
ABSTRACT

ZHANG, MENG. Blood Glucose Forecasting: Data-driven Model, Physiological Model, and Hybrid
Approaches. (Under the direction of Kevin B. Flores and Hien T. Tran.)

Type 1 diabetes is a chronic disease due to the patient’s pancreas producing no or little insulin.

Unfortunately, there is no cure for type 1 diabetes. Controlling blood glucose in the euglycemic

range is the main goal of developing an artificial pancreas for type 1 diabetes patients. The computer

algorithm in the artificial pancreas can determine the time and amount of insulin delivery through

the pump therapy. A computationally efficient and accurate model that can capture the physiological

nonlinear dynamics is critical for developing an artificial pancreas.

In this thesis, we find a few approaches to achieve the goal. Four data-driven models, including

deep learning architecture and regression models, were employed for the blood glucose prediction

using the real-world data obtained for 12 data contributors. A neural network model using an

encoder-decoder architecture has the most stable performance and is able to recover missing

dynamics in short time intervals. Regression models performed better at long-time prediction

horizons (i.e., 60 minutes) and with lower computational costs.

Next, we construct a complex physiological model to gain some interpretability for blood glucose

dynamics. The physiological model contains six subsystems where the blood glucose transformation

can be observable by solving the inverse problem and obtained the model parameters.

Finally, we combine the data-driven model and physiological model for a hybrid model, which

replaced one of the variables in the physiological model by reservoir computing, one of the regression

models introduced in data-driven models. In this way, the hybrid model has the interpretability

compared to data-driven models and is observed to improve the prediction accuracy compared to

the physiological model.
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CHAPTER

1

INTRODUCTION

Diabetes is a common chronic disease in which the blood glucose (BG) levels, also called blood

sugar levels, are too high. By the American Diabetes Association, 10.5% of the U.S. population had

diabetes in the year 2018. From [Sae19], the estimation of global prevalence in 2019 is 9.3%, with

one in two people going undiagnosed for a long period.

We obtain glucose from three resources: the intestinal absorption after meal intake, the decom-

position of glycogen in liver and muscles, and other noncarbohydrate compounds (i.e. gluconeoge-

nesis) transformation in the liver and kidney. The plasma-glucose concentration should be in the

range of 70 - 140 mg/dl with an empty stomach, and fall below 200 mg/dl after 2 hours digesting a

meal [Geo18]. Insulin is the hormone produced by the pancreas that helps glucose go into cells to

transfer energy or store the extra glucose (i.e. glycogenesis and lipogenesis). The causes of common

type diabetes, type 1 diabetes (T1D) and type 2 diabetes (T2D), are due to lack of production in

insulin. Without the regulation of BG levels by insulin, the increasing or decreasing BG levels may

cause hyperglycemia or hypoglycemia, which leads to irreversible body damage gradually.

In this thesis, we focus on T1D, in which the patient’s body can produce little or no insulin due to

insulin-producing pancreatic β cell destruction. T1D can be diagnosed at any age, but most patients

are diagnosed with T1D before 40. The overall male/female ratio is 1.8 according to the study of

[Ost08]. At present, the sensor-augmented pump therapy utilized insulin pumps and continuous

glucose monitoring (CGM) [Atk14] to deliver insulin for T1D treatment.

Currently, researchers are trying to combine CGM and insulin pumps with a computer algorithm

to compose an artificial pancreas (Figure 1.1). Several papers introducing machine learning or deep

learning algorithms [Oor16; Zhu18; Mid18; Mar18; Che18; MO20]while others focus on physiological

models [Mant ; Mann ; Sch18; Vic97] to build the connection between devices and predictive
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Figure 1.1 The representation of an insulin pump and CGM device from [Atk14].

algorithms. However, due to the limitation of the current knowledge and other machine errors such

as sensor noise, calibration of CGM, unannounced events, etc., the results are not satisfying. Hence,

we wish to investigate the care of T1D and develop an efficient way to manage BG levels for artificial

pancreases.

1.1 Thesis Outline

The remainder of this chapter is to introduce the motivation of the research project and describe the

data resources we obtained from the Ohio hospital. In Chapter 2, we present 4 data-driven models

and test the performance for BG level predictions, and discuss future improvements. Chapter 3 is

dedicated to constructing and testing the physiological system, where we can describe the biological

mechanisms of the BG transfer and interaction with organs and tissues. In Chapter 4, we propose a

hybrid approach to replace a compartment in the physiological model by a data-driven architecture,

and test how much it could improve the prediction results. Finally, conclusions and future works

are given in Chapter 5.

1.2 Problem Statement

Since T1D is the most severe kind of diabetes and it can not be prevented or cured, monitoring the

BG levels for T1D is significantly important. However, we can effectively treat patients with insulin
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and manage their BG levels in order to maintain normal body functions. Patients should avoid the

situations for either high BG levels (hyperglycemia), or low BG levels (hypoglycemia), where both

symptoms can lead to life-threatening phenomena in the long term due to the permanent damage

to blood vessels, nerves, and organs. Here, hyperglycemia is defined as having a fasting BG value

greater than 140 mg/dl or greater than 180 mg/dl if measured postprandial, within two hours after a

meal. Hypoglycemia is defined by low levels of BG when it falls below 60 mg/dl.

Maintaining good BG control for the T1D patient is difficult. Due to the calibration of continuous

monitoring devices and measurement noises, identifying the abnormal CGMs and providing the

proper treatment are challenging in the T1D community. An accurate prediction of BG could mitigate

the events of hyper- or hypo-glycemia. Not only it prevents the impending problems brought

from hyper- or hypo-glycemia, but also provides more possibilities for curing more patients by

establishing and enhancing individual BG prediction profiles.

Keeping those ideas in mind, we hope to improve the ability of artificial pancreas by developing

an efficient algorithm connecting the CGM signals and insulin delivery based on the daily routine

of a specific patient. We believe that the artificial pancreas with an accurate predictive model can

prevent the BG levels from going out of control. By learning from the performance of data-driven

models, i.e. machine learning and physiological models, we are going to propose a hybrid model

that utilizes the advantages from both methods. With the accuracy from the data-driven model

and interpretability from the physiological model, the hybrid model can be robust in predicting BG

levels and providing other biological variables (meal intake, insulin doses, heart rate, etc.). Hopefully,

our research project can benefit the T1D patients by managing their BG levels in the normal range

and reducing the damage of diabetes to the organs and tissues.

1.3 Data Description

We obtain the OhioT1DM Dataset [Marp ] for evaluating the BG levels prediction task. The data

contains 12 anonymous T1D data contributors with continuous eight weeks’ monitoring, including

CGM, insulin device, physiological data, and self-report life events. Those data contributors are

referred by the randomly selected ID numbers. Table 1.1 shows the contributor ID, gender, age,

device for the insulin pump therapy for each contributor.

There are 5 females and 7 males among the 12 data contributors, 3 of them with age range in

20-40 years, 8 in the age range of 40-60 years, and the rest in the age range of 60-80 years. Only 3 of

the contributors use the Medtronic 630G device, which provides better accuracy on CGM reading

compared to 530G. The usage of the fitness band is split evenly between Empatica Embrace and

Basis Peak. The difference between the two products is the category it collects. The format of data is

one XML file for each contributor with training and testing separated approximately at 80% of total

data.

The complete categories include: CGM of BG levels every 5 minutes, calibrated BG levels mea-

sured by finger sticks periodically, insulin doses (bolus and basal), self-reported events such as meal

3



Table 1.1 Detailed information of data contributors with ID, gender, age, devices.

ID Gender Age Insulin Pump Device Fitness Band
540 male 20-40 Medtronic 630G Empatica Embrace
544 male 40-60 Medtronic 530G Empatica Embrace
552 male 20-40 Medtronic 630G Empatica Embrace
559 female 40-60 Medtronic 530G Basis Peak
563 male 40-60 Medtronic 530G Basis Peak
567 female 20-40 Medtronic 630G Empatica Embrace
570 male 40-60 Medtronic 530G Basis Peak
575 female 40-60 Medtronic 530G Basis Peak
584 male 40-60 Medtronic 530G Empatica Embrace
588 female 40-60 Medtronic 530G Basis Peak
591 female 40-60 Medtronic 530G Basis Peak
596 male 60-80 Medtronic 530G Empatica Embrace

intake, exercise, sleep, work, stress, and illness, and the physiological data in fitness bands. The

categories from Basis Peak band include 5-minute aggregations of galvanic skin response (GSR),

skin temperature, air temperature, heart rate, and step count. The other fitness band Empatica

Embrace includes 1-minute aggregations of skin temperature, GSR, and acceleration. However,

there exist missing categories in some contributors as shown in Table 1.2.

Each feature is recorded with time index and quantity such as quality level, size, duration, etc.

The time is randomly shifted to a future date and month for confidential purposes. We now introduce

each feature in the data fields below:

• Acceleration: the magnitude of the acceleration of movement that was recorded in Empatica

Embrace sensor band for body movement, measured at every one minute.

• Air temperature: room temperature measured in Fahrenheit for every 5 minutes for people

who wore the Basis Peak sensor band.

• Band sleep: sleep time was recorded for people wearing Empatica Embrace devices, and the

numeric estimation of sleep quality only for people wearing Basis Peak devices.

• Basal: the continuous basal insulin injection rate, the basal rate begins at a specified time

point and continues until the next value is set, unless the temporary basal supersedes the

normal basal rate advised by a doctor, and then the size of temporary basal will replace the

normal basal rate for the duration it is given.

• Bolus: fast-acting insulin delivered before a meal or when hyperglycemia occurs, recorded

time and quantity of insulin dose.

• Bolus meal: if the bolus injection is associated with a meal event, then the carbohydrate

estimation is recorded.
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Table 1.2 List of features for each contributor in the original XML file, × represents missing records for a
certain feature,Ø represents available feature.

Features 540 544 552 559 563 567 570 575 584 588 591 596
Acceleration Ø Ø Ø × × Ø × × Ø × × Ø
Air temperature × × × Ø Ø × Ø Ø × Ø Ø ×
Band sleep × Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
Basal Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
Bolus Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
Bolus meal × × × Ø Ø × Ø Ø × Ø Ø ×
CGM Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
Exercise × Ø Ø Ø Ø × Ø Ø Ø Ø Ø Ø
Finger stick Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
GSR Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
Heart rate × × × Ø Ø × Ø Ø × Ø Ø ×
Hypo event × Ø Ø Ø Ø × Ø Ø × Ø Ø Ø
Illness × × Ø Ø Ø Ø × Ø × Ø Ø Ø
Self-report meal × × × Ø Ø × Ø Ø × Ø Ø ×
Self-report sleep × Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
Skin temperature Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
Step count × × × Ø Ø × Ø Ø × Ø Ø ×
Stress × Ø × Ø × × × × × Ø × Ø
Work × Ø Ø Ø Ø × Ø Ø Ø Ø × ×

• CGM: monitored BG levels for every 5 minutes, may be shifted forward or backward due to

the calibration.

• Exercise: self-reported exercises with the starting time and duration, the intensity indicates

the contributor’s subjective assessment of exercising exertion. On a scale of 1 to 10, 10 is the

most intense.

• Finger Stick: BG levels obtained through contributor’s drop of blood from a finger, usually for

calibration of CGM monitoring device.

• GSR: also refers to skin conduce or electrodermal activity, measured at every 5 minutes for

Basis Peak band and every 1 minute for Empatica Embrace band. The GSR represents the

sweat gland activity, the magnitude will increase after exercising.

• Heart rate: heartbeats measured every 5 minutes for those people who wore Basis Peak band.

• Hypo event: the time associated with a self-reported hypoglycemia event.

• Illness: starting time for self-reported illness event.

• Self-reported meal: includes the time and estimation size of carbohydrate intake.
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• Self-reported sleep: time and quality of self-reported sleep. Quality is represented by a num-

ber: 1 for poor, 2 for fair, and 3 for good.

• Skin temperature: body temperature measured in Fahrenheit for every 5 minutes for people

who wore the Basis Peak sensor band, and for the Empatica Embrace band is every 1 minute.

• Step count: only available for people who wore the Basis Peak, updates the magnitude of steps

a contributor moves every 5 minutes.

• Stress: time of self-reported stress event.

• Work: self-reported time duration and self-assessing intensity of working. On a scale of 1 to

10, 10 is the most intense.
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CHAPTER

2

DATA-DRIVEN MODELS

2.1 Introduction

T1D is a chronic disease with an incidence of 15 per 100,000 people worldwide between 1980 and

2019 [Mob20]. Due to the destruction of insulin-producing pancreatic β cells in T1D patients, the

pancreas can produce little or no insulin. Disruption of insulin regulation can lead to a diseased state

since this hormone helps regulate the storage and utilization of glucose obtained from carbohydrate

intake. Lack of insulin will lead to a failure to control regular glucose-insulin transformation and

can cause long-term complications including permanent damage to organs and nerves. There is no

cure for T1D, patients with this disease need lifetime exogenous insulin injections to manage BG

levels in the euglycemic range, i.e., 70-140 mg/dl with an empty stomach and below 200 mg/dl after

2 hours of digestion [Geo18].

In recent years, insulin pumps and CGM are two technologies that have been used to develop

sensor-augmented pump therapy for T1D treatment [Atk14]. Researchers try to combine CGM and

insulin pumps with a computer algorithm to compose a closed-loop system, i.e, artificial pancreas.

If the CGM goes above a certain threshold then insulin starts being delivered through the pump

and stops if BG levels are sufficiently low. A key challenge to developing this system is designing

an accurate control algorithm that predicts the trend of glucose levels and manages the insulin

amount to infuse. For this reason, the development of models that can accurately predict BG levels

is significant to the effectiveness of the artificial pancreas.

Previously, three types of models have been developed for blood glucose prediction: physiological

models, data-driven models, and hybrid models. Physiological models are mathematical models that

apply the biological understanding of glucose transformation to simulate the dynamics of the insulin-
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glucose regulation system. Data-driven models include statistical models (e.g., linear regression) and

artificial neural networks (e.g., deep learning models). Finally, hybrid models combine physiological

models with data-driven models.

In the framework of physiological models, the minimal model by Bergman et al. [Ber81] de-

scribes the metabolism of glucose and insulin regulation. Man et al. [Mant ] proposed a model

that consists of glucose-insulin systems with the effect of glucose absorption in gastro-intestinal,

endogenous glucose production, glucose utilization, and renal excretion. Later, Man et al. extended

this physiological model to include effects from physical activity [Mann ].

With regards to the data-driven models, a complete review can be found in [Wol19]. In recent

years, models attempting to predict BG levels have included Auto-Regression (AR) models [Xie18;

Nem20; Kha20; Ma20; Ant20; RR19], XG-Boost [Mid18], Grammatical Evolution (GE) [Con18], Genetic

Programming (GP) [Joe20], Neural Basis Expansion for Interpretable Time-Series Forecasting (N-

BEATS) [RF20], latent-variable (LV) based models [Sun20], Generative Adversarial Networks (GANs)

[Zhu20], shadow network and error imputation [Pav20], Convolutional Neural Networks (CNNs)

[Zhu18], and Recurrent Neural Networks (RNNs) [Mar18; Che18; Cap20; May20; Ham20; Bev20;

Dan20; Bhi20; Fre20; Yan20; Far19; Aie20; Fox18].

Hybrid models are usually designed to replace or add features simulated by the physiological

model in data-driven algorithms. In [Ber18], Bertachi et al. used a mathematical model to construct

additional features (insulin on board, carbohydrate on board and activity on board) which are then

used as inputs to artificial neural networks. Zecchin et al. [Zec14] considered the carbohydrates

absorption model as an input feature in the jump neural network to improve predictive accuracy.

The main goal of this study is to design data-driven personalized BG predictive models for T1D

that are computationally efficient, suitable for wearable devices, and perform well on common

problems that arise in the analysis of real-world data (missing data, uncalibrated data) for insulin

therapy. Here, four different types of models were developed, including deep learning algorithms

and regression models, and their performance in predicting BG levels was compared within 30 or

60 minute forecast horizons using data from 12 individual T1D patients. The two deep learning

models are Dilated Convolutional Neural Networks (DCNN) model and a Sequence to Sequence

Long Short Term Memory (Seq-to-Seq LSTM) model. The two regression models are a Multiple

Linear Regression (MLR) model and a Bidirectional Reservoir Computing (BRC) model.

This study has two main contributions: i) Models are trained and tested on a large-scale, multiple

features dataset consisting of 12 T1D data contributors. A detailed discussion of 30 and 60 minute

time horizon prediction results is provided. ii) To the best of our knowledge, the work presented

here is the first to show that a model based on linear regression can outperform state of the art

deep learning models. To this end, a novel method of constructing a multi-step linear regression

prediction model is developed.

The remainder of the chapter is organized as follows. Section 2.2 presents the current state-of-

the-art of data-driven methods specific for the BG level prediction task. Section 2.3 describes the

dataset used to evaluate the models. In Section 2.4, the four data-driven models are introduced.
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Section 2.5 presents the results followed by a discussion of the model behavior in Section 2.6. Section

2.7 provides conclusion remarks and suggests future research directions.

2.2 Related Works

Many data-driven models have been tested for near-time BG level forecasts in the diabetes research

community. In the category of regression models, the AR model proposed in [Rei07] provides BG

predictions as a linear combination of previously observed signals. A first-order AR model was

proposed in [Spa07]using time-varying parameters and was evaluated in 30 and 45 minute prediction

horizons.

Several researchers compared the AR model with other predictive models. The recursive AR with

exogenous input (ARX) model [Xie18] outperformed a vanilla LSTM, temporal convolution network,

and other regression models for the prediction of BG levels from CGM data. However, in the ARIMA

model [RR19], characterizing the movement of time series using an AR integrated (ARI) and moving

average (MA) strategy resulted in worse performance than a random forest model. In addition, the

linear model in [Bev20] resulted in poorer performance in accuracy metrics compared to LSTM

networks.

Recent work also included the combination of regression models and neural networks. An AR

Time Delayed (ARTiDe) jumps neural network model [Ant20] added the feedback connections

from the output layer to the hidden layer and time delays to each connection on an AR model. In

[Nem20], the stacked regression contained a Multilayer Perceptron (MLP), an LSTM, and a Partial

Least Squares Regression model (PLSR), and used predictions from three models to train a second-

level model. A similar stack model [Kha20] was tested on a multi-lag system. Finally, a Residual

Compensation Network (RCN) combined with an online ARMA model (RCN-ARMA) [Ma20]was

used for simulating the nonlinear trends in BG dynamics.

However, the AR models typically use only CGM data to compute the prediction recursively, and

the errors may accumulate in the prediction phase. The utilization of heterogeneous features should

be considered in the regression models [Geo12]. In addition, the regression models sometimes do

not outperform the deep learning algorithms in predicting chaotic time series tasks.

Developing models that can utilize and accurately predict heterogeneous sources of time series

data is still an active area of research. In the framework of deep learning approaches, there are a few

related studies that address the use of LSTM layers for BG predictions to avoid the gradient vanishing

problem of vanilla RNNs [Hoc97]. In [Mar18], a BG prediction model was trained with only CGM

data using multiple LSTM layers and a fully connected output layer. In [Far19], three LSTM networks

trained with a transfer learning strategy were evaluated on the Clark error grid [Cla87]. In [Aie20],

the past observations and estimated future values provided inputs for two separate LSTM networks,

which were then combined using a fully connected layer. The multiple lag strategy was applied

to multi-scale LSTM [Yan20] so the network can more effectively model the dependence between

features and CGM data. A four-layer bidirectional LSTM was introduced in [Cap20]which contained
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a look back period of time. To improve prediction accuracy, the CGM was transferred to a one-hot

encoder vector in the LSTM classification model in [May20]. Additionally, the encoder and decoder

strategy was first tested in [Fox18] for BG predictions, where Fox et al. developed multi-output deep

learning architectures by representing the inputs to a shared layer and then learning through the

use of output networks. Several sequence to sequence neural networks were tested in [Bhi20]with

LSTM or convolutional layers.

Selecting an artificial neural network and determining the model hyperparameters are crucial

steps that can affect the evaluation performance, but can also be time-consuming. For a large neural

network model, it can result in a slow training speed and a large combination of hyperparameters

to tune. This study aims to develop computational efficient models that minimize the tuning effort

and training time.

2.3 Data Processing

Available data. The OhioT1DM Dataset [Marp ]was initially provided to test the accuracy of models

for the BG prediction task in the Blood Glucose Level Prediction (BGLP) Challenge in the third and

fifth International Workshop on Knowledge Discovery in Healthcare Data. Each challenge released

information from 6 data contributors, after the competition these data were publicly available. All

12 anonymous data contributors (labeled with numbers such as 540, 544, 563, etc.) have a total

of around eight weeks of measurements from CGM, insulin therapy, physiological sensors, self-

reported events for smartphone applications, with approximately 10 days of data that were held out

for out-of-sample testing purposes; the date, month, and year were shifted randomly into the future

time to anonymize the data.

