
ABSTRACT 

OJWANG’, AWINO MAUREIQ EDITH. Network Models for the Dispersal of 

Pseudoperonospora cubensis and Spread of Cucurbit Downy Mildew in the Eastern United States. 

(Under the direction of Dr. Alun Lloyd and Dr. Peter Ojiambo). 

 

Pseudoperonospora cubensis is a long-distance aerially dispersed plant pathogen that 

causes cucurbit downy mildew. Cucurbit downy mildew (CDM) is a foliar disease that affects the 

cucurbits. CDM has an annual spread pattern from southern Florida and the Gulf of Mexico to the 

northeast United States. It is unclear whether this is a spatial spreading process or a climate-driven 

process. Based on the assumption that CDM spread is influenced by the connectivity of cucurbit 

fields in time and space, static and dynamic networks were constructed to provide quantitative 

information on the actual spatiotemporal CDM dynamics. The static networks were sensitive to 

the choice of parameters and thresholds for construction and identified the potential P. cubensis 

transmission pathways. The dynamic networks facilitated visualization of the time-dependent 

evolving prominent pathways of pathogen dispersal and identified areas that may act as sources 

and promote CDM spread. The results provide a framework for understanding the role of network 

connectivity in predicting CDM spread at the landscape level. When complemented with disease 

scouting, these results provide valuable information on the effective use of resources when 

monitoring new CDM outbreaks in the eastern United States. 

Cucurbit downy mildew is currently managed using fungicides which must be applied 

promptly. A platform - linking monitoring, prediction, and communication of the risk of CDM 

outbreak - has helped growers initiate fungicide treatments in the eastern United States. However, 

this platform is expensive to maintain, and the resources are often limited. Therefore, knowing 

where and when to monitor could reduce the costs associated with scouting for disease. In addition, 

knowing where to treat could slow down the invasion process. A combination of centrality 



measures, frequency of infection, and probability of field infection identified highly connected 

locations for disease surveillance and management in Maryland, North Carolina, Ohio, South 

Carolina, and Virginia. Removing nodes (representing these locations) limited the risk of disease 

spread based on a dynamic network model incorporating a power-law function for pathogen 

dispersal. These locations may inform strategies for controlling CDM in the eastern United States. 

 The power-law and logistic phenomenological models have been used in plant pathology 

to describe the spatial and temporal rate of change of disease intensity, respectively. Two 

assumptions are that pathogen dispersal is isotropic, and there is one inoculum source. These 

models were extended to incorporate anisotropy and multiple inoculum sources using an 

estimation framework suited to describing disease spread in space and time. Based on the analysis 

of epidemic data from 2008 to 2010, there was a small but consistent reduction in errors associated 

with incorporating anisotropy into the model regardless of the number of sources and a reduction 

in errors in specific years associated with incorporating an alternate inoculum source in Texas. 

However, there was no reduction in errors associated with incorporating an alternate inoculum 

source in Ohio. These results strongly suggest that the initial inoculum source for CDM outbreaks 

in the continental United States is primarily from overwintering sources in the southern United 

States. 
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1.1 Cucurbits and cucurbit downy mildew  

Cucurbit downy mildew (CDM) is a foliar disease that affects the cucurbits. Cucurbits are 

a large group of gourd-like plants made up of 118 genera with 825 species (Lebeda and Cohen, 

2011). These include cucumber (Cucumis sativus L.), melon (Cucumis melo), squash (Cucurbita 

spp.), giant pumpkin (Cucurbita maxima), watermelon (Citrullus lanatus), among others. 

Cucurbits are economically important crops, having edible fruits, leaves, flowers, and seeds, which 

are sources of cooking oil (Zitter et al., 1998). Cucurbits are cultivated globally but mainly in the 

tropics (Cutler and Whitaker, 1961). The main cucurbits grown commercially in the United States 

include melons, squash, pumpkins, and cucumbers. Nationally, melons, squash, and pumpkins are 

grown on over 27,046, 140,380, and 187,125 hectares, respectively (NASS, 2017). However, 

cucumbers are grown on more than 239,311 hectares (NASS, 2017), resulting in an average 

production of 1 billion kilograms making the United States the third-largest producer of cucumbers 

worldwide (Neufeld et al., 2018). The states located in the southeast (e.g., Florida, Georgia, 

Alabama, South Carolina, North Carolina, Mississippi, and Tennessee) and the northeast United 

States have the largest commercial cucurbits production (Figure 1.1).  

Cucurbits are sensitive to frost and thus only grow below the 30° latitude during the winter 

months in the continental United States. These areas are subject to warm and humid weather 

conducive for the development of cucurbit downy mildew. Cucurbit downy mildew occurs 

annually in the eastern United States, where it causes devastating losses of cucurbits in the absence 

of adequate disease management (Ojiambo et al., 2011). The disease causes different symptoms 

in different hosts (Figure 1.2) and is caused by the oomycete Pseudoperonospora cubensis. The 

pathogen infects 60 species and 20 genera of cucurbits, with the Cucumis, Cucurbita, and Citrullus 

genera being important hosts. The Cucumis susceptible hosts include eight wild species and two 
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cultivated species: cucumber (C. sativus L.) and muskmelon (C. melo L.) (Lebeda and Cohen, 

2011). 

 

1.2 Pseudoperonospora cubensis  

Pseudoperonospora cubensis is an obligate biotrophic pathogen that belongs to kingdom 

Chromista, subdivision Peromosporomycotina, class Oomycetes, order Peronosporales, and 

family Peronosporaceae (Lebeda and Cohen, 2011). P. cubensis was known as Peronospora 

cubensis, Plasmopara cubensis, and Peronoplasmopara cubensis in the past (Dick, 2001). The 

pathogen reproduces sexually through the production of oospores or asexually through the 

production of sporangia (Lebeda and Cohen, 2011). The sporangia are the main infective inoculum 

(Thomas, 1996). They are light grey to deep purple (Thomas, 1996), 20 to 40 × 14 to 25 μm in 

diameter, and are oval-shaped, having a papilla at the distal end (Lebeda and Cohen, 2011). The 

sporangia develop at the tips of hyaline sporangiophores (Choi et al., 2005).  

Sporangiophores arise from stomatal openings in sets of two to six (Choi et al., 2005) on 

the abaxial surface (underside) of leaves (making it easy for the sporangia to be dislodged from 

the tips of sporangiophores and dispersed by wind). The sporangiophores twist - when there is a 

decrease in relative humidity - and release sporangia in the air (Lange et al., 1989). The aerially 

borne sporangia are dispersed via wind and travel long distances up to 1,000 km from the initial 

inoculum source (Ojiambo and Holmes, 2011). The survival of sporangia in the air is affected by 

temperature, humidity, and solar radiation (Kanetis et al., 2010; Thomas, 1996), with the latter 

having the most effect on sporangia survival (Kanetis et al., 2010). Depending on weather 

conditions, the viability of the aerially borne sporangia ranges from one to sixteen days (Cohen, 

1981), with cloudy days prolonging sporangia survival.  
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Dissemination on susceptible hosts occurs during rainfall when sporangia in the air are 

deposited on the hosts. Infectivity and subsequent germination of sporangia require conducive 

environmental conditions, i.e., optimum temperature, humidity, leaf wetness, and absence of light. 

Infection requires optimum temperature between 15°C and 20°C (Cohen and Rotem, 1969), with 

infection at 30°C possible (Arauz et al., 2010). Infection also requires a minimum duration of two 

hours of leaf wetness (Cohen, 1977). After infection of susceptible hosts, within five to seven days, 

sporangiophores develop inside the host and emerge through stomatal openings (Choi et al., 2005) 

when the relative humidity > 90% (Lebeda and Cohen, 2011). P. cubensis causes lesions on the 

adaxial surface of leaves which vary in size, shape, and color in different hosts. For example, the 

lesions are angular in cucumber because leaf veins restrict them. However, in watermelons, 

cantaloupes, and squash, the lesions are circular and irregular because this restriction is absent 

(Figure 1.2). After the initial infection, lesions expand, mature, sporulate, and may become 

necrotic. The lesions continue to expand after some days, coalesce, kill leaves, eventually killing 

the entire plant (Lebeda and Cohen, 2011). Conducive environmental conditions influence the 

timing and duration of sporulation. For example, low temperatures delay the onset of sporulation 

but increase the duration that a lesion will sporulate (Cohen, 1977). In addition, sporulation can 

occur in as little as four to five days on mature lesions under conducive conditions (Lebeda and 

Cohen, 2011). The absence of light also affects sporulation, with heavy sporulation occurring after 

long periods of darkness (Cohen and Eyal, 1977), i.e., at least six hours (Cohen, 1977).  

The incubation period of P. cubensis ranges from four to twelve days (Cohen, 1977), 

sporangiophores develop in five to seven days, and a new infection cycle starts seven to ten days 

under field conditions (Lebeda and Cohen, 2011). P. cubensis results in epidemics where inoculum 

is produced by plants previously infected during the same epidemic that season. However, the 
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initial inoculum source is a subject of intense research (Neufeld et al., 2018). In the continental 

United States, P. cubensis is generally assumed to overwinter in cultivated or wild cucurbits in 

frost-free areas < 30° latitude, i.e., in southern Florida and along the Gulf of Mexico (Bains and 

Jhooty, 1976). Thus, the onset of disease in areas > 30° latitude requires aerial dispersal from these 

overwintering sources (Nusbaum, 1944). The protected greenhouses could also be potential 

inoculum sources (Neufeld et al., 2018; Ojiambo and Holmes, 2011).   

 

1.3 Disease management 

Successful disease management requires that control measures be implemented just before 

the first detection of cucurbit downy mildew in cucurbit fields. The level and extent of disease 

management vary depending on the planting type, i.e., commercial, research, disease monitoring 

(sentinel plots), or private (home gardens) (Zitter et al., 1998). Disease control using fungicides is 

usually limited for home gardens but needs to be implemented in commercial fields to avoid 

complete crop loss (Neufeld et al., 2018). From the 1950s to 2004, cucurbit downy mildew was 

mainly managed using host resistance. In the United States, the disease was managed in 

commercial cultivars by the recessive dm1 gene (Holmes and Thomas, 2006; Holmes et al., 2006). 

A change in the pathogen population structure occurred in 2004, resulting in a breakdown of host 

resistance and subsequently widespread losses of cucumber crops in the United States (Holmes 

and Thomas, 2006; Holmes et al., 2015). Since then, growers have relied on the use of fungicides 

to manage the disease. This management requires fungicide sprays every five to seven days for 

cucumbers and seven to ten days for other cucurbits (Hausbeck and Cortright, 2009), and early 

onset of the disease can require up to eleven sprays to control the disease (Ojiambo et al., 2010). 

Effective management using fungicides requires the precise timing of the initial spray. Given the 
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rapid development of CDM, prediction and timing of the initial spray can significantly reduce the 

total number of subsequent sprays, fungicide costs, and resistance to fungicides. In the United 

States, a CDM forecasting system is available to help growers decide when to apply the first spray 

(Holmes et al., 2004; Ojiambo et al., 2011).  

The United States Department of Agriculture Pest Information Platform for Extension and 

Education (USDA PIPE) developed the cucurbit downy mildew forecasting system, CDM 

ipmPIPE, in 2008. The forecasting system uses aerobiological models to forecast CDM and 

provides growers with a real-time epidemic status of CDM spread in the United States (Ojiambo 

et al., 2011). The forecasts are based on 

1. Disease outbreaks in sentinel and non-sentinel plots reported to http://cdm.ipmpipe.org. 

2. The projected sporangia transport routes based upon prevailing wind conditions. 

3. The right weather conditions for sporangia deposition, infection, and cucurbit downy 

mildew development within the neighboring areas. 

 Growers receive customized reports (forecasts) and start fungicide treatments on their 

cucurbit fields when there is a threat or risk of infection (Ojiambo et al., 2011). Information from 

the CDM ipmPIPE has been fundamental in understanding the CDM spread in the United States. 

For example, Ojiambo and Kang (2013) examined patterns of time to disease outbreak in the 

United States using Bayesian hierarchical spatially structured frailty models and showed that the 

risk of disease outbreak was high in the mid-Atlantic region (Ojiambo and Kang, 2013). Similarly, 

based on records of disease outbreaks, Ojiambo et al. (2017) showed that the position of the 

epidemic wavefront became exponentially more distant with time, and epidemic velocity increased 

linearly with distance. Further, the authors observed that the final epidemic extent was correlated 

to the size of the initial epidemic area, and efforts to reduce the initial epidemic area can be useful 
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in mitigating focus expansion and subsequent spread of the disease in more northern states 

(Ojiambo et al., 2017).     

 

1.4 Rationale and justification  

The pattern of cucurbit downy mildew spread from southern Florida and the Gulf of 

Mexico to the northern states is consistent. We understand how the epidemic moves based on the 

observation data. However, we do not understand some of the dynamics of how this happens in 

space and time and how this information can help us better manage the disease. If we assume that 

the field connectivity influences CDM spread in time and space, we can formulate network models 

to describe the CDM spread similar to other pathosystems (Sanatkar et al., 2015; Sutrave et al., 

2012; Gent et al., 2019). Networks can help us understand the signatures of disease spread, 

visualize potential pathways of spread, and provide a framework for understanding the role of 

network connectivity in predicting disease spread at the landscape level. Furthermore, the 

successful use of networks to describe soybean rust caused by Phakopsora pachyrhizi and hop 

downy mildew caused by Podosphaera macularis motivated the use of network models to describe 

the dispersal of Pseudoperonospora cubensis and the spread of CDM in the eastern United States. 

The CDM forecasting system has been useful in guiding growers on initiating fungicide 

treatments in the eastern United States (Ojiambo et al., 2011). However, this system is expensive 

to maintain, and the resources are often limited for monitoring and reporting disease outbreaks. 

Therefore, knowing where and when to monitor for the disease could reduce economic costs if the 

goal is to collect data efficiently with the least possible resources. Further, knowing where to treat 

could slow down the invasion process during the growing season. Disease outbreaks at the county 

scale may also be influenced by selective removal of some severely infected fields. Node centrality 
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measures can characterize the role of a node in a network based on its connection topology. For 

example, a study of soybean rust in the United States identified key geographical nodes for 

sampling to forecast disease spread (Sanatkar et al., 2015). Further, combining these measures 

with the frequency of infection and probability of field infection can be used to identify the 

important locations for monitoring and management. In this dissertation, various strategies to 

reduce the number of monitoring sites are explored and discussed to reduce the cost involved while 

still maintaining disease prediction accuracy. 

Disease spread dynamics in a spatial context are influenced by anisotropy and multiple 

inoculum sources, among other factors. Existing phenomenological models, e.g., the model used 

by Ojiambo et al. (2017), while still informative, do not account for anisotropy and multiple foci. 

A few phenomenological models account for anisotropy for relatively short dispersal of seeds, 

pollen, and pathogen propagules and single pathogen generation or dispersal event, but do not 

consider anisotropy in epidemic spread in time (Rieux et al., 2014; Soubeyrand et al., 2007; van 

Putten et al., 2012). Thus, there is a need to expand these models to incorporate anisotropy and 

establish if this characteristic of pathogen dispersal results in better estimates of disease spread in 

time and space. In addition, the presence of alternative sources of P. cubensis inoculum driving 

epidemic spread has been proposed (Ojiambo and Holmes, 2011). However, this hypothesis has 

not been tested using empirical data. In general, dispersal is usually anisotropic for long-distance 

dispersed pathogens such as P. cubensis, and anisotropy may be due to landscape features, host 

availability, and weather conditions (Taylor et al., 1993). Thus, there is a need to account for 

multiple sources of initial inoculum since the location and strength of different sources of initial 

inoculum can impact the extent to which disease-free fields will get infected. Based on the above 

considerations, the overall goal of this dissertation is to characterize the network structures of 
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CDM spread in the eastern United States and develop a generalized framework that accounts for 

multiple inoculum sources and anisotropy for disease spread in time and space. The specific 

objectives are to: 

1. Develop static and dynamic networks to describe the dispersal of P. cubensis and the spread 

of cucurbit downy mildew using historical data (Chapter 2). 

2. Develop networks to identify the most important and highly connected locations critical in 

the spread of cucurbit downy mildew (Chapter 3). 

3. Extend the work of Ojiambo et al. (2017) and Rieux et al. (2014) with a modified power-

 logistic model to incorporate anisotropy and  multiple inoculum sources (Chapter 4).
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Figure 1.1. The total acres of cucurbits harvested nationally in the United States based on 
the 2017 USDA agricultural census. Florida, Georgia, Alabama, South Carolina, North Carolina, 

Mississippi, Tennessee, and California have the largest commercial production of cucurbits. 
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Figure 1.2. Cucurbit downy mildew symptoms. The disease causes different symptoms in 

different hosts. In cucumber, the lesions are angular in shape because leaf veins restrict them. The 

cantaloupe, squash, and watermelon lesions are more circular and irregular because this restriction 

is absent. Photos courtesy of Dr. Gerald J. Holmes. 
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CHAPTER 2   

Modeling Cucurbit Downy Mildew Dynamics in the Eastern United States: A Static and 
Dynamic Network Analysis 
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Abstract 

Pseudoperonospora cubensis is a long-distance aerially dispersed plant pathogen that causes 

cucurbit downy mildew. The probability of P. cubensis transmission and cucurbit downy mildew 

spread from infected to disease-free cucurbit growing fields can be expressed in a model that 

explicitly considers network structure to represent disease spread. Network models were 

formulated to describe the weekly cucurbit downy mildew spread from overwintering sources in 

southern Florida to cucurbit fields in northern latitudes in the eastern United States. The fields 

where cucurbit downy mildew was reported were considered nodes in the networks. Static 

networks generated using epidemic data recorded from 2008 to 2016 were characterized using 

properties that define a giant component, density, degree, degree distribution, and centrality. These 

network properties varied among epidemic years examined. The analysis indicated that nodes in 

Michigan, Maryland, North Carolina, Ohio, South Carolina, and Virginia were most central in the 

network and were responsible for spreading cucurbit downy mildew to other fields.  

Further, dynamic network models were explored to provide quantitative information on the 

actual spatiotemporal cucurbit downy mildew dynamics. Early in the cropping season, the 

transmission probability occurring along links was highest between nodes closest to the initial 

focus in southern Florida compared to links between nodes elsewhere within the network. As the 

epidemic progressed in time and space, link probabilities increased for nodes more distant from 

the node where the initial outbreak was observed. Out-degree values from the dynamic network 

models were always less than the in-degree, with most of the nodes in the network tending to act 

as sinks. These results provide a framework for understanding the role of network connectivity in 

predicting the dispersal of P. cubensis at the landscape level and provides useful information on 
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the effective use of resources to monitor new cucurbit downy mildew outbreaks in the eastern 

United States. 

 

Keywords: cucurbit downy mildew, static network, dynamic network 
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1. Introduction 

 Long-distance dispersal (LDD) occurs when a pathogen’s inoculum arrives but does not 

necessarily establish at a location far away from the original inoculum source (Nathan et al., 2003). 

Invasive pathogens exhibiting LDD can result in epidemics that are difficult to control (Severns et 

al., 2019). These pathogens are dispersed via either wind, water, or vectors from initial inoculum 

sources (point or multiple). They are transmitted over long distances and cause disease away from 

the source. Such pathogens may generate patterns of disease spread due to long-distance dispersal 

(Mundt et al., 2009a, 2009b). The annual occurrence and experimental tractability of epidemics 

caused by LDD pathogens make them excellent model systems for understanding the role of 

dispersal in disease outbreaks and subsequent spread. Cucurbit downy mildew (CDM) epidemics 

are an excellent example in this regard. The disease is caused by the oomycete Pseudoperonospora 

cubensis, an aerially dispersed LDD pathogen whose sporangia can be transported over long 

distances ranging from 700 to 1,000 km. The pathogen exhibits annual recolonization and 

extinction cycles, generating annual invasions at the continental scale in the U.S. (Ojiambo and 

Holmes, 2011).  

 The primary dispersal mechanism for inoculum produced by aerially dispersed plant LDD 

pathogens is wind. Further, these pathogens capable of long-distance dispersal follow a power-law 

dispersal gradient resulting in disperse epidemic waves (Ferrandino 1993; Scherm 1996; Ojiambo 

et al., 2017). The disease gradient of pathogens dispersed some distance away from a source can 

be described using the phenomenological power-law model (Campbell and Madden, 1990)   

!"
!#
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or a modified phenomenological power-law (power-logistic model) that allows for calculations at 

s = 0 and also account for limitations of disease  

(1) 
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where r is an offset parameter (Madden et al., 2007), s is the distance from source so, b is the spread 

parameter, "	 = 	 !"  is the infected quantity (where Y represents the disease in absolute units such 

as the number of lesions, infected leaves or plants, while M represents the total number of plants 

or plant area that can be infected), and 1 − " is the healthy quantity (Madden et al., 2007). Equation 

2 is a phenomenological power-logistic model used in a study by Ojiambo et al. (2017) to 

determine the stability of b based on the isotropic spread of CDM in the eastern United States. For 

both plant and animal diseases, b is approximately 2 over various spatial scales (Ojiambo et al., 

2017). Ojiambo et al. (2017) examined if b varied from 2 and how much b varied over multiple 

years for CDM epidemics (Ojiambo et al., 2017). In that study, it was assumed that all epidemics 

were first observed at the same so. The authors found that b was unstable over multiple years i.e., 

1.61 < b < 4.6, using a temporal and spatial regression model (Ojiambo et al., 2017). 

 Pseudoperonospora cubensis is an obligate pathogen that requires a living host to 

reproduce and survive during the off-season. This characteristic of the pathogen is thought to 

restrict overwintering under natural conditions to frost-free areas below approximately 30-degree 

latitude in the United States (Ojiambo and Holmes, 2011; Ojiambo et al., 2015). Thus, the 

probability of pathogen transmission and disease spread from infected to disease-free cucurbit 

fields at different scales is influenced by the connectivity of fields in time and space. The 

determinants of pathogen dispersal and corresponding covariate information can be formulated in 

a model that explicitly considers network structure to represent disease spread (Gent et al., 2019). 

Networks contain nodes and links, where nodes are the entities of interest (e.g., field or host), and 

links connect the nodes in various ways. The links represent the potential transmission routes from 

an infected node to a susceptible node. Network models have been used in many scientific and 

(2) 



   

 

22 

 

 

sociological disciplines. For example, in landscape ecology, networks have been used to quantify 

landscape connectivity and identify possible routes for dispersing organisms (Fletcher et al., 2011; 

Lookingbill et al., 2010; Minor and Urban 2008; Urban et al., 2009). In plant pathology, network 

models have been constructed to describe the spread of diseases caused by aerially dispersed 

pathogens (Gent et al., 2019; Sanatkar et al., 2015; Sutrave et al., 2012). In all these examples, 

networks were classified as either static (no change) or dynamic (changing with time).  

A network whose structure does not change is known as a static network. Static networks 

are important because they highlight the impact of network structure, primarily where links occur, 

on the stability and connectivity of the network. These networks are widely used across many 

disciplines (Ferrari et al., 2014). For example, these networks have been used in landscape ecology 

to represent interpatch connectivity as a function of distance (Ferrari et al., 2014). Similarly, in 

plant pathology, such networks have been used to represent farms/fields/counties connectivity as 

a function of distance and a pathogen’s dispersal characteristics (Gent et al., 2019; Sanatkar et al., 

2015; Sutrave et al., 2012). Thus, static networks can identify potential pathways of disease spread 

and provide answers on specific characteristics of the described network structure. Also, static 

networks provide simple identification of invasion-prone locations based on between-location 

distances for management purposes (Ferrari et al., 2014).  

Contrarily, a dynamic network is a network whose structure changes with time, wherein 

the nature of the change and notation used for the timing depends on the nature of the data (Enright 

and Kao, 2018; Ferrari et al., 2014). The dynamic networks model changes to node contacts 

themselves over time and provides insights regarding how node connectivity evolves during an 

invasion process. A dynamic network at a particular time may have a subset of the total static 

network (Ferrari et al., 2014). These networks have provided information regarding aerially borne 
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LDD pathogens (Gent et al., 2019; Sanatkar et al., 2015; Sutrave et al., 2012). In the latter 

examples, nodes are county centroids, while links (with calculated link weights) are the potential 

transmission routes. Sutrave et al. (2012) and Sanatkar et al. (2015) constructed dynamic networks 

to describe the spread of soybean rust caused by the obligate pathogen Phakopsora 

pachyrhizi (Sanatkar et al., 2015; Sutrave et al., 2012). Gent et al. (2019) constructed a dynamic 

network model for hop downy mildew caused by Podosphaera macularis and identified locations 

that could be targeted for replanting with resistant cultivars over multiple years for effective 

disease management (Gent et al., 2019). 

In the present study, we formulate static and dynamic networks to understand the spread 

of CDM using epidemic data reported in the eastern United States. First, static networks are 

constructed and used to identify the relative resilience of generated networks from 2008 to 2016 

using various network properties. Secondly, dynamic networks are constructed from static 

networks by adding wind velocity to the static networks such that P.cubensis can move along 

certain links at some time and other links at other times depending on the wind direction.  

 

2. Methods 

2.1. Data source  

 Cucurbit downy mildew epidemics from 2008 to 2016 in the eastern United States were 

obtained from the CDM ipmPIPE forecasting system (http://cdm.ipmpipe.org). This system 

collects CDM occurrence data in cucurbit fields, applies predictive models to the occurrence data, 

and communicates disease risk output to users such as cucurbit growers, extension personnel, and 

crop consultants (Ojiambo et al., 2011). During the study period (2008 - 2016), the disease was 

reported from sentinel and non-sentinel plots. Sentinel plots were fixed locations (measuring 50 ft 
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× 200 ft in size) placed within specific states to allow for disease monitoring every one to two 

weeks. All sentinel plots were georeferenced using the Global Positioning System. The cucurbits 

that were grown in the sentinel plots were Cucumis sativus (cucumber cv. Straight 8 and Poinsett 

76), Cucumis melo (cantaloupe cv. Hales Best Jumbo), Cucurbita pepo (acorn squash cv. Table 

Ace), Cucurbita maxima (giant pumpkin cv. Big Max), Cucurbita moschata (butternut squash cv. 

Waltham), and Citrullus lanatus (watermelon cv. Micky Lee) (Ojiambo et al., 2011). The non-

sentinel plots were not designated for regular surveillance. These included commercial fields, 

research plots, and home gardens. Since this data was available, it was included in the analysis to 

capture information where sentinel plots were not located. Typically, sentinel plots were planted 

earlier than regular cucurbit fields to allow for early disease detection. The collected dataset 

consisted of the date of first symptoms, month, affected host type, planting type, disease incidence, 

state, county, and disease location.  

 Data on hourly wind speed and direction for each location were derived from weather 

observations in the National Oceanic and Atmospheric Administration Integrated Surface 

Database (Smith et al., 2011) and provided by BASF (Research Triangle Park, Raleigh, NC) (more 

details on wind conversions are provided in chapter 3, section 2.1). 

 

2.2. Static network analysis 

 Static networks were constructed for each epidemic year (2008 to 2016) using different b 

values. Both sentinel and non-sentinel plots were considered as nodes (n) in this work: 2008 (n = 

154), 2009 (n = 220), 2010 (n = 156), 2011 (n = 127), 2012 (n = 173), 2013 (n = 204), 2014 (n = 

114), 2015 (n = 215), and 2016 (n = 125). The links between nodes were created as a function of 

the between-node Euclidean distance and represent the potential transmission routes. Link weights 
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were also calculated for each link to represent the probability of transmission from an infected 

node I to a susceptible node S. An inverse power law dispersal kernel "	 = 	-##$.
%&

was used to 

generate the links (details are provided in section 2.3). This inverse power-law model is the 

solution to Equation 1 above where ##$ is the distance between node i and node j, b is the spread 

parameter (Ojiambo et al., 2017), and y is the probability of transmission from node i to node j 

(Andersen et al., 2019). Values for parameter b tested here ranged from 1.51 to 3.36, and these 

were obtained from Ojiambo et al. (2017) based on their work on the isotropic spread of CDM in 

the eastern United States from 2008 to 2016. The between-node distance was calculated using the 

Haversine formula (Sinnot, 1984)  

/
0	 = #12' 3	

4' −	4(
2

6	+ 	78# (4()78#(4')	#12' 9	
:' − :(	

2
;

!	 = 	<	 × 	2	 × 	>?>22-@0,@1 − 0	.
	

and B and " displacement vectors between two nodes were calculated using equirectangular 

projection 

CB	 = 	<	 ×	(:' − :() 78# 9	
4' +	4(

2
;

"	 = 	<	 ×	(4' −	4()
	

where 4 = latitude (radians), : = longitude (radians), < = radius of the earth (mean = 6,371 km), 

and ! = haversine distance between two nodes (node i = node 1 and node j = node 2). 

 

2.2.1. Network connectivity threshold  

 To determine the potential links in an adjacency matrix A, a threshold value (representing 

the probability of disease spread) was set above which, and below which, nodes were considered 

connected or unconnected, respectively. Thus, for a threshold value D, the adjacency matrix A was 

populated with 1 if y > D and 0 otherwise. The resulting link patterns form the basis of a pairwise 

(3) 

(4) 
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adjacency matrix A. This matrix is constant in time with binary entries (0/1; not 

connected/connected). A network was created from the adjacency matrix i.e., the network of 

interest G = (N, L) has node set N and link set L defined by the rule a link exists if and only if y > 

D for every pair of nodes (i, j) Î N. 

A range of arbitrary threshold values (ranging from 1×10-19 to 1×10-8) was selected but 

bounded by values that produced a sparse network and a complete network. Different ranges of 

thresholds were also selected, with a constant incremental value, for each epidemic year. For 

example, the threshold range for the 2008 networks was 1×10-10 to 1×10-8 with a constant 

increment value of 5.2×10-10. Three criteria were used to identify and select a threshold that was 

used to select a network in each year: i) the proportion of nodes in the giant component GC (part 

of a network that contains the majority of connected nodes), ii) no change in node ranking based 

on degree centrality, and iii) the extent of the connectedness of the generated network, a balance 

between a highly versus a sparsely connected network (Ames et al., 2011). The generated networks 

served as inputs for calculating network properties for each epidemic year as described below. All 

the networks were generated using the R programming language (R Core Development Team). 

 

2.2.2. Static network properties 

 Network properties - for the static networks constructed above - were calculated using the 

igraph R package (Csardi and Nepusz, 2006). This study focused on seven properties of real 

networks (defined and explained in Table 2.1) based on their established and known relevance in 

models describing disease spread and pathogen transmission. These network properties are 

community, degree centrality, exponent of the degree distribution, density, diameter, giant 
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component, and the average shortest path. Additional information and relevance of these network 

properties in disease epidemiology are provided elsewhere (e.g., Danon et al., 2010). 

 

2.3. Dynamic network construction 

We added wind velocity to the static networks to create dynamic networks (more 

information on the wind data conversions is provided in Chapter 3, section 2.1). We modeled the 

SI dynamics as defined by Sutrave et al. (2012) that combines the static (constant during the 

cropping season) and the dynamic (vary during the cropping season) components. For discrete 

weekly time steps t	∈ {1, 2…T}, we have  

⎩
⎪
⎨

⎪
⎧ J#$ 	= 	 -##$.

