
ABSTRACT

HARRIS, KATHERINE ELIZABETH. Real Algebraic Geometry with Numerical Homotopy Methods.
(Under the direction of Agnes Szanto.)

Many algorithms for determining properties of (real) semi-algebraic sets rely upon the ability to

compute smooth points. We present a simple procedure based on computing the critical points of

some well-chosen function that guarantees the computation of smooth points in each connected

bounded component of an atomic semi-algebraic set. We demonstrate that our technique is intuitive

in principal, as it uses well-known tools like the Extreme Value Theorem and optimization via

Lagrange multipliers. It also performs well on previously difficult examples, such as the classically

difficult singular cusps of a “Thom’s lips" curve. Most importantly, the practical efficiency of this

new technique is demonstrated by solving a conjecture on the number of equilibria of the Kuramoto

model for the n = 4 case.

In the presentation of our approach, we utilize definitions and notation from numerical algebraic

geometry. Although our algorithms can also be implemented entirely symbolically, the worst case

complexity bounds do not improve on current state of the art methods. Since the usefulness of our

technique lies in its computational effectiveness, such as in the examples we described above, it is

therefore intuitive for us to present our results under the computational framework which we use

in the implementation of the algorithms via existing numerical algebraic geometry software. We

also present an approach for finding our “well-chosen" function as described above via isosingular

deflation, a known numerical algebraic geometry technique.

In order to apply our approach to non-equidimensional algebraic sets, we perturb using infinites-

imals and compute on these perturbed sets. We state and prove results which allow us to compute

the limits of these perturbations, including shifting from symbolic infinitesimal perturbations to

small constant perturbations which we can track limits of using numerical homotopy techniques.

One of the main tools we use throughout our results is polar varieties, based on previous results ([6])

which guarantee the finding of real smooth points (if they exist) under the correct genericity condi-

tions. We also apply our method to design an efficient algorithm to compute the real dimension of

algebraic sets, the original motivation for this research.

The use of numerical techniques for algebraic problems raises the question of certification of

the computational results. The last chapter is devoted to some results on this problem of certifying

solutions, i.e. providing a “certificate" that the approximations resulting from numerical homo-

topy methods in fact correspond to symbolic solutions. Building on existing work and software

alphaCertified [26] that work only to certify approximate isolated solutions of well-constrained

polynomial systems, we present extensions of these results to underdetermined polynomial systems,

with the intention of utilizing them to create a similar software for this case.
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CHAPTER

1

INTRODUCTION

When studying an atomic semi-algebraic set S , i.e.

S := {x ∈Rn : f1(x) = · · ·= fs (x) = 0, q1(x)> 0, . . . , qt (x)> 0}

for f1, . . . , fs , q1, . . . , qt ∈R[x], one often first studies the complex variety V = {x ∈Cn : f1(x) = · · ·=
fs (x) = 0}, known as its algebraic relaxation and deduces properties of S from the properties of V . In

particular, if S contains a smooth point and V is irreducible, then S is Zariski dense in V , and so all

of the algebraic information of S can be determined from V . Thus, deciding the existence of smooth

points in semi-algebraic sets and finding such points is a central problem in real algebraic geometry

with many applications. For example, if ϕ : S → S ′ is a polynomial map of semi-algebraic sets, then

smooth points in Im(ϕ) are points where the Jacobian of ϕ has maximal rank within its connected

component, called the typical rank. Finding real smooth points in each connected component

of a semi-algebraic set allows one to compute all typical ranks of real morphisms, an idea which

is further explored in [53]. As another example, the existence or non-existence of a real smooth

point in an irreducible variety is a well-known criterion for whether the corresponding ideal is real

(see the definition of real ideals and the exploitation of this fact in [49]). Similarly, the existence or

non-existence of a real smooth point determines where the real dimension of an algebraic set is

equal to or less than the complex dimension.

Keeping this general context in mind, this dissertation is organized as follows. In Chapter 2,

we present all of the necessary definitions and prior results for the rest of the paper. This includes

preliminaries from classical algebraic geometry, real algebraic geometry, and numerical algebraic

geometry, as we will utilize the knowledge and context of all three paradigms in our various results.
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In Chapter 3, we introduce a new technique to compute smooth points on bounded connected

components of atomic semi-algebraic sets. When V is equidimensional, our approach is simple

and suggests a natural implementation using numerical homotopy methods. It complements other

approaches that compute sample points on real semi-algebraic sets, such as computing the critical

points of the distance function, in the sense that our method also guarantees the smoothness of the

sample points. We illustrate this advantage on “Thom’s lips” in which critical points of the distance

function are often at the singularities [57, Ex. 2.3], while our method always computes smooth points.

To demonstrate the practical efficiency of our new approach, we present the solution to a conjecture

concerning the number of equilibria of the Kuramoto model in the n = 4 case given in [58].

Chapter 4 consists of the intermediate results necessary for us to extend our approach from

Chapter 3 to the case when V is not equidimensional (i.e. reducible and the components may

have different dimensions) by using infinitesimal deformations of V and limits. We show that this

limiting approach is well-suited for numerical homotopy continuation methods after we translate

an infinitesimal real deformation (that may only work for arbitrary small values) into a complex

deformation that works along a real arc parameterized by the interval (0, 1]. We present a novel tech-

nique to construct the “well-chosen" polynomial g , whose critical points are used to compute the

smooth points of interest, using deflations, and compare its degree bounds to traditional symbolic

approaches (see Proposition 4.4.2).

In Chapter 5, we present our main algorithm for computing a real smooth point on every

bounded connected component of an atomic semi-algebraic set that contains one. The result is

presented using computational tools from numerical algebraic geometry (c.f. [52, 11]), though we

note all procedures can be translated to symbolic methods for polynomials with rational coefficients.

In particular, Corollary 5.1.4 proves that our REAL SMOOTH POINT ALGORITHM performs well if the

depth of the deflations (i.e. the number of iterations) is small.

Chapter 6 applies our method to compute the dimension of real semi-algebraic sets. The difficulty

of this problem, compared to its complex counterpart, is that in many cases the real part lies within

the singular set of the complex variety containing it, and its real dimension is smaller than the

complex one. In terms of worst case complexity bounds of the existing algorithms in the literature, it

is an open problem if the real dimension can be computed within the same asymptotic complexity

bounds as the complex dimension. The motivation for this research was to try to find an algorithm

for the real dimension that has worst case complexity comparable to its complex counterpart. In fact,

we did a worst case complexity estimate for a symbolic version, and found that unfortunately it does

not improve the existing complexity bounds in the worst case (see [7] and the references therein).

This is one of the reasons we wrote the results in a numerical algebraic geometry setting, and give

evidence of the efficiency on benchmark problems based on computational experimentation.

Finally, in Chapter 7 we shift our focus to another project involving numerical homotopy methods.

Numerical algebraic geometry software that implements algorithms solving systems of polynomial

equations often relies heavily on iterations of Newton’s method to to compute numerical approxi-

mations to symbolic solutions. Shub and Smale’s α-theory [50] creates a framework for certifying

2



the convergence of approximate solutions obtained via Newton’s method to the exact solutions

of a system. In [26], Hauenstein and Sottile present their software called alphaCertified which

implements these results for square polynomial systems. In ongoing work, we are extending key

results from this context to the case of underdetermined systems, which requires the use of the

Moore-Penrose inverse. The implementation of these algorithms will be a complementary software

called alphaCertifiedPlus.
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CHAPTER

2

PRELIMINARIES

2.1 Algebraic Geometry Basics

We begin with establishing some basic algebraic geometry terminology and notation which will

help us in our discussion going forward. Our treatment follows that of [23]which can be referenced

for more details if necessary.

Definition 2.1.1. A fieldK is algebraically closed if every non-constant polynomial inK[x ] has a

root inK.

We note that in general all of the definitions which follow are often given for any algebraically

closed fieldK; for our purposes, it will suffice to use the algebraically closed field of complex numbers

C. We denote by Cn the n-dimensional affine space over C andC[x] =C[x1, . . . , xn ] the polynomial

ring

C[x] :=
§

∑

cαxα =
∑

c(α1,...,αn )x
α1
1 · · · x

αn
n |cα ∈C

ª

.

Definition 2.1.2. Let f1, . . . , fs ∈C[x]. Then

V ( f1, . . . , fs ) := {x ∈Cn : f1(x) = · · ·= fs (x) = 0} (2.1)

is the set of common zeros of the polynomial system f1, . . . , fs in Cn . We call a set of this form an

algebraic set/affine variety.

We note some important results about algebraic sets as follows.

4



Theorem 2.1.3. The intersection of any collection of algebraic sets in is an algebraic set. The union of

a finite collection of algebraic is an algebraic set.

Theorem 2.1.4. Every algebraic set can be defined as the common zero set of a finite number of

polynomials.

Furthermore, there exists a correspondence between affine varieties and polynomial ideals

which allows us to further explore the properties of both. Given a subset Z ⊂ Cn , we denote the

collection of polynomials that vanish on Z by

I (Z ) := { f ∈C[x] : f (z) = 0 for all z ∈ Z }.

We note that by definition the map I reverses inclusions, so Z ⊂ Y implies that I (Y )⊂ I (Z ). Further-

more, for any subset Z ⊂Cn , I (Z ) is an ideal of the ring C[x].

Lemma 2.1.5. Given Z ⊂Cn , let X =V (I (Z )) be the variety defined by the ideal I (Z ). Then I (Z ) = I (X )

and X is the smallest affine variety in Cn containing Z .

Using this result, we introduce the algebro-geometric idea of the closure of a set.

Definition 2.1.6. Given Z ⊂Cn , its closure, Z , is the smallest algebraic set inCn containing Z . By

Lemma 2.1.5,

Z := {x ∈Cn : f (x) = 0 for all f ∈ I (Z )}=V (I (Z )).

Z ⊂Cn is closed if Z = Z . X ⊂Cn is open if its complement Cn \X is closed.

By Theorem 2.1.3, the closed subsets of Cn as given by Definition 2.1.6 satisfy the standard

axioms of a topological space. We call this topology the Zariski topology, for Oscar Zariski, and note

that it also induces the same topology on any subset Z ⊂Cn . In particular, given an algebraic set

V ⊂Cn , closed subsets of V are exactly the closed subsets of Cn contained in V .

Using this topology, we establish some further results which will help us going forward.

Theorem 2.1.7. Given an algebraic set V ⊂Cn+m and the projection map

π :Cn+m →Cm

(x1, . . . , xn , y1, . . . , ym ) 7→ (y1, . . . , ym ),

then

π(V ) =V
�

I (V )∩C[y1, . . . , ym ]
�

.

The above theorem is a statement about the images of algebraic sets under projection, which

plays a key role in the study of elimination theory in algebraic geometry. We explore the basic idea

with an example.

5



Example 2.1.8. Consider the algebraic set V = V ( f ) = {(x , y ) ∈C2 : f = x 2+ y 2−1= 0} ⊂Cn and

the projection map π :C2→C defined by π(x , y ) = x . Then π(V ) =V (g )where g = 0.

Definition 2.1.9. An algebraic set V ⊂Cn is reducible if there exist proper subsets V1, V2 (V such

that

V =V1 ∪V2.

V is irreducible if no such decomposition exists.

Theorem 2.1.10. Given an algebraic set V ⊂ Cn , there exists a unique finite union of irreducible

algebraic subsets of V

V =V1 ∪V2 ∪ · · · ∪Vr .

We call the Vj in Theorem 2.1.10 the irreducible components of V .

The following definition from [53] illustrates how “large" Zariski open sets are under the Zariski

topology and how we can utilize them to make statements about properties of an algebraic set that

hold “almost everywhere."

Definition 2.1.11. Let V be an irreducible algebraic set as is Definition 2.1.9. Then any nonempty

Zariski open X ⊂V is Zariski dense in V . A property of V is called generic if the set of points where

that property holds contains a Zariski open subset of V . A point x ∈ V where a generic property

holds is called a general point of V with respect to that property.

Remark 2.1.12. We say that a generic property of an irreducible algebraic set V holds “almost

everywhere" because the points where it does not hold must form a proper algebraic subset of V .

There are many equivalent ways of defining the (complex) dimension of an algebraic set. Since

we are considering primarily algebraic sets overCn , here we state the definition which generalizes

our intuition of dimension in Euclidean space or a vector space.

Definition 2.1.13. Let V ⊂ Cn be an algebraic set. The dimension of V , dim(V ), is the maximal

length d of the chains V0 ⊂V1 ⊂ · · · ⊂Vd of distinct nonempty irreducible algebraic subsets of V . We

call V equidimensional of dimension d if every irreducible component of V has dimension d .

Definition 2.1.14. The codimension of a k -dimensional algebraic set V ⊂Cn is n −k .

Definition 2.1.15. Consider a point z ∈V ⊂Cn , where V is an algebraic set. The local dimension of

V at z is the maximal dimension of every irreducible component Vj of V such that z ∈Vj .

Given an algebraic set V ⊂Cn and a point z ∈V , the affine tangent space of V at z is given by

TzV :=
§

x ∈Cn :
n
∑

j=1

∂ f

∂ x j

�

�

�

�

z

(x j − z j ) = 0 for all f ∈ I (V )
ª

.
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Definition 2.1.16. Let V ⊂Cn be an algebraic set. A point z ∈V is smooth/nonsingular in V if there

is a unique irreducible component V ′ ⊂V containing z such that

dim(TzV ′) = dim(V ′).

We denote by Sing(V ) the set of singular (or non-smooth) points in V .

Definition 2.1.17. Given f ∈C[x], the gradient∇ f :Cn →Cn is defined at the point z= (z1, . . . , zn ) ∈
Cn by the vector

∇ f (z) :=







∂ f
∂ x1
(z)

...
∂ f
∂ xn
(z)






.

∇ is also referred to as a differential operator.

Definition 2.1.18. Given functions f1, . . . , fs ∈C[x], the Jacobian of f = { f1, . . . , fs } is defined by the

s ×n matrix

J f (x) :=







∂ f1(x)
∂ x1

· · · ∂ f1(x)
∂ xn

...
...

...
∂ fs (x)
∂ x1

· · · ∂ fs (x)
∂ xn






.

Here, we take a turn to briefly discuss homogeneous polynomials. The homogenization of a

polynomial in Cn is important, because it allows us to move from Cn to Pn , projective space.

Definition 2.1.19. Projective n-spacePn (orPn (C)) is the set of all lines inCn+1 containing the origin.

The construction of projective space is useful, because it allows us to introduce points “at infinity"

where parallel lines intersect. This idea allows for some elegant statements of uniform results in

algebraic geometry that would otherwise fail, especially for many results in plane geometry. However,

the geometric intuition for projective space is often harder to access. Therefore, we introduce the

algebra of homogeneous polynomials to obtain a more concrete approach to working with the

results utilizing equivalence classes of polynomials in Cn+1.

Definition 2.1.20. A polynomial f ∈C[x0, x1, . . . , xn ] is homogeneous of degree d in x0, x1, . . . , xn if it

is of the form

f =
∑

|α|=d

cαxα =
∑

α0+α1+···+αn=d

c(α0,α1,...,αn )x
α0
0 xα1

1 · · · x
αn .
n

For our purposes, the defining polynomials of our algebraic set will not always be homogeneous.

Therefore, we utilize the standard process of homogenization.

Definition 2.1.21. Given a polynomial f ∈C[x1, . . . , xn ], the homogenization of f (with respect to

x0) is

f (h ) := x
deg( f )
0 f

�

x1

x0
, . . . ,

xn

x0

�

.

We note that while the homogenization does require us to add another variable to our problem,

the benefits this will provide us in our proofs far outweighs the computational cost of this extra

variable in practice.
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2.2 Real Algebraic Geometry

In this section, we consider how the definitions and results of classical algebraic geometry differ

when we examine solution sets to polynomial systems over Rn , rather than Cn . Our treatment

follows that of [8], which can be referenced for more details if necessary.

Definition 2.2.1. Let f1, . . . , fs ∈R[x]. Then

VR( f1, . . . , fs ) := {x ∈Rn : f1(x) = · · ·= fs (x) = 0}

is the common zero set of the polynomial system f1, . . . , fs in Rn . We call a set of this form a real

algebraic set.

We note that this definition conceals some of the difficulties that arise when we study real

algebraic sets compared to their complex counterparts. In particular,R is not an algebraically closed

field as in Definition 2.1.1. We illustrate the basic nuance of this difference with a simple example.

Example 2.2.2. Consider the polynomials f = x 2+y 2+1. and g = x 2+y 2+2. ThenVR( f ) =VR(g ) = ;,
but V ( f ) 6=V (g ). In other words, these are different algebraic sets, but we cannot distinguish them

as real algebraic sets.

To explore further, we define topological terms for Rn , which follow the standard Euclidean

topology.

Definition 2.2.3. Given z ∈Rn , r ∈R, r > 0, the Euclidean norm is given by ‖z‖=
Æ

z 2
1 + · · ·z

2
n . We

define an open ball B (z, r )⊂Rn by

B (z, r ) := {x ∈Rn : ‖z−x‖2 < r 2}

and a closed ball B (z, r )⊂Rn by

B (z, r ) := {x ∈Rn : ‖z−x‖2 ≤ r 2}.

For a set Z ⊂ Rn , Z is open if it is the union of open balls. Z is closed if its complement is open.

Finally, the closure of Z , Z , is the intersection of all closed subsets of Rn containing Z .

Definition 2.2.4. Let f1, . . . , fs , q1, . . . , qt ∈R[x]. Then

S := {x ∈Rn : f1(x) = · · ·= fs (x) = 0, q1(x)> 0, . . . , qt (x)> 0} (2.2)

is an atomic semi-algebraic set. More generally, a set T ⊂Rn is a semi-algebraic set if it is a finite

union of atomic semi-algebraic sets.

By moving to semi-algebraic sets, we are now considering systems of polynomial equations and

inequalities. The following projection theorem for semi-algebraic sets is fundamental to computa-

tional algebraic geometry.
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Theorem 2.2.5. [8, Theorem 2.76] The image of a semi-algebraic set under a projection map is semi-

algebraic.

We illustrate with an example why the use of semi-algebraic sets, rather than algebraic sets, is

necessary to the statement of Theorem 2.2.5.

Example 2.2.6. Consider f (x , y ) = x y −1 and the projection mapπ : (x , y )→ x . Then the hyperbola

defined by f is a real algebraic set VR( f )⊂R2. However, the image of VR( f ) under the map π is the

set of points satisfying x 6= 0, which is a semi-algebraic set.

While for algebraic sets we typically consider the idea of compactness, for semi-algebraic sets

we think about what properties hold when they are closed and bounded.

Definition 2.2.7. Let S1 ∈ Rk and S2 ∈ Rl be semi-algebraic sets. A function f : S1 → S2 is called

semi-algebraic if the graph of f in Rk+l is semi-algebraic.

The following result is a useful statement about the preservation of closed and boundedness

under mapping.

Theorem 2.2.8. Let S be a closed and bounded semi-algebraic set and g a continuous semi-algebraic

function defined on S. Then the image g (S ) is closed and bounded.

The following result is known as the Curve Selection Lemma.

Lemma 2.2.9. [8, Theorem 3.19] Let S ⊂ Rn be a semi-algebraic set and x ∈ S . Then there exists

a continuous semi-algebraic mapping γ : [0,1)→ Rn such that γ(0) = x and γ((0,1)) ⊂ S , where a

semi-algebraic mapping is defined as in Definition 2.2.7.

Next we establish some terminology that mirrors the concepts we defined at the end of the

previous section.

Definition 2.2.10. A semi-algebraic set S ⊂ Rn is disconnected if there exist two disjoint closed

subsets C1, C2 ( S such that

S =C1 ∪C2.

S is connected if no such decomposition exists.

We call C j as in Definition 2.2.10 the connected components of a semi-algebraic set. Intuitively,

we should think of connected components of a semi-algebraic set as being the semi-algebraic

equivalent to irreducible components of an algebraic set.

Definition 2.2.11. For a semi-algebraic set S ⊂Rn , its real dimension, dimR(S ), is the largest k such

that there exists an injective semi-algebraic map from (0, 1)k to S .

Definition 2.2.12. Consider a point z ∈ S ⊂ Rn , where S is a semi-algebraic set. The local real

dimension of S at z is the maximal real dimension of the closure of every connected component C j

of S such that z ∈C j .
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We note that by convention, the (real or complex) dimension of the empty set is −1.

Definition 2.2.13. Let S ⊂Rn be an atomic semi-algebraic set as in (2.2). A point z ∈ S is smooth/

nonsingular if it is smooth in the algebraic set V ( f1, . . . , fs ) as in Definition 2.1.16.

The following shows that smooth points on each connected component of an atomic semi-

algebraic set S can be obtained as projections of smooth points of some real algebraic set.

Proposition 2.2.14. Let S be an atomic semi-algebraic set as in (2.2) and

W :=
�

(x, z) ∈Rn ×Rm : f1(x) = · · ·= fn (x) = 0, z 2
1 q1(x)−1= · · ·= z 2

m qm (x)−1= 0
	

.

If y ∈W is smooth, then πx (y) ∈ S is also smooth. Conversely, if x ∈ S is smooth, then (x, z) is smooth

in W for all z= (z1, . . . , zm ) ∈Rm such that (x, z) ∈W .

