
ABSTRACT

SMITH, CHRISTIAN ALEC. Algebras of Up- and Down-operators on Posets. (Under the direction of
Ricky Ini Liu.)

We study up- and down-operators which act on a vector space whose basis consists of the

elements in some given poset P . In particular, we characterize several associative algebras generated

by subsets of these operators when P is one of the following: Young’s lattice, absolute order on the

classical Coxeter groups, the generalized noncrossing partition lattice on finite Coxeter groups, and

Bruhat order on the dihedral group. We also present several new relations among the up-operators

when P is Bruhat order on the symmetric group.
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CHAPTER

1

INTRODUCTION

Our work focuses on two related sets of operators called up-operators and down-operators, both of

which act on vector spaces generated by the elements of a chosen poset P with some fixed edge

labelling. We study these operators from an algebraic perspective and they can be used to describe

properties pertaining to the structure of our poset P . In particular, if a full list of relations among

these operators is known, then we can use them to reconstruct the poset as a whole or in part. This

is particularly useful when working with larger posets since one can construct and study a portion

of P without having to construct the entire poset. Such partial constructions can be useful in, for

instance, determining topological properties for P . As another example, when P is given by weak

order on the symmetric group Sn , the study of up-operators led Fomin and Stanley [10] to define

the nil-Coxeter algebra, which they then used to prove new results for Schubert polynomials and to

give simpler proofs for known results about them.

In this chapter we provide the reader with some background information on this subject and

we summarize our results. In Chapter 2 we discuss up- and down-operators on Young’s lattice. In

Chapter 3 we discuss up-operators for absolute order and the generalized noncrossing partition

lattice. Finally, in Chapter 4 we discuss up-operators for Bruhat order when the underlying Coxeter

group is either the dihedral group or the symmetric group.

1.1 Defining the Operators

Let (P,≤) be a poset with edges labeled by elements in some index setI and let C[P ] be the complex

linear space with basis P . (By edges we mean covering relations in P .) If p lq ∈ P , then we let γ(p , q )

denote the label assigned to the edge between p and q . We require that the edge labelling satisfies
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γ(p , q1) 6= γ(p , q2)whenever p lq1, q2 and q1 6= q2.

We define a set of up-operators U = {ui : i ∈I }which act on C[P ] in the following way. If ui ∈U ,

then

ui (p ) =







q if p lq and γ(p , q ) = i ,

0 otherwise,

for all p ∈ P , extended linearly. We similarly define a down-operator di ∈D = {di : i ∈I } such that

di (p ) = q if and only if ui (q ) = p for all p ∈ P , extended linearly.

Example 1.1.1. Consider the symmetric group S3 and recall that for right weak order we have

σ1lR σ2 if and only ifσ−1
1 σ2 = si whereσ1,σ2 ∈ Sn and si is the transposition which switches i and

i +1. We let γ(σ1,σ2) = si whereσ−1
1 σ2 = si . Below is the Hasse diagram for right weak order on S3

with the edge labels colored blue.

123

213 132

231 312

321

s1 s2

s1 s2

s2 s1

Our up-operators are us1
, us2

and our down-operators are ds1
, ds2

. The operator us1
acts on the

elements of S3 as follows: us1
(123) = 213, us1

(231) = 321, us1
(132) = 312, and us1

(σ) = 0 for all other

σ ∈ S3.

Here we have looked at the case n = 3 but it is well known that for general n the algebra generated

by the up-operators for right weak order on Sn is the nil-Coxeter algebra [10], which, as mentioned

earlier, is used in the study of Schubert polynomials. The defining relations for this algebra are

u 2
si
= 0,

usi
us j
= us j

usi
for |i − j | ≥ 2,

usi
usi+1

usi
= usi+1

usi
usi+1

.

Our goal is to characterize the relations among the ui and di . In other words, we wish to un-

derstand the algebras generated by certain subsets of the ui and di . Such algebras allow us to

understand the structural properties of the underlying poset P . Studies of these types of opera-

tors have led to proofs of a Littlewood-Richardson rule and Schur positivity for certain symmetric

functions [12].

We now give some general statements about up-operators on P . We say that an I -word is a

tuple x = (ρ1, . . . ,ρ`) such that ρi ∈ I for all 1 ≤ i ≤ `. We denote by ux the monomial uρ1
. . . uρ` .

When dealing with P we will often need to refer to sequences of edge labels appearing in intervals

2



of the poset. As such, we give the following definition which allows us to use I -words to refer to

these edge label sequences.

Definition 1.1.2. Let x = (ρ1, . . . ,ρ`) be an I -word and let v ≤ w ∈ P . We say that x appears in

[v, w ] (or [v, w ] contains x ) if there exists some chain v = v0l v1l · · ·l v` = w in [v, w ] such that

γ(vi−1, vi ) =ρi for i ∈ [`].

The above definition simply means that x appears in [v, w ] if the entries of x occur (in order of

their indices) as edge labels of a saturated chain. The proposition and corollary below are immediate

from the definition of up-operators, but we give the proof for both in the interest of being thorough.

In the following we consider the right action of ux on P rather than the left action described earlier,

that is, we consider (v )ux rather than ux (v ) for v ∈ P . We do this because we study the right action

in Chapter 4, where the following results will primarily be of use.

Proposition 1.1.3. Let x be an I -word and v, w ∈ P such that v ≤ w . Then x appears in [v, w ] if

and only if (v )ux =w .

Proof. Let x = (ρ1, . . . ,ρ`). If x appears in [v, w ], then there exists a unique chain v = v0lv1l· · ·lv` =

w in [v, w ] such that γ(vi−1, vi ) =ρi for i ∈ [`]. Using this chain and the definition of up-operators

we see that (v )uρ1
. . . uρi

= vi 6= 0 for all i ∈ [`]. From this we have (v )ux = w . Now suppose that

(v )ux =w . By the definition of up-operators we have that (v )uρ1
. . . uρi

= vi 6= 0 for all i ∈ [`] and so

[v, w ] contains the chain v = v0 l v1 l · · ·l v` = w and γ(vi−1, vi ) = ρi for i ∈ [`]. From this we see

that x appears in [v, w ].

The above definition tells us that if (v )ux = w 6= 0, then x must correspond to a particular

saturated chain in the interval [v, w ]. (An analogous statement also holds for the down-operators.)

Now letU be the associative algebra over C generated by the ux and let I be the two-sided ideal of

U containing all elements ofU which annihilate all of C[P ]. We have the following corollary.

Corollary 1.1.4. If x is an I -word, then ux 6= 0 (mod I ) if and only if x appears in some interval of

P .

Proof. Let x = (ρ1, . . . ,ρ`) and suppose that ux 6= 0 (mod I ). There must then exist some v ∈ P

such that (v )ux = w 6= 0. By Proposition 1.1.3 we know that x appears in the interval [v, w ]. Now

suppose that x appears in the interval [v, w ] for some v ≤w ∈ P . We know by Proposition 1.1.3 that

(v )ux =w 6= 0 and so ux 6≡ 0 (mod I ).

Finally, we note that if our poset P is graded with some rank function rk(v ), then the algebra

U /I is graded by degree. This is straightforward to see since we can only have (v )ux =w 6= 0 if the

length of x is equal to rk(w ) − rk(v ).
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1.2 Results for Young’s Lattice

Young’s lattice, denoted Y, is the poset of integer partitions ordered by inclusion of their Young

diagrams. We take the edge labelling for Y to be as follows: if λlY µ, then γ(λ,µ) = i where µ/λ

is a box in the i th column. The up- and down-operators for Young’s lattice can be thought of as

box-adding and box-subtracting operators, respectively. Specifically, the up-operators ui for i ∈N

act on a partition λ by adding a box to the i th column of λ if the result is a partition and by sending

λ to 0 otherwise. Similarly, the down-operators di act on λ by subtracting a box from the i th column

if the result is a partition and by sending it to 0 otherwise. These operators were introduced as

Schur operators by Fomin [11] and further discussed by Fomin and Greene [12] in the context of

noncommutative Schur functions. They can also be seen as refinements of the raising and lowering

operators U and D acting on Young’s lattice as defined by Stanley [24] in his study of differential

posets.

In [11] and [12, Example 2.6], the authors observe that the Schur operators satisfy the relations

of the local plactic monoid/algebra with relations:

ui u j = u j ui for | j − i | ≥ 2,

ui ui+1ui = ui+1ui ui ,

ui+1ui+1ui = ui+1ui ui+1.

However, they remark that the full set of relations satisfied by the ui is unknown. We describe the

complete set of relations among the ui and thereby give a full characterization of the associative

algebra generated by the ui which we call the algebra of Schur operators. This characterization is

given in the following theorem and will be proven in Chapter 2. (This algebra was also characterized

independently using different methods by Meinel in [21], where it is called the partic algebra and

studied in relation to bosonic particle configurations.)

Theorem 1.2.1. The algebra of Schur operators is defined by the relations:

ui u j = u j ui for | j − i | ≥ 2,

ui ui+1ui = ui+1ui ui ,

ui+1ui+1ui = ui+1ui ui+1,

ui+1ui+2ui+1ui = ui+1ui+2ui ui+1.

Interestingly, this algebra is somewhat more complicated than a more common related one, also

described in [12] (see also [6]), that is generated by diagonal box-adding operators ũi that add a box

to the i th diagonal of λ if possible (where the diagonals are labeled 1, 2, . . . from bottom to top). The

algebra generated by such operators was shown in [6] to be the nil-Temperley-Lieb algebra given by
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the relations:

ũ 2
i = 0,

ũi ũ j = ũ j ũi for | j − i | ≥ 2,

ũi ũi+1ũi = ũi+1ũi ũi+1 = 0.

It was also noted in [11] (using the fact that the down-operators can be thought of as transposes

of the up-operators) that the di satisfy:

d j di = di d j for |i − j | ≥ 2,

di di+1di = di di di+1,

di+1di di+1 = di di+1di+1,

and that together the ui and di satisfy:

di u j = u j di for i 6= j ,

d1u1 = i d ,

di+1ui+1 = ui di ,

Where i d is the identity operator.

We give a complete description of the associative algebra generated by the ui and di , which we

call the algebra of up- and down-operators for Young’s lattice. The following theorem shows that

quadratic relations suffice to give a presentation of this algebra.

Theorem 1.2.2. The algebra of up- and down-operators for Young’s lattice is defined by the relations:

ui u j = u j ui for |i − j | ≥ 2,

di d j = d j di for |i − j | ≥ 2,

di u j = u j di for i 6= j ,

d1u1 = i d ,

di+1ui+1 = ui di .

It follows that the local plactic relations are implied by the quadratic relations in Theorem 1.2.2.

In contrast, we also give a complete description of the subalgebra generated by ut and dt for a fixed

t > 1 and show that it cannot be presented using relations of bounded degree.

5



1.3 Results for the Generalized Noncrossing Partition Lattice and Abso-

lute Order

Let W be a finite Coxeter group and let w , w ′ ∈W (in this work W will always represent a finite

Coxeter group). If T is the set of reflections in W , then the absolute length of w , denoted `T (w ), is

equal to the minimal k such that w = t1 · · · tk for some t1, . . . , tk ∈ T . This length function `T allows us

to define a poset on the elements of W . We call this poset the absolute order on W , denoted Abs(W ),

and it is defined as follows: we have w ≤T w ′ if and only if `T (w ′) = `T (w )+ `T (w−1w ′) . Absolute

order was studied by Bessis [5] in the context of dual Coxeter systems and by Armstrong [1] in his

study of the generalized noncrossing partition lattice. This poset was also studied by Kallipoliti [16]

in the special case when W = Bn . For further reading on Abs(W ) see [1].

Our chosen edge labelling for Abs(W ) is as follows: if w lT w ′, then γ(w , w ′) =w−1w ′. We will

see later that we always have w−1w ′ ∈ T whenever w lT w ′. From this we see that our up-operators

for Abs(W ) are the ut for t ∈ T . For absolute order we again consider the associative algebra, over C,

generated by the up-operators, which we call the algebra of up-operators for Abs(W ). We study this

algebra when W = An , Bn , and Dn . In particular, we prove the three theorems below.

Theorem 1.3.1. The algebra of up-operators for Abs(An ) is generated by the following relations:

ut ut ′ ≡ ut ′ut ′t t ′ ,

ut ut ′ ≡ ut t ′t ut , and

ut ut ≡ 0,

where t 6= t ′ ∈ T .

Theorem 1.3.2. The algebra of up-operators for Abs(Bn ) is generated by the following relations:

ut ut ′ ≡ ut ′ut ′t t ′ ,

ut ut ′ ≡ ut t ′t ut ,

ut ut ≡ 0, and

u((a ,a ′))u((a ,−a ′)) ≡ u[a ]u[a ′],

where a , a ′ are elements of {±1, . . . ,±n}with distinct absolute values and t 6= t ′ ∈ T .

Theorem 1.3.3. The algebra of up-operators for Abs(Dn ) is generated by the following relations:

ut ut ′ ≡ ut ′ut ′t t ′ ,

ut ut ′ ≡ ut t ′t ut ,

ut ut ≡ 0, and

u((a1,a2))u((a1,−a2))u((a3,a4))u((a3,−a4)) ≡ u((a1,a3))u((a1,−a3))u((a2,a4))u((a2,−a4)),
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where a1, a2, a3, a4 are elements of {±1, . . . ,±n}with distinct absolute values and t 6= t ′ ∈ T .

Note that in Theorem 1.3.2 the last relation uses the indices ((a , a ′)), ((a ,−a ′)), [a ], and [a ′]. These

are reflections in T represented using a combinatorial interpretation of Bn as a group of signed

permutations. Similarly, a combinatorial interpretation for reflections in Dn is used in the last relation

of Theorem 1.3.3. Both of these combinatorial interpretations will be discussed in Chapter 3.

We also study a subposet of Abs(W ) known as the generalized noncrossing partition lattice for

W , which is denoted by N C (W ). Before defining this subposet we must first define a special class

of element in Abs(W ) called a Coxeter element. If π is an element of the symmetric group Sk and

s1, . . . , sk are all of the simple reflections of W , then we call an element c ∈W a standard Coxeter

element if c = sπ(1) · · · sπ(k ). A Coxeter element is then a conjugate of a standard Coxeter element. We

can now define N C (W ) as the interval [e , c ] in Abs(W )where e is the identity element of Abs(W )

and c is a Coxeter element of Abs(W ). The generalized noncrossing partition lattice has been studied

by multiple people, including: Kreweras [17], who defined the lattice when W =Sn , Reiner [22],

who introduced the construction for N C (Bn ), Reiner and Athanasiadis [2]who gave a combinatorial

interpretation of N C (Dn ), Bessis [5] in the context of dual Coxeter systems, and Armstrong [1] in his

study of k -divisible noncrossing partitions.

Since N C (W ) is a subposet of absolute order on W , we take the edge labeling for N C (W ) to

be the edge labelling of Abs(W ) restricted to N C (W ). From this we see that our up-operators are

the ut for t ∈ T . We call the associative algebra generated by the ut the algebra of up-operators for

N C (W ) and characterize it in the following theorem.

Theorem 1.3.4. The algebra of up-operators for N C (W ) is defined by the following degree 2 relations:

ut ut ′ ≡ ut ′ut ′t t ′ ,

ut ut ′ ≡ ut t ′t ut , and

ur ur ′ ≡ 0,

where (t , t ′) ∈RT (w ) for some w ∈N C (W ) and r = r ′ or r r ′ 6∈N C (W ).

1.4 Results for Bruhat Order

Our final poset of interest is Bruhat order on a finite Coxeter group W . Let S be the set of simple

reflections for W and let w ∈W . The standard length `S (w ) is the minimal k such that w = si1
· · · sik

for some si1
, . . . , sik

∈ S . As we did with absolute order, we can use this length function to define a

poset, namely Bruhat order on W . The definition is given below.

Definition 1.4.1. Let W be a finite Coxeter group and let T be the set of reflections in W . If v, w ∈W

we take v →w to mean that `S (v )< `S (w ) and v−1w ∈ T . Bruhat order on W is the partial ordering

where v ≤B w if and only if there exists some sequence v1, . . . , vk such that

v = v1→ v2→ ·· ·→ vk−1→ vk =w .

7



We denote Bruhat order on W by B(W ).

Our edge labelling for this poset is as follows: if w , w ′ ∈W such that w lB w ′, then we take

γ(w , w ′) =w−1w ′. It will always be the case that w−1w ′ ∈ T and so just as with absolute order, the

up-operators for B(W ) are the ut for t ∈ T . We call the algebra generated by the ut the algebra of

up-operators for B(W ). We study this algebra when W is equal to the dihedral group I2(m ) and

when W is equal to the symmetric group Sn .

The structure of B(I2(m )) is rather simple and the proof of the next theorem relies on this

simplicity.

Theorem 1.4.2. The algebra of up-operators on B(I2(m )) is characterized by the following relations:

urm
ur1
=

m−1
∑

i=1

uri
uri+1

,

ur1
urm
=

m−1
∑

i=1

uri+1
uri

,

ur1
uri
= ur j

ur1
, i + j =m +2 and i , j 6∈ {1, 2, m},

urm
uri
= ur j

urm
, i + j =m and i , j 6∈ {1, m −1, m},

u 2
ri
= 0, 1≤ i ≤m ,

uri
ur j
= 0, i , j 6∈ {1, m} and |i − j | ≥ 2,

ur1
uri

uri−1
= 0, 3≤ i ≤m −1,

urm
uri

uri+1
= 0, 2≤ i ≤m −2,

ur2
ur1

uri
= 0, 1≤ i ≤m ,

urm−1
urm

uri
= 0, 1≤ i ≤m ,

uri
uri−1

uri
= 0, 2≤ i ≤m ,

uri
uri+1

uri
= 0, 1≤ i ≤m −1.

The up-operators for B(Sn )were studied by Fomin and Kirillov [13] in their study of the Fomin-

Kirillov algebra En . This is the algebra over C generated by the formal objects [i j ]where i , j ∈ [n ]
and i < j and subject to the relations

[i j ]2 = 0,

[i j ][ j k ] = [ j k ][i k ] + [i k ][i j ], i < j < k ,

[ j k [[i j ] = [i k ][ j k ] + [i j ][i k ], i < j < k , and

[i j ][k l ] = [k l ][i j ], {i , j }∩ {k , l }= ;.

Fomin and Kirillov determined that the up-operators for B(Sn ) give an unfaithful representation of

En where the representation map is [i j ] 7→ u(i , j ). As a result of this representation, the u(i , j ) inherit
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the following relations:

u 2
(i j ) = 0,

u(i j )u( j k ) = u( j k )u(i k )+u(i k )u(i j ), i < j < k ,

u( j k )u(i j ) = u(i k )u( j k )+u(i j )u(i k ), i < j < k , and

u(i j )u(k l ) = u(k l )u(i j ), {i , j }∩ {k , l }= ;.

Since the representation is not faithful, the u(i , j ) satisfy other relations, two of which were stated by

Fomin and Kirillov as

u(i j )u(i k )u(i j ) = 0 and (1.1)

u( j k )u(i k )u( j k ) = 0, (1.2)

where i < j < k . The full set of relations among the u(i , j ) remains unknown but we have found

several new relations using computational methods. The set of reflections T for Sn are the cycles

(i , j ) for 1 ≤ i < j ≤ n . Using these cycles in place of a generic element t of T we state our new

relations in the proposition below.

Proposition 1.4.3. Let i < j < k < l <m be integers. The following relations hold modulo I .

u( j l )u(i l )u(i k ) ≡ 0, (1.3)

u( j l )u( j k )u(i l )u( j l ) ≡ 0, (1.4)

u(k l )u( j l )u(i k )u(i j ) ≡ 0, (1.5)

u(k m )u( j l )u(i m )u(l m ) ≡ u(k m )u(l m )u( j m )u(i l ), (1.6)

u( j m )u(l m )u(i m )u(k m ) ≡ u(l m )u( j l )u(i m )u(k m ). (1.7)

9



CHAPTER

2

UP- AND DOWN-OPERATORS FOR

YOUNG’S LATTICE

In this chapter we discuss the up- and down-operators for Young’s lattice and in particular we

characterize several different algebras generated by subsets of these operators. The contents of this

chapter are taken from [19] and [20]which were written by the current author in collaboration with

Liu. In section 2.1 we discuss necessary background information about Young’s lattice, partitions,

and Knuth equivalence. In Section 2.2 we characterize the algebra generated by the up-operators

for Young’s lattice. In Section 2.3 we characterize the algebra generated by the down-operators for

Young’s lattice. Finally, in Section 2.4 we characterize the algebra generated by both the up-operators

and the down-operators for Young’s lattice.

2.1 Preliminaries

2.1.1 Partitions

A partition λ= (λ1, . . . ,λn ) of |λ|=
∑

i λi is a nonincreasing sequence of nonnegative integers. (We

may add or delete trailing zeroes as convenient.) To each partition, we associate a Young diagram,

which is a collection of left-aligned boxes with λ1 boxes in the first row, λ2 boxes in the second row,

and so on. We also define the conjugate partition λ′ to be the partition whose Young diagram is

obtained from that of λ by reflecting across its main diagonal.

The set of partitions forms a partially ordered set called Young’s lattice Y= (Y,⊆), where λ⊆µ if

and only if the Young diagram of λ fits inside the Young diagram of µ (or equivalently, λi ≤Y µi for
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all i ). In this partial order, µ covers λ if and only if µ/λ is a single box. Here, µ/λ denotes the skew

Young diagram obtained by deleting those boxes in µ that are also contained in λ. In the rest of this

chapter we denote ≤Y simply as ≤. Our chosen labeling for Y is as follows: if λlµ, then γ(λ,µ) = i

where µ/λ is a box in the i th column.

A semistandard Young tableau (SSYT) of shape λ is formed by filling each box of the Young

diagram of λwith a positive integer such that the numbers are weakly increasing within a row (read

from left to right) and strictly increasing within a column (read from top to bottom). A standard

Young tableau (SYT) is a semistandard Young tableau of shape λwith labels 1, 2, . . . , |λ|.
The reading word rw(T ) of a tableau T is the word obtained by listing the entries of the tableau

by rows from bottom to top, reading each row from left to right.

Example 2.1.1. Let λ= (4, 3, 1). For the semistandard Young tableau

T =
1 1 1 4

2 2 3

3

,

we have rw(T ) = 32231114.

The weight of a tableau T is the tuple w (T ) = (w1(T ), w2(T ), . . . ), where wi (T ) is the number of

occurrences of i in T . We similarly define the weight w (x ) = (w1(x ), w2(x ), . . . ) of any word x in the

alphabet N= {1, 2, . . .}. (Clearly T and rw(T ) have the same weight.)

2.1.2 Words in the Alphabet

Let N= {1,2, . . .}, N= {1, 2, . . .}, and Γ =N∪N. We refer to elements 1,2, . . . of N as unbarred letters

and elements 1, 2, . . . of N as barred letters.

Let x = x1 · · · x` be a word of length ` in the alphabet Γ . The weight of x is the vector w (x ) =

(w1(x ), w2(x ), . . .)where

wi (x ) = (the number of times i appears in x )− (the number of times i appears in x ).

We also define the α-vector of x to be α(x ) = (α1(x ),α2(x ), . . .)where

αi (x ) =max{wi+1(x̃ )−wi (x̃ ) | x̃ is a suffix subword of x }.

Here a suffix subword x̃ is a word of the form x̃ = x j x j+1 · · · x` for some 1≤ j ≤ `+1. When j = `+1,

x̃ is the empty word, in which case wi+1(x̃ ) =wi (x̃ ) = 0, so it follows that αi (x )≥ 0 for all i .

Example 2.1.2. Let x = 1133232121. Then w (x ) = (2,1,−1,0, . . .) and α(x ) = (2,0,1,0, . . .). For in-

stance, for α1(x ) = 2, the maximum value of w2(x̃ )−w1(x̃ ) first occurs when x̃ = 2121.
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2.1.3 Defining the Operators for Young’s Lattice

We will write di = ui for all barred letters i . For any word x = x1 x2 . . . x` in the alphabet Γ , we define

ux = ux1
ux2
· · ·ux` . We also use the alternate notation i= ui for i ∈ Γ . To avoid potential confusion

in the future, we note now that (i+ j) denotes ui+ j and not the sum ui +u j .

Let C[Y] be the complex vector space with basis Y. We define the up- and down-operators for

C[Y] in the following way. For λ ∈ Y and i ∈N, we let

ui (λ) =







µ if µ ∈ Y and µ/λ is a single box in column i ,

0 otherwise,

and

di (λ) =







µ if µ ∈ Y and λ/µ is a single box in column i ,

0 otherwise.

Example 2.1.3. Letλ= (3, 1). Then u2(λ) = (3, 2), d3u2(λ) = (2, 2), but d1d3u2(λ) = 0 since subtracting

a box from the first column does not yield a partition.

u2−→
d3−→

d1−→ 0

Note that ui (λ) is either 0 or a partition that covers λ in Y, so we refer to ui as an up-operator,

and similarly we call di a down-operator. These operators were introduced by Fomin [11] under the

name Schur operators.

The action of ux on partitions is determined by the weight and α-vector of x as follows.

Proposition 2.1.4. Let x be a word and λ ∈ Y. Then

ux (λ) =







(λ′1+w1(x ),λ′2+w2(x ), . . .)′ if λ′i −λ
′
i+1 ≥αi (x ) for all i ,

0 otherwise.

Proof. We have ux (λ) 6= 0 if and only if u x̃ (λ) is a partition for each suffix subword x̃ of x . Fix some

x̃ and suppose µ = u x̃ (λ) 6= 0. We then have µ′i = λ
′
i +wi (x̃ ) for all i . The condition for µ to be a

partition is that µ′i ≥µ
′
i+1 for all i , or equivalently

λ′i +wi (x̃ )≥λ′i+1+wi+1(x̃ ).

Rearranging this gives

λ′i −λ
′
i+1 ≥wi+1(x̃ )−wi (x̃ ).

By the definition of αi (x ), these inequalities hold for all suffix subwords x̃ if and only if λ′i −λ
′
i+1 ≥

αi (x ).

The following corollary then follows from Proposition 2.1.4.
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Corollary 2.1.5. Let x and y be words. Then ux and u y act identically on Y if and only if α(x ) =α(y )

and w (x ) =w (y ).

Proof. The backwards implication is immediate from Proposition 2.1.4. For the forward direction,

suppose α(x ) 6=α(y ). Then we may assume without loss of generality that α j (x )<α j (y ) for some

j . Taking λ such that λ′i −λ
′
i+1 = αi (x ), we have ux (λ) 6= 0 = u y (λ), so ux and u y do not act iden-

tically. If instead α(x ) = α(y ) but w (x ) 6= w (y ), then for this same choice of λ, ux (λ) 6= u y (λ) by

Proposition 2.1.4.

It was noted in [11] that ui and di are transposes with respect to the basis Y, which we may write

as u T
i = di . Also in [11], various relations among the ui and di were described, including the local

plactic relations and various quadratic relations.

2.1.4 Knuth Equivalence and RSK

Consider words x = x1 x2 . . . , y = y1 y2 . . . in the alphabet N = {1,2,3, . . .}. We say that x and y are

Knuth equivalent, denoted x
K∼ y , if one can be obtained from the other by applying a sequence of

Knuth or plactic relations of the form

. . . b a c . . .
K∼ . . . b c a . . . for a < b ≤ c ,

. . . a c b . . .
K∼ . . . c a b . . . for a ≤ b < c .

Here, the ellipses indicate that the subwords occurring before and after the swapped letters remain

unchanged. (The Knuth relations define the so-called plactic monoid [18], of which the local plactic

monoid is a quotient.)

The Robinson-Schensted-Knuth (RSK) algorithm gives a bijection between words x and pairs of

tableaux (P,Q )where the insertion tableau P is semistandard, the recording tableau Q is standard,

and P and Q have the same shape. (See, for instance, [23] for more information.) The exact details

of the RSK algorithm will not be important for us, as we will only need the following facts.

• The insertion tableau P has the same weight as x .

• Two words x and y are Knuth equivalent if and only if they have the same insertion tableau P .

• For any semistandard tableau P , the insertion tableau of rw(P ) is P .

For instance, these facts imply the following proposition. (Here and elsewhere, we use i k to

denote a subword of the form i i . . . i
︸ ︷︷ ︸

k

.)

Proposition 2.1.6. Let x be a word with minimum letter i , and let k = wi (x ) be the number of

occurrences of i in x . Then x is Knuth equivalent to a word y = . . . i k . . . in which all occurrences of i

are consecutive.