The data includes 7 males and 5 females between ages 20 and 60. The constantly worn insulin

pump (Medtronic 530G or 630G) measured the data contributors’ BG levels every 5 minutes and

the bolus and basal insulin dose injection amount; a smartphone recorded self-reported events

including carbohydrate consumption, sleep quality, illness level, stress level, hypo-event, work

intensity, and exercise duration; and fitness bands (Basis Peak or Empatica Embrace) collected

heart rate, room temperature, skin temperature, moving acceleration, step count, and galvanic

skin response (GSR). The CGM calibration is carried out every 6-8 hours per day by self-measured

fingerstick values.

Data time grid. The time grid is uniformly arranged with 5 minute intervals between each time

point for all features since the CGM data are collected every 5 minutes. The other features including

carbohydrate intake, skin temperature, acceleration, GSR, fingerstick values, and bolus insulin dose

are moved to the nearest time grid point when there exist misaligned measurements with the CGM

signals. For categorical variables such as illness and hypo-events, event occurrences are represented

by an integer value equal to 1 after moving to the corresponding time grid. The interval variables for

which features are collected in a continuous period, such as basal insulin dose, exercise duration,

and work intensity values, are filled in for the time range where data contributors had the activities.
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Data imputation. Linear interpolation for continuous variables is used to connect the endpoints

of intervals with missing values in the training data. In the test set, the CGM measurements with

large missing intervals (over 6 hours) are excluded, and forward filling is used to impute the rest

of the missing data, i.e., by carrying forward the last observation with an existing value. For the

categorical variables and interval variables, the missing values are replaced with 0 for both training

and testing data.

Features selection. The features with small incidence (the ratio of number of events to the total

length of the dataset is < 1%) were removed for the data contributor when training the predictive

models. If a categorical feature is selected for training purposes, but completely missing in the testing

set, then the feature will be added in the testing by setting all elements equal to 0. For example, if

illnesses are reported in the training set but not in the testing set, we assume the contributor does

not get ill in the testing period and set the corresponding categorical variable equal to 0. The four

data-driven models are personalized for each individual, thus each data contributor may have a

different number of features, the list of specific features used in each data contributor for all data-

driven models is in Table 2.1. For a data contributor, the same features were applied to every model.

The common features are CGM, fingerstick values, basal and bolus insulin dose, carbohydrate

consumption, GSR, and skin temperature.

Data scaling. The range of values varies extensively for each feature. Data were normalized by

subtracting the mean and dividing by the standard deviation.

Data splitting. To observe the behavior and save the best performing model, validation data

is necessary. The training set is further separated by using the last 20% of time points for valida-

tion. Thus, for the average training duration of 40 days, the last 8 days are used for validation. If

a participant has a narrower range of observations, the length of training and validation sets are

proportionally decreased. Table 2.2 shows the average length of time-series data and the miss-

ing percentage of continuous variables for training, validation and testing sets over the 12 data

contributors.

Data expansion. To increase the number of training samples, the multi-horizon method is

introduced. Previous work [Tai16] suggested that the multi-horizon strategy is accurate for short time

series forecasts. It can also control overfitting and is able to recover potential covariate relationships.

The training data of each contributor is truncated in a sliding window, moving 1 time-step forward

with a fixed window size. In this study, the fixed window size is determined by the input time length of

the bidirectional reservoir computing and deep learning models. For the multiple linear regression

model, the training data is combined with validation data in the original size.

2.4 Methods

The four data-driven models are presented, including two regression models and two deep neural

network models.

11



Table 2.1 Training features used by the 12 data contributors (dc) for the proposed models. The first column
denotes the number of data contributors for which models were developed using the features in the third
column. The second column denotes the number of features in the third column. The table is presented
from the most features to the least features.

#dc #features Feature list

1 14
CGM, fingerstick, basal and bolus insulin dose, carbohydrate consumption, GSR,
skin temperature, sleep quality, illness, work intensity, exercise duration, heart rate,
room temperature, steps

3 13
CGM, fingerstick, basal and bolus insulin dose, carbohydrate consumption, GSR,
skin temperature, sleep quality, work intensity, exercise duration, heart rate,
room temperature, steps

1 13
CGM, fingerstick, basal and bolus insulin dose, carbohydrate consumption, GSR,
skin temperature, sleep quality, work intensity, hypo-event, heart rate,
room temperature, steps

1 13
CGM, fingerstick, basal and bolus insulin dose, carbohydrate consumption, GSR,
skin temperature, sleep quality, illness, exercise duration, heart rate,
room temperature, steps

2 9
CGM, fingerstick, basal and bolus insulin dose, carbohydrate consumption, GSR,
skin temperature, acceleration

4 8
CGM, fingerstick, basal and bolus insulin dose, carbohydrate consumption, GSR,
skin temperature

2.4.1 Multiple Linear Regression Model

Due to the structure of linear regression, fitting three-dimensional data adds difficulty in solving the

inverse problem. The data expansion is omitted, and the validation set is unnecessary since there

are no hyperparameters to tune. To train a model offline and compare it with the other three models

described in the following section, we used the combination of the multi-step-ahead strategy to

generate multi-horizon predictions as shown in Figure 2.1.

The Multiple Linear Regression (MLR) model is constructed by combining multiple linear re-

gression models. In this approach, k separate linear regression models are used for k time step

ahead predictions. Each linear regression model is trained to find the relationship between training

series X t r a i n (q1(t ), . . . , qm (t )) and target vector yt r a i n (t + i ), where i = 1,2, . . . , k , X (·) is the matrix

containing m number of feature values q (t ) at time t , where for a specific data contributor, the

value m can be found in Table 2.1, and yt r a i n (t ) represents the target CGM levels at time t .

For a linear model L i , where i = 1, 2, . . . , 6 for the 30 minutes prediction task, and i = 1, 2, . . . , 12

for the 60 minutes prediction task, the relationship between coefficients βi and X i
t r a i n , yi

t r a i n for

the i-th linear model can be expressed as follows:













x1(q1) x1(q2) . . . x1(qm )
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, (2.1)
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Table 2.2 Average length and average percentage of the missing data for continuous variables for training,
validation and testing sets over 12 data contributors when the features are available. CGM represents
the continuous glucose monitoring, HR stands for heart rate, GSR is galvanic skin response, and Ts k i n ,
Tr o o m stand for the skin temperature and room temperature, respectively. For continuous variables in the
training and validation sets, the imputation method is linear interpolation. In the testing set, the forward
filling method is used for imputing missing data and the large missing intervals of CGM are removed.

Average Average percentage of missing data
Length CGM Acceleration HR GSR, Ts k i n Tr o o m

Train 10061.83 12.13% 36.48% 4.17% 20.51% 4.53%
Validation 2515.17 11.67% 44.85% 7.70% 26.47% 8.08%
Test 2896.83 8.63% 30.78% 6.75% 18.94% 7.09%

Figure 2.1 Schematic diagram of the MLR model using multi-horizon prediction, where the k = 6,12
represents the 30 or 60 minutes, respectively.

where the Equation (2.1) shows the expression of X i
t r a i nβ

i = yi
t r a i n , for a training set with total

length of n , with X i
t r a i n = [x1, x2, . . . , xn ]T , the training matrix will stay the same for all linear models’

calculations. We have βi = [β i
0 ,β i

1 , . . . ,β i
m ]

T , and yi
t r a i n = [yi+1, yi+2, . . . , yi+n ]T .

After training and obtaining the coefficients and intercepts for k linear regression models

(L1, L2, . . . , Lk ), predictions are computed by using k linear models in the testing data. To obtain the

first prediction vector with length k , the following system of equations (2.2) is used.

ŷ1 =β
1
0 + x ′0(q1)β

1
1 + x ′0(q2)β

1
2 + · · ·+ x ′0(qm )β

1
m ,

ŷ2 =β
2
0 + x ′0(q1)β

2
1 + x ′0(q2)β

2
2 + · · ·+ x ′0(qm )β

2
m ,

. . .

ŷk =β
k
0 + x ′0(q1)β

k
1 + x ′0(q2)β

k
2 + · · ·+ x ′0(qm )β

k
m ,

(2.2)

where the prediction vector is [ ŷ1, ŷ2, . . . , ŷk ], and x ′ represents the testing time series, ŷ represents

the testing target values,βi is the coefficient vector obtained from linear model L i . Additionally, x′0 is

the 12th element in the original testing series, so after excluding the first hour data in testing, it allows

to use the complete training set and the 12th row of testing matrix X t e s t (q1(t0), q2(t0), . . . , qm (t0)) to
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generate the prediction horizons for the first 30 or 60 minutes predictions.

After obtained the first prediction vector, the next row of the testing matrix (x′1) is used to calculate

the next prediction vector from ŷ2 to ŷk+1.

ŷ2 =β
1
0 + x ′1(q1)β

1
1 + x ′1(q2)β

1
2 + · · ·+ x ′1(qm )β

1
m ,

ŷ3 =β
2
0 + x ′1(q1)β

2
1 + x ′1(q2)β

2
2 + · · ·+ x ′1(qm )β

2
m ,

. . .

ŷk+1 =β
k
0 + x ′1(q1)β

k
1 + x ′1(q2)β

k
2 + · · ·+ x ′1(qm )β

k
m ,

(2.3)

This method continues to the end of the testing matrix until all future predictions in k time step

horizons are obtained. Then the performance is evaluated by comparing each prediction vector

with the corresponding labels in that time range. Thus, the performance was obtained by evaluating

the error in each prediction vector.

Next, for plotting the predicted time-series, the averaging method of the prediction at a time point

t is presented. For the 30 minutes prediction task, except the first 5 testing labels, i.e., ŷ1, ŷ2, ŷ3, ŷ4, ŷ5,

have a smaller number of predictions by MLR model, the rest testing labels should have 6 predictions

obtained for the 6 linear models. For instance, ŷ6 is first obtained from x ′0 using the 6th linear model

(L6), then obtained from x ′1 using the 5th linear model (L5), and the last prediction of ŷ6 is obtained

from x ′5 using the 1st linear model (L1). A similar procedure can describe 60 minutes prediction

horizons.

2.4.2 Bidirectional Reservoir Computing model

Reservoir computing has much success in accurately predicting multivariate time-series data [Bia18].

The core of reservoir computing is to build a network to process the measurements in a system-

independent fashion. The Bidirectional Reservoir Computing (BRC) model is constructed from

[Bia18], which introduces the encoder-decoder framework that transforms the inputs by tuning

model hyperparameters. The BRC model is constructed from three main components: a linear input

layer, a bidirectional recurrent nonlinear reservoir network, and a linear output layer, as shown in

Figure 2.2.

In the encoder part of the model, the inputs contain the list of features in Table 2.1 with a fixed

window size for a data contributor and expand the dimension by bidirectional reservoir networks,

then reduce the dimension though Principal Component Analysis (PCA) and train through a ridge

regression model.

Assuming the input time-series was truncated in 3D shape with size [m , nt p s , n f ], where m is the

length of the input time series after truncation, nt p s is the number of time points for prediction (6

or 12), and n f represents the number of features. Depending on the number of internal units nuni t

(fixed at 100 in the study), the internal weight matrix Wr e s with shape [nuni t , nuni t ] is randomly

initialized from a sparse matrix with uniformly distributed nonzero entries in [-0.5,0.5] with a

predefined density parameter. The input weight matrix Wi n with shape [nuni t , n f ] is initialized from
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Figure 2.2 Schematic diagram of the BRC model, rt is the reservoir state at time t , where rt=[
←−rt , −→rt ].

a binomial distribution with the probability for success is 0.5 and the number of events is 1.

Next, we update the weight matrices Wr e s and Wi n as defined below.

W ∗
r e s =

Wr e s
ma x (|e|)
φ

,

W ∗
i n = si np u t (2Wi n −1),

(2.4)

where e is the vector of eigenvalues of the previous Wr e s ,φ represents the spectral radius. By setting

the φ in the first equation close to 1, which is equivalent to the normalization of Wr e s obtained

from W ∗
r e s ≈

Wr e s
||Wr e s || . For the second equation in (2.4), si np u t is the input scale, then the W ∗

i n would

contain only two values: si np u t or −si np u t .

The state matrix rt at time t is combined with the two directional matrices −→rt ,←−rt , where the

forward direction −→rt with shape [m , nt p s , nuni t ] is computed by completing the loop of i from the

first element (i = 1) in the second dimension of −→r t to the end (i = nt p s ).

pt =W ∗
r e s · r

T
p +W ∗

i n ·X t (:, i , :)T + cno i s e Br e s ,

rp = (1−γ)rp + tanh(pt ),
−→rt (:, i , :) = rp ,

(2.5)

where pt stands for the state taking the input information X t at time t , cno i s e is the noise level

and Br e s represents the noise matrix. The product cno i s e Br e s is similar to the bias in other deep

learning frameworks. In the second equation, γ is a scalar that determines what proportion we want

to update by the previous state rp , where rp was initialized as a zero matrix at the begining of the

loop.

The backward direction state matrix←−rt was computed using the same method as described in

Equation (2.5) with the X t flipped in the second dimension. Then the dimension of state matrix

rt = [
−→rt ,←−rt ] reshaped to 2D with size [m × nt p s ,2nuni t ] and reduced by PCA. PCA utilized the
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advantage of Singular Value Decomposition (SVD) and output the key components by selecting

the number of singular values in the SVD to achieve dimension reduction. The number of PCA

components nP C is selected for choosing the number of large singular values of the centered matrix

r̄t (obtained by subtracting the mean value of each column of the reshaped matrix rt ) based on the

requirement of large or small size reservoir dynamics. The reduced state matrix r ∗t can be expressed

as follows:
r ∗t =UΣV T

=













u1

u2
...

unP C

























s1 0 . . . 0

0 s2 . . . 0
...

...
...

...

0 0 . . . snP C













�

v T
1 v T

2 . . . v T
nP C

�

,
(2.6)

where ui and vi represent the row vector for the singular matrix U and V , respectively, and si

represents the singular values in the diagonal matrix Σwith s1 > s2 > · · ·> snP C
> 0. After reshaping

the reduced state matrix back to 3D, the size of the state matrix is reduced from [m , nt p s , 2nuni t ] to

[m , nt p s , nP C ]. Next, the ridge module used the ridge regression and compute the intercepts and

coefficients between r ∗t ( j , 1 : nt p s −1, :) and r ∗t ( j , 2 : nt p s , :) for each j = 1, 2, 3, . . . , m , and append to

the input representation matrix Rr e p r as a row vector.

For the decoder part of the model, ridge regression reads the input representation matrix from

the encoder and transfers the information back to obtain multiple prediction horizons. By setting a

large ridge regression parameter α in Equation (2.7), the weights are balanced to avoid overfitting.

Ridge regression computes the weights w by finding the minimum solution for the input X and

output y using the following cost function:

min
w

�

||y−X w||22+α||w||
2
2

�

, (2.7)

where X and y correspond with the reshaped matrices after the PCA dimensionality reduction in

the representation module. For ridge regression in the decoder, X is the output from encoder Rr e p r ,

and y represents CGM signals shifted 30 or 60 minutes into the future.

The computational training and testing times depend on the size of the reservoir and input time

steps. The validation data is used to tune the number of input time steps and the hyperparameters

(i.e., γ, spectral radius, input scaling) for the reservoir dynamics to obtain both the efficiency and

accuracy. The details of fixed model parameters are listed in Table 2.3.

2.4.3 Dilated Convolutional Neural Network Model

WaveNet [Oor16], a deep neural network that has been used to accurately generate audio waveforms,

relies on a type of neural network layer called a dilated convolutional layer. This dilated convolution

layer is used here to build a dilated convolutional neural network (DCNN) model. The model size

is largely reduced and there are fewer hyperparameters to tune. The DCNN model is built from

16



Table 2.3 The fixed parameters in reservoir computing for individual data contributors.

Input time steps 29
Number of PCA components 50
Number of internal units in the reservoir 100
Noise level 0.01
Output time steps 6 or 12

multiple DCNN layers and two time-distributed dense layers.

DCNN layer. The DCNN model uses the strategy of combining dilated convolutions and causal

padding, where the dilated convolutions [Yu16] let the dilation rate increase multiplicatively at each

layer to achieve an exponential relationship between receptive field size and the layer number.

Let F :Z2→R be a discrete function. Let Ωr = [−r, r ]2 ∩Z2 and let K :Ωr →R be a discrete filter

size (2r +1)2. The discrete convolution operator ∗ is given below,

(F ∗K )(p ) =
∑

s+t=p

F (s )K (t ). (2.8)

Assume d is a dilation factor, the dilated convolutions ∗d can be expressed below,

(F ∗d K )(p ) =
∑

s+d ·t=p

F (s )K (t ), (2.9)

where the area of the receptive field p is expanded by increasing the dilation factor d and fixing s

and t .

In the Figure 2.3, an example is presented to visualize the advantage of the dilated convolution.

In the normal convolution (or when d = 1 in the dilate convolution), when a 3×3 discrete filter K

is chosen for a receptive field, each element of the output (top red blocks) was mapped from the

receptive field with the same size of the filter. For the dilated convolution (d = 2), each element of

the output was mapped from a larger receptive field (size 5×5), while every second column and row

(green squares) are ignored.

Then the casual padding is used to avoid using future values, where c − 1 number of 0 are

padding in front of the first neuron in the hidden layer for a c kernel size. In the Figure 2.4, it shows

an example of causal padding with kernel size c = 3, where the empty neuron (represents the value

0) is padding in front of the first blue neuron. Then the first orange neuron (labeled with 2) in the

second hidden layer takes the kernel size of values from the previous hidden layer (2 empty neurons

and a blue neuron labeled 1), and the usage of future values (second, third and fourth blue neurons)

can be avoided.

Combining those strategies, the DCNN layers can quickly expand the receptive field while

avoiding using the future knowledge. As it is shown in Figure 2.5, the information contained in

blue neurons in the first hidden layers can be received by the first orange neuron fourth layer by

17



Figure 2.3 Schematic of the normal convolution mapping and dilated convolution mapping with dilation
factor d = 2 and filter size 3×3 in [Du20].

Figure 2.4 Schematic of the causal padding with kernel size c = 3 and number of neurons is 4, where the
bottom blue neurons represent the first hidden layer, and the orange neurons are in the second hidden
layer. The line arrow presents an example of the information passes to the first neuron in the second hid-
den layer.

expanding the dilated factor in each layer.

Time-distributed layer. A dense layer calculates the output, o , using an activation function f

involving weights W and biases b, denoted by o = f (W X +b), where X is the input. Since separating

each time step for time series is necessary, a time-distributed layer is applied to each dense layer for

each time step.

As depicted in Figure 2.6, the multiple DCNN layers (kernel size= 2) with causal padding are used

and L2 regularization is applied to train the weights in each layer. In the first time-distributed layer,

the ReLu activation function is used with L2 regularization. Then, a dropout layer is used to scale

down the output, which is then input to the next time distributed layer. The second time distributed

Figure 2.5 Schematic of a 4 layers DCNN model with dilated factor d = [1,2,4,8] for each layer from
[Oor16].
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Figure 2.6 Schematic diagram of the DCNN model.

layer is used to compute the final output using a linear function with L2 regularization. The last

6 or 12 time steps are selected for computing predictions over 30 and 60 minute time horizons,

respectively. The input time series for one data contributor has the features presented in Table 2.1,

the corresponding target time series are the CGM signals shifted either 30 or 60 minutes into the

future.

The model hyperparameters including input time steps (selected from [72, 144, 288, 576]),

the number of DCNN layers (selected from [2, 3, 4]), and the number of neurons in the hidden

layers (selected from [16, 32]) are tuned by using grid search to determine the best combination of

parameters of each data contributor. The hyperparameters are selected with the best RMSE score

on the validation set and applied into the training process with the training dataset. During training,

the Adam optimizer with a 0.01 learning rate is used based on the best performance in the grid

search procedure for the selected combination of hyperparameters. The loss function used in both

training and validation is defined as follows.

Loss function. The Weighted Mean Squared Error (WMSE) is calculated by the following formula,

W M S E =
N
∑

i=1

�

( ŷi − yi )
2×

yi

M

�

, (2.10)

where yi presents the true value and ŷi stands for the predicted value at time i ∈ [0, N ]. M is a fixed

scalar, usually selected slightly larger than the maximum of the data values. Compared to the mean

squared error loss function, WMSE focuses on amplifying the error in mispredicting hyperglycemia,

which is usually underestimated in the training phase.

2.4.4 Sequence to Sequence Long Short Term Memory Model

Sequence to sequence (Seq-to-Seq) models [Sut14] use an encoder-decoder framework that can

map sequences of different lengths from input to output.