Proof. Without loss of generality, we can assume that f := { f1, . . . , fs } generates a prime ideal. The

Jacobian matrix of the polynomial system defining W has the block structure

J (x, z) =
J f (x) 0

∗ diag(2zi qi (x))

Since for (x, z) ∈W we have zi g i (x) 6= 0, the Jacobian matrix J f (x) has full column rank if and only if

J (x, z) has full column rank, which proves the claim.

The next reduction is to replace an arbitrary real algebraic set with a closed and bounded one.

Proposition 2.2.15. Let f1, . . . , fs−1 ∈R[x1, . . . , xn−1] and consider q= (q1, . . . , qn−1) ∈Rn−1. Letδ ∈R+,

introduce a new variable xn , and consider

fs := (x1−q1)
2+ · · ·+ (xn−1−qn−1)

2+ x 2
n −δ

Then, V ( f1, . . . , fs )∩Rn is bounded and

πn−1

�

V ( f1, . . . , fs )∩Rn
�

=V ( f1, . . . , fs−1)∩
�

z ∈Rn−1 : ‖z−q‖2 ≤δ
	

where πn−1(x1, . . . , xn ) = (x1, . . . , xn−1).

Remark 2.2.16. The definition of fs above is based on a standard trick used in real algebraic geometry

to make an arbitrary real algebraic set bounded (e.g., see [9]). In general, V ∩Rn−1 is embedded into

a sphere inRn around the origin of radius 1/ζwhere ζ is infinitesimal. In the context of homotopy

continuation methods described in the following sections, we are only interested in computing

points with bounded coordinates, so it is sufficient to embed its intersection with a closed ball

around q of radius
p
δ for some fixed δ ∈R+ (rather than using infinitesimal variables).

10



Going forward, when we suppose we have a closed and bounded real algebraic set V ( f1, . . . , fs )∩
Rn , we assume that if we were originally given an arbitrary atomic semi-algebraic set, we first applied

Propositions 2.2.14 and 2.2.15.

Next, we present some notation and results around perturbations of (real) algebraic sets from

[8], which will be crucial to many of our proofs in Chapter 4.

Definition 2.2.17. A total ordering on a set A is a binary relation ≤ satisfying the properties for all

a , b , c ∈ A:

• ≤ is reflexive (i.e. a ≤ a );

• ≤ is transitive (i.e. a ≤ b , b ≤ c ⇒ a ≤ c );

• ≤ is anti-symmetric (i.e. a ≤ b , b ≤ a ⇒ a = b );

• every two elements a , b ∈ A are comparable (i.e. a ≤ b or b ≤ a ).

An ordered field is a fieldK along with a total ordering ≤ such that for all x , y , z ∈K:

• x ≤ y ⇒ x + z ≤ y + z ;

• 0≤ x , 0≤ y ⇒ 0≤ x y .

For (K,≤) an ordered field, the subset C ⊂ K such that C = {x ∈ K : 0 ≤ x } is the positive cone of

(K,≤).

Definition 2.2.18. An ordered field (K,≤) is a real closed field if its positive cone is the set of squares

of elements inK and every polynomial inK[x ] of odd degree has a root inK.

Definition 2.2.19. Let K ⊂ K′ be two ordered fields. An element ε ∈ K′ is infinitesimal over K if

|ε| ≤ |x | for all x ∈K.

In particular, given an ordered field K and a variable ε, a natural total ordering on K〈ε〉 is

constructed by assuming ε > 0 is an infinitesimal overK.

Definition 2.2.20. LetK=R or C and denote byK〈ε〉 the field of Puiseux series overK, i.e.

K〈ε〉 :=

(

∑

i≥i0

ai ε
i/q : i0 ∈Z, q ∈Z>0, ai ∈K

)

.

A Puiseux series z =
∑

i≥i0
ai ε

i/q ∈K〈ε〉 is called bounded if i0 ≥ 0.

We note that the field of real Puiseux series R〈ε〉 is a real closed field as in Definition 2.2.18.

Theorem 2.2.21. [8, Corollary 2.98] SinceR is a real closed field, so isR〈ε〉. Furthermore,R〈ε〉 is the

real closure of R(ε).
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In particular, this means we can extend some properties of the real numbers to the field of

Puiseux series.

Theorem 2.2.22. [8, Theorem 2.11] Since R〈ε〉 is a real closed field, the intermediate value theorem

holds on it.

We also note that for Puiseux series, similar results hold overCwhen we replace real closed with

algebraically closed.

Theorem 2.2.23. [9, Theorem 2.92] Since C is an algebraically closed field, so is C〈ε〉. Furthermore,

C〈ε〉 is the algebraic closure of C(ε).

Finally, we establish a notation for the concept of an extension of a semi-algebraic set S ⊂Rn to

R〈ε〉.

Definition 2.2.24. Given a semi-algebraic set S ⊂Rn , the extension of S toR〈ε〉n , denoted Ext(S ,R〈ε〉n ),
is the semi-algebraic subset S ′ ⊂R〈ε〉n defined by the same equations and inequalities as S but their

solutions considered in R〈ε〉n .

2.3 Polar Varieties

In this section, we introduce the idea of polar varieties, which will be a main tool in our results in

the following chapters. There is extensive literature about different notions of polar varieties. [6]

provides a survey, and we explore some of the connections between those results here. We will begin

our construction over projective space, Pn , as in Definition 2.1.19.

Definition 2.3.1. For A, B ⊂Pn , 〈A, B 〉 is the subvariety of Pn spanned by A and B . A and B intersect

transversally, A ô B , if 〈A, B 〉=Pn . If A and B do not intersect transversally, we write A 6ô B .

For V ⊂ Pn of pure codimension p , Vreg is the set of all smooth (i.e. regular) points of V , a

complex subset of codimension p that is Zariski dense in V . Sing(V ) =V \Vreg is the singular locus

of V .

Definition 2.3.2. Let V ⊂Pn be a variety. For any linear subvariety L ⊂Pn , the polar variety of V in

terms of L is

WL (V ) := {p ∈Vreg \ L | TpV 6ô 〈p, L〉 at p}.

In words, WL (V ) is the Zariski closure of the smooth points p of V which are not also in L , such

that the tangent vectors of V at p, along with p and L , do not all together span Pn . We note that

WL (V )⊂V .

For the affine interpretation, let V be the projective closure of a closed subvariety S ⊂Cn . Then

the affine polar variety of S in terms of L is

WL (S ) =WL (V )∩Cn .
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Furthermore, given V ⊂Pn a variety of pure codimension p , we can create a sequence of polar

varieties of codimension 1 to n −p in V . To do so, we letL be a flag of projective linear subvarieties

of Pn

L : L 0 ⊂ · · · ⊂ L p−1 ⊂ · · · ⊂ L n−1 ⊂Pn

where k is the dimension of L k . By our above definition, this gives the sequence of polar varieties

;=WL n−1 (V )⊂WL n−2 (V )⊂ · · · ⊂WL p−1 (V )⊂WL p−2 (V ) = · · ·=WL 0 (V ) =V .

In particular, we note that the non-trivial polar varieties in terms ofL are given by L p−1 to L n−2.

Definition 2.3.3. The i-th polar variety of V with respect toL is

Vi :=WL p+i−2 (V ), 1≤ i ≤ n −p ,

where i = codim(Vi ) in V .

This concept extends directly to the affine case, giving the definition of the i-th affine polar

variety of V with respect toL as

Si :=WL p+i−2 (S ), 1≤ i ≤ n −p ,

where i = codim(Si ) in S .

Definition 2.3.4. Q ⊂ Pn is a variety known as a hyperquadric if it is the set of zeros of a nonzero

quadratic polynomial q (x0, . . . , xn ). More explicitly, Q is the zero set of some

q (x0, . . . , xn ) :=
∑

i , j

ai , j xi x j +
∑

k

bk xk + c = 0

where at least one of the ai , j 6= 0.

Definition 2.3.5. Let L ⊂ Pn be a linear variety of dimension k and Q a hyperquadric defined by

q (x1, . . . , xn ). Then L∨ is the dual of L with respect to Q . More explicitly, take p0, ..., pk to be a set of

points which define L . Then

L∨ :=
k
⋂

i=0

V
� n
∑

j=0

∂ q

∂ x j
(pi )x j

�

.

We note that dim(L∨) = n −k −1, since it is the intersection of k +1 general hyperplanes in Pn .

Now choose H ⊂ Pn a hyperplane not tangent to Q , and restrict our focus to this hyperplane.

Since dim(H ) = n −1, we can take y1, . . . , yn to be coordinates relative to H . Since H is not tangent

to Q , Q ∩H is a hyperquadric, defined by some equation q ∗(y1, . . . , yn ). Suppose L ⊆H is a linear

variety of dimension k . Then L∗ is the dual of L with respect to Q ∩H . As above, take p0, ..., pk to be a
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set of points which define L . Then

L∗ :=
k
⋂

i=0

V
� n
∑

j=1

∂ q

∂ yj
(pi )yj

�

.

We note that dim(L∗) = n −k −2, since it is the intersection of k +2 general hyperplanes in Pn .

Definition 2.3.6. Let V ⊂ Pn be a variety, Q ⊂ Pn a hyperquadric, and H ⊂ Pn a hyperplane not

tangent to Q . Then for any linear subvariety L ⊂Pn , the generalized polar variety of V in terms of L is

cWL (V ) := {p ∈Vreg \ (L ∪H ) | TpV 6ô 〈p , (〈p, L〉∩H )∗〉 at p}.

In words, cWL (V ) is the Zariski closure of the smooth points p of V which are not also in L or

H , such that the tangent vectors of V at p, along with p and the dual of the linear span of p and L

within H with respect to Q ∩H , do not all together span Pn . We note that cWL (V )⊂V .

For the affine interpretation, let V be the projective closure of a closed subvariety S ⊆Cn and H

the hyperplane at infinity of Pn . Then the affine generalized polar variety of S in terms of L is

cWL (S ) := cWL (V )∩Cn .

Furthermore, given V ⊂ Pn a variety of pure codimension p , we can create a sequence of

generalized polar varieties of codimension 1 to n −p in V . To do so, we letL be a flag of projective

linear subvarieties of Pn

L : L 0 ⊂ · · · ⊂ L n−p−1 ⊂ · · · ⊂ L n−1 ⊂Pn

where k is the dimension of L k . By our above definition, this gives the sequence of generalized polar

varieties
cWL 0 (V )⊂ cWL 1 (V )⊂ · · · ⊂ cWL n−p−1 (V )⊂ cWL n−p (V ) = · · ·= cWL n−1 (V ) =V .

In particular, we note that the non-trivial generalized polar varieties in terms of L are given by

L n−p−1 to L 0.

Definition 2.3.7. The i-th generalized polar variety of V with respect toL is

ÒVi := cWL n−p−i (V ), 1≤ i ≤ n −p ,

where i = codim(ÒVi ) in V .

The reduction of the generalized definition to the classic definition for any variety V ⊆Pn and

hyperquadric Q ⊂Pn relies on an additional restriction for our choice of hyperplane H . Suppose we

are concerned with WL (V ), the polar variety of V with respect to some linear variety L ⊆Pn . Then

we must choose our hyperplane H such that L ⊂H is a subvariety.

Suppose we have followed the above restriction, and consider cWL∗ (V ). Choose p ∈Vreg \H . Since
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L∗ ⊆H and p 6∈H ,

〈p, L∗〉∩H = L∗.

Then

〈p, (〈p, L∗〉∩H )∗〉= 〈p, (L∗)∗〉= 〈p, L〉.

Thus
cWL∗ (V ) =WL (V ).

So in the case where the linear variety L associated with our polar variety is such that L ⊂H , the

classic polar variety is equivalent to the generalized polar variety of L∗.

Similarly, for the dual case we choose our hyperplane H such that L ⊂ H is a subvariety. We

consider the generalized polar variety cWL∨ (V ) and suppose p ∈Vreg\(L∨∪H ). We note that 〈p, L∨〉∨ ⊆
H . Then 〈p, L∨〉∨ ⊆ (〈p, L∨〉∩H )∨ ∩H . Furthermore, due to dimension constraints, we have

(〈p, L∨〉∩H )∨ ∩H = (〈p, L∨〉∩H )∨ ∩H = 〈p, L∨〉∨.

Hence the generalized polar variety definition in this case reduces so that

cWL∨ (V ) := {p ∈Vreg \ (L∨ ∪H ) | TpV 6ô 〈p, 〈p, L∨〉∨〉 at p}.

We say that cWL∨ (V ) the dual polar variety of V in terms of L∨.

We note that in addition to the geometric definitions of polar varieties we have described, it will

be more useful for us to develop equivalent explicit definitions, in order to facilitate the computation

of polar varieties.

Let V :=V ( f (h )1 , . . . , f (h )p )⊂Pn be an algebraic variety of pure codimension p , where f (h )1 , . . . , f (h )p ∈
C[x0, . . . , xn ] are homogeneous as in Definition 2.1.21. Define S := V ∩ Cn and f = { f1, . . . , fp }
the dehomogenizations of f (h )1 , . . . , f (h )p respectively. Then assuming S is nonempty, we have S =

V ( f1, . . . , fp )⊂Cn . We note that a point z ∈ S is smooth as in Definition 2.1.16 if the p ×n Jacobian

matrix

J f (x) :=









∂ f1(x)
∂ x1

· · · ∂ f1(x)
∂ xn

...
...

...
∂ fp (x)
∂ x1

· · · ∂ fp (x)
∂ xn









.

has maximal rank p when evaluated at z.

For our context, we suppose H is the hyperplane at infinity of Pn , i.e. when x0 = 0 and the

hyperquadric Q is defined by a quadratic form

q (x0, . . . , xn ) := x 2
0 +

n
∑

k=1

2ck x0 xk +
n
∑

k=1

x 2
k

where ck ∈C for 1≤ k ≤ n . We note that this carefully chosen q gives that Q ∩H is defined by the
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quadratic form

q ∗(x) :=
n
∑

k=1

x 2
k ∈R[x].

In particular, Q ∩H ∩Rn is given by q ∗, a positive semidefinite form which induces the usual

Euclidean distance metric.

Fix 1≤ i ≤ n −p and choose a generic (n −p − i )-dimensional linear subvariety L ⊂Pn . We note

that one standard way we could choose L would be to pick spanning points a1, . . . , an−p−i+1 ∈ Pn

where a j ,0 = 0 or a j ,0 = 1 and a j ,k generic for 0≤ k ≤ n and 1≤ j ≤ n −p − i +1.

Suppose p ∈V is smooth with p0 6= 0 and z 6∈ L . Then 〈p, L〉∩H is a (n−p − i )-dimensional linear

subvariety given by the n −p − i +1 linearly independent points

p0a1−a1,0p, . . . , p0an−p−i+1−an−p−i+1,0p.

Now using y := (y1, . . . , yn )we rewrite the quadratic form q0(x) associate with Q ∩H as a bilinear

form

B (x, y) :=
n
∑

k=1

x k y k ∈R[x, y].

For 1≤ j ≤ n −p − i +1, we define

l j := B (p0a j ,1−a j ,0p1, . . . , p0a j ,n −a j ,0pn , x1, . . . , xn ) ∈C[x1, . . . , xn ]

and

L j := p0l j (x1, . . . , xn )− x0l j (p1, . . . , pn ) ∈C[x0, x1, . . . , xn ].

Then the linear forms l1, . . . , ln−p−i+1 are linearly independent and give the (p − i +2)-dimensional

linear variety (〈p, L〉∩H )∗ in H . Furthermore, L1, . . . , Ln−p−i+1 are linearly independent and vanish

at p and (〈p, L〉∩H )∗. So L1, . . . , Ln−p−i+1 describe the linear variety 〈p, (〈p, L〉∩H )∗〉 used to define

the generalized polar variety of V in terms of L , cWL (V ), as in Definition 2.3.6.

For clarity, we rewrite L1, . . . , Ln−p−i+1 using

L j = p0l j (x1, . . . , xn )− x0l j (p1, . . . , pn )

=−(x0−p0)l j (x1, . . . , xn ) +p0l j (x1−p1, . . . , xn −pn )

=−(x0−p0)l j (x1, . . . , xn ) +p0

n
∑

k=1

(p0a j ,k −a j ,0pk )(xk −pk ).

Suppose p0 = 1 and let L ′j := L j |p0=1 for 1≤ j ≤ n −p − i +1. We note p= (p1, . . . , pn ) is smooth

in S =V ∩Cn . So we consider the (n − i +1)×n Jacobian matrix of f1, . . . , fp , L ′1, . . . , L ′n−p−i+1 in the

variables x1, . . . , xn , i.e.
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Ji (p) :=























∂ f1
∂ x1
(p) · · · ∂ f1

∂ xn
(p)

...
...

...
∂ fp

∂ x1
(p) · · · ∂ fp

∂ xn
(p)

a1,1−a1,0 x1 · · · a1,n −a1,0 xn
...

...
...

an−p−i+1,1−an−p−i+1,0 x1 · · · an−p−i+1,n −an−p−i+1,0 xn























.

Then the vanishing of all the (n − i + 1)minors of Ji (p) is equivalent to the condition Tp(V ) 6ô
〈p, (〈p, L〉 ∩H )∗〉 from Definition 2.3.6. So f1, . . . , fp and the (n − i + 1) minors of Ji (p) define the

generalized affine polar variety cWL (S ) outside the singular locus Sing(S ).

For our purposes, we utilize this formulation and reduce to the hypersurface case by taking a

sum of squares if necessary. We note that when we reduce to the hypersurface case, p = 1. So the i th

polar variety is given by f and L ′1, . . . , L ′n−i . We observe that for Ji (x), this consists of a generic linear

combination of the partial derivatives of f . So without loss of generality (in particular, when we

apply a change of variables later in our paper), we can choose the appropriate number of partials to

obtain a simplified definition.

In practice, other notions of polar varieties may work better. We chose this presentation for its

simplified notation and presentation, following the approach of [46], for conciseness.

Definition 2.3.8. Let f ∈C[x]be square-free and V =V ( f )⊂Cn . Consider the projectionsπi (x1, . . . , xn ) =

(x1, . . . , xi ) for i = 1, . . . , n . The polar variety associated to πi of V is defined as

crit(V ,πi ) :=V
�

f ,
∂ f

∂ xi+1
, . . . ,

∂ f

∂ xn

�

⊂Cn i = 1, . . . , n ,

based on how the polynomials defining this algebraic set correspond to the notion of critical points

of a map.

We note that a big difference in how this definition is stated compared to the prior geometric

formulation is that it does not exclude the singular locus of an algebraic set V from the polar varieties

associated to V . We will address the smoothness of V going forward via a change of variables and

perturbations in Chapter 4, so in fact it is natural to make this simplified modification in this context.

2.4 Numerical Homotopy Methods

In this section, we discuss some main ideas from numerical algebraic geometry which guide our

problem formulation and computations going forward. This follows the treatment of [11], which

can be referenced for more details if necessary.

We consider an algebraic set V ⊂Cn as in Definition 2.1.2 and further assume that it is defined
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by a square polynomial system, i.e. s = n . Let f := { f1, . . . , fn}. We use the following notation for V ( f )

f (x) :=







f1(x)
...

fn (x)






= 0, (2.3)

yielding the square Jacobian matrix

J f (x) :=







∂ f1(x)
∂ x1

· · · ∂ f1(x)
∂ xn

...
...

...
∂ fn (x)
∂ x1

· · · ∂ fn (x)
∂ xn






.

We note that z ∈V ( f ) is smooth as in Definition 2.1.16 if rank(J f (z)) = n and

Sing(V ( f ))⊆ {x ∈Cn : rank(J f (x))< n}.

Definition 2.4.1. Given z ∈V ( f ), we call z an isolated solution of f if there is an open ball B (z, r ) as

in Definition 2.2.3 such that z is the only solution to f contained in B (z, r ).

To compute the isolated solutions of the polynomial system (2.3), we follow an approach known

as homotopy continuation. Here we choose a start system, g (x) for some well-chosen g = {g1, · · · , gn},
whose finite set of solutions are already known. We then create a parameterized family of equations

H (x, t )which continuously deforms the system of g (x) and its solutions to the system of f (x) and its

solutions. For our purposes, we define this homotopy H (x, t ) using a parameter t which starts at

t = 1 and moves continuously to end at t = 0 such that H (x, 1) = g (x) and H (x, 0) = f (x).

Example 2.4.2. The simplest form of homotopy to construct that deforms g (x) into f (x) is a linear

homotopy

H (x, t ) := t g (x) + (1− t ) f (x).

Note that since t ∈C, there exist an infinite number of continuous one-real-dimensional map-

pings going from t = 1 to t = 0. In order to travel along the paths in a numerically stable way

using predictor-corrector methods, we introduce some more structure to the mapping so that our

solution paths do not collide in the interval t ∈ (0,1]. This motivates the following definition of a

good homotopy for our purposes.

Definition 2.4.3. Suppose f (x) as in (2.3) is the system of polynomial equations we are looking to

solve and g (x) is the start system with D distinct solutions. Then a good homotopy is a system of

infinitely differentiable functions

H (x, t ) :=







H1(x, t )
...

Hn (x, t )







such that
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1. for all t ∈ [0, 1], H (x, t ) is a system of polynomials;

2. for each distinct root of g (x),ω j , 1≤ j ≤D and fixed t ′ ∈ (0, 1];

• there exists a smooth mapφ j : (0, 1]→Cn such thatφ j (1) =ω j ;

• the pointsφ j (t ′) are smooth isolated solutions of H (x, t ′) = 0;

• there exist no two integers 1≤ j < k <D such thatφ j (t ′) =φk (t ′) (i.e. associated solution

paths do not cross);

3. every isolated solution of f (x) = 0 is contained in the set of finite limits

§

x ∈Cn : ‖x‖2 <∞ and x = lim
t→0
φ j (t )

ª

.

