
ABSTRACT

GILMORE, STEVEN. Optimal Feedback Strategies of a Debt Management Problem
and Fine Regularity for Nonlocal Balance Laws. (Under the direction of Khai T.
Nguyen and Hien T. Tran.)

Abstract. This dissertation examines the mathematical theory of particular nonlin-
ear and nonlocal partial differential equations and their applications.

In the first section, we introduce a model of optimal debt management in a game-
theoretic setting in which a borrower services a debt by trading bonds, at a discounted
price, with a pool of risk-neutral lenders. The borrower is at risk of going bankrupt at
any given time, and there is a debt threshold at which the borrower is forced to declare
bankruptcy. In this model, the borrower is viewed as a sovereign state who can reduce
the debt by fiscal policy or monetary policy by devaluing their national currency. Both
policies induce social costs, and notably, the currency devaluation negatively affects the
lenders’ confidence in the state’s ability to pay the debt back, causing the bond price
to fall. The resulting optimal control problem to minimize the cost to the borrower
in an infinite time horizon is nonstandard. Indeed, the bond price depends not only
on the current debt level but on all future expected values of the debt. Through
a vanishing viscosity approach, we show that the corresponding Hamilton-Jacobi-
Bellman equations have at least one smooth solution and, as a consequence, optimal
fiscal and monetary policies exist. Moreover, we provide results on the behavior of
the controls near the bankruptcy threshold. More specifically, we provide conditions
under which employing either strategy is non-optimal and, conversely, conditions for
which it is optimal to use both strategies until the point of bankruptcy.

In the second section, we study the fine regularity of the Burgers-Poisson equation;
a nonlinear dispersive balance law derived to model shallow-water waves. In 2015,
existence and uniqueness results to the Cauchy problem for initial data in L1(R) were
provided. Moreover, the entropy weak solution is in BVloc(R) for all positive time
for given initial data. Following recent advancements in the theory of conservation
laws, we show the entropy weak solutions belong to a subset of BV functions, the
space of special functions of bounded variation (SBV). In particular, we prove that the
derivative of a solution consists of only the absolutely continuous part and the jump
part.
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Chapter 1
Introduction

The dissertation is devoted to the mathematical theory of certain nonlinear and
nonlocal partial differential equations and their applications. It can be summarized in
two parts:

(i) we provide a detailed analysis of a system of Hamilton-Jacobi-Bellman equations
arising from a model of optimal debt management with bankruptcy risk.

(ii) we study deeper regularity of the Burgers-Poisson equation, a nonlinear disper-
sive model derived as a simplified model of shallow-water waves.

Chapter 2 introduces necessary preliminary notions related to optimal control
theory, functions of bounded variation, and conservation laws.

Chapter 3 is concerned with a problem of stochastic optimal debt management in
an infinite time horizon, modeled as a noncooperative game between a sovereign state
and a pool of foreign, risk-neutral lenders. We examine and provide well-posedness
results for the following system of Hamilton-Jacobi-Bellman (HJB) equations

(r + ρ(x))V = ρ(x) · B + H(x, V′, p) +
σ2x2

2
·V′′ ,

(r + λ + v(x)) · p− (r + λ) = ρ(x)·[θ(x)− p]

+ Hξ(x, V′, p) · p′ + (σx)2

2
· p′′ .

(1.1)

Here, the independent variable x is the debt-to-income ratio, and V is the value
function for the borrower who is a sovereign state that can decide the devaluation
rate of its currency v and the fraction of its income u which is used to repay the debt.
The national income of the country is governed by a stochastic process and, at each
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time the borrower may go bankrupt with probability determined by an instantaneous
bankruptcy risk ρ. Moreover, the borrower must declare bankruptcy when the debt-
to-income ratio reaches a threshold x∗ > 0. The salvage function θ determines the
fraction of capital that lenders can recover when bankruptcy occurs. To offset the
possible loss of part of their investment, the lenders buy bonds at a discounted rate
p, which is not given a priori. Instead, it is determined by the expected evolution of
the debt-to-income ratio at all future times. Hence, it depends globally on the entire
feedback controls u and v. This framework leads to a highly nonstandard optimal
control problem, and a “solution” must be understood as a Nash equilibrium, where
the strategy implemented by the borrower represents the best reply to the strategy
adopted by the lenders, and conversely.

The optimal debt management problem we study is based on a model first in-
troduced in [66]. Through numerical methods, their analysis concluded that using
currency devaluation is not optimal unless the government is able to make credible
commitments about their future inflation policy. In [15], they performed an analytical
study of a slight variant of the model where no currency devaluation is available to
the government. The authors construct optimal feedback solutions in the stochastic
case and provide an explicit formula for the optimal strategy in the deterministic
case. Their analysis also shows how the expected total cost of servicing the total debt
together with the bankruptcy cost is affected by different choices of x∗. Interestingly,
the possibility of a “Ponzi scheme”, where the old debt is serviced by initiating more
and more new loans, can be ruled out under a natural assumption. In [64], the ana-
lytical study of these models was extended by allowing the possibility of currency
devaluation (as in [66]). They show that if the debt-to-income ratio is sufficiently high,
then every optimal strategy involves employing currency devaluation.

Chapter 3 aims to provide a detailed mathematical analysis of a more general
model of debt and bankruptcy. When the currency devaluation is not an option for
the borrower (v ≡ 0), or the bankruptcy risk

ρ(x) =

0 if x < x∗

+∞ if x = x∗,

our model reduces to the one analyzed in [14] or [64], respectively. We establish an
existence result for the system of Hamilton-Jacobi equations (1.1). In turn, this yields
the existence of a pair of optimal feedback controls (u∗, v∗) which minimizes the
expected cost to the borrower. More precisely, let L : [0, 1[→ [0,+∞[ be the cost for

2



the borrower to implement the control strategy u(·) and let c : [0, vmax[→ [0,+∞[

be a social cost resulting by devaluation, i.e., the increasing cost of the welfare and
of the imported goods. We will assume that L and c are both non-negative, strictly
convex, and L(0) = c(0) = 0. Regarding the bankruptcy risk function ρ, we assume
that ρ ≥ 0 is non-decreasing, ρ(0) = 0, and limx→x∗− ρ(x) = +∞. We assume that the
salvage function θ is non-increasing, positive, and locally Lipschitz. The main result
of Chapter 3 is the following existence result (see Theorem 3.2.1).

Theorem 1 (Capuani, Gilmore, Nguyen [24]). Given the debt-to-income ratio threshold
x∗ > 0 and the functions L, c, ρ and θ satisfying the above assumptions, then the system (1.1)
admits a solution (V, p) of class C2 in [0, x∗]. This implies that an optimal feedback solution
to the related model of debt and bankruptcy exists and is given by

u∗(x) = argmin
w∈[0,1]

{
L(w)− w · V(x)

p(x)

}
, v∗(x) = argmin

v∈[0,vmax]

{
c(v)− vxV′(x)]

}
.

Since ρ goes to +∞ as x tends to x∗, the system (1.1) is not uniformly elliptic at
the boundary x = 0 and x = x∗. To handle this difficulty, we employ the classical idea
of constructing solutions of approximate systems as steady states of corresponding
auxiliary parabolic systems. In order to obtain a solution to the original system (1.1),
we derive explicit a priori estimates on the derivatives of approximate solutions.
Consequently, the devaluation of currency is not optimal when the debt-to-income
ratio x is sufficiently small. In addition, we provide lower and upper bounds for
the value function V as sub-solution and super-solution to the first equation of (1.1).
Relying on these bounds, we show that (see Corollary 3.3.2) when x is sufficiently
close to x∗

• if the risk of bankruptcy ρ slowly approaches to infinity as x tends to x∗, i.e.,

∫ x∗

x∗−δ
ρ(t) dt < +∞ f or some δ > 0,

then the optimal strategy of borrower involves continuously devaluating its currency
and making payments;

• conversely, if the risk of bankruptcy ρ quickly approaches to infinity as x tends to x∗, i.e.,

lim
x→x∗−

ρ(x)(x∗ − x)2 = + ∞,

then any action to reduce the debt is not optimal.
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In Chapter 4, we study the fine regularity of a nonlinear dispersive equation, called
the Burgers-Poisson equation, which is obtained from the Burgers equation by adding
a nonlocal source term

ut +

(
u2

2

)
x

= [G ∗ u]x

where G(x) = − 1
2 e−|x| and [G ∗ u] (·) solves the Poisson equation

ϕxx − ϕ = u .

First derived in [80], the Burgers-Poisson equation has been used to model shallow-
water waves. Solutions have been shown to exhibit wave-breaking in finite time with
smooth initial data. Therefore, we will consider solutions in the weak (distributional)
sense.

Based on the vanishing viscosity approach, the existence result for a global weak
solution was provided for u0 ∈ BV(R) in [44]. However, this approach cannot be
applied to the more general case with initial data in L1(R). Moreover, there are no
uniqueness or continuity results for global weak entropy solutions of (4.1) established
in [44]. More recently, the existence and continuity results for global weak entropy
solutions of (4.1) were established for L1(R) initial data in [53]. The entropy weak
solutions are constructed by a flux-splitting method. Relying on the decay properties
of the semigroup generated by Burgers equation and the Lipschitz continuity of
solutions to the Poisson equation, approximating solutions satisfy an Oleinik-type
inequality for any positive time. As a consequence, the sequence of approximating
solutions is precompact and converges in L1

loc(R). Moreover, using an energy estimate,
they show that the characteristics are Hölder continuous, which is used to achieve
the continuity property of the solutions. The Oleinik-type inequality gives that the
solution u(t, ·) is in BVloc(R) for every t > 0. In particular, this implies that the Radon
measure Du(t, ·) is divided into three mutually singular measures

Du(t, ·) = Dau(t, ·) + Dju(t, ·) + Dcu(t, ·)

where Dau(t, ·) is the absolutely continuous measure with respect to the Lebesgue
measure, Dju(t, ·) is the jump part which is a countable sum of weighted Dirac
measures, and Dcu(t, ·) is the non-atomic singular part of the measure called the
Cantor part. For a given w ∈ BVloc(R), the Cantor part of Dw does not vanish in
general. A typical example of Dcw is the derivative of the Cantor-Vitali ternary
function. If Dcw vanishes, then we say the function w is locally in the space of special
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functions of bounded variation, denoted by SBVloc(R). The space of SBV functions was
first introduced in [37] and plays an important role in the theory of image segmentation
and variational problems in fracture mechanics. Motived by results on SBV regularity
for hyperbolic conservation laws ([4, 73, 11, 63]), we show the following (see Theorem
4.0.1).

Theorem 2 (Gilmore, Nguyen [52]). Let u : [0, ∞[×R → R be the unique BVloc weak
entropy solution of (4.1) with initial data u0 ∈ L1(R). Then there exists a countable set
T ⊂ R+ such that

u(t, ·) ∈ SBVloc(R) ∀t ∈ R+ \ T .

As a consequence, the slicing theory of BV functions and the chain rule of Vol’pert
[5] implies that the weak entropy solution u is in SBVloc([0,+∞[×R). This result is
the first example showing that solutions to a scalar conservation law with a nonlocal
source term possess SBV regularity. A common theme in the proofs of recent results
on SBV regularity involves an appropriate geometric functional which has certain
monotonicity properties and jumps at time t if u(t, ·) does not belong to SBV (see
e.g., [4]). More precisely, let J (t) be the set of jump discontinuities of u(t, ·). For each
xj ∈ J (t), there are minimal and maximal backward characteristics ξ−j (s) and ξ+j (s)
emanating from (t, xj) which define a nonempty interval Ij(s) := ]ξ−j (s), ξ+j (s)[ for any
s < t. In this case, the functional Fs(t) defined as the sum of the measures of Ij(s) is
monotonic and bounded. Relying on a careful study of generalized characteristics, we
show that if the measure Du(t, ·) has a non-vanishing Cantor part, then the function
Fs jumps up at time t which implies that the Cantor part is only present at countably
many t. Due to the nonlocal source, u(t, ·) does not necessarily have compact support.
Thus, we approach the domain by first looking at compact sets and then “glue” the
sections together to recover the full domain.
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Chapter 2
Preliminaries and Notation

Let us define some notation used throughout the remaining chapters and recall some
preliminary background.

2.1 Notation

Throughout the paper we shall denote by

• For any Ω ⊂ RN, denote by ∂Ω the boundary of Ω;

• Bρ(z), the open ball of radius ρ and center z

• L1(R), the Lebesgue space of all (equivalence classes of) summable functions on
R, equipped with the usual norm ‖ · ‖L1 ;

• L∞(R), the space of all essentially bounded functions on R, equipped with the
usual norm ‖ · ‖L∞ ;

• C∞
c (R), the space of all C∞-functions with compact supports.

• supp u, the essential support of a function u ∈ L∞(R)

• BV(Ω), the space of functions of bounded variations in Ω;

• SBV(Ω), the space of special functions of bounded variation in Ω;

• HN, the N-dimensional Hausdorff measure;

• LN, the N-dimensional Lebesgue measure;

• R+, the positive real numbers ([0,+∞[);
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2.2 Optimal Control Theory

Given a compact set U ⊂ Rm, consider the time evolution of a control systemẋ(t) = f (x, u)

x(0) = x0 ∈ RN
(2.1)

where x : R+ → RN is the state variable, u : R+ → U ⊂ Rm is the control variable,
and f : RN ×U → RN is the dynamics. We denote by

Uad =
{

u : R+ → U ⊂ Rm : u is measurable
}

.

the set of admissible controls. To guarantee local existence and uniqueness of solutions,
we assume f is Lipschitz continuous with respect to x and continuous with respect to
u. Given x0 ∈ RN and u ∈ Uad, a trajectory is a solution of (2.1), which will be denoted
by yx0,u(·). There are two main ways to assign a control u:

(i) As a function of time: t 7→ u(t). We say u is an open loop control.

(ii) As a function of the state: x 7→ u(x). We say u is an feedback control.

We will consider optimal control problems, where we seek to find a control u(·) ∈ Uad

which is optimal with respect to a given cost function. For example, consider a problem
in an infinite horizon with exponential discount with the cost functional

J[u, x0] =
∫ ∞

0
e−λt · L(yx0,u(t), u(t)) dt .

Here λ > 0 is the discount rate and L : RN ×U → R+ is the running cost. Necessary
conditions for optimality were derived by Pontryagin, Boltyanskii, and Gamkrelidze
[70] through the methods of calculus of variations. An in-depth discussion of Pon-
tryagin’s Maximum principle can be found in [46]. At the same time, Bellman was
developing the method of Dynamic Programming [9]. Through this different approach,
sufficient conditions for optimality can be phrased in terms of a solution of a partial
differential equation. Define the value function V by

V(x0) = inf
u∈Uad

∫ ∞

0
e−λt · L(yx0,u(t), u(t)) dt (2.2)

subject to (2.1). The fundamental idea of dynamic programming is that V satisfies a
functional equation called the Dynamic Programming Principle.
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Proposition 2.2.1. Suppose that L is a continuous function in both variables. Given x0 ∈ RN

and τ > 0 it holds that

V(x0) = inf
u∈Uad

{∫ τ

0
e−λs · L(yx0,u(s), u(s)) ds + e−λτV(yx0,u(τ))

}
.

τt = 0

x0 yx0,u(τ)

Figure 2.1 The dynamic programming principle yields that the optimization problem on
[0,+∞[ can be decomposed into two sub-problems, on the time intervals [0, τ] and [τ,+∞[.

In the standard theory, an infinitesimal version of the Dynamic Programming
Principle is derived in the form of a first-order nonlinear partial differential equation
satisfied by V, called the Hamilton-Jacobi-Bellman equation. In general, the value function
arising from dynamic optimization problems may be non-smooth. The theory of
viscosity solutions, introduced in [32] and [33], provides a framework for studying V
in the sense of viscosity solutions (see e.g., [23],[25],[8]). Here we present a simple case
assuming that V is differentiable.

Corollary 2.2.2. Suppose that V is differentiable at a point x ∈ RN. Then V is a solution of
the following Hamilton-Jacobi-Bellman equation

λV(x) = H(x,∇V) (2.3)

8



with the Hamiltonian H(x, p) given by

H(x, p) = min
w∈U
{L(x, w) + p · f (x, w)} .

The proof is standard and can be found in, e.g., [8]. If V(·) is known, then the optimal
control, in feedback form, can be recovered by solving the minimization problem

u∗(x) ∈ arg min
w∈U

{L(x, w) +∇V(x) · f (x, w)} .

where x is determined by (2.1).

Remark 2.2.3. We examine a special case where L(x, u) = L(u), L is convex and

lim
|q|→∞

L(q)
|q| = + ∞ .

In that case, it can be shown that V is Lipschitz continuous and by Rademacher’s
theorem (see e.g., [40], [5], [42]) is differentiable a.e and thus, satisfies (2.3) a.e.

2.3 Stochastic Optimal Control

For a thorough background in stochastic differential equations, we direct the reader
to [68], and for stochastic optimal control, see [46],[45],[47].

Definition 2.3.1 (Itô process). Let (Ω,F , P) be a probability space. Let w(t) be a
Brownian motion process. Given functions µ(x, t) and σ(x, t), a (1-dimensional) Itô
process is a stochastic process x(t) on (Ω,F , P) of the form

x(t) = x(0) +
∫ t

0
µ(x(t)) ds +

∫ t

0
σ(x(t)) dw(s) . (2.4)

such that
P
[∫ t

0
σ(s, x)2 ds < +∞, ∀t ≥ 0

]
= 1 .

For an Itô process of the form (2.4), the differential form is often used

dx = µ(x(t)) dt + σ(x(t)) dw . (2.5)

We say x(t) is a strong solution of (2.5) if, for all t > 0 the integrals
∫ t

0 µ(x(s)) ds and∫ t
0 σ(x(s)) ds exist and (2.4) is satisfied. It’s possible to establish an Itô integral version

of the chain rule, called the Itô formula (see, e.g. [68, Theorem 4.1.2] or [46, § 5 (3.9)])
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Theorem 2.3.2 (Itô formula). Let x(t) in (2.5) be an Itô process. Let g(t, x) ∈ C2(R+×R).
Then Y(t) = g(t, x(t)) is again an Itô process and

dY =
∂g
∂t

(t, x(t)) dt +
∂g
∂x

(t, x(t)) dx +
1
2

∂2g
∂x2 (t, x(t)) · σ(x(t))2 dw

Definition 2.3.3 (Itô diffusion). A (time-homogeneous) Itô diffusion is a stochastic
process x(t) satisfying a stochastic differential equation of the form

dx = µ(x(t)) dt + σ(x(t)) dw, t ≥ s, x(0) = x0 ∈ R (2.6)

where w(t) is a m-dimensional Brownian motion and µ : Rn 7→ Rn, σ : Rn 7→ Rn×m

satisfy
|µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ D|x− y|, x, y ∈ Rn

for some constant D and where |σ|2 = ∑ |σij|2.

It is fundamental for many applications that we can associate a second order partial
differential operator A to an Itô diffusion x(t). The basic connection between A and
x(t) is that A is the generator of the process x(t):

Definition 2.3.4. Let x(t) be a time-homogeneous Itô diffusion in Rn. The generator A
of x(t) is defined by

A f (x) = lim
t↓0

E [ f (x(t))]− f (y)
t

, x ∈ Rn .

We denote by DA the set of functions for which the limit exists for all x ∈ Rn.

The relation between A and the functions µ and σ in the stochastic differential equation
(2.6) is given by the following result (see [68, Theorem 7.3.3]).

Theorem 2.3.5. Let x(t) be the Itô diffusion in (2.6). If V ∈ C2
0(R

n) then f ∈ DA and

AV(x) =
N

∑
i

µi(x)
∂V
∂xi

+
1
2

N

∑
i,j=1

(σσT)ij(x)
∂2V

∂xi∂xj
.

The Feynman-Kac formula gives a fundamental link between PDEs and stochastic
processes. It offers a method for solving PDEs by simulating random paths of a
stochastic process and, conversely, computing expectations of random processes by
deterministic methods (see, e.g., [68, Theorem 8.2.1]).
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Theorem 2.3.6 (Feynman-Kac formula for boundary value problems). Let x(t) be
an Itô diffusion on Rn whose generator coincides with a given diffusion operator A. Let
D ⊂ Rn and let q(x) ≥ 0 be a continuous function on Rn. Consider the problem of finding
W ∈ C2(D) ∩ C(D) such that W solvesAh(x)− q(x)W(x) = − g(x), in D

limx→y W(x) = ϕ(y), on ∂D .

Then if a solution exists, it satisfies the following conditional expectation

W(x) = E
[∫ τ

0
e−
∫ t

0 q(x(s)) dsg(x(t)) dt + e−
∫ τ

0 q(x(s)) ds ϕ(Xτ)

]
.