Proof. Let P be the insertion tableau of x , and let y = rw(P ). Since x and y both insert to P , we have

x
K∼ y , and y has the desired form since all i ’s appear next to each other in the first row of P .
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2.2 The Algebra of Schur Operators

In this section we are only concerned with the up-operators on Y, that is, we only study the operators

ui for i ∈ N. As such, we will assume for the rest of this section that the entries of any word x

come from N and not from all of Γ . LetU Y be the free associative algebra over the complex field

C generated by the elements ui for i ∈ N. Also, let I Y be the two-sided ideal ofU Y consisting of

all elements that annihilate all of C[Y]. We callU Y/I Y the algebra of Schur operators. To improve

readability, for the rest of this section we will denoteU Y and I Y byU and I respectively. Our overall

goal is to show that I is generated by the local plactic relations (2.1)–(2.3) and one additional type of

relation (2.4). In other words, we wish to prove the following theorem.

Theorem 2.2.1. The algebra of Schur operators is characterized by the following relations:

ui u j ≡ u j ui for | j − i | ≥ 2, (2.1)

ui ui+1ui ≡ ui+1ui ui , (2.2)

ui+1ui+1ui ≡ ui+1ui ui+1, (2.3)

ui+1ui+2ui+1ui ≡ ui+1ui+2ui ui+1. (2.4)

Let J Y (hereafter denoted simply as J ) be the two-sided ideal generated by relations (2.1)–(2.4).

To prove Theorem 2.2.1 it is sufficient to prove that J = I and so this will be our main task for this

section.

2.2.1 Properties of I and Equivalences of Monomials

We first verify that I is a binomial ideal (i.e., generated by elements with one or two terms), so that

Corollary 2.1.5 essentially determines all of the relations in I .

Proposition 2.2.2. The ideal I is generated by elements of the form ux −u y for words x and y such

that α(x ) =α(y ) and w (x ) =w (y ).

Proof. Let I ′ be the ideal ofU generated by ux −u y as described above. By Corollary 2.1.5, we have

I ′ ⊆ I . Let R be any element of I . Then R ≡R ′ (mod I ′) for some

R ′ =
∑

k

ck ux (k ),

where for each k , x (k ) is a word, 0 6= ck ∈C, and ux (k ) 6≡ ux (k ′) (mod I ′) for k 6= k ′.

Fix some weight w and let x (k1), x (k2), . . . be those words in R ′ for which w (x (k )) = w , with

α(x (k1)),α(x (k2)), . . . ordered lexicographically. We construct a partition λ such that

αi (x (k1)) =λ
′
i −λ

′
i+1 for all i .

Proposition 2.1.4 gives ux (k1)(λ) 6= 0, but ux (k j )(λ) = 0 for all k j 6= k1 since by the lexicographic
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ordering, αi (x (k j )) > αi (x (k1)) = λ′i − λ
′
i+1 for some i . This then implies that ck1

= 0, which is a

contradiction unless R ′ = 0. Thus R ∈ I ′ and so I = I ′.

We therefore need only determine relations that allow us to equate ux for all words x with a

fixed α(x ) and w (x ).

Another useful fact about I is that it satisfies a certain shift invariance.

Corollary 2.2.3. Let x = x1 . . . xl and y = y1 . . . yl , and define x ′ = (x1 + 1) . . . (xl + 1) and y ′ = (y1 +

1) . . . (yl +1). Then

ux ≡ u y (mod I ) if and only if ux ′ ≡ u y ′ (mod I ).

Proof. Since

αi (x
′) =αi−1(x ), wi (x

′) =wi−1(x ),

αi (y
′) =αi−1(y ), wi (y

′) =wi−1(y ),

for all i , the result follows by Corollary 2.1.5.

We now prove the first step needed to show that I = J , namely, that J ⊂ I .

Proposition 2.2.4. The relations (2.1)–(2.4) hold inU /I , or equivalently, J ⊆ I .

Proof. By Corollary 2.2.3, we may take i = 1. Thus by Corollary 2.1.5, we need only check that w (x ) =

w (y ) and α(x ) =α(y ) for the appropriate words on both sides of the relation. This is straightforward:

for instance, for relation (2.4),

w (2321) =w (2312) = (1, 2, 1),

α(2321) =α(2312) = (1, 0).

The other relations follows similarly.

We note the following relationship with Knuth equivalence.

Lemma 2.2.5. Let x and y be words such that x
K∼ y . Then ux ≡ u y (mod J ).

Proof. If x and y are related by a Knuth move that switches a < c , then ux ≡ u y (mod J ) by (2.1) if

|a − c | ≥ 2 or by (2.2) or (2.3) if c = a +1.

We next demonstrate that Knuth equivalence is sufficient to describe equivalence modulo I for

words in two letters i and i +1.

Proposition 2.2.6. Let x and y be words in i and i +1. Then ux ≡ u y (mod I ) if and only if ux ≡ u y

(mod J ).
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Proof. We claim that the insertion tableau of x is determined by w (x ) and α(x ). Indeed, since P is

semistandard and contains only i ’s and i +1’s, it has at most two rows, and i can only appear in the

first row. Then given w (x ) =w (P ), all that needs to be determined is the number of i +1’s in the first

row. Since x
K∼ rw(P ), Corollary 2.1.5 implies that αi (x ) =αi (rw(P )). But this is clearly the number of

i +1’s in the first row of P (since P has at least as many i ’s in its first row as i +1’s in its second row).

We can now prove the proposition. The reverse direction follows from Proposition 2.2.4, so

suppose ux ≡ u y (mod I ). By Corollary 2.1.5, we have α(x ) =α(y ) and w (x ) =w (y ). Hence x and y

must have the same insertion tableau by the above claim, so x
K∼ y . By Lemma 2.2.5, it then follows

that ux ≡ u y (mod J ).

Note that we have shown that if our words only contain two consecutive letters, then only

relations (2.2) and (2.3) are needed to determine equivalence modulo I .

2.2.2 Key Lemmas

When dealing with three or more letters, we will need to utilize relations (2.1) and (2.4). The following

two lemmas will show the key contexts in which these relations will be used.

Denote by x [i , j ] the subword of x consisting only of the letters i , i + 1, . . . , j . For instance, if

x = 1432212, then x [1, 2] = 12212, and x [2, 4] = 43222.

Lemma 2.2.7. Let x and y be words in 1, . . . , n. If x [1, 2] = y [1, 2] and x [2, n ] = y [2, n ], then ux ≡ u y

modulo relation (2.1), that is, they are equivalent up to commutation relations.

Proof. Note that x [1, 2] and x [2, n ]must have the same number of occurrences of 2. Then

x [1, 2] = y [1, 2] = 1n1 2 1n2 2 1n3 2 . . . 2 1nk ,

x [2, n ] = y [2, n ] = m (1) 2 m (2) 2 m (3) 2 . . . 2 m (k ),

where m ( j ) is a word in 3, . . . , n for all j = 1, . . . , k . Then we must have that

x = m (1)
x 2 m (2)

x 2 m (3)
x 2 . . . 2 m (k )

y ,

y = m (1)
y 2 m (2)

y 2 m (3)
y 2 . . . 2 m (k )

y ,

where m (i )
x and m (i )

y are both words obtained by shuffling together 1ni and m (i ). But um (i )
x

and um (i )
y

are both equivalent modulo relation (2.1) to u ni
1 um (i ) and hence to each other. It follows that ux and

u y are also equivalent modulo relation (2.1).

The next lemma shows the key application of relation (2.4). For ease of notation, we will abbrevi-

ate u1, u2, . . . by 1,2, . . . .

Lemma 2.2.8. For any positive integer k , we have the relations

ui+1u k
i+2ui+1ui ≡ ui+1u k

i+2ui ui+1 (mod J ),

ui+1ui+2u k
i ui+1 ≡ ui+2ui+1u k

i ui+1 (mod J ).
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Proof. We may assume i = 1. Then (using the relations indicated)

23k 21≡ 2323k−11 (2.3)

≡ 23213k−1 (2.1)

≡ 23123k−1 (2.4)

≡ 21323k−1 (2.1)

≡ 213k 2 (2.3)

≡ 23k 12 (2.1).

Similarly,

231k 2≡ 21k 32 (2.1)

≡ 1k−12132 (2.2)

≡ 1k−12312 (2.1)

≡ 1k−12321 (2.4)

≡ 1k−13221 (2.2)

≡ 1k−13212 (2.3)

≡ 31k−1212 (2.1)

≡ 321k 2 (2.2).

We now have our desired result.

2.2.3 Equivalence of Ideals

The following proposition provides the second to last step in proving that I = J .

Proposition 2.2.9. For words x and y , ux ≡ u y (mod I ) if and only if ux ≡ u y (mod J ).

Proof. The reverse direction is proven in Proposition 2.2.4, so we need only consider the forward

direction. We will induct on n , the largest letter appearing in x and y . The case n = 1 is trivial, while

the case n = 2 follows from Proposition 2.2.6.

Assume the statement holds for words in letters 1, . . . , n −1 (and hence for words in any n −1

consecutive letters by Corollary 2.2.3). Let x and y be words in letters 1, . . . , n such that ux ≡ u y

(mod I ), so that, by Corollary 2.1.5, w (x ) = w (y ) and α(x ) = α(y ). Since x and y have the same

number of 2’s, we can construct a word z in letters 1, . . . , n such that x [2, n ] = z [2, n ] and y [1,2] =

z [1, 2]. We will then show ux ≡ uz (mod J ) and u y ≡ uz (mod J ), which will imply ux ≡ u y (mod J ).
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By assumption we have ux ≡ u y (mod I ), and so by Corollary 2.1.5,

ux [1,2] ≡ u y [1,2] = uz [1,2] (mod I ),

u y [2,n ] ≡ ux [2,n ] = uz [2,n ] (mod I ).

By the inductive hypothesis, we then have

ux [1,2] ≡ uz [1,2] (mod J ), (2.5)

u y [2,n ] ≡ uz [2,n ] (mod J ). (2.6)

We therefore need to show that if ux [1,2] ≡ uz [1,2] (mod J ) as in (2.5) and x [2, n ] = z [2, n ], then

ux ≡ uz (mod J ), and similarly for y and z as in (2.6). It suffices to check when the two sides of (2.5)

or (2.6) differ by a single application of one of the relations (2.1)–(2.4).

First suppose the relation um ≡ um ′ used in (2.5) involves at most one u2. This will be the case

unless we are applying (2.3) with i = 1. Note that m may not be a consecutive subword inside

x because there may be letters i > 2 that occur in between the letters of m in x . However, by

Lemma 2.2.7, since there is only one occurrence of 2 in m , we can commute these intervening letters

to the left or right to get some ux ′ equivalent to ux such that x ′ has m as a consecutive subword.

Replacing m with m ′ in x ′ then gives a word z ′ such that z ′[1, 2] = z [1, 2] and z ′[2, n ] = z [2, n ]. Hence

ux ≡ ux ′ = . . . um . . .≡ . . . um ′ . . .= uz ′ ≡ uz .

A similar argument holds if the relation um ≡ um ′ used in (2.6) involves at most one u2. This will

be the case unless we are applying (2.2) with i = 2. Hence it remains to check only these remaining

two cases.

Suppose in equivalence (2.5) we are applying (2.3) with i = 1 by replacing 221≡ 212. As above,

221 and 212 need not appear consecutively inside x and z since there may be intervening letters

i > 2. However, we may as above commute any such letters not appearing between the 2’s to the

right to get words x ′ and z ′ such that

x ′ = . . . 2m21 . . . ,

z ′ = . . . 2m12 . . . ,

where m is a word in 3, . . . , n .

By Proposition 2.1.6, m
K∼m ′3k m ′′ for some words m ′ and m ′′ in letters 4, . . . , n . Lemma 2.2.5
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then gives um ≡ um ′3k um ′′ (mod J ). We then have:

ux ≡ . . .2um21 . . . (Lemma 2.2.7)

≡ . . .2um ′3k um ′′21 . . . (Lemma 2.2.5)

≡ . . . um ′23k 21um ′′ . . . (2.1)

≡ . . . um ′23k 12um ′′ . . . (Lemma 2.2.8)

≡ . . .2um ′3k um ′′12 . . . (2.1)

≡ . . .2um12 . . . (Lemma 2.2.5)

≡ uz (Lemma 2.2.7).

Similarly, if in equivalence (2.6) we are applying (2.2) with i = 2 by replacing 232≡ 322, then we

may commute out any 1’s not appearing between the 2’s to get:

uz ≡ . . .231k 2 . . . (Lemma 2.2.7)

≡ . . .321k 2 . . . (Lemma 2.2.8)

≡ u y (Lemma 2.2.7).

We can now give the proof of Theorem 2.2.1.

Proof. By Proposition 2.2.2, I is generated by elements of the form ux −u y . Proposition 2.2.9 then

shows that the above relations generate all such elements.

Example 2.2.10. Consider the words

x = 23443231, x [1, 2] = 221, x [2, 4] = 2344323,

y = 23443132, y [1, 2] = 212, y [2, 4] = 2344332.

Using the construction described in Proposition 2.2.9, we consider the word

z = 23443123, z [1, 2] = 212= y [1, 2], z [2, 4] = 2344323= x [2, 4].

Note that x [1, 2] and z [1, 2] differ by a single application of (2.3) with i = 1, but these subwords do

not appear consecutively within x or z . As in the proof of Proposition 2.2.9, we can rewrite the part

of x and z between the 2’s using the Knuth moves 3443
K∼ 3434

K∼ 4334 to get the 3’s in the middle so

that we can then use commutations to get a consecutive subword of the form 23k 21. We then use
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Lemma 2.2.8, followed by the reverse of the previous procedure:

ux = 23443231≡ 24334231 (Lemma 2.2.5)

≡ 42332143 (2.1)

≡ 42331243 (Lemma 2.2.8)

≡ 24334123 (2.1)

≡ 23443123= uz (Lemma 2.2.5).

Since y [2, 4] and z [2, 4] differ by a relation that only involves a single 2, we need only use commuta-

tions before we can apply the appropriate relation (2.3):

uz = 23443123≡ 23441323 (2.1)

≡ 23441332 (2.3)

≡ 23443132= u y (2.1).

2.3 The Algebra of Down-Operators for Young’s Lattice

Now that we have characterized the algebra generated solely by the up-operators on Y, it is natural

to also consider the algebra generated solely by the down-operators on Y. LetDY be the associative

algebra over C generated by di for i ∈N (or equivalently by ui for i ∈N), and let I Y
D be the two-sided

ideal ofDY containing all elements which annihilate all of C[Y]. The algebra of down-operators for

Young’s lattice is thenDY/I Y
D . Recall that with respect to the basis Y, we have u T

i = di . Applying this

transpose property to the relations in Theorem 2.2.1 gives the following characterization ofDY/I Y
D .

Theorem 2.3.1. The algebra of down-operators for Young’s lattice is characterized by the following

relations:

di d j ≡ d j di for |i − j | ≥ 2,

di di+1di ≡ di di di+1,

di+1di di+1 ≡ di di+1di+1,

di di+1di+2di+1 ≡ di+1di di+2di+1.

2.4 The Algebra of Up- and Down-Operators for Young’s Lattice

Our final goal is to characterize the algebra generated by both the up-operators and down-operators

on Y. LetU Y
D be the associative algebra over C generated by ui and di for i ∈N and let I Y

U ,D be the

two-sided ideal ofU Y
D containing all elements which annihilate all of C[Y]. We callU Y

D/I Y
U ,D the

algebra of up- and down-operators for Young’s lattice. For ease of notation we will refer toU Y
D and

I Y
U ,D asU and I respectively. Our focus for this section will be to prove the following theorem.
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Theorem 2.4.1. The algebra of up- and down-operators for Young’s lattice is characterized by the

following relations:

ui u j ≡ u j ui for |i − j | ≥ 2, (2.7)

di d j ≡ d j di for |i − j | ≥ 2, (2.8)

di u j ≡ u j di for i 6= j , (2.9)

d1u1 ≡ i d , (2.10)

di+1ui+1 ≡ ui di . (2.11)

Let J Y
U ,D be the two-sided ideal generated by relations (2.7)-(2.11). To prove the above theorem

it suffices to show that I = J Y
U ,D and so proving this equivalence is our main focus. For ease of

notation we denote J Y
U ,D by J in the rest of this section. The following proposition gives part of our

equivalence by showing that J ⊂ I .

Proposition 2.4.2. The inclusion of ideals J ⊆ I holds.

Proof. It suffices to show that for each of (2.7)–(2.11), the two terms in the relation are in fact

equivalent modulo I . We show this for relation (2.11); the other relations are similar. By Corollary 2.1.5

we need only show α(x ) =α(y ) and w (x ) =w (y )where x = i i and y = (i +1)(i +1). Indeed, w (x ) =

(0, 0, . . . ) =w (y ), while α(x ) = (0, . . . , 0, 1, 0, . . .) =α(y ), where the 1 occurs in the i th position.

It therefore remains only to show that I ⊆ J . The next proposition proves that I is a binomial

ideal, that is, I is generated by elements of the form ux −u y . The proof of this proposition is very

similar to that of Proposition 2.2.2.

Proposition 2.4.3. The ideal I is a binomial ideal.

Proof. Let I ′ be the two-sided ideal generated by all binomials ux −u y such that ux ≡ u y (mod I ),

and suppose R ∈ I . SinceU is graded by weight and I is homogeneous with respect to weight, we

may assume that all terms appearing in R have weight w for some w = (w1, w2, . . .). We can then

find R ′ ≡R (mod I ′) for some

R ′ =
n
∑

i=1

cx (i )ux (i ) ,

where x (i ) is a word in Γ of weight w , ux (i ) 6≡ ux ( j ) (mod I ) whenever i 6= j , and 0 6= cx (i ) ∈ C for all

i ∈ [n ]. In particular, by Corollary 2.1.5, the α(x (i )) are distinct, so suppose without loss of generality

that they occur in lexicographic order.

If n ≥ 1, let λ ∈ Y be such that λ′k −λ
′
k+1 = αk (x (1)) for all k . By Proposition 2.1.4, ux (1) (λ) 6= 0.

For each i > 1, by the lexicographic ordering, there exists some s such that αs (x (1))<αs (x (i )). Then

by Proposition 2.1.4, ux (i ) (λ) = 0. Thus 0 = R ′(λ) = cx (1)ux (1) (λ), which implies cx (1) = 0. This is a

contradiction, so we must have R ′ = 0. Thus I = I ′.
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Our goal for the rest of this section is to show that if ux ≡ u y (mod I ), then ux ≡ u y (mod J ). Our

general strategy is as follows. Let [ux ]I be the equivalence class of ux modulo I . We will construct

a representative word [x ] such that u[x ] ∈ [ux ]I . This representative will only depend on α(x ) and

w (x ), so if ux ≡ u y (mod I ), then [x ] = [y ]. We will then show that ux ≡ u[x ] (mod J ) and similarly

for y , which will complete the proof.

Definition 2.4.4. For a word x , define

m (x ) =max
i∈N
{−(αi (x ) +wi (x ))} ≥ 0,

n (x ) =max{t ∈N | t or t appears in x }.

For any m ≥m (x ), n ≥ n (x ), we let

[x ]m ,n = (1
m · · ·n m )(nβ

m
n (x )nαn (x ) · · ·1β

m
1 (x )1

α1(x ))

where βm
i (x ) =αi (x ) +wi (x ) +m .

Note that the definition of m ensures that all of the exponents appearing in the definition of

[x ]m ,n are nonnegative. We will often abbreviate [x ] = [x ]m ,n . We now show that indeed u[x ] ∈ [ux ]I .

Proposition 2.4.5. For any word x , ux ≡ u[x ] (mod I ).

Proof. Let i ∈N. Then wi ([x ]) =−m +βm
i (x )−αi (x ) =wi (x ). We now show that αi ([x ]) =αi (x ). For

ease of notation, we will write αi =αi (x ), wi =wi (x ), and βi =βm
i (x ). Since αi relies only upon the

appearances of i , i , (i +1), and (i +1) in x , we need only consider the subword

i
m
(i +1)

m
(i +1)βi+1 (i +1)

αi+1 iβi i
αi .

To calculate αi ([x ]), we need to find the maximum value of wi+1(x̃ )−wi (x̃ ) for each suffix subword

x̃ . This value only increases when adding an occurrence of i or (i +1) to x̃ . Thus we need only verify

a few choices of x̃ :

x̃ = i
αi : wi+1(x̃ )−wi (x̃ ) =αi ,

x̃ = (i +1)βi+1 (i +1)
αi+1 iβi i

αi : wi+1(x̃ )−wi (x̃ ) =βi+1−αi+1−βi +αi

=wi+1−wi ,

x̃ = [x ] : wi+1(x̃ )−wi (x̃ ) =wi+1−wi .

The maximum of these is just αi .

We now wish to show that ux ≡ u[x ]m ,n
(mod J ) for sufficiently large m and n . To that end we

will make use of the following two lemmas. As a reminder, we will use i and i to represent ui and di ,

respectively.
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Lemma 2.4.6. Let x = 1 · · ·nn · · ·1 for any n ∈N. Then ux ≡ i d (mod J ).

Proof. First note the equivalence

nn(n−1) · · ·1≡ (n−1)(n−2) · · ·1 (mod J ), (2.12)

which holds by repeated application of (2.11) and a single use of (2.10). Then

1 · · ·nn · · ·1≡ 1 · · · (n−1)(n−1) · · ·1

≡ 1 · · · (n−2)(n−2) · · ·1
...

≡ i d

by repeated application of (2.12).

Lemma 2.4.7. The following equivalences hold modulo J :

ui ≡ ui di ui , (2.13)

di ≡ di ui di , (2.14)

ui ui+1ui ≡ ui+1ui ui , (2.15)

di di+1di ≡ di di di+1, (2.16)

ui+1ui ui+1 ≡ ui+1ui+1ui , (2.17)

di+1di di+1 ≡ di di+1di+1. (2.18)

Proof. For (2.13), we have

n≡ n1 · · ·nn · · ·1 (Lemma 2.4.6)

≡ 1 · · · (n−1)nnn · · ·1 (2.9)

≡ 1 · · · (n−1) (n+1)(n+1)n · · ·1 (2.11)

≡ (n+1)(n+1)n1 · · · (n−1)(n−1) · · ·1 (2.8), (2.9)

≡ (n+1)(n+1)n (Lemma 2.4.6)

≡ nnn. (2.11)
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For (2.15) we have

n(n+1)n≡ n(n+1)(n+1)(n+1)n (2.13)

≡ n(n+2)(n+2)(n+1)n (2.11)

≡ (n+2)(n+2)n(n+1)n (2.7), (2.9)

≡ (n+1)(n+1)n(n+1)n (2.11)

≡ (n+1)n(n+1)(n+1)n (2.9)

≡ (n+1)nnnn (2.11)

≡ (n+1)nn. (2.13)

For (2.17), assume n ≥ 2 (the case when n = 1 is similar). Then

(n+1)n(n+1)≡ (n+1)nnn(n+1) (2.13)

≡ (n+1)n(n−1)(n−1)(n+1) (2.11)

≡ (n+1)n(n+1)(n−1)(n−1) (2.7), (2.9)

≡ (n+1)n(n+1)nn (2.11)

≡ (n+1)nn(n+1)n (2.9)

≡ (n+1)(n+1)(n+1)(n+1)n (2.11)

≡ (n+1)(n+1)n. (2.13)

The proofs of (2.14), (2.16), and (2.18) are similar to the proofs of (2.13), (2.15), and (2.17), respectively.

In particular, one can observe that (2.15) and (2.17) are Knuth relations, which, together with

(2.7), verify that the quadratic relations imply that J contains all the relations of the local plactic

monoid generated by the ui . (See our previous discussion on Knuth relations and the local plactic

monoid in Section 2.1).

We are now ready to prove the heart of our main theorem.

Proposition 2.4.8. Let x = x1 · · · x` be a word. Then there exist M , N ∈ N such that ux ≡ u[x ]m ,n

(mod J ) for all m ≥M , n ≥N .

Proof. As before, we will abbreviate [x ] = [x ]m ,n and [y ] = [y ]m ,n . We proceed by induction on the

length of x . First suppose `= 0 (that is, x is the empty word), and take any m , n ≥ 0. Then we have

[x ] = 1
m

. . . n m n m . . . 1m and we wish to show that u[x ] ≡ i d (mod J ). By (2.7) and (2.17),

n · · ·1n≡ n(n−1)n(n−2) · · ·1≡ nn(n−1) · · ·1.
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In other words, n and n · · ·1 commute. Therefore

(n · · ·1)nm−1 · · ·1m−1 ≡ nm ((n−1) · · ·1)(n−1)m−1 · · ·1m−1

≡ nm (n−1)m ((n−2) · · ·1)(n−2)m−1 · · ·1m−1

...

≡ nm · · ·1m ,

so nm · · ·1m ≡ (n · · ·1)m . Similarly by (2.8) and (2.18), 1
m · · ·nm ≡ (1 · · ·n)m . Then applying Lemma 2.4.6

repeatedly to

1
m · · ·nmnm · · ·1m ≡ (1 · · ·n)m (n · · ·1)m

gives the claim.

Now suppose the proposition statement is true for all words of length less than `. Let x = x1 · · · x`
and y = x1 · · · x`−1. By induction we know the statement holds for y for some N ′, M ′ ∈ N. Then

take M =max{m (x ), M ′} and N =max{n (x ), N ′} and let m ≥M and n ≥N . By induction we have

ux = u y ux` ≡ u[y ]ux` (mod J ). From this we see that it suffices to show u[y ]ux` ≡ u[x ] (mod J ). For

ease of notation we let αi =αi (y ), βi =βm
i (y ), wi =wi (y ), and βi (x ) =βm

i (x ) for all i .

We now split the argument into four cases depending on x` and αi . Note that if x` = t or t for

t ≥ 1, then αi (x ) =αi , wi (x ) =wi , and βi (x ) =βi for all i 6= t , t −1.

Case 1. Suppose x` = t and αt = 0. We have αt−1(x ) = αt−1 + 1, wt−1(x ) = wt−1, αt (x ) = 0, and

wt (x ) =wt +1, so that βt−1(x ) =βt−1+1 and βt (x ) =βt +1. Then

u[y ]ut ≡ · · ·tβt (t−1)βt−1 (t−1)
αt−1 · · ·t

≡ · · ·tβt (t−1)βt−1t(t−1)
αt−1 · · · (2.7), (2.9)

≡ · · ·tβt (t−1)βt−1ttt(t−1)
αt−1 · · · (2.13)

≡ · · ·tβt (t−1)βt−1t(t−1)(t−1)
αt−1+1

· · · (2.11)

≡ · · ·tβt+1(t−1)βt−1+1(t−1)
αt−1+1

· · · (2.15)

= u[x ].

Case 2. Suppose that x` = t and αt 6= 0. We have αt−1(x ) =αt−1+1, wt−1(x ) =wt−1, αt (x ) =αt −1,

and wt (x ) =wt +1, so that βt−1(x ) =βt−1+1 and βt (x ) =βt . Then

u[y ]ut ≡ · · ·tβt tαt (t−1)βt−1 (t−1)
αt−1 · · ·t

≡ · · ·tβt tαt−1(t−1)βt−1tt(t−1)
αt−1 · · · (2.7), (2.9)

≡ · · ·tβt tαt−1(t−1)βt−1+1(t−1)
αt−1+1

· · · (2.11)

= u[x ].

Case 3. Suppose that x` = t and αt−1 = 0. We have αt−1(x ) = 0, wt−1(x ) =wt−1, αt (x ) =αt +1, and
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wt (x ) =wt −1, so that βt−1(x ) =βt−1 and βt (x ) =βt . Then

u[y ]dt ≡ · · ·tβt tαt (t−1)βt−1 · · ·t

≡ · · ·tβt tαt+1(t−1)βt−1 · · · (2.8), (2.9)

= u[x ].

Case 4. Finally, suppose that x` = t and αt−1 6= 0. We have αt−1(x ) = αt−1 − 1, wt−1(x ) = wt−1,

αt (x ) =αt +1, and wt (x ) =wt −1, so that βt−1(x ) =βt−1−1 and βt (x ) =βt . Then

u[y ]dt ≡ · · ·tβt tαt (t−1)βt−1 (t−1)
αt−1 · · ·t

≡ · · ·tβt tαt (t−1)βt−1 (t−1)
αt−1t · · · (2.8), (2.9)

≡ · · ·tβt tαt (t−1)βt−1−1(t−1)(t−1)t(t−1)
αt−1−1

· · · (2.16)

≡ · · ·tβt tαt (t−1)βt−1−1ttt(t−1)
αt−1−1

· · · (2.11)

≡ · · ·tβt tαt (t−1)βt−1−1t(t−1)
αt−1−1

· · · (2.14)

≡ · · ·tβt tαt+1(t−1)βt−1−1(t−1)
αt−1−1

· · · (2.9)

= u[x ].

