
ABSTRACT

KIRK, SAMANTHA L. Toroidal Lie Algebras and Their Vertex Operator Representations. (Under the
direction of Bojko Bakalov.)

Toroidal Lie algebras were first introduced in 1990 by Robert Moody, Senapathi Eswara Rao, and

Takeo Yokonuma in their paper Toroidal Lie algebras and vertex representations. These algebras

can be described as a generalization of a special class of infinite-dimensional Lie algebras known

as affine Kac–Moody algebras. Many influential mathematicians have studied the properties of

toroidal Lie algebras and have shown toroidal Lie algebras can be applied to several branches of

mathematics and physics.

The representation theory of infinite-dimensional Lie algebras is more complex than the repre-

sentation theory of finite-dimensional Lie algebras. In 1986, Richard Borcherds discovered vertex

algebras while trying to construct representations of infinite-dimensional Lie algebras. Since then,

several mathematicians have used vertex algebras as a tool in building representations of affine

Kac–Moody algebras and toroidal Lie algebras.

Just like twisted affine Kac–Moody algebras, we can use a finite order automorphism of a simple

finite-dimensional Lie algebra as a foundation to build a twisted toroidal Lie algebra. Representations

of certain twisted affine Kac–Moody algebras and toroidal Lie algebras have been explored in works

such as [14, 33, 8, 17] . The study of twisted affine Kac–Moody algebras led to the development of

twisted vertex operators and twisted modules over vertex algebras.

The purpose of this thesis is to construct representations of twisted toroidal Lie algebras using

twisted modules over vertex algebras. We begin by reviewing some basic concepts related to finite-

dimensional Lie algebras and affine Kac–Moody algebras. Next, we review the theory of vertex

algebras, lattice vertex algebras, affine vertex algebras, and twisted modules over vertex algebras. In

Chapter 4, we discuss toroidal Lie algebras and present a construction of representations of twisted

toroidal Lie algebras using twisted modules over vertex algebras. Later, we discuss areas of future

research involving toroidal Lie algebras including a new class of twisted toroidal Lie algebras and

their potential representations.



© Copyright 2021 by Samantha L. Kirk

All Rights Reserved



Toroidal Lie Algebras and Their Vertex Operator Representations

by
Samantha L. Kirk

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2021

APPROVED BY:

Naihuan Jing Kailash Misra

Ernest Stitzinger Bojko Bakalov
Chair of Advisory Committee



DEDICATION

In memory of my brother Johnathan.

ii



BIOGRAPHY

Samantha Kirk was born on June 24, 1987 in Washington, North Carolina. She spent her childhood

and early adult years in eastern North Carolina. In 2015, she moved to Raleigh, NC to attend North

Carolina State University to study mathematics. She was awarded a Doctor of Philosophy in Mathe-

matics from North Carolina State University in the summer of 2021. At the time of this writing, she is

preparing to move to South Hadley, MA to teach at Mount Holyoke College as part of a postdoctoral

appointment.

iii



ACKNOWLEDGEMENTS

I would like to thank several individuals who have helped me throughout my mathematical studies

at NC State. First, I would like to thank my advisor Dr. Bojko Bakalov for providing guidance, patience,

and teaching me the value of persistence. Next, I would like to thank Dr. Kailash Misra, Dr. Naihuan

Jing, and Dr. Ernest Stitzinger for sharing their knowledge in Lie algebras and being a part of the

professors at NC State who have influenced my mathematical career. I would also like to thank

all the committee members for the time spent reading my dissertation and their participation in

related meetings. Finally, I would like to thank my partner Elias Katsoulis for his love, encouragment,

patience, and believing in me.

iv



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Definition of a Lie algebra and other basic notions . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Representations and derivations of Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The root space decomposition of a simple Lie algebra . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 The Killing form and Cartan matrices of simple Lie algebras . . . . . . . . . . . . . . . . . . 9
2.5 Dynkin diagrams of simple Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Lattices and automorphisms of Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Affine Kac–Moody algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Twisted affine Kac–Moody algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 3 Vertex algebras and Twisted Modules over Vertex Algebras . . . . . . . . . . . . . . . 21
3.1 Vertex algebras and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Affine vertex algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Lattice vertex algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Subalgebras, homomorphisms, and modules of vertex algebras . . . . . . . . . . . . . . . . 26
3.3 Twisted modules over vertex algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Definition of twisted modules over vertex algebras . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Vertex operator representations of affine Kac–Moody algebras . . . . . . . . . . . 29

Chapter 4 Vertex Operator Representations of Toroidal Lie Algebras . . . . . . . . . . . . . . . . 31
4.1 Toroidal Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Untwisted toroidal Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Twisted toroidal Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Tensor products of vertex algebras and twisted modules . . . . . . . . . . . . . . . . . . . . . 35
4.3 Twisted modules over Vk (g)⊗VJ and twisted toroidal Lie algebras . . . . . . . . . . . . . . 36

Chapter 5 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Irreducible Representations of L̂r+1,1(g,σ−1)when g is not simply laced . . . . . . . . . . 51
5.3 New types of twisted toroidal Lie algebras and their representations . . . . . . . . . . . . . 52

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

v



LIST OF FIGURES

Figure 2.1 The Dynkin Diagram of A2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.2 The Dynkin Diagram of G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.3 The Dynkin diagrams associated to A`−D`. . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2.4 The Dynkin diagrams of the exceptional Lie algebras E6, E7, and E8. . . . . . . 13
Figure 2.5 The Dynkin Diagram of D4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.6 The Dynkin diagram of A(1)1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.7 The Dynkin diagram of A(1)` for `≥ 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



CHAPTER

1

INTRODUCTION

1.1 Introduction

A toroidal Lie algebra is a special type of infinite-dimensional Lie algebra that was first introduced

in 1990 by the mathematicians Robert Moody, Senapathi Eswara Rao, and Takeo Yokonuma in their

paper Toroidal Lie algebras and vertex representations [47]. Since then, many influential mathemati-

cians have studied the properties of toroidal Lie algebras and their representations. Toroidal Lie

algebras have many applications to mathematics and physics including combinatorics, non-linear

partial differential equations, quantum algebras, and conformal field theory.

To describe a toroidal Lie algebra, we start by taking a simple finite-dimensional Lie algebra g

with a Lie bracket [·, ·] : g×g→ g and tensor g with the Laurent polynomials in one variable C[t , t −1]

to form an infinite dimensional Lie algebraL (g) called a loop algebra,

L (g) = g⊗C[t , t −1].

The loop algebra can be thought of as the collection of all g-valued polynomial maps on the circle.

An affine Kac–Moody algebra L̂ (g) is created when we form a central extension ofL (g) by “adding"

an element K to the center along with a derivation d ,

L̂ (g) = L̂ (g)⊕CK ⊕Cd .

The process of constructing a central extension of the loop algebra L̂ (g) is called the affinization of

the Lie algebra g.
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A toroidal Lie algebra can be described as a generalization of the affinization process. We use a

simple finite-dimensional Lie algebra g and tensor it with the Laurent polynomials, but this time in

several variables, C[t ±0 , t ±1 , . . . , t ±1
r ] to form a large loop algebra

Lr+1(g) = g⊗C[t ±0 , t ±1 , . . . , t ±1
r ].

The loop algebraLr+1(g) is the collection of all g-valued polynomial maps on the (r +1)-dimensional

torus. We from a central extension ofLr+1(g) by adding a certain idealK to the center along with

an algebraD+ of derivations (however, in the case when r ≥ 1, both the idealK and the algebraD+
are infinite-dimensional)

Lr+1(g) = g⊗C[t ±0 , t ±1 , . . . , t ±1
r ]⊕K ⊕D+.

The construction of representations of infinite-dimensional Lie algebras is more complex than

the construction of representations of finite-dimensional Lie algebras. In [47], Moody, Rao, and

Yokonuma used vertex operators to form representations of toroidal Lie algebras when r = 1. As

expected, their results were similar in spirit to vertex operator representations of affine Kac–Moody

algebras as a framework.

Vertex algebras were discovered by Richard Borcherds in 1986 while studying the representation

theory of infinite-dimensional Lie algebras. Once he developed a working definition of vertex

algebras, many mathematicians were able to use vertex algebras and vertex operators as tools in

constructing representations of affine Kac–Moody algebras [14, 22] and the use of tensor products

of vertex algebras to create representations of toroidal Lie algebras [8].

We can “twist" an affine Lie algebra L̂ (g) by working with a finite order automorphism of the

foundation Lie algebra g and lifting the automorphism to L̂ (g). Investigations into the represen-

tations of twisted affine Lie algebras naturally let to the development of twisted vertex operators

[35, 44] and twisted modules over a vertex algebra [5, 16, 19, 41]. In a similar fashion, twisted toroidal

Lie algebras were constructed and the representations are currently under investigation. Representa-

tions involving certain finite-order automorphismσ, such as whenσ is the Coxeter element orσ is

a diagram automorphism, have been studied in works such as [12, 17, 18, 31, 32, 48, 49, 25, 2, 15, 30].

The goal of this thesis is to contribute to the representation theory of twisted toroidal Lie algebras

and to expand its connections with vertex algebras. We will explicitly show how twisted modules over

a tensor product of an affine and a lattice vertex algebra can be used to construct representations

of twisted toroidal Lie algebras. We will also discuss future projects involving representations of

twisted toroidal Lie algebras that use automorphisms of infinite order or automorphisms of affine

Kac–Moody algebras in their construction.

This thesis in divided into 5 chapters. In Chapter 2, we will review the necessary background

material on Lie algebras. This includes simple finitie-dimensional Lie algebras, root system decom-

positions, Cartan matrices, and Dynkin diagrams. We will discuss affine Kac–Moody algebras and

how to use automorphisms of simple Lie algebras to construct twisted affine Kac–Moody algebras.
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In Chapter 3, we shift our attention to vertex algebras. We will review affine vertex algebras,

lattice vertex algebras, homomorphisms of vertex algebras and modules of vertex algebras. We will

also use automorphisms of vertex algebras to construct twisted modules over vertex algebras. We

will discuss vertex operator representations of affine Kac–Moody Lie algebras and their ties with

twisted modules over both affine vertex algebras and lattice vertex algebras.

In Chapter 4, we will construct vertex operator representations of twisted toroidal Lie algebras.

We will start by defining toroidal Lie algebras and twisted toroidal Lie algebras. Next, we will discuss

tensor products of vertex algebras and use the representations of affine Kac–Moody algebras pre-

sented in Chapter 3 as the framework for building representations of twisted toroidal Lie algebras.

We will compute n-th products related to a certain lattice vertex algebra we call VJ and then show

how the tensor product of an affine vertex algebra and VJ lead to our representations.

In Chapter 5, we provide concluding remarks and discuss some potential future projects. One

of these projects is the construction of representations of twisted affine Kac–Moody algebras L̂ (g)
where g is not simply laced. Another potential project involves the construction of representations

of twisted toroidal Lie algebras using a class of finite-order and infinite-order automorphisms that

were not considered in Chapter 4.

Unless otherwise specified, all vector spaces, linear maps and tensor products will be over the

field C of complex numbers. Parts of this thesis have been published in [6].
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CHAPTER

2

LIE ALGEBRAS

In this chapter, we will review some of the basic concepts in the theory of Lie algebras. These

concepts include root systems, Cartan matrices, Dynkin diagrams, derivations, and automorphisms

of Lie algebras. We will also define untwisted and twisted affine Kac–Moody Lie algebras in this

chapter. For more information on these topics, we refer the reader to [29, 33].

2.1 Definition of a Lie algebra and other basic notions

Definition 2.1.1. A complex Lie algebra is a vector space g overC equipped with a bilinear product

[·, ·] : g×g→ g, known as the Lie bracket, that satisfies the properties

[x , y ] =−[y , x ] (skew-symmetry) (2.1)
�

x , [y , z ]
�

=
�

[x , y ], z
�

+
�

y , [x , z ]
�

(Jacobi identity) (2.2)

for all x , y , z ∈ g.

Example 2.1.2. A Lie algebra can be constructed from the set of all n ×n matrices with complex

entries. If we let A and B be any two n ×n matrices and AB the product of the matrices, then we

obtain a Lie algebra when we define the Lie bracket as [A, B ] = AB −B A. This Lie algebra is known

as the general linear Lie algebra and is denoted by gl(n ,C).

Example 2.1.3. In a fashion similar to gl(n ,C), we can construct a Lie algebra using products of

linear operators on a vector space V with dimension n . If we let x , y ∈ End(V ) (the set of all linear
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operators on V ) then we can define the Lie bracket as [x , y ] = x y − y x where x y is the product of

the operators x and y . This Lie algebra is denoted by gl(V ).

Example 2.1.4. Let V be a vector space with dim(V ) = 2n+1. LetB =
�

x1, x2, . . . , xn , y1, y2, . . . , yn , z
	

be an ordered basis for V . We can construct a Lie algebra by defining a Lie bracket on the basis

vectors of V as follows:

[xi , yj ] =δi , j z , [g, z ] = 0,

where δi , j is the Kronecker delta function. This Lie algebra is known as the Heisenberg Lie algebra.

Definition 2.1.5. A subalgebra h of a Lie algebra g is a subspace where for any x , y ∈ h we have

[x , y ] ∈ h. If h also possesses the property [x , z ] ∈ h for any x ∈ h and z ∈ g, then we call h an ideal.

It is important to notice that the closure of the Lie bracket in the definition of a subalgebra h of a

Lie algebra g allows us to consider h as a Lie algebra in its own right.

Example 2.1.6. The Lie algebra gl(n ,C) has many subalgebras including the set of all n×n matrices

with trace 0, denoted sl(n ,C), the set of all upper triangular matrices, denoted t(n ,C), and the set of

all strictly upper triangular matrices, denoted n(n ,C). The subalgebra n(n ,C) is an ideal of t(n ,C).

Definition 2.1.7. If a Lie algebra g is nonabelian and contains no nontrivial proper ideals, then we

call g simple.

Example 2.1.8. It is easy to see that gl(n ,C) is not simple since sl(n ,C) is an ideal of gl(n ,C). However,

sl(n ,C) is an example of a simple Lie algebra.

Definition 2.1.9. Let g1 and g2 be two Lie algebras overC. A Lie algebra homomorphism is a linear

mapφ : g1→ g2 that preserves the Lie bracket. That is,φ([x , y ]) = [φ(x ),φ(y )] for all x , y ∈ g1. A Lie

algebra isomorphism is a homomorphism that is both one-to-one and onto.

Example 2.1.10. If we let g1 = t(n ,C) with basis {Ei j |1 ≤ i < j ≤ n} and g2 be the set of lower

triangular matrices with basis {Ei j |1≤ j < i ≤ n} then we can define a homomorphismφ : g1→ g2

byφ(Ei j ) =−E j i . This map is clearly one-to-one. Since the dimensions of both spaces is n (n −1)/2,

the map is also onto which makesφ an isomorphism.

Example 2.1.11. Let g1 = gl(V ) for any vector space V of dimension n and g2 = gl(n ,C) where

φ : g1→ g2 takes a linear operator to its matrix relative to a fixed ordered basis of V . The mapφ is

an isomorphism.

The theory of simple finite-dimensional Lie algebras is highly developed and it is well-known

that every simple finite-dimensional Lie algebra g over C is isomorphic to one of the classical Lie

algebras A`, B`, C`, D`, or isomorphic to one of the exceptional Lie algebras E6, E7, E8, F4,G2. We will

review the classical Lie algebras in the next few examples.
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Example 2.1.12. The Lie algebra A` for `≥ 1 is the Lie algebra of all `+1× `+1 matrices with trace

0 that is also denoted by sl(`+1,C). That is,

A` := {A ∈ gl(`+1,C) | tr(A) = 0}.

A basis for A` is the set {Ei j , Ek k −Ek+1,k+1 |1≤ i , j ≤ `+1, i 6= j , 1≤ k ≤ `} and dim(A`) = (`+1)2−1.

