
ABSTRACT

MORROW, ZACHARY BENJAMIN. Sparse-Grid Surrogate Models in Computational
Chemistry. (Under the direction of Carl T. Kelley.)

Molecules naturally adopt a geometry that at least locally minimizes potential energy. With
a potential energy surface (PES), one can identify the minimizers, as well as how to move be-
tween local minima, by examining dynamics on the PES. The full PES of a molecule with N
atoms is a function of 3N − 6 coordinates. A relaxed PES is a function of fewer variables, but
evaluations of it require an expensive optimization process. This thesis describes how to con-
struct a surrogate for the relaxed PES with sparse interpolation. We present an algorithm that
constructs an interpolant as a linear combination of sines and cosines [84]. This technique pre-
serves the periodicity of the PES gradient for cases where the relaxed PES is a function of only
full rotations. To our knowledge, this is a novel approach for PES surrogate modeling in com-
putational chemistry. The author implemented this sparse interpolation algorithm, along with
dimensionally adaptive refinement, in the Tasmanian package, an open-source sparse-grid tool
developed at Oak Ridge National Laboratory [200]. We applied this all-periodic approximation
to a reduced-dimensional representation of a tungsten molecule.

However, many chemically relevant systems involve both periodic and nonperiodic degrees of
freedom. In those cases, we use a mixed-basis interpolation method that applies sparse trigono-
metric interpolation to the periodic components and sparse polynomial interpolation to the non-
periodic components. Using the azomethane molecule as a test case, this method needs fewer
nodes than the previous state of the art (all-polynomial interpolation) to obtain a given level of
accuracy and is an order of magnitude cheaper computationally. Perhaps most importantly, the
mixed-basis interpolant accurately conserves total energy in microcanonical molecular dynamics
simulation, whereas all-polynomial interpolation fails to conserve energy if a periodic component
crosses the periodic boundary.

The final method presented in this thesis is an adaptation of Tully’s fewest-switches surface
hopping (FSSH) algorithm [214] in a reduced-dimensional setting. In addition to approximating
the PES with mixed-basis sparse interpolation, this implementation performs expensive compu-
tations of the nonadiabatic coupling (NAC) corresponding to various geometries at the front end.
At each time step, it approximates the NAC at an arbitrary geometry value as a weighted sum
of the known NACs within a particular geometry radius. It therefore avoids the main expense
of surface hopping: direct queries of the NACs and PESs. Using singlet-state photoexcitation of
azomethane as an example, this method is able to replicate experimental results that have thus
far eluded ab initio studies.
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CHAPTER

1

INTRODUCTION

Molecules naturally adopt a stable geometry that is a minimizer, at least locally, of a potential
energy surface (PES). Different molecular geometries could potentially result in different physical
and chemical properties, so there is much interest in determining useful geometries for various
needs in scientific, engineering, and technological applications.

In a molecule with N atoms, the geometry x is completely determined by 3N − 6 internal
coordinates: N − 1 bond lengths, N − 2 bond angles, and N − 3 dihedral angles. For a fixed
geometry x, the Schrödinger equation (see Chapter 4) states

ĤΨi = Ei Ψi, i = 0, 1, 2, . . . , (1.1)

where Ĥ is the molecular Hamiltonian operator, Ψi is the wavefunction of energy state i, Ei is
the energy of state i, and all three depend parametrically on the full geometry x. As a function of
geometry, Ei(x) is the full PES for energy level i. Often there are many components of geometry
that are not of interest in particular applications (or do not vary significantly), so we may
partition

x = (q, ξ) .

Here, q ∈ Rd are the design variables, ξ are the remainder variables, and typically d� 3N − 6.
In practice, one chooses the design variables based on chemical intuition or a priori knowledge
of the system, though there have been recent studies on automated detection of q based on

1



molecular dynamics trajectories [86]. Rather than considering the (3N − 6)-dimensional PES,
we consider the so-called “relaxed PES”1

Ei(q) = min
ξ
Ei(q, ξ) . (1.2)

While the relaxed PES’s dependence on q ∈ Rd does reduce the dimensionality of the prob-
lem, solving (1.1)–(1.2) is computationally intensive. There is not only an eigenvalue problem but
also a multi-dimensional optimization. Each step of the optimization algorithm that solves (1.2)
must compute a search direction by approximating a solution to (1.1). Though there are many
approaches to approximating a solution to (1.1), we use density functional theory (DFT), whose
computational cost scales like O(N3).

The high cost of directly evaluating the PES is what makes it infeasible in most applications.
For instance, suppose we are attempting to follow the reaction path

dq

dt
= −∇Ei(q),

which is a common equation to solve in computational chemistry [144, 146, 147]. We would
integrate the dynamics with some symplectic ODE integrator, which requires evaluations of Ei
at a particular points {qj} determined by the integrator, as well as any evaluations needed as
part of a nonlinear solve. Integrating even this simple system would far too computationally
expensive.

Surrogate modeling provide a means to keep the computational cost in check. Rather than
directly evaluating Ei inside a chemistry simulation, we construct a surrogate PES Esi (q) that
is cheap to evaluate. To build the interpolant, we need evaluations of Ei only at a set of nodes
{qk}Ndata

k=1 . Here, Ndata is the number of expensive PES evaluations, identical to the number
of nodes, which represents an up-front cost. Famously, tensor-product grids have exponential
scaling in the dimension d, known as the curse of dimensionality [17, 50, 68], and modern PES
approximation uses methods that scale sub-exponentially or better.

While this thesis focuses on sparse interpolation as the method of choice, we will briefly de-
scribe other methods. Broadly, these methods fall into two categories: fitting and interpolative.
Fitting methods include the (double) many-body expansion (MBE / DMBE) [181], permuta-
tionally invariant polynomials by least-squares fit (PIP) [2, 28, 29, 33, 39, 178], neural network
PESs (nn-PES) [99, 130, 135], and the finite-element method [20–22]. Interpolative methods
include sparse polynomial and trigonometric interpolation, modified Shepard interpolation, and
(possibly local) interpolative moving least-squares (IMLS / L-IMLS) [132–134]. Both classes

1From now on, if we say “PES,” it should be understood as the relaxed PES.
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express the surrogate PES as

Es(q) =
M∑
j=1

cj(q)φj(q), (1.3)

where cj are coefficients and φj are the basis functions in the expansion.2 To determine the cj ,
interpolative methods seek to create exact agreement between Es(q) and E(q) at a set of nodes
{qk}, while fitting methods minimize the discrepancy

D =
Ndata∑
k=1

M∑
j=1

(
cj(qk)φj(qk)− E(qk)

)2

to a minimum that may be nonzero.To have a completely determined system of equations,
interpolative methods require Ndata = M , while for fitting methods, Ndata ≥M in general.

We now briefly describe two interpolative methods that are not the focus of this thesis.
Modified Shepard interpolation takes φj to be the Taylor expansion of E(q) about qj and cj

to be a weighting function that peaks at qj [68]. IMLS modifies the discrepancy to weight each
difference:

D(q) =
Ndata∑
k=1

wk(q)
M∑
j=1

(
cj(qk)φj(qk)− E(qk)

)2
(1.4)

In IMLS, the optimal coefficients cj depend on q due to the weighting function wk(q), which
is chosen to be large near qk and small otherwise. However, in IMLS, one must solve (1.4) at
each evaluation point, which can become cost-prohibitive. The local variant (L-IMLS) [71, 83]
solves (1.4) at each qk to obtain ckj = cj(qk) and then constructs the local approximations

vk(q) =
M∑
j=1

ckjφj(q) .

Then, the overall L-IMLS surrogate is

Es(q) =
Ndata∑
k=1

w̄k(q)vk(q)

where the global weighting functions w̄k need not be the same as the least-squares weighting
functions wk.

As noted before, our focus here is on sparse interpolation. This thesis explores an important
extension of the work of previous group members [125, 144, 146, 147]. For cases where all
components of q are periodic (e.g., full-rotation torsion angles), both the interpolant and its

2Without loss of generality, we suppress the electronic state in the PES notation and focus on the ground
state, i = 0.
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gradient must be periodic. Polynomial interpolation does not preserve periodicity of ∇E, which
leads to nonphysical occurrences in some chemistry simulations, such as nonconservation of
total energy. When each component of q is periodic, we construct the interpolant as a linear
combination of sines and cosines. By design, this preserves periodicity of ∇Es. When there is
a mixture of periodic and nonperiodic components, we apply trigonometric interpolation to the
periodic parts and polynomial interpolation to the nonperiodic parts.

We now describe the organization of this thesis. In Chapter 2, we develop sparse grids for both
polynomial and trigonometric interpolation bases; we also present a novel adaptive refinement
algorithm and mixed-basis interpolation method. In Chapter 3, we discuss the open-source
sparse-grid tool Tasmanian, as well as the author’s contributions to the package. In Chapter 4,
we overview the quantum and computational chemistry underlying our PES computations. In
Chapter 5, we apply sparse trigonometric interpolation to a tungsten molecule. In Chapter 6, we
use mixed-basis interpolation to drive molecular dynamics (MD) simulations of azomethane and
demonstrate that the mixed-basis method leads to energy conservation whereas all-polynomial
interpolation does not. In Chapter 7, we use Tully’s fewest-switches surface hopping (FSSH)
algorithm in a reduced-dimensional setting, using the mixed-basis surrogate PES and an offline–
online paradigm for computing the couplings between electronic states. The original work is as
follows:

• Implementation of sparse trigonometric interpolation in Tasmanian (Chapters 2–3),

• Adaptive refinement algorithm for sparse trigonometric interpolation (Chapter 2),

• Approximation of PES with trigonometric interpolation (Chapter 5),

• Mixed-basis PES interpolation, which enforces energy conservation (Chapter 6), and

• Reduced-dimensional surface hopping and approximation of nonadiabatic coupling vectors
(Chapter 7).
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CHAPTER

2

SPARSE INTERPOLATION

2.1 Motivation and background

The chemistry simulations depend on a potential energy surface (PES), which, as a function of
molecular geometry, is prohibitively expensive to evaluate directly during temporal integration.
In order to maintain computational feasibility, we build a sparse interpolant of the true PES as
a surrogate model. We use the surrogate PES within our time integration to drive the molecular
dynamics.

In high-dimensional approximation, whether with interpolation or quadrature, the naïve
approach is to take a tensor product of the same one-dimensional rules. For concreteness, a
stereotypical picture of a full-tensor grid is shown in the lower left panel of Figure 2.3. In the
full-tensor approach, if the one-dimensional approximation grid has N points, the d-dimensional
grid will have Nd points. Thus, the total size of the grid increases exponentially in d. This
phenomenon is called the curse of dimensionality, a term originally coined by Bellman [17].

Various techniques exist to mitigate, or in rare cases eliminate, the curse of dimensionality.
Global and derivative-based sensitivity analysis enables the identification of noninfluential pa-
rameters, thereby reducing the effective dimensionality of the problem to include only inputs
and directions that contribute towards the model output variability [87, 205]. Other methods
seek to reduce the complexity of the target function f by approximating it with functions that
are in some sense “simpler.” This could be done, for instance, by projection onto or interpolation
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within a polynomial or trigonometric function space, both of which use samples, i.e., the values
of the target function for a set of independent inputs. Sampling methods are attractive due to
their non-intrusive nature, which can be easily wrapped around existing third-party or black-box
models.

Let {ϕν}ν∈Nd be an orthonormal basis for the Hilbert space where f resides (e.g., L2), and
let Λ ⊂ Nd be finite.1 We first discuss approximation by L2 orthogonal projection. A well-known
result states that orthogonal projection of f onto span{ϕν}ν∈Λ yields the optimal L2 error [111];
that is,

cν = 〈f, ϕν〉L2 ⇒

∥∥∥∥∥∥f −
∑
ν∈Λ

cνϕν

∥∥∥∥∥∥
L2

= min
g∈span{ϕν}ν∈Λ

‖f − g‖L2 . (2.1)

Here, {cν}ν∈Λ are the optimal expansion coefficients, and 〈·, ·〉L2 and ‖·‖L2 denote the L2 Hilbert
space inner product and norm respectively. In general, the integral coefficients in (2.1) must be
evaluated numerically, e.g., with a multidimensional numerical quadrature. Thus, projection
methods often come at a high computational cost due to the large number of function samples
necessary to approximate cν to a sufficient accuracy [14, 206, 210] which can far exceed the
number of basis functions. In contrast, interpolation methods require a single sample per basis
function, although the resulting approximation is not Hilbert-optimal. The interpolation error
in the L∞ norm is bounded by the best L∞ approximation error multiplied by a penalty term
called the Lebesgue constant. However, the degradation in accuracy is usually offset by the
reduction in complexity. In particular, sparse interpolation methods [192] often have better
overall convergence rate with respect to the number of samples [206].

Given a target function f , one chooses an appropriate sparse-grid method based on (an
upper bound of) the decay rates of the orthonormal expansion coefficients cν , which may be
Legendre or Fourier coefficients, for example. If f has an analytic extension, then the expansion
coefficients decay as

|cν | ≤ C exp(−α · ν)

where α is related to the size of the region of analyticity, and the bound is asymptotically sharp.
So the indices of largest coefficients can be characterized by

Λαtot(L) = {ν ∈ Nd : α · ν ≤ L}, (2.2)

commonly called a “total-degree space.” If f is differentiable and periodic up to a certain finite
1This thesis adopts the convention N = {0, 1, 2, . . . }.
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Figure 2.1 Different choices of Λ.

order, then the Fourier coefficients decay as

|cν | ≤ C
d∏

k=1
(νk + 1)−αk ,

where αk is related to the smoothness in dimension k, and the bound is again asymptotically
sharp. Similarly to before, the set of indices for the largest coefficients is

Λαhyp(L) =
{
ν ∈ Nd :

d∏
k=1

(νk + 1)αk ≤ L
}
, (2.3)

which is called a “hyperbolic cross-section space.”
Armed with these two spaces Λ, we can begin to see why rigid full-tensor grids result in over-

sampling. In Figure 2.1, the dominant coefficients associated with total-degree and hyperbolic
cross-section spaces are in the center and right panels. Full-tensor approaches, in contrast, use
far more multi-indices than those associated with the dominant coefficients, leading to function
evaluations that do not significantly contribute to the approximation accuracy. Sparse grids use
a superposition of smaller full-tensor approximations to match the dominant coefficients of the
target function better than a single rigid full-tensor.

To improve the convergence rate of sparse-grid interpolation further, many methods gauge
the approximation error in order to determine the most important directions and spatial loca-
tions in which to sample next. This process is known as adaptive refinement, and the overall goal
is to select the samples that would result in the fastest convergence rate. Bungartz and Griebel
formulated this procedure as a knapsack problem in which they maximize the added accuracy
subject to cost constraints at each refinement iteration until the interpolation error reaches a
desired accuracy [34].

In this chapter, we will develop the machinery of sparse grids for interpolation problems. We
have deployed both polynomial and trigonometric interpolation bases in the chemistry surrogate
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model. Accordingly, our initial presentation of sparse grids is basis-independent for generality.
In this way, we may discuss the most general construction of a sparse operator free from the
details associated with a specific basis or set of coarse full-tensor operators. All that is needed is
a set Λ of the multi-indices associated with the dominant coefficients of f . This general approach
broadly adheres to Stoyanov’s presentation of sparse grids in [200].

Consider the d-dimensional domain Γ = [a1, b1]×· · ·× [ad, bd], where ak and bk are finite for
all 1 ≤ k ≤ d. If [ak, bk] is not the canonical interpolation interval (usually [−1, 1] or [0, 1]), then
we map [ak, bk] linearly to the canonical domain. Given a function f : Γ→ R, the most general
formulation of an interpolation grid (one-dimensional, full-tensor, sparse, or otherwise) requires
a set of basis functions {φj(x)}Nj=1, interpolation coefficients {cj}Nj=1, and nodes {xj}Nj=1 ⊂ Γ.2

The interpolant f̃(x) satisfies the interpolation conditions

f̃(xj) = f(xj) ∀ 1 ≤ j ≤ N

and may be expressed as

f̃(x) =
N∑
j=1

cjφj(x) . (2.4)

Furthermore, we define the interpolation operator as U [f ] = f̃ . We will now develop sparse
interpolation in detail.

2.2 General construction

We begin by considering the one-dimensional case, f : [a, b] → R. We use N to denote the set
of natural numbers including zero. Let m : N → Z+ be a strictly increasing function such that
m(l) is the number of one-dimensional interpolation nodes on level l.3 We denote by Um(l) the
interpolation operator associated with the (distinct) level-l nodes {xlj}

m(l)
j=1 ⊂ [a, b]. That is,

Um(l)[f ](x) = f̃ (l)(x) =
m(l)∑
j=1

cljφ
l
j(x) (2.5)

where clj and φlj(x) are the interpolation coefficients and basis functions of level l, respectively.
If

{xlj}
m(l)
j=1 ⊂ {x

l+1
j }

m(l+1)
j=1 ∀l ≥ 0,

then we say that the one-dimensional rule is nested ; otherwise, we say it is non-nested. For a
given choice of basis functions φlj(x), one may find the interpolation coefficients clj by imposing

2The N here has nothing to do with the N from Chapter 1.
3We use the concept of level to keep track of how nodes are added and when nestedness occurs.
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the interpolation conditions

Um(l)[f ](xlj) = f(xlj), j = 1, 2, . . . ,m(l) .

One way of gauging the accuracy of interpolation at level l is to look at the difference between
levels l and l − 1. Accordingly, we define the surplus operator

∆m(l) = Um(l) − Um(l−1), Um(−1) ≡ 0 . (2.6)

Note that from (2.6), we have the telescoping sum

Um(l) = ∆m(l) + ∆m(l−1) + · · ·+ ∆m(0) . (2.7)

A natural way to represent ∆m(l) is with so-called hierarchical functions [34]. We denote the
level-l hierarchical functions as {hj(x)}m(l)

j=1 , and they have the property that, for each l ≥ 1,

hj(xp) = 0 ∀j ≥ m(l) + 1, ∀1 ≤ p ≤ m(l) . (2.8)

Informally, Property (2.8) states that the level-l nodes are zeros of the additional hierarchical
functions at level l + 1 and above. Because of the hierarchical property (2.8), we may express
Um(l)[f ] as

Um(l)[f ](x) =
m(l)∑
j=1

čjhj(x) (2.9)

where the hierarchical interpolation coefficients čj do not vary with l. This allows us to write (2.6)
as

∆m(l)[f ](x) =
m(l)∑

j=m(l−1)+1
čjhj(x) , (2.10)

which will be useful in the context of error estimation later in this chapter. In Example 1, we
provide a specific choice of hj(x) as well as plots to demonstrate how the hierarchical construction
is useful for gauging interpolation error.

Example 1. The most accessible example of hierarchical functions are the piecewise-linear,
locally defined hat functions {hj(x)}m(l)

j=1 on the canonical domain [−1, 1]. We show these func-
tions in the left column of Fig. 2.2. In order to reduce clutter, we only plot the additional
hierarchical functions at each level. The hat function hj(x) is 0 outside the cone corresponding
to the node xj. From the left column, we see that the hierarchical property (2.8) holds. From the
right column, we can visually see the contribution to interpolation accuracy of the additional
hierarchical functions.
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Figure 2.2 Left: Row i = 0, 1, 2, 3 shows the additional hierarchical functions of level i.
Right: interpolant (dashed line) using the hierarchical functions of level i (i.e., includes all of
the basis functions in the left column up to and including row i).
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We now consider the multi-dimensional case. Let f : [a1, b1]× · · · × [ad, bd]→ R. We use the
standard multi-index notation:

i ≤ j ⇐⇒ ik ≤ jk, ∀1 ≤ k ≤ d,

xj =
d∏

k=1
xjkk , with the convention 00 = 1,

i · j =
d∑

k=1
ikjk ,

‖i‖1 =
d∑

k=1
ik ,

‖i‖max = max
1≤k≤d

ik .

We now define the d-dimensional tensors of growth functions and nodes

m(i) = [m(i1), . . . ,m(id)], xij = [xi1j1 , . . . , x
id
jd

],

along with the full-tensor interpolation operator

Um(i)[f ](x) =
(

d⊗
k=1
Um(ik)

)
[f ](x) =

m(i1)∑
j1=1
· · ·

m(id)∑
jd=1

ci1...idj1···jd

d∏
k=1

φikjk(xk) . (2.11)

Here, ci1···idj1···jd are the d-dimensional full-tensor interpolation coefficients, and φikjk is evaluated at
the k-th component of x.

From this point forward, i and j are multi-indices in Nd. We will use i to denote a tensor
product of one-dimensional interpolation operators (i.e., a multi-dimensional interpolation level).
Following Stoyanov in [200, 206], we will refer to i as a tensor.4 On the other hand, j denotes
the indexing of specific points or basis functions, given a particular interpolation tensor i. If we
break from this convention, we will note it explicitly.

In the full-tensor case, the grid is the Cartesian product of the constituent one-dimensional
grids, so we may explicitly write the corresponding interpolation grid {xij} as

{xij}1≤j≤m(i) = {xi1j1}
m(i1)
j1=1 × · · · × {x

id
jd
}m(id)
jd=1 . (2.12)

Once one chooses the basis functions φj(x), then the full-tensor interpolation coefficients cij will

4A tensor generalizes the notion of interpolation level. The k-th component a tensor is the interpolation level
in dimension k.
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follow from imposing the interpolation conditions

Um(i)[f ](xij) = f(xij) ∀xij with 1 ≤ j ≤m(i) .

