, involving the higher order derivatives:

W( 5 , G) = sup:≥2

� 5 (G)−1�: 5 (G)
:!

 1
:−1

.

If we can compute these constants V, W for a candidate solution, then we can utilize the following

Theorem 3.4.4 (Chapter 8 of [18]). If 5 : C= → C= is a system of complex-analytic functions and
G ∈ C= satisfies

U( 5 , G) < 13 − 3
√

17
4

≈ 0.157671,

then G is an approximate zero of 5 = 0.

For polynomial systems, all higher-order derivatives eventually vanish. Exactly this fact was used in
[91] to derive an upper bound for W( 5 , G) which involves the degrees of the polynomials in the system 5 .
This is highly convenient since, even for systems of polynomials, calculating W( 5 , G) purely based on the
definition is quite a difficult task. Yet, if we are to certify candidate solutions to our system of equations,
we need to calculate W and V at our candidate G, multiply them, and hope they are below ≈ 0.157671.

3.4.2 Polynomial-exponential systems

For polynomial-exponential systems 5 , calculating W( 5 , G) is even harder. However, in [49], an upper
bound was computed for W involving quantities more readily apparent in a given system 5 than what
appears in the bare definition of W. In fact, an upper bound for W is calculated which applies to a general
class of systems, as well as upper bounds for several special cases. One of these special cases can be
further specialized to the system of equations ∇( = 0 arising in log-concave density estimation (this
is Lemma 3.4.9 below). In [49] an example is given where the bounds for the special cases allowed
candidate solutions to be U-certified despite failure using the more general bounds. In this section we
summarize the results of [49] as they relate to log-concave density estimation. First we need a few
definitions.

Definition 3.4.5. For a point G ∈ C= define

‖G‖21 = 1 + ‖G‖2 = 1 +
=∑
8=1
|G8 |2.

For a polynomial 6 : C= → C given as 6(G) = ∑
|d | ≤3 0dG

d define

‖6‖2 = 1
3!

∑
|d | ≤3

d! · (3 − |d |)! · |0d |2.
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For a polynomial system 5 : C= → C= with 5 (G) = [ 51(G), . . . , 5= (G)]) , we define

‖ 5 ‖2 =
=∑
8=1
‖ 58 ‖2.

We now define a quantity `( 5 , G) associated to a polynomial system which will play a role in
bounding W later.

Definition 3.4.6. Let 5 : C= → C= be a polynomial system with deg 58 = 38 . Define

`( 5 , G) = max
{
1, ‖ 5 ‖ · ‖� 5 (G)−1� 5 (G)‖

}
where � 5 (G) is the diagonal matrix

� 5 (G) =


3

1/2
1 · ‖G‖31−1

1
. . .

3
1/2
= · ‖G‖3=−1

1

 .
Following [49], we extend Definition 3.4.6 to certain polynomial-exponential systems.

Definition 3.4.7. Let 0 ∈ Z≥0, X8 ∈ C, andf8 ∈ {1, . . . , =}. Consider the polynomial-exponential system

� (G1, . . . , G<, D1, . . . , D0) =



%(G1, . . . , G<, D1, . . . , D0)
D1 − 4X1Gf1

D2 − 4X2Gf2

...

D0 − 4X0Gf0


, (3.23)

where % : C# → C= is a polynomial system with # = = + 0 variables. Thus, the system � is a square
system of size # . We write - := (G, D). Define

`(�, -) = max

{
1,

�� (G, D)−1

[
�% (G, D)‖%‖

�0

]
}
.

The following specializes Corollary 2.6 of [49].

Theorem 3.4.8. Let 0 ∈ Z≥0, X8 ∈ C, and f8 ∈ {1, . . . , =} and consider the polynomial-exponential
system (3.23). Let 38 = deg %8 and � = max 38 . For any _, \ ∈ C define

�(_, \) = max
{
|_ |,

����_24_\

2

����} .
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Then, for any - = (G, D) ∈ C# such that the Jacobian of � is invertible,

W(�, -) ≤ `(�, -)
(
�3/2

2‖- ‖1
+

0∑
8=1

�(X8 , Gf8 )
)
. (3.24)

Proof. This is a straight-forward specialization of Corollary 2.6 of [49]. We set to zero quantities that
deal with functions not relevant to log-concave density estimation. �

Therefore, reformulating our system of polynomial-exponential equations ∇(Δ = 0 in the for-
mat (3.23) will allow us to calculate an upper bound on W, which will allow us to certify solutions to our
critical equations.

Lemma 3.4.9. Fix a maximal regular triangulation Δ. The polynomial-exponential system ∇(Δ = 0 can
be reformulated as a system of equations of the form (3.23), demonstrating that Theorem 3.4.8 applies
in the context of log-concave maximum likelihood estimation.

Proof. The partial derivatives m(Δ/mH: are rational functions of the H8 and the 4H8 . Since we set each
partial derivative to zero, we can clear denominators, creating a system of equations, each of which is a
polynomial in the H8 and the 4H8 . Setting each X8 = 1 in (3.23), we can replace each occurrence of 4H8

with D8 , creating the polynomial system %(H1, . . . , H<, D1, . . . , D=), hence 0 = = as well. Appending the
equations D8 − 4H8 to the system of polynomials %, we have a system of 2= equations in 2= unknowns.
This system is of the required form in order to apply Theorem 3.4.8. �

Thus, we have everything we need to compute the upper bound in (3.24) for a system of critical
equations∇(Δ = 0whenΔ is a maximal regular triangulation. By calculating this upper bound for a given
system of equations, we can certify approximate numerical solutions obtained in any way. When Δ is not
a maximal regular triangulation, one must impose further linear constraints on some of the H8 , as was the
case in Example 3.2.5. After simplifications, one might still end up with terms involving exponentials
of fractional convex combinations of the H8 . This poses no threat for the purposes of U-certification, as
one may in fact use products of exponentials of the form 4VH8 . In particular, a bound for W(�, -) also
for these more general polynomial-exponential systems is given in [49, Corollary 2.6].

Question 3.4.10. In algebraic statistics, it is common to find algebraic invariants which characterize al-
gebraic complexity. For example, the maximum likelihood degree of a statistical model gives information
about the critical points of the likelihood function of a parametric model [1]. Similarly, in nonparametric
algebraic statistics, it could be the case that the combinatorial complexity of the optimal subdivision
gives us information about the computational complexity of finding a numerical solution. If this is true,
then we would expect that increasing the combinatorial complexity will decrease the likelihood that the
numerical output from LogConcDEAD is U-certified. We test this hypothesis experimentally in the next
section. In future work, one could hope to precisely describe this phenomenon, should it exist. Of course,
higher degrees, more variables, more equations will always increase the bound on W we calculate, but
the combinatorics should still play some role.
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3.4.3 A procedure for U-certifying

One of our motivating questions was to determine the correct subdivision for a given data set, as
was the case in Example 3.1.1. In this section we describe a procedure based on Smale’s U-theory
that in principle allows us to find the certifiably correct subdivision. Recall that the objective function
((H1, . . . , H<) depends on a subdivision of the convex hull of the data set - . If there are < subdivisions,
then there are < different objective functions (1, . . . , (<, and < different possible systems of equations
∇(1 = 0, . . . ,∇(< = 0. Given an estimate of a solution H∗, perhaps computed numerically using existing
software, we can attempt to U-certify that solution using any of these systems as input to Lemma 3.4.9
and Theorem 3.4.8. As we collect U-certified critical points for the various objective functions, we can
use this data to determine the correct subdivision, helping to answer our motivating question.

In practice, we have found that numerically computed solutions H∗ are often not U-certified, using
any of the systems ∇(8 = 0. However, using a brute-force search over all possible additional digits, we
often can find one system ∇( 9 = 0 to which H∗ + Y is an U-certified solution. Here, Y = (Y1, . . . , Y=) is
a vector providing additional digits of precision to each component of H∗. As we compute U-values for
each H∗ + Y, we move in the direction which causes a decrease in the computed U-value, until we are able
to find an U-certified H∗ + Y. We describe this in the following

Input: A system ∇(8 = 0 coming from the 8th candidate subdivision and a candidate
approximate solution H∗ = (H1, . . . , H<).

Result: A refinement of the heights H∗ + Y along with alpha certification of the system, or
inability to certify.

1 Let ? be the number of trusted significant digits (in binary) of the approximate solution H∗. ;
2 Expressing H∗ in binary, compute the U-value for all 3= points H8 + n82−?, n8 ∈ {−1, 0, 1}. Keep

the point with the lowest alpha value, and set this as the new H8 .;
3 If the alpha value is below 0.157671 stop and return the solution. If it has decreased between

steps or remained the same, increase ? by 1 and go to step 2. If there is no improvement for
several loops in a row, stop and declare inability to certify the system. ;

Remark 3.4.11. Here we collect a few comments on Algorithm 3.

1. We note that this brute-force search over all possible digits could be replaced by any numerical
procedure for finding solutions to a given set of equations. For example, Newton iteration could
be used on the system of equations to produce more accurate solutions, which could then be
U-certified. However, to compare the outputs of LogConcDEAD for problems of increasing combi-
natorial complexity (see Table 3.1), we wanted to use a completely “blind” brute-force search as
described above.

2. One does not need to stop at Step 3 once a solution is certified. Repeating the loop allows increasing
the precision of the solution by moving to lower U values. This is in contrast to statistical software
like LogConcDEAD which only allows up to 7 significant digits.
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3. Although precision can be added, our (first) goal with Algorithm 3 is to find the correct subdivision
induced by the heights. One can test several subdivisions here, therefore we say that we test the
(approximate) solution against the corresponding system of equations.

4. It might happen that the U-value does not immediately decrease from one loop to the next even if
we have the correct system of equations. One reason is that if the next significant digit is a zero
for all heights, we are computing an U-value for the same point multiple times.

5. In step 1 of the above algorithm, we let ? be the number of trusted significant digits of the
approximate solution H∗. We have found that several of the last digits of a solution computed with
LogConcDEAD were incorrect, in the sense that if we start our search (in Algorithm 3) earlier in
the significant digits of H∗ we are able to U-certify some H∗ + Y. In this way, we can correct for
some of the imprecision of a numerical solver.

Example 3.4.12. Consider the data set - = (2, 5, 7) with weights F = ( 13 ,
1
2 ,

1
6 ). With this input, the

package LogConcDEAD returns the heights

H∗ = (H1, H2, H3) = (−1.454152,−1.605833,−1.888083),

suggesting that there are two regions of linearity (Figure 3.8a). Let Δ = {12, 23}. We consider critical
equations for

(Δ(H1, H2, H3) =
y1

3
+ y2

2
+ y3

6
− 3

ey1 − ey2

y1 − y2
− 2

ey2 − ey3

y2 − y3

which lead to the polynomial-exponential system ∇(Δ : C3 → C3 given by

(H1 − H2)2
m((H1, H2, H3)

mH1
= 0

(H1 − H2)2(H2 − H3)2
m((H1, H2, H3)

mH2
= 0

(H2 − H3)2
m((H1, H2, H3)

mH3
= 0,

where we have cleared denominators. The numerical solution from LogConcDEAD is not immediately
U-certified, but after applying Algorithm 3 we obtain the U-certified solution: H∗ + Y = (H1, H2, H3) =
(−1.45415181,−1.60583278,−1.88808307).