This Lie algebra is called the special linear Lie algebra.

Example 2.1.13. The Lie algebra B` is the Lie algebra of all matrices A ∈ gl(2`+1,C) that are skew-

symmetric. That is,

B` := {A ∈ gl(2`+1,C) |A+AT = 0}.

This Lie algebra is called the odd-dimensional orthogonal Lie algebra and denoted so(2`+1,C). The

dimension of B` is 2`2+ `. Similarly, the Lie algebra D` is the Lie algebra of all matrices A ∈ gl(2`,C)
that are skew-symmetric.That is,

D` := {A ∈ gl(2`,C) |A+AT = 0}.

This Lie algebra is known as the even-dimensional orthogonal Lie algebra and denoted so(2`,C).
The dimension of D` is 2`2− `.

Example 2.1.14. Let A ∈ gl(2`,C) and J` be the block matrix

J` =

�

0` I`
−I` 0`

�

where I` is the `× ` identity matrix and 0` is the `× ` zero matrix. The symplectic Lie algebra C` is

defined as

C` := {A ∈ gl(2`,C) | J`A+AT J` = 0}.

The Lie algebra C` is also denoted by sp(2`,C). The dimension of C` is 2`2+ `.

2.2 Representations and derivations of Lie algebras

In this thesis, we will construct representations and derivations of certain infinite-dimensional Lie

algebras. We will review the concepts of representations and derivations in this section.

Definition 2.2.1. A representation of a complex Lie algebra g on a vector space V over C is a Lie

algebra homomorphismφ : g→ gl(V ).

Example 2.2.2. Consider the Lie algebra A1 = sl(2,C) consisting of all 2×2 traceless matrices. Let

V be the vector space of all polynomials in t of degree n or less. That is, V =C[t ]deg≤n . Recall that

A1 = spanC
�

E11−E22, E12, E21

	

. Letφ be the map that sends

E11−E22 7→ n −2t
d

d t
, E12 7→

d

d t
, E21 7→ n t − t 2 d

d t
.
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The mapφ : A1→ gl(V ) is a representation.

Example 2.2.3. Since every Lie algebra g is a vector space, we can define representations of g on

itself. One important example of such a representation is the adjoint representation ad : g→ gl(g)

where for each x , y ∈ g we have

ad(x ) = adx , adx (y ) = [x , y ].

Let g be a Lie algebra, V a vector space, and φ : g→ gl(V ) a representation. Since φ(x ) for all

x ∈ g is a linear operator, then every representation gives rise to an action of g on V defined as

x · v =φ(x )v ∈V for all x ∈ g, v ∈V . This leads to the notion of a g-module.

Definition 2.2.4. A g-module is a vector space V equipped with a bilinear product · : g×V →V that

satisfies [x , y ] · v = x · (y · v )− y · (x · v ) for all x , y ∈ g and v ∈V . A submodule U of V is a subspace

such that x ·u ∈U for all x ∈ g and u ∈U . We call a g-module V irreducible if its only submodules

are {0} and V .

In Example 2.2.2, V =C[t ]deg≤n is an irreducible A1-module under φ. In Example 2.2.3, g is a

g-module under the adjoint action. If g is simple, then g is an irreducible g-module under the adjoint

action. If g is not simple, then the g-submodules under the adjoint action correspond to the ideals

of g.

Definition 2.2.5. A derivation D of a Lie algebra g is a linear operator D : g→ g that satisfies

D [x , y ] = [D x , y ] + [x , D y ]

for all x , y ∈ g. The set of all derivations of a Lie algebra g is denoted Der(g).

Example 2.2.6. Let g be a Lie algebra and let adx for x ∈ g be the linear operator defined by the

adjoint representation adx (y ) = [x , y ] for any y ∈ g. The Jacobi identity can be rewritten as

adx

�

[y , z ]
�

= [adx (y ), z ] + [y , adx (z )].

Therefore, the operator adx for all x ∈ g is a derivation of g called an inner derivation.

2.3 The root space decomposition of a simple Lie algebra

In this section, we will review the root space decomposition of a simple finite-dimensional Lie

algebra. We will define concepts such as diagonalizable operators, toral subalgebras, and root

systems associated to simple finite-dimensional Lie algebras.

Definition 2.3.1. Let V be a finite-dimensional vector space over C and let T be a linear operator

on V . If all the roots of the minimal polynomial of T are distinct, then T is called diagonalizable.

Equivalently, if there exists a basisB for V such that the matrix of T relative toB is diagonal, then

T is a diagonalizable operator.

7



Definition 2.3.2. Let g be a simple finite-dimensional Lie algebra and let h be a subalgebra of g

consisting only of elements x ∈ g where adx is a diagonalizable operator. Then the subalgebra h is

known as a toral subalgebra.

Remark 2.3.3. Every toral subalgebra h of a Lie algebra g is abelian.

Definition 2.3.4. Let h be a maximal toral subalgebra of g (that is, a toral subalgebra that is not a

proper subalgebra of any other toral subalgebra in g). Then we call h a Cartan subalgebra of g.

Let h be a Cartan subalgebra of g and let h∗ be the dual space of h. The set {adx | x ∈ h} is a class

of commuting diagonalizable linear operators of g and thus simultaneously diagonalizable. That

means g can be written as a direct sum of subspaces

g=
⊕

α∈h∗
gα, where gα = {x ∈ g | [t , x ] =α(t )x for all t ∈ h}.

All nonzero α ∈ h∗ for which gα 6= 0 are called the roots of g relative to h and the subspaces gα are

called the root spaces of g. The set of all such roots is called the root system of g and denoted by∆.

That is,

∆= {α ∈ h∗ |gα 6= 0 and α 6= 0}.

Remark 2.3.5. The subspace g0 is exactly the Cartan subalgebra h.

Definition 2.3.6. Let g be a simple finite-dimensional Lie algebra with Cartan subalgebra h. The

root space decomposition of g is

g= h⊕
�

⊕

α∈∆
gα

�

.

In the next proposition, we will give more information about the root system∆.

Proposition 2.3.7. For any simple finite-dimensional Lie algebra g and Cartan subalgebra h,

(a) The set of roots∆ is finite, does not contain 0, and spans the dual space h∗.

(b) For any root α ∈∆, the only multiples of α in∆ are ±α.

(c) For each α ∈∆, the subspaces gα and [gα,g−α] are one dimensional.

(d) If α,β , α+β ∈∆, then [gα,gβ ] = gα+β .

(e) If α,β ∈∆ but α+β /∈∆∪{0}, then [gα,gβ ] = {0}.

Definition 2.3.8. Let h be a Cartan subalgebra of g with root system∆ and let Π be a subset of∆.

We callΠ a base if the roots inΠ form a basis for h∗ and each α ∈∆ can be written as α=
∑

α∈∆k (α)α

where k :∆→Z and k (α) are all nonegative or all nonpositive.

The set Π is also known as the set of simple roots. We can fix an ordering of the simple roots Π

and label them α1,α2, · · · ,α`. If dim(h) = `, then we say g has rank `.
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Example 2.3.9. The Lie algebra g= sl(n ,C) is a vector space consisting of all n×n traceless matrices

with the basis
�

Ei j , Ek k −Ek+1,k+1 |1≤ i , j ≤ n , i 6= j , and 1≤ k < n
	

.

If we set hk = Ek k −Ek+1,k+1, then the vector space h= spanC {hk |1≤ k < n} forms a Cartan subal-

gebra of g. Let h ∈ h and write

h =























a1 0 0 0 · · · 0 0

0 a2 0 0 · · · 0 0

0 0 a3 0 · · · 0 0
...

...
...

... · · ·
...

...

0 0 0 0 · · · an−1 0

0 0 0 0 · · · 0 an























where
∑n

i=1 ai = 0. Let εi : h→C be the linear functional such that εi (h ) = ai . Then εi ∈ h∗ and we

have

[h , Ei j ] = (εi −ε j )(h )Ei j .

If we let αi j = εi −ε j , then the root system∆ related to h is the set

∆= {αi j |1≤ i , j ≤ n , and i 6= j },

and if we let αi =αi ,i+1 then the set of simple roots Π is given by

Π= {αi |1≤ i ≤ n −1}.

The root spaces are given by gαi j
=CEi j and the root space decomposition is

g= h⊕







⊕

1≤i , j≤n
i 6= j

CEi j






.

2.4 The Killing form and Cartan matrices of simple Lie algebras

In this section, we will use the Killing form to build a Cartan matrix associated to a simple finite-

dimensional Lie algebra.

Definition 2.4.1. Let g be any Lie algebra. The Killing form of g is defined as the bilinear form

κ : g⊗g→C, κ(x , y ) = tr(adx , ady ) for all x , y ∈ g.
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The Killing form satisfies the properties (for x , y , z ∈ g):

κ(x , y ) = κ(y , x ) (symmetry),

κ
�

[x , y ], z
�

= κ
�

x , [y , z ]
�

(invariance).

For any simple Lie algebra g of rank `, the restriction of the killing form to a Cartan subalgebra h

is nondegenerate, which means we can identify h with its dual space h∗. That is, for every α ∈∆we

can find a unique hα ∈ h that satisfies α(h ) = κ(hα, h ). We can also define a nondegenerate bilinear

form (·|·) : h∗×h→C as follows (let α ∈ h∗, h ∈ h):

(α|h ) = κ(hα, h ).

Since the elementsΠ= {α1,α2, · · · ,α`} form a base for∆, then the elements {hαi
}`i=1 form a basis

for h. It is more advantageous to work with certain scalar multiples of the elements hi . We will define

α∨ = 2
(α|α)hα for α ∈∆ and letΠ∨ = {α∨1 ,α∨2 , · · · ,α∨` }. The setΠ∨ is often referred to as the set of simple

coroots.

Definition 2.4.2. Let g be a simple finite-dimensional Lie algebra of rank `with a Cartan subalgebra

h, the set of simple roots Π= {α1,α2, · · · ,α`} related to h, and Π∨ = {α∨1 ,α∨2 , · · · ,α∨` } the set of simple

coroots. We can define a `× `matrix C =
�

ci j

�

1≤i , j≤` where ci j = (αi |α∨j ). The matrix C is called the

Cartan matrix associated to g.

Suppose g is a simple finite-dimensional Lie algebra of rank `. Then there is exactly one Cartan

matrix C associated to g and C satisfies the following properties (1≤ i , j ≤ `, i 6= j ):

(a) ci i = 2,

(b) ci j are nonpositive integers for i 6= j ,

(c) ci j = 0 ⇐⇒ c j i = 0,

(d) det(C ) 6= 0.

We list the Cartan matrices associated to the classical Lie algebras A`, B`, C`, and D` in the following

examples.

Example 2.4.3. For the Lie algebra A`, the Cartan matrix is

A` :



























2 −1 0 0 0 · · · 0 0 0

−1 2 −1 0 0 · · · 0 0 0

0 −1 2 −1 0 · · · 0 0 0
...

...
...

...
... · · ·

...
...

...

0 0 0 0 0 · · · 2 −1 0

0 0 0 0 0 · · · −1 2 −1

0 0 0 0 0 · · · 0 −1 2



























.
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Example 2.4.4. For the Lie algebra B`, the Cartan matrix is

B` :



























2 −1 0 0 0 · · · 0 0 0

−1 2 −1 0 0 · · · 0 0 0

0 −1 2 −1 0 · · · 0 0 0
...

...
...

...
... · · ·

...
...

...

0 0 0 0 0 · · · 2 −1 0

0 0 0 0 0 · · · −1 2 −1

0 0 0 0 0 · · · 0 −2 2



























.

Notice that the 2×2 block in the bottom right-hand corner of the Cartan matrix for B` is different

from the 2×2 block in the bottom right-hand corner of the Cartan matrix for A`.

Example 2.4.5. For the Lie algebra C`, the Cartan matrix is

C` :



























2 −1 0 0 0 · · · 0 0 0

−1 2 −1 0 0 · · · 0 0 0

0 −1 2 −1 0 · · · 0 0 0
...

...
...

...
... · · ·

...
...

...

0 0 0 0 0 · · · 2 −1 0

0 0 0 0 0 · · · −1 2 −2

0 0 0 0 0 · · · 0 −1 2



























.

Notice that the Cartan matrix for C` is the transpose of the Cartan matrix for B`.

Example 2.4.6. For the Lie algebra D`, the Cartan matrix is

D` :































2 −1 0 0 0 · · · 0 0 0 0

−1 2 −1 0 0 · · · 0 0 0 0

0 −1 2 −1 0 · · · 0 0 0 0
...

...
...

...
... · · ·

...
...

...

0 0 0 0 0 · · · 2 −1 0 0

0 0 0 0 0 · · · −1 2 −1 −1

0 0 0 0 0 · · · 0 −1 2 0

0 0 0 0 0 · · · 0 −1 0 2































.

Notice that the Cartan matrices for A` and D` are symmetric.

2.5 Dynkin diagrams of simple Lie algebras

Definition 2.5.1. Let g be a simple finite-dimensional Lie algebra and C =
�

ci j

�

1≤i , j≤` be its associ-

ated Cartan matrix. We can construct a graph based off the matrix C known as the Dynkin diagram
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of g and denoted D (g). In this graph, we draw ` nodes to represent the simple roots α1,α2, · · · ,α`. If

|ci j | ≥ |c j i |, then the nodes αi and α j are connected by |ci j | lines. If |ci j |> |c j i |, then we include an

arrow pointing toward the node αi .

Example 2.5.2. The Cartan matrix associated to the simple Lie algebra of type A2, then

�

2 −1

−1 2

�

and the Dynkin diagram D (A2) is given by the figure below.

Figure 2.1 The Dynkin Diagram of A2.

Example 2.5.3. The Cartan matrix associated to the simple Lie algebra of type G2, then

�

2 −1

−3 2

�

and the Dynkin diagram D (G2) is given by the figure below.

Figure 2.2 The Dynkin Diagram of G2.

In the following figures, we give the Dynkin diagrams for some of the classical and exceptional

Lie algebras.
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Figure 2.3 The Dynkin diagrams associated to A`−D`.

Figure 2.4 The Dynkin diagrams of the exceptional Lie algebras E6, E7, and E8.
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Notice that the Dynkin diagrams assoiciated to the Lie algebras A`, D`, E6, E7 and E8 do not have

any multiple edges between nodes. We call the Dynkin diagrams of these simple finite-dimensional

Lie algebras simply laced.

2.6 Lattices and automorphisms of Lie algebras

A large portion of this thesis deals with lattices and automorphisms of Lie algebras. We provide a

review of these concepts in this section.

Definition 2.6.1. An integral lattice of rank ` is a free abelian group Q that is generated by ` elements

and equipped with a Z-valued symmetric bilinear form (·|·) : Q ×Q →Z.

Example 2.6.2. SupposeΠ= {αi |i = 1, 2, · · · ,`} is the set of simple roots for a simple finite-dimensional

Lie algebra g and let C = (ci j )`i , j=1 be its associated Cartan matrix. We can construct a root lattice by

defining Q in the following way:

Q :=
⊕̀

i=1

Zαi

and we can use the Killing form to define the bilinear form (·|·) : Q ×Q →Z. That is,

(αi |α j ) = κ
�

αi
∨, hα j

�

.

In this thesis, we will focus on root lattices defined using the simple roots of simply laced Lie

algebras. Suppose Q is a root lattice of a simple Lie algebra g of type A`, D`, or E`. We can extract the

root system∆ from Q by considering the following set:

∆= {α ∈Q |(α|α) = 2}.