Lastly, we define d-dimensional surplus operators as

∆m(i) =
d⊗

k=1
∆m(ik) =

d⊗
k=1

(
Um(ik) − Um(ik−1)

)
, (2.13)

where the tensor product of the one-dimensional operators Um(ik) is defined in (2.11). Similarly
to Equation (2.10), we have

∆m(i)[f ](x) =
∑

m(i−1)+1≤j≤m(i)
čjhj(x) , (2.14)

where čj is the full-tensor hierarchical coefficient. The multidimensional hierarchical functions
hj(x) are the product of the one-dimensional functions:

hj(x) =
d∏

k=1
hjk(xk) .

We note that the number of points required in a full-tensor interpolation scheme is
∏d
k=1m(ik),

leading to a large number of interpolation nodes as d grows. When m(ik) = N for all 1 ≤ k ≤ d,
then we observe the well-known exponential dependence on the dimension d:

#{xij}1≤j≤m(i) = Nd ,

where #S denotes the cardinality of the set S. This phenomenon is known as the curse of
dimensionality, which sparse grids are able mitigate through a clever selection of full-tensor
operators as building blocks.

We define a generic d-dimensional sparse grid operator GdΘ as

GdΘ[f ] =
∑
i∈Θ

∆m(i)[f ], (2.15)

where Θ ⊂ Nd is a lower set.5 The set Θ may have parameter dependence, which we will
express when necessary but omit here for notational simplicity. Given a target function space
described by the lower set Λ, we define Θopt(Λ) as the smallest Θ such that GdΘ is exact for every
function in the target space [206]. Because the definition of Θopt is different for polynomial and

5We say Λ ⊂ Nd is lower (or admissible) if ν ∈ Λ implies {i ∈ Nd : i ≤ ν} ⊂ Λ.
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trigonometric interpolation, we will define it separately in later sections. Since the full-tensor
operators Um(i) are more intuitive than the surplus operators ∆m(i), we wish to rewrite (2.15)
in the form

GdΘ =
∑
i∈Θ

∆m(i) =
∑
j∈Θ

tjUm(j) (2.16)

for some weights tj , to be determined. Here, j ∈ Θ is an interpolation tensor and not an index
of a specific node. Now, from (2.7), we can write each full-tensor operator Um(j) as

Um(j) =
d⊗

k=1
Um(jk)

=
d⊗

k=1

(
∆m(jk) + ∆m(jk−1) + · · ·+ ∆m(0)

)
=
∑
ν≤j

∆m(ν) . (2.17)

By substituting (2.17) into (2.16), we have

∑
i∈Θ

∆m(i) =
∑
j∈Θ

tj
∑
ν≤j

∆m(ν) (2.18)

By equating the coefficients of each ∆m(i) in (2.18), we see that to satisfy (2.16), it must hold
that ∑

j∈Θ, i≤j
tj = 1 ∀i ∈ Θ . (2.19)

We may express (2.19) as the linear system Mt = 1. Since M is an upper triangular matrix
with a diagonal of all ones, then (2.19) admits a solution, and the reformulation in (2.16) is
valid for weights tj satisfying (2.19). Additionally, since the entries of M are zeros and ones,
the weights tj are integers. Importantly, the weights tj will depend on the choice of lower set Θ.
Rather than using explicit expressions for tj shown in (for example) Theorem 1, the Tasmanian
package [200, 203] uses Equation (2.19) to solve for tj . From the reformulation (2.16), one can
see that GdΘ is a linear combination of the more intuitive full-tensor operators Um(i) defined in
Equation (2.11).

Moreover, the grid associated with (2.16) is the union of the constituent full-tensor grids
corresponding to Um(i), where i ∈ Θ. That is, the sparse grid nodes are {xij}(i,j)∈X̄(Θ), where

X̄(Θ) =
⋃
i∈Θ
{(i, j) : 1 ≤ j ≤m(i)} . (2.20)

In the case where the one-dimensional rule is nested, then for tensors i and ν such that i ≤ ν,
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the full-tensor nodes of tensor i are a subset of the nodes of tensor ν. Thus, for nested rules,
we do not need to express explicit dependence on the tensor i and may write the set of sparse
nodes as {xj}j∈X(Θ), where

X(Θ) =
⋃
i∈Θ
{j ∈ Nd : 1 ≤ j ≤m(i)} . (2.21)

At this point, the sparse operator GdΘ in (2.16) can take many forms depending on the in-
terpolation basis φj(x) and the lower set Θ of admissible interpolation tensors. We will briefly
summarize some possible choices for Θ in this section, along with concrete examples in Exam-
ple 2, and then we will discuss the Lebesgue constant LΘ of sparse interpolation. Afterwards,
we will begin new sections to discuss different interpolation bases. Importantly, the approach
of much early work on sparse grids started with Θ and then derived the space of exactness Λ,
including results on node growth and error estimation. Following recent approaches in sparse
grids [201, 205, 206], we will begin with Λ and use Θ = Θopt unless noted otherwise.

For nested rules,6 it is possible to write full-tensor grids in our Θ notation as

Θfull(L) = {i ∈ Nd : ‖i‖max ≤ L} (2.22)

where L ∈ N. However, from the tensor-product construction in Equation (2.11), there is no
reason that the interpolation level must be the same in each dimension. In order to allow for
the possibility that different directions may have different numbers of points, we introduce the
weighting vector ξ ∈ Rd. Now we may define

Θξfull(L) = {i ∈ Nd : i ≤ Lξ} (2.23)

where Lξ is the usual componentwise product of a scalar and vector.
The usefulness of introducing ξ is that different dimensions may have different numbers of

points, which is useful when the underlying function f is more regular in certain dimensions
than in others. In such cases, where not all dimensions have the same number of nodes, the grid
is called anisotropic; grids that have the same number of points in each dimension are termed
isotropic. We will present a non-exhaustive summary of popular forms of Θ using the weighting
vector ξ, with the understanding that the choice ξ = 1 produces an isotropic grid. For notational
convenience, we will not write a superscript on Θ when ξ = 1.

6For non-nested rules, using a lower set to describe tensor-product grids is invalid since the points at level
ik − 1 are not a subset of those at level ik. For instance, if the one-dimensional rules are non-nested, then the
grid for Um((3,2)) may contain points that Um((3,3)) does not contain, even though (3, 2) ≤ (3, 3).
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We now introduce the anisotropic total-degree space

Θξtot(L) = {i ∈ Nd : ξ · i ≤ L} . (2.24)

Much of the classical work on sparse grids uses (2.24) with ξ = 1. Bungartz and Griebel provide
a comprehensive overview of the history and development of sparse-grid theory in [34]. In [223],
Wasilkowski and Wozniakowski found an explicit representation of the coefficients ti. In [155,
156], Novak and Ritter proved results on polynomial exactness and the asymptotic growth of
the number of sparse nodes. Barthelmann, Novak, and Ritter derived an explicit error bound on
polynomial interpolation using (2.24) in [11]. Nance used (2.24) to construct a sparse polynomial
surrogate for potential energy surfaces in the context of molecular dynamics [144, 146, 147].

Another popular choice of tensor-selection strategy is the hyperbolic cross, given by

Θξhyp(L) = {i ∈ Nd : (i+ 1)ξ ≤ L} . (2.25)

Babenko [8] and Korobov [110] noted the hyperbolic cross-section space for its usefulness in
approximating multivariable periodic functions with bounded mixed derivatives. Griebel and
Hamaekers used a sparse-grid method based on (2.25) to approximate solutions to the many-
particle Schrödinger equation. Similarly, Shen and Wang [188] and Shen and Yu [189] used (2.25)
to approximate solutions to partial differential equations.

Example 2. Figure 2.3 displays the admissible i for different choices of Θ(L), where L = 3,
along with the corresponding grids. The one-dimensional rule for these grids is nested and uses
equidistant nodes; specifically, for l ∈ N,

m(l) = 3l, xlj = j − 1
3l , j = 1, 2, . . . ,m(l) .

By looking at the top-middle panel of Figure 2.3 and temporarily interpreting ik as the degree of
a polynomial, we see that Θtot(3) yields the set of all multivariable polynomials of total degree
at most 3. The advantage of such a space is that terms such as x2

1x
3
2 (present in the full-tensor

grid) are not relevant if the goal is interpolation of functions of total degree at most 3. We also
see that the grid corresponding to Θtot(3) uses far fewer points than the tensor-product grid.
Compared to Θtot(L), Θhyp(L) favors tensors containing relatively small mixed terms. However,
it is a coincidence that there are no mixed terms in this example; nothing in Equation (2.25)
prevents them.

We will now discuss the Lebesgue constant for interpolation. Let Λ ⊂ Nd be a lower set,
and let the generalized interpolation operator GdΘ be exact for all f in a space SΛ. Following
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Figure 2.3 Top: Structure of different choices for isotropic Θ(L), where L = 3. Bottom: Grids arising
from the different definitions of Θ. The Clenshaw–Curtis points are developed in Section 2.3.1.

classical results in interpolation (e.g., [76]), for all g ∈ SΛ, we have

‖f −GdΘ[f ]‖∞ ≤ ‖f − g + g −GdΘ[f ]‖∞
= ‖f − g‖∞ + ‖GdΘ[f − g]‖∞
≤ ‖f − g‖∞ + ‖GdΘ‖ ‖f − g‖∞
= (1 + ‖GdΘ‖) ‖f − g‖∞

where the operator norm is given by

‖GdΘ‖∞,∞ = sup
‖f‖∞=1

‖GdΘ[f ]‖∞ . (2.26)

Taking the infimum over all g ∈ SΛ, we get

‖f −GdΘ[f ]‖∞ ≤ (1 + LΘ) inf
g∈SΛ

‖f − g‖∞ (2.27)

where LΘ = ‖GdΘ‖∞,∞ is the Lebesgue constant. Note that the term “constant” is a misnomer
in our context since LΘ depends heavily on Θ and the location of the interpolation nodes xj .
In general, sharp estimates of the Lebesgue constant for sparse interpolation are not known.
However, Chkifa, Cohen, and Schwab showed in [40] that, if the Lebesgue constants of one-
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dimensional rules λl are bounded polynomially by

λl = Cβ(l + 1)β

for some β ≥ 1, then
LΘ ≤ Cdβ (#Θ)β+1 (2.28)

where #Θ is the cardinality of the set Θ. That is, if the one-dimensional Lebesgue constants
grow polynomially, then the sparse-grid Lebesgue constants also grow polynomially, possibly
with a slight increase in the power of the polynomial.

The final result we will present in this section is a closed-form expression for the coefficients
ti in Equation (2.16) under the historically popular choice Θ = Θtot(L). In [223], Wasilkowski
and Wozniakowski showed that

GdΘtot(L) =
∑
‖i‖1≤L

∆m(i) (2.29)

=
∑
‖i‖1≤L

(−1)L−‖i‖1
(

d− 1
L− ‖i‖1

)
Um(i) . (2.30)

Importantly, we make no assumption here on the choice of basis going into the Um(i). We will
now prove the above equality using Wasilkowski and Wozniakowski’s approach, which we adapt
since multi-indices in our notation are drawn from {0, 1, 2, . . . }d rather than {1, 2, . . . }d.

Theorem 1. Equation (2.30) is an equivalent formulation of Equation (2.29).

Proof. In this proof, we only utilize the fact that Um(i) is a linear operator. Here, N includes
0. Following Wasilkowski and Wozniakowski in [223], we first define the set

P (L, d) =
{
i ∈ Nd : ‖i‖1 ≤ L

}
.

Note that P (L, d) has cardinality
(
L+ d

d

)
and contains all of the indices within the sum of

Equation (2.29). We now wish to write (2.29) involving a tensor product of only the Um(ik).
Observe that by multiplying out, we have

d⊗
k=1

(Um(ik) − Um(ik−1)) =
∑

α∈{0,1}d

(−1)‖α‖1
d⊗

k=1
Um(ik−αk) . (2.31)

So, given a multi-index j ∈ Nd,
⊗d
k=1 Um(jk) appears in Equation (2.29) for each i ∈ Nd such

that j = i−α, where α ∈ {0, 1}d and ‖α‖1 ≤ L− ‖j‖1. From (2.31), the sign of
⊗d

k=1 Um(jk)
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is (−1)‖α‖1 .
We define

b(z, d) =
∑

α∈{0,1}d, ‖α‖1≤z
(−1)‖α‖1 ,

which, combined with Equation (2.29) and the preceding paragraph, yields

GdΘ =
∑

j∈P (L,d)
b(L− ‖j‖1, d)

d⊗
k=1
Um(jk) . (2.32)

To compute b(i, d), we sum with respect to ‖α‖1 = 0, 1, . . . , d. For i ≥ d, we have

b(i, d) =
d∑
j=0

(−1)j
(
d

j

)
= 0,

and for i ≤ d− 1, we have

b(i, d) =
i∑

j=0
(−1)j

(
d

j

)
= (−1)i

(
d− 1
i

)
.

By setting i = L− ‖j‖1, then Equation (2.32) becomes

GdΘ(L) =
∑
‖i‖1≤L

(−1)L−‖i‖1
(

d− 1
L− ‖i‖1

)
Um(i)

as required.

2.3 Polynomial basis

In this section, we will summarize the basic theory of polynomial interpolation with a Lagrange
basis. In terms of the general sparse grid construction, this is one specific choice of basis functions
φj(x) and corresponding interpolation coefficients cj . After developing the one-dimensional and
full-tensor interpolation operators, we will present the classical Smolyak construction of a sparse
operator, first developed in [192]. Other than being the original (and thoroughly studied) sparse
operator, the Smolyak construction is merely one choice for the lower set Θ of admissible tensors.

2.3.1 One dimension and full-tensor extension

In terms of Equation (2.5), this section develops one particular choice of basis functions φj(x)
and interpolation nodes cj for the polynomial case. Polynomial interpolation in one dimension
is a classical staple in Numerical Analysis texts, e.g. [76]. Given n distinct nodes {xj}nj=1 ⊂ [a, b]
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and associated function values {f(xj)}nj=1, we first introduce the n-point interpolation operator
Un : C([a, b])→ Pn−1. Here, Pk is the space of all univariate degree-k polynomials. Our goal is
to construct a polynomial Un[f ] ∈ Pn−1 such that

Un[f ](xj) = f(xj), j = 1, 2, . . . , n .

Here, we use the notation Un to maintain consistency with Um(l) from Section 2.2; that is, we
take m(l) = n. Note that it is not necessary to know, a priori, the exact form of f , in which case
we may view {f(xj)}nj=1 as data. In order to construct Un[f ](x), we introduce the elementary
Lagrange polynomials of degree n− 1 (associated with an n-point grid):

`nj (x) =
n∏

r=1, r 6=j

x− xr
xj − xr

, j = 1, 2, . . . , n .

Observe that `ni (xj) = δij . We define Un[f ] : [a, b]→ R as

Un[f ](x) =
n∑
j=1

f(xj)`nj (x),

which gives Un[f ](xj) = f(xj) for all 1 ≤ j ≤ n. Furthermore, one can easily show that the
interpolating polynomial Un[f ] is unique [76]. This equation is nothing more than (2.5) with
the choice cj = f(xj) and φlj(x) = `nj (x).

In order to select a one-dimensional rule for the nodes {xj}nj=1, we want our choice of nodes to
yield a reasonable bound on our interpolation error. Accordingly, we will now devote some time
toward error estimation for one-dimensional polynomial interpolation. Gautschi shows in [76]
that

‖Un‖ = Ln = ‖λn‖∞, λn(x) =
n∑
j=1

∣∣∣`nj (x)
∣∣∣ ,

where Ln and λn(x) are known as the Lebesgue constant and Lebesgue function, respectively.
The operator norm is given by (2.26). Following [76], we can derive from Ln the rough error
estimate

‖f − Un[f ]‖∞ ≤ (1 + Ln) min
p∈Pn−1

‖f − p‖∞ . (2.33)

So we see that the worst-case error depends on the Lebesgue constant Ln (which in turn depends
on the choice of nodes), as well as the best approximation of f in the L∞ norm by polynomials
of degree n−1. Unfortunately, as n→∞, Ln →∞ as well; however, some choices of nodes cause
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Ln to grow more slowly. Furthermore, Jackson’s Theorem [7] states that, for f ∈ Ck([a, b]),

min
p∈Pn−1

‖f − p‖∞ ≤
αk,f‖f‖∞

nk
, (2.34)

where αk,f is a constant that depends on k and f . Thus, interpolation error decreases as f
becomes smoother. We now repeat a well-known one-dimensional pointwise error estimate in
the following theorem, highlighting the impact of node choice on error estimation.

Theorem 2. Let f ∈ Cn([a, b]) and {xj}nj=1 ⊂ [a, b] be a set of n distinct nodes. For each
t ∈ [a, b], there exists some ξt such that

f(t)− Un[f ](t) = f (n)(ξt)
n!

n∏
j=1

(t− xj) . (2.35)

Proof. This is a classical proof in many Numerical Analysis textbooks, e.g. [76]. For t = xj ,
the result holds trivially. Let t ∈ [a, b] be fixed but arbitrary, such that for all j ∈ {1, . . . , n},
t 6= xj . Define the functions

E(x) = f(x)− Un[f ](x),

Ψ(x) =
n∏
j=1

(x− xj),

G(x) = E(x)− Ψ(x)
Ψ(t)E(t)

where x ∈ [a, b]. Since f ∈ Cn([a, b]) and Un[f ],Ψ ∈ Pn−1, then G is n times continuously
differentiable. Note that

G(xj) = 0, j = 1, . . . , n,

G(t) = 0 .

So G has n+ 1 distinct roots in (a, b). Applying Rolle’s theorem once to G, we see that G′ has
n distinct roots in (a, b). Applying Rolle’s theorem to G′, we see that G(2) has n − 1 distinct
roots in (a, b). Continuing along these lines, when we apply Rolle’s theorem n times to G, we
see that there exists some ξt ∈ (a, b) such that G(n)(ξt) = 0. Differentiating G with respect to
x, we have

G(n)(x) = f (n)(x)− n!
Ψ(t)E(t) .
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Since G(n)(ξt) = 0, then

f (n)(ξt)
n!

n∏
j=1

(x− xj) = E(t) = f(t)− Un[f ](t),

as required.

From (2.35), one can see that the choice of nodes {xj}nj=1 is critically important for small
interpolation error. We wish to choose the nodes in such a way that the Lebesgue constant
grows slowly and the points are nested. Compared to the non-nested case, nestedness results in
fewer required evaluations of f as we increase the interpolation level l. Following [11, 147], we
will use the Clenshaw–Curtis points, which are the extrema of the Chebyshev polynomials and
a popular choice for polynomial interpolation.7 For a level l ∈ N, we have m(l) points {xlj}

m(l)
j=1 ,

where

m(l) =

1, l = 0

2l + 1, l > 0
, (2.36)

xlj =

0, l = 0

− cos
(

j−1
m(l)−1π

)
, 1 ≤ j ≤ m(l), l > 0

. (2.37)

In Fig. 2.4, we show the one-dimensional Clenshaw–Curtis points for different values of l.
As stated previously, a primary goal when choosing nodes is that our choice yields respectable

error estimates. From [64, 65, 226], we indeed see that the Lebesgue constant for Clenshaw–
Curtis points grows, like the Chebyshev nodes (roots of the Chebyshev polynomials), at most
logarithmically in the number of points:

Lm(l) ≤
2
π

log(m(l)− 1) + 1 = 2
π

log(2l) + 1, l ≥ 1 . (2.38)

From (2.38), linear growth of the Lebesgue constant with respect to l follows immediately,
so (2.28) holds with β = 1.

Extending one-dimensional interpolation for d > 1, we let f : [a1, b1]×· · ·× [ad, bd]→ R. We
use the typical multi-index notation from Section 2.2. We define the multivariate interpolation

7For a detailed overview of different choices for one-dimensional polynomial interpolation nodes, see [200].
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Figure 2.4 Examples of Clenshaw–Curtis points for different levels l. Notice the nestedness of the
nodes and how they tend to cluster around the boundary.

operator Um(i) as the tensor product of the one-dimensional interpolation operators Um(ik):

Um(i)[f ](x) =
(

d⊗
k=1
Um(ik)

)
[f ](x)

=
m(i1)∑
j1=1
· · ·

m(id)∑
jd=1

f
(
xi1j1 , . . . , x

id
jd

) d∏
k=1

`ikjk(xk) . (2.39)

Here, Um(ik) uses a Clenshaw–Curtis grid of level ik, and the multivariate elementary Lagrange
polynomials are the products of the corresponding one-dimensional polynomials. The set of
full-tensor nodes {xij}1≤j≤m(i) needed in (2.39) is given by

{xij}1≤j≤m(i) = {xi1j1}
m(i1)
j1=1 × · · · × {x

id
jd
}m(id)
jd=1 (2.40)

where {xikjk} is defined in (2.37). Fig. 2.5 shows an example of isotropic and anisotropic full-tensor
grids for d = 2. As noted in Section 2.2, Equation (2.39) requires a number of nodes that grows
exponentially in the dimension. To interpolate a d-variate polynomial of degree N − 1 in the
full-tensor construction, one needs Nd points. For high-dimensional problems, the full-tensor
construction is infeasible due to the large number of points required, but smaller full-tensor
operators serve as the building blocks of sparse grids, which we consider in the next subsection.
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-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Full-tensor grid (i1 = 2, i2 = 4)

Figure 2.5 Examples of tensor-product Clenshaw–Curtis grids for the d = 2 case. Left: i = (4, 4)
(isotropic). Right: i = (2, 4) (anisotropic).