In the deterministic optimal control setting, controls can be taken in either open loop
or in feedback form. In general, these controls do not differ since the state of the
system at any time t can be solved for from the initial data and the control used up
to time t. In the stochastic case, there are many paths the system state may follow
given a control and initial data. Hence, the optimal state depends on the information
available to the controller at each time. For that reason, we will focus on controls in
feedback form. Consider the stochastic process

dx = µ(x(t), u(t)) dt + σ(x(t), u(t)) dw, x(0) = x0 (2.7)

where u ∈ Uad is an admissible (progressively measurable-valued in U) control
considered in the feedback sense: u(t) = u [x(t)]. We consider a cost functional

J(x0, u) = E
[∫ ∞

0
e−
∫ t

0 q(x(s))dsL(x(t), u(t)) dt
]

, (2.8)

where the running cost L : R×U 7→ R is a continuous function and q(x) > 0 is a
continuous function representing variable discount rate. The optimal problem is to
find a feedback control u∗ which minimizes (2.8). Let the value function be defined as

V(x) = inf
u∈Uad

J(x, u)

For a feedback control u, let Au be the generator of x(t), i.e., the second order
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differential operator associated with the SDE (2.7),

AuV =
N

∑
i

µi(x, u)
∂V
∂xi

+
1
2

N

∑
j=1

(σσT)ij(x, u)
∂V

∂xi∂xj

Let us assume that Ω is bounded. In this case, the dynamic programming equation
(HJB equation) takes the form of a second-order nonlinear PDE with given boundary
conditions q(x)V = H(x,∇xV) + AuV, x ∈ Ω

V(x) = g(x) , x ∈ ∂Ω ,
(2.9)

where the Hamiltonian is given by

H(x, p) = inf
v∈U

[µ(x, v) · p + L(x, v)] . (2.10)

If there exists a c > 0 such that

n

∑
i,j=1

(σσT)ij(x, v)ξiξ j ≥ c|ξ|2 (2.11)

for all ξ ∈ Rn and v ∈ U, then the HJB equation is called uniformlly elliptic. In that
case, one may expect (2.9) to have a smooth solution, which is unique if Ω is bounded.
When (2.11) does not hold, the HJB equation is of degenerate elliptic type and one can
not expect smooth solutions to (2.9) in general. The following verification theorem [47,
Theorem 5.1] is an analog to the dynamic programming principle in the deterministic
case.

Theorem 2.3.7 (Verification theorem). Let V(x) ∈ C2(Ω) ∩ C(Ω̄) be a solution to the
stochastic Hamilton-Jacobi-Bellman equations (2.9). Then for every x ∈ Ω, it holds that

(a) V(x) ≤ J(x, u) for any admissible feedback control u.

(b) If u∗ is an admissible feedback control such that

Au∗V + L(y, u∗) = min
w∈U

[AwV + L(x, w)] ∀y ∈ Ω

then u∗ is optimal.
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2.4 Measure Theory

We proceed by defining the crucial concepts of geometrical measure theory without
rigorously providing the foundations of abstract measure theory (see, e.g., [42], [43]
for full background).

Definition 2.4.1. (a) Let µ be a positive measure and ν a real of vector measure on
the measure space (X, E). We say that ν is absolutely continuous with respect to µ and
write ν� µ, if for every B ∈ E the following holds:

µ(B) = 0 =⇒ |ν|(B) = 0 .

(b) If µ, ν are positive measures, we say they are mutually singular and write ν ⊥ µ, if
there exists E ∈ E such that µ(E) = 0 and ν(X \ E) = 0 ; if µ or ν are real or vector
valued, we say that they are mutually singular if |µ| and |ν| are so.

We consider Radon measures, which are compatible with the topology of the space.
The Lebesgue measure coincides with the notion of n-dimensional volume.

Definition 2.4.2 (Radon Measure). Let X be a locally convex space (l.c.s.) metric space,
B(X) its Borel σ-algebra, and consider the measure space (X,B(X)). A set function
defined on the relatively compact Borel subsets of X that is a measure on (K,B(K))
for every compact set K ⊂ X is called a Radon measure on X. If µ : B(X) 7→ Rm is a
measure, we say that µ is a finite Radon measure.

Definition 2.4.3 (Lebesgue measure). Let Qr(x) =
{

y ∈ RN : maxi |xi − yi| < r
}

be
the open cube with side 2r centered at x. Then the outer measure µ defined by

µ(E) = inf

{
∞

∑
h=0

(2rh)
N : E ⊂

∞⋃
h=0

Qrh(xh)

}
, E ⊂ RN

is the Lebesgue outer measure denoted by LN.

The following result provides a way to express the relationship between two measures.

Theorem 2.4.4 (Radon-Nikodým). Let µ, ν be absolutely continous measures and assume µ

is σ-finite. Then there is a unique pair of Rm valued measures νa,νs such that νa � µ, νs ⊥ µ,
and ν = νa + νs. Moreover, there is a unique function f ∈ [L1(X, µ)]m such that νa = f µ.

The Besicovitch covering theorem (see, e.g., [5, Theorem 2.18]) gives a control on the
possible overlapping of countable subfamilies of an arbitrary cover of closed balls.
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Theorem 2.4.5 (Besicovitch covering). Let A ⊂ RN be a bounded set, and ρ : A 7→]0,+∞[.
Then, there is a set S ⊂ A, at most countable, such that

A ⊂
⋃
x∈S

Bρ(x)(x)

and every point of RN belongs at most to ξ balls Bρ(x)(x) centered at points of S.

The following Besicovitch derivation theorem (see [5, Theorem 2.22]) compares the
density of a vector-valued Radon measure ν with respect to a positive Radon measure
µ through a passage to the limit in the quotient between the measures of smaller and
smaller balls. It is strictly related to the Radon-Nikodỳm theorem. In particular, it
gives a concrete representation of the density ν/µ. It is an important tool to assist in
deducing global properties of a measure from local properties.

Theorem 2.4.6 (Besicovitch derivation theorem). Let µ be a positive Radon measure in an
open set Ω ⊂ RN and ν an Rm-valued Radon measure. Then, for µ-a.e. x in the support of µ,
the limit

f (x) := lim
ρ↓0

ν(Bρ(x))
µ(Bρ(x))

exists in Rm. Moreover, the Radon-Nikodỳm decomposition of ν is given by ν = f µ + νs,
where νs = ν E and E is the µ-negligible set

E = (Ω \ supp µ) ∪
{

x ∈ supp µ : lim
ρ↓0

|ν|(Bρ(x))
µ(Bρ(x))

}
We recall the notion of convolutions and Sobolev spaces (see [18]).

Definition 2.4.7 (Convolution). Let µ be an Rm-valued Radon measure in an open set
Ω ⊂ RN. If f is a continuous function, then we call the function

[µ ∗ f ](x) :=
∫

Ω
f (x− y)dµ(y)

the convolution between f and µ whever this makes sense.

Definition 2.4.8 (Weak derivatives). Let Ω ⊂ RN be an open set and let u ∈ L1
loc(Ω).

If there is a g ∈ L1
loc(Ω) such that for i ∈ {1, . . . , N},

∫
Ω

u
∂φ

∂xi
dx = −

∫
Ω

φg dx, ∀φ ∈ C∞
c (Ω)

14



then we say that u has a weak i-th derivative given by g. If the weak derivative exists
then, it is unique and is denoted by Diu.

The weak derivatives coincide with the classical ones if u ∈ C1(Ω). The following
spaces are used when working with functions and their weak derivatives.

Definition 2.4.9 (Sobolev spaces). Let Ω ⊂ RN be an open set, and p ∈ [1, ∞[. We say
that u ∈Wk,p if u ∈ Lp(Ω) and has weak derivatives up to order k in Lp(Ω) for every
i ∈ {1, . . . , N}.

Let Ω ⊂ R. We recall that Wk,p(Ω) becomes a Banach space p ∈ [1, ∞[ when endowed
with the norm defined by

‖u‖Wk,p(Ω) =

(
k

∑
i=0
‖Dαu‖p

Lp

)1/p

.

When p = 2, Wk,p becomes a Hilbert space. We will adapt the notation that Hk(Ω) =

Wk,2(Ω).

2.5 Functions of Bounded Variation

We recall some notions of functions of bounded variation and present results that
have applications to the field of conservation laws. Throughout this section, let Ω be a
generic open set in RN.

Definition 2.5.1. Let u ∈ L1(Ω); we say u is a function of bounded variation in Ω
(denoted by u ∈ BV(Ω)) if u ∈ L1(Ω) and the distributional derivative of u is
representable by a finite Radon measure Du on Ω, i.e.,

−
∫

Ω
u · ∂ϕ

∂xi
dx =

∫
Ω

ϕ dDiu ∀ϕ ∈ C∞
c (Ω), i = 1, . . . , N

Moreover, u is of locally bounded variation on Ω (denoted by u ∈ BVloc(Ω)) if u ∈ L1
loc(Ω)

and u is in BV(U) for all U ⊂⊂ Ω.

Definition 2.5.2 (Total Variation). Given u ∈ L1(Ω), the total variation of u in Ω is
defined as

V(u, Ω) := sup
{∫

Ω
u(x)∇ · ϕ(x) dx : ϕ ∈ C1

c (Ω), ‖ϕ‖L∞(Ω) ≤ 1
}

.
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Some useful properties of the variation of u are listed in the following proposition,
including an alternative definition of the space BV (see, e.g., [5, Proposition 3.6]).

Proposition 2.5.3. Let u ∈ L1(Ω). Then the space of functions of bounded variation (BV)
can be defined as

BV(Ω) =
{

u ∈ L1(Ω) : V(u, Ω) < +∞
}

.

In addition, V(u, Ω) coincides with |Du|(Ω) for any u ∈ BV(Ω) and u 7→ |Du|(Ω) is
lower semicontinuous in BV(Ω) with respect to the L1

loc(Ω) topology.

Remark 2.5.4. It holds by definition that W1,1(Ω) ⊂ BV(Ω) ⊂ L1(Ω). The space BV(Ω)

endowed with the norm

‖u‖BV :=
∫

Ω
|u| dx + |Du|(Ω)

is a Banach space, but the norm-topology is too strong for many applications.

Definition 2.5.5. Let u ∈ [L1
loc(Ω)]m; we say that u has an approximate limit at x ∈ Ω if

there exists z ∈ Rm such that

lim
ρ→0+

−
∫

Bρ(x)
|u(y)− z| dy = 0 . (2.12)

The set Su of points where u does not have an approximate limit is called the approxi-
mate discontinuity set. For any x ∈ Ω \ Su, the vector z, uniquely determined by (2.12),
is called the approximate limit of u at x. We say that x is an approximate jump point of u if
there exists a, b ∈ Rm and ν ∈ SN−1 such that a 6= b and

lim
ρ→0+

−
∫

B+
ρ (x)
|u(y)− a| dy = 0, lim

ρ→0+
−
∫

B−ρ (x)
|u(y)− b| dy = 0 . (2.13)

The set of approximate jump points is denoted by Ju.

For any u ∈ BV(Ω), we write Du = Dau + Dsu where Dau is the absolutely
continuous part of Du and Dsu is the singular part of Du (both with respect to LN),
as provided by the Radon-Nikodým Theorem (Theorem 2.4.4). Relying on the notions
of approximate jump points, we denote the following two measures.

Definition 2.5.6. For any u ∈ BV(Ω) the measures

Dju := Dsu Ju, Dcu := Dsu (Ω \ Su)
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are called respectively the jump part of the derivative and the Cantor part of the
derivative.

The following theorem compares |Du| with HN−1 and shows, in particular, that |Du|
vanishes on any HN−1-negligible set (see [5, Lemma 3.76]).

Theorem 2.5.7. Let u ∈ BV(Ω). Then, for any Borel set B ⊂ Ω, it holds that

HN−1(B) = 0 =⇒ |Du|(B) = 0 .

Due to Federer and Vol’pert, see for example [5, Theorem 3.78], the discontinuity
set Su is countably HN−1-rectifiable and HN−1(Su \ Ju) = 0. Hence, Du vanishes on
(Su \ Ju) and we obtain the following decomposition of Du

Du = Dau + Dju + Dcu .

We will make use of the following properties of Dju and Dcu, stated in 1-dimension.

Proposition 2.5.8. Let Ω ⊂ R, u ∈ BV(Ω) and denote by

S =

{
t ∈ Ω : lim

δ→0

|Du|(t− δ, t + δ)

|δ| = +∞
}

and A = {t ∈ Ω : Du({t}) 6= 0} .

Then, the jump and Cantor parts of Du can be obtained as the following restrictions:

Dju = Dsu|A and Dcu = Dsu|S\A .

Moreover, the Cantor part Dcu vanishes on any sets which are σ-finite with respect to H0, i.e.,

|Dcw|(E) = 0 ∀ Borel set E with H0(E) < +∞ .

We present a simplified version of [5, Theorem 3.108], which shows that the Cantor
part of the derivative can be recovered from the corresponding parts of the derivatives
of their restrictions.

Theorem 2.5.9. Let u(x, y) ∈ BV(R2) then ux(y) = u(x, y) is in BV for almost every
x ∈ R. Moreover, for any Ω ⊂ R2 it holds that

Dc
yu(Ω) =

∫
R

Dcux(Ωx(y)) dy where Ωx(y) = {x ∈ R : (x, y) ∈ Ω}

and Dc
y is the distributional derivative of Dcu along (0, 1).
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Furthermore, we have the following structure result (see e.g. [5, Theorem 3.28])

Proposition 2.5.10. Let Ω ⊆ R and w ∈ BV(Ω). Then, for any x ∈ Aw, the left and right
hand limits of w(x) exist and

Djw = ∑
x∈Aw

(w(x+)− w(x−)) δx ,

where w(x±) denote the one-sided limits of w at x. Moreover, Dcw vanishes on any sets which
are σ-finite with respect to H0.

Of particular note to the Chapter 4, is the space SBV.

Definition 2.5.11. We way that u ∈ BV(Ω) is a special function with bounded variation
(denoted by u ∈ SBV(Ω)) if the Cantor part of its derivative Dcu is zero.

The space SBV(Ω) is a proper subspace of BV(Ω) if Ω ⊂ R. A classic example of a
function in BV(Ω) \ SBV(Ω) is the Cantor-Vitali function, where Ω = (0, 1).

Lastly, in order to derive bounds on the support of solutions to balance laws in
terms of the L1 norm of their initial data, we will use the following proposition (see
e.g., [6, Lemma 3]).

Proposition 2.5.12. Given v ∈ BV(R), compactly supported such that, for some constant
B > 0,

Dv ≤ B (2.14)

in the sense of measures, then it holds that

‖v‖L∞ ≤
√

2B ‖v‖L1

Proof. Consider ρ ∈ C∞
0 (R) such that ρ ≥ 0 and

∫
R

ρ = 1. Defining the mollifier
ρε(x) .

= 1
ε ρ( x

ε ) for any ε > 0 and the approximation

vε
.
= ρε ∗ v .

Since v satisfies (2.14), by stand properties of convolutions and the integration-by-parts
formula for BV functions, it holds that

v′ε − B = ρ′ε ∗ v− ρε ∗ B = ρε ∗ (Dv− B) ≤ 0.

18



It can be shown that (see, e.g. [6]) for vε ∈ C∞
0 ,

v′ε ≤ B =⇒ ‖vε‖L∞ ≤
√

2B ‖vε‖L1 .

Hence, by taking ε→ 0+, we have

‖v‖L∞ ≤
√

2B ‖v‖L1 ,

which completes the proof.

2.6 Scalar conservation laws

We recall some of the theory and results for a scalar conservation law. In particular, let
u : [0,+∞[×R→ R be some conserved quantity and consider the Cauchy problem

ut + f (u)x = 0 (2.15)

u(0, ·) = u0(·) (2.16)

assuming the flux f : R→ R is locally Lipschitz continuous and the initial data u0 is
in L1

loc(R). A feature of nonlinear systems of the form (2.15) is that, as the following
example (see, e.g. [13]) shows, solutions are not necessarily continuous, and thus the
notion of solution needs to be extended beyond classical, smooth solutions.

Example 2.6.1. We consider the following Cauchy problem for Burgers equation
ut +

(
u2

2

)
x

= 0

u(0, x) =
1

1 + x2 .

For t > 0 small, the solution can be found using the method of characteristics. Indeed, if u is
smooth, then the conservation law is equivalent to

ut + uux = 0 ,

and u must be constant along the characteristic lines in the t− x plane:

t 7→ (t, x + tū(x)) =

(
t, x0 +

t
1 + x2

0

)
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When t < T := 8/
√

27, these lines do not intersect and the solution to the Cauchy problem is
given implicitly by

u
(

t, x +
t

1 + x2

)
=

1
1 + x2 .

When t > T, the characteristic lines intersect and the above equation no longer defines a single
valued solution. The solution can be prolonged for t > T only within a class of discontinuous
functions.

u(·, 0)

u(·, T )

x

Figure 2.2 As seen in Example 2.6.1, a scalar conservation law may have discontinuous
solutions even with smooth initial data.

To account for possible discontinuities in solutions, it is necessary introduce the
concept of weak solutions.

Definition 2.6.2 (Distributional solution). Given an open set Ω ∈ R×R, a measurable
function u : Ω 7→ R is a distributional solution (2.15) if, for every C1 function φ : Ω 7→ R

with compact support, it holds that∫ ∫
Ω
{uφt + f (u)φx} dx dt = 0 .

Remark 2.6.3. A function u ∈ C1 is a classical solution of (2.15) if and only if u a
distributional solution of (2.15).

Definition 2.6.4 (Distributional solution of Cauchy problem). Given an initial con-
dition u(0, x) = u0(x) ∈ L1

loc(R), we say that a function u : [0, T] × R 7→ R is a
distributional solution to the Cauchy problem (2.15)-(2.16) if

∫ T

0

∫ ∞

−∞
uϕt + f (u)ϕx dxdt +

∫ ∞

−∞
u0(x)ϕ(0, x) dx = 0 .
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It is standard to consider a stronger concept of solution, requiring the continuity
of u as a function of time, with values into L1

loc(R)

Definition 2.6.5 (Weak solution of Cauchy problem). Given an initial condition
u(0, x) = u0(x) ∈ L1

loc(R), we say that a function u : [0, T] × R 7→ R is a weak
solution to the Cauchy problem (2.15)-(2.16) if

(i) the map t 7→ u(t, ·) is continuous with values in L1(R), i.e.,

‖u(t, ·)− u(s, ·)‖L1(R) ≤ L · |t− s| ∀0 ≤ s ≤ t

for some constant L > 0;

(ii) the initial condition (2.16) holds;

(iii) the restriction of u to the open strip ]0, T[×R is a distributional solution of (2.15)

Remark 2.6.6. Every weak solution is also a solution in the distributional sense to the
Cauchy problem (2.15)-(2.16).

With the goal of finding a necessary condition for u to be a weak solution, we
define the following characterization of discontinuities of u.

Definition 2.6.7. A function u ∈ L1
loc(R

+ ×R) has an approximate jump discontinuity
at (t̄, x̄) if there exists u±, λ ∈ R with

U(t, x) :=

u+ x > λt

u− x < λt
(2.17)

such that the following holds

lim
r→0

1
r2

∫ r

−r

∫ r

−r
|u(t̄ + t, x̄ + x)−U(t, x)| dx dt = 0

Using this notion of discontinuity, one can show [13, Theorem 4.1] that a necessary
condition for u to be a weak solution for a given conservation law is given by:

Proposition 2.6.8 (Rankine-Hugoniot Condition). Let u be a bounded distributional
solution of (2.15). If u has an approximate jump at (t̄, x̄) then

λ =
f (u+)− f (u−)

u+ − u−
(2.18)
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t

x = λt

Ω
+

Ω
−

n
+

n
−

Figure 2.3 In the derivation of the Rankine-Hugoniot condition, the domain is split into two
parts and solutions of the conservation law are considered in the distributional sense. The
Rankine-Hugoniot condition must hold on the boundary between Ω+ and Ω−.

In general, the concept of a weak solution does not guarantee uniqueness. Indeed, in
the following example, there are infinitely many possible weak solutions that satisfy
the necessary condition (2.18).

Example 2.6.9. Consider the following Cauchy problem for Burgers equation
ut +

(
u2

2

)
= 0

u(0, x) =

0 x < 0

1 x ≥ 0 .

For every α ∈ [0, 1], each solution candidate

uα(t, x) =


0, x < α

2 t

α, α
2 t < x ≤ α+1

2 t

1, x > α+1
2 t

satisfies (2.18) and hence there are infinitely many weak solutions to the Cauchy problem.

To advance the well-posedness theory, it is necessary to look for admissibility conditions
which single out a unique solution. The goal of these conditions is to find the solution
which is most physically relevant.

For the scalar case, it is standard to consider entropy admissible solutions, in the
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sense of Kruzkov, which guarantees the uniqueness of a solution.

Definition 2.6.10 (Kruzkov entropy solutions). A function u ∈ L∞(]0, T[×R, R) is a
weak entropy solution of (2.15) if u satisfies the following

(i) the map t 7→ u(t, ·) is continuous with values in L1(R), i.e.,

‖u(t, ·)− u(s, ·)‖L1(R) ≤ L · |t− s| ∀0 ≤ s ≤ t

for some constant L > 0.

(ii) For any k ∈ R and any non-negative test function φ ∈ C1
c (]0, ∞[×R, R) one has∫ ∫ [

|u− k|φt + sign(u− k) ( f (u)− f (k)) φx

]
dx dt ≥ 0 . (2.19)

In particular, (2.19) implies that u is a distributional solution of (2.15). From (2.19),
we can derive a geometric condition, valid on each line of discontinuity of u (see [13,
Theorem 4.4]).

Theorem 2.6.11. The piecewise constant function U defined in (2.17) is a weak entropy
solution of (2.15) if and only if the Rankine-Hugoniot condition (2.18) holds and for every
α ∈ [0, 1] it holds that f (αu+ + (1− α)u−) ≥ α f (u+) + (1− α) f (u−), if u− < u+ ,

f (αu+ + (1− α)u−) ≤ α f (u+) + (1− α) f (u−), if u− > u+ .
(2.20)

The conditions (2.20) have a geometric interpretation. When u− < u+, the graph of f
should remain above the secant line. When u− > u+, the graph of f should remain
below the secant line.