Also notice that the dual space h∗ = C⊗ZQ and (since we can identify h with h∗) we can write

h=C⊗ZQ . We can define a function ε : Q ×Q →{±1}where ε(αi ,α j ) =−1 when i = j or i < j and

the nodes αi and α j are connected in the Dynkin diagram. If the nodes αi and α j are connected

and i > j then we set ε(αi ,α j ) = 1. If the nodes αi and α j are not connected then ε(αi ,α j ) = 1. We

extend this map to Q ×Q by the following bimultiplicitivity properties (for any α,β ,γ ∈Q ):

ε(α+β ,γ) = ε(α,γ)ε(β ,γ),

ε(α,β +γ) = ε(α,β )ε(α,γ).

Definition 2.6.3. We can assign a one-dimensional vector space CEα to every α ∈∆ and build the

Lie algebra g (of type A`, D` or E`) associated to∆ via the Frenkel-Kac construction [33],

g= h⊕
�

⊕

α∈∆
CEα

�

, (2.3)
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where the Lie brackets are defined as

[h , h ′] = 0 if h , h ′ ∈ h,

[h , Eα] = (h |α)Eα if h ∈ h and α ∈∆,

[Eα, E−α] =−α if α ∈∆,

[Eα, Eβ ] = 0 if α,β ∈∆ and α+β /∈∆∪{0},

[Eα, Eβ ] = ε(α,β )Eα+β if α,β ∈∆ and α+β ∈∆.

Definition 2.6.4. An automorphism φ of a Lie algebra g is a Lie algebra isomorphism from g to

itself. That is, φ : g → g is linear, onto, one-to-one, and preserves the Lie bracket. Similarly, an

automorphismφ of an integral lattice Q is a linear, onto, and one-to-one mapφ : Q →Q such that

(α|β ) = (φα|φβ ) for all α,β ∈Q .

Definition 2.6.5. An automorphism φ of a Lie algebra g is called an inner automorphism if φ is

generated by products of exp(adx ) where x ∈ g and (adx )
n = 0 for some positive integer n . Any

automorphism of a Lie algebra that is not an inner automorphism is known as an an outer auto-

morphism.

Definition 2.6.6. Letφ be an automorphism of a root lattice Q from a simple finite-dimensional

Lie algebra g. A diagram automorphism µ : Q →Q is an automorphism that preserves the Dynkin

diagram associated to g.

Example 2.6.7. Let Q be the root lattice associated to the Lie algebra A` and recall the Dynkin

diagram associated to A` given in Figure 2.3. The only nontrivial diagram automorphism associated

to A` is the map that sends

αi 7→α`+1−i

for all 1≤ i ≤ `.

Example 2.6.8. Let Q be the root lattice for the simple finite-dimensional Lie algebra D` and recall

the Dynkin diagram associated to D` given in Figure 2.4. For ` 6= 4, there is one nontrivial diagram

automorphisms associated to D` that sends

α`−1 7→α`, αi 7→αi for i 6= `−1,`.

For `= 4, the Dynkin diagram takes the shape in the figure below.
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Figure 2.5 The Dynkin Diagram of D4.

and the set of diagram automorphisms associated to D4 consists of all possible permutations of

the roots α1,α3, and α4.

Let Q be a root lattice corresponding to a simple finite-dimensional Lie algebra g that is simply

laced. Recall that we can use Q to reconstruct the root space decomposition

g= h⊕
�

⊕

α∈∆
CEα

�

.

If µ is a diagram automorphism of Q , then µ induces an automorphism µ of g defined by

µ(α) =µ(α), µ(Eα) = Eµ(α).

The induced automorphism µ is called a diagram automorphism of g.

2.7 Affine Kac–Moody algebras

In this section, we review affine Kac–Moody algebras and their root systems. More details can be

found in [33].

Definition 2.7.1. Let g be a simple finite-dimensional Lie algebra of type X` with Lie bracket [·, ·].
An affine Kac-Moody algebra of type X (1)` is the Lie algebra

L̂ (g) =
�

g⊗C
�

t , t −1
��

⊕CK ⊕Cd ,

where the Lie bracket [·, ·] is extended to L̂ (g) in the following way:

[a ⊗ t m , b ⊗ t n ] = [a , b ]⊗ t m+n +mδm ,−n (a |b )K ,

[K ,L̂ (g)] = 0,

[d , a ⊗ t m ] =ma ⊗ t m ,

(2.4)

for a , b ∈ g and m , n ∈Z. Here (·|·) is a nondegenerate symmetric invariant bilinear form on g (which

can be any scalar multiple of the Killing form). We will denote by L̂ ′(g) the subalgebra of L̂ (g) given

16



by

L̂ ′(g) = (g⊗C[t , t −1])⊕CK .

A Cartan subalgebra h of L̂ (g) can be constructed by using the Cartan subalgebra�h of g with the

addition of the central element K and the derivation d . That is,

h=�h⊕CK ⊕Cd .

Similarly, the dual space h∗ of h (which has the same dimension as h) can be constructed using

the dual space�h∗ of g with the addition of two extra elements to its basis, which we will call α0 and

Λ0,

h∗ =�h∗⊕Cα0⊕CΛ0.

If �Π = {α1,α2, . . . ,α`} is the set of simple roots for g, then a base for the simple roots of L̂ (g) is

Π= {α0,α1, . . . ,α`}. We can also build a set of coroots Π∨ = {α∨0 ,α∨1 , . . . ,α∨` } for L̂ (g). Just like in the

simple finite-dimensional case, we can also construct a nondegenerate bilinear form (·|·) : h∗×h→C
as follows (let α ∈ h∗, h ∈ h):

(α|h ) =α(h ).

This bilinear form leads to the creation of a Cartan matrix C for L̂ (g)

C =
�

ci j

�

0≤i , j≤`

where ci j = (αi |α∨j ). Since �Π⊂Π, the Cartan matrix for L̂ (g)will have the Cartan matrix for g as a

submatrix.

Example 2.7.2. The Cartan matrix for the affine Kac–Moody algebra of type A(1)1 is

�

2 −2

−2 2

�

and the Cartan matrix for the affine Kac–Moody algebra of type A(1)` for `≥ 2 is































2 −1 0 0 0 0 · · · 0 0 −1

−1 2 −1 0 0 0 · · · 0 0 0

0 −1 2 −1 0 0 · · · 0 0 0

0 0 −1 2 −1 0 · · · 0 0 0
...

...
...

...
...

... · · ·
...

...
...

0 0 0 0 0 0 · · · 2 −1 0

0 0 0 0 0 0 · · · −1 2 −1

−1 0 0 0 0 0 · · · 0 −1 2































.

Similar to the simple finite-dimensional case, we can construct a Dynkin diagram based off
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the Cartan matrix C of L̂ (g). We provide the Dynkin diagram of A(1)` for `≥ 1 as an example in the

figures below. For more information, see [33].

Figure 2.6 The Dynkin diagram of A(1)1 .

Figure 2.7 The Dynkin diagram of A(1)` for `≥ 2.

Let C be the Cartan matrix associated to an affine Kac–Moody algebra L̂ (g). There exists a

unique vector δ̂= (a0, a1, . . . , a`)T where the ai ’s are positive relatively prime integers and C δ̂= 0.

Let δ=
∑`

i=0 aiαi where {αi |i = 0, 1, . . . ,`} is the set of simple roots. We call δ the null root and δ is

orthogonal to all roots

(δ|αi ) = 0 for 0≤ i ≤ `, (δ|Λ0) = 1.

Using δ we can re-express the dual space as

h∗ =�h∗⊕Cδ⊕CΛ0.

Let �∆ be the set of roots for g. The root system ∆ of L̂ (g) consists of the union of real roots

(denoted∆re) and imaginary roots (denoted∆im) given below

∆=∆re ∪∆im where∆re = {α+nδ|α ∈ �∆, n ∈Z} and∆im = {nδ|n ∈Z}.

2.8 Twisted affine Kac–Moody algebras

We briefly review automorphisms of finite order and twisted affine Kac–Moody algebras in this

section. Unless specified otherwise, g will be a simple finite-dimensional Lie algebra of type X`.

Suppose σ is an automorphism of the Lie algebra g with finite order N . Then the minimal

polynomial for σ is p (σ) = σN − I which is a product of distinct linear factors. That means σ is
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diagonalizable and the set of eigenvalues ofσ is
�

e
2πi j

N | j ∈Z/NZ
	

where i =
p
−1. The Lie algebra g

can be written as a direct sum of eigenspaces

g=
⊕

j∈Z/NZ
g j where g j = {a ∈ g |σa = e 2πi j /N a }.

We can use the automorphismσ and the associated eigenspaces g j to construct what is known as a

twisted affine Kac–Moody Lie algebra.

Definition 2.8.1. Letσ be an automorphism of the Lie algebra g of finite order N . We can define a

subalgebra L̂ (g,σ) of L̂ (g) by

L̂ (g,σ) =
⊕

j∈Z
L (g,σ) j ⊕CK ⊕Cd , (2.5)

where

L (g,σ) j = g j ⊗Ct j , j ∈Z. (2.6)

When g is simply laced (of type X = A, D , E ) and σ is a diagram automorphism of order N = 2 or

3, then the Lie algebra L̂ (g,σ) is known as the twisted affine Kac–Moody algebra of type X (N )` . We

will denote by L̂ ′(g,σ) the subalgebra of L̂ (g,σ) given by

L̂ ′(g,σ) =
⊕

j∈Z
L (g,σ) j ⊕CK .

Proposition 2.8.2 ([33]). Let σ be an automorphism of g of finite order N . Then there exists an

associated diagram automorphism µ of g (where the order of µ is 1, 2, or 3, depending on g) and an

inner automorphism ϕ of g such thatσ=µϕ.

Whenσ is not a diagram automorphism of g, then by Proposition 2.8.2 we haveσ=µϕ where µ

is a diagram automorphism and ϕ is an inner automorphism. Let r be the order of µ. This results in

the Lie algebra L̂ (g,σ) being isomorphic to the twisted affine Kac–Moody algebra L̂ (g,µ) of type

X (r )` when X = A, D , or E . For more information, see Theorem 8.5 in [33].

Remark 2.8.3. For an automorphismσ of g of finite order N , notice thatσ−1 also has order N . We

can consider the subalgebra L̂ (g,σ−1) of L̂ (g)where

L̂ (g,σ−1) =
⊕

j∈Z
L (g,σ−1) j ⊕CK ⊕Cd , (2.7)

where

L (g,σ−1) j = g j ⊗Ct j , j ∈Z,

g j = {a ∈ g |σa = e −2πi j /N a }.
(2.8)
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The Lie algebras L̂ (g,σ−1) and L̂ ′(g,σ−1) will be important when we construct vertex operator

representations of affine Kac–Moody algebras and toroidal Lie algebras.
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CHAPTER

3

VERTEX ALGEBRAS AND TWISTED

MODULES OVER VERTEX ALGEBRAS

In this chapter, we will review some basic concepts from the theory of vertex algebras. These concepts

include automorphisms of vertex algebras, subalgebras, and twisted modules over vertex algebras.

We will also construct representations of affine Kac–Moody algebras from twisted modules over

affine vertex algebras and lattice vertex algebras. For more information on these topics, we refer the

reader to [34].

3.1 Vertex algebras and examples

Let V be a vector space andZ≥1 be the set of positive integers. Recall that V [z , z−1] is the set of finite

sums

V [z , z−1] =
§

∑

n∈Z
vn z n−1 |vn ∈V all but finitely many vn = 0

ª

,

and V [z ] is the subset of V [z , z−1] consisting of finite sums with nonnegative powers of z

V [z ] =
§

∑

n∈Z≥1

vn z n−1 |vn ∈V all but finitely many vn = 0
ª

.
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In this thesis, we will be concerned with formal power series which are sums that are allowed to be

infinite. We will denote V [[z , z−1]] as the set

V [[z , z−1]] =
§

∑

n∈Z
vn z n−1 |vn ∈V

ª

,

and V [[z ]] as the subset of V [[z , z−1]] containing infinite sums with nonnegative powers of z

V [[z ]] =
§

∑

n∈Z≥1

vn z n−1 |vn ∈V
ª

.

Definition 3.1.1. A vertex algebra [20, 34, 42] is a vector space V with a distinguished vector 1 ∈V

(called the vacuum vector), equipped with bilinear n-th products for n ∈Z:

V ⊗V →V , a ⊗ b 7→ a(n )b , (3.1)

subject to the following axioms. First, for every fixed a , b ∈V , we have

a(n )b = 0, for n � 0, (3.2)

where n � 0 stands for sufficiently large n . This means that there exists some positive integer N

such that for all integers n such thatn >N we have a(n )b = 0. Second, the vacuum vector 1 plays

the role of a unit in the sense that

a(−1)1= 1(−1)a = a , 1(n )a = 0 for n ∈Z, n 6=−1, a(n )1= 0 for n ≥ 0. (3.3)

Lastly, the Borcherds identity must be satisfied for all a , b , c ∈V and k , m , n ∈Z:

∞
∑

j=0

�

m

j

�

(a(k+ j )b )(m+n− j )c =
∞
∑

i=0

�

k

i

�

(−1)i a(m+k−i )(b(n+i )c )

−
∞
∑

i=0

�

k

i

�

(−1)k+i b(n+k−i )(a(m+i )c ).

(3.4)

As a consequence of Axiom (3.2), all the sums in the Borcherds identity are finite. If we set k = 0

in the Borcherds identity, we obtain the commutator formula

[a(m ), b(n )] =
∞
∑

j=0

�

m

j

�

(a( j )b )(m+n− j ). (3.5)

Definition 3.1.2. The n-th products a(n )b for a , b ∈ V and n ∈ Z can be viewed as a sequence of

linear operators a(n ) ∈ End(V ) acting on b ∈ V . We call the operators a(n ) the modes of a . We can
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organize the modes into formal power series

Y (a , z ) =
∑

n∈Z
a(n )z

−n−1, a ∈V , (3.6)

called fields or vertex operators. The linear map Y : V → (EndV )[[z , z−1]] is known as the state-field

correspondence. Observe that Y (1, z ) = I is the identity operator.

Definition 3.1.3. We can define an operator T ∈ End(V ) by Ta = a(−2)1. The operator T is called

the translation operator and T satisfies the properties

[T , Y (a , z )] = Y (Ta , z ) = ∂z Y (a , z ), (3.7)

or equivalently,

[T , a(n )] = (Ta )(n ) =−na(n−1). (3.8)

Another important consequence of the Borcherds identity is the (−1)-st product identity where

for a , b ∈V we have

Y (a(−1)b , z ) = :Y (a , z )Y (b , z ):

=
∑

n<0

a(n )z
−n−1Y (b , z ) +

∑

n≥0

Y (b , z )a(n )z
−n−1. (3.9)

The double colons in Equation (3.9) denote the normally-ordered product. We can consider the

normally ordered product of more than two fields by applying the normally ordered product from

right to left. For example (a , b , c ∈V ),

:Y (a , z )Y (b , z )Y (c , z ):= :Y (a , z ) (Y (b , z )Y (c , z )) :

= :Y (a , z )

�

∑

n<0

b(n )z
−n−1Y (c , z ) +

∑

n≥0

Y (c , z )b(n )z
−n−1

�

:

=
∑

j<0

a( j )z
− j−1

�

∑

n<0

b(n )z
−n−1Y (c , z ) +

∑

n≥0

Y (c , z )b(n )z
−n−1

�

+

�

∑

n<0

b(n )z
−n−1Y (c , z ) +

∑

n≥0

Y (c , z )b(n )z
−n−1

�

∑

j≥0

a( j )z
− j−1. (3.10)

We can combine Equations (3.7)–(3.9), we get

Y (a(−1−m )b , z ) = :(∂ (m )z Y (a , z ))Y (b , z ):, m ≥ 0, and ∂ (m )z =
1

m !
∂ m

z . (3.11)

Finally, the Borcherds identity also provides us with a property known as locality where for a , b ∈V

we have

(z −w )N [Y (a , z ), Y (b , w )] = 0
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for sufficiently large N , depending on a , b (for example, we can take N to be such that a(n )b = 0 for

n ≥N ).

