ABSTRACT

KIRK, SAMANTHA L. Toroidal Lie Algebras and Their Vertex Operator Representations. (Under the
direction of Bojko Bakalov.)

Toroidal Lie algebras were first introduced in 1990 by Robert Moody, Senapathi Eswara Rao, and
Takeo Yokonuma in their paper Toroidal Lie algebras and vertex representations. These algebras
can be described as a generalization of a special class of infinite-dimensional Lie algebras known
as affine Kac-Moody algebras. Many influential mathematicians have studied the properties of
toroidal Lie algebras and have shown toroidal Lie algebras can be applied to several branches of
mathematics and physics.

The representation theory of infinite-dimensional Lie algebras is more complex than the repre-
sentation theory of finite-dimensional Lie algebras. In 1986, Richard Borcherds discovered vertex
algebras while trying to construct representations of infinite-dimensional Lie algebras. Since then,
several mathematicians have used vertex algebras as a tool in building representations of affine
Kac-Moody algebras and toroidal Lie algebras.

Just like twisted affine Kac-Moody algebras, we can use a finite order automorphism of a simple
finite-dimensional Lie algebra as a foundation to build a twisted toroidal Lie algebra. Representations
of certain twisted affine Kac-Moody algebras and toroidal Lie algebras have been explored in works
such as [14, 33, 8, 17] . The study of twisted affine Kac-Moody algebras led to the development of
twisted vertex operators and twisted modules over vertex algebras.

The purpose of this thesis is to construct representations of twisted toroidal Lie algebras using
twisted modules over vertex algebras. We begin by reviewing some basic concepts related to finite-
dimensional Lie algebras and affine Kac—-Moody algebras. Next, we review the theory of vertex
algebras, lattice vertex algebras, affine vertex algebras, and twisted modules over vertex algebras. In
Chapter 4, we discuss toroidal Lie algebras and present a construction of representations of twisted
toroidal Lie algebras using twisted modules over vertex algebras. Later, we discuss areas of future
research involving toroidal Lie algebras including a new class of twisted toroidal Lie algebras and

their potential representations.
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CHAPTER

INTRODUCTION

1.1 Introduction

A toroidal Lie algebra is a special type of infinite-dimensional Lie algebra that was first introduced
in 1990 by the mathematicians Robert Moody, Senapathi Eswara Rao, and Takeo Yokonuma in their
paper Toroidal Lie algebras and vertex representations [47]. Since then, many influential mathemati-
cians have studied the properties of toroidal Lie algebras and their representations. Toroidal Lie
algebras have many applications to mathematics and physics including combinatorics, non-linear
partial differential equations, quantum algebras, and conformal field theory.

To describe a toroidal Lie algebra, we start by taking a simple finite-dimensional Lie algebra g
with a Lie bracket [-,-] : g x g — g and tensor g with the Laurent polynomials in one variable C[z, t ]

to form an infinite dimensional Lie algebra .#(g) called a loop algebra,
£(@)=g®Clt,t7"].

The loop algebra can be thought of as the collection of all g-valued polynomial maps on the circle.
An affine Kac-Moody algebra £ (g) is created when we form a central extension of #(g) by “adding"

an element K to the center along with a derivation d,
L) =<2L(g)®CK &Cd.

The process of constructing a central extension of the loop algebra .£Z(g) is called the affinization of

the Lie algebra g.



A toroidal Lie algebra can be described as a generalization of the affinization process. We use a
simple finite-dimensional Lie algebra g and tensor it with the Laurent polynomials, but this time in

several variables, C[z;, f]",..., t."] to form a large loop algebra

Lr(@)=0®C[15, 17 ,..., 1 ].

Theloop algebra %, ,1(g) is the collection of all g-valued polynomial maps on the (r +1)-dimensional
torus. We from a central extension of .Z,, ;(g) by adding a certain ideal .#" to the center along with
an algebra 9, of derivations (however, in the case when r > 1, both the ideal 2# and the algebra 2,

are infinite-dimensional)

Lr1(9)=9®Clty, 1., 1O X T,

The construction of representations of infinite-dimensional Lie algebras is more complex than
the construction of representations of finite-dimensional Lie algebras. In [47], Moody, Rao, and
Yokonuma used vertex operators to form representations of toroidal Lie algebras when r = 1. As
expected, their results were similar in spirit to vertex operator representations of affine Kac-Moody
algebras as a framework.

Vertex algebras were discovered by Richard Borcherds in 1986 while studying the representation
theory of infinite-dimensional Lie algebras. Once he developed a working definition of vertex
algebras, many mathematicians were able to use vertex algebras and vertex operators as tools in
constructing representations of affine Kac-Moody algebras [14, 22] and the use of tensor products
of vertex algebras to create representations of toroidal Lie algebras [8].

We can “twist" an affine Lie algebra .£(g) by working with a finite order automorphism of the
foundation Lie algebra g and lifting the automorphism to .£(g). Investigations into the represen-
tations of twisted affine Lie algebras naturally let to the development of twisted vertex operators
[35, 44] and twisted modules over a vertex algebra [5, 16, 19, 41]. In a similar fashion, twisted toroidal
Lie algebras were constructed and the representations are currently under investigation. Representa-
tions involving certain finite-order automorphism o, such as when o is the Coxeter element or o is
a diagram automorphism, have been studied in works such as [12, 17, 18, 31, 32, 48, 49, 25, 2, 15, 30].

The goal of this thesis is to contribute to the representation theory of twisted toroidal Lie algebras
and to expand its connections with vertex algebras. We will explicitly show how twisted modules over
a tensor product of an affine and a lattice vertex algebra can be used to construct representations
of twisted toroidal Lie algebras. We will also discuss future projects involving representations of
twisted toroidal Lie algebras that use automorphisms of infinite order or automorphisms of affine
Kac-Moody algebras in their construction.

This thesis in divided into 5 chapters. In Chapter 2, we will review the necessary background
material on Lie algebras. This includes simple finitie-dimensional Lie algebras, root system decom-
positions, Cartan matrices, and Dynkin diagrams. We will discuss affine Kac-Moody algebras and

how to use automorphisms of simple Lie algebras to construct twisted affine Kac-Moody algebras.



In Chapter 3, we shift our attention to vertex algebras. We will review affine vertex algebras,
lattice vertex algebras, homomorphisms of vertex algebras and modules of vertex algebras. We will
also use automorphisms of vertex algebras to construct twisted modules over vertex algebras. We
will discuss vertex operator representations of affine Kac-Moody Lie algebras and their ties with
twisted modules over both affine vertex algebras and lattice vertex algebras.

In Chapter 4, we will construct vertex operator representations of twisted toroidal Lie algebras.
We will start by defining toroidal Lie algebras and twisted toroidal Lie algebras. Next, we will discuss
tensor products of vertex algebras and use the representations of affine Kac-Moody algebras pre-
sented in Chapter 3 as the framework for building representations of twisted toroidal Lie algebras.
We will compute n-th products related to a certain lattice vertex algebra we call V; and then show
how the tensor product of an affine vertex algebra and V; lead to our representations.

In Chapter 5, we provide concluding remarks and discuss some potential future projects. One
of these projects is the construction of representations of twisted affine Kac-Moody algebras .£(g)
where g is not simply laced. Another potential project involves the construction of representations
of twisted toroidal Lie algebras using a class of finite-order and infinite-order automorphisms that
were not considered in Chapter 4.

Unless otherwise specified, all vector spaces, linear maps and tensor products will be over the

field C of complex numbers. Parts of this thesis have been published in [6].



CHAPTER

2

LIE ALGEBRAS

In this chapter, we will review some of the basic concepts in the theory of Lie algebras. These
concepts include root systems, Cartan matrices, Dynkin diagrams, derivations, and automorphisms
of Lie algebras. We will also define untwisted and twisted affine Kac-Moody Lie algebras in this

chapter. For more information on these topics, we refer the reader to [29, 33].

2.1 Definition of a Lie algebra and other basic notions

Definition 2.1.1. A complex Lie algebra is a vector space g over C equipped with a bilinear product

[-,:]: g x g — g, known as the Lie bracket, that satisfies the properties

[x,y]=—1y, x] (skew-symmetry) 2.1)
[x,[y,z]]=[[x,y],z]+[y,[x,z]] (Jacobi identity) (2.2)

forall x,y,z €g.

Example 2.1.2. A Lie algebra can be constructed from the set of all n x n matrices with complex
entries. If we let A and B be any two n x n matrices and AB the product of the matrices, then we
obtain a Lie algebra when we define the Lie bracket as [A, B] = AB — BA. This Lie algebra is known
as the general linear Lie algebra and is denoted by gl(n, C).

Example 2.1.3. In a fashion similar to gl(n,C), we can construct a Lie algebra using products of

linear operators on a vector space V with dimension 7. If we let x, y € End(V) (the set of all linear



operators on V) then we can define the Lie bracket as [x, y] = x y — y x where x y is the product of
the operators x and y. This Lie algebra is denoted by gl(V).

Example 2.1.4. Let V be a vector space withdim(V)=2n+1.Let 8 = {xl, Xoyeeor Xy Y1 Voo ...,y,,,z}
be an ordered basis for V. We can construct a Lie algebra by defining a Lie bracket on the basis
vectors of V as follows:

[xi,yj1=0i2,  [8,2]=0,

where 6; ; is the Kronecker delta function. This Lie algebra is known as the Heisenberg Lie algebra.

Definition 2.1.5. A subalgebra §) of a Lie algebra g is a subspace where for any x, y € h we have
[x,y]eb. Ifh also possesses the property [x, z] € h for any x € h and z € g, then we call h an ideal.

It is important to notice that the closure of the Lie bracket in the definition of a subalgebra i) of a

Lie algebra g allows us to consider § as a Lie algebra in its own right.

Example 2.1.6. The Lie algebra gl(7, C) has many subalgebras including the set of all n x n matrices
with trace 0, denoted sl(n, C), the set of all upper triangular matrices, denoted t(n, C), and the set of

all strictly upper triangular matrices, denoted n(n, C). The subalgebra n(n, C) is an ideal of t(n, C).

Definition 2.1.7. If a Lie algebra g is nonabelian and contains no nontrivial proper ideals, then we

call g simple.

Example 2.1.8. Itis easy to see that gl(n, C) is not simple since sl(n, C) is an ideal of gl(n, C). However,

sl(n,C) is an example of a simple Lie algebra.

Definition 2.1.9. Let g; and g, be two Lie algebras over C. A Lie algebra homomorphism is a linear
map ¢ : g; — g» that preserves the Lie bracket. Thatis, ¢([x, y])=[¢(x), ¢(y)] for all x,y € g;. ALie
algebra isomorphism is a homomorphism that is both one-to-one and onto.

Example 2.1.10. If we let g; = t(n,C) with basis {E;;|1 < i < j < n} and g, be the set of lower
triangular matrices with basis {E; ;|1 < j < i < n} then we can define a homomorphism ¢ : g, — g,
by ¢(E; j)=—Ej;. This map is clearly one-to-one. Since the dimensions of both spaces is n(n—1)/2,

the map is also onto which makes ¢ an isomorphism.

Example 2.1.11. Let g; = gl(V) for any vector space V of dimension n and g, = gl(n,C) where
¢ : g1 — g, takes a linear operator to its matrix relative to a fixed ordered basis of V. The map ¢ is

an isomorphism.

The theory of simple finite-dimensional Lie algebras is highly developed and it is well-known
that every simple finite-dimensional Lie algebra g over C is isomorphic to one of the classical Lie
algebras A, By, C;, D;, or isomorphic to one of the exceptional Lie algebras Eg, E7, Eg, F;, G,. We will
review the classical Lie algebras in the next few examples.



Example 2.1.12. The Lie algebra A, for ¢ > 1 is the Lie algebra of all £ + 1 x £ 4+ 1 matrices with trace
0 that is also denoted by s((¢ + 1,C). That is,

Ay ={Aegl(l +1,C)|tr(A)=0}.

Abasis for Ay is the set {E; j, Exx— Ex1, 541 1157, j<{€+1,i# j, 1<k </{}and dim(4,)=({ + 1?2—1.
This Lie algebra is called the special linear Lie algebra.
Example 2.1.13. The Lie algebra By is the Lie algebra of all matrices A € gl(2¢ + 1, C) that are skew-

symmetric. That is,
By :={Aegl2(+1,C)|A+ AT =0}.

This Lie algebra is called the odd-dimensional orthogonal Lie algebra and denoted so(2/+1, C). The
dimension of By is 2(? + (. Similarly, the Lie algebra Dy is the Lie algebra of all matrices A € gl(2¢,C)

that are skew-symmetric.That is,
Dy:={Aegl2(,C)|A+AT =0}.

This Lie algebra is known as the even-dimensional orthogonal Lie algebra and denoted so(2¢, C).
The dimension of Dy is 202 —¥.