An LSTM layer is a recurrent neural network layer that contains a chain of repeating modules

(Figure 2.7) , each module contains three interacting gates: a forget gate ft , input gate it , and output

19



Figure 2.7 The schematic diagram of a single LSTM module from [Hoc97].

gate ot . The network in the LSTM layer can be explained as follows. The information from the

previous state is first computed by the sigmoid function (denoted byσ) to determine which part to

forget (forget state), then a second sigmoid function determines the information to carry on (input

gate), and lastly, the output information obtained by the output gate from the third sigmoid function.

The internal memory Ct combines the input state and drops the forgotten information from the old

cell C̃t , and the hidden state ht is updated through an hyperbolic tangent activation function that

is applied to a combined vector consisting of the internal memory and the information from the

output gate. The mathematical expressions for these terms can be found in the following equations,

ft =σ(Wf · [ht−1, xt ] + b f ),

it =σ(Wi · [ht−1, xt ] + bi ),

C̃t = tanh(WC · [ht−1, xt ] + bC ),

Ct = ft �Ct−1+ it � C̃t ,

ot =σ(Wo · [ht−1, xt ] + bo ),

ht = ot � tanh(Ct ),

(2.11)

where · represents matrix multiplication and � stands for Hadamard product (element-wise prod-

uct).

The Seq-to-Seq LSTM model applies the encoder-decoder strategy using LSTM layers. In the

encoder model, the encoder LSTM takes the input source (training time-series) and outputs the

hidden state ht and internal memory Ct at a time t as an encoded vector. Then the encoded vector

becomes initial states in the decoder LSTM. For the decoder model, the decoder LSTM also takes

a mock target as the decoder input, and produces the output and state vector (hidden state and
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internal memory). Last, the linear dense layer is applied to the decoder outputs for completing the

decoder model. The schematic diagram is shown in Figure 2.8.

Figure 2.8 Schematic diagram of the Seq-to-Seq LSTM model.

A window of 6 hours with the training features listed in Table 2.1 is provided for the input series,

and the decoder input series is the CGM signals shifted forward by one time step with zero padding

used in the first time step. For time t , the decoder input series which works as a mock target contains

[0, y (t ), y (t +1), . . . , y (t +k −1)], and the target decoder output is [y (t ), y (t +1), y (t +2), . . . , y (t +k )],

for the time-series y representing the future 30 or 60 minutes of CGM signals at time t from the

training and validation. In the predicting phase, the testing time series is taken by the encoder model

with one time step at a time. Then the encoder model outputs the state vector which becomes the

input state for the decoder model. The decoder model iteratively computes each element in the

prediction vector by updating from the previous predicted value and output states. The model uses

an LSTM layer with 128 recurrent units for both the encoder and decoder and summarizes the

output through a dense layer. The behavior of the validation set is monitored by the mean squared

error and the training is stopped if the loss function is stable after 8 epochs. The best performing

model is applied to the time series data in the test set to obtain predictions.

2.4.5 Evaluation Metrics

The predictive accuracy for BG levels in training, validation, and test data are evaluated by RMSE

and MAE defined below. During the evaluation, the imputed value of CGM in training, validation

and test data are excluded. In the test data, the first hour is excluded for utilizing the full length of
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training and validation data in the training procedure.

R M S E =
Ç

1/N
∑N

i=1( ŷi − yi )2, (2.12)

M AE = 1/N
∑N

i=1 | ŷi − yi |, (2.13)

where the ŷi , yi are the predicted value and true value for time index i , respectively. N is the total

number of data points evaluated. We note that the RMSE is more sensitive to outliers than the MAE.

2.5 Results

The evaluation tables for 30 and 60 minute forecast horizons are shown in Tables 2.4 and 2.5 for

four data-driven models. All results are averaged over all data contributors. We observe that the

Seq-to-Seq LSTM model performed the best in 30 minute ahead predictions and the MLR model

performed the best in 60 minute ahead predictions. An example of a prediction plot for each model,

using the testing set from one data contributor, is depicted in Figures 2.9 and 2.10.

Table 2.4 Table of average RMSE and MAE evaluations within a 30 minute forecast horizon for 4 proposed
data-driven models. The best testing performance is labeled in bold.

RMSE (mg/dl) MAE (mg/dl)

Model Train Validation Test Train Validation Test
MLR 14.16 - 18.39 9.87 - 11.76
BRC 10.82 19.29 24.49 7.74 13.50 17.43
DCNN 21.41 23.55 26.96 15.60 16.76 18.25
Seq-to-Seq LSTM 10.02 13.83 17.52 7.11 9.26 10.91

Table 2.5 Table of average RMSE and MAE evaluations within a 60 minute forecast horizon for 4 proposed
data-driven models. The best testing performance is labeled in bold.

RMSE (mg/dl) MAE (mg/dl)

Model Train Validation Test Train Validation Test
MLR 21.39 - 24.58 15.56 - 17.42
BRC 13.95 24.93 28.79 10.12 18.10 20.75
DCNN 35.84 36.98 38.97 27.37 27.96 29.38
Seq-to-Seq LSTM 18.22 22.40 26.44 13.96 16.54 18.43

The two evaluation metrics (RMSE and MAE) show a large difference among the four data-driven
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models and the shift operator, likely reflecting the fact that CGM signals have large time-varying

fluctuations. We found that the four data-driven models had difficulty capturing the extreme values

in the training, validation, and testing sets. Additionally, we observed that the 60 minute time horizon

predictions were less likely to capture the extreme values compared to the 30 minute predictions,

especially when using the deep learning models. The DCNN model is trained on a weighted loss

function, which may lead to more fluctuations in the predictions when the CGM signal is smooth.

Two encoder-decoder models were trained, namely the BRC and Seq-to-Seq LSTM models.

Compared with other models in the same category (regression or deep learning), the model with

encoder-decoder framework has more variance than the input CGM features, while the MLR and

DCNN mainly follow the original CGM inputs with variations due to the model structure. With

regards to the ability to accurately predict missing data, we found that the encoder-decoder models

produced predictions that were similar to the fluctuating trends around the missing regions, whereas

the other two models stayed flat especially in 60 minutes prediction (see Figures 2.9 and 2.10 with

x-axis labeled with the red triangles around day Jan. 21).

Comparing computational efficiency, the DCNN, Seq-to-Seq LSTM, BRC, and MLR models took

an average of 30 minutes, 10 minutes, 20 seconds, and 3 seconds for training each data contributor,

respectively. These results strongly suggest that the MLR model is significantly faster to train than

deep learning models for the complex multivariate time series data considered in this work.

The differences in performance in the training, validation, and testing sets for the four data-

driven models may have resulted from overfitting. In practice, the training performance should

always be better than performance on the validation or testing sets. Due to the different imputation

methods in the validation and testing sets, the evaluation results indicate that the imputation

method may affect the prediction performance according to the model type. For the BRC model,

the training error is significantly lower than validation and testing error. Even with setting the ridge

regulation parameter α in Equation (2.7) to be a large number (e.g., 102), the results are not optimal.

However, the training performance of the BRC model is similar to the Seq-to-Seq LSTM model for 30

minute predictions and outperforms all other models in 60 minute predictions, which demonstrates

the potential of the BRC model in time-series forecasting tasks.

2.6 Discussion

We compared the accuracy of our models with previous models that were developed for the BGLP

challenge on the Ohio T1DM dataset. Table 2.6 shows results comparing our models to models in the

first BGLP challenge from the Third International Workshop on Knowledge Discovery in Healthcare,

which used data from the first six data contributors in the OhioT1DM dataset and report only RMSEs

for 30 minute prediction horizons. Table 2.7 shows results compared to models in the second BGLP

challenge from the Fifth International Workshop on Knowledge Discovery in Healthcare, which used

data from the remaining six data contributors in the OhioT1DM dataset and report the RMSEs and

MAEs for 30 and 60 minute prediction horizons. Due to the limited knowledge of the imputation
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Figure 2.9 Comparison of forecasting plots for the four proposed models using the testing set of data
contributor 591 in 30 minutes multi-horizon predictions. The blue curve represents CGM signals, cyan
dashed line represents CGM prediction for MLR model, orange dash-dot line stands for BRC model, green
dotted line is for DCNN model, and red star is the Seq-to-Seq LSTM. The red triangles in the x-axis denote
the date around Jan. 21 where data for CGM is missing. The bottom subplot is a zoom that displays the
time around the missing data interval from Jan. 21.

methods from the literature, the mean value of the corresponding data contributors are compared

only. Overall, the results in Tables 2.6 and 2.7 indicate that both our models and previously developed

models show large differences in the RMSE and MAE metrics.

The third column in Table 2.6 indicates that our MLR and Seq-to-Seq LSTM models outper-

formed previously published models, and the fourth column shows that three of our models were

more accurate at 60 minute predictions when the dataset does not have large missing intervals, as

we found only two contributors had large missing intervals in the testing data among the 6 evalu-

ated contributors. In Table 2.7, our MLR and Seq-to-Seq LSTM models outperformed previously

published models for 60 minute predictions using the RMSE evaluation metric, and obtained lower

MAEs compare to most models except NN-EIM [Pav20]. Among the 6 data contributors, five data

contributors had large missing intervals in the testing set. The failure of obtaining better results in

30 minute predictions may be due to the data processing method we used for the testing data.

In the testing set, we skipped the missing intervals that are above 6 continuous hours of missing

CGM signals, and imputed the rest of data by the forward filling. However, the imputation method

will largely affect prediction performance. For example, in Figure 2.11, an interesting behavior

was observed by the BRC model for one data contributor where the values around June 6th are
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Figure 2.10 Comparison of forecasting plots for the four proposed models using the testing set of data
contributor 591 in 60 minutes multi-horizon predictions. The blue curve represents CGM signals, cyan
dashed line represents CGM prediction for MLR model, orange dash-dot line stands for BRC model, green
dotted line is for DCNN model, and red star is the Seq-to-Seq LSTM. The red triangles in the x-axis denote
the date around Jan. 21 where data for CGM is missing. The bottom subplot is a zoom that displays the
time around the missing data interval from Jan. 21.

largely missing. After the missing data, the BRC model starts to predict CGM levels incorrectly. After

approximately one day, e.g., at approximately June 7th, the BRC model begins producing more

accurate predictions.

The example in Figure 2.11 reveals two issues: first, we should not remove the missing interval.

Second, the evaluation by RMSE, MAE, or other metrics may not detect the poor prediction behavior

that occurs just after the missing data intervals. Additionally, the low RMSE may be due to the shifted

behavior of CGM signals when fewer data points with fluctuations are presented [Zhu18]. Together,

these results suggest that the evaluation metrics should always be combined with the visualization

of prediction plots for accurate interpretation.

Among the 12 individual data contributors, we found that the performance was highly variable.

The data contributors with lower fluctuations in CGM levels and fewer missing values tended to

result in better performance in evaluation metrics for all models. For data contributors with a

highly fluctuating pattern in CGM levels (perhaps due to an unstable lifestyle) that contained a

large amount of missing values, the MLR model outperforms other models. Thus, for large-scale

time-series data over a population of individuals, these results suggest it is necessary to test multiple

models and that performance of a specific type of model may depend on data heterogeneities in
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Table 2.6 Comparison of results from the Third International Workshop on Knowledge Discovery in
Healthcare Data. RMSE (mg/dl) is evaluated within 30 and 60 minute prediction horizons. If a study did
not conduct the experiment for 60 minutes, then it is labeled with -. The methods and corresponding
authors are presented in the order from the worst to best RMSEs for 30 minutes. We list the models con-
sidered in this work as “This study” for comparison. Bold font indicates instances in which our models
showed a lower RMSE than previous models.

Study Method RMSE 30 min RMSE 60 min
Zhu et al. [Zhu18] Causal CNN 27.73 -
Contreras et al. [Con18] GE 21.19 31.34
Midroni et al. [Mid18] XGBoost 20.38 -
Martinsson et al. [Mar18] LSTM 20.1 33.2
Xie, J. and Wang, Q. [Xie18] ARX 19.59 -
Bertachi et al. [Ber18] Hybrid model 19.33 31.72
Chen et al. [Che18] DRNN 19.04 -

This study

MLR
BRC
DCNN
Seq-to-Seq LSTM

15.46
20.92
24.98
14.87

21.59
24.67
36.39
23.45

data omission and levels of fluctuation.

Notably, we found that better prediction performance was achieved with regression models for

short time series forecasts. Overall, our novel MLR model achieves a good performance in predicting

a 30 and 60 minutes horizon from a single time point. The model utilizes multiple linear regressions

to obtain predictions k time steps in the future and works better than AR models in multi-horizon

forecasts, since the latter may accumulate errors during calculations. The BRC model could more

accurately capture the possible trend of future CGM levels during the forward filling intervals, and

the prediction difference between 30 and 60 minutes is relatively small. Lu et al. [Bia18] note that the

performance of reservoir computing models may depend on initial parameters and can sometimes

be very effective.

2.6.1 Further Investigation

We further tested on a different imputation method, where we applied the polynomial extrapolation

for all missing intervals in testing data. The polynomial extrapolation method imputes the missing

intervals as follows. First, we find the index of the first missing value and use all former data points

to fit coefficients of the polynomial. We then use the predicted value to impute the first missing

point. Next, we find the next missing value and construct a new polynomial using all former data

points, predicting and filling the missing value from the new polynomial. We repeat this process

until all missing data are imputed. Since some of the missing data are over longer time intervals, the

polynomial order is usually selected from 3 to 5.

Now comparing with the same data contributor as in Figure 2.11, we observe after the polynomial
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Table 2.7 Comparison of results from the Fifth International Workshop on Knowledge Discovery in Health-
care Data. RMSE (mg/dl) and MAE (mg/dl) are evaluated within 30 and 60 minute prediction horizons.
The methods and corresponding authors are presented in the order from the worst to best RMSEs for 30
minutes. We list the models considered in this work as “This study” for comparison. Bold font indicates
instances in which our models showed a lower RMSE than previous models.

Study Method RMSE 30 min MAE 30 min RMSE 60 min MAE 60 min
Bhimireddy et al. [Bhi20] Seq-to-Seq BiLSTM 21.8 15.0 35.0 25.0
Cappon et al. [Cap20] BLSTM 20.2 14.74 34.19 25.98
Joedicke et al.[Joe20] GP 20.13 14.05 32.18 23.58
Ma et al. [Ma20] RCN-ARMA 20.03 14.52 34.89 26.41
Daniels et al. [Dan20] MTCRNN 19.79 13.62 33.73 24.54
Mayo et al. [May20] LSTM-NN 19.4 13.9 33.4 25.0
Sun et al. [Sun20] LV-based model 19.37 13.76 32.59 24.64
Hameed et al. [Ham20] Vanilla RNN 19.21 13.07 31.77 23.09
Yang et al. [Yan20] MS-LSTM 19.05 13.50 32.03 23.83
Khadem et al. [Kha20] Multi-lag stacking 19.01 13.73 33.37 24.98
Nemat et al. [Nem20] Stacked regression 18.99 13.73 33.39 25.04
Pavan et al. [Pav20] NN-EIM 18.63 10.08 32.27 17.69
Zhu et. al. [Zhu20] GAN 18.34 13.37 32.21 24.20
Bevan, R. and Coenen, F. [Bev20] LSTM 18.23 14.37 31.1 25.75
Rubin-Falcone et al. [RF20] N-BEATS 18.22 12.83 31.66 23.60
Freiburghaus et al. [Fre20] CRNN 17.45 11.22 33.67 23.25

This study

MLR
BRC
DCNN
Seq-to-Seq LSTM

21.32
28.06
28.93
20.17

13.13
19.15
19.41
11.79

27.56
32.92
41.24
29.44

19.10
23.80
31.28
19.79

imputation, the prediction of the BRC model is consistent and obtained a better evaluation metric

scores as shown in Figure 2.12.

The advantage of the BRC model is more obvious on large missing intervals. In Figure 2.13,

we plot for the data contributor 544, the prediction comparison of one day BG level dynamics.

Observing from the red dash line which represents the imputation of BG levels, we found there exists

almost a whole day of missing data on June 28th. The polynomial extrapolation has limitations on

imputing for a wide interval resulting in almost a straight line. However, the reservoir computing

was able to recover the missing BG level dynamics, and all 4 prediction curves reflect the similar

dynamics.

As the importance of regression models was addressed, we investigated the testing performance

of regression models by RMSE for 90 and 120 minute predictions based on the improved behavior

on the revised imputation method. For MLR, the average RMSEs are 32.85 mg/dl and 39.17 mg/dl

for 90 and 120 minutes, respectively. For BRC, it outperformed MLR with average RMSEs of 30.93

mg/dl and 34.17 mg/dl, respectively. The BRC has the potential of predicting in longer horizons

and can generate the CGM dynamics by learning the behavior from training in the large missing

intervals.
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Figure 2.11 Forecast plots for the BRC model using the testing set of data contributor 552. The blue curve
represents CGM signals, orange curve is BG level prediction for a 30 minute time horizon, and green curve
is the prediction for a 60 minute time horizon. Note that the date and time were randomly shifted to future
date and time in the original OhioT1DM dataset. The missing interval around June 6th is removed when
the prediction is calculated.

2.7 Contributions

In this work, four data-driven models using regression or deep learning were introduced to obtain

multi-horizon predictions in patients with type 1 diabetes. Among these models, the Seq-to-Seq

LSTM model performs the best at predicting BG levels within a 30 minute horizon and the MLR

model is the best at predicting BG levels within a 60 minute horizon. These models could be used

to develop an artificial pancreas that helps control BG concentrations in a closed-loop system.

We presented an analysis based on the visualization of BG prediction plots, and found that the

Seq-to-Seq LSTM and regression models have the potential to make highly accurate predictions.

Further, the experiments were tested without removing the large missing intervals, the BRC model

is significantly better than other models discussed in this study for the computational efficiency

and prediction accuracy.

In future research, the classification problem of predicting hypo/hyper-glycemia could also

be considered and compared with the performance of regression models [Wol19]. The proposed

data-driven models can also be explored within the framework of hybrid models, i.e., hybridizing

physiological models [Ber81; Mant ; Mann ]with the best performing data-driven models. The BG

level forecasts produced by the computationally efficient models considered in this work may be

added in a visualization tool for a closed-loop insulin delivery system for T1D patients [Des18],

thereby improving the system interface and to encourage healthy activity and learning.
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Figure 2.12 Forecast plots for the BRC model using the testing set of data contributor 552. The blue curve
represents CGM signals, orange curve is BG level prediction for a 30 minute time horizon, and green curve
is the prediction for a 60 minute time horizon. Note that the date and time were randomly shifted to future
date and time in the original OhioT1DM dataset. There is no missing interval removed when training the
model.

Figure 2.13 Comparison of forecasting plots of the BRC model using the testing set of data contributor 540,
presenting BG levels from CGM (blue), BG levels imputation (red dash line), predictions of 30 minutes
(orange), predictions of 60 minutes (green), predictions of 90 minutes (violet), and predictions of 120
minutes (gray). Note that the date and time were randomly shifted to future date and time in the original
OhioT1DM dataset. There is no missing interval removed when training the model.
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CHAPTER

3

PHYSIOLOGICAL MODELS

3.1 Introduction

Mathematical models that describe glucose-insulin transformation are necessary to understand

the changes in BG dynamics based on daily activities to build an efficient algorithm for artificial

pancreas. For T1D patients, the BG should be kept within the euglycemic range for the organs and

tissues to maintain regular functionality [Geo18]. A low BG concentration would rise to obfuscation

and coma, while excessive BG levels may cause microvascular damages and nerve damages which

can be permanent.

Modeling the glucose-insulin control system for regular individuals can be described as follows.

The increase of BG levels is most likely caused by consuming carbohydrates, and insulin will help

lower the BG levels in the bloodstream by letting cells absorb the glucose and transfer the remaining

glucose to glycogen for storage. Lastly, the renal will excrete the glucose if the level is still above a

threshold. When BG levels are low, which could possibly be caused by exercising, sleeping, or a long

time with an empty stomach, insulin will transfer the glycogen to glucose in the bloodstream, and a

signal will also be released to remind the person to eat.

In the previous chapter, some data-driven models are discussed [Xie18; Nem20; Kha20; Ma20;

Ant20; RR19; Mar18; Che18; Cap20; May20; Ham20; Bev20; Dan20; Bhi20; Fre20; Yan20; Far19; Aie20;

Fox18]. Despite the high accuracy, it is hard to explain biological mechanisms governing the BG

dynamics by just observing the changing in training parameters, i.e., weights and biases.

In contrast, physiological models are developed based on biological understanding and simulate

the physiological processes of BG metabolism. Those large-scale simulation models usually include

the components for external insulin therapy, carbohydrate intake, and physical activity for T1D.
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Their complexities are affected by the postulated structure of the corresponding physiological model,

which provides the output simulation for BG dynamics as well as other subsystems changes with

respect to time.