In the two following subsections we will discuss two important types of vertex algebras that will

be used later in this thesis: affine vertex algebras and lactice vertex algebras.

3.1.1 Affine vertex algebras

Definition 3.1.4. Suppose g is a simple finite-dimensional Lie algebra equipped with a nondegen-

erate symmetric invariant bilinear form (·|·). Consider the Lie algebra L̂ ′(g)with the brackets given

by the first brackets in Equation (2.4). For a fixed k ∈C (called the level), consider the (generalized)

Verma module for ĝ:

Vk (g) = IndL̂
′(g)

(g⊗C[t ])⊕CKC,

where g⊗C[t ] acts as 0 on C and K acts as multiplication by k . The module Vk (g) has the structure

of a vertex algebra [24], called the universal affine vertex algebra at level k . The ĝ-module Vk (g) has

a unique irreducible quotient V k (g), which is also a vertex algebra [24], known as the simple affine

vertex algebra at level k .

Let us review the vertex algebra structure of V = Vk (g); the same applies to V = V k (g) as well.

The vacuum vector 1 is the highest-weight vector of the ĝ-module V . For a ∈ g and n ∈Z, let a(n )
act as a ⊗ t n on V . We embed g in V so that we identify a ∈ g with a(−1)1 ∈V . The fields

Y (a , z ) =
∑

n∈Z
a(n )z

−n−1, a ∈ g,

are known as currents. All other fields in V are obtained by applying repeatedly Formula (3.11) as

shown below (see [20, 34, 42]):

Y (a1(−m1)a2(−m2) · · · as (−ms )1, z ) = :
�

∂ (m1−1)
z Y (a1, z )

� �

∂ (m2−1)
z Y (a2, z )

�

· · ·
�

∂ (ms−1)
z Y (as , z )

�

:

for ai ∈ g, mi ∈ N, and i ∈ {1,2, . . . , s }. For a , b ∈ g ⊂ V , their modes satisfy the commutation

relations of the Lie algebra ĝ:

[a(m ), b(n )] = [a , b ](m+n )+mδm ,−n (a |b )k . (3.12)

By the commutator formula (3.5), this is equivalent to the j -th products

a(0)b = [a , b ], a(1)b = (a |b )k1, a( j )b = 0 ( j ≥ 2). (3.13)

3.1.2 Lattice vertex algebras

Let Q be an integral lattice of rank `with a symmetric bilinear form (·|·): Q ×Q →Z. We will assume

that Q is even, which means that |α|2 = (α|α) ∈ 2Z for all α ∈Q . Let h=C⊗ZQ and extend the form
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(·|·) to h using bilinearity. We can construct a Heisenberg Lie algebra ĥ defined as

ĥ= (h⊗C[t , t −1])⊕CK ,

with the Lie brackets (h , h ′ ∈ h, m , n ∈Z):

[h ⊗ t m , h ′⊗ t n ] =mδm ,−n (h |h ′)K , [ĥ, K ] = 0. (3.14)

We will use the notation h(m ) = h ⊗ t m .

Definition 3.1.5. The bosonic Fock space B is the induced module

B = Indĥ
h[t ]⊕CKC' S (t −1h[t −1]),

where K acts as I and h[t ] acts trivially on C. The Fock space B has the structure of a vertex algebra

with a vacuum vector 1 the highest-weight vector and the state-field correspondence Y defined as

follows. For h ∈ h, we identify h with h(−1)1 ∈ B and let

Y (h , z ) =
∑

m∈Z
h(m )z

−m−1, h ∈ h, (3.15)

be the free boson fields. All other fields in B are obtained by applying repeatedly Formula (3.11).

That is,

Y (h1(−m1)h2(−m2) · · · hs (−ms )1, z ) = :
�

∂ (m1−1)
z Y (h1, z )

� �

∂ (m2−1)
z Y (h2, z )

�

· · ·
�

∂ (ms−1)
z Y (hs , z )

�

:,

for hi ∈ h, mi ∈N, and i ∈ {1, 2, . . . , s }. The Lie algebra ĥ has a unique highest-weight representation

on the Fock space [20, 34, 42].

We define a bimultiplicative function ε : Q ×Q →{±1} such that

ε(α,α) = (−1)|α|
2/2, α ∈Q , (3.16)

and satisfies

ε(α,β )ε(β ,α) = (−1)(α|β ), α,β ∈Q .

We use ε to define the twisted group algebra Cε[Q ]with basis {e α}α∈Q and multiplication

e αe β = ε(α,β )e α+β , e 0 = 1. (3.17)

We can construct the tensor product VQ defined as

VQ := B ⊗Cε[Q ],
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and the representation of ĥ can be extended to VQ by the action

h(m )(u ⊗ e β ) = (h(m )u +δm ,0(h |β )u )⊗ e β ,

for h ∈ h, m ∈ Z, u ∈ B and β ∈ Q . In particular, note that e β is a highest-weight vector for the

Heisenberg Lie algebra:

h(m )e
β =δm ,0(h |β )e β , m ≥ 0, h ∈ h, β ∈Q . (3.18)

We can also represent the algebra Cε[Q ] on VQ by

e α(u ⊗ e β ) = ε(α,β )(u ⊗ e α+β ),

for u ∈ B and α,β ∈Q .

For simplicity of notation, we will write e α for 1⊗e α ∈VQ and h for h(−1)1⊗e 0 ∈VQ , where α ∈Q

and h ∈ h.

Definition 3.1.6. The space VQ has the structure of a vertex algebra called the lattice vertex algebra,

with a vacuum vector 1⊗ e 0 and a state-field correspondence generated by the free boson fields

(3.15) and vertex operators

Y (e α, z ) = e αzα(0)e
�

∑∞
n=1α(−n )

z n
n

�

e
�

∑∞
n=1α(n )

z−n
−n

�

. (3.19)

In this formula, zα(0) acts on VQ by

zα(0) (u ⊗ e β ) = z (α|β )(u ⊗ e β ), u ∈ B , α,β ∈Q .

For future use, we need to compute the action of the translation operator T on VQ . Taking

advantage of Formulas (3.7) and (3.9) we get

Y (T e α, z ) = ∂z Y (e α, z ) =: Y (α, z )Y (e α, z ) := Y
�

α(−1)e
α, z

�

,

which gives us

T e α =α(−1)e
α, α ∈Q . (3.20)

3.2 Subalgebras, homomorphisms, and modules over vertex algebras

Definition 3.2.1. A subalgebra of a vertex algebra V is a subspace U of V that contains the vacuum

vector 1 and is closed under n-th products

a(n )u ∈U for all a , u ∈U .

Example 3.2.2. Consider any simple finite dimensional Lie algebra g and its Cartan subalgebra h.
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Recall from Section 3.1 that we can construct the affine vertex algebra Vk (g)where we identify a ∈ g
with a(−1)1 ∈Vk (g). If we let U be the subalgebra generated by all h ∈ h, then U is closed under all

n-th products and U is a subalgebra of the vertex algebra Vk (g).

Definition 3.2.3. Let V1 and V2 be two vertex algebras. A vertex algebra homomorphism is a linear

mapφ : V1→V2 that preserves the n-th products

φ
�

a(n )b
�

=φ(a )(n )φ(b ) for all a , b ∈V1, n ∈Z.

A vertex algebra isomorphism is a homomorphism that is both one-to-one and onto. A vertex

algebra automorphism is an isomorphism from V1 to itself.

Definition 3.2.4. Let V be a vertex algebra. An (untwisted) V -module is a vector space M endowed

with a linear map Y M : V → (EndM )[[z , z−1]],

Y M (a , z ) =
∑

m∈Z
a M
(m )z

−m−1, a ∈V , (3.21)

where for every a ∈V and v ∈M , we have

a M
(m )v = 0, for m � 0. (3.22)

Next, Y M (1, z ) = I and the Borcherds identity is satisfied any a , b ∈V , c ∈M , k , m , n ∈Z:

∞
∑

j=0

�

m

j

�

(a(k+ j )b )
M
(m+n− j )c =

∞
∑

i=0

�

k

i

�

(−1)i a M
(m+k−i )(b

M
(n+i )c )

−
∞
∑

i=0

�

k

i

�

(−1)k+i b M
(n+k−i )(a

M
(m+i )c ).

(3.23)

A submodule U of M is a subspace such that a M
(n )u ∈U for all a ∈V , n ∈Z, and u ∈U . We call a M

irreducible if its only submodules are {0} and M .

Example 3.2.5. Every vertex algebra V is a V -module.

Example 3.2.6. Let g be a simple finite-dimensional Lie algebra and recall the universal affine

vertex algebra Vk (g). Every Vk (g)-module is the same as a L̂ ′(g)-module M with the property that

a(n )v = 0 for a ∈ g, v ∈M and n � 0. If M is an irreducible L̂ ′(g)-module then M is an irreducible

Vk (g)-module. (see [24, 37, 42]).

3.3 Twisted modules over vertex algebras

We devote this section to the discussion of twisted modules over vertex algebras. The reader should

compare the definition of twisted modules over vertex algebras to that of untwisted modules over

vertex algebras in Section 3.2.
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3.3.1 Definition of twisted modules over vertex algebras

Definition 3.3.1. Let V be a vertex algebra and σ be an automorphism of V of order N . We can

write V as a direct sum of subspaces

V =
⊕

j∈Z/NZ
Vj , where Vj = {a ∈V |σa = e −2πi j /N a }.

Aσ-twisted V -module is a vector space M endowed with a linear map Y M : V → (EndM )[[z 1/N , z−1/N ]]

where

Y M (a , z ) =
∑

m∈ 1
N Z

a M
(m )z

−m−1, a ∈V , (3.24)

subject to the following axioms. First, for every a ∈V , v ∈M , we have

a M
(m )v = 0, for m � 0. (3.25)

Next, Y M (1, z ) = I and

Y M (σa , z ) = Y M (a , e 2πiz ), (3.26)

where the meaning of the right-hand side is that we replace z−m−1 with e −2πi(m+1)z−m−1 in each

summand of Equation (3.24) [16, 19]. Explicitly, Equation (3.26) means that if a is an eigenvector of

σ, then in Equation (3.26) we only have terms with m ∈ 1
N Z such that σa = e −2πim a . Finally, the

σ-twisted Borcherds identity must be satisfied for any a , b ∈V , c ∈M , k ∈Z, m , n ∈ 1
N Z:

∞
∑

j=0

�

m

j

�

(a(k+ j )b )
M
(m+n− j )c =

∞
∑

i=0

�

k

i

�

(−1)i a M
(m+k−i )(b

M
(n+i )c )

−
∞
∑

i=0

�

k

i

�

(−1)k+i b M
(n+k−i )(a

M
(m+i )c ),

(3.27)

provided thatσa = e −2πim a .

If we can set k = 0 in theσ-twisted Borcherds identity, then we obtain theσ-twisted commuta-

tor formula for a , b ∈V and m , n ∈ 1
N Z such thatσa = e −2πim a :

[a M
(m ), b M

(n )] =
∞
∑

j=0

�

m

j

�

(a( j )b )
M
(m+n− j ). (3.28)

Notice that the j -th product a( j )b in formula (3.28) corresponds to the j -th product defined in the

lattice vertex algebra V and not the j -th product corresponding to theσ-twisted module over V . If

σ is the identity operator, then M becomes an untwisted module over V .

The translation covariance properties in Equations (3.7) and (3.8) continue to hold for twisted

modules. However, Formula (3.11) does not hold for twisted modules. It is replaced by Bakalov’s
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Formula [37]:
1

k !
∂ k

z

�

(z −w )N Y M (a , z )Y M (b , w )
�

c
�

�

z=w
= Y (a(N−1−k )b , w )c , (3.29)

for all a , b ∈V , c ∈M , k ≥ 0 and sufficiently large N .

Example 3.3.2. Suppose σ ∈ Aut(Q ) where σN = I and extend σ to h = (h⊗C[t , t −1])⊕CK by

linearity. We can liftσ to an automorphism of the Heisenberg Lie algebra ĥ by

σ(h(m )) = (σh )(m ), σ(K ) = K ,

and to an automorphism of the Fock space B so thatσ1= 1. Since the cocycles ε(α,β ) and ε(σα,σβ )

are equivalent, there is a map η: Q →{±1} such that

η(α)η(β )ε(α,β ) =η(α+β )ε(σα,σβ ), α,β ∈Q .

We can choose the map η so that η(α) = 1 ifσα=α. (see [4]). We can also liftσ to an automorphism

of VQ = B ⊗Cε[Q ] by

σ(h(−m )1⊗ e α) = (σh )(−m )1⊗η(α)eσα

for h ∈ h. Notice that the order of the lift σ ∈ Aut(VQ ) is N or 2N . The irreducible σ-twisted VQ -

modules were classified in [5].(see also [16, 41]).

Example 3.3.3. 2.8, As in Section 2.8, 2.8, let g be a simple finite-dimensional Lie algebra and

σ ∈Aut(g) such thatσN = I . Recall that

g=
⊕

j∈Z/NZ
g j where g j = {a ∈ g |σa = e 2πi j /N a }.

From Proposition 2.8.2, we can writeσ=µϕ where ϕ is an inner automorphism and µ is a diagram

automorphism. We extendσ uniquely to an automorphism of the universal affine vertex algebra

Vk (g) by

σ(1) = 1, σ(a(m )) = (σa )(m ), a ∈ g, m ∈Z. (3.30)

3.3.2 Vertex operator representations of affine Kac–Moody algebras

Recall from Section 2.8 that ifσ is an automorphism of finite order of g then we can construct the

twisted affine Lie algebras L̂ ′(g,σ) and L̂ ′(g,σ−1). The following proposition connects L̂ ′(g,σ−1)

to aσ-twisted Vk (g)-module M .

Proposition 3.3.4 (cf. [37]). For any σ-twisted Vk (g)-module M , the Lie algebra spanned by the

modes of the fields Y M (a , z ) for a ∈ g form a representation of the twisted affine Kac–Moody algebra

L̂ ′(g,σ−1) on M of level k .

Proof. We will define a Lie algebra homomorphism from L̂ ′(g,σ−1) to the modes of the fields

Y M (a , z ). By linearity, since σ is diagonalizable, we can assume that a ∈ g is an eigenvector of σ.

29



Recall that the set of eigenvalues forσ is
�

e
2πi j

N | j ∈Z
	

. Suppose thatσa = e 2πi j /N a for some j ∈Z.

Thenσ−1a = e −2πi j /N a . Recall that L̂ ′(g,σ−1) is given by

L̂ ′(g,σ−1) =
⊕

j∈Z
L (g,σ−1) j ⊕CK ,

where

L (g,σ−1) j = g j ⊗Ct j , j ∈Z,

g j = {a ∈ g |σa = e −2πi j /N a }.

Recall from Equation (3.24) that the the modes of the fields Y M (a , z ) for a ∈ g take the form a M
(m )

for m ∈ 1
N Z. We define a linear map from L̂ ′(g,σ−1) to the span of these modes, by sending a ⊗ t j

to a M
( j /N ). We also send K to k I as a linear operator on M .

To check that this is a Lie algebra homomorphism, we compute the commutator of modes,

which is given by theσ-twisted commutator formula (3.28). Using the brackets in (3.13), we obtain

[a M
(m ), b M

(n )] = [a , b ]M(m+n )+mδm ,−n (a |b )k

for a , b ∈ g and m , n ∈ 1
N Z such thatσa = e −2πim a andσb = e −2πin b . As this coincides with the Lie

bracket in (2.4) in L̂ ′(g,σ−1)with K = k I , the claim follows.

Remark 3.3.5. When σ is an inner automorphism of g, then L̂ ′(g,σ−1) ' L̂ ′(g) is an untwisted

affine Lie algebra.

Suppose now g is a simple Lie algebra of type X` where X = A, D , E (simply laced). Let∆ be its

root system and Q =Z∆ its root lattice. Letσ be an automorphism of the lattice Q of finite order N .