Example 2.4.4. To give a concrete example of a good homotopy, we consider a total-degree homotopy.

To solve the system given in (2.3), we construct

H (x, t ) := (1− t )







f1(x)
...

fn (x)






+γt







g1(x)
...

gn (x)






= 0.

In this case, given di = deg fi , g1, . . . , gn are chosen with degrees d1, . . . , dn respectively such that

g = {g1, . . . , gn} is an “easy" system to solve with D := d1 · · ·dn distinct root and isolated roots. One

possible example is given by g i = z di
i −1. We also note that γ 6= 0 is chosen to be a random complex

number, which in practice is obtained by picking a number from the uniform distribution in a small

band around the unit circle. The introduction of this γ, known as the gamma trick, guarantees with

probability one that H (x, t ) is a good homotopy [11, Sec. 2.1.4].

The next idea to consider is how to use a homotopy H (x, t ) to track from t = 1 to t = 0. To

formalize this idea, we start with a family of functions

H (x; t ) =







H1(x; t )
...

Hn (x; t )






= 0

where each Hi is polynomial in the variables x ∈Cn and analytic in the parameter t ∈C. We also

have a differentiable map u : t ∈ [0, 1]→ x ∈Cn such that, for t ∈ (0, 1]:

• H (u(t ), t ) = 0

• the Jacobian J H (x, t )with respect to the variables x1, . . . , xn has rank n for all points (u(t ), t ).

With this setup given u(1) = u0, a prescribed point from the start system, and u(0) = u∗, the solution

of the target system corresponding to this particular path, the problem of path tracking becomes
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equivalent to solving the initial value problem with u(1) = u0 given by the Davidenko differential

equation

∂H (u(t ), t )
∂ t

+
n
∑

i=1

∂H (u(t ), t )
∂ xi

d ui (t )
d t

= 0. (2.4)

Using the Jacobian notation, (2.4) is equivalent to

∂H (u(t ), t )
∂ t

+ J H (u(t ), t )
d u(t )

d t
= 0, (2.5)

which can be rewritten (since JH(u(t),t) has full rank and is invertible) as

d u(t )
d t

=−[J H (u(t ), t )]−1 ∂H (u(t ), t )
∂ t

.

There are many tracking algorithms from numerical analysis that solve the problem formula-

tion of (2.5). The simplest version of predictor-corrector tracking one might consider would be a

combination of Euler’s method and Newton’s method. Euler’s method computes approximations

starting at u0 at t0 = 1 and steps by

ui+1 := ui − J H (ui , ti )
−1 ∂H (ui , ti )

∂ t
(ti+1− ti ).

We note that while this method takes prediction steps by stepping along the tangent line to the

solution path and higher order methods prove more precise in practice. With many of these methods,

the next step is a corrector step using Newton’s method for H (u, ti+1) starting at p0 = ui+1 by

pi+1 := pi − [J H (pi , ti+1)]
−1H (pi , ti+1).

Remark 2.4.5. When a solution in our target system is singular, more complicated tracking methods

are required in the limit as t → 0. We do not provide all of the details here, but they can be found in

[11] and are automatically implemented in the Bertini software utilized later in this paper [10].

2.5 Witness Sets

In this section, we continue our discussion of some main ideas from numerical algebraic geometry

following [11]. In particular, we consider positive-dimensional algebraic sets and creating a data

structure for them which corresponds to the homotopy methods detailed in the previous section.

The key is the notion of witness sets, which will rely on the idea of slicing an algebraic set with a

general linear space (recalling the idea of general from Definition 2.1.11), seen in the following.

Theorem 2.5.1. Given an irreducible algebraic set V ⊂Cn of dimension m, a general linear space L

of dimension k will intersect V in an algebraic set of dimension k +m −n.
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We recall from the previous section that our homotopy path-tracking techniques require a 0-

dimensional algebraic set of isolated solutions. Therefore, a natural approach using the result of

Theorem 2.5.1 is to intersect an irreducible algebraic set V ⊂Cn of dimension m with an appropriate

general linear space L such that the intersection is 0-dimensional, i.e. k +m −n = 0. Rearranging,

we see that choosing a random linear space of codimension m will give the desired result with

probability one. This gives the approach for the following construction of a witness set.

Definition 2.5.2. If an algebraic set V ⊂Cn is equidimensional with dim(V ) = k , a witness set for V

is the triple (F, L , W ) such that

• F ⊂ C[x] is a witness system for V , i.e. each irreducible component of V is an irreducible

component of V (F ),

• L ⊂ C[x] is a linear system where V (L ) is a linear space of codimension k that intersects V

transversely,

• W ⊂Cn is a witness point set which is equal to V ∩V (L ).

We note that the number of points in the witness point set W in the above definition will

determine the number of paths we need to track with our homotopy methods from the previous

section. Since it has an impact on the complexity of the numerical algebraic geometry computations,

we define the following invariant.

Definition 2.5.3. The degree of a m-dimensional irreducible algebraic set V ⊂Cn is the number of

points in the 0-dimensional intersection of V with a general linear space of codimension m .

Algorithm 2.5.1 MEMBERSHIPTEST

Input: p ∈ Cn and D = (G , L , W ) a witness set for some equidimensional algebraic set V =

V ( f1, . . . , fs )⊂Cn .

Output: TRUE if p ∈V and FALSE if p 6∈V .

1. Choose generic linear polynomials L ′ with p ∈V (L ′) and dim(V (L ′)) = dim(V (L )).

2. H (x, t ) :=
�

f1, . . . , fs , t L (x) + (1− t )L ′(x)
�

.

3. Compute W ′ := limt→0V (H (x, t )).

// Tracking the finitely many homotopy paths H (x, t ) starting for t = 1 at the

witness point set W computes the set W ′ consisting of the finite witness

point set of V (L ′) at t = 0.

4. If p ∈W ′, return TRUE. Else, return FALSE.
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Although the witness point set provides some information, a witness system is needed to perform

additional computations on the limit such as testing membership. MEMBERSHIP TEST ALGORITHM

2.5.1 follows the approach of [11, Section 8.4] in order to do this.

2.6 Isosingular Deflation

Some of the techniques we have described in the previous section encounter difficulties when the

multiplicity of an irreducible algebraic set is greater than one. In this section, we follow the approach

of [11] to deflate these sets to have multiplicity one. In particular, we focus on the technique of

isosingular deflation, with further details following from [28].

Definition 2.6.1. Given f1, . . . , fn ∈ C[x] and z ∈ Cn an isolated solution, the multiplicty of z with

respect to f1, . . . , fn is

mult( f1, . . . , fs , z) := dimOz/〈 f1, . . . fn 〉,

where Oz is the ring of convergent power series centered at z and 〈 f1, . . . , fn 〉 an ideal in Oz.

We note that if f1, . . . , fn generates a square polynomial system, as in Section 2.4, then for each

isolated solution z, mult( f1, . . . , fs , z)will be exactly the number of paths ending at z in a total-degree

homotopy.

Definition 2.6.2. Given V ⊂Cn an irreducible component of V ( f1, . . . , fs )⊂Cn of dimension k , the

multiplicity of V with respect to f1, . . . , fs is

mult( f1, . . . , fs , V ) :=mult( f1, . . . , fs , L1, . . . , Lk , z),

where L1, . . . , Lk ∈C[x] are general linear polynomials and z ∈V ∩V (L1, . . . , Lk ).

Example 2.6.3. Consider f = x + y −1 and g = (x + y −1)2. Then the algebraic sets V :=V ( f ) =V (g )
are both characterized by the line x + y = 1 in the plane. However, the multiplicity of V with respect

to f is 1 and the multiplicity with respect to g is 2.

Definition 2.6.4. Suppose we have the same conditions as in Definition 2.5.2. Then if each irre-

ducible component of V has multiplicity one with respect to F , then F is called a deflated witness

system and (F, L , W ) is a deflated witness set.

If we encounter an algebraic set of multiplicity greater than one, as in Example 2.6.3, it is often

necessary for us to consider the associated multiplicity one algebraic set. This is especially important

for our use of Newton’s method to remain numerically stable throughout the tracking of homotopy

paths. The process of algorithmically constructing the associated multiplicity one algebraic set is

called deflation.
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Definition 2.6.5. Let f1, . . . , fs ∈C[x], F0 = { f1, . . . , fs }, and z ∈V (F0)⊂Cn . The isosingular deflation

operatorD is defined via

(F1, z) :=D(F0, z)

where F1 ⊂C[x] consists of F0 and all (r +1)× (r +1)minors of the Jacobian matrix J F0 for F0 where

r = rank J F0(z). Thus, z ∈V (F1), meaning that we can iterate this operator to construct a sequence

of systems Fj ⊂C[x]with (Fj , z) =D(Fj−1, z) =D j (F0, z) for j ≥ 1.

We say that F ⊂C[x] is the isosingular deflation of F0 at z if there exists a minimal j ≥ 0 such that

(F, z) =D j (F0, z) and dim NullSpace(J F (z)) = dimF (z), where dimF (z) is the maximal dimension of

the irreducible components of V (F ) containing z (called the local dimension of z with respect to F ).

Using the deflation operator, we can now formally define the isosingular sets and singular points

of our algebraic set in this context.

Definition 2.6.6. Let f1, . . . , fs ∈C[x], F0 = { f1, . . . , fs }, and z ∈ V (F0) ⊂ Cn . Let D be the isosingular

deflation operator defined in Definition 2.6.5. We define

• The deflation sequence of F0 at z is {dk (F0, z)}∞k=0 where

dk (F0, z) = dnull(Fk , z) := dim NullSpaceJ Fk (z)

with J Fk the Jacobian matrix of Fk with (Fk , z) =Dk (F0, z).

• Let V ⊂V (F0) be a non-empty irreducible algebraic set. Then V is an isosingular set of F0 if

there exists a sequence {ck }∞k=1 such that V is an irreducible component of

{z ∈V (F0) : dk (F0, z) = ck , k ∈N}.

• Let V ⊂V (F0)be a non-empty irreducible algebraic set. Then IsoF0
(V ) is the unique isosingular

set with respect to F0 containing V such that IsoF0
(V ) and V have the same deflation sequence

with respect to F0.

• Let V be an isosingular set for F0. The set of singular points of V with respect to F0 is

SingF0
(V ) =

�

z ∈V : {dk (F0, z)}∞k=0 6= {dk (F0, V )}∞k=0

	

.

Here, dk (F0, V ) is meant for a generic point in V .

• The local dimension of z with respect to F0, denoted by dimF0
(z), is the maximal dimension of

the irreducible components of V (F0) containing z.

Remark 2.6.7. Since each step of isosingular deflation adds functions to our original f , the di-

mension of the nullspace being computed cannot decrease. Therefore, the deflation sequence is

a nonincreasing sequence of nonnegative integers which must reach its limit after finitely many

iterations.
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Using the definition, we note that the key to this type of deflation is isosingular sets, i.e. irreducible

components of an algebraic set with the same multiplicity/singularity structure. Given a polynomial

system f1, . . . , fs ∈C[x], we observe some properties about its isosingular sets:

1. there are finitely many isosingular sets V1, . . . , Vk ⊂V ( f1, . . . , fs ),

2. given z ∈ V ( f1, . . . , fs ), there is a unique i ∈ {1, . . . , k} such that z ∈ Vi and the singularity

structure of z and a generic point on Vi are the same,

3. each isosingular set Vi is deflatable, i.e. we can construct a polynomial system g i such that Vi

is an irreducible component of V (g i ) that is multiplicity one as a component of g −1
i (0).

We note that (2) says that any point in an algebraic set V is a smooth point on a unique isosingular

subset of V . Furthermore, (3) suggests an algorithmic approach for computing the isosingular

deflation of V : first obtain the isosingular sets of V , and then deflate each individually. We refer to

this process as isosingular deflation as well.

We next detail some particular results on isosingular sets which will be important to our methods

going forward. To compute deflated witness sets, we will utilize ISOSINGULAR DEFLATION ALGORITHM

2.6.1, which follows the approach of [11, Section 13.2] and [28, Algorithm 6.3].

It is important to consider what properties of the original algebraic set are preserved when we

apply isosingular deflation. The following theorem states that the singular points of an algebraic set

are preserved under isosingular deflation.

Theorem 2.6.8. [28, Theorem 5.9] Let V be an isosingular set for F0 as in Definition 2.6.6. Then if

z ∈V and z ∈ Sing(V (F0)) then z ∈ SingF0
(V ).

Finally, we have the following theorem which gives an isosingular deflation approach for con-

structing witness sets of the intersection of a known witness set with another algebraic set.

Theorem 2.6.9. [29, Theorem 6.2] Given g1, . . . , g r ∈C[x], let Z be a union of irreducible components

of V (g1, . . . , g r ). Suppose f1, . . . , fs ∈C[y], F (x, y) = {g1(x), . . . , g r (x), f1(y), . . . , fs (y)},∆= {(x, x) : x ∈Cn},
and π(x, y) = x. If A ⊂ Z ∩V ( f1, . . . , fs ) is an irreducible component, then there exists a nonempty

Zariski open set U ⊂ A such that for all p ∈U , A is an irreducible component of π
�

IsoF ((p, p))∩∆
�

.
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Algorithm 2.6.1 ISOSINGULARDEFLATION

Input: F0 = { f1, . . . , fs } ⊂C[x], z ∈V (F0)⊂Cn .

Output: F ⊂C[x], an isosingular deflation of F0 at z.

1. Set k := 0.

2. If d := d0(F0, z) = 0, exit and return F := F0.

3. Loop

(a) Set m := |Fk |.

(b) Choose generic A ∈Cn−d×r .

(c) Compute [R1, . . . , Rm ] :=R := A · Fk .

(d) Loop

Choose generic linear polynomials L1, . . . , Ld ∈C[x]with z ∈V (L1, . . . , Ld ) and

generic λ := (λ1, · · · ,λd ) ∈Cd .

H (x, t ) := [R1, . . . , Rm , L1+ (1− t )λ1, . . . , Ld + (1− t )λd ] .

If |V (H (x, 1))|=∞, go back to start of loop.

(e) Compute z∗ := limt→0 z ∈H (x, t ) along the homotopy starting at t = 1.

// Tests whether the deflation sequence has stabilized, sampling

V (R ) by shifting the general linear space it intersects, tracking

z ∈V (R )∩V (L1, . . . , Ld ) when t = 1 to z∗ ∈V (R )∩V (L1+λ1, . . . , Ld +λd ) when t = 0.

(f) If z∗ ∈V (Fk ), exit and return F := Fk .

(g) Increment k := k +1.

(h) Construct Fk by Definition 2.6.5 and return to start of loop.

We provide the following illustrative example for the theorem.

Example 2.6.10. Let g (x , y , z ) = (x + y + z )y and Z =V (x + y + z ). Suppose f (x , y , z ) = y and note

that Z = Z ∩V ( f ) =V (x + z , y ) is irreducible. We construct

F (x , y , z , x ′, y ′, z ′) = [g (x , y , z ) = (x + y + z )y , f (x ′, y ′, z ′) = y ′].

Choose a generic witness point p= (a , 0,−a ) ∈U ⊂ A for some a ∈C. Then we compute the deflation

sequence of (a , 0,−a , a , 0,−a )with respect to F as 5, 3, 3, . . . such that

IsoF ((p, p)) = {(b , 0,−b , c , 0, d ) : b , c , d ∈C}.
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The polynomial system defining this 3-dimensional isosingular set is given by adding the 2× 2

minors of the Jacobian of F to F , giving

G (x , y , z , x ′, y ′, z ′) =

















(x + y + z )y

y ′

y

x +2y + z

y

















.

By Theorem 2.6.9, A is an irreducible component of V (G (x , y , z , x , y , z )) and G :=G (x , y , z , x , y , z )

suffices as a witness system for A. We note that in this example, removing the redundancies in G

would in fact show that [x + z , y ] is sufficient as a witness system for A.
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CHAPTER

3

COMPUTATION OF REAL SMOOTH

POINTS: EQUIDIMENSIONAL CASE

In this chapter, we describe our approach for computing at least one smooth real point on every

connected component of an equidimensional atomic semi-algebraic set.

3.1 Related Work

There are many approaches in the literature to compute at least one real point on every connected

component of a semi-algebraic set. Methods using projections to obtain a cell decomposition

based on sign conditions go back to Collins’ Cylindrical Algebraic Decomposition (CAD) algorithm

described in [15]. Improved symbolic methods using critical points or generalized critical points of

functions along with infinitesimals and randomization can be found in [42, 1, 43, 19]. The current

state of the art deterministic symbolic algorithm is given in [8, Alg. 13.3]which computes sample

points on each connected component of all realizable sign conditions of a polynomial system

and gives a complexity analysis. The most recent application of this technique is in [48, 49]where

the authors compute smooth points on real algebraic sets in order to compute the real radical of

polynomial systems and analyze complexity. Alternatively, a homotopy-based approach computing

the critical points of the distance function from a generic point or a line is presented in [24, 57].

Another line of work has been developed in parallel which specifically focuses on computing

critical points while utilizing the tool of polar varieties, introduced and developed in [3, 44, 4, 5, 6,

2, 45]. It is important to note, however, that all of these methods are only guaranteed to find real
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points on every connected component of a semi-algebraic set, rather than real smooth points.

3.2 Main Results

Given an atomic semi-algebraic set, we would like to guarantee the computation of at least one real

smooth point on each of its connected components. If necessary, we first apply Proposition 2.2.14

to turn the atomic semi-algebraic set into a real algebraic set. Also, we apply Proposition 2.2.15 to

obtain a closed and bounded real algebraic set (if necessary). Therefore, we can now go forward

assuming we are considering a closed and bounded real algebraic set.

An ingredient we will use is given by the following theorem that was proven in [39, Theorem

12.6.1].

Theorem 3.2.1. Let V ⊂Cn be an irreducible algebraic set and let VR :=V ∩Rn . Then

dimR(VR) = dimC(V )

if and only if there exists some z ∈VR that is smooth.

To first present the main idea of our approach in its simplest form, we will begin with the case

where the algebraic relaxation of our real algebraic set is equidimensional.

Lemma 3.2.2. Let f1, . . . , fs ∈ R[x] and assume that V := V ( f1, . . . , fs ) ⊂ Cn is equidimensional of

dimension n − s . Let g ∈ R[x] such that dim
�

V ∩V (g )
�

< n − s . Then either
�

V \V (g )
�

∩Rn = ; or

g restricted to V ∩Rn attains a non-zero extreme value on each bounded connected component of
�

V \V (g )
�

∩Rn .

Proof. Suppose
�

V \V (g )
�

∩Rn 6= ; and let C be a bounded connected component of the set (V \
V (g ))∩Rn . Since C 6⊂ V (g ), there exists some x ∈C such that g (x ) 6= 0. Let C be the Euclidean closure

of C as in Definition 2.2.3. Then C ⊂V ∩Rn is closed and bounded, and g vanishes identically on

C \C . By the Extreme Value Theorem, g attains both a minimum and a maximum on C . Since g is

not identically zero on C , either the minimum or the maximum value of g on C must be nonzero,

so g attains a non-zero extreme value on C .

Using this lemma, we will prove the following theorem.

Theorem 3.2.3. Let V be as in Lemma 3.2.2. Suppose g ∈R[x] satisfies the following conditions:

1. Sing(V )∩Rn ⊂V (g );

2. dim
�

V ∩V (g )
�

< n − s .

Then the set of points where g restricted to V ∩Rn attains its extreme values intersects each bounded

connected component of
�

V \Sing(V )
�

∩Rn .
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Proof. Suppose
�

V \Sing(V )
�

∩Rn 6= ;. By Theorem 3.2.1, dimR(V ∩Rn ) = n−s . So by (2),
�

V \V (g )
�

∩
Rn 6= ;. By (1),

�

V \V (g )
�

∩Rn ⊂
�

V \Sing(V )
�

∩Rn , so the bounded connected components of
�

V \Sing(V )
�

∩Rn are subsets of the bounded connected components of
�

V \V (g )
�

∩Rn . By Lemma

3.2.2, g restricted to V ∩Rn attains a non-zero extreme value on each bounded connected component

of
�

V \V (g )
�

∩Rn , thus yielding a point in every bounded connected component of
�

V \Sing(V )
�

∩
Rn .

The setup and result of this theorem suggest the basic outline of a method for computing a

smooth point on every connected component of an equidimensional compact real algebraic set

V ( f1, . . . , fs )∩Rn (recalling that if we were originally given an atomic semi-algebraic set, we first

applied Propositions 2.2.14 and 2.2.15):

1. Construct a g that satisfies (1) and (2) in Theorem 3.2.3;

2. Compute the critical points of g in V ( f1, . . . , fs )∩Rn (using Lagrange multipliers);

3. Select the critical points that are not in V (g ).

3.3 Illustrative Examples

In Chapter 5, we give REAL SMOOTH POINT ALGORITHM 5.1.1, which computes real smooth points

in this way when V ( f1, . . . , fs ) is not necessarily equidimensional by using deformations and limits.

However, the same algorithm can be used in the equidimensional case without deformation. For

now, we present a few illustrative examples to show the idea, as well as the utility of our results on

previously difficult problems, even in the equidimensional case.