This completes the proof.

It is now easy to complete the proof of Theorem 2.4.1.

Proof. The inclusion J ⊆ I follows from Proposition 2.4.3. For the other direction, note that by

Proposition 2.4.2 we need only prove that ux ≡ u y (mod I ) implies ux ≡ u y (mod J ) for words x

and y . By Proposition 2.4.8 there exist nonnegative integers m and n sufficiently large such that

ux ≡ u[x ]m ,n
= u[y ]m ,n

≡ u y (mod J ).

2.4.1 Subalgebras

Note that the algebra of Schur operators and the algebra of down-operators for Young’s lattice

are both subalgebras of the algebra of up- and down-operators for Young’s lattice. This of course

leads to the question of whether or not the algebra of up- and down-operators for Young’s lattice

has other interesting subalgebras. In this subsection we define such a subalgebra and give a full

characterization for it.

Fix some 1 < t ∈ N. LetBY be the subalgebra of U Y
D generated by ut and dt , and consider

the subalgebraBY/I Y
B =B

Y/(I Y
U ,D ∩B )⊆U

Y
D/I Y

U ,D . We will show that the ideal of relations I Y
B is

generated by

u i+1
t d i

t ≡ u i+1
t d i+1

t ut (2.19)

u i
t d i+1

t ≡ dt u i+1
t d i+1

t (2.20)
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for all i ∈N. Let J Y
B be the ideal generated by relations (2.19) and (2.20); we wish to show J Y

B = I Y
B .

For ease of notation we will refer toBY, I Y
B , and J Y

B asB , IB , and JB respectively.

(When t = 1, it is straightforward to verify that the only relation between u1 and d1 is (2.10),

namely d1u1 ≡ i d , as this relation can be used to rewrite any monomial in the form u i
1d

j
1 , and all

such monomials act independently on Y.)

2.4.1.1 Peaks and valleys

One convenient way to interpret a word consisting only of the letters t and t is as a graph of diagonal

steps. More precisely, we construct a graph corresponding to a word x in the following way. Starting

at the origin in the plane we read x from right to left. When we encounter a t we take a diagonal

step up and to the left by adding (−1, 1), and when we encounter a t we take a diagonal step down

and to the left by adding (−1,−1). One must be careful since we are reading both the word and its

graph from right to left.

We call a point of the graph with maximal height a peak and a point with minimal height a valley.

(Peaks and valleys need not be unique.) It is straightforward to see that if (a , b ) is a peak and (c , d ) is

a valley, then αt−1(x ) = b and αt (x ) = −d . Also note that if (e , f ) is the (leftmost) endpoint of the

graph, then wt (x ) = f . Therefore by Corollary 2.1.5, the action of x on Y is determined entirely by

the heights of its peaks, valleys, and endpoint.

Example 2.4.9. The word x = t 2t
4

t 3 has the graph shown below.

This graph has a peak at (−3, 3) and a valley at (−7,−1). Correspondingly, αt−1(x ) = 3 and αt (x ) = 1.

The leftmost point of the graph is (−9, 1), so wt (x ) = 1.

Note that relations (2.19) and (2.20) are not bounded in degree since the only condition on i is

that it be a nonnegative integer. This differs from the previous algebras that we examined in that the

largest degree needed in those cases was 4 (as in the algebra of Schur operators). Indeed, relations

of unbounded degree are required due to the following proposition.

Proposition 2.4.10. The ideal IB cannot be generated by elements of bounded degree.

Proof. Suppose for contradiction that the largest degree appearing among the generators of IB
is h ∈ N. Choose an integer k > h , and let x = t k and y = t k t

k
t k . Observe that w (x ) = w (y ) =

(0, . . . , 0, k , 0, . . .) and α(x ) =α(y ) = (0, . . . , 0, k , 0, . . .), and so ux ≡ u y (mod IB ) by Corollary 2.1.5.

Note that in the graph of x , there is never a peak occurring to the right of a valley. In other words,

if x = x1 . . . xk , then there do not exist i < j such that (−i ,αt−1(x )) and (− j ,−αt (x )) appear in the
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graph of x . We will call an instance of a peak occurring to the right of a valley a peak/valley pair. For

instance, x has no peak/valley pair but y does, corresponding to the suffix subwords t k and t
k

t k ,

respectively.

We now show that for words z satisfyingαt−1(z )+αt (z )> h , our degree boundedness assumption

implies that the existence of a peak/valley pair is invariant modulo IB . This will then lead to an

immediate contradiction when applied to x and y . Let um − um ′ be a generator of IB of degree

at most h . It suffices to show that if the word z = m1mm2 has a peak/valley pair, then so does

z ′ =m1m ′m2.

Since um ≡ um ′ (mod IB ), the graphs of m and m ′ must have their peaks, valleys, and endpoints

at the same heights. Therefore z has a peak or valley within m if and only if z ′ has a peak or valley

within m ′. If z has a peak/valley pair with neither peak nor valley occurring within m , then z ′

has a peak/valley pair at the same locations. If at most one of the peak or valley occurs within m ,

say the peak, then the valley must occur within m1, so z ′ will have a peak within m ′ and a valley

within m1 and hence a peak/valley pair. (The other case is similar.) The only remaining possibility

is if both the peak and valley occur within m (for they might switch order in m ′). However, since

αt−1(z ) +αt (z ) > h , the difference in height between the peak and valley is more than h , so they

cannot both appear within m , which has length at most h . This completes the proof.

2.4.1.2 Proof of relations

We now prove that relations (2.19) and (2.20) suffice. The proofs for the following two propositions

are essentially the same as the proofs of the analogous propositions for the algebra of up- and

down-operators for Young’s lattice.

Proposition 2.4.11. The ideal IB is a binomial ideal.

Proposition 2.4.12. The inclusion of ideals JB ⊆ IB holds.

As in our work for the algebra of up- and down-operators for Young’s lattice, our approach is to

construct a standard equivalence class representative u[x ] (modulo IB ) for every monomial ux and

to then show that ux ≡ u[x ] (mod JB ).

Definition 2.4.13. For any word x in t and t , define

[x ] = t wt (x )+αt (x )t
αt−1(x )+αt (x )t αt−1(x ).

We say that such a word [x ] is the standard representative for x , or alternatively that it is in standard

form.

Note that all the exponents appearing in [x ] are nonnegative: in particular, by the definition

of αt (x ) we have αt (x ) ≥ −wt (x ), and so wt (x ) + αt (x ) ≥ 0. It is straightforward to check that

w (x ) = (0, . . . ,0, wt (x ),0, . . .) =w ([x ]) and α(x ) = (0, . . . ,0,αt−1(x ),αt (x ),0, . . .) = α([x ]), so Corollary

2.1.5 implies that [x ] is the unique word in standard form such that ux ≡ u[x ] (mod IB ).
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Proposition 2.4.14. Let x = x1 · · · x` be a word in t and t . We have ux ≡ u[x ] (mod JB ).

Proof. We prove this by induction on the length of x . If ` = 0 or if x = t , then [x ] = x , so there is

nothing to prove. If x = t , then [x ] = t t t , and t≡ ttt by (2.19) for i = 0.

Now suppose the statement holds for all words shorter than x . We have that ux = ux1
u y where

y = x2 · · · x`. By induction, ux = ux1
u y ≡ ux1

u[y ] (mod JB ), so we need to show ux1
u[y ] ≡ u[x ].

If x1 = t and wt (y ) < αt−1(y ), then wt (x ) = wt (y ) + 1 while α(x ) = α(y ). Hence [x ] = t [y ], so

there is nothing to show. Similarly if x1 = t and αt (y ) =−wt (y ), then

[x ] = t
αt−1(y )+αt (y )+1

t αt−1(y ) = t [y ],

so again there is nothing to show.

Suppose x1 = t and wt (y ) =αt−1(y ). Then wt (x ) =wt (y ) +1, αt−1(x ) =αt−1(y ) +1, and αt (x ) =

αt (y ). Here the graph of x has a new peak at its leftmost point, so t [y ] is not in standard form.

Applying (2.19) with i =wt (y ) +αt (y ) gives

ut u[y ] = twt (y )+αt (y )+1twt (y )+αt (y )tαt−1(y )

≡ twt (y )+αt (y )+1twt (y )+αt (y )+1tαt−1(y )+1 = u[x ].

Finally, suppose x1 = t and αt (y ) > −wt (y ). We then have wt (x ) = wt (y )− 1 and α(x ) = α(y ).

Again t [y ] is not in standard form since it begins with t . Note that by definition αt−1(y )≥wt (y ), so

αt−1(y )+αt (y )≥wt (y )+αt (y ). Therefore we can apply (2.20) with i =wt (y )+αt (y )−1=wt (x )+αt (x )

to get

dt u[y ] = ttwt (y )+αt (y )tαt−1(y )+αt (y )tαt−1(y )

≡ twt (y )+αt (y )−1tαt−1(y )+αt (y )tαt−1(y ) = u[x ].

Theorem 2.4.15. The ideals IB and JB are equal.

Proof. This follows from Propositions 2.4.11, 2.4.12, and 2.4.14.

2.4.1.3 Up- and down-operators on finite chains

Consider again the operators ut and dt for some fixed t > 1. The action of these operators on Y

splits up as a direct sum of the action on chains C , where C is a set of partitions λ that have fixed

values for λ′i for all i 6= t . The action is then determined entirely by ρ =λ′t−1−λ
′
t+1, the difference

between the (t −1)st and (t +1)st columns. (Equivalently, C is a chain with ρ+1 elements, and ut

and dt act as up- and down-operators on this chain.)

Fix ρ, and let IC be the two-sided ideal ofB containing all elements which annihilate C , a

chain with ρ+1 elements. We characterize the algebraB/IC by showing that IC is generated by
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the following relations:

u i+1
t d i

t ≡ u i+1
t d i+1

t ut for 0≤ i ≤ρ−1, (2.21)

u i
t d i+1

t ≡ dt u i+1
t d i+1

t for 0≤ i ≤ρ−1, (2.22)

u
ρ+1
t ≡ 0, (2.23)

d
ρ+1
t ≡ 0. (2.24)

Let JC be the ideal generated by relations (2.21)–(2.24). We will show that JC = IC by exploiting

the close relationship between these ideals and IB .

Theorem 2.4.16. The ideals IC and JC are equal.

Proof. Recall that IB is the two-sided ideal ofB containing all elements which annihilate Y. Let P

be the two-sided ideal ofB which is generated by relations (2.23) and (2.24). It is straightforward to

see that JC = IB +P (since (2.19) and (2.20) for i ≥ρ are implied by (2.23) and (2.24), so we need to

show that IC = IB +P .

The inclusion IB +P ⊆ IC holds since both (2.23) and (2.24) annihilate C . For the reverse direc-

tion, note that by Proposition 2.4.14,B/IB has a basis consisting of the standard representatives

u[x ]. A basis element u[x ] annihilates C if and only if the power of t appearing in it is larger than ρ,

which occurs if and only if it lies in P . The other basis elements act independently on C as in the

proof of Proposition 2.4.3. It follows that IC ⊆ IB +P .
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CHAPTER

3

UP-OPERATORS FOR THE GENERALIZED

NONCROSSING PARTITION LATTICE

AND ABSOLUTE ORDER

In this chapter we study the up-operators for the generalized noncrossing partition lattice N C (W )

and for absolute order Abs(W ). Both posets are defined with respect to a Coxeter group W and so

in section 3.1 we give some necessary background information on Coxeter groups followed by the

formal definitions for these posets. We also state some known results for these two posets which

will be of use to us later on. Then, in sections 3.2 and 3.3 we give a complete list of defining relations

for the algebra generated by the up-operators for N C (W ) and Abs(W ) respectively.

3.1 Coxeter Groups, Absolute Order, and the Generalized Noncrossing

Partition Lattice

3.1.1 Coxeter Groups

We begin with a brief discussion on Coxeter groups. For more information on this subject see [7].

Let S be a finite set. A Coxeter matrix is a matrix m such that for all s , s ′ ∈ S we have

• the rows and columns of m are indexed by the elements of S ,

• m (s , s ′) ∈ {1, 2, . . . ,∞},
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• m (s , s ′) = 1 if and only if s = s ′, and

• m (s , s ′) =m (s ′, s ).

Here m (s , s ′) denotes the entry of m in row s and column s ′. Let W be the group with generating

set S subject to the relations (s s ′)m (s ,s ′) = 1 for all s , s ′ ∈ S . We call W a Coxeter group and we refer to

S as the set of Coxeter generators. We also refer to the pair (W ,S ) as a Coxeter system and to |S | as

the rank of (W ,S ). From here on W will always represent a Coxeter group and w will always be one

of its elements. Furthermore, since our work focuses solely on finite Coxeter groups we will always

assume that |W |<∞. A reflection of W is any element of the set T = {w s w−1 : w ∈W , s ∈ S}. We

will always use T to denote the set of reflections for W .

One useful way to visualize a Coxeter group W is to consider its Coxeter diagram (or Coxeter

graph). This is the graph whose nodes are indexed by the elements of S and where node s and node

s ′ are connected by an edge if m (s , s ′)≥ 3. If m (s , s ′)≥ 4, then we label the edge from s to s ′ with

m (s , s ′). A list of all finite Coxeter groups and their Coxeter diagrams is given in Figure 3.5.

Example 3.1.1. Consider the symmetric group S5. This is the Coxeter group of type A4 (see below)

with Coxeter generators si , i = 1, . . . , 4 where si is the transposition which switches i and i +1. The

Coxeter diagram for S5 is below.

•
s1

•
s2

•
s3

•
s4

3.1.2 Absolute Length and Absolute Order

Let si j
∈ S . An S-word for w is any tuple (si1

, . . . , sik
) such that w = si1

· · · sik
(we call k the length of

(si1
, . . . , sik

)). The standard length of w , denoted `S (w ), is the minimal length among all S-words of

w and furthermore, an S-word for w is reduced if its length equals `S (w ).

Both `S (w ) and reduced S-words have been studied thoroughly, especially with respect to their

importance in weak order and Bruhat order [7]. However, in this chapter we will be mostly concerned

with a different type of word/tuple and a different type of length which we define as follows. Letting

ti j
∈ T , we call a tuple x = (ti1

, . . . , tik
) a T -word for w if w = ti1

· · · tik
and we say that this T -word

has length k . We take the absolute length of w , denoted `T (w ), to be the minimal length among

all T -words for w and if a T -word is of length `T (w ), then we call it reduced. We denote by RT (w )

the set of all reduced T -words for W . We will often call (ti1
, . . . , tik

) a T -word rather than a T -word

for w when w is either clear or unimportant. Now that we have introduced absolute length we can

define one of the two posets with which this chapter is concerned.

Definition 3.1.2. Let W be a Coxeter group and let w , w ′ ∈W . The absolute order on W , denoted

Abs(W ), is the partial order such that w ≤T w ′ if and only if `T (w ′) = `T (w ) + `T (w−1w ′).

The earliest study of absolute order known to this author is by Hurwitz [15]who discussed it in

the special case where W =Sn . It has also been studied by several others including Carter [9] in his
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(123) (132)

Figure 3.1 Absolute order on A2.

work on conjugacy classes of Weyl groups, Bessis [5] in his work on dual Coxeter systems, Armstrong

[1] in his study of the generalized noncrossing partition lattice, and Kallipoliti [16] in the special case

when W = Bn . For further reading on Abs(W ) see [1].

Figure 3.1 shows the Hasse diagram for absolute order on A2 =S3. Note that Abs(A2) has two

distinct maximal elements and so in general absolute order does not have a maximum element 1̂.

However, Abs(W ) does always have a minimum element 0̂ which is equal to e , the identity element

of W . Additionally, Abs(W ) is a graded poset with the rank function `T (w ). Since `T (w ) is the rank

function of Abs(W )we immediately see that if w ′ covers w (w lT w ′) then w−1w ′ = t ∈ T . From

this we see that any saturated chain of the form

e =w1lT . . .lT wk =w

can be associated with the reduced T -word (w−1
1 w2, . . . , w−1

k−1wk ) ∈ RT (w ). This correspondence

demonstrates that a study of chains in Abs(W ) requires an understanding of reduced T -words. The

following definition will aid us in that understanding.

Definition 3.1.3. Let x = (t1, . . . , t`) be a T -word. We perform a Hurwitz move on x when we switch

some ti and ti+1 and conjugate one of them in the following way:

(t1, . . . , ti , ti+1, . . . , t`)→ (t1, . . . , ti+1, ti+1ti ti+1, . . . , t`) or (3.1)

(t1, . . . , ti , ti+1, . . . , t`)→ (t1, . . . , ti ti+1ti , ti , . . . , t`). (3.2)

We say that two T -words x and y are Hurwitz equivalent, denoted x
H∼ y , if one can be obtained

from the other using a sequence of Hurwitz moves.

These Hurwitz moves are referred to by Bessis as dual braid moves and are in fact just a special

case of the Hurwitz action (see [4]). The following lemma (which Armstrong refers to as the shifting

lemma [1]) demonstrates the connection between Hurwitz moves and reduced T -words.
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Lemma 3.1.4. Let x be a reduced T -word for some w ∈W . If y is a T -word such that x
H∼ y , then y

is also a reduced T -word for w .

Proof. Let x = (t1, . . . , t`) and let

x1 = (t1, . . . , ti+1, ti+1ti ti+1, . . . , t`),

x2 = (t1, . . . , ti ti+1ti , ti , . . . , t`).

Both x1 and x2 have length ` and the product of the entries for either T -word is equal to w .

The next proposition gives us a condition for when two elements of W are comparable in Abs(W ).

This condition will prove quite useful later in this chapter.

Proposition 3.1.5. Let w , w ′ ∈W . Then w ≤T w ′ if and only if a T -word for w occurs as an arbitrary

subword of some reduced T -word for w ′. Furthermore, if x is a reduced T -word and y is a subword

of x , then y is also reduced.

Proof. For the first statement suppose that w ≤T w ′ and let (t1, . . . , t`1
) ∈ RT (w ) and (r1, . . . , r`2

) ∈
RT (w−1w ′). It is straightforward to see that (t1, . . . , t`1

, r1, . . . , r`2
) ∈RT (w ′) and so the forward impli-

cation is proven.

Now suppose that w occurs as an arbitrary subword of a reduced T -word for w ′. Let x be this

reduced T -word for w ′ and let y be the T -word for w occurring as an arbitrary subword of x . Using

Hurwitz moves we see that x
H∼ x ′ where x ′ = (t1, . . . , t`1

, r1, . . . , r`2
), y = (t1, . . . , t`1

), and z = (r1, . . . , r`2
)

is a T -word for w−1w ′. It must be that both y and z are reduced since otherwise x ′ would not be

reduced, contradicting Lemma 3.1.4. The fact that y is reduced proves the second statement of the

proposition. For the reverse implication of the first statement we see that

`T (w
′) = `1+ `2 = `T (w ) + `T (w

−1w ′)

and so w ≤T w ′.

Suppose that w ≤T w ′. The next lemma allows us to find a reduced T -word x for w ′ such that x

either begins or ends with any reduced T -word for w .

Lemma 3.1.6. Let x = (t1, . . . , t`) be a reduced T -word for some w ∈W and let y = (ti1
, . . . , tik

) be

a subword of x . If y ′ = (ri1
, . . . , rik

) is any reduced T -word for ti1
· · · tik

, then there exist T -words

x1, x2 ∈RT (w ) such that x1 = (ri1
, . . . , rik

, . . .) and x2 = (. . . , ri1
, . . . , rik

).

Proof. We show the existence of the T -word x1, the proof for x2 is similar. We can use Hurwitz moves

to find a T -word x ′ such that x
H∼ x ′ and x ′ = (ti1

, . . . , tik
, . . .). We know that x ′ is reduced by Lemma

3.1.4. We can now replace ti j
with ri j

for all j ∈ [k ] in x ′ to get the T -word x1 = (ri1
, . . . , rik

, . . .)which

must also be reduced since it has the same length as x ′ and is a T -word for w .

This next proposition is Lemma 2.4 in [16], and it gives us a useful isomorphism between certain

intervals in Abs(W ).
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Proposition 3.1.7. Let W be a Coxeter group and suppose that π,µ ∈W such that π≤T µ. The map

w 7→π−1w is a poset isomorphism between the intervals [π,µ] and [e ,π−1µ].

Since we are interested in studying up-operators we will need a poset labeling to go along with

Abs(W ). This labeling is as follows. If w , w ′ ∈ Ab s (W ) such that w lT w ′, then γ(w , w ′) = w−1w ′.

As we noted earlier we know that w−1w ′ = t ∈ T . We also know that any t ∈ T appears as an edge

label. To see this simply take w = e , w ′ = t . This tells us that our up-operators are the ut such that

t ∈ T . Let x = (t1, . . . , t`) be a T -word. For ease of notation we denote by ux the product ut1
· · ·ut` .

3.1.3 Coxeter Elements and the Generalized Noncrossing Partition Lattice

Let (W ,S ) be a Coxeter system where S = {s1, . . . , sk }, and let π be any permutation in Sk . A standard

Coxeter element is any c ∈W such that c = sπ(1) · · · sπ(k ), and a Coxeter element is a conjugate of

any standard Coxeter element. Coxeter elements are actually a subset of the maximal elements of

Abs(W ). In our later discussion on the combinatorics of An , Bn , and Dn we will see that for An the

set of Coxeter elements and the set of maximal elements coincide, and for Bn and Dn the Coxeter

elements are a proper subset of the maximal elements. Coxeter elements are a key object in the

definition of the generalized noncrossing partition lattice and so some knowledge about them is

essential to our work. We state some of the properties of Coxeter elements that will prove most

useful to us. For further reading on this subject see [1]. We begin with the following lemma.

Lemma 3.1.8. Let c be a Coxeter element of W . The following statements are true.

• If c ′ is a Coxeter element of W , then c and c ′ are conjugate to one another.

• If t ∈ T , then t ≤T c .

Here we give a brief discussion about the proof of the above lemma. To prove the first statement

it is sufficient to show that if c , c ′ are standard Coxeter elements, then c and c ′ are conjugate to

one another. A proof that c and c ′ are conjugate is given by Humphreys [14, Proposition 3.16]. The

second statement is proven by analyzing inclusions of ‘moved spaces’ which are vector spaces

associated to each elements w ∈W . For the full proof see [1, Lemma 2.6.2].

There is a special type of element called a parabolic Coxeter element that will be essential for

our work, particularly for our understanding of reduced T -words. However, before defining it we

must first introduce the notion of parabolic subgroups of W . Let (W ,S ) be a Coxeter system and let

I ⊂ S . We denote by WI the subgroup generated by I and we call it a standard parabolic subgroup

of W . Furthermore, for any w ∈W we call the group w WI w−1 a parabolic subgroup of W . If c is a

Coxeter element for some parabolic subgroup of W , then we call c a parabolic Coxeter element of

W .

There is actually an equivalent way to define parabolic Coxeter groups given by Bessis [5]. (The

equivalence of these two definitions is proven in Corollary 4.4 of [4].) This alternate definition

requires us to first define a dual Coxeter system, which is a tuple (W , T ) satisfying the following:

there exists some subset S ⊂ T such that (W ,S ) is a Coxeter system and T is the conjugate closure of
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S . (Actually, in Bessis’ definition a tuple for a dual Coxeter system includes a third entry c , which is

a Coxeter element of W ; however, this will not be important for us here.) From this definition we

see that a dual Coxeter system is simply a representation of a Coxeter group which specifies its set

of reflections but does not explicitly state any set of Coxeter generators. This is a useful definition

because, aside from trivial cases, a Coxeter group has more than one valid set of Coxeter generators

while the set of reflections is always the same.

For a dual Coxeter system let S ⊂ T be a set of Coxeter generators for W and let I ⊂ S . A parabolic

subgroup of (W , T ) is a tuple (WI , TI )where WI = 〈I 〉 and TI = T ∩WI . These WI coincide with the

parabolic subgroups defined above and so the (WI , TI ) are just dual Coxeter systems for parabolic

subgroups. A parabolic Coxeter element is then an element w ∈W which is a Coxeter element in

some dual parabolic subgroup. The following theorem was proven by Bessis [5] and demonstrates

the link between parabolic Coxeter elements and reduced T -words.

Theorem 3.1.9. If w ∈W is a parabolic Coxeter element, then RT (w ) is transitive under the Hurwitz

action.

Our study of absolute order and the generalized noncrossing partition lattice will rely heavily on

reduced T -words and so Theorem 3.1.9 will appear frequently in the following sections. Another

useful result of Bessis [5] is stated in the following Theorem.

Theorem 3.1.10. If w ∈W , then w is a parabolic Coxeter element if and only if there exists a Coxeter

element c ∈W such that w ≤T c .

We now define the central object of this section.

Definition 3.1.11. Let c be a Coxeter element of W . The interval [e , c ] in Abs(W ) is called the

generalized noncrossing partition lattice and it is denoted by N C (W , c ).

While N C (W , c ) is defined with respect to a Coxeter element c , the structure of N C (W , c ) is

not dependent on which Coxeter element is chosen. The explanation for this is as follows. Let

c1, c2 be Coxeter elements of W . By Lemma 3.1.8 we know that there exist some w ∈W such that

c1 =w c2w−1. Consider the mapπ from Abs(W ) to itself whereπ(w ′) =w w ′w−1. This map is a poset

automorphism of Abs(W ) and so it must be that π is a poset isomorphism from N C (W , c1) = [e , c1]

to N C (W , c2) = [e , c2]. Since the N C (W , c ) are all equivalent up to isomorphism we denote the

generalized noncrossing partition lattice as N C (W ) for any c .

As its name suggests, N C (W ) is a generalization of the noncrossing partition lattice N C (n ) (see

section 3.1.4). In particular, N C (n ) is N C (W )when W = An−1. The name of N C (W ) also suggests

that it is a lattice and this is stated in the following theorem proven by Brady and Watt [8].

Theorem 3.1.12. The poset N C (W ) is a lattice.

The following lemma is due to Armstrong and will prove rather useful in our study of up-operators

for N C (W ). The lemma’s proof relies on use of the moved spaces mentioned in the proof discussion

of Lemma 3.1.8.
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Lemma 3.1.13. Suppose x = (t1, . . . , t`) is a reduced T -word for w ∈N C (W ). Then w = t1∨t2∨· · ·∨t`.

Finally, the edge labeling for N C (W ) is the same as the edge labeling used for Abs(W ). Note

that by Lemma 3.1.8 we know that t ≤ c for all t ∈ T and as such all t ∈ T occur as an edge label in

N C (W ). From this we see that our up-operators for N C (W ) are the ut for all t ∈ T .

3.1.4 The Classical Types

Of particular interest to us are the classical Coxeter groups of types An , Bn , and Dn where n is a

positive integer (see Figure 3.5 for their Coxeter diagrams). As such, we discuss here useful combina-

torial interpretations of these Coxeter groups and their poset structure under absolute order and in

the generalized noncrossing partition lattice. These interpretations are taken from both [1] and [16].

3.1.4.1 Combinatorics of Type A

The group An (n ≥ 1) is isomorphic to the symmetric group Sn+1 and so it can be viewed as the

group of permutations on the integers 1, . . . , n +1. More explicitly, An is the group of all bijections

from the set [n +1] to itself where the group operation is composition. The Coxeter generators of An

are the transpositions si = (i , i +1) for i ∈ [n ] and the set of reflections is the set of all transpositions

T = {(i , j ) : 1≤ i < j ≤ n}. We say that two cycles x = (a1, . . . , ak ), y = (ak+1, . . . , a`) are disjoint if there

does not exist any ai appearing in both x and y . Every element of An can be written as a unique (up

to commutation) product of disjoint cycles. If w ∈ An and k is the number of cycles in the disjoint

cycle decomposition of w , then `T (w ) = n +1−k .

Let w ∈ An and t ∈ T . If w lT w t , then we must have

(a1, . . . , a j )(a j+1, . . . , ak )
(a j ,ak )
→ (a1, . . . , ak ) (3.3)

where 1 ≤ i < j < k ≤ n + 1 and a1, . . . , ak are elements of [n + 1] with distinct values. Here the

cycles to the left of the arrow are factors in the disjoint decomposition of w , the transposition above

the arrow is t , and the cycle to the right of the arrow is a factor in the disjoint decomposition of

w t . All cycles in the disjoint decomposition of both w and t which do not appear in (3.3) remain

unchanged. We have that (3.3) fully characterizes the covering relations in Abs(An ) and we can see

from this covering relation that the maximal elements of Abs(An ) are exactly the cycles of length

n +1.