3.1.1 Literature Review

Modeling a glucose-stimulated pancreatic insulin secretion is challenging, as many works have

been studied in the last decades. A complete review of the mathematical model regarding the glu-

cose–insulin system can be found in [Pal13]. The most well-known glucose-insulin systems are

proposed by Berger [Ber89], Tarin [Tarc ], and Man [Mant ]. Berger’s model [Ber89] provides the

relationship among insulin absorption, insulin elimination, glucose utilization of insulin-dependent

tissues, and glucose utilization of plasma glucose concentration. Tarin’s model [Tarc ] extends the

model presented by Mosekilde [Mos89], where the latter one illustrates the transactions among in-

sulin in hexameric form, dimeric form, and bound insulin. Tarin introduces the three-compartment

model that represents the insulin masses transfer in the plasma, the liver, and the interstitial tissue.

Man’s simulation model [Mant ] introduces the relationship between the glucose-insulin system with

the glucose fluxes and insulin fluxes, which enables this complex model to observe the influence of

other compartments.

The meal absorption systems are proposed by Lehmann [Leh92], Hovorka [Hovly], and Man

[Mant ]. Lehmann’s model [Leh92] constructs a linear gastric empty function with trapezoidal shape

and computes the rate of appearance of ingested glucose in plasma from first-order kinetics of

intestinal glucose absorption. Hovorka [Hovly] measures the glucose rate of appearance by an

exponential function with the digestion time and carbohydrate bioavailability. Man [Mant ] assumes

a linear gastric emptying rate and separates the types of glucose into solid and liquid form.

Meanwhile, some physical exercise dynamic models are proposed by Breton [Bren ] and Man

[Mann ]. Breton provides a modified version of Bergman’s minimal model [Ber81]where the minimal

model links the glucose and insulin subsystem by a negative feedback loop. Breton [Bren ] quantifies

the effect of heart rate by the decrements of BG levels in plasma. Man [Mann ] improves the model

from Breton by incorporating the effect of mild exercise and moderate exercise depending on how

fast the heart rate goes back to steady-state.

However, the majority of models were tested using simulation data and worked for the small-

scaled dataset. In this chapter, we proposed complex physiological models for BG dynamics that

includes important components such as meal absorption and physical exercise. The models are

then validated using the OhioT1DM dataset.

3.1.2 Data Preparation

The inputs for a physiological model are insulin, meal intake, heart rate, and CGM signals. For all 12

anonymous data contributors, there are 6 with measurements of these categories. In [Acc18], it is

recommended to calibrate CGM signals every 12 hours at least. From the CGM device instruction,
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fingerstick measurements are used to calibrate CGM 3-4 times per day to improve the sensor perfor-

mance. Therefore, to select relatively accurate CGM signals, the difference between the measured

fingerstick and the corresponding CGM at the same time points are compared in Table 3.1. The

data contributor labeled 570 has the smallest absolute and relative difference between fingerstick

measurements and CGM.

Table 3.1 Calibration comparison table of 6 data contributors, where Nf s represents the number of finger-
stick measurements for a data contributor,

∑

|CGM-fs| stands for the summation of the absolute differ-
ence between CGM and fingerstick measured at the same time.

Data contributor 559 563 570 575 588 596
Nf s 139 570 269 214 614 397

∑

|C G M − f s | 5591 9975 2998 3384 12600 9336
∑

|C G M− f s |
Nf s

40.22 17.5 11.14 15.81 20.52 23.52

We use data contributor 570 as an example for training in the physiological model and report

the parameter values and performance for testing. The procedure for the other data contributors

follows the same steps as described in this chapter.

The time grid was arranged every 1 minute for all features due to all physiological models

from the literature being constructed with the temporal unit of minute. The values of basal and

bolus insulin dose, and heart rates were filled in the time grid at the corresponding time point. The

missing values of basal insulin dose were imputed by forward filling as described in the dataset

[Marp ], while the missing values of bolus insulin dose were filled with 0. The 3rd order polynomial

interpolation was used to fill the missing values of heart rate measurements for training data, and

we applied forward filling for missing data in testing data to avoid using future values. The image of

the imputation in training for heart rate can be illustrated in Figure 3.1. Finally, for carbohydrate

intake, we recorded the time index and meal size when the contributor self-reported the events in

the smartphone.

The CGM signals were used in the inverse problem, where the loss function compared the

differences with the simulation of CGM from physiological model and CGM signals in training

proportion at the same time when true CGMs are available. The total data points used in the training

phase is 11554, and the additional 2745 data points were held out for testing. Each data point was

approximately collected every 5 minutes.

3.1.3 Methods for Parameter Estimation

The estimation of model parameters directly determines the overall accuracy of the physiological

model. Some of the values can be found in the literature, and the rest can be computed by the

parameter estimation problem. However, providing an accurate estimation of all parameters may

be impossible for a complex model. Hence, we can select a subset of parameters and fix the rest
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Figure 3.1 Example of 3rd order polynomial interpolation for heart rate (HR) during 6 hours, the red dots
represents the raw HR signals, the cyan curve represents the imputation results for every minute.

instead. The selection procedure is done by the sensitivity and identifiability analysis [Att17].

3.1.3.1 Sensitivity Analysis

Learning how the uncertainty of the input can affect the output is crucial to determine the most

influential input variables in a physiological model. The sensitivity analysis is a tool for quantifying

the most influential to non-influential variables. In the review chapter from [Mor91], the authors

introduce two equivalent global sensitivity analysis methods, screening method and variance de-

composition. The screening method, Morris method, is varying each variable while fixing the others

and observing the changes in the output. On the other hand, the variance decomposition method

requires computing Sobol’s indices, where the number of indices growths reflect model sensitivity.

The method of the sensitivity analysis we introduce in this section is the Morris method, which

has a complete sensitivity analysis with the possibility of high computation costs. The method

classifies the parameters into three groups: negligible effect parameters, large linear effects without

interactions, and nonlinear effects with interaction effects. The methodology will be introduced

with details in Section 3.1.3.1.3.

First, we investigate how much a parameter can affect the output function z (t , y ;q ) where

y and q represent the variables and parameters of the model, respectively. Here, for our model,

z (t , y ;q ) = G (t ), where the glucose concentration G (t ) is defined in the third equation of (3.42).

The partial derivative of z with respect to the parameter q , i.e., ∂ z (t ,y ;q )
∂ q , can be computed by

automatic differentiation, complex step method, and finite difference approximation. For automatic

differentiation (AD), it can numerically compute differentiation using the chain rule repeatedly

and obtain the total derivative of the function [Gri89]. Complex step method [Mar00] utilized the

property of complex functions and did not introduce the subtractive cancellation error, which

limited the range of step size to choose. Finite difference approximation includes forward difference,
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backward difference and central difference. From the definition of the derivative, the forward

difference approximated ∂ z (q )
∂ q ≈

(z (qi +h )− z (qi ))
h

for step size h , the backward difference gave

∂ z (q )
∂ q ≈

z (qi )− z (qi −h )
h

, and central difference formula given in (3.4) is the average of forward

difference and backward difference.

Regarding the truncation error, forward and backward difference introduced O (h ) truncation

error, central difference and complex step method obtained O (h 2) error, and truncation error of

AD depending on the machine precision. Even though the AD is exact up to machine epsilon, the

complex step method is faster computationally. Due to the complexity of our physiological model,

the complex step method is the first choice and the central difference approximation is the second

choice for sensitivity analysis.

3.1.3.1.1 Complex Step Method

The complex step method [AM10] uses the complex functions to find the first derivatives. Thus, the

step size h can be small since there is no subtractive cancellation error.

Assume z (q + i h ) is an analytic function, where q is the real part and i h is the imaginary part.

The Taylor expansion around q is

z (q + i h ) = z (q ) + i h
d z (q )

d q
−

h 2

2

d 2z (q )
d q 2

+O (h 3). (3.1)

In addition, assume that the function z maps from real line to real line and q , h are real. Then

the real part and imaginary parts in Equation (3.1) would result

R e (z (q + i h )) = z (q )−
h 2

2

d 2z (q )
d q 2

+O (h 4) = z (q ) +O (h 2),

I m (z (q + i h )) = h
d z (q )

d q
+O (h 3).

(3.2)

Rearranging the Equation (3.2), the complex method is obtained with below formulas,

z (q )≈R e (z (q + i h )),

d z

d q
≈

I m (z (q + i h ))
h

,
(3.3)

where the truncation error is O (h 2). The step size h is typically set as machine epsilon (10−16) to

achieve high precision approximation.

Compared with other derivative-based approaches, the complex step method does not introduce

the subtractive cancellation error, allowing a small enough step size h to be selected. In addition, it

reduces computational costs compared to AD, especially for complex models.
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3.1.3.1.2 Central Difference Approximation

In some cases that the complex step method does not apply, i.e. the parameter is in the index

position of the differential system, the direct approach is introduced to estimate the derivatives. The

central difference approximation in Equation (3.4) is the average of the forward-difference formula

and backward-difference formula.

d z (q )
d qi

≈
z (qi +h )− z (qi −h )

2h
, (3.4)

with the truncation error O (h 2). A good candidate for the step size for the central difference is

h =(machine epsilon)
1
3 ×qi from [Den83]. Therefore, an accurate approximation for the function z

needs to be evaluated at high precision.

3.1.3.1.3 Global Sensitivity Ranking

The d z (t ,y ;q )
d q is obtained with a relatively small step size h using the two methods described above,

then the next step is to rank the sensitivities from high to low to identify which ones are more

sensitive compared with others. Since the parameters have range from [10−2,102], the logarithm

transformation is used to scale the sensitivity rankings, i.e.,

d log10(z (t , y ; q ))
d log10(q j )

=
q j

z (t , y ; q )
d z (t , y ; q )

d q j
. (3.5)

More practically, the sensitivities of a model parameter can be relatively compared with others

[Art17]. The L2 norm is used for scaling the sensitivity coefficients for each parameter as presented

in the following equation.

Sj (q ) =









∂ z (t , y ; q )
∂ q j









2

=

�

1

te nd − t0

∫ te nd

t0

�

∂ z (t , y ; q )
∂ q j

q j

ma x (z (t , y ; q ))

�2

∂ t

�
1
2

, (3.6)

where q represents the set of unknown parameters.

A global sensitivity analysis may be required if the uncertainty of a parameter is high. If the

parameters are followed some probability distribution D (q ), then the expected values of local

sensitivity coefficients can be computed below:

Eq (Sj ) =

∫

Q

Sj (q )d D (q ), (3.7)

where Q is the high dimensional space of parameters. The Monte Carlo approximation can be used

to make the local sensitivities pseudo-global. A set of independent parameter values {qm}Mm=1 from

distribution D (q ) is generated and the expected value can be computed with a sample mean:

S̄j =
1

M

M
∑

m=1

|Sj (qm )|. (3.8)
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The global sensitivity for each parameter was then ranked from high to low, which the highest

corresponding to the most sensitive parameter in this setup. The threshold to determine from

sensitive to insensitive is computed by the mean of the expected values of all parameters, i.e.,

µ=
1

L

L
∑

j=1

S̄j , (3.9)

where L is the total number of parameters. The expected values S̄j in (3.8) represents the individual

effect from the j -th parameter to the output, if it is larger than the threshold µ, then it consider

sensitive to the model output. The variance of a parameter is obtained by:

σ2
j =

1

M

M
∑

m=1

�

S̄j −Sj (qm )
�2

. (3.10)

The standard deviationσ j in (3.10) examines the nonlinearities and/or interaction with other

parameters of the j -th parameter. With a small σ, the changes in the parameter results in low

variation of the output, which indicates the linear relationship between the parameters and model

output. In contrast, a largerσ would consider the nonlinear relationship or has interaction with

one or more other parameters. In this case, a parameter with a small standard deviation and large

mean value should be considered as the sensitive parameter.

3.1.3.2 Identifiability Analysis

After selecting a subset of sensitive parameters, the next step is to determine which parameters

can be uniquely identified from the inverse problem. Consider a simple differential equation that
d z
d t = a b t , it follows that parameters a and b are unidentifiable since there are infinitely possible

combinations of a and b .

If we assume that q ∗ is the minimum of the mean squared error cost function J (q ),

q ∗ = argmin
q

� 1

N

N
∑

i=1

�

z d
i − z (ti , y ; q )

�2�

= argmin
q

J (q ), (3.11)

where z d
i represents the corresponding data value at time t = i . Then, using the first two terms in

the Taylor series expansion around q ∗ to approximate z , we obtain:

z (ti ; q )≈ z (ti , y ; q ∗) +
d z (ti , y ; q ∗)

d q
(q −q ∗). (3.12)

Since q ∗ is the minimizer, the residuals of z d − z (t , y ; q ∗) are small and negligible. Substituting
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into the cost function (3.11), we get

J (q )≈
1

N

N
∑

i=1

�

z d
i − z (ti , y ; q ∗)−

d z (ti , y ; q ∗)
d q

(q −q ∗)
�2

.

≈
1

N

N
∑

i=1

�

d z (ti , y ; q ∗)
d q

(q −q ∗)
�2

,

(3.13)

The approximation of the cost function (3.13) can also be expressed as

J (q )≈
1

N
(S∆q )T S∆q , (3.14)

where S is the sensitivity matrix contains Si j =
d z
d q j
(ti , y ;q j ). Suppose that∆q is an eigenvector of

S T S with S T S∆q =λ∆q , then the cost function (3.14) can be rewritten as

J (q )≈
1

N
∆q T S T S∆q

=
1

N
∆q T (λ∆q )

=
1

N
λ‖∆q‖2

2.

(3.15)

From the result in (3.15), if the eigenvalue λ is close to 0, then the cost function to the second-

order approximation is negligible for an arbitrary parameter q = q ∗+∆q , the cost function does not

change when moving from q ∗ to q ∗+∆q with an arbitrary∆q . Thus the corresponding parameter

associate is unidentifiable. We use the threshold as 10−4 and find the eigenvalues which are above

the threshold and order them in a decreasing order |λ1| ≥ |λ2| ≥ . . . ≥ |λk | > 10−4. We claim those

parameters corresponding to λ1,λ2, . . . ,λk are identifiable.

After the procedure of the sensitivity and identifiability analysis, a subset of sensitive and identi-

fiable model parameters are selected for the inverse problem. The remaining parameters are fixed

with the values according to the literature or from the estimation in the biological range.

3.1.3.3 Optimization Techniques

In a complex physiological model, there are plenty of unknown parameters that need to be de-

termined based on the patient-specific situation.The sensitivity and identifiability analysis are

introduced to reduce the number of estimated parameters. Then the model parameters are ap-

proximated from the inverse problem. In this instance, the loss function in the inverse problem is

minimized using the optimization techniques.

Given the loss function J :Ω⊂Rn →R, we wish to find the local minimizer p ∗ ∈Ωwhich satisfies

p ∗ = argminp J (p ).

In general, there are four parts of a optimization algorithm:

• Convergence test. If the conditions are satisfied for convergence, then output the solution p ∗
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and stop the algorithm.

• Find the search direction. To move from the current point pk to pk+1, which makes J (pk+1)<

J (pk ), the optimal search direction dk is required.

• Find the step size. Step size hk is needed for the update of the parameter pk .

• Update the parameter. Finally, we set pk+1 = pk +hk dk and k = k +1, and repeat the process.

Next, a few optimization methods are introduced in this section for updating the estimated

parameter p in the loss function until convergence.

3.1.3.3.1 Newton’s Method

The Taylor series expansion for the loss function J (p ) around the initial point, p0, is defined below

J (p )≈ J (p0) +∇J (p0)(p −p0) +
1

2
(p −p0)

T H (p0)(p −p0), (3.16)

where H is the Hessian matrix contains the second order derivatives such as (H )i , j =
∂ 2 J

∂ pi ∂ pj
, for

the indices i and j in the Hessian matrix. Assume a function W (p ) is equal to the right hand side of

Equation (3.16), where

W (p ) = J (p0) +∇J (p0)(p −p0) +
1

2
(p −p0)

T H (p0)(p −p0), (3.17)

then the local minimum can be found at the critical values such as ∂W
∂ p = 0 for the quadratic function

W (p ). Thus, the minimum is found when

∂W

∂ p
= 0=∇J (p0) +H (p0)(p −p0) (3.18)

0=∇J (p0) +H (p0)p −H (p0)p0 (3.19)

H (p0)p =H (p0)p0−∇J (p0) (3.20)

p = p0−H −1(p0)∇J (p0). (3.21)

Since w (p ) is the approximation of the loss function J (p ), by repeating the above procedure

iteratively, then the parameter p can be updated by

pk+1 = pk −δk H −1(pk )∇J (pk ), (3.22)

where δk is a scalar representing the learning rate at time t = k . The ∇J (pk ) can be computed

by back-propagation in the neural networks. However, the Hessian matrix and Hessian inverse

are difficult to compute and computationally expensive. In practice, an approximation is used
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for Hessian or its inverse by using first order derivatives of J , which is named the Quasi-Newton

method.

3.1.3.3.2 Quasi-Newton method

Assume a matrix Bk+1 is the approximation to the inverse of the Hessian matrix of J at pk . Rewriting

the Equation (3.22) can define the Quasi-Newton [Sha70] update of dk and pk+1 as follows:

dk =−Bk∇J (pk ), (3.23)

pk+1 = pk +hk dk , (3.24)

with Bk+1 being positive definite if Bk is positive definite. The update of B can start with B0 = I , the

identity matrix. To update Bk at every iteration, we can approximate from the first order derivatives

of J .

By applying the Taylor expansion at∇J , the gradient and the Hessian matrix is given:

∇J (pk+1) =∇J (pk ) +∇2 J (pk )(pk+1−pk ) +ε(pk+1−pk ), (3.25)

where ε represents some error terms. If we assume the error is small, then it leads to the Quasi-

Newton relation:

pk+1−pk = Bk+1(∇J (pk+1)−∇J (pk )), (3.26)

which is equivalent to

H (pk )(pk+1−pk ) = (∇J (pk+1)−∇J (pk )). (3.27)

The simplest method for estimate Hessian matrix is secant approximation, which for a function

J :R→R, the Hessian approximation is

H (pk ) =
J ′(pk +1)− J ′(pk )

pk+1−pk
. (3.28)

Next, the Broyden formula with rank 1 is introduced to approximate Bk . We can write

Bk+1 = Bk +vvT . (3.29)

From the Quasi-Newton relation Bk+1 yk = sk , where yk =∇J (pk+1)−∇J (pk ) and sk = pk+1−pk , it

follows that
sk = Bk+1 yk

= (Bk +vvT )yk

= Bk yk +vvT yk ,

(3.30)

by rearranging the above equation we obtain v(vT yk ) = sk−Bk yk . Assume zk = sk−Bk yk , we obtained
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v= c zk , which represents vector v is in the same direction of vector zk with a constant c . Substitute

zk in the rearrange equation, we obtain

vvT yk = sk −Bk yk (3.31)

(c zk )(c zk )
T yk = zk (3.32)

c 2zk z T
k yk = zk (3.33)

c 2z T
k yk = 1 (3.34)

c =
1

q

z T
k yk

. (3.35)

Now, the v can be expressed as

v= c zk =
sk −Bk yk
q

z T
k yk

. (3.36)

Then substitute the Equation (3.36) in (3.29) and obtain

Bk+1 = Bk +vvT

= Bk +
(sk −Bk yk )(sk −Bk yk )T

z T
k yk

= Bk +
(sk −Bk yk )(sk −Bk yk )T

(sk −Bk yk )T yk
.

(3.37)

This method preserves the symmetry of Bk (where B T
k+1 = B T

k +(vvT ) = Bk +vvT ) but does not

guarantee positive definite. Another formula for updating Bk+1 is the rank 2 corrections as defined

below:

Bk+1 = Bk +αuuT +βvvT , (3.38)

whereα,β are constant and vectors u, v ∈Rn . Similar to the procedure described in rank 1 corrections

above, the formula for rank 2 update is

Bk+1 = Bk +
sk s T

k

s T
k yk

−
Bk yk y T

k Bk

y T
k Bk yk

, (3.39)

which guarantee Bk positive definite, Equation (3.39) is also denoted by Davidon-Fletcher-Powell

(DFP) formula [Dav59; Fle63].

Finally, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [Fle87] is derived from the DFP

formula with swapping the roles of sk and yk . The formula approximate the Hessian matrix Hk is

defined:

Hk+1 =Hk +
yk y T

k

y T
k sk

−
Hk sk s T

k H T
k

s T
k Hk sk

, (3.40)
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where yk =Hk sk , and Hk is positive definite.

3.1.4 Evaluation Method

To evaluate the performance of the physiological model for a data contributor, we compare the

RMSE and correlation coefficient in the training and testing data.

The RMSE is introduced as one of the evaluation metrics in Chapter 2 Equation (2.12). Since

we would like to compare our physiological model with data-driven models, RMSE will be used

in Chapter 3 as well. The RMSEs are only reported when the CGM signals are available for both

training and testing.