Remark 2.6.12. The condition (2.20) can be written as a stability condition:

f (u∗)− f (u−)
u∗ − u−

≥ f (u+)− f (u∗)
u+ − u∗

(2.21)

for every u∗ = αu+ + (1− α)u−, with α ∈]0, 1[.

• In the case where f ′′ ≥ 0, (2.21) is equivalent to

f ′(u−) ≥ f (u+)− f (u−)
u+ − u∗

≥ f ′(u+) , (2.22)

which is known as the Lax condition (see [59] and [60]).
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Figure 2.4 Consider a line of discontinuity x = γ(t). The Lax condition requires that char-
acteristics on both sides of the jump run towards the line of discontinuity. This situation is
exhibited on the left figure. On the other hand, in the solutions constructed in Example 2.6.9
(right figure), neither of the shocks satisfy the admissiblity condition.

• In the case where f ′′ > 0, (2.21) is equivalent to both (2.22) and u− > u+.

Characteristics associated with classical, Lipschitz solutions provide a principal
tool of the theory to understand those solutions. Dafermos [35] extends the notion of
characteristics to the framework of weak solutions through differential inclusions [36].

Definition 2.6.13. For any (t, x) ∈ ]0,+∞[×R, an absolutely continuous curve ξ(t,x)(·)
is called a

(a) backward characteristic curve starting from (t, x) if it is a solution of the differential
inclusion

ξ̇(t,x)(s) ∈
[
u
(

s, ξ(x,t)(s)+
)

, u
(

s, ξ(t,x)(s)−
) ]

a.e. s ∈ [0, t] (2.23)

with ξ(t,x)(t) = x.

(b) forward characteristic curve if s ∈ [t,+∞[ in (2.23), here denoted by ξ(t,x)(·).

The characteristic curve ξ is called genuine if u(t, ξ(t)−) = u(t, ξ(t)+) for almost every
t.

Admissible weak solutions of (2.15) possess L1 stability and L∞ monotonicity
properties [36][Theorem 6.2.3].
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Theorem 2.6.14. Let u and ũ be admissible weak solutions of (2.15) with initial data u0 and
ũ0 taking values in a compact interval [a, b]. Then there exist s > 0, depending on [a, b], such
that, for any t > 0 and r > 0∫

|x|<r
[u(x, t)− ũ(x, t)]+ dx ≤

∫
|x|<r+st

[u0(x)− ũ0(x)]+ dx ,

and
‖u(·, t)− ũ(·, t)‖L1(Br)

≤ ‖u0(·)− ũ0(·)‖L1(Br+st)
. (2.24)

Futhermore, if u0(x) ≤ ũ0(x) for a.e. x ∈ R then

u(x, t) ≤ ũ(x, t) a.e. (t, x) ∈ [0, ∞[×R

It follows from (2.24) that for initial data u0 ∈ L1(R)∩ L∞(R), the Cauchy problem
(2.15)-(2.16) has a unique weak entropy solution. For t ∈ R+, consider the map
St : L1(R)→ L1(R) which carries initial data u0 ∈ L∞(R) ∩ L1(R) to the admissible
weak solution of (2.15) u(·, t), i.e.

Stu0(·) = u(·, t)

The S defines a contractive semigroup. Indeed, we have the following result (see, e.g.,
[13, Theorem 6.3]).

Theorem 2.6.15. Let f be locally Lipschitz continuous. Then there eixsts a continuous
semigroup S : R+ × L1(R) 7→ L1(R) such that

(i) S0 = I, St+τ = StSτ

(ii) ‖Stu− Stv‖L1 ≤ ‖u− v‖L1

(iii) For each u0 ∈ L1 ∩ L∞, the trajectory t 7→ Stu0 yields the unique bounded, entropy-
admissible, weak solution of the corresponding Cauchy probem (2.15)-(2.16).

(iv) If u0(x) ≤ v0(x) for all x ∈ R, then Stu0(x) ≤ Stv0(x) for every x ∈ R and t ≥ 0.

There is a particularly rich theory in the case that f is uniformly convex (see, e.g.,
[40]). Of note, the entropy solutions satisfy a one-sided jump estimate as shown by
Oleinik [67]

Theorem 2.6.16. Let u be the unique entropy solution of (2.15)-(2.16) with initial data
u0 ∈ L∞(R) and uniformly convex flux ( f ′′ > c ≥ 0). Then u(·, t) ∈ BVloc(R) and u
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satisfies the one-sided Lipschitz estimate

u(y, t)− u(x, t) ≤ 1
ct
· (y− x)

for all t > 0 and y > x.

Analogous results of this section hold in the case where the conservation law
has a source term, g ∈ C(R+ ×R). On the other hand, the theory of existence and
uniqueness is not complete if the source term is nonlocal. In Chapter 4, we study a
specific nonlocal balance law with the goal of shedding light on this outstanding case.
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Chapter 3
A sovereign debt management model

This chapter aims to analyze a system of Hamilton-Jacobi-Bellman equations arising
from a problem of stochastic optimal debt management in an infinite time horizon,
modeled as a non-cooperative game between a sovereign state and a pool of foreign,
risk-neutral lenders. In [66], the authors present a model of debt management in which
a sovereign state controls both fiscal policy by using income towards repaying the
debt, and monetary policy, by devaluating their currency and producing inflation. In
the case of devaluating currency, the state is increasing the welfare cost and negatively
affecting the trust of foreign investors. At any time, there is a positive probability of
the state defaulting on their debt, which depends on the current size of the debt.

There are many motivations for studying how to best balance debt under the risk of
bankruptcy. As of 2020, the national debt of the USA is over $27 trillion. The average
American holds $90,460 in personal debt, including credit cards, mortgages, and
student debt. The financial crisis of 2008 was caused by excessive risk-taking by banks,
leading to the values of securities related to U.S. real estate properties to plummet
[49]. The crisis sparked what is known as the Great Recession and the European
debt crisis involving Greece, Ireland, Italy, Portugal, and Spain. The recession was
noted by the emergence of large fiscal deficits across the industrialized world, leading
to increases in government debt and debt-to-income (or debt-to-GDP) ratios in the
United Kingdom, Japan, and the mentioned Euro area periphery countries [30], [51].

The Euro area periphery economies experienced dramatic spikes in their sovereign
yields, where other highly indebted countries did not. A key difference in their debt
management strategies was that the US, UK, and Japan could deflate away the burden
of nominal debt, while the Euro countries were forced to repay debt solely through
fiscal surpluses. These events raised the question as to what role monetary policy
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should have, if any, in guaranteeing the sustainability of sovereign debt, in view of
the existing trade-offs between latter and price stability [66].

In this chapter, we shall examine a model first presented in [66]. In this model, the
borrower has a possibility to go bankrupt with an instantaneous bankruptcy risk and
must declare bankruptcy when the debt-to-income ratio reaches a threshold x∗ > 0.
To offset the possible loss of part of their investment, the lenders buy bonds at a
discounted rate p, which is not given a priori. Rather, it is determined by the expected
evolution of the debt-to-income ratio at all future times. Hence it depends globally on
the entire feedback controls u and v. This framework leads to a highly nonstandard
optimal control problem, and a “solution” must be understood as a Nash equilibrium,
where the strategy implemented by the borrower represents the best reply to the
strategy adopted by the lenders, and conversely.

In Section 3.1, we will develop the mathematical model and derive the corre-
sponding system of HJB equations. In Section 3.2, we establish an existence result for
the system of equations (1.1). In turn, this yields the existence of a pair of optimal
feedback controls (u∗, v∗) which minimizes the expected cost to the borrower. The
system (1.1) is not uniformly elliptic at the boundary x = 0 and x = x∗. To handle
this difficulty, we employ the classical idea of constructing solutions of approximate
systems as steady states of corresponding auxiliary parabolic systems. In order to
obtain a solution to the original system (1.1), we derive explicit a priori estimates on
the derivatives of approximate solutions. In Section 3.3, we provide lower and upper
bounds for the value function V as a sub-solution and super-solution, which in turn
yields behavior of the optimal policies near the bankruptcy threshold.

In the mathematical economics literature, some related models of debt and
bankruptcy, focusing on quantitative analysis, can be found in [14, 15, 17, 64, 66]. In
[17], the borrower has a fixed income, and large debt values determine a bankruptcy
risk, which adds uncertainty to the model. In [66], a numerical analysis was performed
of a similar model in which the uncertainty comes not from bankruptcy risk but the
random evolution of the borrower’s income. An analytical study of a slight variant of
the model was performed in [15] where no currency devaluation is available to the
government. The authors constructed optimal feedback solutions in the stochastic case
and provided an explicit formula for the optimal strategy in the deterministic case.
Moreover, their analysis also shows how the expected total cost of servicing the total
debt together with the bankruptcy cost is affected by different choices of x∗. In [64],
the authors continue this study by adding another control in the option for currency
devaluation. A stochastic model with no currency devaluation but with uncertainty
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coming from bankruptcy risk was analyzed in [14].
To conclude this preface, we recount a history of economic literature leading to the

model in [66]. The earliest consideration of an economic optimization problem on an
unbounded time interval is attributed to [71]. In the framework of [20], [27], models
of self-fulfilling debt crises have been considered in several studies (see e.g., [1], [72],
[31], [22]). A further extension has been developed, in the tradition of [39], in which
sovereign default is instead an optimal government decision (see e.g., [66], [15]). Many
past studies have produced qualitative contributions; in contrast, we will consider
a fully stochastic approach with quantitative analysis. In modeling optimal default,
as in [39], our model is in line with sovereign debt models presented by [2] and [7].
Following the study in [66], we build on these past models by introducing nominal
bonds and studying the optimal inflation policy when the government cannot commit
to not inflate in the future. Our model differs from others used in sovereign default
literature by considering continuous time (see [61], [76]). See [26] for a background in
infinite horizon optimal control problems.

3.1 A model of debt with bankruptcy risk

We consider an optimal debt management problem in an infinite time horizon, mod-
eled as a non-cooperative interaction between a borrower and a pool of risk-neutral
lenders. In this model, let v(t) be the devaluation rate at time t, regarded as a control.
A stochastic process governs the total income Y given by

dY = (µ + v(t))Y(t)dt + σY(t)dW

where W is a Brownian motion on a filtered probability space, σ > 0 is the volatility,
and µ is the economy’s average growth rate. We denote by X(t) the total debt of a
borrower, financed by issuing bonds, and

• r = the interest rate paid on bonds, which we will assume coincides with the
discount rate;

• λ = the rate at which the borrower pays back the principal.

When an investor buys a bond of unit nominal value, he will receive a continuous
stream of payments with intensity (r + λ)e−λt. If no bankruptcy occurs, the payoff for
an investor will thus be ∫ ∞

0
e−rt(r + λ)e−λt dt = 1.
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Otherwise, a lender recovers only a fraction θ ∈ [0, 1] of his outstanding capital, which
is dependent on the total amount of debt at the time of bankruptcy. To offset this
possible loss, the investor buys a bond with nominal unit value at a discounted price
p ∈ [0, 1]. Hence, the total debt evolves according to

Ẋ(t) = − λX(t) +
(λ + r)X(t)−U(t)

p(t)

where U(t) is the rate of payments that the borrower chooses to make to the lenders
at time t. By Itô’s theorem [68, Theorem 4.1.2], we derive the stochastic control system
for the the debt-to-income (DTI) ratio x .

= X/Y with dynamics

dx(t) =

[(
λ + r
p̄(t)

− λ + σ2 − µ− v(t)
)

x(t)− u(t)
p(t)

]
dt− σ x(t) dW (3.1)

and where u = U/Y ∈ [0, 1] is the portion of the total income allocated to reduce the
debt.

In this model, we shall assume that r > µ and there exists a threshold x∗ > 0,
beyond which bankruptcy immediately occurs. Define Tx∗ as the time when the
borrower’s debt reaches to a threshold x∗

Tx∗ := inf {t > 0 : x(t) = x∗} . (3.2)

On the other hand, it is well-known that there is no way to predict with certainty
the time when bankruptcy occurs. Therefore it is natural to consider a variant of the
previous model by assuming that the borrower may go bankrupt. More precisely,
calling TB the random time at which bankruptcy occurs, its distribution is determined
as follows. If at time τ the borrower is not yet bankrupt and the total debt is x(τ) = y,
then the probability that bankruptcy will occur shortly after time τ is measured by

Prob.
{
TB ∈ [τ, τ + ε]

∣∣∣ TB > τ, x(τ) = y
}

= ρ(y) · ε + o(ε) , (3.3)

where o(ε) denotes a higher order infinitesimal as ε→ 0+ and the smooth increasing
function ρ : [0, x∗[→ [0 + ∞[ is bankruptcy risk such that limx→x∗ ρ(x) = +∞. Letting

P(t) := Prob.{TB > t}, ∀t ∈ [0, Tx∗ [ ,
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we can compute

P′(t) = lim
ε→0

P(t + ε)− P(t)
ε

= lim
ε→0

Prob.{TB > t + ε} − Prob.{TB > t}
ε

= lim
ε→0

Prob.{TB > t + ε} −
(

Prob.{TB > t + ε}+ Prob.{TB ∈ [t, t + ε] ∩ TB > t}
)

ε

= lim
ε→0

−Prob.{TB ∈ [t, t + ε]} · Prob.{TB > t}
ε

.

Recalling the definition of P(t) and (3.3), it holds that

P′(t) = lim
ε→0

−P(t) · (ρ(x(t)) · ε + o(ε))
ε

= − ρ(x(t)) · P(t) .

Hence, the borrower may go bankrupt before Tx∗ at random time TB with probability
given by

Prob {TB > t} =

exp
{
−
∫ t

0
ρ(x(τ)) dτ

}
if t < Tx∗ ,

0 if t ≥ Tx∗ .
(3.4)

We assume the borrower services his debt by buying bonds at a discounted price p
through a pool of risk-neutral lenders. Let θ(x(t)) be the “salvage function” which
determines the fraction of the borrower’s assets to be recovered by the lenders in the
occurrence of bankruptcy at time t. As in [15, 17, 66], the discounted bond price is
uniquely determined by the competition of a pool of risk-neutral lenders

p = E
[ ∫ TB

0
(r + λ) exp

{
−
∫ τ

0

(
λ + r + v(x(s))

)
ds
}

dτ

+ exp
{
−
∫ TB

0
(r + λ + v(x(τ))dτ

}
· θ(x(TB))

]
. (3.5)

Given an initial cost x0, the borrower seeks to find a pair of controls (u, v) which
minimize their expected cost, exponentially discounted in time

Minimize J[x0, u, v] = E
[∫ TB

0
e−rt ·

[
L(u(t)) + c(v(t))

]
dt + e−rTB · B

]
x(0)=x0

, (3.6)

where

• L(u) is the cost incurred from spending income on debt;
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• c(v) is a social cost incurred from devaluating the currency;

• B is the cost incurred upon bankruptcy.

We introduce standard assumptions in the model. Concerning the functions θ, ρ, L and
c, we shall assume

(A1) The map θ : [0, x∗] →]0, 1] is non-increasing, continuous, and locally Lipschitz in
[0, x∗[.

(A2) The function ρ : [0, x∗[→ [0,+∞[ is continuously differentiable for x ∈ [0, x∗[, and
satisfies

ρ(0) = 0, ρ′(x) ≥ 0 and lim
x→x∗

ρ(x) = + ∞.

(A3) The function (L, c) : [0, 1[×[0, vmax[→ [0,+∞[×[0,+∞[ is twice continuously differ-
entiable such that

L′(u), c′(v) > 0, L′′(u), c′′(v) ≥ δ0

and

L(0) = c(0) = 0, lim
u→1

L(u) = + ∞, lim
v→vmax

c(v) = + ∞

for some constant δ0 > 0 and vmax ≥ 0.

Remark 3.1.1. When the currency devaluation is not an option for the borrower (v ≡ 0),
or the bankruptcy risk is non-positive away from the bankruptcy threshold, i.e.

ρ(x) =

0 if x < x∗

+∞ if x = x∗,

this model reduces to the one analyzed in [14] or [64], respectively.

3.1.1 Derivation of HJB equations

The stochastic control system (3.1)-(3.6) is highly non-standard. Here, the discount
price p(·) in (3.5) depends on the debt-to-income ratio not only at the present time
t but also all the future. Hence, it depends globally on the entire controls u, v. In
general, the evolution equation (3.5) with p(·) defined in (3.5) may have no solutions
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or multiple solutions. Therefore it is quite difficult to study the existence from the
viewpoint of open-loop optimal solutions. Indeed, the proposed model can be viewed
as a non-cooperative interaction between a borrower and a pool of risk-neutral lenders.
Thus we seek to construct equilibrium solutions in feedback form,

u = u∗(x), v = v∗(x) for x ∈ [0, x∗].

Definition: (Stochastic optimal feedback solution). We say that a triple of functions
(u∗(x), v∗(x), p∗(x)) provides an optimal solution to the problem of optimal debt
management (3.1,3.2, 3.6, 3.5) if

(i) Given the function p∗(·), for every initial value x0 ∈ [0, x∗] the feedback control
(u∗, v∗) with stopping time TB as in (3.4) provides an optimal solution to the
stochastic control problem (3.6), with dynamics (3.1).

(ii) Given the feedback control (u∗(·), v∗(·)), the discounted price p∗ satisfies (3.5),
where TB is the stopping time (3.4) determined by the dynamics (3.1).

Let us introduce the associated Hamiltonian function to (3.1)-(3.5)

H(x, ξ, p) = min
(u,v)∈[0,1]×[0,vmax]

{
L(u) + c(v)−

(
u
p
+ xv

)
· ξ
}

+

(
λ + r

p
− λ + σ2 − µ

)
x ξ ,

(3.7)

and two functions

ũ(ξ, p) = argmin
u∈[0,1]

{
L(u)− u

ξ

p

}
, ṽ(x, ξ) = argmin

v∈[0,vmax]

{c(v)− vxξ} . (3.8)

Under the assumption (A3), a direct computation yields

ṽ(x, ξ) =

0 if ξx ≤ c′(0)

(c′)−1(ξx) if ξx > c′(0)

ũ(ξ, p) =

0, if ξ
p ≤ L′(0)

(L′)−1
(

ξ
p

)
, if ξ

p > L′(0).

(3.9)

In order to compute u∗(·) and v∗(·), we relate the stochastic control problem to a
system of second order differential equations utilizing the dynamic programming
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principle and the Feynman-Kac formula.

(i) Assume that the discount bond price, p∗(·) is given and define the value function
V as follows

V(x0) = inf
(u,v)∈U

J[x0, u, v], where U =
{
(u, v) : [0, x∗]2 → [0, 1]× [0, vmax]

}
.

Using the probability density of TB, (3.4), the cost can be represented as

J[x0, u, v] = E

[ ∫ ∞

0
exp

{
−
∫ τ

0
ρ(x(s)) + r ds

}
·
(

L(u(τ)) + c(v(τ))

+B · ρ(x(τ))
)

dτ
∣∣∣ x(t) = x0

]
.

(3.10)

Therefore, by stochastic optimal control theory (Theorem 2.3.7), V solves the following
second-order ODE

(r + ρ(x))V(x) = ρ(x) · B + H(x, V′(x), p∗(x)) +
σ2x2

2
·V′′(x) . (3.11)

with boundary values

V(0) = 0 and V(x∗) = B.

The optimality condition and (3.9) imply that the feedback strategies are recovered by

u∗(x) = ũ(V′(x), p(x)) =


0, if

V′(x)
p(x)

≤ L′(0),

(L′)−1
(

V′(x)
p(x)

)
, if

V′(x)
p(x)

> L′(0),

(3.12)

and

v∗(x) = ṽ(x, V′(x)) =


0, if V′(x)x ≤ c′(0),

(c′)−1 (V′(x)x) if V′(x)x > c′(0) .
(3.13)

(ii) Suppose we know the optimal feedback controls, u∗, v∗ and we wish to calculate
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the discount bond price p∗. Given x(0) = x0, the bond price is given by

p∗(x0) = E

[ ∫ TB

0
(r + λ) exp

{
−
∫ τ

0

(
λ + r + v∗(x(s))

)
ds
}

dτ

+ exp
{
−
∫ TB

0
(r + λ + v∗(x(τ))dτ

}
· θ(x(TB))

∣∣∣∣∣ x(0) = x0

]
.

which, considering (3.4), can be represented as

p∗(x0) = E

[ ∫ ∞

0
exp

{
−
∫ τ

0

(
ρ(x(s)) + r + λ + v∗(x(s))

)
ds
}

·
(

r + λ + ρ(x(τ))θ(x(TB))
)

dτ

∣∣∣∣∣ x(0) = x0

]
.

(3.14)

By the Feynman-Kac formula (Theorem 2.3.6), p∗ solves([
λ + r

p∗(x(t))
− λ + σ2 − µ− v∗(x(t))

]
x(t)− u∗(x(t))

p∗(x(t))

)
· (p∗)′(x(t))−(

r + λ + v∗(x(t)) + ρ(x(t))
)
· p∗(x(t)) + r + λ + ρ(x(t)) · θ(x(t))

+
(σx)2

2
(p∗)′′(x(t)) = 0 ,

(3.15)

with p(0) = 1 and p(x∗) = θ(x∗). The equation (3.15) can be written in terms of the
Hamiltonian as follows

(r + λ + v∗(x)) · p∗(x)− (r + λ) = ρ(x) · [θ(x)− p∗(x)]+

Hξ(x, V′(x), p∗(x)) · (p∗)′(x) +
(σx)2

2
· (p∗)′′(x) .