2.3.2 Sparse polynomial interpolation

Let f : Rd → R be given. Smolyak gave his original construction of a sparse operator in [192] as

GdΘ(L)[f ] =
∑
‖i‖1≤L

∆m(i)[f ], (2.41)

which is the Smolyak operator in Equation (2.29) of Section 2.2. Here, ∆m(i) is defined by
Equation (2.13), Θ(L) is the total-degree space given by (2.24), and the basis functions are
Lagrange polynomials with the Clenshaw–Curtis points (2.37). Note that this operator is merely
a specific instance of the general sparse operator in Equation (2.15) for the Clenshaw–Curtis
polynomial basis and the Smolyak tensor space. For notational convenience, we suppress the
subscripting on Θ(L) for this section. For now, we treat L simply as a parameter; we will
later show that L is the polynomial degree of exactness. For this choice of Θ(L), we showed in
Theorem 1 of Section 2.2 that GdΘ(L) has the equivalent formulation

GdΘ(L)[f ] =
∑
‖i‖1≤L

(−1)L−‖i‖1
(

d− 1
L− ‖i‖1

)
Um(i)[f ] , (2.42)

where Um(i) is defined by (2.39).
We have the set of sparse nodes (i.e., the sparse grid)

HΘ(L) =
⋃

‖i‖1≤L
{xij}1≤j≤m(i) , (2.43)
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-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1

y

Constituent full grid, i = (3, 1)
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Figure 2.6 Left, middle: constituent full-tensor grids. Right: sparse grid for d = 2, L = 4. Note that
the sparse grid contains the left and middle full grids.

where {xij}1≤j≤m(i) is defined by Equation (2.40). Equation (2.43) is merely (2.21) for a par-
ticular choice of interpolation basis and Θ(L). We have the useful property that, for a given
dimension d, HΘ(L+1) ⊂ HΘ(L) since the one-dimensional rule is nested. We illustrate the node
selection procedure for Equation (2.43) in the following example.

Example 3. Let d = 2 and L = 4. We will show how to construct the sparse grid HΘ(L) from
the constituent full-tensor grids. From Equation (2.24), we calculate

Θtot(L) = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4),

(1, 0), (1, 1), (1, 2), (1, 3),

(2, 0), (2, 1), (2, 2),

(3, 0), (3, 1),

(4, 0)} .

We focus on the full-tensor grids grids corresponding to i = (2, 2), (3, 1). We calculate {xij} for
these choices of i according to Equation (2.40). Moreover, the sparse grid HΘ(L) is the set of
all nodes corresponding to the full-tensor operators in ΘSmol(L).

Fig. 2.6 shows the full-tensor grids for i = (2, 2) and i = (3, 1), and the set of sparse points
HΘ(L). Note that these full-tensor grids are subsets of HΘ(L).

Next, we turn our attention to the growth of the number of points n(L, d) that Equa-
tion (2.42) requires. We use the notation

an ≈ bn ⇔ lim
n→∞

an
bn

= 1 . (2.44)

Novak and Ritter [156] showed that in the context of quadrature formulas, for fixed L, n(L, d)
grows polynomially in d. In [147], Nance showed a similar result for sparse polynomial interpo-
lation. We state the specific result in the following theorem.
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Theorem 3. Let n(L, d) be the number of points required by Smolyak’s algorithm in Equa-
tion (2.42). Then, for fixed L and as d→∞,

n(L, d) ≈ 2L

L! d
L, (2.45)

where the relation ≈ is defined by (2.44).

Proof. See Nance [147] and Novak and Ritter [156]. We present a similar proof similar proof in
the context of trigonometric interpolation in Theorem 7 of Section 2.4.2.

2.3.3 Exactness and error estimation

We begin by presenting a result on polynomial exactness, based on the work of Nance [147] and
Novak and Ritter [155].

Theorem 4. GdΘ(L)[p] = p for all p in the space

∑
‖i‖1=L

(
Pm(i1)−1 ⊗ · · · ⊗ Pm(id)−1

)
. (2.46)

Proof. See Nance [147], based on a similar result from Novak and Ritter [155]. Again, we
present quite a similar proof in the context of trigonometric interpolation in Theorem 8 of
Section 2.4.3.

From Equation (2.46), we have, via a counting argument, that L is the polynomial degree
of exactness. That is, L is the largest integer n such that, for all d ≥ 1,

GdΘ(L)[p] = p for all d-variate p of degree n .

To see this, take d > L in Equation (2.46). First, note that every d-dimensional polynomial of
degree L is in (2.46). However, x1 · · ·xLxL+1 is a polynomial of degree L+1 that is not in (2.46),
so L is the degree of exactness.

To develop a general error estimate for sparse polynomial interpolation, we first introduce
the notation

Dkf = ∂‖k‖1f

∂xk1
1 · · · ∂x

kd
d

, k ∈ Nd0 .

From Equations (2.33), (2.34), and (2.38), we get the following one-dimensional error estimate
for f ∈ Cr([−1, 1]):

‖f − Um(l)[f ]‖∞ ≤
αr,f log(m(l))

m(l)r ‖f‖∞ (2.47)

where Um(l) is the one-dimensional polynomial interpolation operator on level l.
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Now we define the more general space

F rd =
{
f : [−1, 1]d → R : Dkf is continuous ∀k ∈ Nd0 with k ≤ r · 1

}
(2.48)

with the norm
‖f‖F r

d
= max{‖Dkf‖∞ : k ∈ Nd

0 , k ≤ r · 1} .

Following Barthelmann, Novak, and Ritter in [11], we let Id denote the embedding

(F rd , ‖ · ‖F r
d
) ↪→ (C([−1, 1]d), ‖ · ‖∞)

with the operator norm

‖Id‖F r
d
,∞ = sup{‖f‖∞ : f ∈ F rd , ‖f‖F r

d
= 1} .

From (2.47), we have the error estimate

‖I1 − Um(l)‖F r
d
,∞ ≤ cr,1 · log(m(l)) ·m(l)−r (2.49)

where cr,d denotes constants that depend only on r and d. Barthelmann et al. [11] used Equa-
tion (2.49) to prove a d-dimensional error bound for GdΘ(L), which we state in the following
theorem.

Theorem 5. Let n = n(L, d) be the number of points required by Smolyak’s algorithm in (2.42).
Then, taking the space F rd in Equation (2.48) as the domain of the operators Id and GdΘ(L), we
have

‖Id −GdΘ(L)‖F r
d
,∞ ≤ cr,d · n−r · (logn)(d−1)(r+2)+1 (2.50)

Proof. See Barthelmann, Novak, and Ritter in [11]. We prove an error estimate for sparse
trigonometric interpolation in Theorem 9 of Section 2.4.4.

Combining the results on exactness and polynomial growth of n(L, d), we compare the
number of points required to exactly interpolate a d-variate polynomial of degree 4 with both
tensor-product grids and sparse grids. Table 2.1 displays the results. We note that for large d,
Smolyak’s algorithm requires dramatically fewer points even though the polynomial exactness
is the same.

Finally, let Λ ⊂ Nd be lower and m(l) be the growth function of the interpolation rule.
Consider the target function space

PΛ =
⋃
ν∈Λ

d⊗
k=1

Pνk
.
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Table 2.1 Growth of number of points for Equation (2.39) and for Equation (2.42), using the
Clenshaw–Curtis points to build Gd

Θ(L). Both methods are exact on polynomials of degree 4.

d Full-tensor (n = 5) Sparse C-C grid (L = 4)
1 5 17
2 25 65
3 125 177
5 3,125 801
10 9,765,625 8,801
15 30,517,578,125 40,001

Stoyanov and Webster [206] showed that the smallest Θ such that GdΘ is exact for all f ∈ PΛ is

Θopt
poly = {i ∈ Nd : m(i− 1) ∈ Λ} . (2.51)

2.4 Trigonometric basis

We now turn our attention to trigonometric interpolation. Our application requires a periodic
interpolation basis in the angular components of molecular geometry in order to enforce peri-
odicity of the surrogate potential energy surface (PES). If we lose periodicity, we will fail to
conserve the total energy of our system, and our results would therefore be unreliable.

Much of the literature on sparse interpolation of periodic functions actually predates the ma-
jor works on sparse polynomial interpolation for non-periodic functions. In 1989, Baszenski and
Delvos [12] and Delvos and Schempp [51] studied Boolean sums of trigonometric operators on
Korobov function spaces. In 1992, Hallatschek described a high-dimensional fast Fourier trans-
form based on the sparse-grid approach [84]. Hallatschek’s work also includes an interpolation
scheme based on the sparse FFT as well as interpolation error estimates. Pöplau and Sprengel
described error estimates for periodic interpolation on both full and sparse grids in 1994 [171].
Later, in 1998, Sprengel developed a sparse-grid approach to wavelet approximation [195]. In
2000, she presented a unified approach to the estimation of periodic interpolation error on full
and sparse grids, for functions from Sobolev spaces, Korobov spaces, and the space of functions
with absolutely convergent Fourier coefficients [196]. In 2014, Griebel and Hamaekers gener-
alized Hallatschek’s work by parametrizing the structure of a sparse grid and deriving error
bounds associated with the parameter [81]. In 2020, the author and Stoyanov implemented a
nested trigonometric interpolation rule in the Tasmanian sparse grid package, as well as a novel
dimensionally adaptive refinement algorithm in the context of sparse trigonometric interpola-
tion [140].
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2.4.1 One dimension and full-tensor extension

Our approach is similar that of Hallatschek [84] and Griebel and Hamaekers [81]. Without loss of
generality, we consider periodic functions f : [0, 1]→ R. We first define the complex exponential
functions ϕj(x) as 8

ϕj(x) = exp (2πi · σ(j) · x) , (2.52)

where i2 = −1 and

σ(j) =

(1− j)/2, j odd

j/2, j even
. (2.53)

We introduce σ(j) because trigonometric interpolation involves a sum over both positive and
negative powers of e2πix. Furthermore, the one-dimensional equidistant interpolation nodes are

xlj = j − 1
m(l) , j = 1, . . . ,m(l) , (2.54)

m(l) = 3l . (2.55)

Fig. 2.7 displays the periodic interpolation points for different l. We note that our grids are
nested with respect to l.

0 1/3 2/3 1

xj

0

1

2

3

l

1D trigonometric interpolation points

Figure 2.7 Trigonometric interpolation points for l = 0, . . . , 3.

In order to find the interpolation coefficients clj in Equation (2.5), we temporarily interpret
ϕlj(x) as our basis functions. Note that ϕlj(x) is complex-valued, so we must take real parts at

8To distinguish i =
√
−1 from an index i, we use the Roman typeface.
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the end. The m(l) interpolation conditions are

f(xlj) = Ũm(l)[f ](xlj) j = 1, 2, . . . ,m(l), (2.56)

where Ũm(l) is the (complex-valued) trigonometric interpolation operator on level l. In [81, 84],
we find that the (again, complex-valued) interpolant satisfying (2.56) has the form

Ũm(l)[f ](x) =
m(l)∑
j=1

f̂ ljϕj(x) , (2.57)

where the normalized discrete Fourier coefficients f̂ lj are given by

f̂ lj = 1
m(l)

m(l)∑
p=1

f(xlp)ϕ∗j (xlp) . (2.58)

Here, ϕ∗j denotes the complex conjugate of ϕj . We take the real part of (2.57) to obtain the
real-valued interpolant

Um(l)[f ](x) =
m(l)∑
j=1

Re(f̂ lj)Re(ϕj(x))− Im(f̂ lj)Im(ϕj(x)) . (2.59)

In one dimension, we can furthermore write (2.59) as

Um(l)[f ](x) =
m(l)∑
j=1

Re(f̂ lj) cos(2π σ(j)x)− Im(f̂ lj) sin(2π σ(j)x) . (2.60)

By examining (2.60) and σ(j), we see that, in terms of Equation (2.5), the 2m(l) basis
functions and interpolation coefficients are

φlj(x) = cos(2π σ(j)x), clj = Re(f̂ lj), j = 1, 2, . . . ,m(l),

φlj(x) = sin(2π σ(j)x), clj = −Im(f̂ lj), j = m(l) + 1, . . . , 2m(l) .

It is an established result that trigonometric interpolation with 2n + 1 points can resolve
all modes up to frequency n [95]. Since we have m(l) = 3l points, then Um(l)[u] = u for all
u ∈ T(m(l)−1)/2, where

Tn = span {1, cos(2πx), . . . , cos(2πnx), sin(2πx), . . . , sin(2πnx)} . (2.61)

We will use Tn in an analogous manner to Pn from the previous section; specifically, we refer
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to Tn as the space of all trigonometric functions of degree at most n. Furthermore, in [94],
Jackson proved a classic estimate for the error of the best approximation of f : [0, 2π] → R by
trigonometric functions (in the L∞ norm), which we will state in the following theorem.

Theorem 6. (Jackson) Let f : [0, 2π] → R and each of its derivatives up to order r be
continuous and 2π-periodic. Then there exists some constant αr,f with the following property:
for any n, there exists Tn ∈ Tn such that

‖f − Tn‖∞ ≤
αr,f
nr

. (2.62)

With Theorem 6, we may continue along similar lines to Equation (2.33) to arrive at the
rough estimate for trigonometric interpolation error∥∥∥f − Um(l)[f ]

∥∥∥
∞
≤
(
1 + Lm(l)

)
min

T∈T(m(l)−1)/2
‖f − T‖∞

≤
(
1 + Lm(l)

) αr,f2r

(3l − 1)r (2.63)

for f ∈ Cr([0, 1]), with the function values and each derivative periodic on the interval [0, 1].
Here, the constant αr,f may include a correction for the changed interval, and the Lebesgue
constant is Lm(l) = ‖Um(l)‖∞,∞, with the operator norm from (2.26). In order to determine if
interpolation converges as l → ∞, we need to bound Lm(l). From [65, 182, 226], we have the
bound

Lm(l) ≤
2
π

log(m(l)) + 1 = 2 log(3)
π

l + 1 . (2.64)

Substituting (2.64) into (2.63), we indeed see that

lim
l→∞
‖f − Um(l)[f ]‖∞ = 0

for f ∈ Cr([0, 1]), r ≥ 1, where f and each of its first r derivatives are periodic. Furthermore,
since the one-dimensional Lebesgue constants grow linearly in the level, then the bound (2.28)
on the sparse-grid Lebesgue constant holds with β = 1.

Let us now remark how Equation (2.61) has informed our choice of one-dimensional rule (2.54).
Hallatschek [84] and Griebel and Hamaekers [81] have used a one-dimensional rule with growth
m(l) = 2l, the optimal choice for performing FFTs. But with such a rule, we would only ob-
tain exactness for Tb(m(l)−1)/2c, where b·c denote the round-down function. That is, for l ≥ 1,
we would have only the positive exponential for mode 2l−1, which does not provide enough
resolution to resolve the entire highest-frequency mode.

In order to avoid unnecessary basis functions and keep the growth like 2l, one could either
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discard an exponential and get m(l) = 2l − 1 or add an exponential to obtain m(l) = 2l + 1.
Note, however, that our interpolation algorithm requires a Fourier transform (2.58) of the data.
The premise of an FFT is to break the data down recursively into smaller segments and then
perform the transform; the computational cost of an FFT algorithm is O(n logn), where n is the
number of data points. Withm(l) = 2l−1, our number of data points will hit all of the Mersenne
primes, in which case we would be stuck with a prime-numbered FFT, which is more costly than
O(n logn). For m(l) = 2l + 1 (and also for composite numbers of the form 2l − 1), the integer
may be factorizable, but one of the factors may be a very large prime [32], leaving us again
stuck performing a costly computation on the prime-numbered data segment. Furthermore, the
equidistant rule in Equation (2.54) is not nested for m(l) = 2l ± 1. All of these considerations
lead us to choose m(l) = 3l, which induces a nested rule and allows naturally for an O(n logn)
Fourier transform. We describe this FFT in detail in Section 3.3.

We now transition to the full-tensor case. For d > 1, the (complex-valued) trigonometric
interpolant on tensor i ∈ Nd is

Ũm(i)[f ](x) =
(

d⊗
k=1
Um(ik)

)
[f ](x) =

∑
1≤j≤m(i)

f̂ ijϕj(x) , (2.65)

where ⊗ denotes the tensor product and

ϕj(x) =
d∏

k=1
ϕjk(xk) , (2.66)

f̂ ij = 1
m(i1) · · ·

1
m(id)

∑
1≤p≤m(i)

f(xp)ϕ∗j(xp) . (2.67)

Furthermore, the full-tensor grid {xj}1≤j≤m(i) has the Cartesian product structure of Equa-
tion (2.12) on top of the one-dimensional rule (2.54). We note that Equation (2.67) is a d-
dimensional discrete Fourier transform, normalized by the total number of points, so we use the
d-dimensional FFT in our implementation.

To construct the real-valued interpolant Um(i) from the complex-valued interpolant Ũm(i),
we take the real part of (2.65):

Um(i)[f ](x) =
∑

1≤j≤m(i)
Re(f̂ ij)Re(ϕj(x))− Im(f̂ ij)Im(ϕj(x)) , (2.68)

similarly to the one-dimensional case. We may express the real and imaginary parts of ϕj(x) as

Re(ϕj(x)) = cos
(

2π
d∑

k=1
σ(jk)xk

)
, Im(ϕj(x)) = sin

(
2π

d∑
k=1

σ(jk)xk

)
.
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To find the space for which Um(i) is exact, we use a similar argument to the one-dimensional
case along with repeated applications of the trigonometric identities

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β) ,

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β) .

With this approach, we obtain that Um(i)[u] = u for all u in the space

T(m(i)−1)/2 =
d⊗

k=1
T(m(ik)−1)/2 , (2.69)

where T(m(ik)−1)/2 is defined according to Equation (2.61).

2.4.2 Sparse trigonometric interpolation

We proceed along similar lines to the sparse polynomial interpolation discussion in Section 2.3.2.
We consider f : [0, 1]d → R. The general approach of Section 2.2 is basis-agnostic, so we again
get

GdΘ(L)[f ] =
∑
i∈Θ

∆m(i)[f ] . (2.70)

Here, we have chosen Θ(L) as the Smolyak space in Equation (2.24), ∆m(i) is given by Equa-
tion (2.13), and the interpolation operators are given by Equations (2.60) and (2.68). We sup-
press subscripting on Θ(L) right now for notational simplicity. Following Theorem 1 of Sec-
tion 2.2, we may rewrite Equation (2.70) as

GdΘ(L)[f ] =
∑
‖i‖1≤L

(−1)L−‖i‖1
(

d− 1
L− ‖i‖1

)
Um(i)[f ] . (2.71)

Here, we define the full-tensor trigonometric interpolation operator Um(i) from Equation (2.68).
In terms of the general reformulation of a sparse operator in Equation (2.16), Equation (2.71)
is a closed-form expression for the coefficients tj under a specific choice of Θ.

Analogously to the polynomial case in (2.43), the set of all points utilized in (2.71) is

HΘ(L) =
⋃

i∈Θ(L)
{xj}1≤j≤m(i) =

⋃
‖i‖≤L

{xj}1≤j≤m(i) (2.72)

where the full-tensor grids {xj}1≤j≤m(i) use the one-dimensional rule (2.54). In Figure 2.8, we
display an example of HΘ(L) for d = 2, L = 3.

Hallatschek proved a result on the growth of the number of nodes required for his sparse
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Sparse trigonometric grid (d = 2, L = 3)

Figure 2.8 Sparse trigonometric interpolation points HΘ(L) for d = 2, L = 3. Here, we have 81
points.

interpolation scheme that used m(l) = 2l. Following his approach in [84], we now provide a
result on the cardinality of HΘ(L) for large d in the trigonometric case, stated in the following
theorem.

Theorem 7. Let n(L, d) = #Htrig
Θ(L) be the number of points required by the sparse trigonometric

interpolation algorithm in Equation (2.71), i.e. the cardinality of Htrig
Θ(L). For fixed L and as

d→∞,

n(L, d) ≈ 2L

L! d
L (2.73)

where the relation ≈ is defined by Equation (2.44).

Proof. We follow the approach of Hallatschek in [84] with slight modifications in light of m(l) =
3l. For L > 0 and d > 1, we can write the recursion relation

n(L, d) = n(L, d− 1) + 2
L−1∑
j=0

3L−1−j n(j, d− 1) . (2.74)

Geometrically, this relation decomposes a sparse grid of level l into the portion along the xd = 0
plane and the grids corresponding to (d− 1)-dimensional grids of level j lying along the planes

xd ∈
{

0, 1
3j , . . . ,

3j − 1
3j

}
\
{

0, 1
3j−1 , . . . ,

3j−1 − 1
3j−1

}
.