%&

K#$ =
)!".
→ +$

→

,)!"
→ ,

L#$ 	= 	J#$ × K#$

                                                                         

where J#$ 	is a function of the between-node distance ##$, b is the spread parameter (Ojiambo et al., 

2017), K#$ is the wind-based infection rate which is updated at each time step t, ##$
→

 is the 

displacement vector between node i and node j, wt
→
	is the wind vector at time t at node i, and L#$ is 

the link weight between node i and node j based on distance and wind direction at time t. The time-

dependent u matrices were treated as weighted asymmetrical adjacency matrices. These weighted 

adjacency matrices were plotted at each time step to visualize the evolving dynamics on the static 

network. The in-degree and out-degree of the directed networks were calculated at each time step. 

Here, we define the out-degree as source strength such that a node is considered a source if out- 

degree > in-degree; otherwise, the node is a sink. 

 

 

(5) 
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2.3.1. Error quantification in dynamic network 

 Two probabilities were first calculated at each time step t. The probability M# of node i not 

receiving infection from its neighbors,  

M#(?) 	=  ∏ (1	 − 	L#$P$(?))$∈/!                                                                   

and the probability P# of node 1	being infected at time t         

                                     P#(?) 	= 	1	 − -1	 −	P#(? − 1).M#(?)                                                                          

where P$ is the probability of node j being infected at time t, L#$ 	∈ [0,1] is the link weight, and Ni 

are node i’s neighbors (Sutrave et al., 2012). The nodes that were observed as infected were 

assigned value 1 and the healthy nodes were assigned value 0 at each time step. The error was then 

calculated as described by Sutrave et al. (2012):  

i) QR#0(?) 	= 	
∑ 2(%3!(5)7
%!&($)
!)*

/!&(5)
 

ii) QR80(?) 	= 	
∑ 3!(5)
%+&($)
!)*
/+&(5)

 

iii) QR(?) 	= 	JQR#0(?) 	+	(1 − J)QR80(?) 

where QR#0(?) is the mean error of the infected nodes at time step t, S#0(?) is the total number of 

infected nodes at time step t, QR80(?) is the mean error of the healthy nodes at time step t, S80(?) 

is the total number of healthy nodes at time step t, QR(?) is the total error, α is a weighting factor, 

and P#(?) is defined above. In this study, α = 0.8, i.e., the observed-infected nodes were given four 

times more weight than the observed-healthy nodes in evaluating the final error (Sutrave et al., 

2012).  

 

 

 

(7) 

(6) 

(8) 

(9) 

(10) 



   

 

29 

 

 

3. Results 

3.1. Observed dynamics of disease spread 

 Across all the years, CDM was first observed in southern Florida in Miami-Dade County 

(Figure 2.1). The earliest date of disease occurrence in southern Florida was in February 2008, 

with most of the first cases of disease occurrence in other years being reported in February and 

March. Subsequently, detection of new disease occurrences progressed northward with time, with 

these new occurrences being reported later in more northern states, compared to occurrences in the 

southern states (Figure 2.1). The only exception to this pattern was observed in 2009, where an 

occurrence in southwestern Texas along the Gulf of Mexico was reported around the same time as 

disease occurrence reported in northern Florida and southern Georgia (Figure 2.1). The first 

occurrence of new disease cases in northern states (e.g., Michigan, New York, or Wisconsin) 

occurred considerably later than corresponding cases of first disease occurrence in southern states 

(e.g., Alabama, Georgia, or South Carolina) (Figure 2.1). 

 Across all epidemic years, the last set of new disease occurrences was reported in July, 

August, and September. The total number of states where CDM was reported ranged from 21 (in 

2008 and 2016) to 25 (in 2013). The corresponding number of counties ranged from 85 to 178 

across all epidemic years. In general, there appeared to be a spatial association between where 

CDM first occurred and the disease later developed within the region. Across all years, the 

maximum distance, a measure of epidemic extent, ranged from 2,491 km during the epidemic in 

2012 to 3070.842 km during the epidemic in 2015. 
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3.2. Static networks 

3.2.1 Network connectivity threshold  

 The connectivity threshold for generating networks was selected based on a combination 

of the proportion of nodes in the giant component (GC), no change in node ranking based on degree 

centrality, and the extent of the connectedness of the generated network. All the nodes were present 

in the GC at very low threshold values (e.g., 1 × 10-14 in 2016), with the nodes in the GC decreasing 

with increasing threshold values (Figure 2.2). Given that different values of b were used to create 

the networks for each year (1.51	<	b	<	3.36), the threshold value at which there was a drastic drop 

in the proportion of nodes varied across epidemic years. For example, in 2014, that threshold was 

around 1 × 10-16, while that value was as high as 1 × 10-8 in 2009 (Figure 2.2). Nineteen nodes 

with the highest degree centrality scores (ranked in decreasing order for networks created with 

varying thresholds) further aided in selecting the connectivity threshold. For example, in 2008, at 

a threshold of 2.18 × 10-8, all nodes ranked with high degree centrality scores were present in the 

network with a GC = 0.916 (Table 2.2). At a threshold of 2.71 × 10-8 with a GC = 0.76, two nodes 

(109 and 107) were unique for this threshold. These unique nodes were not present in other ranking 

lists for networks created by other thresholds. The nodes with the highest degree centrality scores 

identified across epidemic years were located in Connecticut, Massachusetts, Maryland, Michigan, 

North Carolina, Ohio, and Pennsylvania.     

The networks were more connected at a threshold of 2.18 × 10-8 than at 2.71 × 10-8, with 

the remaining thresholds having highly connected networks (Figure 2.3). A 2.18 × 10-8 threshold 

was thus selected for generating the 2008 network to achieve the desired balance in network 

connectivity. Similarly, in 2009, all nodes ranked with high degree centrality scores were present 

in the network at a threshold value of 7.83 × 10-9 with GC = 0.986 and 1.12 × 10-8 with GC = 0.95 
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(Table 2.3). However, nodes were not as well connected at τ = 1.12 × 10-8 than at τ = 7.83 × 10-9. 

The remaining thresholds resulted in either highly or sparsely connected networks (Figure 2.3). 

Thus, τ = 7.83 × 10-9 was selected for generating the network in 2009. Using this same approach 

(i.e., the proportion of nodes in the GC, no change in node ranking and the extent of the 

connectedness of the generated network), threshold values selected to generate networks in 2010, 

2011, 2012, 2013, 2014, 2015, and 2016 (see supplementary data) were 1.12 × 10-18, 4.72 × 10-13, 

3.79 × 10-13, 4.41 × 10-14, 3.79 × 10-17, 7.83 × 10-12, and 3.37 × 10-12, respectively. The thresholds 

differ because of different b values (1.51	<	b	<	3.36), different network sizes, and spatial locations. 

 

3.2.2. Static network properties 

 The choice of threshold impacted the network properties. The paragraph below gives a 

description of the results rather than a comparison between years. The properties varied among 

epidemic years examined, with the extent of differences between epidemic years depending on 

individual properties (Table 2.4). For example, the number of neighbors for a node (i.e., average 

degree) ranged from 10 in 2014 to 24 in 2011. The exponent of degree distribution, i.e., the 

potential that a node would become an infected node and result in subsequent infections in 

neighboring nodes, ranged from 1.54 to 2.29 and was about 50% higher in 2014 than 2015 (Table 

2.4). The static networks in 2014 had the highest number of groups of nodes with a high density 

of links within them than between groups (i.e., community). The number of communities in 2014 

was about seven times higher in 2014 than in all other epidemic years except in 2010 and 2015 

(Table 2.4). In 2010, the maximum shortest distance between the two most distant nodes (i.e., 

diameter) was 19 (Table 2.4), with diameters being the least in 2011 and 2016. The 2011 network 
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had a compact network with the shortest path of 2.29, while the network generated in 2010 was 

the least compact with the shortest path of 6.60 (Table 2.4).     

 Due to the choice of threshold, the size of the giant component was generally large (GC ≥ 

90%), indicating highly connected networks across epidemic years except in 2010, where GC was 

relatively lower with a single component containing 89% of the nodes in the network (Table 2.4). 

The highest density of links was observed in 2011 with a value of 0.20, which was about twice as 

high as those observed in other epidemic years except in 2015. Degree centrality (or simply degree) 

was highest in 2011 with a value of 38 and lowest in 2014 with a value of 20, with centrality values 

in the remaining epidemic years ranging from 24 to 32 (Table 2.4). Thus, the number of nodes that 

could potentially serve as ‘superspreaders’ of CDM was highest in 2011 and lowest in 2014. Most 

of these potentially superspreader nodes were located in Michigan, Virginia, Ohio, North Carolina, 

South Carolina, and Maryland. 

 

3.2.3. Dynamic network model for cucurbit downy mildew 

The dynamic network model for CDM revealed an emerging and evolving network and 

provided information that was not captured from the static network representation of disease 

spread (Figure 2.5). Early on, nodes far away from the source were not infected in all epidemic 

years, so the transmission did not occur to their neighbors, and the link probabilities were low. 

However, the links between nodes closest to the initial point infection (open square) in southern 

Florida had the highest link probabilities early in the season (i.e., week 10), while the link 

probabilities between nodes were low elsewhere in the network (Figure 2.5).  As the disease spread 

proceeded in time and space, link probabilities increased for nodes that were more distant from the 

node where the initial occurrence was observed, although probabilities remained low for other 
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nodes (Figure 2.5). For example, in 2013, links between nodes in Georgia closest to the initial 

disease outbreak in southern Florida had the highest link probabilities at week = 10. At week 15, 

with the advance in the epidemic, the link probabilities between these nodes and those in South 

Carolina increased, while nodes elsewhere in northern states remain low.  At week 20, link 

probabilities between nodes in South Carolina and North Carolina increased, while link 

probabilities were low between nodes in more northern states or in states where no disease was 

present. New links with moderate levels of probability were emerging between nodes in North 

Carolina, Virginia, and West Virginia during this time. At week 25, link probabilities increased 

between nodes in North Carolina, Virginia, New York, Pennsylvania, Ohio, and Michigan (Figure 

2.5). A similar emerging and evolving pattern of the network was observed in other epidemic years 

except that link probabilities between nodes in different states and the strength of these 

probabilities differed between years (Figure 2.5). 

 In all epidemic years, the out-degrees of the directed networks at each time step (source 

strength) from the dynamic network models were always less than the in-degree (Figure 2.6) by 

week 35. Most of the nodes in the network tended to act as sinks (i.e., zero or low source strength) 

because of overlapping sets of neighbors. However, the location of these sink nodes varied among 

epidemic years. For example, in 2008 and 2010, most of the nodes that tended to act as sinks were 

located in the Midwest and the northeast region, while in 2013, these nodes were primarily located 

in the Atlantic coast region (Figure 2.6). In addition, out- and in-degrees were comparatively lower 

in 2014 than in other epidemic years. Often, the strongest source nodes were found in areas with 

many neighboring nodes. However, some nodes acted as sources mainly when they were near the 

initial source of disease outbreaks in South Florida, especially in 2008, 2013, and 2014 (Figure 

2.6).  
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3.2.4. Error quantification in dynamic networks 

  The mean absolute errors varied depending on the epidemic year and time step used to 

construct the dynamic networks. The mean errors were calculated at weekly time steps and 

averaged monthly. Across all time steps, mean absolute errors ranged from 0.099 in 2016 to 0.353 

in 2010 (Table 2.5). Epidemic years with comparable low errors as reported in 2016 were 2014 

and 2015 that had absolute errors of 0.168 and 0.121, respectively. Overall, the mean absolute 

errors were lowest at the start of the epidemic during the January to February transition (error = 

0.002) and February to March transition (error = 0.035). The errors increased steadily after that 

and were highest at the end of the epidemic of each year during the June to July transition (error = 

0.343) and July to August transition (error = 0.332) (Table 2.5). The mean absolute error across 

all time steps from 2008 to 2016 was 0.194. 

 

4. Discussion 

 In this study, models that explicitly consider network structures to represent disease spread 

were formulated to describe the dispersal of Pseudoperonospora cubensis and spread of cucurbit 

downy mildew from infected to disease-free sentinel and non-sentinel plots in the eastern United 

States. Although sentinel plot data is more reliable than non-sentinel plots, the non-sentinel plots 

data was included because the data was available. Also, the non-sentinel plots data accounted for 

areas where sentinel plots were not located in the eastern U.S. In addition, reports from commercial 

fields, home gardens, and research plots are valuable locations at which infection became 

established and may have likely played a role in pathogen transmission and disease spread. 

 Based on a static network model, several network properties that may be useful predictors 

of risk of infection and time to infection during disease occurrence in cucurbit fields were 
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identified. These identified properties may have important implications for monitoring and 

controlling CDM within the region. Further, a dynamic network model was developed to model 

the CDM spread in the eastern United States. The dynamic model identified locations that 

contributed most to disease spread across the landscape and showed that source strength (out-

degree) was always less than the in-degree, with most nodes in the network tending to act as sinks. 

The strongest source nodes tended to be near many nodes, while some nodes acted as sources 

mainly if they were near the initial focus. The dynamic model performed well with low errors, 

especially early in the growing season across the epidemic years examined.  

 The characteristics of a disease-spreading process are determined by the topology of the 

network (Newman, 2002). In this study, degree centrality identified highly connected nodes in the 

network that were responsible for disease spread in specific CDM epidemics. Across all epidemic 

years, the more central nodes were primarily located in Michigan in the Great Lakes region, Ohio 

in the mid-west, Maryland, North Carolina, South Carolina, and Virginia along the Atlantic coast. 

Thus, these nodes could be reasonable targets for more intensive sampling, monitoring, and 

management to reduce inoculum production that drives infection in neighboring cucurbit fields. 

Degree centrality is a valuable measure for identifying important nodes in static networks of 

several pathosystems to inform strategic and tactical decisions about disease management in plant 

and animal systems (Gent et al., 2019; Christley et al., 2005; Kiss et al., 2006; Xing et al., 2020). 

Other centrality measures such as eigenvector, betweenness, and closeness that help identify 

central nodes in networks (Wang 2003; Christley et al., 2005; Xing et al., 2020) were not 

investigated in this study. It would be useful to assess the consistency of the results reported here 

using these measures.  
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The ability to accurately estimate the threshold for disease spread is critical as it allows for 

predictions of epidemic development and the identification of appropriate containment measures. 

Connectivity networks are often constructed by applying a threshold to the resulting network to 

retain only the most epidemiologically significant relationships between nodes connected by links. 

This threshold application step is critical as it can introduce errors in the network construction and 

inform of both false negatives and false positives (Perkins et al., 2009). There is no consensus on 

what threshold method can be used due to the inherent differences across pathosystems. Gent et 

al. (2019) applied a quantitative approach that selected thresholds based on a receiver operating 

characteristic curve analysis that maximized binary classification to classification accuracy in 

network analysis of hop powdery mildew. There are other ways of creating networks besides the 

thresholding approach used in this study (e.g., Andersen et al., 2019). 

 In this study, highly connected networks that were too large to make exciting inferences 

were generated at low thresholds, while sparsely connected networks were generated with high 

threshold values. Both the highly connected networks and the sparsely connected networks 

overshadow the effects of network properties such as path length, density, and diameter on network 

structure (Ames et al., 2011). Thus, thresholds were selected to generate intermediate density 

networks that maximized the impact of disease dynamics on the properties of the network structure 

in each epidemic year. Networks of intermediate density have also been reported to profoundly 

impact disease behavior (Ames et al., 2011).          

The dynamic model developed in this study utilized the inverse power-law function to 

model (i.e., generate link weights based on wind speed and direction) disease spread from infected 

to disease-free fields some distance away from the source. The power-law function is useful in 

modeling diseases caused by aerially borne plant pathogens (Ferrandino 1993; Madden et al., 
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2007; Mundt et al., 2009). Errors associated with the power-law function, cut-off, and b value, 

were very low at the start of epidemic onset but steadily increased as new disease occurrences were 

reported. This increase in prediction error with increased disease outbreaks may partly be 

explained by substantial ‘hops’ in disease outbreaks during the epidemic period (Sutrave et al., 

2012). Substantial ‘hops’ during the epidemic period are not unexpected for P. cubensis, whose 

inoculum can be estimated to be transported over 1,000 km (Ojiambo and Holmes, 2011).  

In other pathosystems, the negative exponential and gravity models are useful in modeling 

disease spread. For example, gravity models were used to model the soybean rust in the United 

States (Sutrave et al., 2012; Xing et al., 2020). The gravity model used by Sutrave et al. (2012) 

resulted in low prediction errors, a characteristic that was attributed to the absence of large 

uninfected regions dividing infected areas. The choice of a function to model dispersal events (or 

disease spread) will depend on the product of the potential amount of inoculum produced at the 

source and potential level of host availability at the sink, two attributes that likely vary among 

different pathosystems. The prediction ability of the dynamic model used in this study could be 

improved by incorporating effects of weather factors such as temperature, rainfall, and UV 

radiation (Kanetis et al., 2010; Neufeld et al., 2018) or accounting for the source strength at a given 

location (Neufeld et al., 2013; Ojiambo et al., 2015).     

 In this study, the dynamic network revealed an emerging and evolving network that 

provided useful information that could inform decision-making to manage cucurbit downy mildew 

in the eastern United States. By evaluating the emergent network as a series of time-dependent 

adjacency matrices, the dynamic model identified areas that may act as sources and promote CDM 

spread. While most of the nodes in the network tended to act as sinks, these nodes were located in 

the Midwest, Northeast, and Atlantic coast regions. The dynamic model also facilitated 
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visualization of the prominent time-dependent pathways of pathogen dispersal. One of the critical 

challenges in predicting disease spread has been to estimate the probability and timing of disease 

outbreaks in specific locations (Meentemeyer et al., 2011; Fitzpatrick et al., 2012) and determine 

where and when the introduction of inoculum can impact the extent of an epidemic. By varying 

initial conditions related to the directionality of wind and associated source strength of a cucurbit 

field, the dynamic network developed here can be used to determine nodes that result in the rapid 

spread and a large epidemic extent and thus pose the greatest risk of epidemic expansion across 

the region (Ferrari et al., 2014; Ojiambo et al., 2017). 

 In the United States, CDM expansion in space and time is a characteristic of a dispersive 

wave epidemic with accelerating velocity (Ojiambo et al., 2017). Thus, the first fungicide spray 

timing is critical in limiting the northward advance of CDM epidemics during the growing season 

(Neufeld et al., 2018). However, the timing of its spread from overwintering sources in southern 

Florida is the most uncertain feature within the prediction framework (Ojiambo and Holmes, 

2011). The dynamic model developed in this study could be used as a valuable decision support 

system to inform uncertain situations concerning locations of initial disease outbreaks. Such an 

approach will need to be complemented with scouting efforts for disease outbreaks and pathogen 

detection to provide knowledge of inoculum sources and pathogen dispersal across fields. This 

study's application of connectivity analysis assumed homogeneity in the host response to P. 

cubensis and favorable weather for infection and spread. However, the environmental factors are 

likely to vary across locations, and the dynamic model developed here can further be improved by 

incorporating prevailing weather factors in the dispersal framework of the pathogen (Margosian et 

al., 2009).     
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Tables 

Table 2.1. Network properties used to characterize the spread of cucurbit downy mildew in the eastern United States. 

Property Definition Relevance in pathogen transmission and disease spread 
Average shortest 
path 

The mean shortest path between nodes 
considering all possible pairs of nodes in a 
network  
 

A small value indicates a compact network. It is a measure of the 
efficiency of disease spread on a network 

Diameter The maximum shortest path between the 
any pair of nodes in the network 
 

It measures how many intermediary nodes infection must travel 
to spread disease from any node to any other node 

Density The ratio of the present links in a network 
to the maximum possible number of links 
 

A higher density of connections can enable greater pathogen 
transmission in the network 

Community Sets of nodes that have a high density of 
links within them and a lower density of 
links between groups 
 

Interventions targeting nodes bridging communities are more 
effective in controlling disease spread 

Giant component A section of a network that contains the 
majority of nodes in the network 

Influences the extent of disease propagation since there are no 
paths to nodes in other components; an introduction of infection 
will be able to reach all nodes in the giant component (Danon et 
al., 2010) 
 

Degree distribution The probabilities that a node chosen at 
random will have a given degree 

Captures heterogeneity in the potential of a node to be infected 
and cause additional infections. Knowing the distribution is 
crucial in understanding disease spread dynamics 
 

Degree centrality The number of links a node in the network 
(for directed networks, in-degree is the 
number of incoming links and out-degree 
is the number of outgoing links) 

The node degree of an epidemic starting point influences 
epidemic outcomes; those with a high degree may be 
‘superspreaders’ once infected. The higher the degree of an 
infected node, the most likely it is to cause a large number of 
subsequent infections 
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Table 2.2. Ranking of nineteen most important nodes based on degree centrality for networks generated using a combination of values 

of the proportion of nodes in the giant component (GC) and connectivity threshold (τ) for epidemic data in 2008. 

a Numerical rank of the nineteen most important nodes in the network based on degree centrality. 
b Value refers to the actual number assigned to a node within the network; Values in regular font are for nodes that were ranked as important by all 
the connectivity thresholds tested, while those in bold font are for nodes that are unique and were not ranked as important by all the thresholds tested.  
c The calculated degree centrality value. The GC value is calculated for each network. The same value for two networks does not mean that the 
networks are the same. 
  

 GC = 0.922 GC = 0.922 GC = 0.916 GC = 0.760 GC = 0.500 GC = 0.468 

Node ranka τ = 1.14 ×10-9 τ = 1.66 ×10-9 τ = 2.18 × 10-9 τ = 2.71 × 10-9 τ = 4.27 × 10-9 τ = 6.35 × 10-9 

1 132 b 45 c 71 34 58 33 71 28 1 21 6 16 

2 126 45 62 34 62 33 62 27 68 18 5 16 

3 113 44 58 34 70 30 58 27 63 17 3 16 

4 111 43 119 34 116 29 116 26 60 17 1 16 

5 70 42 112 33 113 25 112 22 9 17 64 16 

6 114 42 122 33 112 25 67 22 6 17 63 15 

7 120 41 113 32 68 25 63 22 5 17 60 15 

8 115 40 70 32 67 25 68 22 65 17 9 15 

9 122 40 95 32 63 25 64 21 64 17 8 15 

10 123 39 111 30 122 25 60 21 8 17 7 15 

11 121 38 68 29 64 24 120 21 7 17 65 15 

12 119 38 123 29 60 23 119 20 4 16 48 14 

13 116 38 121 28 123 23 115 20 71 16 114 13 

14 112 38 126 28 121 22 114 19 62 16 80 12 

15 95 38 132 27 119 22 113 19 122 16 78 12 
16 58 38 114 26 108 22 111 18 50 16 71 12 

17 130 37 67 26 120 22 109 18 49 16 61 12 

18 104 b 36 64 26 115 21 108 18 48 16 55 12 

19 71 36 63 26 111 21 107 18 47 15 50 12 
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Table 2.3. Ranking of nineteen most important nodes based on degree centrality for networks generated using a combination of values 

of the proportion of nodes in the giant component (GC) and connectivity threshold (τ) for epidemic data in 2009.  

a Numerical rank of the nineteen most important nodes in the network based on degree centrality. 
b Value refers to the actual number assigned to a node within the network; Values in regular font are for nodes that were ranked as important by all 
the connectivity thresholds tested, while those in bold font are for nodes that are unique and were not ranked as important by all the thresholds tested. 
c The calculated degree centrality value. 

 GC = 1.00 GC = 0.991  GC = 0.986 GC = 0.950 GC = 0.842 GC = 0.367 

Node ranka τ = 1.0 ×10-9 τ = 4.41×10-9 τ = 7.83 × 10-9 τ = 1.12 × 10-8 τ = 1.47 × 10-8 τ = 1.81 × 10-8 

1 154 b 189c 211 b 50 79 35 93 28 93 23 91 20 

2 55 188 201 50 74 35 82 28 109 22 89 20 

3 54 188 129 49 201 33 88 27 92 22 75 20 

4 53 188 128 49 159 33 91 26 91 22 109 19 

5 50 188 81 49 109 33 89 26 89 22 83 19 

6 48 188 133 48 93 33 83 26 83 22 76 19 

7 164 181 126 48 82 33 76 26 82 22 95 18 

8 193 179 124 48 212 32 75 26 76 22 92 18 

9 213 177 87 48 136 32 136 25 75 22 90 18 

10 206 177 212 47 118 32 92 25 90 21 88 18 

11 152 177 208 47 114 32 90 25 88 21 93 17 

12 166 176 204 47 90 32 79 25 125 19 82 17 

13 155 176 136 47 76 32 127 24 97 19 80 17 

14 163 175 135 47 208 31 109 24 95 19 79 17 

15 132 175 118 47 130 31 95 24 79 19 128 16 

16 165 174 213 46 127 31 158 23 74 19 125 16 

17 156 174 160 46 111 31 130 23 128 18 119 16 

18 160 173 159 46 92 31 125 23 121 18 117 16 

19 157 173 158 46 91 31 121 23 119 18 114 16 
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Table 2.4. Measured properties of static networks for the spread of cucurbit downy mildew in the eastern United States based on disease 

epidemics reported from 2008 to 2016. 

a Denotes the exponent of degree distribution, where the higher the value is for a node, the most likely that node will become infected 
and result in subsequent infections in neighboring nodes. 
b GC denotes giant component, i.e., a single component that contains the majority of nodes in the network, where a high value depicts a 
tightly connected network. 
c Number of links that a node has to other nodes in the network based on a mean of 19 nodes ranked as most important in each epidemic 
year. 
 

  Network property 

  Exponent of     Average  

 Average the degree Community   Proportion of shortest Average 

Year degree distributiona number Diameter Density nodes in GCb path degree c 

2008 13.77 1.70 13 17 0.09 0.92 5.44 25 

2009 16.54 1.63 13 15 0.08 0.98 5.15 32 

2010 12.43 1.83 23 19 0.08 0.89 6.60 28 

2011 24.93 2.05 11 9 0.20 0.94 2.92 38 

2012 15.57 1.67 12 16 0.09 0.98 5.20 28 

2013 14.75 1.62 14 14 0.07 0.96 4.89 27 

2014 10.72 2.29 73 14 0.10 0.99 5.29 20 

2015 12.61 1.54 22 17 0.06 0.90 5.90 24 

2016 12.59 1.71 10 10 0.10 0.94 4.42 24 
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Table 2.5. Absolute errors for different time steps for network models used to characterize the 

spread of cucurbit downy mildew in eastern United States. 

 Epidemic year 
Time step 2008 2009 2010 2011 2012 2013 2014 2015 2016 Meanb 
Jan-Feb -a - -  0.003 - - 0.001 - 0.002 
Feb-Mar 0.006 - - 0.008 0.003 0.157 0.037 0.001 - 0.035 
Mar-Apr 0.095 0.003 0.093 0.124 0.184 0.310 0.078 0.180 0.014 0.120 
Apr-May 0.379 0.232 0.343 0.347 0.350 0.290 0.136 0.181 0.022 0.253 
May-Jun 0.317 0.296 0.411 0.395 0.462 0.163 0.180 0.134 0.089 0.272 
Jun-Jul 0.343 0.533 0.414 0.554 0.522 0.156 0.218 0.186 0.165 0.343 
Jul-Aug 0.249 0.441 0.504 0.409 - - 0.358 0.161 0.203 0.332 
Meanc 0.231 0.301 0.353 0.306 0.254 0.215 0.168 0.121 0.099 0.194 
a No disease outbreaks occurred reported in this time step and thus no error was computed for this 
time step. 
b Mean absolute error across all epidemic years at each time step. 
c Mean absolute error across all time steps within an epidemic year. 
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Figures 

 
 
Figure 2.1. Locations of cucurbit downy mildew outbreaks in the eastern United States from 
2008 to 2016. The locations are color-coded based on the week of the year. Every year, cucurbit 
downy mildew was reported early in Florida and along the Gulf of Mexico before the northern 
states. 
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Figure 2.2. The proportion of nodes in the giant component is influenced by the connectivity 
threshold for cucurbit downy mildew epidemics from 2008 to 2016 in the eastern United States. 
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Figure 2.3. Examples of 2008 networks generated with spread parameter b = 1.61. The 
thresholds for the networks shown in panels A - F are 1.00 × 10-10, 6.21 X 10-10, 1.14 × 10-9, 1.66 
× 10-9, 2.18 X 10-9, and 2.71 × 10-9, respectively. When the threshold is minimal, everything is 
connected. As the threshold increases, links reduce between nodes that are far apart. When the 
threshold is high, links only occur between nodes that are close to each other. 
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Figure 2.4. Examples of 2009 networks generated with spread parameter b = 1.51. The 
thresholds for the networks shown in panels A - F are 1.00 × 10-9, 4.41 × 10-9, 7.83 × 10-9, 1.12 × 
10-8, 1.47 × 10-8, and 1.81 × 10-8, respectively. When the threshold is minimal, everything is 
connected. As the threshold increases, links reduce between nodes that are far apart. When the 
threshold is high, links only occur between nodes that are close to each other. 
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Figure 2.5. Evolving networks resulting from a dynamic network model for cucurbit downy 
mildew spread in the eastern United States in 2008, 2013, 2014, and 2015. The black circles 
are the nodes which indicate the locations of disease outbreak. The open square is the initial disease 
source. The gray links represent the underlying complete static network. The blue links represent 
the evolving dynamic networks. The dynamic network links differ in width corresponding to the 
calculated link weight (probabilities), with darker and thicker links indicating greater probabilities 
of disease spread. 
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Figure 2.6. The in- and out-degrees calculated for 2008, 2013, 2014, and 2015 networks. The 
nodes in black are scaled to in-degree (the number of links coming to a node). The nodes in white 
are scaled to out-degree (the number of links that are coming out from a node defined here as 
source strength). Nodes represented by large white circles may be strong sources of secondary 
infection by week 35. 
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Supplemental Tables 
 
Table S2.1. Ranking of nineteen most important nodes based on degree centrality for networks generated using a combination of values 

of the proportion of nodes in the giant component (GC) and connectivity threshold (τ) for epidemic data in 2010.  

a Numerical rank of the nineteen most important nodes in the network based on degree centrality. 
b Value refers to the actual number assigned to a node within the network; Values in regular font are for nodes that were ranked as important by all the 
connectivity thresholds tested, while those in bold font are for nodes that are unique and were not ranked as important by all the thresholds tested.  
c The calculated degree centrality value. 