An element of An is a Coxeter element if and only if it is equal to a single cycle of length n . From

this we see than that the Coxeter elements of An coincide exactly with the maximal elements of

N C (An ). It is important to note that in general we can only say that the Coxeter elements of W are a

subset of the maximal elements of Abs(W ). We will see that for Bn and Dn the Coxeter elements are

a proper subset of the maximal elements.

As mentioned earlier, the generalized noncrossing partition lattice is a generalization of N C (n ),

the noncrossing partition lattice. The following is a combinatorial representation of N C (n ). Label
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Figure 3.2 The Hasse diagram for N C (4)∼=N C (A3).

the vertices of a regular n-gon with 1, 2, . . . , n counterclockwise. Let P = {P1, . . . , Pk } be a partition of

the numbers 1, . . . , n and let P ′i be the convex hull of the vertices with labels coming from Pi . We say

that the partition P is noncrossing if for each i 6= j ∈ [k ]we have P ′i ∩P ′j = ;. The lattice N C (n ) is the

poset of noncrossing partitions under partition refinement.

In fact, we may use the above combinatorial description of N C (n ) for N C (An−1) since N C (n )

is isomorphic to N C (An−1). In the following we describe the isomorphism between these two

posets. Recall that the structure of N C (An−1) is not dependent on the specific Coxeter element

chosen. As such, in defining the isomorphism from N C (An−1) to N C (n )we may assume that our

Coxeter element is c = (1, . . . , n ). Let w ∈N C (An−1, c ) and suppose that w =α1 · · ·αk is the disjoint

decomposition of w where the αi are cycles. Our isomorphism is the map π : N C (An−1)→N C (n )

such that π(w ) = {P1, . . . , Pk } and Pi is the set of elements appearing in the cycle αi . Figure 3.2 shows

N C (4) ∼= N C (A3). Each element in the poset is drawn with both its partition representation and

its corresponding permutation representation. Also, for each partition P1, . . . , Pk we have drawn

the edges of the convex hull corresponding to each Pi (if they exist). We see that for N C (A3) the

maximum element 1̂ is c and the minimum element 0̂ is the identity e .
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3.1.4.2 Combinatorics of Type B

The group Bn (n ≥ 2) is the group of all bijections from the set {−n , . . . ,−1,1, . . . , n} (hereafter de-

noted by [±n ]) to itself such that if w ∈ Bn , then w (i ) = −w (−i ), and where the group operation

is composition. Note that Bn is isomorphic to a subgroup of S2n = A2n−1 and so we can think

of elements of Bn as products of cycles. Let a1, . . . , ak ∈ [±n ] such that the ai have pairwise dis-

tinct absolute values. There are exactly two types of cycles that occur as elements in Bn . These

are cycles of the form (a1, . . . , ak )(−a1, . . . ,−ak ) and (a1, . . . , ak ,−a1, . . . ,−ak ) which we refer to as

paired cycles and balanced cycles respectively. We let ((a1, . . . , ak )) = (a1, . . . , ak )(−a1, . . . ,−ak ) and

[a1, . . . , ak ] = (a1, . . . , ak ,−a1, . . . ,−ak ). Every w ∈ Bn can be written as a unique (up to commutation)

product of disjoint paired and balanced cycles and we call this product the disjoint decomposition

of w . We often write this disjoint decomposition as w = b1 · · ·bk p1 · · ·pm where the bi are balanced

cycles and the pi are paired cycles. If k is the number of paired cycles in the disjoint cycle decom-

position of w , then `T (w ) = n −k . The Coxeter generators of Bn are the paired cycles ((i , i +1)) for

i = 1, . . . , n −1 and the balanced cycle [1]. Additionally, the set of reflections is given by

T = {((i , j )), ((i ,− j )) : 1≤ i < j ≤ n}∪ {[i ] : 1≤ i ≤ n}.

We note that the reflection ((i ,± j )) for 1≤ i < j ≤ n will also sometimes be written as ((± j , i )) or as

((∓ j ,−i )).

An element w ∈ Ab s (Bn ) is maximal if and only if the disjoint decomposition of w is b1 · · ·bk

where the sum of the lengths of the bi is equal to n . Let t ∈ T and suppose that w lT w t . The

covering relation w lT w t must look like one of the following:

((a1, . . . , ak ))
[ai ]→ [a1, . . . , ai−1, ai ,−ai+1, . . . ,−ak ] (3.4)

((a1, . . . , ak ))
((ai ,−a j ))
→ [a1, . . . , ai ,−a j+1, . . . ,−ak ][ai+1, . . . , a j ] (3.5)

[ai , . . . , a j ]((a j+1, . . . , ak ))
((a j ,ak ))
→ [a1, . . . , ak ] (3.6)

((a1, . . . , a j ))((a j+1, . . . , ak ))
((a j ,ak ))
→ ((a1, . . . , ak )) (3.7)

where the given cycles are related to w , t , and w t in the same way as in the covering relation

description for Abs(An ). Note that every covering relation other than (3.5) results in cycles of w

merging.

An element w is a Coxeter element in Bn if and only if the disjoint decomposition of w consists

of a single balanced cycle of length n , and it is a parabolic Coxeter element in Bn if and only

if its disjoint decomposition contains at most one balanced cycle. Again, since the structure of

N C (Bn ) does not depend on our specific choice of Coxeter element we may take our Coxeter

element to be c = [1, . . . , n ]. We now describe a combinatorial interpretation of N C (Bn ). Label the

vertices of a regular 2n-gon with the numbers 1, . . . , n ,−1, . . . ,−n while moving counterclockwise,

let P = {P1, . . . , Pk } be a partition of the numbers 1, . . . , n ,−1, . . . ,−n and let P ′i be the convex hull of
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Figure 3.3 The type B noncrossing partition for {{1, 2,−1,−2},{3, 4},{−3,−4}}.

the vertices whose labels are in Pi . We say that P is a type B noncrossing partition if for all i 6= j ∈ [k ]
we have P ′i ∩P ′j = ; and the set P ′ = P ′1 ∪ · · · ∪P ′k is invariant under a 180 degree rotation in the plane.

Figure 3.3 shows the type B noncrossing partition for {{1, 2,−1,−2},{3, 4},{−3,−4}}. Note that in the

figure we have drawn the edges of the convex hulls given by each block in the partition. Since type

B noncrossing partitions need to be symmetric under 180 degree rotations, they are also sometime

referred to as centrally symmetric partitions. The set of type B noncrossing partitions is a poset

under partition refinement.

A zero block of a partition P is any block containing both i and −i for some i ∈ [n ]. Note that if

P = {P1, . . . , Pk } is a type B noncrossing partition, then the following must hold: P contains at most

one zero block, and for all i ∈ [k ] such that Pi is not the zero block, there exists some i 6= j ∈ [k ]
such that Pj = −Pi . Here −Pi is just the set of elements in Pi with their signs reversed. From this

we see that we can write each type B noncrossing partition as P = {P0, P1,−P1, . . . , Pk ,−Pk }. Using

this form for P we define the isomorphism π from the poset of type B noncrossing partitions to

N C (Bn , c ) as follows. We let π(P ) =m0m1 · · ·mk where m0 is the balanced cycle whose elements

come from P0 and mi = ((a1, . . . , aδ)) is the paired cycle such that a1, . . . , aδ are the elements of Pi for

i = 1, . . . , k . Furthermore, the cyclic order of the elements in mi is chosen to be consistent with the

cyclic order in our Coxeter element c = [1, . . . , n ]. For instance if P = {{1, 2,−1,−2},{3,4},{−3,−4}},
then π(P ) = [1, 2]((3, 4)). Figure 3.4 shows the Hasse diagram for N C (B2).

3.1.4.3 Combinatorics of Type D

The group Dn is a rank 2 subgroup of Bn which consists of all elements of Bn whose disjoint decom-

position contains an even number of balanced cycles. The Coxeter generators of Dn are the paired

cycles ((i , i +1)) for i = 1, . . . , n −1 and ((1,−2)), and

T = {((i , j )), ((i ,− j )) : 1≤ i < j ≤ n}.

An element w ∈ Bn is contained in Dn if and only if the disjoint decomposition of w contains an

even number of balanced cycles. The absolute length of w in Dn is equal to its absolute length in

Bn . Also, Abs(Dn ) inherits all of the covering relations from Abs(Bn ) except covering relation (3.4).
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Figure 3.4 The Hasse diagram for N C (B2)
.

An element w ∈Dn is a Coxeter element if and only if w = [a1, . . . , an−1][an ]where a1, . . . , an ∈
[±n ] and have distinct absolute values. As with An and Bn , we can view Dn as a poset on certain

special types of partitions. The combinatorial construction for Dn was introduced by Reiner and

Athanasiadis [3]. Since it will not be important for us we do not give the construction.

3.2 The Algebra of Up-operators for N C (W )

In this section we determine the defining relations for the algebra of up-operators for N C (W ). Let

U N C (W ) be the free associative algebra over C generated by the ut for t ∈ T . Furthermore, let I N C (W )

be the ideal ofU N C (W ) containing all elements which annihilate C[N C (W )]. Here C[N C (W )] is

the vector space over C with basis N C (W ). We callU N C (W )/I N C (W ) the algebra of up-operators for

N C (W ). Our goal is to prove the following theorem.

Theorem 3.2.1. The algebra of up-operators for N C (W ) is defined by the following degree 2 relations:

ut ut ′ ≡ ut ′ut ′t t ′ , (3.8)

ut ut ′ ≡ ut t ′t ut , and (3.9)

ur ur ′ ≡ 0 (3.10)

where (t , t ′) ∈RT (w ) for some w ∈N C (W ) and r = r ′, or r r ′ 6∈N C (W ).
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Figure 3.5 The finite Coxeter groups and their Coxeter diagrams.
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Before moving on we first discuss these relations a bit. The left side of relation (3.8) is equal to

ux where x = (t , t ′) and the right side of relation (3.8) is equal to u y where y = (t ′, t ′t t ′). Noting that

x
H∼ y we see that relation (3.8) is necessary to account for Hurwitz equivalence of reduced T -words.

By a similar analysis we can see that (3.9) is also a result of Hurwitz equivalence. More specifically,

relation (3.8) accounts for the Hurwitz move (3.1) and relation (3.9) accounts for the Hurwitz move

(3.2). Note that if we set r = t ′, r ′ = t ′t t ′ and substitute these into relation (3.8), then the result

is actually relation (3.9) and we see that these two relations are actually equivalent. Despite this

equivalence we state them separately to make clear their connection to the Hurwitz moves. Finally,

relation (3.10) reflects the fact that if (r, r ′) is not a reduced T -word for some element of W , then it

is not possible to find r and r ′ as consecutive labels in N C (W ).

The process for proving this Theorem will be similar to the process we used for the algebra of

Schur operators. Specifically, it is sufficient to show that I N C (W ) = J N C (W ) where J N C (W ) is the ideal

of U N C (W ) generated by relations (3.8)–(3.10). In this section we will denoteU N C (W ), I N C (W ), J N C (W )

byU , I , J respectively.

As usual, our first goal is to determine how a monomial in the ut acts on an element of our

poset N C (W ). Recall that for N C (W ) and Abs(W ) our operators will act on the right. We have the

following proposition.

Proposition 3.2.2. Let x = (t1, . . . , t`) be a T -word and w ∈N C (W ). Then

(w )ux =







w t1 · · · t` if w t1 · · · t` ≤T c and `T (w t1 · · · t`) = `T (w ) + `,

0 otherwise.

Proof. Suppose that (w )ux = (w )ut1
· · ·ut` 6= 0. Then for all i ∈ [`]we have

(w t1 · · · ti−1)uti
6= 0.

By the definition of our up-operators and the fact that `T is the rank function for N C (W )we have

(w t1 · · · ti−1)uti
=w t1 · · · ti ≤T c and `T (w t1 · · · ti ) = `T (w t1 · · · ti−1) +1. From this we see that when

i = `we must have w t1 · · · t` ≤T c and `T (w t1 · · · t`) = `T (w ) + `.

Now suppose (w )ux = 0. Let i ∈ [`] be the smallest such that (w t1 · · · ti−1)ui = 0. This implies that

w t1 · · · ti does not cover w t1 · · · ti−1 in N C (W ). If w t1 · · · ti 6∈N C (W ), then we know w t1 · · · ti 6≤T c .

On the other hand if w t1 · · · ti ∈ N C (W ), then we must have `T (w t1 · · · ti ) ≤ `T (w t1 · · · ti−1). From

this we see that:

`T (w t1 · · · t`)≤ `T (w t1 · · · ti ) + `− i

≤ `T (w t1 · · · ti−1) + `− i

= `T (w ) + i −1+ `− i

= `T (w ) + `−1

< `T (w ) + `.
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Now that we understand how a monomial ux acts on an element of N C (W ), we can use this

to understand exactly when ux ≡ 0 (mod I ) and when ux ≡ u y (mod I ). This leads to the following

two corollaries.

Corollary 3.2.3. Let x = (t1, . . . , t`) be a T -word. Then ux ≡ 0 (mod I ) if and only if x 6∈RT (w ) for any

w ∈N C (W ).

Proof. If ux ≡ 0 (mod I ), then (e )ux = 0 where e is the identity element in N C (W ). By Proposition

3.2.2 we know that

t1 · · · t` 6≤ c , or

`T (t1 · · · t`) 6= `.

Either statement implies that x 6∈RT (w ) for any w ∈N C (W ).

Suppose now that ux 6≡ 0 (mod I ). There must then exist some w ′ ∈N C (W ) such that (w ′)ux 6= 0.

By Proposition 3.2.2 we know that w ′t1 · · · t` ∈N C (W ) and `T (w ′t1 · · · t`) = `′+ `where `′ = `T (w ′).

Let (t ′1, . . . , t ′`′ ) be a reduced T -word for w ′. Since t ′1 · · · t
′
`′ t1 · · · t` =w ′t1 · · · t` and `T (w ′t1 · · · t`) = `′+`

we know that (t ′1, . . . , t ′`′ , t1, . . . , t`) is a reduced T -word for w ′t1 · · · t`. By the subword property from

Proposition 3.1.5 we know that w = t1 · · · t` ≤T w ′t1 · · · t` ≤T c and so w = t1 · · · t` ∈N C (W ). We also

know from Proposition 3.1.5 that `T (w ) = ` and so we see that x = (t1, . . . , t`) ∈RT (w ).

Corollary 3.2.4. Let x , y be T -words such that ux , u y 6≡ 0 (mod I ). Then ux ≡ u y (mod I ) if and only

if x , y ∈RT (w ) for some w ∈N C (W ).

Proof. Suppose that ux ≡ u y (mod I )where x = (t1, . . . , t`), y = (t ′1, . . . , t ′`′ ). We assume that ux , u y 6≡ 0

(mod I ) and so there exists some w ′ ∈N C (W ) such that (w ′)ux = (w ′)u y 6= 0. By Corollary 3.2.3 we

know that x and y are both reduced T -words so it remains only to show that x and y are reduced

T -words for the same w ∈N C (W ). Indeed by Proposition 3.2.2 we have that

(w ′)ux =w ′t1 · · · t` =w ′t ′1 · · · t
′
`′ = (w

′)u y .

Multiplying the expressions above by w−1 on the left gives us t1 · · · t` = t ′1 · · · t
′
`′ = w and so x , y ∈

RT (w ).

Now suppose x , y ∈ RT (w ) for some w ∈ N C (W ) and ux , u y 6≡ 0 (mod I ). We first wish to

show that (w ′)ux 6= 0 if and only if (w ′)u y 6= 0 for any w ′ ∈ N C (W ). We show only one direction

since the other is identical. If (w ′)ux 6= 0, then by Proposition 3.2.2 we have w ′t1 · · · t` ≤T c and

`T (w ′t1 · · · t`) = `T (w ′) + `. From this we see that

w ′t ′1 · · · t
′
`′ =w ′t1 · · · t` ≤T c and

`T (w
′t ′1 · · · t

′
`′ ) = `T (w

′t1 · · · t`) = `T (w
′) + `

and so by Proposition 3.2.2 we have (w ′)u y 6= 0. Using Proposition 3.2.2 we see that (w ′)ux = (w ′)u y

and so we have ux ≡ u y (mod I ).
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We can now prove that J ⊂ I , which takes us halfway to our ultimate goal of showing J = I .

Corollary 3.2.5. We have that J ⊂ I .

Proof. It suffices to show that modulo I we have

ut ut ′ ≡ ut ′ut ′t t ′ ,

ut ut ′ ≡ ut t ′t ut , and

ur ur ′ ≡ 0

where (t , t ′) ∈ RT (w ) for some w ∈ N C (W ) and r = r ′ or r r ′ 6∈ N C (W ). If (t , t ′) ∈ RT (w ) then

(t ′, t ′t t ′) ∈RT (w ) since its length is 2 and t t ′ = t ′(t ′t t ′). By Corollary 3.2.3 we have ut ut ′ , ut ′ut ′t t ′ 6≡
0 (mod I ) and so we can apply Corollary 3.2.4 to see that ut ut ′ ≡ ut ′ut ′t t ′ (mod I ). The second

equivalence can be proven similarly. For the third equivalence note that if r = r ′ or r r ′ 6∈N C (W )

then ur ur ′ ≡ 0 (mod I ) by Corollary 3.2.3.

As was the case with Young’s lattice, we will see that I is in fact a binomial ideal. The next lemma

will be useful in proving this fact.

Lemma 3.2.6. Let x = (t1, . . . , t`), y = (t ′1, . . . , t ′`′ ) be T -words. If there exists some w ∈ N C (W ) such

that (w )ux = (w )u y 6= 0, then ux ≡ u y (mod I ).

Proof. Suppose (w )ux = (w )u y 6= 0 for some w ∈ N C (W ). By Corollary 3.2.3 we know that x ∈
RT (w ′) and y ∈RT (w ′′) for some w ′, w ′′ ∈N C (W ). By Proposition 3.2.2 we know that

(w )ux =w t1 · · · t` =w t ′1 . . . t ′`′ = (w )u y .

Multiplying the above expressions by w−1 on the left tells us that

t1 · · · t` = t ′1 . . . t ′`′

and so w ′ =w ′′. Since x , y ∈RT (w ′)we know by Corollary 3.2.4 that ux ≡ u y (mod I ).

Proposition 3.2.7. The ideal I is generated by elements of the form ux −u y where x , y ∈RT (w ) for

some w ∈N C (W ) and elements of the form uz where z 6∈RT (w ) for any w ∈N C (W ).

Proof. Let I ′ be the ideal ofU generated by the elements described above. By Corollaries 3.2.4 and

3.2.3 we have I ′ ⊂ I . Let R be any element of I . Then there exists R ′ such that R ′ ≡R (mod I ′) and

R ′ =
m
∑

i=1

ci ux (i )

where ci ∈C and ux (i ) 6≡ 0 (mod I ) for all i ∈ [m ] and ux (i ) 6≡ ux ( j ) (mod I ) for all i 6= j ∈ [m ]. For each

i ∈ [m ] let wi ∈W such that (wi )ux (i ) =w ′i 6= 0. By Proposition 1.1.3 we know that x (i ) appears in the
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interval [wi , w ′i ]. By Proposition 3.1.7 we know that [wi , w ′i ] is isomorphic to [e , w−1
i w ′i ] and so x (i )

appears in the interval [e , w−1
i w ′i ]. By Proposition 1.1.3 we must then have (e )ux (i ) =w−1

i w ′i 6= 0 for

all i ∈ [m ]. Furthermore, the (e )ux (i ) are all distinct by Lemma 3.2.6. Since R ′ ∈ I we have (e )R ′ = 0

and since the (e )ux (i ) are all distinct and nonzero we see that (e )R ′ = 0 only if ci = 0 for all i ∈ [m ].
We then have R ′ = 0≡R (mod I ′) and so I ⊂ I ′.

The final portion of this section is dedicated to proving I ⊂ J . Since we now know that I is

a binomial ideal, it will be sufficient to show that ux ≡ u y (mod I ) implies ux ≡ u y (mod J ) and

ux ≡ 0 (mod I ) implies ux ≡ 0 (mod J ).

Proposition 3.2.8. If x , y are T -words such that ux ≡ u y 6≡ 0 (mod I ), then ux ≡ u y modulo relations

(3.8) and (3.9) and so ux ≡ u y (mod J ).

Proof. We know by Proposition 3.2.4 that x , y ∈ RT (w ) for some w ∈ N C (W ). We also know by

Theorem 3.1.10 that w is a parabolic Coxeter element and so by Theorem 3.1.9 we have

x
H∼ y .

We now wish to prove that if x
H∼ y , then ux ≡ u y (mod J ). It suffices to consider two cases. The

first is when x = (t1, . . . , ti , ti+1, . . . t`) and y = (t1, . . . , ti+1, ti+1ti ti+1, . . . , t`) and the second is when

x = (t1, . . . , ti , ti+1, . . . , t`) and y = (t1, . . . , ti ti+1ti , ti , . . . , t`). We consider the first case; the second

case is similar. We have

ux = ut1
· · ·uti

uti+1
· · ·ut` and

u y = ut1
· · ·uti+1

uti+1ti ti+1
· · ·ut` .

Here we see that ux ≡ u y modulo relation (3.8) and so ux ≡ u y (mod J ).

Now that we have shown ux ≡ u y 6≡ 0 (mod I ) implies ux ≡ u y (mod J ) it remains only to show

that ux ≡ 0 (mod I ) implies ux ≡ 0 (mod J ). This is proven below in Proposition 3.2.10. The following

lemma is needed for the proof of this proposition.

Lemma 3.2.9. Let x = (t1, . . . , t`) be a reduced T -word for w = t1 · · · t` ∈N C (W ), and let t ∈ T such

that t 6= ti and ti t ∈N C (W ) for all i ∈ [`]. Then w t ∈N C (W ) and y = (t1, . . . , t`, t ) ∈RT (w t ).

The main idea of the following proof is to use the lattice structure of N C (W ) to show that c t

lies above the join of t1, . . . , t` and to then use this to prove the lemma statement.

Proof. First note that since x is a reduced T -word for w we know by Lemma 3.1.13 that w = t1∨· · ·∨t`.

Now let w ′ = c t where c is the Coxeter element (and also the maximum element) for N C (W ). We

wish to prove two things about w ′: first that w ′ ∈N C (W ) and second that ti ≤T w ′ for all i ∈ [`].
We first prove that w ′ ∈N C (W ). By assumption we have ti t ≤T c for all i ∈ [`] and so by Propo-

sition 3.1.5 we know that that ti t (i ∈ [`]) appears as an arbitrary subword of a reduced T -word for c .
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Using this, along with Lemma 3.1.6, we can construct a T -word of the form (r1, . . . , rk , ti , t )which is

in RT (c ). We see that w ′ = r1 · · · rk ti which means that w ′ appears as a subword of (r1, . . . , rk , ti , t ). By

Proposition 3.1.5 we then have w ′ ≤T c which implies w ′ ∈N C (W ). To prove that ti ≤T w ′ (i ∈ [`])
we first note that (r1, . . . , rk , ti ) ∈ RT (w ′) by Proposition 3.1.5. We then see that ti is a subword of

(r1, . . . , rk , ti ) and so we know by Proposition 3.1.5 that ti ≤T w ′ for all i ∈ [`].
We now use w and w ′ to prove our desired result. Since w = t1 ∨ · · · ∨ t` and ti ≤T w ′ (i ∈ [`])we

have w ≤T w ′. We then have by Proposition 3.1.5 and Lemma 3.1.6 that there exists an element in

RT (w ′) of the form z = (t1, . . . , t`, . . .). Also, since t ≤T c (by Lemma 3.1.8) there exists an element of

RT (c ) of the form (r ′1, . . . , r ′k , t ) (by Proposition 3.1.5 and Lemma 3.1.6) where z ′ = (r ′1, . . . , r ′k ) ∈RT (w ′).

We now substitute z ′ with z in (r ′1, . . . , r ′k , t ) to get g = (t1, . . . , t`, . . . , t ) ∈RT (c ). We now use Lemma

3.1.6 to get the T -word g ′ = (t1, . . . , t`, t , . . .) ∈RT (c ). Finally, we see by Proposition 3.1.5 that w t =

t1 · · · t`t ≤T c which implies that w t ∈N C (W ), and furthermore, that y = (t1, . . . , t`, t ) ∈RT (w t ).

Proposition 3.2.10. If x is a T -word such that ux ≡ 0 (mod I ), then ux ≡ 0 (mod J ).

Proof. If x = (t1, . . . , t`) and ux ≡ 0 (mod I ), then there must exist some ι ∈ [`] such that u y 6≡ 0

(mod I ) for y = (t1, . . . , tι). From this we see that it is sufficient to consider the case where x =

(t1, . . . , t`), y = (t1, . . . , t`−1) and ux ≡ 0 (mod I ), u y 6≡ 0 (mod I ). For any i ∈ [`−1], repeated applica-

tion of (3.9) on u y yields

ux = u y ut`

= ut1
· · ·uti

· · ·ut`−1
ut`

≡ ut1
· · ·uti ti+1ti

uti ti+2ti
· · ·uti t`−1ti

uti
ut` (mod J ).

If uti
ut` ≡ 0 (mod J ) for some i ∈ [`−1], then ux ≡ 0 (mod J ) and we are done. Assume for contradic-

tion that instead we have uti
ut` 6≡ 0 (mod J ) for all i ∈ [`−1]. This assumption along with Corollaries

3.2.3 and 3.2.5 imply that (ti , t`) ∈RT (ti t`) and ti t` ∈N C (W ) for all i ∈ [`−1], which can only occur

if t` 6= ti . Note that by Corollary 3.2.3 we have that y ∈RT (t1 · · · t`−1). We see then that y satisfied the

hypothesis of Lemma 3.2.9 (where t` takes the role of t ) and so we have that t1 · · · t`−1t` ∈N C (W )

and x = (t1, . . . , t`−1, t`) ∈ RT (t1 · · · t`−1t`). Corollary 3.2.3 then implies that ux 6≡ 0 (mod I ) which

contradicts our assumption that ux ≡ 0 (mod I ).

Using all of our preceding work we are now prepared to prove the main result of this section,

Theorem 3.2.1.

Proof. It suffices to show that I = J . By Corollary 3.2.5 we have that J ⊂ I . We know that I is a

binomial ideal by Proposition 3.2.7 and so to prove I ⊂ J we need only show that ux ≡ u y (mod I )

implies ux ≡ u y (mod J ) and ux ≡ 0 (mod I ) implies ux ≡ 0 (mod J ). These statements are proven

in Proposition 3.2.8 and Proposition 3.2.10 respectively.
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3.3 The Algebra of Up-operators for Abs(W ) for Classical Types

Here we consider the up-operators for Abs(W )when W = An , Bn , and Dn . Similar to the cases for

Young’s lattice and N C (W )we letU Ab s (W ) be the associative free algebra over C generated by the ut

for t ∈ T . We also let I Ab s (W ) be the two-sided ideal ofU Ab s (W ) containing all elements ofU Ab s (W )

which annihilate all elements of C[Ab s (W )]. We callU Ab s (W )/I Ab s (W ) the algebra of up-operators

for Abs(W ). When there will be no confusion we refer toU Ab s (W ), I Ab s (W ) asU , I respectively.

We begin by stating some results which hold for all possible choices of W after which we will

consider the cases when W = An , Bn , Dn separately. For each of the classical Coxeter groups we will

give a list of defining relations for the algebra of up-operators for Abs(W ) and we will let J Ab s (W ) be

the two-sided ideal ofU generated by those relations. We will denote J Ab s (W ) by J when the choice

of W is clear. Our task will be to show that for each of An , Bn , Dn we have I = J .

Many of the following statements have similar counterparts in subsection 3.2 and so we will

omit proofs in those cases. As usual our first task is to understand how a monomial ux acts on

elements of Abs(W ) and our second task is to determine when ux ≡ u y (mod I ) and when ux ≡ 0

(mod I ). This leads to the following proposition and corollaries.

Proposition 3.3.1. Let x = (t1, . . . , t`) be a T -word and w ∈W . Then

(w )ux =







w t1 · · · t` if `T (w t1 · · · t`) = `T (w ) + `,

0 otherwise.

Corollary 3.3.2. Let x = (t1, . . . , t`) be a T -word. Then ux ≡ 0 (mod I ) if and only if x 6∈RT (w ) for any

w ∈W .