For each sparse grid of level j in dimension d − 1, there are 2 · 3L−1−j such planes; Figure 2.8
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may be helpful for visualization. We also have

n(0, d) = 1, n(j, 1) = 3j , (2.75)

for all d ≥ 1 and j ≥ 0. Using (2.75) in (2.74) and unwinding the recursion gives

n(L, d) =
min(L,d−1)∑

j=0
3L−j 2j

(
L

j

)(
d− 1
j

)
. (2.76)

for all L ≥ 0, d ≥ 1. Since we want to fix L and take d → ∞, we consider the case d > L. We

can bound
(
d− 1
j

)
as

(
d− 1
j

)
= (d− 1)!
j! (d− 1− j)! = (d− 1) · · · (d− j)

j! ≤ (d− 1)j

j! ,(
d− 1
j

)
= (d− 1) · · · (d− j)

j! ≥ (d− j)j

j! .

Substituting these bounds into (2.76) gives

n(L, d) ≤ (d− 1)L

L! 2L +
L−1∑
j=0

3L−j 2j
(
L

j

)
(d− 1)j

j! ,

n(L, d) ≥ (d− L)L

L! 2L +
L−1∑
j=0

3L−j 2j
(
L

j

)
(d− j)j

j! ,

which implies lim
d→∞

n(L, d)
(2LdL)/L! = 1, as required.

After discussing exactness, we will provide a concrete example of the asymptotic node growth
of the sparse operator defined in Equation (2.71).

2.4.3 Exactness

In one dimension, trigonometric interpolation with 3l equidistant nodes will exactly reproduce
trigonometric functions of degree (3l − 1)/2, where degree is understood to be the largest fre-
quency. We use this one-dimensional relationship to prove a related result for sparse multivariate
trigonometric interpolation. Our proof is similar to [155] and [147], which gave proofs for quadra-
ture formulas and sparse polynomial interpolation, respectively.
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Theorem 8. GdΘ(L) will exactly reproduce all trigonometric functions of the form

∑
‖i‖1=L

(
T(m(i1)−1)/2 ⊗ · · · ⊗ T(m(id)−1)/2

)
, (2.77)

where we define Tn by Equation (2.61).

Proof. Let
f ∈

∑
‖i‖1=L

(
T(m(i1)−1)/2 ⊗ · · · ⊗ T(m(id)−1)/2

)
.

We proceed by induction on d. For d = 1, we get G1
Θ(L) = Um(L), which interpolates f exactly.

Now, suppose d ≥ 1 and f is a tensor product of univariate trigonometric functions:

f = fi1 ⊗ · · · ⊗ fid ⊗ fid+1

where i ∈ Nd+1, ‖i‖1 = L, and fir has trigonometric degree at most (m(ir)−1)/2. Also, assume
as our inductive hypothesis that GdΘ(L) is exact on (2.77). We will show that Gd+1

Θ(L) is exact
on (2.77).

We set M =
∑d
k=1 ik, so that M + id+1 = L. Recall our convention that Um(−1) ≡ 0.

Following [155], we can manipulate Smolyak’s original construction in Equation (2.70) to express
Gd+1

Θ(L) in terms of GdΘ(`):

Gd+1
Θ(L) =

L∑
`=0

GdΘ(`) ⊗ (Um(L−`) − Um(L−`−1)),

which gives

Gd+1
Θ(L)[f ] =

L∑
`=0

GdΘ(`)[fi1 ⊗ · · · ⊗ fid ]⊗ (Um(L−`) − Um(L−`−1))[fid+1 ] .

By our inductive hypothesis, GdΘ(L) is exact, so for each ` with 0 ≤ ` ≤ L,

GdΘ(`)[fi1 ⊗ · · · ⊗ fid ] = fi1 ⊗ · · · ⊗ fid .

If M ≥ 1, then for 0 ≤ ` ≤M − 1, we have L− `− 1 ≥ L−M = id+1, so

Um(L−`)[fid+1 ] = Um(L−`−1)[fid+1 ] = fid+1 , 0 ≤ ` ≤M − 1 .
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If M = 0, the above case does not arise. In either case, however, we obtain the telescoping sum

Gd+1
Θ(L)[f ] =

L∑
`=M

(fi1 ⊗ · · · ⊗ fid)⊗ (Um(L−`) − Um(L−`−1))[fid+1 ]

= (fi1 ⊗ · · · ⊗ fid)⊗ Um(L−M)[fid+1 ]

= (fi1 ⊗ · · · ⊗ fid)⊗ Um(id+1)[fid+1 ]

= fi1 ⊗ · · · ⊗ fid ⊗ fid+1 = f ,

which completes the proof.

Theorem 8 will allow us to find the degree of exactness for sparse trigonometric interpolation.
We defined Tn in Equation (2.61) as the space of all trigonometric functions of degree at most
n. We will now define precisely what we mean by trigonometric degree in the multidimensional
case. For a one-dimensional trigonometric function f , we define

deg1D(f) = min{n : f ∈ Tn}.

For a general d-variate, n-term trigonometric function of the form g =
∏d
k=1 g1k

+ · · ·+
∏d
k=1 gnk

,
the degree is

deg(g) = max
1≤i≤n

d∑
k=1

deg1D(gik) .

This is analogous to total degree for multivariate polynomials. Using Theorem 8 and similar
reasoning to the polynomial case (e.g., taking d > L), we see that L is the trigonometric degree
of exactness for the sparse operator in Equation (2.71).

Since L is the trigonometric degree of exactness, we may now study the number of nodes
required to reproduce a d-variate trigonometric function of some fixed degree (say 3). In the one-
dimensional case, we need 2(3)+1 = 7 points, so the full-tensor construction will have 7d points.
Table 2.2 compares the number of points required in the full-tensor and sparse constructions
for values of d ranging from 1 to 20. With the sparse algorithm, there is a dramatic reduction
in computational complexity for large d versus the full-tensor case, even though the degree of
exactness is the same.

2.4.4 Error estimation

Following Hallatschek in [84], we present an error estimate for sparse trigonometric interpolation.
Here, we will work with the complex-valued interpolants based on the one-dimensional and full-
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Table 2.2 Number of interpolation nodes needed to reproduce any degree-3 trigonometric function
in the full-tensor and the sparse-grid construction (2.71) with L = 3. Both methods reproduce all
frequencies up to the third mode.

d Full-tensor Sparse
1 7.00× 100 27
2 4.90× 101 81
3 3.43× 102 171
5 1.68× 104 491
10 2.83× 108 2481
15 4.75× 1012 6971
20 7.98× 1016 14961

tensor operators defined by Equations (2.57) and (2.65). First, we let f : [0, 1]d → C and denote

ω̂j(x) = exp(2πi j x) , ωj(x) =
d∏

k=1
ω̂jk(xk) ,

where i =
√
−1. Since {ωj}j∈Zd is a complete orthonormal set in L2([0, 1]d), then every f ∈

L2([0, 1]d) has the unique expansion

f(x) =
∑
j∈Zd

f̂ ′j ωj(x) , (2.78)

where the continuous Fourier coefficients f̂j are given by

f̂ ′j = 〈ωj , f〉L2 =
∫

[0,1]d
ω∗j(x)f(x) dx . (2.79)

We use the prime on f̂ ′j to distinguish from the discrete Fourier coefficients f̂ ij in Equation (2.67).
We now introduce the Korobov space of parameter a > 1:

Eda =
{
f :[0, 1]d → C, f ∈ L2([0, 1]d) : ∃C ∈ R+ s.t. ∀j ∈ Zd,

|fj | ≤
C

((1 + |j1|)(1 + |j2|) · · · (1 + |jd|))a

}
.

(2.80)

Intuitively, the parameter a controls the regularity of functions in Eda . Roughly speaking, as a
gets larger, the functions in Eda become more regular because the bound on |fj | gets tighter.
Intriguingly, the denominator in Equation (2.80) is quite similar to the membership criterion
for Θ1

hyp(L) in Equation (2.25) of Section 2.2.
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In order to prove an error estimate, we will work with the surplus operators ∆m(i), which
gauge the successive improvement of interpolation accuracy as we increase the interpolation
level. Accordingly, we wish to express the one-dimensional Fourier interpolation operator Um(l)

as

Um(l)[f ](x) =
m(l)∑
j=1

f̌σ(j)hj(x) . (2.81)

Here, the hj(x) terms are hierarchical functions (recall Section 2.2), and f̌σ(j) are the hierarchical
coefficients, to be determined. With some modifications to Hallatschek’s approach [84] due to
our using m(l) = 3l rather than m(l) = 2l, we arrive at

hj =


0, j = 1

ϕj − ϕ2·3l−1−j , ∃l s.t. 3l−1 + 1 ≤ j ≤ 2 · 3l−1

ϕj − ϕj−2·3l−1−1, ∃l s.t. 2 · 3l−1 + 1 ≤ j ≤ 3l
. (2.82)

We show examples of the hierarchical functions arising from Equation (2.82) in Table 2.3, along
with the nodes of level l−1 for verification of the hierarchical property (2.8). With this machinery,
we may write the one-dimensional surplus operator ∆m(l) as

∆m(l)[f ](x) =
m(l)∑

j=m(l−1)+1
f̌σ(j)hj(x) , (2.83)

which is merely a specific case of Equation (2.10). For dimensions d > 1, we have

hj(x) =
d∏

k=1
hjk(xk), (2.84)

∆m(i)[f ](x) =
∑

m(i−1)+1≤j≤m(i)
f̌σ(j)hj(x) , (2.85)

which is a specific form of Equation (2.14) for the Fourier basis.
To derive an error estimate, we must connect the hierarchical coefficients f̌σ(j) to the contin-

uous Fourier coefficients f ′j in (2.79). Now, in Equation (2.81), at the highest hierarchical level
(i.e., for j with m(l − 1) + 1 ≤ j ≤ m(l)), the non-hierarchical basis function ϕj appears only
once. Thus, by equating the coefficients of ϕj , then

f̌σ(j) = f̂ lj , m(l − 1) + 1 ≤ j ≤ m(l) .

where f̂ lj is the discrete Fourier coefficient given by (2.58). Using the Fourier expansion (2.78)
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Table 2.3 Examples of hierarchical functions hj(x) and the corresponding nodes where hj(x) is 0.

l j hj(x) Nodes at level l − 1
0 1 1 —

1 2 exp(2πix)− 1
x = 03 exp(−2πix)− 1

2

4 exp(−2πix)(exp(6πix)− 1)

x = 0, 1
3 ,

2
3

5 exp(2πix)(exp(−6πix)− 1)
6 exp(6πix)− 1
7 exp(−6πix)− 1
8 exp(2πix)(exp(6πix)− 1)
9 exp(−2πix)(exp(−6πix)− 1)

in the formula for the discrete Fourier coefficients (2.58) along with the grid (2.54) gives

f̌σ(j) = 1
m(l)

m(l)∑
p=1

exp
(−2πiσ(j) p

m(l)

) ∞∑
q=−∞

f̂ ′qexp
(2πi q p
m(l)

)

= 1
m(l)

∞∑
q=−∞

f̂ ′q

m(l)∑
p=1

exp
(2πi (q − σ(j)) p

m(l)

)
.

But by the unitarity of the discrete Fourier transform operator, we have

m(l)∑
p=1

exp
(2πi (q − σ(j)) p

m(l)

)
=

m(l), if q = nm(l) + σ(j), n ∈ Z

0, otherwise

so we get the aliasing formula (cf. [81, 84])

f̌σ(j) =
∞∑

n=−∞
f̂ ′σ(j)+n 3l , 3l−1 + 1 ≤ j ≤ 3l . (2.86)

We are now prepared to state and prove an error estimate for the sparse interpolation
operator (2.70).

Theorem 9. Let d > 0, a > 1, L > 0. Let f ∈ Eda, and let GdΘ(L) be defined by Equation (2.70).
There exists some constant ca,d (independent of L) such that∥∥∥GdΘ(L)[f ]− f

∥∥∥
∞
≤ ca,d (L+ 1)d−1 3(1−a)L (2.87)

where ‖ · ‖∞ is the sup-norm on [0, 1]d.

Proof. This proof follows the approach of Hallatschek in [84] with slight modifications due to
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m(l) = 3l. First, for f ∈ Eda , we may write

f =
∑
i∈Nd

∆m(i)[f ] .

Let x ∈ [0, 1]d be arbitrary. We have

∣∣∣f(x)−GdΘ(L)[f ](x)
∣∣∣ =

∣∣∣∣∣∣
∑

i∈Nd, ‖i‖1>L
∆m(i)[f ](x)

∣∣∣∣∣∣
≤

∑
i∈Nd, ‖i‖1>L

∣∣∣∆m(i)[f ](x)
∣∣∣

≤
∑

i∈Nd, ‖i‖1>L

∑
m(i−1)+1≤j≤m(i)

∣∣∣f̌σ(j)hj(x)
∣∣∣ (2.88)

From this, we see that we must bound |hj(x)| and |f̌σ(j)|. For the first, we have

|hj(x)| ≤
d∏

k=1
(1 + 1) = 2d . (2.89)

For the second, we set β = σ(j) with m(i − 1) + 1 ≤ j ≤ m(i). We note that the aliasing
formula (2.86) gives

f̌β =
∑
µ∈Zd

f̂ ′
β+(3i1µ1,...,3idµd) .

But since f ∈ Eda , then by (2.80) there exists C ∈ R+, independent of β, such that

∣∣∣f̌β∣∣∣ ≤ C d∏
k=1

∞∑
n=−∞

(1 + |βk + 3ikn|)−a .

The reverse triangle inequality gives

|βk + 3ikn| ≥
∣∣∣3ik |n| − |βk|∣∣∣ .

Since β = σ(j), then
3ik−1 + 1

2 ≤ |βk| ≤
3ik − 1

2 ,
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so we have

∣∣∣f̌β∣∣∣ ≤ C d∏
k=1

(
(1 + |βk|)−a + 2(1 + 3ik − |βk|)−a + 2

∞∑
n=2

(1 + 3ikn− |βk|)−a
)

≤ C
d∏

k=1

(
3(1 + |βk|)−a + 2

∞∑
n=2

(1 + 3ikn− |βk|)−a
)

because 3ik − |βk| ≥ |βk|. We can bound the remaining sum by the improper integral

∞∑
n=2

(1 + 3ikn− |βk|)−a ≤
∫ ∞

2
(1 + 3ik x− |βk|)−a dx

= 3−ik (1 + 3ik x− |βk|)1−a

1− a

∣∣∣∣∣
x→∞

x=2

≤ 3−ik (1 + 3ik − |βk|)1−a

a− 1

≤ 3−ik (1 + |βk|)1−a

a− 1

since a > 1. This results in

∣∣∣f̌β∣∣∣ ≤ C d∏
k=1

(
3(1 + |βk|)−a + 2 · 3−ik (1 + |βk|)1−a

a− 1

)
.

But since |βk| ≤ 3ik−1
2 , then 1 + |βk| ≤ 3ik , so 3−ik ≤ (1 + |βk|)−1. Therefore, along with

Da = 2C ·max(3, 2
a−1), we get ∣∣∣f̌β∣∣∣ ≤ Da∏d

k=1(1 + |βk|)a
. (2.90)

Using (2.89) and (2.90) in the second sum of (2.88), we obtain

∑
m(i−1)+1≤j≤m(i)

∣∣∣f̌σ(j)hj(x)
∣∣∣ ≤ 2d

∑
m(i−1)+1≤j≤m(i)

Da∏d
k=1(1 + |βk|)a

≤ 2d
∑

m(i−1)+1≤j≤m(i)

Da∏d
k=1(1 + 3ik−2)a

≤ 2d ·
(
2d · 3‖i‖1

)
·Da · 3(2d−‖i‖1)a

≤ Ĉa,d 3(1−a) ‖i‖1 .
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The above inequality, combined with (2.88), yields∣∣∣f(x)−GdΘ(L)[f ](x)
∣∣∣ ≤ ∑

i∈Nd, ‖i‖1>L
Ĉa,d 3(1−a) ‖i‖1

= Ĉa,d

∞∑
p=L+1

3(1−a) p ∑
i∈Nd, ‖i‖1=p

1

≤ Ĉa,d
∞∑

p=L+1
3(1−a) p pd−1

≤ Ĉa,d 3(1−a)L (L+ 1)d−1
∞∑
n=1

3(1−a)n nd−1 . (2.91)

Finally, by the Ratio Test, we get

lim
n→∞

∣∣∣∣∣3(1−a)(n+1)(n+ 1)d−1

3(1−a)nnd−1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣3(1−a)
(
n+ 1
n

)d−1
∣∣∣∣∣ < 1

since a > 1. Therefore, the infinite sum in (2.91) converges to a value which depends on a and
d (but not L), and the inequality in (2.87) follows.

Finally, we present the optimal set of tensors Θopt
trig. Consider a lower set Λ ⊂ Nd and a target

function space

TΛ =
⋃
ν∈Λ

Tν =
⋃
ν∈Λ

d⊗
k=1

Tνk
. (2.92)

Recalling that trigonometric interpolation with 2n+ 1 points is exact up to mode n and using
a similar result in [206], we get

Θopt
trig =

{
i ∈ Nd : (m(i− 1) + 1)/2 ∈ Λ

}
. (2.93)

2.4.5 Adaptive refinement

First, we consider the space of multidimensional periodic functions. We will approximate func-
tions in this space quasi-optimally, meaning we will use sharp upper bounds on the Fourier co-
efficients to choose the approximation space, e.g. [206, 213]. Using upper bounds on the Fourier
coefficients, we derive the quasi-optimal approximation space in the context of L2 projection.
From projection we proceed to interpolation and derive the quasi-optimal interpolation space.
We conclude by discussing how to estimate the anisotropic coefficients of the target function
on-the-fly. This section is based heavily on the author’s work with Stoyanov in [140].

We let [0, 1] represent a one-dimensional torus. Let Hn([0, 1]) ⊂ Cn([0, 1]), with n ≥ 0,
denote the space of n-times continuously differentiable functions f : [0, 1]→ R such that f has
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n periodic derivatives and f (n+1) is piece-wise continuous with only isolated jump discontinuities.
In the d-dimensional case, for n = (n1, n2, · · · , nd), we define

Hn([0, 1]d) = Hn1([0, 1])⊗ · · · ⊗Hnd([0, 1])

so that for any f ∈ Hn([0, 1]d), 1 ≤ k ≤ d, and (x1, x2, · · · , xd) ∈ [0, 1]d

f(x1, · · · , xk−1, x, xk+1, · · ·xd) ∈ Hnk([0, 1]),

i.e., restricting f to a single dimension yields a function in Hnk([0, 1]). Here, without loss of
generality, we consider the canonical torus [0, 1]d since any arbitrary torus Γ =

⊗d
k=1[ak, bk] can

be translated to [0, 1]d with a simple affine transformation.
The coefficients of the Fourier expansion of f ∈ Hn are defined as

cj(f) =
∫

[0,1]d
exp(−2πi j · x)f(x) dx, j ∈ Zd, (2.94)

with i2 = −1 and j · x =
∑d
k=1 jkxk. In a single dimensional context, using Theorems 1.6, 4.4,

and 4.5 from [102, pp. 4, 25] and trivial re-indexing, we obtain

|cj(f)| ≤ C

(1 + |j|)n+2 , j ∈ Z , f ∈ Hn([0, 1]), (2.95)

for some constant C > 0. Furthermore, since f (n+1) has jump discontinuities, the bound in (2.95)
is sharp [80, p. 200]. In a multidimensional context, using the tensor-product structure of the
space, we have

|cj(f)| ≤ C∏d
k=1(1 + |jk|)nk+2

, j ∈ Zd, f ∈ Hn([0, 1]d) . (2.96)

Function spaces similar to Hn([0, 1]d) have appeared in the literature as weighted Korobov
spaces. In an early work on sparse trigonometric interpolation, Hallatschek [84] considered the
isotropic Korobov space in (2.80), where a > 1 is a smoothness parameter. In general, amay take
on any real value greater than one, but integer values have an interpretation in terms of the order
of differentiability [160]. One may directly connect a ∈ {2, 3, . . . } back to Hn([0, 1]d) and (2.96)
by taking n = (a−2, . . . , a−2). However, there is precedent in the literature for our consideration
of anisotropic, rather than isotropic, approximations for functions obeying (2.96). Authors have
recently studied the complexity of approximation algorithms in anisotropic Korobov spaces [113,
157, 160] in addition to approximation in anisotropic Sobolev and Besov spaces [190]. There is
also a long tradition of dimensionally and spatially adaptive refinement within the context of
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sparse-grid interpolation with a piece-wise or Lagrange polynomial basis, e.g. [34, 82, 96–98,
106, 107, 131, 148, 152, 153, 165, 166, 202, 204, 206].