Example 3.3.1. An example of a real curve with two singular cusps is often referred to as “Thom’s

lips," e.g. f = y 2− (x (1− x ))3, as shown in Figure 3.1. A simple choice of g which satisfies the condi-

tions of Theorem 3.2.3 is g = x (1−x ). Using Lagrange multipliers to optimize with respect to g results

in two points (0.5,±0.125) plotted as red diamonds. Alternatively, the polynomial g can be con-

structed algorithmically, which we will see in Chapter 4, yielding, e.g. g = 3(2x −1)(x (1− x ))2+2y

which produces two points plotted as black circles, approximately (0.5987, 0.1178)and (0.4013,−0.1178).

Both yield a real smooth point on each of the two connected components of
�

V \Sing(V )
�

∩Rn . We

note that the first choice of g demonstrates that when Sing(V ) is 0-dimensional, defining g as a

product of a coordinate of these points will satisfy the conditions of Theorem 3.2.3. The second

choice of g demonstrates the general method described later which works in every dimension.
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Figure 3.1: “Thom’s lips"

The motivation for the above example is not just illustrative of our method, but also how we

have improved on previous approaches. We recall that previous methods for computing points on

semi-algebraic sets used critical points of the distance function. In [57, Example 2.3], Wu and Reid

show how these methods often result in only singular critical points. For “Thom’s lips", they prove

that if we were to sample points on the curve by finding the critical points of the distance function

with respect to some linear function, the probability of the critical points being exactly the singular

points of the curve is 0.772. Furthermore, if we increase the steepness of the curve going into the

cusps, this probability only increases. Rather than choosing a random linear function to optimize

with respect to and only having a certain probability of success, our method constructs a g that will

always work.

Example 3.3.2. An example of a real curve with multiple compact components with singular cusps

can be constructed by taking h = f 2
1 +

1
100 f 3

2 where f1 = (x 2 + y 2 − 1)((x − 4)2 + (y − 2)2 − 1), the

union of two circles, and f2 = (y − 1/2)(y + 1/2)(x − 7/2)(x − 9/2), the union of four lines, where

two of the lines intersect one of the circles twice each and the other two intersect the other circle

twice each. Then the curve V := V (h ) has four compact components with two cusps on each

component, as shown in Figure 3.2. As in Example 3.3.1, since Sing(V ) is 0-dimensional, defining

g as the product of the coordinates of the singular points satisfies Theorem 3.2.3. So we choose

g = (4x 2−3)(4y 2−1)(4x 2−32x +63)(4y 2−16y +13) and use Lagrange multipliers to optimize with

respect to g , resulting in eight smooth points, seen in red in Figure 3.2 one on each of the connected

components of
�

V \Sing(V )
�

∩Rn .

This example once again illustrates the simplicity of constructing a g which satisfies the nec-

essary conditions. Furthermore, in [40, Proposition 3.2], Mork and Piene prove that this example

is a case where sampling via critical points of the distance function will not work; due to the large

number of singular points, sampling in this way will never result in a real smooth point on every

connected component of the curve. We observe that our method does result in a real smooth point

on each of the 8 connected components.
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(a) all 4 components (b) zoomed in on 1 component

Figure 3.2: Real Curve with Singularities on Multiple Components

A final example illustrates how our approach works with a real surface. In particular, we see

again that as long as Sing(V ) is 0-dimensional, the construction of a g which satisfies Theorem 3.2.3

is straightforward.

Example 3.3.3. An example of a real surface with three singular points coming from semidefinite

programming is sometimes referred to as the "Samosa," shown in Figure 3.3. Its defining equation is

found by taking the determinant of a 3×3 matrix, resulting in f = 2x y −x 2− y 2−z 2+1. We note that

the surface defined by f is not bounded, but by restricting to the bounded component shown in the

figure we can apply the theorem. The most straightforward choice for g which satisfies the above

conditions is g = x 2+y 2+z 2−3. Using Lagrange multipliers to optimize with respect to this g results

in the red points in the figure. Alternatively, we could select a g which satisfies the theorem using the

general approach detailed later in Chapter 4. In this case, we use g = 2x y +2x z +2y z −2x −2y −2z

and optimization with Lagrange multipliers results in the blue points in the figure. Once again,

the first choice of g demonstrates that when Sing(V ) is 0-dimensional, defining g in a way that

intersects each of the points, in this case a sphere, will satisfy conditions of Theorem 3.2.3.
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Figure 3.3: “Samosa"

3.4 Application to Kuramoto Model

In this section, we begin with a general description of the Kuramoto model problem, following the

treatment of [16], and then describe our success in the proof of a previously conjectured result [58]

for the specific case of n = 4.

The Kuramoto model, first proposed by Yoshiki Kuramoto in 1975 [32], provides a framework for

studying synchronization in a variety of contexts. Specifically, it models the behavior of systems of

coupled oscillators, i.e. oscillators that are connected in some way as a part of the same physical

system. While Kuramoto originally created the dynamical system to describe systems of chemical

and biological oscillators found in nature, the model (or variants) have since been used in a variety

of applications across electrical engineering, neuroscience, physics, and even economics. A simple

example to keep in mind throughout our study might be describing the oscillating behavior of a series

of connected metronomes. The natural phenomenon of these coupled oscillators synchronizing (i.e.

syncing their behavior to move at the same oscillation rate) is an intuitively interesting line of study.

In fact, being able to accurately predict the synchronization of coupled oscillators becomes crucial

in more complicated applications such as electrical engineering, where it is used in conducting

stability assessments of the system being modeled.

The standard formulation of the dynamic model for n ≥ 2 coupled oscillators is the system of

first-order ordinary differential equations:

dθi

d t
=ωi −

K

n

n
∑

j=1

sin(θi −θ j ) for i = 1, . . . , n (3.1)

where K > 0 is the uniform coupling strength, parameter ωi is the natural frequency of the i th

oscillator, and the unknown θi (t ) is the phase angle of the i th oscillator at time t . We note that the

32



use of the sine function on the phase angle differences between the oscillators naturally models

synchronization behavior.

A common generalization of the model allows for non-uniform coupling between oscillators. In

particular, for coupling strengths k = (k1, . . . , kn ) ∈Rn
>0, the i th and j th oscillators are coupled with

strength ki k j , resulting in the model

dθi

d t
=ωi −

1

n

n
∑

j=1

ki k j sin(θi −θ j ) for i = 1, . . . , n . (3.2)

We note that the standard Kuramoto model case described in (3.1) is given by the special case where

k = (
p

K , . . . ,
p

K ). Furthermore, the model given by (3.2) naturally lends itself to an equivalent

description of the coupling strengths by a symmetric rank one matrix M where the (i , j )th entry

is ki k j . Therefore, (3.2) is referred to as the rank-one coupled Kuramoto model. We note we could

further generalize the model to a coupling matrix of arbitrary rank, a line of study motivated by

applications to power flow equations. For our purposes, we study the simplest case of rank one

given in (3.1), which corresponds to the equations for a lossless power flow system.

Many questions regarding the behavior of the Kuramoto model involve counting and locating

the equilibria of the dynamical system. In the context of coupled oscillators that are constantly

moving, equilibria refer to when all of the oscillators are moving at the same frequency. Sometimes

this synchronization is referred to as the phase-locked state, since the relative differences between

the phases of the oscillators will be constant as they continue to oscillate. In particular, we observe

that summing the n differential equations in (3.1) gives the equivalence

n
∑

i=1

dθi

d t
=

n
∑

i=1

ωi ,

which implies that necessary conditions for equilibria are

n
∑

i=1

dθi

d t
=

n
∑

i=1

ωi = 0.

In a general dynamical model context, these equilibria are referred to as the real solutions to the

steady-state equations of the system. Furthermore, since only angle differences between the phases

of the oscillators matter, the standard approach to compute equilibria modulo a constant shift is to

set θn = 0.

In order to reformulate the problem as a system of polynomial equations, we apply the trigono-

metric identity

sin(θi −θ j ) = sin(θi )cos(θ j )− cos(θi )sin(θ j )

and set si = sin(θi ), ci = cos(θi ). Combining this with the setup of the uniform rank one coupling
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model from (3.1) gives the following polynomial system for the equilibria of the model

f (s , c ,ω) =







ωi − K
n

∑n
i=1 si c j − s j ci

s 2
i + c 2

i −1
for i = 1, . . . , n .

The maximum number of equilibria (i.e. real solutions to steady-state equations) for n ≥ 4

remains an open problem. The following confirms the conjecture in [58] for n = 4.

Theorem 3.4.1. The maximum number of equilibria for the Kuramoto model with n = 4 oscillators

is 10.

The steady-state equations for the n = 4 Kuramoto model are

fi (θ ;ω) =ωi − 1
4

∑4
j=1 sin(θi −θ j ) = 0, for i = 1, . . . , 4

parameterized by the natural frequenciesωi ∈R. Since only the angle differences matter, one can

assume θ4 = 0 and observe a necessary condition for equilibria is

0= f1+ f2+ f3+ f4 =ω1+ω2+ω3+ω4,

i.e., assumeω4 =−(ω1+ω2+ω3). Substituting si = sin(θi ) and ci = cos(θi ) yields

f (s , c ;ω) =
¦

ωi − 1
4

∑4
j=1(si c j − s j ci ), s 2

i + c 2
i −1, for i = 1, 2, 3

©

which is a polynomial system with variables s = (s1, s2, s3) and c = (c1, c2, c3), parameters ω =

(ω1,ω2,ω3), and constants s4 = 0 and c4 = 1.

The goal is to compute the maximum number of isolated real solutions of f = 0 asω varies over

R3. Let D (ω) be the discriminant polynomial of the system f , a polynomial inω of degree 48. The

number of real solutions of f is constant in each connected component of R3 \V (D ). Since it is

easy to see that there can be no real solutions if |ωi | ≥ n−1
n = 0.75, we need to compute at least one

interior point in each of the bounded connected components of R3 \V (D ). Applying Lemma 3.2.2

with f = 0 and g =D , i.e., by computing the real solutions of∇D = 0 and D 6= 0, accomplishes this

task. Exploiting symmetry and utilizing Bertini ([10]), alphaCertified ([27]), and Macaulay2
([21]) all solutions have been found and certified. In fact, this computation showed that all real

critical points of D arose, up to symmetry, along two slices shown in Figure 3.4.

In this figure, the discriminant D is seen as the black lines separating the different colored

connected components of the parameter space. We observe that the red points, at least one in

each of the bounded connected components, are the real smooth points we have computed via

the theory of Lemma 3.2.2. In particularly, we note that as we guaranteed, we result in critical

points even in the small components of the parameter space seen in the zoomed in figures. This is

notable because previous techniques for searching the parameter space for different components

consisted of sampling using a grid. While the grid could be refined, it could not be guaranteed to
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(a) one slice (b) zoomed in

(c) other slice (d) zoomed in

Figure 3.4: Compact connected regions and critical points for the Kuramoto model with n = 4

pick up smaller components of the space, and one would not know for sure whether they had missed

something.

A similar computation then computed and certified the number of real solutions to f = 0 at the

pointsω found above, showing that the maximum number of equilibria is 10. All code used in these

computations is available at dx.doi.org/10.7274/r0-5c1t-jw53.
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CHAPTER

4

PERTURBATIONS OF REAL ALGEBRAIC

SETS

In this chapter, we begin to construct the tools for an algorithm using the same ideas as in Section

3.2, but in full generality so the results will hold when V ( f1, . . . , fs ) is not equidimensional, i.e. there

are some components of dimension greater than n − s . To do this, a standard approach (which can

be seen in [46] and [7]) is to perturb the defining polynomials of the algebraic set by infinitesimals

to obtain an equidimensional variety that has a limit as the infinitesimals approach zero that is

equidimensional and contains the n − s dimensional components of V ( f1, . . . , fs ).

4.1 Perturbing the Sum of Squares of Polynomials

Assume f1, . . . , fs ∈R[x] and ε > 0 a real infinitesimal. Let F = f 2
1 + · · ·+ f 2

s and note thatV ( f1, . . . , fs )∩
Rn =V (F )∩Rn . Consider Vε :=V (F − ε) as the perturbed version of the algebraic set V ( f1, . . . , fs ).

One reason for us to perturb our algebraic set is to obtain smoothness.

Lemma 4.1.1. [42, Lemma 3.5] Vε is a smooth hypersurface.

Recall that R〈ε〉 denotes the field of Puiseux series overR as in Definition 2.2.20. The following

result [8, Proposition 12.36] states that semi-algebraicity is preserved as ε limits to 0.

Lemma 4.1.2. Let S ⊂R〈ε〉n be a semi-algebraic set. Then limε→0(S ) is a closed semi-algebraic set.

Furthermore, if S is bounded and connected, then limε→0(S ) is connected.

The statement of the next proposition on the limits of perturbed connected components of a

real algebraic set follows the approach of the unpublished work [46], so we restate and prove it here.
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Proposition 4.1.3. Assume f1, . . . , fs ∈R[x], F = f 2
1 + · · · f

2
s , and ε > 0 a real infinitesimal. Let Vε :=

V (F − ε)⊂C〈ε〉n and V := limε→0 Vε ⊂Cn . Suppose C is a connected component of V ∩Rn . Then:

1. there exist connected components Cε,1, . . . , Cε,l of Vε ∩R〈ε〉n such that C =∪l
i=1 limε→0 Cε,i ;

2. if C is bounded by some open ball B ⊂ Rn , then Cε,i is bounded by and does not intersect

Ext(B ∩R〈ε〉n ) for 1≤ i ≤ l .

Proof. Let z ∈ C . Then there exists a connected component S ⊂ Rn \ V ( f1, . . . , fs ) such that z ∈ S .

Then there exists some p ∈ S such that p ∈ B (z, r ) for r > 0. We note that since F is nonnegative

over Rn , F (p)> 0. By Lemma 2.2.9, there exists a continuous semi-algebraic function γ : [0,1]→ S

with γ(0) = z, γ(1) = p and γ(t ) ∈ S for all t ∈ (0,1]. Note that we have (F ◦ γ)(0) = F (z) = 0 and

(F ◦γ)(1) = F (p)> 0.

Let F ′ := Ext(F,R〈ε〉n ) and γ′ := Ext(γ,R〈ε〉), where Ext is the extension as in Definition 2.2.24. By

the infinitesimal property of ε, Ext([0, 1],R〈ε〉) includes all Puiseux series with constant term in [0, 1].

The Intermediate Value Theorem (Theorem 2.2.22) applied to F ′ ◦γ′ gives some tε ∈ Ext([0, 1],R〈ε〉)
such that (F ′◦γ′)(tε) = ε. Let zε := γ′(tε). Then limε→0(zε) = z. Let Czε be the connected component of

Vε∩R〈ε〉n containing zε , and associate z to that component. Since there are finitely many connected

components of Vε ∩R〈ε〉n , as we run through all z ∈C , a subset of these connected components are

of the form Czε with limε→0(zε) = z for some z ∈ C . We denote these components of Vε ∩R〈ε〉n by

Cε,1, . . . , Cε,l . Clearly C ⊂∪l
i=1 limε→0 Cε,i .

Now suppose z′ ∈ limε→0 Cε,i for some 1 ≤ i ≤ l . Then there exists some z′ε ∈ Cε,i such that

limε→0 z′ε = z′. We recall that Cε,i is associated to some z ∈ C , i.e. there exists some zε ∈ Cε,i such

that limε→0 zε = z. Since Cε,i is connected, there exists some continuous semi-algebraic function

γ : [0, 1]→Cε,i such that γ(0) = z′ε and γ(1) = z and Γ := γ([0, 1]) is a connected semi-algebraic set. By

Theorem 2.2.8, Γ is closed and bounded and by Lemma 4.1.2, limε→0 Γ is connected. Furthermore, we

note that limε→0 Γ ⊂V ∩Rn , limε→0(γ(0)) = z′, and limε→0(γ(1)) = z. Hence z ∈C and∪l
i=1 limε→0 Cε,i ⊂

C , thus we have shown (1) as required.

Now suppose C is bounded by some ball B ⊂Rn and does not intersect the boundary of B . Let

zε ∈Cε,i such that limε→0 zε ∈C . For sake of contradiction, suppose z′ε ∈Cε,i \Ext(B ∩R〈ε〉). Since

Cε,i is connected, there exists a continuous semi-algebraic function γ : [0, 1]→Cε,i such that γ(0) =

zε ,γ(1) = z′ε and Γ := γ([0,1]) is a connected semi-algebraic set. The Intermediate Value Theorem

(Theorem 2.2.22) applied to the polynomial defining the boundary of B gives some tε ∈ [0, 1] such

that γ(tε) is in the boundary of Ext(B ,R〈ε〉n ). Then limε→0γ(tε) is in the boundary of B .

By Theorem 2.2.8, Γ is closed and bounded and by Lemma 4.1.2, limε→0 Γ is connected. Then

limε→0 Γ ⊂C and thus limε→0γ(tε) ∈C . But this contradicts C intersecting the boundary of B . Thus

Cε,i is bounded by (and does not intersect) Ext(B ,R〈ε〉n ).

A natural question might be why it is necessary for us to consider perturbing the sum of squares

of the polynomials, rather than each polynomial separately, when we are working over the real

numbers. Besides the nonnegativity of F playing a role in the proof of the previous theorem, the

following example illustrates what can go wrong over the reals.
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Example 4.1.4. This example illustrates that for s > 1 with Vε :=V ( f1−a1ε, . . . , fs −asε)⊂C〈ε〉n and

V := limε→0 Vε ⊂Cn , we may have connected components C ⊂V ∩Rn that can only be extended to

the complex part of Vε , i.e. C 6⊂ limε→0 (Vε ∩R〈ε〉n ).
Let s = n = 2, f1 = x 2

1 +x 2
2 −1, f2 =−(x1−2)2−x 2

2 +1 andα= (1, 1). Then with Vε =V ( f1−ε, f2−ε)⊂
C〈ε〉2 we have

lim
ε→0

Vε ∩R2 = {(1, 0)}

is a single points, so this point is the only connected component. Note that any points in Vε has to

satisfy f1 = f2, so in particular they will correspond to points on the intersections of the graphs of f1

and f2. The graphs of f1 and f2 are the surfaces P1 :=V (x3− x 2
1 − x 2

2 +1) and P2 :=V (x3+ (x1−2)2+

x 2
2 −1)), respectively, which are two 3-dimensional parabolas.

Over the complex numbers, P1 and P2 intersect in two complex lines

V (x2± i (x1−1), x3−2x1+2)⊂C3

so whenever x3 = ε, i.e. x1 =
ε
2 +1, the points

�

ε
2 +1,±i ε2

�

are in Vε and

lim
ε→0

�ε

2
+1,±i

ε

2

�

= (1, 0).

This also shows that

lim
ε→0

�

Vε ∩R〈ε〉n
�

= ;.

In particular, over the reals P1 is a convex parabola with vertex (0,0,−1), P2 is a concave parabola

with vertex (2, 0, 1), and they tangentially intersect at (1, 0, 0). So for any real ε 6= 0 we have

P1 ∩P2 ∩V (x3− ε)∩R3 = ;.

On the contrary, for F := f 2
1 + f 2

2 , if we define Vε :=V (F − ε), then we proved above that

�

lim
ε→0

Vε
�

∩R2 = lim
ε→0

�

Vε ∩R〈ε〉2
�

.

4.2 A Change of Variables and Perturbed Polar Varieties

We now move to thinking about perturbing polar varieties in particular, recalling from Definition

2.3.8 that for the projections πi (x1, . . . , xn ) = (x1, . . . , xi ) for i = 1, . . . , n , the polar variety associated to

πi of V (F ) is defined as

crit(V ,πi ) :=V
�

F,
∂ F

∂ xi+1
, . . . ,

∂ F

∂ xn

�

⊂Cn i = 1, . . . , n .

We use the following notation to perform a change of variables.

Definition 4.2.1. Let F ∈Q[x], V =V (F )⊂Cn , and A ∈GLn (Q). Then, we denote F A(x) := F (Ax), i.e.
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V (F A) is the image of V via the map x 7→ A−1x.

Next, we state some known results on polar varieties which will be used in the proofs of our algo-

rithms. In particular, polar varieties provide a very nice way for us to lower the complex dimension

of an algebraic set without losing the real points in the set.

Theorem 4.2.2. [3, Proposition 3] Let F ∈Q[x] be non-constant, square-free, and define a smooth

algebraic set V :=V (F )⊂Cn . Then there exists a non-empty Zariski open setA ⊂GLn (C) such that

for all A ∈ GLn (Q)∩A and 1 ≤ i ≤ n , crit(V A ,πi ) is either empty or equidimensional of complex

dimension i −1.

We note that in the above reference, the proof of this theorem consists of characterizing the set

of matrices for which the result does not hold and showing that those matrices make up a Zariski

closed set GLn (C) \A , i.e. the complement ofA .

Corollary 4.2.3. Let F and V be as in Theorem 4.2.2. Suppose ε is an infinitesimal and Vε :=V (F −ε)⊂
C〈ε〉n is a smooth algebraic set on the field of Puiseux series as in Definition 2.2.20. Then there exists a

non-empty Zariski open setA ⊂GLn (C〈ε〉) such that for all A ∈GLn (Q)∩A and 1≤ i ≤ n , crit(V A
ε ,πi )

is either empty or equidimensional of complex dimension i −1.

The proof of 4.2.3 follows from the following lemma.