 GC = 1.00 GC = 0.958 GC = 0.958 GC = 0.917 GC = 0.833 GC = 0.548 
Node ranka τ = 1.0 ×10-19 τ = 4.41×10-19 τ = 7.83 × 10-19 τ = 1.12 × 10-18 τ = 1.47 × 10-8 τ = 1.81 × 10-18 
1    116 b 56 c 53 40 61 36 61 30 49 28 44 25 
2 103 54 61 40 41 33 49 29 44 27 49 25 
3 104 54 41 39 53 32 44 28 47 26 47 24 
4 105 54 48 39 109 30 47 28 57 24 57 24 
5 106 54 60 39 49 29 62 28 59 24 59 24 
6 108 54 109 39 57 29 57 26 61 24 61 23 
7 109 54 106 38 59 29 59 26 62 24 38 22 
8 110 54 111 37 106 29 41 25 38 23 40 21 
9 113 54 112 37 44 28 45 25 40 22 53 21 
10 114 54 44 32 47 28 53 25 41 22 62 21 
11 61 53 47 32 62 28 55 25 53 22 41 20 
12 40 52 49 32 43 27 105 24 106 22 43 20 
13 41 52 56 32 55 27 106 24 43 21 55 20 
14 48 52 124 32 111 27 109 24 45 21 116 20 
15 53 52 45 31 112 27 112 24 55 21 45 19 
16 60 52 62 31 40 26 38 23 42 20 106 19 
17 107 52 55 30 45 26 40 23 60 20 109 19 
18 112 52 57 30 48 26 60 23 116 20 42 18 
19 122 52 59 30 56 26 39 22 48 19 48 18 
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Table S2.2. Ranking of nineteen most important nodes based on degree centrality for networks generated using a combination of values 

of the proportion of nodes in the giant component (GC) and connectivity threshold (τ) for epidemic data in 2011.  

a Numerical rank of the nineteen most important nodes in the network based on degree centrality.  
b Value refers to the actual number assigned to a node within the network; Values in regular font are for nodes that were ranked as important by all the 
connectivity thresholds tested, while those in bold font are for nodes that are unique and were not ranked as important by all the thresholds tested.  
c The calculated degree centrality value.  

 GC =0.991 GC = 0.991 GC = 0.991 GC = 0.991 GC = 0.931 GC = 0.931 
Node ranka τ = 3.79 ×10-13 τ = 4.1×10-13 τ = 4.41 × 10-13 τ = 4.72 × 10-13 τ = 5.03 × 10-13 τ = 5.34 × 10-13 
1 117 b 50 c 28 48 28 48 109 45 109 45 109 45 
2 28 49 109 46 109 46 110 45 110 45 110 45 
3 111 49 110 46 110 45 28 43 28 41 111 41 
4 109 47 111 45 67 44 111 42 111 41 28 40 
5 110 47 44 44 111 44 67 41 44 40 44 38 
6 31 46 67 44 44 42 44 40 67 38 31 37 
7 29 45 31 43 100 42 31 39 31 37 96 36 
8 30 45 48 43 31 41 29 36 45 36 45 35 
9 44 45 100 43 29 38 30 36 96 36 71 35 
10 48 45 45 42 30 38 45 36 98 36 98 35 
11 67 45 27 41 55 38 71 36 5 35 100 35 
12 100 45 30 41 59 38 95 36 8 35 5 34 
13 27 44 55 41 62 38 96 36 71 35 51 34 
14 55 44 59 41 95 38 98 36 95 35 53 34 
15 59 44 62 41 98 38 100 36 100 35 66 34 
16 62 44 117 41 24 37 5 35 51 34 72 34 
17 45 43 24 40 25 37 8 35 53 34 73 34 
18 24 42 25 40 45 37 9 35 66 34 95 34 
19 117 42 28 40 28 37 109 35 109 34 109 34 
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Table S2.3. Ranking of nineteen most important nodes based on degree centrality for networks generated using a combination of values 

of the proportion of nodes in the giant component (GC) and connectivity threshold (τ) for epidemic data in 2012.  

a Numerical rank of the nineteen most important nodes in the network based on degree centrality. 
b Value refers to the actual number assigned to a node within the network; Values in regular font are for nodes that were ranked as important by all the 
connectivity thresholds tested, while those in bold font are for nodes that are unique and were not ranked as important by all the thresholds tested.  
c The calculated degree centrality value. 

 

 GC = 0.977 GC = 0.977 GC = 0.936 GC = 0.936 GC = 0.930 GC = 0.711 
Node ranka τ = 3.79 ×10-13 τ = 4.41×10-13 τ = 5.97 × 10-13 τ = 6.90 × 10-13 τ = 8.45 × 10-13 τ = 1.00 × 10-12 
1 158 b 33 c 79 29 139 26 65 25 139 23 64 21 
2 81 30 87 29 144 26 62 24 64 22 66 21 
3 160 30 90 28 65 25 86 24 65 22 79 21 
4 79 29 158 28 81 25 139 24 80 22 80 21 
5 82 29 66 27 17 24 17 23 109 22 85 21 
6 87 29 81 27 62 24 64 23 66 21 87 21 
7 90 29 82 27 66 24 80 23 79 21 92 21 
8 16 28 109 27 82 24 98 23 81 21 81 20 
9 65 28 139 27 86 24 141 23 82 21 82 20 
10 86 28 144 27 92 24 142 23 83 21 83 20 
11 109 28 16 26 93 24 144 23 85 21 84 20 
12 64 27 64 26 109 24 66 22 87 21 89 20 
13 66 27 65 26 141 24 79 22 90 21 90 20 
14 85 27 84 26 142 24 82 22 92 21 93 20 
15 91 27 86 26 16 23 83 22 93 21 98 20 
16 95 27 89 26 64 23 84 22 98 21 139 20 
17 101 27 95 26 79 23 85 22 141 21 16 19 
18 110 27 141 26 80 23 89 22 144 21 17 19 
19 158 27 79 26 139 23 65 22 139 20 64 19 
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Table S2.4. Ranking of nineteen most important nodes based on degree centrality for networks generated using a combination of values 

of the proportion of nodes in the giant component (GC) and connectivity threshold (τ) for epidemic data in 2013.  

a Numerical rank of the nineteen most important nodes in the network based on degree centrality. 
b Value refers to the actual number assigned to a node within the network; Values in regular font are for nodes that were ranked as important by all the 
connectivity thresholds tested, while those in bold font are for nodes that are unique and were not ranked as important by all the thresholds tested.  
c The calculated degree centrality value. 

  

 GC = 0.985 GC = 0.946 GC = 0.848 GC = 0833 GC = 0377 GC = 0.377 
Node ranka τ = 1.0 ×10-14 τ = 4.41×10-14 τ = 7.83 × 10-14 τ = 1.12 × 10-13 τ = 1.47 × 10-13 τ = 2.15 × 10-8 

1 203 b 70 c 193 31 194 24 194 21 95 18 83 15 
2 196 68 194 31 146 22 84 18 100 18 95 15 
3 189 64 66 30 62 20 88 18 83 17 84 15 
4 191 64 63 28 63 20 93 18 84 16 100 15 
5 192 64 90 27 83 20 95 18 88 16 85 14 
6 87 62 94 27 84 20 96 18 93 16 86 14 
7 98 62 21 26 88 20 100 18 85 15 88 14 
8 99 61 62 26 95 20 83 17 86 15 89 14 
9 188 61 65 26 100 20 146 17 89 15 92 14 
10 190 61 87 26 86 19 21 16 91 15 93 13 
11 106 60 95 26 90 19 62 16 92 15 91 13 
12 186 60 100 26 96 19 63 16 96 15 96 13 
13 198 60 145 26 144 19 85 16 110 15 110 13 
14 63 59 84 25 147 19 86 16 149 15 149 13 
15 65 59 88 25 19 18 89 16 21 14 21 13 
16 85 59 91 25 21 18 90 16 61 14 61 12 
17 86 59 108 25 65 18 91 16 62 14 62 12 
18 89 59 144 25 66 18 92 16 90 14 87 12 
19 203 59 193 25 194 18 194 16 95 14 83 12 
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Table S2.5. Ranking of nineteen most important nodes based on degree centrality for networks generated using a combination of values 

of the proportion of nodes in the giant component (GC) and connectivity threshold (τ) for epidemic data in 2014.  

a Numerical rank of the nineteen most important nodes in the network based on degree centrality. 
b Value refers to the actual number assigned to a node within the network; Values in regular font are for nodes that were ranked as important by all the 
connectivity thresholds tested, while those in bold font are for nodes that are unique and were not ranked as important by all the thresholds tested.  
c The calculated degree centrality value. 

  

 GC = 0.991 GC = 0.991 GC = 0.991 GC = 0.991 GC = 0.807 GC = 0.807 
Node ranka τ = 2.55 ×10-17 τ = 3.17 ×10-17 τ = 3.48 × 10-17 τ = 3.79 × 10-17 τ = 5.34 × 10-17 τ = 5.97 × 10-8 
1 46 b 26 c 46 24 46 23 46 23 57 20 51 19 
2 90 26 57 24 57 23 57 23 51 19 57 19 
3 95 26 51 22 51 22 51 21 56 18 56 18 
4 51 25 83 22 95 22 90 21 58 18 58 18 
5 56 25 90 22 90 21 39 20 40 17 40 17 
6 57 25 95 22 39 20 44 20 41 17 41 17 
7 58 24 39 21 42 20 48 20 42 17 42 17 
8 83 24 48 21 44 20 55 20 44 17 44 17 
9 87 24 42 20 48 20 56 20 46 17 48 17 
10 39 23 44 20 55 20 95 20 48 17 55 17 
11 40 22 55 20 56 20 42 19 55 17 31 16 
12 44 21 56 20 58 19 58 19 31 16 39 16 
13 48 21 61 20 61 19 61 19 39 16 43 16 
14 55 21 58 19 83 19 83 19 43 16 45 16 
15 61 21 87 19 40 18 40 18 45 16 46 16 
16 41 20 40 18 54 18 54 18 52 16 52 16 
17 42 20 43 18 60 18 31 17 53 16 53 16 
18 84 20 52 18 31 17 41 17 54 16 54 16 
19 52 19 53 18 41 17 43 17 59 16 59 16 



   
 

61 
 
 

Table S2.6. Ranking of nineteen most important nodes based on degree centrality for networks generated using a combination of values 

of the proportion of nodes in the giant component (GC) and connectivity threshold (τ) for epidemic data in 2015.  

a Numerical rank of the nineteen most important nodes in the network based on degree centrality. 
b Value refers to the actual number assigned to a node within the network; Values in regular font are for nodes that were ranked as important by all the 
connectivity thresholds tested, while those in bold font are for nodes that are unique and were not ranked as important by all the thresholds tested.  
c The calculated degree centrality value. 

  

 GC = 1.00 GC = 0.913 GC = 0.909 GC = 0.895 GC = 0.799 GC = 0.249 
Node ranka τ = 1.0 ×10-12 τ = 4.41×10-12 τ = 7.83 × 10-12 τ = 1.12 × 10-11 τ = 1.47 × 10-11 τ = 1.81 × 10-11 

1 207 b 90 c 172 39 13 27 13 24 13 24 13 19 
2 208 87 170 38 152 27 110 24 12 19 12 18 
3 99 82 173 37 155 27 160 23 60 19 110 17 
4 182 81 162 33 157 27 12 22 71 18 148 17 
5 175 80 180 33 160 27 155 22 110 18 174 17 
6 206 79 55 31 148 26 71 21 183 18 183 17 
7 93 78 73 31 12 25 152 21 146 17 186 17 
8 176 78 156 31 110 25 148 20 148 17 187 17 
9 55 77 67 30 146 24 157 20 152 17 188 17 
10 149 77 146 30 55 23 53 19 155 17 60 16 
11 94 76 148 30 60 23 55 19 167 17 146 16 
12 96 73 151 30 66 22 60 19 168 17 155 16 
13 163 73 152 30 70 22 69 19 169 17 166 16 
14 89 72 154 30 71 22 164 19 174 17 167 16 
15 158 72 155 30 62 21 168 19 177 17 171 16 
16 159 72 164 30 67 21 177 19 181 17 178 16 
17 100 71 13 29 69 21 10 18 184 17 184 16 
18 134 71 57 29 72 21 11 18 186 17 185 16 
19 207 71 172 29 13 21 13 18 13 17 13 15 
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Table S2.7. Ranking of nineteen most important nodes based on degree centrality for networks generated using a combination of values 

of the proportion of nodes in the giant component (GC) and connectivity threshold (τ) for epidemic data in 2016.  

a Numerical rank of the nineteen most important nodes in the network based on degree centrality.  
b Value refers to the actual number assigned to a node within the network; Values in regular font are for nodes that were ranked as important by all the 
connectivity thresholds tested, while those in bold font are for nodes that are unique and were not ranked as important by all the thresholds tested.  
c The calculated degree centrality value. 

 GC = 0.967 GC = 0.951 GC = 0.951 GC = 0.951 GC = 0.951 GC = 0.951 
Node ranka τ = 1.0 ×10-12 τ = 1.47×10-12 τ = 1.95 × 10-12 τ = 2.42 × 10-12 τ = 2.89 × 10-12 τ = 3.37 × 10-12 

1 154 b 48 c 211 b 39 79 32 93 30 93 29 91 29 
2 55 47 201 39 74 32 82 29 109 29 89 29 
3 54 46 129 38 201 32 88 29 92 27 75 27 
4 53 46 128 38 159 31 91 28 91 26 109 24 
5 50 46 81 38 109 31 89 28 89 26 83 24 
6 48 46 133 37 93 31 83 28 83 24 76 23 
7 164 45 126 37 82 30 76 28 82 23 95 23 
8 193 45 124 35 212 30 75 28 76 23 92 23 
9 213 44 87 35 136 30 136 28 75 23 90 23 
10 206 44 212 35 118 29 92 28 90 23 88 21 
11 152 44 208 33 114 29 90 26 88 22 93 21 
12 166 43 204 32 90 29 79 26 125 22 82 21 
13 155 43 136 31 76 29 127 24 97 22 80 20 
14 163 43 135 31 208 29 109 24 95 21 79 20 
15 132 42 118 31 130 28 95 24 79 21 128 20 
16 165 42 213 31 127 28 158 23 74 20 125 20 
17 156 41 160 31 111 28 130 23 128 20 119 18 
18 160 40 159 31 92 27 125 22 121 20 117 18 
19 157 40 158 31 91 27 121 22 119 20 114 18 
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Supplemental Figures 
 

 
Figure S2.1. Examples of 2010 networks generated with spread parameter b = 3.36. The 
thresholds for the networks shown in panels A - F are 1 × 10-19, 4.41 × 10-19, 7.83 × 10-19, 1.12 × 
10-18, 1.47 × 10-18, and 1.81 × 10-18, respectively. When the threshold is minimal, everything is 
connected. As the threshold increases, links reduce between nodes that are far apart. When the 
threshold is high, links only occur between nodes that are close to each other. 
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Figure S2.2. Examples of 2011 networks generated with spread parameter b = 2.2. The 
thresholds for the networks shown in panels A - F are 3.79 × 10-13, 4.1 × 10-13, 4.41 × 10-13, 4.72 
× 10-13, 5.03 × 10-13, and 5.34 × 10-13, respectively. When the threshold is minimal, everything is 
connected. As the threshold increases, links reduce between nodes that are far apart. When the 
threshold is high, links only occur between nodes that are close to each other. 
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Figure S2.3. Examples of 2012 networks generated with spread parameter b = 2.32. The 
thresholds for the networks shown in panels A - F are 3.79 × 10-13, 4.41 × 10-13, 5.97 × 10-13, 6.9 
× 10-13, 8.45 × 10-13, and 1 × 10-12, respectively. When the threshold is minimal, everything is 
connected. As the threshold increases, links reduce between nodes that are far apart. When the 
threshold is high, links only occur between nodes that are close to each other. 
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Figure S2.4. Examples of 2013 networks generated with spread parameter b = 2.51. The 
thresholds for the networks shown in panels A - F are 1 × 10-14, 4.41 × 10-14, 7.83 × 10-14, 1.12 × 
10-13, 1.47 × 10-13, and 1.81 × 10-13, respectively. When the threshold is minimal, everything is 
connected. As the threshold increases, links reduce between nodes that are far apart. When the 
threshold is high, links only occur between nodes that are close to each other. 
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Figure S2.5. Examples of 2014 networks generated with spread parameter b = 3.02. The 
thresholds for the networks shown in panels A - F are 2.55 × 10-17, 2.86 × 10-17, 3.17 × 10-17, 3.48 
× 10-17, 3.79 × 10-17, and 5.34 × 10-17, respectively. When the threshold is minimal, everything is 
connected. As the threshold increases, links reduce between nodes that are far apart. When the 
threshold is high, links only occur between nodes that are close to each other. 
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Figure S2.6. Examples of 2015 networks generated with spread parameter b = 2.11. The 
thresholds for the networks shown in panels A - F are e 1 × 10-12, 4.41 × 10-12, 7.83 × 10-12, 1.12 
× 10-11, 1.47 × 10-11, and 1.81 × 10-11, respectively. When the threshold is minimal, everything is 
connected. As the threshold increases, links reduce between nodes that are far apart. When the 
threshold is high, links only occur between nodes that are close to each other. 
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Figure S2.7. Examples of 2016 networks generated with spread parameter b = 2.11. The 
thresholds for the networks shown in panels A - F are 1 × 10-12, 1.47 × 10-12, 1.95 × 10-12, 2.42 × 
10-12, 2.89 × 10-12, and 3.37 × 10-12, respectively. When the threshold is minimal, everything is 
connected. As the threshold increases, links reduce between nodes that are far apart. When the 
threshold is high, links only occur between nodes that are close to each other. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
 

70 
 

 
 

Figure S2.8. The in- and out-degrees calculated for 2009, 2011, and 2012 networks. The nodes in black are scaled to in-degree (the 
number of links coming to a node). The nodes in white are scaled to out-degree (the number of links that are coming out from a node 
defined here as source strength). Nodes represented by large white circles may be strong sources of secondary infection by week 35. 
 

2009 2011 2012 
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Figure S2.9. The in- and out-degrees calculated for 2015 and 2016 networks. The nodes in black are scaled to in-degree (the number 
of links coming to a node). The nodes in white are scaled to out-degree (the number of links that are coming out from a node defined 
here as source strength). Nodes represented by large white circles may be strong sources of secondary infection by week 35. 
 
 

2015 2016 
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Figure S2.10. Evolving networks resulting from a dynamic network model for cucurbit downy mildew spread in the eastern 
United States in 2009, 2010, and 2011. The black circles are the nodes which indicate the locations of disease outbreak. The open 
square is the initial source of disease. The gray links represent the underlying complete static network. The blue links represent the 
evolving dynamic networks. The dynamic network links differ in width corresponding to the calculated link weight (probabilities), with 
darker and thicker links indicating greater probabilities of disease spread.  

2009 
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2011 
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Figure S2.11. Evolving networks resulting from a dynamic network model for cucurbit downy mildew spread in the eastern 
United States in 2012 and 2016. The black circles are the nodes which indicate the locations of disease outbreak. The open square is 
the initial source of disease. The gray links represent the underlying complete static network. The blue links represent the evolving 
dynamic networks. The dynamic network links differ in width corresponding to the calculated link weight (probabilities), with darker 
and thicker links indicating greater probabilities of disease spread. 

2012 

2016 
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CHAPTER 3  

Network Analysis of the Spread of Cucurbit Downy Mildew in the Eastern United States: 
Identifying Highly Connected Locations for Risk-Based Surveillance and Disease Control 
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Abstract 

Surveillance is critical in the rapid implementation of control measures for diseases caused by 

aerially dispersed plant pathogens, but such programs can be resource-intensive, especially for 

long-distance dispersed pathogens. The current platform for monitoring, predicting, and 

communicating the risk of cucurbit downy mildew is expensive to maintain. In this study, we 

focused on finding fields for surveillance and treatment because knowing where to monitor for the 

disease could reduce surveillance costs and knowing where to treat could slow down the invasion 

process during the growing season. We constructed static and dynamic networks using epidemic 

data collected from 2008 to 2016 and used three strategies to identify these fields. First, we 

modeled the probabilities of different nodes being infected over discrete weekly time steps within 

a year. Secondly, we selectively removed nodes from a network and calculated probabilities. 

Finally, we analyzed recurring patterns (infection frequency) across the years. Betweenness 

centrality (BWC) was the most useful measure in identifying the most important fields compared 

to other centrality measures examined. Also, degree centrality, a commonly used measure of more 

central nodes, was not as effective as BWC or other centrality measures assessed. Fields in 

Maryland, North Carolina, Ohio, South Carolina, and Virginia were the most central in the 

network. Further, removing fields identified as important based on BWC limited the risk of disease 

spread based on a dynamic network model incorporating a power-law function for pathogen 

dispersal. Combining the dynamic network model and centrality measures helped identify the 

highly connected cucurbit fields in the southeastern United States and the mid-Atlantic region. 

These highly connected fields may be used to inform surveillance and strategies for controlling 

cucurbit downy mildew in the eastern United States. 

Keywords: cucurbit downy mildew, centrality measures, infection frequency, probability 
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1. Introduction 

Pathogen dispersal is a fundamental property in developing disease epidemics at different 

spatial scales that range from the local to landscape level. The transmission of invasive plant 

pathogens and the spread of resultant epidemics influences essential ecosystem services, including 

biodiversity and food production in agricultural systems (Brown and Hovmøller, 2002; Crowl et 

al., 2008). Measures that involve containment and eradication programs can be implemented to 

reduce the potential impact of these epidemics. However, the planning and implementation of any 

specific measure will require an understanding of the mechanics of invasions and the ecological 

consequences, risks, and dynamics of disease spread. Such efforts can benefit greatly from 

epidemic records within a region as they enable an analysis of the overall structure of pathogen 

dispersal. Information from such analyses can help design control programs for disease epidemics 

and risk-based surveillance. For example, the timely recording of animal movements was 

fundamental in the containment of the 2011 foot and mouth disease epidemic in the UK, for which 

retrospective analyses demonstrated that initial spread was influenced by the frequency of animal 

movement (Ferguson et al., 2001; Kao et al., 2006).         

One approach to understand pathogen dispersal and spread of resultant disease epidemics 

is through network analysis, a method that is becoming increasingly popular but of limited 

application in plant disease epidemiology (Garrett et al., 2018; Xing et al., 2020). Networks consist 

of ‘nodes’ and ‘links’, where nodes are the entities of interest (e.g., individual fields or observed 

locations of disease outbreak), while links serve to connect the nodes in various ways, for example, 

the potential of encounter or disease transmission between two nodes. Further, networks can be 

weighted with link weights assumed to be proportional to the probability of transmission. 

Networks have been constructed to describe pathogen dispersal and spread of epidemics caused 
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by aerially dispersed plant pathogens such as Phakopsora pachyrhizi in soybean (Sutrave et al., 

2012; Sanatkar et al., 2015) and Podosphaera macularis in the hop (Gent et al., 2019). The primary 

determinants of a pathogen’s dispersal such as source strength, location of host populations, and 

relevant covariate information can be formulated as a network spreading model (Gent et al., 2019; 

Firester et al., 2018; Garrett et al., 2018; Sanatkar et al., 2015; Sutrave et al., 2012). Such models 

combine the spatial and dynamic components of an epidemic and provide the underlying contact 

structure of landscape connectivity (With et al., 1997).  

 The choice of networks to be studied depends on several factors that include the disease of 

interest and specific questions. The latter will, in turn, influence the type of network measures to 

be used in the analysis of pathogen dispersal and disease spread. Static and dynamic networks are 

common in landscape connectivity analyses. Static networks have structures that do not change, 

whereas dynamic networks have structures that change over time. Both static and dynamic 

networks are applicable in plant disease epidemiology (e.g., Sanatkar et al., 2015; Sutrave et al., 

2012). In dynamic networks, between-node distances, host availability, wind speed, and wind 

direction can formulate a susceptible-infected (SI) model to describe epidemic spread (Sutrave et 

al., 2012). 

 Further, plant diseases display seasonal differences in the occurrence and intensity of 

epidemics (Campbell and Madden, 1990). Thus, analysis of data from an entire year and even over 

multiple years will be necessary to determine if there are recurring patterns that could be useful 

for designing effective disease control measures. There are several different measures in the 

network analysis of pathogen dispersal and disease spread. Some of these measures provide 

general descriptions of the network structure (Keeling and Eames, 2005), while other measures 

can apply to surveillance and management of epidemics (Ferrari et al., 2014). For example, 
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centrality measures such as betweenness, closeness, degree, and eigenvector help assess the 

number of contacts and identify specific nodes in the highly connected network (Gent et al., 2019; 

Sutrave et al., 2012). Highly connected nodes provide more effective surveillance and 

opportunities for more targeted control to reduce disease spread within the network. An open 

question still exists as to which centrality measures are most important for identifying important 

nodes for surveillance and managing real-world networks (Holme, 2017). Due to inherent 

differences in pathogen dispersal and disease spread mechanisms, centrality measures used to 

identify essential nodes for surveillance are specific to different pathosystems (Holme, 2018). 

 A motivating plant disease example for network analysis to inform surveillance and disease 

control is cucurbit downy mildew (CDM), a pathosystem of interest for several reasons. A 

resurgence of the disease occurred around the world in the last 20 years, which fundamentally 

influenced cucurbit production and disease management at multiple scales (Ojiambo et al., 2015). 

The disease is caused by an obligate pathogen, Pseudoperonospora cubensis, that exhibits 

significant long-distance dispersal (Ojiambo et al., 2011). The resurgence of CDM in Europe and 

the United States has been attributed to the introduction of a new pathotype of the pathogen that 

was previously limited to East Asia (Cohen et al., 2015; Thomas et al., 2017).  

 Fungicides are integral to CDM control due to the lack of cultivars with adequate 

resistance, and in the absence of control measures, the disease can result in complete crop loss 

(Holmes et al., 2015). The pathogen overwinters below the 30-degree latitude in southern Florida 

in the continental United States, and disease occurrence in northern states relies on pathogen 

dispersal from the south. In 2008, surveillance of disease occurrence based on a series of sentinel 

and non-sentinel plots was implemented as part of the CDM ipmPIPE (https://www.ipmpipe.org/) 

(Ojiambo et al., 2011). Based on the prediction framework developed by Main et al. (2001) and 



   
 

79 
 

the sentinel plot data, an integrated aerobiological model was developed to predict the disease 

occurrence and progression in the eastern United States (Neufeld et al., 2018) to guide growers on 

when to apply the initial spray. Surveys conducted in Georgia, Michigan, and North Carolina show 

that the forecasting system resulted in an average reduction of two to three fungicide applications 

than calendar-based application schedules (Ojiambo et al., 2011). This reduction in fungicide 

applications translates to > $6 million savings to the cucurbit producers in these three states alone 

annually. Due to limitations in resources for disease surveillance (Ojiambo et al., 2011), there is 

increasing interest to identify locations that are critical for pathogen dispersal and disease spread 

within the region.  

 This study builds upon recent work conducted to characterize the network structure of the 

dispersal of P. cubensis and the spread of cucurbit downy mildew in the eastern United States 

(Chapter 2). We specifically focus on identifying the centrality measures that can be directly 

applicable for surveillance and management of cucurbit downy mildew to identify highly 

connected nodes. When combined with frequency-based selection, these centrality measures can 

be used to reduce the resources required to survey and predict epidemic progress (Sutrave et al., 

2012). A dynamic network model for cucurbit downy mildew in the eastern United States is 

developed using epidemic data, wind speed, and wind direction based on a modeling framework 

described by Sutrave et al. (2012). The latter is essentially an SI model that describes disease 

spread between nodes in the eastern United States wherein nodes are observed locations and links 

are possible transmission routes from infected nodes to susceptible nodes. The specific objectives 

of this study were to 

1. Identify centrality measures that are useful for surveillance and control of cucurbit downy 

mildew. 
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2. Identify highly connected nodes that are critical in the pathogen dispersal and spread of 

cucurbit downy mildew. 

3. Determine how the removal of highly connected nodes influences the spread and 

containment of cucurbit downy mildew in the eastern United States. 

Due to differences in patterns of pathogen dispersal and disease spread between years, data are 

analyzed from multiple years to generate robust findings and identify any recurring patterns that 

could be useful in disease control.  

 

2. Methods 

2.1. Data source 

 Cucurbit downy mildew epidemic records in the eastern United States from 2008 to 2016 

were used in this study. The data was obtained from the CDM ipmPIPE database 

(http://cdm.ipmpipe.org) that tracks reports of CDM occurrences in the United States (Ojiambo et 

al., 2011). Epidemic records in the system include reports from a network of regularly monitored 

plots (sentinel plots) and voluntary reports (non-sentinel plots) submitted by commercial growers, 

agricultural researchers, and the general public. Sentinel plots were strategically placed within 

specific states and planted with different cucurbit host types for monitoring CDM occurrences. 

During this study period (2008 - 2016), the sentinel plots were located at research facilities or 

commercial fields with standard dimensions of 15 m × 61 m and were georeferenced using the 

Global Positioning System. These plots were planted early and regularly monitored for disease 

symptoms every 1-2 weeks by state collaborators and extension specialists. The cucurbits grown 

in the sentinel plots were cucumber cv. Straight 8 and Poinsett 76 (Cucumis sativus), cantaloupe 

cv. Hales Best Jumbo (Cucumis melo), acorn squash cv. Table Ace (Cucurbita pepo), butternut 
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squash cv. Waltham (Cucurbita moschata), giant pumpkin cv. Big Max (Cucurbita maxima), 

and watermelon cv. Micky Lee (Citrullus lanatus) (Ojiambo et al., 2011).  

Voluntary reports were from locations not designated for regular surveillance, i.e., 

commercial fields, research plots, and home gardens (Table 3.1). The appearance of infection 

triggered these voluntary reports (non-sentinel plot reports). The reports are essential for many 

reasons. First, CDM was reported earlier in the non-sentinel plots in some years (e.g., 2011, 2013, 

2015, and 2016) before the sentinel plots (Figure 3.1). These early reports are critical for inferring 

source attribution and CDM spread. Secondly, this data is available. It is expensive to establish 

and monitor sentinel plots in all states in the eastern United States (Ojiambo et al., 2011). Due to 

this resource limitation and sentinel data sparsity, including these non-sentinel reports allows for 

much data as possible for analysis. Third, since P. cubensis is an aerially dispersed pathogen, it is 

crucial to include all locations with CDM to infer the epidemic extent, identify possible disease 

hops, and capture information from locations with no sentinel plots. 

The latitudes and longitudes for the sentinel and non-sentinel plots were generated from 

the customized section of the CDM ipmPIPE website. The latitudes and longitudes of county 

centroids - extracted from US Census Bureau 1990 Gazetteer Files - were used as the approximate 

georeferenced points where no plot data were available. The compiled data from sentinel and non-

sentinel plots included the date of first disease symptoms, month, affected host type, planting type, 

disease incidence, state, county, and location. The total number of disease cases across the study 

period ranged from 114 to 220, while the number of counties affected ranged from 86 to 179 (Table 

3.1). A correlation was done to determine how these numbers were impacted by the number of 

plots and counties with active surveillance in each year’s data set (Figure S2.2). A disease case 
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represented a unique combination of host and date of first disease symptoms at a particular 

location. 

 Hourly wind speed and direction at each sentinel plot were derived from weather 

observations in the national oceanic and atmospheric administration integrated surface database 

(Smith et al., 2011) provided by BASF (Research Triangle Park, Raleigh, NC). The wind 

measurements were taken at the height of 10 m. The wind direction is the direction the wind is 

blowing from, e.g., wind coming from the north is a northerly wind, and a southerly wind is a wind 

coming from the south. The raw observations for the meteorological wind direction for a north 

wind is 360o, a south wind is 180o, a west wind is 270o, and an east wind is 90o (Figure S3.1A). 