Let Λ ⊂ Nd be lower. Consider the best approximation to f , denoted fΛ, within the space
TΛ (2.92). From e.g. [111], the L2 approximation error is

‖f − fΛ‖L2 =
∑
ν 6∈Λ
|cν |2

where the cν are defined in (2.94). It follows that the best M -term approximation uses only the
largest M Fourier coefficients of f . Since the Fourier coefficients obey (2.96), then the quasi-
optimal projection space is the hyperbolic cross-section Λαhyp(L) in (2.3), where α = n+ 2:

Λαhyp(L) =
{
i ∈ Nd :

d∏
k=1

(ik + 1)αk ≤ L
}

(2.97)

Now, let fΛ denote an interpolatory, rather than projective, approximation in TΛ to f .
Interpolation error in the max norm is bounded by

‖f − fΛ‖∞ ≤ (1 + LΛ) inf
T∈TΛ

‖f − T‖∞ (2.98)

where LΛ is the Lebesgue constant of interpolation in TΛ with a given choice of interpolation
rule. We observe that

inf
T∈TΛ

‖f − T‖∞ ≤

∥∥∥∥∥∥f −
∑
ν∈Λ

cνTν

∥∥∥∥∥∥
∞

where the Tν are trigonometric polynomials and the cν are the best L2 expansion coefficients.
So, as in [140, 206], we may chain these inequalities together and note that the only differ-
ence versus the optimal L2 approximation comes from the Lebesgue constant and from using
the L∞ rather than L2 norm. Since the Lebesgue constant for one-dimensional trigonometric
interpolation (2.64) grows logarithmically in the number of points, the effects of the Lebesgue
constant are negligible compared to the denominator in (2.96), and we end up with the same
quasi-optimal approximation space Λαhyp(L).

The specific values of the entries in the anisotropy vector α, while critical for constructing a
quasi-optimal approximation, are seldom known a priori. In this section, we describe a method
for estimating the anisotropy from an already constructed approximation fΛ(L) for some lower
set Λ(L). By definition, since fΛ(L) ∈ TΛ(L)

fΛ(L)(x) =
∑

ν∈Λ(L)
ĉν Tν(x)
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where ĉν are either the projection coefficients or a corresponding set of interpolation weights.
Often times, the ĉν are explicitly computed as part of the respective projection or interpolation
procedure and hence available at no additional cost. If the estimate in (2.96) bounds the decay
of ĉν sharply, then

|ĉν | ≈ C̃
d∏

k=1
(1 + |νk|)−αk (2.99)

and the rates can be inferred from only two samples in each direction. If Λ(L) is defined by (2.97)
and L ≥ 2, we can replace the approximate sign in (2.99) by an equal sign and solve the system
of equations; however, in practice, the estimate is only an upper bound and the individual
coefficients can vary, which gives an effect similar to noise. Thus, in order to cancel the noise,
we take more samples in each direction and solve for the effective rates of decay from an over-
determined set of equations, as in [140, 206]. Taking the log of both sides and changing signs,
we obtain

− log(|ĉν |) ≈ −C +α · log(ν + 1), ∀ν ∈ Λ(L). (2.100)

for some constant C (different from the constant in (2.96)), where

log(i) =
d⊗

k=1
log(ik) .

To average out the effects of the “noise,” we take the least-squares solution, i.e., the solution
that minimizes the `2 norm

min
α,C

1
2

∑
ν∈Λ(L)

(C +α · log(ν + 1) + log(|ĉν |))2 . (2.101)

This can be written in a matrix form

min
v

1
2‖Av − b‖2, (2.102)

where the rows of A are (1, log(ν1 + 1), log(ν2 + 1), · · · , log(νd + 1)), the solution is

v = (C,α1, · · · , αd)T ,

and b holds the corresponding entries of log(ĉν). Equation (2.102) admits a unique solution so
long as A has full column rank, i.e., so long as we have at least two coefficients in each direction
to estimate the corresponding decay rate. However, the accuracy of the estimated rates is also
heavily dependent on the condition number of A, and since (2.99) is only an approximation,
more than a couple of coefficients are required. Also note that the constant C does not enter
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into the estimate of α except as a dummy variable and a regularizer within the least-squares
problem.

Equation (2.102) admits a unique solution so long as A has full column rank, i.e., so long
as we have at least two coefficients in each direction to estimate the corresponding decay rate.
However, since the coefficients may not decay monotonically and since the accuracy of the
solution heavily depends on the condition number of the matrix A, the approximation with
only two coefficients will not suffice. The estimated α may be too inaccurate or even yield
negative decay rates, which according to (2.97) results in Λ(L) with infinitely many multi-
indexes. Nevertheless, we employ the estimate in an adaptive refinement strategy presented
in Algorithm 1, and in Remark 1 we propose an ad-hoc strategy, specific to the refinement
procedure, that would allow us to move forward with the adaptive steps even if some of the
computed αk are negative.

Example 4. The motivation for the least-squares fitting (2.101) can be demonstated in the
following one-dimensional example

f(x) = x sin(πx) + x sin(5πx), x ∈ [−1, 1], (2.103)

where f ∈ H0([0, 1]). In Figure 2.9, we show the computed continuous and discrete Fourier
coefficients, the theoretical decay rate according to (2.96), and the decay rate estimate coming
from (2.101). We observe that on each level, for the largest indexes in Λ, the discrete Fourier
coefficients differ systematically from the continuous Fourier coefficients. This can be explained
by observing that the discrete Fourier transform (2.58) is a left-hand Riemann sum discretiza-
tion of (2.94); therefore, the largest indexes in Λ correspond to the highest frequencies, and the
discretization is not able to resolve those to the same degree of accuracy. A refinement criterion
could be based on the surplus or the correction introduced by the high frequencies, e.g., similar
to the greedy knapsack problem [34], but such refinement would be guided by the least accurate
coefficients. This phenomenon is not present in the methods using hierarchical Lagrange ap-
proximation where adding more indexes to Λ would not alter the current set of polynomial coef-
ficients. Furthermore, there are unpredictable fluctuations in the preasymptotic low-frequencies.
Since the breaking point between the two regimes is unknown, we use the least-squares approach
defined in (2.101) to incorporate all coefficients and balance out the “noise-like” effects.

We aim to estimate anisotropy on the fly in the course of an interpolatory approximation
that is iteratively refined. Using (2.16), (2.19), and (2.65), we may write

GdΘ[f ](x) =
∑

j∈X(Θ)

∑
i∈Θ

1≤j≤m(i)

Re
[
tj f̂

i
j ϕj(x)

]
=

∑
j∈X(Θ)

Re[wj ϕj(x)] (2.104)
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Figure 2.9 Left column: discrete and L2 Fourier coefficients (F.C.) of (2.103) on 1D grids of various
sizes. Right column: decay rates from (2.95) and (2.101).
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Here, we compute the sparse discrete Fourier coefficients wj at the front end of our interpolation
algorithm, before any point-evaluations at x:

wj =
∑
i∈Θ

1≤j≤m(i)

tj f̂
i
j , j ∈ X(Θ). (2.105)

These wj are linear combinations of the discrete Fourier coefficients f̂ ij summed over the con-
stituent tensors of the sparse grid. From (2.52) and (2.67), the coefficient wj corresponds to the
multidimensional mode

(|σ(j1)|, |σ(j2)|, . . . , |σ(jd)|)

where |σ(jk)| is the frequency in direction k. Thus, the relevant least-squares problem becomes

min
α,C

1
2

∑
j∈X(Θ)

(C +α · log(1 + σ̃(j)) + log(|wj |))2 (2.106)

where
σ̃(j) = (|σ(j1)|, . . . , |σ(jd)|) (2.107)

and σ(j) is defined in (2.53). The least-squares problem (2.106) holds for any general lower Θ,
but in practice, we begin with a target function space TΛ and use Θopt from (2.93).

Algorithm 1 Adaptive refinement algorithm
n← 0
Start with Λ = Λ1

hyp(L0) with L0 ≥ 2; define Θ according to (2.93)
Compute the samples of f and load the values into the grid
while num_samples < budget do

Solve (2.106) for α̂
Find Ln+1 such that Λα̂(Ln+1) 6⊆ Λ; define Θα̂(Ln+1) by (2.93)
Λ← Λ ∪ Λα̂(Ln+1); Θ← Θ ∪Θα̂(Ln+1); n← n+ 1
Compute the samples of f at the new points

end while

We show pseudocode for our algorithm in Algorithm 1. Importantly, since the solution of
the least-squares problem (2.106) is heavily dependent on X(Θ), then one should choose Λ0 so
that it contains enough points to compute an initial anisotropy estimate that is reliable (i.e.,
heuristically “close” to the true α). For example, if f contains only higher frequencies in some
direction where only a small number of points is used, the estimate may give the appearance
that the direction is not important and Algorithm 1 will add points in other dimensions, thus
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deviating significantly from the correct anisotropy of f .

Remark 1 (Ad-hoc stabilization). Given a black-box model, it is not feasible to determine a
priori the appropriate size of Λ(L0) that would yield a stable initial estimate of the anisotropic
coefficients. However, the weights are only used to guide the refinement process. Thus, if we
encounter a negative weight αk ≤ 0 for some direction k, we can simply replace that weight with
the smallest positive one, which will force the refinement to put additional points in direction k,
which in turn will improve the estimate in the following iterations. If all weights are negative,
then we continue the refinement using isotropic weights α = 1. The correction strategy will allow
us to work past negative weights, but it is still possible for a coarse grid to yield positive yet
incorrect weight that would deteriorate the convergence. However, the theoretical estimates are
only asymptotic and in our numerical examples we observe the opposite behavior, namely that
the pre-asymptotic weights improve the initial error compared to the optimal analytic weights,
e.g. in 2.11. Therefore, in our examples we use isotropic initial Λ(L0) with L0 = 3 which is one
more than the absolute minimum.

2.4.6 Selected numerical examples

We include several examples in this section to illustrate the performance of Algorithm 1. We will
apply our algorithm to purpose-built periodic polynomials of known anisotropy and then to the
chemistry problem that motivated this work. These simulations use the open-source Tasmanian
package developed at Oak Ridge National Laboratory [200], which implements Algorithm 1 for
sparse trigonometric interpolation.

First, to obtain a theoretical convergence rate for our interpolation algorithm, let f ∈
Hn([0, 1]d). Using a theorem of Jackson [168], we can bound the infimum term in 2.98 by

inf
T∈TΛ

‖f − T‖∞ ≤
C(f)
NM+1 (2.108)

where C > 0 is a constant depending on f , M = mink nk, and N = #Θopt
m is the number of

nodes. From [40, 140], we have ∥∥∥GdΘ(L)

∥∥∥ ≤ Cd (#Θ(L))2 .

Heuristically approximating #Θopt as log(N) in light of m(l) = 3l gives

‖f −GdΘ[f ]‖∞ ≤ O
(
log2(N)/NM+1

)
(2.109)

for N sufficiently large.
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Remark 2 (Alternative Function Space). As noted in Sections 2.1 and 2.2, much early work
on sparse grids sought to approximate function spaces of some total degree:

Λαtot(L) =
{
i ∈ Nd : i ·α ≤ L

}
(2.110)

In Fourier interpolation, the total-degree space is suitable for target functions f having a holo-
morphic extension in component k within a polyellipse of radius αk around the real axis, for each
1 ≤ k ≤ d. To see why, suppose f is a function satisfying the previous analyticity assumptions.
From, e.g. [102], the Fourier coefficients obey the asymptotically sharp estimate

|cν(f)| ≤ C(f) exp(−α · σ̃(ν)) , ν ∈ Nd , (2.111)

where σ̃(ν) is defined by (2.107). By taking the negative logarithm of the right-hand side of
2.111 and ignoring the constant, we obtain the total-degree space (2.110). For functions of this
type, the least-squares problem (2.106) becomes

min
α∈Rd, C̄∈R

1
2
∑
j∈Θm

(C̄ +α · σ̃(j) + log(|wj |))2 . (2.112)

Our numerical examples will include a modification of Algorithm 1 that uses the total-degree
space (2.110) and the least-squares problem (2.112).

2.4.6.1 Periodic polynomials

We manufacture some multidimensional target functions that are engineered to have a certain
order of differentiability and periodicity. We define the univariate functions gi : [−1, 1]→ R as

g1(x) = x3 − x ,

g2(x) = x4

4 −
x2

2 ,

g3(x) = x5

20 −
x3

6 + 7x
60 ,

g4(x) = x6

120 −
x4

24 + 7x2

120 ,

g5(x) = x7

840 −
x5

120 + 7x3

360 −
31x
2520 ,

which we have derived by starting with g1(x) and integrating repeatedly and choosing the
constant to preserve periodicity. By construction, gk ∈ Hk([−1, 1]), where we translate [−1, 1]
to [0, 1] using a linear transformation and note that the k + 1-th derivative is discontinuous
across the periodic boundary. For 1 ≤ i ≤ 5, we normalize in the sup-norm by taking hi =
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Figure 2.10 Isotropic refinement for trigonometric interpolation of f(1,1,1)(x) =
∏3

k=1 h1(xk) with dif-
ferent choices of Λα(L). Here, α = 1 and refinement occurs solely by incrementing L. As expected, the
hyperbolic cross-section refinement converges at the expected rate and outperforms the total-degree
and fully tensorized methods.

gi/‖gi‖L∞([−1,1]). Thus, the multivariate target functions are

fi(x) =
d∏

k=1
hik(xk), 1 ≤ i ≤ 5 . (2.113)

The domain of interpolation for (2.113) is Γ = [−1, 1]d. The Fourier coefficients obey the
estimate (2.96), so a hyperbolic function space like (2.97) is appropriate, as Figure 2.10 demon-
strates. We calculate the error by drawing 2000 validation points xj ∼ U(Γ), where U(Γ) is the
uniform distribution on Γ, with

error = max
1≤j≤2000

|f(xj)−GdΘ[f ](xj)| .

In the isotropic example, the initial grids have approximately the same number of nodes, and
we refine up to a maximum of 700000 nodes.

We now consider target functions with various numbers of inputs and anisotropy. The initial
grid for each refinement strategy has approximately the same number of nodes, and we refine
up to a maximum of 200000 nodes.

Next we consider an anisotropic example. In Figure 2.11, we compare different anisotropic
grids, and we use the six-dimensional target function

f̃(x) = h1(x1)h5(x4) + h2(x2)h5(x5) + h3(x3)h5(x6) . (2.114)
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Figure 2.11 Convergence results for (2.114). The adaptive hyperbolic cross section methods matches
the convergence rate of the analytic anisotropy, but without using any prior knowledge.

Table 2.4 Anisotropy ratios for two-dimensional product functions at the end of refinement. Column
2 uses Algorithm 1 and Column 3 uses Remark 2.

fi Final α̂1/α̂2 (hyperbolic) Final α̂1/α̂2 (TD) True α1/α2
(1, 2) 0.72 0.73 0.75
(1, 3) 0.61 0.61 0.60
(1, 4) 0.49 0.49 0.50
(1, 5) 0.45 0.45 0.43
(2, 3) 0.84 0.84 0.80
(2, 4) 0.68 0.68 0.67
(2, 5) 0.62 0.62 0.57
(3, 4) 0.81 0.81 0.83
(3, 5) 0.74 0.74 0.71
(4, 5) 0.91 0.91 0.86
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Since hk ∈ Hk(Γ), then by (2.96) and (2.97), we know the anisotropy of f̃ beforehand:

α = (1, 2, 3, 5, 5, 5) + 2 = (3, 4, 5, 7, 7, 7).

The line in Figure 2.11 labeled “Analytical hyperbolic” uses the known anisotropy α, while the
adaptive strategies solve the relevant least-squares problem for α̂ at each refinement iteration.
In terms of convergence behavior, all strategies with a hyperbolic cross-section space outperform
the total-degree space of Remark 2. Additionally, the adaptive algorithms based on solving the
least-squares problem (2.106) converge at a similar rate as using the known target space Λα(L)
directly. Both the adaptive and analytical anisotropic strategies converge at approximately the
rate given in (2.109). This shows that Algorithm 1 is well suited to handle periodic models where
the anisotropy is not known a priori.

At the end of refinement, we obtain the following anisotropy estimates (normalized so that
α̂1 = α1 = 3):

α̂hyp = (3.00, 3.53, 4.35, 5.58, 5.70, 5.73),

α̂TD = (3.00, 3.63, 4.51, 6.11, 5.73, 5.40) .

In Table 2.4, we show the anisotropy ratios at the end of adaptive refinement for two-dimensional
product polynomials of the form (2.113). We compute the true anisotropy ratio for fi by recalling
αk = ik + 2. Both Algorithm 1 and the modifications in Remark 2 are reasonably able to detect
the relative anisotropy of the target function.

2.4.6.2 Particle in a two-dimensional box

We construct a two-dimensional particle in a box (PIB) system. This is a staple example in
textbooks on quantum mechanics, e.g. [120]. Here, the anisotropy arises from different pertur-
bations in the x and y directions. As discussed in [120], the Hamiltonian for the unperturbed
one-dimensional PIB on the interval [0, 1] is

Ĥ = −1
2

d2

dx2 + V (x), V (x) =

0, x ∈ [0, 1]

∞, else
(2.115)

where we have used atomic units and set the particle mass equal to the electron rest mass,
me = 1. For n = 1, 2, . . . , the normalized wavefunctions satisfy

Ĥψn = En ψn =⇒ ψn(x) =
√

2 sin (nπx) , En = 1
2n

2π2 .
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Inspired by exercises in quantum mechanics textbooks [120], we use the potentials

f1(x) =

15, x ∈ [0, 1/4] ∪ [3/4, 1]

0, else
, f2(y) = 60

(
y − 1

2

)2

in our two-dimensional perturbed PIB system and treat them as perturbations. Note that the
maximum value of each perturbation is less than E

(0)
2 , the energy of the unperturbed n = 2

energy level. The two-dimensional Hamiltonian is

Ĥ = −1
2∇

2 + V (x) + V (y) + f1(x) + f2(y) (2.116)

where V is given in (2.115). The full two-dimensional wavefunction has the form

Ψn(x, y) = ψn1(x)ψn2(y)

where nk is the quantum number in dimension k.
We will demonstrate the performance of various refinement strategies on the wavefunction

of (2.116) corresponding to nx = ny = 2. To evaluate the target wavefunction, we first decom-
pose (2.116) into the x and y parts and apply first-order nondegenerate perturbation theory
(see, e.g., p. 233 of [120]). The first-order correction to the wavefunction for the x component is

ψ
(1)
2,x(x) =

∑
n6=2

∫ 1
0 ψ

(0)
n (u) f1(u)ψ(0)

2 (u) du
E

(0)
2 − E(0)

n

ψ(0)
n (x) (2.117)

where ψ(0)
n and E(0)

n are the unperturbed wavefunctions and energies corresponding to (2.116).
Similarly, for the y component, we get

ψ
(1)
2,y(y) =

∑
n 6=2

∫ 1
0 ψ

(0)
n (u) f2(u)ψ(0)

2 (u) du
E

(0)
2 − E(0)

n

ψ(0)
n (y) . (2.118)

Thus, we take the two-dimensional target wavefunction as

Ψ2,2(x, y) =
(
ψ

(0)
2 (x) + ψ

(1)
2,x(x)

) (
ψ

(0)
2 (y) + ψ

(1)
2,y(y)

)
. (2.119)

We evaluate the integral coefficients in (2.117)-(2.118) with Maple and find that the only
nonzero coefficients correspond to functions of the form sin(2πkx), yielding an a priori anisotropy
estimate. The L2-Fourier coefficients of Ψ2,2(x, y) decay like O(1/k3) in the x component and
O(1/k5) in y, where k is the coefficient index. This both justifies the use of approximation
space Λαhyp and gives the prior anisotropy α = (3, 5). Computationally, we truncate the series
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Figure 2.12 Convergence history of approximating (2.119) with various techniques.

in (2.117)-(2.118) at N = 104 terms and use (2.119) as our target function. In practice, though,
one would not use Fourier interpolation on a known truncated Fourier series; instead, a more
accurate solution technique would provide the target wavefunction, e.g. [45]. Perturbation theory,
however, is straightforward enough to use for the end goal of demonstrating the convergence
behavior of our adaptive refinement method.

For sparse interpolation, we use the hyperbolic index set Λhyp and refine according to three
strategies: adaptive (Alg. 1), analytical anisotropy, and isotropic. We show the convergence be-
havior in (2.12). Similarly to Section 2.4.6.1, adaptive refinement performs as well as analytical
anisotropic refinement, but without any prior knowledge. Asymptotically, the errors of the an-
alytical anisotropic and adaptive strategies in Figure 2.12 decay at roughly the same rate and
are an order of magnitude better than isotropic refinement. Furthermore, since we know the
Fourier coefficients explicitly as a result of (2.117)-(2.118), we may construct the optimal lower
approximation space directly from the explicit coefficients. In Figure 2.13 we show Λhyp at the
final iteration of adaptive refinement along with the smallest lower set of size #(Λhyp) contain-
ing the N ≤ #(Λhyp) largest Fourier coefficients. Figure 2.13 shows that adaptive refinement
closely resembles the lower set containing the N ≤ #(Λhyp) largest Fourier coefficients, except
for some rectangular gaps introduced by the growth rule m(l) = 3l. We chose equal vertical and
horizontal axes to make the anisotropy clear.

2.4.6.3 Potential energy surface of 2-butene

Now we consider the motivating application of this section: the adaptive approximation of a
molecule’s potential energy surface (PES) where the anisotropy α is not known beforehand.
The molecule of interest is 2-butene, whose molecular structure is shown in Figure 2.14. Using
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Figure 2.13 Λhyp at final iteration of adaptive refinement (left); lower completion of indices for the
largest Fourier coefficients (right). Note the logarithmic scaling. Equal vertical and horizontal axes are
chosen to display the anisotropy.
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Figure 2.14 Molecular structure of 2-butene, labeled with rotations of interest.

the terminology of Chapter 1, we will approximate the relaxed PES En(x), defined by (1.2),
where x is the vector of design variables.