Corollary 3.3.3. Let x , y be T -words such that ux , u y 6≡ 0 (mod I ). Then ux ≡ u y (mod I ) if and only

if x , y ∈RT (w ) for some w ∈W .

We see that once again our algebra is nice in that I is a binomial ideal. This follows from the

following lemma and proposition.

Lemma 3.3.4. Let x , y be T -words. If there exists some w ∈W such that (w )ux = (w )u y 6= 0, then

ux ≡ u y (mod I ).

Proposition 3.3.5. The ideal I is generated by elements of the form ux −u y where x , y ∈RT (w ) for

some w ∈W and elements of the form uz where z 6∈RT (w ) for any w ∈W .

Finally, we prove the following proposition which will be necessary in each of the cases we study.

Proposition 3.3.6. Let w ∈ Ab s (W ) and t ∈ T . If w t does not cover w in Abs(W ), then w covers w t .

Proof. Suppose that w t does not cover w . We first wish to determine `T (w t ). Note that we must have

`T (w t )≤ `T (w )+1. To see this let (t1, . . . , t`) be a reduced T -word for w . We see that (t1, . . . , t`, t ) is a

T -word (not necessarily reduced) for w t and it has `T (w ) +1 entries. Additionally, since w = (w t )t
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we have by similar reasoning that `T (w ) ≤ `T (w t ) + 1 and so `T (w t ) ≥ `T (w )− 1. We know that

`T (w t ) 6= `T (w ) +1 since otherwise the definition of absolute order would imply that w t covers w

and we cannot have `T (w t ) = `T (w ) since, due to parity, multiplication by a reflection must result

in an element of W with an absolute length different from that of w . The only possibility left is that

`T (w t ) = `T (w )−1. Using the definition of absolute order we see that w t ≤T w . In fact, since `T is

the rank function for Abs(W ) it must be that w t is covered by w .

3.3.1 Type A

In this subsection we let W = An . We wish to prove the following Theorem.

Theorem 3.3.7. The algebra of up-operators for Abs(An ) is generated by the following relations:

ut ut ′ ≡ ut ′ut ′t t ′ , (3.11)

ut ut ′ ≡ ut t ′t ut , and (3.12)

ut ut ≡ 0 (3.13)

where t 6= t ′ ∈ T .

These relations are the same as those needed for the algebra of up-operators on N C (An )with the

exception of the conditions on t and t ′. The restrictions on t , t ′ in relations (3.8) and (3.9) ensured

that (t , t ′)was a reduced word for some element in N C (An ). For relations (3.11) and (3.12) we again

want to ensure that (t , t ′) is a reduced word for some element in our current poset of interest Abs(An ).

Since our poset Abs(An ) contains N C (An ) there are fewer restrictions needed on t , t ′ for this to

be satisfied. Additionally, in relation (3.10) our restrictions on r, r ′ ensured that (r, r ′) was not a

reduced T -word for some element in N C (An ). In Abs(An ) the only length two T -words which are

not reduced are those with a repeated element, hence the form of relation (3.13).

Again, to prove Theorem 3.3.7 we need to show that I = J . We can already prove the inclusion

J ⊂ I .

Corollary 3.3.8. If W = An then J ⊂ I .

Proof. We need only show that modulo I we have

ut ut ′ ≡ ut ′ut ′t t ′ ,

ut ut ′ ≡ ut t ′t ut , and

ut ut ≡ 0.

For the first relation note that (t , t ′) and (t ′, t ′t t ′) are both reduced T -words for t t ′ ∈ Ab s (W ).

By Corollaries 3.3.2 and 3.3.3 we see that ut ut ′ ≡ ut ′ut ′t t ′ (mod I ). The proofs for the other two

relations are similar.
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We now begin the task of showing that equivalence modulo I implies equivalence modulo J . We

break this task up into two parts. Corollary 3.3.9 deals with this implication when the ux involved

are nonzero modulo I while Proposition 3.3.10 considers the case when the monomials are zero

modulo I . The corollary is a straightforward consequence of our findings in subsection 3.2.

Corollary 3.3.9. Let W = An and let x , y be T -words such that ux ≡ u y 6≡ 0 (mod I ). Then ux ≡ u y

(mod J ).

Proof. By Corollary 3.3.3 we know that x , y ∈ RT (w ) for some w ∈ Ab s (An ). Let c be a maximal

element in Abs(An ) such that w ≤T c . Recall that in An the maximal elements in absolute order are

exactly the Coxeter elements of the poset. From this we see that w ∈ [e , c ] =N C (W )where e is the

identity element of An . By Corollaries 3.2.3 and 3.2.4 we know that ux ≡ u y 6≡ 0 (mod I N C (An )) and

so by Proposition 3.2.8 we know that ux ≡ u y modulo relations (3.8) and (3.9) from J N C (An ). Since

both of these relations are contained in J we have ux ≡ u y (mod J ).

The previous corollary considered equivalence of ux , u y modulo J when ux , u y 6≡ 0 (mod I ).

The following proposition now deals with equivalence modulo J when ux , u y ≡ 0 (mod I ). We note

here that the proof of the below proposition is not dependent on our assumption that W = An , that

is, this same proof will work for other choices of W .

Proposition 3.3.10. Let W = An and let x be a T -word. If ux ≡ 0 (mod I ), then ux ≡ 0 (mod J ).

Proof. Let x = (t1, . . . , t`) and w = t1 · · · t`−1. It is sufficient to consider the case where ux ≡ 0 (mod I )

and ux ′ 6= 0 (mod I )where x ′ = (t1, . . . , t`−1). If e is the identity element in Abs(An ) then we have

(e )ux = (e )ux ′ut` = (w )ut` = 0.

Since (w )ut` = 0 we know by the definition of our up-operators that w t` does not cover w and so by

Proposition 3.3.6 we know that w covers w t`. If y = (r1, . . . , r`−2) is a reduced T -word for w t`, then

y ′ = (r1, . . . , r`−2, t`) is a reduced T -word for w . By Corollary 3.3.3 we know that ux ′ ≡ u y ′ 6≡ 0 (mod I )

and so by Corollary 3.3.9 we have ux ′ ≡ u y ′ (mod I ). From this we have

ux = ux ′ut`

≡ u y ′ut` (Corollary 3.3.3)

= · · ·ut`ut`

≡ 0 (3.13).

We can now give the proof of Theorem 3.3.7.

Proof. By Corollary 3.3.8 we see that J ⊂ I . By Proposition 3.3.5 we have that I is binomial and so

to prove I ⊂ J we need only show that ux ≡ u y (mod I ) implies ux ≡ u y (mod J ). This is shown in

Corollary 3.3.9 and Proposition 3.3.10.

50



3.3.2 Type B

We now let W = Bn . We will prove the following theorem.

Theorem 3.3.11. The algebra of up operators for Abs(Bn ) is generated by the following relations:

ut ut ′ ≡ ut ′ut ′t t ′ , (3.14)

ut ut ′ ≡ ut t ′t ut , (3.15)

ut ut ≡ 0, and (3.16)

u((a ,a ′))u((a ,−a ′)) ≡ u[a ]u[a ′] (3.17)

where a , a ′ are elements of {±1, . . . ,±n}with distinct absolute values and t 6= t ′ ∈ T .

We first briefly discuss the relations given in the theorem. Relations (3.14)–(3.16) are similar

to relations (3.11)–(3.13) for Abs(An )with the same reasoning for the restrictions on t and t ′. The

main difference in the Bn case is relation (3.17) which is necessary because, unlike Abs(An ), not all

elements of Abs(Bn ) are parabolic Coxeter elements. As a result, for nonparabolic Coxeter elements

w ∈ Bn we do not necessarily have x
H∼ y where x , y ∈RT (w ). As such, we do not necessarily have

ux ≡ u y modulo relations (3.14) and (3.15) and so relation (3.17) accounts for this. More specifically,

we will see that if x and y are not Hurwitz equivalent it will be because w has a pair of balanced cycles

b1, b2 in its disjoint decomposition which are ‘created’ in different ways in x and y . For instance,

the subscripts appearing on left hand side of relation (3.17) gives us the T -word (((a , a ′)), ((a ,−a ′)))

and the subscripts on the right give us the T -word ([a ], [a ′]). Both of these are reduced T -words

for [a ][a ′] but as we multiply the entries of (((a , a ′)), ((a ,−a ′))) and ([a ], [a ′]) from left to right the

balanced cycles [a ] and [a ′] are ‘created’ in different ways. For (((a , a ′)), ((a ,−a ′))), multiplying from

left to right, we have

e
((a ,a ′))
→ ((a , a ′))

((a ,−a ′))
→ [a ][a ′]

and we see that [a ] and [a ′] are created simultaneous at the step where we multiply by ((a ,−a ′)). On

the other hand, for ([a ], [a ′])we have

e
[a ]
→ [a ]

[a ′]
→ [a ][a ′]

and so we see that [a ] and [a ′] are not created simultaneously; rather, [a ] is created at the step where

we multiply by [a ]while [a ′] is created later at the step where we multiply by [a ′]. Definitions 3.3.13

and 3.3.14 give a more formal description of what we mean when we say that two T -words ‘create’

balanced cycles differently.

Proving that J ⊂ I is straightforward and is shown in the following corollary.

Corollary 3.3.12. Let W = Bn . Then J ⊂ I .
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Proof. Similar to the proof of Corollary 3.3.8 we need only show that modulo I we have

ut ut ′ ≡ ut ′ut ′t t ′ ,

ut ut ′ ≡ ut t ′t ut ,

ut ut ≡ 0, and

u((a ,a ′))u((a ,−a ′)) ≡ u[a ]u[a ′]

Again, we will only show that one of these relations holds since the proofs for the other relations are

similar. We focus on the last relation since it is the main difference between the case for Abs(An )

and the case for Abs(Bn ). The left side of the last relation is equal to ux where x = (((a , a ′)), ((a ,−a ′)))

and the right side is equal to u y where y = ([a ], [a ′]). Both x and y are reduced T -words for [a ][a ′] ∈
Ab s (Bn ). Thus, by Corollaries 3.3.2 and 3.3.3 we see that u((a ,a ′))u((a ,−a ′)) ≡ u[a ]u[a ′].

The remainder of this subsection will rely on the covering relations for Bn so we encourage the

reader to review the relevant information from section 3.1. Before proceeding we first introduce the

following notation. If x1, . . . , xk are T -words, then we denote by (x1, . . . , xk ) the T -word formed by

concatenating x1, . . . , xk .

Let x = (t1, . . . , t`), y = (t ′1, . . . , t ′`′ ) be T -words. To show that I ⊂ J we focus on proving that if ux ≡
u y (mod I ), then ux ≡ u y (mod J ). We will first consider the case when ux ≡ u y 6≡ 0 (mod I ). Note

that by Corollary 3.3.3 we know that x , y ∈RT (w ) for some w ∈ Ab s (Bn ) so we let b1 · · ·bk p1 · · ·pm

be the disjoint decomposition of w and let b ′i (resp. p ′i ) be a reduced T -word for bi (resp. pi ). Our

strategy is to show that ux ≡ uz ≡ u y (mod J )where z = (b ′1, . . . , b ′k , p ′1, . . . , p ′m ).

For the most part this will be straightforward to accomplish using commutations given by

relations (3.14) and (3.15). However, a complication will arise if covering relation (3.5)

((a1, . . . , ak ))
((ai ,−a j ))
→ [a1, . . . , ai ,−a j+1, . . . ,−ak ][ai+1, . . . , a j ]

ever appears in the chain t1lT t1t2lT . . .lT t1 · · · t` or the chain t ′1lT t ′1t ′2lT . . .lT t ′1 · · · t
′
`′ . Specifically,

if (3.5) appears, then there exists some bi , b j (i 6= j ) in the disjoint decomposition of w such that b ′i , b ′j
cannot be separated using commutation alone. To deal with this complication we first show that ux ≡
uz1

, u y ≡ uz2
(mod J )where z1, z2 are T -words containing as a consecutive subsequence a reduced

T -word for bi b j . We then show that uz1
, uz2

≡ uz (mod J ). To help create z1, z2 we introduced the

following definitions: the first of which more explicitly defines these bi , b j .

Definition 3.3.13. Let x = (t1, . . . , t`) be a reduced T -word for w = t1 · · · t` ∈ Ab s (Bn ) and let w =

b1 · · ·bk p1 · · ·pm be the disjoint decomposition of w into paired and balanced cycles. We will call two

balanced cycles bi , b j simultaneous with respect to x if there is some ι ∈ [`] such that the disjoint

decomposition of t1 · · · tι contains balanced cycles b̄i , b̄ j where the elements of b̄i are contained

in bi , and the elements of b̄ j are contained in b j ; and furthermore, the disjoint decomposition of

t1 · · · tι−1 contains no such b̄i nor b̄ j .
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Note that in the above definition the covering relation t1 · · · tι−1 lT t1 · · · tι must be a covering

relation of type (3.5). Also note that for any reduced T -word x it is not possible for there to exist

three balanced cycles bi , b j , bk such that bi , b j are simultaneous with respect to x and b j , bk are also

simultaneous with respect to x . This follows immediately from the covering relations (3.4)–(3.7).

Definition 3.3.14. Let x = (t1, . . . , t`) be a reduced T -word for w = t1 · · · t` ∈ Ab s (Bn ) and let

w = b1 · · ·bk p1 · · ·pm be the disjoint decomposition of w into paired and balanced cycles. Let

w = m1 · · ·mζ be a decomposition of w such that if bi , b j are simultaneous with respect to x ,

then mι = bi b j for some ι ∈ [ζ], and for all other factors bi (resp. pj ) there exists some ι ∈ [ζ] such

that mι = bi (resp. pj ). We call such a disjoint decomposition a simultaneous decomposition with

respect to x .

Note that both of these definitions are dependent upon the choice of the reduced T -word x .

When no confusion is possible we will say ‘simultaneous’ rather than simultaneous with respect to

x and ‘simultaneous decomposition’ rather than simultaneous decomposition with respect to x .

Example 3.3.15. Let

x = (((1, 2)), ((2, 3)), [7], ((5, 6)), ((7, 8)), ((2,−3)), ((3, 4)))

be a reduced T -word for w , where w has the disjoint decomposition [1,2][3,4][7,8]((5,6)). We see

that [1, 2], [3, 4] are simultaneous with respect to x since the disjoint decomposition of

((1, 2))((2, 3))[7]((5, 6))((7, 8))((2,−3))

(which is [1, 2][3]((5, 6))[7, 8]) contains the balanced cycles [1, 2], [3]while the disjoint decomposition

of

((1, 2))((2, 3))[7]((5, 6))((7, 8))

(which is ((1, 2, 3))((5, 6))[7, 8]) contains no such balanced cycles.

We also see that w has the simultaneous decomposition with respect to x given by w =m1m2m3

where m1 = [1, 2][3, 4], m2 = [7, 8], and m3 = ((5, 6)).

The following lemma constructs the T -words z1, z2 mentioned earlier in our discussion of the

proof strategy for showing that ux ≡ u y 6≡ 0 (mod I ) implies ux ≡ u y (mod J ).

Lemma 3.3.16. Let x = (t1, . . . , t`) be a reduced T -word for w = t1 · · · t` ∈ Ab s (Bn ) and let w =

m1 · · ·mk be a simultaneous decomposition. Then ux ≡ u y (mod J ) where y = (m ′
1, . . . , m ′

k ) and

where m ′
i is a reduced T -word for mi .

Proof. In the following, when we refer to a factor of mi we mean a reflection t j appearing as an entry

in x such that t j ≤T mi . We can see from covering relations (3.4)–(3.7) that if ti = ((a , a ′)) (resp. [a ]) is

a factor of m j , then a , a ′ (resp. a ) must be contained in m j . Since the mi are disjoint, we see that any

factor of m j1
must be disjoint from any factor of m j2

whenever j1 6= j2. Thus, applications of relations
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(3.14) and (3.15) on ut ut ′ , where t , t ′ are factors for different mi , simply result in commutation. We

see then that

ux ≡ um ′
1
· · ·um ′

k
= u y (mod J )

where m ′
i is a T -word for mi . By Proposition 3.3.12 we know that ux ≡ u y (mod I ) and so by Corollary

3.3.3 we have y ∈RT (w ). Since y is a reduced T -word it must be that its subwords are also reduced

T -words and so the m ′
i are reduced.

Now that we have constructed z1, z2 we can begin the process of proving that uz1
, uz2

≡ uz

(mod J ). Lemmas 3.3.17, 3.3.18, and 3.3.20 will give us some tools to deal with the complications

arising from simultaneous balanced cycles and Proposition 3.3.21 shows that ux ≡ uz ≡ u y (mod J ).

Lemma 3.3.17. Let x = (t1, . . . , t`) be a reduced T -word for w = t1 · · · t` ∈ Ab s (Bn ) such that the

disjoint decomposition of w is w = b1b2 where b1, b2 are simultaneous with respect to x . Also let

a , a ′ be any integers appearing in b1, b2 respectively. Then there exists a T -word y such that ux ≡ u y

(mod J ), y = (t ′1, . . . , t ′`), and t ′` = ((a ,−a ′)).

The proof for this lemma is a bit technical so before proceeding we first give a more informal

description of the proof. Since w is simultaneous with respect to x we can see, using covering

relation (3.5), that x must have an entry equal to ((ai ,−a j ))where ai is some element of b1 and a j is

some element of b2. We now use relation (3.15) on x to create a new T -word y1 where ((ai ,−a j ))

appears in the last entry of y1 and ux ≡ u y1
(mod J ). This ((ai ,−a j )) has the same structure as the

reflection ((a ,−a ′)), namely it is a reflection which is a paired cycle with entries from both b1 and

b2. However, it is not necessarily the case that ((ai ,−a j )) = (a ,−a ′) since the values of ai and a j are

determined by x . To account for this, we then use our relations to ‘replace’ ai and a j with a and

±a ′ respectively. We put replace in quotes because we aren’t actually replacing anything, we are just

finding a T -word equivalent to u y1
(mod J ) that ends in ((a ,±a ′)). After applying our relations we

will see that the resulting T -word is our desired y .

Proof. Let x be as described in the lemma statement. Our first goal is to prove the following claim.

Claim 1 There exists a T -word y1 such that ux ≡ u y1
(mod J ), y1 = ( f1, . . . , f`), f1 · · · f`−1 = ((a1, . . . , ak )),

and f` = ((ai1
,−ai2

)) for some ai1
, ai2
(i1 < i2) appearing in b1, b2 respectively.

The proof of claim 1 is as follows. First, suppose that b1 = [α1, . . . ,αk1
], b2 = [β1, . . . ,βk2

]. Since

b1, b2 are simultaneous it must be that for some ι ∈ [`] the disjoint decomposition of w1 = t1 · · · tι
contains balanced cycles b̄1, b̄2 which are contained in b1, b2 respectively and w2 = t1 · · · tι−1 contains

no such b̄1, b̄2. Since covering relation (3.5) is the only one which results in simultaneous balanced

cycles it must be that tι = ((±αi ,±β j )) for some i ∈ [k1], j ∈ [k2]. Using relation (3.15) we see that

ux ≡ u y1
(mod J )where

y1 = (t1, . . . , tι−1, tι tι+1tι , . . . , tι t`tι , tι).
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Now let

w3 = t1 · · · tι−1(tι tι+1tι) · · · (tι t`tι).

Note that w3 = b1b2((±αi ,±β j )) is a paired cycle and that ±αi ,±β j are contained in different cycles

of this paired cycle. Letting ai1
=±αi and −ai2

=±β j we see that y1 is as described in claim 1.

Our next goal is to prove the second claim below.

Claim 2 Let y1 be as described in claim 1 and let i3 ∈ [k ] such that ai3
is contained in b2 and ai3

=±a ′.

There exists a T -word y2 such that u y1
≡ u y2

(mod J ), y2 = (q1, . . . , q`), q1 · · ·q` is a paired cycle, and

q` = ((ai1
,−ai3

)).

The proof of claim 2 is as follows. By assumption we have that y1 = ( f1, . . . , f`), f1 · · · f`−1 =

((a1, . . . , ak )), and f` = ((ai1
,−ai2

)) for some ai1
, ai2

appearing in b1, b2 respectively. If i3 = i2, then we

are done, so suppose i3 6= i2. Since ai3
appears in b2 it must be that i1 < i3 < i2. Using this we can see

that y ′1 is a reduced T -word for f1 · · · f`−1 = ((a1, . . . , ak ))where

y ′1 = (((a1, a2)), . . . , ((ai3−1, ai3
)), ((ai3

, ai2+1)), ((ai2+1, ai2+2)), . . . ,

((ak−1, ak )), ((ai3+1, ai3+2)), . . . , ((ai2−1, ai2
)), ((ai3

, ai2
))).

Note that f1 · · · f`−1 ∈N C (Bn , c ) where c = [a1, . . . , ak , . . . , an ] is a Coxeter element. Since relations

(3.8) and (3.9) are contained in J when W = Bn we have by Corollary 3.2.3 and Proposition 3.2.8

that u( f1,..., f`−1) ≡ u y ′1
(mod J ). We then have

u y1
= u( f1,..., f`−1)u f`

≡ u y ′1
u f`

= · · ·u((ai3 ,ai2 ))
u((ai1 ,−ai2 ))

≡ · · ·u((ai1 ,−ai2 ))
u((ai1 ,−ai3 ))

(3.14)

= u y2
.

Note that

y2 = (((a1, a2)), . . . , ((ai3−1, ai3
)), ((ai3

, ai2+1)), ((ai2+1, ai2+2)), . . . ,

((ak−1, ak )), ((ai3+1, ai3+2)), . . . , ((ai2−1, ai2
)), ((ai1

,−ai2
)), ((ai1

,−ai3
))).

has the desired properties from claim 2.

Now that we have proven both of our claims we can do the following. We apply claim 2 again

but this time y2 takes the role of y1 and b1, b2 switch roles. Doing this we obtain a T -word y3 such

that u y2
≡ u y3

(mod J ), y3 = (r1, . . . , r`), r1 · · · r`−1 is a paired cycle, and r` = ((ai3
,−ai4

)) = ((ai4
,−ai3

))

where ai4
appears in b1 and ai4

=±a . We now assume that ai4
= a and consider the two possible

values of ai3
, either ai3

= a ′ or ai3
=−a ′. Note that this implicitly addresses the case when ai4

=−a
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since r` = ((ai3
,−ai4

)) = ((ai4
,−ai3

)). If a = ai4
and a ′ = ai3

, then r` = t ′` = ((a ,−a ′)) and we are done.

Suppose instead that a = ai4
and a ′ =−ai3

. Note that there exists a reduced T -word y ′3 = (r
′

1, · · · , r ′` )

for r1 · · · r`−1 such that r ′` = ((ai3
, ai4
)) (we construct y ′3 in the same manner as y ′1 ). We then see that

u y3
= u(r1,...,r`−1)ur`

≡ u y ′3
ur`

= · · ·u((ai3 ,ai4 ))
u((ai3 ,−ai4 ))

≡ · · ·u((ai3 ,−ai4 ))
u((ai3 ,ai4 ))

(3.14)

= u y4

where y4 = (z1, . . . , z`), z1 · · ·z`−1 is a paired cycle, and z` = ((ai3
, ai4
)) = ((ai4

, ai3
)). We now have

z` = t ′` = ((a ,−a ′)) and we are done.

The following lemma gives us a way to take a reduced T -word x (with certain conditions placed

upon it) and find another reduced T -word y such that ux ≡ u y (mod J ) and where y is in some

standard form. In fact Lemma 3.3.18 gives multiple different standard forms for y .

Lemma 3.3.18. Let x = (t1, . . . , t`) be a reduced T -word for w = t1 · · · t` ∈ Ab s (Bn ) and let w = b1b2 be

the disjoint decomposition of w where b1, b2 are simultaneous. If b1 = [α1, . . . ,αkα ], b2 = [β1, . . . ,βkβ ],

then the following hold.

(a) We have that ux ≡ u y (mod J )where y = (A, B , ((α1,β1)), ((α1,−β1))) and

A = (((α1,−α2)), ((−α2,−α3)), . . . , ((−αkα−1,−αkα ))),

B = (((β1,−β2)), ((−β2,−β3)), . . . , ((−βkβ−1,−βkβ ))).

(b) We have that ux ≡ u y ′ (mod J )where y ′ = (((α1,β1)), ((α1,−β1)), A′, B ′) and

A′ = (((α1,α2)), . . . , ((αkα−1,αkα ))),

B ′ = (((β1,β2)), . . . , ((βkβ−1,βkβ ))).

Proof. We will prove (a) explicitly; the proof of (b) is similar. By Lemma 3.3.17 we know that ux ≡ uz

(mod J )where z = (t ′1, . . . , t ′`), t ′1 · · · t
′
`−1 is the paired cycle b1b2((α1,−β1)), and t ′` = ((α1,−β1)). Note

that

b1b2((α1,−β1)) = ((α1,−β2, . . . ,−βk2
,β1,−α2, . . . ,−αk1

))

is contained in N C (Bn , c )where c = [α1,−β2, . . . ,−βk2
,β1,−α2, . . . ,−αk1

, a1, . . . , an−k1−k2
] is a Coxeter

element such that a1, . . . , an−k1−k2
are elements of {±1, . . . ,±n}whose absolute values are pairwise

distinct and which are not equal to any ±αi or ±βi . Note also that z ′ = (A, B , ((α1,β1))) is a reduced

T -word for b1b2((α1,−β1)). Since relations (3.8) and (3.9) are contained in J when W = Bn we have
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by Corollary 3.2.3 and Proposition 3.2.8 that

uz = u(t ′1,...,t ′`−1)
ut ′`
≡ uz ′ut ′`

= u y (mod J ).

The following lemma will not be necessary for our work with Abs(Bn ) but it will be of use in the

next subsection where we study Abs(Dn ).

Lemma 3.3.19. Let x , y be reduced T -words for some w ∈ Ab s (Bn ) and let w = b1b2 be the disjoint

decomposition of w where b1, b2 are simultaneous with respect to both x and y . Then ux ≡ u y

(mod J ).

Proof. Let b1 = [α1, . . . ,αk1
], b2 = [β1, . . . ,βk2

]. By Lemma 3.3.18 we know that ux ≡ uz ≡ u y (mod J )

where z = (A, B , ((α1,β1)), ((α1,−β1))) and

A = (((α1,−α2)), ((−α2,−α3)), . . . , ((−αkα−1,−αkα ))),

B = (((β1,−β2)), ((−β2,−β3)), . . . , ((−βkβ−1,−βkβ ))).

Let x , z ∈RT (w ) for some w ∈ Bn . Recall from our discussion at the beginning of this subsection

that the core problem we have in the Abs(Bn ) case is finding a way to show that ux ≡ uz (mod J )

when x and z are not Hurwitz equivalent. We will see in the proof of Proposition 3.3.21 that the

key to solving this problem is to first show that if the disjoint decomposition of w is b1b2 and b1, b2

are simultaneous with respect to x , then ux ≡ u y (mod J )where y = (b ′1, b ′2) and b ′1, b ′2 are reduced

T -words for b1, b2 respectively so that b1, b2 are not simultaneous with respect to y . Lemma 3.3.20

proves this equivalence by using one of the standard forms from Lemma 3.3.18 along with our

relations, especially relation (3.17).

Lemma 3.3.20. Let x = (t1, . . . , t`) be a reduced T -word for w = t1 · · · t` ∈ Ab s (Bn ) such that w = b1b2

is the disjoint decomposition of w where b1, b2 are simultaneous with respect to x . Then ux ≡ u y

(mod J )where y = (b ′1, b ′2) and b ′1 (resp. b ′2) is any reduced T -word for b1 (resp. b2).

Proof. Suppose that b1 = [α1, . . . ,αk1
] and b2 = [β1, . . . ,βk2

]. By Lemma 3.3.18 we have that ux ≡ uz1

(mod J )where z1 = (A, B , ((α1,β1)), ((α1,−β1))) and

A = (((α1,−α2)), ((−α2,−α3)), . . . , ((−αkα−1,−αkα ))),

B = (((β1,−β2)), ((−β2,−β3)), . . . , ((−βkβ−1,−βkβ ))).

From here we see that

uz1
= uA uB u((α1,β1))u((α1,−β1))

≡ uA uB u[α1]u[β1] (3.17)

≡ uA u[α1]uB u[β1] (3.14)

= uz2
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where z2 = (A, [α1], B , [β1]). Note that (A, [α1]), (B , [β1]) are reduced T -words for b1, b2 respectively.