The wind direction (wd) in degrees was converted to a mathematical direction (md) in degrees 

using the formula:  

!"	 = 		 %
270	– 	*"																	
360 + (270 − *") 

This mathematical convention for the meteorological wind direction implies that a north wind is 

270o, a south wind is 90o, a west wind is 0o, and an east wind is 180o (Figure S3.1B). The 

mathematical direction vector points in the direction that wind will transport the particles, i.e., a 

meteorological north wind (360o) will blow a particle to the south (270o mathematical). The 

mathematical direction in degrees was converted to radians. The 1 and 2 (3 and 4) components of 

the hourly wind vectors were then calculated as 1	 = 	5678Ɵ and 2 = 	58:;Ɵ where r is the wind 

speed in miles per hour and Ɵ is the wind direction in radians (Figure S3.1C). 

 

2.2. Static network analysis 

Spatial networks were constructed for each epidemic year to provide insights into the 

structure of CDM spread in the eastern United States. The general methodology involved 

(1) 
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positioning node i at a specific location, then connecting node i and node j using a probability 

based on the distance between the two nodes. The probability is given by a connection kernel 

which usually decays with distance such that connections are predominantly localized (Danon et 

al., 2010). In this study, nodes were a combination of sentinel plots, research fields, home gardens, 

and commercial fields in the eastern United States. Other locations in the eastern United States 

that were not monitored in this study may contribute to the risk and spread of CDM. However, 

only the reported locations to have CDM were included in this analysis since this is the available 

data, one reason why we combined both sentinel and non-sentinel plots. 

In this study, a link between two nodes was determined as a function of distance. The 

between-node Euclidean distances were calculated using the Haversine formula (Sinnot, 1984) and 

implemented in the R programming language (R Development Core Team) using the package 

geosphere (Hijmans, 2017). The x and y displacement vectors for two nodes were calculated based 

on equirectangular projection. The formulas are: 

																							z = sin! @
"!#	""

! A + cos (φ%)cos	(φ&)	sin! @
'!#'"	
! A 

                                                E() = R × 2 × atan2J√z, √1 − zN	

                                                1 = 	R × (λ% − λ&) cos @
"!*	""

! A 

                                    2 = 	R × (φ% −	φ&) 

where φ = latitude (radians), λ = longitude (radians), R = radius of the earth (mean = 6,371,000 

m), and E() = haversine distance between node i to node j.  

The links were created using an inverse power-law dispersal kernel	2 = 	 JE()N
#+, where 2 

is the probability of transmission from node i to node j (Andersen et al., 2019), E() is the distance 

between node i to node j, while b	is the spread parameter (Ojiambo et al., 2017). Values for 

parameter b used in this study ranged from 1.51 to 3.36 and these were obtained from a previous 

study on the isotropic spread of CDM in the eastern United States from 2008 to 2016 (Ojiambo et 

(2) 
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al., 2017). A link was created between node i to node j if y	>	τ for some arbitrary threshold values 

τ. A simpler way to think about 2 = 	 JE()N
#+and τ is that we connect node i to node j based on 

whether they are within a certain distance of each other.  

 Two analyses of static networks were done. First, several static networks were created for 

different τ values (sections 2.2.1 and 2.2.2). Then a single network where each node was connected 

to at least another node was chosen for individual analysis in sections 2.2.1 and 2.3. 

 

2.2.1. Centrality measures   

Four centrality measures, namely, betweenness, closeness, degree, and eigenvector, were 

assessed to determine their usefulness in surveillance and management of CDM in the eastern 

United States (Meghanathan and Lawrence, 2016). These centrality measures have been used in 

network analysis of aerially dispersed plant pathogens and have relevance in epidemic spread 

(Table 3.2). Betweenness centrality (BWC) quantifies the number of shortest paths from each node 

i, to every other node j, that run through a focal node k: PQR, = ∑ ∑
-#$%
-#%)( , where T() is the 

number of paths from node i to node j and T(,) is the number of paths that run through node k. 

Nodes with high BWC scores are used more often than nodes with lower scores and thus, more 

important to spread across the network. Closeness centrality (CLC) measures how close (on 

average, in number shortest paths) a node is to other nodes, and thus how quickly an epidemic 

starting at that node might infect a large proportion of the network: RUR( =
.

∑ 0#%%
 , where E() is the 

shortest path between node i to node j. The BWC and CLC are determined by the Breadth-First 

Search algorithm (Cormen et al., 2009). 
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An adjacency matrix V is an n x n matrix where each cell W() = 1 if node i and node j are 

connected or W() = 0 if the nodes are not connected (n = number of nodes). Degree centrality (DGC) 

is the sum of contacts made by node i to other nodes or simply the number of neighbors that a node 

has. XYR( = ∑ W()) , where W() is a link connecting node i to node j, with a value of 1 (connected) 

or 0 (not connected). A satellite node having only one connected neighbor has DGC =	1, while a 

central node connected to 10 other nodes has DGC =	10. Thus, nodes with high DGC values are 

likely to play a critical role in an epidemic. Eigenvector centrality (EVC) measures a node’s degree 

as well as its neighbors’ degrees. It measures the influence of a node in a network, i.e., a node is 

considered to be important if it is linked to other important nodes. EVC for a node i is the i-th 

element of an eigenvector 1 defined by V1 = 	Z1 where V is the adjacency matrix and Z is the 

eigenvalue i.e., [\R( =
.
1∑ W()1)) . The EVC is determined by the power iteration algorithm 

(Chung, 2006). 

The four centrality measures were calculated for each static network created for different 

τ values (described in section 2.2.2). We also chose one network where each node was connected 

to at least another node for further analysis. First, the empirical cumulative probability distributions 

of BWC, CLC, DGC, and EVC were calculated for each epidemic year to show the distribution of 

the calculated centrality values. For a set of values across a set of nodes, we calculated the 

probability of each value and used the empirical cumulative density function in the ggpubr package 

to calculate the cumulative probability distributions of BWC, CLC, DGC, and EVC. Second, the 

similarity in the ranking of nodes between BWC and all other centrality metrics was assessed using 

Spearman’s rank-based correlation (a third analysis is described in section 2.3). 
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2.2.2. Identification of important nodes for disease spread within the static network  

An analysis of the 2008 to 2016 observed disease occurrence data was necessary to 

determine if recurring patterns could help design effective disease control measures. A simple 

approach was to check for the nodes that reoccurred from year to year, i.e., nodes observed at least 

once. For example, one node was observed in 2008 and 2009 but not in the other years. This node 

reoccurred twice. Another node observed in 2008, 2009, 2010, 2011, 2013, and 2014 but not in 

2015 and 2016, reoccurred six times. The number of times a node reoccurred from 2008 to 2016 

was defined as the infection frequency. Thus, two approaches used to identify nodes that were 

important for disease spread and thus could be useful for risk-based surveillance and disease 

management to reduce epidemic spread: i) selection of nodes based on this infection frequency 

alone, and ii) selection of nodes based on a combination of this infection frequency and BWC, 

CLC, DGC, and EVC metrics. For option (i), the infection frequency was calculated for all nodes 

in the 2008 to 2016 dataset. The nodes were then were ranked from the highest to the lowest 

frequency value (Figure 3.2). 

For option (ii), the 2008-2016 data set was reduced to contain only 2008-2016 nodes with 

infection frequency ≥	1. A static network was created such that each node was connected to at least 

another node (Ferrari et al., 2014) using b = 2.11 (Ojiambo et al., 2017). BWC, CLC, DGC, and 

EVC centralities were calculated for this network. Then the BWC, CLC, DGC, and EVC metrics 

were scaled between 0 and 1 and combined in a ratio of 80:20 (frequency: centrality) for each node 

as described by Sutrave et al. (2012) to give more weight to the infection frequency (Figure 3.6). 

The nodes were then ranked in decreasing order based on this weighted value. This approach 

emphasizes nodes where the epidemic is active and highly connected nodes that act as bridges to 
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other nodes (for BWC), nodes that occur in the shortest path (for CLC), or nodes that are connected 

to other potential superspreaders (for DGC and EVC).  

For each year, we considered threshold values for τ such that the bounds for τ produced 

dense networks and sparse networks, i.e., 10-18	< τ	<	10-8. A network was created for each τ, 

totaling 20 networks (with varying levels of network density as in Chapter 2) for all τ values. DGC 

centrality was calculated for each network, and the results were ranked in decreasing order, totaling 

20 rankings for the 20 networks. The top 20 nodes with the highest scores were then selected 

(because the DGC ranking produced slightly different results for each of the 20 networks). A 

second ranking was done for each node in this top 20 set. The number of times a node appeared in 

the top 20 list across all thresholds was counted to eliminate the nodes that were ranked with higher 

scores in the dense and sparse networks. The nodes were then ranked in decreasing order. This 

process was repeated for the other three centrality measures. The results across the four measures 

and τ values (different networks) were combined in a heatmap using ggplot2 (Wickham, 2016) 

package in the R environment.  

 

2.3. Dynamics on the static networks  

Here, we describe the dynamic process, CDM spread, occurring on a static network where 

each node is connected to at least another node (Ferrari et al., 2014). Within a year, we modeled 

the probabilities of different nodes being infected over discrete weekly time steps t	∈ {1, 2…T} 

based on the SI model described by Sutrave et al. (2012). We assumed that P. cubensis is mainly 

dispersed by wind, homogeneity in the host response to P. cubensis, and favorable weather for 

infection and CDM spread. The model combines the static components that are constant during 
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the cropping season and the dynamic components that vary during the cropping season and are 

formulated as   

	

⎩
⎪
⎨

⎪
⎧b() 	= 	 JE()N

#+

c() =
0#%.
→
3'
→

40#%
→
4

3() = b() × c()

                                                                         

where b() 	is a constant function of the between-node distance and decays exponentially with 

distance, E() the distance between node i and node j, b is the spread parameter (Ojiambo et al., 

2017), c() is a function of the wind data defined as the dynamic wind-based infection rate (Sutrave 

et al., 2012), E()
→

 is the displacement vector between two nodes, *6
→
	is the wind vector at time t, and 

3() 	is the link weight based on distance and wind between node i and node j	at time t. 

Since the probability of a node being infected depends on the number of infected neighbors, 

the probability d( of node i	not being infected by its neighbors was expressed as 

d((e) =  ∏ @1 − 3()h)(e)A)∈8#                                                                     

where h) is the probability of node j being infected at time t, 3()∈ [0,1] is the link weight as defined 

above, and i( is a set of node :’s neighbors. Given Equation 4, the probability h( 	of node i being 

infected at time t was expressed as 

 h((e) = 1 − J1 − h((e − 1)Nd((e)           

Values of c() were updated at each time step and h( was calculated at each time step. In this study, 

a weekly time step was adopted, and all calculations were performed using MATLAB (R2019a).   

 

 

 

(5) 

(4) 

(3) 
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2.3.1. Error quantification  

 A value of 1 was assigned to nodes observed as infected, while a value of 0 was assigned 

to healthy nodes in the observed data at each time step t. The error was defined as the absolute 

difference between the observed data and the corresponding infection probability calculated by the 

model at each time step t. As described by Sutrave et al. (2012), the mean error for the infected 

nodes at time step t is: 

[j(9(e) =
∑ :.	#	;#(6)>
(#)(')
#,-

8#)(6)
 

where i(9(e) is the total number of infected nodes at time step t, while h((e) is defined above. 

Similarly, the mean error for healthy nodes for time step t was calculated as:   

												[j?9(e) =
∑ ;#(6)
(.)(')
#,-
8.)(6)

 

where i?9(e) is the total number of healthy nodes at time step e. The total error was obtained by 

using  

         [j = b[j(9(e) + (1 − b)[j?9(e)                                                        

where the ratio of b: (1 − b) is 8:2 (b is a weighting factor) i.e., the observed-infected nodes were 

given four times more weight than the observed-healthy nodes in evaluating the final error (Sutrave 

et al., 2012).  

 

2.3.2. Assessing node importance in a dynamic network based on centrality measures  

The importance of nodes identified as highly connected, based on centrality measures from 

the static network analysis, was investigated for their impact on disease spread on the dynamic 

network. Nodes identified as most important based on BWC, CLC, DGC, and EVC values were 

removed from the networks, and the probabilities of disease spread among the remaining nodes 

(6) 

(7) 

(8) 
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were recalculated in the new dynamic network for each epidemic year. Prediction of disease 

outbreaks based on all nodes in the network was subsequently compared to predictions where 

nodes identified as highly connected based on BWC, CLC, DGD, and EVC had been removed 

from the network. This approach is equivalent to intensive disease management where nodes are 

completely removed, and their resultant impact on disease propagation is assessed. 

 

3. Results 

3.1. Spatiotemporal dynamics of disease spread in the eastern United States 

The observations of disease occurrences suggested a spatial association between the 

locations of first and last disease reports. CDM was first observed in a sentinel plot in southern 

Florida in Miami-Dade County in 6 out of 8 epidemic years (Figure 3.1). Across all years, the 

earliest date of the CDM epidemic in southern Florida was in February 2008. Most of the first 

CDM reports from 2009 to 2016 were in southern Florida in February and March. These epidemics 

were in both sentinel and non-sentinel plots (i.e., commercial and research plots).  Although early 

reports were expected from the monitored sentinel plots, early reports were also made from non-

sentinel plots before sentinel plots in some years. This is one reason we combined both sentinel 

and non-sentinel plots in this study. 

Subsequent new CDM reports progressed northward with time. The new reports were made 

later in more northern states relative to reports in the southern states (Figure 3.1). In 2009, CDM 

was first reported in a commercial plot in southwestern Texas along the Gulf of Mexico around 

the same time the disease was reported in northern Florida and southern Georgia (Figure 3.1). The 

first CDM reports in northern states (e.g., Michigan, New York, or Wisconsin) occurred 

considerably later than corresponding reports of first CDM outbreaks in southern states (e.g., 
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Alabama, Georgia, or South Carolina) (Figure 3.1). The last set of new disease reports across all 

years were in Indiana, Illinois, Kentucky, Louisiana, Massachusetts, Maryland, Michigan, 

Minnesota, Mississippi, Missouri, New Jersey, New York, North Carolina, Ohio, Pennsylvania, 

South Carolina, Tennessee, Texas, Vermont, Virginia, West Virginia, and Wisconsin, in July, 

August, and September.  

 The total number of states with CDM ranged from 22 to 27.  The corresponding number of 

counties ranged from 86 to 179 across the region (Table 3.1). There was a positive correlation 

between the number of disease reports and counties; R = 0.95, h = 0.00068 (Figure S3.2), i.e., the 

number of plots increased as the number of infected counties increased. The correlation between 

the number of counties where the disease is present vs. the number of counties where surveillance 

was occurring was R = 0.37, h = 0.33 (Figure S3.3). The maximum distance between two CDM 

reports, a measure of epidemic extent, ranged from 2,491 km in 2012 (that was between a research 

plot in Texas and a commercial field in Massachusetts) to 3,071 km in 2015 (which was between 

a commercial field in Texas and a commercial field in New Hampshire). 

 

3.2. Infection based frequency selection of important nodes  

 The number of times nodes were infected based on combined epidemic data in all epidemic 

years varied from 1 to 6 (Figure 3.2). Nodes where the infection frequency was consistently higher 

(i.e., frequency > 3) were in Alabama, Maryland, Michigan, North Carolina, Ohio, and South 

Carolina. The nodes with the highest infection frequency were in Wicomico County in Maryland, 

Johnson, Lenoir, New Hanover, and Sampson counties in North Carolina, Sandusky, Huron, and 

Wayne counties in Ohio with infection frequency of 5 and 6 (Figure 3.2). The remaining nodes 
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with a low infection frequency (i.e., frequency ≤ 3) constituted most of the nodes in counties 

scattered throughout the study region. 

 

3.3. Centrality measures and selection of important nodes  

  The betweenness, closeness, degree, and eigenvector values varied between epidemic 

years. Further, variability in individual metrics was also observed within a given epidemic year for 

a chosen static network where a node was connected to at least another node. We looked at the 

standard deviation of each measure to check for variability within the measure, not across the 

measures. Betweenness centrality of nodes within a network was the most variable within any 

epidemic year across the entire study. For example, BWC values ranged from 264.5 to 888.3 in 

2008 (Table 3.3), from 1147.6 to 2415.7 in 2009 (Table 3.4), and from 237.6 to 1718.2 in 2010 

(Table 3.5). The mean BWC for the twenty most important nodes in these respective years were 

441.8, 1656.9, and 474, with corresponding standard deviation values of 441.1, 896.7 and 1046.9, 

in respective years. These BWC values are the number of times a node lies on the shortest path 

considering all pairs of nodes in the network. An example explaining BWC is given in the 

appendix. The standard deviations of closeness, degree, and eigenvector values were 

comparatively less variable among nodes than BWC (Tables 3.3, 3.4, and 3.5), with CLC being 

the least variable across the entire study.   

 Cumulative probability distribution of BWC values for the nodes in the networks 

considered exhibited a power-law style distribution. About 85% of the nodes have BWC values 

less than 250, with BWC > 1500 being the largest BWC value observed (Figure 3.3). In contrast, 

the cumulative distribution of CLC values was uniformly distributed within a smaller range, 

resulting in a relatively steep curve (Figure 3.3). The cumulative distribution of EVC values 
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followed a Poisson distribution (Figure 3.3). Apart from the most important node in each year 

(EVC = 1), each node has an EVC value closer to one or two other nodes. These were the same 

features observed by Meghanathan and Lawrence, 2016. 

The ranking of important nodes varied across centrality measures and epidemic years 

examined in this study. For example, the node ranked as the most important in 2008 based on 

BWC was node 74 in Mississippi. While node 89 in Surry County in North Carolina, node 131 in 

Centre County, and node 128 Westmoreland County in Pennsylvania, were ranked as the most 

important based on CLC, DGC, and EVC, respectively (Table 3.3). Similarly, node 34 in Spalding 

County in Georgia was ranked the most important in 2009 based on BWC. In contrast, nodes 121 

in Bertie County in North Carolina, 74 in Lenawee County in Michigan, and 109 in Franklin 

County in North Carolina were the most important based on CLC, DGC, and EVC, respectively 

(Table 3.4). In 2010, node 30 in Harrison County in Kentucky was ranked as the most important 

based on BWC and CLC, while node 116 in Summit County in Ohio was ranked the most based 

on DGC and EVC (Table 3.5). The ranking of nodes based on BWC and other centrality metrics 

varied across epidemic years. In general, Spearman’s rank-based correlation coefficients were 

highest between BWC and CLC, with correlations ranging from 0.43 to 0.74 (Figure 3.4). 

Correlations between BWC and DGC or EVC were relatively lower across the epidemic years 

except between BWC and DGC in 2016, where r = 0.46 (Figure 3.4).  

 The consistency in the rankings of nodes based on BWC, CLC, DGC, and EVC was 

summarized as a heatmap (Figure 3.5) to visualize unique nodes within the networks. For example, 

many nodes overlapped in their rankings among the top 20 important nodes (across all thresholds 

and centralities) in 2010 (Figure 3.5A) and 2014 (Figure 3.5C) based on BWC and CLC. However, 

most nodes overlapped across all the four centrality measures in 2011 (Figure 3.5B). For example, 



   
 

94 
 

node 117 in Lewis County in West Virginia appeared more than 20 times in the top 20 ranks based 

on BWC and CLC. This same node also appeared more than ten times in the top 20 ranks based 

on DGC and EVC.  

 

3.4. Infection frequency and centrality selection of important nodes 

 Identifying important nodes based on infection frequency and centrality (from static 

networks) showed some similarities and differences based on the examined centrality metric. The 

ranking of nodes based on BWC and CLC was generally similar across years, while rankings based 

on EVC were different from all other centrality measures. Based on BWC, nodes that had 

frequency > 4 had the highest calculated values (combined frequency x centrality), with the largest 

value being 0.82 for the node in Sandusky County in Ohio (Figure 3.6), while the lowest weight 

was 0.13 for a node in Charleston County in South Carolina. Based on CLC, the largest weight for 

the source was 0.98 for the node in Sandusky County in Ohio that had a frequency > 6, with the 

node with the lowest weight being a node in Miami-Dade County in Florida with a weight of 0.198. 

Similarly, the node in Sandusky County in Ohio had the highest weight of 0.93 based on DGC, 

followed by nodes in Johnston, Lenoir, New Hanover counties in North Carolina, Wicomico 

County in Maryland, and Huron and Wayne counties in Ohio that has a frequency of 5 (Figure 

3.6). Node ranking based on EVC was comparably different from a ranking based on all other 

centrality measures. A node in Johnston County in North Carolina had the highest weight of 0.84, 

followed by nodes Wicomico County in Maryland, Sampson, and Johnston counties North 

Carolina and Wayne County in Ohio (Figure 3.6). The node with the lowest was the same as that 

identified by CLC.   
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3.5. Dynamic network model for cucurbit downy mildew 

 The dynamic network model revealed an evolving CDM network where the probability for 

a node to be infected increased in time (Figure 3.7). In 2014, nodes closest to the initial disease 

source in Miami-Dade County in Florida (open square) had a probability of 1 of getting infected 

early in the season, i.e., the nodes in Florida and Georgia closest to the initial disease occurrence 

in southern Florida had the highest probabilities by week 10.  In contrast, the probability of 

infection for nodes in the rest of the network was 0 (Figure 3.7). As time progressed, the 

probabilities increased for nodes that were further away from the source node. However, 

probabilities remained at 0 for isolated nodes as disease spread proceeded in time and space (Figure 

3.7). As the epidemic advanced at week 15, the probabilities of infection for nodes in Georgia 

increased, while the probability of infection for nodes elsewhere in the northeast U.S. was 0. 

At week 20, the probability for infection of nodes in South Carolina increased noticeably. 

In contrast, probabilities were low for nodes in more northern states (e.g., North Carolina and 

Tennessee) or in states where no disease was reported. At week 25, the probabilities for node 

infection increased for nodes in North Carolina, and at week 30, the probabilities increased for 

other nodes in North Carolina, Virginia, New York, and Pennsylvania (Figure 3.7). At week 35, 

the probabilities increased for other nodes in the eastern United States, with only a few nodes in 

Illinois and Michigan having low infection probabilities. Similar patterns of infection probabilities 

were observed in other epidemic years, except that the strength of these probabilities differed 

between years (see supplementary materials). 
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3.6. Errors in dynamic model and node importance based on centrality measures 

The means of the absolute errors generated across weekly time steps and averaged monthly 

from January to August between the observed and predicted, healthy and infected nodes in the 

network varied depending on the epidemic year used to construct the dynamic networks. For 

example, the lowest mean absolute error was 0.099, which was observed for the network in 2016, 

while the highest mean absolute error was 0.353, which was observed in the network of 2010 

(Table 3.6). Low errors comparable to those observed in 2016 were also observed for epidemic 

data in 2014 and 2015, where the absolute errors were 0.168 and 0.121, respectively. The mean 

absolute error across all epidemic years was low, with an error of 0.228 (Table 3.6). 

 Removal of nodes identified as important based on BWC, CLC, DGC, and EVC impacted 

errors of the dynamic model across epidemic years, i.e., removal of nodes resulted in less accurate 

predictions of the spread that was observed (Table 3.6). The impact on model performance (i.e., 

increase in error) when nodes (identified to be important based on centrality measures) were 

removed from the network was assessed. Removal of nodes identified as important by BWC 

resulted in an error rate of 0.338 (Table 3.6), representing a 33.8% error rate relative to the base 

prediction that had an error of 0.228. In contrast, removing nodes identified as important based on 

CLC, DGC, and EVC marginally increased model errors to 0.248, 0.256, and 0.261, respectively. 

These error rates represented an 8.8, 12.2, and 14.5%, respectively, increase in error relative to the 

base prediction with all the nodes present in the network. In addition, removing nodes identified 

as important based on BWC resulted in 3 to 6 times higher (Table 3.6) than errors resulting from 

the removal of nodes identified as important based on CLC, DGG, and EVC.       

 The probability of node infection and epidemic progress in the network was also 

differentially impacted by removing nodes identified as important based on centrality measures 
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examined. Relative to a network with all nodes present, removing nodes identified as important 

based on BWC reduced the probability of infection of uninfected nodes in the subsequent time 

step in all epidemic years (Figure 3.8). For example, the removal of the nodes in north Florida, 

Georgia, and South Carolina that were identified as important based on BWC did not allow the 

progression of CDM and infection of nodes in north Florida, South Georgia, and South Carolina 

in 2009 by week 25 (Figure 3.8). Similarly, when nodes were identified to be important based on 

BWC were removed in Alabama and Georgia in 2014, the infection probability of nodes in South 

Carolina and North Carolina was greatly reduced. A similar pattern of the probabilities was based 

on BWC was observed in other epidemic years except that the magnitude of these probabilities 

differed between years (see supplementary materials). However, removing nodes identified as 

important based on either CLC, DGC, or EVC had a minor impact and progression of the epidemic 

in the subsequent time step in all epidemic years (Fig 3.8; see supplementary materials). 

 

4. Discussion 

In this study, networks based on historical epidemic records collected from 2008 to 2016 

were formulated to describe how the dispersal of Pseudoperonospora cubensis and the spread of 

cucurbit downy mildew from infected to disease-free cucurbit fields are influenced by the 

connectivity of cucurbit fields. We began by analyzing multiple low to high-density static 

networks and chose individual networks for each year for further analysis. This is because high-

density networks (generated at low thresholds) have shorter between-node path lengths for a 

pathogen to travel and more dispersal pathways, while a pathogen has fewer shorter links and 

dispersal pathways in low-density networks (generated at high threshlolds) (Ames et al., 2011). 

Therefore, individual networks where a node was connected to at least another node (Ferrari et al., 
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2014) were selected for further analysis because their intermediate density structures are assumed 

to impact disease behavior (Ames et al., 2011), wherein disease dynamics can be explained by 

network analysis (Christley et al., 2005; Wang 2003; Xing et al., 2020).  

At the center of the CDM ipmPIPE surveillance platform is a series of sentinel plots in the 

eastern United States monitored for disease outbreaks by state collaborators. The surveillance 

system has helped predict when to apply the first fungicide spray against cucurbit downy mildew 

(Neufeld et al., 2018). The goal for a surveillance system is early disease detection and to document 

the absence of disease (Martin et al., 2007). However, like many other disease surveillance 

systems, the CDM ipmPIPE system is expensive to maintain, and resources are often limited. Thus, 

targeted sampling of highly connected sites critical in spreading the disease may undoubtedly 

benefit disease surveillance. Network centrality measures such as betweenness (BWC), closeness 

(CLC), degree (DGC), and eigenvector (EVC) can help identify highly connected nodes (Andersen 

et al., 2019; Gent et al., 2019; Sankara et al., 2015) and evaluate strategies for selecting plots for 

surveillance under different scenarios of resource limitation (Sankara et al., 2015). These centrality 

measures have implications in disease epidemics. Node importance is determined by either the 

number of connections the node has (i.e., DGC), the number of connections the node’s neighbors 

have (i.e., EVC), how a node acts as a bridge to other nodes (i.e., BWC), or the short average 

distance from that node to all other nodes (i.e., CLC). Thus, the disease will spread faster and with 

a high probability from nodes with a high BWC, while a disease spreading from a node with high 

CLC would reach all other connected nodes in a shorter number of steps.  

Based on a complete static network model, the four centrality measures were used to 

identify the highly connected cucurbit fields that may have important implications for surveillance 

and controlling CDM. The importance of these highly connected fields in disease control was also 
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evaluated using a dynamic network model. In this study, BWC was more useful in identifying the 

important cucurbit fields that could be targeted for surveillance and disease control to reduce 

epidemic spread. Nodes identified as important based on either CLC, DGC, or EVC did not reduce 

the probability of node infection in subsequent time steps compared to a scenario where all the 

nodes were present in the network. Further, removing these nodes did not affect errors in the 

dynamic model, unlike removing nodes identified as important based on BWC. Across epidemic 

years, more central nodes identified as important based on BWC were in Michigan in the Great 

Lakes region, Ohio in the mid-west, and Maryland, North Carolina, South Carolina, and Virginia 

along the Atlantic coast. Thus, these nodes could be reasonable targets for more intensive sampling 

for surveillance and management to reduce inoculum production that drives infection in 

neighboring cucurbit fields in the eastern United States.  

The spatial location and connectivity of nodes in the networks influenced the node removal 

analysis. For example, for 2008, the top-ranked nodes were located in Pennsylvania, Ohio, and 

New York, based on DGC and EVC rankings. Removing these nodes did not affect disease 

progression in the southern states. However, for 2014, the top-ranked nodes were located in North 

Carolina based on DGC and EVC rankings. Removing these nodes affected the disease spread in 

the southern and northern states. Also, for 2008, 2009, and 2013, top-ranked nodes based on CLC 

were located mainly in the central-eastern US, and removing them did not stop disease spread. 

However, in 2014 top-ranked nodes were located mainly in North Carolina, and removing them 

stopped disease spread past North Carolina. However, nodes with high BWC scores were scattered 

all over the map, and their removal broke the networks. For example, for 2008 and 2014, the top-

ranked nodes were located in Georgia, and removing them stopped the disease from spreading past 
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Georgia. In 2009 and 2013, the top-ranked nodes were located in Florida. Removing these nodes 

stopped the disease from spreading past Florida.  

The addition of centrality measures to the frequency of node infection substantially 

improved the identification of important nodes. For example, DGC, BWC, and CLC produced 

similar rankings with the infection-based frequency for nodes with an infection frequency > 4. 

Although EVC produced a different ranking, nodes with frequency > 4 still had high weights, thus 

agreeing with the rankings from the other centrality measures. The combination of frequency-

based and DGC was useful in selecting sampling nodes for sentinel plots for soybean rust in the 

United States (Sutrave et al., 2012). The DGC is a standard measure in network science and is 

useful for identifying important nodes in static networks of several pathosystems to inform 

strategic management (Christley et al., 2005; Gent et al., 2019; Kiss et al., 2006; Xing et al., 2020). 

Unlike other centrality measures, DGC is easier to calculate and does not require assessing the 

entire network (Christely et al., 2005). In this study, DGC was not effective in identifying 

important nodes as compared to BWC. Further, BWC rankings were poorly correlated with those 

of DGC except in epidemic data collected in 2016. The latter is an indicator of greater variation in 

the ability of different centrality measures to predict the risk of CDM outbreaks.   

The analysis over multiple thresholds presented in this study demonstrates that the 

characteristics of a 'scale-free network depend on the cut-off value used to generate a network. 

Scale-free networks are networks characterized by large hubs, i.e., a network with a power-law 

degree distribution. A few networks for 2008, 2011, and 2014 are scale-free (Fig S3.19). These 

networks are characterized by many nodes with few links and a few nodes with many links 

resulting in a right-skewed distribution for the number of links that follow a power-law distribution 

(Banks et al., 2015; Barabási and Albert 1999). Pathogens can disperse easily and quickly in scale-
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free networks via highly connected nodes containing many links (Jeger et al., 2007). Further, an 

infection threshold is absent in scale-free networks (Pastor-Satorras and Vespignani 2001), and all 

infections can result in an epidemic making these networks very vulnerable.   