Recall that we can use Q to construct the lattice vertex algebra VQ , and in Example 3.3.2 we liftedσ

to an automorphism of the lattice vertex algebra VQ .

Corollary 3.3.6 (cf. [36, 37]). For anyσ-twisted VQ -module M , the modes of the free bosons Y M (h , z )

for h ∈ h and the modes of the vertex operators Y M (e α, z ) for α ∈∆ span a representation of the

twisted affine Kac–Moody algebra L̂ ′(g,σ−1) on M .

Proof. By the Frenkel–Kac construction [22], the lattice vertex algebra VQ is isomorphic to the simple

affine vertex algebra V 1(g) (see [34, Theorem 5.6 (c)]). The mapσ induces an automorphism of g

and hence of V 1(g). Recall that V 1(g) is a quotient of the universal affine vertex algebra V1(g). Thus

anyσ-twisted V 1(g)-module M is also aσ-twisted module for V1(g). The claim then follows from

Proposition 3.3.4.
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CHAPTER

4

VERTEX OPERATOR REPRESENTATIONS

OF TOROIDAL LIE ALGEBRAS

In this chapter, we construct representations of twisted toroidal Lie algebras using twisted modules

over vertex algebras. We start by defining toroidal Lie algebras and twisted toroidal Lie algebras.

Next, we build on the information presented in Chapter 3 to construct representations of twisted

toroidal Lie algebras.

4.1 Toroidal Lie Algebras

We now provide the definitions of toroidal Lie algebras and twisted toroidal Lie algebras. The reader

should notice a connection between these definitions and that of twisted and untwisted affine

Kac–Moody algebras presented in Sections 2.7 and 2.8.

4.1.1 Untwisted toroidal Lie algebras

Let g be a fixed simple finite-dimensional Lie algebra equipped with a Lie bracket [·, ·] and a non-

degenerate symmetric invariant bilinear form (·|·). Let r be a fixed integer. We will use variables

t0, t1, . . . , tr and multi-index notation

t= (t1, . . . , tr ), m= (m1, . . . , mr ) ∈Zr , tm = t m1
1 · · · t mr

r .
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Definition 4.1.1. Consider the loop algebraLr+1(g) in r +1 variables

Lr+1(g) = g⊗O , O =C[t ±1
0 , t ±1

1 , . . . , t ±1
r ],

where the Lie bracket [·, ·] is extended to L̂ (g) in the following way (a , b ∈ g, m0, n0 ∈Z,m,n ∈Zr ):

[a ⊗ t m0
0 tm, b ⊗ t n0

0 t
n] = [a , b ]⊗ t m0+n0

0 tm+n.

Next, we create a central extension L̂ ′r+1(g) ofLr+1(g):

L̂ ′r+1(g) =Lr+1(g)⊕K ,

where

K =
�

r
⊕

i=0

CKi ⊗O
�À

spanC
¦

r
∑

i=0

mi Ki ⊗ t m0
0 tm

�

�

�mi ∈Z
©

. (4.1)

The Lie brackets in L̂ ′r+1(g) are given by:

[a ⊗ t m0
0 tm, b ⊗ t n0

0 t
n] = [a , b ]⊗ t m0+n0

0 tm+n+ (a |b )
r
∑

i=0

mi Ki ⊗ t m0+n0
0 tm+n, (4.2)

[K ,L̂ ′r+1(g)] = 0. (4.3)

By Kassel’s Theorem, the central extension L̂ ′r+1(g) ofLr+1(g) is universal [40] (setting Ki = t −1
i d ti

allows us to identifyK with Ω1/dO 1). The Lie algebra L̂ ′r+1(g) is known as the toroidal Lie algebra

[47].

Remark 4.1.2. Notice that when r = 0, we have

L̂1(g) = g⊗C[t ±1
0 ]⊕K ,

whereK =
�

CK0⊗C[t ±1
0 ]

�À

spanC
¦

∑r
i=0 m0K0⊗ t m0

0

�

�

�m0 ∈Z
©

. We can see thatK 'CK0 and L̂ ′1(g)
is the affine algebra L̂ ′(g) defined in Section 2.7.

It will be convenient to slightly modify the definition of L̂ ′r+1(g) as follows. For a given complex

number k (called the level), we replace the bracket (4.2) with

[a ⊗ t m0
0 tm, b ⊗ t n0

0 t
n] = [a , b ]⊗ t m0+n0

0 tm+n+k (a |b )
r
∑

i=0

mi Ki ⊗ t m0+n0
0 tm+n. (4.4)

The resulting Lie algebraLr+1(g)⊕K with bracket (4.4) and (4.3) will be denoted as L̂ ′r+1,k (g) and

called the toroidal Lie algebra of level k . Notice that, for k 6= 0, formulas (4.2) and (4.4) are equivalent

after rescaling the bilinear form (·|·) or rescaling the central elements K0, . . . , Kr .

Now we will add derivations to our toroidal Lie algebra, as in [12]. We letD be the Lie algebra of
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derivations of O given by

D =
¦

r
∑

i=0

di ⊗ fi

�

�

� fi ∈O
©

, di = ti
∂

∂ ti
,

andD+ be the subalgebra ofD given by

D+ =
¦

r
∑

i=1

di ⊗ fi

�

�

� fi ∈O
©

.

Then the elements of D+ extend uniquely to derivations of the Lie algebra L̂ ′r+1(g) by (a ∈ g, 1 ≤
i , j ≤ r ):

(di ⊗ t m0
0 tm)(a ⊗ t n0

0 t
n) = ni a ⊗ t m0+n0

0 tm+n,

(di ⊗ t m0
0 tm)(K j ⊗ t n0

0 t
n) = ni K j ⊗ t m0+n0

0 tm+n+δi , j

r
∑

l=0

ml Kl ⊗ t m0+n0
0 tm+n.

The Lie algebra we will consider in this thesis, which we will refer to again as a toroidal Lie algebra

of level k , is

L̂r+1,k (g) = L̂ ′r+1,k (g)⊕D+,

with the Lie brackets given by (4.4), (4.3), and (a ∈ g, ml , nl ∈Z, 1≤ i , j ≤ r ):

[di ⊗ t0
m0tm, a ⊗ t0

n0tn] = ni a ⊗ t m0+n0
0 tm+n, (4.5)

[di ⊗ t m0
0 tm, K j ⊗ t n0

0 t
n] = ni K j ⊗ t m0+n0

0 tm+n+δi , j

r
∑

l=0

ml Kl ⊗ t m0+n0
0 tm+n, (4.6)

[di ⊗ t m0
0 tm, d j ⊗ t n0

0 t
n] = ni d j ⊗ t m0+n0

0 tm+n−m j di ⊗ t m0+n0
0 tm+n (4.7)

−ni m j

r
∑

l=0

ml Kl ⊗ t m0+n0
0 tm+n.

The last term in (4.7) corresponds to aK -valued 2-cocycle onD+. In fact, we can define the bracket

in (4.7) more generally as

[di ⊗ t m0
0 tm, d j ⊗ t n0

0 t
n] = ni d j ⊗ t m0+n0

0 tm+n−m j di ⊗ t m0+n0
0 tm+n

+τ
�

di ⊗ t m0
0 tm, d j ⊗ t n0

0 t
n
�

where τ is any linear combination of the two cocycles τ1 and τ2 defined by

τ1

�

di ⊗ t m0
0 tm, d j ⊗ t n0

0 t
n
�

=−m j ni

r
∑

l=0

ml Kl ⊗ t m0+n0
0 tm+n
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and

τ2

�

di ⊗ t m0
0 tm, d j ⊗ t n0

0 t
n
�

=−mi n j

r
∑

l=0

ml Kl ⊗ t m0+n0
0 tm+n.

In our definition of a toroidal Lie algebra of level k , we will only consider τ = τ1+ 0τ2. For more

information on derivations of toroidal Lie algebras and 2-cocycles, see [8].

Notice that, for k 6= 0, if we rescale the generators K0, . . . , Kr in order to replace (4.4) with (4.2),

the 2-cocycle gets rescaled by 1/k .

4.1.2 Twisted toroidal Lie algebras

As before, fix a level k ∈C, and letσ be an automorphism of order N of a simple finite-dimensional

Lie algebra g. As in (3.29), we denote by g j ( j ∈Z) the eigenspace ofσ with eigenvalue e 2πi j /N . The

nondegenerate symmetric invariant bilinear form (·|·)we associated with g isσ-invariant. That is,

(a |b ) = (σa |σb ) for all a , b ∈ g. If we choose a ∈ gm and b ∈ gn , then theσ-invariance of (·|·) gives us

(a |b ) = (σa |σb )

=
�

e 2πim/N a |e 2πin/N b
�

= e 2πi(m+n )/N (a |b )

which implies e 2πi(m+n )/N = 1 or (a |b ) = 0. Therefore, we have

(a |b ) = 0, a ∈ gm , b ∈ gn , m +n 6≡ 0 mod N . (4.8)

Consider the subalgebraLr+1(g,σ) of the loop algebraLr+1(g) given by

Lr+1(g,σ) =
⊕

m0∈Z
Lr+1(g,σ)m0

where

Lr+1(g,σ)m0
= gm0

⊗ spanC
�

t m0
0 tm

�

�m0 ∈Z, m ∈Zr
	

.

Let

K ′ =
spanC

�

Ki ⊗ t N m0
0 tm

�

�m0 ∈Z, m ∈Zr , i = 0, . . . , r
	

spanC
��

N m0K0+
∑r

i=1 mi Ki

�

⊗ t N m0
0 tm

�

�mi ∈Z
	

.

We can identifyK ′ as the subspace ofK given by the image of

spanC
�

Ki ⊗ t N m0
0 tm

�

�m0 ∈Z, m ∈Zr , i = 0, . . . , r
	

under the quotient map
⊕r

i=0CKi ⊗O →K (cf. (4.1)). Then the central extension

L̂ ′r+1,k (g,σ) =Lr+1(g,σ)⊕K ′ ⊂ L̂ ′r+1,k (g)
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is a subalgebra of L̂ ′r+1,k (g), thanks to (4.4), (4.8).

Definition 4.1.3. When σ is a diagram automorphism of g, L̂ ′r+1,1(g,σ) is known as the twisted

toroidal Lie algebra [25]. We will continue to use that terminology for an arbitrary finite-order

automorphismσ of g.

As in Section 4.1.1, we can add to L̂ ′r+1,k (g,σ) a subalgebra of the Lie algebra of derivationsD of

O . We define

L̂r+1,k (g,σ) = L̂ ′r+1,k (g,σ)⊕D ′+ (4.9)

where

D ′+ = spanC
�

di ⊗ t N m0
0 tm

�

�m0 ∈Z, m ∈Zr , i = 1, . . . , r
	

.

It is easy to see from (4.5)–(4.7) that L̂r+1,k (g,σ) is a subalgebra of the toroidal Lie algebra L̂r+1,k (g).

We will also call L̂r+1,k (g,σ) the twisted toroidal Lie algebra of level k .

4.2 Tensor products of vertex algebras and twisted modules

Our construction of vertex operator representations of toroidal Lie algebras will involve twisted

modules over a tensor product of vertex algebras. We review tensor products of vertex algebras and

twisted modules over tensor products in this section.

Definition 4.2.1. The tensor product V1⊗V2 of two vertex algebras V1 and V2 is a vertex algebra [21]

with a vacuum vector 1⊗1 and a state-field correspondence given by (a ∈V1, b ∈V2):

Y (a ⊗ b , z ) = Y (a , z )⊗Y (b , z ) =
∑

k ,m∈Z
a(k )⊗ b(m )z

−k−m−2. (4.10)

In terms of modes, we have

(a ⊗ b )(n ) =
∑

k∈Z
a(k )⊗ b(n−k−1). (4.11)

Recall that in a vertex algebra we can define a translation operator T ∈ End(V1⊗V2) such that

T (a ⊗ b ) = (a ⊗ b )(−2)(1⊗1). By Equation (4.11),

(a ⊗ b )(−2)1⊗1=
∑

k∈Z
a(k )⊗ b(−2−k−1)(1⊗1)

=
∑

k∈Z
a(k )1⊗ b(n+2−1)1

and from the vacuum axiom in Equation (3.3),

(a ⊗ b )(−2)1⊗1= a(−2)1⊗ b(−1)1+a(−1)1⊗ b(−2)1

= a(−2)1⊗ b +a ⊗ b(−2)1

= (T1⊗ I2+ I1⊗T2)(a ⊗ b )
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where Ti is the translation operator and Ii is the identity operator in Vi for i = 1,2. Therefore the

translation operator T in V1⊗V2 is

T = T1⊗ I2+ I1⊗T2.

Example 4.2.2. Let V1 and V2 be vertex algebras with finite-order automorphisms σ1 and σ2, re-

spectively. Suppose Mi (i = 1, 2) areσi -twisted Vi -modules. Thenσ1⊗σ2 is an automorphism of the

tensor product vertex algebra V1⊗V2 and the tensor product M1⊗M2 is aσ1⊗σ2-twisted module

over V1⊗V2 with

Y M1⊗M2 (a ⊗ b , z ) = Y M1 (a , z )⊗Y M2 (b , z ), a ∈V1, b ∈V2, (4.12)

see [4, 21].

Remark 4.2.3. Let Q1 and Q2 be two integral lattices of rank `1 and `2, respectively. Let Q̂ be the

orthogonal direct sum of Q1 and Q2 of rank `1+ `2. That is, let Q̂ =Q1⊕Q2 such that (a |b ) = 0 for

any a ∈Q1 and b ∈Q2. Then the lattice vertex algebra VQ̂ 'VQ1
⊗VQ2

(see [23] and [42]).

4.3 Twisted modules over Vk (g)⊗VJ and twisted toroidal Lie algebras

We will now explore the relationship between twisted toroidal Lie algebras in r +1 variables and

the tensor product of the universal affine vertex algebra Vk (g)with the lattice vertex algebra corre-

sponding to r copies of a certain rank-2 lattice. The level k ∈Cwill be fixed through the end of the

section.

As before, consider an automorphism σ of finite order N of a simple finite-dimensional Lie

algebra g, and the twisted toroidal Lie algebra (of level k ) L̂r+1,k (g,σ) defined by (4.9). For i = 1, . . . , r ,

let Ji be the lattice given by

Ji =Zδi ⊕ZΛi
0, (δi |Λi

0) = 1, (δi |δi ) = (Λi
0|Λ

i
0) = 0. (4.13)

We define a bimultiplicative function ε : Ji × Ji →{±1} satisfying Equation (3.16) by ε(δi ,Λi
0) =−1

and ε = 1 for all other pairs of generators. Note that Ji is an even integral lattice. Then we can form

the lattice vertex algebra VJi
as in Subsection 3.1.2.

Introduce the orthogonal direct sum

J = J1⊕ · · ·⊕ Jr , (4.14)

and extend ε to J × J by ε(δi ,Λ
j
0) =−1 for i = j and ε = 1 for all other pairs of generators. Then the

lattice vertex algebra VJ is isomorphic to the tensor product:

VJ 'VJ1
⊗ · · ·⊗VJr

. (4.15)

As preparation for our main theorem, we need to calculate some n-th products in VJ . We will use
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the notation

pδ =
r
∑

i=1

piδ
i , p= (p1, . . . , pr ) ∈Zr .