Example 2.1.14. Let A€ gl(2¢,C) and J; be the block matrix

0 1
P =( ¢ 12)
—I, 0O

where I; is the ¢ x ¢ identity matrix and 0, is the £ x { zero matrix. The symplectic Lie algebra C, is
defined as
C,:={Aegl2(,C)| A+ AT J,=0}.

The Lie algebra C, is also denoted by sp(2¢, C). The dimension of C, is 2(2 +/.

2.2 Representations and derivations of Lie algebras

In this thesis, we will construct representations and derivations of certain infinite-dimensional Lie

algebras. We will review the concepts of representations and derivations in this section.

Definition 2.2.1. A representation of a complex Lie algebra g on a vector space V over C is a Lie

algebra homomorphism ¢ : g — gl(V).

Example 2.2.2. Consider the Lie algebra A; = sl(2, C) consisting of all 2 x 2 traceless matrices. Let
V be the vector space of all polynomials in ¢ of degree n or less. That is, V = C[#]geg<n- Recall that
A= spanC{EH — Ey,, Epo, E21}~ Let ¢ be the map that sends

d

E,,—E 2t d E E t—t? d
—_ — 1 — -, r—)—’ — Nl — _
1 22 dr’ 2 T qr T8 dt



The map ¢ : A; — gl(V) is a representation.

Example 2.2.3. Since every Lie algebra g is a vector space, we can define representations of g on
itself. One important example of such a representation is the adjoint representation ad : g — gl(g)
where for each x, y € g we have

ad(x) =ady, ady(y) =[x, yl.

Let g be a Lie algebra, V a vector space, and ¢ : g — gl(V) a representation. Since ¢(x) for all
X € g is a linear operator, then every representation gives rise to an action of g on V defined as
x-v=¢@(x)veVforall x eg,ve V. Thisleads to the notion of a g-module.

Definition 2.2.4. A g-module is a vector space V equipped with a bilinear product-: gx V — V that
satisfies [x, y]-v=x:(y-v)—y-(x-v)forall x,y €gand v € V. Asubmodule U of V is a subspace
such that x-u € U forall x egand u € U. We call a g-module V irreducible if its only submodules
are {0} and V.

In Example 2.2.2, V = C[t]qeg<,, is an irreducible A;-module under ¢. In Example 2.2.3, g is a
g-module under the adjoint action. If g is simple, then g is an irreducible g-module under the adjoint
action. If g is not simple, then the g-submodules under the adjoint action correspond to the ideals

of g.

Definition 2.2.5. A derivation D of a Lie algebra g is a linear operator D : g — g that satisfies
Dix,y]=[Dx,y]l+[x,Dy]

for all x, y € g. The set of all derivations of a Lie algebra g is denoted Der(g).

Example 2.2.6. Let g be a Lie algebra and let ad,, for x € g be the linear operator defined by the

adjoint representation ad(y) =[x, y] for any y € g. The Jacobi identity can be rewritten as

ad, ([y, z]) =[ad,(y), 2] +[y,ad,(2)].

Therefore, the operator ad, for all x € g is a derivation of g called an inner derivation.

2.3 Theroot space decomposition of a simple Lie algebra

In this section, we will review the root space decomposition of a simple finite-dimensional Lie
algebra. We will define concepts such as diagonalizable operators, toral subalgebras, and root
systems associated to simple finite-dimensional Lie algebras.

Definition 2.3.1. Let V be a finite-dimensional vector space over C and let T be a linear operator
on V. If all the roots of the minimal polynomial of T are distinct, then T is called diagonalizable.
Equivalently, if there exists a basis 9 for V such that the matrix of T relative to 2 is diagonal, then

T is a diagonalizable operator.



Definition 2.3.2. Let g be a simple finite-dimensional Lie algebra and let h) be a subalgebra of g
consisting only of elements x € g where ad, is a diagonalizable operator. Then the subalgebra b is

known as a toral subalgebra.
Remark 2.3.3. Every toral subalgebra § of a Lie algebra g is abelian.

Definition 2.3.4. Let b be a maximal toral subalgebra of g (that is, a toral subalgebra that is not a

proper subalgebra of any other toral subalgebra in g). Then we call  a Cartan subalgebra of g.

Let h be a Cartan subalgebra of g and let h* be the dual space of ). The set {ad, | x € h} is a class
of commuting diagonalizable linear operators of g and thus simultaneously diagonalizable. That

means g can be written as a direct sum of subspaces

9=Pas  where g,={xeg|lt,x]=a(t)x forall  €b}.

aeh*

All nonzero a € h* for which g, # 0 are called the roots of g relative to  and the subspaces g, are
called the root spaces of g. The set of all such roots is called the root system of g and denoted by A.
That is,

A={aebh*|g,#0and a #0}.

Remark 2.3.5. The subspace g is exactly the Cartan subalgebra b.

Definition 2.3.6. Let g be a simple finite-dimensional Lie algebra with Cartan subalgebra h. The

root space decomposition of g is

g=h®(€Bga)~

acA

In the next proposition, we will give more information about the root system A.
Proposition 2.3.7. For any simple finite-dimensional Lie algebra g and Cartan subalgebra b,
(a) The set of roots A is finite, does not contain 0, and spans the dual space h*.
(b) For anyroot a € A, the only multiples of a in A are +a.
(c) Foreach a € A, the subspaces g, and [g,, g_,] are one dimensional.
(d) Ifa,B,a+p €A, then[gy, g5]=g04p-
(e) fa,f € Abuta+f ¢ Au{0}, then[g,, g5]={0}.

Definition 2.3.8. Let h be a Cartan subalgebra of g with root system A and let I1 be a subset of A.
We call I a base if the roots in IT form a basis for h* and each @ € A can be writtenas a = ., k(a)a

where k : A — Z and k() are all nonegative or all nonpositive.

The set I is also known as the set of simple roots. We can fix an ordering of the simple roots IT

and label them a;, a5, -, a,. If dim(h) =/, then we say g has rank /.



Example 2.3.9. The Lie algebra g =sl(n, C) is a vector space consisting of all 7 x n traceless matrices
with the basis
{Eij) Ekk_Ek+1,k+1|1 <i,j<n, l;é], and1<k< I’l}

If we set hy = Exr — Ex41,k+1, then the vector space h = spang {h; |1 < k < n} forms a Cartan subal-
gebra of g. Let h € h and write

a, 0 0 0 0 0\
0 a 0 0 0
0 0 a; O

h= .
0 0 0 0 - a,q 0
Lo 0 0 o0 0 a,)

where Z;’zl a; =0. Let €; : h — C be the linear functional such that €;(h) = a;. Then €; € h* and we

have
[h, E;j]=(e;—€;)(h)E;;.
Ifwe let a;; = €; — €, then the root system A related to b is the set
A={a;j|1<i,j<n,andi# j},
and if we let a; = a; ;1 then the set of simple roots Il is given by
M={a;|1<i<n—1}

The root spaces are given by q;; = CEjj and the root space decomposition is

2.4 The Killing form and Cartan matrices of simple Lie algebras

In this section, we will use the Killing form to build a Cartan matrix associated to a simple finite-

dimensional Lie algebra.

Definition 2.4.1. Let g be any Lie algebra. The Killing form of g is defined as the bilinear form

K:g®g—C, k(x,y)=tr(ad,,ad,) forallx,y€g.



The Killing form satisfies the properties (for x, y, z € g):

K(x,y)=x(y,x) (symmetry),

K([x,y],z):K(x,[y,z]) (invariance).

For any simple Lie algebra g of rank /, the restriction of the killing form to a Cartan subalgebra h
is nondegenerate, which means we can identify ) with its dual space h*. That is, for every a € A we
can find a unique h, €4 that satisfies a(h) = k(h,, h). We can also define a nondegenerate bilinear
form (|-) : h* x h — C as follows (let a € h*, h € h):

(alh)=K(hg, ).

Since the elements I1={a;, @, -+, @, } form a base for A, then the elements {A,, }le form a basis
for b. It is more advantageous to work with certain scalar multiples of the elements h;. We will define

2

a’ = {1z Mo for @ € A and let IV ={ay,ay,---,a}}. The set I1" is often referred to as the set of simple

COroots.

Definition 2.4.2. Let g be a simple finite-dimensional Lie algebra of rank ¢ with a Cartan subalgebra

b, the set of simple roots I1 = {a;, ay,---,a,} related to h, and I1Y = {a}, @, -, &} the set of simple

coroots. We can define a £ x £ matrix C = (ci ]-) where ¢;; =(; |ay). The matrix C is called the

1<i, j<t
Cartan matrix associated to g.

Suppose g is a simple finite-dimensional Lie algebra of rank £. Then there is exactly one Cartan

matrix C associated to g and C satisfies the following properties (1 <i,j </, i # j):
@ c¢ii=2,
(b) c¢;; are nonpositive integers for i # j,
© ¢j=0<< ¢;;=0,
(d) det(C)#0.

We list the Cartan matrices associated to the classical Lie algebras A, By, C;, and Dy in the following
examples.

Example 2.4.3. For the Lie algebra A, the Cartan matrix is

(2 -1 0 0 0 - 0 0 0)
-1 2 -1 0
0 -1 2 -1 0
Ay
0 2 -1 0
-1 2 -1
0 -1 2

10



Example 2.4.4. For the Lie algebra By, the Cartan matrix is

-1
0

(2 —1

2
-1

0
-1

0
0
-1

0)
0
-1 0
2 -1
-2 2

Notice that the 2 x 2 block in the bottom right-hand corner of the Cartan matrix for B; is different

from the 2 x 2 block in the bottom right-hand corner of the Cartan matrix for A.

Example 2.4.5. For the Lie algebra C;, the Cartan matrix is

2 -1 0 0 0)
-1 2 -1 0 0
0 -1 2 -1 0
Cp:
0 0 0 2 -1 0
0 0 0 -1 2 =2
\ 0 0 0 0 O 0 -1 2

Notice that the Cartan matrix for C; is the transpose of the Cartan matrix for By.

Example 2.4.6. For the Lie algebra Dy, the Cartan matrix is

(2 -1 0 0 0

-1 2 -1 0

0 -1 2 -1 0

Dy:

0 0 0 0 O 2 -1 0 0
0 0 0 0 0 -1 2 -1 -1
0 0 0 0 0 -1 2 0
Ko 0 0 0 O -1 0 2

Notice that the Cartan matrices for A; and D, are symmetric.

2.5 Dynkin diagrams of simple Lie algebras

1<, j<t be its associ-

ated Cartan matrix. We can construct a graph based off the matrix C known as the Dynkin diagram

Definition 2.5.1. Let g be a simple finite-dimensional Lie algebra and C = (c,- j)

11



of g and denoted D(g). In this graph, we draw £ nodes to represent the simple roots a;, a, -+, a,. If
lcijI = Icj;l, then the nodes ; and a; are connected by |c; ;| lines. If |c; ;| > |c;;|, then we include an

arrow pointing toward the node «;.

Example 2.5.2. The Cartan matrix associated to the simple Lie algebra of type A,, then

2 -1
-1 2
and the Dynkin diagram D(A,) is given by the figure below.

Figure 2.1 The Dynkin Diagram of A,.

a; az

Example 2.5.3. The Cartan matrix associated to the simple Lie algebra of type G,, then

2 -1
-3 2
and the Dynkin diagram D(G,) is given by the figure below.

Figure 2.2 The Dynkin Diagram of G,.

a, a

In the following figures, we give the Dynkin diagrams for some of the classical and exceptional

Lie algebras.
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Figure 2.3 The Dynkin diagrams associated to A, — D;.

=1 ay az ag Xy L2 ap

(£=z2) @ o, (e ey oy

€=3) q az

Xy_a Qap_q 24
®
D —o—o %1
4
(1;’: = 4) aq az as Qp_3 ay_o
@y

Figure 2.4 The Dynkin diagrams of the exceptional Lie algebras Eg, E;, and Ej.

az
Eg ® & ® @
a as a4 as o
az
[ & \ 4 & L
E;
ay a3 @y as ' o,
a
@ @ L L 4 @ @
b‘a
a a3 T4 s g az ag
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Notice that the Dynkin diagrams assoiciated to the Lie algebras A,, Dy, Eg, E; and Eg do not have
any multiple edges between nodes. We call the Dynkin diagrams of these simple finite-dimensional
Lie algebras simply laced.

2.6 Lattices and automorphisms of Lie algebras

Alarge portion of this thesis deals with lattices and automorphisms of Lie algebras. We provide a

review of these concepts in this section.

Definition 2.6.1. Anintegral lattice of rank/ is a free abelian group Q thatis generated by ¢ elements

and equipped with a Z-valued symmetric bilinear form (-]-): Q x Q — Z.