This study was conducted to investigate the dispersal of P. cubensis and the spread of CDM 

in simple networks to draw broad conclusions on the utility of centrality measures in predicting 

the probability of infection to inform surveillance and management of the disease. This study will 

add efficiency to the current framework for predicting the initial outbreak of the disease in the 

eastern United States. One basic approach to limiting disease spread at the landscape level is 

applying targeted treatment to specific fields within the affected area. Estimating the probability 

and timing of disease outbreaks in specific locations and determining where and when the 

introduction of inoculum can impact the extent of an epidemic is one of the challenges in predicting 

disease spread (Meentemeyer et al., 2011; Fitzpatrick et al., 2012). Thus, the ability to rapidly 

identify these fields within the network and mobilize the necessary resources is key to successful 

mitigation. Locations identified as highly connected in the network can be targeted for early 

surveillance when collecting reports of new diseases within the region. These locations can also 

be targeted for fungicide treatment to slow down the rate of inoculum production and dispersal to 

disease-free neighboring cucurbit fields. Thus, centrality measures provide a greater understanding 

of infection dynamics to inform surveillance and management of CDM. Degree centrality, which 

is more readily measured, was not as good as other measures such as betweenness centrality in 

identifying highly connected nodes and predicting risk of infection in the CDM network.  

Unlike the dynamic model used for soybean rust spread in the United States, the dynamic 

model used in this study incorporated a power-law dispersal gradient characteristic for long-

distance dispersal of plant pathogens. Based on 2008 and 2009 data and bivariate O-ring statistics, 
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Ojiambo et al. (2011) found that the spatial spread of CDM cases was 0 to 390 km, 737 km, 879 

km, with 1000 km being the maximum possible distance. Further, Ojiambo et al. (2017) showed 

that the spread parameter b is unstable, with the final epidemic extent ranged from 4.16 × 108 km2 

to 6.44 × 108 km2. This is why the analysis was done using different b values to account for the 

difference in spatial spread. This model improves on long-distance dispersal by using a flexible 

threshold for the distance to allow for connectivity of further apart nodes. However, the model 

does not account for differences in environmental factors that are likely to influence pathogen 

dispersal. In addition, accounting for differences in host susceptibility at the different locations 

could further improve our ability to generalize the findings reported here to different cucurbit host 

types.      
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Tables 

Table 3.1. The number of plots with disease summarized by planting type where cucurbit downy mildew was reported during the study 

period. 

 Number of 
states affected 

Number of 
counties 

Number by planting type  
Year Commercial Home garden Research Sentinela Unspecifiedb Total 
2008 22 113 68 10 12 59 5 154 
2009 24 165 77 26 24 92 1 220 
2010 25 118 77 17 24 25 1 144 
2011 23 86 57 10 22 28 0 117 
2012 25 149 99 20 23 31 0 173 
2013 26 179 118 30 23 29 4 204 
2014 23 104 53 16 22 20 3 114 
2015 27 171 126 15 22 42 4 209 
2016 22 107 61 9 19 33 0 122 

a Sentinel planting type refers to fixed plots, planted early and designated for weekly monitoring. 
bUnspecified refers to reports where the planting type was not stated when disease was reported in cucurbit downy mildew monitoring 
database. 
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Table 3.2. Definition of centrality measures in a network model used to study the spread of cucurbit downy mildew in the eastern United 

States. 

Centrality measure  Central node Relevance in epidemic spread  
Betweenness  Acts as a bridge to other nodes Removal of nodes with high betweenness may contain an epidemic  
Closeness  Lies on the shortest path Nodes are able to spread disease through a network 
Degree  Connected to many other nodes Nodes with high degree may be ‘superspreaders’  
Eigenvector  Connected to other other high-degree 

nodes 
Nodes with neighbors having high degree may be ‘superspreaders’ 
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Table 3.3. Centrality-based ranking of twenty most important nodes in the cucurbit downy mildew network for epidemic data observed 

in the eastern United States in 2008. 

 Betweennessa  Closenessa  Degreea  Eigenvectora 
Rank ID State BWC  ID State CLC  ID State DGC  ID State EVC 
1 74 MS 888.3  89 NC 0.0034  131 PA 73  128 PA 1.000 
2 118 OH 665.3  118 OH 0.0034  52 MD 72  131 PA 0.994 
3 135 SC 608.6  125 PA 0.0034  125 PA 72  134 PA 0.989 
4 124 OH 534.1  128 PA 0.0034  128 PA 72  125 PA 0.981 
5 39 KY 517.2  130 PA 0.0034  130 PA 72  130 PA 0.974 
6 141 TN 507.2  124 OH 0.0034  127 PA 71  99 NY 0.963 
7 31 GA 500.4  52 MD 0.0034  134 PA 69  127 PA 0.962 
8 89 NC 471.1  134 PA 0.0034  99 NY 66  102 NY 0.953 
9 137 SC 470.8  86 NC 0.0033  102 NY 65  96 NY 0.943 
10 82 NC 416.6  148 VA 0.0033  96 NY 64  97 NY 0.930 
11 91 NC 416.6  150 VA 0.0033  129 PA 64  98 NY 0.926 
12 139 TN 375.8  131 PA 0.0033  11 DE 63  100 NY 0.902 
13 52 MD 372.1  87 NC 0.0033  97 NY 63  52 MD 0.879 
14 75 MS 336.7  88 NC 0.0033  98 NY 63  126 PA 0.858 
15 125 PA 324.7  127 PA 0.0033  13 DE 62  129 PA 0.856 
16 128 PA 305.4  80 NC 0.0033  100 NY 61  111 OH 0.847 
17 136 SC 290.5  78 NC 0.0033  10 DE 59  113 OH 0.847 
18 33 GA 290.1  79 NC 0.0033  93 NJ 59  117 OH 0.828 
19 29 GA 279.0  151 VA 0.0032  94 NJ 59  120 OH 0.820 
20 34 GA 264.5  39 KY 0.0032  133 PA 59  101 NY 0.814 
Mean   441.8    0.0033    65.4    0.913 
SD   441.1    0.0000      9.9    0.132 

 a ID = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC = 
eigenvector centrality; SD = Standard deviation. 
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Table 3.4. Centrality-based ranking of twenty most important nodes in the cucurbit downy mildew network for epidemic data observed 

in the eastern United States in 2009. 

 Betweennessa  Closenessa  Degreea  Eigenvectora 
Rank ID State BWC  ID State CLC  ID State DGC  ID State EVC 
1 34 GA 2415.7  122 NC 0.0012  74 MI 35  109 NC 1.000 
2 212 VA 2390.2  132 NC 0.0012  79 MI 35  136 NC 0.979 
3 48 KY 2376.2  134 NC 0.0012  82 MI 33  114 NC 0.979 
4 154 OH 2152.4  129 NC 0.0012  93 MI 33  118 NC 0.966 
5 32 GA 2011.5  124 NC 0.0012  109 NC 33  130 NC 0.960 
6 192 TN 1907.7  135 NC 0.0012  158 OH 33  127 NC 0.960 
7 186 SC 1803.5  205 VA 0.0012  200 VA 33  211 VA 0.937 
8 169 PA 1796.5  212 VA 0.0012  76 MI 32  119 NC 0.913 
9 2 AL 1672.3  48 KY 0.0011  90 MI 32  128 NC 0.906 
10 180 SC 1605.4  163 OH 0.0011  114 NC 32  207 VA 0.898 
11 104 MS 1515.0  164 OH 0.0011  118 NC 32  115 NC 0.891 
12 171 PA 1413.6  165 OH 0.0011  136 NC 32  125 NC 0.887 
13 103 MS 1351.4  133 NC 0.0011  211 VA 32  126 NC 0.884 
14 25 FL 1343.5  192 TN 0.0011  75 MI 31  113 NC 0.882 
15 200 VA 1311.5  123 NC 0.0011  83 MI 31  121 NC 0.872 
16 153 OH 1259.8  169 PA 0.0011  88 MI 31  120 NC 0.869 
17 147 NY 1258.1  171 PA 0.0011  89 MI 31  112 NC 0.869 
18 54 KY 1248.4  183 SC 0.0011  91 MI 31  203 VA 0.867 
19 101 MS 1158.2  207 VA 0.0011  92 MI 31  200 VA 0.864 
20 158 OH 1147.6  203 VA 0.0011  111 NC 31  110 NC 0.850 
Mean   1656.9    0.0011    32.2    0.912 
SD     896.7    0.0000      2.8    0.106 

a ID = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC = 
eigenvector centrality; SD = Standard deviation. 
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Table 3.5. Centrality-based ranking of twenty most important nodes in the cucurbit downy mildew network for epidemic data observed 

in the eastern United States in 2010. 

 Betweennessa  Closenessa  Degreea  Eigenvectora 
Rank ID State BWC  ID State CLC  ID State DGC  ID State EVC 
1 30 KY 1718.2  30 KY 0.0033  116 OH 56  116 OH 1.000 
2 31 KY 1009.3  31 KY 0.0032  103 OH 54  109 OH 0.998 
3 65 MS   691.0  116 OH 0.0032  104 OH 54  106 OH 0.997 
4 4 AL   577.1  121 PA 0.0032  105 OH 54  110 OH 0.995 
5 139 TX   556.0  105 OH 0.0032  106 OH 54  103 OH 0.995 
6 77 NC   486.1  103 OH 0.0032  108 OH 54  113 OH 0.995 
7 25 GA   469.3  104 OH 0.0032  109 OH 54  114 OH 0.995 
8 74 NC   410.1  108 OH 0.0032  110 OH 54  104 OH 0.995 
9 13 FL   404.1  110 OH 0.0032  113 OH 54  108 OH 0.995 
10 23 GA   342.0  113 OH 0.0032  114 OH 54  61 MI 0.992 
11 26 GA   342.0  114 OH 0.0032  61 MI 53  41 MI 0.983 
12 5 AL   331.3  107 OH 0.0032  40 MI 52  53 MI 0.983 
13 120 PA   305.2  106 OH 0.0031  41 MI 52  60 MI 0.983 
14 130 SC   296.8  109 OH 0.0031  48 MI 52  48 MI 0.983 
15 138 TX   282.0  120 PA 0.0031  53 MI 52  105 OH 0.977 
16 80 NC   264.0  119 PA 0.0031  60 MI 52  42 MI 0.964 
17 67 NC   257.1  115 OH 0.0031  107 OH 52  40 MI 0.960 
18 117 PA   253.7  61 MI 0.0031  112 OH 52  111 OH 0.960 
19 122 PA   246.7  112 OH 0.0031  122 PA 52  112 OH 0.959 
20 140 VA   237.6  111 OH 0.0031  42 MI 51  43 MI 0.959 
Mean     474.0    0.0032    53.1    0.983 
SD   1046.9    0.000      3.5    0.029 

a ID = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC = 
eigenvector centrality; SD = Standard deviation
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Table 3.6. Absolute errors for a network model based on all nodes and removal of nodes identified 

as important in the network based on centrality measures used to study the spread of cucurbit 

downy mildew in the eastern United States.  

a In each year, values are means of absolute errors generated across monthly time steps from 
January to August.  
b A total of 20 most important nodes identified by each centrality measure were removed in the 
network and the model rerun to calculate the corresponding absolute errors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  Error after important nodes are removed based on centrality measureb 

Yeara All nodes Betweenness Closeness Degree Eigenvector 

2008 0.231 0.367 0.283 0.269 0.271 
2009 0.301 0.427 0.326 0.323 0.366 
2010 0.353 0.443 0.365 0.365 0.365 
2011 0.306 0.402 0.325 0.317 0.317 
2012 0.254 0.349 0.296 0.352 0.294 
2013 0.215 0.448 0.234 0.253 0.255 
2014 0.168 0.307 0.198 0.247 0.247 
2015 0.121 0.125 0.110 0.129 0.104 
2016 0.099 0.174 0.095 0.096 0.099 
Mean 0.228 0.338 0.248 0.261 0.256 
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Figures 

 
 
Figure 3.1. Locations of cucurbit downy mildew outbreaks in the eastern United States from 
2008 to 2016. The locations are color-coded based on the week of the year. The shapes represent 
the planting type associated with the disease reported during the study period. 
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Figure 3.2. The frequency of cucurbit downy mildew outbreaks across epidemic years 2008 
to 2016 in the eastern United States. Colors represent the frequency (n) of disease cases: red (n 
= 6), yellow (n = 5), green (n = 4), light blue (n = 3), blue (n = 2) and pink (n = 1). Frequency 

represents the number of years a node was observed as an infected node (i.e., a location where the 

disease was reported). 
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Figure 3.3. The cumulative probability distributions of centrality values of cucurbit downy 
mildew networks: based on disease data recorded in 2008 (first row), 2011 (second row), 2014 

(third row), and 2016 (fourth row) in the eastern United States. Centrality metrics on the horizontal 

axis are as follows: BWC = betweenness centrality, CLC = closeness centrality, DGC = degree 

centrality and EVC = eigenvector centrality. 
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Figure 3.4. Correlation between betweenness centrality (BWC), closeness (CLC), degree (DGC), 

and eigenvector (EVC) centrality measures for cucurbit downy mildew networks constructed using 

disease data recorded in specific epidemic years in the eastern United States. 
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Figure 3.5. A representation of the most important nodes across 20 thresholds and the four 
centrality measures for 2010 (A), 2011 (B), and 2014 (C) networks. The frequency value 
represents the number of times a node appeared in the top 20 list across all thresholds. Most nodes 
overlapped across the four centrality measures in 2011. For example, node 117 in Lewis county in 
West Virginia appeared more than 20 times in the top 20 ranks based on BWC and CLC. This 
same node also appeared more than ten times in the top 20 ranks based on DGC and EVC. 
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Figure 3.6. A depiction of node importance based on a combination of frequency of cucurbit 
downy mildew occurrence in the eastern United States and betweenness, closeness, degree, 
and eigenvector network centrality measures. Frequency represents the number of years a node 

was observed as an infected node based on epidemic years from 2008 to 2016. Frequency of 

occurrence and centrality measures are weighted in a ratio of 80:20. 
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Figure 3.7. Prediction of cucurbit downy mildew outbreaks in the eastern United States in 
2014 based on cumulative disease outbreaks observed in previous times steps in the same 
epidemic year. Dark red nodes represent counties predicted to have an outbreak with high 

probability. Blue nodes represent counties predicted to be no outbreak with negligible probability 

of infection, and all other shades from green to dark red represent the increasing probability of 

disease outbreak (The single node in Texas was reported as infected by Week 10 in the observed 

data; thus it considered infected with probability one by Week 10.) 
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Figure 3.8. Prediction of cucurbit downy mildew outbreaks in the eastern United States by 
week 25 for all nodes present in the network (i.e., prediction) compared to prediction when 
the 20 most important nodes (based on betweenness, closeness, degree, and eigenvector 
centrality measures) are removed from the network. Diamond symbols are nodes identified as 

important based on each centrality metric. 
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Supplemental Tables 
Table S3.1. Centrality-based ranking of twenty most important nodes in the cucurbit downy mildew network for epidemic data observed 
in the eastern United States in 2011. 
 Betweennessa  Closenessa  Degreea  Eigenvectora 
Rank ID State BWC  ID State CLC  ID State DGC  ID State EVC 
1 18 GA 1083.8  31 MD 0.0041  109 VA 45  109 VA 1.000 
2 117 WV 1018.4  67 NC 0.0041  110 VA 45  110 VA 1.000 
3 17 FL 776.4  117 WV 0.0040  28 MD 43  28 MD 0.985 
4 15 FL 654.0  109 VA 0.0040  111 VA 42  111 VA 0.962 
5 21 KY 527.6  110 VA 0.0040  67 NC 41  44 NC 0.894 
6 67 NC 435.0  28 MD 0.0040  44 NC 40  30 MD 0.857 
7 100 PA 352.7  45 NC 0.0040  31 MD 39  29 MD 0.857 
8 31 MD 336.7  53 NC 0.0039  29 MD 36  67 NC 0.828 
9 75 NY 328.1  51 NC 0.0038  30 MD 36  31 MD 0.827 
10 28 MD 251.8  66 NC 0.0038  45 NC 36  8 DE 0.795 
11 82 OH 239.0  24 MD 0.0038  71 NJ 36  5 DE 0.795 
12 109 VA 235.0  27 MD 0.0038  95 PA 36  9 DE 0.795 
13 110 VA 235.0  26 MD 0.0038  96 PA 36  95 PA 0.790 
14 103 SC 231.3  111 VA 0.0038  98 PA 36  98 PA 0.790 
15 104 SC 231.3  112 VA 0.0038  100 PA 36  96 PA 0.790 
16 105 SC 231.3  29 MD 0.0038  5 DE 35  24 MD 0.789 
17 101 SC 216.7  30 MD 0.0038  8 DE 35  69 NJ 0.783 
18 102 SC 216.7  44 NC 0.0037  9 DE 35  70 NJ 0.783 
19 111 VA 208.1  100 PA 0.0037  53 NC 35  27 MD 0.782 
20 45 NC 200.6  25 MD 0.0037  55 NC 35  71 NJ 0.780 
Mean   400.5    0.0039    37.9    0.844 
SD   273.1    0.0000    3.48    0.080 
a ID = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC = eigenvector 
centrality; SD = Standard deviation 
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Table S3.2. Centrality-based ranking of twenty most important nodes in the cucurbit downy mildew network for epidemic data observed 
in the eastern United States in 2012. 

 Betweennessa  Closenessa  Degreea  Eigenvectora 
Rank ID State BWC  ID State CLC  ID State DGC  ID State EVC 
1 164 TN 3587.1  82 NC 0.0015  158 SC 33  81 NC 1.000 
2 168 VA 2860.4  101 NC 0.0015  81 NC 30  90 NC 0.985 
3 8 AL 2421.8  85 NC 0.0015  160 SC 30  87 NC 0.985 
4 101 NC 1652.5  102 NC 0.0015  79 NC 29  79 NC 0.985 
5 38 IN 1635.0  91 NC 0.0015  82 NC 29  82 NC 0.977 
6 11 AL 1622.0  110 NC 0.0015  87 NC 29  86 NC 0.954 
7 39 IN 1602.9  81 NC 0.0015  90 NC 29  109 NC 0.920 
8 171 VA 1528.9  94 NC 0.0015  16 DE 28  85 NC 0.918 
9 102 NC 1515.5  79 NC 0.0015  65 MD 28  98 NC 0.915 
10 48 KY 1500.0  87 NC 0.0015  86 NC 28  84 NC 0.915 
11 82 NC 1435.0  90 NC 0.0015  109 NC 28  89 NC 0.915 
12 173 WV 1408.8  99 NC 0.0015  64 MD 27  97 NC 0.915 
13 107 NC 1252.5  168 VA 0.0015  66 MD 27  110 NC 0.912 
14 104 NC 1159.8  86 NC 0.0015  85 NC 27  91 NC 0.912 
15 36 GA 1127.1  104 NC 0.0015  91 NC 27  95 NC 0.891 
16 106 NC 1086.2  107 NC 0.0015  95 NC 27  92 NC 0.871 
17 85 NC 1043.3  108 NC 0.0015  101 NC 27  83 NC 0.871 
18 94 NC 1013.2  106 NC 0.0014  110 NC 27  80 NC 0.871 
19 165 TN 970.0  158 SC 0.0014  137 PA 27  93 NC 0.848 
20 6 AL 920.6  96 NC 0.0014  139 PA 27  88 NC 0.831 
Mean   1567.1    0.0015    28.9    0.919 
SD   672.6    0.0000    1.54    0.049 
a ID = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC = eigenvector 
centrality; SD = Standard deviation 
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Table S3.3. Centrality-based ranking of twenty most important nodes in the cucurbit downy mildew network for epidemic data observed 
in the eastern United States in 2013. 

 Betweennessa  Closenessa  Degreea  Eigenvectora 
Rank ID State BWC  ID State CLC  ID State DGC  ID State EVC 
1 203 WV 863.5  203 WV 0.0026  203 WV 70  189 VA 1.000 
2 25 FL 784.0  191 VA 0.0025  196 VA 68  192 VA 1.000 
3 202 WV 755.6  202 WV 0.0025  189 VA 64  196 VA 0.991 
4 191 VA 741.0  196 VA 0.0025  191 VA 64  203 WV 0.979 
5 165 SC 693.7  201 WV 0.0025  192 VA 64  190 VA 0.974 
6 204 WV 644.6  106 NC 0.0025  87 NC 62  186 VA 0.968 
7 196 VA 538.9  102 NC 0.0024  98 NC 62  198 VA 0.964 
8 36 IN 501.3  189 VA 0.0024  99 NC 61  188 VA 0.960 
9 158 PA 490.5  192 VA 0.0024  188 VA 61  193 VA 0.943 
10 176 SC 446.2  39 KY 0.0024  190 VA 61  65 MD 0.926 
11 138 OH 425.9  204 WV 0.0024  106 NC 60  63 MD 0.926 
12 39 KY 419.1  99 NC 0.0024  186 VA 60  87 NC 0.922 
13 109 NC 415.5  190 VA 0.0024  198 VA 60  98 NC 0.922 
14 10 AL 411.5  40 KY 0.0024  63 MD 59  194 VA 0.912 
15 2 AL 404.1  188 VA 0.0024  65 MD 59  89 NC 0.900 
16 106 NC 401.1  158 PA 0.0024  85 NC 59  92 NC 0.900 
17 201 WV 392.2  198 VA 0.0024  86 NC 59  85 NC 0.900 
18 104 NC 376.9  87 NC 0.0024  89 NC 59  86 NC 0.900 
19 14 AL 367.4  98 NC 0.0024  91 NC 59  107 NC 0.900 
20 156 PA 355.5  138 OH 0.0024  92 NC 59  91 NC 0.900 
Mean   521.4    0.0002    61.5    0.939 
SD   162.4    0.0000    3.12    0.037 
a ID = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC = eigenvector 
centrality; SD = Standard deviation 
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Table S3.4. Centrality-based ranking of twenty most important nodes in the cucurbit downy mildew network for epidemic data observed 
in the eastern United States in 2014. 

 Betweennessa  Closenessa  Degreea  Eigenvectora 
Rank ID State BWC  ID State CLC  ID State DGC  ID State EVC 
1 52 NC 1512.3  103 TN 0.0030  46 NC 26  51 NC 1.000 
2 23 KY 1343.3  46 NC 0.0030  90 SC 26  56 NC 1.000 
3 99 TN 946.4  52 NC 0.0029  95 SC 26  46 NC 0.988 
4 30 MD 928.9  57 NC 0.0029  51 NC 25  57 NC 0.977 
5 74 OH 644.1  23 KY 0.0029  56 NC 25  58 NC 0.971 
6 88 SC 633.3  30 MD 0.0028  57 NC 25  90 SC 0.964 
7 79 OH 608.2  97 TN 0.0028  58 NC 24  39 NC 0.925 
8 103 TN 590.1  95 SC 0.0028  83 PA 24  40 NC 0.914 
9 29 MD 525.6  49 NC 0.0028  87 PA 24  48 NC 0.910 
10 46 NC 412.4  74 OH 0.0028  39 NC 23  55 NC 0.910 
11 4 AL 403.7  104 AL 0.0028  40 AL 22  44 AL 0.910 
12 20 IN 378.0  79 OH 0.0028  44 NC 21  95 SC 0.886 
13 95 SC 351.6  100 TN 0.0028  48 NC 21  41 NC 0.881 
14 83 PA 335.1  22 KY 0.0027  55 NC 21  42 NC 0.881 
15 87 PA 316.1  98 TN 0.0027  61 NJ 21  54 NC 0.849 
16 17 GA 300.4  106 TN 0.0027  41 NC 20  59 NC 0.807 
17 18 GA 300.4  29 MD 0.0027  42 NC 20  43 NC 0.807 
18 80 OH 296.0  93 SC 0.0027  84 PA 20  53 NC 0.807 
19 6 AL 283.5  112 AL 0.0027  52 AL 19  52 AL 0.766 
20 49 NC 262.4  51 NC 0.0027  54 NC 19  45 NC 0.761 
Mean   568.6    0.0003    22.6    0.896 
SD   357.1    0.0000    2.458    0.076 
a ID = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC = eigenvector 
centrality; SD = Standard deviation 
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Table S3.5. Centrality-based ranking of twenty most important nodes in the cucurbit downy mildew network for epidemic data observed 
in the eastern United States in 2015. 

 Betweennessa  Closenessa  Degreea  Eigenvectora 
Rank ID State BWC  ID State CLC  ID State DGC  ID State EVC 
1 1 AL 1266.4  208 WV 0.0027  207 WV 90  207 WV 1.000 
2 208 WV 911.2  207 WV 0.0027  208 WV 87  208 WV 0.952 
3 3 AL 743.9  206 WV 0.0026  99 NC 82  55 MD 0.930 
4 207 WV 730.4  99 NC 0.0026  182 SC 81  58 MD 0.864 
5 206 WV 712.2  93 NC 0.0026  175 SC 80  163 PA 0.852 
6 99 NC 595.7  142 OH 0.0026  206 WV 79  57 MD 0.844 
7 93 NC 575.8  209 WV 0.0026  93 NC 78  159 PA 0.840 
8 175 SC 520.3  175 SC 0.0025  176 SC 78  153 PA 0.820 
9 182 SC 477.5  138 OH 0.0025  55 MD 77  12 DE 0.811 
10 142 OH 471.1  143 OH 0.0025  149 PA 77  53 MD 0.810 
11 138 AL 460.6  182 SC 0.0025  94 NC 76  151 PA 0.808 
12 143 OH 448.9  38 KY 0.0025  96 NC 73  52 MD 0.807 
13 17 FL 412.0  176 SC 0.0025  163 PA 73  96 NC 0.807 
14 149 PA 390.3  29 KY 0.0025  89 NC 72  155 PA 0.804 
15 47 LA 390.2  36 KY 0.0025  158 PA 72  201 VA 0.798 
16 49 LA 390.2  94 NC 0.0025  159 PA 72  152 PA 0.797 
17 176 SC 382.6  141 OH 0.0025  100 NC 71  160 PA 0.797 
18 96 NC 375.3  37 KY 0.0025  134 OH 71  13 DE 0.794 
19 45 AL 358.0  39 KY 0.0025  144 OH 71  148 PA 0.792 
20 24 IL 346.5  40 KY 0.0025  58 MD 70  14 DE 0.787 
Mean   548.0    0.0003    76.5    0.836 
SD   230.1    0.0000    5.549    0.059 
a ID = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC = eigenvector 
centrality; SD = Standard deviation 
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Table S3.6. Centrality-based ranking of twenty most important nodes in the cucurbit downy mildew network for epidemic data observed 
in the eastern United States in 2016. 

 Betweennessa  Closenessa  Degreea  Eigenvectora 
Rank ID State BWC  ID State CLC  ID State DGC  ID State EVC 
1 53 NC 523.9  86 OH 0.0048  90 OH 48  90 OH 1.000 
2 88 OH 404.5  90 OH 0.0048  70 NY 47  92 OH 0.975 
3 6 AL 364.5  82 OH 0.0047  73 NY 46  84 OH 0.975 
4 25 KY 276.3  84 OH 0.0047  84 OH 46  70 NY 0.959 
5 118 VA 233.8  88 OH 0.0047  92 OH 46  100 PA 0.957 
6 119 VA 233.8  92 OH 0.0047  100 PA 46  91 OH 0.952 
7 26 KY 212.5  53 NC 0.0047  94 PA 45  85 OH 0.947 
8 58 NC 209.6  118 VA 0.0046  101 PA 45  87 OH 0.937 
9 59 NC 209.6  119 VA 0.0046  85 OH 44  89 OH 0.931 
10 57 NC 200.6  81 OH 0.0046  86 OH 44  86 OH 0.927 
11 86 OH 175.7  94 PA 0.0045  91 OH 44  73 NY 0.912 
12 27 KY 158.9  101 PA 0.0045  82 OH 43  82 OH 0.906 
13 90 OH 157.2  63 NC 0.0044  87 OH 43  43 MI 0.900 
14 101 PA 155.6  64 NC 0.0044  89 OH 43  46 MI 0.900 
15 82 OH 153.9  58 NC 0.0044  69 NY 42  83 OH 0.861 
16 105 SC 153.0  59 NC 0.0044  97 PA 42  41 MI 0.840 
17 94 PA 150.4  57 NC 0.0044  75 NY 41  69 NY 0.834 
18 28 Ky 145.4  102 PA 0.0043  43 MI 40  81 OH 0.821 
19 55 NC 137.5  26 KY 0.0043  46 MI 40  42 MI 0.813 
20 62 NC 137.5  103 PA 0.0043  83 OH 40  39 MI 0.807 
Mean   219.7    0.0005    43.8    0.908 
SD   102.1    0.0000    2.403    0.059 
a ID = node identification number, BWC = betweenness centrality, CLC = closeness centrality, DGC = degree centrality, and EVC = eigenvector 
centrality; SD = Standard deviation
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Supplemental Figures 

 
 
 
 
 
 
 
 
 
Figure S3.1. A graphical illustration of the conversion of meteorological wind direction to 
mathematical wind direction. (A) A wind bar graph representing raw observations for the 
meteorological wind direction, i.e., a north wind is 360o, a south wind is 180o, a west wind is 270o, 
and an east wind is 90o. (B) The mathematical convention for the meteorological wind direction, 
i.e., a north wind is 270o, a south wind is 90o, a west wind is 0o, and an east wind is 180o. (C) The 
! and " components of the wind where |r⃗| is the magnitude (or wind speed). Here, we treat |r⃗| as 
the observed wind speed in miles per hour. A positive ! and a negative ! represent a west wind 
and an east wind, respectively. A positive " and a negative " represent a south wind and a north 
wind, respectively. The figures and notes are courtesy of Virginia Weather & Climate Data lecture 
notes. 
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Figure S3.2. A Pearson correlation analysis of the number of counties and the total number of 
CDM reports recorded from 2008 to 2016. 
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Figure S3.3. A Pearson correlation analysis of the number of counties and the locations with 
active surveillance in 2008 to 2016. 
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Figure S3.4. The cumulative probability distributions of centrality values of cucurbit downy 
mildew networks (2009, 2012, 2013, and 2015): based on disease data recorded in 2009 (first 
row), 2012 (second row), 2013 (third row), and 2015 (fourth row) in the eastern United States. 
Centrality metrics on the horizontal axis are as follows: BWC = betweenness centrality, CLC = 
closeness centrality, DGC = degree centrality and EVC = eigenvector centrality. 
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Figure S3.5. Correlation between betweenness centrality (BWC) and closeness (CLC), degree 
(DGC), and eigenvector (EVC) centrality measures for networks of cucurbit downy mildew 
constructed using disease data recorded in specific epidemic years in the eastern United States. 
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Figure S3.6. A representation of the most important nodes across 20 thresholds and the four 
centrality measures for 2008 (A), 2011 (B), and 2016 (C) networks. The frequency value 
represents the number of times a node appeared in the top 20 list across all thresholds. Most nodes 
overlapped across the four centrality measures in 2011. For example, node 117 in Lewis county in 
West Virginia appeared more than 20 times in the top 20 ranks based on BWC and CLC. This 
same node also appeared more than ten times in the top 20 ranks based on DGC and EVC. 
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Figure S3.7. A representation of the most important nodes across 20 thresholds and the four 
centrality measures for 2009 (A), 2012 (B), 2013 (C), and 2015 (D) networks. The frequency value 
represents the number of times a node appeared in the top 20 list across all thresholds. Most nodes 
overlapped across the four centrality measures in 2011. For example, node 117 in Lewis county in 
West Virginia appeared more than 20 times in the top 20 ranks based on BWC and CLC. This 
same node also appeared more than ten times in the top 20 ranks based on DGC and EVC. 
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Figure S3.8. Prediction of cucurbit downy mildew outbreaks in the eastern United States in 
2008 based on cumulative disease outbreaks observed in previous times steps in the same 
epidemic year. Dark red nodes represent counties predicted to have an outbreak with high 
probability. Blue nodes represent counties predicted to be no outbreak with negligible probability 
of infection, and all other shades from green to dark red represent the increasing probability of 
disease outbreak. 
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Figure S3.9. Prediction of cucurbit downy mildew outbreaks in the eastern United States in 
2009 based on cumulative disease outbreaks observed in previous times steps in the same 
epidemic year. Dark red nodes represent counties predicted to have an outbreak with high 
probability. Blue nodes represent counties predicted to be no outbreak with negligible probability 
of infection, and all other shades from green to dark red represent the increasing probability of 
disease outbreak. 
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Figure S3.10. Prediction of cucurbit downy mildew outbreaks in the eastern United States in 
2010 based on cumulative disease outbreaks observed in previous times steps in the same 
epidemic year. Dark red nodes represent counties predicted to have an outbreak with high 
probability. Blue nodes represent counties predicted to be no outbreak with negligible probability 
of infection, and all other shades from green to dark red represent the increasing probability of 
disease outbreak. 
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Figure S3.11. Prediction of cucurbit downy mildew outbreaks in the eastern United States in 
2011 based on cumulative disease outbreaks observed in previous times steps in the same 
epidemic year. Dark red nodes represent counties predicted to have an outbreak with high 
probability. Blue nodes represent counties predicted to be no outbreak with negligible probability 
of infection, and all other shades from green to dark red represent the increasing probability of 
disease outbreak. 
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Figure S3.12. Prediction of cucurbit downy mildew outbreaks in the eastern United States in 
2012 based on cumulative disease outbreaks observed in previous times steps in the same 
epidemic year. Dark red nodes represent counties predicted to have an outbreak with high 
probability. Blue nodes represent counties predicted to be no outbreak with negligible probability 
of infection, and all other shades from green to dark red represent the increasing probability of 
disease outbreak. 
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Figure S3.13. Prediction of cucurbit downy mildew outbreaks in the eastern United States in 
2013 based on cumulative disease outbreaks observed in previous times steps in the same 
epidemic year. Dark red nodes represent counties predicted to have an outbreak with high 
probability. Blue nodes represent counties predicted to be no outbreak with negligible probability 
of infection, and all other shades from green to dark red represent the increasing probability of 
disease outbreak. 
 