Lemma 4.2.4. LetA :=GLn (C〈ε〉) \V (Q ) be a non-empty Zariski open subset of GLn (C〈ε〉) defined

by some polynomial Q ∈Q〈ε〉[ai , j ]ni , j=1. Then limε→0A ∩GLn (Q) is also a non-empty Zariski open

subset of GLn (Q).

Proof. SinceA is non-empty, Q 6= 0. Q is a polynomial in the variables {ai , j }ni , j=1 with coefficients

inQ〈ε〉, which we can assume without loss of generality are polynomials in ε
1
q for some q ∈N (by

multiplying with a possible common denominator of these coefficients). Also, we can assume that

Q has minimal degree in ε
1
q among all such polynomials defining GLn (C〈ε〉) \A . Thus

Q =Q0+ ε
t
q Q1

where t ∈Z+,Q0 ∈Q[ai , j ], and Q1 ∈Q[ε
1
q ][ai , j ]. If Q0 = 0 then we have Q1 has lower degree than Q

in ε
1
q and still defines GLn (C〈ε〉) \A , a contradiction. Therefore, Q0 6= 0 and

V (Q0) = lim
ε→0
V (Q ) 6=GLn (C)

so limε→0A ∩GLn (Q) is also a non-empty Zariski open subset of GLn (Q).

The next results relate to the local dimension of algebraic sets after a change of variables. We

start with the following result, known commonly as the Noether Normalization Lemma after Emmy

Noether from 1926, following the notation of [38].
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Lemma 4.2.5. Let I be an ideal in the polynomial ringC[x1, . . . , xn ] and A defining a suitable change

of variables as in Definition 4.2.1 giving x ′1, . . . , x ′n . Then x ′1, . . . , x ′d are algebraically independent

modulo I and x ′d+1, . . . , x ′n are integral over C[x ′1, . . . , x ′d ]modulo I.

We note that in particular, when dealing with affine algebraic sets, the d in the above definition

corresponds with the complex dimension of the set, as given in Definition 2.1.13. Furthermore, the

following computational result of [36] is proven by characterizing the set of matrices for which the

Noether normal position is not achieved.

Theorem 4.2.6. Let I be as in Lemma 4.2.5. Then there exists a non-empty Zariski open setA ⊂
GLn (C) such that for all A ∈GLn (Q)∩A , the resulting change of variables x ′1, . . . , x ′n are algebraically

independent modulo I and x ′d+1, . . . , x ′n are integral over C[x ′1, . . . , x ′d ]modulo I.

The statements of the next two propositions follow the approach of the unpublished work [46],

so we restate and prove them here.

Proposition 4.2.7. Suppose F ∈Q[x] and V (F )∩Rn is bounded. There exists a non-empty Zariski

open set O ∈GLn(C) such that for A ∈O ∩G Ln (Q), if V A =V (F A) and V A
ε :=V (F A − ε)⊂C〈ε〉n for ε

infinitesimal, then

(i) for all 1 ≤ i ≤ n, crit(V A
ε ,πi ) is either empty or is smooth and equidimensional with complex

dimension i −1;

(ii) for all p ∈V A ∩Rn , π−1
d (πd (p))∩ (V A ∩Rn ) is finite, where d is greater than or equal to the local

real dimension of V A at p.

Proof. (i) Let 1≤ i ≤ n and suppose crit(V A
ε ,πi ) is non-empty. We note that V A

ε is smooth by Lemma

4.1.1. By Corollary 4.2.3, we obtain a non-empty Zariski open set O1 ∈ GLn(C〈ε〉) such that for

A ∈O1 ∩GLn(Q), crit(V A
ε ,πi ) is equidimensional with complex dimension i −1.

(ii) Since V A∩Rn is semi-algebraic, we can consider it as a union of connected components C1, . . . , Cl

with corresponding real dimension d1, . . . , dl , as in Definition 2.2.11. Then the local real dimension

of V A ∩Rn at p is given by maxp∈Ci
di , as in Definition 2.2.12.

Let Vi represent the Zariski closure of each Ci for 1 ≤ i ≤ l . Then the corresponding complex

dimensions of V1, . . . , Vl are d1, . . . , dl . By Theorem 4.2.6, there exists a non-empty Zariski open set

O2i
∈ GLn(C) such that for A ∈ O2i

∩GLn(Q) and q ∈ Cdi , π−1
di
(q) ∩ V A

i is finite. Then for q ∈ Rdi ,

π−1
di
(q)∩Ci is finite.

Let p ∈ V A ∩Rn where A ∈ O2 = ∩l
i=1O2i

. Suppose d ≥ maxp∈Ci
di . Then πd (p) ∈ Rd . For any

di = d , taking O2 as defined above with Theorem 4.2.6 guarantees π−1
d (πd (p))∩ (V A ∩Rn ) is finite.

Furthermore, for any di strictly less than d , π−1
d (πd (p))∩ (V A ∩Rn ) is still finite for A ∈O2 because

π−1
d (πd (p))⊂π−1

di
(πdi
(p)). Taking O =O1 ∩O2 completes the proof.

Now we are ready to state the main result of this section, recalling that it was suggested by the

unpublished [46].
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Proposition 4.2.8. Let F, g1, . . . , gm ∈Q[x] and let ε be infinitesimal. Suppose F ≥ 0 onRn , V (F )∩Rn

is bounded, and A ∈G Ln (Q) with V A = V (F A) and V A
ε := V (F A − ε) ⊂ C〈ε〉n such that (i) and (ii)

from Proposition 4.2.7 hold. Then for i = 0, . . . , n, limε→0 crit(Vε ,πi ) is equidimensional of dimension

i −1 and for

U := {x ∈Rn : g1(x)> 0, . . . , gm (x)> 0} ⊂Rn

and S :=V (F )∩U we have

�

lim
ε→0

crit(Vε ,πi )
�

∩U = S ⇔ dimR(S )≤ i −1.

Proof. (⇒) Fix some 0≤ i ≤ n and suppose

�

lim
ε→0

crit(Vε ,πi )
�

∩U = S .

If S = ;, then dimR(S ) =−1≤ i−1 and we are done. So assume S 6= ;. Since S :=V ( f )∩U ,V (F )∩Rn 6= ;
and S is bounded by our initial assumption of V (F )∩Rn being bounded.

By Lemma 4.2.10, crit(Vε ,πi ) 6= ;. Then by Proposition 4.2.7, crit(Vε ,πi ) is equidimensional

of complex dimension i − 1. Then limε→0(crit(Vε ,πi )) has complex dimension i − 1. So the real

dimension of limε→0(crit(Vε ,πi )) is ≤ i −1 and thus

�

lim
ε→0

crit(Vε ,πi )
�

∩U = S

has real dimension ≤ i −1.

(⇐) Now suppose dimR(S )≤ i −1. Since crit(Vε ,πi )⊂Vε , limε→0 Vε =V (F ), and V (F )∩U = S ,

�

lim
ε→0

crit(Vε ,πi )
�

∩U ⊂ S .

If S = ;,
S ⊂

�

lim
ε→0

crit(Vε ,πi )
�

∩U

and we are done. So suppose S 6= ; and take z = (z1, . . . , zn ) ∈ S . Since S = V (F ) ∩U , z ∈ U and

z ∈V (F )∩Rn . Furthermore, the local real dimension of S at z is ≤ i −1, so the local real dimension

of V (F )∩Rn at z is also ≤ i −1.

Define F ′ as the function F where the first i −1 coordinates have been evaluated at the first i −1

coordinate values of z,i.e.

F ′ := F (xi , . . . , xn ) = F (z1, . . . , zi−1, xi , . . . , xn ).

We note that since F is nonnegative over Rn , F ′ is nonnegative over Rn−i+1. Also define z′ :=

(zi , . . . , zn ), V ′ :=V (F ′) and V ′ε :=V (F ′− ε)⊂C〈ε〉n−i+1, and the canonical projection ϕi (x) = xi and

the respectiveϕ′i (xi , . . . , xn ) = xi . Note that z′ is isolated in V ′∩Rn−i+1 sinceπ−1
i−1(πi−1(z))∩V (F )∩Rn

is finite by (ii) of Proposition 4.2.7.
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Applying Lemma 4.2.9 to z′ and V ′ we get some z′ε ∈ crit(V ′ε ,ϕ′i ) such that limε→0 z′ε = (zi , . . . , zn ).

Define zε := (z1, . . . , zi−1, z′ε) and V ∗ε =Vε ∩π−1
i−1(z, . . . , zi−1). Then zε ∈ crit(V ∗ε ,ϕi ). By Lemma 4.2.11,

zε ∈ crit(Vε ,πi ). Since limε→0 zε = z,

S ⊂
�

lim
ε→0

crit(Vε ,πi )
�

∩U .

The following lemmas were used in the proof of the above proposition.

Lemma 4.2.9. Assume f1, . . . , fs ∈ R[x], F = f 2
1 + · · · f

2
s , and ε > 0 a real infinitesimal. Let Vε :=

V (F − ε) ⊂ C〈ε〉n and V := limε→0 Vε ⊂ Cn . Suppose z ∈ V ∩Rn and there exists a neighborhood

B (z, r )⊂Rn for some r > 0 such that B (z, r )∩V ∩Rn is a finite set. Then there exists zε ∈ crit(Vε ,π1)

such that limε→0 zε = z.

Proof. Since B (z, r )∩V ∩Rn is a finite set, there exists some r ′ > 0 such that z is the only point in

B (z, r ′)∩V ∩Rn . So {z} is a bounded connected component of V ∩Rn . Then by Proposition 4.1.3,

there exist connected components Cε,1, . . . , Cε,l of Vε ∩R〈ε〉n such that {z}=∪l
i=1 limε→0 Cε,i and Cε,i

is bounded by and does not intersect the boundary of Ext(B (z, r ′)∩R〈ε〉n ) for 1≤ i ≤ l .

Then for 1≤ i ≤ l , we have Cε,i ⊂ Ext(B (z, r ′)∩R〈ε〉n ) and is closed and bounded. By the Extreme

Value Theorem, Cε,i ∩ crit(Vε ,π1) 6= ;. Since limε→0 Cε,i ) = {z}, all zε ∈ Cε,i ∩ crit(Vε ,π1) 6= ; are such

that limε→0 zε = z, and we are done.

Lemma 4.2.10. Assume f1, . . . , fs ∈ R[x], F = f 2
1 + · · · f

2
s , and ε > 0 a real infinitesimal. Let Vε :=

V (F − ε)⊂C〈ε〉n and V := limε→0 Vε ⊂Cn with V ∩Rn nonempty and bounded. Then crit(Vε ,πi ) is

nonempty and intersects each bounded connected components of Vε ∩R〈ε〉n for all 1≤ i ≤ n .

Proof. Since V ∩Rn is nonempty, there exists some nonempty connected component C ⊂V ∩Rn .

Let z ∈C . Since V ∩Rn is bounded, there exists some r > 0 such that the C ⊂ B (z, r )⊂Rn and C does

not intersect the boundary of B (z, r ). So by Proposition 4.1.3, there exist connected components

Cε,1, . . . , Cε,l of Vε∩R〈ε〉n such that C =∪l
j=1 limε→0 Cε, j and Cε, j is bounded by and does not intersect

the boundary of Ext(B (z, r )∩R〈ε〉n ) for 1≤ j ≤ l .

Then for 1≤ j ≤ l , we have Cε, j ⊂ Ext(B (z, r )∩R〈ε〉n ) and is closed and bounded. Hence Cε, j ∩
crit(Vε ,π1) 6= ;. Since by definition crit(Vε ,π1)⊂ crit(Vε ,πi ), we are done.

Lemma 4.2.11. Let F ∈C[x] andα= (α1, . . . ,αi−1) ∈Ci . Suppose Vi ,α is the algebraic setV (F )∩π−1
i−1(α)

and ϕi is the projection defined by ϕ(x) = xi . Then

crit(Vi ,α,ϕi )⊂ crit(V (F ),πi ).

Proof. We recall that by definition

crit(V (F ),πi ) =V
�

F,
∂ F

∂ xi+1
, . . . ,

∂ F

∂ xn

�

.
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By how we have defined Vi ,α, crit(Vi ,α,ϕi ) is the algebraic set defined by the polynomials f , x1 −
α1, . . . , xi−1−αi−1 and the maximal minors of the Jacobian matrix of the polynomials. Then in fact,

crit(Vi ,α,ϕi ) =V
�

F, x1−α1, . . . , xi−1−αi−1,
∂ F

∂ xi+1
, . . . ,

∂ F

∂ xn

�

and we are done.

In Chapter 5, we will use the results of Proposition 4.2.7 and Proposition 4.2.8 to develop a

genericity assumption (corresponding to the definition of “generic" given in Definition 2.1.11) and

establish a framework with which to construct a probabilistic algorithm.

4.3 Shifting from Infinitesimals to Complex Perturbations

In this section, we establish results in order to formulate our algorithms so they can be implemented

not only purely symbolically, but also in a numerical algebraic geometry context. Here we track

our perturbed set to its limit variety by employing homotopy continuation while our perturbation

constant follows a complex arc towards zero.

To this end, we first shift from the paradigm of real infinitesimals to arbitrarily small real numbers,

as established by the following result from real algebraic geometry.

Theorem 4.3.1. [8, Proposition 3.17] A result holds over R〈ε〉 if and only if there exists some e0 ∈R
such that it also holds for all e ∈ (0, e0)∩R.

For our purposes, we also want to establish that we are able to make this switch in terms of witness

set computations as well. We note that witness set computations are done over the complex numbers.

Therefore, the results in this section can be formulated in terms of a more general perturbation

setup, based on the following result from Faugére et al. on perturbing the defining polynomials of

an algebraic set.

Lemma 4.3.2. [19, Lemma 1] Let f1, . . . , fs ∈R[x] and fix l ≤ s and {i1, . . . , il } ⊂ {1, . . . , s }. Then there

exists a Zariski closed subsetA ×E ⊂Cs ×C such that for all a := (a1, . . . , as ) ∈Rs \A and e ∈R \E ,

the ideal generated by the polynomials fi1
− e ai1

, . . . , fil
− e ail

is a radical equidimensional ideal and

V ( fi1
− e ai1

, . . . , fil
− e ail

) is either empty or smooth of dimension n − l .

Using the above result, we define a genericity assumption which holds over the complex num-

bers.

Definition 4.3.3. Consider polynomials f1, . . . , fs ∈R[x] and point a= (a1, . . . , as ) ∈Qs . We say that

f1, . . . fs and a satisfy Assumption (A) if

(A): There exists e0 > 0 such that for all 0< e ≤ e0, the polynomials f1− e a1, . . . , fs − e as generate a

radical equidimensional ideal and V a
e :=V ( f1−e a1, . . . , fs −e as ) is smooth and has dimension

n − s .
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Assumption (A) in Definition 4.3.3 guarantees the existence of e0 > 0; however, in practice this

number can be arbitrarily small. Instead of trying to compute an e0 that works for a given system

f1, . . . , fs , the next result shows that we can choose a generic ξ ∈Cwith |ξ|= 1 to replace e0 with ξ

and e with t ξ, where t ∈ (0, 1].

Proposition 4.3.4. Let f1, f2, . . . , fs ∈R[x], a= (a1, . . . , as ) ∈Qs and let ε be infinitesimal. Assume that

V a
ε :=V ( f1− εa1, . . . , fs − εas )⊂C〈ε〉n is smooth and equidimensional of dimension n − s . Then for

all but finitely many ξ ∈Cwith |ξ|= 1 and for all t ∈ (0, 1], V a
t ξ :=V ( f1− t ξa1, . . . , fs − t ξas )⊂Cn is

smooth and equidimensional of dimension n − s and in that case we have

lim
ε→0

V a
ε = lim

t→0
V a

t ξ.

Proof. First, we show that for all but a finite number of choices of ξ ∈C, V a
ξ =V ( f1−ξa1, . . . , fs −ξas )

is smooth. Note that from our assumptions on V a
ε we get that f1, . . . , fs and a satisfy Assumption

(A) for some e0 > 0. Consider the ideal using new variables x0, z and λ1, . . . ,λs :

I := 〈 f (h )1 −a1z x
deg( f1)
0 , . . . , f (h )s −as z x

deg( fs )
0 〉

+〈(λ1∇( f1) + . . .+λs∇( fs ))
(h )〉.

Here g (h ) denotes the homogenization of g ∈R[x1, . . . , xn ] by the variable x0 as in Definition 2.1.21

and ∇ is the differential operator in the variables x1, . . . , xn as in Definition 2.1.17. Thus I is bi-

homogeneous in the variables (λ1, . . .λs ) and (x0, . . . , xn ). Then the projection of X (I )⊂Pn ×Ps ×C
onto C is a Zariski closed subset of C, and since e0 is not in the projection, the projection is not C,

thus a finite set Z . Clearly, for ξ ∈C \Z and for all p ∈V a
ξ , the Jacobian of f1−ξa1, . . . , fs −ξas at p

has rank s , thus V a
ξ is smooth and equidimensional of dimension n − s . This also implies that for all

but finitely many ξ ∈Cwith |ξ|= 1 and for all t ∈ (0, 1]we have that V a
t ξ =V ( f1− t ξa1, . . . , fs − t ξas )

is smooth and equidimensional.

Fix ξ ∈C \Z with |ξ|= 1 so V a
t ξ is smooth and equidimensional. To prove the second claim, let

L1, . . . , Ln−s ∈C[x] be linear polynomials such thatL =V (L1, . . . , Ln−s ) is a generic linear space of

codimension n − s which intersects both lim
ε→0

V a
ε and lim

t→0
V a

t ξ transversely. By our assumptions, both

V a
ε ∩L and V a

t ξ ∩L are finite.

Then sinceL does not depend on either ε or t ,

lim
ε→0

�

V a
ε ∩L

�

= lim
ε→0

V a
ε ∩L and

lim
t→0

�

V a
t ξ ∩L

�

= lim
t→0

V a
t ξ ∩L

SinceL is a generic linear space which intersects both lim
ε→0

V a
ε and lim

t→0
Vt ξ transversely, limε→0 V a

ε ∩
L = limt→0 V a

t ξ ∩L implies limε→0 V a
ε = limt→0 V a

t ξ.
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So it is sufficient to prove that

lim
ε→0

�

V a
ε ∩L

�

= lim
t→0

�

V a
t ξ ∩L

�

to achieve the desired result.

Let H ⊂R[x,ε] be the system

H :=H (x,ε) =
�

f1− εa1, . . . , fs − εas , L1, . . . , Ln−s

�

.

Let S ⊂ C〈ε〉n be the finite set of bounded solutions of H = 0, where bounded is as defined for

Puiseux series in Definition 2.2.20. Then for all x(ε) ∈ S , let limε→0 x(ε) = x0 ∈Cn . Furthermore, by

the definition of H , limε→0 S = limε→0

�

V a
ε ∩L

�

.

Since ε > 0 is a real infinitesimal, each x(ε) has an interval of convergence (0,εx )⊂R for some

εx > 0. Choose ε0 > 0 such that ε0 < min
x∈S

εx . Now we make a switch, and instead of considering

x(ε) ∈ S an element C〈ε〉n , we consider x as a function C → Cn which is well-defined for z ∈ C
with |z | ≤ ε0. Abusing the notation, we denote by x both the Puiseux series and the corresponding

complex function.

Recall that if a pair (z ∗, x∗) ∈ C×Cn has the property that H (x∗, z ∗) = 0 and det J H (x∗, z ∗) = 0,

where J H is the Jacobian matrix of H with respect to the x variables, then z ∗ is a critical point and

x∗ is a branch point for for H (x, z ) = 0. LetC denote the set of all critical points of H (x, z ) = 0. Then,

since |S |<∞, we know |C |<∞.

Now let z ∈ C . Then there exists some ξz ∈ C with |ξz | = 1 such that for t ∈ R, the path ξz t

passes through z , so that x(t ξz ) ∈Cn has some branching point. Let Z = {ξz : z ∈C } ⊂ S1, since

|C |<∞, |Z |<∞. Then, for any ξ ∈C \Z with |ξ|= 1, we have that x(t ξ) ∈Cn for t ∈ (0, 1] does not

pass through branching points. Since C \Z is Zariski dense in C, the same holds for generic ξ ∈C
with |ξ|= 1.

So let ξ ∈C \Z with |ξ|= 1 and Hξ ⊂Cn+1 be the homotopy defined by the system

Hξ :=Hξ(x, t ) =
�

f1− t ξa1, . . . , fs − t ξas , L1 . . . , Ln−s

�

.

The limit points of the solutions of Hξ are lim
t→0

�

V a
t ξ ∩L

�

. Let T ⊂Cn be the roots of Hξ(x,1). Then

|T |= |V a
ε ∩L |<∞. Furthermore, by the above argument the homotopy paths for Hξ are exactly

described by the points in V a
ε ∩L ⊂C〈ε〉

n by replacing ε with t ξ. Hence,

lim
ε→0

�

V a
ε ∩L

�

= lim
t→0

�

V a
t ξ ∩L

�

.

The above result gives a proof of correctness for WITNESS POINTS IN LIMITS ALGORITHM 4.3.1

which computes a witness point set (as in Definition 2.5.2) of a limit with algebraic probability one.