Example 2.6.2. SupposeIl={a;|i =1,2,---,£}is the set of simple roots for a simple finite-dimensional
Lie algebra g and let C =(¢; j)f, i=1 be its associated Cartan matrix. We can construct a root lattice by

defining Q in the following way:
4
Q:=Pza;
i=1

and we can use the Killing form to define the bilinear form (-|-): Q x Q — Z. That is,
(aila;)= K(Oliv; ha,)-

In this thesis, we will focus on root lattices defined using the simple roots of simply laced Lie
algebras. Suppose Q is a root lattice of a simple Lie algebra g of type A, D, or E;. We can extract the

root system A from Q by considering the following set:
A={aecQ|(ala)=2}.

Also notice that the dual space h* = C ®7 Q and (since we can identify h with h*) we can write
h=C®z Q. We can define a function £ : Q x Q — {£1} where ¢(a;,a;)=—1 when i = jori < j and
the nodes @; and «; are connected in the Dynkin diagram. If the nodes «; and «; are connected
and i > j then we set £(a;,@;) = 1. If the nodes @; and «; are not connected then &(a;, a;)=1. We

extend this map to Q x Q by the following bimultiplicitivity properties (for any @, 8,y € Q):

ela+pB,7)=¢ela,)eB,r)
s(a,/a’ +7’) = s(a,ﬁ)e(a,y).

Definition 2.6.3. We can assign a one-dimensional vector space CE,, to every @ € A and build the
Lie algebra g (of type Ay, D, or E;) associated to A via the Frenkel-Kac construction [33],

g=h€B(EBCEa), 2.3)

aeA
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where the Lie brackets are defined as

[h,h']=0 ifh,h' e,

[h, E;]=(h|a)E, ifhephandaeA,

[Eg, E_q]l=—0 ifaeA,

[Eq, Egl=0 ifa,feAanda+p ¢ AU{0},

(Eq, Egl=¢(a, B)Eqsp ifa,feNanda+f €A,

Definition 2.6.4. An automorphism ¢ of a Lie algebra g is a Lie algebra isomorphism from g to
itself. That is, ¢ : g — g is linear, onto, one-to-one, and preserves the Lie bracket. Similarly, an

automorphism ¢ of an integral lattice Q is a linear, onto, and one-to-one map ¢ : Q — Q such that

(alp)=(¢alpp)foralla,peQ.

Definition 2.6.5. An automorphism ¢ of a Lie algebra g is called an inner automorphism if ¢ is
generated by products of exp(ad, ) where x € g and (ad,)"” = 0 for some positive integer n. Any
automorphism of a Lie algebra that is not an inner automorphism is known as an an outer auto-

morphism.

Definition 2.6.6. Let ¢» be an automorphism of a root lattice Q from a simple finite-dimensional
Lie algebra g. A diagram automorphism u : Q — Q is an automorphism that preserves the Dynkin
diagram associated to g.

Example 2.6.7. Let Q be the root lattice associated to the Lie algebra A, and recall the Dynkin
diagram associated to A, given in Figure 2.3. The only nontrivial diagram automorphism associated
to Ay is the map that sends

O = Qg1
forall1<i</.

Example 2.6.8. Let Q be the root lattice for the simple finite-dimensional Lie algebra D, and recall
the Dynkin diagram associated to D, given in Figure 2.4. For { # 4, there is one nontrivial diagram

automorphisms associated to D, that sends
Qy_1— ay, a;,—aq; fori#£(—1,L.

For ¢ =4, the Dynkin diagram takes the shape in the figure below.
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Figure 2.5 The Dynkin Diagram of D,.

Qasz

@y az
Qy

and the set of diagram automorphisms associated to D, consists of all possible permutations of

the roots a;, a3, and a4.

Let Q be a root lattice corresponding to a simple finite-dimensional Lie algebra g that is simply

laced. Recall that we can use Q to reconstruct the root space decomposition

g:h@(@CEa).

aeA

If u is a diagram automorphism of Q, then u induces an automorphism u of g defined by

)= @), WU(Eq)= Eya)-

The induced automorphism y is called a diagram automorphism of g.

2.7 Affine Kac-Moody algebras

In this section, we review affine Kac-Moody algebras and their root systems. More details can be
found in [33].

Definition 2.7.1. Let g be a simple finite-dimensional Lie algebra of type X, with Lie bracket [-,-].
An affine Kac-Moody algebra of type X ;1) is the Lie algebra

2@ =(s®C[t,t'])eCK®Cd,
where the Lie bracket [,-] is extended to .£(g) in the following way:

[a®t™, b®t"]=[a,b]® """ +m&,, _(alb)K,
[K,Z(g)]=0, (2.4)

d,a®t"|=ma®t™,

for a, b € g and m, n € Z. Here (|-) is a nondegenerate symmetric invariant bilinear form on g (which
can be any scalar multiple of the Killing form). We will denote by .£’(g) the subalgebra of £(g) given
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by
f’(g) =(goC[t, )eCK.

A Cartan subalgebra h of £ (g) can be constructed by using the Cartan subalgebra h of g with the
addition of the central element K and the derivation d. That is,

h=heCK & Cd.

Similarly, the dual space bh* of f (which has the same dimension as h) can be constructed using
the dual space h* of g with the addition of two extra elements to its basis, which we will call ¢ and
Ao,

h*=h* @ Cay @ CA,.

If 11 = {a;,ay,...,a,} is the set of simple roots for g, then a base for the simple roots of £(g) is
1= {ag,a;,...,a;}. We can also build a set of coroots IV = {ay, @, ..., &} for £(g). Just like in the
simple finite-dimensional case, we can also construct a nondegenerate bilinear form (-|-): h* xh — C
as follows (let a € h*, h € h):

(alh)=a(h).

This bilinear form leads to the creation of a Cartan matrix C for .£(g)

9 =(Cij)osl',jgz

where ¢;; =(a; Ia\]{). Since IT c I, the Cartan matrix for .2(g) will have the Cartan matrix for g as a

submatrix.

Example 2.7.2. The Cartan matrix for the affine Kac-Moody algebra of type A(ll) is

%7

and the Cartan matrix for the affine Kac-Moody algebra of type AEU for¢>2is

(2 -1 0 © 0 0 0 —1)

-1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
0 0 -1 2 —-10 0 0

0 2 -1 0

-1 2 -1

-1 0 0 0 0 0 -+ 0 —1 2

Similar to the simple finite-dimensional case, we can construct a Dynkin diagram based off
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the Cartan matrix C of £(g). We provide the Dynkin diagram of AEZU for { > 1 as an example in the

figures below. For more information, see [33].
Figure 2.6 The Dynkin diagram of A(ll).

Qg ay

Figure 2.7 The Dynkin diagram of A;U forf>2.

Let C be the Cartan matrix associated to an affine Kac-Moody algebra £(g). There exists a
unique vector 6 =(ag,ay,...,a;)T where the a;’s are positive relatively prime integers and cé=o.
Leto = Z?:o a;a; where {a;|i =0,1,...,¢} is the set of simple roots. We call 6 the null root and ¢ is

orthogonal to all roots
(0la;)=0 for0<i</¢, (6]Ag)=1.

Using 0 we can re-express the dual space as
h*=h*®Cs @ CA,.

Let A be the set of roots for g. The root system A of £(g) consists of the union of real roots

(denoted A™) and imaginary roots (denoted A'™) given below

A=A"UA™ where A" ={a+nélacA, neZ} and A™ = {nés|n e Z}.

2.8 Twisted affine Kac-Moody algebras

We briefly review automorphisms of finite order and twisted affine Kac-Moody algebras in this
section. Unless specified otherwise, g will be a simple finite-dimensional Lie algebra of type X,.
Suppose o is an automorphism of the Lie algebra g with finite order N. Then the minimal

polynomial for o is p(o) = 0¥ — I which is a product of distinct linear factors. That means o is
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diagonalizable and the set of eigenvalues of o is {e & |jeZ/N Z} where i = v/—1. The Lie algebra g
can be written as a direct sum of eigenspaces
27ij/N

g= @ g; where g;={acgloa=e a}.

jeZ/NZ

We can use the automorphism ¢ and the associated eigenspaces g; to construct what is known as a
twisted affine Kac-Moody Lie algebra.

Definition 2.8.1. Let o be an automorphism of the Lie algebra g of finite order N. We can define a
subalgebra .Z(g,0) of £(g) by

2L(g,0)=P <(g,0)j0CKeCd, (2.5)
JEZ
where
Z(g,0)j=g;8Ct!, jeZ. (2.6)

When g is simply laced (of type X = A, D, E) and o is a diagram automorphism of order N =2 or
3, then the Lie algebra £ (g, o) is known as the twisted affine Kac-Moody algebra of type X K(N). We
will denote by .2’(g, o) the subalgebra of (g, o) given by

£'(9,0)=(D%(g,0); 8 CK.
JEZ
Proposition 2.8.2 ([33]). Let o be an automorphism of g of finite order N. Then there exists an
associated diagram automorphism u of g (where the order of u is 1,2, or 3, depending on g) and an
inner automorphism ¢ of g such that o = uyp.

When o is not a diagram automorphism of g, then by Proposition 2.8.2 we have o = uy where u
is a diagram automorphism and g is an inner automorphism. Let r be the order of u. This results in
the Lie algebra £ (g, o) being isomorphic to the twisted affine Kac-Moody algebra £ (g, u) of type
Xér) when X = A, D, or E. For more information, see Theorem 8.5 in [33].

Remark 2.8.3. For an automorphism o of g of finite order N, notice that ¢! also has order N. We

can consider the subalgebra £ (g,0!) of £(g) where

Lo =P <o ™);eCKkecCd, 2.7)
JEZ

where

f(g,a_l)]=g]®(Ct], jEZ,
—2mij/N 2.8)

gi={acg|loa=e a}.
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The Lie algebras £ (g,0~!) and .£’(g,0~") will be important when we construct vertex operator

representations of affine Kac-Moody algebras and toroidal Lie algebras.
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CHAPTER

3

VERTEX ALGEBRAS AND TWISTED
MODULES OVER VERTEX ALGEBRAS

In this chapter, we will review some basic concepts from the theory of vertex algebras. These concepts
include automorphisms of vertex algebras, subalgebras, and twisted modules over vertex algebras.
We will also construct representations of affine Kac-Moody algebras from twisted modules over
affine vertex algebras and lattice vertex algebras. For more information on these topics, we refer the
reader to [34].

3.1 Vertex algebras and examples

Let V be a vector space and Z=! be the set of positive integers. Recall that V [z, z 1] is the set of finite
sums

Viz,z l]= {Z v,z" v, € V allbut finitely many v, :0},

nez

and V[z]is the subset of V[z, z7!] consisting of finite sums with nonnegative powers of z

V[z]:{ Z v,2" | v, €V all but finitely many v, =0}.

nez1
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In this thesis, we will be concerned with formal power series which are sums that are allowed to be
infinite. We will denote V[[z, z7!]] as the set

Vitz e I={ Xz o v,

nez

and V[[z]] as the subset of V[[z, z7!]] containing infinite sums with nonnegative powers of z

V[[z]]:{ Z v,2" v, € V}.

nez=1

Definition 3.1.1. A vertex algebra [20, 34, 42] is a vector space V with a distinguished vector 1 € V
(called the vacuum vector), equipped with bilinear rn -th products for n € Z:

VeV -1V, a®b»—>a(n)b, 3.1
subject to the following axioms. First, for every fixed a, b € V, we have
agmb =0, forn>0, (3.2)

where 71 > 0 stands for sufficiently large n. This means that there exists some positive integer N
such that for all integers n such thatn > N we have a(,,b = 0. Second, the vacuum vector 1 plays
the role of a unit in the sense that

a_nl=1_ya=a, 1ya=0 for n€z, n#-1, am1=0 for n>0. (3.3)

Lastly, the Borcherds identity must be satisfied for all a, b,c € V and k, m, n € Z:
oo

o) k .
2(7)(0(k+j)b)(m+n—j)c = Z ( ; )(—1)1 Am-+k—i)( Dn+i)€)

j=0 i=0
k k+l
—Z bt k—i)(Agmai) €)-

As a consequence of Axiom (3.2), all the sums in the Borcherds identity are finite. If we set k =0

(3.4)

in the Borcherds identity, we obtain the commutator formula

o m
[@(m), Din)] =Z( i )(“(j)b)(m+n—j)- (3.5)

j=0

Definition 3.1.2. The n-th products a,)b for a, b € V and n € Z can be viewed as a sequence of

linear operators a(,) € End(V) acting on b € V. We call the operators a,) the modes of a. We can
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organize the modes into formal power series

Y(a,z)= Z amz",  aeV, (3.6)

nez

called fields or vertex operators. The linear map Y: V — (EndV)[[z, z7!]] is known as the state-field

correspondence. Observe that Y (1, z) = I is the identity operator.