 

 

 

 

 

 

 

 

 

Week 10 Week 15 Week 20 

Week 35 Week 30 Week 25 



   
 

143 
 

     

 
 
Figure S3.14. Prediction of cucurbit downy mildew outbreaks in the eastern United States in 
2015 based on cumulative disease outbreaks observed in previous times steps in the same 
epidemic year. Dark red nodes represent counties predicted to have an outbreak with high 
probability. Blue nodes represent counties predicted to be no outbreak with negligible probability 
of infection, and all other shades from green to dark red represent the increasing probability of 
disease outbreak. 
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Figure S3.15. Prediction of cucurbit downy mildew outbreaks in the eastern United States in 
2016 based on cumulative disease outbreaks observed in previous times steps in the same 
epidemic year. Dark red nodes represent counties predicted to have an outbreak with high 
probability. Blue nodes represent counties predicted to be no outbreak with negligible probability 
of infection, and all other shades from green to dark red represent the increasing probability of 
disease outbreak. 
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Figure S3.16. Prediction of cucurbit downy mildew outbreaks in the eastern United States by week 25 for all nodes present in 

the network (i.e., prediction) compared to prediction when the 20 most important nodes (based on betweenness, closeness, 

degree, and eigenvector centrality measures) are removed from the network (2010, 2011, and 2012) and random node removal. 
Diamond symbols are nodes identified as important based on each centrality metric. 
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Figure S3.17. Prediction of cucurbit downy mildew outbreaks in the eastern United States by week 25 for all nodes present in 

the network (i.e., prediction) compared to prediction when the 20 most important nodes (based on betweenness, closeness, 

degree, and eigenvector centrality measures) are removed from the network. (2013, 2015, and 2016). Diamond symbols are nodes 
identified as important based on each centrality metric. 
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Figure S3.18. Prediction of cucurbit downy mildew outbreaks in the eastern United States 
by week 25 for all nodes present in the network compared to a prediction when 20 random 
nodes are removed from the network (2008, 2009, and 2014). Diamond symbols are nodes 
identified as important based on each centrality metric. 
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Figure S3.19. The exponent of the degree distributions for 2008 to 2016 networks created using 
different thresholds. A value of 2 indicates that a network is scale-free, i.e., the degrees follow a 
power-law distribution. 
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CHAPTER 4  

A General Framework for Spatiotemporal Modeling of Epidemics with Multiple 
Epicenters: Application to an Aerially Dispersed Plant Pathogen 
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Abstract 

 The spread dynamics of long-distance-dispersed pathogens are influenced by the dispersal 

characteristics of a pathogen, anisotropy due to multiple factors, and the presence of multiple 

sources of inoculum. In this research, we developed a flexible class of phenomenological 

spatiotemporal models that extend a modeling framework used in plant pathology applications to 

account for the presence of multiple sources and anisotropy of biological species that can govern 

disease gradients and spatial spread in time. We use the cucurbit downy mildew pathosystem 

(caused by Pseudoperonospora cubensis) to formulate a data-driven procedure based on the 2008 

to 2010 historical occurrence of the disease in the U.S. available from standardized sentinel plots 

deployed as part of the Cucurbit Downy Mildew ipmPIPE program. This pathosystem is 

characterized by annual recolonization and extinction cycles, generating annual invasions at the 

continental scale. The data-driven procedure is amenable to fitting models of disease spread from 

one or multiple sources of primary inoculum and can be specified to provide estimates of the 

parameters by regression methods conditional on a function that can accommodate anisotropy in 

disease occurrence data. Applying this modeling framework to the cucurbit downy mildew data 

sets, we found a small but consistent reduction in temporal prediction errors by incorporating 

anisotropy in disease spread. Further, we did not find evidence of an annually occurring alternative 

source of P. cubensis in northern latitudes. However, we found a signal indicating an alternative 

inoculum source on the western edge of the Gulf of Mexico. This modeling framework is tractable 

for estimating the generalized location and velocity of a disease front from sparsely sampled data 

with minimal data acquisition costs. These attributes make this framework applicable and useful 

for a broad range of ecological data sets where multiple sources of disease, or other organisms, 

may exist and whose subsequent spread is directional.   
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1. Introduction 

Epidemics caused by invasive pathogens can be managed through several approaches that 

include quarantine, containment, eradication programs, and chemical control measures. 

Understanding the risk of disease invasion is vital in facilitating the planning of disease control, 

prediction and prevention of epidemics, and development of mitigation policies (Ojiambo et al., 

2017). These needs are particularly acute for fecund organisms capable of long-distance dispersal 

that are not spatially restricted. Dispersal of these organisms is a fundamental process with many 

implications for invasion ecology. The characteristics and frequency of long-distance dispersal 

may influence processes such as spatial distribution of an organism, gene flow between 

populations, pathogen population expansion, and invasiveness (Clark et al., 2001; Ibrahim et al., 

1996; Kot et al., 1996; Severns et al., 2019; Wingen et al., 2007). Dispersal characteristics of a 

pathogen are also central to formulating sound policies for mitigation of ensuing epidemics, such 

as predicting the first appearance of disease and timing of intervention efforts (Severns et al., 

2019). 

Diverse disease organisms affecting plants, animals, and humans, may generate patterns of 

disease due to long-distance dispersal that can be explained by similar models provided that 

inoculum moves over long distances (Mundt et al., 2009a and 2009b). Plant disease epidemics, 

therefore, are excellent model systems for understanding dispersal and its determinants due to the 

annual occurrence of epidemics and experimental tractability of the systems. One such disease 

example is cucurbit downy mildew, caused by the oomycete Pseudoperonospora cubensis. 

Cucurbit downy mildew is a major concern for growers in the eastern USA leading to substantial 

economic losses. For example, in 2004 alone, the epidemic of cucumber resulted in 16 million 

USD economic loss (Colucci et al., 2010). 
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In the U.S. and central Europe, the pathogen exhibits annual recolonization and extinction 

cycles, generating annual invasions at the continental scale because P. cubensis is aerially 

dispersed, and sporangia can be transported long distances (Jaing et al., 2020; Ojiambo et al., 

2011). Additionally, P. cubensis is an obligate parasite that must overwinter on living host tissue. 

In the U.S., this is thought to restrict overwintering under natural conditions to frost-free areas 

below approximately 30-degree latitude (Ojiambo and Holmes, 2011; Ojiambo et al., 2015). 

Historical data on the occurrence of the disease is available from standardized sentinel plots 

deployed as part of the Cucurbit Downy Mildew ipmPIPE program (Ojiambo et al., 2011b). 

Furthermore, the disease is economically important and can result in complete crop loss in the 

absence of adequate control measures (Cohen et al., 2015; Ojiambo et al., 2015). Successful 

management also requires that control measures be implemented just before or at the first detection 

of the disease in a field or region. 

Simple predictive models with analytical solutions have been used to analyze disease 

spread in plant epidemics when mechanistic models do not exist. We consider phenomenological 

models with empirical support in plant disease epidemiology as starting points for our framework. 

We focus on widely used models for both the temporal and spatial behavior of pathosystems driven 

by aerial dispersal. Infection of cucurbits by P. cubensis results in epidemics where inoculum is 

produced by plants previously infected during the same epidemic that season. In plant disease 

epidemiology, such epidemics are termed polycyclic, and the logistic model is one of the simplest 

in a class of models that accurately approximate the behavior of these epidemics over time. The 

model represents the rate of change in disease intensity over time as proportional to the disease 

intensity !, and the healthy quantity 1 − 	! 

%!
%& = (!(1 − !) (1) 
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where ( is the rate of disease progression. The observed disease on individuals infected during the 

epidemic is represented by ! = +/-, where + represents the disease in absolute units such as the 

number of lesions, infected leaves or plants, and - is the total number of individuals or plant area 

that can be infected. The value of ! is bounded between 0 and 1, inclusively. For an epidemic to 

occur, there must be contact between inoculum and disease-free individuals. The latter is 

incorporated into the model by the expression	1 − !. Production and dispersal of inoculum from 

infected individuals, infection of healthy individuals, and subsequent production of new inoculum 

by the newly diseased individuals are incorporated into the model by the rate parameter ( (Madden 

et al., 2007). This model framework is widely used in plant disease epidemiology to describe 

diverse pathosystems. 

 Pathogens exhibiting long-distance dispersal result in epidemics with accelerating velocity 

over time that are often difficult to control (Severns et al., 2019); inoculum of such pathogens 

arises from an initial disease focus (or multiple foci) and travels long distances where it may cause 

disease far from the initial focus. The long-distance spread of disease generates a spatial dispersal 

gradient relative to the focus - the rate of decrease in inoculum density with distance from a source 

(Gregory 1968). For aerially dispersed pathogens, the wind is the main dispersal mechanism of 

inoculum. Epidemics driven by aerial dispersal exhibit wave-like behavior in which spatial 

dispersal at any given time can be accurately approximated by the power law (Ojiambo et al., 

2017). The power-law model is of the form 

%!
%& =

−.!
/  

or a modified version  

%!
%& =

−.!
/ + 1 

(2) 

(3) 
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where / is the maximum distance of disease spread (at time t) expressed as a radius from the 

epicenter, . is the spread parameter (unitless) and 1 is a offset parameter incorporated into the 

model to permit calculations at / = 0. The power-law model only approximates epidemic behavior 

well on certain spatial scales; for large ! and small /, these two versions of the model can produce 

extreme !"
!#

 values inconsistent with realistic dispersal behavior for values of . and 1 that 

approximate dispersal well farther from the source position. In addition, the model implies an 

upper limit to disease intensity at any given location. A simple modification overcomes these 

limitations:   

%!
%& =

−.!(1 − !)
/ + 1  

Equation (4) is known as a power-logistic model (Madden et al., 2007). This power-logistic model 

is consistent with empirical observations for disease spread at multiple spatial scales (Madden et 

al., 2007). 

 Disease epidemics are dynamic population processes occurring in both time and space; the 

above phenomenological models can jointly approximate such spatiotemporal dynamics. For 

sparse observational data, it is often of interest to describe the epidemic wavefront - the farthest 

distance from a source position. To this end, we denote the disease intensity ! at a maximal 

location /(&) at a time & by 

!(&, /(&)|6) = 7(&, /(&)|6) 

where 7(⋅) is some continuous function describing the variation in intensity at the wavefront over 

time relative to a source position given a vector Θ of population parameters. The parameters Θ 

characterize the spatiotemporal dynamics. Assume that the disease intensity function has 

derivatives 

(4) 
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%!(&)
%& = (!(&):1 − !(&);	

%!(&)
%/(&) =

−.!(&):1 − !(&);
/(&) + λ  

 
where !(&) is short for !(&, /(&)|Θ) and the population parameters are Θ = ((, ., λ). Considered 

jointly, these derivatives for the (spatial) power-logistic and (temporal) logistic phenomenological 

models characterize a broad class of potentially quite complex intensity functions 7. An 

instantaneous measure of the epidemic velocity =(&) can be expressed in terms of the maximal 

distance /(&) from the epicenter at time & as 

	
=(&) = %/(&)

%& = %/(&)
%!(&) ×

%!(&)
%& = −((/(&) + 1)

. 	
	

Ojiambo et al. (2017) used this power-logistic model to estimate the spread parameter . of 

epidemic waves resulting from an assumed isotropic spread of cucurbit downy mildew in the 

eastern U.S. They assumed that all epidemics are first observed at the same initial distance of 

spread /$ (Ojiambo et al., 2017) given that P. cubensis overwinters in south Florida and the 

inoculum is aerially dispersed northward when the environment is conducive (Holmes et al., 2015; 

Ojiambo et al., 2015). 

These spatiotemporal models implicitly assume isotropic spread since the derivatives 

(Equations 5 and 6) do not depend on direction from the source position spread (Mundt et al., 

2009a and 2009b). However, dispersal is generally anisotropic for long-distance dispersed 

pathogens. Anisotropy may be due to landscape features (Taylor et al., 1993), host availability 

(Margosian et al., 2009), and weather, of which wind is particularly relevant for aerially dispersed 

organisms (Gregory, 1968). Various studies have developed anisotropic dispersal kernels to 

describe relatively short distance dispersal of seeds, pollen, and pathogen propagules (van Putten 

(7) 

(5) 

(6) 
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et al., 2012). Inoculum dispersed in different directions from a source can be expressed in terms 

of either density or distance. In terms of density, anisotropy is the mean number of spores deposited 

in a given direction, while in distance, it is the mean distance transversed by a spore in a given 

direction. An example is a work by Soubeyrand et al. (2007) on yellow rust of wheat caused 

by Puccinia striiformis where two anisotropy functions were explored to quantify and differentiate 

anisotropy in density and distance using parametric and nonparametric approaches. The 

nonparametric approach was used to determine the main directions and the shapes of the 

anisotropy functions, but without explicit linkage to covariates such as wind speed and direction. 

Similarly, Rieux et al. (2014) examined a range of dispersal kernels and found that disease 

gradients for ascospores and conidia of Mycosphaerella fijiensis were best described by a fat-tailed 

exponential power kernel and a thin-tailed dispersal kernel, respectively. Rieux et al. (2014) further 

estimated anisotropy in both density and distance and showed that anisotropy was correlated with 

averaged daily wind gust for conidia, although wind covariate information was not used explicitly 

to estimate anisotropy in disease gradients. These modeling frameworks incorporate anisotropy 

into disease gradients observed for the special case of a single pathogen generation or dispersal 

event but do not consider anisotropy in epidemic spread in time (Rieux et al., 2014; Soubeyrand 

et al., 2007; van Putten et al., 2012). 

Besides anisotropy, fitting and interpreting disease gradients and dispersal are further 

complicated by the presence of multiple sources of inoculum (Gregory, 1968). Great care usually 

is taken in experimental settings to minimize background inoculum that can confound 

interpretation of disease gradients (Cowger et al., 2005; Rieux et al., 2014; Soubeyrand et al., 

2007). Controlling for multiple inoculum sources in natural epidemics is much more complicated 

(Waggoner, 1962). Process-based models may be most useful in these situations for the description 
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and prediction of epidemics (Meyer et al., 2017), but such approaches are highly resource-

intensive, and few exist in practice. A more common situation, especially with invasive organisms, 

is that physical process models are not yet available and resource limitations result in relatively 

sparse sampling and data. Thus, simpler phenomenological models are needed to derive 

generalized estimates of potential disease spread and probable sources of primary inoculum 

(Ojiambo et al., 2017). 

Returning to the motivating example of cucurbit downy mildew, although P. cubensis may 

overwinter on susceptible hosts in temperature regions, an alternative source of inoculum may 

exist in protected cultivation (Cohen et al., 2015; Ojiambo et al., 2015; Savory et al., 2011) or 

potentially oosporic inoculum (Thomas et al., 2017). This hypothesis of alternative sources of 

inoculum has been proposed several times but never demonstrated conclusively. Thus, the cucurbit 

downy mildew system also may be suitable for formulating models that account for multiple 

sources of the initial inoculum.  

In this study, we extend the work of Ojiambo et al. (2017) and Rieux et al. (2014) with a 

modified power-logistic model that includes anisotropy of disease in space and time and also 

consider multiple sources of primary inoculum. We present a flexible and generalize framework 

that accounts for multiple sources of inoculum and applies to cucurbit downy mildew. This flexible 

framework can also be extended to any pathosystem where the special conditions of isotropic 

spread or a single inoculum source may be too restrictive. 
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2. Methods 

Modeling approach  

Our work develops a generalization of the spatiotemporal model given by Equations 5 and 6 that 

modifies the power-logistic model for spatial dynamics (Equation 6) by parametrizing 1 as a 

function that depends on the direction from the epicenter, and we apply this model framework in 

an analysis of cucurbit downy mildew disease data. In this section, we first present the model 

framework and discuss estimation. Following this, we describe the data sets analyzed. We then 

present application-specific details involved in our analysis. Lastly, we present a simulation study 

to understand the sensitivity of the modeling framework and estimation procedure to sample sizes, 

error variance, and aspects of epidemic behavior. 

 

2.1. Anisotropic multi-source velocity model 
 

For the purpose of exposition, our model is first presented with reference to a single source 

and then extended to describe simultaneous dispersal from multiple sources by introducing a latent 

factor that indicates causal attribution to one of the sources in the model. Following a description 

of the multi-source extension, we present an iterative estimation method based on the Expectation–

Maximization (EM) algorithm. 

 

2.1.1. Single source model 

 First consider a model for disease emanating from a single source point located in two-

dimensional Cartesian space, with the source location denoted ?$  ∈  B%. Let (/(&), ϕ) denote the 

polar coordinates associated with the maximum distance /(&) in direction ϕ of the disease wave 
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front relative to ?$ at time &. Let the parametric model for disease intensity at location (/(&), ϕ) 

and time & be denoted by 

! = !(&, /(&), ϕ|Θ) = 7(&, /(&), ϕ|Θ) 

Let the intensity function have derivatives 

	%!%& = (!(1 − !) 

%!
%/(&)   =   −.!(1 − !)/(&)  +  D(ϕ) 

where D(ϕ): [0,2π] → B is a function of the angle between the location ? and the source point ?$, 

and ( and .	are parameters of the model. The function D induces spatial anisotropy by allowing 

the rate of change of disease incidence with distance from the source to depend on direction. 

The explicit form for 7(. ) is obtained by integration with respect to / given the boundary 

condition that for the differential equations 9 and 10 at & = &$ > 	0 for each angle ϕ, 

!(&$, /(&$), ϕ) = !$(ϕ) and /(&$) = /$. The value of !$(ϕ) may vary depending on the source 

and the epidemic under consideration. First integrating Equation 10 for a fixed ϕ gives 

log O !
1 − !P = −. log O1 + /

D(ϕ)P + Q(ϕ) 

where Q(ϕ) is a constant of integration for fixed ϕ. Then, integrating Equation 11 for a fixed ϕ 

gives  

log O !
1 − !P = (& + Q(ϕ) 

where Q(ϕ) is a constant of integration as in Equation 11. Now, together Equations 11 and 12 

imply the generic functional form  

log O !
1 − !P = −.& log O1 + /

D(ϕ)P + (
&& + Q(ϕ) 

(8) 

(11) 

(12) 

(13) 

(9) 

(10) 
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that satisfies jointly the differential Equations 9 and 10. Note that, .& and (' are obtained such that 

the right-hand side of Equation 13 is a convex combination of the right-hand side terms in 

Equations 11 and 12 (one example is given by .& = '

(
 and (& = )

(
). Algebraic rearrangement of 

Equation 13 yields that the explicit form for 7(. ) up to constants of integrations for fixed ϕ is 

!(/, ϕ, &|Θ) = 1

1 + O1 + /(&)
D(ϕ)P

'

exp(−(&) U(ϕ)
 

where the parameters are Θ = :(, ., D(⋅); and U(ϕ) = *

+,-./(1)3
 . This is a spatiotemporal process 

for disease intensity with spatial kernel V(ϕ) W1 + #(4)

5(1)
X
6'

 in the disease wave front. We note that 

this result is a generalization of the ‘geometric’ spatial kernel considered in Rieux et al. (2014) 

among the candidate models for anisotropic dispersal densities, wherein the anisotropy-inducing 

function D is a radial density; Rieux et al. (2014) consider the Von Mises distribution for a specific 

functional form. 

A derived model for velocity describes the movement of an epidemic wavefront. As noted 

in the introduction, this can be especially useful for epidemiological data that are sparse in space 

and time, which contain relatively less information about the spatiotemporal distribution of disease 

incidence. From Equations 9 and 10, velocity is given by 

= = −%/%& = Y O 1
D(Z) + /P

6*

 

where Y = )

'
. Integrating 15 yields 

log O1 + /
D(Z)P = −Y& + ℎ(Z) 

(14) 

(15) 

(16) 
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where ℎ(Z) is a normalizing constant for fixed angle ϕ. We note that Equation 16 is linear in time 

and can be fit to obtain estimates of Y, ℎ, and D using regression methods (as described in further 

detail below). 

 
2.1.2. Multiple source model 

 We extend the velocity model above to describe epidemics emanating from \ source 

points. A summary of the notations used is given in Table 4.1. Let :?(*), … , ?(7); denote the source 

locations; for each ^ = 1,… , \, ?(8) ∈ ℝ(. Now an arbitrary location ? ∈ ℝ( is associated with \ 

sets of polar coordinates :/(*), Z(*);, … , :/(7), Z(7);, where the ̂ th polar coordinate pair indicates 

the distance /(8) and angle Z(8) to the ̂ th source point ?(8). A depiction of this data representation 

is given in Fig 4.1. Applying the model framework above to each set of coordinates yields the 

collection of velocity models 

log `1 + /(8)
D8(Z(8))

a = −Y8& + ℎ8:Z(8); ,  ^ = 1,… , \ 

 Now, if multiple sources are present, any given location could be subject to disease 

exposure from as many as \ wavefronts moving simultaneously. Yet, depending on conditions, 

the movement patterns of the wavefronts, and relative distances to each epicenter, an infection 

event at any particular time and location is attributable to the different sources with varying 

probability. In other words, disease at particular locations is more likely due to certain sources 

rather than others. To accommodate this intuition, a latent process d is introduced that indicates 

the relative probabilities of disease associated with each of the \ sources, and the collection of 

models given in Equation 17 describe (/, Z, &) conditional on the possible values of d.  

d ∼ Multinomial	 W1, :m(*), … , m(7);X 

(17) 

(18) 
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For example, n(d	 = 	1) = 	m(*) indicates that an infection event is caused by source 1 with 

probability m(*). We then assume that a disease occurrence is described by each of the \ velocity 

models given in Equation 17 with probabilities m(*), … , m(7). That is, for an arbitrary disease 

occurrence at time &, we posit the set of wave front descriptions 

log `1 + /(8)
D8(Z(8))

a = −Y8& + ℎ8:Z(8); 

with probability m(8) = 	n(d	 = 	^) for ^	 = 	1, … , \. This framework makes the implicit 

assumption that disease is caused by inoculum produced at exactly one source. However, it will 

be seen that our estimation method does not involve a hard classification rule for disease 

observations and thus we instead specify observation weights for each velocity model according 

to estimated probabilities m(*), … , m(7). 

 

2.1.3. Estimation 

  We propose an estimation procedure wherein velocity models are fit using regression 

methods conditional on known D8. The functions D8 introduce anisotropy in the model by 

imposing directional variation in the spatial rate of change of disease incidence via the partial 

differential equation in Equation 10. In many applications, known variables drive anisotropy, so it 

is often plausible to estimate D8 from covariate information or secondary data sources. 

The velocity models (Equation 17) are fitted conditional on D8 to disease occurrence data 

(presence or absence) of the form {(/9(*), Z9(*)), … , (/9(7), Z9(7)), &9}9:*;  indicating the locations and 

times of the first observed disease case. For the purpose of exposition, suppose one is fitting only 

(19) 
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the ^th model: consider just the data W/9(8), Z9(8), &9X and assume n(d9 = ^) = 1. Now, adding an 

offset Q8 and Gaussian error term q9(8) to Equation 17 yields the statistical model 

logr1 + /9(8)

D8WZ9(8)X
s = Q8 −Y8&9 + ℎ8WZ9(8)X + q9(8) tq9

(8) ∼99! -(0, u8()
v = 1,… , w  

Estimates of Q8, Y8 and ℎ8 are easily computed using semiparametric regression. Let 

x*(⋅), … , x<(⋅) denote a set of y basis functions. Now, rewriting Equation 20 we obtain 

log r1 + /9(8)

D8WZ9(8)X
s = Q8 + (−Y8)&9 + z*(8)x*WZ9(8)X + ⋯+ z<(8)x<WZ9(8)X + q9(8) 

Ordinary least squares (OLS) solution to Equation 21 subsequently yields estimates of Q̂8 , Y}8 

and ℎ~8 = ∑ zÄ'(8)' x'. 

Finally, this estimation strategy is extended to the full collection of \ models by accounting 

for the latent variables d9 that attribute each of the v data points to one of the \ sources. Formally, 

the joint likelihood of the data arising from Equations 18 and 19 is maximized with respect to the 

parameters m(8) ∈ ℝ=, z8 ∈ ℝ<>(, and u8( for ^ = 1,… , \. The Expectation-Maximization (EM) 

algorithm is used to iteratively update estimated multinomial probabilities m̂9(*), … , m̂9(7) for each 

data point in alternation with fitting the regression models in Equation 21 using the estimate m̂9(8) 

as a regression weight for the vth data point in fitting the ^th model. In detail, the iterations are 

given by: 

1. Initiate m̂9(8) as the weight of vth data-point to be associated with ^th source, where 

∑ m̂9(8)7
8:* = 1. 

(20) 

(21) 
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2. Compute/update the estimates :Q̂8 , Y}8 , ℎ~8 , uÅ8(;8:*
7

 by fitting each of the models in 

Equation 21 with weights m̂9(8) for the vth data point and the ^th model. 

3. Update m̂9(8) by 

m̂9(8) =
Ç WQ̂8 −Y}8&9 + ℎ~8WZ9(8)X, uÅ8(X m̂9(8)

∑ Ç7
8:* WQ̂8 −Y}8&9 + ℎ~8WZ9(8)X, uÅ8(X m̂9(8)

 

where Ç(?, u() is the probability density function of a Gaussian random variable with 

mean zero and variance u( evaluated at value ?. 

4. Repeat steps 2-3 until convergence. 

A simple heuristic for the initialization step is to use as m̂9(8) the estimated probabilities 

obtained by logistic regression of an indicator of whether the ^th source is closest on the variables 

/(*)/DÅ*:Z(*);, … , /(7)/D8:Z(7);. We note that an isotropic model with one or many sources can 

be recovered within this framework as a special case by fixing D8(?) = 1/2É for ? ∈ [0,2É], with 

the consequence that ℎ8 ≡ 0. The details on the derivation and explanation of the fitting procedure 

are given in the Supporting Information EM Algorithm. 

 
2.1.4. Spatial and temporal predictions  

 Estimated models - the \ models in Equation 21 - directly yield fitted values for the 

quantity log `1 + #!
(#)

5#?@!
(#)A
a. Since this quantity does not have meaningful units, estimated times 

of disease occurrence conditional on location and estimated distances of occurrences from sources 

conditional on time and direction for each data point provide more interpretable assessments of fit 

quality with biological relevance. These spatial and temporal estimates are 

(22) 
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&̂9(8) = 1
Y}8

rlogr1 + /9(8)

D8WZ9(8)X
s − ℎ~8WZ9(8)X − zÄ$(8)s

/̂9(8) = D8WZ9(8)X Wexp ÖzÄ$(8) +Y}8&9 + ℎ~8WZ9(8)XÜ − 1X
 

Since the model includes estimated probabilities that the vth data point is associated with each 

source (the estimates m̂9(*), … , m̂9(7)), a simple heuristic (note that this approach doesn’t include a 

covariance term) for selecting a single temporal estimate from &̂9(*), … , &̂9(7) and a single spatial 

estimate from /̂9(*), … , /̂9(7) is to choose the estimates &̂9(8) and /̂9(8) associated with the most 

probable source. That is, let 

                                      (&Bá, /Bá) = W&B(8
∗)à,/B(8

∗)àX where ^·= argmaxk{m̂9(8)} 

Then, a fitted model can be evaluated according to the spatial and temporal root mean square error 

(RMSE) metrics 

rmse4 =
D+E ã1wå(

;

9:*

&9 − &̂9)(ç
*/(

rmse# =
D+E ã1wå(

;

9:*

/9 − /̂9)(ç
*/( 

 

2.2. Cucurbit downy mildew data 

Epidemics of cucurbit downy mildew recorded in the U.S. from 2008 to 2016 were 

obtained from the data submitted to the Cucurbit Downy Mildew ipmPIPE program 

(http://cdm.ipmpipe.org). The ipmPIPE is an information and decision support system that gathers 

pertinent data (disease occurrence in cucurbit production areas), applies predictive models to the 

data, incorporates expert interpretation, and communicates near-real-time output to cucurbit 

growers, extension personnel, crop consultants (Ojiambo et al., 2011). Records of outbreaks in the 

(23) 

(24) 

(25) 

(26) 

(27) 
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system include disease reports from a network of regularly monitored sentinel plots as well as 

voluntary disease reports from non-sentinel plots submitted by commercial growers, agricultural 

researchers, and the general public. We describe below the two types of disease reports and a 

subset of the data selected for analysis. 

  Sentinel plots were fixed locations planted with different cucurbit host types for 

monitoring downy mildew outbreaks and strategically placed within specific states at locations 

that collaborators can easily access. During the years 2008-2016, the sentinel plots were located at 

research facilities or in commercial fields with standard dimensions of 15 m x 61 m and were 

georeferenced using the Global Positioning System. These plots were monitored for disease 

symptoms weekly to biweekly by cooperating scientists and extension specialists and were planted 

with susceptible, early maturing cultivars. The cucurbit host types grown in the sentinel plots 

were Cucumis sativus (cucumber cv. Straight 8 and Poinsett 76), Cucumis melo (cantaloupe cv. 