45



Algorithm 4.3.1 WITNESSPOINTSINLIMITS

Input: f1, . . . , fs ∈R[x], a= (a1, . . . , as ) ∈Qs

Output: flag=TRUE if V ( f1−a1e , . . . , fs −as e ) is 0-dimensional for sufficiently small e > 0 and the
finite set of points in W := lime→0+V ( f1−a1e , . . . , fs −as e ), flag=FALSE otherwise and W = ;.

1. Loop

(a) Choose generic ξ ∈Cwith |ξ|= 1.

(b) Define Hξ(x, t ) :=
�

f1− t ξa1, . . . , fs − t ξas

�

.

(c) If |V (Hξ(x, 1))|=∞, exit loop and return flag= FALSE, W = ;.
(d) Compute limt→0V (Hξ(x, t )) via a homotopy starting at t = 1.

(e) If no branch points were hit during homotopy tracking, exit loop and return flag= TRUE,
W = limt→0V (Hξ(x, t )).

A difficulty that arises is that the limit points may be singular, arising from multiple paths

converging to the same limit point. This is demonstrated in the following example.

Example 4.3.5. For f1 = x1 x2, f2 = x1 x2− x 2
1 , and a= (1, 1/2), there are two paths that both limit to

(0, 0)⊂V ( f1, f2) =V (x1).

Another difficulty that may arise is more delicate, in that the witness system f = ( f1, . . . , fs ) for

the original algebraic set V ( f ) is not a witness system for limt→0 V a
t ξ. This is demonstrated in the

following example.

Example 4.3.6. Consider f (x , y ) = (x y , x y − x ) ⊂ C[x , y ] and a = (1,0). Then f (x , y , t ) = (x y −
t , x y−x )⊂C[x , y , t ]gives V a

t ξ. We note that limt→0 f (x , y , t ) = {(0, 1, 0)}. But f (x , y , t )|t=0 = f (x , y ) =

V (x ) is not a witness system for {(0, 1)}. We compute

J f (x , y ) =

�

y x

y −1 x

�

.

For p= (0,1), rank(J f (0,1)) = 1. So by Definition 2.6.6, F = [x y , x y − x , x ]. But V (F ) =V (x ) is still

not a witness system for {(0, 1)}.
Instead, we have to do isosingular deflation of f (x , y , t ), as in Steps (1) and (2) of Algorithm 4.3.2.

Here, we compute

J f (x , y , t ) =

�

y x −1

y −1 x 0

�

.

For p = (0,1,0), rank(J f (0,1,0)) = 1. Applying Theorem 2.6.9 gives a deflated witness system

F = [x y , x y − x , x , y −1] for limt→0 V a
t ξ.

Applications of isosingular deflation as discussed in Section 2.6 can help us resolve both of these
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types of difficulties. DEFLATED WITNESS SYSTEM ALGORITHM 4.3.2 computes a deflated witness

system for irreducible components of a variety defined as a limit.

Algorithm 4.3.2 DEFLATEDWITNESSSYSTEM

Input: f1, . . . , fs ∈R[x], a= (a1, . . . , as ) ∈Qs , and p ∈V := lime→0+V ( f1−a1e , . . . , fs −as e ), a generic
point on a unique irreducible component Vp of V .

Output: A deflated witness system G ⊂R[x] for Vp.

1. Define F0(x, t ) := ( f1−a1t , . . . , fs −as t ) ∈R[x, t ]s and q := (p, 0) ∈Rn+1.

2. F := IsosingularDeflation(F0, q). // See Algorithm 2.6.1

3. Define G0(x) := F (x, 0).

4. G := IsosingularDeflation(G0, p). // See Algorithm 2.6.1

5. Return G .

Theorem 4.3.7. Let f1, . . . , fs , a, and p as in the input of ALGORITHM 4.3.2. Then G , computed by

ALGORITHM 4.3.2, satisfies the output specifications.

Proof. Since Vp is an irreducible component of V , there exists an irreducible component Z ⊂
V (F0(x, t ))⊂Cn+1 such that Vp×{0} is an irreducible component of Z ∩V (t )which is an intersection.

Hence, one can apply the isosingular deflation approach applied to intersections in Theorem 2.6.9.

Although Theorem 2.6.9 would deflate H0(x, t , t ′) := (F0(x, t ), t ′) at q′ := (p, 0, 0), the simplicity of the

intersection together with t ′ contained in H0 easily shows that one obtains an equivalent deflation

as deflating F0(x, t ) at q = (p,0), say F (x, t ). Therefore, Vp must be an irreducible component of

V (F ∗(x,0)) so G0(x) := F (x,0) is a witness system for Vp. Since G0 need not be a deflated witness

system for Vp, one deflates G0 at p to yield a deflated witness system G for Vp.

We note that the isosingular deflation operator from Section 2.6 applied above above uses

all appropriate minors for constructing the sequences of polynomial systems. One could utilize

alternative deflation approaches such as those found in [18, 20, 25, 34, 35] to possibly simplify the

construction of the witness system.

4.4 Computation of g

The final key tool required to compute a real smooth point on every connected component of

an algebraic set V is a “well-chosen" polynomial g that satisfies the conditions of Theorem 3.2.3,

i.e., Sing(V )∩Rn ⊂ V (g ) and dim(V ∩V (g ))< dim(V ). There exist symbolic methods to compute
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such a g for an irreducible variety V . For example, [48, Lemma 4.3] computes the defining equation

w of a generic projection π(V ) that is a hypersurface. Then, g can be taken to be one of the partial

derivatives of w . This idea could be extended to the case when V is not equidimensional using

infinitesimal deformations and limits (c.f., [47]). In COMPUTATION OF G ALGORITHM 4.4.1, we provide

a new approach based on isosingular deflation, as discussed in Section 2.6, which computes several

g ’s depending on the isosingular deflation sequence of the irreducible components.

Theorem 4.4.1. Let f1, . . . , fs , a, V a
e , and V be as in the input and output specifications of ALGORITHM

4.4.1. Then, ALGORITHM 4.4.1 is correct.

Proof. By our assumption on the genericity of L , each point p ∈W is a generic point of a unique

irreducible components Vp of V containing p. Based on the output of Algorithm 4.3.2, assume that

for any p ∈W , in Step (3d) we compute G j ⊂ R[x] such that the irreducible component Vp ⊂ V

containing p is an irreducible component of V (G j ), f1, . . . , fs ∈ G j , G j (p) = 0 and rank J G j (p) = s .

Then, G j ⊂R[x] computed in Step (3d) deflates all generic points of Vp. Step (4) adds all other points

from W which are deflated by G j . In particular, every other point on Vp contained in W will be

added to Wj . Hence, (G j , L , Wj ) is a deflated witness set for a union of irreducible components

of V , denoted by Vj , proving (ii). Since
⋃

j Wj =W , we also get
⋃

j Vj = V , which proves (iii). If

y ∈ Sing(Vj ), then rank(J G j (y))< s so all s × s minors of J G j (y) vanish. Hence, g j (y) = det(M (y)) = 0

proving (iv). Conversely, for any p′ ∈Wj , some s × s minor of J G j (p′) does not vanish at p′. Since g j

is a generic choice of combinations of all such minors, g j (p′) 6= 0 for all p′ ∈Wj . By Assumption (A),

V = lime→0 V a
e is equidimensional of dimension n − s , so for all p′ ∈W , dim Vp′ = n − s . Since g j

does not vanish identically on Vp′ for any p′ ∈Wj , we get dim(Vj ∩V (g j ))< n − s , proving (v).

To prove the first claim in (vi), note that each Vi is a union of (n − s )-dimensional irreducible

components of V and sample points from the irreducible components of V are uniquely assigned

to one Wj . Then for i 6= j , Vi and Vj cannot share an irreducible component, so their intersection is

lower dimensional.

To prove the second claim in (vi) we use Theorem 2.6.8 as follows. Let y ∈Vi ∩Vj . Suppose that

X is an irreducible component of Vi and Y is an irreducible component of Vj such that y ∈ X ∩Y .

Let ξ ∈C be generic with |ξ|= 1, t a complex variable, and denote f a
ξ = f a

ξ (x , t ) := ( f1−a1t ξ, . . . , fs −
as t ξ). Then, X ×{0} and Y ×{0} are irreducible varieties ofCn+1 and both are subsets of V ( f a

ξ )⊂
Cn+1. Therefore, each is contained in a unique isosingular set of f a

ξ denoted by Iso f a
ξ
(X ×{0}) and

Iso f a
ξ
(Y ×{0}), respectively. Let Fi (x , t ) and Fj (x , t ) be their corresponding deflated witness systems,

respectively. If Fi = Fj , i.e. the two isosingular sets of f a
ξ are the same, then IsoFj (x ,0)(X ) 6= IsoFj (x ,0)(Y )

(otherwise X = Y ) so y ∈ SingFj (x ,0)(Y ). Note that by the DEFLATED WITNESS SYSTEM ALGORITHM

4.3.2, G j (x ) is the deflation of Fj (x ,0) at a generic point of Vj . This implies by Theorem 2.6.8 that

y ∈ SingG j
(Y ) and g j (y) = 0.

If Fi 6= Fj , then (y, 0) is in the intersection of two different isosingular sets so (y, 0) has a different

deflation sequence than Y ×{0}, i.e., (y, 0) ∈ Sing f a
ξ
(Y ×{0}). By Theorem 2.6.8, we have that (y, 0) ∈

SingFj
(Y ×{0}). Denoting the Jacobian by J := J Fj (x , t ), we have that rankJ (y)< s with rankJ (y′) = s

for all generic y′ ∈ Y . Consider J ′ := J Fj (x , 0). (i.e. column of J corresponding to ∂ t removed). Note
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that J f (x ) is a submatrix of J ′, since f ⊂ Fj (x , 0). If rankJ ′(y′) = s for generic y′ ∈ Y , then G j = Fj (x , 0),

y ∈ SingG j
(Y ), and g j (y) = 0. If rankJ ′(y′)< s for generic y′ ∈ Y , we claim that rankJ ′(y)< rankJ ′(y′)

for generic y′ ∈ Y . First note that both rankJ f (y)≤ s −1 and rankJ f (y′)≤ s −1 for f = ( f1, . . . , fs ), so

without loss of generality (after maybe some Gaussian elimination on these Jacobian matrices), we

assume that∇ f1(y ) =∇ f1(y ′) = 0. Note that the ∂ t column of J = J Fj (x , t ) has the only possibly

non-zero constant entries in the rows corresponding to f1−a1t ξ, . . . , fs −as t ξ. Then for a generic

y′ ∈ Y we have rankJ ′(y′) = s −1, since among all s × s minors of J (y′) some has to be non-zero, and

the only possible non-zeros are the ones that are a1 times the (s −1)× (s −1)minors of J ′(y′), thus

we must have a1 6= 0 and rankJ ′(y′) = s −1. On the other hand, the s × s minors of J (y) contain all

(s −1)× (s −1)minors of J ′(y) times a1, so all these minors of J ′(y)must be zero. This implies that

rankJ ′(y)< s −1. Thus, rankJ ′(y)< rankJ ′(y′). In particular, y ∈ SingFj (x ,0)(Y ) and by Theorem 2.6.8,

y ∈ SingG j
(Y )which implies that g j (y) = 0. This proves (vi), and the theorem.

One advantage of the approach using isosingular deflation is that, in many problems, the number

of iterations in the deflation process is a small constant (zero or one). In this case, the degrees of the

polynomials in the output of both DEFLATED WITNESS SET ALGORITHM 4.3.2 and COMPUTATION OF

G ALGORITHM 4.4.1 are comparable to the maximal degree of the input polynomials f1, . . . , fs . On the

other hand, the degree of the polynomial w computed in the symbolic approach in [48, Lemma 4.3]

mentioned above is the degree of V bounded by the product of the degrees of the input polynomials.

Nonetheless, the disadvantage of our approach is that in the worst case, we need as many iterations

in the deflation as the multiplicity of the points and this may result polynomials that are higher

degree than w . We have the following bound on the degree of g as a function on the number of

iterations in the deflation:

Proposition 4.4.2. Let f = ( f1, . . . , fs ) and a= (a1, . . . , as ) ∈Qs such that V a
e :=V ( f1−a1e , . . . , fs −as e )

satisfies Assumption (A). Let D :=maxs
i=1{deg( fi )} and fix p ∈V := lime→0 V a

e . If ALGORITHM 4.3.2

takes k iterations of the isosingular deflation to output G ⊂R[x], the degrees of the polynomials in

G are bounded by s k D . Furthermore, if g (x) := det(M (x)) ∈R[x]where M (x) is a s × s submatrix of

J G (x), then deg(g )≤ s k+1D .

Proof. The first claim follows from the fact that each iteration of the deflation algorithm adds the

minors of the Jacobian of the polynomials in the previous iteration, and these minors have size less

than s . Thus, the degrees of polynomials added to the system in each iteration are at most s times

the degrees of the polynomials in the previous iteration. The second claim follows from the first.
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Algorithm 4.4.1 COMPUTATIONOFG

Input: f1, . . . , fs ∈R[x], a= (a1, . . . , as ) ∈Qs .

Output:
��

g j , Dj

�

: j = 1, . . . , r
	

such that for all i 6= j ∈ {1, . . . , r }, V a
e :=V ( f1−a1e , . . . , fs −as e ) and

V := lime→0+V a
e :

(i) g j ∈R[x], G j , L ⊂R[x], and Wj ⊂V .

(ii) Dj := (G j , L , Wj ) is a deflated witness set of some Vj ⊂V , where Vj is a union of irreducible

components of V ;

(iii) V =
⋃r

j=1 Vj

(iv) Sing(Vj )⊆V (g j )

(v) dim(Vj ∩V (g j ))< n − s

(vi) dim(Vi ∩Vj )< n − s and Vi ∩Vj ⊆V (g j ).

1. Loop

(a) Choose a generic system L ⊂R[x] of n − s linear polynomials.

(b) a′ := (a1, . . . , as , 0, . . . , 0).

(c) (flag, W ) :=WitnessPointsInLimits({ f1, . . . , fs , L}, a′). // See Algorithm 4.3.1

(d) If flag=TRUE, exit loop.

2. Set j := 1.

3. Loop

(a) Pick some p ∈W .

(b) Wj := {p}.

(c) Update W :=W \ {p}.

(d) G j :=DeflatedWitnessSystem({ f1, . . . , fs }, a, p). // See Algorithm 4.3.2

// G j ⊂ R[x] is a witness system for the irreducible component Vp ⊂ V

containing p such that f1, . . . , fs ∈G j, G j (p) = 0 and rank J G j (p) = s.

(e) For all p′ ∈W

If G j (p′) = 0 and rank J G j (p′) = s , then

Update Wj :=Wj ∪{p′} and W :=W \ {p′}.

(f ) Compute g j (x) := det(M (x)), where M is a generic rational linear combination of all s × s

submatrices of J G j (x).

(g) If W 6= ;, increment j := j +1.
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4.5 Finite Critical Points of g

In this section, we establish a result characterizing when a function g will have a finite number of

critical points over an algebraic set. This is an adaptation of Theorem 36 and Lemma 37 from [30].

Definition 4.5.1. Given f1, . . . , fs , g ∈R[x]. We say that x ∈Cn is a critical point of g for V ( f1, . . . , fs )

if x ∈V ( f1, . . . , fs ) and

∇g (x) ∈ spanC
�

∇ f1(x), . . . ,∇ fs (x)
�

,

where∇ denotes the gradient operation as in Definition 2.1.17.

We need the following corollary of Sard’s theorem from [52, Theorem A.6.1]. It uses the notion of

quasi-projective sets, which are the intersection inside some projective space of a Zariski-open and

a Zariski-closed subset. Let Xreg denote the set of smooth points in X .

Theorem 4.5.2. Let f (x) = 0 denote a system of n algebraic functions on an irreducible quasiprojective

set X . Then there is a Zariski openset U ⊂ f (X )⊂Cn such that for y ∈U , V ( f (x)−y)∩Xreg is smooth

of dimension equal to the corank of f , i.e. dim X −dim f (X ). Moreover, he Jacobian matrix of f is of

rank equal to dim X −dim f (X ) at all points of V ( f (x)−y)∩Xreg.

Theorem 4.5.3. Let f1, . . . , fs ∈R[x] and assume that V ( f1, . . . , fs )⊂Cn is a smooth equidimensional

algebraic set of dimension n − s . Let g0 ∈R[x]. Then there exists a Zariski closed proper subsetS of

Cn with dim(S )< n such that for all c= (c1, . . . , cn ) ∈Rn \S the polynomial

g := g0 ·
�

(x1− c1)
2+ · · ·+ (xn − cn )

2+1
�

∈R[x]

has finitely many critical points for V ( f1, . . . , fs )where g does not vanish.

Proof. Let V be an irreducible component of V ( f1, . . . , fs ). By our assumptions, dim(V ) = n − s and

V is smooth. We will prove that g has finitely many critical points for V ( f1, . . . , fs ) that lie in V \V (g ),
and since this will be true for all irreducible components of V ( f1, . . . , fs ), we get the claim of the

theorem.

We can assume that

dim(V ∩V (g ))< n − s

otherwise, since V is irreducible, V ⊂V (g ) and there is nothing to prove.

To simplify the notation, define for c= (c1, . . . , cn ) ∈Rn

Uc(x) := (x1− c1)
2+ · · ·+ (xn − cn )

2+1.

Then

∇g (x) =Uc(x)∇g0(x) + g0(x)∇Uc(x)

Thus, a point x ∈V is a critical point of g for V ( f1, . . . , fs ) if and only if

Uc(x)∇g0(x) + g0(x)∇Uc(x) ∈ spanC
�

∇ f1(x), . . . ,∇ fs (x)
�

,
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This implies that x ∈V is a critical point of g for V ( f1, . . . , fs ) such that g (x) 6= 0 if and only if there
exists λ= (λ1, . . . ,λs ) ∈Cs such that







c1

...

cn






=

Uc(x)
g0(x )







∂x1
g0(x)
...

∂xn
g0(x)






+2







x1

...

xn






−λ1







∂x1
f1(x)
...

∂xn
f1(x)






· · · −λs







∂x1
fs (x)
...

∂xn
fs (x)






.

Define pi : W →C for i = 1, . . . , n ,

pi (x, t ,λ) := t ∂xi
g0(x) +2xi −λ1∂xi

f1(x)− · · ·−λs∂xi
fs (x)

where

W := {(x, t ,λ) ∈V ×Cs+1 | g (x) 6= 0, t 6= 0}.

Thus, x ∈V \V (g ) is a critical point of g for V ( f1, . . . , fs ) if and only if there exists (t ,λ) ∈Cs+1 such

that (x, t ,λ) satisfies

t =
Uc(x)
g0(x)

and pi (x, t ,λ) = ci i = 1, . . . , n .

First we prove that for p= (p1, . . . , pn ) : W →Cn , p is dominant. For all x∗ ∈ V and for t = λ1 =

· · ·=λs = 0 we have

JW p (x∗, 0, 0) = [2 · In−s |∇g0(x
∗)| − J f (x∗)],

where JW p is the Jacobian of p in a local parametrization of W at (x∗, 0, 0). By our assumtion on V ,

rankJ f (x∗) = s , thus rankJW p (x∗, 0, 0)≥ n . This implies that the image of p is n-dimensional, thus p

is dominant. Since W inherits the irreducibility and and smoothness of V , we get that p(W ) =Cn .

We can apply Theorem 4.5.2 for p, so there exists a Zariski closed subsetS of Cn and such that

for all c ∈Cn \S for W1 := {(x, t ,λ) ∈W | p(x, t ,λ) = c }we have

dim(W1) = dim(W )−n = 1

using that dim(W ) = n − s + s +1= n +1 by our assumption that dim(V ∩V (g ))< n − s .

Fix c ∈Rn \S . Next we show that that

dim
�

(x, t ,λ) ∈W1 : q (x, t ) :=Uc(x)− t g0(x ) = 0
	

= 0.

By the previous lemma applied to q (x, t ) : W1→C, if the above dimension is not 0 then 0 is a critical

value of the function q (x, t ). If we have such a critical value, then there exists (x∗, t ∗,λ∗) ∈W1 such
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that∇q (x∗, t ∗) = 0, i.e.












∂x1
q (x∗, t ∗)

...

∂xn
q (x∗, t ∗)

g0(x∗)













=













0
...

0

0













.

Thus we must have g0(x∗) = 0. However, W1 ⊂ W , so for (x∗, t ∗,λ∗) ∈ W1 we have g0(x∗) 6= 0, a

contradiction.

This implies that for any c ∈ Rn \S , the solution set of pi (x, t ,λ) = ci for i = 1, . . . , n and the

equation t = Uc(x)
g0(x)

is a zero dimensional subset Z ⊂W . The set {x : (x, t ,λ) ∈ Z } is the finite set of

critical points of g for V ( f1, . . . , fs ) in V \V (g ).
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CHAPTER

5

COMPUTATION OF REAL SMOOTH

POINTS: GENERAL CASE

In this chapter, we put together all of the results from Chapter 4 to present an algorithm that

computes real smooth points for the limits of these perturbed varieties, giving us real smooth points

on each connected component of our real algebraic set, regardless of whether it is equidimensional

to start.

5.1 Computation of Real Smooth Points

We first define two genericity assumptions, informed by our results from Chapter 4, in particular

Proposition 4.2.7 and Theorem 4.5.3. Recall that crit(V ,πi ) is the polar variety of the algebraic set V

with respect to the projection πi as in Definition 2.3.8.