Also note that (A, [α1]), (B , [β1]) ∈N C (W , c )where

c = [α1, . . . ,αk1
,β1, . . . ,βk2

, a1, . . . , an−k1−k2
]

is a Coxeter element such that a1, . . . , an−k1−k2
are elements of {±1, . . . ,±n}whose absolute values

are pairwise distinct and which are not equal to any ±αi or ±βi . From this we see by Corollary 3.2.3

and Proposition 3.2.8 that

uz2
≡ u(b ′1b ′2)

(mod J )

where b ′1 (resp. b ′2) is any reduced T -word for b1 (resp. b2).

We are now prepared to show that equivalence modulo I implies equivalence modulo J , which

is a key step in proving that I ⊂ J .

Proposition 3.3.21. Let x , y be T -words such that ux ≡ u y 6≡ 0 (mod I ). Then ux ≡ u y (mod J ).

Proof. By Corollary 3.3.3 we know that x , y ∈RT (w ) for some w ∈ Ab s (Bn ). Let w = b1 · · ·bk1
p1 · · ·pk2

be the disjoint decomposition of w and let b ′i (resp. p ′i ) be any reduced T -word for bi (resp. pi ). Our

goal is to show that ux ≡ uz ≡ u y (mod J )where z = (b ′1, . . . , b ′k1
, p ′1, . . . , p ′k2

). Let w =m1 · · ·mζ be a

simultaneous decomposition with respect to x and let m ′
i be a reduced word for mi . We know by

Lemma 3.3.16 that ux ≡ uz1
(mod J )where z1 = (m ′

1, . . . , m ′
ζ).

First, fix some i ∈ [ζ] and suppose that mi = b j = [a1, . . . , ak ] for some j ∈ [k1]. Then mi ∈
N C (Bn , c ) where c = [a1, . . . , ak , . . . , an ] is a Coxeter element. Since relations (3.8) and (3.9) are

contained in J when W = Bn we have by Corollary 3.2.3 and Proposition 3.2.8 that um ′
i
≡ ub ′j

(mod J ). Using this same process we can similarly show that if mi = pj for some j ∈ [k2] then

um ′
i
≡ up ′j

(mod J ). Now suppose mi = b j1
b j2

where b j1
, b j2

are simultaneous with respect to x . By

Lemma 3.3.20 we know that um ′
i
≡ uz2

(mod J )where z2 = (b ′j1
, b ′j2
). From here we see that

ux ≡ uz1
≡ u(b ′1,...,b ′k1

,p ′1,...,p ′k2
) = uz (mod J ).

Using an identical process we can also show that u y ≡ uz (mod J ) and so ux ≡ u y (mod J ) as

desired.

Our last task is to prove that if ux ≡ 0 (mod I ), then ux ≡ 0 (mod J ). This is done in the following

proposition.

Proposition 3.3.22. Let x be a T -word. If ux ≡ 0 (mod I ), then ux ≡ 0 (mod J ).

Proof. The proof is similar to the proof of Proposition 3.3.10.

Finally, we give a proof Theorem 3.3.11.

Proof. Corollary 3.3.12 gives us the inclusion J ⊂ I . For the reverse inclusion note that by Proposition

3.3.5 we know that I is binomial and so it is sufficient to show that ux ≡ u y (mod I ) implies ux ≡ u y

(mod J ). This follows directly from Propositions 3.3.21 and 3.3.22.
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3.3.3 Type D

Here we focus on our last classical case, Coxeter groups of type Dn . In this subsection we take

W =Dn . We wish to prove the following theorem. Note that any result from subsection 3.3.2 which

does not rely on relation (3.17) also applies to Abs(Dn ). We will make use of such results throughout

this subsection.

Theorem 3.3.23. The algebra of up operators for Abs(Dn ) is generated by the following relations:

ut ut ′ ≡ ut ′ut ′t t ′ , (3.18)

ut ut ′ ≡ ut t ′t ut , (3.19)

ut ut ≡ 0, and (3.20)

u((a1,a2))u((a1,−a2))u((a3,a4))u((a3,−a4)) ≡ u((a1,a3))u((a1,−a3))u((a2,a4))u((a2,−a4)) (3.21)

where a1, a2, a3, a4 are elements of {±1, . . . ,±n}with distinct absolute values and t 6= t ′ ∈ T .

The relations for the up-operators on Abs(Dn ) are similar to the relations for Abs(An ) and Abs(Bn ),

including the conditions imposed on t and t ′. As with the type B case, the type D case has a special

relation needed to prove ux ≡ u y (mod J )when x and y are not Hurwitz equivalent, namely relation

(3.21). We will discuss the importance of this relation later in the subsection but for now we wish to

note that relation (3.21) is of degree 4. This makes it different from the other relations we’ve seen in

this chapter which have all been of degree 2. An easy way to see that a degree 4 relation is needed is

by looking at the Hasse diagram of the interval [e , [1][2][3][4]] in Abs(D4) (see Figure 3.6). If we let x

be the reduced T -word corresponding to the chain

((1, 2))lT [1][2]lT [1][2]((3, 4))lT [1][2][3][4]

and let y be the reduced T -word corresponding to the chain

((1, 3))lT [1][3]lT [1][3]((2, 4))lT [1][2][3][4]

we see that we can have ux ≡ u y (mod J ) only if J contains a relation of degree 4.

Once again, proving the inclusion J ⊂ I is straightforward and is stated below.

Proposition 3.3.24. Let W =Dn . Then J ⊂ I .

Proof. We need only show that modulo I we have

ut ut ′ ≡ ut ′ut ′t t ′ ,

ut ut ′ ≡ ut t ′t ut ,

ut ut ≡ 0, and

u((a1,a2))u((a1,−a2))u((a3,a4))u((a3,−a4)) ≡ u((a1,a3))u((a1,−a3))u((a2,a4))u((a2,−a4)).
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•••((1, 2))

•••[1][2]((3, 4))

•••••[1][2]

•••((1, 3))

•••[1][3]((2, 4))

•••••[1][3]

••••

••••

••••••

e

[1][2][3][4]

Figure 3.6 The Hasse diagram for the interval [e , [1][2][3][4]] in Abs(D4).
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We will focus on the last relation since, as mentioned earlier, it is the key difference between the

Abs(Bn ) case and the Abs(Dn ) case. The proofs for the other relations are similar. The left side of this

relation is equal to ux where x = (((a1, a2)), ((a1,−a2)), ((a3, a4)), ((a3,−a4))) and the right side is equal

to u y where y = (((a1, a3)), ((a1,−a3)), ((a2, a4)), ((a2,−a4))). Both x and y are reduced T -words for

[a1][a2][a3][a4] ∈ Ab s (Dn ) and so by Corollaries 3.3.2 and 3.3.3 we see that

u((a1,a2))u((a1,−a2))u((a3,a4))u((a3,−a4)) ≡ u((a1,a3))u((a1,−a3))u((a2,a4))u((a2,−a4)) (mod I )

as desired.

We now focus on proving that ux ≡ u y 6≡ 0 (mod I ) implies ux ≡ u y (mod J ). As was the case

for Abs(Bn ), simultaneous balanced cycles will cause a complication. However, we cannot use

the strategy employed in the Abs(Bn ) case since the set of reflections for Dn does not include any

balanced cycles. As such, relation (3.17) is not applicable here. Instead, our strategy will be as

follows. Let x be a reduced T -word for some w ∈ Ab s (Dn ) and let b1 · · ·bk1
p1 · · ·pk2

be the disjoint

decomposition of w . Furthermore, let α1,β1, . . . ,αh ,βh (h =
k1
2 ) be any permutation of the indices

1, . . . , k1. We will show that there exists a T -word (z1, z2) such that z1 is a reduced T -word for b1 · · ·bk1

where bαi
, bβi

(i ∈ [h ]) are simultaneous with respect to z1, z2 is a reduced T -word for p1 · · ·pk2
, and

ux ≡ uz ≡ u y (mod J ). The following lemma states that we can construct this z1 in the special case

where the disjoint decomposition of w is b1b2b3b4. Note that in the lemma w is never explicitly

stated, but it is equal to the product w1w2 where w1 = b1b2 and w2 = b3b4. This special case will

allow us to deal with the general case, which is addressed in Lemma 3.3.26.

Lemma 3.3.25. Let x1, x2 be reduced T -words for w1, w2 ∈ Ab s (Dn ) respectively. Suppose that w1 =

b1b2 (resp. w2 = b3b4) is the disjoint decomposition of w1 (resp. w2) where b1, b2 (resp. b3, b4) are

simultaneous with respect to x1 (resp. x2). Then u(x1,x2) ≡ u(y1,y2) (mod J )where y1 ∈RT (b1b3) (resp.

y2 ∈RT (b2b4)) and b1, b3 (resp. b2, b4) are simultaneous with respect to y1 (resp. y2).

Proof. In the following we let

b1 = [α1, . . . ,αkα ],

b2 = [β1, . . . ,βkβ ],

b3 = [ψ1, . . . ,ψkψ ], and

b4 = [δ1, . . . ,δkδ ].

We know by Lemma 3.3.18 that ux1
≡ uz1

(mod J )where z1 = (A, B , ((α1,β1)), ((α1,−β1))) and

A = (((α1,−α2)), ((−α2,−α3)), . . . , ((−αkα−1,−αkα ))),

B = (((β1,−β2)), ((−β2,−β3)), . . . , ((−βkβ−1,−βkβ ))).
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Similarly, we have that ux2
≡ uz2

(mod J )where z2 = (((ψ1,δ1)), ((ψ1,−δ1)), C , D ) and

C = (((ψ1,ψ2)), . . . , ((ψkψ−1,ψkψ ))),

D = (((δ1,δ2)), . . . , ((δkδ−1,δkδ ))).

From here we see that

u(x1,x2) ≡ u(z1,z2) (Lemma 3.3.18)

= uA uB u((α1,β1))u((α1,−β1))u((ψ1,δ1))u((ψ1,−δ1))uC uD

≡ uA uB u((α1,ψ1))u((α1,−ψ1))u((β1,δ1))u((β1,−δ1))uC uD (3.21)

≡ uA u((α1,ψ1))u((α1,−ψ1))uC uB u((β1,δ1))u((β1,−δ1))uD (3.18), (3.19)

= u(y1,y2)

where y1 = (A, ((α1,ψ1)), ((α1,−ψ1)), C ) ∈ RT (b1b3) and y2 = (B , ((β1,δ1)), ((β1,−δ1)), D ) ∈ RT (b2b4).

Note that b1, b3 are simultaneous with respect to y1 and b2, b4 are simultaneous with respect to

y2.

We now move on to the general case of constructing z1 where the disjoint decomposition of w

is b1 · · ·bk .

Lemma 3.3.26. Let x be a reduced T -word for some w ∈ Ab s (Dn )with the disjoint decomposition

w = b1 · · ·bk . Also, let α1,β1 . . . ,αh ,βh be any permutation of the indices 1, . . . , k where h = k
2 . Then

there exists some y such that we have ux ≡ u y (mod J ), y = (y (α1,β1), . . . , y (αh ,βh )), and y (αi ,βi ) is

a reduced T -word for bαi
bβi

.

Proof. We proceed by induction on h . If h = 1, then k = 2, and the statement is true for x = y . Now

suppose the statement is true for all h ≤m −1 for some integer m > 2 and let h =m . Furthermore,

let w =m1 · · ·mh be the simultaneous decomposition of w with respect to x . By Lemma 3.3.16 we

know that ux ≡ ux1
(mod J )where x1 = (m ′

1, . . . , m ′
h ) and m ′

j is a reduced T -word for m j .

There are now two cases to consider. In the first case the bαi
bβi

are already ‘paired together’ in

x1 for all i ∈ [h ] and in the second case they are not. By ‘paired together’ we mean that x1 contains a

consecutive subword which is a reduced T -word for bαi
bβi

. This first case will be straightforward

to deal with since all we have to do is use our relations to commute the m ′
j so that the reduced

T -words for the bαi
bβi

appear in the correct order. For the second case we will use our relations on

x1 in a way that will allow us to reduce to the first case.

Here we deal with the first case. Suppose that for all i ∈ [h ] there exists some j such that

m j = bαi
bβi

. For each i we can take this corresponding j and let y (αi ,βi ) =m ′
j . As shown in the

proof of Lemma 3.3.16, we can use relation (3.18) to commute any m ′
j1

with any m ′
j2
( j1 6= j2) and

so modulo relation (3.18) we have ux1
≡ u y where y = (y (α1,β1), . . . , y (αh ,βh )). This implies that

ux ≡ u y (mod J ).
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Now suppose there exists some i ∈ [h ] such that there does not exist any j where m j = bαi
bβi

.

There must then exist m j1
, m j2

( j1 6= j2) such that m j1
= bαi

bδ1
, m j2

= bβi
bδ2

for some δ1 6= δ2 ∈
[k ]−{αi ,βi }. We know by Lemma 3.3.25 that um ′

j1
um ′

j2
≡ uη1

uη2
(mod J )where η1 ∈RT (bαi

bβi
) and

η2 ∈RT (bδ1
bδ2
). From here we have

ux1
≡ · · ·um ′

j1
um ′

j2
· · · (3.18)

≡ · · ·uη1
uη2
· · · (Lemma 3.3.25)

≡ uη1
· · · (3.18)

= uη1
ux2

.

Note that x2 is a reduced T -word for w ′ =w b−1
αi

b−1
βi
∈ Ab s (Dn )where the disjoint decomposition

of w ′ is the product of the b j for all j ∈ [k ]−{αi ,βi }. By our inductive hypothesis there exists some

y ′ such that ux2
≡ u y ′ (mod J ) and

y ′ = (y ′(α1,β1), . . . , y ′(αi−1,βi−1), y ′(αi+1,βi+1), . . . , y ′(αh ,βh ))

where y ′(α j ,β j ) is a reduced T -word for bα j
bβ j

. Using this we finally see that

uη1
ux2
≡ uη1

u y ′ (induction)

≡ u y (3.18)

where y = (y (α1,β1), . . . , y (αh ,βh )) and y (α j ,β j ) is a reduced T -word for bα j
bβ j

.

Now that we have z1 we can construct z2. This construction is simpler than the one for z1 and it

will be done in the following proposition where we also show that ux ≡ u(z1,z2) ≡ u y (mod J ).

Proposition 3.3.27. Let x , y be T -words such that ux ≡ u y 6≡ 0 (mod I ). Then ux ≡ u y (mod J ).

Proof. By Corollary 3.3.3 we know that x , y ∈RT (w ) for some w ∈ Ab s (Dn ). Let w = b1 · · ·bk1
p1 · · ·pk2

be the disjoint decomposition of w and let h = k1
2 . Our goal is to show that ux ≡ uz ≡ u y (mod J )

where z is a T -word such that

z = (z (α1,α2), . . . , z (αh−1,αh ), z (1), . . . , z (k2)),

z (αi ,αi+1) is a reduced T -word for bαi
bαi+1

, and z (i ) is a reduced T -word for pi .

We will explicitly show that ux ≡ uz (mod J ); the process for proving that u y ≡ uz (mod J ) is

identical. Let w =mβ1,β2
· · ·mβh−1,βh

m1 · · ·mk2
be the simultaneous decomposition of w with respect

to x where mβi ,βi+1
= bβi

bβi+1
and mi = pi . By Lemma 3.3.16 we know that ux ≡ ux ′ (mod J )where

x ′ = (m ′
β1,β2

, . . . , m ′
βh−1,βh

, m ′
1, . . . , m ′

k2
) and m ′

βi ,βi+1
(resp. m ′

i ) is a reduced T -word for mβi ,βi+1
(resp.

mi ).

First, let x ′1 = (m
′
β1,β2

, . . . , m ′
βh−1,βh

) and z1 = (z (α1,α2), . . . , z (αh−1,αh )). We know by Lemma 3.3.26

that ux ′1
≡ uz ′1

(mod J )where z ′1 = (z
′(α1,α2), . . . , z ′(αh−1,αh )) and z ′(αi ,αi+1) is a reduced T -word
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bαi
bαi+1

. We also see by Lemma 3.3.19 that z ′(αi ,αi+1)≡ z (αi ,αi+1) (mod J ). This then implies that

ux ′1
≡ uz1

(mod J ).

Now let x ′2 = (m
′
1, . . . , m ′

k2
) and z2 = (z1, . . . , zk2

). Note that for any i ∈ [k2] we have mi = pi =

((a1, . . . , ak )) ∈N C (Dn , c )where c = [a1, . . . , ak , . . . , an ] is a Coxeter element. Relations (3.8) and (3.9)

are contained in J when W =Dn and so by Corollary 3.2.3 and Proposition 3.2.8 see that um ′
i
≡ uzi

(mod J ). This tells us that ux ′2
≡ uz2

(mod J ). From the above we have

ux ≡ ux ′ = ux ′1
ux ′2
≡ uz1

uz2
= uz (mod J ).

Our last step is to show that if ux ≡ 0 (mod I ), then ux ≡ 0 (mod J ). This is done in the following

proposition.

Proposition 3.3.28. Let x be a T -word. If ux ≡ 0 (mod I ), then ux ≡ 0 (mod J ).

Proof. The proof is similar to the proof of Proposition 3.3.10.

Now we give the proof of Theorem 3.3.23.

Proof. Corollary 3.3.24 gives us the inclusion J ⊂ I . For the reverse inclusion note that by Proposition

3.3.5 we know that I is binomial and so it is sufficient to show that ux ≡ u y (mod I ) implies ux ≡ u y

(mod J ). This follows directly from Propositions 3.3.27 and 3.3.28.
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CHAPTER

4

UP-OPERATORS FOR BRUHAT ORDER

In this chapter we discuss up-operators when our given poset is Bruhat order, which is a poset

defined with respect to a Coxeter group W . Specifically, we consider the case where W is either the

dihedral group I2(m ) or the symmetric group Sn . In section 4.1 we discuss necessary background

information for Bruhat order on I2(m ) and Sn . In section 4.2 we give a complete list of defining

relations for the algebra of up-operators for Bruhat order on I2(m ), and in section 4.3 we state several

previously unknown relations among the up-operators for Bruhat order on Sn .

4.1 Bruhat Order

We first define Bruhat order and discuss some of its properties. The information presented in this

section is taken from [7] and the reader may refer to that text for further information on the subject. As

mentioned earlier, Bruhat order is defined with respect to a Coxeter group and so before proceeding

the reader may wish to review the Coxeter group material covered in subsection 3.1.1.

Definition 4.1.1. Let W be a finite Coxeter group and let T be the set of reflections in W . If v, w ∈W

we take v →w to mean that `S (v )< `S (w ) and v−1w ∈ T . Bruhat order on W is the partial order on

W where v ≤B w if and only if there exists some sequence v1, . . . , vk such that

v = v1→ v2→ ·· ·→ vk−1→ vk =w .

We denote the poset (W ,≤B) by B(W ).

Since B(W ) is the only poset we consider in this chapter we will write ≤,l in place of ≤B,lB
respectively. We emphasize that the definition for Bruhat order relies on the standard length `S of
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an element w ∈W rather than the absolute length `T used for absolute order. Figure 4.1 gives the

Hasse diagram for Bruhat order on the Coxeter group S3 (the permutations are given in one-line

notation). The following proposition comes from Corollary 2.2.3 in [7].

Proposition 4.1.2. Let v, w ∈W . The following are equivalent.

• v ≤w .

• If x is a reduced S-word for w , then x has a subword x ′ that is a reduced S-word for v .

• There exists some reduced S-word x for w such that x has a subword x ′ that is a reduced S-word

for v .

This proposition gives us a way to determine when two elements of W are comparable in

B(W ) by considering their S-words. For instance, consider the permutations 213,321 ∈S3. The

permutation 321 has (s1, s2, s1) as a reduced S-word while the permutation 213 has (s1) as a reduced

S-word, where si = (i , i +1). Since (s1) is a subword of (s1, s2, s1) we have 213≤ 321 by Proposition

4.1.2. Indeed, we see that 213≤ 321 in Figure 4.1. It is well known that v lw if and only if v−1w = t

for some t ∈ T and `S (w ) = `S (v ) + 1. From this we can also see that B(W ) is graded with rank

function `S .

As always, our main concern is the study of up-operators and as such we need some edge labeling

for B(W ). Our edge labeling will be the natural one suggested by the nature of covering relations in

Bruhat order. In particular, if v lw , then we take γ(v, w ) = v−1w which is an element of T . Note

that the set of edge labels comes from the set T and so we denote a monomial ut1
· · ·ut` by ux where

x = (t1, . . . , t`) is a T -word. Using the definition of up-operators and what we know about covering

relations for B(W )we see that

(w )ut =







w t if `S (w t ) = `S (w ) +1, and

0 otherwise,

where w ∈W and t ∈ T .

4.1.1 Bruhat Order on the Dihedral Group

Background for the Dihedral Group: The dihedral group is the group of symmetries of a regular m-

gon and it is isomorphic to the Coxeter group I2(m ). The Coxeter group I2(m ) has simple generators

s1, s2 subject to (s1s2)m = e , where e is the identity element. The Coxeter graph of I2(m ) is given

below.

• •
m

The set of reflections for I2(m ) is T = {ri : i ∈ [m ]} where ri = (s1s2)i−1s1. We note that r1 = s1 and

rm = s2. Since our up-operators are the ut for t ∈ T we see that for I2(m ) our up-operators have the
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123

213 132

231 312

321

Figure 4.1 The Hasse Diagram for B(S3).

form uri
for 1≤ i ≤m .

Bruhat Order on the Dihedral Group: We now introduce some notation that will help us better

present the structure of B(I2(m )). We let aδ = (t1, . . . , tδ) be the T -word such that t2i+1 = r1, t2i = rm

for all integers i such that t2i or t2i+1 appears in aδ. We similarly let b δ = (t1, . . . , tδ) be the T -word

such that t2i+1 = rm , t2i = r1 for all integers i such that t2i or t2i+1 appears in b δ. In other words, aδ

is the T -word whose entries alternate between r1 and rm and whose first entry is r1, and b δ is the

T -word whose entries alternate between r1 and rm and whose first entry is rm . For instance, if δ= 6,

then aδ = (r1, rm , r1, rm , r1, rm ) and b δ = (rm , r1, rm , r1, rm , r1). Additionally, if aδ = (t1, . . . , tδ), then

we let aδ = (tδ, . . . , t1), and if b δ = (t1, . . . , tδ), then we let b
δ
= (tδ, . . . , t1). Finally, we let Aδ (resp. A

δ
)

be the element of I2(m ) which has aδ (resp. aδ) as a T -word. We define Bδ and B
δ

similarly. We

note here that Aδ, A
δ

, Bδ, and B
δ

all have length δ, and Am = A
m
= B m = B

m
=w0.

Now that we have the necessary notation we can discuss the structure of B(I2(m )). Figure 4.2

gives the Hasse diagram for Bruhat order on I2(m ) along with its edge labels in blue. From the

diagram we see that B(I2(m )) has exactly 1 element at rank 1, namely the identity element e , and

exactly 1 element at rank m , namely Am = B m = A
m
= B

m
. The element e is the minimum element

of the poset and Am = B m = A
m
= B

m
=w0 is the maximum element of the poset. Furthermore, for

i ∈ [m ]−{1, m} there are exactly two elements of rank i and they are Ai and B i . Additionally, every

element of rank i <m is covered by every element of rank i + 1. From the above we see that the

structure of B(I2(m )) is rather simple and we will see that this simplicity is at the core of our proofs

in the next section.

Recall from Definition 1.1.2 that a T -word x = (t1, . . . , t`) appears in [v, w ] (or [v, w ] contains x )

if there exists some chain v = v0l v1l · · ·l v` =w in [v, w ] such that v−1
i−1vi = ti for i ∈ [`]. Remark

4.1.3 makes use of this definition.

Remark 4.1.3. Let x be a T -word of length at least 2 such that it appears in some interval and

x 6= aδ, b δ for δ <m . It will prove useful for us to determine in how many intervals x can appear.

First suppose that x = a m or x = b m . It is straightforward to see that there is only one interval in
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e

s1 s2

s2s1s1s2

s1s2s1 s2s1s2

......

......

......

Am−2 B m−2

Am−1 B m−1

Am = B m = A
m
= B

m

r1 rm

rm

r2

r1

rm−1

r1

rm−2r3

rm

rm

r4rm−3

r1

Figure 4.2 The Hasse diagram for B(I2(m )).
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which x appears, namely the interval [e , w0].

Now suppose that x 6= a m and x 6= b m . Note that by inspection of Figure 4.2 we can see that if

i 6∈ {1, m}, then each of the following T -words appears in exactly one interval:

(ri , r1), (r1, ri ), (ri , rm ), (rm , ri ), (ri , ri+1), (ri+1, ri ), (ri , ri−1), (ri−1, ri ).

Since x 6= a m and x 6= b m it must be that x has an entry ri such that i 6∈ {1, m}. The reflection ri can

only be preceded or succeeded by r1, rm , ri−1, or ri+1. As such, one of the length 2 T -words listed

above must appear as a consecutive subword of x . Since each of these length 2 T -words appears in

exactly one interval it must be that x appears in exactly one interval.

Much of our work in the next section relies on understanding the intervals of B(I2(m )) and the

T -words which appear in them. As such, we end this section with the following definition, which

classifies all of the intervals of length at least 2 in B(I2(m )) in terms of T -words.

Definition 4.1.4. Let v <w ∈B(I2(m )) such that `S (w )− `S (v )≥ 2, and let δ= `S (w )− `S (v ).

• If (ri , aδ−1) appears in [v, w ] for some i ∈ [m ]−{1, m} and v 6= e , w 6=w0, then we call [v, w ]

an interval of type A1.

• If (ri , b δ−1) appears in [v, w ] for some i ∈ [m ]−{1, m} and v 6= e , w 6=w0, then we call [v, w ]

an interval of type A2.

• If (ri , aδ−2, r j ) appears in [v, w ] for some i , j ∈ [m ]− {1, m} and v 6= e , w 6= w0, then we call

[v, w ] an interval of type B 1.

• If (ri , b δ−2, r j ) appears in [v, w ] for some i , j ∈ [m ]− {1, m} and v 6= e , w 6= w0, then we call

[v, w ] an interval of type B 2.

• If (ri , aδ−1) appears in [v, w ] for some i ∈ [m ]−{1, m} and v 6= e , w =w0, then we call [v, w ]

an interval of type C 1.

• If (ri , b δ−1) appears in [v, w ] for some i ∈ [m ]−{1, m} and v 6= e , w =w0, then we call [v, w ]

an interval of type C 2.

• If (aδ−1, ri ) appears in [v, w ] for some i ∈ [m ]−{1, m} and v = e , w 6=w0, then we call [v, w ]

an interval of type D 1.

• If (b
δ−1

, ri ) appears in [v, w ] for some i ∈ [m ]−{1, m} and v = e , w 6=w0, then we call [v, w ]

an interval of type D 2.

• If v = e and w =w0, then we call [v, w ] an interval of type E .

This above interval classification is straightforward to see from our earlier description ofB(I2(m )).

Figures 4.3, 4.4, 4.5, and 4.6 give Hasse diagrams for examples of intervals of all types other than E .

Interval type E is just the entire poset so its Hasse diagram is given in Figure 4.2.
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s2

s2s1s1s2

s1s2s1 s2s1s2

s1s2s1s2

r1

rm−1

r1

rm−2r3

rm

rm

rm−3

s1

s2s1s1s2

s1s2s1 s2s1s2

s2s1s2s1

rm

r2

r1

rm−2r3

rm

r4

r1

Figure 4.3 Examples of interval types A1(left) and A2(right).

4.1.2 Bruhat Order on the Symmetric Group and Known Results

Background for the Symmetric Group: We begin with some necessary notation and definitions.

The symmetric group Sn is the set of bijections from the set [n ] to itself. In other words, it is the set

of permutations on the letters 1, . . . , n and its group operation is function composition. Let π be an

element of Sn and let πi =π(i ). The one-line notation for π is the sequence π=π1π2 . . .πn and the

two-line notation for π is the matrix

π=

�

1 2 . . . n

π1 π2 . . . πn

�

.

To improve readability we will insert a horizontal line between the first and second row in two-line

notation like so

π=

�

1 2 . . . n

π1 π2 . . . πn

�

.

Let π= π1 . . .πn . We say that (πi ,π j ) is an inversion of π if i < j and πi >π j . It is well known that

`S (π) is equal to the number of inversions occurring in π.

Example 4.1.5. Let π be the element of S5 such that π(1) = 4,π(2) = 5,π(3) = 2,π(4) = 1, and π(5) = 3.

The one-line notation for π is π= 45213 and the two-line notation is

π=

�

1 2 3 4 5

4 5 2 1 3

�

.