The correlation coefficient introduces the linear dependence of two variables, where we assume

each variable has the same number of elements and same dimensions. For N element vectors xA , xB ,

the correlation coefficient is given by:

ρ(xA , xB ) =
1

N −1

N
∑

i=1

� xA(i )−µA

σA

�� xB (i )−µB

σB

�

, (3.41)

where µA , µB are the mean values of xA and xB , respectively, and σA , σB represent the standard

deviations for xA and xB .

If the correlation coefficient equals 1 or -1, then the tested variables have a linear relationship.

When the correlation coefficient equals 0, the variables are linearly independent.

3.2 Model

In this section, a physiological model that describes the glucose and insulin transformation in

organs and tissues is presented.

Insulin is a hormone that can help with storage and utilization of the glucose obtained from the

carbohydrates intake. For a healthy person, insulin is produced from the beta cells in the pancreas

to release and store insulin in the bloodstream.

Insulin and glucose work together to control regular body function: if a person eats a meal or

snack, the food is digested in the gastrointestinal tract and turns into small sugar units, i.e., glucose.

With the help of insulin, the glucose is absorbed first by blood vessels and transferred to different

cells, i.e., brain or muscle tissue. Insulin also helps in transferring extra glucose to store in the liver,

fat and muscle cells as glycogen. Finally, if the BG level is still high, the extra glucose will be excreted

outside the body. On the other hand, if the BG level is low, the pancreas will stop releasing insulin and

start producing glucagon, which transfers glycogen to glucose and releases into the bloodstream.

Thus, the body maintains homeostasis.

For T1D patients, the pancreas does not produce enough insulin due to no functioning beta

cells. The glucose has difficulties transferring from blood to cells, organs, or tissue, and can not store

in the liver, fat, and muscle cells - it remains in the bloodstream instead.
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Figure 3.2 Glucose production and transformation scheme.

The most common treatment is insulin injection, which helps regulate the body’s BG levels. The

injection requires BG monitoring and estimated meal time. The basal insulin is injected 24 hours

through a pump device and the bolus insulin delivers only before or after a meal.

The physiological model is developed based on the above understanding and used ideas from

the previous developed models, i.e., glucose-insulin system from Man [Mant ], model for the meal

function from Lehmann [Leh92] and Hovorka [Hovly], and the physical activity function [Mann

] modified from Breton [Bren ]. Complex physiological models are constructed and the model

parameter values are adjusted according to the dataset. The interaction between glucose and other

five model components for physiological models can be visualized in Figure 3.2.

The black arrow represents how the BG produced and transformed between each model com-

ponent, and the blue dash arrow represents the effect of insulin signal on BG concentration. The

rectangular box represents human organ or tissue, the rounded rectangular box represents the

simulation relevant to the organ or tissue, and the oval represents the measurement obtained from

the data set as the real-time input to simulate the compartment model.

Next, each subsystem is introduced and the corresponding mathematical model is described.

3.2.1 Glucose Subsystem

The glucose kinetics [Vic97] in Figure 3.3 describes the behavior of the two-compartment model.

The differential equations (3.42) provide the relationship between glucose and other subsystems

which will be introduced later in the chapter. The related parameter descriptions and values are
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Figure 3.3 The schematic of BG transformation with 5 subsystems.

listed in Table 3.2.

Ġp (t ) = E G P (t ) +R a (t )−Ui i (t )−E (t )−k1Gp (t ) +k2Gt (t ), Gp (0) =Gp b ,

Ġt (t ) =−Ui d (t ) +k1Gp (t )−k2Gt (t ), Gt (0) =Gt b ,

G (t ) =Gp (t )/VG .

(3.42)

Table 3.2 Table of the variables in the glucose subsystem, the values of some parameters are from [Mant ].
In the third column, if variables are changing with respect to time, then we denote them as simulations. If
variables are classified as input sources, then we denote them as measurements. If a variable represents
the parameters in some functions, then the value is presented.

Variables Unit Source/Values Explanation
Gp mg/kg simulation glucose masses in plasma
Gt mg/kg simulation glucose masses in rapidly and slowly equilibrating tissues
G mg/dl measurements plasma glucose concentration

E G P mg/kg/min simulation endogenous glucose production
Ui i mg/kg/min simulation insulin-independent glucose utilization
Ui d mg/kg/min simulation insulin-dependent glucose utilization

E mg/kg/min simulation renal excretion
R a mg/kg/min simulation glucose rate of appearance in plasma
VG dl/kg 1.88 distribtion volume of glucose
k1 mi n−1 0.065 rate parameter of glucose kinetics
k2 mi n−1 0.079 rate parameter of glucose kinetics

Gp b mg/kg measurement glucose masses in plasma initial value
Gt b mg/kg simulation glucose masses in tissues initial value

From the glucose transformation in Figure 3.2, the increase of BG levels is mainly due to meal

intake (represented by the rate of appearance function R a ) and transferring from glycogen (repre-

sented by endogenous glucose production function E G P ). From the first differential equation, the
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Figure 3.4 The schematic of insulin transformation.

E G P , R a , glucose in tissue (Gt ) contributes positively to the rate of Gp . The glucose is then utilized

by insulin-independent utilization (Ui i ), renal excretion (E ), and transferred a proportion to Gt . The

initial condition for Gp is also defined as the basal state denoted by Gp b . Similarly, observed from

second differential equation, the rate of Gt contains a positive contribution from Gp , and transferred

insulin-dependent utilization (Ui d ) and a loss term Gt , the initial condition is also defined as the

basal state Gt b . In the third equation in (3.42), the BG levels G (also called CGM readings) are defined

as plasma glucose Gp divided by a positive constant VG .

3.2.2 Insulin Subsystem

The insulin kinetics described in Figure 3.4 is first proposed by [Fer87], and later extended to include

the interactions between the fast-acting insulin, long-acting insulin and insulin in plasma [Sch18].

Equations (3.43) provide the detailed relationship between each compartment. The insulin secretion

produced by the liver is removed due to T1D can produce little or no insulin. The long-acting insulin

contains the basal insulin injection, where the fast-acting insulin includes bolus insulin injection

and transfer to subcutaneous insulin and long-acting insulin systems. The detailed description of

parameters can be found in Table 3.3.

I (t ) = Ip (t )/VI ,

İp (t ) =−(m2+m4)Ip (t ) +m1Il (t ) +B (t ), Ip (0) = Ip b ,

İl (t ) =−(m1+m3)Il (t ) +m2Ip (t ), Il (0) = Il b ,

B (t ) = ka 1Is c 1(t ) +ka 2Is c 2(t ),

İs c 1(t ) =−(ka 1+kd )Is c 1(t ) + bc 1B1(t ), Is c 1(0) = Is c 1b ,

İs c 2(t ) =−ka 2Is c 2(t ) +kd Is c 1+ bc 2B2(t ), Is c 2(0) = Is c 2b .

(3.43)

Insulin concentration I is defined as Ip divided by a positive constant VI , where insulin in

plasma Ip interacts with insulin in liver Il with a constant rate m2 and subcutaneous insulin B . In

the plasma, subcutaneous insulin B moves directly to Ip . In addition, insulin in liver Il contributes

to Ip with a rate of m1, and gets back from Ip with rate constant m2. Plasma insulin Ip also transfers
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Table 3.3 Table of the variables in the insulin subsystem, the values of some parameters are from [Mant
; Sch18]. If a parameter is dimensionless, the unit is blank. In the third column, if variables are changing
with respect to time, then we denote them as simulations. If variables are classified as input sources, then
we denote them as measurements. If a variable represents the parameters in some functions, then the
value is presented or we denote them as estimations for unknown parameters.

Variables Unit Source/Values Explanation
Ip pmol/kg simulation insulin mass in plasma
Il pmol/kg simulation insulin masses in liver
I pmol/l simulation plasma insulin concentration
B pmol/kg/min simulation rate of appearance of insulin in plasma per minute
B1 pmol/kg/min measurements the amount bolus insulin delivered occasionally
B2 pmol/kg measurements the amount of basal insulin is continuously infused
VI l/kg 0.05 distribution volume of insulin
m1 mi n−1 0.190 rate parameter of insulin kinetics
m2 mi n−1 0.484 rate parameter of insulin kinetics
m3 mi n−1 0.285 rate parameter of insulin kinetics
m4 mi n−1 0.194 rate parameter of insulin kinetics
ka 1 mi n−1 0.0034 rate constant of partially absorption
ka 2 mi n−1 0.014 rate constant of final absorption
kd mi n−1 0.028 rate constant of remaining diffuses
bc 1 estimation rate parameter of exogenous bolus absorption
bc 2 mi n−1 estimation rate parameter of exogenous basal insulin absorption
Il b pmol/kg estimation insulin masses in liver initial value
Ip b pmol/kg estimation insulin masses in plasma initial value

Is c 1b pmol/kg estimation insulin masses in subcutaneous compartment initial value
Is c 2b pmol/kg estimation insulin masses in fast-acting compartment initial value

a proportion for periphery utilization. Similarly, the Il contributes to liver utilization at a rate

constant m3. The subcutaneous insulin B consists of subcutaneous insulin systems Is c 1 and Is c 2.

The subcutaneous insulin system Is c 1 receives the fast-acting insulin B1 with rate constant bc 1,

then transfers to subcutaneous insulin system Is c 2 with a rate constant kd , and contributes to

subcutaneous insulin B at the rate ka 1. The long-acting insulin B2 acts on subcutaneous insulin

system Is c 2 with a transfer rate bc 2. Then Is c 2 contributes to B with rate constant ka 2. The initial

conditions for subcutaneous insulin system Is c 1, Is c 2, insulin in plasma Ip and insulin in liver Il are

denoted by Is c 1b , Is c 2b , Ip b , Il b , respectively.

3.2.3 Endogenous Glucose Production Subsystem

The endogenous glucose production E G P [Man06] describes the interactions between glucose

signal and insulin signals in the liver. There are two types of insulin signals, delayed insulin signal Id

and anticipated insulin signal I1 (also named insulin action, which composes the chain reaction of

insulin transformation). As shown in Figure 3.5, the plasma insulin flows into I1 with a constant

rate ki , and left from I1 to Id with the same rate constant. When the insulin delayed signal function

Id receives the signal from I1, it transfers to other cells for further usage. The initial condition for

both functions is starting from the basal state, namely, Ib . Finally, the non-negative E G P forcing
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Figure 3.5 The schematic of glucose production from liver.

function computes by subtracting the proportional of insulin delayed signals Id and the proportional

of glucose concentrations Gp from an initialized constant concentration kp 1. The details of the

parameter are listed in Table 3.4.

E G P (t ) = kp 1−kp 2Gp (t )−kp 3Id (t ),

İ1(t ) =−ki (I1(t )− I (t )), I1(0) = Ib ,

İd (t ) =−ki (Id (t )− I1(t )), Id (0) = Ib .

(3.44)

Table 3.4 Table of the variables in the EGP subsystem, the values of some parameters are from [Mant ]. In
the third column, if variables are changing with respect to time, then we denote them as simulations. If a
variable represents the parameters in some functions, then the value is presented or we denote them as
estimations for unknown parameters.

Variables Unit Source/Values Explanation
E G P mg/kg/min simulation endogenous glucose production

I1 pmol/l simulation insulin anticipate signal
Id pmol/l simulation delayed insulin signal

kp 1 mg/kg/min 2.7 extrapolated at zero glucose and insulin
kp 2 mi n−1 0.0021 liver glucose effectiveness
kp 3 mg/kg/min per pmol/l 0.009 parameter governing amplitude of insulin action
ki mi n−1 0.0079 rate between insulin signal and action
Ib mg/dl estimation plasma insulin concentration initial value

3.2.4 Rate of Appearance Subsystem

In this section, we introduce two glucose absorption models, the Hovorka [Hovly] meal model

and modified Lehmann [Leh92]meal model, which can be combined with our differential system

described above. Both models are tested with the same dataset, and the performance of each model

is compared in the Result section 3.3 later.

Hovorka Model. The two-compartment model is introduced to simulate the intestinal glucose

absorption. The rate of appearance of ingested glucose in plasma R a is described by Equation
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(3.45). The meal absorption rate is determined by the carbohydrate amount D , bioavailability

Cb i o which describes the transferring rate from carbohydrate to glucose, and the time to reach the

maximum appearance rate of glucose (Tma x ). The model is controlled by a transfer rate 1/Tma x in

the exponential function. The details of the model parameters are listed in Table 3.5.

R a (t ) =
D (t )Cb i o t e −t /Tma x

T 2
ma x

. (3.45)

Table 3.5 Table of the variables in the first Ra subsystem, the values of some parameters are from [Hovly].
For the dimensionless unit, we leave the unit as blank. In the third column, if variables are changing with
respect to time, then we denote them as simulations. If variables are classified as input sources, then we
denote them as measurements. If a variable represents the parameters in some functions, then we denote
them as estimations for unknown parameters.

Variables Unit Source Explanation
R a mg/kg/min simulation glucose rate of appearance in plasma
D mg measurements meal size

Cb i o estimation bioavailability absorption rate
Tma x min estimation time to the peak of Ra

Modified Lehmann Model. The second model is defined in terms of the gastric empty function

Ge mp t y , which is a piecewise rectangular shape function controlled by meal size. For a regular size

meal, the constant parameter Tm controls the rate of the gastric empty function; and for a snack size

meal, the time parameter Ts manages the digestion time. The value of Tm is always larger than Ts .

This function is modified from the original Lehmann meal model [Leh92]with setting the increasing

and decreasing period to be zero and thus reducing two parameters. The function is then changed

from the trapezoidal shape to rectangular shape. A visualization of the function Ge mp t y is shown in

Figure 3.6. The general function of Ge mp t y and the R a are defined in Equation (3.46) and model

parameters are given in Table 3.6.

Q̇g u t =−kg a b sQg u t (t ) +Ge mp t y , Q (0) = 0

Ge mp t y (t , D ) =

� Cb i o D (t )
Tm

, D (t )≥ 10
2Cb i o D (t )

Ts
, D (t )< 10

.

R a (t ) = kg a b sQg u t (t ).

(3.46)

The rate of appearance R a is assumed to be proportional to the intestine glucose concentration

Qg u t , where the rate of Qg u t is controlled by the gastric empty function Ge mp t y and a loss term

proportional to Qg u t . The initial condition of Qg u t is at the basal state, where we assume no meal

consumed after the fuel digestion from the last meal.

If we consider the case when the snack and meal events are close to each other, the Ge mp t y is
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Figure 3.6 Example of the gastric empty function plots of two meal events (left is a regular size meal, right
is a snack size meal).

Table 3.6 Table of the variables in the second Ra subsystem, the values of some parameters are from
[Leh92]. For the dimensionless unit, we leave the unit as blank. In the third column, if variables are chang-
ing with respect to time, then we denote them as simulations. If variables are classified as input sources,
then we denote them as measurements. If a variable represents the parameters in some functions, then
the value is presented or we denote them as estimations for unknown parameters.

Variables Unit Source/Values Explanation
R a mg/kg/min simulation glucose rate of appearance in plasma

Qg u t mg/kg simulation The amount of glucose in the intestine
Ge mp t y mg/kg/min simulation the rate of gastric emptying

D mg measurements meal size
kg a b s mi n−1 1/60 rate of glucose absorption from the gut
Vma x mg/kg/min 0.36 maximal rate of gastric emptying
Cb i o estimation bioavailability absorption rate
Tm min estimation the time staying at the maximal (Vma x ) for a regular meal size
Ts min estimation the time staying at the maximal (Vma x ) for a snack size

capable of considering the overlapping effect that the function is aggregated from the level when the

second event happened. The 6 cases, including meal overlaps with another meal, meal overlaps with

a snack, meal event without overlapping, snack overlaps with a meal, snack overlaps with another

snack, snack event without overlapping, aggregation schematics are shown in Figure 3.7.

We notice that if we fix Ts = 10 min, Tm = 20 min for the piecewise function Ge mp t y and Tma x = 40

min in the Hovorka model, then two rates of appearance function are almost identical to each other

with a slight difference in speed of decay as it is depicted in Figure 3.8, the Lehmann meal model is

faster decay than Hovorka.

3.2.5 Glucose Utilization Subsystem

The utilization of glucose has two types, insulin-independent (Ui i ) [Mant ] and insulin-dependent

(Ui d ) [Bren ; Mann ]. We introduce the function from [Mann ] that improved Breton’s activity model

[Bren ] by excluding the rapid on-and-off changes.

Insulin-independent utilization Ui i represents the usage of glucose from the brain and erythro-

48



Figure 3.7 The 6 cases of meal and snack events with or without overlapping.

Figure 3.8 Rate of appearance comparison plot for 2 meal models in a certain setup.
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cytes and is modeled by a constant denoted by Fc n s . Insulin-dependent utilization Ui d describes

the glucose behavior during physical activities measured by the heart rate. From the model of

[Bren ], Y , f (Y ), and Z monitor the levels of insulin usage by the changes in the heart rate. For

instance, if the heart rate is increasing to a high level, which is normally relevant to an exercise, the

function Y will reach a high value, resulting in f (Y ) reaches 1 rapidly. Then the value of function Z

is slowly increasing, leading to an increasing numerator and decreasing denominator in Ui d , which

represents an increment in utilization of glucose. On the other hand, if the heart rate is close to the

basal heart rate, then it would result in the decay of Y , where f (Y ) becomes negligible, and finally

Z will fall back slowly to the basal level. Since we assume the initial conditions start at basal state,

there is no physical activity involved at the beginning of observation. The complete system is given

by Equations (3.47) and parameters are listed in Table 3.7.

Ui i (t ) = Fc n s ,

Ui d (t ) =
Vm0+Vm x (1+αZ (t ))(X (t ) + Ib )−Vm x Ib

Km

�

1−γZ (t )(X (t ) + Ib )
�

+Gt (t )
Gt (t ),

Ẋ (t ) =−p2U X (t ) +p2U (Ip (t )− Ib ), X (0) = 0,

Ẏ (t ) =−
1

TH R
(Y (t )− (H R (t )−H Rb )), Y (0) = 0,

Ż (t ) =−
� f (Y (t ))

Ti n
+

1

Te x

�

Z (t ) + f (Y (t )), Z (0) = 0,

f (Y ) =
( Y (t )

a H Rb
)n

1+ ( Y (t )
a H Rb

)n
.

(3.47)

3.2.6 Glucose Renal Excretion Subsystem

Glucose excretion happens when the glucose levels exceed some threshold, and the kidney will

excrete the extra glucose. If the glucose in plasma increases to the threshold ke 2, the extra glucose is

released outside the body by the rate of ke 1. Otherwise, the renal excretion function remains silent

in the glucose-insulin control system. The linear relationship between plasma glucose and renal

glucose is described by Equation (3.48). The model parameters are in Table 3.8.

E (t ) =
¦ ke 1(Gp (t )−ke 2), Gp (t )> ke 2,

0, Gp (t )≤ ke 2.
(3.48)

3.3 Results

Since the input measurements are given every one minute, a small enough fixed step size can be

chosen so that the ODE will be evaluated at the time points where the data is collected. Thus, the

fixed step size for Runge-Kutta 4th order method [Asc98] is used as the ODE solver approximating
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Table 3.7 Table of the variables in the glucose utilization subsystem, the values of some parameters are
from [Mann ; Bren ]. For the dimensionless unit, we leave the unit as blank. In the third column, if vari-
ables are changing with respect to time, then we denote them as simulations. If variables are classified as
input sources, then we denote them as measurements. If a variable represents the parameters in some
functions, then the value is presented or we denote them as estimations for unknown parameters.

Variables Unit Source/Values Explanation
Ui i mg/kg/min simulation insulin-independent glucose utilization
Ui d mg/kg/min simulation insulin-dependent glucose utilization

X pmol/l simulation insulin in the interstitial fluid
Y beats/mi n 2 simulation delayed version of the over-basal HR signal
Z simulation nonlinear differential equation
f simulation function of heart rate

H R beats/min measurements heart beats in one minute
Fc n s mg/kg/min 1 glucose uptake by the brain and erythrocytes
Vm0 mg/kg/min 2.5 parameter of glucose utilization at zero insulin action
Vm x mg/kg/min per pmol/l 0.047 disposal of insulin sensitivity
p2U mi n−1 0.0331 rate constant of insulin action
γ 10−7 rate parameter of physical activities
α 3×10−4 rate parameter of physical activities
a 0.1 rate parameter of physical activities
n 4 function f parameter

TH R min 5 heart rate reaction to exercise
Ti n min 1 quasi-exponential decay
Te x min 600 quasi-exponential increase

H Rb beats/min 60 heart beats steady-state situation
Km mg/kg estimation parameter of glucose utilization at zero insulin action

Table 3.8 Table of the variables in the renal subsystem, the values of some parameters are from [Mant ]. In
the third column, if variables are changing with respect to time, then we denote them as simulations. If a
variable represents the parameters in some functions, then the value is presented.

Variables Unit Source/Values Explanation
E mg/kg/min simulation renal excretion

ke 1 mi n−1 0.0005 glomerular filtration rate
ke 2 mg/kg 339 renal threshold of glucose

the solutions of the physiological model defined in Section 3.2.