(3.16)

Therefore, finding an optimal solution to the problem of optimal debt management
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(3.1)-(3.6) leads to the following system of second order implicit ODEs

(r + ρ(x))V(x) = ρ(x) · B + H(x, V′(x), p(x)) +
σ2x2

2
·V′′(x) ,

(r + λ + v(x)) · p(x)− (r + λ) = ρ(x) · [θ(x)− p(x)]+

Hξ(x, V′(x), p(x)) · p′(x) +
(σx)2

2
· p′′(x) ,

v(x) = argmin
w∈[0,vmax]

{c(w)− wxV′(x)} ,

(3.17)

with boundary conditions

V(0) = 0, V(x∗) = B and p(0) = 1, p(x∗) = θ(x∗). (3.18)

To complete this subsection, let us collect some useful properties of Hamiltonian H.

Lemma 3.1.2. If (A3) holds then H is continuous differentiable and its gradient at points
(x, ξ, p) ∈ [0,+∞[×[0,+∞[×]0, 1] can be expressed by

Hx(x, ξ, p) =
[
(λ + r)− p(λ + µ + ṽ(x, ξ)− σ2)

]
· ξ

p
,

Hξ(x, ξ, p) =
1
p
·
[

x
(
(λ + r)− p(λ + µ + ṽ(x, ξ)− σ2)

)
− ũ(ξ, p)

]
,

Hp(x, ξ, p) = (ũ(ξ, p)− x(λ + r)) · ξ

p2 ,

(3.19)

where the functions ũ, ṽ are defined in (3.9). Furthermore,

(i). for all ξ ∈ [0,+∞[, the function H satisfies(
(λ + r)x− 1

p
+ (σ2 − λ− µ− v(x))x

)
· ξ ≤ H(x, ξ, p)

≤
(

λ + r
p
− λ + σ2 − µ

)
xξ ,

(3.20)

and Hξ satisfies

(λ + r)x− 1
p

+ (σ2 − λ− µ− v(x))x ≤ Hξ(x, ξ, p)

≤
(

λ + r
p
− λ + σ2 − µ

)
x ;

(3.21)

(ii). for every (x, p) ∈]0,+∞[×]0,+∞[ the map ξ 7→ H(x, ξ, p) is concave down and
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satisfies

H(x, 0, p) = 0, (3.22)

Hξ(x, 0, p) =

(
λ + r

p
− λ + σ2 − µ

)
x . (3.23)

Proof. Since H(x, ·, p) is defined as the infimum of a family of affine functions, it is
concave down. We observe that (3.12) implies

H(x, ξ, p) =
(

λ + r
p
− λ + σ2 − µ

)
xξ if 0 ≤ ξ ≤ pL′(0) , (3.24)

which implies the identities (3.22-3.23). By the concavity property, the map ξ 7→
Hξ(x, ξ, p) is monotonically decreasing. Thus (3.23) implies the upper bound in (3.21).
Taking u = 0, v = 0 implies the upper bound in (3.20). By (A3) it holds that

H(x, ξ, p) ≥ − u
p

ξ +

(
λ + r

p
− λ + σ2 − µ + v

)
xξ . (3.25)

taking u = 1 implies the lower bound in (3.20). Let u∗ and v∗ denote the minimizers
of ũ and ṽ in (3.9). Using the optimality condition, one computes from (3.7) and (3.12)
that

Hξ(x, ξ, p) = − x(v∗)(x, ξ) +

(
λ + r− u∗(ξ, p)

p
− λ + σ2 − µ

)
x

≥
(

λ + r− u∗(ξ, p)
p

− λ + σ2 − µ− v(x)
)

x ,

where for ξ large enough,

u∗(ξ, p) = arg min
ω∈[0,1]

{
L(ω)− ξ

p
ω

}
= (L′)−1

(
ξ

p

)
< 1 .

Observe that, as ξ → +∞, one has u∗(ξ, p)→ 1. The non-increasing property of the
map ξ 7→ Hξ(x, ξ, p) yields the lower bound in (3.21).

Corollary 3.1.3. Suppose the assumption (A3) holds. Then for all (x, ξ, p, v) ∈ [0, x∗]×]0,+∞[×
[θmin,+∞[×[0, vmax], it holds that

|H(x, ξ, p)| ≤ K1 · ξ, and |Hξ(x, ξ, p)| ≤ K1,
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where the constant θmin > 0 is defined in (3.27) and

K1 := max
{(

λ + r
θmin

+ σ2
)

x∗, θmin
−1 + (λ + µ + vmax) x∗

}
. (3.26)

Proof. We compute an upper bound of the terms in (3.20)-(3.21)(
λ + r

p
− λ + σ2 − µ

)
x ≤

(
λ + r
θmin

+ σ2
)

x∗ ≤ K1 ,

and lower bound(
(λ + r)x− 1

p
+ (σ2 − λ− µ− v(x))x

)
≥ −

(
1

θmin
+ (λ + µ + vmax)x∗

)
≥ − K1 .

Hence, for any ξ > 0, the bounds (3.20)-(3.21) imply the uniform bounds on H and
Hξ .

3.2 Existence results for the system of HJB equations

In this section, we will construct a solution of the system of Hamilton-Jacobi-Bellman
equations (3.17) with boundary conditions (3.18) for a given bankruptcy threshold x∗.
In turn, this result yields the existence of optimal feedback controls for the problem of
debt management (3.1)–(3.6). Finally, we show how the bankruptcy risk affects the
behavior of the optimal feedback control as the debt-to-income ratio tends to x∗. Let
us introduce the constant which will be a lower bound of the discount bond price p,

θmin := min
{

θ(x∗),
r + λ

r + λ + vmax

}
. (3.27)

We seek the prove the following existence result.

Theorem 3.2.1. Under the assumptions (A1) - (A3), the system of second order ODEs (3.17)
with boundary conditions (3.18) admits a solution (V, p) : [0, x∗] → [0, B]×

[
θmin, 1

]
of

class C2 such that V is monotone increasing and

v(x) = arg min
w≥0

{c(w)− wxV′} = 0 ∀ x ∈
[

0,
c′(0)
M∗

]
, (3.28)

for a constant M∗ which can be explicitly computed (see Lemma 3.2.4).

It is well-known (see Theorem 2.3.7 or [67, Theorem 11.2.2]) that having constructed a

38



solution (V, p) to the boundary value problem (3.17)-(3.18), then (u∗, v∗) in (3.12)-(3.13)
is an optimal solution to the problem of optimal debt management (3.1)-(3.6). As a
consequence of Theorem 3.2.1, we obtain the following result.

Corollary 3.2.2. Under the same assumptions of Theorem 3.2.1, the debt management problem
(3.1)-(3.6) admits an optimal control strategy in feedback form. Moreover, there exists a
threshold such that the optimal control strategy does not use currency devaluation for values
below that threshold.

Toward the proof of Theorem 3.2.1, we introduce a system of second order implicit
ODEs which approximates (3.17). More precisely, for any given ε > 0, let ρε be a
monotone increasing Lipschitz function on [0, x∗] defined by

ρε(x) =


ρ(x) if x ∈ [0, xε]

1
ε

if x ∈ [xε, x∗]
with xε := ρ−1

(
1
ε

)
. (3.29)

Consider the following system of implicit ODEs

(r + ρε(x)) ·V = ρε(x) · B + H(x, V′, p + ε) +
(σ2x2

2
+ ε
)
·V′′ ,

(r + λ + ṽ(x, V′)) · p−(r + λ) = ρε(x) · [θ(x)− p]

+ Hξ(x, V′, p + ε) · p′ +
(
(σx)2

2
+ ε

)
· p′′ ,

(3.30)

with

ṽ(x, ξ) =


0, if ξx ≤ c′(0),

(c′)−1(ξx), if ξx > c′(0).
(3.31)

From the assumption (A3), it holds that

ṽ(x, ξ) ≤ vmax, |ṽx(x, ξ)| ≤ 1
δ0
· |ξ| and |ṽξ(x, ξ)| ≤ 1

δ0
· |x|. (3.32)

We establish an existence result for (3.30) with boundary condition (3.18) by consid-
ering the auxiliary parabolic system whose steady states will provide a solution to
(3.30). Following [3], we shall construct a compact, convex and positively invariant
set of functions (V, p) : [0, x∗]2 7→ [0, B]× [θmin, 1]. A topological technique will then
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yield the existence of solutions (Vε, pε) of the system (3.30).

Lemma 3.2.3. Assume that (A1) - (A3) hold. Then the system of ODEs (3.30) with boundary
conditions (3.18) admits a C2 solution (Vε, pε) : [0, x∗]2 → [0, B]× [θmin, 1] such that Vε is
increasing.

Proof. Given a threshold of bankruptcy x∗ > 0, we consider the parabolic system with
the unknowns V(t, x) and p(t, x)

Vt = − (r + ρε(x))V + ρε(x) · B + H(x, Vx, p + ε) +
(σ2x2

2
+ ε
)

Vxx ,

pt = − (r + λ + ṽ(x, Vx)) · p + (r + λ) + ρε(x) · [θ(x)− p]+

Hξ(x, Vx, p + ε) · px +
( (σx)2

2
+ ε
)
· pxx ,

(3.33)

and with the boundary conditions
V(t, 0) = 0

V(t, x∗) = B
and


p(t, 0) = 1

p(t, x∗) = θ(x∗).
(3.34)

It is well-known (see [3, Theorem 1]) that the parabolic system (3.33) with initial data

V(0, x) = V0(x) and p(0, x) = p0(x), (3.35)

admits a unique solution (V(t, x), p(t, x)) ∈ C2([0, T]× [0, x∗])×C2([0, T]× [0, x∗]) for
any T > 0. Adopting a semigroup notation, we denote by St(V0, p0) = (V(t, ·), p(t, ·))
the solution to the system (3.33) at time t with initial data (3.35). Consider the closed
and convex domain in C2([0, x∗])× C2([0, x∗])

D =
{
(V, p) : [0, x∗]2 → [0, B]× [θmin, 1] : (V, p) ∈ C2, V′ ≥ 0, and (3.18) holds

}
.

We claim that D is positively invariant under the semigroup St, namely

St(D) ⊆ D ∀ t ≥ 0 .

Indeed, as in [15], we consider the constant functions (V±, p±) defined on [0, ∞[×[0, x∗]
such that

(V+, p+) ≡ (B, 1) and (V−, p−) ≡ (0, θmin) .
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Recalling (3.22), one has

−(r + ρε(x))V+ + ρε(x) · B + H(x, V+
x , p + ε) +

(σ2x2

2
+ ε
)

V+
xx

= − (r + ρε(x))V+ + ρε(x) · B = − rB ≤ 0

and

−(r + ρε(x))V− + ρε(x) · B + H(x, V−x , p + ε) +
(σ2x2

2
+ ε
)

V−xx = ρε(x) · B ≥ 0.

Therefore V+ is a super-solution, and V− is a sub-solution of the first parabolic
equation in (3.33). A standard comparison principle argument [77] yields that

0 = V−(t, x) ≤ V(t, x) ≤ V+(t, x) = B ∀(t, x) ∈ [0,+∞[×[0, x∗].

Similarly, from (A1)-(A3), (3.27) and (3.31), it holds

−(r + λ + ṽ(x, Vx)) · p+ + (r + λ) + ρε(x) · [θ(x)− p+] + Hξ(x, Vx, p+ + ε) · p+
x

+

(
(σx)2

2
+ ε

)
· p+

xx = − ṽ(x, Vx) + ρε(x) · [θ(x)− 1] ≤ 0

and

− (r + λ + ṽ(x, Vx)) · p− + (r + λ) + ρε(x) · [θ(x)− p−] + Hξ(x, Vx, p− + ε) · p−x

+

(
(σx)2

2
+ ε

)
· p−xx = − (r + λ + ṽ(x, Vx)) · θmin + (r + λ)

+ ρε(x) · [θ(x)− θmin] ≥ (r + λ)− (r + λ + vmax) · θmin ≥ 0.

Thus, p+ is a super-solution and p− is a sub-solution of the second parabolic equation
in (3.33), and this yields

θmin = p−(t, x) ≤ p(t, x) ≤ p+(t, x) = 1 ∀(t, x) ∈ [0,+∞[×[0, x∗].

Setting W(t, x) := Vx(t, x) with initial condition V(0, x) = V0(x) ∈ D, we have

lim
x→0+

W(t, x) ≥ 0, and lim
x→x∗−

W(t, x) ≥ 0, ∀t ∈]0,+∞[ ,
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and, by definition of D,

W(0, x) ≥ 0, ∀x ∈ [0, x∗].

Differentiating the first equation in (3.30), we obtain that W solves the following ODE

Wt = − (r + ρε)W + ρ′ε(B−V)

+ Hx + HξWx + Hppx + σ2xWx +

(
σ2x2

2
+ ε

)
Wxx.

(3.36)

Since

(Hx, Hp)(x, 0, p + ε) = 0 and V(t, x) ≤ B ∀(t, x) ∈ [0,+∞[×[0, x∗],

one can see that the constant function 0 is a sub-solution to (3.36). Thus, by [77],

W(t, x) ≥ 0 ∀(t, x) ∈ [0,+∞[×[0, x∗] ,

yielding the monotone increasing property of V with respect to x. From the bounds
in Lemma 3.1.2 and the invariance of D, we can apply [3, Theorem 3] to obtain the
existence of a steady state solution (Vε, pε) ∈ D for the system (3.33) which solves
(3.30) and (3.18) such that Vε is monotone increasing.

In order to obtain a solution to (3.17) from (3.30) by considering the limit ε→ 0+, it is
necessary to derive a priori estimates on the derivatives of of the smooth functions
(Vε, pε).

Lemma 3.2.4. Under the same assumptions in Lemma 3.2.3, let (Vε, pε) be a solution to
(3.30) and (3.18). Then for every 0 < ε < 1/2, it holds

‖V′ε‖L∞([0,x∗]) ≤ M∗ and vε(x) = 0 ∀x ∈
[

0,
c′(0)
M∗

]
, (3.37)

where the constant M∗ is explicitly computed by

M∗ := max

{
M1, exp

(
3K1x∗

2σ2x2
1

)
·
(

4B
x∗

+
B
K1
· ρ
(

3x∗

4

))
, exp

(
2K1x∗

σ2x2
1

)
·
(

4B
x∗

+
rB
K1

)}
,

42



with K1 defined in (3.26), and

x1 := min
{

1
6(λ + r + σ2)

,
x∗

2

}
, M1 := 8

(
L
(

1
2

)
+ ρ(x1) · B

)
. (3.38)

Moreover, for any δ ∈]0, x∗/2[, there exists a constant Mδ > 0 such that

‖V′′ε ‖L∞(]δ,x∗−δ[) + ‖p′ε‖L∞(]δ,x∗−δ[) + ‖p′′ε ‖L∞(]δ,x∗−δ[) ≤ Mδ. (3.39)

Proof. Let (Vε, pε) be a solution to (3.30), (3.18) with the properties given in the
conclusion of Lemma 3.2.3.
1. Let us first prove (3.37). Let x1 and M1 be as in (3.38). From (3.7) and Lemma 3.2.3,
for every (x, ξ) ∈ [0, x1]× [M1,+∞[, it holds

H(x, ξ, pε + ε) ≤ min
u∈[0,1]

{
L(u)− u

pε + ε
ξ

}
+

(
λ + r
pε + ε

+ σ2
)

xξ

≤ L
(

1
2

)
+

3(λ + r + σ2)x− 1
2(pε + ε)

· ξ

≤ L
(

1
2

)
− ξ

8
≤ L

(
1
2

)
− M1

8
. (3.40)

From the definition of ρε in (3.29), it holds that

ρε(x) ≤ ρ(x) ∀x ∈ [0, x∗], (3.41)

and therefore (A2) and (3.40) imply that

ρε(x)B + H(x, ξ, pε + ε) ≤ ρ(x1)B + L
(

1
2

)
− M1

8
< 0,

for all (x, ξ) ∈ [0, x1]× [M1,+∞[. Since Vε is non-negative, the first equation of (3.30)
yields that

V′′ε (x) > 0 ∀x ∈]0, x1],

provided V′ε (x) ≥ M1 for all x ∈ [0, x1]. Recalling from Lemma 3.2.3 that V′ε is non-
negative, we have that ‖V′ε‖L∞([0,x1])

is bounded by M1 or the maximal of V′ε in [0, x∗]
is obtained at (see Figure 3.1)

xm := arg max
x∈[0,x∗]

V′ε (x) > x1 .
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Let us establish an upper bound of V′ε in [x1, x∗[. Since 0 ≤ x1 ≤ x∗
2 , by the mean value

theorem, there exists a point x2 ∈]x1, 3
4 x∗[ such that

V′ε (x2) =
Vε(

3
4 x∗)−Vε(x1)

3
4 x∗ − x1

≤ B
3
4 x∗ − 1

2 x∗
≤ 4B

x∗
. (3.42)

From the first equation of (3.30) we have

V′′ε (x) =
2

σ2x2 + 2ε
·
[
rVε(x) + ρε(x) (Vε(x)− B)− H(x, V′ε (x), pε(x) + ε)

]
. (3.43)

x1

M1

xm x
∗

V
′

ε
(·)

Figure 3.1 The function V ′ε is either bounded near x = 0 or does not acheive its maximum
near x = 0. In this figure, if V ′ε (x) > M1 for some value of x ∈ [0, x1[, then the HJB equation
for Vε yields that V ′ε is necessarily increasing until x = x1.

Two cases are considered:

• For any x ∈ [x1, x2], from (3.41), (A2), and the above equality we have

V′′ε (x) ≥ −2
σ2x2 + 2ε

·
(
ρε(x)B +

∣∣H(x, V′ε (x), pε(x) + ε)
∣∣)

≥ −2
σ2x2

1
·
(

ρ

(
3x∗

4

)
B +

∣∣H(x, V′ε (x), pε(x) + ε)
∣∣) ,
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where the last inequality holds because x2 ≤ 3x∗
4 . Since pε(x) ≥ θmin, by Lemma

3.1.3 it holds that

V′′ε (x) ≥ −2
σ2x2

1

(
ρ

(
3x∗

4

)
B + K1 ·V′ε (x)

)
,

where the constant K1 is defined in (3.26). Thus, applying Grönwall’s inequality
in the interval [x, x2] with x ∈ [x1, x2], we get

V′ε (x) ≤
(

V′ε (x2) +
B
K1
· ρ
(

3x∗

4

))
· exp

(
2K1

σ2x2
1
(x2 − x)

)
− B

K1
· ρ
(

3x∗

4

)
.

Recalling (3.42) we obtain that

‖V′ε‖L∞([x1,x2]) ≤
(

4B
x∗

+
B
K1
· ρ
(

3x∗

4

))
· exp

(
3K1x∗

2σ2x2
1

)
. (3.44)

• Similarly, for any x ∈ [x2, x∗], it holds

V′′ε (x) ≤ 2
σ2x2

2

(
rB + K1 ·V′ε (x)

)
≤ 2

σ2x2
1

(
rB + K1 ·V′ε (x)

)
and Grönwall’s inequality implies that

V′ε (x) ≤
(

V′ε (x2) +
rB
K1

)
· exp

(
2K1

σ2x2
1
(x− x2)

)
− rB

K1
.

Thus, (3.42) yields

‖V′ε‖L∞([x2,x∗]) ≤
(

4B
x∗

+
rB
K1

)
· exp

(
2K1x∗

σ2x2
1

)
. (3.45)

Therefore, combining (3.38) with (3.44) and (3.45), we obtain that

‖V′ε‖L∞([0,x∗]) ≤ M∗ .

Moreover, recalling (3.31), it holds that

x ≤ c′(0)
‖V′ε‖L∞([0,x∗])

=⇒ vε(x) = 0,
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and (3.37) follows.

2. For any fixed 0 < δ < x∗
2 , we will provide uniform bounds on ‖V′′ε ‖L∞([δ,x∗−δ]),

‖p′ε‖L∞([δ,x∗−δ]), and ‖p′′ε ‖L∞([δ,x∗−δ]). From (3.43), (3.41) and Lemma 3.1.3, it holds

|V′′ε (x)| ≤ 2
σ2δ2 ·

[
(r + ρ(x∗ − δ)) · B +

∣∣H(x, V′ε (x), pε(x) + ε)
∣∣]

≤ 2
σ2δ2 ·

[
(r + ρ(x∗ − δ)) · B + K1 ·V′ε (x)

]
,

for all x ∈ [δ, x∗ − δ]. Thus, (3.37) implies that

‖V′′ε ‖L∞([δ,x∗−δ]) ≤
2

σ2δ2 · [(r + ρ(x∗ − δ)) · B + K1M∗] . (3.46)

Similarly, from the second equation in (3.30), it holds that

|p′′ε (x)| ≤ 2
σ2δ2 ·

[
K1 · |p′ε(x)|+ (r + λ + vmax + ρ(x∗ − δ))

]
∀x ∈ [δ, x∗− δ]. (3.47)

By the mean value theorem, there exists a point x3 ∈]δ, x∗ − δ[ such that

∣∣p′ε(x3)
∣∣ =

∣∣∣∣ pε(x∗ − δ)− pε(δ)

x∗ − 2δ

∣∣∣∣ ≤ 1− θmin

x∗ − 2δ
.

Applying Grönwall’s inequality to (3.47) in the intervals [δ, x3] and [x3, x∗ − δ], yields

|p′ε(x)| ≤ Kδ ∀x ∈ [δ, x∗ − δ],

for some constant Kδ depending only on δ. Thus, from (3.47) we get

|p′′ε (x)| ≤ 2
σ2δ2 · [K1Kδ + (r + λ + vmax + ρ(x∗ − δ))] ∀x ∈ [δ, x∗ − δ].