Example 3.4.13. We now consider the same sample - = (2, 5, 7) with uniform weights. As discussed
in Example 3.2.5, LogConcDEAD output suggests that the logarithm of the optimal density has a single
region of linearity (Figure 3.8c). Can we certify this assessment? Recall that substituting H2 =

2
5 H1 + 3

5 H3

to ((H1, H2, H3) = 1
3 H1 + 1

3 H2 + 1
3 H3 − 3 4H1−4H2

H1−H2
− 2 4H2−4H3

H2−H3
gives

(̃ =
7
15
H1 +

8
15
H3 − 5

4H1 − 4H3

H1 − H3
.

The system of equations ∇(̃ = 0 does have solutions, and we were able to check that the numerical
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solution H∗ computed by LogConcDEAD is an U-certified solution to this amended system of equations.
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Figure 3.8 The height functions for (a) Example 3.4.12; (b) Example 3.4.13; (c) Example 3.4.15

Example 3.4.14. We used Algorithm 3 to certify the sample - = (0, 1, 2, . . . , =) ⊂ R for weights given
by the binomial distributionwith ? = 6/11, i.e.,F8 =

(=
8

)
(6/11)8 (5/11)=−8 . Looking at the LogConcDEAD

output, we suspect that the triangulation given by the points consists of all consecutive line segments
{8−1, 8} for 8 ∈ 1, 2, . . . , =. We therefore compute U-values using the system of equations corresponding
to the full triangulation. In all cases tested, we were able to certify the system for some refinement of
the original LogConcDEAD output. In Table 3.1, we summarize the number of binary digits required for
certification in each case. This table suggests that the complexity of U-certifying increases when the
number of sample points increases.

Table 3.1 Number of binary digits needed to certify < + 1 points with weights coming from an asymmetric
binomial distribution.

n 3 4 5 6 7
binary digits 22 23 27 31 31

We now present an example in two dimensions that needs more significant digits than the previous
cases.

Example 3.4.15. We consider the point configuration from [79, Example 1.1], given by

- = ((0, 0), (0, 100), (22, 37), (36, 41), (43, 22), (100, 0)) ⊂ R2

and uniform weights. The package LogConcDEAD returns the heights

(H1, H2, H3, H4, H5, H6) = (−8.789569,−8.772087,−8.253580,−8.217959,−8.236983,−8.756922)
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as the optimal solution. This gives rise to a triangulation of the convex hull of the data points with regions
of linearity consisting of the triangles

{1, 2, 3}, {1, 3, 5}, {1, 5, 6}, {2, 3, 4}, {2, 4, 6}, {3, 4, 5}, {4, 5, 6},

in Figure 3.8b. This data gives an U-value of 1026, which is much larger than the required 0.157671.
However, the system of equations it came from has a relatively high degree and the polynomial equations,
when expanded, have between 929 and 1564 terms. We try to decrease the U-value using the uniform
sampling algorithm described above. We create a list of 729 = 36 points in R6, consisting of all points
whose i-th coordinate is

H8 + n82−14, n8 ∈ {−1, 0, 1}.

After a few repetitions, this finds a point with a lower alpha value. We repeat this process, each time
decreasing the exponent of 2 when creating the new test points. After 95 rounds we detect the refined
point 

−8.789570552675578322471018111262921
−8.772086862481395608253513836856700
−8.253580886913590521217040193671505
−8.217957742357924329528595494315867
−8.236983233544571734253428918807660
−8.756919956247208359690046164738877


with alpha value 0.125519. Therefore, this new solution is U-certified. Note that this number has 34
decimal digits; we have rounded digits coming from the conversion from base 2 (109 digits) after this
position. Our conclusion is that the triangulation obtained by the heights in the LogConcDEAD output is
certifiably correct.

Example 3.4.16. We return to our motivating example 3.1.1 from the introduction, and consider two
possible subdivisions of % = conv(-) for the regions of linearity of the optimal tent function:

Δ1 = {{1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {2, 4, 12}, {1, 4, 8, 11}, {4, 11, 12}, {8, 11, 12, 13, 14}}

and
Δ2 = {{1, 2, 3}, {1, 3, 4}, {2, 3, 4, 12}, {1, 4, 8, 12, 13, 14}}.

The first subdivisionΔ1 in Figure 3.9a arises from the LogConcDEAD output with default parameters after
using the “unique” function. The second subdivision Δ2 in Figure 3.9b is given by the four regions of
linearity in Figure 3.1 that we get by adjusting the precision in LogConcDEAD and then using the “unique”
function. Unfortunately the objective functions involved have too many summands for U-certification to
be feasible.

As an alternative, we use the NMaximize command in Mathematica directly on the objective
functions (Δ1 and (Δ2 . The optimal H∗

Δ1
for the 7-cell subdivision gives a tent function whose regions of
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(a) (b) (c)

Figure 3.9 Subdivisions in Example 3.4.16. (a) Subdivision Δ1 (b) Subdivision Δ2 (c) The subdivision induced
by H∗

Δ1
.

linearity are
{{1, 2, 3}, {1, 8, 13}, {1, 3, 13}, {2, 3, 14}, {3, 13, 14}},

which are depicted in Figure 3.9c. This triangulation is not refined by the subdivisionΔ1: For example, the
triangle {1, 3, 4} in the subdivisionΔ1 intersects the interiors of triangles {1, 3, 13}, {2, 3, 14}, {3, 13, 14}.
Thus the 7-cell subdivision Δ1 is not the subdivision that we are looking for. In fact, the vector H∗Δ1

is not

relevant, i.e. there exists G8 such that ℎ-,H∗
Δ1
(G8) > H8 , and as a result

∫
%
4
ℎ-,H∗

Δ1
(C)
≠ 1.

The command NMaximize gives for the 4-cell subdivision

H∗Δ2
= ( − 4.32285,−4.7141,−4.2737,−4.14495,−4.26961,−4.10156,−3.94188,

− 3.91671,−3.94162,−3.80042,−3.76397,−3.68413,−3.69541,−3.62252).

In comparison, the optimal height vector that we obtain using LogConcDEAD is

H∗ = ( − 4.322797,−4.714126,−4.273678,−4.144934,−4.269616,−4.101524,−3.941869,

− 3.916668,−3.941666,−3.800423,−3.764006,−3.684179,−3.695395,−3.622560).

A computation in Polymake verifies that H∗
Δ2

gives a tent function whose regions of linearity are exactly
the cells of Δ2. This suggests that the 4-cell subdivision Δ2 is indeed the subdivision induced by the
optimal H∗ in Example 3.1.1. We conclude with a haiku.

Approximate heights,
subdivisions inexact.
A long road ahead.
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Chapter 4

Conic Hulls of Moment Curves and
Connections to Coalescence Manifolds

The content of this chapter is the result of a joint project with Z. Rosen and C. Vinzant. The preprint
has been submitted for peer review and is accessible at: https://arxiv.org/abs/2012.14467. We
investigate a univariate moment problem of piecewise-constant density functions on the interval [0, 1]
and its consequences for an inference problem in population genetics. We show that, up to closure, any
collection of =moments is achieved by a step function with at most =−1 breakpoints and that this bound
is tight. We use this to show that any point in the =th coalescence manifold in population genetics can
be attained by a piecewise constant population history with at most = − 2 changes. Both the moment
cones and the coalescence manifold are projected spectrahedra and we describe the problem of finding
a nearest point on them as a semidefinite program.

4.1 Background and Motivation

Given a finite collection � ⊂ N, we consider the convex cone " (�) of all moments (<0)0∈� of the
form <0 =

∫
G03` where ` is a nonnegative Borel measure on the unit interval [0, 1]. For consecutive

moments � = {0, 1, 2 . . . , 3}, this is a classical object in analysis and real algebraic geometry. The
problem of determining membership in the cone " (�) is known as the truncated Haussdorff moment
problem. See, for example, [51, 17, 58, 63, 87].

We study moments coming from piecewise-constant density functions with the idea of minimizing
the number of pieces needed. Formally, we consider the set ": (�) as the closure of the set of moments
(<0)0∈� where <0 =

∫ 1
0 G0 5 (G)3G and 5 is a nonnegative step function with at most : discontinuities.

One of our motivations for studying this problem came from its relation to the coalescence manifold
studied in [80]. The coalescence manifold C=,: , formally defined in Section 4.4, is a set of summary
statistics in population genetics, derived from observing = genomes with a population history consisting
of : + 1 different population sizes.

The authors in [80] show that the manifold C=,: stabilizes at : = 2= − 2, i.e. C=,2=−2 = C=,: for all
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: ≥ 2= − 2. The main theorem of section 4.4 improves this bound by a factor of two, showing that the
coalescence manifolds stabilize at : = = − 2 and this bound is tight.

The content of section 4.6 relies on the connections to the classical moment problem to provide a
description of C=,=−2 as the projection of a spectrahedron. The problem of finding the nearest point in
C=,=−2 to a given point in R=−1 can then be formulated as a semidefinite program.

4.2 Moments of step functions

For : ∈ N, let (: denote the set of nonnegative step functions on [0, 1] of the form

5 = H11[0,B1 ] +
:+1∑
8=2

H81(B8−1,B8 ] , (4.1)

where 0 = B0 < B1 < . . . < B: < B:+1 = 1 and H1, . . . , H:+1 ∈ R≥0. Note that:

1. (: is invariant under nonnegative scaling,

2. (: ⊆ (ℓ when : ≤ ℓ, and

3. (: + (ℓ , defined as { 5 + 6 | 5 ∈ (: , 6 ∈ (ℓ}, is a subset of (:+ℓ .

Elements of (: define nonnegative measures on [0, 1]. We will be interested in the possible moments
of these measures. Given a finite collection � ⊂ N, we define to be the Euclidean closure of the set
moments given by density functions in (: :

": (�) =
{(∫ 1

0
G0 5 (G)3G

)
0∈�

: 5 ∈ (:
}
.

One important case is that of consecutivemoments � = {0, 1, . . . , 3}. For any finite collection � ⊂ N,
the moment cone ": (�) can be expressed, up to closure, as the image of ": ({0, 1, . . . ,max(�)}) under
the coordinate projection c� : Rmax(�)+1 → R� given by c�(<0, . . . , <max(�) ) = (<0)0∈�.

Remark 4.2.1. By linearity of the integral, we see that ": (�) inherits many properties of (: . That is,
": (�) is invariant under nonnegative scaling, ": (�) ⊆ "ℓ (�) when : ≤ ℓ and

": (�) + "ℓ (�) ⊆ ":+ℓ (�)

(here, in the sense of the Minkowski sum), as desired.

We will be interested in comparing this to the full moment cone:

" (�) =
{(∫ 1

0
G03`

)
0∈�

: ` is a nonnegative Borel measure on [0, 1]
}
.

The cone" (�) is dual to the convex cone of univariate polynomials supported on � that are nonnegative
on [0, 1], as will be discussed below in Proposition 4.2.6.
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When 0 ∈ �, the closure in the definition of " (�) is not necessary, and the extreme rays of " (�)
are come from point evaluations. That is, we can write " (�) as the conical hull of the image of [0, 1]
under the corresponding moment map:

" (�) = conicalHull {E�(C) : C ∈ [0, 1]} where E�(C) = (C0)0∈�.