We see that (4,2) is an inversion since 1< 3 and π(1) = 4> 2=π(3). We also see that (2,3) is not an

inversion since π(3) = 2< 3=π(5). In total, π has 7 inversions so `S (π) = 7.
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s1s2s1 s2s1s2
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r1
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rm
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s1s2s1 s2s1s2

s1s2s1s2

rm

r2

r1

rm−2r3

rm
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rm−3

Figure 4.4 Examples of interval types B 1(left) and B 2(right).

s1s2s1s2

s1s2s1s2s1 s2s1s2s1s2

s1s2s1s2s1s2 s2s1s2s1s2s1

s1s2s1s2s1s2s1

r1

r3

rm r1

r2 rm−1

rmr1

s2s1s2s1

s1s2s1s2s1 s2s1s2s1s2

s1s2s1s2s1s2 s2s1s2s1s2s1

s1s2s1s2s1s2s1

rm

rm−2

rm r1

r2 rm−1

rmr1

Figure 4.5 Examples of interval types C 1(left) and C 2(right) for m = 7.
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rm−3

Figure 4.6 Examples of interval types D 1(left) and D 2(right).

Recall from subsection 3.1.1 that Sn is isomorphic to the Coxeter group An−1. We know from

our earlier discussion on An−1 that the set of reflections for Sn is T = {(i , j ) : i , j ∈ [n ], i < j }. From

this we see that our up-operators for B(Sn ) are the u(i , j ) for i , j ∈ [n ] and i < j . As noted at the end

of our discussion on Bruhat order, if π ∈Sn then

(π)u(i , j ) =







π(i , j ) if `S (π(i , j )) = `S (π) +1, and

0 otherwise.

We then see that when the action of u(i , j ) is nonzero it amounts to multiplication on the right by

(i , j ). In light of this we note that multiplication on the right by a transposition (i , j ) has the effect of

switching the integers in the i and j position in one-line notation. For instance, if π= 45213 and

t = (1, 3) then πt =π(1, 3) = 25413.

Background for Bruhat Order on the Symmetric Group: For our purposes here, we only need one

known result from the literature. The following proposition will be the main tool we use for our work

with up-operators for B(Sn ). The content of this proposition is taken from Lemma 2.1.4 in [7], and

it gives us a way to determine when πlσ.

Proposition 4.1.6. Let π=π1 . . .πn ,σ=σ1 . . .σn be elements of Sn . Then πlσ if and only if there

exist i < j such that σ = π(i , j ) and πi < π j and there does not exist any i < k < j such that

πi <πk <π j .
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Since (π)u(i , j ) 6= 0 if and only if πlπ(i , j ), Proposition 4.1.6 gives us certain inequalities among

the πi which are obeyed if and only if (π)u(i , j ) 6= 0. We will use these imposed inequalities in the

proof of our main statement in the last section.

Known Results: As mentioned previously, the up-operators for B(Sn )were studied by Fomin and

Kirillov [13] in their study of the Fomin-Kirillov algebra En . Recall that En is the algebra over C

generated by the formal objects [i j ]where i , j ∈ [n ] and i < j , subject to the relations

[i j ]2 = 0,

[i j ][ j k ] = [ j k ][i k ] + [i k ][i j ], i < j < k ,

[ j k [[i j ] = [i k ][ j k ] + [i j ][i k ], i < j < k , and

[i j ][k l ] = [k l ][i j ], {i , j }∩ {k , l }= ;.

Fomin and Kirillov determined that the up-operators for B(Sn ) give an unfaithful representation of

En where the representation map is [i j ] 7→ u(i , j ). From this representation we know that the u(i , j )

must obey the following relations:

u 2
(i j ) = 0, (4.1)

u(i j )u( j k ) = u( j k )u(i k )+u(i k )u(i j ), i < j < k , (4.2)

u( j k )u(i j ) = u(i k )u( j k )+u(i j )u(i k ), i < j < k , and (4.3)

u(i j )u(k l ) = u(k l )u(i j ), {i , j }∩ {k , l }= ;. (4.4)

However, since the representation is not faithful, the u(i , j ) satisfy other relations. Two of these

additional relations, given by Fomin and Kirillov, are

u(i j )u(i k )u(i j ) = 0 and (4.5)

u( j k )u(i k )u( j k ) = 0 (4.6)

where i < j < k . The full set of relations among the u(i , j ) remains unknown but we describe several

more which we state in section 4.3.

4.2 Up-operators for Bruhat Order on the Dihedral Group

In this section we give a complete list of relations for the algebra of up-operators on B(I2(m )). Let

UB(I2(m )) be the free associative algebra over C generated by the uri
for ri ∈ T . Also let I B(I2(m )) be

the two-sided ideal ofUB(I2(m )) which contains all elements ofUB(I2(m )) that annihilate all elements

of C[B(I2(m ))] (the vector space over C with basis B(I2(m ))). We callUB(I2(m ))/I B(I2(m )) the algebra

of up-operators for B(I2(m )). Our goal for this section is to prove the following theorem.
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Theorem 4.2.1. The algebra of up-operators on B(I2(m )) is characterized by the following relations:

urm
ur1
=

m−1
∑

i=1

uri
uri+1

, (4.7)

ur1
urm
=

m−1
∑

i=1

uri+1
uri

, (4.8)

ur1
uri
= ur j

ur1
, i + j =m +2 and i , j 6∈ {1, 2, m}, (4.9)

urm
uri
= ur j

urm
, i + j =m and i , j 6∈ {1, m −1, m}, (4.10)

u 2
ri
= 0, 1≤ i ≤m , (4.11)

uri
ur j
= 0, i , j 6∈ {1, m} and |i − j | ≥ 2, (4.12)

ur1
uri

uri−1
= 0, 3≤ i ≤m −1, (4.13)

urm
uri

uri+1
= 0, 2≤ i ≤m −2, (4.14)

ur2
ur1

uri
= 0, 1≤ i ≤m , (4.15)

urm−1
urm

uri
= 0, 1≤ i ≤m , (4.16)

uri
uri−1

uri
= 0, 2≤ i ≤m , (4.17)

uri
uri+1

uri
= 0, 1≤ i ≤m −1. (4.18)

Let J B(I2(m )) be the two-sided ideal generated by relations (4.7)–(4.18). To prove Theorem 4.2.1

it is sufficient to show that J B(I2(m )) = I B(I2(m )). In the remainder of this section we will denote

UB(I2(m )), I B(I2(m )), and J B(I2(m )) by U , I , and J respectively. Lemma 4.2.2 gives some additional

relations implied by relations (4.7)–(4.18) which will allow us to make some of our later proofs more

compact.

Lemma 4.2.2. Modulo J we have

uri
ur1

ur2
≡ 0 for 1≤ i ≤m , (4.19)

uri
urm

urm−1
≡ 0 for 1≤ i ≤m . (4.20)

Before giving the proof we note that relations (4.19) and (4.20) are analogous to relations (4.15)

and (4.16) in that both pairs ensure ux ≡ 0 (mod J ) if x ‘goes past’ the top or bottom of the poset. In

particular, note that (r1, r2) (resp. (rm , rm−1)) appears only in the interval [e , r1r2] (resp. [e , rm rm−1])

and so any T -word of the form (ri , r1, r2) (resp. (ri , rm , rm−1)) goes below the ‘bottom’ of the poset

and so it cannot appear in the poset. As such, relation (4.19) (resp. (4.20)) ensures that u(ri ,r1,r2) ≡ 0

(mod J ) (resp. u(ri ,rm ,rm−1) ≡ 0 (mod J )). Similarly, (r2, r1) (resp. (rm−1, rm )) appears only in the interval

[w0r1r2, w0] (resp. [w0rm rm−1, w0]) and so a T -word of the form (r2, r1, ri ) (resp. (rm−1, rm , ri )) goes

above the ‘top’ of the poset, and so relation (4.15) (resp. (4.16)) ensures that u(r2,r1,ri ) ≡ 0 (mod J )

(resp. u(rm−1,rm ,ri ) ≡ 0 (mod J )).

Proof. We give the proof of (4.19); the proof of (4.20) is similar. If i = 1, then u1u1u2 ≡ 0 modulo
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relation (4.11). If i =m , then we have

urm
ur1

ur2
≡ (ur1

ur2
+ur2

ur3
+ · · ·+urm−1

urm
)ur2

(4.7)

= ur1
ur2

ur2
+ur2

ur3
ur2
+ · · ·+urm−1

urm
ur2

≡ 0. (4.11)(4.12)(4.16)(4.18)

If i =m −1, then we have

urm−1
ur1

ur2
≡ urm−1

(urm
ur1
−ur2

ur3
− · · ·−urm−1

um ) (4.7)

= urm−1
urm

ur1
−urm−1

ur2
ur3
− · · ·

−urm−1
urm−2

urm−1
−urm−1

urm−1
um

≡ 0. (4.11)(4.12)(4.16)(4.17)

If i = 2, then ur2
ur1

ur2
≡ 0 modulo relation (4.18). Finally, if i 6= 1,2, m − 1, m , then uri

ur1
ur2
≡

ur1
urm−i+2

ur2
≡ 0 where the first equivalence is modulo relation (4.9) and the second equivalence is

modulo relation (4.12).

The following proposition and corollary make use of Definition 1.1.2, Proposition 1.1.3, and

Corollary 1.1.4 from Chapter 1 so the reader may which to review this material. The proposition and

corollary give us a straightforward way to determine when ux ≡ u y (mod I ) given certain conditions

on x and y . Both of these statements are a direct result of the rather simple structure of B(I2(m ))

and in particular the previously noted fact that if x 6= aδ for δ <m and if x is of length at least 2 then

x can appear in at most one interval of the poset.

Proposition 4.2.3. Let x , y be T -words such that x 6= y and ux , u y 6≡ 0 (mod I ). If ux ≡ u y (mod I ),

then x and y have the same length. Furthermore, ux ≡ u y (mod I ) if and only if x and y both appear

in some interval [v, w ] ∈B(I2(m )) and x , y 6∈ {aδ, b δ} for 1<δ<m.

Proof. Let x = (t1, . . . , t`), y = (t ′1, . . . , t ′`′ ) and suppose that ux ≡ u y 6≡ 0 (mod I ). There must exist

some v ∈ I2(m ) such that (v )ux = (v )u y =w 6= 0. By Proposition 1.1.3 we then know that x and y

both appear in the interval [v, w ]. Using Definition 1.1.2 we see that if x and y both appear in [v, w ],

then both of their lengths must equal `S (w )− `S (v ). From this we have `= `S (w )− `S (v ) = `′.

In the following we assume that ` > 1, the case where `= 1 is straightforward. To prove that x , y 6∈
{aδ, b δ} for δ <m we consider 2 different cases. First, assume for contradiction that x = aδ, y = b δ

for some 1<δ<m . Then we have (v )ux = v Aδ = v Bδ = (v )u y . However, this implies that Aδ = Bδ

which is a contradiction for δ <m . Second, assume again for contradiction that x 6∈ {aδ, b δ} and

y ∈ {aδ, b δ} for 1 < δ <m . As mentioned earlier, since x 6∈ {aδ, b δ} for δ <m it must be that x

appears in exactly one interval [v, w ]. By looking at the structure of B(I2(m ))we can see that since

y ∈ {aδ, b δ} for δ < m it must appear in at least 2 intervals [v, w ] and [v ′, w ′] where v 6= v ′. We

then see by Proposition 1.1.3 that (v ′)u y =w ′ 6= 0= (v ′)ux , which contradicts our assumption that

ux ≡ u y (mod I ).
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Now suppose that x and y both appear in some interval [v, w ] and x , y 6∈ {aδ, b δ} for 1<δ<m .

By Proposition 1.1.3 we know that (v )ux = (v )u y =w 6= 0. As noted earlier, since x , y 6∈ {aδ, b δ} for

1<δ<m we know that x and y do not appear in any interval other than [v, w ]. Thus, by Proposition

1.1.3 we have (v ′)ux = (v ′)u y = 0 for any v ′ 6= v . From this we see that ux ≡ u y (mod I ).

Corollary 4.2.4. Let x and y be T -words such that x , y 6∈ {aδ, b δ} for 1<δ<m. If there exists some

v ∈ I2(m ) such that (v )ux = (v )u y =w 6= 0, then ux ≡ u y (mod I ).

Proof. This is immediate from Propositions 1.1.3 and 4.2.3.

We can now start to address the equivalence we desire, namely J = I . The following proposition

brings us closer to proving this equivalence by showing J ⊂ I .

Proposition 4.2.5. We have J ⊂ I .

Proof. It is sufficient to show for each of (4.7)–(4.18) that the terms on the left side of the relation

are equivalent to the terms on the right side of the relation modulo I . We can prove this for relations

(4.9)–(4.18) by considering the T -words appearing as indices in the relations. For relation (4.9)

we can see that the T -word in the indices on the left is (r1, ri ) and the T -word in the indices on

the right is (r j , r1) where i + j = m + 2 and i , j 6∈ {1,2, m}. Both of these T -words appear in the

interval [B
i−2

, A
i
]. Furthermore, neither is in the set {aδ, b δ} for 1<δ <m . From this we see that

ur1
uri
≡ ur j

ur1
(mod I ) by Proposition 4.2.3. A similar argument works for relation (4.10).

For relation (4.11) we see that the T -word appearing in the indices on the left side is (ri , ri ) for

1≤ i ≤m and there is no T -word for the right side. Since (ri , ri ) does not appear in any interval of

B(I2(m ))we have that u(ri ,ri ) ≡ 0 (mod I ) by Corollary 1.1.4. A similar argument holds for relations

(4.12)–(4.18).

For relations (4.7) and (4.8) we can simply check that

(v )urm
ur1
= (v )

�

m−1
∑

i=1

uri
uri+1

�

(4.21)

and

(v )ur1
urm
= (v )

�

m−1
∑

i=1

uri+1
uri

�

(4.22)

for all v ∈ I2(m ). This is fairly straightforward to do since (rm , r1) (resp. (r1, rm )) appears in exactly

m −1 intervals, each of which contains exactly one chain on the right side of (4.21) (resp. 4.22).

Now that we have shown J ⊂ I our main focus will be on proving I ⊂ J . Ultimately, we wish to

show that any relation which holds modulo I also holds modulo J . However, before addressing

this more general case we first wish to prove that this holds for certain binomial relations. In other

words, we wish to show, given certain conditions on x and y , that if ux ≡ u y (mod I ), then ux ≡ u y
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(mod I ). Proposition 4.2.6 and Corollary 4.2.8 prove this by analyzing the possible intervals which

can appear in B(I2(m )).

Proposition 4.2.6. Let I be an interval in B(I2(m )) and let x , y be T -words such that x and y both

appear in I. If x , y 6∈ {aδ, b δ} for 1<δ<m, then ux ≡ u y (mod J ).

The following proof is somewhat lengthy so we provide a concrete example of one of the cases

covered in Example 4.2.7. This example uses Figure 4.7 to help the reader visualize what is happening

in the process contained in the proof.

Proof. Let I = [v, w ] for some v, w ∈ I2(m ) and let n = `S (w )− `S (v ). We denote by Γ the set of all

T -words appearing in I which are not equal to a n or b n for 1< n <m . Let x be any element of Γ . It

is sufficient to show that there exists a T -word z appearing in I such that ux ≡ uz (mod J ) for any

possible x . The following is a list of our interval types and the choice of z we use for each of them:

A1 : z = (ri , a n−1) for i 6∈ {1, m},

A2 : z = (ri , b n−1) for i 6∈ {1, m},

B 1 : z = (ri , a n−2, r j ) for i 6= j and i , j 6∈ {1, m},

B 2 : z = (ri , b n−2, r j ) for i 6= j and i , j 6∈ {1, m},

C 1 : z = (ri , a n−1) for i 6∈ {1, m},

C 2 : z = (ri , b n−1) for i 6∈ {1, m},

D 1 : z = (a n−1, ri ) for i 6∈ {1, m},

D 2 : z = (b
n−1

, ri ) for i 6∈ {1, m}, and

E : z = (r1, . . . , rm ).

Note that interval type A1 is similar to type A2, type B 1 is similar to type B 2, and type C 1 is similar

to types C 2, D 1, and D 2. As such, we will only give explicit arguments for types A1, B 1, C 1, and E . We

first address the situation where I is an interval of any type other than E . We proceed by considering

each possible value of n . If n = 1, then the statement is trivially true for type A1 and vacuously

true for types B 1 and C 1. Suppose then that n = 2. If I is of type A1, then Γ = {(ri , r1), (r1, r j )}where

i + j =m +2 and i , j 6∈ {1, 2, m}. We have z = (ri , r1) and we see that if x = (ri , r1), then ux = uz and if

x = (r1, r j ), then ux ≡ uz modulo relation (4.9). If I is of type B 1, then Γ = {(ri , ri−1)} or Γ = {(ri , ri+1)}.
In the first case we have z = (ri , ri−1) and we can only have x = (ri , ri−1) so ux = uz . In the second

case we have z = (ri , ri+1) and we can only have x = (ri , ri+1) so ux = uz . Finally, if I is of type C 1,

then Γ = {(r1, r2)}. We have z = (r1, r2) and since we can only have x = z we see that ux = uz .

We now proceed by induction on n . For our base case we let n = 3. (We have already done the

n = 1, 2 cases but we still need to do the n = 3 case separately since it has some unique characteristics

that prevent it from being included in the inductive step.)
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Type A1 Base Case. First suppose that I is of type A1. Then

Γ = {(ri , r1, rm ), (r1, rm , ri−2), (r1, r j , rm ), (ri , ri−1, ri−2)}

where i + j =m +2 and i , j 6∈ {1,2,3, m}. We have z = (ri , r1, rm ). If x = (ri , r1, rm ), then ux = uz . If

x = (r1, rm , ri−2)we have:

ux = ur1
urm

uri−2

≡ ur1
ur j

urm
(4.10)

≡ uri
ur1

urm
(4.9)

= uz .

If x = (r1, r j , rm ), then ux ≡ uz (mod J ) as shown in the work for the previous case. Finally, if x =

(ri , ri−1, ri−2), then

ux = uri
uri−1

uri−2

≡ (ur1
urm
−ur2

ur1
− · · ·−uri−1

uri−2
−uri+1

uri
− . . .

−urm
urm−1

)uri−2
(4.8)

= ur1
urm

uri−2
−ur2

ur1
uri−2

− · · ·−uri−1
uri−2

uri−2
−uri+1

uri
uri−2

− . . .

−urm
urm−1

uri−2

= ur1
urm

uri−2
(4.11)(4.12)(4.15)(4.17)

≡ uz

where the last equivalence is given by the x = (r1, rm , ri−2) case.

Type B1 Base Case. Now suppose that I is of type B 1. Then

Γ = {(ri , r1, r j+1), (r1, r j , r j+1), (ri , ri−1, r1)}

where i + j =m +2 and i , j 6∈ {1,2,3, m}. We have z = (ri , r1, r j+1). If x = (ri , r1, r j+1), then ux = uz .

If x = (r1, r j , r j+1), then ux = ur1
ur j

ur j+1
≡ uri

ur1
ur j+1

= uz modulo relation (4.9). Finally, if x =

(ri , ri−1, r1), then ux = uri
uri−1

ur1
≡ uri

ur1
ur j+1

= uz modulo relation (4.9).

Type C1 Base Case. Now suppose that I is of type C 1. We then have

Γ = {(r3, r1, rm ), (r1, rm−1, rm ), (r3, r2, r1)}.

We see that z = (r3, r1, rm ). If x = z , then ux = uz . If x = (r1, rm−1, rm ), then ux = ur1
urm−1

urm
≡
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ur3
ur1

urm
= uz modulo relation (4.9). Finally, if x = (r3, r2, r1), then we have

ux = ur3
ur2

ur1

≡ ur3
(ur1

urm
−ur3

ur2
− · · ·−urm

urm−1
) (4.8)

= ur3
ur1

urm
−ur3

ur3
ur2
− · · ·−ur3

urm
urm−1

≡ ur3
ur1

urm
(4.11)(4.12)(4.18)(4.20)

= uz .

Now that we have finished the base case n = 3 we move on to the inductive step. Assume that

the statement holds for all n ≤ k −1 for some integer k > 4 and let n = k . In the following we take

t1, . . . , tn to be reflections such that x = (t1, . . . , tn ).

Type B1 Induction. We first suppose that I is of type B 1 and so we have z = (ri , a n−2, r j )where i 6= j

and i , j 6∈ {1, m}. If x = z , then the statement is trivially true so suppose that x 6= z . We consider all

possibilities for tn .

Case 1. If tn 6∈ {r1, rm}, then tn = r j and x ′ = (t1, . . . , tn−1) is a T -word appearing in the interval

[v, w tn ]. Note that [v, w tn ] is a type A1 interval with length n − 1 that contains the T -word z ′ =

(ri , a n−2). Since x ′ is in a type A1 interval we know that x ′ 6= a n−1 and so we can apply the induction

hypothesis to get ux ′ ≡ uz ′ (mod J ). Using this we have ux = ux ′ur j
≡ uz ′ur j

= uz (mod J ).

Case 2. Now suppose that tn ∈ {r1, rm} and note that x ′ = (t1, . . . , tn−1) 6= a n−1 since x ∈ Γ and a n 6∈ Γ .

Furthermore, x ′ appears in the type B 1 interval [v, w tn ]which is of length n −1 and which contains

the T -word z ′ = (ri , a n−3, r j ′ ) where i 6= j ′, j ′ 6∈ {1, m}, and either j + j ′ =m or j + j ′ =m + 2. By

induction we have ux ′ ≡ uz ′ (mod J ) and so ux = ux ′utn
≡ uz ′utn

(mod J ). From here we see that

uz ′utn
= uri

ua n−3 ur j ′utn

≡ uri
ua n−3 utn

ur j
(4.9) or (4.10)

= uz .

In the above, after applying relation (4.9) or (4.10) one may wonder if the result would be something

of the form · · ·utn
utn

ur j
. If this occurs, then ux would be equivalent to 0 modulo J rather than

equivalent to uz modulo J . However, this is not a concern since the second to last entry of z ′ must

equal r1 if tn = rm and it must equal rm if tn = r1. This is based on the parity of n .

Type A1 Induction. Now suppose that I is of type A1 and so z = (ri , a n−1) for some i 6∈ {1, m}. If

x = z , then ux = uz and we are done, so suppose instead that x 6= z . As we did for the B 1 case we

will consider all possibilities for tn .

Case 1. If tn ∈ {r1, rm}, then x ′ = (t1, . . . , tn−1) appears in the length n − 1 interval [v, w tn ]. This

interval is of type A1 and the T -word z ′ = (ri , a n−2) appears in it. Since x ′ appears in a type A1
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interval it must be that x ′ 6= a n−1 and so we can apply the induction hypothesis to find ux = ux ′utn
≡

uz ′utn
= uz (mod J ). We again note that the last entry of z ′ is r1 (resp. rm ) if tn = rm (resp. tn = r1)

so we do not have uz ′utn
= · · ·utn

utn
≡ 0 (mod J ).

Case 2. If tn 6∈ {r1, rm}, then tn = r j for some j 6∈ {1, m}. We again wish to perform induction using

the interval [v, w tn ], which in this case is equal to [v, w r j ]. Unlike our earlier cases, here we must also

consider the possible choices for tn−1. In particular, we need to deal with the situations tn−1 ∈ {r1, rm}
and tn−1 6∈ {r1, rm} separately.

Case 2.1. First suppose that tn−1 ∈ {r1, rm}. Note that if tn−1 = r1, then tn = r j 6= r2 and if tn−1 = rm ,

then tn = r j 6= rm−1. We have

ux = · · ·utn−1
utn
= · · ·utn−1

ur j

≡ · · ·ur j ′utn−1
(4.9) or (4.10)

= ux ′

where j + j ′ =m and j , j ′ 6∈ {1, m − 1, m} or j + j ′ =m + 2 and j , j ′ 6∈ {1,2, m}. We also have x ′ =

(t1, . . . , tn−2, r j ′ , tn−1). The T -word x ′′ = (t1, . . . , tn−2, r j ′ ) appears in the type A1 interval [v, w tn−1].

This interval is of length n − 1 and contains the T -word z ′ = (ri , a n−2). Once again we note that

x ′′ 6= a n−1 since it appears in a type A1 interval and so we can apply the inductive hypothesis to

find ux ′′ ≡ uz ′ (mod J ). From this we have ux ′ = ux ′′utn−1
≡ uz ′utn−1

= uz (mod J ). We again note

that the last entry of z ′ is r1 (resp. rm ) if tn−1 = rm (resp. tn−1 = r1) and so we don’t have the result

uz ′utn−1
= · · ·utn−1

utn−1
≡ 0 (mod J ) after we apply the inductive step.

Case 2.2. Finally, suppose that tn−1 6∈ {r1, rm} and so tn−1 = r j ′ for some j ′ 6∈ {1, m}. The in-

terval [v, w tn ] is of type B 1 and length n − 1 and it contains the T -words x ′ = (t1, . . . , tn−1) and

z ′ = (ri , a n−3, r j ′ ). Since this interval is of length at least 3 we know that it contains a T -word x ′′

such that x ′′ 6= a n−1 and such that the last entry of x ′′ is in the set {r1, rm}. By induction we then

have ux = ux ′utn
≡ uz ′utn

≡ ux ′′utn
(mod J ). Note that the T -word (x ′′, tn ) is contained in I, its last

entry is not contained in the set {r1, rm}, and its second to last entry is contained in the set {r1, rm}.
These are exactly the conditions needed for Case 2.1 and so we can reduce to that case. This gives

ux ′′utn
≡ uz (mod J ).

Type C1 Induction. Suppose that I is of type C 1. We then have z = (ri , a n−1) for some i 6∈ {1, 2, 3, m}.
We are done if x = z so suppose that x 6= z . We now consider two cases based on the choice of

t1. Note that here we are interested in the possible choices for t1 whereas for A1 and B 1 we were

interested in the possible choices for tn .

Case 1. First suppose that t1 = r1. Note that x ′ = (t2, . . . , tn ) is a T -word appearing in the interval

[v t1, w ] and that this interval is of type C 2 with length n −1. This interval also contains the T -word
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z ′ = (rm+2−i , b n−2). By induction we have ux = ut1
ux ′ ≡ ut1

uz ′ (mod J ). Finally, we have

ut1
uz ′ = ut1

urm+2−i
ub n−2

≡ uri
ut1

ub n−2 (4.9)

= uz .

Case 2. Now suppose that t1 = ri . We see that x ′ = (t2, . . . , tn ) appears in the interval [v ti , w ]which

is of type C 1 and length n −1. This interval also contains the T -word z ′ = (ri−1, a n−2). Note that x ′ 6=
a n−1 since otherwise we would have x = (ri , x ′) = (ri , a n−1) = z which contradicts our assumption

x 6= z . Since x ′ 6= a n−1 we can use the inductive hypothesis to show that ux = uri
ux ′ ≡ uri

uz ′

(mod J ). From here we have

uri
uz ′ = uri

uri−1
ur1

ub n−3

≡ uri
ur1

urm−i+3
ub n−3 (4.9)

≡ ur1
urm−i+2

urm−i+3
ub n−3 (4.9)

= ux ′′

where x ′′ = (r1, rm−i+2, rm−i+3, b n−3). Note that x ′′ appears in I and it begins with r1. These are the

conditions needed for Case 1 and so we have ux ′′ ≡ uz (mod J ).

Type E Intervals. All that remains is to show that the statement holds for type E intervals. Here we

take z = (r1, . . . , rm ) and we let x = (t1, . . . , tm ). If x = z , then we are done so let x 6= z . There are 2

cases to consider depending on our choice of x .

Case 1. Assume that x 6= a m , b m . First suppose that tm = rm . Then x ′ = (t1, . . . , tn−1) is con-

tained in the interval [e , w0rm ] which is of type D 1. This type D 1 interval contains the T -word

z ′ = (r1, . . . , rm−1). By our previous work we then have

ux = ux ′utm
= ux ′urm

≡ uz ′urm
= uz (mod J ).

Now suppose that tm = r1. Then x ′ = (t1, . . . , tn−1) appears in the interval [e , w0r1]. This interval

is of type D 2 and it contains the T -word z ′ = (r1, . . . , rm−2, rm ). By our earlier work with type D 2

intervals we have ux = ux ′ur1
≡ uz ′ur1

(mod J ). Now note that x ′′ = (rm−2, rm , r1) appears in the

interval [w0r1rm rm−2, w0]which is of type C 2 and which contains the T -word z ′′ = (rm−2, rm−1, rm ).