The procedure for a 4th order Runge-Kutta is defined as follows. For an initial value problem

d z

d t
= f (t , z ), z (t0) = z0, (3.49)

where z is the unknown function of time t that we wish to approximate using the Runge-Kutta

method, the rate of changes is provided as f (t , z ) and the initial condition is given at t0. A step size
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h > 0 is picked and the zn+1 can be calculated from Equations (3.50).

zn+1 = zn +
1

6
h (k1+k2+k3+k4),

k1 = f (tn , zn ),

k2 = f (tn +
h

2
, zn +h

k1

2
),

k3 = f (tn +
h

2
, zn +h

k2

2
),

k4 = f (tn +h , zn +hk3).

(3.50)

Two physiological models were tested where we change the meal functions from Hovorka to

Lehmann meal function. The sensitivity and identifiability analysis are presented for both models.

The comparison is given in the following section together with the analysis of model behaviors.

The loss function during the optimization is defined as

p ∗ = argmin
p

J (t , p ) = argmin
p

�

1

N

N
∑

i=1

�

f (ti ; p )− y (ti )
�2
+κe

−
ξ
∑N

i=1

�

| f (ti ; p )−A|
�

N

�

, (3.51)

where p ∈Rm is the vector of m estimated parameters, f (ti ; p ) is the time derivative solution at time

ti , and y (ti ) is the measured data. The loss function J (t , p ) consists of two parts, the mean squared

error and a penalty term. The scalar value κ, ξ is to amplify the penalty term when the output

function f (ti ; q ) is close to its mean value A. When the model output f (ti ;p ) is not flat or close to

the mean value A, then the second component is negligible. Thus, the sensitivity and identifiability

analysis also apply to the loss function (3.51).

The quasi-newton method is used during the the optimization, where we first apply the implicit

filtering [Kel99]with providing the biological range for each parameter and then update the param-

eters by minimization of unconstrained multivariable function (in MATLAB it is under package

fminunc).

3.3.1 Results of Physiological Model with Hovorka Meal Function

There are 11 parameters that need to be estimated in Table 3.9, others are taking values from literature

as described in Chapter 3.2. Next, we select a subset of sensitive and identifiable parameters for the

inverse problem. The procedure of the sensitivity analysis is described in Section 3.1.3.1. For global

sensitivity evaluation, we use normal distribution and randomly select 100 parameter values for

local sensitivity analysis to make it pseudo-global. The mean of the normal distribution is taken

from literature or the biological range observed from the physiological model. The average and

standard deviation of global sensitivity rankings for each parameter are presented in Figure 3.9,

with the red line representing the threshold to determine the parameters’ sensitivities.

From the global sensitivity ranking, we obtain that the top 4 parameters are the most sensitive

compared with others, which are {Cb i o , Km , Tma x , bc 2}. We also plot the mean (µ) global sensitivi-

52



Table 3.9 Table of unknown parameters for physiological model with Hovorka meal function. For the
dimensionless unit, we leave the unit as blank.

parameter unit biological range relevant subsystem
Gt b mg/kg [100,300] glucose subsystem
bc 1 [0,4] insulin subsystem
bc 2 mi n−1 [0,4] insulin subsystem
Ib mg/dl [0,10] insulin subsystem
Il b pmol/kg [0,10] insulin subsystem
Ip b pmol/kg [0,10] insulin subsystem

Is c 1b pmol/kg [0,10] insulin subsystem
Is c 2b pmol/kg [0,10] insulin subsystem
Cb i o [4,10] rate of appearance subsystem
Tma x min [20,120] rate of appearance subsystem
Km mg/kg [100,300] insulin-dependent utilization subsystem

ties vs standard deviation (σ) in Figure 3.10. The results indicate {Cb i o , Km , Tma x , bc 2} satisfy the

condition ofσ<<µ, thus there is no interaction between the selected parameters, and the model

output function is linearly depends on the selected subset of parameters following the analysis from

[Mor91].

Next, we follow the identifiability analysis in Chapter 3.1.3.2 for computing the eigenvalues

of the sensitivity matrix containing the sensitive parameters {Cb i o , Km , Tma x , bc 2}. The eigenval-

ues of 4 parameters are all above the threshold with the most to least identifiable ranking as

{Cb i o , Km , bc 2, Tma x }which confirms with the analysis above.

As described earlier, the loss function (3.51) is composed of RMSE with a penalty term to avoid

the flat and centered behavior of the estimation of CGM. We set the coefficients κ = 100, ξ = 10,

and A is the mean value in the time derivative solution f (t , p ) for the best convergence speed and

prediction accuracy.

The inverse problem is solved by using the implicit filtering method first and fine tuning by the

Quasi-Newton method until convergence. For the parameters are not sensitive and identifiable,

except for bc 1, they are all initial values of differential equations. The initial values can be tested

with different combinations of random guessing and observe if the first estimation point of BG

level is matched with the first CGM signal. For the values of bc 1, it is estimated along with the 4

selected parameters and fixed its value after several iterations. The parameter estimation results are

presented in Table 3.10.

Table 3.10 Parameter values of 11 unknown parameters with Hovorka meal function. The estimation re-
sults for {Cb i o , Km , bc 2, Tma x } are found using optimization methods, the rest parameters are fixed during
the optimization procedure.

Cb i o Km bc 2 Tma x bc 1 Ib Ip b Il b Is c 1b Is c 2b Gt b

values 9.63 151.53 0.30 504.63 2 10 3 3 3 3 100
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Figure 3.9 Sensitivity coefficient ranking of physiological model with Hovorka meal function. The thresh-
old is found by Equation (3.9), and the error bar for each parameter contains the expected values found by
(3.8) with the bar as the standard deviation with other parameters.

The RMSE and correlation coefficients are used for evaluation of the performance of the physio-

logical model in training and testing dataset. The evaluation metric only compares the difference

at the time points that CGMs are taken, and parameters used to generate the testing behavior are

estimated from training data only. The training RMSE is 60.52 with a high correlation 0.27 , and

testing RMSE is 72.59 with correlation of prediction and true signals as -0.04. The prediction and

CGM signal comparison plot for 570 is in Figure 3.11, the testing predictions are much worse than

training, where a similar behavior was also observed in data-driven models. The bar graph of evalu-

ation performance among 6 data contributors are shown in Figure 3.13, the mean values are plotted

with the standard deviation (error bar).

The prediction results obtained from the physiological model are not satisfying, there are some

predicted values close to CGM signals, but most values are far away from CGM signals. Compared

with the data-driven model, the disadvantage in the prediction performance of the physiological

model is obvious. That may be due to the limitation of the physiological model where the pattern is

repeated based on the fixed parameters in each subsystem throughout the time. However, in the

data-driven model, the patterns can vary from time to time by adjusting the weights and biases.

For the physiological model, the advantages are that the prediction is stable once the parameters

are obtained, and parameters have biological meanings for analyzing the characteristics of a T1D

patient.

In Figure 3.12, the training dynamics of endogenous glucose production E G P , glucose utilization

U , rate of appearance R a , and plasma insulin I are presented for visualization purposes. Each plot

contains the system dynamics from the 0 minutes to 10000 minutes (around 7 days). From the

experiments of 204 normal subjects in Man et. al. [Mant ], the biological range of E G P is [0,2.5]
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Figure 3.10 Morris screening using mean and standard deviation of sensitivity coefficients, whereσ and µ
represents the standard deviation and mean value computed from Equations (3.10) and (3.8), respectively.
The red reference line is when µ=σ.

mg/kg/min for a normal person, then U should lie in range [0, 12]mg/kg/min, R a can start from 0

mg/kg/min and increase upto 14 mg/kg/min after meal consumption, lastly, the plasma insulin

level has the range of [0, 800] pmol/l.

Compared with the estimation of each subsystem with the literature, we found that except

the endogenous glucose production E G P is in the biological range, the rate of appearance R a ,

plasma insulin I , and glucose utilization U is significantly lower in the biological range. Thus, on the

prediction plot Figure 3.11, the prediction is less fluctuant with the CGM signal, where the extreme

values cannot be captured. In the meanwhile, the estimation of Tma x , a parameter measuring the

time to peak of the rate of appearance, is out of biological range when the local minimum is detected.

If the value of Tma x is large, then the rate of appearance will be smaller in magnitude. Observing this

behavior may indicate the Hovorka meal function is not suitable for this particular data contributor.

3.3.2 Results of Physiological Model with Modified Lehmann Meal Function

Similarly, the table of estimated parameters and the biological range suggested from literature are

reported in Table 3.11. We applied the same procedure as described above for the second model.

We obtain the global sensitivity ranking plot in Figure 3.14 and the Morris screening in Figure 3.15.

We obtain the sensitive parameters that are above the threshold to be {Cb i o , bc 2, Km , Tm}. From

Morris screening, it first selects the parameters with large effects {Cb i o , bc 2, Km , Tm , bc 1}, and all

listed parameters satisfyσ<<µ, which indicates the linear relationship with output and no param-

eter interactions. Since the parameter bc 1 is close to the threshold in Figure 3.14, we decided to

follow the Morris screening result.

The identifiability analysis indicates all 5 sensitive parameters are identifiable with the most to
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Figure 3.11 Training and Test simulation of physiological model with Hovorka meal function for 570, the
left side of the reference line represents the training data and the left is testing data.

Table 3.11 Table of unknown parameters for physiological model with Lehmann meal function. For the
dimensionless unit, we leave the unit as blank.

parameter unit biological range relevant subsystem
Gt b mg/kg [100,300] glucose subsystem
bc 1 [0,4] insulin subsystem
bc 2 mi n−1 [0,4] insulin subsystem
Ib mg/dl [0,10] insulin subsystem
Il b pmol/kg [0,10] insulin subsystem
Ip b pmol/kg [0,10] insulin subsystem

Is c 1b pmol/kg [0,10] insulin subsystem
Is c 2b pmol/kg [0,10] insulin subsystem
Cb i o [4,8] rate of appearance subsystem

Ts min [10,20] rate of appearance subsystem
Tm min [20,100] rate of appearance subsystem
Km mg/kg [100,300] insulin-dependent utilization subsystem

the least ranking is {bc 2, Cb i o , Km , Tm , bc 1}. The parameter estimation results are in Table 3.12.

We obtain the training RMSE to be 83.53 with correlation coefficient -0.12, testing RMSE to be

100.54 with correlation coefficient -0.48 for the data contributor 570, and the prediction plots are

shown in Figure 3.16 with the subsystems plots depicted in Figure 3.17. Additionally, the bar graph

of RMSE and correlation coefficients for training and testing data among 6 data contributors are

shown in Figure 3.18.

In the prediction plots comparing the difference between the prediction and CGM signals, we

found the Lehmann meal model brings more dynamics to CGM predictions, which in the subplot of

R a function also reflects a large magnitude compared to the Hovorka meal function. The simulation

of R a falls in the biological range for a normal person, and may indicate the physiological model

using the Lehmann meal function works better. However, the RMSE and the correlation plot presents

an opposite result, the RMSE is larger than the previous model and the correlation coefficients in

training and testing indicate the predictions are not reflecting the correct CGM signals. The plasma
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Figure 3.12 Subsystem dynamics in the physiological model with Hovorka meal function for 570, using the
first 10000 training points (around 7 days).

Table 3.12 Parameter values of 11 unknown parameters with Lehmann meal function. The estimation
results for {Cb i o , Km , bc 2, Tm , bc 1} are estimated from optimization methods, the rest parameters are fixed
during the optimization.

Cb i o Km bc 2 Tm bc 1 Ts Ib Ip b Il b Is c 1b Is c 2b Gt b

values 4 284.67 1.63 99.88 4 19.94 3 3 3 3 3 100

insulin I average levels are higher than the physiological model with Hovorka function, thus, the

predictions of CGM as shown in Figure 3.16 has a large magnitude and obtains the fluctuant patterns

that may similar to the biological range of a T1D people. The glucose utilization U and endogenous

glucose production E G P are similar with the previous model and may indicate the stability of

physiological models with changing of model components.

However, The evaluation metrics show that the physiological model with Lehmann meal function

is worse than the Hovorka function, the negative correlation results reflect that the physiological

model is incompatible with the data contributor. It may result from the incorrect meal function that

generates the wrong patterns for predictions, especially for the testing set.

3.3.3 Comparison Between Two Models

In Figure 3.19, we plot simulated CGMs with true CGM signals for both models. The physiological

model with Hovorka function results less fluctuant in the simulation but with higher accuracy and

higher correlations. Referring to the subsystem plots 3.12 and 3.17, except for rate of appearance

function, other subsystems performed a similar behavior for both models with different estimated

values of model parameters, which indicates the meal function is crucial for estimating the correct
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Figure 3.13 The bar graph for RMSE (left subplot) and correlation coefficients (right subplot) between
prediction and the true CGM signals for physiological model with Hovorka meal function among 6 data
contributors, the mean values are reported along with the standard deviation in the red error bar.

trend of CGM signals. The bar plot 3.20 of evaluation metrics shows Hovorka meal function intro-

duced high correlation coefficients while a small testing error is associated with modified Lehmann

meal function.

3.4 Discussion

We construct the state of art physiological model from the ideas of [Mant ; Hovly; Bren ; Mann ], and

add modifications based on our input measurements. With this differential system, we are able to

understand the transformation of BG between organs and tissues for the T1D data contributors by

observing the dynamics in each subsystem. We hope to obtain the simulation of BG levels with a

high accuracy (low RMSE) so the physiological model can be better applied to interpret the activities

of T1D and provide the guidance for preventing hyperglycemia or hypoglycemia.

Based on the experiments of the physiological model on one specific data contributor, we

found that the model has limitations regarding the simulation and prediction, and requires the

assumptions in initial conditions. In a complex physiological model we define in this chapter, the

number of parameters may not be enough to estimate the multiple patterns throughout the day. The

predictions in both experiments (Hovorka and Lehmann) show the physiological model presenting a

similar pattern while the input sources slightly vary over time. Due to the input source not containing

CGM, this adds difficulty to learn the patterns directly when compared to a data-driven model.

The limit model parameters and optimization tools restrict the accuracy and convergence speed.

Thus, obtaining an accurate result similar to data-driven models is almost impossible by using only

physiological models.

In [Sak17], the authors also obtain a similar behavior for failing to capture the short-term spikes

and falls, and in [Tur16] indicates the parameters in the physiological model may be time-varying. A

future improvement of the physiological model can be changing the estimated parameters to be
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Figure 3.14 Sensitivity coefficient ranking of physiological model with modified Lehmann meal function.
The threshold is found by Equation (3.9), and the error bar for each parameter contains the expected
values found by (3.8) with the bar as the standard deviation with other parameters.

adaptive to time with more specific restrictions, i.e., distinguishing the parameter values for day

and night.

Another method that could improve the physiological model’s result is introducing a hybrid

model, in which one or more components of the physiological model are replaced with data-driven

models to identify the underlying function for a specific patient. In this way, the physiological model

may maintain interpretability while improving the performance.

3.5 Contributions

From the experiment of applying physiological models, we learn how the subsystem such as insulin,

meal intake, physical exercise affects the glucose dynamics. It also provides the possibility of simu-

lating BG signals without any knowledge of CGM (as it is shown in the testing data predictions). The

physiological model took 180 seconds to process and is faster than most deep learning algorithms,

but it took efforts to find the perfect model and to improve the estimation accuracy of the model

parameters.
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Figure 3.15 Morris screening using mean and standard deviation of sensitivity coefficients, whereσ and µ
represents the standard deviation and mean value computed from Equations (3.10) and (3.8), respectively.
The red reference line is when µ=σ.

Figure 3.16 Training and Testing simulation plot of physiological model with modified Lehmann meal
function and CGM signals for 570, the left side of the reference line represents the training data and the left
is testing data.
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Figure 3.17 Subsystem dynamics in physiological model with modified Lehmann meal function for 570,
using the first 10000 training points (around 7 days).

Figure 3.18 The bar graph for RMSE (left subplot) and correlation coefficients (right subplot) between
prediction and the true CGM signals for the physiological model with modified Lehmann meal function
among 6 data contributors, the mean values are reported along with the standard deviation in the red error
bar.
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Figure 3.19 Comparison plot of 2 physiological models with CGM signals for data contributor 570.

Figure 3.20 The bar graph evaluates 2 physiological model performance among 6 data contributors, the
mean values are reported with black error bar represents the standard deviation.
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CHAPTER

4

HYBRID APPROACHES

4.1 Motivation

T1D is a chronic disease that requires BG monitoring to prevent hyperglycemia or hypoglycemia.

While the meal events usually being the main cause of BG increasing, CGM can also be affected by

physical activities, insulin level, and other factors such as stress, illness, and sleeping quality. All

those factors may lead to a complex physiological system to model the BG dynamics for a real-world

dataset.

Managing the complex system of the physiological model is challenging as it was presented

in Chapter 3 and data-driven models are lack of interpretability. A hybrid approach can take the

advantage of the interpretability of the physiological model and the accuracy from the data-driven

model. A few approaches have been tested on spatio-temporal data, namely, equation learning,

inverse-design, and physics-informed neural networks.

Recent publications on equation learning methods include employing the Relevance Vector

Machines (RVMs) and Convolutional Neural Networks (CNN) to parameterize ocean mesoscale

eddies [Zan20], which brought physical interpretation and lowered the computational cost of imple-

mentation. In [Lag20], the learning of partial differential equation models reduced the noise from

spatiotemporal data and approximate partial derivatives. Regarding the sparse and noisy data, the

equation learning [Nar20] predicted the unobserved dynamics and accurately infer the underlying

equation. The universal differential equations [Rac20] used the machine-learnable structures to

replace the unknown governing equations and generated predictions from the combined model.

The inverse-design method describes a procedure for finding the underlying equation from

the model components and other potiential equations. In [Nar20], the Fisher-KPP was found by
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using sparse linear regression to parameterize a list of potential right-hand side terms. The universal

differential equations [Rac20] applied the same strategy that the missing functions were selected

from a list of polynomials, their products, or trigonometric functions. When the minimum value of

the loss function was obtained, the missing function was selected.

Lastly, the physics-informed neural networks method, where [Ray21] used physical equations in

the loss function for partial differential equations which helped the neural network perform a better

result. The biologically-informed neural networks [Lag00], as an extension of the physics-informed

neural networks, used multilayer perceptrons in predicting vitro cell biology assay experiments

while managing the convergence by the governing partial differential equations.

However, there are disadvantages for all three methods. The equation learning method is usually

applied with the assumption that the input data is accurate and all model parameter is given,

when the model parameters are not provided, the prediction of the neural networks along with

estimated parameters may not have a biological meaning, i.e., the parameters are possibly outside

the biological range to minimize the loss function. For the inverse-design algorithms, the underlying

functions can only choose from a finite number of polynomials or other functions, but in the most

complex physiological model, one function may include a lot of components. Finally, the physics-

informed neural networks mainly focus on a single partial differential equation and the model

parameters are always assumed to be reliable.

4.1.1 Efforts of Improving Meal Function

Many researchers focused on improving the accuracy of meal function in the physiological model.

When collecting the real-world data, contributors with T1D are required to report meal sizes and

meal time. However, there could be the case that the contributor forgot to record a meal, recorded

in a different time, or meal size measurements were not accurate.

There are various methods for meal detection or correction. In general, all methods can be

described in two categories, supervised learning and mathematical model. Supervised learning

approach requires the training label of mealtime, where [Zhe20] trained the extended isolation

forest where the simulated data are used for CGMs, meal, and insulin rate. Then the identified

meal events are set to be training labels. For mathematical models, the mealtime can be identified

by detecting the increase of the meal subfunction built from minimal model [Tur16; Zhe19] and

stochastic differential equations [Mah17], or by CGM trajectory [Sam18] and glucose rate of change

[Das08; Har14]. The meal size can be determined by moving horizon estimation [Mah18; Che19],

fuzzy system [Sam17], and variable state dimension approach [Xie17].

However, there exist disadvantages to building an algorithm for correcting meal events. We have

limited knowledge of patient-specific situations for building mathematical models, e.g. the duration

between a person consumes a meal and BG level starts rising, and the relationship between the rate

of change in CGM and the corresponding meal size while a person conducts other daily activities. In

the real-world data, we usually do not have a target variable (training labels) for training a supervised

learning model.
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4.1.2 Limitation of Current Meal Functions

David Jenkins [Jen81] first created the concept of the Glycemic Index (GI) in the early 1980s, which

classifies carb-containing foods into 3 categories: low GI, medium GI, and high GI. It is a ranking

system that describes foods by the effect on BG levels. In the experiment of [O’C08], with insulin

bolus controlled, the results indicate that the mean postprandial glycemia of T1D, who consume

low GI test meals, was much lower compared to high GI meals for 3 hours observations.

However, the consumed carbohydrates in our OhioT1DM dataset do not indicate their GI classes.