See, for example, [87, Prop. 10.5].
When 0 ∉ �, this equality only holds up to closure, as the curve parameterized by E�(C) includes

the origin. In this case, " (�) = conicalHull {E�(C) : C ∈ [0, 1]}. As we will see below, then we can still
write" (�) as the conical hull of a curve segment. Specifically," (�) = conicalHull {E� (C) : C ∈ [0, 1]}
where � = {0 −min(�) : 0 ∈ �}.

Lemma 4.2.2. If � ⊂ N is finite and � = {0 −min(�) : 0 ∈ �}, then " (�) = " (�).

Proof. For C ∈ (0, 1], the point E�(C) can be rewritten as Cmin(�)E� (C), a scalar multiple of E� (C). It
follows that the conical hulls of {E�(C) : C ∈ (0, 1]} and {E� (C) : C ∈ (0, 1]} are equal. We observe that
the extreme ray E� (0) of " (�) can be attained in the closure of " (�) as the limit of the moment of the
step function 5 = n−(min(�)+1)1[0, n ] as n goes to zero:

lim
n→0

∫ 1

0
G0 5 (G)3G = lim

n→0
n−(min(�)+1)

∫ n

0
G03G = lim

n→0

n0−min(�)

0 + 1
=


1
0+1 if 0 = min(�)

0 otherwise.

It follows that E� (0) belongs to " (�). Since " (�) can be written as the union of the cone over E�(C)
for C ∈ (0, 1] and the ray over E� (0), the equality between the two cones ensues:

" (�) = conicalHull {E�(C) : C ∈ [0, 1]} = " (�). �

Example 4.2.3. Consider � = {1, 2} and � = {0, 1}. Then

" (�) = conicalHull{(1, C) : C ∈ [0, 1]} = conicalHull{(C, C2) : C ∈ [0, 1]} = " (�).

Here we see the need for taking closures when 0 ∉ �. The point (1, 0) = E� (0) is not contained in the the
conical hull of the curve segment {(C, C2) : C ∈ [0, 1]} but is contained in its closure. See Figure 4.1. In
this case, the boundary of " (�) = " (�) consists of scalar multiples of E� (0) and E� (1), both of which
belong to "1(�), by Proposition 4.2.4 below. Arguments below will then show that " (�) = "1(�).

Proposition 4.2.4. Let � ⊂ N be finite and let � = {0 −min(�) : 0 ∈ �}. The points E� (0)and E� (1)
belong to "1(�) and for every C ∈ (0, 1), E� (C) belongs to "2(�).

Proof. For 0 < C < 1, and 0 < n < 1 − C consider the step function 5 = n−1C−min(�)1(C ,C+n ] in (2.
By continuity, the integral

∫ 1
0 G0 5 (G)3G converges to C0−min(�) as n → 0, thus "2(�) contains the

limit point E� (C) = (C1)1∈�. Similarly, the limit as n → 0 of the �-moment vectors of step functions
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vB(t)

vA(t)

Figure 4.1 The cone " (�) along with the curve segments E�( [0, 1]) and E� ( [0, 1]) for � = {1, 2} and
� = {0, 1}.

5 = (min(�) + 1)n−1−min(�)1[0, n ] and 5 = n−11(1−n ,1] in (1 are E� (0) and E� (1), respectively. Therefore
these vectors belong to "1(�). �

A corollary of this statement is that ": (�) = " (�) for : = 2|�|. By Carathéodory’s Theorem, any
point in " (�) is in the conical hull of at most |�| points of the form (C0)0∈� where C ∈ [0, 1], each of
which belongs to "2(�) by Proposition 4.2.4. By Remark 4.2.1, the sum of |�| elements from "2(�)
belongs to "2 |� | (�), giving " (�) ⊆ "2 |�| (�). In fact, ": (�) fills out the whole moment cone much
sooner:

Theorem 4.2.5. If : ≥ |�| − 1, ": (�) = " (�).

The proof of this theorem relies on understanding the points on the boundary of " (�).

Proposition 4.2.6. Let � ⊂ N be finite with 0 ∈ �. If m = (<0)0∈� belongs to the Euclidean boundary
of " (�), then any representing measure ` on [0, 1] with <0 =

∫
G03` has finite support. Specifically,

the support of ` is a subset of the roots contained in [0, 1] of a polynomial nonnegative on [0, 1] and of
the form ?(G) = ∑

0∈� ?0G
0. The vector m is a conic combination of the vectors E�(A) where A ranges

over the roots of ?.

Proof. Let ℓ : R� → R be a linear function ℓ(v) = ∑
0∈� ?0E0 defining a supporting hyperplane of

" (�) at m. That is, ℓ(v) ≥ 0 for all v ∈ " (�) and ℓ(m) = 0. Consider the polynomial ?(G) =
ℓ(E�(G)) =

∑
0∈� ?0G

0. Since E�(C) ∈ " (�) for all C ∈ [0, 1], ? is nonnegative on [0, 1]. Furthermore,
for any measure ` with moments m,∫

?(G)3` =
∑
0∈�

?0<0 = ℓ(m) = 0.

The measure ` is nonnegative and the polynomial ? is nonnegative on [0, 1]. From this we see that
the support of the measure ` must be contained in the (finite) set of roots ' of ?(G). Specifically,
` =

∑
A ∈' FAXA for some FA ∈ R≥0; therefore, m =

∑
A ∈' FAE�(A). �
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Proof of Theorem 4.2.5. First, consider a point m in the boundary of " (�). By Lemma 4.2.2, " (�) =
" (�) where � = {0 − min(�) : 0 ∈ �}, and so m also belongs to the boundary of " (�). By
Proposition 4.2.6, m is the vector of �-moments of a measure ` supported on the roots of a nonnegative
polynomial on [0, 1] of the form ?(G) = ∑

0∈� ?0G
0. Let 1 be the number of distinct roots of ? in the set

{0, 1} and 8 be the number of distinct roots in of ? in the open interval (0, 1). Then m is in the conical
hull of the 1 + 8 points given by E� (A) where A ranges over these roots. By Proposition 4.2.4, m belongs
to ": (�) for : = 1 + 28.

By Descartes’ rule of signs, the number of positive roots of ?, counting multiplicity, is at most the
number of sign changes in the list of coefficients {?0}0∈�. If ?0 ≠ 0, then ? has at most |�| − 1 roots in
R>0. If ?0 = 0, then ? is the sum of at most |�| − 1 nonzero terms and its number of roots in R>0 must
be smaller or equal to |�| − 2. Note that every root of ? in (0, 1) must have even multiplicity greater or
equal to 2. All together this gives 1 + 28 ≤ |�| − 1 = |�| − 1.

Now consider m in the interior of" (�). Let c = (1/(0+1))0∈� ∈ "0(�) denote the vector obtained
by integrating against the constant step function of height one. Let _∗ be the maximum value of _ ∈ R
for which m − _c belongs to " (�). From m ∈ " (�), we see that _∗ ≥ 0. Moreover, since " (�) is
pointed, −c does not belong to " (�), meaning that for sufficiently large _, m − _c does not belong to
" (�). Since " (�) is closed, it follows that such a maximum _∗ must exist.

The point m − _∗c belongs to the boundary of " (�). By the arguments above, m − _∗c belongs to
": (�) for : ≥ |�| − 1. Since c ∈ "0(�) and

m = (m − _∗c) + _∗c,

the point m also belongs to ": (�) for : ≥ |�| − 1. �

Remark 4.2.7. It follows from the proof of Theorem 4.2.5 that for all : ≥ 0, ": (�) is star convex with
respect to the point c = (1/(0 + 1))0∈�, the �-moment of the constant function. Indeed, since c belongs
to "0(�), _c + ": (�) ⊆ ": (�) for all _ ≥ 0.

We can go further in characterizing the facial structure of the boundary of " (�). Through a
connection to Schur polynomials, we can deduce linear independence among sets of points from the
curve of the correct size.

Proposition 4.2.8. For a collection � of integers 0 = 01 < 02 < . . . < 0= and any real values
0 ≤ A1 < A2 < . . . < A= ≤ 1, the determinant of the matrix S� is strictly positive, where

S�(r) =

©«
1 1 . . . 1
A
02
1 A

02
2 . . . A

02
=

...
...

...

A
0=
1 A

0=
2 . . . A

0=
=

ª®®®®®®¬
.

Proof. By the bialternant formula for Schur polynomials, the determinant of the matrix S�(r) can be
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expressed as

det(S�) =
©«

∏
1≤8< 9≤=

(A 9 − A8)
ª®¬ s_(A1, . . . , A=) for _ = (0= − (= − 1), 0=−1 − (= − 2), . . . , 01), (4.2)

where s_(G1, . . . , G=) denotes the Schur polynomial associated to the partition _. By definition, the
Schur polynomial s_(G1, . . . , G=) is the sum of monomials x) over all semistandard Young tableaux )
of shape _. One can observe, either from expanding the determinant of S�(A) along the first column,
or by filling out a semistandard Young Tableau of shape _ without using the number 1, that G1 does not
appear in all the monomials of the determinant of S�. It follows that det(S�) is strictly positive for any
0 ≤ A1 < A2 < . . . < A= ≤ 1. �

Corollary 4.2.9. All proper faces of " (�) are simplicial.

Proof. By Lemma 4.2.2, we can assume that 0 ∈ �. Recall that " (�) is the conical hull over the curve
segment {E�(C) : C ∈ [0, 1]} and any proper face � of this cone can be expressed as the conical hull
of some points E�(A1), . . . , E�(A:) where 0 ≤ A1 < A2 < . . . < A: ≤ 1. If : > dim(�), then there is
a subset of these points of size dim(�) + 1 ≤ =, which necessarily lie in � and are therefore linearly
dependent, contradicting Proposition 4.2.8. Therefore : = dim(�) and � is simplicial. �

This lemma lets us assign an index to points on the boundary of " (�), following [87, Ch. 10.2].
Let m be a point on the boundary of " (�). By Corollary 4.2.9, there is a unique representation of m as∑:
9=1 F 9E�(A 9) where 0 ≤ A1 < . . . < A: ≤ 1 and F1, . . . , F: ∈ R>0. We define the index of m, denoted

ind(m), to be 1 + 28 where 1 = #{ 9 : A 9 ∈ {0, 1}} and 8 = #{ 9 : A 9 ∈ (0, 1)}. By Proposition 4.2.4, any
point m on the boundary of " (�) belongs to "ind(m) (�).

To prove the converse, we must rule out the possibility that m ∈ ": (�) for : < ind(m). In other
words, it is impossible to approach a point m on the boundary of " (�) with moment vectors of step
functions with fewer breakpoints than expected.

Lemma 4.2.10. Let m be a point on the boundary of " (�). For : < ind(m), m ∉ ": (�). That is, if
m ∈ ": (�), then ind(m) ≤ : .

Proof. Note that for any non-zero point m in " (�), <0 > 0 and so we can rescale m to have <0 = 1.
We will write ": (�) ∩ {<0 = 1} as the image of a compact polytope under a polynomial map and check
that any point m in the image of this map and the boundary of " (�) has index ≤ : .