For rotational design variables (denoted θ), a polynomial interpolant does not guarantee
periodicity of ∇En with respect to θ, which leads to nonphysical phenomena (e.g., nonconser-
vation of energy). Therefore, a trigonometric interpolation basis is appropriate when x contains
only bond angles and dihedral rotations. Bond lengths, in general, are not periodic over an in-
terpolation domain, so approximation by trigonometric polynomials would lead to inaccuracies
at the domain boundary [91].

As hinted earlier, solving the optimization (1.2) subject to the generalized eigenvalue prob-
lem (1.1) is an extremely expensive calculation. To trim down computational cost, it is common
practice in quantum chemistry to use approximate Hamiltonians and wavefunctions [120]. In
our case, we use density functional theory (with the B3LYP hybrid functional) to simplify the
Hamiltonian [92, 108, 198], and we approximate the wavefunctions with the 6-311G* Pople basis
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Figure 2.15 Slice of 2-butene PES for x3 = 0.

set [112]. We describe basis sets and hybrid functionals in much more detail in Chapter 4. We
use the Gaussian 16 software package [73] to handle the approximation of Hamiltonians and
wavefunctions. By default, Gaussian 16 performs the optimization in (1.2) using a variant of the
EDIIS algorithm tuned for molecular geometry optimizations [122].

Previous work constructed a sparse polynomial interpolant of E0(x) and E1(x) for 2-
butene to study the transition from the cis- to trans- conformation via the first singlet excited
state [146]. We use the same design variables from that study, shown in Figure 2.14. The design
variable x1 is more influential on the PES than x2 and x3, but the exact anisotropy is not known
in advance.

The domain for our 2-butene ground-state (n = 0) PES is Γ = [0, 360]× [−60, 60]× [−60, 60].
The coordinates x2 and x3 correspond to dihedral rotations of CH3, which have period 120◦. We
show a slice of the 2-butene PES in Figure 2.15. The ridges at x1 = 90 and x1 = 270 indicate a
discontinuous first derivative, so we hypothesize that the hyperbolic function space (2.97) and
Algorithm 1 are appropriate for this problem.

There are numerous sources of noise going into the evaluation of E0(x): density functional
theory approximates the Hamiltonian, the 6-311G* basis set approximates the wavefunction
Ψ, and the optimization (1.2) has internal stopping criteria. Therefore, we do not report the
max error of the interpolant GdΘ[E0](x), which could be heavily skewed by non-interpolatory
error. Instead, we give the root-mean-square error (RMSE) over 2000 validation points drawn
uniformly over Γ:

RMSE =

√∑2000
j=1 (E0(xj)−GdΘ[E0](xj))2

2000 , xj ∼ U(Γ) . (2.120)
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Figure 2.16 Absolute (left) and relative (right) error results for sparse interpolation of 2-butene
ground-state PES.

In our sparse grid constructions, we use Θopt based on the hyperbolic function space Λ
in (2.97) as well as the total-degree space (2.110). For each variety of Θ, we refine both adaptively
(according to Algorithm 1 or Remark 2) and isotropically (taking α = 1 and incrementing L).
In all cases, we initialize each grid with 37 nodes. Each function sample takes approximately 30
seconds to evaluate, and occasionally the optimization (1.2) may fail to converge to the correct
(or any) local minimum. Due to limitations on available computing time, we refine up to a
maximum of only 4000 nodes. If a refinement strategy terminates prior to 4000 nodes, that is
because the next increment of L would result in the number of nodes exceeding 4000. We show
the results in Figure 2.16. Following Pople in his 1998 Nobel lecture, we adopt 1 kcal/mol as
the threshold of acceptable chemical accuracy for energies [172].

First, we note that the asymptotic absolute RMS errors in Figure 2.16 are consistent with
Pople’s definition of chemical accuracy for energies (i.e., less than 1 kcal/mol). Furthermore,
the limiting relative error for adaptive hyperbolic refinement is approximately 1%. Second,
even though the one-dimensional interpolation rule (2.55) grows exponentially, we can still add
smaller batches of nodes at each iteration by using (2.93) and Algorithm 1, which mitigates the
exponential growth of (2.55). Third, in both the adaptive and isotropic cases, the asymptotic
error is lower for a hyperbolic cross-section than for a total-degree space.

2.5 Mixed basis

The question still remains as to how we combine sparse trigonometric interpolation with sparse
polynomial interpolation. The interpolation coefficients in (2.11) are cj = f(xj) for polynomial
interpolation, but for trigonometric interpolation, cj comes from a discrete Fourier transform, so
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we need to express Equation (2.16) differently. Helpfully, we may rewrite sparse Clenshaw–Curtis
and trigonometric interpolants in adjoint form [200] as

GΘ[f ](x) =
∑

j∈X(Θ)
ψj(x) f(xj), (2.121)

where X(Θ) is the set of all sparse-grid indices (as opposed to the allowable tensors i) defined in
Equation (2.21), ψj(x) is the adjoint basis at an evaluation point x, and f(xj) is the function
value at a specific node.

Now we partition the geometry into x = (y, z), where y contains the periodic design variables
and z has the nonperiodic ones. Furthermore, let us assume that the periodic and nonperiodic
portions of f can be separated with multiplication and addition, but not function composition.
In the context of PES approximation, this assumption is motivated by the exact solution of
hydrogenlike atoms, which separates the wavefunction into a product of spherical harmonics
and a radial part [120]. In this case, f has the structure

f(q) = f1(y)⊗ f2(z),

where f1 is the periodic portion of f , f2 is the nonperiodic portion, and ⊗ denotes the possibility
of both products and sums. Then we may use Equation (2.121) to apply Clenshaw–Curtis and
trigonometric interpolation separately:

GΘ[f ](x) =
∑

j∈Θtrig
m

∑
k∈Θpoly

m

ψtrigj (y)ψpolyk (z) f(yj , zk) (2.122)

Equation (2.122) requires two grids: a sparse trigonometric grid for the periodic coordinates
and a sparse polynomial-basis grid for the nonperiodic coordinates. Then, the overall grid is the
tensor product of these two sparse grids. Moreover, one may think of the resulting grid as a
sparse grid itself, with its own Θ = Θpoly ⊗Θtrig.
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CHAPTER

3

TASMANIAN

For implementation of sparse grids, we use the open-source Tasmanian package1 (Toolkit for
Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN), developed by Stoyanov [200,
203] at Oak Ridge National Laboratory. Tasmanian is written in C++, with Python, Matlab,
and Fortran wrappers. The documentation is detailed [200], and the software contains a wide
selection of sparse interpolation rules. In addition to the algorithms in Sections 2.3.2 and 2.4.2,
Tasmanian allows the user to specify any of the admissible tensor spaces in Equations (2.22)–
(2.25) of Section 2.2. Tasmanian also calls certain optimized or accelerated software tools if
the user has installed them and has configured Tasmanian with the appropriate flags. These
tools include OpenMP (parallelism), BLAS (optimized linear algebra), CUDA/cuBLAS vari-
ous GPU acceleration tools (CUDA, HIP, and DPC++), and MAGMA (CPU+GPU hybrid
architectures, [211]). The manual (available online at the Tasmanian website1) describes how to
install Tasmanian and configure it for use with external acceleration tools [200].

Tasmanian has always included globally-defined sparse polynomial interpolants. Indeed, the
current manual [200] describes more than 15 node choices for polynomial interpolation, one of
which is the Clenshaw–Curtis rule of Section 2.3. However, prior to 2018, Tasmanian did not
include Fourier interpolation. The author spent the summers of 2018 and 2019 at Oak Ridge
National Laboratory adding trigonometric interpolation and the associated adaptive refinement
method to Tasmanian in collaboration with Stoyanov [140]. The author’s contributions are

1 https://github.com/ORNL/TASMANIAN/; https://tasmanian.ornl.gov/
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publicly available on the Tasmanian GitHub repository2 as part of the production code. In
Appendix B.2.2, we have included the version of the C++ Fourier basis code as of the end of
the author’s summer internship.

3.1 Installation and basic usage

To install Tasmanian and prepare it for general use, the reader first downloads the package
from the Tasmanian website1 or the Tasmanian GitHub repository.2 The recommended choice
is to download the latest stable release, but it is possible to clone the master branch from
GitHub, which may contain highly experimental features. Once the package is on the user’s
local disk, there are several options for installation: cmake, the install.sh wrapper script,
direct GNU make, pip, and spack. Here, for accessibility for the average user, we will discuss
the install.sh wrapper script and pip. The install.sh script is merely a wrapper containing
preset cmake options, but cmake is much more customizable and is recommended for high-
performance computing applications.3

Before attempting to install Tasmanian, the user must first have a C/C++ compiler (such
as gcc or clang) and cmake. Furthermore, if the user wishes to use the Python wrapper, then
Tasmanian requires numpy and c_types. The Anaconda Python distribution includes both of
these packages by default.

On a Unix-based machine with cmake installed, the user should open a terminal window and
run the following commands for the basic install script:

cd <path-to-Tasmanian-download>
./install <Tasmanian-install-directory> <optional-MATLAB-work-directory>

<optional-flags>↪→

After building the source code, the installer will perform automatic tests to verify that the user’s
installation is functional. We strongly encourage the user to specify all directories as absolute
paths. By default, Tasmanian will attempt to locate existing Python, OpenMP, and BLAS
installations and link them to the Tasmanian source. If the user does not provide a Matlab

path, the installer will not install the Matlab interface. For a complete list of optional flags,
run

./install -help

2 https://github.com/ORNL/Tasmanian
3Developers or advanced end-users may need to use cmake for the additional customizability. The online

Tasmanian documentation [200] describes the details of installation with cmake.
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from within the Tasmanian download folder. Some acceleration tools and interfaces are present
in the software and not part of the default installation (e.g., CUDA, MAGMA, and Fortran),
but may be enabled with the appropriate flag.

Alternatively, the user may install Tasmanian using pip. To enable optional installation flags
(e.g., Matlab), the CMake flags must be exported as environment variables first:

export Tasmanian_MATLAB_WORK_FOLDER=<path>
python3 -m pip install Tasmanian --user

Due to the ever-evolving nature of programming languages, the user is strongly encouraged to
consult the online manual1 for the current flags and calling sequences.

From the user’s perspective, the main functionality is in the C++ TasmanianSparseGrid()
class. The user will call this class and then invoke the subroutine make***Grid(). Currently, the
available grid functions are makeGlobalGrid, makeSequenceGrid, makeLocalPolynomialGrid,
makeWaveletGrid, and makeFourierGrid. At a minimum, each of these routines requires as
input arguments the domain dimension d, the output dimension, the parameter L, and the
tensor-selection strategy for Θ. The grids of interest to us are mainly Global, Sequence, and
Fourier.4 The first of these three performs polynomial interpolation with a Lagrange basis; the
second, polynomial interpolation with a Newton basis;5 and the third, trigonometric interpola-
tion.

We show an example for the Python and Matlab interfaces for makeGlobalGrid in Ap-
pendix B.2.1, complete with functional code listings (as of October 2018). In each example for
Appendix B.2.1, we explicitly set the path in the code. For convenience, however, the user may
permanently add the Tasmanian Python interface by adding the following line to his or her
∼/.bashrc file:

export PYTHONPATH =
"${PYTHONPATH}:<Tasmanian-install-dir>/share/Tasmanian/python"↪→

Similarly, for Matlab, the user may run the following in the command window:

4The basis functions of a local polynomial grid are only locally nonzero on the interpolation domain, which
can be useful for locally adaptive refinement if the interpolated function has rapid local changes. A wavelet grid
represents the underlying function in terms of wavelets, which generalize the notion of a periodic transform. The
interested reader is encouraged to consult the Tasmanian manual [200] for more details on wavelet and local
polynomial grids.

5A Newton basis involves more work to compute the interpolation coefficients as a fixed up-front cost, but
the payoff is that each evaluation of the interpolant is O(N) rather than O(N2), as with Lagrange polynomials.
Here, N is the number of nodes.
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addpath('<Tasmanian-install-directory>/share/Tasmanian/matlab');
savepath;

The careful reader will notice from Appendix B.2.1 that the names of functions and the
ordering of input arguments are not always the same between the Python and Matlab inter-
faces. The Python command names are identical to the names of the C++ routines, which the
Tasmanian manual describes in detail [200]; the input arguments are ordered the same as well.
Currently, however, the Matlab commands are less standardized, so we recommend checking
the manual for the names of Matlab routines, which always begin with the prefix tsg. Fur-
thermore, the ordering of input arguments are not always the same as for the C++ functions,
so before running an unfamiliar Tasmanian function in the Matlab interface, we recommend
using

help tsgFunctionName

which provides a detailed docstring.

3.2 Back-end program flow

Once the user invokes make***Grid() with input, the code performs overhead calculations,
including the computation of Θ, the weights ti for Equation (2.16), the active tensors and weights
(i.e., the nonzero ti and the corresponding subset of Θ), and the grid nodes {xij}(i,j)∈X̄(Θ). The
user then retrieves the needed nodes using getNeededPoints() and loads the function values
at the nodes with loadNeededPoints(). At this point, what happens is determined by the
grid type. Global grids will merely store the function values; sequence grids will compute and
store the Newton interpolation coefficients; and Fourier grids will compute and store the Fourier
coefficients f̂ ij . These computations only need to be done at the front end or when the grid is
adaptively refined by adding new nodes. Now, for nested grids, a particular basis function may
appear more than once in the sum of Equation (2.16). We compute the “effective weights” wj
for the basis function φj as

wj =
∑
i∈Θ

∑
1≤ν≤m(i), ν=j

ti c
i
ν , (3.1)

which is a running sum of the product of each interpolation coefficient and ti corresponding to
the basis function φj . Here, we have assumed that the underlying function is real-valued; if the
output dimension is larger than 1, then we compute (3.1) for each output dimension separately.
In this way, we evaluate each basis function φj exactly once.

After all of the overhead is completed, each interpolant evaluation is straightforward. The
user uses one of the subroutines evaluate, evaluateFast, or evaluateBatch. For evaluate,
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user provides a single evaluation point y ∈ D ⊂ Rd, where D is the interpolation domain, and
the code computes and returns

GdΘ[f ](y) =
∑

j∈X(Θ)
wjφj(y) . (3.2)

For evaluateFast, the user still specifies a single evaluation point y, but rather than computing
the sum in (3.2) directly, it will treat (3.2) as the dot-product of two vectors and use BLAS,
cuBLAS, CUDA, or MAGMA to accelerate the computation. If none of these are installed,
then evaluateFast will default to evaluate. For evaluateBatch, the user provides multiple
evaluation points {yp}Mp=1 ⊂ D. In this case, we index the weights and basis functions in (3.2)
from 1 to N and get 

GdΘ[f ](y1)
...

GdΘ[f ](yM )

 =


φ1(y1) · · · φN (y1)

...
. . .

...
φ1(yM ) · · · φN (yM )



w1
...
wN

 . (3.3)

Upon calling evaluateBatch, Tasmanian will use acceleration tools to compute the matrix-
vector product. For functions with output dimensions larger than 1, the weights wj will be
different in each output dimension, so (3.2) will be a matrix-vector product, and (3.3) will be a
matrix-matrix product. In this context, systems with many nodes, many evaluation points, or
many output dimensions make acceleration tools even more appealing.

3.3 Computational bottlenecks in trigonometric interpolation

The linear systems (3.2) and (3.3) are obvious computational bottlenecks, but the tools needed
to make them more manageable are already in Tasmanian, and those systems appear for global
grids as well. For Fourier interpolation specifically, the main bottlenecks are (a) computing the
discrete Fourier coefficients f̂ ij in Equation (2.67) at the front end, and (b) evaluating the basis
functions ϕj(x) =

∏d
k=1 ϕjk(xk) at an evaluation point x ∈ D ⊂ Rd. We will address the Fourier

coefficients first.
As we noted in Section 2.4, computing f̂ ij using Equation (2.67) is an O(N2) calculation—

prohibitively expensive for a large number of nodes N . However, the choice of m(l) = 3l in our
one-dimensional rule allows for a straightforward O(N logN) fast Fourier transform (FFT). In
one dimension, the intuitive idea of an FFT is to break a length-3l signal into three signals of
length 3l−1 and perform the transform on these smaller sequences, with the length-1 signal as
the base case. Mathematically, given N = 3l data points fn (0 ≤ n ≤ N − 1), we can express
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the transformed values Fn as

Fn =
N−1∑
j=0

fj exp
(
−2πi j n

N

)
, n = 0, 1, . . . , N − 1 . (3.4)

We will now derive the recursion relation for the radix-3 fast Fourier transform. Introducing
p = 0, 1, 2 and q = 0, 1, . . . , N3 − 1, we get

Fq+p · (N/3) =
N−1∑
j=0

fj exp
(
−2πi j (q + p · (N/3))

N

)
. (3.5)

We now consider the terms in the sum. For j = 3m, we have

fj exp
(
−2πi j (q + p · (N/3))

N

)
= f3m exp

(
−2πi (3m) (q + p · (N/3))

N

)
= f3m exp

(
−2πimq

N/3

)
exp (2πimp)

= f3m exp
(
−2πimq

N/3

)
.

For j = 3m+ 1, we have

fj exp
(
−2πi j (q + p · (N/3))

N

)
= f3m+1 exp

(
−2πi (3m+ 1) (q + p · (N/3))

N

)
= f3m+1 exp

(
−2πimq

N/3

)
exp

(
−2πi q

N

)
exp

(
−2πi p

3

)
.

Finally, for j = 3m+ 2, we have

fj exp
(
−2πi j (q + p · (N/3))

N

)
= f3m+2 exp

(
−2πi (3m+ 2) (q + p · (N/3))

N

)
= f3m+2 exp

(
−2πimq

N/3

)
exp

(
−4πi q

N

)
exp

(
−4πi p

3

)
.

In view of these different cases, we define f0,m = f3m, f1,m = f3m+1, and f2,m = f3m+2 so that
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we may write Equation (3.5) as

Fq+p · (N/3) =
(N/3)−1∑
m=0

f0,m exp
(
−2πimq

N/3

)

+ exp
(
−2πi q

N

)
exp

(
−2πi p

3

) (N/3)−1∑
m=0

f1,m exp
(
−2πimq

N/3

)

+ exp
(
−4πi q

N

)
exp

(
−4πi p

3

) (N/3)−1∑
m=0

f2,m exp
(
−2πimq

N/3

)
(3.6)

With Equation (3.6), we see that we recursively compute the Fourier transform of data with
length N/3, with length 3 as the base case. We provide the recursive pseudocode below, in
Algorithm 2; however, the implementation in Tasmanian does not use recursive function calls.
Note that the twiddle factors

exp
(
−2πi p

3

)
are merely exp

(
±2πi

3

)
, but we have left them in the form of Equation (3.6) to make the corre-

spondence clear. For d > 1, we perform a sequence of FFTs in each domain dimension as our
multi-dimensional FFT. The final step is to notice that the exponents in ϕj are not j (as in
Equation (3.4)), but rather σ(j), so we use an indexing map to maintain consistency of indices.

Now we turn our attention to evaluating the complex exponentials ϕj(x) in Equation (2.66)
for some evaluation point x ∈ D ⊂ Rd. In C++, the naïve way is to use std::exp (overloaded
by the complex library). However, this approach is approximately 30 times more expensive than
the addition operation. For context, std::sin() and std::cos() are roughly 10 times more
expensive than addition.6 Accordingly, we avoid direct calls of std::exp() by evaluating only
the one-dimensional ϕ2(xk) = exp(2πixk) and then iteratively conjugating and multiplying. We
describe this algorithm using pseudocode in Algorithm 3. After computing the cache of one-
dimensional functions ϕjk(xk) for each dimension 1 ≤ k ≤ d, we then multiply together the
relevant one-dimensional functions to evaluate a general multi-dimensional complex exponential
ϕj(x).

6These statistics come from running 100,000,000 of a given operation against a benchmark of simple variable
assignment. The computing environment is a 2012 MacBook Pro running macOS Sierra wtih 8GB of RAM and
a 2.9 GHz dual-core Intel Core i7 processor.
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Algorithm 2 1D FFT with N = 3l points
function fft_1d(data)

N = length(data)
if N == 1 then

return data
end if
for j = 0 : (N/3− 1) do

data_mod0(j) = data(3j)
data_mod1(j) = data(3j + 1)
data_mod2(j) = data(3j + 2)

end for
out_mod0 = fft_1d(data_mod0)
out_mod1 = fft_1d(data_mod1)
out_mod2 = fft_1d(data_mod2)
for j = 0 : (N/3− 1) do

out(j) = out_mod0(j) + out_mod1(j) + out_mod2(j)
out(j +N/3) = out_mod0(j) + exp

(
−2πi j

N

)
exp

(
−2πi

3

)
out_mod1(j)

+ exp
(
−4πi j

N

)
exp

(
−4πi

3

)
out_mod2(j)

out(j + 2N/3) = out_mod0(j) + exp
(
−2πi j

N

)
exp

(
−4πi

3

)
out_mod1(j)

+ exp
(
−4πi j

N

)
exp

(
−8πi

3

)
out_mod2(j)

end for
return out

end function

Algorithm 3 Evaluating complex exponential basis functions
function build_cache(x)

for k = 1 : d do
max_levels(k) = max

i∈Θ
ik

cache(k,1) = 1
cache(k, 2) = std::complex<cos(2πxk), sin(2πxk)>
cache(k, 3) = std::conj(cache(k,2))
for j = 2 : (getNumPoints(max_levels(k))− 1)/2 do

cache(k, 2j) = cache(k, 2) * cache(k, 2j − 2)
cache(k, 2j + 1) = cache(k, 3) * cache(k, 2j − 1)

end for
end for
return cache

end function
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CHAPTER

4

QUANTUM CHEMISTRY

The behavior of particles is entirely different at the quantum-mechanical level than at the
classical level. When particles are so small as to be treated with quantum mechanics, measuring
a system becomes complicated because the mere act of measuring is a disturbance. To find a
physically measurable quantity α, we use the corresponding operator Â and solve the eigenvalue
problem

Â ψ = αψ . (4.1)

We call the self-adjoint operator Â an observable, the eigenvalue α ∈ R a measurement, and the
eigenfunction ψ the wavefunction. The probability density function of finding a particle of state
ψ at a particular location x is |ψ(x)|2. Though some observables, like position and momentum,
have uncountably many eigenvalues, there are some important observables for which Equa-
tion (4.1) has only countably many eigenvalues. This important distinction between quantum
and classical mechanics means that certain quantum measurements cannot take on a continuum
of values. In fact, one of the most important operators in quantum chemistry is the molecular
Hamiltonian Ĥ, which is the observable for energy and has only countably many eigenvalues.