Use of a single meal function to model postprandial glycemia behavior may affect the overall

accuracy of the physiological model. Thus, we seek for the approaches that reflect the relationship

between meal consumption and CGM while independent from the physiological model.

4.1.3 Reconstruct Meal Functions Using Machine Learnable Approaches

The idea of Universal Differential Equation (UDE) [Rac20] utilizes the scientific models and ma-

chine learning structures for discovering the unknown function in a system. It assumes the part of

the physiological model is missing and can be substituted by neural networks or other learnable

architectures. With the knowledge of the rest of the physiological model parameters, the UDE is

then trained with some optimizers that calculate the differences between estimations and real data.

In the next section, we will introduce an approach that was inspired from UDE, with the un-

derlying meal function replaced by the reservoir dynamics, and provided an estimation of model

parameters and biological interpretation as well. In addition, we introduce the meal correction

algorithm which detects the dislocated meal events and moves to the correct positions. In section 4.3,

the results are evaluated with the replacement of the meal events from the physiological model and

the meal function from the hybrid model. In the discussion section 4.4, the evaluation performance

is compared with previous models and proposes future improvement. Lastly, a contribution section

4.5 summarizes the major findings.

4.2 Methods

To construct a hybrid model, we assume the current meal activity is not correctly reflected in the

CGM signals, which may be due to the inaccurate behavior of Rate of Appearance (R a ) for the

reported meal events. We need to treat the Ra function as an unknown function that we can replace

by a learnable architecture.

If an underlying function in the physiological model can be composed from other model vari-

ables, the following approach may be applied. The input of learnable architecture is a column

vector that contains all the initial conditions of the physiological model, the output is a single value

representing the value of the unknown function at the current time step. Then we use this value in

the physiological model to compute the ODE solution for the next time step and feed the solution

vector in the learnable architecture for computing the next value of the unknown function. By
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repeating this process we can get the entire ODE solutions from the starting time point to the end,

then we compare the computed solution with some data that we have, to update model parameters

both in learnable architecture and the physiological model. This completed procedure represents

one iteration.

For a complex system in which the underlying function may not be connected by other model

variables, the learnable architecture may be trained by using other input sources, and the parameters

in the learnable architecture along with physiological parameters are updated by an inverse problem.

We repeat the process until the algorithm converges, which means after changing the parameter

values, the decrements of the loss function are lower than some threshold. Finally, we report the

model parameters and evaluate the performance. We can also plot the unknown function to discover

the dynamic and compare it with the previously assumed functions. We use one simple example of

the SIR model which describes the spread of diseases in section 4.2.1, and then move on to the BG

model.

The benefits of this method are it preserves the interpretability of the physiological model and

the unknown meal function can also be recovered from the neural network. However, it lost the

efficiency of supervised learning since the learnable architectures are treated as mathematical

models.

4.2.1 An Implementation of SIR Model

The SIR model is a differential system that describes the behavior of a disease spread in susceptible

individuals (S ), infected individuals (I ), and recovered individuals (R ) without births, deaths, and

immigration population. The full model is given by the Equations (4.1), where β represents the

infection rate from inflection individuals to susceptible individuals, γ is the recovery rate represents

the percentage of infected individuals become recovered individuals for any given day, and N is the

total number of population.

Ṡ (t ) =−
β I (t )S (t )

N
, S (0) = S0,

İ (t ) =
β I (t )S (t )

N
−γI (t ), I (0) = I0,

Ṙ (t ) = γI (t ), R (0) =R0,

N = S0+ I0+R0.

(4.1)

If we are uncertain how a certain disease infects the population, and replace it with a neural

network function f (S , I , R , w ), the neural network will require some knowledge of the amount of

all three classes, and the model parameters (weights and biases) that are denoted by w . Now the
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Figure 4.1 The diagram of hybrid model of SIR problem, where the NN represents the neural network and
w is the weight matrix in the NN.

differential system with the unknown function can be described in (4.2).

Ṡ (t ) =− f (S , I , R , w ), S (0) = S0,

İ (t ) = f (S , I , R , w )−γI (t ), I (0) = I0,

Ṙ (t ) = γI (t ), R (0) =R0,

N = S0+ I0+R0.

(4.2)

In this implementation, we also assume that we have the data for susceptible and recovered

individuals measured throughout the observation, and the recovery rate γ is unknown in the SIR

model.

In Figure 4.1, it shows the methodology of the hybrid model, where we use Ui to represents the

unknown function f (S , I , R , w ) at a given time ti , and S, R represents the ODE solution time series

that composed by [S0,S1,S2, . . . ,Sn ] and [R0, R1, R2, . . . , Rn ] for a total length n +1 time series. We first

proceed with the blue arrow, the first step is to obtain the next time step of the unknown function

U1 from the initial condition [S0, I0, R0], and next we compute the ODE solution of the current step

as a column vector [S1, I1, R1]T using the value of U1. By repeating this procedure, we complete the

ODE solution series with the time from t0 to tn . Then, we continue with the orange arrow where

the loss function is defined as Mean Squared Error (MSE) between ODE solution and real data. We

search the parameter values by lowering the loss function until it is stable. Finally, we update the

parameter values into our hybrid model. We treat the completion of blue and orange arrows as one

iteration. The algorithm stops when the loss function decreases to a certain threshold, or changing

parameter values will not improve the performance.

The algorithm of the hybrid model is described in Algorithm 1, besides the initial parameters,

we also require the initial guesses for U0, where the value of U0 can determine the convergent rate of

the algorithm with different initial guesses. Similarly for initial conditions [S0, I0, R0], the closer to

the true value, the faster it will let the hybrid model converge.

We show an experimental result for the SIR hybrid model, where we assume the observation

time is 50 hours. We record the disease spread every 6 minutes, so we will have a time series with a
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Algorithm 1 Hybrid Model for SIR

1: Output: Loss
2: Input: U0, [S0, I0, R0], w (weight matrix),γ (model parameter), tspan, Sd a t a , Rd a t a

3: for t in tspan do
4: U1=Neural Network([S0, I0, R0]T ,w )
5: Uf =linear interpolate [U0,U1] in [tspan(t), tspan(t+1)]
6: y=ODE fixed step solver(Uf ,γ)
7: U0 =U1

8: Yp r e d .append([St , It , Rt ])
9: end for

10: Loss=
∑n

i=0((Yp r e d (1, :)−Sd a t a )2+ (Yp r e d (3, :)−Rd a t a )2).

Figure 4.2 The solution of the SIR model is solved by the fourth order fixed step size ODE solver, the initial
values are [S0, I0, R0] = [90, 10, 0].

length of 501 (including one starting point at the beginning). The infection rate β = 1/3 and recovery

rate γ= 1/7. We assume there are 100 individuals and 90 of them are susceptible, 10 are infected,

and 0 is recovered. The behavior of the three classes is presented in Figure 4.2.

Then we generate the noisy time-series of susceptible and recovered individuals for testing the

performance of our hybrid model. We add randomized noise of level 5 of each class as shown in

Figure 4.3.

We can now test the hybrid model, first we test on a small neural network with 1 hidden layer,

there are 5 neurons in the hidden layer with ReLU activation function and output the prediction by

a linear output layer. Then we test on a larger neural network with 2 hidden layers by adding a 5

neurons hidden layer with ReLu activation function. Both models use the same initial U0 = 3 and

initial conditions [S0, I0, R0] = [90, 10, 0]. The performance of the two models are presented in Figure

4.4 and 4.5, where the 3 layers neural network model obtained a better result with a longer running
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Figure 4.3 The class of susceptible S and recovered R individuals with noise in the experiment.

Figure 4.4 The estimation of SIR hybrid model using 2 layers neural networks, where the estimated recov-
ery rate γ= 0.1982 and the output from the loss function is 5301.

time.

4.2.2 Meal Correction Algorithm

As the results presented in Chapter 3, a few opposed trends of the predictions compared to CGMs

were made due to the possibility of mislocation of the meal event. In this section, a meal correction

algorithm is introduced to detect the potential meal events and move the misaligned meal events

to the right location. In the CGM dynamic plot of data contributor 570, we assume that the large

increment of the CGM in the daytime is due to the meal intake.

The OhioT1DM dataset contains two meal sources, self-reported meal from smart phone and

bolus meal when the bolus was delivered, which can be misleading. Figure 4.6 shows the plot of 2

meal sources for the entire dataset, the blue + symbol represents the self-reported meal by the data

contributor, and the red cycle represents the meal measurements with the bolus injection recorded
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Figure 4.5 The estimation of SIR hybrid model using 3 layers neural networks, where the estimated recov-
ery rate γ= 0.2023 and the output from the loss function is 3828.

Figure 4.6 The comparison plot from 2 meal sources for the entire dataset of data contributor 570. If at a
time, a meal event did not report in the dataset, we label the meal event as 0.

by the nurse. From the figure, we observe that some of the events are describing the same meal

event with the time and meal size the same, but there are other meal events that are recorded in a

different time or different size where the two symbols in the figure do not match. We cannot directly

combine these meal sources since a lot of duplicate meal events would exist. Thus, a meal correction

algorithm is necessary to combine two meal sources and correct the mislocated meal events.

4.2.2.1 Filtering Method

First, the missing values in the training proportion of CGMs are imputed using 3rd order polynomial

interpolation for every minute (in Figure 4.7 shows an imputation example). If there are negative

values generated by cubic interpolation, then the linear interpolation is used instead.

Then the filtering method was applied to CGMs to lower down the sensor noise and make

the meal events more observable. We introduce the low pass Butterworth filter [But30]which can

provide the maximally flat response, and the meal detection is examined on filtered CGM signals.

In the filter design, the ideal low pass filter preserves the low-frequency signals within the pass

band and filters out the high frequency above the threshold. However, in practice, if the continuous
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Figure 4.7 Example of 3rd order polynomial interpolation for continuous blood glucose monitoring (CGM)
around 2 days, the red dots represent the raw CGM signals collected every 5 minutes, the cyan curve repre-
sents the imputation results for every minute.

signals reach the threshold of the pass band it will get attenuation as it is shown in Figure 4.8.

Butterworth filters [But30], also named maximally flat filters, have a flat frequency response in

the passband without peaking [Ell12]. The formula for Butterworth filters depends on the order of

the filter is odd (Equation 4.3) or even (Equation 4.4), where Π represents a series of products, M is

the order of the filter,ωN is the normalized cutoff frequency. The effects of frequency response for

different orders of Butterworth filters are in Figure 4.9.

T (s ) =

�

ωN

s +ωN

�

Π(M−1)/2
i=1

�

ω2
N

s 2+2s cos(θi )ωN +ω2
N

�

, θi = i ×180/M . (4.3)

Figure 4.8 The schematic of ideal and practical low pass filters.The ideal response is presented in the dash
line after passed the band width, the practical response is in blue line which decay to 0 with a linear rate.
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Figure 4.9 Comparison with different orders of Butterworth filter.

T (s ) =ΠM /2
i=1

�

ω2
N

s 2+2s cos(θi )ωN +ω2
N

�

, θi = (i −0.5)×180/M . (4.4)

We decided to continue using 570 as an example to test the performance of the meal correction

algorithm. After the third order polynomial interpolation of CGM signals, we apply the Butterworth

filtering method for dampening the high frequency signals. We choose the order 5 to reduce the

number of frequent peaks and falls due to noises. The first row in Figure 4.10 shows the magnitude

of the Fourier transform of imputed CGM signals. The high frequency signals are squeezed in the

first 2% of the total time length. Next, we plot the normalized frequency and only focus on the first

2% of the discrete Fourier transform to determine the cutoff frequency location. From the second

row in Figure 4.10, we obtain approximately at 0.05% the separations of the high frequency and low

frequency signals. Thus, we apply the low pass Butterworth filter with order 5 and low passband

frequency as 0.05%. The final filtered CGM is shown in Figure 4.11, compared with the imputation

results, the filtered CGMs (red curves) are much smoother than the original. The filtered CGMs are

then used for the meal correction algorithm later.

4.2.2.2 Confirmation of Existing Meal Events

The meal correction algorithm has two steps, confirmation of the existing meal events from self-

reported and bolus measurements, and detection of unannounced meal events based on the obser-

vation from filtered CGM signals.

In the confirmation part, we first gather all known meal intake measurements from self-reported

and bolus events (Figure 4.12). If the same meal event is recorded by both devices at the same time,

we keep the measurements from the self-reported method. Next, we move the time index of meal

events to the correct location (Figure 4.13). We decide to move the recorded event to the nearest

valley (or the bottom of the "U" shape) in the filtered CGM signals by checking distances of the

front and back of the recorded meal events. The pseudo code for the algorithm can be found in

the Appendix A at Algorithm 2. Last, we remove the duplicate events due to relocating, where we
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Figure 4.10 The selection of a low pass 5th order Butterworth filter with the cutoff frequency is at 0.05% of
the signals.

Figure 4.11 Comparison of filtered signals and original signals in the first 6000 data points.
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Figure 4.12 Meal events location plot including the self-reported meal events and bolus meal events.The
red dot represents the time meal was taken. The black oval cycle represents the cases where both sources
measured the same meal event.

compare the relocation distances from the original time index and discard the one with further

distance.

4.2.2.3 Detection of Unannounced Meal Events

In the second part of the meal detection algorithm, we wish to detect unannounced meals. We

assume during the daytime, there may exist additional meal events that individual data contributors

forget to report. Therefore, we propose an algorithm that deals with the situation where there is a

fast increase in CGM without any meal event associated with it.

In Algorithm 4 at Appendix A, our criterion for detecting new meals only focuses on the regular

size meal instead of a snack. We only look at the in a day the data contributor reports less than

4 meal intakes during the daytime and separate each meal by 4 hours. In addition, the detected

mealtime should correspond with CGM less than 300 mg/dl, because the meal consumption when

BG levels are high would lead to hyperglycemia.

We also propose other indicators for meal detection, such as g̃ and ∆g . Since CGM is mon-

itored every 5 minutes, the g̃ is defined as g̃ = C G M (t + 5)−C G M (t ), representing the change

of CGM from the current time point to the next time point. Similarly, the ∆g is defined as ∆g =
C G M (t +30)−C G M (t )

30
, measures the rate of change for 30 minutes.

Similarly to Algorithm 2, we wish to detect the meal located at valleys in the CGM curves. In

addition, we add the indicator for∆g > 0 and g̃ ≥ 0, so that the algorithm selects the location at the

falls and only focuses on large peaks and falls. The results of detection of meal events are presented

in Figure 4.14. Thus, the meal correction algorithm is complete with 2 parts, the green squares
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Figure 4.13 Comparison of relocating meal events and original meal events using the Algorithm 2. The
red cycles are the combined meal events from bolus and self-reported with the duplication removed. The
green diamonds are the identified new location on the CGMs based on the red cycles.

represent the meal events in the relocation algorithm, where the carbohydrate size corresponding

to each event is also recorded. The other part is unannounced meal events, represented by red dots,

which does not contain the specific value of carbohydrate grams. We impute all those unannounced

meal events with the carbohydrate size as 50 grams as the value of a medium size meal.

4.2.3 Reservoir Dynamics of Meal Function

In the data driven model, we introduced the bidirectional reservoir computing (BRC) model. The

prominent performance of the model in predicting the BG levels has the potential to combine with

the physiological model for both accuracy and interpretability. The BRC can be used to replace the

meal function, which would be one of the most effective terms in BG prediction of a physiological

model.

The full architecture of the BRC model is described in 2.4.2, in the hybrid approach, we used the

key component of the complete BRC model to obtain the estimation of the meal function. Similar to

the SIR implementation described in 4.2.1, the hybrid model we proposed in this work is to replace

the underlying meal function with reservoir dynamics and feed it in the physiological model.

4.2.3.1 Reservoir Dynamics Description

The detailed setup for reservoir dynamics is introduced in Chapter 2.4.2. Instead of using the ridge

module as representation, we use the last module where the last slice of the second dimension in

the state matrix after PCA reduction is the representation of reservoir dynamics, denoted by Rr e p r .

The decoder part is ignored since the reservoir networks are considered as a simulation model for

the underlying function.
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Figure 4.14 Meal events distribution (red circles) after the detection Algorithm 4, green squares are from
the meal confirmation algorithm, the complete meal events after the meal correction algorithm contains
both red and green markers.

Here, we define a weight matrix Wp that contained the estimated parameter in the reservoir

dynamics with shape [nP C , nt p s ], then simulated the model function R a by R a = Rr e p r Wp . Due

to the meal function representing the meal appearance rate which should be non-negative, the

final outputs are the absolute values of R a . Using the last module in the representation stage would

largely reduce the estimated parameters compared to the ridge module.

Under this framework, the total estimated parameters are nP C ×nt p s , which is the product of

the number of principal components in PCA and the time steps.

4.2.3.2 Improvement on Reservoir Dynamics

We add some options for the reservoir dynamics to make it suitable for meal function simulation.

Meal Duration. Due to the input sources of reservoir dynamics being the same as meal function

in the physiological model, two more parameters can be added to simulate the rate of appearance

function, namely Ts na c k , Tme a l . The input meal event series is a sparse time-series data where except

the meal value recorded at a mealtime (one single time point), all other elements are 0. Therefore,

the time-series of meal events may bring difficulty to the reservoir simulation since the sparse

output would result in small fluctuations in CGM dynamics only when meal events occurred.

The parameter Ts na c k described the time duration of a snack-size carbohydrate digestion time,

which could range from 0 minutes to 20 minutes. Similarly, Tme a l represents the regular meal size

of carbohydrate digestion time and could range from 20 to 100 minutes. Thus, the input time-series

representing the meal information becomes a rectangular shape piecewise function that contains

the meal size and meal duration and is distinguished by regular size meals or snack size meals.

Smooth Filter. After the random initialization of weight matrices, the simulation of the meal
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Figure 4.15 A zoomed in plot for comparing the noisy simulation from reservoir dynamics (cyan curve)
with smoothed meal function R a when the span of moving average is 20 (orange curve).

function in the first few iterations may be very noisy. If the function later feeded into ODE as an

input, then the high level noise would increase the solving time and the number of iterations for

convergence. Thus, a moving average filter is introduced to smooth the meal function simulated

from reservoir dynamics by providing the span of the moving average l . The first few elements of

the smoothed function yo u t is defined as follows, where we assume the yi n represents the original

noisy function.

yo u t (1) = yi n (1),

yo u t (2) =
yi n (1) + yi n (2) + yi n (3)

3
,

yo u t (3) =
yi n (1) + yi n (2) + yi n (3) + yi n (4) + yi n (5)

5
,

. . .

yo u t ( j ) =
1

l

j+b l
2 c

∑

i= j−b l
2 c

yi n (i ),

(4.5)

where j is the j-th element in the output yo u t . If we have an even number of span l , then the number

will be reduced by 1.

By adding the option of a smooth filter, the shape of the simulated meal function R a may also

be changed by tuning the number of spans. Figure 4.15 shows an example of the R a function with

the span in the smooth filter l = 20, where the irregular shape of R a when a meal event happens is

smoothed to the shape similar to triangles.

Shift Operator. A shift operator is added for estimating the meal function due to the duration

after meal consumption and BG levels start to rise. According to [Zur19], the duration between meal

consumption and BG level rising will depend on the GI and glycemic load (GL), where GL is the

production of the quantity of carbohydrate contained in the consumption and GI. The duration of

BG rising can be from 0 to 30 minutes for a person without diabetes, and the increment of BG levels

stops after the maximum 6 hours.

Thus, the shift operator works as follows. After we obtain the simulation of R a in the reservoir
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dynamics, the R a is padded with 0 at the beginning with the length ts hi f t determined by the

parameter estimation. The R a maintains the same length as the time grid by removing the last

ts hi f t elements in R a . The range of the selection for ts hi f t is from 0 minute to 50 minutes which

allows for the incorrect meal index during a meal event.

4.2.4 Methodology for Hybrid Approach

The complete physiological model with six subsystems is presented in Chapter 3. We remove the meal

function from either Lehmann [Leh92] or Hovorka [Hovly] and replace it with reservoir dynamics

that follows the description in the section 4.2.3.

We test 2 reservoir dynamics, one small reservoir network with nP C = 3, while the other hybrid

model we use nP C = 10.

As described in the previous section, the shift operator and smooth filter is tested on both

models, the normalization is also considered as an option for regulating the input meal events in

the reservoir dynamic. We present below in Table 4.1 the total estimated parameters in the different

settings, where the np h y represents the sensitive and identifiable parameters in the physiological

model without parameters from the meal function.

Table 4.1 Table of the possibility options that affects the number of estimated parameters in the inverse
problem. nP C represents the number of principal components, nt p s stands for the value of time step, np h y

is the number of selected parameters in the physiological model, nme a l presents the parameters in meal
duration option. We use Res. to abbreviate the reservoir dynamics. Shift and Smooth are two options, and
0 represents the option not chosen.