Definition 3.1.3. We can define an operator T' € End(V) by Ta = a_,)1. The operator T is called

the translation operator and T satisfies the properties
[T,Y(a,z)]=Y(Ta,z)=0,Y(a,z), 3.7

or equivalently,
[T, a(n)]=(Ta)(n)=—na(n_1). (3.8)

Another important consequence of the Borcherds identity is the (—1)-st product identity where

for a,b € V we have

Y(a1b,z)=:Y(a,z)Y(b,z):
- Za(n)z—"—l Y(b, z)+Z Y (b, z)agz "

n<0 n=>0

(3.9)

The double colons in Equation (3.9) denote the normally-ordered product. We can consider the
normally ordered product of more than two fields by applying the normally ordered product from
right to left. For example (a, b, c € V),

:Y(a,z)Y(b,2)Y(c,z):=:Y(a,z)(Y(b,z)Y(c,z)):

=:Y(a,z) (Z bz " Y(c,2)+ Y _Y(c, Z)b(n)z_”_l) :

n<o0 n>0
= Z a(j)z_j_l (Z b(n)z_”_l Y(c,z) +Z Y(c, z)b(n)z_"_l)
Jj<0 n<o0 n=0
+ (Z bz "' Y (e, 2)+ DY (e, z)b(n)z_n_l)z agz 7. (3.10)
n<0 nz0 j=0
We can combine Equations (3.7)-(3.9), we get
1
Y(a1-mb,2)=:(3""Y(a,2))Y(b,z):;, m20, and 3" = —o". (3.11)

Finally, the Borcherds identity also provides us with a property known as locality where for a, b € V

we have

(z—w)N[Y(a,z),Y(b,w)]=0
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for sufficiently large N, depending on a, b (for example, we can take N to be such that a,)b =0 for
n>N).
In the two following subsections we will discuss two important types of vertex algebras that will

be used later in this thesis: affine vertex algebras and lactice vertex algebras.

3.1.1 Affine vertex algebras

Definition 3.1.4. Suppose g is a simple finite-dimensional Lie algebra equipped with a nondegen-
erate symmetric invariant bilinear form (+-). Consider the Lie algebra .£”(g) with the brackets given
by the first brackets in Equation (2.4). For a fixed k € C (called the level), consider the (generalized)
Verma module for §:

112
Viel@)=Ind_ oo peck ©

where g® C[f] acts as 0 on C and K acts as multiplication by k. The module V,.(g) has the structure
of a vertex algebra [24], called the universal affine vertex algebra at level k. The §-module V;(g) has
a unique irreducible quotient V*(g), which is also a vertex algebra [24], known as the simple affine

vertex algebra at level k.

Let us review the vertex algebra structure of V = V;(g); the same applies to V = V¥(g) as well.
The vacuum vector 1 is the highest-weight vector of the §-module V. For a € g and n € Z, let a(,
actasa®t" on V. We embed g in V so that we identify a € g with a_;)1 € V. The fields

Y(a,Z)ZZd(n)Z_n_l, acg,

nez

are known as currents. All other fields in V are obtained by applying repeatedly Formula (3.11) as
shown below (see [20, 34, 42]):

Y (@1 () @2y Asemy L, 2)=: (8" VY (a4, 2)) (817 VY (ay, 2)) -+ (8™ VY (ag, 2)) :

fora; € g, m; eN,and i € {1,2,...,s}. For a,b € g c V, their modes satisfy the commutation

relations of the Lie algebra §:
[a(m), by =@, b))+ M6y, _p(alb)k. (3.12)
By the commutator formula (3.5), this is equivalent to the j-th products
agb =[a,b], anyb =(alb)k1, ajyb =0 (j=2). (3.13)

3.1.2 Lattice vertex algebras

Let Q be an integral lattice of rank ¢ with a symmetric bilinear form (-|-): Q x Q — Z. We will assume
that Q is even, which means that |a|?> = (a|a) € 2Z for all @ € Q. Let h = C ®; Q and extend the form
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(') to b using bilinearity. We can construct a Heisenberg Lie algebra §) defined as
h=0HeClr, ' )eCK,
with the Lie brackets (h, h’ €, m, n € Z):
(het™ W et"|=mé,,_,(h|h)K,  [hK]=0. (3.14)
We will use the notation hy,,)=h® t™.
Definition 3.1.5. The bosonic Fock space B is the induced module

B=Ind’ . C=~S( 'p[t™]),

h[t]®CK

where K acts as I and h[¢] acts trivially on C. The Fock space B has the structure of a vertex algebra
with a vacuum vector 1 the highest-weight vector and the state-field correspondence Y defined as
follows. For h € b, we identify h with h_;)1 € B and let

Y(h,z)= Z Bz ™', heb, (3.15)

meZ

be the free boson fields. All other fields in B are obtained by applying repeatedly Formula (3.11).
That is,

Y (1 b2y hsemg b, 2)=2 (8 7VY (1, 2)) (8,71 Y (hp, 2)) -+ (071 Y (hy, 2))

for h; €h, m; €N, and i €{1,2,...,s}. The Lie algebra §) has a unique highest-weight representation
on the Fock space [20, 34, 42].

We define a bimultiplicative function &: Q x Q — {£1} such that
ela,a)=(-1)""?  aeq, (3.16)

and satisfies

e(a,Ble(B,a)=(=1"“P,  a,peq.

We use ¢ to define the twisted group algebra C,[Q] with basis {e“},¢; and multiplication
e“eP =¢(a,ple™tP, e=1. (3.17)
We can construct the tensor product V;, defined as

Vo =BeC[Q]
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and the representation of f can be extended to Vo by the action
hm)(u ® €P) = (i e+ 8 0(RIB)W) @ €,

forheh, m €Z, u € B and B € Q. In particular, note that e’ is a highest-weight vector for the

Heisenberg Lie algebra:
BomeP =6,,0hB)e?,  m>0, heph, Beq. (3.18)
We can also represent the algebra C.[Q] on V[, by
e“(ueeP)=¢e(a, Bu®e®h)

forue Band a, €Q.
For simplicity of notation, we will write e for 1® e® € V, and h for h_;1®e° € V5, where a € Q
and h €.

Definition 3.1.6. The space V; has the structure of a vertex algebra called the lattice vertex algebra,
with a vacuum vector 1 ® e and a state-field correspondence generated by the free boson fields

(3.15) and vertex operators

Y(e z)= 0% 20 o[ X2 on 1) o (X1 @ ), 3.19)
In this formula, z#© acts on Vj, by
z%0(ugel)=z1P(yeeh), ueB, apeqQ.

For future use, we need to compute the action of the translation operator T on Vj. Taking
advantage of Formulas (3.7) and (3.9) we get

Y(Te% z)=0,Y(e% z)=:Y(a,z)Y(e%2):=Y (a e’ z),

which gives us
Te“=a_ye’, aeq. (3.20)

3.2 Subalgebras, homomorphisms, and modules over vertex algebras

Definition 3.2.1. A subalgebra of a vertex algebra V is a subspace U of V that contains the vacuum

vector 1 and is closed under rn-th products
anueU forall a,ueU.

Example 3.2.2. Consider any simple finite dimensional Lie algebra g and its Cartan subalgebra b.
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Recall from Section 3.1 that we can construct the affine vertex algebra V}.(g) where we identify a € g
with a_;)1 € Vi(g). If we let U be the subalgebra generated by all & € b, then U is closed under all
n-th products and U is a subalgebra of the vertex algebra V(g).

Definition 3.2.3. Let 1} and V; be two vertex algebras. A vertex algebra homomorphism is a linear
map ¢ : V; — V; that preserves the n-th products

¢ (amb)=p(a)mp(b) forall a,beV;, neZ.

A vertex algebra isomorphism is a homomorphism that is both one-to-one and onto. A vertex

algebra automorphism is an isomorphism from V] to itself.

Definition 3.2.4. Let V be a vertex algebra. An (untwisted) V-module is a vector space M endowed
with a linear map YM: V — (EndM)[[z,z7']],

YM(a,z)= Z a(l\r’fl)z_m_l, acv, (3.21)

meZ

where for every a € V and v € M, we have
M _
AV =0, form>0. (3.22)

m

Next, YM(1, z) =1 and the Borcherds identity is satisfiedanya, b€ V,ce M, k,m,n € Z:

(™ M _ SIL _1)igM pM
Z i (@e+ j) )(m+n—j)c_z ; (=1) Ay s iy (B €)

Jj=0 i=0
[k
k+i 3 M M
_Z (l-)(_l) l D)@y ©)-
i=0

A submodule U of M is a subspace such that a(]\,f)u eUforallacV,neZ,and uecU. Wecalla M

(3.23)

irreducible if its only submodules are {0} and M.
Example 3.2.5. Every vertex algebra V is a V-module.

Example 3.2.6. Let g be a simple finite-dimensional Lie algebra and recall the universal affine
vertex algebra Vi(g). Every Vi.(g)-module is the same as a .%’(g)-module M with the property that
av=0fora€g, veM and n>0.If M is an irreducible £’(g)-module then M is an irreducible
Vi.(g)-module. (see [24, 37, 42)).

3.3 Twisted modules over vertex algebras

We devote this section to the discussion of twisted modules over vertex algebras. The reader should
compare the definition of twisted modules over vertex algebras to that of untwisted modules over

vertex algebras in Section 3.2.
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3.3.1 Definition of twisted modules over vertex algebras

Definition 3.3.1. Let V be a vertex algebra and o be an automorphism of V of order N. We can
write V as a direct sum of subspaces

@ Vi, where Vj={a€V|0a:e_2"if/Na}_
j€Z/NZ

Ao -twisted V-moduleis a vector space M endowed with alinearmap Y™ : V — (EndM)[[z'/N, z71/N]]
where
M _ M _—m-1
Y"(a,z)= Z Ay ? m=1 acv, (3.24)
mexZ

subject to the following axioms. First, for everya € V, v € M, we have

AV = for m > 0. (3.25)

Next, YM(1,z)=1 and
YM(oa,z)=YM(a,e?™z), (3.26)

where the meaning of the right-hand side is that we replace z~""~! with e =27"+1) z=m-1 in each
summand of Equation (3.24) [16, 19]. Explicitly, Equation (3.26) means that if a is an eigenvector of
o, then in Equation (3.26) we only have terms with m € %Z such that ca = e~?™"q. Finally, the
o -twisted Borcherds identity must be satisfied foranya,beV,ceM,keZ, m,ne %Z:

o] o0 k
Z(r;)(a(k+j)b)%1+n ])C_Z(l)( l)l (m+k— (bjlzd-i—z c)

j=0 i=0

1)k
_Z( ) * b%k )(“(]ymi)c)'

=0

(3.27)

provided that ca = e~>™"aq.

If we can set k =0 in the o-twisted Borcherds identity, then we obtain the o -twisted commuta-
tor formula for a, b € V and m, n € 3 Z such that ca = e 2™ q:

> m
[y B _Z( i )(“(j)b)%n_ iy (3.28)

j=0

Notice that the j-th product g ;)b in formula (3.28) corresponds to the j-th product defined in the
lattice vertex algebra V and not the j-th product corresponding to the o -twisted module over V. If
o is the identity operator, then M becomes an untwisted module over V.

The translation covariance properties in Equations (3.7) and (3.8) continue to hold for twisted

modules. However, Formula (3.11) does not hold for twisted modules. It is replaced by Bakalov’s
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Formula [37]:

1
Eazk (2= wNYM(a,2)YM(b,w))c| _ =Y(an-1-b wc, (3.29)

foralla,b eV, ce M, k>0 and sufficiently large N.

Example 3.3.2. Suppose o € Aut(Q) where ¢V = I and extend o to h = (h ® C[t,t7'])® CK by

linearity. We can lift o to an automorphism of the Heisenberg Lie algebra ) by
o(hgm)=(0h),m, o(K)=K,

and to an automorphism of the Fock space B so that 01 = 1. Since the cocycles ¢(a, f) and e(ca, o )

are equivalent, there is a map n: Q — {£1} such that

n(an(Ble(a, p)=nla+ple(ca,op),  a,peqQ.

We can choose the map 7 so that n(a) =1 if ca = a. (see [4]). We can also lift o to an automorphism
of Vo =B®C,[Q] by
O'(h(_m)]. ® e"‘) = (O'h)(_m)]. ® n(a)e‘m

for h € h. Notice that the order of the lift o € Aut(Vy) is N or 2N. The irreducible o -twisted V-

modules were classified in [5].(see also [16, 41]).

Example 3.3.3. 2.8, As in Section 2.8, 2.8, let g be a simple finite-dimensional Lie algebra and
o € Aut(g) such that oV = I. Recall that
2mij/N

g= @ g; where g;={acg|loa=e a}.