Lemma 4.3.1. The lattice vertex algebra VJ has the following n-th products for p,q ∈Zr and

i , j = 1, . . . , r :

e pδ(−1)e
qδ = e (p+q)δ,

e pδ(−2)e
qδ = (pδ)(−1)e

(p+q)δ,
�

u(−1)e
pδ
�

(n )

�

v(−1)e
qδ
�

= 0 for n ≥ 0, u , v ∈ {1,δ1, . . . ,δr },
�

Λi
0(−1)e

pδ
�

(0)e
qδ = qi e (p+q)δ,

�

Λi
0(−1)e

pδ
�

(n )e
qδ = 0 for n ≥ 1,

�

Λi
0(−1)e

pδ
�

(0)

�

δ
j
(−1)e

qδ
�

= qiδ
j
(−1)e

(p+q)δ +δi , j (pδ)(−1)e
(p+q)δ,

�

Λi
0(−1)e

pδ
�

(1)

�

δ
j
(−1)e

qδ
�

=δi , j e (p+q)δ,
�

Λi
0(−1)e

pδ
�

(n )

�

δ
j
(−1)e

qδ
�

= 0 for n ≥ 2,
�

Λi
0(−1)e

pδ
�

(0)

�

Λ
j
0 (−1)e

qδ
�

=
�

−pjΛ
i
0(−1)+qiΛ

j
0 (−1)−qi pj (pδ)(−1)

�

e (p+q)δ,
�

Λi
0(−1)e

pδ
�

(1)

�

Λ
j
0 (−1)e

qδ
�

=−qi pj e (p+q)δ,
�

Λi
0(−1)e

pδ
�

(n )

�

Λ
j
0 (−1)e

qδ
�

= 0 for n ≥ 2.

Proof. The n-th product
�

e pδ
�

(n )

�

e qδ
�

is the coefficient of z−n−1 in Y
�

e pδ, z
�

e qδ. We use Equation

(3.19) to obtain:

Y (e pδ, z )e qδ = e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

exp

�

∑

m>0

(pδ)(m )
z−m

−m

�

e qδ.

For h=C⊗ J , the vector e qδ commutes with the exponentials in Y
�

e pδ, z
�

due to the action (3.18)

and exp
�

∑

m>0(pδ)(m )
z−m

−m

�

1= 1. From this we are able to simplify Y (e pδ, z )e qδ to the following:

Y (e pδ, z )e qδ = e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

e qδ.

By definition of the operator z (pδ)(0) , we have z (pδ)(0)e qδ = z (pδ|qδ)e qδ. Since (pδ|qδ) = 0, we obtain

z (pδ)(0)e qδ = e qδ. From (3.17), the product e pδe qδ can be expressed as ε(pδ,qδ)e (p+q)δ = e (p+q)δ.

Moreover, by the definition of the map ε, we get ε(δi ,δ j ) = 1, which results in ε(pδ,qδ) = 1. This

leads to

Y (e pδ, z )e qδ = exp

�

∑

m>0

(pδ)(−m )
z m

m

�

e (p+q)δ.
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Notice that this sum can be expanded as follows:

Y (e pδ, z )e qδ = exp

�

1+ (pδ)(−1)
z 1

1
+ . . .

�

e (p+q)δ (4.16)

where the dots refer to higher powers of z . To evaluate
�

e pδ
�

(n )

�

e qδ
�

for n = −1, we look for the

coefficient in front of z−(−1)−1 = z 0 in Y (e pδ, z )e qδ, which gives us

�

e pδ
�

(−1)

�

e qδ
�

= e (p+q)δ.

For
�

e pδ
�

(n )

�

e qδ
�

when n =−2, we look for the coefficient of z−(−2)−1 = z 1 in Y (e pδ, z )e qδ, and we

find
�

e pδ
�

(−2)

�

e qδ
�

= (pδ)(−1)e
(p+q)δ.

Notice that there are no negative powers of z in Equation 4.16, so
�

e pδ
�

(n )

�

e qδ
�

= 0, for n ≥ 0.

The remaining n-th products are found in a similar fashion. We can find
�

u(−1)e
pδ
�

(n )

�

v(−1)e
qδ
�

for n ≥ 0 and u , v ∈ {1,δ1, . . . ,δr }when we consider the coefficient of z−n−1 in Y
�

u(−1)e
pδ, z

�

v(−1)e
qδ

as shown

Y
�

u(−1)e
pδ, z

�

v(−1)e
qδ =

�

∑

l∈Z
u(l )z

−l−1

�

e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

×exp

�

∑

m>0

(pδ)(m )
z−m

−m

�

v(−1)e
qδ

= v(−1)

�

∑

l∈Z>0

u(−l )z
l−1

�

z 0exp

�

∑

m>0

(pδ)(−m )
z m

m

�

e (p+q)δ

= v(−1)e
(p+q)δ �1+u(−1)z

0+u(−2)z
1+ . . .

�

�

1+ (pδ)(−1)
z 1

1
+ . . .

�

e (p+q)δ.

This sum has no negative powers of z . Therefore
�

u(−1)e
pδ
�

(n )

�

v(−1)e
qδ
�

= 0 for n ≥ 0.

Next, the n-th product
�

Λi
0(−1)e

pδ
�

(n )e
qδ is the coefficient of z−n−1 in Y

�

Λi
0(−1)e

pδ, z
�

e qδ as shown

below,

Y (Λi
0(−1)e

pδ, z )e qδ

= :Y (Λi
0, z )Y (e pδ, z ): e qδ

=

�

∑

l<0

Λi
0(l )z

−l−1

�

e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

exp

�

∑

m>0

(pδ)(m )
z−m

−m

�

e qδ

+ e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

exp

�

∑

m>0

(pδ)(m )
z−m

−m

��

∑

l≥0

Λi
0(l )z

−l−1

�

e qδ,
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which we can simplify to the following:

Y (Λi
0(−1)e

pδ, z )e qδ

=

�

∑

l<0

Λi
0(l )z

−l−1

�

exp

�

∑

m>0

(pδ)(−m )
z m

m

�

e (p+q)δ

+ e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

exp

�

∑

m>0

(pδ)(m )
z−m

−m

�

(Λi
0|qδ)e

qδz−1

=

�

∑

l<0

Λi
0(l )z

−l−1

�

exp

�

∑

m>0

(pδ)(−m )
z m

m

�

e (p+q)δ +qi z−1z 0exp

�

∑

m>0

(pδ)(−m )
z m

m

�

e (p+q)δ

=
�

Λi
0(−1)z

0+Λi
0(−2)z

1+ . . .
�

�

1+ (pδ)(−1)
z 1

1
+ (pδ)(−2)

z 2

2
+ . . .

�

e (p+q)δ

+qi z−1

�

1+ (pδ)(−1)
z 1

1
+ (pδ)(−2)

z 2

2
+ . . .

�

e (p+q)δ.

For n = 0, the coefficient of z−1 is qi e (p+q)δ. Thus,
�

Λi
0(−1)e

pδ
�

(0)e
qδ = qi e (p+q)δ. Since there are no

negative powers of z , then for n ≥ 0, we have
�

Λi
0(−1)e

pδ
�

(n )e
qδ = 0.

Now we will consider the n-th product
�

Λi
0(−1)e

pδ
�

(n )

�

δ j
(−1)e

qδ
�

. This is the coefficient of z−n−1

in Y
�

Λi
0(−1)e

pδ, z
�

δ j
(−1)e

qδ as shown:

Y (Λi
0(−1)e

pδ, z )δ j
(−1)e

qδ

= :Y (Λi
0, z )Y (e pδ, z ):δ j

(−1)e
qδ

=

�

∑

l<0

Λi
0(l )z

−l−1

�

e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

exp

�

∑

m>0

(pδ)(m )
z−m

−m

�

δ j
(−1)e

qδ

+ e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

exp

�

∑

m>0

(pδ)(m )
z−m

−m

��

∑

l≥0

Λi
0(l )z

−l−1

�

δ j
(−1)e

qδ

=

�

∑

l<0

Λi
0(l )z

−l−1

�

δ j
(−1)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

e (p+q)δ

+ e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

exp

�

∑

m>0

(pδ)(m )
z−m

−m

�

�

(Λi
0|qδ)δ

j
(−1)z

−1+ (Λi
0|δ

j )z−2
�

e qδ

=δ j
(−1)

�

∑

l<0

Λi
0(l )z

−l−1

�

exp

�

∑

m>0

(pδ)(−m )
z m

m

�

e (p+q)δ

+
�

qiδ
j
(−1)z

−1+δi , j z−2
�

exp

�

∑

m>0

(pδ)(−m )
z m

m

�

e (p+q)δ

=δ j
(−1)

�

Λi
0(−1)z

0+Λi
0(−2)z

1+ . . .
�

�

1+ (pδ)(−1)
z 1

1
+ (pδ)(−2)

z 2

2
+ . . .

�

e (p+q)δ

+
�

qiδ
j
(−1)z

−1+δi , j z−2
�

�

1+ (pδ)(−1)
z 1

1
+ (pδ)(−2)

z 2

2
+ . . .

�

e (p+q)δ.
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For n = 0, the coefficient of z−1 is
�

qiδ
j
0 (−1)+δi , j (pδ)(−1)

�

e (p+q)δ. For n = 1, the coefficient of z−2 is

δi , j e (p+q)δ. Also, there are no powers of z less than −2. Thus,

�

Λi
0(−1)e

pδ
�

(0)

�

δ
j
(−1)e

qδ
�

= qiδ
j
(−1)e

(p+q)δ +δi , j (pδ)(−1)e
(p+q)δ,

�

Λi
0(−1)e

pδ
�

(1)

�

δ
j
(−1)e

qδ
�

=δi , j e (p+q)δ,
�

Λi
0(−1)e

pδ
�

(n )

�

δ
j
(−1)e

qδ
�

= 0 for n ≥ 2,

Finally, the n-th product
�

Λi
0(−1)e

pδ
�

(n )

�

Λ0
j
(−1)e

qδ
�

is the coefficient of z−n−1 in Y
�

Λi
0(−1)e

pδ, z
�

Λ0
j
(−1)e

qδ

as shown:

Y (Λi
0(−1)e

pδ, z )Λ j
0 (−1)e

qδ

= :Y (Λi
0, z )Y (e pδ, z ):Λ j

0 (−1)e
qδ

=

�

∑

l<0

Λi
0(l )z

−l−1

�

e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

exp

�

∑

m>0

(pδ)(m )
z−m

−m

�

Λ
j
0 (−1)e

qδ

+ e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

exp

�

∑

m>0

(pδ)(m )
z−m

−m

��

∑

l≥0

Λi
0(l )z

−l−1

�

Λ
j
0 (−1)e

qδ

=

�

∑

l<0

Λi
0(l )z

−l−1

�

e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

�

Λ
j
0 (−1)−

�

pδ|Λ j
0

�

z−1
�

e qδ

+ e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

exp

�

∑

m>0

(pδ)(m )
z−m

−m

�

�

Λi
0|qδ

�

Λ
j
0 (−1)z

−1e qδ

=
�

Λ
j
0 (−1)−pj z−1

�

�

∑

l<0

Λi
0(l )z

−l−1

�

exp

�

∑

m>0

(pδ)(−m )
z m

m

�

e (p+q)δ

+ e pδz (pδ)(0)exp

�

∑

m>0

(pδ)(−m )
z m

m

�

�

qiΛ
j
0 (−1)z

−1−qi

�

pδ|Λ j
0

�

z−2
�

e qδ.

From here, we obtain

Y (Λi
0(−1)e

pδ, z )Λ j
0 (−1)e

qδ

=
�

Λ
j
0 (−1)−pj z−1

��

Λi
0(−1)z

0+Λi
0(−2)z

1+ . . .
�

�

1+ (pδ)(−1)
z 1

1
+ (pδ)(−2)

z 2

2
+ . . .

�

e (p+q)δ

+
�

qiΛ
j
0 (−1)z

−1−qi pj z−2
�

�

1+ (pδ)(−1)
z 1

1
+ (pδ)(−2)

z 2

2
+ . . .

�

e (p+q)δ.

To find
�

Λi
0(−1)e

pδ
�

(n )

�

Λ
j
0 (−1)e

qδ
�

for n ≥ 0, we extract the terms with negative powers of z from the

above expression

�

−pjΛ
i
0(−1)z

−1+qiΛ
j
0 (−1)z

−1−qi pj z−2−qi pj (pδ)(−1)z
−1
�

e (p+q)δ.
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This gives us

�

Λi
0(−1)e

pδ
�

(0)

�

Λ
j
0 (−1)e

qδ
�

=
�

−pjΛ
i
0(−1)+qiΛ

j
0 (−1)−qi pj (pδ)(−1)

�

e (p+q)δ,
�

Λi
0(−1)e

pδ
�

(1)

�

Λ
j
0 (−1)e

qδ
�

=−qi pj e (p+q)δ,
�

Λi
0(−1)e

pδ
�

(n )

�

Λ
j
0 (−1)e

qδ
�

= 0 for n ≥ 2.

This completes the proof of the lemma.

Recall the universal affine vertex algebra Vk (g) of level k , defined in Subsection 3.1.1. We will now

consider the tensor product of vertex algebras Vk (g)⊗VJ (see Section 4.2). We extendσ from a finite

order automorphsim of g to a finite order automorphism σ of Vk (g) also of order N as described

in Formula (3.30). Next, we extendσ to an automorphism of the vertex algebra Vk (g)⊗VJ , again of

order N , by letting

σ(a ⊗ b ) =σa ⊗ b . (4.17)

Let M be a σ-twisted Vk (g)-module, and M ′ be a VJ -module (untwisted). ThenM =M ⊗M ′ is a

σ-twisted Vk (g)⊗VJ -module with a state-field correspondence Y M given by (4.12). Now we can

formulate our main theorem, which uses twisted Vk (g)⊗VJ -modules to create representations of

the twisted toroidal Lie algebra.

Theorem 4.3.2. Letσ be an automorphism of order N of a simple finite-dimensional Lie algebra g,

and letM =M ⊗M ′ be aσ-twisted Vk (g)⊗VJ -module. Then the Lie algebra of modes of the fields

Y M (a ⊗ e pδ, z ), Y M (1⊗ e pδ, z ),

Y M (1⊗δi
(−1)e

pδ, z ), Y M (1⊗Λi
0(−1)e

pδ, z ),

where a ∈ g and p ∈Zr , form a representation of the twisted toroidal Lie algebra L̂r+1,k (g,σ−1) of

level k onM . Explicitly, we have a Lie algebra homomorphism

a ⊗ t m
0 t

p 7→
�

a ⊗ e pδ
�M
(m

N )
,

K0⊗ t N m
0 tp 7→

1

N

�

1⊗ e pδ
�M
(m−1),

Ki ⊗ t N m
0 tp 7→

�

1⊗δi
(−1)e

pδ
�M
(m ),

di ⊗ t N m
0 tp 7→

�

1⊗Λi
0(−1)e

pδ
�M
(m ),

(4.18)

for p ∈Zr , 1≤ i ≤ r , and a ∈ g, m ∈Z such thatσa = e −2πim/N a .

Proof. Recall thatLr+1(g,σ−1)m for m ∈Z is spanned by all elements of the form a ⊗ t m
0 t

p where

p ∈Zr and a ∈ gwithσ−1a = e 2πim/N a . The latter condition is equivalent toσa = e −2πim/N a . Hence,
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L̂r+1,k (g,σ−1) is spanned by all elements in the left-hand side of (4.18), subject to the relations:

N m K0⊗ t N m
0 tp+

r
∑

i=1

pi Ki ⊗ t N m
0 tp = 0.

For the mapφ to be well defined, we need to check that

N m
1

N

�

1⊗ e pδ
�M
(m−1)+

r
∑

i=1

pi

�

1⊗δi
(−1)e

pδ
�M
(m ) = 0,

or equivalently

m
�

1⊗ e pδ
�M
(m−1)+

�

1⊗ (pδ)(−1)e
pδ
�M
(m ) = 0.

This follows from the translation covariance property (3.8):

−m
�

1⊗ e pδ
�M
(m−1) =

�

T (1⊗ e pδ)
�M
(m ) =

�

1⊗T e pδ
�M
(m ) =

�

1⊗ (pδ)(−1)e
pδ
�M
(m )

where we used (3.20) and that T acts as T1⊗ I2+ I1⊗T2 on a tensor product of vertex algebras.