Any function 5 ∈ (: can be written as 5 = H11[0,B1 ] +
∑:+1
8=2 H81(B8−1,B8 ] for some values

0 = B0 < B1 < . . . < B: < B:+1 = 1

and H8 ≥ 0 for all 8. We now introduce transformed F-coordinates by letting F8 = H8 (B8 − B8−1)
denote the area

∫ B8
B8−1

5 (G)3G. The corresponding moment in ": (�) is given by the image of the point
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(s,w) = (B1, . . . , B: , F1, . . . , F:+1) under the polynomial map

`�(s,w) =
(
:+1∑
8=1

H8
B0+1
8
− B0+1

8−1
0 + 1

)
0∈�

=

(
:+1∑
8=1

F8
(B0
8
+ B0−1

8
B8−1 + · · · + B08−1)
0 + 1

)
0∈�

. (4.3)

Note that the constraint that <0 = 1 translates into
∑
8 F8 = 1. Consider the polytope

% =

{
(s,w) ∈ R: × R:+1 such that 0 ≤ B1 ≤ . . . ≤ B: ≤ 1, F8 ≥ 0,

:+1∑
8=1

F8 = 1

}
, (4.4)

which is a product of two simplices of dimension : . The moments of step functions 5 ∈ (: with∫
5 (G)3G = 1 is the image under `� of the set of points (s,w) ∈ % with distinct 0 < B1 < . . . < B: < 1.

Its closure is ": (�) ∩ {<0 = 1}, which necessarily coincides with the image of % under `�, as the
image of a compact set under a continuous map is closed.

If F8 > 0 and B8−1 < B8 for some 8, then `�(s,w) has a representing measure whose support includes
the interval (B8−1, B8] and is therefore not finite. Then by Proposition 4.2.6, m belongs to the interior of
" (�).

Suppose the point m belongs to ": (�). Then m = `�(s,w) for some (s,w) ∈ %. Let � denote the
collection of indices 1 ≤ 8 ≤ : for which F8 > 0. If m belongs to the boundary of " (�), B8−1 = B8 for
all 8 ∈ �. Then

m = `�(s,w) =
∑
8∈�

F8E�(B8).

We can bound ind(m) by bounding the number of distinct values of B8 that appear. For each 8 ∈ � with
B8 ∈ (0, 1), B8 equals B8−1, hence there are at least two indices 9 in {1, . . . , :} for which B 9 = B8 . Trivially,
if B8 ∈ {0, 1}, there is at least one 9 ∈ {1, . . . , :} such that B 9 = B8 . Together, these show that

ind(m) = #{B8 ∈ {0, 1} : 8 ∈ �} + 2 ·
(
#{B8 ∈ (0, 1) : 8 ∈ �}

)
≤ :. �

Lemma 4.2.11. The intersection of ": (�) with the Euclidean boundary of " (�) is a semialgebraic
set of dimension ≤ : .

Proof. By Lemma 4.2.10, the intersection of ": (�) with the Euclidean boundary of " (�) is the set of
boundary points of index ≤ : . We can parameterize this as the union of the semialgebraic sets:

⋃
f∈{0,1}2


ℓ∑
9=1
F 9E�(A 9) + Fℓ+f1E�(0) + Fℓ+f1+f2E�(1) : r ∈ (0, 1)ℓ ,w ∈ (R>0)ℓ+f1+f2

 ,
where in each set, ℓ is chosen so that 2ℓ + f1 + f2 ≤ : . Here we use r to denote the vector (A 9) 9 and w
for the vector (F 9) 9 . Note that each set is the image of (0, 1)= × (R>0)< under a polynomial map where
= + < ≤ : and therefore has dimension ≤ : . �

Corollary 4.2.12. If : < |�| − 1, ": (�) ≠ " (�).
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Proof. The cone" (�) is full-dimensional inR |� |, in consequence, the cone’s boundary is a hypersurface
of dimension |�| − 1. By Lemma 4.2.11, the dimension of the intersection of ": (�) with the boundary
of " (�) has dimension ≤ : , so for : < |�| − 1, this cannot be the entire boundary of " (�). �

Example 4.2.13. For � = {0, 2, 5}, Theorem 4.2.5 and Corollary 4.2.12 imply that ": (�) = "2(�)
for all : ≥ 2 but not for : = 1. Affine transformations of their intersections with the affine hyperplane
{<0 = 1} are shown in Figure 4.2. See also [80, Figure 6]. The intersection of "1(�) with the boundary
of "2(�) consists of just two rays, which appear as points in the hyperplane {<0 = 1}. The set "1(�)
consists of moments of functions with just one breakpoint. Step functions with one breakpoint and total
mass one can be parameterized by 5 = F

B
1[0,B] + 1−F

1−B 1(B,1] for B ∈ (0, 1) and F ∈ [0, 1]. Note that fixing
F and taking the limit as B → 0 gives a weighted sum of a point mass at zero and the constant function
FX0 + (1 − F)1(0,1] . Similarly B→ 1 gives F1[0,1) + (1 − F)X1.

For B = F ∈ [0, 1], the corresponding step function is constant, i.e. 5 = 1[0,1] and the moment
map sends this line segment to a single point. However, away from this line, the moment map is a
homeomorphism to its image in "1({0, 2, 5}).

Figure 4.2 The parameter space of "1 (�) and "1 (�), "2 (�) for � = {0, 2, 5}.

4.3 Increasing and decreasing step functions

In this section, we study the moment cones of non-negative monotone functions on the unit interval
[0, 1]. They form two convex full dimensional cones contained in the full moment cone " (�) and
only require roughly half the number of steps to be generated compared to " (�). So far, the cones of
moments of monotone step functions are the only full dimensional subsets of the moment cone whose
geometric structure we were able to describe. We define the increasing and decreasing moment cones

"↑(�) =
{(∫ 1

0
G0 5 (G)3G

)
0∈�

: 5 is nonnegative and increasing on [0, 1]
}
and

"↓(�) =
{(∫ 1

0
G0 5 (G)3G

)
0∈�

: 5 is nonnegative and decreasing on [0, 1]
}
.
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Recall that if a function 5 : [0, 1] → R is monotone, then it is automatically Borel-measurable. As
in the non-monotone case, all of these moment vectors can be achieved as a limit of moments of step
functions with a bounded number of steps. For : ∈ N, let (↑

:
denote the set of nonnegative, increasing

step functions on [0, 1] with at most : discontinuities. Similarly, let (↓
:
denote the analogous set of

decreasing step functions. This corresponds to requiring H1 ≤ H2 ≤ . . . ≤ H:+1 or H1 ≥ H2 ≥ . . . ≥ H:+1
in (4.1).

Similarly, for finite � ⊂ N, we consider the �-moments of these step functions,

"�: (�) =
{(∫ 1

0
G0 5 (G)3G

)
0∈�

: 5 ∈ (�
:

}
for � ∈ {↑, ↓} .

Just as with ": (�), we see that the set "�: (�) is invariant under nonnegative scaling, "
�
:
(�) ⊆ "�

ℓ
(�)

when : ≤ ℓ and "�
:
(�) + "�

ℓ
(�) ⊆ "�

:+ℓ (�).
As in the non-monotone case, we can understand the cones "�(�) as the conical hull of curve

segments.

Definition 4.3.1. We define maps W↑
�
and W↓

�
from [0, 1] to R� where, for C ∈ [0, 1], W↑

�
(C) and W↓

�
(C)

are the �-moment vectors of the step functions (1/(1 − C))1(C ,1] and (1/Cmin(�)+1)1[0,C ] , respectively.
For every 0 ∈ �, the 0th coordinate of these maps are given by(

W
↑
�
(C)

)
0

=
1

1 − C

∫ 1

C

G03G =
1

0 + 1

0∑
8=0

C8

and
(
W
↓
�
(C)

)
0

=
1

Cmin(�)+1

∫ C

0
G03G =

1
0 + 1

C 0−min(�) .

We observe that W↑
�
(0) = W↓

�
(1) = (1/(0 + 1))0∈� corresponds to the moment vector of constant

function 1[0,1] . The other end points correspond to point masses. Specifically, W↑
�
(1) = E�(1) is the

moment vector of a point mass at C = 1 and W↓
�
(0) = 1

min(�)+1E� (0) for � = {0 − min(�) : 0 ∈ �}
corresponds to a point mass at C = 0.

Remark 4.3.2. The conical hull over {W�
�
(C) : C ∈ [0, 1]} is closed because this curve is compact and

does not contain the origin. Indeed, for � =↑, the 0th coordinate of W↑
�
(C) is ≥ (1/0 + 1) for all C. For

� =↓, the min(�)-th coordinate of W↓
�
(C) is identically 1/(min(�) + 1).

Lemma 4.3.3. For � ∈ {↑, ↓}, the cone "�(�) equals the conical hull of {W�
�
(C) : C ∈ [0, 1]}.

Proof. Since "�(�) is a convex cone containing the point W�
�
(C) for all C, it automatically contains the

conical hull of this curve.
For the other direction, consider a monotone function 5 : [0, 1] → R. We can construct a sequence

of step functions 5= converging uniformly to 5 on [0, 1]. For example, we may take 5= =
∑=
8=1

"
=

1)8
where " ∈ { 5 (0), 5 (1)} is the maximal value of 5 on [0, 1] and 1)8 is the indicator function of
)8 = {G ∈ [0, 1] : 5 (G) ≥ 8"/=}. That is 5= (G) = "

=
· b =

"
5 (G)c. Note that | 5= − 5 | ≤ "/= and so 5=
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converges uniformly to 5 on [0, 1]. It follows that for any 0, G0 5= converges uniformly to G0 5 and so the
integral

∫ 1
0 G0 5= (G)3G converges to

∫ 1
0 G0 5 (G)3G.

Note that the set )8 defined above has the form (B8 , 1] or [B8 , 1] if 5 is increasing and [0, B8] or [0, B8)
if 5 is decreasing for some B8 ∈ [0, 1]. The moment vector of 5= therefore is a conic combination of the
points W�

�
(B8) for the appropriate � ∈ {↑, ↓}. Taking =→∞ shows that the moment vector of 5 belongs

to the closure of the conical hull of {W�
�
(C) : C ∈ [0, 1]}.

Therefore the moment cone {(
∫ 1

0 G0 5 (G)3G)0∈� : 5 nonnegative and increasing on [0, 1]} belongs
to the closure of the conical hull of {W↑

�
(C) : C ∈ [0, 1]}. By definition, "↑(�) is the closure of this set

and so also belongs to the closure of this conical hull. Similarly "↓(�) belongs to the closure of the
conical hull of {W↓

�
(C) : C ∈ [0, 1]}. By Remark 4.3.2, both of these conical hulls are already closed. �

Proposition 4.3.4. If : ≥
⌊
|� |
2

⌋
, then we have "↑

:
(�) = "↑(�) and "↓

:
(�) = "↓(�).

Proof. Our proof proceeds similarly to that of Theorem 4.2.5. Let m be a point of the boundary of
"�(�). We want to express m as the �-moment of an increasing step function of the fewest steps
possible. Let ℓ : R� → R define a supporting hyperplane of "�(�) at m, so that ℓ ≥ 0 on "�(�) and
ℓ(m) = 0. By Lemma 4.3.3, "�(�) is the conical hull of a curve, hence m will lie in the conical hull of
points on this curve with ℓ = 0. We use this to show that m belongs to "�

:
(�) for : ≥

⌊
|� |
2

⌋
.