JEZ/NZ
From Proposition 2.8.2, we can write o = u@ where ¢ is an inner automorphism and u is a diagram
automorphism. We extend o uniquely to an automorphism of the universal affine vertex algebra

Vi(g) by
oc(1)=1, o(agm)=(0a)m, acg, meZ. (3.30)

3.3.2 Vertex operator representations of affine Kac-Moody algebras

Recall from Section 2.8 that if o is an automorphism of finite order of g then we can construct the
twisted affine Lie algebras £’(g, o) and .2’(g, o). The following proposition connects .2’(g,0")
to a o-twisted Vj.(g)-module M.

Proposition 3.3.4 (cf. [37]). For any o-twisted Vi(g)-module M, the Lie algebra spanned by the
modes of the fields Y (a, z) for a € g form a representation of the twisted affine Kac-Moody algebra
2'(g,07) on M oflevel k.

Proof. We will define a Lie algebra homomorphism from £’(g,0!) to the modes of the fields

YM(a, z). By linearity, since ¢ is diagonalizable, we can assume that a € g is an eigenvector of g.
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Recall that the set of eigenvalues for o is {e & |je Z}. Suppose that ca = e?™/N g for some j € Z.
Then o~'a = e?™//N g Recall that £’(g,0~") is given by

(g0 ) =P <(go™");eCK,
JEZ
where

.Z(g,a_l)jzgj@((?tj, jGZ,

—2mij/N

gi={lacgloa=e a}.

Recall from Equation (3.24) that the the modes of the fields Y (a, z) for a € g take the form a

(m)
forme %Z. We define a linear map from £’(g,0~!) to the span of these modes, by sending a ® ¢/
to a(]M/N). We also send K to kI as alinear operator on M.

To check that this is a Lie algebra homomorphism, we compute the commutator of modes,
which is given by the o-twisted commutator formula (3.28). Using the brackets in (3.13), we obtain

[al, BS1=1a, b, .+ M6 m_n(alb)k

m+n)

fora,begand m,ne %Z such that ca = e ?™™q and o b = e2™" b. As this coincides with the Lie
bracket in (2.4) in £’ (9,071 with K = k1, the claim follows. O

Remark 3.3.5. When o is an inner automorphism of g, then £’(g,0~") ~ £’(g) is an untwisted
affine Lie algebra.

Suppose now g is a simple Lie algebra of type X, where X = A, D, E (simply laced). Let A be its
root system and Q = ZA its root lattice. Let o be an automorphism of the lattice Q of finite order N.
Recall that we can use Q to construct the lattice vertex algebra Vj, and in Example 3.3.2 we lifted o
to an automorphism of the lattice vertex algebra V.

Corollary 3.3.6 (cf. [36, 37]). Forany o -twisted V;;-module M, the modes of the free bosons YM(h,z)
for h € b and the modes of the vertex operators Y (e?, z) for a € A span a representation of the
twisted affine Kac-Moody algebra .£’(g,0~!) on M.

Proof. By the Frenkel-Kac construction [22], the lattice vertex algebra V;; is isomorphic to the simple
affine vertex algebra V'!(g) (see [34, Theorem 5.6 (c)]). The map ¢ induces an automorphism of g
and hence of V!(g). Recall that V'!(g) is a quotient of the universal affine vertex algebra V;(g). Thus
any o -twisted V'1(g)-module M is also a o-twisted module for V;(g). The claim then follows from
Proposition 3.3.4. O
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CHAPTER

4

VERTEX OPERATOR REPRESENTATIONS
OF TOROIDAL LIE ALGEBRAS

In this chapter, we construct representations of twisted toroidal Lie algebras using twisted modules
over vertex algebras. We start by defining toroidal Lie algebras and twisted toroidal Lie algebras.
Next, we build on the information presented in Chapter 3 to construct representations of twisted
toroidal Lie algebras.

4.1 Toroidal Lie Algebras

We now provide the definitions of toroidal Lie algebras and twisted toroidal Lie algebras. The reader
should notice a connection between these definitions and that of twisted and untwisted affine
Kac-Moody algebras presented in Sections 2.7 and 2.8.

4.1.1 Untwisted toroidal Lie algebras

Let g be a fixed simple finite-dimensional Lie algebra equipped with a Lie bracket [-,-] and a non-
degenerate symmetric invariant bilinear form (:|-). Let r be a fixed integer. We will use variables
to, 11, .., t, and multi-index notation

t=(t1,....,t;), m=(my,...m)eL", t"=¢"" 1.
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Definition 4.1.1. Consider the loop algebra %, ,,(g) in r + 1 variables
Zra(g)=g®0, o=Clgt, ..., 0,

where the Lie bracket [-,-] is extended to .£(g) in the following way (a, b € g, my, ny € Z, m,n € Z"):
[a®ty"t™, b®t,°t"]=[a,b]l®ty° ™",

Next, we create a central extension £/, (g) of £,,1(g):

g;+1(g):zr+l(g)®%r

where .
,
J‘(:(EB(CIQ@@‘)/SpanC{Z miKi®t0m°tm)mieZ}. 4.1)
i=0 i=0
The Lie brackets in .Qr’ +1(g) are given by:
-
[a® ) t™, b®t,°t"]=[a,b]® ;" "t + (alb)z m;K; ® ty 0, 4.2)
i=0
[, 2] ,,(g)]=0. 4.3)

By Kassel’s Theorem, the central extension fr’ +1(@) of £ 11(g) is universal [40] (setting K; = ¢; ldt;
allows us to identify # with Q!/d 0"). The Lie algebra .2’
[47].

+1(@) is known as the toroidal Lie algebra

Remark 4.1.2. Notice that when r =0, we have
Zi(g)=90C[ty" |0 X,

where ¢ = ((CKO ®C| toil])/spanc{zgzo myKy® 1, ‘ mgy € Z}. We can see that # ~ CK, and .Z{(g)
is the affine algebra .£’(g) defined in Section 2.7.

It will be convenient to slightly modify the definition of .Qr’ +1(9) as follows. For a given complex
number k (called the level), we replace the bracket (4.2) with

.
[a®t,"t™ b o 1,°t"|=[a, bl® t" ™ t™™ + k(a|b) > m;K; ® tg" ™™, (4.4)
i=0
The resulting Lie algebra %, ;(g) ® ¢ with bracket (4.4) and (4.3) will be denoted as .ffr’ 41, (g)and
called the toroidal Lie algebra of level k. Notice that, for k # 0, formulas (4.2) and (4.4) are equivalent
after rescaling the bilinear form (-|-) or rescaling the central elements Ky, ..., K.

Now we will add derivations to our toroidal Lie algebra, as in [12]. We let 2 be the Lie algebra of
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derivations of ¢ given by

fiEﬁ}, di=t;

@:{zr:d,-@f,.
i=0

and 2, be the subalgebra of 2 given by

@+={Zr:d,~®fi
i=1

Then the elements of 2, extend uniquely to derivations of the Lie algebra 52; a@bylaeg 1<

fie@’}.

i,j<r):
(d; ® 1" t™) a® ty°t™) =n;a® 1, ™™,

.
(di ® 1" t™)(K; ® 1J°t™) = n; K; ® 1t ™ " 4.5, z m Ky ® 1o,
=0

The Lie algebra we will consider in this thesis, which we will refer to again as a toroidal Lie algebra

oflevel k, is
jr-kl,k(g) = jr/+l,k(g) ® @-l—)

with the Lie brackets given by (4.4), (4.3),and (a€g, m;,n; €Z,1<1i,j<r):

[d; ® t,"™t™, a ® ty"t"]=nma® t;" "t™™, (4.5)
r
+ +
[d; ® 1) "t™, K; ® t,°t" | = n; K; @ £y 0t ™ + 6,~,]-Z m K @t (4.6)
=0
[d; ® 1, °t™,d;® 1y t™]=n;d; ® t," " ™" — m;d; @ 1y 0Tt 4.7)
r
—nym; Yy m K@t

=0

The last term in (4.7) corresponds to a ¢ -valued 2-cocycle on %,.. In fact, we can define the bracket

in (4.7) more generally as

d; ® tomotm, d] ® tonotn] = I’lld] ® t0m0+n0tm+n— m]dl ® t0m0+7lotm+n

my,m Noyn
+7(d; @ 1y °t™, d;® 1,°t")
where 7 is any linear combination of the two cocycles 7; and 7, defined by

.
+
Tl(di ® lomotm, d] ® tonotn) =—m; I’liz mK;® tomo logmAn
1=0
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and

,
To(d; ® 1y °t™, d; ® 1y t")=—m;n; » myK; @ty 00t
1=0
In our definition of a toroidal Lie algebra of level k, we will only consider 7 = 7; + 07,. For more
information on derivations of toroidal Lie algebras and 2-cocycles, see [8].
Notice that, for k # 0, if we rescale the generators Ky, ..., K, in order to replace (4.4) with (4.2),
the 2-cocycle gets rescaled by 1/k.

4.1.2 Twisted toroidal Lie algebras

As before, fix alevel k € C, and let o be an automorphism of order N of a simple finite-dimensional
Lie algebra g. As in (3.29), we denote by g; (j € Z) the eigenspace of o with eigenvalue e2™//N. The
nondegenerate symmetric invariant bilinear form (-|-) we associated with g is o-invariant. That is,
(alb)=(calob)forall a, b € g. If we choose a € g, and b € g,,, then the o -invariance of (:|-) gives us

(a|lb)=(caloh)

— (eZNim/Na|62ﬂin/N b)
— ezm(m+n)/N (a|b)

which implies e2™(m+1/N = 1 or (a|b) = 0. Therefore, we have
(a|b)=0, acgy beg,, m+n#Z0 modN. (4.8)
Consider the subalgebra %, (g, o) of the loop algebra ., ,,(g) given by

ZLr1(0,0)= P Lr11(0,0)m,

myeZ

where

Lr1(8,0)my = Om, ®span(c{t0m°tm | myEZ, me Z’}.

Let
spanC{K,-®tévm°tm|m0€Z, meZ'’, i:O,...,r}

B spanc{(NmgKy+ Y 1_ m;K;)® 1) ™tm | m;ez}

/

We can identify ¢” as the subspace of ¢ given by the image of
spanC{Ki@a té\]motm{moez, meZ’,i=0,..., r}
under the quotient map @@;_,CK; ® 0 — ¢ (cf. (4.1)). Then the central extension

‘z)r,ﬂ,k(g» o)=Y (g o)ex’ c jr,ﬂ,k(g)
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is a subalgebra of £’ /.1 x(0), thanks to (4.4), (4.8).

Definition 4.1.3. When o is a diagram automorphism of g, .52; +11(8,0) is known as the twisted
toroidal Lie algebra [25]. We will continue to use that terminology for an arbitrary finite-order
automorphism o of g.

As in Section 4.1.1, we can add to .Z/

++1,x(8,0) asubalgebra of the Lie algebra of derivations % of
0. We define

Lraklg0)=2],, (g0)07, (4.9)

where
@:L:spanc{dl@ tONm"tm{mOeZ, meZ',i= 1,...,r}.

It is easy to see from (4.5)-(4.7) that Z?,H' (g, 0) is a subalgebra of the toroidal Lie algebra QHL «(9).
We will also call .,E?HL (g, 0) the twisted toroidal Lie algebra of level k.

4.2 Tensor products of vertex algebras and twisted modules

Our construction of vertex operator representations of toroidal Lie algebras will involve twisted
modules over a tensor product of vertex algebras. We review tensor products of vertex algebras and

twisted modules over tensor products in this section.

Definition 4.2.1. The tensor product V; ® V, of two vertex algebras V; and V; is a vertex algebra [21]
with a vacuum vector 1 ® 1 and a state-field correspondence given by (a € V4, b € V,):

Y(a®b,z)=Y(a,z)®Y(b,z)= Z a(k)®b(m)z_k_m_2. (4.10)
k,meZ

In terms of modes, we have

(@®b)m= > au® by_g1). (4.11)
keZ

Recall that in a vertex algebra we can define a translation operator T € End(V; ® V,) such that
T(a®b)=(a® b)_y(1®1). By Equation (4.11),

(a® b)(_z)]_ ®1l= Z A ® b(—2—k—l)(]- ®1)
kez

= Z Ll(k)]. ® b(n+2—1)1

keZ

and from the vacuum axiom in Equation (3.3),

(a®b)_21®1=a_yl®b_l+a_;1® byl
—a_2)1®b+a®b(_2)1
=(heL+heT)a®b)
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where T; is the translation operator and I; is the identity operator in V; for i = 1,2. Therefore the
translation operator T in V; ® 1, is
T= T1®12+11®T2

Example 4.2.2. Let Vj and V, be vertex algebras with finite-order automorphisms ¢; and o, re-
spectively. Suppose M; (i =1,2) are g ;-twisted V;-modules. Then o ® 0, is an automorphism of the
tensor product vertex algebra V; ® V; and the tensor product M; ® M, is a 01 ® 0,-twisted module
over V; ® V, with

yMeM(aeb,z)=Y"(a,2)0 Y2(b,2), acW, bel, (4.12)

see [4, 21].