Combining the two above estimates and (3.46), we obtain (3.39) with the constant

Mδ :=
2

σ2δ2 · [(r + ρ(x∗ − δ)) · B + K1M∗ + K1Kδ + (r + λ + vmax + ρ(x∗ − δ))] +Kδ .

This completes the proof.

We are ready to prove the main result of this section.

Proof of Theorem 3.2.1. The proof is divided into three steps:
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Step 1. For any 0 < ε < 1/2 sufficiently small, let (Vε, pε) be a solution to (3.30)
and (3.18) which is constructed in Lemma 3.2.3. Recalling Lemma 3.1.2 and (3.37),
we obtain that H and Hξ are Lipschitz continuous on [δ, x∗ − δ]× [0, M∗]× [θmin, 1]
for any δ ∈]0, x∗/2[. Using the a priori estimates (3.37) and (3.39) in Lemma 3.2.4,
and assumptions (A1)-(A2), the system (3.30) implies that the functions V′′ε and p′′ε
are also uniformly Lipschitz on [δ, x∗ − δ]. Thus, one can apply the Ascoli-Arzelà
Theorem to extract a subsequence (Vεn , pεn)n≥0 with limn→∞ εn = 0 such that (Vεn , pεn)

converges uniformly to (V, p) in C2(]δ, x∗ − δ[) for all δ > 0, where V, p are twice
continuously differentiable and solve the system of ODEs (3.30) on the open interval
]0, x∗[. Moreover, since V′ε is uniformly bounded by M∗ on [0, x∗],

lim
n→∞

‖Vεn −V‖L∞([0,x∗]) = 0 ,

which implies that

V(0) = lim
n→∞

Vεn(0) = 0, V(x∗) = lim
n→∞

Vεn(x∗) = B.

Step 2. It remains to check the boundary condition (3.18) for p. Let us first show that

lim
x→0+

p(x) = 1 . (3.48)

Given ε ∈]0, 1
2 [, we construct a lower bound p− of pε independent of ε in a neighbor-

hood of 0. From the assumption (A1), there exists M > 0 such that

θ(x) ≥ 1−Mx ∀x ∈ [0, x∗/2]. (3.49)

Set x̄0 := min
{

c′(0)
M∗

,
x∗

2
,

1− θmin

M

}
where M∗ is the constant in (3.37). The sub-

solution candidate is
p−(x) = 1− kxγ,

with

γ := min

{
1, (r + λ)

(
λ + r
θmin

+ σ2
)−1

}
and k := (1− θmin) · x̄−γ

0 .

Note that p−(0) = 1 ≤ pε(0). By choice of k and x̄0, we have

p−(x̄0) = 1− kx̄γ
0 = 1− (1− θmin) · x̄−γ

0 · x̄γ
0 = θmin
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and from (3.49), it holds for all x ∈ [0, x̄0] that

p−(x) = 1− (1− θmin) · x̄−γ
0 · xγ ≤ 1−Mx̄1−γ

0 · xγ ≤ 1−Mx ≤ θ(x). (3.50)

We claim that p− is a sub-solution of the second equation in (3.30) in the interval
[0, x̄0]. Indeed, recalling (3.37) that vε(x) ≡ 0 on the region x ∈ [0, x̄0], from Lemma
3.1.2 (i) and (3.50), one estimates

(r + λ)−(r + λ + vε(x))p− + ρε(x)[θ(x)− p−(x)] + Hξ(x, V, p−) · (p−)′ +
(

ε +
σ2x2

2

)
(p−)′′

≥ (r + λ)kxγ − γkxγ−1Hξ(x, V, p−) +
(

ε +
σ2x2

2

)
γ(1− γ)kxγ−2

≥ (r + λ)kxγ − γkxγ−1Hξ(x, V, p−) ≥
[
(r + λ)−

(
λ + r
p−(x)

+ σ2
)

γ

]
kxγ

≥
[
(r + λ)−

(
λ + r

p−(x̄0)
+ σ2

)
γ

]
kxγ =

[
(r + λ)−

(
λ + r
θmin

+ σ2
)

γ

]
kxγ ≥ 0

for all x ∈ [0, x̄0]. In turn, we have

1− kxγ ≤ pε(x) ≤ 1 ∀x ∈ [0, x̄0] , (3.51)

and this yields (3.48).
Step 3. To complete the proof, it remains to show the boundary condition

lim
x→x∗−

p(x) = θ(x∗). (3.52)

Given ε ∈ ]0, 1/2[ sufficiently small, we will provide an upper bound on the L∞

distance of pε and θ over [x∗ − δ, x∗] denoted by

Iδ := max
x∈[x∗−δ,x∗]

∣∣pε(x)− θ(x)
∣∣ ∀δ ∈ [0, x∗/4].

For a fixed 0 < δ <
x∗

4
, the continuity of pε and θ implies that

Iδ = sign
(
θ(xm)− pε(xm)

)
· [θ(xm)− pε(xm)] , (3.53)

for some xm ∈ [x∗ − δ, x∗]. Assume that pε(xm) 6= θ(xm). Since pε(0) = θ(0) = 1 and
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pε(x∗) = θ(x∗), we can define two points

0 ≤ x∗1 := max {x ∈ [0, xm[ : pε(x) = θ(x)} < xm

and
3x∗

4
≤ xm < x∗2 := min {x ∈ [xm, x∗] : pε(x) = θ(x)} ≤ x∗.

Notice that pε − θ does not change sign in the interval ]x∗1 , x∗2 [. For simplicity, let us
introduce the following function

qε(x) := sign
(
θ(xm)− pε(xm)

)
· pε(x).

It is clear that
|q′ε(x)| = |p′ε(x)| ∀x ∈]x∗1 , x∗2 [.

Thus, by the second equation in (3.30) we estimate

q′′ε (x) = sign
(
θ(xm)− pε(xm)

)
· p′′ε (x)

≤
(

2
2ε + σ2x2

)
·
[
r + λ + vmax +

∣∣Hξ · p′ε(x)
∣∣− ρε(x) ·

∣∣pε(x)− θ(x)
∣∣]

≤
(

2
2ε + σ2x2

)
·
[
r + λ + vmax +

∣∣Hξ · q′ε(x)
∣∣] ∀x ∈]x∗1 , x∗2 [ .

Set x̄∗1 := max
{

x∗1 ,
x∗

2

}
, we then have

q′′ε (x) ≤ 8
(σx∗)2 ·

(
r + λ + vmax + K1 · |q′ε(x)|

)
∀x ∈]x̄∗1 , x∗2 [, (3.54)

where K1 is defined in (3.26). Two cases may occur:

Case 1: See Figure 3.2. If xm − x̄∗1 > δ then

qε(xm)− qε(xm − δ) = sign
(
θ(xm)− pε(xm)

)
· [pε(xm)− pε(xm − δ)]

≤ sign
(
θ(xm)− pε(xm)

)
· [θ(xm)− θ(xm − δ)] ≤ ∆δθ · δ,

where ∆δθ = supx∈[0,x∗−δ]

∣∣∣ θ(x+δ)−θ(x)
δ

∣∣∣. Thus, by mean value theorem there exists
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xm

θ(x)

pε(x)

x∗

2
= x∗x = 0

1

Iδ}

x∗

1
= x∗/2 xm − δ

Figure 3.2 In Case 1, p and θ, potentially don’t cross for x ∈]0, xm]. In this case, x 7→ (pε −
θ)(x) does not change sign in the interval [xm − δ, xm], allowing for a mean value theorem
argument to hold.

x̄ ∈
]
xm − δ, xm

[
such that

q′ε(x̄) =
qε(xm)− qε(xm − δ)

δ
≤ ∆δθ.

Let g be the solution to the ODE

g′(x) =
8

(σx∗)2 · (r + λ + vmax + K1 · g(x)), g(x̄) = ∆δθ ≥ q′ε(x̄).

Solving the above equation, one gets

g(x) =

(
r + λ + vmax

K1
+ ∆δθ

)
· exp

(
8K1

(σx∗)2 · (x− x̄)
)
− r + λ + vmax

K1
≥ 0,

for all x ≥ x̄. In particular, it holds that

g′(x) =
8

(σx∗)2 · (r + λ + vmax + K1 · |g(x)|) ∀x ∈ ]x̄, x∗2 [ .
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x
∗

1
x
∗

2
xm

θ(x)

pε(x)

x
∗

x = 0

1

Iδ}

Figure 3.3 In Case 2, p and θ have a non-trivia crossing point, x∗1 . In the sub-case (i), it holds
that Iδ ≤ θ(x∗1)− θ(xm) and the boundary condition holds by the continuity of θ.

A standard comparison argument yields

q′ε(x) ≤ g(x) ≤
(

r + λ + vmax

K1
+ ∆δθ

)
· exp

(
4K1

σ2x∗

)
∀x ∈]x̄, x∗2 [.

Thus, from (3.53) it holds

Iδ = sign
(
θ(xm)− pε(xm)

)
· (θ(xm)− θ(x∗2)) + qε(x∗2)− qε(xm)

≤ sup
x,y∈[x∗−δ,x∗]

|θ(x)− θ(y)|+
(

r + λ + vmax

K1
+ ∆δθ

)
· exp

(
4K1

σ2x∗

)
· δ.

≤ r + λ + vmax

K1
· exp

(
4K1

σ2x∗

)
· δ

+

[
exp

(
4K1

σ2x∗

)
+ 1
]
· sup

x,y∈[x∗−δ,x∗]
|θ(x)− θ(y)|.

(3.55)

Case 2: Let us assume that 0 < xm − x̄∗1 ≤ δ. Since δ <
x∗

4
and xm ≥

3x∗

4
, we have

that x̄∗1 >
x∗

2
and this yields x̄∗1 = x∗1 . Two subcases are considered:
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(i) See Figure 3.3. If qε(xm)− qε(x∗1) ≥ 0 then (3.53) implies that

Iδ = sign
(
θ(xm)− pε(xm)

)
· [θ(xm)− θ(x∗1)] + qε(x∗1)− qε(xm)

≤ |θ(xm)− θ(x∗1)| ≤ sup
x,y∈[x∗−δ,x∗]

|θ(x)− θ(y)|. (3.56)

(ii) Otherwise, if qε(xm) − qε(x∗1) < 0 then by mean value theorem there exists
x̃ ∈

]
x∗1 , xm

[
such that

q′ε(x̃) =
qε(xm)− qε(x∗1)

xm − x∗1
< 0.

With the same argument in case 1, it holds that

q′ε(x) ≤ g̃(x) ≤ r + λ + vmax

K1
· exp

(
4K1

σ2x∗

)
∀x ∈]x̃, x∗2 [ ,

where g̃ is the solution to

g̃′(x) =
8

(σx∗)2 · (r + λ + vmax + K1 · g̃(x)), g̃(x̃) = 0 ≥ q′ε(x̃).

Thus, as in (3.55), it holds

Iδ ≤
r + λ + vmax

K1
· exp

(
4K1

σ2x∗

)
· δ + sup

x,y∈[x∗−δ,x∗]
|θ(x)− θ(y)|. (3.57)

From (3.55)-(3.57), we obtain that

‖pε − θ‖L∞([x∗−δ,x∗]) ≤ C1 · δ + C2 · sup
x,y∈[x∗−δ,x∗]

|θ(x)− θ(y)|,

for all ε ∈
]
0, 1

2

[
, δ ∈

]
0, x∗

4

[
with the constants

C1 =
r + λ + vmax

K1
· exp

(
4K1

σ2x∗

)
, C2 = exp

(
4K1

σ2x∗

)
+ 1.

In particular,

‖p− θ‖L∞(]x∗−δ,x∗[) ≤ C1 · δ + C2 · sup
x,y∈[x∗−δ,x∗]

|θ(x)− θ(y)|
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and the uniform continuity of θ yields (3.52) and completes the proof.

3.3 Behavior of optimal feedback controls

This section is devoted to the behavior of optimal feedback controls near the bankruptcy
threshold x∗. Roughly speaking, let (u∗, v∗, p) be an optimal solution to the problem
of optimal debt management (3.1)–(3.6), and V be the corresponding value function. In
Theorem 3.2.1 we showed that for sufficiently small initial debt, the optimal strategy
does not involve currency devaluation (3.28). In addition, we will show that when the
debt-to-income ratio x is close to x∗

• if the risk of bankruptcy ρ slowly approaches to infinity then the optimal strategy of
borrower involves continuously devaluating its currency and making payment, i.e.
u∗(x) > 0 and v∗(x) > 0,

• conversely, if the risk of bankruptcy ρ quickly approaches to infinity then any action to
reduce the debt is not optimal, i.e. u∗(x) = v∗(x) = 0.

To this aim, we will first establish lower and upper bounds for the value function
V and then apply the bounds to analyze the feedback strategies (3.12) and (3.13).
Recalling that

p ∈ [θmin, 1] with θmin = min
{

θ(x∗),
r + λ

r + λ + vmax

}
,

we introduce a non-decreasing function β : [0, x∗[→ [0,+∞[ defined by

β(t) = max
s∈[0,t]

[
ρ(s) ln

(
t
s

)]
+

λ + r
θmin

+
σ2

2
< + ∞ ∀t ∈ [0, x∗[. (3.58)

Proposition 3.3.1. Under the same assumptions in Theorem 3.2.1, let (V, p) be a set of
solutions to (3.17). Then it holds that

V(x) ≤ V1(x) := B · inf
t∈[x,x∗[

[
β(t)

r ln
( t

x
)
+ β(t)

]
∀x ∈]0, x∗[. (3.59)

In addition if we assume that

x∗ ≥ 2
r + λ

and lim
x→x∗−

ρ(x)(x∗ − x)2 = + ∞, (3.60)
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then there exists x� ∈ [x∗/2, x∗[ such that

V(x) ≥ V2(x) := B ·

1−
ln
(

x∗

x

)(
1− x

x∗
)

ln
(

x∗

x�

)
(x∗ − x�)

 ∀x ∈ [x�, x∗] . (3.61)

Proof. 1. For any given x1 ∈]0, x∗[ and x2 ∈]0, x1[, we seek for an upper bound for V
as a super-solution to the first equation of (3.17) of the form

V1(x) =


B if x ∈ [x1, x∗],

B
(

1− α ln
(x1

x

))
if x ∈ [x2, x1],

B
(

1− α ln
(

x1

x2

))
if x ∈ [0, x2],

with α > 0 satisfying the following relation

− r + α ·
(

r ln
(

x1

x2

)
+ β(x1)

)
= 0. (3.62)

It is clear that

V1(0) = B
(

1− α ln
(

x1

x2

))
≥ 0 = V(0) and V1(x∗) = B = V(x∗).

For every x ∈]0, x2[, it holds

− (r + ρ(x))V1(x) + ρ(x)B + H(x, V′1(x), p(x)) +
σ2x2

2
·V′′1 (x)

= − (r + ρ(x))V1(x) + ρ(x)B ≤ B ·
[
−r + α(r + ρ(x2)) ln

(
x1

x2

)]
≤ B ·

(
−r + α ·

(
β(x1) + r ln

(
x1

x2

)))
= 0.

Similarly, for every x ∈]x1, x∗[, one has

− (r + ρ(x))V1(x) + ρ(x)B + H(x, V′1(x), p(x)) +
σ2x2

2
·V′′1 (x)

= − (r + ρ(x))V1(x) + ρ(x)B = − rB < 0.
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On the other hand, for every x ∈]x2, x1[, we compute

V′1(x) =
Bα

x
> 0 and V′′1 (x) = − Bα

x2 ,

and use Lemma 3.1.2 to obtain

−(r + ρ(x))V1(x) + ρ(x)B + H(x, V′1(x), p(x)) +
σ2x2

2
·V′′1 (x)

≤ − (r + ρ(x))V1(x) + ρ(x)B +

(
λ + r
θmin

+ σ2
)

xV′1(x) +
σ2x2

2
·V′′1 (x)

= B ·
[
−r + α ·

(
(r + ρ(x)) ln

(x1

x

)
+

λ + r
θmin

+
σ2

2

)]
Applying the definitions of β(·) (3.58) and α (3.62), we have that

−(r + ρ(x))V1(x) + ρ(x)B + H(x, V′1(x), p(x)) +
σ2x2

2
·V′′1 (x)

≤ B ·
[
−r + α ·

(
r ln

(
x1

x2

)
+ β(x1)

)]
= 0.

Hence, V1 is a super-solution of the first equation of (3.17) and

V(x) ≤ V1(x), ∀x ∈ [0, x∗].

In particular, we have

V(x2) ≤ V1(x2) = B ·

1− r

r ln
(

x1
x2

)
+ β(x1)

· ln
(

x1

x2

) ,

and this implies that

V(x2) ≤ B · β(x1)

r ln
(

x1
x2

)
+ β(x1)

.

Since the above inequality hold for every x2 ∈]0, x1[, one obtains (3.59).

2. We seek for a lower bound for V as a sub-solution to the first equation of (3.17) in
the interval [x1, x∗] of the form

V2(x) = B
(

1− α1 ln
(

x∗

x

)
(x∗ − x)

)
, ∀x ∈ [x1, x∗],
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B

x
∗

V1(x)

B

x
∗

V2(x)

x
⋄

Figure 3.4 Super-solution V1(·) and sub-solution V2(·) candidates for the value function V.

with

x1 ∈ [x∗/2, x∗] and α1 :=
[

ln
(

x∗

x1

)
(x∗ − x1)

]−1

≥ 2
ln 2 · x∗ . (3.63)

Clearly, V2(x1) = 0. For every x ∈]x1, x∗[, we compute

V′2(x) = Bα1 ·
(

ln
(

x∗

x

)
+

x∗ − x
x

)
≥ 0 and V′′2 (x) = − Bα1

(
1
x
+

x∗

x2

)
.

(3.64)
For simplicity, denote the constant

C1 := λ + µ + vmax .

Using Lemma 3.1.2 and the first condition of (3.60), we have

H(x, V′2(x), p(x)) ≥ − C1V′2(x)x, ∀x ∈ [x1, x∗]

which implies that

−(r + ρ(x))V2(x) + ρ(x)B + H(x, V′2(x), p(x)) +
σ2x2

2
·V′′2 (x)

≥ − (r + ρ(x))V2(x) + ρ(x)B− C1xV′2(x) +
σ2x2

2
·V′′2 (x).

On the other hand, from (3.64), one has

C1xV′2(x) ≤ 2Bα1C1(x∗ − x) ≤ Bα1C1x∗,
σ2x2

2
·V′′2 (x) ≥ − Bα1σ2x∗,
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for all x ∈ [x1, x∗]. Thus,

−(r + ρ(x))V2(x) + ρ(x)B + H(x, V′2(x), p(x)) +
σ2x2

2
·V′′2 (x)

≥ B ·
[

α1

(
ρ(x) ln

(
x∗

x

)
(x∗ − x)− (C1 + σ2)x∗

)
− r
]

.

From the second condition of (3.60), it holds

lim
x→x∗

ρ(x) ln
(

x∗

x

)
(x∗ − x) = + ∞,

and therefore there exists x� ∈]x∗/2, x∗[ sufficiently close to x∗ such that

2
ln 2 · x∗ ·

(
ρ(x) ln

(
x∗

x

)
(x∗ − x)− (C1 + σ2)x∗

)
− r ≥ 0 ∀x ∈ [x�, x∗[.

In particular, if we choose x1 = x� then (3.65) and (3.63) imply that

−(r + ρ(x))V2(x) + ρ(x)B + H(x, V′2(x), p(x)) +
σ2x2

2
·V′′2 (x) ≥ 0,

for all x ∈ [x�, x∗[. Since

V2(x�) = 0 ≤ V(x�) and V2(x∗) = B ≤ V(x∗),

V2 is a sub-solution to the first equation of (3.17) in [x�, x∗] and thus

V(x) ≥ V2(x), ∀x ∈ [x�, x∗],

which yields (3.61).

From the formula of β(·) in (3.58), one can actually show that β is locally Lipschitz
and

0 ≤ β′(t) ≤ ρ(t)
t

a.e. t ∈ [x, x∗]. (3.65)

Notice that
lim

t→0+

ρ(t)
t

= ρ′(0) < +∞

and ∫ x∗

x∗−δ
ρ(t)dt < + ∞ for some δ > 0 =⇒

∫ x∗

0

ρ(t)
t

dt < + ∞
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In this case, we have

sup
t∈[0,x∗[

β(t) ≤ β∗ :=
∫ x∗

0

ρ(t)
t

dt +
λ + r
θmin

+
σ2

2
. (3.66)

As a consequence of Proposition 3.3.1, we can deduce the following statements about
the optimal feedback strategies.

Corollary 3.3.2. Under the same assumptions in Theorem 3.2.1, it holds that

(i) Suppose that
∫ x∗

x∗−δ
ρ(t) dt < +∞ for some δ > 0 and, letting β∗ be as in (3.66), assume

that
β∗ < Br ·min

{
1

c′(0)
,

1
L′(0)x∗

}
.

Then there exists some x̄ ∈]0, x∗[ sufficiently close to x∗ such that

u∗(x) > 0 and v∗(x) > 0 ∀x ∈ [x̄, x∗[.

(ii) If (3.60) holds then there exists x̂ ∈]0, x∗[ sufficiently close to x∗ such that

u∗(x) = v∗(x) = 0 ∀x ∈ [x̂, x∗[.