Definition 5.1.1. Consider polynomial F with V (F ) ∩Rn bounded, matrix A ∈ GLn(Q). Define

V A = V (F A) and V A
e := V (F A − e ) ⊂ Cn for some constant e > 0. We say that F and A satisfy

Assumption (B) if:

(1): there exists e0 > 0 such that for all 0< e ≤ e0 and all 1≤ i ≤ n , crit(V A
e ,πi ) is either empty or is

smooth and equidimensional with complex dimension i −1;

(2): for all p ∈V A ∩Rn , π−1
d (πd (p))∩ (V A ∩Rn ) is finite, where d is greater than or equal to the local

real dimension of V A at p;
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Algorithm 5.1.1 REALSMOOTHPOINT

Input: f =
�

f1, . . . , fs

�

⊂Q [x1, . . . , xn ] , i ∈ {1, . . . , n} , n ≥ 2.

Output: S ⊂ Rn , a finite set containing smooth points in each (i −1)-dim bounded connected

component of VR
�

f
�

1. Define F := f 2
1 + · · ·+ f 2

s and e1 := (1, 0, . . . , 0).

2. Choose generic A ∈G Ln (Q).

3.
��

g1, D1

�

, . . . ,
�

g r , Dr

�	

:= ComputationOfg
�

F A , ∂ F A

∂ xi+1
, . . . , ∂ F A

∂ xn
, e1

�

. // See Algorithm 4.4.1

// Dj is a deflated witness set for some Vj a union of irreducible

components of crit(V A ,πi ) := lime→0+ crit(V A
e ,πi ) where crit(V A

e ,πi ) := V (F A − e , ∂ F
∂ xi+1

, . . . , ∂ F
∂ xn
)

for e a parameter.

4. For j = 1, . . . , r

(a) Loop

L ( j ) :=
¦

F A , ∂ F
∂ xi 12

, . . . , ∂ F
∂ xn

, g j z −1
©

∪
�

∂ g j

∂ xk
+ ∂ F A

∂ xk
+

n
∑

t=i+1
λt

∂ 2F
∂ xt ∂ xk

: k = 1, . . . , n

�

.

// L ( j ) is the Lagrange multiplier system in variables

x1, . . . , xn , z ,λ1, . . . ,λs.

(flag,Uj ) :=WitnessPointsInLimits
�

L ( j ), e1

�

. // See Algorithm 4.3.1

If flag=TRUE, exit loop.

Choose generic c ∈Qn .

g j := g j ·
�

(x1− c1)
2+ · · · (xn − cn )

2+1
�

.

Restart loop with g j := g j .

(b) Compute Tj :=Uj \V
�

g j

�

∩Rn .

(c) Set Sj := ;.

(d) For each p ∈ Tj

If MembershipTest
�

p, Dj

�

= TRUE, then // See Algorithm 2.5.1

Sj := Sj ∪
�

p
	

.

5. Return S :=
⋃r

j=1 Sj .

Definition 5.1.2. Consider polynomials F, g ∈Q[x] and constant c= (c1, . . . , cn ) ∈Qn . Define Ve :=

V (F − e )⊂Cn for some constant e > 0. We say that F, g and c satisfy Assumption (C) if:
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(C): There exists e0 > 0 such that for all 0< e ≤ e0, all 1≤ i ≤ n , the polynomial

g := g ·
�

(x1− c1)
2+ · · ·+ (xn − cn )

2+1
�

∈R[x]

has finitely many critical points for the polar variety crit(Ve ,πi )where g does not vanish.

The following theorem and corresponding proof establish the correctness of the main result of

this chapter, REAL SMOOTH POINT ALGORITHM 5.1.1.

Theorem 5.1.3. Fix n , i , f1, . . . , fs as in the input of ALGORITHM 5.1.1. Assume A ∈G Ln (Q) such that A

and F = f 2
1 + · · ·+ f 2

s satisfy Assumption (B) as in Definition 5.1.1. Also, for each j = 1, . . . , r , in Step (4)

of ALGORITHM 5.1.1 we assume that F A , g j and c satisfy Assumption (C) as in Definition 5.1.2. Then

ALGORITHM 5.1.1 is correct. Furthermore, if S = ;, then V ( f1, . . . , fs )∩Rn has no bounded connected

components of dimension i − 1. If S 6= ;, then V ( f1, . . . , fs ) ∩Rn has some connected components

(possibly unbounded) of dimension i −1.

Proof. By Assumption (B), crit(V A
e ,πi ) is smooth and equidimensional of dimension i −1 for all

sufficiently small e > 0. We apply Proposition 4.1.3 (over C instead of R) to show that the set

crit(V A ,πi ) := lime→0 crit(V A
e ,πi )⊂Cn is a Zariski closed set that is either equidimensional of di-

mension i − 1 or empty. Assume that {(g j , (G j , L , Wj )) : j = 1, ..., r } satisfies output specifications

(i)-(vi) of Algorithm 4.4.1. Fix j ∈ {1, . . . , r } and let Vj ⊂ crit(V A ,πi ) be the union of irreducible com-

ponents of crit(V A ,πi ) with witness set (G j , L , Wj ). First we establish that Uj defined in Step (4a)

is finite. We note that since crit(V A
e ,πi ) is smooth and equidimensional for all sufficiently small

e > 0. If |Uj |=∞ then we redefine g j with a generic c ∈Qn . Using Assumption (C), we get that the

redefined Uj is finite and the loop will terminate.

Next, since dim(Vj ∩V (g j )) < i − 1 by (v) in Algorithm 4.4.1, either (Vj \V (g j ))∩Rn = ; or for

each bounded connected component C of Vj ∩Rn where g j is not identically zero, there exists

z ∈Uj ∩C such that g j (z) 6= 0. Suppose (Vj \V (g j ))∩Rn 6= ;. Let C1, . . . , Ct ⊂Vj ∩Rn be the bounded

connected components of Vj ∩Rn where g j is not identically zero. Fix m ∈ {1, . . . , t }. Since each Cm

is compact, the distance from Cm to Ck is positive for each m 6= k . Also, for all sufficiently small

e , V A
e ∩R

n is also compact. Since Cm ⊂ V ∩Rn is compact, Proposition 4.1.3 shows that there

exist connected components C (e )m ,1, . . . , C (e )m ,sm
of V A

e ∩R
n for all sufficiently small e > 0 such that

Cm =
⋃sm

l=1 lime→0+ C (e )m ,l , each C (e )m ,l is bounded, and since Cm and C j has positive distance for m 6= j ,

also by Proposition 4.1.3 we have that

∪sm
l=1C (e )m ,l ∩∪

s j

l=1C (e )j ,l = ;

for all j 6=m . For each l = 1, . . . , sm , let S (e )m ,l := πx (V (L ( j )))∩C (e )m ,l . By Lemma 3.2.2, S (e )m ,l 6= ; and it

contains all points in C (e )m ,l where g j takes its extreme values. LetSm :=
⋃sm

l=1 lime→0S
(e )

m ,l . SinceS (e )m ,l

is bounded for all sufficiently small e , none of the limit points escape to infinity. Suppose that for

all z ∈Si we have g j (z) = 0. Since Ci is compact, by the Extreme Value Theorem, g j attains both a

minimum and a maximum on Ci . Since g j is not identically zero on Ci , either the minimum or the
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maximum value of g j on Ci must be nonzero. Let z∗ ∈Ci such that |g j (z∗)|> 0. Let z∗e ∈C (e )i ,l for some

l = 1, . . . , si such that lime→0 z∗e = z∗. Then for any z ∈ Si , if ze ∈ S
(e )

i such that lime→0 ze = z, then

for sufficiently small e we have that |g j (z∗e )|> |g j (ze )| by lime→0 g j (ze ) = g j (z) = 0. SinceSi is finite,

we can choose a common e0 value for all z ∈ Si so that if 0 < e < e0 then |g j (z∗e )| > |g j (ze )| for all

ze ∈S
(e )

i . Thus,S (e )i could not contain all points of C (e )i ,l for l = 1, . . . , si where g j takes its extreme

values, a contradiction. So this proves lime→0πx (V (L
( j )
e ))∩Ci =Uj ∩Ci contains a point z ∈Ci such

that g j (z) 6= 0.

Next, let Sj =Uj \ V (g j )∩Rn ∩Vj and S =
⋃r

j=1 Sj as in Steps (4) and (5). Since crit(V A ,πi ) =
⋃r

j=1 Vj and for each j = 1, . . . , r , Sing(Vj ) ⊂ V (g j ), Vk ∩ Vj ⊂ V (g j ) for all k 6= j by (iii)-(vi) in

ALGORITHM 4.4.1, these points are smooth in Vj ∩Rn , and also smooth in crit(V A ,πi )∩Rn . Thus if

S 6= ;, by Theorem 3.2.1 and Proposition 4.2.8,V ( f1, . . . , fs )∩Rn must have dimension i−1 connected

components. Conversely, if V ( f1, . . . , fs )∩Rn has a bounded connected component of dimension

i − 1, then there exists j ∈ {1, . . . , r } such that Vj ∩Rn has a bounded connected component of

dimension i −1. By Theorem 3.2.1, this component has real smooth points. In fact, these real smooth

points form a semi-algebraic set that has also dimension i−1. However, since dim
�

Vj ∩V (g j )
�

< i−1,

g j does not vanish on all real smooth points of this component, but it vanishes on the singular

points. By the above argument Uj ∩Rn ∩Vj must contain points where g j is not zero, thus Sj and S

are not empty.

Using Proposition 4.4.2, we can bound the number of homotopy paths followed in Step (3) in the

REAL SMOOTH POINT ALGORITHM 5.1.1, which is the bottleneck of our method. Note that the number

of iterations r is at most deg(V ) ≤ D n . Thus the MEMBERSHIP TEST ALGORITHM 2.5.1 utilized in

Step (4) of the REAL SMOOTH POINT ALGORITHM 5.1.1 follows at most |Wj |= deg(Vj )≤ deg(V )≤D n

homotopy paths.

Corollary 5.1.4. Let f1, . . . , fs ∈Q[x], A ∈G Ln (Q) such that A and F = f 2
1 + · · ·+ f 2

s satisfy Assumption

(B). Consider the zero-dimensional polynomial system L ( j ) for some fixed j ∈ {1, . . . , r } as in ALGO-

RITHM 5.1.1. Then, the number of complex roots of L ( j ) is bounded by deg(g j )n D s ≤ s (k j+1)n D n+s ,

where D is as above when we assume that deg(g j ) ≥ D and k j is the number of iterations of the

isosingular deflation needed to compute G j using ALGORITHM 4.3.2.

Remark 5.1.5. We assumed in Theorems 3.2.3 and Algorithm 5.1.1 that g is a polynomial, but we

can straightforwardly extend the results to g : Rn → R differentiable functions as long as ∂ g
∂ xi

for

i = 1, . . . , n are rational functions.
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CHAPTER

6

COMPUTING REAL DIMENSION

In this chapter, we apply the REAL SMOOTH POINT ALGORITHM 5.1.1 to compute the real dimension

of real algebraic sets with the main idea as follows. Using Theorem 3.2.1, if we find a real smooth

point, we find the real dimension to be the same as the complex one. If there are no real smooth

points, we conclude that the real dimension is smaller than the complex dimension. In that case,

we need to lower the complex dimension in a way that we do not lose any real points inside the

variety. One approach is to replace the variety by its singular set which, for hypersurfaces, one simply

adds all partial derivatives. However, recursively adding minors of the Jacobian matrix for higher

codimension varieties can cause a drastic increase in the degree of the polynomials utilized. Here

we apply an alternative technique using a sequence of polar varieties.

6.1 Related Work

The real dimension problem has been widely studied with both for the purpose of determining that

property for a given semi-algebraic set, and also for use in algorithms which take the quantity as an

input parameter (e.g. [8, Alg. 13.3]mentioned previously). The current state of the art deterministic

algorithm is given by [8, Alg. 14.10] computing all realizable sign conditions of a polynomial system.

This approach improves on previous work in [55] to obtain a complexity result with a better depen-

dence on the number of polynomials in the input by utilizing a block elimination technique first

proposed in [22]. Recent work has been presented giving probabilistic algorithms utilizing polar

varieties which improve on complexity bounds even further in [46, 7]. We use a benchmark family

from [7] to demonstrate the efficiency of our method.

One can also compute the real dimension by computing the real radical of a semi-algebraic set,
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first studied in [12] with improvements and implementations in [41, 59, 54, 14]. The most recent

implementation can be found in [48, 49] as mentioned previously. Their approach is shown to

be efficient in the case when the polynomial system is smooth, but the iterative computation of

singularities of singularities can increase the complexity significantly in the worst case. An alternative

method using semidefinite programming techniques was proposed by [56, 37]. Finally, methods for

numerically computing homologies are given in [17, 13] but only apply to the smooth case.

6.2 Numerical Real Dimension Algorithm

Our real dimension algorithm is as follows.

Algorithm 6.2.1 NUMERICAL REAL DIMENSION

Input: f1, . . . , fs ∈Q[x1, . . . , xn ] such that V ( f1, . . . , fs )∩Rn is compact and n ≥ 2.

Output: The real dimension of V ( f1, . . . , fs )∩Rn .

1. Let i := n .

2. Loop

(a) S :=RealSmoothPoint( f1, . . . , fs , i ). // See Algorithm 5.1.1
// S ⊂Rn contains smooth points in V ( f1, . . . , fs )∩Rn.

(b) If S 6= ;, exit loop and return i −1.

(c) Increment i := i −1.

(d) If i = 0, exit loop and return −1.

Theorem 6.2.1. Let n ≥ 2, f1, . . . , fs ∈Q[x] such that V ( f1, . . . , fs )∩Rn is compact. Assume that the

conditions of Theorem 5.1.3 are satisfied for 1≤ i ≤ n. Then ALGORITHM 6.2.1 is correct.

Proof. By assumption, Theorem 5.1.3 gives the correctness of REAL SMOOTH POINT ALGORITHM

5.1.1 in Step (1). We prove by induction on n− i < n that we have the following loop invariant in Step

(2): dim(V (F A)∩Rn )≤ i −1. This is true when n − i = 0. Assume it is true for n − i < n , and we are in

Step (2a) with i > 0. By Proposition 4.2.8, V ∩Rn = V (F A)∩Rn for V := lime→0 crit
�

V (F A − e ),πi

�

since dim(V (F A)∩Rn )≤ i −1 by the inductive hypothesis. In Step (2b) if S 6= ;, V has a real smooth

point by Theorem 5.1.3, so by Theorem 3.2.1 we have dim(V ∩Rn ) = dim V = i −1 and we return

this value. If S = ;, the compactness of V ∩Rn and Theorem 5.1.3 implies that there are no real

smooth points on V , so dim(V ∩Rn )< dim V = i −1. In this case we proceed: if i −1= 0 then we

return −1 concluding that V (F A)∩Rn = ;, or we return to Step (2a) with i −1> 0 maintaining the

loop invariant.
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6.3 Implementation on a Benchmark Family of Problems

A benchmark family from [7] are hypersurfaces V ( fn )⊂Cn for n ≥ 3 such that

fn (x) =
�

∑n
j=1 x 2

j

�2
−4

∑n
j=1

�

x j x j+1

�2
(6.1)

where xn+1 = x1. Since fn is homogeneous, one knows dimV ( fn )∩Rn = dim(V ( fn , sn )∩Rn ) + 1

where sn =
∑n

j=1 x 2
j −1 in which V ( fn , sn ) ∩Rn is compact. The cases 3 ≤ n ≤ 6 were solved in

[7] with the following considering 3 ≤ n ≤ 8. All code used in these computations is available

at dx.doi.org/10.7274/r0-5c1t-jw53 with the timings reported using Bertini ([10]) on an

AMD Opteron 6378 2.4 GHz processor using one (serial) or 64 (parallel) cores.

For n = 3 with g = ∂ f3/∂ x1, one obtains smooth points onV ( f3)∩R3 thereby showing dimV ( f3)∩
R3 = 2 in about a second in serial.

For n = 4, V ( f4) has multiplicity 2 with respect to f4 since

f4(x1, x2, x3, x4) =
�

x 2
1 − x 2

2 + x 2
3 − x 2

4

�2
.

Trivially, a deflated witness system for V ( f4) is G = x 2
1 − x 2

2 + x 2
3 − x 2

4 . For g = x1 x2, one obtains

smooth points on V ( f4)∩R4 showing dimV ( f4)∩R4 = 3 in about a second in serial.

For n = 5, . . . ,8, with g = ∂ fn/∂ x1, one does not obtain smooth points on V ( fn )∩Rn showing

dimV ( fn )∩Rn < n −1. Therefore, one can move down the dimensions searching for real smooth

points using perturbed polar varieties, similarly to Step (2) of Algorithm 6.2.1. Nonsingular real points

are first found at dimension 2, i.e., dimV ( fn )∩Rn = 2. In fact, at dimension 2, the polar variety

contains various irreducible components of degree 2 and testing one is enough to confirm the

existence of a smooth real point. Table 6.1 lists the total computation time using parallel processing.

Table 6.1: Summary of benchmark problem (6.1) for 5≤ n ≤ 8

n dimV ( fn )∩Rn Time (min)
5 2 3.63
6 2 5.73
7 2 34.81
8 2 159.81
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CHAPTER

7

CERTIFYING SOLUTIONS OF

UNDERDETERMINED SYSTEMS

In this chapter, we detail and extend the previous results of Shub and Smale’s α-theory for certifying

solutions to polynomial systems to the context of underdetermined systems, i.e. polynomial systems

that consist of more variables than polynomials.

7.1 α-Theory Preliminaries for Underdetermined Systems

Since this chapter follows a significantly different vein than the others, we begin with a section

providing some background and definitions relevant to this chapter only.

We start by describing spaces of polynomial systems together with a unitarily invariant metric,

as in the approach of [50]. Let Pd be the linear space of all polynomial systems f : Cn → Cm ,

f = ( f1, . . . , fm )where each fi a polynomial of n-variables x= (x1, . . . , xn ) of degree at most di with

d= (d1, . . . , dm ) and di ≥ 0. Then we can think of each fi :Cn →C as

fi (x) =
∑

|α|≤di

aαxα =
∑

|α|≤di

aαxα1
1 · · · x

αn
n

where α= (α1, . . . ,αn ) and |α|=
∑

αi . For n >m , we call f an underdetermined system because it

has less polynomials than variables.

LetHd be the homogenization ofPd, so that f (h ) :Cn+1→Cm is such that each f (h )i is homoege-

neous of degree di , obtained by an additional variable x0 (as in Definition 2.1.21). Suppose 0 ∈Hd
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so that it is a linear space. Then the natural linear isomorphism of the homogenization is given by

Φ :Pd→Hd such that Φ( f ) = (Φ1( f1), . . .Φn ( fn ))with

Φi ( fi )(x) =
∑

α

aαxαx di−|α|
0

and the inverse of the map is obtained by taking x0 = 1.

Let U (n +1) be the unitary group of degree n +1. One common representation of this group we

could think of is (n +1)× (n +1) unitary matrices with the group operation of matrix multiplication.

Definition 7.1.1. A square matrix U ∈ C(n+1)×(n+1) is unitary if U U ∗ =U ∗U = I where U ∗ is the

adjoint (i.e. conjugate transpose) of U .

For homogeneous polynomials f (h )1 , f (h )2 : Cn+1→ C of degree d given by f (h )1 =
∑

αaαxα and

f (h )2 =
∑

α bαxα, let

〈 f (h )1 , f (h )2 〉 :=
∑

|α|=d

aαbα

�

α1! · · ·αn !

d !

�

.

This inner product natually induces the norm on homogenous polynomials of degree d denoted

by















∑

|α|=d

aαxα
















2

:=
∑

|α|=d

|aα|2
�d
α

�

where
�d
α

�

is the multinomial coefficient
� d
α1,...,αn

�

.

Now suppose f := { f1, . . . , fn} and g := {g1, . . . , gn} such that f , g ∈Hd. Then

〈 f , g 〉 :=
∑

i

〈 fi , g i 〉

is a Hermitian inner product.

Theorem 7.1.2. [31, Theorem 4.1] This inner product is invariant onHd under the group action of

U (n +1), i.e. 〈F ◦U −1,G ◦U −1〉= 〈F,G 〉 for all F,G ∈Hd and U :Cn+1→Cn+1 unitary.

By the isomorphism Φ, this also induces a Hermitian structure and its corresponding norm on

Pd, so that for any polynomial fi :Cn →C, the norm is defined with respect to its homogenization

by




 fi







2
:=

∑

|α|≤d

|aα|2
α!(d − |α|)!

d !
.

Similarly, for a polynomial system f :Cn →Cm , we define





 f






2
:=

m
∑

i=1





 fi







2
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and for a point x ∈Cn we define

‖x‖2
1 := 1+ ‖x‖2 = 1+

n
∑

i=1

|xi |2.

Returning to our polynomial system f :Cn →Cm , we denote the Jacobian matrix of the system

f at any point x ∈Cn by the notation D f (x), where the (i , j )-th entry of the matrix is ∂ fi
∂ x j
(x). We note

that this is the same Jacobian matrix J f (x) we have used in the previous chapters, but we follow

convention and use an alternative notation here. Importantly, for n >m , this matrix is not square,

and therefore does not have a well-defined inverse matrix D f (x)−1.

We follow the approach of [51, Section 1C] and introduce a pseudoinverse for the non-square

D f (x)with full rank m .