To show thatφ is a homomorphism, we need to check that the defining Lie brackets (4.3)–(4.7)

of the twisted toroidal Lie algebra L̂r+1,k (g,σ−1) match with the commutators of modes in the

right-hand side of (4.18). The latter are determined by the commutator formula (3.28). We can apply

(3.28) becauseσa = e −2πim/N a impliesσ(a ⊗ e pδ) = e −2πim/N (a ⊗ e pδ), sinceσ acts as the identity

on VJ . Similarly, if b ∈ g and n ∈Z satisfyσb = e −2πin/N b , thenσ(b ⊗ e qδ) = e −2πin/N (b ⊗ e qδ) for

q ∈Zr . Hence,

�

(a ⊗ e pδ)M(m
N )

, (b ⊗ e qδ)M( n
N )

�

=
∞
∑

l=0

�m
N

l

�

�

(a ⊗ e pδ)(l )(b ⊗ e qδ)
�M
(m

N +
n
N −l ). (4.19)

The l -th product (a ⊗ e pδ)(l )(b ⊗ e qδ) is the coefficient of z−l−1 in the expression

Y (a ⊗ e pδ, z )(b ⊗ e qδ) = Y (a , z )b ⊗Y (e pδ, z )e qδ.

We are only interested in the negative powers of z . By the products (3.13) in the affine vertex algebra

Vk (g), we have

Y (a , z )b = (a |b )k1z−2+ [a , b ]z−1+ . . . (4.20)

where . . . denote terms with higher powers of z . The products in the lattice vertex algebra VJ were

computed in Lemma 4.3.1. In particular,

Y (e pδ, z )e qδ = e (p+q)δ + (pδ)(−1)e
(p+q)δz + . . . . (4.21)
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Putting (4.20) and (4.21) together, we get

Y (a ⊗ e pδ, z )(b⊗e qδ) =
�

[a , b ]z−1⊗+(a |b )k1z−2
�

⊗ e (p+q)δ + (a |b )k1z−2⊗ (pδ)(−1)e
(p+q)δz + . . .

= [a , b ]⊗ e (p+q)δz−1+ (a |b )k1⊗ e (p+q)δz−2+ (a |b )k1⊗ (pδ)(−1)e
(p+q)δz−1+ . . . .

Using the map (4.18), the commutator formula (4.19), and the computation above, we obtain the

bracket

�

φ
�

a ⊗ t m
0 t

p
�

,φ
�

b ⊗ t n
0 t
q
��

=
�

�

a ⊗ e pδ
�M
(m

N )
,
�

b ⊗ e qδ
�M
( n

N )

�

=
�

[a , b ]⊗ e (p+q)δ
�M
(m

N +
n
N )
+ (a |b )k

�

1⊗ (pδ)(−1)e
(p+q)δ�M

(m
N +

n
N )

+
m

N
(a |b )k

�

1⊗ e (p+q)δ
�M
(m

N +
n
N −1)

=φ
�

[a , b ]⊗ t m+n
0 tp+q

�

+ (a |b )k
r
∑

i=1

piφ
�

Ki ⊗ t m+n
0 tp+q

�

+m (a |b )kφ
�

K0⊗ t m+n
0 tp+q

�

.

By (4.4), the last expression is exactlyφ([a ⊗ t m
0 t

p, b ⊗ t n
0 t
q]). Next, for u ∈ {1,δi }we have

�

�

1⊗u(−1)e
pδ
�M
(m ),

�

b ⊗ e qδ
�M
( n

N )

�

=
∞
∑

l=0

�

m

l

�

�

(1⊗u(−1)e
pδ)(l )(b ⊗ e qδ)

�M
(m+ n

N −l )

and the l -th product (1⊗u(−1)e
pδ)(l )(b ⊗ e qδ) is the coefficient of z−l−1 in the expression

Y (1⊗u(−1)e
pδ, z )(b ⊗ e qδ) = Y (1, z )b ⊗Y (u(−1)e

pδ, z )e qδ

= b z 0⊗Y (u(−1)e
pδ, z )e qδ

and from Lemma 4.3.1, Y (u(−1)e
pδ, z )e qδ has no negative powers of z . Hence, the expression Y (1⊗

u(−1)e
pδ, z )(b ⊗ e qδ)will have no negative powers of z and

�

�

1⊗u(−1)e
pδ
�M
(m ),

�

b ⊗ e qδ
�M
( n

N )

�

= 0.

From (4.18) and the computation above, we see that

�

φ
�

K0⊗ t N (m+1)
0 tp

�

,φ
�

b ⊗ t n
0 t
q
��

=
�

1

N

�

1⊗ e pδ
�M
(m ),

�

b ⊗ e qδ
�M
( n

N )

�

= 0,

�

φ
�

Ki ⊗ t N m
0 tp

�

,φ
�

b ⊗ t n
0 t
q
��

=
�

�

1⊗δi
(−1)e

pδ
�M
(m ),

�

b ⊗ e qδ
�M
( n

N )

�

= 0,

and since
��

K0 ⊗ t N (m+1)
0 tp

�

,
�

b ⊗ t n
0 t
q
��

=
��

Ki ⊗ t N m
0 tp

�

,
�

b ⊗ t n
0 t
q
��

= 0 in the twisted toroidal Lie
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algebra, then we get the following:

�

φ
�

K0⊗ t N (m+1)
0 tp

�

,φ
�

b ⊗ t n
0 t
q
��

=φ
��

K0⊗ t N (m+1)
0 tp

�

,
�

b ⊗ t n
0 t
q
��

,
�

φ
�

Ki ⊗ t N m
0 tp

�

,φ
�

b ⊗ t n
0 t
q
��

=φ
��

Ki ⊗ t N m
0 tp

�

,
�

b ⊗ t n
0 t
q
��

.

Next, for the bracket
�

�

1⊗u(−1)e
pδ
�M
(m ),

�

1⊗ v(−1)e
qδ
�M
(n )

�

where u ∈ {1,δi } and v ∈ {1,δ j }we have

�

�

1⊗u(−1)e
pδ
�M
(m ),

�

1⊗ v(−1)e
qδ
�M
(n )

�

=
∞
∑

l=0

�

m

l

�

�

(1⊗u(−1)e
pδ)(l )(1⊗ v(−1)e

qδ)
�M
(m+n−l ),

and the l -th product (1⊗u(−1)e
pδ)(l )(1⊗u(−1)e

qδ) is the coefficient of z−l−1 in

Y (1⊗u(−1)e
pδ, z )(b ⊗ v(−1)e

qδ) = Y (1, z )⊗Y (u(−1)e
pδ, z )v(−1)e

qδ

= 1z 0⊗Y (u(−1)e
pδ, z )v(−1)e

qδ.

The expression Y (u(−1)e
pδ, z )v(−1)e

qδ has no negative powers of z . Hence,

�

�

1⊗u(−1)e
pδ
�M
(m ),

�

1⊗ v(−1)e
qδ
�M
(n )

�

= 0.

From (4.18), notice that

�

φ
�

Ki ⊗ t N m
0 tp

�

,φ
�

K j ⊗ t N n
0 tq

��

=
�

�

1⊗δi
(−1)e

pδ
�M
(m ),

�

1⊗δ j
(−1)e

qδ
�M
(n )

�

= 0,

�

φ
�

K0⊗ t N (m+1)
0 tp

�

,φ
�

K j ⊗ t N n
0 tq

��

=
� 1

N

�

1⊗ e pδ
�M
(m ),

�

1⊗δ j
(−1)e

qδ
�M
(n )

�

= 0,

�

φ
�

K0⊗ t N (m+1)
0 tp

�

,φ
�

K0⊗ t N (n+1)
0 tq

��

=
� 1

N

�

1⊗ e pδ
�M
(m ),

1

N

�

1⊗ e qδ
�M
(n )

�

= 0,

and since in the twisted toroidal Lie algebra we have

��

Ki ⊗ t N m
0 tp

�

,
�

K j ⊗ t N n
0 tq

��

= 0,
��

K0⊗ t N (m+1)
0 tp

�

,
�

K j ⊗ t N n
0 tq

��

= 0,
��

K0⊗ t N (m+1)
0 tp

�

,
�

K0⊗ t N (n+1)
0 tq

��

= 0,

then

�

φ
�

Ki ⊗ t N m
0 tp

�

,φ
�

K j ⊗ t N n
0 tq

��

=φ
��

Ki ⊗ t N m
0 tp

�

,
�

K j ⊗ t N n
0 tq

��

,
�

φ
�

K0⊗ t N (m+1)
0 tp

�

,φ
�

K j ⊗ t N n
0 tq

��

=φ
��

K0⊗ t N (m+1)
0 tp

�

,
�

K j ⊗ t N n
0 tq

��

,
�

φ
�

K0⊗ t N (m+1)
0 tp

�

,φ
�

K0⊗ t N (n+1)
0 tq

��

=φ
��

K0⊗ t N (m+1)
0 tp

�

,
�

K0⊗ t N (n+1)
0 tq

��

.
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For the bracket
�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

b ⊗ e qδ
�M
( n

N )

�

, we have

�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

b ⊗ e qδ
�M
( n

N )

�

=
∞
∑

l=0

�

m

l

�

�

(1⊗Λ0
i
(−1)e

pδ)(l )(b ⊗ e qδ)
�M
(m+ n

N −l )

and the l -th product (1⊗Λ0
i
(−1)e

pδ)(l )(b ⊗ e qδ) is the coefficient of z−l−1 in the expression

Y (1⊗Λ0
i
(−1)e

pδ, z )(b ⊗ e qδ) = Y (1, z )b ⊗Y (Λ0
i
(−1)e

pδ, z )e qδ

= b z 0⊗Y (Λ0
i
(−1)e

pδ, z )e qδ.

The negative powers of Y (1⊗ Λ0
i
(−1)e

pδ, z )(b ⊗ e qδ) must come from Y (Λ0
i
(−1)e

pδ, z )e qδ. Taking

advantage of Lemma 4.3.1, the only negative power of Y (1⊗Λ0
i
(−1)e

pδ, z )(b ⊗ e qδ)with non-zero

coefficients is b ⊗qi e (p+q)δz−1, which is when l = 0. Thus

�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

b ⊗ e qδ
�M
( n

N )

�

=
�

b ⊗qi e (p+q)δ
�M
(m+ n

N )
.

From Equation (4.18) and the equation above we get

�

φ
�

di ⊗ t N m
0 tp

�

,φ
�

b ⊗ t n
0 t
q
��

=
�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

b ⊗ e qδ
�M
( n

N )

�

=
�

b ⊗qi e (p+q)δ
�M
(m+ n

N )
,

and from the bracket (4.5) in the twisted toroidal Lie algebra and from (4.18) we get

φ
��

di ⊗ t N m
0 tp, b ⊗ t n

0 t
q
��

= qiφ
�

b ⊗ t N m+n
0 tp+q

�

= qi

�

b ⊗ e (p+q)δ
�

(mN+n
N ) ,

which gives us

�

φ
�

di ⊗ t N m
0 tp

�

,φ
�

b ⊗ t n
0 t
q
��

=φ
��

di ⊗ t N m
0 tp

�

,
�

b ⊗ t n
0 t
q
��

.

For the bracket
�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

1⊗ e qδ
�M
(n )

�

, we have

�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

1⊗ e qδ
�M
(n )

�

=
∞
∑

l=0

�

m

l

�

�

(1⊗Λ0
i
(−1)e

pδ)(l )(1⊗ e qδ)
�M
(m+n−l )

and the l -th product (1⊗Λ0
i
(−1)e

pδ)(l )(1⊗ e qδ) is the coefficient of z−l−1 in the expression

Y (1⊗Λ0
i
(−1)e

pδ, z )(1⊗ e qδ) = Y (1, z )1⊗Y (Λ0
i
(−1)e

pδ, z )e qδ

= 1z 0⊗Y (Λ0
i
(−1)e

pδ, z )e qδ.

Similar to the last example, the only negative power of Y (1⊗Λ0
i
(−1)e

pδ, z )(1⊗e qδ) is 1⊗qi e (p+q)δz−1.
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Thus

�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

1⊗ e qδ
�M
(n )

�

=
�

1⊗qi e (p+q)δ
�M
(m+n ) .

From (4.18) we get

�

φ
�

di ⊗ t N m
0 tp

�

,φ
�

K0⊗ t N (n+1)
0 tq

��

=
�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

1

N

�

1⊗ e qδ
�M
(n )

�

=
1

N

�

1⊗qi e (p+q)δ
�M
(m+n )

and from the bracket (4.6) in the twisted toroidal Lie algebra and from (4.18) we get

φ
�

�

di ⊗ t N m
0 tp, K0⊗ t N (n+1)

0 tq
�

�

=φ
�

qi K0⊗ t N (m+n+1)
0 t(p+q)δ

�

=
qi

N

�

1⊗ e (p+q)δ
�

(m+n ) .

Therefore,

�

φ
�

di ⊗ t N m
0 tp

�

,φ
�

K0⊗ t n
0 t
q
��

=φ
��

di ⊗ t N m
0 tp

�

,
�

K0⊗ t n
0 t
q
��

.

For the bracket
�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

1⊗δ j
(−1)e

qδ
�M
(n )

�

, we have

�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

1⊗δ j
(−1)e

qδ
�M
(n )

�

=
∞
∑

l=0

�

m

l

�

�

(1⊗Λ0
i
(−1)e

pδ)(l )(1⊗δ j
(−1)e

qδ)
�M
(m+n−l )

and the l -th product (1⊗Λ0
i
(−1)e

pδ)(l )(1⊗δ j
(−1)e

qδ) is the coefficient of z−l−1 in the expression

Y (1⊗Λ0
i
(−1)e

pδ, z )(1⊗δ j
(−1)e

qδ) = Y (1, z )1⊗Y (Λ0
i
(−1)e

pδ, z )δ j
(−1)e

qδ

= 1z 0⊗Y (Λ0
i
(−1)e

pδ, z )δ j
(−1)e

qδ.

From Lemma 4.3.1, the negative powers of Y (1⊗Λ0
i
(−1)e

pδ, z )(1⊗δ j
(−1)e

qδ) are

1⊗
��

qiδ
j
(−1)+δi , j (pδ)(−1)

�

e (p+q)δz−1+δi , j e (p+q)δz−2
�

.

Thus

�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

1⊗δi
(−1)e

qδ
�M
(n )

�

=
�

1⊗
�

qiδ
j
(−1)+δi , j (pδ)(−1)

�

e (p+q)δ
�M

(m+n )
+m

�

1⊗δi , j e (p+q)δ
�M
(m+n−1) .
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From (4.18) we have

�

φ
�

di ⊗ t N m
0 tp

�

,φ
�

K j ⊗ t n
0 t
q
��

=
�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

1⊗δ j
(−1)e

pδ
�M
(n )

�

=
�

1⊗
�

qiδ
j
(−1)+δi , j (pδ)(−1)

�

e (p+q)δ
�M

(m+n )
+m

�

1⊗δi , j e (p+q)δ
�M
(m+n−1)

and from the bracket (4.6) in the twisted toroidal Lie algebra and from (4.18) we get

φ
��

di ⊗ t N m
0 tp, K j ⊗ t N n

0 tq
��

=φ

�

qi K j ⊗ t N (m+n )
0 tp+q +δi , j

�

r
∑

l=1

pl Kl ⊗ t (m+n )N
0 tp+q +N m K0⊗ t (m+n )N

0 tp+q
��

= qi

�

1⊗δ j
(−1)e

(q+q)δ�M
(m+n )+δi , j

�

�

1⊗ (pδ)(−1)e
(p+q)δ�M

(m+n )+
N m

N

�

1⊗ e (p+q)δ
�M
( (m+n )N

N −1)

�

.

Therefore we have

�

φ
�

di ⊗ t N m
0 tp

�

,φ
�

K j ⊗ t n
0 t
q
��

=φ
��

di ⊗ t N m
0 tp

�

,
�

K j ⊗ t n
0 t
q
��

.