Proof. (i). For every given x2 ∈]0, x∗[, (3.59) and (3.66) imply that

V(x∗)−V(x2) ≥ V(x∗)−V1(x2) ≥ B · r ln(x1/x2)

r ln(x1/x2) + β∗
∀x1 ∈ [x2, x∗[.

In particular, we have

V(x∗)−V(x2) ≥ sup
x1∈[x2,x∗[

[
B · r ln(x1/x2)

r ln(x1/x2) + β∗

]
= B · r ln(x∗/x2)

r ln(x∗/x2) + β∗
.

By mean value theorem, there exists xc ∈ [x2, x∗] such that

V′(xc) · xc ≥ B · r ln(x∗/x2)

r ln(x∗/x2) + β∗
· x2

x∗ − x2
. (3.67)

On the other hand, from the first equation of (3.17) and Lemma 3.1.2, it holds

σ2

2
[x2V′′(x) + xV′(x)] ≥ − cxV′(x)− ρ(x)B ∀x ∈]0, x∗[,
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with constant c := r+λ
θmin

+ σ2

2 . Set Z(x) = xV′(x), c1 = 4c
σ2x∗ and c2 = 4B

σ2x∗ , we have

Z′(x) ≥ − c1Z(x)− c2ρ(x) ∀x ∈]x∗/2, x∗[.

Solving the differential inequality yields

Z(x) ≥ ec1(x0−x) · Z(x0)− c2

∫ x

x0

ρ(s)ds , ∀ x∗

2
< x0 ≤ x < x∗.

In particular, recalling (3.67), we have

Z(x) ≥ Bec1(x2−x∗) r ln(x∗/x2)

r ln(x∗/x2) + β∗
· x2

x∗ − x2
− c2

∫ x∗

x2

ρ(s)ds =: I(x2),

for all x∗/2 < x2 < xc ≤ x < x∗. Since

β∗ < Br ·min
{

1
c′(0)

,
1

L′(0)x∗

}
and

∫ x∗

0
ρ(t) dt < +∞ ,

it holds that
lim

x2→x∗
I(x2) =

Br
β∗

> max
{

c′(0), L′(0)x∗
}

.

Thus, there exists x2 ∈ [x∗/2, x∗[ sufficiently close to x∗ such that

Z(x) ≥ I(x2) > c′(0) and V′(x) ≥ I(x2)

x
> L′(0) ≥ L′(0)p(x),

for all x ∈ [xc, x∗] and, recalling (3.12)-(3.13), this yields (i) for x̄ = xc.

(ii). Assuming that (3.60) holds, we recall x� in Proposition 3.3.1. By the mean value
theorem, for every x1 ∈ [x�, x∗[, there exists xc ∈]x1, x∗[ such that

V′(xc) · xc =
V(x∗)−V(x1)

x∗ − x1
· xc ≤

B−V2(x1)

x∗ − x1
· x∗

=
B

ln
(

x∗

x�

)
(x∗ − x�)

· ln
(

x∗

x1

)
.

(3.68)

From the first differential equation of (3.17) and Lemma 3.1.2, we can estimate

σ2

2
· [x2V′′(x) + xV′(x)] ≤ rB + (λ + µ + vmax) xV′(x) ∀x ∈]x∗/2, x∗[.
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Recalling that Z(x) = xV′(x), we have

Z′(x) ≤ c3Z(x) + c4 ∀x ∈ [x∗/2, x∗],

with
c3 :=

4rB
σ2x∗

and c4 :=
2 (λ + µ + vmax)

σ2x∗
.

Thus, by applying Gronwall’s inequality, we have

Z(x) ≤ ec3·(x−xc) · Z(xc) +
c4

c3
·
(

ec3·(x−xc) − 1
)

,

and (3.68) implies that

Z(x) ≤ B

ln
(

x∗

x�

)
(x∗ − x�)

· ec3·(x∗−x1) · ln
(

x∗

x1

)
+

c4

c3
·
(

ec3·(x∗−x1) − 1
)

=: J(x1),

for all x ∈ [xc, x∗[. Since limx1→x∗− J(x1) = 0, there exists x1 ∈]x�, x∗[ such that

Z(x) ≤ J(x1) ≤ c′(0) ,

and therefore
V′(x) ≤ J(x1)

x
≤ θminL′(0) ≤ L′(0) · p(x),

for all x ∈ [xc, x∗[. Recalling (3.12)-(3.13) and setting x̂ = xc yields (ii).
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Chapter 4
Fine regularity of the Burgers-Poisson
equation

The aim of this chapter is to show that weak entropy solutions to the Burgers-Poisson
equation are in SBV(R+ ×R). The Burgers-Poisson equation is given by the balance
law obtained from Burgers’ equation by adding a nonlocal source term

ut +

(
u2

2

)
x
= [G ∗ u]x , (4.1)

where, G(x) = −1
2 e−|x| is the Poisson kernel such that

[G ∗ f ](x) =
∫ +∞

−∞
G(x− y) · f (y) dy

solves Poisson’s equation
ϕxx − ϕ = f . (4.2)

Equation (4.1) was first derived in [80] as a simplified model of shallow-water waves
and admits conservation of both momentum and energy. In the literature, it has
also been referred to as the Fornberg-Whitham equation ([55],[54],[57],[56],[78]). Well-
posedness analysis in [44] established the local existence and uniqueness of solutions
of the associated Cauchy problem of (4.1) and initial data

u(x, 0) = u0(x), x ∈ R . (4.3)

for sufficiently regular u0. Additionally, their analysis of traveling waves showed
that the equation features wave breaking in finite time. More generally, it has been
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demonstrated that (4.1) does not admit a global smooth solution ([62]). Hence, further
analysis has focused on the concept of weak entropy solutions, in the sense of Kruzkov.

Based on the vanishing viscosity approach, the existence result for a global weak
solution was provided for u0 ∈ BV(R) in [44]. However, in the more general case
with initial data in L1(R), this approach cannot be applied. Moreover, there are no
uniqueness or continuity results for global weak entropy solutions of (4.1) established
in [44]. More recently, the existence and continuity results for global weak entropy
solutions of (4.1) were established for L1(R) initial data in [53]. The entropy weak
solutions are constructed by a flux-splitting method. Relying on the decay properties
of the semigroup generated by Burgers equation and the Lipschitz continuity of
solutions to the Poisson equation, approximating solutions satisfy an Oleinik-type
inequality for any positive time. As a consequence, the sequence of approximating
solutions is precompact and converges in L1

loc(R). Furthermore, using an energy
estimate, they show that the characteristics are Hölder continuous, which is used to
achieve the continuity property of the solutions. The Oleinik-type inequality gives that
the solution u(t, ·) is in BVloc(R) for every t > 0. In particular, this implies that the
Radon measure Du(t, ·) is divided into three mutually singular measures (see Section
2.5)

Du(t, ·) = Dau(t, ·) + Dju(t, ·) + Dcu(t, ·)

where Dau(t, ·) is the absolutely continuous measure with respect to the Lebesgue
measure, Dju(t, ·) is the jump part which is a countable sum of weighted Dirac
measures, and Dcu(t, ·) is the non-atomic singular part of the measure called the
Cantor part. For a given w ∈ BVloc(R), the Cantor part of Dw does not vanish in
general. A typical example of Dcw is the derivative of the Cantor-Vitali ternary
function. If Dcw vanishes, then we say the function w is locally in the space of special
functions of bounded variation, denoted by SBVloc(R). The space of SBV functions
was first introduced in [37]. Motivated by results on SBV regularity for hyperbolic
conservation laws ([4, 73, 11, 63]), we show the following.

Theorem 4.0.1. Let u : [0,+∞[×R→ R be the unique locally BV-weak entropy solution of
(4.1) with initial data u0 ∈ L1(R). Then there exists a countable set T ⊂ R+ such that

u(t, ·) ∈ SBVloc(R) ∀t ∈ R+ \ T .

As a consequence, the slicing theory of BV functions and the chain rule of Vol’pert
[5] implies that the weak entropy solution u is in SBVloc([0,+∞[×R). This is the
first result showing that a SBV-regularization effect holds for solutions to a scalar
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conservation law with a nonlocal source term.

4.1 A nonlocal dispersive balance law

We recall results of the Burgers-Poisson equation, which has also been called the
Fornberg-Whitham equation. Introduced by Whitham in [80], as a dispersive model
for the center of shallow water wave model captures the balance between linear
dispersion and nonlinear effects, while showing indications of wave breaking (see
also Whitman’s models in [79]). The wave height is described as a function of space
and time u : R+ ×R→ R. Throughout this chapter, we will examine the existence,
uniqueness and regularity results of (4.1) subject to initial condition (4.3). The equation
(4.1) emerged in [44], as a rescaled formulation of the Whitham equation (see also
[50]), from a system of equations. Note that by setting φ := −G ∗ u, we obtain the
system of partial differential equationsut + uux = φx

φxx = φ + u .

This formulation was called the Burgers-Poisson system in [44], while the analog that
we will focus on (4.1) is called the Burgers-Poisson equation (as in [53]).

Remark 4.1.1. By applying the operator 1− ∂2
x to (4.1), we obtain the third order PDE

ut − uxxt + uux + ux = 3uxuxx + uuxxx . (4.4)

Compare the terms in (4.4) to those of the Camassa-Holm equation [21]:

ut − uxxt + 3uux + 2κux = 2uxuxx + uuxxx , (4.5)

where κ ≥ 0 is related to the critical shallow water wave speed. Using the bi-
Hamiltonian property of (4.5), Camassa and Holm derived an infinite sequence of
conservation laws and thus that the associated flows are completely integrable. The
equation (4.5) is often considered with κ = 0, in which case it has peaked soliton
solutions. Since we will look at the system through the lens of scalar balance laws, we
will use the form (4.1).

Remark 4.1.2. The Burgers-Poisson equation (4.1) becomes the Benjamin-Ono equation
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([10],[69]) when G ∗ u is replaced by −2H(ux), where H is the Hilbert transform:

H(u)(y) = p.v.
1
π

∫
R

u(x)
x− y

dx .

The Benjamin-Ono equation is used to study long internal gravity waves in strati-
fied fluids of great depth. It is another completely integrable hamiltonian system,
possessing multi-soliton solutions.

Let us consider the conserved quantities for solutions u (of sufficient regularity
and integrability properties). Integrating (4.1) with respect to x yields

∫
∂tu(x, t) dx =

∫
∂x

[
−u2

2
+ [G ∗ u(t, ·)]

]
dx = 0

thus we have that ∫
R

u(t, x) dx =
∫

R
u0(x) dx, ∀t ≥ 0 .

Another conserved quantity is that of spatial L2-norm

Theorem 4.1.3 (Conservation of energy). Let u a distributional solution of (4.1). Then it
holds that

d
dt

∫
R

u(t, x)2 dx = 0 ∀t ≥ 0 .

Proof. Consider the Burgers-Poisson system:ut +
(

u2

2

)
x

= φx

φxx − φ = u .

Multiplying the first equation by u, we derive a second conservation law

0 =

(
1
2

u2
)

t
+

(
u3

3

)
x
− φxu

=

(
1
2

u2
)

t
+

(
u3

3

)
x
− φx (φ− φxx)

=

(
1
2

u2
)

t
+

(
u3

3
+

φ2

2
− φ2

x
2

)
x

.

Assuming that either u is periodic in x or that u and its derivatives vanish sufficiently
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rapidly at infinity, we recover that

∫ 1
2

u2
0 dx =

∫ 1
2

u(t, x)2 dx, ∀t > 0 .

However, as shown in [58], the Burgers-Poisson equation is known to belong to the
class of dispersive wave equations that are not completely integrable.

4.1.1 Classical Solutions

As in Section 2.6, the well-posedness analysis of (4.1) began in [65] by searching for
functions u : Ω ⊂ R× [0, T[ 7→ R which are classical solutions in the sense that u
possesses first-order partial derivatives, the convolution [G ∗ u(t, ·)] is defined on R

for every t > 0, and (4.1) holds point-wise for every (x, t) ∈ Ω. The preliminary
on classical smooth solutions was established in [65] for initial data in H∞. The
result is established through a strategy of successive approximation, where each
approximation is found by solving a linear hyperbolic equation. By using properties
of the characteristics, they show convergence of the scheme leading to the following
result.

Theorem 4.1.4. Let u0 ∈ H∞(R). Then there is some T > 0 such that the Cauchy problem
(4.1)-(4.3) has a unique solution u ∈ C∞([0, T], H∞(R)).

The next results for classical solutions came in the paper [44]. Relying on a contraction
argument for the map v 7→ u, where u solves

ut + uux = [G ∗ v]x

they show the following.

Theorem 4.1.5. Assume u0 ∈ Hk(R) with k > 3
2 . Then, there exists a time T > 0, depending

on ‖u0‖Hk+1 such that the Cauchy problem (4.1)-(4.3) has a unique solution u with regularity

u ∈ L∞(]0, T[; Hk(R)) ∩ C([0, T]; Hk−1(R))

It holds that the solution regularity is better than the given space L∞(]0, T[; Hk(R))∩
C([0, T]; Hk−1(R)) and that the solution is a strong solution. By the equation (4.1), it
follows that Dtu = −uDxu + [G ∗ u]x ∈ L∞([0, T], Hk(R)). Hence, the map t 7→ u(t, ·)
is Lipschitz continuous with values in Hk(R).
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For the periodic case, a similar result, but with spatial Hs+1 regularity for some
s ∈ R such that s > 1/2 and solution u ∈ C([0, T], Hs+1(T)) was established in [55].
The method of the proof uses a Galerkin aprroximation argument and derives energy
estimates yielding convergence in the appropriate function spaces. Again, by utilizing
the balance law (4.1), it holds that u ∈ C1([0, T], Hs(T)) and we have a strong solution.
Moreover, they note the continuous dependence of u on the initial data u0.

4.1.2 Wave Breaking

As discussed in Section 2.6, solutions to conservation laws may not be continuous for
all time. In this subsection, we review related analysis of the Burgers-Poisson equation
and focus on the prediction of wave breaking. We say that wave breaking occurs for u
for some time T > 0 [29, Definition 6.1], if the wave u(T, ·) remains bounded while its
slope becomes unbounded, i.e.

sup
t∈[0,T[

‖u(t, ·)‖L∞(R) < + ∞ and lim sup
t↑T

‖Dxu(t, ·)‖L∞(R) = + ∞ .

In particular, we are interested in identifying if, for initial data u0(·) ∈ C1(R) ∩ L1(R),
wave breaking occurs for some time T > 0. The traditional method of analysis is to
follow solutions along the characteristics, as long as they exist in the classical sense.
The first indication that wave breaking occurs was given in [74] and followed up in [65],
where a sketch of arguments detailing a quantitative asymmetry condition in terms
of the minimum and maximum slopes of the initial wave profile. The first rigorous
proof of a wave breaking result was given in [28] which we state here. Availability
of more general well-posedness results allows for less regular initial data than the
original theorem [28, Theorem 3.2].

Theorem 4.1.6. Let u0 ∈ H3(R) such that u0 satisfies

inf
x∈R

u′0(x) + sup
x∈R

u′0(x) ≤ − 1 .

Then wave breaking occurs in the solution to the Cauchy problem (4.1), (4.3) with initial data
u0.

In [62], they show a similar wave breaking result in the case of periodic initial data.
Again, it holds that the nonlocal source term cannot prevent the nonlinear breaking of
smooth solutions when the slope of the initial data is sufficiently large. More precisely,
they show that:
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Theorem 4.1.7. Consider the solutions u of the system (4.1), (4.3) subject to smooth periodic
initial data u0(x) such that u0(x + 1) = u0(x). Let m = − inf Dxu0(x) and suppose that

m3

4 + 2m
(

1
2 +

e0.5+e−0.5

e0.5−e−0.5

) > 4 ‖u0‖L∞(R) .

Then the smooth solutions u break down, and wave breaking occurs in finite time, before
T = 2/m.

A similar result is provided in [53] in the non-periodic case. They give the following
precise statements on when wave breaking will not occur as well as a sufficient
condition for wave breaking in relatively short time.

Theorem 4.1.8. Let u(t, x) be the solution of (4.1),(4.3) with u0(·) ∈ C1(R) ∩ L1(R).
Denote by

m = inf
x∈R

u′0(x) and M = ‖u0‖L∞(R) .

Then the following statements hold

(i) Dxu(t, x(t)) remains bounded for all t ∈ [0, T∗[ where

T∗ = ln

(
1 +

1√
|m|+ 3M

(
π

2
− arctan

[
|m|√
2M

]))

(ii) If

m < − 1−
√

5
2

M + 1 ≤ 0 ,

then Dxu(t, x(t)) becomes unbounded within the time interval [0, T[ where

T =
2

|2m + 1 + 2
√
|m|+ 5

2 M + 1
4

.

Moreover, in [53], they show the following negative wave breaking result. In particular,
they show that if the L∞ norm of the slope of the initial data is small, then the
corresponding entropy solution will remain smooth for a long time.

Theorem 4.1.9. Let u(t, x) be the solution of (4.1), (4.3) with u0 ∈ C1(R) ∩ L1(R) and let
m = ‖u′0‖L∞(R). Then ‖Dxu(t, ·)‖L∞(R) remains bounded for all t ∈ [0, ln(1 + 1

m )[.
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x

u0(·)

u

x

u

u(T, ·)

Figure 4.1 Numerical simulations (see, e.g. [44, Figure 4.2]) demonstrate the wave breaking
behavior of solutions to the Burgers-Poisson equation at time T with continuous initial data.

4.1.3 Entropy admissible solutions and Oleinik inequality

As shown in the previous section, the classical solutions to (4.1) break down in finite
time even with smooth initial data. Instead, we extend the notion of an entropy weak
solution in the Kruzkov sense to (4.1).

Definition 4.1.10. A function u ∈ L1
loc([0, ∞[×R) ∩ L∞

loc(]0, ∞[, L∞(R)) is an entropy
weak solution of (4.1) if u satisfies the following properties:

(i) the map t 7→ u(t, ·) is continuous with values in L1(R), i.e.,

‖u(t, ·)− u(s, ·)‖L1(R) ≤ L · |t− s| ∀0 ≤ s ≤ t

for some constant L > 0.

(ii) For any k ∈ R and any non-negative test function φ ∈ C1
c (]0, ∞[×R, R) one has

∫ ∫ [
|u− k|φt + sign(u− k)

(
u2

2
− k2

2

)
φx + sign(u− k)[Gx ∗u(t, ·)](x)φ

]
dx dt ≥ 0 .

A standard way of showing existence of entropy solutions is through the method of
vanishing viscosity. The first indication that this method may produce a convergent
scheme towards an entropy solution for is given in [65]. The vanishing viscosity
approach was later employed in [44] to produce a rigorous statement on the existence
of weak entropy solutions for initial data with spatially BV regularity. In particular,
they consider the regularized equation

ut + uux = [G ∗ u]x + εuxx
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with ε > 0 and derive a convergent scheme as ε → 0 to show the following [44,
Theorem 4.2]

Theorem 4.1.11. Assume that u0 ∈ BV(R). Then there exists a global weak solution to the
Cauchy problem (4.1), (4.3)

u ∈ L∞
loc([0, ∞[; BV(R))

satisfying the entropy condition

(u2)t +

(
2
3

u3 + φ2 − φ2
x

)
x
≤ 0

in the distributional sense.

The vanishing viscosity method used in [44] for initial data in BV can not be applied to
the more general case where u0 ∈ L1(R). Instead, in [53], the entropy weak solutions
are constructed by a flux-splitting method. The proof of follows the idea in [16], where
the authors provide an ee existence result for the Burgers-Hilbert equation. Relying on
the decay properties of the semigroup generated by Burgers equation and the Lipschitz
continuity of solutions to the Poisson equation (see Propositions 4.1.13 and 4.1.14),
approximating solutions satisfy an Oleinik-type inequality for any positive time. As a
consequence, the sequence of approximating solutions is precompact and converges
in L1

loc(R). Moreover, using an energy estimate, they show that the characteristics are
Hölder continuous, which is used to achieve the continuity property of the solutions.
Their main results are presented here [53, Theorem 1.2].

Theorem 4.1.12. The Cauchy problem (4.1)-(4.2) with initial data u0 := u(0, ·) ∈ L1(R)

admits a unique solution u(t, x) such that for all t > 0 the following hold:

(i) the L1-norm is bounded by

‖u(t, ·)‖L1(R) ≤ et · ‖u0‖L1(R) ; (4.6)

(ii) the solution satisfies the following Oleinik-type inequality

u(t, y)− u(t, x) ≤ Kt

t
· (y− x) ∀ y > x (4.7)

with
Kt = 1 + 2t + 2t2 + 4t2et · ‖u0‖L1(R) ;
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(iii) Given v(t, x), the solution of (4.1) with initial data in v0 ∈ L1(R), it holds that

‖u(t, ·)− v(t, ·)‖L1(R) ≤ et ‖u0 − v0‖L1(R) ;

(iv) the L∞-norm is bounded by

‖u(t, ·)‖L∞(R) ≤
√

2Kt

t
‖u(t, ·)‖L1(R) ≤

√
2Ktet

t
‖u0‖L1(R) . (4.8)

We recall some properties of the approximating solutions, used in the proof Theorem
4.1.12. Let SB denote the semigroup generated by Burgers equation, i.e., t 7→ SB

t (u0)

denotes the Kruzkov entropy solution to

ut +

(
u2

2

)
x

= 0, u(0, x) = u0(x) ∈ L1(R).

In a refinement to the typical one-sided jump estimate in Theorem 2.6.16, if the initial
data is one-sided Lipschitz, we recover a stronger inequality for the solution.