Remark 4.2.3. Let Q; and Q, be two integral lattices of rank ¢, and ¢,, respectively. Let Q be the
orthogonal direct sum of Q; and Q, of rank ¢ +{,. That is, let Q = Q; ® Q, such that (a|b) = 0 for
any a € Q; and b € Q,. Then the lattice vertex algebra Vo~ Vo, ® Vg, (see [23] and [42]).

4.3 Twisted modules over V;(g)® V; and twisted toroidal Lie algebras

We will now explore the relationship between twisted toroidal Lie algebras in r + 1 variables and
the tensor product of the universal affine vertex algebra V;.(g) with the lattice vertex algebra corre-
sponding to r copies of a certain rank-2 lattice. The level k € C will be fixed through the end of the
section.

As before, consider an automorphism o of finite order N of a simple finite-dimensional Lie
algebra g, and the twisted toroidal Lie algebra (of level k) .QHL t(g,0)defined by (4.9). Fori=1,...,r,
let J; be the lattice given by

Ji=z8'ezA,,  (8'IA)=1, (8'16")=(A}IA)=0. (4.13)

We define a bimultiplicative function : J; x J; — {£1} satisfying Equation (3.16) by &(6°, Aé) =—1
and ¢ =1 for all other pairs of generators. Note that J; is an even integral lattice. Then we can form
the lattice vertex algebra V}, as in Subsection 3.1.2.

Introduce the orthogonal direct sum
J=hL&-o], (4.14)

and extend € to J x J by (6 ",Ag) =—1for i = j and € = 1 for all other pairs of generators. Then the

lattice vertex algebra V;} is isomorphic to the tensor product:
ViV ®---®V. (4.15)

As preparation for our main theorem, we need to calculate some n-th products in V;. We will use
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the notation .
pézZpiﬁi, p=(p1,...,p)EZ".
i=1

Lemma 4.3.1. The lattice vertex algebra V; has the following n-th products for p,q € Z" and

i, j=1,...,r:
e(li‘i)eqé = pPta)?
e(f‘;)e = (pd)_)ePr?,
(u(—l)ep‘s)(n)(v(_l)eq‘s) =0 for n>0, u,ve{l,6%...,6"},

(Aé(—l)em)m)eq(s =q; eP*7°,

(A(")(_l)ep‘s)(n)eq"s =0 for n>1,
(A(l)(—l)epﬁ)(o)(‘s(];l)eqé) =dqi 5{;1)e(p+q)5 +8, (pd) e ?°,
(Aé(—l)epé)(1)(5(];l)eq5) =5;,eP*?,
(Ao1e”®)(81,e%%)=0 for n>2,

(A6ce™ )0 A5 e ™) = (=piAG Ly + gy = iy (PO) ) 7,
(A(i)(—l)epé)(l)(A(J).(—l)eqé) =—(qiPj @+,
(Aé(_l)epé)(n)(Aé(_l)eq‘s) =0 for n>2.

Proof. The n-th product (ep‘s)(n)(eq‘s) is the coefficient of z7"! in Y(ep‘s, z)eq‘s. We use Equation
(3.19) to obtain:

5 5 5, (pd " < ’
Y(ep ,Z)eq =ep Z(P )(O)exp(Z(pa)(_m)ﬁ)eXp(Z(pa)(Wl) _m)eq .

m>0 m>0

For h = C® J, the vector e?% commutes with the exponentials in Y(e”‘s, z) due to the action (3.18)

and exp (Zm>0(p5)(m)z_—m) 1 = 1. From this we are able to simplify Y (eP?, z)e9? to the following:

Zm
Y(epé, Z)eqé _ ep‘sz(p‘s)“’)exp(Z(pts)(_m)—) 20
m
m>0

By definition of the operator 2P0 we have zP%0 19 = z(P312d) a9 Since (pd|gd) = 0, we obtain
zP%)0ed% = ¢99 From (3.17), the product eP?e9% can be expressed as £(pd, qd)eP+19 = ¢P+a)
Moreover, by the definition of the map &, we get £(67,8/) = 1, which results in £(pd, gd) = 1. This
leads to

Zm
Y(e?,2)e = exp (2(?5)(—m)g) ePra?,

m>0
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Notice that this sum can be expanded as follows:
71
Y(eP? z)e?’ = exp (1 + (pé)(_l)T + ... ) eP+a)d (4.16)

where the dots refer to higher powers of z. To evaluate (ep‘s)(n)(eq‘s) for n = —1, we look for the
coefficient in front of z7 V=1 =20 in Y(eP?, z)e9?, which gives us

(epé)( 1)(eq5): ePta)d.

For (ep‘s)(n)(eq‘s) when n =—2, we look for the coefficient of z=?~1 = z! in Y(eP?, z)e9%, and we
find

(7)) (€)= (8)rye P77

Notice that there are no negative powers of z in Equation 4.16, so (eP® )(n)(eq5 )=0, for n>0.
The remaining n-th products are found in a similar fashion. We can find (u(_l)ep5)(n)(v(_1)eq5 )
forn>0and u,v €{1,56,...,6"} when we consider the coefficient of z "' in Y (u(_y)eP?, z)y_;)e 9

as shown
6 8 I— 5 (o) z"
Y(u(_l)e” ,z)v(_l)eq = Z Unz ePoz'P EXp Z(p(;)(_m)—
lez m>0 m
xexp(Z(pé) ) Y1 )eq‘s
m>0
11,0 2™\ (prae
= U_y Z u_pnz |z exp Z(pé)(_m)ﬁ e
lezZ>0 m>0
1
z
= v(_l)e(p+q)5 (1 + u(_l)ZO + U(_Q)Zl + ... )(1 +(p5)(_1)T + ... )e(’”q)‘s.
This sum has no negative powers of z. Therefore ( /) )ep‘s)(n)(v( )eq‘s) =0 for n>0.

Next, the n-th product (A’ e”‘s)( )eq5 is the coefficient of z7"1in Y(A’ ep5, z)eq‘s as shown

below,

Y(Af)(_l)ep‘;, z)e??

= :Y(Aé, z)Y(eP% z):e9°

=(ZA6(” - )e”5 (Pd)o) exp(Z(pd )exp(Z(pé m)eq‘s

1<0 m>0 m>0

+ ep5z(p5)(0)exp (Z(pé)(_ )exp (Z(pé) ) (ZA’ - ) ,

m>0 m>0 >0
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which we can simplify to the following:

Y(A(i)(_l)e”‘s,z)eq‘s
2" (p+q)é
ZAO(I exp Z (pd)— m— |
1<0 m>0
Zm —m
+ePzPIoexp Z — p(S) (A '1gd)e®®z
"' m —-m
m>0 m>0
Zm + z" (p+q)d
A’ -l 2| ePta) 2| plpta
Z exp Z ) +g;z2 12%xp Z(pd)(_m) p e
1<0 m>0 m>0
72
:(Ag( I? +Al AR )(1+(p5) T+(p5)_2 >+ ...)e(p“?)‘s
z! z2
+q;z (1 + POy T+ POy + - ePral,
For n =0, the coefficient of z7! is g;eP*99 Thus, (Ai 5)(0)6‘15 = g;eP+99_Since there are no

negative powers of z, then for n > 0, we have (A’ ep‘s) e =0.

(m)®

Now we will consider the n-th product (A’ ep5) (67_1)e9%). This is the coefficient of z7"~!

in Y(A’ eT"s )51 e‘1‘s as shown:

(n)

(Al ep5 )5( )eq5

= :Y(A(’), 2)Y(eP?, z): 5j(_1)eq‘5

(Z Aé(z)z_l_l) eP9 7 (P)0) exp (Z(pé)(_ ) exp (Z(pé) ) )e%

<0 m>0 m>0
m
+ ePJZ(pzS)(o)exp (Z (pé)(_m)%) exp (Z( ) (ZAI —l- 1) 1)eq5
m>0 m>0 >0
Zm
(ZAZ —1- 1) l)exp(z(p(;)(_m)_) o P+
<0 m>0 m
zm —m . X
+ep‘sz(p‘;)“’)exp(Z(pd)(_m)—)exp(Z(pd) )((A lgd)o’! 1z_1 +(A(’)|5])z_2)eq‘s
m>0 m m>0 —m
. zm
) (Z Aé(z)z_l_l) exp (Z (pé)(m)ﬁ) e(IH-q)«S
1<0 m>0
. zm
+(g;67 7+ 5,-,jz_2) exp (Z (pé)(_m)ﬁ) ePra?
m>0
: , : z! z?
= 51(_1)(A(’)(_1)ZO -|-A(’)(_2)z1 + ... )(1 +(Pd)1) T +(pd)—2) = + . ) (p+q)d

. 1
+(q:67 1z 46,2 )(1+(p5) +(pd) _2—+ ) (p+q)d
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For n =0, the coefficient of z7! is (q,- 5({(_1) + 5,-,]-(p6)(_1)) eP+a)% For n =1, the coefficient of z2 is

i, eP*+a3 _Also, there are no powers of z less than —2. Thus,

(A’ epé)(o)(g(l_l)e@) =g, 5(1_1)6(p+q)5 + 5i,j(P5)(—1)€(p+q)6,

(Aé(_1)ep6)(1)(5(];1)eqé) = 5i,je(p+qw'

i & J 8) _
(A&_l)e” )(n)((‘i(_l)eq )=0 for n>2,
Finally, the n—thproduct(A(’;(_l)ep‘s)(n)(Aoj( ye9%)isthe coefficientof z~"~! in Y(A(’)( N %,2)Ao’
as shown:
i J qé
Y(AO(_1 )A e
=:Y(AL, 2)Y (ep5 z): Af eq5
= ZAi z 71 | eP? zPOoex (pd) = ex Z( d) =" A e?
= 0(l) p POJem) =, P POJom) 7 | Mo(-1)
1<0 m>0 m>0
z™ 1)
+ePéz(p5)(o)exp(Z(p6)(_m)—)exp(2( )(ZAI 1 1) 1)eq6
m>0 m m>0 —m 1>0
:(ZA(’)(I)Z_Z_I)ep‘sz(p‘s)(")exp( (pé)(_m)—)(/\]( (péIAJ)z )eq6
<0 m>0
pd ,(pd)o 2" 27" i j 1,46
+eP?z'P%0exp Z(pé)(_m)ﬁ exp Z(p&)(m)_— (Aolqé)AO( nZ e
m>0 m>0
= (A] )(ZAI —l_l) exp(Z(pa)(m)W) e(P+q)6
<0 m>0
z™m i
+ep(sz(p‘s)(o)exp(Z(p(;)(_m)—)(qi/\(])( 1)Z l—qi (pél/\é)z 2)€q5
m>0 m
From here, we obtain
Y(AS P, 2)A) e
; _ . , 71 72
:(A(j)(_l)—pjz 1)(A6(—1)Z0+A(IJ(_2)Z1+ )(1+(p6)(_1)T+(p6)(_2)?+ )e(P-HI)é
—_— B z! z?
+(q,-A(])(_1)z '—qip;z 2)(1+(p5)(_1)T +(p6)(_2)?+ .. |ePrad,
To find (Aé( e ) (A] eq‘s)forn>0 we extract the terms with negative powers of z from the

above expression

(_ijé(—l)Z_l + in(])(,l)Z_l —q; p] —qipj (p(;) )e(p+q)5

40

eq

4



This gives us

i o j 5\ . i S
(Aé(—l)ep )(0)(/\0(—1)6‘1 )—(—PjAf)(_U+inO(_l)_ql.pj(p(;)(_l))e(mq) ’
' g j 8 _ s
(A(l)(—l)ep )(1)(A0(_1)eq )——q,-p]-e(PW) ,
' 3 j 5 _
(Aa(_l)el’ )(n)(AO(—l)eq )—0 for n>2.
This completes the proof of the lemma. -

Recall the universal affine vertex algebra Vi.(g) of level k, defined in Subsection 3.1.1. We will now
consider the tensor product of vertex algebras Vj.(g) ® V; (see Section 4.2). We extend o from a finite
order automorphsim of g to a finite order automorphism o of V;.(g) also of order N as described
in Formula (3.30). Next, we extend o to an automorphism of the vertex algebra V;.(g)® V;, again of
order N, by letting

ola®b)=ca®b. (4.17)

Let M be a o-twisted Vi (g)-module, and M’ be a V;-module (untwisted). Then .# =M ® M’ is a
o -twisted V;(g) ® V;-module with a state-field correspondence Y+# given by (4.12). Now we can
formulate our main theorem, which uses twisted V;.(g) ® V;-modules to create representations of
the twisted toroidal Lie algebra.