Hales Best Jumbo), Cucurbita pepo (acorn squash cv. Table Ace), Cucurbita maxima (giant 

pumpkin cv. Big Max), Cucurbita moschata (butternut squash cv. Waltham), and Citrullus 

lanatus (watermelon cv. Micky Lee) (Ojiambo et al., 2011). The compiled data set on sentinel plot 

disease reports consist of the date of first observed occurrence of disease, the reporting date, 

affected host type, the incidence of plants affected, and plot location. 

 Cucurbit downy mildew was also monitored via voluntary reporting in locations not 

designated for regular surveillance. These locations include commercial fields, research plots, and 

home gardens. Compiled data on voluntary reports consisted of the date of first observed 

occurrence of disease, the reporting date, location, and affected host type (if provided). This 

information is potentially instructive for understanding the distribution and appearance of cucurbit 

downy mildew, but subject to greater uncertainty with respect to the timeliness of disease detection 
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due to the non-standardized nature of the plant populations, potential confounding from fungicide 

applications, and the absence of regular monitoring and reporting protocols. 

 We selected a subset of the disease reports from which to model epidemic wavefronts using 

the framework described above. The sub setting strategy was intended to capture a single wave as 

best as possible while ensuring uniform reliability on the timeliness of reports. First, for the 

reliability of timeliness, we considered only sentinel reports. This was thought to better ensure 

consistent variation across reports in the accuracy of dates of first observed disease occurrences 

due to a fixed observation frequency and protocol. Second, late-season outbreaks are known to 

occur due to later-planted cucurbit crops that are common in southern and mid-Atlantic regions of 

the U.S. (Ojiambo et al., 2017). Thus, we sought to capture the first outbreak each year by 

restricting attention to reports in which the date of observed occurrence is before August. Finally, 

we selected data from 2008, 2009, and 2010 to capture annual variation, and chose these specific 

years due to a relatively greater number of sentinel plots available. From the resulting reports, we 

compiled data on the location, date of symptom onset (presence of disease at any level), and host 

type from each report. 

 

2.3. Application details 

The three consecutive years of selected sentinel reports were analyzed separately by fitting 

isotropic (I) and anisotropic (A) one-source (OS) and two-source (TS) velocity models to data 

from each year. In order to apply the model framework to this specific dataset, we identified 

potential source locations from an exploratory analysis of early occurrences and developed a 

simple method of estimating the functions D8 from meteorological information known to drive 

dispersal. 
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2.3.1. Selection of source locations for cucurbit downy mildew data  

 Source locations were specified as county centroids. To identify putative source locations 

for each year, we examined both sentinel and voluntary reports of early disease occurrences for 

geographical location and timing. The first observation of disease occurrence reliably in southern 

Florida in every year, so the centroid of the county in which the first disease symptoms were 

reported each year was fixed as the main source point. In addition, early occurrences are often 

observed in the southwestern United States and the Great Lakes region before expected dispersal 

from the source point in Florida. We identified several counties in northern latitudes (Erie and 

Wayne counties in Ohio, and Niagara County in New York) that had early occurrences in multiple 

years, and several counties in the southwestern region (Brazos and Hidalgo counties in Texas, 

Vernon County in Louisiana, and Payne County in Oklahoma) that had early occurrences in 

multiple years. We considered each of these counties as possible locations for a second source 

each year. Based on the reports in each region, the earliest disease occurrences were used to 

identify dates at which a putative source in each region might appear. We note here that the 

alternate sources specified are not necessarily the actual location of overwintering of P. cubensis 

but are a reasonable proxy for an alternate source of inoculum when placed within the path of the 

wave-front emanating from the true source. 

 

2.3.2. Estimation of D8 from meteorological data 

 We estimated the functions D8 based on meteorological data measured at the source 

locations since variation in wind direction and speed are the primary drivers of anisotropic 

dispersal. Hourly wind direction and speed near each county centroid with a sentinel plot or 

imputed disease source was derived from weather observations in the National Oceanic and 
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Atmospheric Administration Integrated Surface Database (Smith et al., 2011) and were provided 

by BASF (Research Triangle Park, Raleigh, NC). 

Nonparametric kernel density estimates of the functions D8 were computed from the 

collection of hourly wind directions at each of the ^ sources over the time interval represented in 

the disease data. If é9(8) denotes the angle of the predominant wind direction at time point v and 

source location ^, the wind direction data é*(8), … , é;(8) is treated as a sample of size w8 on the unit 

circle centered at the source point ?(8). For each ^, we computed a kernel density estimator DÅ8 of 

the form 

DÅ8(?) =
è(ℎ)
w å\

;#

9:*

ã1 − ?é9
(8)

ℎ( ç , ? ∈ [0,2É] 

where ℎ is a positive number and è(ℎ)6* = ∫ \(G

$
:(1 − ?é)/ℎ(;%é is a normalizing constant. 

For the application in this work, the kernel function \(ë) = exp − ë is used. 

 

2.3.3. Application of model framework  

To apply our modeling framework in the analysis of the cucurbit downy mildew data, we 

calculated two alternate responses: a response for the isotropic models, logW1 + /9(8)X, and a 

response for the anisotropic models, íìD O1 + /9(8)/DÅ8WZ9(8)XP for each data point v = 1,… , w, and 

estimated the velocity models as described above. 

 

2.4. Simulation study 

We conducted a set of simulations to quantify parameter recovery using the model and 

estimation procedure for different sample sizes and scenarios when disease spread was weakly to 

(28) 
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strongly anisotropic. First, we set two source locations well separated in two-dimensional space at 

Cartesian coordinates of (0,0) and (2000, 2000) representing the first and second sources, 

respectively. These locations approximate the spatial scale in kilometers of the cucurbit downy 

mildew sources in Florida and an alternate source of interest in the Upper Midwest. For sample 

sizes of w = 50, 100, 250, and 500, we fixed the proportion of disease attributable to the first and 

second sources as 0.7 and 0.3, respectively. We chose the Von Mises density function to generate 

circular normal data that could induce anisotropy in disease spread relative to the two locations. 

The Von Mises function has two parameters: î, a location measure, and	ï, a concentration 

measure, and is given by 

7(?) = ñH/IJ(K6L)
2ÉóI(ï)

 

for any angle ? ∈ [î − É, î + É] where óI is a Bessel function of order 0. The î values were chosen 

such that disease spread from the two sources would be in opposite directions and overlapping in 

space by setting î* = G

M
 and î( = NG

M
. Values of ï	 = 	5 and ï	 = 	2 were chosen to produce 

strongly and weakly anisotropic spread, respectively. We generated two separate angle grids from 

the uniform distribution and used the Von Mises density function with î and ï as noted to estimate 

D(Z). 

We also simulated temporally synchronous and asynchronous epidemics by varying the 

daily time grids from the uniform distribution. The time grid ranged from the day of year 50 to 

150 for synchronous spread from the two sources, and days 50 to 150 for source 1, and days 100 

to 150 for source 2 for asynchronous epidemics. We then generated data according to the two 

models by inputting the corresponding time grid, angle grid, and coefficients according to a 

simplified version of the model in equation 21,  

(29) 
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!9(8)  =  z$(8)  +  z*(8)&9   +  z((8)xvw(Z9)  +  zO(8)xvw WZ9   +  
É
4  X   +  q9

(8) 

where, q9(8) ∼ -(0, u(). We consider that the error variance u( is same for both the sources. We 

evaluated the sensitivity of the parameter estimates to error variance by varying u( two-fold. The 

distance from each source location (/) was then calculated by back transforming (/). We then 

calculated the corresponding ? and ! Cartesian coordinates.  

We pooled the simulated Cartesian coordinates and times, converted the Cartesian 

coordinates to sets of polar coordinates for each source, and applied the fitting procedure to 

estimate coefficients. We ran 1000 simulations and calculated the mean and standard deviation of 

the estimated coefficients, as well as the proportion of the w samples attributed correctly to each 

of the two sources in each of the 1000 simulated epidemics. Examples of individual simulations 

are presented in Figure 4.2. 

 

3. Results 

In this section, we present analyses of disease data from 2008 through 2010. For each year, 

several candidate models were fit. We considered both one-source and two-source models in each 

year, and anisotropic and isotropic versions of each. In addition, for the two-source models, we 

considered two alternate source locations based on the considerations discussed above. 

 
3.1. Simulation study 

The mean and standard deviation of the estimated coefficients for w = 50 and 250 for a 

two-source epidemic with an anisotropic spread of disease (Von Mises distribution ï	= 5) are given 

in Table 4.2. Results for w = 100 and 500 are given in Supporting Table S4.1 and results for ï = 2 

are given in Supporting Figures S4.1, S4.2, and S4.3. Parameter estimates were generally accurate 

(30) 
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across the various sample sizes and whether epidemics at the two sources were initiated 

synchronously or asynchronously, but sensitive to error variance. There was a slight increase in 

the mean values of the intercept estimates as w increased from 50 to 250, particularly as the error 

variance increased. Expectedly, the standard deviation of the parameter estimates increased with 

error variance and decreased with w. Overall, the estimates were highly accurate in all scenarios 

except a large sample size with high variance and an asynchronous start (w = 250, u( = 1). We 

hypothesize that the disease observations become more densely mixed under this setting and thus 

make the sources more difficult to discern, thereby compromising estimation of model parameters. 

We note in particular that estimates for the less dominant source (source 2) are most severely 

compromised, consistent with our observation below that more challenging simulation conditions 

tend to cause misattribution to the dominant source. 

The estimated probability of disease being due to spread from one of the two sources was 

used to attribute disease to each of the sources in the simulations and calculate the overall mean 

proportion of disease correctly assigned to the true source (Figures 4.3 and 4.4). Disease due to 

the dominant source, source 1, was attributed correctly to this source in most simulations 

independent of sample size, error variance, location of the source, or other epidemic conditions 

specified. This behavior is consistent with expectations, as without additional information the EM 

algorithm attributes disease due to the most abundant, dominant inoculum source. The disease was 

less often attributed correctly to the less abundant second source, although source attribution here 

was still relatively accurate. Classification accuracy was sensitive to the placement of sources in 

space, diminishing as the two-source were more closely situated. Classification accuracy decreased 

when epidemics initiated from the two sources were temporally asynchronous, anisotropy was 

stronger, and error variance was larger. Although we see that some of the observations from the 
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less abundant source can be incorrectly allocated to the more abundant source, the estimates of the 

model parameters for the two sources are still relatively accurate and capture the behavior of the 

spread from each of the sources in terms of velocity of spread and anisotropy. 

 

3.2. Estimation for Cucurbit Downy Mildew Dataset 

Parameter estimates are reported for six models in each year: three isotropic models having 

one source only, an alternate source in the north, and an alternate source in the southwest; and 

three anisotropic models with the same source locations. The isotropic models are referred to as 

‘Isotropic One-Source’ (IOS), ‘Isotropic Two-Source (Southwest)’ (ITS-SW), and ‘Isotropic Two-

Source (North)’ (ITS-N); and similarly, the anisotropic models are referred to as ‘Anisotropic One-

Source’ (AOS), ‘Anisotropic Two-Source (Southwest)’ (ATS-SW), and ‘Anisotropic Two-Source 

(North)’ (ATS-N). For the two-source models, separate velocity models are fitted corresponding 

to each of the two sources, and these are distinguished by indicating the source location 

parenthetically, e.g., ITS-SW (FL) and ITS-SW (TX) indicate the two velocity models that 

comprise the ITS-SW model. Since one of these sources is always located in Florida in the 

analyses, we adopt the convention of referring to the two sources as the Florida source and the 

‘alternate’ source. 

Graphical and tabular representations of spatial and temporal prediction errors are reported 

for each of the models fitted to data from each year. The graphical representations focus on 

temporal predictions and show contours of the estimated epidemic fronts at various times. 

Numerical reports include spatial prediction errors, and, for the two-source models, errors from 

models fitted using additional alternate source locations that were considered. 

These results simultaneously address several questions. First, the model comparisons 
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suggest whether in a given year dispersal exhibited directional variation. Second, the same 

comparisons provide indirect evidence for the existence of a second source, depending on whether 

positing such a source better explains the pattern of dispersal. Third, the prediction errors illustrate 

the sensitivity of results to the placement of source locations. 

 

3.3. Disease outbreak and spread  

In all the years, the disease was observed first in Florida from January to February, with 

reports in sentinel plots beginning in February to March (Figure 4.5). The first detection of the 

disease generally progressed northward with time, but with some exceptions particularly in the 

southwestern locations along the Gulf Coast and infrequently in the Great Lakes region such as in 

2009. That is, there appeared to be anisotropy in disease spread. 

 

3.4. Model fitting for Cucurbit Downy Mildew Dataset 

The parameter estimates for one- and two-source isotropic and anisotropic models fitted to 

data from each of the years 2008 through 2010 are given in Tables 4.3, 4.4, and 4.5. For all years, 

the time parameter estimates (−Y}8) for the isotropic and anisotropic one-source models (IOS and 

AOS) were significant (P-value), indicating that the Florida source is an important epicenter in 

explaining disease progression. Further, the estimates of this parameter were not affected 

considerably by model specification — that is, they are relatively stable across models in each year 

— suggesting that the epidemic velocity associated with the Florida source is a relatively strong 

signal in the data. 

For the two-source models, estimates of the time parameter associated with the alternate 

source were not significantly (P-value) different from 0 when the alternate source was placed in 
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the Great Lakes region (ITS-N and ATS-N in all years). This indicates that the data provide little 

evidence of dispersal emanating from the northern alternate source location, suggesting that no 

epicenter was present in the region. In these cases, when the northern source is included in the 

model, the contribution of the associated velocity model in explaining disease progression is to 

generate predictions of occurrences at time-invariant distances from the source based on certain 

observations in the dataset. In many cases, the estimated parameter was negative, indicating a 

slightly contracting front toward the source. By contrast, time parameters associated with the 

alternate source were positive and significant (P-value) when the alternate source was placed in 

the southwest (ITS-SW and ATS-SW in 2008 and 2009; the estimated ITS-SW or ATS-SW 

models in 2010 reduced to single-source models, as all data points had low estimated probabilities 

of being caused by a southwestern source). 

The basis parameter estimates zÄ*(8) and zÄ((8), which when combined give estimates of the 

normalizing functions ℎ~8, are of varying significance depending on year and velocity model. In 

2008, these parameters are only significant (P-value) for the ATS-SW model; in 2009, they are 

significant for every model except ATS-N; and in 2010, they are not significant for any model. 

Since the normalizing functions ℎ8 are functions of angle, the significance of these parameters 

indirectly indicates the statistical strength of evidence that anisotropy is present. Thus, in 2008 

there is evidence for anisotropic spread from the southwestern source, and in 2009, there is 

evidence of anisotropic spread from all source locations. 

Finally, the estimates for the two-source models suggest that the importance of including 

a second source varies depending on the year and source location. None of the velocity models 

associated with northern source locations had significant non-intercept parameter estimates. In 
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2008 and 2009, the velocity model associated with the Texas source included significant terms. 

Yet, in 2010, the ITS-SW and ATS-SW models attributed all data points to the Florida source. 

 

3.5. Spatial and temporal predictions  

Estimated epidemic fronts from each of the six models discussed above for each of the 

years 2008 to 2010 are shown in Figures 4.6, 4.7, and 4.8, respectively, along with time-of-

occurrence errors for each data point. Anisotropy in disease spread was apparent in the models 

accounting for the unequal velocity of spread in space, with the direction and magnitude varying 

depending on the specific source or combinations of sources (regardless of the significance of the 

estimates of ℎ8). Predicted expansion of the epidemic wavefront indicated an acceleration of 

epidemic velocity over time from the initial disease focus when the focus was placed in the 

southwest extent of the spatial domain or Florida. This was true for all years and models, consistent 

with the positive sign of the coefficient for the time variable associated with these models and 

sources (−Y}8 in Tables 4.3, 4.4, and 4.5). In contrast, disease sources placed in a northern location 

near the Great Lakes only displayed this behavior (an expanding predicted wavefront) in 2010. In 

2008 and 2009, the predicted wavefronts were either little changed over time (2008) or indicated 

a gravitational pull behavior (2009) due to near zero or negative parameter estimates for the time 

parameter (Tables 4.3 and 4.4). 

Accounting for anisotropy in one source models reduced RMSE measured in time slightly 

(0.76 to 1.35 days) but consistently (Table 4.6; Supporting Figures 4.5 to 4.7); spatial errors were 

not consistently reduced in these data sets. For multiple source models, prediction errors in time 

and space varied over orders of magnitude depending on the model and specific year (Figures 4.6 

to 4.8 and Table 4.7). Among the multiple source models, some anisotropic models reduced 
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temporal and spatial errors for some years as compared to the corresponding isotropic model. 

However, no single more complex model consistently reduced prediction errors across all years 

when multiple sources were included. 

RMSE for multiple source models was sensitive to the placement of the alternate source in 

both space and time (Table 4.7). Model sensitivity to source placement was particularly acute for 

alternate sources placed in northern latitudes. Imputing sources in certain locations and times led 

to massive prediction errors in some instances, for example, when the source was placed in Niagara 

County, New York in 2009. Generally, reductions in RMSE in space or time were most often 

observed with two source models when disease spread was isotropic, and the second source was 

placed in the southwestern extent of the spatial domain. Conversely, two source models with the 

largest RMSE were most often associated with an alternate source sited in a northern latitude Table 

4.7, Figures 4.6 to 4.8). 

 

3.6. Source attribution  

The modeling framework includes the estimation of the most probable source k resulting 

in disease at a distant location when multiple sources are specified. Disease outbreak was 

attributable to different primary sources depending on the year, location of the alternate source, 

and anisotropy (indicated by plotting character (Figure 4.6 to 4.8). Disease outbreaks in Florida 

and other southeastern states were invariably attributed to the source in southern Florida, 

independent of anisotropy or the specification of another source. In other regions, the source 

deemed most probable for disease outbreak at a given location depended on where sources were 

placed. Proximity was associated with whether a source was the most probable cause of disease at 

a given sentinel plot, but with some notable exceptions. For instance, setting a source in the Great 
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Lakes region led to most disease outbreaks in the Upper Midwest, Northeast, and northern mid-

Atlantic region to be attributable to the northern source rather than a source in Florida. With an 

alternate source sited in the southwest, plots on the western and northern edge of the Gulf Coast 

were mostly attributed to this source, with ensuing disease spread to the northeast (Figure 4.6) or 

north (Figure 4.7). In 2010 there were no contours associated with the southwest source (Figure 

4.8) as only two sentinel plots in Texas and Michigan were attributed to that source. 

We again emphasize here that prediction errors associated with any of these models varied 

depending on the year and specific model and were not necessarily improved uniformly as 

compared to the corresponding isotropic one source model (Tables 4.6 and 4.7). 

 

4. Discussion 

 We have developed a generalized, wide, and flexible class of spatiotemporal models 

capable of accounting for the presence of any number of initial inoculum sources and any kind of 

anisotropic spread of biological species that can govern disease gradients and spatial spread in 

time. We have also built a data-driven procedure, which selects an appropriate model from the 

above-mentioned class of models and provides computationally efficient estimates of the model 

parameters. This framework is well suited to infer the probable sources of disease spread 

responsible for later outbreaks at distant locations. We successfully applied this approach to predict 

the spread of cucurbit downy mildew in the eastern U.S., although the class of models and 

estimation methods are directly applicable to any disease or organism where long-distance 

dispersal may occur. The novelty of the class of models and estimation framework is multi-fold, 

as we describe below. 
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Previous models that describe or predict the extent of disease spread and velocity of 

epidemics assume dispersal is isotropic (Mundt et al., 2009a and 2009b; Ojiambo et al., 2017). 

This assumption usually is unrealistic because wind tends to be directional, weather gradients exist, 

host connectivity is patchy, inoculum source strength varies between field and regions, and 

landscape and terrain features influence transport and deposition of inoculum (Meentemeyer et al., 

2012; Xing et al., 2020). Anisotropy may occur at multiple spatial scales, ranging from individual 

plants (Farber et al., 2017), individual fields (Cowger et al., 2005; Mundt and Sackett 2012), the 

mesoscale (Gent et al., 2019b), and the landscape or continental scale (Mundt et al., 2009; Sutrave 

et al., 2012). Soubeyrand et al. (2007) and Rieux et al. (2014) incorporated anisotropy into their 

models for describing disease gradients resulting from dispersal due to essentially one generation 

of plant pathogenic fungi but did not consider anisotropy in epidemics over time. The models we 

derived in this study accommodate both spatial and temporal components. The anisotropic model 

framework assumes that the rate of change of disease incidence with distance from a source 

depends on the direction. The rate of change with time is independent of location in the present 

framework but could be modified to allow the rate of change of disease incidence with distance to 

depend both on direction and time provided a richer data set for parameter estimation. 

The importance of accounting for anisotropy will vary depending on the specific system 

under investigation. In the motivating example of cucurbit downy mildew used here, there was a 

small but consistent reduction in temporal prediction errors by incorporating anisotropy in disease 

spread. A reduction of multiple days is biologically relevant for aerially dispersed organisms with 

high reproductive potential and short generation times, where even a brief lag in implementing 

control measures may substantially diminish the efficacy of control measures and containment 

(Gent et al., 2013; Holmes et al., 2015; Severns et al., 2019). In settings where improvements in 
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prediction errors are inconsequential or variates related to anisotropy are unknown, an isotropic, 

one-source model can be recovered easily in our modeling framework as a special case. 

A second novel aspect of the modeling framework derived in this study is the ability to 

account for multiple inoculum sources that may each produce epidemic wavefronts. Interpretation 

of disease gradients under natural conditions has long been recognized as a difficult process due 

to the potential for asynchronous and overlapping wavefronts from multiple inoculum sources 

(Gregory, 1968; Waggoner, 1962). The latent process introduced in our modeling framework 

assumes multiple sources may exist, which might better reflect conditions in natural environments 

when an organism is naturalized and primary inoculum is dispersed (e.g., Bergamin Filho et al., 

2016; Gent et al., 2019a and 2019b; Mundt et al., 2013). The modeling framework is amenable to 

inference about the likelihood of disease outbreak at a specific location due to disease at multiple 

potential sources. This is often a basic question in invasion biology of immense importance for 

formulating effective management policies (Gent et al., 2019b; Graham et al., 2020), but a difficult 

question to address due to the stochastic nature of long-distance dispersal and technical challenges 

associated with its detection (Nathan et al., 2003). With multiple sources specified, our modeling 

approach attributes a probability to the first occurrence of the disease being associated with the 

specified sources. The simulation experiments indicate that the accuracy of source prediction can 

be influenced by the spatial proximity of the disease sources, temporal asynchrony of epidemics, 

the strength of anisotropy, and error variance. Source attribution is most accurate when sources 

are well separated in space, epidemics are temporally synchronous, and disease spread is isotropic. 

Source attribution error rates will increase when epidemic conditions vary in one or more of these 

characteristics, usually resulting in incorrect attribution of disease to the most dominant source in 

the landscape. 
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We considered examples with two sources in this work, but the approach is readily 

extendable to many sources provided a sufficiently dense data set for estimating the full set of 

models and associated latent variable process. As an example, we fit a three-source anisotropic 

model with epicenters placed in southern Florida, southern Texas, and a northern source in Ohio 

(Supporting Figure 4). The model was fit successfully, and disease in nine sentinel plots was 

attributed to the northern source. However, all but one of these plots were located far south of the 

source location. Further, the coefficient of the estimated time parameter in this model for the 

northern source was negative, resulting in a contracting epidemic front. In this specific example, 

the statistical fit of the model was improved with three sources, but the model predictions were not 

consistent with disease biology and ecology. However, the methodological aspects remain valid 

and should be suitable for other applications where sufficient data exists to avoid model overfitting. 

A salient point here is that the modeling framework estimates the likelihood that the first 

occurrence of disease originated from a specific source but does not partition total disease intensity 

to one or more sources or consider later pathogen incursions. The total amount of disease at a given 

location can be due to multiple sources with inoculum arriving at different times. Furthermore, 

most disease at a location may be due to secondary or community spread following an initial 

infection event depending on the time since that infection and local conditions (e.g., Bergamin 

Filho et al., 2016; Gent et al., 2019b; Irwin, 1999). Nonetheless, understanding which source is 

most likely responsible for the first appearance of the disease remains highly important for 

understanding potential genetic founder effects, genotypic and phenotypic traits of a newly arrived 

pathogen causing disease, and planning mitigation strategies. 

In the motivating example of cucurbit downy mildew, there is speculation and 

circumstantial evidence that inoculum sources outside of Florida may be important for disease in 
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more northern latitudes in the U.S. (Cohen et al., 2015; Ojiambo et al., 2015). Greenhouse 

cucumber production has been postulated as a possible alternate source of inoculum responsible 

for outbreaks of cucurbit downy mildew in the Great Lakes region (Holmes et al., 2015; Naegele 

et al., 2016; Ojiambo et al., 2015). Downy mildew can occur at damaging levels in greenhouse-

grown cucurbits (Cohen et al., 2015), and thus winter and spring cucurbit production in protected 

cultivation in the Great Lakes region (Papadopoulos and Gosselin 2007) could be a possible source 

of inoculum (Cohen et al., 2015; Ojiambo et al., 2017). Definitive evidence for this hypothesis has 

been elusive, though (Holmes et al., 2015). 

The present data set and analysis do not provide evidence of an annually occurring, 

alternate source of P. cubensis in northern latitudes. In certain years downy mildew was observed 

in the Upper Midwest in June before the expected occurrence of a disease wavefront originating 

from southern Florida. However, two-source models with an observed or imputed alternate source 

placed in the Great Lakes region generally had the largest prediction errors and, in some cases, 

these errors were indeed so massively. We explored various spatial placements of alternate sources 

in northern latitudes (north, south, east, and west of Lake Erie) and timings for their appearance 

based on when sporangia of P. cubensis may be in the air (Granke and Hausbeck 2011; Granke et 

al., 2014). None of the observed or imputed sources led to appreciable improvements in prediction. 

Given the sparsity of the present data sets, absence of disease reports from greenhouses in the 

Cucurbit Downy Mildew ipmPIPE system, and our restriction of disease to the first planting of 

cucurbits, we caution that a lack of evidence for a second source in northern latitudes does not 

prove that one does not exist. 

We did find support for an alternate inoculum source on the western edge of the Gulf of 

Mexico. This is perhaps unsurprising given that hosts of P. cubensis are present year-round in 
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frost-free areas along the southern Gulf Coast (Holmes et al., 2015). Depending on seasonal wind 

direction, the southwestern source is predicted to be a source for downy mildew in the southern 

plains, lower Midwestern states, and certain other regions of the southeastern U.S. Separate 

spatiotemporal analyses also suggest that inoculum sources in the southern U.S. outside of Florida 

may be responsible for disease outbreaks in more northern latitudes (Ojiambo and Holmes, 2011). 

In all years, predicted wavefronts from the southwestern source and Florida overlapped as early as 

May to June, potentially resulting in population admixture. Genetic evidence suggests that 

populations of P. cubensis in Florida may be differentiated from populations in Texas and certain 

other states (Quesada-Ocampo et al., 2012). A partial explanation for this genetic differentiation 

may be the presence of distinct overwintering populations and epidemic trajectories of downy 

mildew on the western and eastern edges of the Gulf of Mexico. 

The multiple source modeling framework we present is most useful for posthoc analysis of 

epidemics rather than prediction. This is because parameter estimation requires an iterative 

procedure based on the known distribution of disease, which precludes prediction during an active 

epidemic. This has no bearing on one-source models, with or without anisotropy, which our 

analyses suggest may be adequate in some situations. 

We introduced anisotropy in disease spread through the functions D8 that are estimated 

from prevailing wind directions at the epicenters. Wind direction and velocity at a primary 

inoculum source are associated with the shape of disease gradients when measured at the scale of 

individual or multiple fields (Rieux et al., 2014; Sackett and Mundt 2005). Wind speed and 

direction are also predictive of disease transmission of aerially dispersed pathogens at the 

mesoscale (Gent et al., 2019) and landscape-level (Sutrave et al., 2012). At these scales and the 

scales we evaluated, wind direction alone is only a simple correlate of a complex biophysical 
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process that may act along the entire path of dispersal (Allen-Sadler et al., 2019; Aylor 2003; 

Holmes et al., 2015; Ojiambo et al., 2015). More fundamentally, anisotropy in the early stages of 

an epidemic appears to be important for dispersal patterns that persist throughout the entire 

epidemic. It is unclear whether this observation is idiosyncratic to these particular data sets or 

suggestive of a more fundamental process of epidemic spread being heavily affected by properties 

of the initial disease epicenter. 

We also point out that many other functions could be used to introduce anisotropy and van 

Putten et al. (2012) provide several useful statistical alternatives that do not explicitly consider 

wind. As we discussed above, physical process models could better capture anisotropy due to 

environmental factors but at the expense of greater data and computational requirements (Allen-

Sader et al., 2019). Similarly, knowledge of host presence and their disease status in the landscape 

and more intensive placement and sampling of sentinel plots could enable one to develop time-

varying anisotropy functions not possible here due to the extent of the cucurbit downy mildew data 

sets. Despite these limitations, the novelty and utility of our modeling framework are that it is 

tractable for estimating the generalized location and velocity of a disease front from sparsely 

sampled data with minimal data acquisition costs. Furthermore, when multiple sources exist the 

most probable source of the initial appearance of disease can be identified. These innovations make 

this modeling and estimation framework attractive for many problems central to dispersal, ecology 

of infectious disease, and management of epidemics. 
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Tables 
 
Table 4.1. Notations used in the multi-source model. The horizontal line divides notations for 
data quantities (above) from notations for model quantities (below). In the text, subscripts i are 
appended to the data notations to indicate the corresponding quantity for the ith observation. 
Similarly, hats are placed over the model quantities to indicate estimates (e.g., cÅP). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notation Description 
?(8) ^th source location (Cartesian) 
/(8) distance to ^th source (km) 
Z(8) angle to ^th source (radians) 
& time (day of year) 
\ number of sources 
D8 ^th directional anisotropy function 
m(8) probability that disease is caused by ^th source 
Q8 ^th regression intercept 
−Y8 ^th regression parameter for time 
ℎ8(⋅) normalizing function for ^th regression model 
q(8) error term in ^th regression model 
u8( error variance in ^th regression model 

åz'(8)
'

x'(⋅) basis function approximation for ℎ8 
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Table 4.2. The mean parameter estimates and standard deviation for two-source models fit to simulated data. Two sets of 
estimates are reported corresponding to a (0,0) placement for a first source and a (2000,2000) placement for a second source. 