Proposition 4.1.13 (Positive decay of Burgers semigroup). [53, Lemma 2.1]: If u0 is such
that

u0(x2)− u0(x1) ≤ K · (x2 − x1), ∀x1 < x2 (4.9)

then

SB
t (u0)(x2)− SB

t (u0)(x1) ≤
K

1 + Kt
· (x2 − x1), ∀x1 < x2 (4.10)

Proof. Since u satisfies the Lax entropy condition, it holds that

u(t, x−) ≥ u(t, x+), ∀t > 0 .

Hence, it is sufficient to prove (4.10) for any point of continuity xi of SB
t (u0). Let ξxi(·)

be the characteristic through the point (t, xi). The characteristic equations imply that

xi = ξxi(0) + tu0(ξxi(0)) and SB
t (u0)(xi) = u0(ξxi(0)) .

Let x1 < x2 be such points of continuity. From the assumption (4.9), it holds that

x2 − x1 = ξx2(0)− ξx1(0) + t · (u0(ξx2(0))− u0(ξx1(0)))

≤ (1 + Kt) · (ξx2(0)− ξx1(0)) ,
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therefore we have

SB
t (u0)(x2)− SB

t (u0)(x1) =
1
t
(x2 − x1 − (ξx2(0)− ξx1(0)))

≤ K
1 + Kt

· (x2 − x1) ,

which completes the proof.

Another significant result is that solutions to the Poisson equation retain (one-sided)
Lipschitz continuity. The following is crucial to the analysis provided in [53] and
summarized in Theorem 4.1.12.

Proposition 4.1.14 (Lipschitz continuity of solutions to Poisson equation). [53, Lemma
2.2]: Let u0 is such that

u0(x2)− u0(x1) ≤ K · (x2 − x1), ∀x1 < x2 . (4.11)

Then ∣∣∣[G ∗ u0]x(x2)− [G ∗ u0]x(x1)
∣∣∣ ≤ (√

2K ‖u0‖L1(R) + ‖u0‖L1(R)

)
·
∣∣x2 − x1

∣∣.
Proof. Since x1 < x2 we can estimate from above∣∣∣[G ∗ u0(·)]x(x2)− [G ∗ u0(·)]x(x1)

∣∣∣ ≤ 1
2
·
∫ x1

−∞
|u0(z)| ·

∣∣ez−x2 − ez−x1
∣∣ dz

+
1
2
·
∫ x2

x1

|u0(z)| ·
∣∣ez−x2 + ex1−z∣∣ dz +

1
2
·
∫ +∞

x2

|u0(z)| ·
∣∣ex1−z − ex2−z∣∣ dz

By Hölder’s inequality, it holds that

1
2
·
∫ x1

−∞
|u0(z)| ·

∣∣ez−x2 − ez−x1
∣∣ dz +

1
2
·
∫ +∞

x2

|u0(z)| ·
∣∣ex1−z − ex2−z∣∣ dz

≤
(
1− ex1−x2

)
‖u0‖L1(R) .

By a comparison principal argument, it holds that 1− e−x ≤ x for all x > 0, hence, we
estimate that∣∣∣[G ∗ u0(·)]x(x2)− [G ∗ u0(·)]x(x1)

∣∣∣ ≤ (
‖u0‖L1(R) + ‖u0‖L∞(R)

)
·
∣∣x2 − x1

∣∣ . (4.12)

On the other hand, note that u0 ∈ BV(R) and since u0 satisfies (4.11), we have that
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Du0 ≤ K in the sense of measures. Hence, Proposition 2.5.12 yields

‖u0‖L∞ ≤
√

2K ‖u0‖L1

which when applied to (4.12), completes the proof.

The previous two Propositions yield that an intermediate Oleinik-type inequality
holds for the approximating solutions used in the proof of Theorem 4.1.12. A similar
Oleinik-type inequality (4.7) also holds for the entropy weak solutions, which in turn
implies that u retains a BV regularity for all positive time.

Proposition 4.1.15 (BV-regularity of solutions). Let u be the entropy weak solution of
(4.1) then u(t, ·) ∈ BVloc(R) for all t > 0 with total variation bounded by

|Du(t, ·)|(I) ≤ 2Kt

t
· L(I) + 2 ‖u(t, ·)‖L∞(I) (4.13)

for any compact interval I ⊂ R.

Proof. For any t > 0, define the function gt : R→ R by

gt(x) =
Kt

t
· x− u(t, x) .

By the Oleinik inequality (4.7), gt(·) is monotone increasing on R and bounded on any
compact subset of R. In particular, this implies that for any [a, b] ⊂ R, the variation of
gt is bounded by

|Dgt|([a, b]) = gt(b)− gt(a) ≤ Kt

t
· (b− a) + 2 ‖u(t, ·)‖L∞([a,b])

Therefore g ∈ BVloc(R) and u(t, ·) ∈ BVloc(R) as a sum of two BVloc functions with
total variation bounded by

|Du(t, ·)|(I) ≤ |Dgt|(I) +
Kt

t
· L(I) ∀I ⊂⊂ R ,

implying (4.13).

Remark 4.1.16. By taking the limit as y→ x, in (4.7), it is clear that for all t > 0, u(t, ·)
satisfies

u(t, x−) ≥ u(t, x+) ∀x ∈ R. (4.14)
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4.1.4 Properties of generalized characteristics

We recall the definition and theory of generalized characteristic curves associated with
(4.1). For a more in-depth theory of generalized characteristics, we direct the readers
to [36].

Definition 4.1.17. For any (t, x) ∈ ]0,+∞[×R, an absolutely continuous curve ξ(t,x)(·)
is called a backward characteristic curve starting from (t, x) if it is a solution of the
differential inclusion

ξ̇(t,x)(s) ∈
[
u
(

s, ξ(x,t)(s)+
)

, u
(

s, ξ(t,x)(s)−
) ]

a.e. s ∈ [0, t] (4.15)

with ξ(t,x)(t) = x. If s ∈ [t,+∞[ in (4.15) then ξ is called a forward characteristic
curve, denoted by ξ(t,x)(·). The characteristic curve ξ is called genuine if u(t, ξ(t)−) =
u(t, ξ(t)+) for almost every t.

The existence of backward (forward) characteristics was studied by Fillipov. As
in [36] and [73], the speed of the characteristic curves are determined and genuine
characteristics are essentially classical characteristics:

Proposition 4.1.18. Let ξ : [a, b] → R be a characteristic curve for the Burgers-Poisson
equation (4.1), associated with an entropy weak solution u. Then for almost every time
t ∈ [a, b], it holds that

ξ̇(t) =


u(t, ξ(t)) if u(t, ξ(t)+) = u(t, ξ(t)−) ,

u(t, ξ(t)+) + u(t, ξ(t)−)
2

if u(t, ξ(t)+) < u(t, ξ(t)−) .
(4.16)

In addition, if ξ is genuine on [a, b], then there exists v(t) ∈ C1([a, b]) such that

u(t, ξ(t)−) = v(t) = u(t, ξ(t)+) ∀t ∈]a, b[ (4.17)

and (ξ(·), v(·)) solve the system of ODEs
ξ̇(t) = v(t)

v̇(t) = [G ∗ u(t, ·)]x(ξ(t))
∀t ∈]a, b[ . (4.18)

Proof. We first prove (4.16), following the proof of Theorem 10.2.3 of [36]. Wherever
u(t, ·) is continuous, the differential inclusion (4.15) reduces to a single point and we
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recover that
ξ̇(t) = u(t, ξ(t))

Applying the measure equality (4.1) to arbitrary subarcs of the graph of ξ, and using
Theorem 1.7.8 of [36], yields

ξ̇(t) [u(t, ξ(t)+)− u(t, ξ(t)−)] =
[u(t, ξ(t)+)]2

2
− [u(t, ξ(t)−)]2

2
− ([G ∗ u(t, ·)] (ξ(t)+)− [G ∗ u(t, ·)] (ξ(t)−))

=
[u(t, ξ(t)+)]2

2
− [u(t, ξ(t)−)]2

2
,

almost everywhere on [a, b]. Consequently, for almost all t ∈ [a, b] with u(t, ξ(t)+) <

u(t, ξ(t)−), we have that ξ̇(t) = s where s is the speed of a shock. To prove the rest,
we follow the idea in Theorem 11.9.1 of [36]. Let ξ be genuine on [a, b] and let

I = {t ∈ (a, b) : u(t, ξ(t)+) = u(t, ξ(t)−)} .

For any t ∈ I, set v(t) = u(t, ξ(t)±), we have

ξ̇(t) = v(t) a.e. on (a, b) (4.19)

Fix r and s such that a ≤ r < s ≤ b. For some ε > 0, we integrate (4.1) over the set

{(x, t) : r < t < s, ξ(t)− ε < x < ξ(t)}

and apply Leibniz’s rule to get

∫ ξ(s)

ξ(s)−ε
u(s, x) dx−

∫ ξ(r)

ξ(r)−ε
u(r, x) dx +

∫ s

r

∫ ξ(t)

ξ(t)−ε
[G ∗ u(t, ·)]x(x) dx dt

=
∫ s

r

u2(t, ξ(t)− ε)

2
− u2(t, ξ(t))

2
− ξ̇(t) [u(t, ξ(t)− ε)− u(t, ξ(t))] dt

=
∫ s

r

u2(t, ξ(t)− ε)

2
− v2(t)

2
− v(t) [u(t, ξ(t)− ε)− v(t)] dt

=
∫ s

r

1
2
[u(t, ξ(t)− ε)− v(t)]2 dt ≥ 0 .

Multiplying by 1/ε and letting ε ↓ 0 yields

u(s, ξ(s)−) ≥ u(r, ξ(r)−)−
∫ s

r
[G ∗ u(t, ·)]x(ξ(t)) dt . (4.20)
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Applying the same procedure as above to the set

{(x, t) : r < t < s, ξ(t) < x < ξ(t) + ε} ,

yields

u(s, ξ(s)+) ≤ u(r, ξ(r)+)−
∫ s

r
[G ∗ u(t, ·)]x(ξ(t)) dt . (4.21)

For any t ∈]a, b[, we apply (4.20) and (4.21), first for r = t and s ∈ I∩]t, b[, then for
s = t and r ∈ I∩]a, t[. This yields that u(t, ξ(t)−) = u(t, ξ(t)+). Therefore I =]a, b[
and (4.17) holds. Hence, for any r and s in (a, b), (4.20) and (4.21) yield

v(s) = v(r)−
∫ s

r
[G ∗ u(t, ·)]x(ξ(t)) dt ,

which, in conjunction with (4.19) implies that (ξ(·), v(·)) are C1 functions on [a, b]
which satisfy the system (4.18).

As defined in [35], backward characteristics ξ(t,x)(·) are confined between a maximal
and minimal backward characteristics,

(
denoted by ξ(t,x+)(·) and ξ(t,x−)(·)

)
. Relying

on the above proposition and (4.14), we can obtain properties of generalized char-
acteristics, associated with entropy weak solutions of the Burgers-Poisson equation,
including the non-crossing property of two genuine characteristics.

Proposition 4.1.19. Let u be an entropy weak solution to (4.1). Then for any (t, x) ∈
]0 + ∞[×R, the following holds:

(i) The maximal and minimal backward characteristics ξ(t,x±) are genuine and thus the

function u
(

τ, ξ(t,x±)(τ)
)

solves (4.18) for τ ∈]0, t[ with initial data u(t, ξ(t,x±)(t)).

(ii) [Non-crossing of genuine characteristics] Two genuine characteristics may intersect only
at their endpoints.

(iii) If u(t, ·) is discontinuous at a point x, then there is a unique forward characteristic ξ(t,x)

which passes though (t, x) and

u
(

τ, ξ(t,x)(τ)−
)

> u
(

τ, ξ(t,x)(τ)+
)

∀τ ≥ t .

Let us introduce some notation used throughout the rest of this chapter. Given u, an
entropy weak solution to (4.1), we denote by J (t) = {x ∈ R : u(t, x−) > u(t, x+)},
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the jump set of u(t, ·) for any t > 0. For any x ∈ J (t), the base of the backward
characteristic cone starting from (t, x) at time s ∈ [0, t[ is

I(t,x)(s) := ]ξ(t,x−)(s), ξ(t,x+)(s)[. (4.22)

For any T > 0 and z1 < z2 ∈ R \ J (T), we denote the open interval

AT
[z1,z2]

(s) := ]ξ(T,z1)
(s), ξ(T,z2)(s)[ . (4.23)

By the non-crossing property, the set

AT
[z1,z2]

:=
{
(s, x) ∈ [0, T]×R : x ∈ AT

[z1,z2]
(s)
}

(4.24)

confines all backward characteristics starting from (T, x) with x ∈]z1, z2[. For any
0 < s < τ ≤ T, we denote by

Iτ,T
[z1,z2]

(s) =
⋃

x∈AT
[z1,z2]

(τ)
⋂J (τ)

I(τ,x)(s). (4.25)

Due to the no-crossing property of two genuine backward characteristics and the

x

t = τ

t = s

t = T
z1 z2

x1

I(τ,x1)(s)

A
T
[z1,z1]

(τ)

Figure 4.2 Characteristic curves in the xt-plane. Shocks (discontinuities) are denoted by bold
black lines. The set Iτ,T

[z1,z2]
(s) is the union of the blue intervals. By the non-crossing property,

the intervals are disjoint.
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uniqueness of forward characteristics in Proposition 4.1.19, the following holds:

Corollary 4.1.20. Given T > 0 and z1 < z2 ∈ R \ J (T), the map τ 7→ Iτ,T
[z1,z2]

(s) is
increasing in the interval ]s, T] in the following sense

Iτ1,T
[z1,z2]

(s) ⊆ Iτ2,T
[z1,z2]

(s) ∀0 ≤ s < τ1 ≤ τ2 ≤ T. (4.26)

Moreover, for any x ∈ AT
[z1,z2]

(τ1) \ Iτ2,T
[z1,z2]

(τ1) with 0 < τ1 < τ2 < t, the unique forward

characteristic ξ(τ1,x) passing through (τ1, x) is genuine in [τ1, τ2].

Proof. Let x ∈ J (τ1) ∩ AT
[z1,z2]

(τ1) and let χ(·) be the unique forward characteristic
emanating from (τ1, x). By property (iii) of Proposition 4.1.19, for a fixed τ2 ∈ [τ1, T]
we have that χ(τ2) ∈ J (τ2) and by the non-crossing property, χ(τ2) ∈ AT

[z1,z2]
(τ2).

Since the backward characteristics that form the base of a characteristic cone are
genuine, the non-crossing property implies that

I(τ1,x)(s) ⊆ I(τ2,χ(τ2))(s) ⊂ AT
[z1,z2]

(s) ∀s ∈ [0, τ1]

yielding (4.26). The latter statement follows directly.

x

t = τ1

t = s

t = T
z1 z2

t = τ2

Figure 4.3 The union of intervals Iτ1,T
[z1,z2]

(s) is denoted by the solid blue lines. Due to the

geometric properties of shock-free characteristics, the set Iτ2,T
[z1,z2]

(s) contains the previous
intervals and potentially increases in size (denoted by the solid green lines).
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4.2 SBV regularity of the Burgers-Poisson equation

In this section, we seek to prove Theorem 4.0.1 and show that the entropy weak
solution u of (4.1) is in SBVloc(R) for but countably many time. First, we will recount
some recent history on the connection between the space SBV and the regularity
of hyperbolic conservation laws. It has been shown that admissible solutions of the
general conservation law (2.15) do not preserve the SBV regularity of their initial
condition (see [4],[38]). More precisely,

Remark 4.2.1. There exists a bounded Lipschitz initial data u0 such that, if ū denotes
the unique entropy solution of (2.15)-(2.16) then ū(1, ·) is a “Cantor-type” function
which belongs to L∞ ∩ (BV \ SBV).

On the other hand, entropy solutions may be SBV functions when we consider
them as a function of two variables. Indeed, an SBV function of two variables can
have the Cantor ternary function as a trace on a given line. Consider an example of
(2.15), where f is a linear function. For some constant a we have

ut + aux = 0 . (4.27)

The only distributional solution of (4.27) with the initial condition u0(·) is u(t, x) =
u0(x− at). Therefore, if u0 is in the space (BV \ SBV), then the solution u is also not
in SBV. In order to get a SBV-regularization effect, we need a “sufficient nonlinearity”
assumption on the flux function f .

The key conjecture, contributed to Bressan [38], is that: if u is an entropy solution
of (2.15) with a convex flux function and, for a certain positive time τ, u(τ, ·) is not
in SBV, then at future times τ + ε the “Cantor part” of u(τ, ·) gets transformed into
jump singularities. From this idea, u(t, ·) has been shown in a number of cases to be
almost always in SBV. The first result was provided in [4]:

Theorem 4.2.2. Assume f ∈ C2(R) and f ′′ > 0. Let u be a bounded entropy solution of
(2.15) in a domain Ω ⊂ R×R. Then there exists a set S ⊂ R at most countable such that
the following holds for all τ 6∈ S

u(τ, ·) ∈ SBV(I) for every open interval I ⊂⊂ Ω ∩ {t = τ}

Moreover, u ∈ SBV(Γ) for every domain Γ ⊂⊂ Ω.

In addition, the theorem was extended in [73] in two directions:
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(i) the assumption f ′′ > 0 can be replaced by the discreteness of the set { f ′′ = 0}.
In that case, they assume that the solution is BV since there are bounded entropy
solutions with unbounded variation.

(ii) They allow for sufficiently regular source terms and flux functions depending on
(x, t) and the value of the function u(t, x), i.e. the result was extended to balance
laws of the type

ut + [ f (u, x, t)]x = g(u, x, t) .

Finally, the Theorem 4.2.2 has been extended to the case of hyperbolic systems in [[11,
Theorem 1.1], which we present below. The initial steps in this direction were taken in
[34] for self-similar solutions.

Theorem 4.2.3. Consider a system of conservation laws in 1 space dimension

ut + [ f (u)]x = 0

coupled with initial data u(0, ·) = u0(·). Assume that the system is strictly hyperbolic (i.e., the
matrix D f (u) has real and distinct eigenvalues for every u) and assume that each characteristic
field is genuinely nonlinear (see Definition 5.2 of [13]). If the BV norm of u0 is sufficiently
small, then the same conclusions of Theorem 4.2.2 hold for the unique semigroup solution of
the corresponding Cauchy problem.

The common theme of the proofs on these recent results of SBV regularity involve
an appropriate geometric functional which has monotonicity properties and jumps at
time t > 0 if u(t, ·) does not belong to SBV (see e.g. in [4]). More precisely, let J (t)
be the set of jump discontinuities of u(t, ·). For each xj ∈ J (t), there are minimal
and maximal backward characteristics ξ−j (s) and ξ+j (s) emanating from (t, xj) which
define a nonempty interval Ij(s) := ]ξ−j (s), ξ+j (s)[ for any s < t. In this case, the
functional Fs(t) defined as the sum of the measures of Ij(s) is monotonic and bounded.
Relying on a careful study of generalized characteristics, we show that if the measure
Du(t, ·) has a non-vanishing Cantor part then the function Fs jumps up at time t which
implies that the Cantor part is only present at countably many t.

Due to the nonlocal source, the details are more complicated than the above picture.
In particular, the source term guarantees that u(t, ·) does not possess compact support
for any t > 0. Thus, we approach the domain by first looking at compact sets and
then “glue” the sections together to recover the entire domain.
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4.2.1 Proof of Theorem 4.0.1

Throughout this section, let u : [0, ∞[×R→ R be the unique locally BV-weak entropy
solution of (4.1) for some initial data u0 ∈ L1(R). The section aims to prove Theorem
4.0.1. For simplicity, denote the jump and Cantor parts of Du(t, ·) by

νt = Dju(t, ·) and µt = Dcu(t, ·) for any t ∈]0,+∞[

which, by (4.7), are both non-positive. We will show that µt(R) < 0 for at most
countable positive times t > 0. In order to do so, let us first establish some basic
bounds on backward characteristics.

Lemma 4.2.4. For any given 0 < t0 < t and x1 ≤ x2, let ξi(·) be a genuine backward
characteristic starting from (t, xi) and denote the solution along the characteristics by

vi(s) = u(s, ξi(s)) ∀ s ∈ [0, t], i ∈ {1, 2}.

Then the followings hold:

|v2(s)− v1(s)|+ |ξ2(s)− ξ1(s)| ≤ ct(s) · (|v2(t)− v1(t)|+ |ξ2(t)− ξ1(t)|) (4.28)

for all s ∈ [0, t] and

ξ2(t0)− ξ1(t0) ≥
x2 − x1 + (v1(t0)− v2(t0)) · (t− t0)

Γ[t0,t]
(4.29)

with
ct(s) = exp

{
2 ·
(√

2Ktet ‖u0‖L1(R) + (et ‖u0‖L1(R) + 1) ·
√

t
)
· (
√

t−
√

s)
}

,

Γ[t0,t] = 1 +

(√
2Ktet

t0
‖u0‖L1(R) + et ‖u0‖L1(R)

)
· eKt t

t0
· (t− t0)

2.