Using what we know about C 2 intervals we have

uz ′ur1
= ur1

· · ·urm−2
urm

ur1

= ur1
· · ·urm−3

ux ′′

≡ ur1
· · ·urm−3

uz ′′

= uz
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modulo J .

Case 2. Now we consider the case where x ∈ {a m , b m}. If x = b m , then we have

ux = urm
ur1

ub m−2

≡ (ur1
ur2
+ · · ·+urm−1

urm
)ub m−2 (4.7)

= ur1
ur2

ub m−2 + · · ·+urm−1
urm

ub m−2 .

Note that for i ∈ [m ]−{1} the T -word (ri , ri+1, b m−i−1) appears in the type C 2 interval [v, w0]where

v = r1 · · · ri−1. This interval also contains the T -word (ri , ri+1, . . . , rm−1, rm ). Using our previous work

for type C 2 intervals we have

uri
uri+1

ub m−2 = uri
uri+1

ub m−i−1 ub i−1

≡ uri
uri+1

· · ·urm−1
urm

ub i−1 (C 2 intervals)

≡ 0. (4.16)

From this we see that

ur1
ur2

ub m−2 + · · ·+urm−1
urm

ub m−2 ≡ ur1
ur2

ub m−2 = ux ′

where x ′ = (r1, r2, b m−2). Since x ′ 6= a m , b m we know by Case 1 that ux ′ ≡ uz (mod J ).

If x = a m , then we have

ux = ur1
urm

ua m−2

≡ (ur2
ur1
+ · · ·+urm

urm−1
)ua m−2 (4.8)

= ur2
ur1

ua m−2 + · · ·+urm
urm−1

ua m−2

Now note that for i ∈ [m ]− {m} the T -word (ri , ri−1, a i−1) appears in the interval [v, w0] where

v = rm · · · ri+1. This interval is of type C 1 and it also contains the T -word (ri , ri−1, . . . , r2, r1). Given

what we know about type C 1 intervals we have

uri
uri−1

ua m−2 = uri
uri−1

ua i−1 ua m−i−1

≡ uri
uri−1

· · ·ur2
ur1

ua m−i−1 (C 1 intervals)

≡ 0. (4.15)

Using this we see that

ur2
ur1

ua m−2 + · · ·+urm
urm−1

ua m−2 ≡ urm
urm−1

ua m−2 = ux ′

where x ′ = (rm , rm−1, a m−2). Again we see that since x ′ 6= a m , b m we have by Case 1 that ux ′ ≡ uz

(mod J ).
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Example 4.2.7. Consider the interval I= [v, w ] in I2(7)where v = r7 and w = r1r7r1r7r1r7. Note that

x = (r1, r7, r4, r3, r2) is contained in this interval. Since the last two entries of x are not in {r1, r7} this

example falls under Case 2.2 of the previous proposition. Following our proof of Proposition 4.2.6

the special T -word appearing in I is z = (r6, r1, r7, r1, r7). We will show that ux ≡ u y (mod J ) using

the process outlined in Case 2.2 and we will use Figure 4.7 to help us visualize what is happening.

Any image referred to in this example will come from said figure.

The northwest image shows the Hasse diagram of our interval along with the label sequence

corresponding to x highlighted in red. The interval [v, w r2] is of type B 1 and it contains the T -words

x ′ = (r1, r7, r4, r3), z ′ = (r6, r1, r7, r3), and x ′′ = (r6, r5, r1, r7). By induction we have ux ′ ≡ uz ′ ≡ ux ′′

(mod J ). This then gives us

ux = ux ′ur2
≡ uz ′ur2

≡ ux ′′ur2
.

The northeast image shows the label sequence corresponding to (z ′, r2) highlighted in red and the

southwest image shows the label sequence corresponding to (x ′′, r2) highlighted in red. Finally,

note that our current situation falls under the scope of Case 2.1 since the last entry of (x ′′, r2) =

(r6, r5, r1, r7, r2) is not in {r1, r7} while its second-to-last entry is in {r1, r7}. We then have ux ≡ uz

(mod J ) by Case 2.1. The southeast image shows the label sequence corresponding to z highlighted

in red.

Corollary 4.2.8. Let x and y be T -words such that ux ≡ u y 6≡ 0 (mod I ). Then ux ≡ u y (mod J ).

Proof. Suppose that ux ≡ u y 6≡ 0 (mod I ). We know by Proposition 4.2.3 that x and y both appear

in some interval [v, w ] ∈B(I2(m )) and x , y 6∈ {aδ, b δ} for δ <m . By Proposition 4.2.6 we know that

ux ≡ u y (mod J ).

Now that we have shown that if ux ≡ u y (mod I ), then ux ≡ u y (mod I ) our next goal is to show

that if ux ≡ 0 (mod I ), then ux ≡ 0 (mod J ). Our proof of this is lengthy, but straightforward in that

it simply considers all possibilities for x and then applies relations (4.7)–(4.18) to show that ux ≡ 0

(mod J ).

Proposition 4.2.9. Let x be a T -word such that ux ≡ 0 (mod I ). Then ux ≡ 0 (mod J ).

Proof. Let x = (t1, . . . , t`) and x ′ = (t1, . . . , t`−1). It is sufficient to consider the case where ux ≡ 0

(mod I ) and ux ′ 6≡ 0 (mod I ). By Corollary 1.1.4 we know that x ′ appears in some interval of length

`−1 and x does not appear in any interval. Since x ′ appears in some interval of B(I2(m )) it must be

that 1≤ `−1≤m and so 2≤ `≤m +1. We now proceed by considering the different values of `.

Suppose first that `= 2. We can see from the description of B(I2) that the only T -words of length

2 which do not appear in some interval are z1 = (ri , ri ) for i ∈ [m ] and z2 = (ri , r j ) for i , j 6∈ {1, m} and

|i − j | ≥ 2. If x = z1, then ux ≡ 0 modulo relation (4.11) and if x = z2, then ux ≡ 0 modulo relations

(4.12). Next, suppose that ` =m + 1 and let z = (r1, r2, . . . , rm ). Note that x ′ and z both appear in
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Figure 4.7 Visualization of ux ≡ u y (mod J ) for x = (r1, r7, r4, r3, r2) and y = (r6, r1, r7, r1, r7) in B(I2(7)).
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[e , w0]. Using this we have

ux = ux ′utn

≡ uz utn
(Proposition 4.2.6)

= · · ·urm−1
urm

utn

≡ 0. (4.16)

Finally, suppose that 3≤ `≤m . We consider different cases depending on the possible choices

for t`−1.

Case 1. First, consider the case where t`−1 = ri for i 6∈ {1, m}. If t` = r j for j 6∈ {1, m , i + 1, i − 1},
then ux = ux ′ut` = · · ·uri

ur j
≡ 0 modulo relation (4.12). There are now two situations to consider,

either t` ∈ {r1, ri−1} or t` ∈ {rm , ri+1}. Since the proofs for these two situations are similar we will only

explicitly address the first one. Given that t`−1 = ri 6∈ {r1, rm} there are only two possibilities for t`−2,

either t`−2 ∈ {r1, ri−1} or t`−2 ∈ {rm , ri+1}. Any other choice of t`−2 would contradict our assumption

that x ′ appears in some interval. In particular, if t` ∈ {r1, ri−1}, it must be that t`−2 ∈ {r1, ri−1};
otherwise x would appear in some interval of B(I2). Since t`−2 ∈ {r1, ri−1} and t` ∈ {r1, ri−1} there

are now 4 cases to consider depending on the choice of t`−2 and t`.

Case 1.1. Suppose that t`−2 = r1, t` = r1. If i = 2, then we have ux = . . . ur1
ur2

ur1
≡ 0 modulo relation

(4.18). If i 6= 2, then we have

ux = · · ·ur1
uri

ur1

≡ · · ·urm−i+2
ur1

ur1
(4.9)

≡ 0. (4.11)

Case 1.2. Suppose that t`−2 = r1, t` = ri−1. Since ux = · · ·ur1
uri

uri−1
it is sufficient to show that

ur1
uri

uri−1
≡ 0 (mod J ). If i = 2, then ur1

ur2
ur1
≡ 0 modulo relation (4.18). If 3 ≤ i ≤m − 1, then

ur1
uri

uri−1
≡ 0 modulo relation (4.13).

Case 1.3. Now suppose that t`−2 = ri−1, t` = r1. Again, since ux = · · ·uri−1
uri

ur1
it suffices to show that

uri−1
uri

ur1
≡ 0 (mod J ). If i = 2, then ur1

ur2
ur1
≡ 0 modulo relation (4.18). If i = 3, then ur2

ur3
ur1
≡

ur2
ur1

urm−1
≡ 0 where the first equivalence is modulo relation (4.9) and the second equivalence is

modulo relation (4.15). If i 6= 2, 3, then modulo relation (4.9) we have uri−1
uri

ur1
≡ uri−1

ur1
urm−i+2

≡
ur1

urm−i+3
urm−i+2

and we can now apply case 1.2 to see that ur1
urm−i+3

urm−i+2
≡ 0 (mod J ).

Case 1.4. Finally, suppose that t`−2 = ri−1, t` = ri−1. We have ux = · · ·uri−1
uri

uri−1
≡ 0 modulo relation

(4.17).

Case 2. Now consider the case where t`−1 = ri for i ∈ {1, m}. We will explicitly address the case

where i = 1; the case where i =m is similar. Once again we have several cases to address.
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Case 2.1. Suppose that x ′ = (t1, . . . , t`−1) 6= a `−1 and `= 3. We consider different cases based on the

choice of t`. If t` = r1, then ux = ux ′ut` = ut`−2
ur1

ur1
≡ 0 modulo relation (4.11). If t` = rm , then

the only way x does not appear in any interval is if t`−2 = r2. From this we have ux = ux ′ut` =

ur2
ur1

urm
≡ 0 modulo relation (4.15). If t` = r2, then ux = ux ′ut` = ut`−2

ur1
ur2
≡ 0 modulo (4.19).

Finally, if t` = r j 6∈ {r1, r2, rm}, then ux = ux ′ut` = ut`−2
ur1

ur j
≡ ut`−2

urm− j+2
ur1

modulo relations (4.9).

If (t`−2, rm− j+2) does not appear in any interval, then we can use our earlier work for `= 2 to show

that ut`−2
urm− j+2

≡ 0 (mod J ) and so ut`−2
urm− j+2

ur1
≡ 0 (mod J ). If (t`−2, rm− j+2) does appear in some

interval, then we can use Case 1 to show ut`−2
urm− j+2

ur1
≡ 0 (mod J ).

Case 2.2. Suppose that x ′ = (t1, . . . , t`−1) 6= a `−1 and 3 < ` ≤ m . There are two cases to consider,

either x ′ appears in an interval of type C 1 (or C 2) or it does not. First, suppose that x ′ appears in an

interval of type C 1 (or C 2). Any type C 1 (or C 2) interval with ` > 3 contains a T -word of the form

z = (. . . , rm−1, rm ). By Proposition (4.2.6) we know that ux ′ ≡ uz (mod J ) and so we have

ux = ux ′ut` ≡ uz ut` = · · ·urm−1
urm

ut` ≡ 0

where the last equivalence is modulo relation (4.16). Now suppose that x ′ does not appear in an

interval of type C 1(or C 2). An interval of any other type which contains x and has ` > 3 must

also contain a T -word z = (t ′1, . . . , t ′`−1) such that t ′`−1 6∈ {r1, rm}. By Proposition 4.2.6 we know that

ux ′ ≡ uz (mod J ). In this case we have ux = ux ′ut` ≡ uz ut` (mod J ) and we can now reduce to Case

1.

Case 2.3. Finally, suppose x ′ = (t1, . . . , t`−1) = a `−1. We again consider different cases based on our

choice of t`. Note that we cannot have t` = rm since then x = b
`

which appears in some interval of

B(I2(m )). Suppose then that t` = r1. We have ux = ux ′ut` = ua `−1 ut` = · · ·ur1
ur1
≡ 0 modulo relation

(4.11). Finally, suppose that t` = ri for i 6∈ {1, m}. Note that the T -word (a n , ri ) for 1≤ n ≤ i−1 appears

in some interval of B(I2(m )). Since x cannot appear in any interval it must be that `−1> i −1. As

such, we have

x = (x ′, ri ) = (a
`−1, ri ) = (a

`−i , a i−1, ri ) = (a
`−i , x ′′)

where x ′′ = (a i−1, ri ). Note that x ′′ appears in a type D 1 interval which also contains a T -word of

the form z = (r1, r2, . . . ). We then have

ux = ua `−i ux ′′

≡ ua `−i uz (Proposition 4.2.6)

= ua `−i ur1
ur2
· · ·

≡ 0. (4.19)

Using the Propositions 4.2.6 and 4.2.9 we can finally prove our second desired inclusion I ⊂ J .

Proposition 4.2.10. We have I ⊂ J .
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Proof. Let R be an element of I . Our goal is to show that R ≡ 0 (mod J ) and our first step toward

this goal is to change R so that it does not contain either of the terms uaδ , ub δ for δ > 1. Let x be a

T -word such that the monomial ux appears in R . Suppose that x ∈ {aδ, b δ} for some δ > 1. Then

we have

ub δ = urm
ur1

ub δ−2

≡ (u1u2+ · · ·+um−1um )ub δ−2 (4.7)

= u1u2ub δ−2 + · · ·+um−1um ub δ−2

or

uaδ = ur1
urm

uaδ−2

≡ (u2u1+ · · ·+um um−1)uaδ−2 (4.8)

= u2u1uaδ−2 + · · ·+um um−1uaδ−2 .

In either case, ux is equivalent modulo relation (4.7) or (4.8) to a sum of monomials whose cor-

responding T -words are not equal to aδ or b δ for any δ > 1. As such, there exists an R ′ such that

R ≡R ′ modulo relations (4.7) and (4.8), and

R ′ =
k1
∑

i=1

αi ux (i )

where for all i ∈ [k1]we have that αi ∈C and x (i ) is a T -word not equal to aδ or b δ for any δ > 1.

Now let J ′ ⊂ J be the left-right ideal generated by all ux −u y such that ux ≡ u y (mod J ) and all

ux such that ux ≡ 0 (mod J ). We now wish to use J ′ to take any terms of R ′ which are equivalent

modulo J and ‘combine’ them into one term. In other words, there exists an R ′′ such that R ′ ≡R ′′

(mod J ′) and

R ′′ =
k2
∑

i=1

βi u y (i )

where for all i ∈ [k2]we have βi ∈C, y (i ) is a T -word, y (i ) 6= aδ, b δ for any δ > 1, u y (i ) 6≡ 0 (mod I ),

and u y (i ) 6≡ u y ( j ) (mod I ) for all i 6= j ∈ [k2].

For each u y (i ) (i ∈ [k2]) let wi ∈ I2(m ) be such that (w )u y (i ) 6= 0. By Proposition 4.2.5 we know that

J ⊂ I and so we must have R ′′ ≡ 0 (mod I ), which implies (wi )R ′′ = 0 for all i ∈ [k2]. The nonzero

expressions of the form (wi )u y ( j ) in (wi )R ′′ are distinct and so we can only have (wi )R ′′ = 0 for all

i ∈ [k2] if βi = 0 for all i ∈ [k2].

We can now give the proof for Theorem 4.2.1.

Proof. It suffices to show that I = J . We have J ⊂ I by Proposition 4.2.5 and we have I ⊂ J by

Proposition 4.2.10.
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4.3 Up-operators for Bruhat Order on the Symmetric Group

LetUB(Sn ) be the associative algebra over C generated by the u(i , j ) where (i , j ) is a reflection in Sn .

Furthermore, let I B(Sn ) be the two-sided ideal containing all elements which annihilate all elements

of C[B(Sn )]. We callUB(Sn )/I B(Sn ) the algebra of up-operators for B(Sn ). For ease of notation we

will useU and I in place ofUB(Sn ) and I B(Sn ), respectively.

As mentioned earlier, while a complete list of relations for U /I remains unknown we have

found several new relations which hold in the algebra. Before giving these new relations we first

discuss the computational process we used to find them. The following definition will be needed for

a description of this process.

Definition 4.3.1. Let x = (t1, . . . , t`) be a T -word and let π= t1 · · · t` ∈Sn . We call π the Sn -degree

of ux .

This definition can now be used to state an important fact about the u(i , j ) given in the lemma

below. In the following, by ‘degree’ we mean the usual sense of degree, that is, the degree of ux is

equal to the number of factors appearing in ux . For instance, if ux = u(1,2)u(2,3)u(3,4), then the degree

of ux is 3. Note that the degree of ux is always equal to the length of x .

Lemma 4.3.2. Let x and y be T -words and let π ∈Sn . Suppose that (π)ux = (π)u y =σ 6= 0. Then ux

and u y have the same degree and the same Sn -degree.

Proof. Let x = (t1, . . . , t`) and y = (t ′1, . . . , t ′`′ ). Since (π)ux = (π)u y = σ 6= 0 we can see from the

definition of up-operators and the fact that `S is the rank function for Bruhat order that we have

`S (σ) = `S (π)+` and `S (σ) = `S (π)+`′. From this we see that `= `′. We also have thatσ=πt1 · · · t` and

σ=πt ′1 · · · t
′
`. From this we see that t1 · · · t` = t ′1 · · · t

′
` and so ux and u y have the same Sn -degree.

Let Γm ,π be the subspace ofU generated by all monomials inU whose degree is m and whose

Sn -degree isσ. The above lemma allows us to restrict our search for relations to the Γm ,π for each

possible m and π. To see this, suppose we have the following relation

R =
k1
∑

i=1

ci ux (i ) ≡ 0 (mod I )

where ci ∈ C and x (i ) is a T -word for all i ∈ [k1]. We may assume that ux (i ) 6≡ 0 (mod I ) since

otherwise we can simply remove ci ux (i ) from R and what remains would still be equivalent to 0

modulo I . Fix some positive integer m and some elementσ of Sn and let {i1, . . . , ik2
} be the subset

of [k1] such that ux (i ) has degree m and Sn -degreeσ. By Lemma 4.3.2 it must then be that

Rm ,π =
k2
∑

j=1

ci j
ux (i j ) ≡ 0 (mod I ).

From this we see that R =
∑

Rm ,π where Rm ,π ≡ 0 (mod I ) and where the sum is over all pairs (m ,π)

occurring (respectively) as the degree andSn -degree of some term in R . Since each Rm ,π ≡ 0 (mod I )
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is a relation involving only the elements of Γm ,π it is sufficient to just look for relations among the

elements of Γm ,π to begin with.

We now know it is sufficient to look for relations among the elements of Γm ,π for each possible

pair (m ,π). Using this, we can now search for relations in the following way.

1. Fix some positive integer m and some π ∈Sn .

2. Let Φ be the largest possible set of all known elements of I such that every element of Φ is

contained in Γm ,π and such that no element of Φ is linearly dependent on any other elements

of Φ. Note that Φ is not necessarily unique.

3. Let Γ be the set of monomials in Γm ,π. Also let M1 be the matrix whose columns are indexed

by the elements of Γ and whose rows are indexed by the elements of Φ. If φ ∈ Φ and ux ∈ Γ ,

then we put a c (c ∈C) in position (φ, ux ) of M1 if c ux appears inφ and a 0 otherwise.

4. Let M ′
1 be the reduced echelon form of M1 and let Γ ′ be the subset of Γ such that ux ∈ Γ ′ if and

only if column ux of M ′
1 does not contain a pivot.

5. Any monomials not in Γ ′ can be eliminated from any new relation by using the previously

known elements of I , and so we need only look for new relations among the elements of Γ ′.

Let M2 be the matrix whose columns are indexed by Γ ′ and whose rows are indexed by all

elements of Sn . If π ∈Sn and ux ∈ Γ ′, then we put a 1 in position (π, ux ) of M1 if (π)ux 6= 0

and a 0 otherwise.

6. Let ker(M1) be the right kernel of M1 and let B be its basis. Let b ∈ B and let cux
be the entry

of b in row ux . Then
∑

ux∈Γ ′
cux

ux ≡ 0 (mod I )

is a new relation.

All of the new relations stated in Proposition 4.3.4 were found using the above process. As a way

to confirm that each of the new relations does in fact hold we provide a non-computational proof in

Proposition 4.3.4. For this proof we will need the following corollary.

Corollary 4.3.3. Let (i , j ) ∈ T for i < j and let π=π1 . . .πn ∈Sn . Then

(π)u(i , j ) =π1 . . .πi−1π jπi+1 . . .π j−1πiπ j+1 . . .πn

if and only if πi <π j and there does not exist some k such that i < k < j and πi <πk <π j .

Proof. This follows directly from the definition of up-operators and Proposition 4.1.2.

We can now state the list of new relations we found forU /I .
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Proposition 4.3.4. Let i < j < k < l <m be integers. The following relations hold modulo I .

u( j l )u(i l )u(i k ) ≡ 0, (4.23)

u( j l )u( j k )u(i l )u( j l ) ≡ 0, (4.24)

u(k l )u( j l )u(i k )u(i j ) ≡ 0, (4.25)

u(k m )u( j l )u(i m )u(l m ) ≡ u(k m )u(l m )u( j m )u(i l ), (4.26)

u( j m )u(l m )u(i m )u(k m ) ≡ u(l m )u( j l )u(i m )u(k m ). (4.27)

Proof. We will show that (4.26) holds; the proof for the other relations is similar. Let π= π1 . . .πn

be some element of Sn and let x = ((k m ), ( j l ), (i m ), (l m )) and let y = ((k m ), (l m ), ( j m ), (i l )). We

see that x and y have the same Sn -degree, namely the cycle (i , k , m , j , l ). It must then be that if

(π)ux , (π)u y 6= 0, then (π)ux = (π)u y . Thus, to prove that relation (4.26) holds we need only prove

that (π)ux 6= 0 if and only if (π)u y 6= 0. Our strategy for proving this biconditional statement is as

follows. First suppose that (π)ux 6= 0. This assumption along with Corollary 4.3.3 forces certain

restrictions on what π can be. We will determine what these restrictions are and we will use them to

show that (π)u y 6= 0. This will prove the forward direction; for the reverse direction we will use the

same approach but with the roles of x and y switched.

Forward Implication: First suppose that (π)ux 6= 0. We must then have

(π)u(k m ) 6= 0, (4.28)

(π(k m ))u( j l ) 6= 0, (4.29)

(π(k m )( j l ))u(i m ) 6= 0, and (4.30)

(π(k m )( j l )(i m ))u(l m ) 6= 0. (4.31)

Recall that Corollary 4.3.3 gives us certain inequalities among the πι when we act by an up-operator

with a nonzero result. As such, each of (4.28)–(4.31) tells us something about the ordering of the πι .

We now determine what each of these ordering restrictions is. As we address each of (4.28)–(4.31) we

will give the two-line notation for the permutation being acted upon which will provide some clarity

as to what is being done. We will also list inequalities solely involving πi ,π j ,πk ,πl ,πm separately

from those involvingπι for any other ι. We do this because the total ordering onπi ,π j ,πk ,πl ,πm will

be useful for us and listing said inequalities separately will make understanding the total ordering a

bit clearer.

We first consider (4.28). The two-line notation for π is
�

. . . i . . . j . . . k . . . l . . . m . . .

. . . πi . . . π j . . . πk . . . πl . . . πm . . .

�

.
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We have (π)u(k m ) 6= 0 if and only if

πk <πm , (4.32)

πl <πk or πl >πm , and (4.33)

πα <πk or πα >πm if k <α<m and α 6= l . (4.34)

Now consider (4.29). The two-line notation for π(k m ) is
�

. . . i . . . j . . . k . . . l . . . m . . .

. . . πi . . . π j . . . πm . . . πl . . . πk . . .

�

.

We have (π(k m ))u( j l ) 6= 0 if and only if

π j <πl , (4.35)

πm <π j or πm >πl , and (4.36)

πα <π j or πα >πl if j <α< l and α 6= k . (4.37)

Next consider (4.30). The two-line notation for π(k m )( j l ) is
�

. . . i . . . j . . . k . . . l . . . m . . .

. . . πi . . . πl . . . πm . . . π j . . . πk . . .

�

.

We have (π(k m )( j l ))u(i m ) 6= 0 if and only if

πi <πk , (4.38)

πl <πi or πl >πk , (4.39)

πm <πi or πm >πk , (4.40)

π j <πi or π j >πk , and (4.41)

πα <πi or πα >πk if i <α<m and α 6= j , k , l . (4.42)

Finally, consider (4.31). The two-line notation for π(k m )( j l )(i m ) is
�

. . . i . . . j . . . k . . . l . . . m . . .

. . . πk . . . πl . . . πm . . . π j . . . πi . . .

�

.

We have (π(k m )( j l )(i m ))u(l m ) 6= 0 if and only if

π j <πi and (4.43)

πα <π j or πα >πi if l <α<m . (4.44)

Each of (4.32)–(4.44) provides some inequality among the πι . We will now show that given these
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inequalities we must have (π)u y 6= 0. In particular, we will prove that each of the following hold:

(π)u(k m ) 6= 0, (4.45)

(π(k m ))u(l m ) 6= 0, (4.46)

(π(k m )(l m ))u( j m ) 6= 0, and (4.47)

(π(k m )(l m )( j m ))u(i l ) 6= 0. (4.48)

To do this we will show that the inequalities needed for each of (4.45)–(4.48) to hold are implied by

the inequalities in (4.32)–(4.44). Corollary 4.3.3 will then imply that (4.45)–(4.48) are true. We note

here that

π j <πl <πi <πk <πm (4.49)

by (4.32), (4.33), (4.35), (4.36), (4.38), (4.39), and (4.43). We will again give the two-line notation for

each of the permutations being acted upon.

First consider (4.45). The two-line notation for π is
�

. . . i . . . j . . . k . . . l . . . m . . .

. . . πi . . . π j . . . πk . . . πl . . . πm . . .

�

.

We have (π)u(k m ) 6= 0 if and only if

πk <πm , (4.50)

πl <πk or πl >πm , and (4.51)

πα <πk or πα >πm if k <α<m and α 6= l . (4.52)

We can see that (4.50) and (4.51) are both implied by (4.49) while (4.52) is implied by (4.34). From

this we see that (π)u(k m ) 6= 0. Next consider (4.46). The two-line notation for π(k m ) is
�

. . . i . . . j . . . k . . . l . . . m . . .

. . . πi . . . π j . . . πm . . . πl . . . πk . . .

�

.

We see that (π(k m ))u(l m ) 6= 0 if and only if

πl <πk and (4.53)

πα <πl or πα >πk if l <α<m . (4.54)

We have that (4.53) is implied by (4.49) while (4.54) is implied by (4.34),(4.42),(4.44), and (4.49). From

this we have (π(k m ))u(l m ) 6= 0. Now consider (4.47). The two-line notation for π(k m )(l m ) is
�

. . . i . . . j . . . k . . . l . . . m . . .

. . . πi . . . π j . . . πm . . . πk . . . πl . . .

�

.
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We see that (π(k m )(l m ))u( j m ) 6= 0 if and only if

π j <πl , (4.55)

πm <π j or πm >πl , (4.56)

πk <π j or πk >πl , and (4.57)

πα <π j or πα >πl if j <α<m and α 6= k , l . (4.58)

We see that (4.55)–(4.57) are implied by (4.49). We also have that (4.58) is implied by (4.37), (4.44),

and (4.49). We see then that (π(k m )(l m ))u( j m ) 6= 0. Finally, consider (4.48). The two-line notation

for π(k m )(l m )( j m ) is
�

. . . i . . . j . . . k . . . l . . . m . . .

. . . πi . . . πl . . . πm . . . πk . . . π j . . .

�

.

We have (π(k m )(l m )( j m ))u(i l ) 6= 0 if and only if

πi <πk , (4.59)

πl <πi or πl >πk , (4.60)

πm <πi or πm >πk , and (4.61)

πα <πi or πα >πk for i <α< l and α 6= j , k . (4.62)

We see that (4.59)–(4.61) are implied by (4.49). Additionally, (4.62) is implied by (4.42 ). From the

above we have (π(k m )(l m )( j m ))u(i l ) 6= 0. The preceding work proves that (π)u y 6= 0.

Reverse Implication: For the reverse implication we similarly need to show that each of (4.32)–(4.44)

is implied by (4.50)–(4.62). We note that

π j <πl <πi <πk <πm (4.63)

is implied by (4.50),(4.53),(4.55),(4.59), and (4.60). We have that (4.52) implies (4.34), (4.58) implies

(4.37), (4.54) and (4.62) imply (4.42), and (4.54) and (4.58) imply (4.44). The remaining inequalities

are all implied by (4.63).
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