(↓) Let ?(G) = ℓ

(
W
↓
�
(G)

)
=

∑
0∈�

?0

0 + 1
G0−min(�) . The polynomial ? is nonnegative on [0, 1]. By

Descartes’ rule of signs, ? has at most |�| − 1 positive roots, counting multiplicity, and if ?min(�) = 0,
then it has at most |�| − 2. Let 8 denote the number of distinct roots of ? in (0, 1) and 1 = 1 if ?(0) = 0
and 0 otherwise. Since each interior root of ? must have multiplicity ≥ 2, this gives 28 + 1 ≤ |�| − 1.
Note that W↓

�
(C) ∈ "↓1 (�) for all C ∈ [0, 1) and belongs to "↓0 (�) for C = 1. Therefore m belongs to

"
↓
:
(�) for : = 8 + 1 ≤ 1

2 ( |�| − 1 + 1). The bound follows from the integrality of 8 + 1 and 1 ∈ {0, 1}.

(↑) Let ?(G) = ℓ
(
W
↑
�
(G)

)
=

∑
0∈�

?0

0 + 1

0∑
8=0

G8 , which is a polynomial nonnegative on [0, 1]. Again, by

Descartes’ rule of signs, ? has at most |�| − 1 positive roots, counting multiplicity. If 8 is the number of
distinct roots of ? in (0, 1) and 1 = 0 if ?(1) = 0 and 0 otherwise, this gives that 28 + 1 ≤ |�| − 1. As
before, W↑

�
(C) ∈ "↑1 (�) for all C ∈ (0, 1] and belongs to "

↑
0 (�) for C = 0. Therefore m belongs to "↓

:
(�)

for : = 8 + 1 ≤ 1
2 ( |�| − 1 + 1) ≤ 1

2 |�|.
Now consider m in the interior of "�(�) and let c be the moment vector of the constant function

1[0,1] . Let _∗ be the maximum value of _ ∈ R for which m − _c belongs to "�(�). Since m ∈ "�(�),
we know that _∗ ≥ 0, and for sufficiently large _,m−_c ∉ "�(�). Thusm−_∗c belongs to the boundary
of "�(�), which is equal to the boundary of "�

:
(�) by the argument above. Hence, m also belongs to

"�
:
(�). �

Proposition 4.3.5. For all : <
⌊
|� |
2

⌋
, the cone "�

:
(�) is a proper subset of "�(�).

Proof. The cone "�
:
(�) ⊂ R |� | is a conic combination of : points on the boundary curve W�

�
, each

contributing two degrees of freedom, and the point corresponding to the image of the constant step
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function W↑
�
(0) = W

↓
�
(1), contributing a single degree of freedom. Therefore, the semialgebraic set

"�
:
(�) has dimension at most min {2: + 1, |�|}. The cone "�(�) is full-dimensional in R |� |. Let

= = b|�|/2c so that |�| is 2= or 2= + 1. In either case, we observe that for : ≤ = − 1, the dimension of
"�
:
(�) is less than or equal to 2= − 1, hence it cannot fill up all of "�(�). �

Example 4.3.6. For � = {0, 2, 5, 9}, "1(�) is a union of "↑1 (�) and "
↓
1 (�), shown on the left in

Figure 4.4. Since 1 < 2 = b|�|/2c, these sets are not full dimensional and so cannot fill up "↑(�) or
"↓(�). For : = 2 = b|�|/2c, "↑2 (�) = "↑(�) and "↓2 (�) = "↓(�). These form parts of the full
dimensional set "2(�) shown in the middle of Figure 4.4.

4.4 Connection with coalescence manifold

The motivation for studying moments of step functions comes from the field of population genetics. A
central problem in this area is:

Question 4.4.1. Given a sample of = genomes from a present-day population, what inferences can be
drawn regarding the history of that population?

Our approach to the problem is to fix a function p describing effective population size at time C
before the present. We then compute, as a function of p, a vector of invariants c associated to the genome
sample. Understanding the relationship between p and c will allow us to infer likely values of p based on
measured data.

Following [12], we model the natural process of the production of a sample of = genomes as follows:

• The genealogical tree connecting = individuals will be formed by taking coalescence of each pair
of lineages as a Poisson point process with rate parameter 1/p(C), where p(C) is the effective
population size at time C before present. (Heuristically, looking at the previous generation and
picking parents at random, there is a 1/p(C) chance that two lineages will pick the same parent.)

• After the tree is specified, mutations are distributed on the tree as a Poisson point process with
constant rate relative to branch length. The infinite-sites model is used, so that repeated mutation
at a given site is disallowed, which is a good model for large genomes.

Definition 4.4.2. Fixing a population history, and defining the random process as above, we define
random variables:

• The sample frequency spectrum (also known as the site or allele frequency spectrum), abbreviated
SFS, is the vector of randomvariables (-=,1)1=1,...,=−1 where -=,1 denotes the number ofmutations
that are shared by exactly 1 out of the = individuals.

• The coalescence vector is the vector ()8,8)8=2,...,=−1 of the time at which a sample of size 8 has
exactly 8 distinct lineages, i.e. the time until the first coalescence.
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For a fixed population function p, taking expectations gives the population invariants b=,1 = E[-=,1]
and 28 = E[)8,8].

In practice, the SFS is more frequently discussed as a summary statistic, but the coalescence vector is
simpler to use in computations. Fortunately, Polanski and Kimmel [72] proved that they are related by
a linear transformation �=, a matrix entirely determined by sample size =. Therefore, we focus on the
coalescence vectors (28).

Fact 4.4.3. We make the reasonable assumption that p(C) is bounded below by 0 and bounded above by
a fixed %. Applying integration by parts and change of variables to the expected value of an exponential
distribution yields the following expression for 28 in terms of p(C):

28 (p) =
∫ ∞

0
p̃(g)4−(

8
2)gdg, (4.5)

where p̃(g) = p('−1
p (g)) and 'p(C) =

∫ C
0

1
p(G) 3G. Because 0 < p(C) < %, the function 'p is strictly

increasing and unbounded; thus, it is a bijection from R≥0 → R≥0, so the inverse is well-defined. We
call p̃(g) the transformed population history.

The coalescence vector can thus be considered a function from the space of (bounded) population his-
tory functions to R=−1. Since the former space is infinite-dimensional and the latter is finite-dimensional,
it is natural to restrict our attention to a finite-dimensional space of population history functions. A
common choice for this, motivated by injectivity considerations in [12], is

(̃: = {nonnegative step functions on R≥0 with at most : breakpoints}.

Definition 4.4.4. Let =, : be integers with = ≥ 2 and : ≥ 0. The coalescence manifold C=,: is the Eu-
clidean closure of the set of vectors c̃(p) = c(p)/| |c(p) | |1 for all p ∈ (̃: . Here, c(p) = (22(p), . . . , 2= (p))
where 28 (p) is defined as in Equation 4.5.

Because the vectors are normalized to have sum one, the coalescence manifold lives in the simplex Δ=−1.
Note that this definition deviates slightly from the definition in [80] by allowing : breakpoints instead
of : epochs (i.e. constant intervals). This shifts the index down by one. We now connect back to the
moment cones studied above.

Theorem 4.4.5. Let � = {
( 8
2
)
− 1 : 8 = 2, . . . , =}. The coalescence manifold C=,: equals the intersection

of the cone ": (�) with the affine hyperplane of points with coordinate sum equal to one:

C=,: =
{

m ∈ ": (�) :
∑
0∈�

<0 = 1

}
.

Before we prove the theorem, we demonstrate two lemmas that will simplify the proof.

Lemma 4.4.6. Define p̃(g) as in Equation 4.5. Then p(C) ∈ (̃: if and only if if p̃(g) ∈ (̃: .
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Proof. Let 0 = B0 < · · · < B:−1 < B: be the sequence of breakpoints of p(C). The function 'p(C) is a
monotone increasing function, so the conditions below are equivalent:

B 9 < C ≤ B 9+1 ⇐⇒ 'p(B 9) < 'p(C) ≤ 'p(B 9+1).

Sincep is constant on (B 9 , B 9+1], the transformedhistory p̃(g) = p('−1
p (g)) is constant on ('p(B 9), 'p(B 9+1)].

This implies that there are still at most : breakpoints.
For the reverse direction, repeat the argument with '−1

p in place of 'p. �

Lemma 4.4.7. Let @ be a strictly positive step function in (̃: . Then, there exists p in (̃: such that
@(g) = p('−1

p (g)) where 'p(C) =
∫ C

0
1

p(G) dG as above.

Proof. Let&(C) =
∫ C

0 @(G)dG. We claim the desired function is p(C) = @(&−1(C)). First, note that because
@ is strictly positive and takes only finitely many values, it is bounded away from zero. Therefore & is
strictly increasing and takes all values in [0,∞). Its inverse &−1 therefore exists and is also increasing
with range [0,∞). It follows that p takes the same values in the same order as @. In particular, p ∈ (̃: .

To check that @(C) = p('−1
p (C)), we first show that 'p(&(C)) = C for all C ≥ 0. By definition,

'p(&(C)) =
∫ & (C)

0

1
p(G) 3G =

∫ & (C)

0

1
@(&−1(G))

3G =

∫ C

0

1
@(F) @(F)3F = C,

where the penultimate equation comes from substituting G = &(F) and 3G = @(F)3F. Since both& and
'p are invertible, we see that C = &−1('−1

p (C)) for all C. Applying @ to both sides then gives the claim. �

Proof of Theorem 4.4.5. We show that the set of coalescence vectors coming from population histories
in (̃: is equal to the set of moments in ": (�) summing to 1. The equality of the two closures is then
automatic.

Assume p ∈ (̃: . From Lemma 4.4.6, p̃ is also in (̃: . Starting with Equation 4.5, we substitute D = 4−g

to obtain:

28 (p) =
∫ 1

0
p̃∗(D)D(

8
2)−1dD, where p̃∗(D) = p('−1

p (− ln(D))).

The function p̃∗ is piecewise-constant on [0, 1] with at most : breakpoints, so is in (: ; therefore, the quan-
tity 28 is the (

( 8
2
)
−1)-th moment of p̃∗. This implies that c is in": (�) where � = {

( 8
2
)
− 1 : 8 = 2, . . . , =}.

Normalizing c is equivalent to scaling p̃∗ so we may assume its sum is already equal to 1.
Conversely, up to closure, any moment vector in ": (�) summing to 1 comes from some 5 ∈ (: .

Changing our domain to R≥0 gives @(g) = 5 (4−g) in (̃: . By Lemma 4.4.7, we can produce p ∈ (̃: that
gives transformed population history @. �

Example 4.4.8. Consider the population function p(C) = ?1 · 1[0,11) + ?2 · 1[11,12) + ?3 · 1[12,∞) where
?1, ?2, ?3, 11, 12 ∈ R>0 with 11 < 12. The function 'p(C) is piecewise linear, given by

'p(C) =
∫ C

0

1
p(G) 3G =

C

?1
1[0,11) +

(
C − 11
?2
+ 11
?1

)
1[11,12) +

(
C − 12
?3
+ 12 − 11

?2
+ 11
?1

)
1[12,∞) .
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Figure 4.3 The functions p, p̃∗, and 'p from Example 4.4.8.

This function is unbounded and strictly increasing with 'p(0) = 0, so it has an inverse '−1
p that is also

increasing and unbounded on R≥0. The function p̃(g) = p('−1
p (g)) is still piecewise constant with two

break points 'p(11) = 11/?1 and 'p(12) = (12 − 11)/?2 + 11/?1, obtained by solving '−1
p (g) = 18 .

The 8th entry of the coalescence vector is then

28 =

∫ ∞

0
p̃(g)4(

8
2)g3g =

∫ 1

0
p̃∗(D)D(

8
2)−13D where p̃∗(D) = p̃(− ln(D)).