Theorem 4.3.2. Let o be an automorphism of order N of a simple finite-dimensional Lie algebra g,
and let .# = M ® M’ be a o-twisted Vj(g)® V;-module. Then the Lie algebra of modes of the fields

Y a®eP z), Y”(1®eP? z),

Y (1e6{ e z), v ®Ag(_1)ep5, z),

where a € gand p e Z', form a representation of the twisted toroidal Lie algebra .,S?rﬂ,k(g, o) of

level k on /. Explicitly, we have a Lie algebra homomorphism

a® 1"t’ —(a® ep‘s)(/g),

M
(m-1)’
M
(my

d;®t) "t (1 ®Aé(_1)e”5)ﬁ),

1
Ko® t)N P — —(1® eP?)

N (4.18)
Kot "tP — (106, e")

forpeZ’,1<i<r,anda€g, meZsuchthatoa=e2""Ng.

Proof. Recall that %, ,(g,0!),, for m € Z is spanned by all elements of the form a ® ¢J"t? where

p€eZ and a € gwith 0~ 'a = e?™"/N g Thelatter condition is equivalent to ca = e 2™"/N g_Hence,
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jr+1, «(g,071) is spanned by all elements in the left-hand side of (4.18), subject to the relations:

.
NmK,® té"mtp+2pil<,-® NP =,
i=1

For the map ¢ to be well defined, we need to check that

M

(m)

1 a .
Nmﬁ(l ® e”‘s)gﬂnfl) +Zpi(1 ® 5(’_1)67’5) =0,

i=1

or equivalently
M M

4 5
(m_1)+(1®(p6)(_1)ep ) =0.

m(l@ep‘s) m)

This follows from the translation covariance property (3.8):

M
(m—

‘ﬁ J—
(m) ™

M

—m(l@ep‘s) (m)

y=(Teem)” =(10Tem)" =(10(pd)_e™)

where we used (3.20) and that T acts as T} ® I, + I; ® T, on a tensor product of vertex algebras.

To show that ¢ is a homomorphism, we need to check that the defining Lie brackets (4.3)-(4.7)
of the twisted toroidal Lie algebra .@Hl_ «(g,071) match with the commutators of modes in the
right-hand side of (4.18). The latter are determined by the commutator formula (3.28). We can apply
(3.28) because oa = e~2™"/N g implies o (a ® eP?) = e 2""/N(q @ eP9), since o acts as the identity
on V;. Similarly, if b € g and n € Z satisfy o b = e >""/N p, then (b ® e9%) = e 2™"/N(p ® e9%) for

q€Z'". Hence,

o rm
/i N M
[(a® eyl (boe®) |=> (N)((a®ep5)(,)(b ®e”)) 0y (4.19)

The I-th product (a ® eP? J(b® e9%) is the coefficient of z~/~! in the expression
Y(a®eP? z) b®ed)=Y(a,z)b® Y(eP?, z)e.

We are only interested in the negative powers of z. By the products (3.13) in the affine vertex algebra
Vi(g), we have
Y(a,z)b=(alb)klz 2 +[a,blz ' + ... (4.20)

where ... denote terms with higher powers of z. The products in the lattice vertex algebra V; were

computed in Lemma 4.3.1. In particular,

Y(eP?,2)e? = P9 4 (pg)_p)eP Oz 4 ... 4.21)
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Putting (4.20) and (4.21) together, we get

Y(a®eP?, z)(b®e?®)=([a, blz™' ®@+(alb)k1z7%)® e +(a|b)k1z 7> ® (pd)_1)eP Pz + ...

=la,bl®eP 7 1+ (a|b)k1® e P 272 + (a|b)k1 ® (pd)_peP Oz + ...

Using the map (4.18), the commutator formula (4.19), and the computation above, we obtain the
bracket

[p(a® t]"tP),¢(b o t]t?)]

[(a ® ep‘s)( my (be eq‘s)(g)]
o t(a
(¥+x)

b)k(1®(pd)_1)ePrd) %

(§+4)

=([a, b]® e®P*9?)

M

m
- (p+q)é
+ N(alb)k(l@e )(%%_U

=¢(la, bl® t" "7 ) + (alb)k > pp(K; @ 1" "t )

i=1
m(alb)kp(Ky® t]""tP+9),

By (4.4), the last expression is exactly ¢([a ® t,"tP, b ® t't?]). Next, for u € {1, 6" '} we have

oo

[(1®u(_1)ep‘s)( (b®eq‘s)(/ﬂ)]—2(7)((l®u(_l)e”’s) (b®eq5))(/,/n+n )
=0

and the [-th product (1 ® u(_l)ep5)(l)(b ® e%) is the coefficient of z7/~! in the expression

YA ®u_ e’ z)b®e?)=Y(1,2)b® Y(u_yeP’, z)e?®

=bz° ® Y(u_ ep‘s z)e??

and from Lemma 4.3.1, Y (1 ep‘s z)e% has no negative powers of z. Hence, the expression Y (1 ®

u(_l)ep‘s, )(b ® e9%) will have no negative powers of z and

[(1®u( )epé)( (b@eqé)iﬂ)]=0.

Zz

From (4.18) and the computation above, we see that

[Mm®ﬁwmwmw®qﬂn[;u®w% w®w@”}a

(oK o 7)0(bo 1)) =[(1 5L P} (o et} | <o

and since [(Ky ® £, "VtP), (b ® 17t9)] =[(K; ® t"tP), (b ® 1t9)] = 0 in the twisted toroidal Lie
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algebra, then we get the following:

[6(Ko® Y™ De9), o (b @ 1)) = 9 [(Ko @ 1" VeP), (b @ 1719)],
[6(K: ® 1N ™tP), o (b 1749)] = o[ (K; ® 1Y ™7), (b @ 1719)].

Next, for the bracket [(1 ® U )ep5)(

oo
M m
(1@ une™))) (1o )eq‘s)(m]:z(l)((1®”(‘”ep6)“>(1®”( YD) A

1=0
and the [-th product (1 ® u_ ep‘s) 1@ u eq‘s) is the coefficient of z—!~! in

Y(1® u(_l)e”‘s,z)(b ® v(_l)eq5)= Y(1,2)® Y(u eP? ,Z) Ve 1)eq‘s

=1z° ® Y(u ep‘s Z)y eq‘s.

The expression Y (1, e”‘s )v(_l)eq5 has no negative powers of z. Hence,

M

(10 uyyer?),, (1@ vne®)]=0.

(m)
From (4.18), notice that

M
(m)

(1 ® 5] eq‘s)(n)] =0,

[p(K; @ 13" t7)p(K; @ 1) "t9)| =[ (1@ ], eP) e (106] e ®) " |=0,

[6(Ko@ 1" Vi?) o K @ 1 10)] = (10 eP)

6(k0 ™) ol 0 <[ L 10, L e )0

(m)’

and since in the twisted toroidal Lie algebra we have

[(Ki® 1, "tP),(K; ® 1) "t9)] =0,
[(Ko® 12" eP) (K, ® tN"tq)]
[(Ko® £ " VeP), (Ky ® 1" 1’t‘?)] =0,

then

[p(Ki® 1y "tP), ¢ (K ® 1 "))
[p(Ko® 1" VtP), o (K, ® 1 N19)]
[o(Ko® tév(mﬂ)tp)rfp(Ko@ fév(nﬂ)tq)]

pl(Ki® 1y "t7),(K; @ 15 "27)],
ol(Ko@ 1y " VtP),(K; @ 10 "17)),
o[(Ko® 1" VeP), (K © £V V1)),
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Forthebracket[(l@Ao ep‘s) (b®eq5)(g)],wehave
, &0 m ,
[(]'@Ao(l ePJ) (b®eqa)(1v)]:lz(l)((1®l\0(l ep5) (b®eq5))m+" —1)
=0

and the /-th product (1 ® Ao ep5 J(b® e99) is the coefficient of z=/~! in the expression

Y(1®Ao_e?’,z)(b®e?)=Y(1,2)b® Y(Ag(_;e”’, z)e?’

=bz"® Y(AO e’”‘s,z)eq‘s

The negative powers of Y(1 ® Ao ep‘s, z)(b ® e7%) must come from Y(AO ep‘s, z)e9%. Taking
advantage of Lemma 4.3.1, the only negative power of Y(1® AO eT"s zZ)(b® e'q‘S ) with non-zero
coefficients is b ® g;eP*99 z=1 which is when I = 0. Thus

[(1®A0( le”‘s) (b®eq5)

4= X

)] =(be® qie(p+q)5)iﬁ+%)'

From Equation (4.18) and the equation above we get
[p(d; @ 1)"tP),¢(b & 1]'t9)]
—[(1@g_yye™) " (b o )

M
=(bedge p+q)6)(m+%)’

M
)
and from the bracket (4.5) in the twisted toroidal Lie algebra and from (4.18) we get
¢((dioty"tP botitl))=qip (b o1y " "7 ) = qi(b® P!y,
which gives us
[p(d; ® £Y"P), ¢ (b @ t't9)] = ¢[(d; ® £/ 7), (b ® £/'t7)].

For the bracket [(1®A0(i_1) )( )(1® ‘15)(%)] we have

oo
. /4 m
(10 Agf_yeP) " (19090} ]= Z( l )((1 oMl Pyl e
1=0
and the /-th product (1 ® AO{_I)eP5)(l)(1 ® e9) is the coefficient of z7/~! in the expression
Y(1®A_)eP’, z) 18e?)=Y(1,2)18 Y(Ay_; e’ z)e?’

=1z2"® Y(AO ep‘s,z)e

Similar to the last example, the only negative power of Y (1 ®A0 ep‘s z)(1®e?%)is1®@q;eP+1d 71
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Thus

[(1 ® Ao epé) (18 eqé)(/)] =(1e qie(p+Q)5)iﬁ+n) '

From (4.18) we get

[¢(d; ® tN™tP), (Ko ® 15 " V29)]

w1 M
[(1®A0 ep‘*)(m),ﬁ(meqﬁ)(n)]
M
(1®q p+Q6)(m+n)

N

and from the bracket (4.6) in the twisted toroidal Lie algebra and from (4.18) we get

o ([dio 17 Koo )" 1)) = g (qi Ky 1 ") = T (1 g o040

(m+n)*
Therefore,
[6(d; ® £V tP), 9 (Ko ® £789)] = 9[(ds ® 1V ™8P), (Ko @ £789)].
Forthebracket[(l@/\o ep‘s)(/”) (1e6/ eq‘s)(/ﬂ)],wehave
(1o A o™ (105 eq‘s)(m]—Z(l)((1®A0(’_1)ep5)(1)(1®5’( el
1=0

and the [-th product (1 ® AO ep5) e 51 eq‘s) is the coefficient of z~!~! in the expression

Y(1®A_e?’,2) 1867 1)e?)=Y(1,2)18 V(Ao e”’,2)67_1e?
(-1)

=1z° ®Y(A0 eP ,Z)gf eqa
From Lemma 4.3.1, the negative powers of Y (1 ®Ao e”‘S 2)1®67(_y)e?)are
((61,5 ) +65,i(pd) ) (P+q)5 ,~1 +5i,je(p+q)5Z_2).
Thus
[(1®A0(i epa) (1®5’ e?%) ]_

(1®(q,5 +5;,,(pd) ) e® %) "

(m+n)

M

(p+q)d
m(1®5iyjep )(m+n—1)'
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From (4.18) we have

[0(di® 15" tP).0(K; @ 15't7)]
; Vi j M
= [(1 ® AO(l—nepé)(m)' (1e 5(]—1)9105)(11)]

- (1 ® (Chﬁ(j—l) + 5131'(1’5)(—1)) e(mq)d)zﬂ) +m (1 ® 5i,je(p+Q)5)/ﬂ

(m+n—1)
and from the bracket (4.6) in the twisted toroidal Lie algebra and from (4.18) we get
o ([d;® V1P, K, @ 119

.

=¢ (qi Kj@t) "ty g, (Z piK @ " NP L Nm Ky té'”*”wtp*q))
=1

—a(10s!  earasy” 5 1 5 (p+q)6 )/ Nm 1@ PO "

= ql( ® (_1)6 )(m+n) +0ij,j ( ®(p )(_1)6 )(m+n) + T( ®e )((m-%]—\;z)N_l) .

Therefore we have
[6(di@ 7). 9(K; @ 149)] = 9[(d; @ £ t7). (K © 4]

For the final bracket [(1®A0(i ep‘s) (1®A0 eq‘s)ﬁ

(n )] we have

[(1®A0 ep‘s) (1®A0 eq‘s)(/Z]—;(T)((l@Aof_l )(1®AJ eqa))m+n y

and the /-th product (1 ® AO ep5 (1 ® AO eq5) is the coefficient of z~/~! in the expression

Y(1® Ay, e” z)(1®Af e?)=Y(1,2)18 Y(Agl_,, )Ao e
(-1 (-1
= ]_ZO ® Y(AO(I_I)QP ,Z)AO(_I)eqé.