   Source 1 Source 2 
Start time n  s2 Intercept Time Basis   1 Basis   2 Intercept Time Basis   1 Basis   2 

True values 4.85 0.03 0.5 0 3.75 0.02 0 -1 

Synchronous 

100 
0.5 

4.849 0.030 0.498 -0.003 3.768 0.020 -0.005 -0.968 
(0.322) (0.003) (0.178) (0.175) (0.556) (0.005) (0.295) (0.313) 

1 
5.100 0.028 0.489 -0.067 4.435 0.017 -0.011 -0.79 

(0.777) (0.007) (0.383) (0.366) (6.867) (0.015) (1.003) (6.579) 

500 
0.5 

4.860 0.030 0.497 0.001 3.783 0.020 -0.001 -0.987 
(0.142) (0.001) (0.077) (0.075) (0.225) (0.002) (0.123) (0.126) 

1 
5.561 0.024 0.501 -0.189 4.032 0.016 0.005 -0.700 

(0.373) (0.003) (0.158) (0.155) (0.709) (0.007) (0.376) (0.456) 

Asynchronous 

100 
0.5 

4.860 0.030 0.505 -0.005 4.015 0.018 0.005 -0.949 
(0.334) (0.003) (0.177) (0.179) (1.655) (0.013) (0.343) (0.350) 

1 
5.117 0.028 0.514 -0.006 6.378 0.001 -0.039 -0.317 

(0.791) (0.007) (0.441) (0.390) (6.858) (0.026) (1.214) (6.007) 

500 
0.5 

4.935 0.029 0.498 0.003 3.958 0.018 -0.001 -0.931 
(0.166) (0.002) (0.075) (0.074) (0.712) (0.006) (0.158) (0.167) 

1 
5.180 0.027 0.502 0.003 8.563 -0.011 -0.014 -0.808 

(0.299) (0.003) (0.161) (0.145) (18.319) (0.017) (0.742) (18.197) 
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Table 4.3. Parameter estimates and 95% confidence intervals for one- and two-source models 
fit to 2008 data (n	=	25). In the two-source models, two sets of estimates are reported 
corresponding to a northern placement and a southwestern placement for the alternate (non-FL) 
source. No basis parameters are reported for the isotropic models, since these terms are only 
included in the anisotropic models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model (Source) Intercept ("̂!) Time (−%&!) Basis 1 ('("(!)) Basis 2 ('(%(!)) 
IOS (FL) 3.052 0.020   

 (2.451, 3.654) (0.017, 0.024) --- --- 
ITS-SW (FL) 2.943 0.021   

 (2.464, 3.421) (0.018, 0.024) --- --- 
ITS-SW (TX) 1.784 0.024   

 (0.583, 2.986) (0.017, 0.031) --- --- 
ITS-N (FL) 2.975 0.021   

 (2.370, 3.581) (0.017, 0.025) --- --- 
ITS-N (OH) 24.675 -0.089   

 (-15.374, 64.725) (-0.281, 0.103) --- --- 
AOS (FL) 4.921 0.021 -0.234 0.207 

 (4.273, 5.568) (0.017, 0.026) (-0.679, 0.212) (-0.296, 0.710) 
ATS-SW (FL) 4.887 0.021 -0.189 0.297 

 (4.287, 5.488) (0.016, 0.026) (-0.572, 0.194) (-0.293, 0.886) 
ATS-SW (TX) -18.597 0.033 6.894 18.280 

 (-22.652, -14.543) (0.033, 0.033) (3.001, 10.787) (18.023, 18.537) 
ATS-N (FL) 4.885 0.022 -0.194 0.191 

 (4.241, 5.528) (0.017, 0.026) (-0.608, 0.219) (-0.264, 0.647) 
ATS-N (OH) 7.780 -0.009 5.089 -0.475 

 (-117.549, 133.110) (-0.562, 0.543) (-19.883, 30.062) (-10.783, 9.833) 
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Table 4.4. Parameter estimates and 95% confidence intervals for one- and two-source models 
fit to 2009 data (n	=	65). In the two-source models, two sets of estimates are reported 
corresponding to a northern placement and a southwestern placement for the alternate (non-FL) 
source. No basis parameters are reported for the isotropic models, since these terms are only 
included in the anisotropic models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model (Source) Intercept ("̂!) Time (−%&!) Basis 1 ('("(!)) Basis 2 ('(%(!)) 
IOS (FL) 4.524 0.014   

 (3.744, 5.304) (0.010, 0.018) --- --- 
ITS-SW (FL) 4.194 0.016   

 (3.516, 4.873) (0.012, 0.019) --- --- 
ITS-SW (TX) 5.092 0.009   

 (4.153, 6.032) (0.004, 0.015) --- --- 
ITS-N (FL) 2.921 0.023   

 (2.466, 3.377) (0.020, 0.026) --- --- 
ITS-N (OH) 7.795 -0.007   

 (5.453, 10.137) (-0.020, 0.005) --- --- 
AOS (FL) 8.531 0.014 2.555 -2.334 

 (7.262, 9.799) (0.010, 0.019) (1.153, 3.958) (-3.758, -0.910) 
ATS-SW (FL) 8.179 0.014 2.028 -1.636 

 (7.011, 9.347) (0.010, 0.018) (0.736, 3.319) (-2.968, -0.304) 
ATS-SW (TX) 5.609 0.027 5.328 -3.062 

 (4.515, 6.704) (0.017, 0.036) (4.603, 6.054) (-4.714, -1.409) 
ATS-N (FL) 4.873 0.021 -0.599 1.424 

 (4.020, 5.726) (0.017, 0.024) (-1.434, 0.236) (0.556, 2.293) 
ATS-N (OH) 9.148 -0.005 0.308 -0.396 

 (7.277, 11.019) (-0.015, 0.004) (-0.089, 0.706) (-0.818, 0.026) 
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Table 4.5. Parameter estimates and 95% confidence intervals for one- and two-source models 
fit to 2010 data (n	=	28). In the two-source models, two sets of estimates are reported 
corresponding to a northern placement and a southwestern placement for the alternate (non-FL) 
source. No basis parameters are reported for the isotropic models, since these terms are only 
included in the anisotropic models. In this year, no alternate source model is estimated for the 
southwest location, as nearly all data points are attributed to the FL source during model fitting. 

 

 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 

Model (Source) Intercept ("̂!) Time (−%&!) Basis 1 ('("(!)) Basis 2 ('(%(!)) 
IOS (FL) 3.433 0.017   

 (2.200, 4.665) (0.011, 0.024) --- --- 
ITS-SW (FL) 3.564 0.016   

 (2.381, 4.747) (0.010, 0.023) --- --- 
ITS-N (FL) 4.337 0.011   

 (3.342, 5.331) (0.005, 0.017) --- --- 
ITS-N (NY) 5.363 0.004   

 (1.612, 9.115) (-0.015, 0.023) --- --- 
AOS (FL) 4.967 0.020 0.226 -0.129 

 (3.116, 6.817) (0.009, 0.032) (-0.475, 0.927) (-0.814, 0.557) 
ATS-SW (FL) 5.218 0.019 0.292 -0.053 

 (3.384, 7.051) (0.007, 0.030) (-0.388, 0.972) (-0.743, 0.636) 
ATS-N (FL) 5.745 0.015 0.364 -0.268 

 (4.536, 6.955) (0.007, 0.022) (-0.081, 0.809) (-0.680, 0.144) 
ATS-N (NY) 10.675 -0.014 -0.040 0.559 

 (5.278, 16.073) (-0.040, 0.012) (-0.509, 0.429) (-0.565, 1.684) 
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Table 4.6. Root mean square errors of time and distance for isotropic and anisotropic one-
source models. The source location and time of appearance, shown in the table, are the earliest 
occurrences among all sentinel plots in the data for the corresponding year. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Florida source Isotropic Anisotropic 
Year 
(n) 

County, State Date Time 
(days) 

Distance 
(km) 

Time 
(days) 

Distance 
(km) 

2008 
(25) 

Collier, FL 02-18 12.38 271.73 11.62 273.61 

2009 
(65) 

Miami-Dade, FL 03-23 26.14 443.78 24.79 411.62 

2010 
(28) 

Alachua, FL 03-24 24.44 325.09 23.50 392.40 
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Table 4.7. Root mean square errors of time and distance for isotropic and anisotropic two-source models for several alternate 
source locations. The other of the two sources is placed in Florida in the same location and time as in the one-source model. 

 Alternate (non-FL) source Isotropic Anisotropic 
Year (n) County, State Date Time (days) Distance (km) Time (days) Distance (km) 

2008 (25) Vernon, LA 06-12 9.61 318.11 12.42 170.04 
 Brazos, TX 05-06 9.88 238.26 9.57 237.38 
 Hidalgo, TX 05-06 9.61 236.70 10.36 240.88 
 Sandusky, OH 07-20 11.20 244.74 30.42 267.16 
 Huron, OH 06-03 45.95 300.67 61.31 280.83 
 Niagara, NY 06-03 17.68 229.13 124.26 153.92 

2009 (65) Payne, OK 06-16 26.23 379.49 21.14 356.59 
 Brazos, TX 05-07 47.29 452.58 35.08 669.44 
 Hidalgo, TX 05-07 23.48 361.31 23.12 360.34 
 Huron, OH 06-05 81.24 365.92 88.36 344.33 
 Sandusky, OH 06-04 1676.48 390.29 151.06 370.96 
 Niagara, NY 06-04 20517.83 411.95 28.40 245.95 

2010 (28) Brazos, TX 07-12 25.01 300.38 25.27 374.55 
Brazos, TX 05-07 24.54 294.76 24.79 367.55 

 Hidalgo, TX 05-07 24.37 315.55 24.84 391.08 
 Wayne, OH 07-03 57.03 251.97 109.26 314.68 
 Sandusky, OH 06-04 2492.48 270.42 61.12 295.33 
 Niagara, NY 06-04 52.75 200.48 24.03 192.53 
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Figures 
 

 

 

Figure 4.1. Depiction of data representation. A single location ! is shown relative to three 
source points !("), !($), and !(%), and the polar coordinates #$("), %(")&, #$($), %($)&, and 

#$(%), %(%)& label the distances and angles to each source. 
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Figure 4.2. The locations of observations from one simulation for κ = 5, σ2 = 0.5 and 1. The 
results are shown for temporally synchronous and asynchronous epidemics.  The x and y-axis 
scales are set to -500 and 5000 for better visualization. 
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Figure 4.3. Estimated probability of disease source for each of the n = 250 observations in 
individual, representative simulations with κ = 5, σ2 = 0.5 and 1.  Results are shown for 
temporally synchronous and asynchronous epidemics. 
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Figure 4.4. Results from a simulation experiment with n = 250; κ = 5, two levels of error 
variance (σ2), and temporally synchronous or asynchronous epidemics.  The histogram 
summarizes the mean proportion of disease correctly assigned to the true source over 1000 
simulations. 
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Figure 4.5. Disease reports from 2008 to 2010 plotted by location, reported symptom date, and 
plot type. 
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Figure 4.6. Time-of-occurrence prediction errors for predictions from isotropic and 
anisotropic one- and two-source models fit to data from sentinel plots in 2008: with contours 
representing estimated disease front over time according to the models. The two-source models 
were each fit with two alternate (non-FL) source locations: a northern and a southwestern location. 
Each panel shows results according to a different model: isotropic one-source (IOS); isotropic two-
source (ITS); anisotropic one-source (AOS); and anisotropic two-source (ATS). 
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Figure 4.7. Time-of-occurrence prediction errors for predictions from isotropic and 
anisotropic one- and two-source models fit to data from sentinel plots in 2009: with contours 
representing estimated disease front over time according to the models. The two-source models 
were each fit with two alternate (non-FL) source locations: a northern and a southwestern location. 
Each panel shows results according to a different model: isotropic one-source (IOS); isotropic two-
source (ITS); anisotropic one-source (AOS); and anisotropic two-source (ATS). 
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Figure 4.8. Time-of-occurrence prediction errors for predictions from isotropic and 
anisotropic one- and two-source models fit to data from sentinel plots in 2010: with contours 
representing estimated disease front over time according to the models. The two-source models 
were each fit with two alternate (non-FL) source locations: a northern and a southwestern location. 
Each panel shows results according to a different model: isotropic one-source (IOS); isotropic two-
source (ITS); anisotropic one-source (AOS); and anisotropic two-source (ATS). 
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Supplemental Tables 
 

Table S4.1. The mean parameter estimates and standard deviation for two-source models fit to simulated data. Two sets of estimates 

are reported corresponding to a (0,0) placement for a first source and a (2000,2000) placement for a second source 
   Source 1 Source 2 

Start time n  s2 Intercept Time Basis   1 Basis   2 Intercept Time Basis   1 Basis   2 
True values 4.85 0.03 0.5 0 3.75 0.02 0 -1 

Synchronous 

100 
0.5 

4.862 0.03 0.507 -0.007 3.797 0.019 0.011 -0.985 
(0.216) (0.002) (0.13) (0.124) (0.348) (0.003) (0.2) (0.202) 

1 
5.291 0.026 0.493 -0.119 4.009 0.018 0.026 -0.596 

(0.585) (0.005) (0.252) (0.253) (1.193) (0.011) (0.626) (0.914) 

500 
0.5 

4.869 0.03 0.504 -0.006 3.787 0.019 0.001 -0.986 
(0.103) (0.001) (0.054) (0.055) (0.155) (0.002) (0.096) (0.096) 

1 
5.691 0.023 0.499 -0.219 3.985 0.017 0.011 -0.699 

(0.204) (0.002) (0.118) (0.104) (0.523) (0.005) (0.277) (0.33) 

Asynchronous 

100 
0.5 

4.889 0.03 0.498 0.003 3.943 0.018 0.002 -0.949 
(0.221) (0.002) (0.123) (0.121) (1.052) (0.008) (0.221) (0.245) 

1 
5.227 0.027 0.498 0.001 6.771 -0.005 -0.006 0.167 

(0.516) (0.004) (0.263) (0.233) (13.537) (0.021) (0.934) (13.342) 

500 
0.5 

4.987 0.029 0.501 0.004 4.027 0.017 -0.002 -0.931 
(0.127)  (0.001)   (0.054)   (0.050) (0.55) (0.004) (0.126) (0.126) 

1 
5.201 0.027 0.496 0.001 9.534 -0.018  -0.010 -0.888 

(0.207) (0.002) (0.109) (0.094) (12.000) (0.014) (0.485) (11.952) 
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Supplemental Figures 
 

 
Figure S4.1. The locations of observations from one simulation for ! = 2,  "!= 0.5 and 1. The 
results are shown for synchronous and asynchronous start times. The plus signs, circles, and 
triangles represent the sources, the locations attributed to the first source, and the locations 
attributed to the second source respectively. The points are color-coded based on the day of the 
year. The x and y graph limits are set to -500 and 5000 for better visualization. 
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Figure S4.2. The estimated probabilities of the two sources from one simulation for # = 2, $"= 
0.5 and 1. The results are shown for synchronous and asynchronous start times. 
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Figure S4.3. The mean proportion of disease correctly assigned to the true source from 1000 
simulations for # = 2,  $"= 0.5 and 1. 
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Figure S4.4. Prediction errors and wave front contours from a three-source model fit to the 
2009 data. Alternate sources are placed in both the southwest and northern regions; the precise 
locations are those that yielded the best fits for two-source models. 
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Figure S4.5. Predicted versus observed times of disease occurrence in 2008 for each model shown 
in Figure 4.6. 
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Figure S4.6. Predicted versus observed times of disease occurrence in 2009 for each model shown 
in Figure 4.7. 
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Figure S4.7. Predicted versus observed times of disease occurrence in 2010 for each model shown 
in Figure 4.8. 
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Figure S4.8. Predicted time versus residuals of disease occurrence in 2008 for each model shown 
in Figure 4.6. 
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Figure S4.9. Predicted time versus residuals of disease occurrence in 2009 for each model shown 
in Figure 4.7. 
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Figure S4.10. Predicted time versus residuals of disease occurrence in 2010 for each model shown 
in Figure 4.8. 
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Details on Expectation-Maximization (EM) Algorithm Estimation Procedure 

Let %&($), … , &(&)) denote the epidemic source locations for each * = 1,… ,	with	&(') ∈ 3(. Now 

an arbitrary location & ∈ 3( is associated with 4 sets of polar coordinates 

%5($), 6($)), … , %5(&), 6(&)) where the *th polar coordinate pair indicates the distance 5(')and 

angle 6(') to the *th source point &('). Applying the model framework given in the main paper to 

each set of coordinates yields the collection of velocity models  

(1)                        log :1 + )(")

*"+,(")-
< = −>'? + ℎ'%6

('))       *	 = 	1, … , 4                                                              

Now, if multiple sources are present, any given location could be subject to disease exposure from 

as many as 4 wavefronts moving simultaneously. Yet, depending on conditions, the movement 

patterns of the wavefronts, and relative distances to each epicenter, an infection event at any 

particular time and location is attributable to the different sources with varying probability. In other 

words, disease at particular locations is more likely due to certain sources rather than others. To 

accommodate this intuition, a latent process A is introduced that indicates the relative probabilities 

of disease associated with each of the 4 sources, and the collection of models given in Equation 

(1) describe (5, 6, ?) conditional on the possible values of A.  

(2)                                      D&×$ ∼ Multinomial%F($), … , F(&))    

(3)                                      log :1 + )(")

*"+,(")-
< = −>'? + ℎ'%6

('))    if  A' = 1  

 We propose an estimation procedure wherein velocity models are fit using regression 

methods conditional on known G'. The functions G' introduce anisotropy in the model. In many 

applications, known variables drive anisotropy, so it is plausible to estimate G' from covariate 

information or secondary data sources. 



   
 

219 
 

 The velocity models (Equation 1) are fitted conditional on G' to disease occurrence data 

(presence or absence) of the form H = IJ5/
($), 6/

($)K, … , J5/
(&), 6/

(&)K, ?/L
/0$

1
 indicating the 

locations and times of the first observed disease case. For the purpose of exposition, suppose one 

is fitting only the *th model: consider just the data J5/
('), 6/

('), ?/K and assume M(A/ = *) = 1. 

Now, adding an offset N' and Gaussian error term O/
(') to Equation 1 yields the statistical model 

(4)                                    log P1 + )$
(")

*"2,$
(")3
Q = N' −>'?/ + ℎ'J6/

(')K + O/
(') 

where ϵ/
(') ∼ S(0, σ'

") and V	 = 	1, … , W. Under this multiple source situation, the complete data 

can be given as X = ID4, J5/
($), 6/

($)K, … , J5/
(&), 6/

(&)K, ?/L
/0$

1
, where D4 ∈ {0,1}& for all V	 ∈

{1, … , W} with only one 1 rest all 0's in each D4. {D4}/0$1  are considered as the {unobserved data}. 

The source with which the V-th location is principally associated with is given by D4 by taking the 

value 1. The unknown parameter set is given by Θ = \N' , >' , ℎ' , $'
", F(')]

'0$

&
. The likelihood of 

the parameters Θ given the complete data X is given by  

(5)             ℒ(Θ|X) = ∑ ∏ bc Plog P1 +
)$
(")

*"2,$
(")3
Q − N' +>'?/ − ℎ'J6/

(')K, $'
"Qd

5(6$"0$)
1
/0$

&
'0$  

where c(&, $") is the probability density function of a Gaussian random variable with mean zero 

and variance $" evaluated at value &. The log-likelihood of the parameters Θ given the complete 

data X is given by  

(6)                l(Θ|X) = ∑ e(A/' = 1)∑

⎣
⎢
⎢
⎢
⎢
⎡

−

789:;$<
%$
(")

&"'($
("))

=>?"<@"A$>B"2,$
(")3C

*

"D"
*

⎦
⎥
⎥
⎥
⎥
⎤

1
/0$

&
'0$  

The expected log-likelihood of the parameters Θ given the complete data X is given by  
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(7)              l[l(Θ|X)] = −∑ ∑
E$
(")

D"
* olog P1 +

)$
(")

*"2,$
(")3
Q − N' +>'?/ − ℎ'J6/

(')Kp

"

&
'0$

1
/0$  

where, F/
(') = l(A/' = 1|H), the probability of V-th location being principally associated with the 

*-th source (V ∈ {1, … , W}, * ∈ {1, … , 4}). The Expectation-Maximization (EM) algorithm is an 

iterative algorithm which iterates between the expected log-likelihood and maximizing the 

expected log-likelihood.  

 The maximization of the complete log-likelihood in Equation 7 can be broken down into 

4 minimization problems involving weighted least squares problems -  

(8)         l'(N' , >' , ℎ' , $'
") = −∑

E$
(")

D"
* olog P1 +

)$
(")

*"2,$
(")3
Q − N' +>'?/ − ℎ'J6/

(')Kp

"

1
/0$  

 The minimization of weighted least squares loss function in Equation (8) leads to estimates 

of N', >' and ℎ' given prior estimates of $'" and IF/
(')L

/0$

1
. Estimates of N', >' and ℎ' are easily 

computed using semiparametric regression. Let q$(⋅), … , qF(⋅) denote a set of s basis functions. 

Now, rewriting Equation 4 we obtain  

(9)      log P1 + )$
(")

*"2,$
(")3
Q 	= N' + (−>')?/ + t$

(')q$J6/
(')K + ⋯+ tF

(')qFJ6/
(')K + O/

(') 

 The weighted least squares (WLS) solution to Equation (9) with weights given by 

IF/
(')/$'

"L
/0$

1
, subsequently yields estimates of N'w ,>'x  and ℎ'x = ∑ tG

(')x
G qG for each * = 1,… , 4. 

The maximum likelihood estimate of $'" becomes  

(10)              $'"x = ∑ FH
(')x olog P1 +

)$
(")

*"2,$
(")3
Q − N'w +>'x?/ − ℎ'xJ6/

(')Kp

"

1
/0$  
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The estimate of IF/
(')L

/0$

1
 given the estimates N'w ,>'x,ℎ'x,$'

"x, and IF/
(')L

/0$

1
, the maximum 

likelihood estimate of IF/
(')L

/0$

1
 becomes  

(11)               FH
(')x =

I;89:;$<
%$
(")

&"'($
("))

=>?"J<@"K A$>B"K2,$
(")3,D"

*K=E$
(")

∑ I;89:;$<
%$
(")

&"'($
("))

=>?"J<@"K A$>B"K2,$
(")3,D"

*K=E$
(")+

",-

 

 Finally, this estimation strategy is extended to the full collection of 4 models by accounting 

for the latent variables A/ that attribute each of the V-th data points to one of the 4 sources. 

Formally, the joint likelihood of the data arising from Equations (2) and (3) is maximized with 

respect to the parameters F(') ∈ 3N, t' ∈ 3F<(, and $'" for *	 = 	1, … , 4. The EM algorithm is 

used to iteratively update estimated multinomial probabilities FH
($)x ,… , FH

(&)x  for each data point in 

alternation with fitting the regression models in Equation 9 using the estimate FH
(')x  as a regression 

weight for the V-th data point in fitting the *-th model. In detail, the iterations are given by: 

1.  Initiate FH
(')x  as the weight of Vth data-point to be associated with *th source, where 

∑ FH
(')x&

'0$ = 1. 

2. Compute/update the estimates %N'w ,>'x,ℎ'x,$'
"x)
'0$

&
 by fitting each of the models in 

Equation 9 with weights FH
(')x  for the Vth data point and the *th model. 

3.  Update FH
(')x  by  

(12)               FH
(')x =

I;89:;$<
%$
(")

&"'($
("))

=>?"J<@"K A$>B"K2,$
(")3,D"

*K=E.
(")O

∑ I;89:;$<
%$
(")

&"'($
("))

=>?"J<@"K A$>B"K2,$
(")3,D"

*K=E.
(")O+

",-
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where c(&, $") is the probability density function of a Gaussian random variable with mean zero 

and variance $" evaluated at value &. 

4. Repeat steps 2-3 until convergence. 

 A simple heuristic for the initialization step is to use as FH
(')x  the estimated probabilities 

obtained by logistic regression of an indicator of whether the *th source is closest on the variables 

5($)/G$y%6
($)), … , 5(&)/G'%6

(&)). We note that an isotropic model with one or many sources can 

be recovered within this framework as a special case by fixing G'(&) = 1/2 for & ∈ [0,2{], with 

the consequence that ℎ' ≡ 0. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
 

223 
 

CHAPTER 5  

Conclusion 
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 A better understanding of the impacts of epidemic control on cucurbits is vital for 

developing efficient control programs. Without this knowledge, control programs risk being 

ineffective at informing timely initial fungicide application and reducing epidemic invasion. The 

current platform for monitoring, predicting, and communicating the risk of CDM outbreaks in the 

eastern United States has been beneficial; however, it is expensive to maintain, and the resources 

are often limited. In this dissertation, studies are conducted to identify ways of reducing the spread 

of cucurbit downy mildew to provide improved guidance for the current decision support platform. 

This work is highly interdisciplinary, borrowing techniques from mathematics, statistics, plant 

pathology, and network science. 

 Chapter 2 of this dissertation discusses the use of static and dynamic networks to 

characterize CDM dynamics. Based on the assumption that the field connectivity influences CDM 

spread in time and space, networks for dispersal of Pseudoperonospora cubensis and the spread 

of CDM are characterized and found to sensitive to the choice of parameters and thresholds for 

construction. Most significantly, it is shown that dynamic networks can facilitate visualization of 

the prominent pathways of disease spread, and areas that are likely to act as sources and promote 

the spread of CDM are identified. When complemented with disease scouting efforts, these results 

could be used as a decision support system to inform uncertain situations with regards to locations 

of initial disease outbreaks in the eastern United States. 

 In Chapter 3, the effects of combining centrality measures, frequency of infection, and 

probability of field infection to identify the locations for disease surveillance and management are 

quantified. More importantly, it is shown that removing locations identified as the most important 

based on betweenness centrality greatly limited the risk of disease spread. These locations located 

in Maryland, North Carolina, Ohio, South Carolina, and Virginia may inform surveillance and 



   
 

225 
 

strategies for controlling CDM in the eastern United States. In addition, these locations can be 

targeted for fungicide treatment to slow down the spread of CDM to disease-free neighboring 

cucurbit fields. 

 Chapter 4 explores two existing phenomenological models and extends them by 

incorporating anisotropy and multiple inoculum sources. Based on the data analysis from 2008-

2010, there is a small but consistent reduction in errors associated with incorporating anisotropy 

into the model regardless of the number of sources, a reduction in errors in certain years associated 

with incorporating an alternate inoculum source in the southwest. However, there is no reduction 

in errors associated with incorporating inoculum sources in the north. These results strongly 

suggest that the initial inoculum for CDM outbreaks in the continental United States is primarily 

from overwintering sources in the southern United States that are typical sub-tropical in nature. 
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APPENDIX 
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Eigenvector Centrality  
 

                                                                                                                     
 
 
 
 
 
 
 
 
 
 
                                Iteration 2                                                       Iteration 3 
 
 
 
 
 
 
 
 
 
 
 
       
       Iteration 4 
 
 
 
 
 
 
 
 
 
 
This example illustrates the calculation of eigenvector centralities for five nodes in a network 

(courtesy of Dr.  Natarajan Meghanathan's lecture notes on centrality measures). 

 
 
 
 

 

1
1
1 

                                             A          B 

⎣
⎢
⎢
⎢
⎡
0 1 0 0 0
1 0 0 1 0
0 0 0 1 1
0 1 1 0 1
0 0 1 1 0⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
1
1
1
1
1⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
1
2
2
3
2⎦
⎥
⎥
⎥
⎤

≡

⎣
⎢
⎢
⎢
⎡
0.213
0.426
0.426
0.639
0.426⎦

⎥
⎥
⎥
⎤

   

 
Normalized value 
}12+22+22+32+22=4.69    B = A/4.69  
 
 

                                                         A              B 

⎣
⎢
⎢
⎢
⎡
0 1 0 0 0
1 0 0 1 0
0 0 0 1 1
0 1 1 0 1
0 0 1 1 0⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
0.213
0.426
0.426
0.639
0.426⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
0.426
0.852
1.065
1.278
1.065⎦

⎥
⎥
⎥
⎤

≡

⎣
⎢
⎢
⎢
⎡
0.195
0.389
0.486
0.584
0.486⎦

⎥
⎥
⎥
⎤

    

 
Normalized value 
}0.4262+0.8522+1.0652+1.2782+1.0652=2.19  

 B = A/2.19 
 

                                                        A              B 

⎣
⎢
⎢
⎢
⎡
0 1 0 0 0
1 0 0 1 0
0 0 0 1 1
0 1 1 0 1
0 0 1 1 0⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
0.195
0.389
0.486
0.584
0.486⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
0.389
0.779
1.070
1.361
1.070⎦

⎥
⎥
⎥
⎤

≡

⎣
⎢
⎢
⎢
⎡
0.176
0.352
0.484
0.616
0.484⎦

⎥
⎥
⎥
⎤

    

 
Normalized value     
}0.3892+0.7792+1.072+1.3612+1.072=2.21  

 B = A/2.21 
 

                                                         A              B                                  C       D             

⎣
⎢
⎢
⎢
⎡
0 1 0 0 0
1 0 0 1 0
0 0 0 1 1
0 1 1 0 1
0 0 1 1 0⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
0.176
0.352
0.484
0.616
0.484⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
0.352
0.792
1.100
1.320
1.100⎦

⎥
⎥
⎥
⎤

≡

⎣
⎢
⎢
⎢
⎡
0.159
0.358
0.497
0.278
0.498⎦

⎥
⎥
⎥
⎤

    

 
Normalized value  
 }0.3522+0.7922+1.12+1.322+1.12=2.21   B = A/2.21 converges 
 
 

Eigenvector centrality 

⎣
⎢
⎢
⎢
⎡
0.176
0.352
0.484
0.616
0.484⎦

⎥
⎥
⎥
⎤

1
2
3
4
5

 

Iteration 1 

2 3 

4 5
1
1
5 

C - Eigenvector centrality 
D - Node  
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Betweenness Centrality 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(1,3) represents the shortest path between 1 and 3 through node 2 (level 1) = 1. This is the only 

path connecting 1 and 3 (total path = 1). Therefore (1,3) = 1/1. This simple example illustrates the 

calculation of betweenness centralities for five nodes in a network. Node 3 has the highest 

betweenness score and is thus the most central in the network. Removing node 3 will break the 

network. 

 
 
 
 
 
 
 
 
 
 
 
 

 

BWC for node 2 BWC for node 3 
(1,3) = 1/1 (1,4) = 1/1 
(1,4) = 1/1 (1,5) = 1/1 
(1,5) = 1/1 (2,5) = 1/1 

 (2,4) = 1/1 
3 4 

Node BWC Rank 
1 0 - 
2 3 2 
3 4 1 
4 0 - 
5 0 - 

1
1
1 

For each node k, 

1. Determine the levels i.e., Level 0 = node k, Level 1 = nodes 

that are 1 hop away, Level 2 = nodes that are 2 hops away etc. 

2. Count the shortest paths from a node i to a node j through 

node k (numerator). Count other shortest paths (denominator). 

3. BWC is the sum of the number of the fractions 

2 

3 

4 5
1
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Closeness Centrality 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

 
This is a simple example to illustrate the calculation of closeness centralities of five nodes in a 

network. Node 3 has the highest closeness score and is thus the most central in the network. 

 
  
 

 

 

Node 1 2 3 4 5 Row Sum Closeness 
1 0 1 2 3 3 9 0.1111 
2 1 0 1 2 2 6 0.1667 
3 2 1 0 1 1 5 0.2000 
4 3 2 1 0 1 7 0.1429 
5 3 2 1 1 0 7 0.1429 

Rank Node Score 
1 3 0.2000 
2 2 0.1667 
3 4 0.1429 
4 5 0.1429 
5 1 0.1111 

For each node k, 

1. Count the number of hops from k to other 

nodes 

2. Get sum of (1) (Row Sum) 

3. Find the reciprocal of (2) (Closeness) 

1
1
1 
2 

3 

4 5
1