The second equality comes from the change of coordinates D = 4−g . Note that p̃∗ is the step function
given by

p̃∗ = ?3 · 1(0,B1 ] + ?2 · 1(B1,B2 ] + ?1 · 1(B2,1] where B1 = 4
−'p (12) and B2 = 4

−'p (11) .

The graphs of p and p̃∗ for the values (?1, ?2, ?3) = (2, 3, 1) and (11, 12) = (2, 5) are shown in Figure 4.3.
In this case, the break points of p̃∗ are 4−'p (12) = 4−2 and 4−'p (11) = 4−1.

Remark 4.4.9. Note that because p(C) denote the population size at time C before the present, a population
increasing over time corresponds to the function p(C) decreasing as a function of C, i.e. ?1 > ?2 > ?3

in the example above. Note that p(C) is decreasing in C if and only if p̃(g) is decreasing in g. The
parametrization D = 4−g reverses direction and so the function p̃∗(D) is then increasing as a function
of D. In these coordinates, D = 0 corresponds “infinitely long ago” (C = ∞) and D = 1 corresponds to
the present (C = 0). Therefore coalescence vectors of populations growing over time are moments of
increasing step functions on [0, 1].

Theorem 4.4.5 allows us to apply our results from ": (�) to C=,: .

Corollary 4.4.10. C=,=−2 = C=,: for all : ≥ = − 2 and C=,=−3 ( C=,=−2.

Proof. For � =
{( 8

2
)

: 8 = 2, . . . , =
}
, |�| equals = − 1. By Theorem 4.2.5, ": (�) = " (�) for all

: ≥ = − 2. In particular, "=−2(�) = ": (�) for all : ≥ = − 2. Intersecting with the hyperplane
{m :

∑
0∈�<0 = 1} gives that C=,=−2 = C=,: for all : ≥ =− 2. By Corollary 4.2.12, ": (�) ≠ " (�) for

: < |�| −1 = =−2. Hence"=−3(�) ≠ " (�). Since" (�) = "=−2(�), intersecting with the hyperplane
{m :

∑
0∈�<0 = 1} gives that C=,=−2 ≠ C=,=−3. �

Affine transformations the sets C5,1, C5,2 and C5,3 are show in Figure 4.4. As promised, C5,3 is convex
and C5,: is a strict subset for : < 3.
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4.5 The Coalescence Manifold in 3-Space

We illustrate the content of previous sections by focusing our attention on the case � = {0, 2, 5, 9}, when
�5,: is an affine slice of the cone ": (�). We begin by visualizing the moment sets ": (�) intersected
with the affine hyperplane {<0 = 1}, for : = 1, 2 and 3. Affine transformations of these intersections
are depicted in Figure 4.4. Note that the step functions with at most one breakpoint and total mass one
can be written as _1[0,1] + (1 − _) 1

B
1[0,B] or _1[0,1] + (1 − _) 1

1−B1(B,1] where _ ∈ [0, 1]. The result is
a two-dimensional surface in the plane {<0 = 1}. The set "2(�) is full-dimensional, but does not fill
up all of " (�). As promised by Lemma 4.2.11, the intersection "2(�) with the boundary of " (�) has
dimension ≤ 2, so its image in {<0 = 1} has dimension ≤ 1. Indeed, we see this intersection is given by
the curve parameterized by (C2, C5, C9) for C ∈ [0, 1] and the line segment between its end points (0, 0, 0)
and (1, 1, 1). Finally, by Theorem 4.2.5, "3(�) is the full cone " (�). Points on the boundary of " (�)
have index ≤ 3, and so have one of the two forms F0E�(0) + FAE�(A) or F1E�(1) + FAE�(A) where
A ∈ [0, 1], F0, F1, FA ∈ R≥0.

Figure 4.4 The sets "1 (�), "2 (�), "3 (�) in {<0 = 1} for � = {0, 2, 5, 9}.

Now we take a closer look at "2(�) and analyze the structure of its boundaries. This example is of
particular interest to us, since it is an illustration of what happens when 1 < : < |�| − 1; cases where,
for larger =, �=,: is not yet well understood. The domain of "2(�) is the set of step functions with two
breakpoints, so it lives in the polytope %, the product of two simplices

( = {(B1, B2) : 0 ≤ B1 ≤ B2 ≤ 1} and , = {(F1, F2, F3) ∈ R3
≥0 : F1 + F2 + F3 = 1}.

Here the B variables parameterize the two breakpoints and the F variables parameterize the proportion
of mass in each piece. The coalescence manifold �5,2(�) is the image of the polytope % = ( ×, under
the rational map `� : R4 → R3. So the domain is four-dimensional while the image has dimension three.
Therefore the generic fiber of the moment map has dimension one.

Proposition 4.5.1. Let ? a point in the interior of % that does not represent the constant function, the
image `�(?) maps to the interior of �5,2(�).

To prove this proposition, we check where on % does �, the Jacobian of the map `�, drop rank.
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Figure 4.5 The ( and, simplex.

Definition 4.5.2. The Jacobian of the map `� is the 4 × 3 matrix

� =


m
mB1
(`�)

m
mB2
(`�)

m
mF1
(`�)

m
mF2
(`�)


.

The 4 × 4 matrix �̃ (E) is the matrix � augmented with a 4th column E, recording which variables
B1, B2, F1, F2 are set as constants.

�̃ (E) =


m
mB1
(`�) E1

m
mB2
(`�) E2

m
mF1
(`�) E3

m
mF2
(`�) E4


.

Proof. Let ? = (B1, B2, F1, F2) be in the interior of ( ×, . For a fixed pair (B1, B2) in the interior of (,
if the image `�(?) is on the boundary of �5,2, the tangent space at ? must be of dimension 2 at most,
meaning the determinant of �̃ has to vanish for both E = (1, 0, 0, 0) and E = (0, 1, 0, 0). If only one of
them vanishes, we still have 3 degrees of freedom to move around `�(?).

For E = (1, 0, 0, 0):

det(�̃) = −B2
3 (B1 − 1) (F2(1 − B2) + (1 − F1 − F2) (B1 − B2)) (3 B1

6B2
3 + 6 B1

5B2
4 +

9 B1
4B2

5 + 12 B1
3B2

6 + 8 B1
2B2

7 + 4 B1B2
8 + 6 B1

6B2
2 + 15 B1

5B2
3 + 24 B1

4B2
4 +

33 B1
3B2

5 + 28 B1
2B2

6 + 16 B1B2
7 + 4 B2

8 + 4 B1
6B2 + 14 B1

5B2
2 + 27 B1

4B2
3 +

40 B1
3B2

4 + 41 B1
2B2

5 + 28 B1B2
6 + 8 B2

7 + 2 B1
6 + 8 B1

5B2 + 20 B1
4B2

2 + 35 B1
3B2

3 +
40 B1

2B2
4 + 33 B1B2

5 + 12 B2
6 + 2 B1

5 + 8 B1
4B2 + 20 B1

3B2
2 + 27 B1

2B2
3 + 24 B1B2

4 +
9 B2

5 +2 B1
4 +8 B1

3B2 +14 B1
2B2

2 +15 B1B2
3 +6 B2

4 +2 B1
3 +4 B1

2B2 +6 B1B2
2 +3 B2

3)
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and for E = (0, 1, 0, 0)

det(�̃) = −B1B2 (B1 − 1)2 (F1(B2 − B1) − F2B1) (4 B1
8B2 + 8 B1

7B2
2 + 12 B1

6B2
3 + 9 B1

5B2
4 +

6 B1
4B2

5 + 3 B1
3B2

6 + 4 B1
8 + 16 B1

7B2 + 28 B1
6B2

2 + 33 B1
5B2

3 + 24 B1
4B2

4 +
15 B1

3B2
5 + 6 B1

2B2
6 + 8 B1

7 + 28 B1
6B2 + 41 B1

5B2
2 + 40 B1

4B2
3 + 27 B1

3B2
4 +

14 B1
2B2

5 + 4 B1B2
6 + 12 B1

6 + 33 B1
5B2 + 40 B1

4B2
2 + 35 B1

3B2
3 + 20 B1

2B2
4 +

8 B1B2
5 + 2 B2

6 + 9 B1
5 + 24 B1

4B2 + 27 B1
3B2

2 + 20 B1
2B2

3 + 8 B1B2
4 + 2 B2

5 + 6 B1
4 +

15 B1
3B2 + 14 B1

2B2
2 + 8 B1B2

3 + 2 B2
4 + 3 B1

3 + 6 B1
2B2 + 4 B1B2

2 + 2 B2
3).

(4.6)

Note that in either case, the large factor of degree 9 does not vanish on the interior of ( ×, . Recall that
under the change of coordinates toF8 = H8 (B8−B8−1), the constraint H1 = H2 is given byF1(B2−B1)−F2B1

and H2 = H3 is given by F2(1 − B2) + (1 − F1 − F2) (B1 − B2). For both these polynomials to vanish, ?
either needs to be on the boundary of ( ×, or describe the constant function. �

The boundary of the polytope % is composed of six triangular prisms given by B1 = 0, B2 = 1, B1 = B2,
F1 = 0, F2 = 0, and F3 = 0. We can visualize this by way of a Schlegel diagram via one of its facets,
seen in Figure 4.6.

(s1, s2) = (0, 0)
(0, 1)

(1, 1)

(w1, w2, w3) =
(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

s1 = 0 w3 = 0 s2 = 1

w2 = 0 s1 = s2w1 = 0

Figure 4.6 Schlegel diagram for the boundary of %, together with the image of each facet under the moment
map.

We can however obtain a generically finite-to-one map by restricting to facets of the polytope %.

Proposition 4.5.3. The boundary of�5,2 is contained in the image of the 2-dimensional faces of % under
the map `�.

Proof. We look at the six 3-dimensional facets of %. For each face, we assign a vector E ∈ R4 describing
the linear constraint on (B1, B2, F1, F2) and compute the determinant of �̃.
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1. If B1 = 0, we set E = (1, 0, 0, 0),

det(�̃) =
(
4 B2

5 + 8 B2
4 + 12 B2

3 + 9 B2
2 + 6 B2 + 3

)
B2

6 (B2(F1 − 1) + F2) .

This polynomial vanishes either when B2 = 0 or B2F1 − B2 + F2 = 0.

2. If B = B1 = B2, we set E = (1,−1, 0, 0),

det(�̃) = F2B
6
(
14 B8 + 14 B7 − 16 B6 − 16 B5 − 16 B4 + 5 B3 + 5 B2 + 5 B + 5

)
.

This polynomial vanishes when F2 = 0 and has 4 real roots in B, two of them negative, B = 0 and
B = 1.

3. If B2 = 1, we set E = (0, 1, 0, 0),

det(�̃) = (B1 − 1)2 ((F1 + F2) B1 − F1) B1(
8 B1

8 + 32 B1
7 + 80 B1

6 + 125 B1
5 + 70 B1

4 + 125 B1
3 + 80 B1

2 + 32 B1 + 8
)
.

This polynomial vanishes if B1 = 0, B1 = 1 or (F1 + F2) B1 − F1 = 0.