For the final bracket
�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

1⊗Λ0
j
(−1)e

qδ
�M
(n )

�

, we have

�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

1⊗Λ0
j
(−1)e

qδ
�M
(n )

�

=
∞
∑

l=0

�

m

l

�

�

(1⊗Λ0
i
(−1)e

pδ)(l )(1⊗Λ0
j
(−1)e

qδ)
�M
(m+n−l )

and the l -th product (1⊗Λ0
i
(−1)e

pδ)(l )(1⊗Λ0
j
(−1)e

qδ) is the coefficient of z−l−1 in the expression

Y (1⊗Λ0
i
(−1)e

pδ, z )(1⊗Λ0
j
(−1)e

qδ) = Y (1, z )1⊗Y (Λ0
i
(−1)e

pδ, z )Λ0
j
(−1)e

qδ

= 1z 0⊗Y (Λ0
i
(−1)e

pδ, z )Λ0
j
(−1)e

qδ.

From Lemma 4.3.1, the negative powers of Y (1⊗Λ0
i
(−1)e

pδ, z )(1⊗Λ0
j
(−1)e

qδ) are

1⊗
�

�

−pjΛ
i
0(−1)+qiΛ

j
0 (−1)−qi pj (pδ)(−1)

�

e (p+q)δz−1−qi pj e (p+q)δz−2
�

.

Thus

�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

1⊗Λ0
j
(−1)e

qδ
�M
(n )

�

=
�

1⊗
�

−pjΛ
i
0(−1)+qiΛ

j
0 (−1)−qi pj (pδ)(−1)

�

e (p+q)δ
�M

(m+n )
−m

�

1⊗qi pj e (p+q)δ
�M
(m+n−1) .
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From (4.18) and the calculation above we have

�

φ
�

di ⊗ t N m
0 tp

�

,φ
�

d j ⊗ t N n
0 tq

��

=
�

�

1⊗Λ0
i
(−1)e

pδ
�M
(m ),

�

1⊗Λ0
j
(−1)e

pδ
�M
(n )

�

=
�

1⊗
�

−pjΛ
i
0(−1)+qiΛ

j
0 (−1)−qi pj (pδ)(−1)

�

e (p+q)δ
�M

(m+n )
−m

�

1⊗qi pj e (p+q)δ
�M
(m+n−1)

and from the bracket (4.7) in the twisted toroidal Lie algebra and from (4.18) we get

φ
��

di ⊗ t N m
0 tp, d j ⊗ t N n

0 tq
��

=φ

�

qi d j ⊗ t N (m+n )
0 tp+q −pj di ⊗ t N (m+n )

0 tp+q −qi pj

�

r
∑

l=1

pl Kl ⊗ t N (m+n )
0 tp+q +N m K0⊗ t N (m+n )

0 tp+q
��

= qi

�

1⊗Λ0
j
(−1)e

(p+q)δ�M
(m+n )−pj

�

1⊗Λ0
i
(−1)e

(p+q)δ�M
(m+n )−qi pj

�

1⊗ (pδ)
(−1)

e (p+q)δ
�M
�

N (m+n )
N

�

−qi pj
mN

N

�

1⊗ e (p+q)δ
�M
�

N (m+n )
N −1

�.

Therefore,

�

φ
�

di ⊗ t N m
0 tp

�

,φ
�

d j ⊗ t N n
0 tq

��

=φ
��

di ⊗ t N m
0 tp

�

,
�

d j ⊗ t N n
0 tq

��

.

This completes the proof of the theorem.

Now let g be a simple Lie algebra of type X` where X = A, D , E (simply laced), with a root system

∆ and a root lattice Q =Z∆. Letσ be an automorphism of the lattice Q of finite order N . Consider

the orthogonal direct sum of lattices

L =Q ⊕ J

where, as before, J is defined by (4.13) and (4.14). We extendσ to an automorphism of L , acting as

the identity on J , and we lift it to an automorphism of the lattice vertex algebra

VL 'VQ ⊗VJ .

Finally, let

H=C⊗Z L = h⊕ span{δi ,Λi
0}1≤i≤r

where h = C⊗ZQ is the Cartan subalgebra of g. With the above notation, using the Frenkel–Kac

construction [22], we can reformulate Theorem 4.3.2.

Corollary 4.3.3. For any σ-twisted VL -module M , the Lie algebra of modes of the fields (α ∈
∆∪{0}, h ∈H, p ∈Zr ):

Y M (e α+pδ, z ), Y M (h(−1)e
pδ, z ) (α ∈∆∪{0}, h ∈H, p ∈Zr )

form a representation of the twisted toroidal Lie algebra L̂r+1,1(g,σ−1) of level 1 onM .
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Proof. Since VL ' VQ ⊗VJ and VQ ' V 1(g) by the Frenkel–Kac construction (see [22]), then VL '
V 1(g)⊗VJ . By Corollary 3.3.6, any σ-twisted VQ -module M is also a σ-twisted module for V1(g).

ThenM =M ⊗M ′ will be aσ-twisted module for VL and the claim follows from Theorem 3.3.4.

In the special case when σ is a Coxeter element in the Weyl group of g, the above corollary

recovers Billig’s construction from [12]. Observe that, for r = 1, the lattice Q ⊕Zδ is the root lattice

of the affine Kac–Moody algebra ĝ of type X (1)` , while H= h⊕Cδ⊕CΛ0 is the Cartan subalgebra of

ĝ. Moreover, the set {α+pδ |α ∈∆∪{0}, p ∈Z} is the union of {0} and the root system of ĝ. In the

paper [13], Billig and Lau used an approach that is similar to our construction and produced certain

irreducible modules over twisted toroidal Lie algebras.
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CHAPTER

5

CONCLUSION AND FUTURE

DIRECTIONS

5.1 Conclusion

In this thesis, we were able to construct vertex operator representations of the twisted toroidal Lie

algebra L̂r+1,k (g,σ−1) of level k where g was a simple finite-dimensional Lie algebra andσ was an

automorphism of g of finite order. We saw thatσ could be lifted to the affine vertex algebra Vk (g) and

then to the tensor product Vk (g)⊗VJ where J corresponded to r copies of a certain rank-2 lattice.

Next, we took a σ-twisted Vk (g)-module called M and tensored it with an untwisted VJ -module

we called M ′ to form theσ-twisted Vk (g)⊗VJ -module we calledM =M ⊗M ′. We showed that the

modes of the vertex operators

Y M (a ⊗ e pδ, z ), Y M (1⊗ e pδ, z ),

Y M (1⊗δi
(−1)e

pδ, z ), Y M (1⊗Λi
0(−1)e

pδ, z ),

for a ∈ g and p ∈Zr formed a representation of the twisted toroidal Lie algebra L̂r+1,k (g,σ−1) of

level k onM .

We saw that when g was a simple finite-dimensional Lie algebra of type X` where X = A, D , or E ,

then the lattice vertex algebra VQ (where Q is the root system for g) was isomorphic to the affine

vertex algebra V1(g). We noticed that the vertex algebras VL and VQ ⊗VJ were isomorphic when

L =Q ⊕ J and thatM =M ⊗M ′ (where M is a twisted VQ -module and M ′ an untwisted VJ -module)
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forms a twisted module over VL . Finally, we showed that the modes of the vertex operators

Y M (e α+pδ, z ), Y M (h(−1)e
pδ, z ) (α ∈∆∪{0}, h ∈H, p ∈Zr ).

formed a representation of the twisted toroidal Lie algebra L̂r+1,1(g,σ−1) onM .

Many questions naturally arise from the work presented in this thesis. These questions include,

can we consider a different class of automorphisms in constructing twisted toroidal Lie algebras

and their representations? Is it possible to build irreducible representations of the twisted toroidal

Lie algebra L̂r+1,1(g,σ−1) fromσ-twisted modules over a tensor product of lattice vertex algebras

when g is not simply laced? Questions such as these are described in more detail in the following

sections of this chapter.

5.2 Irreducible Representations of L̂r+1,1(g,σ−1) when g is not simply

laced

In Example 3.3.2, we demonstrated that an automorphism σ of a root lattice Q associated to a

simple finite-dimensional Lie algebra g can be lifted to the lattice vertex algebra VQ . In Corollary

3.3.6, we saw that when g is simply laced, and M is aσ-twisted VQ module, then the modes of the

σ-twisted free bosons Y M (h , z ) for h ∈ h and the modes of the vertex operators Y M (e α, z ) for α ∈∆
correspond to a representation of the affine Kac–Moody Lie algebra L̂ ′(g,σ−1). One question that

naturally arises: is it possible to construct a representation of an affine Kac–Moody Lie algebra

L̂ ′(g,σ−1) using modes from a lattice vertex algebra if g is not simply laced?

The Frenkel–Kac construction which states VQ is isomorphic to the simple affine vertex algebra

of level 1, denoted V 1(g), only holds when Q is a root lattice associated to a simply laced Lie algebra.

However, it is well known that every non-simply laced Lie algebra can be embedded in a “larger"

simply laced Lie algebra. This can be done by working with a diagram automorphismµ of the simply

laced Lie algebra g. Depending on the choice of the simply laced Lie algebra, the order of µ is N = 2

or 3. Recall from Section 2.8, we can decompose g into a direct sum of eigenspaces

g=
N−1
⊕

j=0

g j

where g0 is the set of fixed points of µ and g1 is the eigenspace of µwith eigenvalue −1 if N = 2 (or

g j is the eigenspace with eigenvalue e
2πi j

3 if N = 3). The eigenspace g0 corresponds to a non-simply

laced Lie algebra. Embedding a non-simply laced Lie algebra into a σ-twisted simply laced Lie

algebra g for any finite order automorphism is much more involved sinceσ changes the internal

structure of the Lie algebra g. Finding such an embedding for any σ of finite order is an open

problem. A good starting point to finding such embeddings is to consider the special case where

σ is a finite order inner automorphism of a non-simply laced Lie algebra g0 and then liftσ to the

larger simply laced Lie algebra g. The lifted map produces an automorphism of g that commutes
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with the diagram automorphism, which makes it easier to identify the embedding.

Once an embedding is identified, the next issues is to find the irreducible modules for the affine

Kac–Moody algebra L̂ ′(g0,σ−1) associated to the non-simply laced Lie algebra. The irreducible

modules for the larger affine Kac–Moody Lie algebra L̂ ′(g,σ−1)may be reducible when we restrict to

L̂ ′(g0,σ−1). Once the irreducible modules are found, we should be able to generalize the results to

construct irreducible representations of the twisted toroidal Lie algebra L̂r+1,1(g0,σ−1). Irreducible

level-one representations for affine Kac–Moody algebras associated to non-simply laced Lie algebras

whereσ is a diagram automorphism or the Coxeter element have been explored in papers such as

[11, 26, 45, 46, 50].

5.3 New types of twisted toroidal Lie algebras and their representations

Recall from Section 4.1.2 that we build a twisted toroidal Lie algebra by starting with an automor-

phism σ with finite order N of a simple finite-dimensional Lie algebra g and using it to create a

twisted subalgebraLr+1(g,σ) of the loop algebraLr+1(g) given by

Lr+1(g,σ) =
⊕

m0∈Z
Lr+1(g,σ)m0

,

where

Lr+1(g,σ)m0
= gm0

⊗ spanC
�

t m0
0 tm

�

�m0 ∈Z, m ∈Zr
	

and that the twisted toroidal Lie algebra was the central extension of this twisted loop algebra (with

derivations) given by

L̂r+1,k (g,σ) =Lr+1(g,σ)⊕K ′⊕D ′+.

What if instead of starting with an automorphismσ of g that we started with an automorphism

σ of finite order N of the affine Kac–Moody algebra L̂ (g) = g⊗C[t , t −1]⊕CK ⊕Cd ? That is, what

if we defined a new type of twisted toroidal Lie algebra in the following way: letσ be the induced

automorphism on the loop algebraL (g) = g⊗C[t , t −1] (instead of usingL (g)we will call this space

g to simplify notation). The new twisted toroidal Lie algebra will be the central extension (with

derivations) of the space

Lr+1(g,σ) =
⊕

m0∈Z
Lr+1(g,σ)m0

,

where

Lr+1(g,σ)m0
= gm0

⊗ spanC
�

t m0
0 tm

�

�m0 ∈Z, m ∈Zr
	

gm0
= {x ∈ g | µ(x ) = e 2πi m0/N }.

The new twisted toroidal Lie algebra is the space

L̂r+1(g,σ) =Lr+1(g,σ)⊕K ∗⊕D∗+,
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which is a subalgebra of the untwisted toroidal Lie algebra L̂r+1(g)⊂ L̂r+2(g) for someK ∗ ⊂K and

D∗+ ⊂D+. Notice that the twisted toroidal Lie algebra will contain r +2 variables since g= g⊗C[t , t −1].

We can think of this new type of twisted toroidal Lie algebra as an extension of our original definition

of a twisted toroidal Lie algebra. In fact, ifσ is an automorphism of g, then we can liftσ to L̂ (g) so

thatσ acts as the identity on K and d .

So many questions can be asked here including, what exactly are the setsK ∗ and D∗ for any

fixedσ of finite order N ? Does Proposition 2.8.2 hold for not just a finite-dimensional Lie algebra

but also for an affine Kac–Moody algebra? How do we construct vertex operator representations of

these twisted toroidal Lie algebras using twisted modules over vertex algebras?

In the paper [15], this type of twisted toroidal Lie algebra was explored whenσ was a diagram

automorphism of the affine Kac–Moody algebra L̂ ′(g)without derivation. The authors described

the action of the induced automorphismσ on g, identified the subalgebraK ∗ needed to construct

a universal central extension, and calculated the Lie brackets of the generators of L̂ ′r+1(g,σ). The

authors also presented L̂ ′r+1(g,σ) in a similar way to the construction of the untwisted toroidal Lie

algebras by Moody, Rao, and Yokonuma in the paper [47]. It is conceivable that the results from [15]

could be applied for anyσ of finite order N .

To construct vertex operator representations of these toroidal Lie algebras, we could start with an

automorphismσ of order N of L̂ (g) of type X (1)` where X = A, D , or E . The automorphismσ would

induce an automorphism on the extended root lattice Q̂ =Q ⊕Zδ⊕ZΛ0 of L̂ (g)where Q is the root

lattice associated to the finite-dimensional simple Lie algebra of type X`. We could then liftσ to the

lattice vertex algebra VQ̂ and then to VL =VQ̂ ⊗VJ where J is r -copies of the rank-2 lattice described

in Equation (4.13). We could then study theσ-twisted VQ̂ ⊗VJ -modulesM =M ⊗M ′ where M is

aσ-twisted VQ̂ module and M ′ is an untwisted VJ -module. The tricky part is the identification of

modes from the VQ̂ -module M . More research is needed in this area, however it seems that since

VQ̂ 'VQ ⊗VZδ⊕ZΛ0
then perhaps a lift can be constructed from the induced automorphismσ on the

root lattice Q toσ on Q̂ in a way that is similar in principle to the lift from g to L̂ ′1(g,σ) used in [15].

Finally, suppose instead of working with a finite order automorphism of the affine Kac–Moody

algebra L̂ (g)we used certain infinite-order automorphisms of L̂ (g). Specifically, any automorphism

from the Weyl group of L̂ (g). Within the last 10 years, the notion of logarithmic vertex operators

andσ-twisted logarithmic modules for an infinite order automorphismσ of a vertex algebra have

been developed (see [1, 3, 27, 28]). Bakalov and Sullivan expanded the work in this area to include

σ-twisted logarithmic modules of lattice vertex algebras in [7]. It seems likely that the key to finding

vertex operator representations of twisted toroidal Lie algebras corresponding to infinite order auto-

morphisms from the Weyl group of an affine Kac–Moody Lie algebra may lie in the understanding

of logarithmic vertex operators from a tensor product of two lattice vertex algebras.
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