In this chapter, we will review the background chemistry underlying our potential energy
surfaces. We will begin with the general Schrödinger equation for Ĥ and describe the example
of the one-dimensional particle in a box (PIB). Then we will describe two techniques of approx-
imating the energy of a system (the variational method and perturbation theory) and apply
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them to the PIB. After that, we will solve for the energies and wavefunctions of a hydrogenlike
atom. Finally, we conclude with methods of approximating the wavefunctions and energies of a
many-electron system.

4.1 Schrödinger equation

The time-independent Schrödinger equation for a system is

Ĥψ = Eψ (4.2)

where
Ĥ = T̂ + V̂ .

Here, T̂ is the kinetic energy term, and V̂ is the potential energy term. V̂ = V (x) will vary from
problem to problem, but it is worthwhile to express T̂ in terms of x.

In one-dimensional classical mechanics,

T = 1
2mv

2 = p2

2m

wherem is the mass of the particle, and p is the momentum. Analogously, in quantum mechanics,
we have

T̂ = p̂ · p̂
2m

where
p̂ = −i~∇

is the momentum operator, i =
√
−1, and

~ = h

2π = 6.626× 10−34 J · s
2π

is the reduced Planck constant. Therefore,

T̂ = − ~2

2m∇
2,

so we may write Ĥ in the more useful form

Ĥ = − ~2

2m∇
2 + V (x) .

Since |ψ(x)|2 is a probability distribution function, the wavefunction ψ must be normalized.
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That is, in bra-ket notation,
〈ψ|ψ〉 = 1

where 〈f |g〉 denotes the L2 inner product over the entire (possibly multi-dimensional) domain
of ψ. We also define the matrix element of the operator Â:

〈f |Â|g〉 = 〈f |Âg〉 .

4.2 Example systems

We will now present the Hamiltonians for commonly studied systems. The first two of these sys-
tems (particle in a box and hydrogenlike atom) are exactly solvable. The last is the Hamiltonian
for a molecule, which must be solved approximately.

4.2.1 Exactly solvable problems

4.2.1.1 Particle in a box

We will now work through the particle-in-a-box (PIB) system to illustrate how to solve for
the energies E and wavefunctions ψ. The PIB is often one of the first examples covered in
quantum texts due to its simplicity (cf. Levine in [120]). We are doing this example to show
the step-by-step process of solving the Schrödinger equation, and will use the PIB to illustrate
approximation methods in quantum mechanics due to the PIB’s simplicity.

Consider the particle confined to the potential well

V (x) =

0, 0 < x < L

∞, otherwise
.

We will solve the Schrödinger equation for this system

− ~2

2m
d2ψ

dx2 + V (x)ψ(x) = Eψ(x) .

Now since V is infinite outside (0, L) and the particle’s probability density function (pdf) for
position is |ψ(x)|2, then the particle will be confined to (0, L) and zero outside. So the system
becomes −

~2

2mψ
′′ = Eψ(x), 0 < x < L

ψ(0) = ψ(L) = 0
.

From now on in this example, we will restrict ψ to [0, L]. The solutions of this system are of the
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form

ψ(x) = c1 cos(ωx) + c2 sin(ωx), ω =

√
2mE
~2 ,

where c1 and c2 are constants. Enforcing boundary conditions gives c1 = 0 and

sin(ωL) = 0,

which implies
ωL = nπ, n = 1, 2, . . . ,

which gives

En = ~2n2π2

2mL2 = h2n2

8mL2 . (4.3)

The wavefunction corresponding to En is

ψn(x) = Cn sin
(
nπx

L

)
.

To normalize, we enforce

1 = 〈ψ|ψ〉

= C2
n

∫ L

0
sin2

(
nπx

L

)
dx

= C2
n

∫ L

0

(1
2 −

1
2 cos

(2nπx
L

))
dx

= C2
n

L

2

so Cn =
√

2/L, and therefore

ψn(x) =
√

2
L

sin
(
nπx

L

)
.

Figure 4.1 shows the wavefunctions and moduli for the three lowest-lying states with L = 1.
Note that there are certain regions of space where there is zero probability of finding the particle;
furthermore, this location of zero probability changes with n.

4.2.1.2 Hydrogen-like atoms

In this section, we will solve the Schrödinger equation for hydrogen-like atoms, which have a
nucleus (with proton number Z) orbited by a single electron. Our approach follows that of Levine
in [120]. Solving this system will give the electronic energy as well as a probability distribution
function for electronic position. Due to the rotational motion of the electron, spherical polar

71



0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

Figure 4.1 PIB solutions for n = 1, 2, 3.

coordinates is the natural choice to represent the system. The conversion between spherical polar
coordinates and Cartesian coordinates is

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

In other words, r2 = x2 + y2 + z2, θ is the angle that the vector r makes with the z-axis, and φ
is the angle that the projection of r onto the xy-plane makes with the x-axis.

The Hamiltonian for a hydrogen-like atom is

Ĥ = − ~2

2µ∇
2 − Ze′2

4πε0r
(4.4)

where ∇2 is the Laplacian, e′ = 1.60× 10−19 is the charge of an electron in coulombs, ε0 is the
permittivity of free space (a physical constant contained in Coulomb’s law), and

µ = memp

me +mp

is the reduced mass of the system. Because the mass of a proton is quite large compared to the
mass of an electron, it is standard for quantum-chemistry texts to assume µ ≈ me [120].

Levine in [120] shows that in spherical polar coordinates,

∇2 = ∂2

∂r2 + 2
r

∂

∂r
+ 1
r2

(
∂2

∂θ2 + cot θ ∂
∂θ

+ 1
sin2 θ

∂2

∂φ2

)
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At this point, we introduce the angular-momentum operator L̂2, defined as

L̂2 = −~2
(
∂2

∂θ2 + cot θ ∂
∂θ

+ 1
sin2 θ

∂2

∂φ2

)

Finding the eigenvalues and eigenfunctions of L̂2 is tedious and omitted here (see Levine in [120]),
but it is a building block toward solving the hydrogenlike atom. The normalized eigenfunctions
Yl,m(θ, φ) are given by

Yl,m(θ, φ) =
√

2l + 1
4π

(l − |m|)!
(l + |m|)! P

|m|
l (cos θ) exp(imφ),

l = 0, 1, 2, . . .

m = −l,−l + 1, . . . , l − 1, l

where the associated Legendre polynomials P |m|l are

P
|m|
l (w) = 1

2l l! (1− w
2)|m|/2 dl+|m|

dwl+|m|

[
(w2 − 1)l

]
.

The eigenvalues are
L̂2 Yl,m = ~2l(l + 1)Yl,m .

Since the potential V is a function of r only and L̂2 gives us the eigenfunctions for the angular
part of ∇2, then we may take the wavefunction ψ as

ψ(r, θ, φ) = R(r)Yl,m(θ, φ)

where R has yet to be determined. The eigenvalue equation

Ĥψ = Eψ

yields

− ~2

2me

(
R′′(r) + 2R′(r)

r
− l(l + 1)

r2 R(r)
)
− Z e′2

4πε0r
R(r) = ER(r) .

Equivalently, we have

R′′(r) + 2R′(r)
r

+
(2meE

~2 + 2Z
a0r
− l(l + 1)

r2

)
R(r) = 0 (4.5)

where a0 = 4πε0~2/(mee
′2) is a constant known as the Bohr radius.

Solving (4.5) is tedious, so we present the solution here and refer the reader to Levine [120]
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for the details. We have

R(r) = Rnl(r) = rl exp
(
− Zr
a0n

) n−l−1∑
j=0

bj r
j .

From the upper limit of the sum, we have l ≤ n− 1. The coefficients bj are given by

bj+1 = 2Z
a0n

j − (n− l − 1)
(j + 1)(j + 2l + 2)bj .

So we have

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) = rl exp
(
− Zr
a0n

) n−l−1∑
j=0

bj r
j Ylm(θ, φ) . (4.6)

where the quantum numbers n, l,m satisfy
n = 1, 2, . . .

l = 0, 1, . . . , n− 1

m = −l,−l + 1, . . . , l − 1, l

.

The principal quantum number n is called the shell, the angular momentum number l is the
subshell, and the magnetic quantum number ml determines the number of spatial orbitals as
well as their orientation in space.

For completeness, we find b0 by enforcing normalization conditions on the ground state.
Since Yl,m are normalized, we integrate over r in spherical coordiantes to obtain

1 = 〈ψ100|ψ100〉

= b20

∫ ∞
0

exp(−2Zr/a0)r2 dr

∫ 1

−1

∫ 2π

0
Ylm(θ, φ) dφ d(cos θ)

= b20

(
a0
2Z

)3 ∫ ∞
0

e−uu2 du

= b20

(1
4

)(
a0
Z

)3

so b0 = 2(Z/a0)3/2.
The energies associated with ψnlm depend only on n and are given by

En = − ~2Z2

2ma2
0 n

2 . (4.7)
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For each n, we have l ∈ {0, . . . , n− 1}, and m can take on 2l + 1 possible values, so we have

n−1∑
l=0

2l + 1 = n2

linearly independent wavefunctions corresponding to En. Energy levels with two or more linearly
independent wavefunctions are called degenerate.

4.2.2 Molecules

Molecules are chemical systems composed of atoms that are bonded together. The arrangement
of the nuclei in a molecule can be described in Cartesian coordinates, but it is more useful to
describe the geometry in terms of internal coordinates [163]: bond lengths, bond angles, and
dihedral angles. Bond lengths are the distances between two bonded atoms and are customarily
measured in angstroms (Å).1 A bond angle is the angle formed between a given atom and two
atoms adjacent to it. A dihedral angle is the angle made by an atom with the plane specified
by an additional three angles. Therefore, for a general molecule with N atoms, there will be
N −1 bond lengths, N −2 bond angles, and N −3 dihedral angles, for a total of 3N −6 internal
coordinates. These coordinates are formatted into a table called a Z-matrix.

For molecules, the full Hamiltonian is

Ĥfull = T̂el + T̂nuc + Vel−el + Vel−nuc + Vnuc−nuc

where

T̂el = −
Nelec∑
i=1

~2

2me
∇2
i , (electron kinetic energy)

T̂nuc = −
Natom∑
A=1

~2

2mA
∇2
A , (nuclear kinetic energy)

Vel−el =
Nelec∑
i=1

Nelec∑
j>i

e′2

4πε0r2
ij

, (electron–electron repulsion)

Vel−nuc =
Natom∑
A=1

Nelec∑
i=1

ZAe
′2

4πε0r2
Ai

, (electron-nuclear attraction)

Vnuc−nuc =
Natom∑
A=1

Natom∑
B>A

ZAZBe
′2

4πε0r2
AB

, (nuclear-nuclear repulsion)

where r is the Euclidean distance, (i, j) are electronic indices, and (A,B) are nuclear indices.
11 Å= 10−10 m.
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To simplify the molecular Hamiltonian, quantum chemistry uses the well-established Born–
Oppenheimer approximation [27], which assumes (i) that the molecular wavefunction is a prod-
uct of electronic and nuclear wavefunctions

ψ = ψelecψnuc

and (ii) that the nuclei are fixed. With this assumption, T̂nuc = 0, and Vnuc−nuc is a fixed
quantity of energy, Enuc−nuc. It remains to solve

Ĥψelec = (T̂el + Vel−el + Vel−nuc)ψelec = Eelec ψelec (4.8)

and at the end take
E = Enuc−nuc + Eelec .

4.3 Approximating solutions of the Schrödinger equation

For many systems, the Schrödinger equation is difficult, if not impossible, to solve in closed
form. In this section, we will present techniques to approximate the wavefunctions and energies
of a system.

4.3.1 Variational method

The variational method seeks to approximate the ground-state energy of a system using a trial
function ϕ(x). We define

Ẽ = 〈ϕ|Ĥ|ϕ〉
〈ϕ|ϕ〉

(4.9)

where
〈ϕ|Ĥ|ϕ〉 =

∫
D
ϕ∗(x)Ĥϕ(x) dx

and D is the wavefunction’s whole domain. The power of the variational method is due to the
following theorem.

Theorem 10. (Variational Principle) Let Ĥ be a Hamiltonian with eigenvalues E1 ≤ E2 ≤ · · · .
For any choice of trial functions ϕ satisfying the boundary conditions of the problem,

Ẽ ≥ E1 .

Proof. Let ϕ be an arbitrary trial function satisfying the boundary conditions of Ĥ. We expand
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ϕ in terms of the orthonormal basis of eigenfunctions {ψk}k≥1 of Ĥ:

ϕ(x) =
∞∑
k=1

ckψk(x) .

This gives

〈ϕ|Ĥ|ϕ〉 =
∞∑
j=1

∞∑
k=1

c∗jEkck 〈ψj |ψk〉

=
∞∑
k=1

Ek|ck|2

≥ E1

∞∑
k=1
|ck|2 .

But we also have
〈ϕ|ϕ〉 =

∞∑
j=1

∞∑
k=1

c∗jck 〈ψj |ψk〉 =
∞∑
k=1
|ck|2 ,

which gives Ẽ ≥ E1.

Since Ẽ ≥ E1, then the variational method gives an upper bound on the ground-state energy.
Whether or not this bound is useful depends on how well the trial function ϕ approximates the
true wavefunction ψ1. We will illustrate the power of the variational method in the following
example.

Example 5. We will estimate the ground-state energy of the PIB from Sec. 4.2.1.1 using
the variational method. From Figure 4.1, we note that the ground-state wavefunction appears
parabolic, opening downward, with zeros at x = 0, x = L. So we take

ϕ(x) = x(L− x) .

We compute

〈ϕ|Ĥ|ϕ〉 = − ~2

2m

∫ L

0
x(L− x) d

2

dx2 [x(L− x)] dx

= ~2

m

∫ L

0
x(L− x) dx

= ~2L3

6m
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and

〈ϕ|ϕ〉 =
∫ L

0
x2(L− x)2 dx

=
∫ L

0
x2(x2 − 2Lx+ L2) dx

= L5

5 −
L5

2 + L5

3

= L5

30

so
Ẽ = 30~2L3

6mL5 = 5
4π2

h2

mL2 ≈ 0.12665 h2

mL2 .

Since E1 = h2

8mL2 for the PIB by Equation (4.3), then this trial function gives an energy estimate
that is accurate to two significant figures.

4.3.2 Basis sets

One straightforward application of the variational method is to parameterize the trial function
ϕ as a linear combination of known functions χp:

ϕ(x; c1, . . . , cM ) =
M∑
p=1

cpχp(x) .

Now we regard Ẽ as a function of the weights cp. We can find the optimal weights ci by setting

∂Ẽ

∂cp
= 0, p = 1, 2, . . . ,M .

The set {χp}Mp=1 is known as a basis set. Basis sets are ubiquitous in computational chemistry,
and there are many different choices available. In this section, we will discuss some of the
available basis sets to approximate the orbital wavefunctions of atoms and molecules.

Since we are approximating the wavefunctions of hydrogenlike atoms, a natural choice of χ
would be functions having the same shape as ψnlm in Equation (4.6):

χSTO(r, θ, φ) = C rn−1e−ζr Ylm(θ, φ) (4.10)

where ζ ∈ R+ and C is a normalization constant. This function is called a Slater-type orbital
(STO) [120]. In practice, a few different χ are used to form a basis set, each with a different
ζ, and the choice of ζ is determined by fitting (4.10) to known orbital shapes. Importantly, the
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choice of ζ depends on both the atom and orbital under consideration. While STOs work well
for many-electron atomic calculations [120], they are not well-suited for molecular calculations
with multiple nuclei. This is because one must compute inner products 〈χp|χq〉, where the basis
functions can be centered on different atoms.

Gaussian-type functions (GTFs) are much better suited to calculating integrals. In practice,
these basis sets are made up of contracted Gaussians, which are linear combinations of so-called
primitive Gaussians:

χprimq (x, y, z) = C xiyjzk exp
(
−ζq (x2 + y2 + z2)

)
, (4.11)

χcontr(x, y, z) =
Nprim∑
q=1

dqχ
prim
q (x, y, z), (4.12)

where i, j, k ∈ N0, ζq ∈ R+, and C is a normalization constant. The exponents i, j, and k are
chosen based on shape of the orbital under consideration [120]. For example, the 2px orbital
would have i = 1, j = 0, k = 0. The orbital exponent ζq and weights dq are optimized against
known orbital shapes for particular atoms. In molecules, each χcontr is centered on a particular
atom [120]. The inner product

〈
χcontrA |χcontrB

〉
, where the contracted Gaussians are centered on

nuclei A and B, is much easier to compute with GTFs than with STOs. Indeed, numerous ab
initio chemistry packages use GTFs, such as Gaussian 16 [73], NWChem [217], and Orca [149,
150].

One commonly encountered flavor of GTF basis set is the so-called Pople basis set, arising
out of the group of Nobel laureate John Pople. These basis sets are named in a systematic
manner, which we will describe in Example 6. The following Pople basis sets are available in
Gaussian 16, along with citations to the original papers describing the basis sets:

• 3-21G [23],

• 6-21G [23],

• 4-31G [58],

• 6-31G [89],

• 6-311G [112].

Additionally, Pople basis sets may include polarization and diffuse functions [120]. If the
maximum orbital angular momentum number in the valence shell is l, a polarization function is
a basis function corresponding to an (l + 1)-type orbital.2 Diffuse functions are basis functions
with small orbital exponents ζ, which are useful to desribe systems where electrons may be quite

2For example, a polarization function for a hydrogen atom (l = 0) would be a p-orbital-type function (l = 1).
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far from the nucleus (e.g., anions). The presence of polarization functions is denoted in the set
by one asterisk (*) after the “G” for atoms with Z ≥ 3 and by two asterisks (**) if every atom
has polarization functions. The presence of diffuse functions follows similar rules but uses “+”
before the “G”.

Example 6. Consider the Pople basis set 6-311+G*. The first piece of information is how many
numbers there are before and after the hyphen. The amount of numbers before the hyphen tells
how many contracted Gaussians describe each core orbital; the amount of numbers after the
hyphen gives the number of contracted Gaussians for each valence orbital. Thus, for 6-311G,
there is one basis function for each core orbital and three for each valence orbital. The values
of the numbers numbers tell how many primitive Gaussians go into each contracted Gaussian
function in the basis set. So the contracted Gaussian on each core orbital is composed of six
primitives, and the three contracted Gaussians on each valence orbital are composed of three,
one, and one primitives respectively. There are diffuse and polarization functions, but only on
atoms with Z ≥ 3.

4.3.3 Slater determinants

For a system with Nelec electrons, it would be tempting to take

Ψ(x1, . . . ,xNelec
) ?=

Nelec∏
k=1

ψk(xk)

where ψk is the 3D wavefunction for the orbital occupied by electron k. However, this choice is
entirely incorrect as it ignores the effects of spin.3 Electrons have half-integer spin, obeying

ms = ±1
2 .

Customarily, α denotes spin-up (ms = 1
2) and β spin-down (ms = −1

2). The Pauli exclusion
principle [162] states that no two electrons in the same orbital can have the same spin, which
means mathematically that wavefunctions of many-electron systems must be antisymmetric
under particle exchange. That is,

Ψ(x1, . . . ,xi, . . . ,xj , . . . ,xNelec
) = −Ψ(x1, . . . ,xj , . . . ,xi, . . . ,xNelec

)

We express each spin-orbital φi as the product of a spatial part ϕ and a spin part σ:

φi(x) = ϕi(x)σi , k = 1, 2, . . . , Nelec ,

3Spin is also known as intrinsic angular momentum and is a feature of quantum mechanics.
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where σi can either be α or β. Two electrons can have the same spatial orbital ϕi(x) as long as
they have opposite spins. To ensure antisymmetry, Slater first proposed in 1929 [191] to take

Ψ(x1,x2, . . . ,xNelec
) = 1√

Nelec!

∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) · · · φNelec
(x1)

φ1(x2) φ2(x2) · · · φNelec
(x2)

...
...

. . .
...