Size nP C nt p s np h y nme a l Shift Smooth Total parameters
Small Res. 3 3 3 2 0 0 14
Small Res. 3 3 3 2 1 0 15
Small Res. 3 3 3 2 0 1 15
Small Res. 3 3 3 2 0 1 16
Large Res. 3 10 3 2 0 0 35
Large Res. 3 10 3 2 1 0 36
Large Res. 3 10 3 2 0 1 36
Large Res. 3 10 3 2 1 1 37

At present, we have 3 meal sources, which are meal events from self-reported smartphones,

bolus meal events, and meal events after the meal correction algorithm. We select the training

proportion of the meal events and use a vector to represent each source in the one minute time grid.

If a meal event is associated with a certain time, then we fill in the meal value, otherwise, we use 0 to

represent no meal consumption at that time.

We can alter the number of input sources as an additional option in the reservoir dynamics, and

obtain the simulation of R a by providing the number of principal components, number of time

steps, option of smooth filter, option of shift operator, option of normalization of input sources, and
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initial weight matrices. The next step is to feed R a in the physiological model as an input function,

and solve it with other subsystems. The loss function is the same as defined in Chapter 3, where the

amplifier κ of the penalty term in Equation (3.51) can be adjusted depending on the performance

of the hybrid model. The same optimization techniques introduced in Chapter 3.1.3.3 are used

in the hybrid model: Quasi-Newton method with BFGS and implicit filtering. The model was first

optimized using implicit filtering with given boundaries and then updating the parameters in the

Quasi-Newton method with BFGS. The evaluations metric RMSE (2.12) and correlation coefficient

(3.41) are obtained by the difference between simulation and true CGM signals for training and

testing.

4.3 Results

In this section, we first present the results by using the updated meal events from the meal correc-

tion algorithm in the physiological models, then discuss the performance of the hybrid model by

replacing the meal function in the physiological model with reservoir computing.

4.3.1 Results of Updated Meal Events in Physiological Model

The meal correction algorithm is only applied for detecting the incorrect and unannounced meal

events in training CGMs. For the testing set, we keep the meal event measurements as the self-

reported meal events.

The evaluation results were performed on physiological models introduced in Chapter 3 with the

input meal source replaced by the output of the meal correction algorithm in the training process.

The loss function and optimization techniques for parameter estimation follow the same procedure

as described in Chapter 3, where we use the implicit filtering method with the same boundary

conditions and then use the Quasi-Newton BFGS algorithm for convergence. The estimated values

for parameters for each physiological model are shown in Table 4.2. After the parameter values are

obtained, the values are then used for predicting CGMs for testing series. In the updated performance

using Hovorka function, the RMSE for training and testing are 61.96 and 70.58, and correlation

coefficients for training and testing are 0.17 and 0.02, respectively. Regarding the performance

of modified Lehmann function, the training and testing RMSE are 76.69 and 102.54, where the

correlation coefficients are -0.02 and -0.41, respectively.

Table 4.2 Parameter values of unknown parameters in both models after meal correction algorithm ob-
tained in the training phase, where Lehmann M. is the abbreviation of physiological model with lehmann
meal function, and Hovorka M. stands for physiological model with Hovorka meal function.

Model Cb i o Km bc 2 Tm bc 1 Ts Ib Ip b Il b Is c 1b Is c 2b Gt b

Lehmann M. 4 300 1.84 98.91 4 10 3 3 3 3 3 100
Model Cb i o Km bc 2 Tma x bc 1 Ib Ip b Il b Is c 1b Is c 2b Gt b

Hovorka M. 8.48 202.18 0.51 475.23 2 3 3 3 3 3 100
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In Figure 4.16, we plot the comparison of the physiological model with Hovorka function regard-

ing of the changing of meal events. From the plot, we observe the prediction results are both small

in magnitude and stayed in the region of [150,250]mg/dl mostly. It might not be a good simulation

model for T1D people, where their BG levels vary largely every day affected by different activities.

Compared the evaluation metrics with result in Chapter 3.3.1, the training performance is better

with the previous meal events, but the meal correction algorithm improved the testing performance.

This may due to the parameters trained by the update meal events has a better generalization ability.

Lastly, the subsystem behaviors are plotted to compare the model performance. In Figure 4.17, the

plasma insulin, endogenous glucose production, and glucose utilization are shifted up or down

due to the parameter values being slightly different. Then the rate of appearance model showed

the major difference, where there are less meals identified by the meal correction algorithm and

occurred at different locations. Regarding the parameter values in meal function, the Tma x is out of

the biological range (similar behavior was observed in Chapter 3). Thus, the physiological model

with Hovorka function may have limitations on predicting the real-world T1D dataset. The bar

graph 4.18 of evaluation metrics among 6 data contributors shows the meal correction algorithm

can slightly improve the physiological model performance on testing dataset.

Next, Figure 4.19 depicts the comparison plot for the physiological model with modified Lehmann

function. The physiological model using update meal events has a smaller magnitude compared to

the one using previous meal events, and sometimes can predict extreme values of CGM signals cor-

rectly. Compared to the results obtained in Chapter 3.3.2, we found the updated meal events largely

improved the model behavior in the training phase. The RMSE is slightly increased in testing but the

correlation coefficient is improved. In the subsystem plot 4.20, we observed a similar behavior as

shown in the Hovorka model, where the number of updated meal events are less than previous, and

the other subsystems slightly vary due to the changing parameter values. Finally, the comparison

plot of evaluation metrics among 6 data contributors is shown in Figure 4.21, where we observed

the mean of training error is decreased and the standard deviations are larger in the updated meal

events. This may due to the meal correction algorithm can only improve the performance when the

previous evaluation results are poor, and may dampen the good performance when the meal events

can be correctly reflected by CGM patterns.

Overall, the meal correction algorithm provides the possibility of identifying the meal events

and slightly improves the model performance. The results shown in both physiological models

may indicate the real-world meal data is not always accurate. There are limitations for this meal

correction algorithm such as the meal size cannot be identified and the algorithm cannot be applied

to testing series. However, we observe the importance of the meal function in the physiological

model after conducting this experiment.

4.3.2 Results of Hybrid Model

We construct a hybrid model which replaces the meal function previously defined as modified

Lehmann or Hovorka function with reservoir dynamics, where characteristics of unknown parame-
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Figure 4.16 Comparison plot of model performance with CGM signals with/without the meal correction
algorithm applied physiological model with Hovorka meal function for 570. The left side of the reference
line is training, and the right side is testing. The meal correction algorithm does not apply to testing CGMs.

Figure 4.17 The subsystem dynamics of both physiological models after the meal correction algorithm for
570 using Hovorka meal function. The first 10000 data points (around 7 days) dynamics are presented.
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Figure 4.18 Bar graph of model performance in training and testing among 6 data contributors using Hov-
orka meal function. First presented the evaluation results for the physiological model with the raw meal
data, then presented the evaluation results with the updated meal events with meal correction algorithm.

Figure 4.19 Comparison plot of model performance with CGM signals with/without the meal correction
algorithm applied physiological model with modified Lehmann meal function for 570. The left side of the
reference line is training, and the right side is testing. The meal correction algorithm does not apply to
testing CGMs.
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Figure 4.20 The subsystem dynamics of both physiological models after the meal correction algorithm
for 570 using modified Lehmann meal function. The first 10000 data points (around 7 days) dynamics are
presented.

Figure 4.21 Bar graph of model performance in training and testing among 6 data contributors using mod-
ified Lehmann meal function. First presented the evaluation results for the physiological model with the
raw meal data, then presented the evaluation results with the updated meal events with meal correction
algorithm.
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ters are listed in Table 4.3.

Table 4.3 Table of unknown parameters for hybrid model. The unit is not presented if a parameter is di-
mensionless. If a parameter is from the physiological model, then the relevant subsystem is provided in
the last column, else the description of the parameter is presented.

Parameter Unit Biological Range Relevant Subsystem/Description
Gt b mg/kg [100,300] glucose subsystem
bc 1 hour/min [0,4] insulin subsystem
bc 2 mi n−1 [0,4] insulin subsystem
Ib mg/dl [0,10] insulin subsystem
Il b pmol/kg [0,10] insulin subsystem
Ip b pmol/kg [0,10] insulin subsystem

Is c 1b pmol/kg [0,10] insulin subsystem
Is c 2b pmol/kg [0,10] insulin subsystem
Km mg/kg [100,300] insulin-dependent utilization subsystem

Ts na c k min [10,20] continuous snack size meal duration
Tme a l min [20,100] continuous snack size meal duration

w [-2,2] the elements in the finial weight matrix
ts hi f t min [0,50] shift value for rate of appearance function

l [0,200] span value of moving average smoothing

The number of parameter values may be different depending on the size of the reservoir dynam-

ics, as shown in Table 4.1. In the sensitivity and identifiability analysis we introduced in Chapter 3,

there is one parameter in the meal function as the most sensitive and identifiable parameter (Cb i o )

for both physiological models, and the meal function is considered as a sensitive subsystem in the

physiological system. Therefore, we decide to consider all parameters in the reservoir dynamics as

important parameters and estimate those in the inverse problem along with the selected parameters

in the physiological systems, namely, Km , bc 1, bc 2.

By evaluating the different combinations of the reservoir options, we plot the most satisfying

results in Figure 4.22 and compare them with physiological models and data-driven models. The

best performance hybrid model uses a small size reservoir (nt p s = 3, nP C = 10) and all 3 meal sources

from bolus meal event, self-reported meal event and the output from meal correction algorithm.

After normalization, the shift and smooth operator (Shift=1, Smooth=1) are added in the reservoir

network. The estimated parameter values are reported in Table 4.4, where the initial values in the

physiological subsystems are fixed with the values presented in Table 4.2. The RMSEs for training

and testing are 65.43 and 90.36, respectively. The training and testing correlation coefficients are

0.19 and 0.26, respectively. Compared to the best performance for the physiological model, the

testing correlation coefficient is improved largely.

In Figure 4.22, we plot the prediction with the CGM signals for data contributor 570, notice

that the training part of CGM estimation performed much better than testing. The meal correction

algorithm was not applied to the testing data, thus it may lead to the worse behavior presented in
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Table 4.4 Major estimated parameter values in the hybrid model are reported in the table, the other esti-
mated parameters are the weights in the reservoir dynamics and in the range of [-2,2].

Model Km bc 2 bc 1 Tme a l Ts na c k l ts hi f t

Hybrid 100.25 3.77 0.65 118.74 10.39 44 50

Figure 4.22 Comparison plot of hybrid model prediction plot with CGM signals for 570. The left side of
the reference line is training, and the right side is testing. The meal correction algorithm does not apply to
testing CGMs.

the testing phase. In addition, the large fluctuation in the predicted CGMs presents various patterns

throughout the time. By looking at the subsystem plot in Figure 4.23, the rate of appearance function

generated by reservoir dynamics learned different patterns compared to the Hovorka or Lehmann

model described in Chapter 3.

The downward patterns in the rate of appearance function may indicate the mistakes in meal

events where the corresponding tangent line of CGM is negative. The average rate of appearance

function is above 0 which may represent the meal consumption has a continuous effect for T1D

individuals. The upward patterns are similar to the modified Lehmann function in magnitude.

The evaluation metrics among 6 data contributors are shown in the bar plot 4.24, where the

variation in training performance is smaller compared to both physiological models, and improving

in the testing correlation coefficients in general. The hybrid model for each contributor was able to

generate large fluctuation patterns while lowering the errors. The hybrid model has the potential to

improve further by carefully tuning the hyperparameters or testing on different sizes of reservoir

dynamics.

4.4 Discussion

In this section, the hybrid model is presented by replacing the meal function with a data-driven

model. The hybrid model using a multi-perceptron network has been successfully applied to the SIR

disease model with a simulation dataset. However, for a complex physiological model and real-world

data, it is more challenging.
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Figure 4.23 The subsystem dynamics of the hybrid model. The first 10000 data points (around 7 days)
dynamics are presented. The starting position of the rate of appearance function is due to a shift operator.

Figure 4.24 Bar graph of model performance among 6 data contributors in training and testing for hybrid
model, the mean values are reported with the red error bar represent the stand deviation.
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We also proposed a meal correction algorithm, which identifies the incorrect meal event and

unannounced meal events by observing the patterns in CGM signals. It can be applied to detect the

meal event in the CGM for all diabetes, and future research is needed for determining the meal sizes.

The updated meal events along with other meal events show promising results in the hybrid model,

which improves the correlation coefficient and reduces the RMSE for the physiological model with

modified Lehmann function.

In future iterations, more sizes of the reservoir computing should be considered, and the hyper-

parameters can also be adjusted to obtain better results. We should also investigate the overfitting

in training and testing as appears in all models presented in this work.

4.5 Contributions

We present a hybrid model that combines the data-driven model and physiological model for BG

prediction tasks. The reservoir dynamics, which is the most promising model in data-driven models,

was used to replace the underlying meal function as a subsystem in the complex physiological model.

Furthermore, a meal correction algorithm is proposed for moving the meal events to the correct

location and detecting the unannounced meals. The performance is largely improved using the

hybrid approaches compared to the physiological models. The interpretability is obtained compared

with data-driven models. The prediction results may be improved further by tuning the reservoir

networks and replacing other variables in the physiological model.
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CHAPTER

5

CONCLUSION

In this work, we introduced the methodologies for blood glucose prediction in three types: data-

driven model, physiological model, and hybrid approaches that combine the data-driven and

physiological models.

The data-driven model had the advantage of accuracy, but choosing the suitable model and

tuning the model hyperparameters could be challenging for real-world data, such as blood glucose

time series for type 1 diabetes. In addition, the data-driven models are considered as black-box

algorithms which output the prediction without biological interpretability. The reason data-driven

models can provide a better prediction performance for time-series data may be due to the target

variable (e.g., blood glucose levels) providing to the data-driven algorithm as an input source with

time-shifted backward. Thus, the algorithm can learn the pattern of the signals and provides an

accurate prediction. In the studies [Mar18; RR19], those models using only blood glucose levels are

also able to provide good performance in predictions. If the target variable is removed from the

input source, then most algorithms would have difficulty predicting the correct patterns.

Compared to the data-driven model, the physiological model does not use the blood glucose

levels directly as input, but is introduced in the last phase when estimating the model parameters.

The physiological model was built from literature where all model compartments and model pa-

rameters have biological meaning. The changes in each component in the physiological model will

affect the blood glucose at the same time. By studying the physiological model in the blood glucose

prediction, we can understand the dynamics changing in tissues or organs for type 1 diabetes, and

provide better guidance for instructing the patient’s daily activities. However, by the fixed number of

parameters, it is difficult to find a suitable model for every patient, and the model parameters may

change with respect to time. In addition, the blood glucose level collected from continuous glucose
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monitoring contains noise and uncalibrated data which increases the challenge of obtaining a high

fidelity physiological model.

The hybrid approaches utilized the most promising model in data-driven algorithms, reservoir

computing. It replaced the most difficult simulation function as we found during the physiological

experiments. It was found that the physiological model with hybrid components, model performance

is improved while maintaining interpretability.

5.1 Contributions

Providing an efficient computer algorithm in the artificial pancreas would benefit diabetes patients

for controlling the blood glucose level in the euglycemic range and provide warning ahead of time.

In addition, we wish to provide the dynamics in the body organs and tissues along with the blood

glucose monitor to guide the daily activities, i.e., suggesting duration and intensity of exercise,

providing advice on the GI index and carbohydrate size of meal consumption, guiding the insulin

injection, etc. This can be done by introducing an efficient hybrid model which contains accuracy

and interpretability.

In the data-driven chapter, we found the regression models to be fast and accurate for various

pattern dataset, where the reservoir computing can recover the missing dynamics when the blood

glucose monitor is disconnected and the CGM is missing. In the physiological model, we construct

the complex model with 6 subsystems and 12 variables. Each model component and parameter

have biological meaning so we understand more about a specific patient by observing the dynamics

in the subsystems. Finally, reservoir computing replaced the meal function in the physiological

model, which is the most crucial but challenging function in the complex physiological model. By

solving the inverse problem and obtaining the estimation of parameters in the hybrid model, the

model performance is improved while maintaining interpretability.

The performance of the hybrid model can be improved as the training data size grows. More

parameters can be introduced in the hybrid model to improve the accuracy, and the patient-specific

parameters can reflect the daily routine of a type 1 diabetes person after training on a large dataset.

After obtaining an accurate hybrid model, by providing the future activities (meal intake, exercise

level, insulin bolus injection), it is possible to predict the future CGM dynamics. Then, the treatment

such as basal insulin injection can be adjusted qualitatively based on the CGM control.

This work can also benefit type 2 diabetes as the physiological system of blood glucose transfor-

mation is similar to type 1 diabetes. With small modifications of the insulin subsystem based on the

pathophysiology, the model can be extended to type 2 diabetes individuals.

5.2 Future Work

There are limitations of the hybrid approach we proposed in this work by learning from data-driven

and physiological perspectives. For example, there may be other functions (i.e., other than meal
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function) that the physiological model cannot simulate the dynamics well. Thus, identifying the

inaccuracy subsystem in the physiological model is a potential research direction in the future.

Currently, we only replaced the most crucial component with data-driven by our analysis and

observation, but there could be more model variables that cannot reflect the true dynamics of type

1 diabetes patients. If we can replace those model components with the reservoir dynamics or other

learnable architectures such as Seq-to-Seq LSTM, the model performance may be improved.

In addition, there is a limited selection of optimization tools for this hybrid approach, thus

solving the inverse problem for a complex ODE with a large number of estimated parameters is

difficult and time-consuming. The Hessian matrix of the complex ODE system is hard to compute

as well as the gradient of the loss function, this limits the speed of convergence and finding an

accurate local minimum. If the optimization tool is further improved for solving this complex inverse

problem, then it could largely improve the performance of hybrid models.
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Algorithm 2 Relocation Algorithm

1: Output: Meal_index, Meal_size, Dis_back, Dis_front
2: Input: df.CGM (dataframe of CGM), meal_p (2 columns matrix contain meal time t and meal

size m)
3: for n in [0, length(meal_p)) do
4: if n!=0 and n!= length(meal_p)-1 then
5: diff_back=difference(df.CGM[Meal_index[n-1]:meal_p[n]])
6: diff_front=difference(df.CGM[meal_p[n]:meal_p[n+1]])
7: if diff_back is non-positive and diff_front is non-negative then
8: Meal_index.append(meal_p[t(n)])
9: Meal_size.append(meal_p[m(n)])

10: Dis_back.append(0)
11: Dis_front.append(0)
12: if sign of every element in diff_back is the same then
13: index_back=meal_index[n-1]
14: Dis_back.append(length(diff_back))
15: else
16: index_back=meal_p[t(n)]-nearest location of the valley (see Algorithm 3)
17: Dis_back.append(nearest location)
18: end if
19: if sign of every element in diff_front is the same then
20: index_front=Meal_index[n-1]
21: Dis_front.append(length(diff_front))
22: else
23: index_front=meal_p[t(n)]+nearest location of the valley (see Algorithm 3)
24: Dis_front.append(nearest location)
25: end if
26: compare index_front and index_back which closer to meal_p[t(n)],

and store it in Meal_index, and Meal_size.append(meal_p[m(n)])
27: else
28: if n=0 then
29: diff_back=difference(df.CGM[0:meal_p[0]])
30: repeat the Operation 6-26
31: else
32: diff_front=difference(df.CGM[meal_p[n]:end])
33: repeat the Operation 5, 7-26
34: end if
35: end if
36: end if
37: end for
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Algorithm 3 Find Valley Algorithm

1: Output: loc
2: Input: array1, front_inc
3: array2 = find where array1 !=0
4: while n in array2 do
5: if n!=0 then
6: if array2[n-1]<array2[n] and array2[n-1]×array2[n]==1 then
7: loc_list.append(n)
8: end if
9: end if

10: if length(loc_list)=0 then
11: loc_list.append(0)
12: end if
13: if front_inc=True then
14: loc=loc_list[0]
15: else
16: loc=loc_list[-1]
17: end if
18: end while

Algorithm 4 Detect Unannouncement Meal Algorithm

1: Output: Meal_time
2: Input: df (contain df.CGM and df.time), meal_c (Meal_index from Algorithm 2)
3: df.d=extract the day from df.time
4: for d in [0,end] do
5: meal_count=count of meal_c in day d
6: df_sub=df in day d from 5:00 a.m. to 10 p.m.
7: loc_list=the valley position of the CGM in the day d (see Algorithm 3)
8: while t in loc_list do
9: if t in meal_c then

10: Meal_time.append(meal_c[t])
11: else
12: if meal_count<=4 then
13: if df.CGM[t]<=300 then
14: diff_CGM=df_sub.CGM(t+5)-df_sub.CGM(t)
15: delta_CGM=(df_sub.CGM(t+30)-df_sub.CGM(t))/30
16: if diff_CGM>=0 and delta_CGM>0 then
17: Meal_time.append(meal_c[t])
18: meal_count++
19: end if
20: end if
21: end if
22: end if
23: end while
24: end for
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