Definition 7.1.3. Suppose A is an m ×n matrix with full rank m . Then the Moore-Penrose inverse of

A, denoted by A†, is defined to be the n ×m matrix

A† = A∗(AA∗)−1.

We note that AA† = I and A†A is the orthogonal projection onto (kerA)⊥ (i.e. the orthogonal

complement of the kernel of A).

Using this pseudoinverse, Newton’s method constructs a sequence of points x1, x2, . . . by the

formula

xk = xk−1−D f (xk−1)
† f (xk−1)

for k ∈N in an effort to approximate the common zeros of f , V ( f ) := {ξ ∈Cn | f (ξ) = 0}.
Formally, we define a Newton iteration for our underdetermined system f at x. Let Nf :Cn →Cn

be the map such that

Nf (x) = x−D f (x)† f (x)

for x ∈ Cn . We note that for n =m , Nf is a usual iteration of Newton’s method. Furthermore, for

n >m , Nf is well-defined with the above pseudoinverse formula whenever D f (x ) is surjective (i.e.

has full rank m).

Lemma 7.1.4. [51, Section 1C] For x ∈Cn such that D f (x) surjective, x is a fixed point of the map Nf

if and only if f (x) = 0.

Repeated applications of the map Nf (x) allow us to defined approximate solutions of f . For

k ∈N, let

N k
f (x) :=Nf ◦ · · · ◦Nf (x)

︸ ︷︷ ︸

k times

be the k th Newton iteration of f starting at x.
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Definition 7.1.5. For a fixed x ∈Cn we say that the sequence of points N k
f (x) ∈C

n for k ∈N obtained

via Newton’s method converges quadratically to ξ ∈Cn an exact solution of f if








N k
f (x)−ξ








≤
�

1

2

�2k−1

‖x−ξ‖ .

Then we say that x ∈Cn is an approximate solution of f .

Smale’s α-theory consists of results for proving when a point x ∈Cn is an approximate solution

of f . These results are given in terms of constants β ( f , x),γ( f , x), and α( f , x). For D f (x) surjective,

these are defined by

β ( f , x) :=




D f (x)† f (x)






γ( f , x) :=max
k>1













D f (x)†D k f (x)
k !













1
k−1

α( f , x) :=β ( f , x)γ( f , x).

If D f (x) is not surjective and x 6∈ V ( f ), we define α( f , x) :=β ( f , x) := γ( f , x) :=∞. For consistency, if

D f (x) is not surjective, but x ∈V ( f ), we defined α( f , x) :=β ( f , x) := 0 and γ( f , x) :=∞. We explain

the notation in the definition of γ( f , x) further in the next section.

7.2 Establishing Shub-Smale Constant Bounds

The main theorem of α-theory gives an upper bound on α( f , x) for quadratic Newton convergence,

which Shub and Smale also state for the underdetermined case.

Theorem 7.2.1. [51, Theorem C1] Let f :Cn →Cm and x ∈Cn . If

α( f , y)<
13−3

p
17

4
≈ 0.157671,

then x ∈Cn is an approximate solution of f .

We note that our definition of α( f , x) depends directly on γ( f , x), so an upper bound on γ( f , x)

should be our goal. However, the definition of γ( f , x) is complicated, so we should first understand

that.

D k f (x) is the k th-derivative of the system f (x). Following the definitions of Lang in [33, Chapter

5], this is a tensor whose components are the partial derivatives of f of order k . For each fi (x) in

the system, this looks like the k -fold symmetric power S kCn . Since there are m polynomials in our

system, the tensor consists of m of these k -fold components. When we consider D f (x)†D k f (x), we

note in particular that D f (x)† has m column vectors inCn . So to compute this product, we apply

each column vector k times to the respective k -fold symmetric power, and result in a scalar inC.

Repeating this for each column vector gives a resulting vector in Cm .
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Therefore, in the definition of γ( f , x)we are considering the map D f (x)†D k f (x) : S kCn →Cm .

The operator norm of this k -fold linear map is taken with respect to the norm on S kCn that is dual

to the standard unitarily invariant norm on homogenous polynomials that we previously discussed

[26]. We utilize the definition of this operator norm explicitly in the proof of Proposition 7.3.4.

We note that γ( f , x) defined in this matter can be expensive to compute, so instead we work to

find a practical upper bound via condition numbers. Following the approach of [50], we modify

the definition of the condition number slightly in order to obtain a scaled version of the standard

definition which is more useful in our results.

Definition 7.2.2. Let∆(ω)be the m×m diagonal matrix whose i th entry isωi . Then for f :Cn →Cm

a polynomial system where fi has degree di , x ∈Cn , and D f (x) surjective, we define the condition

number

µ( f , x) :=max
n

1,




 f




 ·







D f (x)† ·∆
�

d
1
2

i ‖x‖
di−1
1

�









o

.

We note that this definition is similar to one given in [50, I-3], but modified to include the

pseudoinverse. We can now state our main result, aγbound for the underdetermined case analogous

to [50, I-3. Proposition 3] for the square case.

Theorem 7.2.3. Let f :Cn →Cm be a polynomial system with di = deg fi and D =max di . Then for

x ∈Cn such that D f (x) is surjective,

γ( f , x)≤
µ( f , x)D

3
2

2‖x‖1
.

7.3 Proving the γ Bound

This section follows the approach of [50, III-1], including some direct results reproven with more

detail for clarity. We first prove a couple of inequalities for how the unitarily invariant norm interacts

with homogeneous polynomials.

Proposition 7.3.1. [50, III-1. Proposition 1] Let g :Cn+1→C be a homogeneous polynomial of degree

d . Then for x ∈Cn+1,
|g (x)|
‖x‖d

≤




g




 .

Proof. Let y= (‖x‖ ,0, . . . ,0) ∈Cn+1. Define U :Cn+1→Cn+1 represented by a matrix with first row

vector x
‖x‖ and the other rows given by any set of vectors extending to an orthonormal basis. For

example, if n = 1 one possible U would be

�

x0
‖x‖

x1
‖x‖

−x1
‖x‖

x0
‖x‖

�

.
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By definition, U is a unitary automorphism such that U x = y. Now define the homogeneous

polynomial h = g ◦U −1 such that

h (x) = g (U −1x) =
∑

α

aαxα.

Then we compute

|g (x)|
‖x‖d

=
|(g ◦U −1)(U x)|

‖x‖d
=
|h (y)|




y






d
=
|a(d ,0,...,0)| ‖x‖d





y






d
= |a(d ,0,...,0)| ≤ ‖h‖ .

Since the norm as defined in the preliminaries is unitarily invariant, ‖h‖=




g




. So we have

|g (x)|
‖x‖d

≤




g






as required.

We now extend this result to a polynomial system.

Proposition 7.3.2. [50, III-1. Proposition 2] If f ∈Hd, then





∆
�

‖x‖−di
�

· f (x)




≤




 f




 .

Proof. We recall f : Cn+1→ Cm is a polynomial system with di = deg fi . By Proposition 7.3.1, we

have that for i = 1, . . . , m ,
| fi (x)|
‖x‖di

≤




 fi





 .

Squaring both sides gives
�

‖x‖−di fi (x)
�2 ≤





 fi







2
.

Then we sum over i and simplify using definitions

m
∑

i=1

�

‖x‖−di fi (x)
�2 ≤

m
∑

i=1





 fi







2





∆
�

‖x‖−di
�

· f (x)






2 ≤




 f






2

Taking the square root of both sides of the inequality gives our result.

Now we consider how derivatives of homogeneous polynomials interact with the unitarily in-

variant norm.
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Lemma 7.3.3. [50, III-1. Lemma 1] Let g :Cn+1→C be a homogeneous polynomial, x ∈Cn+1, and

U :Cn+1→Cn+1 a unitary automorphism. Then

D
�

g ◦U −1
�

(U x) =D g (x) ·U −1.

Proof. Consider the (n+1)×(n+1) inverse matrix U −1 = (vi , j )ni , j=0. Let r0, r1, . . . , rn be the row vectors

of U −1 and c0, c1, . . . , cn be the column vectors of U −1. Then

U −1x= (r0 ·x, r1 ·x, . . . , rn ·x).

So
�

g ◦U −1
�

(x) = g (U −1x) = g (r0 ·x, r1 ·x, . . . , rn ·x).

Using the chain rule for multivariate functions and simplifying using the entries of U −1, we obtain

the i th partial derivative

∂

∂ xi

�

g ◦U −1
�

(x) =
∂

∂ xi

�

g (r0 ·x, r1 ·x, . . . , rn ·x)
�

=
n
∑

j=0

∂

∂ x j

�

g (r0 ·x, r1 ·x, . . . , rn ·x)
�

·
∂

∂ xi

�

r j ·x
�

=
n
∑

j=0

∂

∂ x j
g (U −1x) ·

∂

∂ xi

�

r j ·x
�

=
∂

∂ x0
g (U −1x)v0,i + · · ·+

∂

∂ xn
g (U −1x)vn ,i

=D g (U −1x) · ci .

Then

D
�

g ◦U −1
�

(x) =
�

D g (U −1x) · c0, D g (U −1x) · c1, . . . , D g (U −1x) · cn

�

=D g (U −1x) ·U −1.

Substituting U x for x gives

D
�

g ◦U −1
�

(U x) =D g (U −1(U x)) ·U −1 =D g (x) ·U −1.

Proposition 7.3.4. [50, III-1. Proposition 3] Let g :Cn+1→C be a homogeneous polynomial of degree

d . Given x, y1, . . . , yk ∈Cn+1,





D k g (x)(y1, . . . , yk )




≤ d (d −1) · · · (d −k +1)




g




‖x‖d−k




y1





 · · ·




yk





 .
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Proof. Without loss of generality, suppose




y1





= 1. Define U :Cn+1→Cn+1 represented by a matrix

with first column vector y1 and the other columns given by any set of vectors extending to an

orthonormal basis. Then U is a unitary automorphism such that U y1 = e0, the standard basis vector

(1, 0, . . . , 0). Now consider h = g ◦U −1 such that

h (x) = g (U −1x) =
∑

|α|=d

aαxα0
0 xα1

1 · · · x
αn
n .

Then

D h (x) ·e0 =
∑

|α|=d ,α0 6=0

α0aαxα0−1
0 xα1

1 · · · x
αn
n .

We note that D h (x) is a homogeneous polynomial of degree d −1. So using the unitarily invariant

norm, we compute

‖D h (x) ·e0‖(d−1) = ‖D [h ◦U ] (x) ·e0‖(d−1)

=




D h (U x) ·U y1







(d−1)

=




D
�

g ◦U −1
�

(U x) ·U y1







(d−1) .

Applying Lemma 7.3.3 gives

D
�

g ◦U −1
�

(U x) ·U y1 =D g (x) ·U −1 ·U y1 =D g (x) ·y1.

So




D g (x) ·y1







(d−1) = ‖D h (x) ·e0‖(d−1) .

Using properties of the norm and squaring for simplicity gives





D g (x) ·y1







2

(d−1) =
∑

|α|=d ,α0 6=0

|α0|2|aα|2
(α0−1)!α1! · · ·αn !

(d −1)!

= d
∑

|α|=d ,α0 6=0

|α0||aα|2
α0! · · ·αn !

d !

≤ d 2
∑

|α|=d

|aα|2
α0! · · ·αn !

d !

= d 2




g






2

= d 2




g






2 


y1







2

where the last step holds since




y1





= 1. Taking the square root of both sides of the inequality gives





D g (x)(y1)






(d−1) ≤ d




g










y1





 .
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To show this in general, we proceed by induction as we did in our base case, assuming that





D k−1g (x)(y1, . . . , yk−1)






(d−k+1) ≤ d (d −1) · · · (d −k +2)




g










y1





 · · ·




yk−1





 .

Without loss of generality, suppose




yk





= 1. Define U :Cn+1→Cn+1 represented by a matrix with

first column vector yk and the other columns given by any set of vectors extending to an orthonormal

basis. Then U is a unitary automorphism such that U yk = e0, the standard basis vector (1, 0, . . . , 0).

Now consider h =D k−1g ◦U −1 such that

h (x) =D k−1g (U −1x) =
∑

|α|=d−k+1

aαxα0
0 xα1

1 · · · x
αn
n .

Then

D h (x) ·e0 =
∑

|α|=d−k+1,α0 6=0

α0aαxα0−1
0 xα1

1 · · · x
αn
n .

We note that D h (x) is a homogeneous polynomial of degree d −k . So using the unitarily invariant

norm, we compute

‖D h (x) ·e0‖(d−k ) = ‖D [h ◦U ] (x) ·e0‖(d−k )

=




D h (U x) ·U yk







(d−k )

=




D
�

D k−1g ◦U −1
�

(U x) ·U yk







(d−k ) .

Applying Lemma 7.3.3 gives

D
�

D k−1g ◦U −1
�

(U x) ·U yk =D k g (x) ·U −1 ·U yk =D k g (x) ·yk .

So




D k g (x) ·yk







(d−k ) = ‖D h (x) ·e0‖(d−k ) .
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Using properties of the norm and squaring for simplicity gives





D k−1(x) ·yk







2

(d−k ) =
∑

|α|=d+k−1,α0 6=0

|α0|2|aα|2
(α0−1)!α1! · · ·αn !

(d −k +2)!

= (d −k +1)
∑

|α|=d+k−1,α0 6=0

|α0||aα|2
α0! · · ·αn !

(d −k +1)!

≤ (d −k +1)2
∑

|α|=d+k−1

|aα|2
α0! · · ·αn !

(d −k +1)!

= (d −k +1)2




D k−1g (x)(y1, . . . , yk−1)






2

≤ (d −k +1)2
�

d (d −1) · · · (d −k +2)




g










y1





 · · ·




yk−1







�2

= (d −k +1)2
�

d (d −1) · · · (d −k +2)




g










y1





 · · ·




yk−1







�2 


yk







2

where the last step holds since




yk





= 1. Taking the square root of both sides of the inequality gives





D k g (x)(y1, . . . , yk )






(d−k ) ≤ d (d −1) · · · (d −k +1)




g










y1





 · · ·




yk





 .

Finally, we note




D k g (x)(y1, . . . , yk )






(d−k ) is the norm in terms of a homogeneous polynomial of

degree d −k . However, we want a statement in terms of the dual operator norm, which is defined by





D k g (x)(y1, . . . , yk )




 := sup
x∈Cn+1

|D k g (x)(y1, . . . , yk )|
‖x‖k

.

For any x ∈Cn+1, we have





D k g (x)(y1, . . . , yk )




≤
|D k g (x)(y1, . . . , yk )|

‖x‖k
.

Applying Proposition 7.3.1 gives





D k g (x)(y1, . . . , yk )




≤





D k g (x)(y1, . . . , yk )






(d−k ) ‖x‖
d

‖x‖k
=




D k g (x)(y1, . . . , yk )






(d−k ) ‖x‖
d−k .

Substituting in our result for




D k g (x)(y1, . . . , yk )






(d−k ) gives





D k g (x)(y1, . . . , yk )




≤ d (d −1) · · · (d −k +1)




g




‖x‖d−k




y1





 · · ·




yk





 .

We now put together these results to obtain a degree bound on these norms of derivatives of

homogeneous polynomial systems. Once again, we begin with a bound on a single polynomial.

Lemma 7.3.5. [50, III-1. Lemma 4] Let g :Cn+1→C be a homogeneous polynomial of degree d . Then
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for every k > 1,
�





D k g (x)(y1, . . . , yk







d
1
2 ‖x‖d−k k !





g










y1





 · · ·




yk







�
1

k−1

≤
d

1
2 (d −1)

2
.

Proof. We recall that Proposition 7.3.4 gave us





D k g (x)(y1, . . . , yk )




≤ d (d −1) · · · (d −k +1)




g




‖x‖d−k




y1





 · · ·




yk





 .

Dividing through by the right hand side gives





D k g (x)(y1, . . . , yk )






d (d −1) · · · (d −k +1)




g




‖x‖d−k




y1





 · · ·




yk







≤ 1.

Multiplying both sides of the inequality by d (d−1)···(d−k+1)
d 1/2k ! and taking the k −1-th root gives

�




D k g (x)(y1, . . . , yk )






d
1
2 k !





g




‖x‖d−k




y1





 · · ·




yk







�
1

k−1

≤
�

d (d −1) · · · (d −k +1)

d
1
2 k !

�

1
k−1

.

We consider the term on the right hand side of the inequality. We note that for d ≥ k > 2 integers,

�

k−1
∏

i=1

d − i

i +1

�

1
k−1

>
d −k

k +1
,

since each of the k − 1 terms in the product is larger than the term on the right hand side of the

inequality. Then for 2≤ k < d we have

 

d (d−1)···(d−k+1)
d 1/2k !

d (d−1)···(d−k )
d 1/2(k+1)!

!k

=
d

1
2(k−1)

�

∏k−1
i=1

d−i
i+1

�
1

k−1

d−k
k+1

> 1.

So
�

d (d −1) · · · (d −k +1)

d
1
2 k !

�

1
k−1

in terms of k is a decreasing function for 2≤ k < d . Hence it’s maximum occurs at k = 2,

d
1
2 (d −1)

2
,

and thus we result in

�




D k g (x)(y1, . . . , yk )






d
1
2 k !





g




‖x‖d−k




y1





 · · ·




yk







�
1

k−1

≤
d

1
2 (d −1)

2
.
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Now we extend to a bound for a polynomial system, similarly to how we did with Proposition

7.3.2.

Proposition 7.3.6. [50, III-1. Theorem 1] Let f ∈Hd such that f :Cn+1→Cm is a polynomial system

with di = deg fi and D =max(di ). For x ∈Cn+1,





















∆
�

‖x‖di−k d
1
2

i

�−1
D k f (x)













k !




 f














1
k−1

≤
D

3
2

2
.

Proof. Using the definitions of∆(ω) and the unitarily invariant norm on a homogeneous system in

the numerator, we simplify





















∆
�

‖x‖di−k d
1
2

i

�−1
D k f (x)













k !




 f














1
k−1

=







m
∑

i=1














�

‖x‖di−k d
1
2

�−1
D k fi (x)










k !




 f










2






1
2(k−1)

≤

 

m
∑

i=1

�




D k fi (x)






‖x‖di−k k !




 f




d
1
2

�2
!

1
2(k−1)

.

For each term in the summation, we multiply by the relevant




 fi





/




 fi





 and apply Lemma 7.3.5 to

compute

 

m
∑

i=1

�




D k fi (x)






‖x‖di−k k !




 f




d
1
2

�2
!

1
2(k−1)

≤







m
∑

i=1





 

d
1
2

i (di −1)
2

!k−1 


 fi











 f










2






1
2(k−1)

.

Again applying the definition of the unitarily invariant norm on a polynomial system and using that

D =max(di ), we simplify as follows







m
∑

i=1





 

d
1
2

i (di −1)
2

!k−1 


 fi











 f










2






1
2(k−1)

≤

 

�

D
1
2 (D −1)

2

�k−1 


 f










 f






!

1
k−1

=
D

1
2 (D −1)

2

≤
D

3
2

2
.
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Finally, this brings us to the proof of our main result, Theorem 7.2.3, which states

γ( f , x)≤
µ( f , x)D

3
2

2‖x‖1
.

We note that up to this point in this section, our results have been stated in terms of homo-

geneous polynomials. However, in the first section of the chapter we defined the norm on any

polynomial to be the one defined on its canonical homogenization. Therefore, all of the results can

be extended to the non-homogeneous case, provided that we utilize this definition of the norm and

substitute ‖x‖1 for ‖x‖ to account for the switch from x ∈Cn+1 to x ∈Cn . We prove our main result

below in this context to allow for the widest possible application.

Proof of Theorem 7.2.3. Let f :Cn →Cm be a polynomial system with di = deg fi and D =max di .

Suppose x ∈Cn such that D f (x) is surjective. We recall by definition that

γ( f , x) =max
k>1













D f (x)†D k f (x)
k !













1
k−1

.

We rewrite the right hand side of the equation

max
k>1













D f (x)†D k f (x)
k !













1
k−1

=max
k>1



















f ·D f (x)† ·∆
�

d
1
2

i

�

·∆
�

‖x‖di−1
1

�

·∆
�

d
− 1

2
i

�

·∆
�

‖x‖−(di−k )
1

�

D k f (x)

f ·k !



















1
k−1

·
1

‖x‖1

≤max
k>1








 f ·D f (x)† ·∆
�

d
1
2

i

�

·∆
�

‖x‖di−1
1

�










1
k−1
·



















∆
�

d
− 1

2
i

�

·∆
�

‖x‖−(di−k )
1

�

D k f (x)

f ·k !



















1
k−1

·
1

‖x‖1

≤max
k>1

�





 f













D f (x)† ·∆
�

d
1
2

i ‖x‖
di−1
1

�









�

1
k−1
·





















∆
�

‖x‖di−k d
1
2

i

�−1
D k f (x)













k !




 f














1
k−1

·
1

‖x‖1
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Applying the definition of µ( f , x) and Proposition 7.3.6 gives

max
k>1

�





 f













D f (x)† ·∆
�

d
1
2

i ‖x‖
di−1
1

�









�

1
k−1
·





















∆
�

‖x‖di−k d
1
2

i

�−1
D k f (x)













k !




 f














1
k−1

·
1

‖x‖1

≤max
k>1

µ( f , x)1/(k−1) D
3
2

2‖x‖1

≤
D

3
2

2‖x‖1
,

where the last step follows since µ( f , x)≥ 1.
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