4. If F1 = 0, we set E = (0, 0, 1, 0)

det(�̃) = (B1 − 1)2 (B1 − B2) F2 (F2(B2 − 1) + (F2 − 1) (B1 − B2)) (8 B2B1
9 + 32 B1

8B2
2 +

80 B1
7B2

3 + 125 B2
4B1

6 + 140 B1
5B2

5 + 125 B2
6B1

4 + 80 B1
3B2

7 + 32 B2
8B1

2 +
8 B2

9B1 + 4 B1
9 + 32 B1

8B2 + 104 B1
7B2

2 + 212 B1
6B2

3 + 278 B1
5B2

4 +
278 B1

4B2
5 + 212 B1

3B2
6 + 104 B1

2B2
7 + 32 B1B2

8 + 4 B2
9 + 8 B1

8 + 56 B2B1
7 +

155 B1
6B2

2 + 260 B1
5B2

3 + 302 B2
4B1

4 + 260 B2
5B1

3 + 155 B2
6B1

2 + 56 B2
7B1 +

8 B2
8 + 12 B1

7 + 66 B1
6B2 + 150 B1

5B2
2 + 222 B2

3B1
4 + 222 B2

4B1
3 + 150 B2

5B1
2 +

66 B2
6B1 + 12 B2

7 + 9 B1
6 + 48 B1

5B2 + 102 B1
4B2

2 + 132 B1
3B2

3 + 102 B2
4B1

2 +
48 B2

5B1 + 9 B2
6 + 6 B1

5 + 30 B1
4B2 + 54 B1

3B2
2 + 54 B1

2B2
3 + 30 B1B2

4 + 6 B2
5 +

3 B1
4 + 12 B2B1

3 + 15 B1
2B2

2 + 12 B2
3B1 + 3 B2

4).

This polynomial vanishes when B1 = 1, B1 = B2, F2 = 0 or F2(B2 − 1) + (F2 − 1) (B1 − B2) = 0.
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5. If F2 = 0 and we set E = (0, 0, 0, 1)

det(�̃) = F1B1 (F1 − 1) (B1 − B2) (8 B2B1
11 + 8 B1

10B2
2 + 8 B2

3B1
9 − 27 B2

4B1
8 −

27 B2
5B1

7 + 27 B2
8B1

4 + 27 B2
9B1

3 − 8 B1
2B2

10 − 8 B2
11B1 − 8 B2

12 + 4 B1
11 +

4 B2B1
10 + 4 B2

2B1
9 − 24 B2

3B1
8 − 24 B2

4B1
7 + 30 B2

5B1
6 + 30 B1

5B2
6 + 54 B2

7B1
4 +

54 B2
8B1

3−16 B2
9B1

2−16 B1B2
10−16 B2

11−21 B1
8B2

2−21 B1
7B2

3 +60 B2
4B1

6 +
60 B1

5B2
5 + 81 B2

6B1
4 + 81 B1

3B2
7 − 24 B2

8B1
2 − 24 B2

9B1 − 24 B2
10 − 14 B1

8B2 −
14 B1

7B2
2+40 B1

6B2
3+40 B1

5B2
4+58 B1

4B2
5+58 B1

3B2
6−32 B1

2B2
7−32 B1B2

8−
32 B2

9 − 7 B1
8 − 7 B2B1

7 + 20 B1
6B2

2 + 20 B1
5B2

3 + 35 B2
4B1

4 + 35 B2
5B1

3 −
40 B2

6B1
2 − 40 B2

7B1 − 40 B2
8 + 12 B2

3B1
4 + 12 B2

4B1
3 − 48 B2

5B1
2 − 48 B2

6B1 −
48 B2

7 +9 B1
4B2

2 +9 B1
3B2

3−36 B2
4B1

2−36 B2
5B1−36 B2

6 +6 B1
4B2 +6 B1

3B2
2−

24 B1
2B2

3 − 24 B1B2
4 − 24 B2

5 + 3 B1
4 + 3 B2B1

3 − 12 B1
2B2

2 − 12 B2
3B1 − 12 B2

4).

This polynomial vanishes when F1 = 0, F1 = 1, B1 = 0 or B1 = B2, but it is not directly
clear whether the last factor of det(�̃), which we denote ?, does not change signs on the region
0 ≤ B1 ≤ B2 ≤ 1. Hence, we want to verify that the polynomial ? of degree 12 in B1, B2 is
non-positive on ( = {(B1, B2) : 0 ≤ B1 ≤ B2 ≤ 1}:

? = 8 B2B1
11 + 8 B1

10B2
2 + 8 B2

3B1
9 − 27 B2

4B1
8 − 27 B2

5B1
7 + 27 B2

8B1
4 + 27 B2

9B1
3 −

8 B1
2B2

10 − 8 B2
11B1 − 8 B2

12 + 4 B1
11 + 4 B2B1

10 + 4 B1
9B2

2 − 24 B2
3B1

8 −
24 B2

4B1
7 + 30 B2

5B1
6 + 30 B2

6B1
5 + 54 B2

7B1
4 + 54 B2

8B1
3 − 16 B2

9B1
2 −

16 B1B2
10 − 16 B2

11 − 21 B1
8B2

2 − 21 B2
3B1

7 + 60 B2
4B1

6 + 60 B2
5B1

5 +
81 B2

6B1
4 + 81 B2

7B1
3 − 24 B2

8B1
2 − 24 B2

9B1 − 24 B2
10 − 14 B1

8B2 − 14 B1
7B2

2 +
40 B1

6B2
3 + 40 B1

5B2
4 + 58 B1

4B2
5 + 58 B1

3B2
6 − 32 B1

2B2
7 − 32 B1B2

8 − 32 B2
9 −

7 B1
8 − 7 B2B1

7 + 20 B1
6B2

2 + 20 B2
3B1

5 + 35 B2
4B1

4 + 35 B2
5B1

3 − 40 B2
6B1

2 −
40 B2

7B1 − 40 B2
8 + 12 B2

3B1
4 + 12 B2

4B1
3 − 48 B2

5B1
2 − 48 B2

6B1 − 48 B2
7 +

9 B1
4B2

2 + 9 B2
3B1

3 − 36 B2
4B1

2 − 36 B2
5B1 − 36 B2

6 + 6 B1
4B2 + 6 B1

3B2
2 −

24 B1
2B2

3 − 24 B1B2
4 − 24 B2

5 + 3 B1
4 + 3 B2B1

3 − 12 B1
2B2

2 − 12 B2
3B1 − 12 B2

4.

(4.7)

We compute both partials m?/mB1 and m?/mB2 and use the Maple package Msolve to check that
both partial do not vanish on the interior of (. Through symbolic computations, we observe that
? is non-positive on all of the boundary of ( and only vanishes at the points {(0, 0), (1, 1)}.

6. if F1 + F2 = 1, we set E = (0, 0, 1, 1)

det(�̃) = F2 (B1 − B2) B2
3B1 ((F2 − 1) B2 + B1) (8 B1

8 + 32 B1
7 + 80 B1

6 +
125 B1

5 + 70 B1
4 + 125 B1

3 + 80 B1
2 + 32 B1 + 8).

(4.8)

This polynomial vanishes when F2 = 0, B1 = 0,B1 = B2, B2 = 0 and (F2 − 1) B2 + B1 = 0.

�

To summarize, there are four 2-faces that themomentmap collapses to a curve, namely the faces given
by 0 = B1 = B2, B1 = B2 = 1, F1 = F2 = 0, and F2 = F3 = 0. In addition to these 2-faces, the intersections
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of the facets of % with the hypersurfaces given by H1 = H2 and H2 = H3 sometimes drop dimension under
the moment map `�. In the (s,w) variables, these correspond to surfaces (B2 − B1)F1 = B1F2 and
(1 − B2)F2 = B2F3, respectively. For example, in each of the facets B1 = 0 and F1 = 0, the equation
(1− B2)F2 = B2F3 cuts out a surface whose image under `� is a curve. For the face B1 = 0, the moments
of this surface collapse to the line segment connecting the constant population and the point mass at 0
and for F1 = 0, the image of this surface collapses to the curve segment of moments of step functions of
a single step with F1 = 0. Similarly, the faces B2 = 1 and F3 = 0 each contain a two-dimensional surface
cut out by B1F2 = (1 − B1)F1 whose moments collapse to a line segment–from the constant population
to the point mass at 1 for B2 = 1 and a curve segment of moments of a single step with F3 = 0. Aside
from these subsurfaces, the map on the boundary m% is locally nondegenerate. Interestingly, the images
of these facets can overlap in full-dimensional sets. One consequence is that the fibers of the moment
map can be disconnected.

Figure 4.7 A disconnected fiber of `� for � = {0, 2, 5, 9}.

For example, the point (<0, <2, <5, <9) = (1, 0.164, 0.054, 0.031) belongs to "2(�) for � =

{0, 2, 5, 9}. Its fiber under `� is a curve in the four-dimensional polytope % from (4.4). Figure 4.7 shows
the (B1, B2)-coordinates of this curve. In particular, this fiber has at least two connected components.
In a lighter shade is the two-dimensional fiber of the point (<0, <2, <5) = (1, 0.164, 0.054) under the
corresponding map for {0, 2, 5}.

4.6 Connections with semidefinite programming

In this section, we describe how to write the moment cone " (�) and coalescence manifold C=,=−2 as
projections of spectrahedra. This gives rise to natural algorithms for testing membership and finding
nearest points in these sets based on semidefinite programming. Formally, a spectrahedron is a set of the
form {x ∈ R= : �0+

∑=
8=1 G8�8 � 0}where �0, . . . , �= are real symmetricmatrices and - � 0 denotes that

thematrix - is positive semidefinite. These are the feasible sets of semidefinite programs. See e.g. [17, Ch.
5 and 6]. Python code for computing the nearest point in C=,=−2 to an arbitrary point inR=−1 is available at:

https://github.com/gescholt/DistanceToCoalescenceManifold
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Theorem 4.6.1 (Theorems 10.1 and 10.2 [87]). For any 3 ∈ Z+, the cone " ({0, 1, . . . , 3}) is a
spectrahedron. If 3 = 24 is even, then

" ({0, 1, . . . , 3}) =
{
m ∈ R3+1 : (<8+ 9)0≤8, 9≤4 � 0 and

(
<8+ 9+1 − <8+ 9+2

)
0≤8, 9≤4−1 � 0

}
,

and if 3 = 24 + 1 is odd, then

" ({0, 1, . . . , 3}) =
{
m ∈ R3+1 : (<8+ 9+1)0≤8, 9≤4 � 0 and (<8+ 9 − <8+ 9+1)0≤8, 9≤4 � 0

}
.

Corollary 4.6.2. For any finite set of integers � ⊂ N, the convex cones " (�), "↑(�) and "↓(�) are
projections of the spectrahedron " ({0, 1, . . . ,max(�)}).

Proof. Let 3 = max(�). Note that by definition, " (�) equals the closure of the projection of
" ({0, 1, . . . , 3}) under the map (<0, <1, . . . , <3) ↦→ (<0)0∈�. For 0 ∈ �, this projection is closed
and otherwise, we replace � with � = {0 − min(�) : 0 ∈ �} as in Lemma 4.2.2. By Theorem 4.6.1,
" ({0, 1, . . . , 3}) is a spectrahedron.