(4.30)

Proof. 1. Let us first proof (4.28). From Proposition 4.1.18, it holds that
ξ̇i(s) = vi(s)

v̇i(s) = [G ∗ u(s, ·)]x(ξi(s))
∀s ∈]0, t[, i ∈ {1, 2}. (4.31)
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In particular, this implies that, for all s ∈]0, t[,

d
ds
∣∣ξ2(s)− ξ1(s)

∣∣ ≥ − |v2(s)− v1(s)|

and
d
ds
∣∣v2(s)− v1(s)

∣∣ ≥ −
∣∣∣[G ∗ u(s, ·)]x(ξ2(s))− [G ∗ u(s, ·)]x(ξ1(s))

∣∣∣.
Since for all s ∈]0, t] it holds that ξ2(s) ≥ ξ1(s) and u(s, ·) satisfies (4.7), we can apply
Proposition 4.1.14 yielding∣∣∣[G ∗ u(s, ·)]x(ξ2(s))− [G ∗ u(s, ·)]x(ξ1(s))

∣∣∣
≤
(√

2Ks ‖u(s, ·)‖L1(R) + ‖u(s, ·)‖L1(R)

)
·
∣∣ξ2(s)− ξ1(s)

∣∣. (4.32)

Hence, (4.6) and (4.8) imply that∣∣∣[G ∗ u(s, ·)]x(ξ2(s))− [G ∗ u(s, ·)]x(ξ1(s))
∣∣∣

≤
(√

2Ktet

s
‖u0‖L1(R) + et ‖u0‖L1(R)

)
·
∣∣ξ2(s)− ξ1(s)

∣∣. (4.33)

Setting Mt =
√

2Ktet ‖u0‖L1(R) + (et ‖u0‖L1(R) + 1) ·
√

t, we have

d
ds

(∣∣ξ2(s)− ξ1(s)
∣∣+ ∣∣v2(s)− v1(s)

∣∣) ≥ − Mt√
s
·
(∣∣ξ2(s)− ξ1(s)

∣∣+ ∣∣v2(s)− v1(s)
∣∣),

for all s ∈]0, t], and Grönwall’s inequality yields (4.28).

2. In order to prove (4.29), we first apply (4.7) to (4.31) to get

ξ̇2(s)− ξ̇1(s) = u(s, ξ2(s))− u(s, ξ1(s)) ≤
Kt

s
· (ξ2(s)− ξ1(s)),

and this implies

ξ2(s)− ξ1(s) ≤
eKt s
t0
· (ξ2(t0)− ξ1(t0)) ≤

eKt t
t0
· (ξ2(t0)− ξ1(t0)) ∀s ∈ [t0, t]. (4.34)
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Therefore, from (4.31) and (4.33), it holds for s ∈ [t0, t] that

v2(s)− v1(s) = v2(t0)− v1(t0) +
∫ s

t0

[G ∗ u(τ, ·)]x(ξ2(τ))− [G ∗ u(τ, ·)]x(ξ1(τ)) dτ

≤ v2(t0)− v1(t0) +
∫ s

t0

√2Ktet

t0
‖u0‖L1(R) + et ‖u0‖L1(R)

 · (ξ2(τ)− ξ1(τ)
)

dτ

≤ v2(t0)− v1(t0) + γ[t0,t] · (ξ2(t0)− ξ1(t0))

with

γ[t0,t] =

√2Ktet

t0
‖u0‖L1(R) + et ‖u0‖L1(R)

 · eKt t
t0
· (t− t0).

Integrating the first equation in (4.31) over [t0, t], we get

ξ2(t)− ξ1(t) = ξ2(t0)− ξ1(t0) +
∫ t

t0

v2(τ)− v1(τ) dτ

≤ (v2(t0)− v1(t0)) · (t− t0) +
(

1 + γ[t0,t] · (t− t0)
)
· (ξ2(t0)− ξ1(t0))

and this yields (4.29).

As a consequence, we obtain the following two corollaries. Given x ∈ J (t), the
jump set of u(t, ·), the first corollary provides an upper bound on the base of the
characteristic cone emanating from (t, x) at any time s ∈ [0, t[.

Corollary 4.2.5. For any (t, x) ∈]0,+∞[×J (t), it holds that∣∣∣I(t,x)(s)∣∣∣ ≤ − ct(s) · νt({x}) ∀s ∈ [0, t[. (4.35)

Proof. Since x ∈ J (t), the inequality (4.14) implies that

νt({x}) = u(t, x+)− u(t, x−) < 0.

Thus, recalling (4.28), we obtain

∣∣ξ(t,x+)(s)− ξ(t,x−)(s)
∣∣ ≤ ct(s) · |u(t, x+)− u(t, x−)|

and this yields (4.35).

In the following corollary, we show that two distinct characteristics are separated for
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x ∈ J (t)

t

I(t,x)(s)

Figure 4.4 The interval between the minimal and maximal backwards characteristics ema-
nating from a point (t, x) at time s is bounded by the size of the shock at the point (t, x)

all positive time; moreover, the distance between them is proportional to the difference
in the values of the solution along the characteristics.

Corollary 4.2.6. Given x1 < x2 and 0 < σ < t ≤ T, let ξi(·) be a genuine backward
characteristic starting from (t, xi) and

vi(s) = u(s, ξi(s)) ∀s ∈ [0, t[, i ∈ {1, 2}.

Then it holds that

ξ2(σ/2)− ξ1(σ/2) ≥ κ[σ,T] · (v1(t)− v2(t)) (4.36)

where, with Γ[σ/2,T] as defined in (4.30),

κ[σ,T] =
σ

2

[
Γ[σ/2,T] +

(√
4KTeT

σ
‖u0‖L1(R) + eT ‖u0‖L1(R)

)
· eKT T · (T − σ/2)

]−1

.

Proof. Integrating the second equation in (4.18) over [σ/2, t] yields

v1(t)− v2(t) = v1(σ/2)− v2(σ/2) +
∫ t

σ/2
[G ∗ u(τ, ·)]x(ξ1(τ))− [G ∗ u(τ, ·)]x(ξ2(τ)) dτ

≤ v1(σ/2)− v2(σ/2) +
∫ t

σ/2

∣∣∣[G ∗ u(τ, ·)]x(ξ2(τ))− [G ∗ u(τ, ·)]x(ξ1(τ))
∣∣∣ dτ
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and by (4.33)-(4.34) it holds that

v1(t)− v2(t) ≤ v1(σ/2)− v2(σ/2)

+

(√
4KTeT

σ
‖u0‖L1(R) + eT ‖u0‖L1(R)

)
· 2eKT T

σ
· (T − σ/2) · (ξ2(σ/2)− ξ1(σ/2)) .

(4.37)
On the other hand, by (4.29) from Lemma 4.2.4, we have that

v1(σ/2)− v2(σ/2) ≤
Γ[σ/2,t]

t− σ/2
· (ξ2(σ/2)− ξ1(σ/2)) ≤

2Γ[σ/2,T]

σ
· (ξ2(σ/2)− ξ1(σ/2)).

which, when applied to (4.37), implies (4.36).

We now seek to show that, for a certain positive time s, if u(s, ·) is not in SBV, then
at future times s + ε the Cantor part of u(s, ·) gets transformed into jump singularities.
Let us recall the notation defined in (4.22)-(4.25). Following the main idea in [4, 73],
for any s ∈]0, T[ and z1 < z2 ∈ R \ J (T), we consider the set of points ET

[z1,z2]
(s) in

AT
[z1,z2]

(s) where the Cantor part of Du(s, ·) prevails, i.e.,

ET
[z1,z2]

(s) =

{
x ∈ AT

[z1,z2]
(s) : lim

η→0+

η + |Du(s, ·)− µs|([x− η, x + η])

−µs([x− η, x + η])
= 0

}
.

(4.38)
Besicovitch differentiation theorem (Theorem 2.4.6) gives that the measure µs is
concentrated on ET

[z1,z2]
(s), i.e.

µs

(
AT
[z1,z2]

(s) \ ET
[z1,z2]

(s)
)

= 0 ,

and
lim

η→0+

u−(s, x− η)− u+(s, x + η)

−µs([x− η, x + η])
= 1 ∀x ∈ ET

[z1,z2]
(s). (4.39)

Moreover, due to the continuity of µs, we have the following characterization of points
in ET

[z1,z2]
(s).

Proposition 4.2.7. Given s > 0, for µs-a.e. x in ET
[z1,z2]

(s), it holds

lim
η→0

u(s, x + η)− u(s, x)
η

= −∞. (4.40)
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Proof. Fix s > 0, m ∈N and define the set

Km =

{
x ∈ ET

[z1,z2]
(s) : lim

η→0+

−µs([x− η, x])
η

≤ m
}

.

By the continuity of µs, there exists η0 > 0 such that for any η ∈]0, η0[, there exists
δη > 0 such that

−µs(]x− η, x + δη[) ≤ 2m · η ≤ 2m · (η + δη) ∀x ∈ Km .

Let ε > 0. Then there exists ηε > 0, δε > 0, and Kε open such that

Km ⊂
⋃

x∈Km

]x− ηε, x + δε[⊂ Kε and L(Kε) < ε . (4.41)

Furthermore, by the definition of Km and the continuity of µs, ηε and δε can be chosen
sufficiently small such that

− µs(]x− ηε, x + δε[) ≤ 2m · (ηε + δε) ∀x ∈ Km . (4.42)

It is clear that

−µs(Km) ≤ − µs

( ⋃
x∈Km

]x− ηε, x + δε[

)
≤ − ∑

x∈Km

µs (]x− ηε, x + δε[) ,

and by (4.42), it holds that

− µs(Km) ≤ 2m ∑
x∈Km

L (]x− ηε, x + δε[) . (4.43)

For each x ∈ Km, denote the open balls

Bx := B
(

2x− ηε + δε

2
,

ηε + δε

2

)
, B5x := B

(
2x− ηε + δε

2
, 5 · ηε + δε

2

)
.

By the Vitali Covering Lemma, there exists a countable subcollection K′m ⊂ Km such
that ⋃

x∈Km

]x− ηε, x + δε[ =
⋃

x∈Km

Bx ⊂
⋃

x∈K′m

B5x ,
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where Bx are mutually disjoint for every x ∈ K′m. Hence,

2m ∑
x∈Km

L (]x− ηε, x + δε[) ≤ 2m ∑
x∈K′m

L (B5x) = 10m ∑
x∈K′m

L (Bx) = 10mL

 ⋃
x∈K′m

Bx

 .

Now, relying on (4.41), we have that

−µs(Km) = 10mL

 ⋃
x∈K′m

Bx

 ≤ 10mL (Kε) ≤ 10m · ε .

Letting ε→ 0, we recover that µs(Km) = 0, and therefore it also holds that

µs

( ⋃
m∈N

Km

)
= 0 .

The statement (4.40) follows from (4.39).

Lemma 4.2.8. Let 0 < s < t ≤ T and z1 < z2 ∈ R \ J (T) be fixed. Then, it holds for
µs-a.e. x ∈ AT

[z1,z2]
(s) that

]x− ηx, x + ηx[ ⊂ It,T
[z1,z2]

(s) for some ηx > 0.

Proof. Since It,T
[z1,z2]

(s) is open, it is sufficient to prove that every point x ∈ ET
[z1,z2]

(s) \
J (s) satisfying (4.40) is in It,T

[z1,z2]
(s). Moreover, by the uniqueness property of for-

ward characteristics in Proposition 4.1.19, it holds that ∂
(

It,T
[z1,z2]

(s)
)
= ∂

(
It,T
[z1,z2]

(s)
)

.
Assume by a contradiction that either

x ∈ AT
[z1,z2]

(s) \ It,T
[z1,z2]

(s) or x ∈ ∂(It,T
[z1,z2]

(s)).

1. If x ∈ AT
[z1,z2]

(s) \ It,T
[z1,z2]

(s) then

]x− η0, x + η0[
⋂

It,T
[z1,z2]

(s) = ∅ for some η0 > 0. (4.44)

Given any η ∈ [0, η0[, let ξ
η
1 (·) and ξ

η
2 (·) be the unique forward characteristics ema-

nating from x− η and x + η at time s. From Corollary 4.1.20, both ξ
η
1 (·) and ξ

η
2 (·) are

genuine in [s, t] and
ξ

η
2 (τ)− ξ

η
1 (τ) ≥ 0 ∀τ ∈ [s, t] (4.45)
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Thus, (4.29) in Lemma 4.2.4 implies

2η = ξ
η
2 (s)− ξ

η
1 (s) ≥

ξ
η
2 (t)− ξ

η
1 (t) + (u(s, x− η)− u(s, x + η)) · (t− s)

Γ[s,t]

≥ − (u(s, x + η)− u(s, x− η)) · (t− s)
Γ[s,t]

which yields a contradiction to (4.40) when η is sufficiently small.

2. Suppose that x ∈ ∂(It,T
[z1,z2]

(s)). In this case, ξ(s,x)(·) is either a minimal or maximal
backward characteristic in [s, t]. Moreover, for every η > 0 there exists xη ∈]x −
η, x[

⋃
]x, x+ η[ such that xη /∈ It,T

[z1,z2]
(s) and the unique forward characteristics ξ(s,xη)(·)

emanating from xη at time s is genuine and does not cross ξ(s,x)(·) in the time interval
[s, t]. With the same computation in the previous step, we get

u(s, xη)− u(s, x)
xη − x

≥ −
Γ[s,t]

t− s

and this also yields a contradiction to (4.40) when η is sufficiently small.

x0x0 − ηx0
x1 − ηx1

x1 + ηx1

(x1, s)
t = s

t = s+ ε

Figure 4.5 In the proof of Lemma 4.2.8, if a Cantor part is present at time s, two cases may
occur. In case 1, at the point (x1, s) there exist forward characteristics near x1 that cross
before time s + ε. In case 2, the forward characteristic from the point (x0, s) is not a minimal
characteristic if there is a Cantor part at x0, as assumed.
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We are now ready to prove the main theorem.
Proof of Theorem 4.0.1. The proof is divided into two steps:

Step 1. Fix T > 0 and z1, z2 ∈ R \ J (T) with z1 < z2 and, recalling (4.23)-(4.25) let

A = AT
[z1,z2]

, At = AT
[z1,z2]

(t) and It(s) = It,T
[z1,z2]

(s)

for all 0 < s < t ≤ T. We claim that the set

T[z1,z2] := {t ∈]0, T] : µt (At) does not vanish}

is at most countable.

(i). Fix σ ∈]0, T[. By Proposition 4.1.18 and (4.8), it holds that

|At| ≤ |z2 − z1|+ 2

√
2KTeT

σ
‖u0‖L1(R) · T ∀t ∈ [σ, T],

and the Oleinik-type inequality (4.7) yields

|Du(t, ·)|
(

At
)
≤ MT

σ ∀t ∈ [σ, T]

with

MT
σ = 2

√
2KTeT

σ
‖u0‖L1(R) +

2KT

σ
·
(
|z2 − z1|+ 2

√
2KTeT

σ
‖u0‖L1(R) · T

)
.

Let the geometric functional Fσ : [σ, T]→ [0,+∞[ be defined by

Fσ(t) =
∣∣It(σ/2)

∣∣ = ∑
x∈J (t)

⋂
At

∣∣∣I(t,x) (σ/2)
∣∣∣ ∀t ∈ [σ, T] ,

where the second equality follows by the non-crossing property. By Corollaries 4.1.20
and 4.2.5, the map t 7→ Fσ(t) is non-decreasing in [σ, T] and uniformly bounded:

sup
t∈[σ,T]

Fσ(t) ≤ cT(σ/2) · sup
t∈[σ,T]

(|νt|(At)) ≤ cT(σ/2) ·MT
σ (4.46)

where cT(σ/2) is defined in (4.30).

88



t = σ

t = T

t = σ/2

(z2, T )(z1, T )

t = s

Figure 4.6 Fσ(s) will have a jump discontinuity if a Cantor part is present at time s. Using
Corollary 4.2.6, the size of the jump is estimated by the distance between the backward
characteristics defined in Lemma 4.2.8.

(ii). Assume that a Cantor part is present in A at time t ∈]σ, T[, i.e.,

µt (At) ≤ − α for some α > 0 . (4.47)

By (4.38) the Cantor part is concentrated on Et := ET
[z1,z2]

(t). We will show that

Fσ(t+)− Fσ(t) ≥
κ[σ,T]

2
· α (4.48)

where κ[σ,T] is defined in Corollary 4.2.6. It is sufficient to prove that

Fσ(t + ε)− Fσ(t) =
∣∣It+ε(σ/2) \ It(σ/2)

∣∣ ≥ κ[σ,T]

2
· α

for any given ε ∈]0, T− t[. By Lemma 4.2.8, for µt-a.e. x ∈ Et there exists ηx > 0 such
that

]x− ηx, x + ηx[ ⊂ It+ε(t). (4.49)

On the other hand, given x ∈ Et we denote the interval

Jσ/2
x,η =

]
ξ(t,x−η) (σ/2) , ξ(t,x+η) (σ/2)

[
,
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x− η x+ ηx

(x, t)
t

t+ ε

σ/2
J
σ/2
x,η

Figure 4.7 The interval Jσ/2
x,η is contained in It+ε(σ/2) and its magnitude is bounded below

by the difference in solutions along the characteristics at time t.

for any η ∈ {γ > 0 : x± γ 6∈ J (t)}. Corollaries 4.2.5 and 4.2.6 imply that∣∣∣Jσ/2
x,η \ It(σ/2)

∣∣∣ = ξ(t,x+η)(σ/2)− ξ(t,x−η)(σ/2)−
∣∣∣Jσ/2

x,η ∩ It(σ/2)
∣∣∣

≥ κ[σ,T] · (u(t, x− η)− u(t, x + η)) + cT(σ/2)νt(]x− η, x + η[) .

Therefore, by (4.39) and the definition of Et, there exists η0 > 0 such that∣∣∣Jσ/2
x,η \ It(σ/2)

∣∣∣ ≥ −
κ[σ,T]

2
µt(]x− η, x + η[) ∀η ∈]0, η0] . (4.50)

By the Besicovitch covering theorem (Theorem 2.4.5), we can cover µt-a.e. Et with
pairwise disjoint intervals [xj − ηj, xj + ηj] where ηj is chosen such that both (4.49)and
(4.50) hold. Proposition 4.1.19 (ii) implies that the intervals Jσ/2

xj,ηj are also pairwise
disjoint and by (4.49) we have that Jσ/2

xj,ηj is contained in Aσ/2. Therefore, it holds that

Fσ(t + ε)− Fσ(t) =
∣∣It+ε(σ/2) \ It(σ/2)

∣∣ ≥ ∑
j

∣∣∣Jσ/2
xj,ηj
\ It(σ/2)

∣∣∣ .

Applying (4.50) and then (4.47) to the above inequality yields

Fσ(t + ε)− Fσ(t) ≥ −
κ[σ,T]

2 ∑
j

µt
(
[xj − ηj, xj + ηj]

)
≥ −

κ[σ,T]

2
µt (Et) ≥

κ[σ,T]

2
α ,
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and therefore (4.48) holds.

(iii). By the monotonicity of Fσ and (4.46), Fσ has at most countable many discontinu-
ities on [σ, T]. Thus, for any given σ ∈]0, T[, (4.47)-(4.48) imply that the set

⋃
n∈N

{
t ∈ [σ, T] : µt(At) ≤ −2−n} = {t ∈ [σ, T] : µt(At) < 0}

is at most countable and therefore,

⋃
n∈N

{
t ∈ [2−n, T] : µt(At) < 0

}
= T[z1,z2] is countable.

Step 2. To complete the proof, it is sufficient to show that for any given T > 0, there
exists an at most countable subset TT of [0, T] such that

u(t, ·) ∈ SBVloc(R) ∀t ∈ [0, T] \ TT . (4.51)

For any k ∈ Z, we pick a point z̄k ∈]k, k + 1[\J (T). Let ξk(·) be the unique genuine
backward characteristic starting at point (T, z̄k) for every k ∈ Z and define

AT
k = AT

[z̄k,z̄k+1]

⋃
{(ξk(t), t) : t ∈ [0, T]} and AT

k (t) = AT
[z̄k,z̄k+1]

(t)
⋃
{ξk(t)} .

Due to the no-crossing property of two genuine backward characteristics (Proposition
4.1.19 (ii)), it holds that

⋃
k∈Z

AT
k = [0, T]×R and

⋃
k∈Z

AT
k (t) = R ∀t ∈ [0, T].

From Step 1, it holds that, for every k ∈ Z, the set{
t ∈ [0, T] : µt(AT

k (t)) 6= 0
}

is countable.

Hence,

TT =
{

t ∈ [0, T] : µt(AT
k (t)) 6= 0 for some k ∈ Z

}
is also countable,

and this yields (4.51).

To conclude this section, we show that Theorem 4.0.1 implies that u ∈ SBVloc as a
function of two variables.
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Corollary 4.2.9. Let u : R+ ×R → R be the unique locally BV-weak entropy solution of
(4.1) with initial data u0 ∈ L1(R). Then u ∈ SBVloc(R

+ ×R).

Proof. Using the slicing theory of BV functions, we can recover the Cantor part of the
2-dimensional measure Dxu from the 1-dimensional measure Dcu(t, ·). In particular,
for any Ω ⊂⊂ R+ ×R, by Theorem 4.0.1 and Theorem 2.5.9 it holds that

(Dc
xu)(Ω) =

∫
R+

Dcu(t, ·)(Ωx(t)) dt = 0 where Ωx(t) = {x ∈ R : (t, x) ∈ Ω} ,

i.e., the measure Dxu has no Cantor part. Since for all t > 0, Proposition 4.1.14 implies
that x 7→ [G ∗ u(t, ·)]x(x) is continuous, we can apply the chain rule of Vol’pert [5,
Theorem 3.96], to the Burgers-Poisson equation (4.1), yielding that the Cantor part of
Dtu vanishes as well. Therefore u ∈ SBVloc(R

+ ×R).
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