From Lemma 4.3.1, the negative powers of Y (1 ® AO ep ,2)(1® Ay ] eq‘s) are
® ((_ij(i)(_l) + QiA(j)(_l) —(; pj(pa)(—l)) erq)é ‘hp e p+q)62 )
Thus

(L@ e™)l (1o Aol e ®) " |=

(n)
j +q)0 " +q)5 )/
(1@ (=pAfy) + @ikl )= aipi(PO) 1) P )(m+n)—m(1®qil’je(p DY enn)-
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From (4.18) and the calculation above we have

[0(di® 15" tP).p(d; ® 15 "t7)]
= [(1 ®A0(l—1)ep6)(m)’ (1 ®A0(j—1)ep6)(n)]

= (1 ® (_ij(i)(_l) +qiNg )~ Clil?j(P5)(—1)) e(p+q)5)

o . e@rad)
() m(1®q,p]e )

and from the bracket (4.7) in the twisted toroidal Lie algebra and from (4.18) we get

¢([die ) "tP,d; @ 1) "t7])

.
=¢ (qi d;®ty "R pd @ ) TP g, (Z piK @ty TP L Nm Ky @ 1) Pt

=1
M
(m+n

i M M
\— pj(l ® Ao(l_l)e(p+q)6)(m+n) —g; pj(l ® (pa)(_l)e(mq)é)(w)

N

= Ch(l ® Ao(j_l)e(p+q)6)

N
—Gip; mT(l ® e(p+£1)5)({{,(,1,\,]+n)_1).
Therefore,
[6(di@ %), 9(d; @ 13" 49)] = g[(d; & 2 t7).(d; @ 1)),
This completes the proof of the theorem. O

Now let g be a simple Lie algebra of type X, where X = A, D, E (simply laced), with a root system
A and aroot lattice Q = ZA. Let o be an automorphism of the lattice Q of finite order N. Consider
the orthogonal direct sum of lattices
L=Qe&]

where, as before, J is defined by (4.13) and (4.14). We extend o to an automorphism of L, acting as

the identity on J, and we lift it to an automorphism of the lattice vertex algebra
Vix Vo8 V).

Finally, let
H=CezL=hHhe Span{5i,/\é}1si3r

where h = C®y Q is the Cartan subalgebra of g. With the above notation, using the Frenkel-Kac
construction [22], we can reformulate Theorem 4.3.2.

Corollary 4.3.3. For any o-twisted V;-module ./, the Lie algebra of modes of the fields (a €
AU{0}, he$h, peZ):

Y (e, 2), Y (h_1e?’,z) (a€AU{0}, heh, peZ’)

form a representation of the twisted toroidal Lie algebra ‘,?,Hyl(g, o oflevel 1 on ..
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Proof. Since V; ~ Vo ® V; and Vj ~ V1(g) by the Frenkel-Kac construction (see [22]), then V; ~
Vig)e V;. By Corollary 3.3.6, any o -twisted Vj;-module M is also a o-twisted module for V;(g).
Then .# = M ® M’ will be a o -twisted module for V; and the claim follows from Theorem 3.3.4. [J

In the special case when o is a Coxeter element in the Weyl group of g, the above corollary
recovers Billig’s construction from [12]. Observe that, for r = 1, the lattice Q ® Z¢ is the root lattice
of the affine Kac-Moody algebra § of type X M) while $ = h @ Co & CA, is the Cartan subalgebra of
§. Moreover, the set {a + pd |a € AU{0}, p € Z} is the union of {0} and the root system of §. In the
paper [13], Billig and Lau used an approach that is similar to our construction and produced certain

irreducible modules over twisted toroidal Lie algebras.

49



CHAPTER

5

CONCLUSION AND FUTURE
DIRECTIONS

5.1 Conclusion

In this thesis, we were able to construct vertex operator representations of the twisted toroidal Lie
algebra .,‘2,“' «(g,071) of level k where g was a simple finite-dimensional Lie algebra and o was an
automorphism of g of finite order. We saw that o could be lifted to the affine vertex algebra V}.(g) and
then to the tensor product Vi(g) ® V; where J corresponded to r copies of a certain rank-2 lattice.
Next, we took a o-twisted Vi (g)-module called M and tensored it with an untwisted V;-module
we called M’ to form the o-twisted Vi (g) ® V;-module we called .# = M ® M’. We showed that the

modes of the vertex operators

Y (a®eP, z), Y/ (1®eP?, z),

v (1es5 e”,z), Y18 e, 2),

for a € gand p € Z" formed a representation of the twisted toroidal Lie algebra .2, ;(g,0 ") of
level k on /.

We saw that when g was a simple finite-dimensional Lie algebra of type X, where X = A, D, or E,
then the lattice vertex algebra V;; (where Q is the root system for g) was isomorphic to the affine
vertex algebra V;(g). We noticed that the vertex algebras V; and V;, ® V; were isomorphic when
L=Q®]J and that .# = M ® M’ (where M is a twisted V,-module and M’ an untwisted V;-module)
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forms a twisted module over V; . Finally, we showed that the modes of the vertex operators
Y (%P 2), Y (h_peP’ z) (acAU{0}, hefH, peZ’).

formed a representation of the twisted toroidal Lie algebra .Z?,ﬂ,l(g, con /.

Many questions naturally arise from the work presented in this thesis. These questions include,
can we consider a different class of automorphisms in constructing twisted toroidal Lie algebras
and their representations? Is it possible to build irreducible representations of the twisted toroidal
Lie algebra .2, 1(g,0~") from o-twisted modules over a tensor product of lattice vertex algebras
when g is not simply laced? Questions such as these are described in more detail in the following

sections of this chapter.

5.2 Irreducible Representations of .Z,,, ,(g,0') when g is not simply

laced

In Example 3.3.2, we demonstrated that an automorphism ¢ of a root lattice Q associated to a
simple finite-dimensional Lie algebra g can be lifted to the lattice vertex algebra ;. In Corollary
3.3.6, we saw that when g is simply laced, and M is a o-twisted V; module, then the modes of the
o -twisted free bosons YM(h, z) for h € b and the modes of the vertex operators YM(e?, z) fora € A
correspond to a representation of the affine Kac-Moody Lie algebra .£’(g,0~!). One question that
naturally arises: is it possible to construct a representation of an affine Kac-Moody Lie algebra
£'(g,071) using modes from a lattice vertex algebra if g is not simply laced?

The Frenkel-Kac construction which states V;, is isomorphic to the simple affine vertex algebra
oflevel 1, denoted V!(g), only holds when Q is a root lattice associated to a simply laced Lie algebra.
However, it is well known that every non-simply laced Lie algebra can be embedded in a “larger”
simply laced Lie algebra. This can be done by working with a diagram automorphism u of the simply
laced Lie algebra g. Depending on the choice of the simply laced Lie algebra, the order of uis N =2

or 3. Recall from Section 2.8, we can decompose g into a direct sum of eigenspaces

j=0

where g is the set of fixed points of u and g; is the eigenspace of u with eigenvalue —1 if N =2 (or
g; is the eigenspace with eigenvalue e SN = 3). The eigenspace g, corresponds to a non-simply
laced Lie algebra. Embedding a non-simply laced Lie algebra into a o -twisted simply laced Lie
algebra g for any finite order automorphism is much more involved since o changes the internal
structure of the Lie algebra g. Finding such an embedding for any o of finite order is an open
problem. A good starting point to finding such embeddings is to consider the special case where
o is a finite order inner automorphism of a non-simply laced Lie algebra g, and then lift o to the

larger simply laced Lie algebra g. The lifted map produces an automorphism of g that commutes
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with the diagram automorphism, which makes it easier to identify the embedding.

Once an embedding is identified, the next issues is to find the irreducible modules for the affine
Kac-Moody algebra .£’(gy, 0 ~!) associated to the non-simply laced Lie algebra. The irreducible
modules for the larger affine Kac-Moody Lie algebra .2’(g, 0~!') may be reducible when we restrict to
2’(g0,071). Once the irreducible modules are found, we should be able to generalize the results to
construct irreducible representations of the twisted toroidal Lie algebra fér+1,1(go, o). Irreducible
level-one representations for affine Kac-Moody algebras associated to non-simply laced Lie algebras
where o is a diagram automorphism or the Coxeter element have been explored in papers such as
[11, 26, 45, 46, 50].

5.3 New types of twisted toroidal Lie algebras and their representations

Recall from Section 4.1.2 that we build a twisted toroidal Lie algebra by starting with an automor-
phism o with finite order N of a simple finite-dimensional Lie algebra g and using it to create a

twisted subalgebra ., (g, o) of the loop algebra ., ,,(g) given by

$r+1 80 @ $r+1(g» )mo’

myeZ

where
Ly 41(8:0)my = Iy ®spanc {1, °t™ | mo €2, me 2"}

and that the twisted toroidal Lie algebra was the central extension of this twisted loop algebra (with
derivations) given by
jr+1,k(g» U) = .fth(g, 0') ® %l ® @:_-

What if instead of starting with an automorphism ¢ of g that we started with an automorphism
o of finite order N of the affine Kac-Moody algebra £ (g) = g® C[¢, t']® CK ® Cd? That is, what
if we defined a new type of twisted toroidal Lie algebra in the following way: let & be the induced
automorphism on the loop algebra .£(g) = g® C[¢, t!] (instead of using .Z(g) we will call this space
g to simplify notation). The new twisted toroidal Lie algebra will be the central extension (with

derivations) of the space
,%r_;.l gr @ gﬂ—l(gr )mo’

myeZ

where

Zrﬂ(ﬁﬁ)m =G, ® spang{ s, t™ } my€Z, meZ'}

mo =X €7 | T(x)= > M/NY,

The new twisted toroidal Lie algebra is the space

L1@0)=%,1.(3,0)0 X * 0 D%,
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which is a subalgebra of the untwisted toroidal Lie algebra .2, ,(g) € £, ..(g) for some .#* c .# and
2% € 9.. Notice that the twisted toroidal Lie algebra will contain r +2 variables since g = g®C[ 1, 1.
We can think of this new type of twisted toroidal Lie algebra as an extension of our original definition
of a twisted toroidal Lie algebra. In fact, if o is an automorphism of g, then we can lift o to £(g) so
that o acts as the identity on K and d.

So many questions can be asked here including, what exactly are the sets £ * and Z* for any
fixed o of finite order N? Does Proposition 2.8.2 hold for not just a finite-dimensional Lie algebra
but also for an affine Kac-Moody algebra? How do we construct vertex operator representations of
these twisted toroidal Lie algebras using twisted modules over vertex algebras?

In the paper [15], this type of twisted toroidal Lie algebra was explored when o was a diagram
automorphism of the affine Kac-Moody algebra .2’(g) without derivation. The authors described
the action of the induced automorphism ¢ on g, identified the subalgebra .#* needed to construct
a universal central extension, and calculated the Lie brackets of the generators of £’ (g, 7). The

r+1

authors also presented %’ (g,0)in a similar way to the construction of the untwisted toroidal Lie

r+1
algebras by Moody, Rao, and Yokonuma in the paper [47]. It is conceivable that the results from [15]
could be applied for any o of finite order N.

To construct vertex operator representations of these toroidal Lie algebras, we could start with an
automorphism o of order N of £(g) of type Xél) where X = A, D, or E. The automorphism o would
induce an automorphism on the extended root lattice Q = Q ® Z5 & ZA, of £(g) where Q is the root
lattice associated to the finite-dimensional simple Lie algebra of type X,. We could then lift o to the
lattice vertex algebra Vj; and then to V, = V; ® V; where J is r-copies of the rank-2 lattice described
in Equation (4.13). We could then study the o-twisted Vj; ® V;-modules .# = M ® M’ where M is
a o-twisted V;; module and M” is an untwisted V;-module. The tricky part is the identification of
modes from the V;;-module M. More research is needed in this area, however it seems that since
Vo = Vo ® Vzsez,, then perhaps a lift can be constructed from the induced automorphism ¢ on the
root lattice Q to o on Q in a way that is similar in principle to the lift from g to ,‘21’ (g,0) used in [15].

Finally, suppose instead of working with a finite order automorphism of the affine Kac-Moody
algebra Z(g) we used certain infinite-order automorphisms of 2 (g). Specifically, any automorphism
from the Weyl group of .Z(g). Within the last 10 years, the notion of logarithmic vertex operators
and o -twisted logarithmic modules for an infinite order automorphism o of a vertex algebra have
been developed (see[1, 3, 27, 28]). Bakalov and Sullivan expanded the work in this area to include
o -twisted logarithmic modules of lattice vertex algebras in [7]. It seems likely that the key to finding
vertex operator representations of twisted toroidal Lie algebras corresponding to infinite order auto-
morphisms from the Weyl group of an affine Kac-Moody Lie algebra may lie in the understanding

of logarithmic vertex operators from a tensor product of two lattice vertex algebras.
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