More generally, consider any finite collection of polynomials ?1, . . . , ?= ∈ R[G]≤3 . We claim
that the conical hull of the curve parameterized by p(C) = (?1(C), . . . , ?= (C)) for C ∈ [0, 1] is the
image of " ({0, 1, . . . , 3}) under a linear map. Specifically, consider the linear map c : R3+1 →
R= taking (<0, <1, . . . , <3) to (

∑3
9=0 ?8 9< 9)8∈[=] where ?8 (G) =

∑3
9=0 ?8 9G

9 . For any C ∈ [0, 1],
p(C) equals c(E3 (C)) where E3 (C) = (1, C, C2, . . . , C3). Since " ({0, 1, . . . , 3}) is the conical hull of
{E3 (C) : C ∈ [0, 1]}, the conical hull of {p(C) : C ∈ [0, 1]} is the image of " ({0, 1, . . . , 3}) under c.

Note that the coordinates of both W↑
�
(C) and W↓

�
(C) are given by polynomials in C of degree ≤ 3.

Then by Lemma 4.3.3 and the arguments above, both "↑(�) and "↓(�) can be written as the image of
" ({0, 1, . . . , 3}) under a linear map. �

Example 4.6.3. For � = {0, 2, 5, 9}, we write " (�), "↑(�) and "↓(�) are projections of the spec-
trahedron " ({0, 1, . . . , 9}). By Theorem 4.6.1, this is given by the set of m = (<0, . . . , <9) in R10 for
which the matrices

©«

<1 <2 <3 <4 <5

<2 <3 <4 <5 <6

<3 <4 <5 <6 <7

<4 <5 <6 <7 <8

<5 <6 <7 <8 <9

ª®®®®®®®¬
and

©«

<0 − <1 <1 − <2 <2 − <3 <3 − <4 <4 − <5

<1 − <2 <2 − <3 <3 − <4 <4 − <5 <5 − <6

<2 − <3 <3 − <4 <4 − <5 <5 − <6 <6 − <7

<3 − <4 <4 − <5 <5 − <6 <6 − <7 <7 − <8

<4 − <5 <5 − <6 <6 − <7 <7 − <8 <8 − <9

ª®®®®®®®¬
are positive semidefinite. We obtain " (�) as the image of this cone under the linear map

m ↦→ (<0, <2, <5, <9).
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Similarly, the cones "↑(�) and "↓(�) are the images of " ({0, 1, . . . , 9}) under the (respective) maps

m ↦→
(
<0,

<0 + <1 + <2
3

,
1
6

5∑
8=0

<8 ,
1
10

9∑
8=0

<8

)
and m ↦→

(
<0,

<2
3
,
<5
6
,
<9
10

)
.

Corollary 4.6.4. Testing membership any of the cones " (�), "↑(�) or "↓(�) is equivalent to testing
the feasibility of a semidefinite program in ≤ 3 + 1 variables with two matrix constraints, each of size
≤ 3/2 + 1, where 3 = max(�).

Corollary 4.6.5. For : ≥ = − 2, the coalescence manifold C=,: is the projection of a spectrahedron.
Testing membership in C=,: is equivalent to testing the feasibility of a semidefinite program in ≤ =2/2
variables with two matrix constraints, each of size ≤ =2/4.

Proof. By Theorem 4.4.5 and Corollary 4.4.10, for all : ≥ =−2, coalescence manifold C=,: equals in the
intersection of" (�)with the affine hyperplane given by

∑
0∈�<0 = 1where � = {

( 8
2
)
−1 : 8 = 2, . . . , =}.

By Corollary 4.6.2, " (�) is the projection of " ({0, 1, . . . , 3}) where 3 =
(=
2
)
− 1. It follows that C=,:

is the projection of the points in " ({0, 1, . . . , 3}) satisfying the affine linear equation
∑
0∈�<0 = 1.

The intersection of a spectrahedron with an affine linear space is again a spectrahedron and so C=,: is
the projection of a spectrahedron.

The spectrahedron " ({0, 1, . . . , 3}) is defined by two linear matrix inequalities of size ≤ 3/2 + 1 ≤
=2/4. There are at most 3 + 1 =

(=
2
)
≤ =2/2 variables. �

Similarly, given a point p ∈ R=−1, we can use a semidefinite program to find the nearest point in
C=,: for sufficiently large : . This comes from the description of C=,: above and the fact that distance
minimization can be phrased as a semidefinite program (see, e.g. [20]). Specifically, given x ∈ R=−1, the

matrix = × = matrix

(
_ (x − p))

x − p Id=−1

)
is positive semidefinite if and only if | |x− p| |22 ≤ _, where Id=−1

denotes the (= − 1) × (= − 1) identity matrix. Given a set ( ⊂ R=−1, suppose that _∗ and x∗ attain the
minimum

min
_∈R,x∈(

_ such that

(
_ (x − p))

x − p Id=−1

)
� 0.

Then x∗ is (one of) the nearest points in ( to p and the distance | |x∗ − p| |2 is
√
_∗. In particular, if the set

( is the projection of a spectrahedron, then this minimization problem is a semidefinite program.

Corollary 4.6.6. Given p ∈ R=−1, the problem of finding the closest point to p in C=,: for sufficiently
large : is equivalent to solving a semidefinite program in ≤ =2/2 variables with three matrices of size
≤ =2/4.

Example 4.6.7. For = = 5 and : ≥ 3, C5,: equals the set of points in " ({0, 2, 5, 9}) with <0 + <2 +
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<5 + <9 = 1. Projecting from " ({0, 1, . . . , 9}), we see that

C5,: =

{
(<0, <2, <5, <9) ∈ R4 : <0 + <2 + <5 + <9 = 1

and ∃(<1, <3, <4, <6, <7, <8) ∈ R6 such that (< 9) 9=0,...,9 ∈ " ({0, 1, . . . , 9})
}

LetA(m) and B(m) denote the two 5× 5 matrices appearing in Example 4.6.3. Then " ({0, 1, . . . , 9})
is the set of points m ∈ R10 for which A(m) � 0 and B(m) � 0. Given a point p = (0, 1, 2, 3) ∈ R4,
we can find the closest point in C5,: by solving the following semidefinite program with 10 parameters
and three 5 × 5 linear matrix constraints:

min
_,<0,...,<9

_ such that <0 + <2 + <5 + <9 = 1, A(m) � 0, B(m) � 0,

and

©«

_ <0 − 0 <2 − 1 <5 − 2 <9 − 3
<0 − 0 1 0 0 0
<2 − 1 0 1 0 0
<5 − 2 0 0 1 0
<9 − 3 0 0 0 1

ª®®®®®®®¬
� 0.

If (_∗,m∗) denotes the points achieving this minimum, then (<∗0, <
∗
2, <

∗
5, <

∗
9) is the closest point in C5,:

to p with distance
√
_∗.

4.7 Discussion and open questions

One takeaway from Section 4.2 is that the points on the boundary of C=,: for : ≥ = − 2 correspond
to moment vectors of point evaluations on [0, 1]. However these do not correspond to biologically
meaningful population functions! Similarly, a point in the interior of C=,: can come from several
different population functions, some of which are more biologically plausible than others. One natural
question from this standpoint is how to pick the right population history from the fiber of a coalescence
vector.

Question 4.7.1. Given a point m in the interior of ": (�), how can we find the “best” step function
5 ∈ (: with moment vector m?

Here there is some natural flexibility in the notion of “best”. Ideally it should be biologically plausible
and also easy to compute. For plausibility, it might be reasonable to try to bound or minimize the ratios
H8+1/H8 of consecutive population sizes. One step towards this would be to understand the structure of
the fibers of the moment map `�.

For : = 2 and � = {0, 2, 5}, the (B1, B2)-coordinates of the fibers of some points in "2(�) are shown
below.

To understand the fibers, it may also help to relate the combinatorial structure of the polytope %
(which is a product of two :-dimensional simplices) to the semi-algebraic and combinatorial structure
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Figure 4.8 The central image depicts "2 (�) in yellow. The orange region is "↑(�) and the green region
"↓(�); their union is "1 (�). The triangle above each point depicts the fiber as a subset of the (B1, B2)-simplex.

of ": (�). For example, the boundary of "2({0, 2, 5, 9}), seen in Figure 4.4, comes from some of the
two-dimensional faces of the four-dimensional polytope %.

Question 4.7.2. How does the facial structure of % relate to the algebraic boundary of ": (�)?

Finally, Section 4.6 gives an algorithm for testingmembership in" (�), which coincides with": (�)
for : ≥ |�| − 1. It would be desirable to be able to test membership for smaller : as well.

Question 4.7.3. Is there an effective method to test membership in ": (�) for : < |�| − 1?

These sets are not convex and may have complicated semialgebraic structure (Figure 4.4). One
possibility is the following connection to low rank matrix completion would be interesting to explore
further.

Consider a step function 5 = H11[0,B1 ] +
∑:+1
8=2 H81(B8−1,B8 ] in (: . In a slight abuse of notation, we

define its derivative to be 5 ′ =
∑:
8=1(H8+1 − H8)XB8 , which is a signed weighted sum of delta functions.

For 9 ∈ �, let <′
9
denote the 9 th moment of the signed measure given by 5 ′:

<′9 =

∫ 1

0
G 9 5 ′(G)3G =

:∑
8=1
(H8+1 − H8) (B8) 9 .
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One can check that for any 9 , <′
9
= 5 (1) − 9< 9−1. In particular, we can write differences of consecutive

moments of 5 ′ in terms of moments of 5 , namely <′
9
− <′

9+1 = ( 9 + 1)< 9 − 9< 9−1.
In the case of full moments � = {0, 1, . . . , 3}, this lets us bound the value of : by the rank of the

moment matrix corresponding to the moments of (G − G2) 5 ′(G). Specifically, for m ∈ R�, define the
matrix

M(m) =
(
( 9 + ℓ + 2)< 9+ℓ+1 − ( 9 + ℓ + 1)< 9+ℓ

)
0≤ 9 ,ℓ≤b(3−1)/2c

. (4.9)

Proposition 4.7.4. If for some 5 ∈ (: , < 9 =
∫ 1

0 G 9 5 (G)3G for all 9 , then rank(M(m)) ≤ : .

Proof. As noted above, we can rewrite the ( 9 , ℓ)th entry ofM(m) as

M(m) 9 ,ℓ = ( 9 + ℓ + 2)< 9+ℓ+1 − ( 9 + ℓ + 1)< 9+ℓ = <
′
9+ℓ+1 − <

′
9+ℓ+2 =

:∑
8=1
(H8+1 − H8) (B8 − B2

8 )B
9+ℓ
8
.

This shows thatM(m) is a sum of : rank-one matrices
∑:
8=1(H8+1 − H8) (B8 − B2

8
)E4 (B8)E4 (B8)) , where

4 = b(3 − 1)/2c and E4 (C) = (1, C, C2, . . . , C4)) . ThereforeM(m) has rank ≤ : . �

Note that if the values of H8 are increasing then this is a sum of positive semidefinite rank one
matrices, in which case the rank ofM(m) will equal : , but if the values H8+1 − H8 have different signs,
this might not be the case. Regardless, this suggests the following approach.

Question 4.7.5. Given (<0)0∈� ∈ " (�), when does the following low-rank matrix completion find the
minimum : for which (<0)0∈� belongs to ": (�)?:

Minimize rank(M(m)) such that A(m) � 0, B(m) � 0.

Here A and B are the matrices introduced in Theorem 4.6.1 and the minimization is taken over all
m ∈ R{0,1,...,max(�) } for which m0 = <0 for all 0 ∈ �.

While it seems unlikely that this will always give the correct value, it would be interesting to know
how far off this value might be from the true minimal value of : . We conclude this chapter by a haiku.

Truncated moments,
numerous pre-images.
Fewest steps we seek.
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