φ1(xNelec
) φ2(xNelec

) . . . φNelec
(xNelec

)

∣∣∣∣∣∣∣∣∣∣∣
. (4.13)

The right-hand side of Equation (4.13) is known as a Slater determinant. By the properties of
determinants, a Slater determinant is guaranteed to be antisymmetric under electron exchange.
Many modern computational chemistry methodologies express the spatial part of each orbital
in Equation (4.13) as

ϕi(x) =
M∑
µ=1

cµi χµ(x)

and find the expansion coefficients cµi using the variational method (see Secs. 4.3.1 and 4.3.2).

4.3.4 Density functional theory (DFT)

In 1964, Hohenberg and Kohn proved two important theorems in quantum chemistry [92]. Their
first theorem states that the electron density

ρ(x) = Nelec

∑
s1

· · ·
∑
sNelec

∫
R3
· · ·
∫
R3
|Ψ(x, s1, . . . ,xNelec

, sNelec
)|2 dx2 · · · dxNelec

,

where si are the spin states associated with spatial orbital i, uniquely determines the Hamil-
tonian and the properties of the system. That is, it is not necessary in principle to find Ψ
(a function of 3Natom − 6 variables), but only ρ (a function of three variables). The second
Hohenberg–Kohn theorem states that there exists an energy functional E[ρ] such that

E[ρ] ≥ E0

where E0 is the true ground-state energy, with equality achieved if and only if ρ(x) is the true
ground-state electron density.

In 1965, Kohn and Sham [108] expressed E[ρ] as

E[ρ] = TS [ρ] + J [ρ] + EXC [ρ] + Enuc−nuc (4.14)

where TS [ρ] is the energy of a fictitious noninteracting system (to be described shortly), J [ρ]
is the energy of electron–electron repulsion, and EXC [ρ] is the exchange–correlation term. The
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exact form of EXC [ρ] is unknown, and there are many different choices of functionals within the
Kohn–Sham DFT framework.

Kohn and Sham approximated the wavefunction of the noninteracting system as a Slater
determinant of fictitious “Kohn–Sham” orbitals φi [108]. Each Kohn–Sham orbital has the form

φi(x, si) = ϕi(x)σ(si),

where ϕi is the spatial orbital and σ(si) is the spin component. The spatial part of each Kohn–
Sham orbital satisfies4

(
− 1

2∇
2 +

∫
R3

ρ(y)
‖x− y‖

dy + VXC(x)−
Natom∑
A=1

ZA
‖x− xA‖︸ ︷︷ ︸

VKS(x)

)
ϕi(x) = εi ϕi(x) (4.15)

for i = 1, 2, . . . , Nelec, where

VXC(x) = ∂EXC [ρ]
∂ρ

,

and the εi are the Kohn–Sham orbital energies. Furthermore, Kohn and Sham showed [108] that
true electron density of the ground state is

ρ(x) =
Nelec∑
i=1
|ϕi(x)|2 ,

where, to reiterate, the spatial parts of two electron orbitals can be identical as long as the
electrons have opposite spin. We can now write some of the terms in the energy functional E[ρ]:

TS [ρ] = −1
2

Norb∑
i=1

∑
si

〈ϕi|∇2|ϕi〉,

J [ρ] = 1
2

∫
R3

∫
R3

ρ(x)ρ(y)
‖x− y‖

dx dy .

One may find the Kohn–Sham orbitals using the self-consistent field (SCF) procedure [120]:

1. Start with an initial electron density ρ̃.

2. Express ϕi in terms of basis functions (Sec 4.3.2):

ϕi(x) ≈ ϕ̃i(x) =
M∑
µ=1

cµi χµ(x).

4For the rest of this section, we will express equations in atomic units, where ~ = 1/(4πε0) = e′ = me = 1.
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3. For each i, use the variational method to find the optimal coefficients cµi that minimize

〈ϕ̃i|ĥKS |ϕ̃i〉
〈ϕ̃i|ϕ̃i〉

, ĥKS = −1
2∇

2 + VKS(x),

where VKS is built with the initial iterate ρ̃.

4. Update

ρ(x)←
Norb∑
i=1

∑
si

|ϕ̃opti (x, si)|2 .

5. Repeat steps 1–4 with ρ̃← ρ until the change in ρ is small.

Once this process has finished, we recover the energy using Equation (4.14).
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CHAPTER

5

TRIGONOMETRIC APPROXIMATION
OF POTENTIAL ENERGY SURFACES

In this chapter, we apply the sparse grid and Tasmanian machinery developed in Chapters 2 and
3 to the study of chemical systems. In this chapter, we use a sparse trigonometric interpolation
basis to approximate the reduced-dimensional potential energy surface of a tungsten molecule.
This chapter was originally published as an article in the Journal of Physical Chemistry B (2019),
where Liu and Morrow were co-lead authors [141].1 In Section 6, we construct a mixed-basis
surrogate model that preserves periodicity on the rotational coordinates while using polynomial
interpolation on bond lengths. We use this surrogate model to study NVE molecular dynamics
of azomethane and compare to all-polynomial interpolation, the previous state-of-the-art as
described in [146].

The potential energy surface (PES) of an electronic state of a chemical system is a func-
tion that maps the molecular geometry to the electronic energy within the Born–Oppenheimer
approximation [26, 27]. Local structures of a PES, such as minima and saddle points, provide
the geometry and energy information for stable and transition-state structures of a system. In
addition, global features of PESs, which can be investigated by theoretical analyses [77, 145]

1Reprinted (adapted) with permission from [Morrow, Z., Liu, C., Kelley, C. T. and Jakubikova, E. “Approxi-
mating Periodic Potential Energy Surfaces Using Sparse Trigonometric Interpolation.” J. Phys. Chem. B 123.45
[2019], pp. 9677–9684. doi: 10.1021/acs.jpcb.9b08210]. Copyright 2019, American Chemical Society. ACS
Articles on Request: http://pubs.acs.org/articlesonrequest/AOR-IEFU7cTCymhZ2ac6hAzF
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and via molecular-dynamics simulations [2, 28, 33, 125, 146, 227], are useful for understand-
ing chemical reactivity. In order to construct a PES efficiently, different methods have been
developed, such as modified Shepard interpolation [42–44], permutationally invariant potential
energy surface by linear least squares fitting [2, 28, 29, 33, 39, 178], neural network approaches
[99, 130, 135], Gaussian process [48, 216], and the finite-element method [20–22]. Most of these
techniques focus on constructing a full-dimensional PES, which treats the potential energy of
an N -atom system as a function of 3N −6 internal coordinates. Because the computational cost
for constructing a PES increases rapidly with N , these full-dimensional methods are restricted
to small molecules only (i.e., N ≤ 10).

Fortunately, constructing a PES with all internal degrees of freedom (dofs) is not always
necessary for studying the chemical reactivity of large systems with tens to hundreds of atoms.
In many cases, only a small number of dofs, i.e., reaction coordinates (RCs), are essential for
describing the system’s chemical reactivity [25]. As a result, reduced-dimensional PESs with a
small number of RCs have been widely employed to study various processes in large systems,
such as the folding of polypeptides [57, 109, 161] and the intersystem crossing of transition-metal
complexes [24, 145, 194].

Previous work from our group [144, 146] implemented the Smolyak sparse-grid interpola-
tion algorithm [100, 192] to build the reduced-dimensional PESs, where the interpolation basis
functions are Lagrange polynomials with the Clenshaw–Curtis points [41, 200]. This approach
was shown to be efficient for both PES constructions and single-point energy evaluations [144,
146]. In addition, we developed a new molecular dynamics (MD) simulation method for reduced-
dimensional PESs [125]. The new MD method relies on interpolated potential energy and co-
ordinate functions, and their derivatives (first-order for energy function and second-order for
coordinate functions) to solve the classical equations of motion in the Hamiltonian formalism
[52, 115]. As a result, to generate smooth MD trajectories, the interpolated energy function
must have continuous first derivatives, and the coordinate functions must have continuous sec-
ond derivatives. These smoothness conditions apply to the whole domain, including the crossing
of the periodic boundary.

The requirement for smoothness can be easily achieved within the domain for interpolation
functions with polynomial basis. In one dimension, a polynomial of degree N on a closed interval
[a, b] is N times non-trivially continuously differentiable in the interior (a, b). When RCs only
contain non-periodic coordinates, such as bond lengths, bending angles and normal coordinates,
the MD trajectories are constrained within the interpolation domain because of the high poten-
tial energy barrier at the boundary. In those cases, the polynomial basis is capable of providing
the desired smoothness.

On the other hand, internal rotations often play important roles in monomolecular reactions,
such as the photoisomerization of polymers and biomolecules [126, 127, 228], hydrocarbon peri-
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cyclic reactions [93], and spin crossover of transition metal complexes [6, 177]. In many cases, one
or more torsion angles are the primary reaction coordinates for describing the reaction process,
while the remaining internal coordinates will only change slightly during the reaction to assist
the primary reaction coordinates [121, 208, 224]. Reduced-dimensional PESs for these systems
have an additional requirement for continuity: periodicity at boundaries. Polynomial interpola-
tion will preserve periodicity of the underlying function values but gives no guarantees on the
periodicity of the derivative. This causes the gradient of the surrogate PES to be discontinuous
when an internal rotation crosses the periodic boundary. The left and right derivatives exist on
either side, but they do not match. When a coordinate crosses the periodic boundary during an
MD simulation, both kinetic energy and generalized forces will change suddenly with the dis-
continuous gradient [125], leading to an incorrect MD result. Thus, an interpolation algorithm
with other basis functions is necessary for modeling reactions with periodic coordinates.

In this chapter, we describe a new sparse-grid interpolation method with a trigonometric
basis for use in PES approximation [84, 200]. Instead of constructing an interpolant with polyno-
mial basis functions, we use sines and cosines, which guarantee periodicity of the surrogate PES
gradient with respect to internal rotations. We employ the [W(Cp)(CO)3]2 molecule as a model
to test our new interpolation algorithm (see Figure 5.1). The energy barrier for gauche–anti
interconversion of the molecule is 15.2 kcal/mol,2 based on nuclear-resonance measurements [1].
Two-dimensional PESs were constructed with polynomial and trigonometric basis functions,
where the RCs correspond to the rotation of [W(Cp)(CO)3] monomer (x1) and the rotation
of a Cp ring (x2). A comparison of the two PESs is presented to show the advantages of a
trigonometric basis for periodic coordinates.

W W

x2

x1
CC

C
O

OO

C
CC

O
O

O

Figure 5.1 Model molecule used in this work, [W(Cp)(CO)3]2.

21 kcal = 4.184 kJ.

86



5.1 Computational details

The relaxed PES defined in Equation (1.2) requires an optimization over ξ, as well as solving
(approximately) the Schrödinger equation for each q = (x, ξ) in the optimization iteration.
Due to the computational expense involved, directly evaluating (1.2) in a dynamical simulation
is impractical for systems with N > 10, necessitating a surrogate model Esn(x). Moreover,
when En and ∇En are periodic, the surrogate model Esn and ∇Esn must also be periodic.
Sparse polynomial interpolation can approximate a PES for dynamical simulations [146]. As
noted previously in the literature [140, 146, 206], sparse interpolation improves the ratio of
approximation accuracy to the number of nodes, leading to a more efficient approximate PES
with respect to the number of expensive ab initio calculations. When populating the nodes,
each ab initio calculation is independent of the others, so the expensive part of the surrogate
model is parallelizable. However, a polynomial interpolation basis can—and, in practice, does—
fail to enforce periodicity of ∇Esn, leading to nonphysical dynamics. Therefore, we use the
sparse trigonometric interpolation algorithm described in Section 2.4 to construct the surrogate
potential energy surface.

5.1.1 Electronic structure calculations

All electronic structure calculations were carried out in the Gaussian 16 software package [73]
with the B3LYP functional [15, 16, 117, 198]. Appendix A.1 contains specimen input files. The
SDD pseudopotential and its associated basis set [103] were used for W, and the 3-21G basis set
[23, 59–61, 79, 167] was used for H, C, and O in all calculations. The 3-21G basis set was chosen
to reduce the computational cost of PES construction and validation. The optimized geometry
produced by this level of theory agrees well with the crystal structure [1] of the [W(Cp)(CO)3]2
molecule (see Appendix A.1, Table A.1). Previous computational studies with 3-21G basis set
and B3LYP functional on transition metal complexes and organic molecules also showed their
ability to reproduce optimized structures, frequencies and PESs with the accuracy comparable
to calculations with larger basis sets [69, 114, 219, 229]. Most importantly, the performance of
the interpolation algorithm presented in this work is independent of the exact model chemistry
utilized since the periodicity of the constructed PES and its gradient will not depend on the
level of theory employed in the electronic structure calculations.

Frequency analysis was applied after each unconstrainted optimization to guarantee that
a stationary point of the correct type was found. The geometry of the molecule is defined in
Z-matrix format with four dummy atoms (see Figure 5.2 and Section A.1). Two dihedral angles,
X1–W1–W2–X3 (x1) and C1–X1–W1–W2 (x2), were employed as the design variables for the
construction of the PES. The domains for interpolation are [0, 360) for x1 and [0, 72) for x2.
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The following symmetry was employed to further reduce the number of DFT calculations for
the PES construction:

E(x1, x2) = E(360− x1, 72− x2) .

By exploiting this symmetry, we only need to run electronic structure calculations for nodes
with x1 ∈ [0, 180] in order to populate the sparse-grid nodes.

Figure 5.2 Global minimum structure for [W(Cp)(CO)3]2. Atoms X1–X4 are dummy
atoms in the Z-matrix definition.

5.2 Results

We constructed two surrogate PESs for the ground state of the [W(Cp)(CO)3]2 molecule, shown
in Figure 5.1 with the design variables x1 and x2 labeled. One PES employs the sparse poly-
nomial interpolant used by Nance, Jakubikova, and Kelley [146]. The other utilizes the sparse
trigonometric interpolant of En(x), whose mathematical description is in Section 2.4. The sec-
ond approach has not previously been deployed in surrogate PES modeling. We will test the
following hypotheses: that a sparse trigonometric interpolant

(a) yields a more accurate approximation than a polynomial interpolation basis, and

(b) enforces periodicity of ∇Esn(x) to numerical accuracy.

Sparse grids for the trigonometric and polynomial interpolants are shown in Figure 5.3.
Interpolation domains are x1 ∈ [0, 360] and x2 ∈ [0, 72] since x2 corresponds to the rotation
of a pentagonal group. The trigonometric grid has 135 points; the polynomial grid has 145
points. After evaluating the true PES En(x) at each node shown in Figure 5.3, we invoked a
simple call to TASMANIAN [200] to construct the surrogate potential energy surfaces shown
in Figure 5.4. As long as the underlying PES is piecewise continuous, then the interpolation
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converges by (2.108). Apart from the nodes (shown as black dots), the surfaces in Figure 5.4
look similar to the eye along the x1 direction. Furthermore, the shape of the PES and the
different minimum-energy paths in Figure 5.4 suggest that the rotation of the Cp ring (x2) is
coupled with the rotation of the [W(Cp)(CO)3] monomer (x1).

0 120 240 360
0

24

48

72

0 120 240 360

0

24

48

72

Figure 5.3 Left: Anisotropic sparse grid for trigonometric interpolant (d = 2, L = 4, α =
(5, 6)). Note that we have more points along x1 than x2. Right: Sparse grid for polynomial
interpolant using Clenshaw–Curtis nodes (d = 2, L = 5).

Figure 5.4 Surrogate ground state (n = 0) PES corresponding to the sparse grids in Fig-
ure 5.3. Interpolation nodes shown as black dots.
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Figure 5.5 Left: 200 validation points. The points are colored based on the trigonometric
surrogate PES error relative to the DFT-calculated energies. Right: Location of DFT ex-
trema (minima are downward-pointing triangles, maxima are upward-pointing triangles, and
saddle points are dots).

To quantify the error of our two surrogates versus the true PES, we randomly sampled 200
values of (x1, x2) from a uniform distribution on [0, 360] × [0, 72] using MATLAB’s rand com-
mand, displayed in Figure 5.5. For each validation point, we performed a constrained optimiza-
tion at the B3LYP/(SDD,3-21G) level of theory and compared the DFT-calculated energy to a
single-point evaluation of the surrogate PES. We display the root-mean-square error (RMSE)
and maximum absolute error (MAE) in Table 5.1. The 95% confidence interval for RMSE is
calculated by treating the mean-squared error as a χ2 random variable with 200 degrees of
freedom [70].

Table 5.1 Error against true values of PES at 200 points drawn from uniform distribution on
[0, 360]× [0, 72]. Units are kcal/mol.

Trigonometric Polynomial
RMSE 0.70 1.26

RMSE 95% conf. int. (0.63, 0.77) (1.15, 1.40)
MAE 2.15 4.14

In addition, we compared the energy and geometry of minima, maxima and saddle points on
the two surrogate PESs with the fully optimized DFT structures. We display the DFT extrema
on top of a contour plot of the trigonometric surrogate in Figure 5.5. As described in the method-
ology section, DFT-optimized structures are characterized by the number of imaginary frequen-
cies (i.e., zero for minima, one for saddle points, and two for maxima on a two-dimensional PES).
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Details of the electronic structure calculations that produced these structures are described in
Section A.1. The optimized dihedral angles and relative energies for those stationary points are
summarized in Table 5.2. The error from the trigonometric interpolant is smaller than the error
of polynomial interpolant.

Table 5.2 Dihedral angles and relative energies of stationary points from PESs and DFT optimiza-
tions. The energy in the table is relative to the minimum-energy conformation with x1 close to 180
degrees. Units of x1 and x2 are degrees; units of Erel are kcal/mol.

Type
DFT Trigonometric Polynomial

x1 x2 Erel x1 x2 Erel x1 x2 Erel

max 0.2 69.7 20.7 2.9 64.9 20.7 4.1 66.3 20.8
saddle 1.7 32.4 19.9 −2.0 35.5 19.9 −1.9 39.0 19.9
min 61.1 71.9 5.1 63.0 70.1 5.2 66.6 72.7 4.6

saddle 60.0 35.6 7.5 56.5 38.1 8.1 62.3 35.7 7.7
max 118.1 64.8 23.4 119.3 60.6 23.1 121.7 82.2 20.8
saddle 114.3 30.6 21.8 118.8 25.6 19.6 122.2 49.2 18.7
min 181.3 68.9 0.0 180.0 71.8 0.0 177.6 68.4 0.0

saddle 180.8 32.9 3.3 180.1 36.1 4.1 180.4 33.1 3.3
RMSE 2.7 3.6 0.9 4.4 9.4 1.4

Next, we examined the mismatch of the surrogate PES gradient. We compute the maximum
x1-gradient mismatch as

max
x2∈[0,72]

|fx1(0, x2)− fx1(360, x2)|

where fx1(0, x2) is understood to be a derivative from the right, and fx1(360, x2) is a derivative
from the left. The maximum x2-gradient mismatch is computed analogously. These results are
shown in Table 5.3. The numerical error of forward and backward differences is O(h), where h
is the step size. Therefore, since the maximum mismatches in the trigonometric case are indeed
O(h), they are numerically zero. In contrast, the mismatches in the polynomial case are far
larger than O(h).
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Table 5.3 Gradient mismatches for trigonometric and Clenshaw–Curtis bases. Right/left derivatives
approximated by forward/backward differences with step size h = 10−5.

Trigonometric Polynomial
Max x1-gradient mismatch 9.02× 10−6 2.05× 10−1

Max x2-gradient mismatch 2.99× 10−5 9.62× 10−1

5.3 Discussion

The visual results in Figure 5.4 look reasonable for the two choices of surrogate. There are
peaks when x1 = 120 and x1 = 240, and a global minimum occurs at x1 = 180 as expected
from empirical studies [1]. The real significance is in Tables 5.1 and 5.2, which demonstrate that
the error for the trigonometric interpolant is smaller (by ∼0.5 kcal/mol on average) than the
error for the polynomial interpolant. The maximum absolute error is almost exactly 2 kcal/mol
smaller for the trigonometric interpolant. Recall that the trigonometric sparse grid has 135 nodes
and the polynomial sparse grid has 145 nodes. Sparse trigonometric interpolation results in a
more accurate surrogate PES than sparse polynomial interpolation at no increase in the number
of evaluations of En(x) (as measured by the number of nodes).

Additionally, the numerical results in Table 5.3 indicate that∇Esn(x) is periodic when we use
the trigonometric interpolation basis. The discretization error for forward/backward differences
is O(h), which is precisely what we observe for the trigonometric basis. For the Clenshaw–Curtis
polynomial basis, we observe a real-life example of ∇Esn failing to be periodic. Importantly, this
failure occurs even though∇En is periodic (since x1 and x2 are rotations). Thus, for applications
where it is an absolute necessity that the surrogate PES gradient be periodic, a polynomial
interpolant should not be used. Furthermore, the discussion in the previous paragraph indicates
that, due to improved accuracy at no extra cost, one should consider using a trigonometric
interpolation basis even when periodicity of the gradient is not a rigid requirement.

For each interpolation basis, we observed a significantly larger error for the two structures
with x1 close to 120 degrees. The larger errors occur because optimized geometries in this
region mix two possible conformations: the locked conformation and the unlocked conformation
(see Figure 5.6). When x1 is smaller than 120 degrees, one CO group of one [W(Cp)(CO)3]
monomer is pointing at the center of two CO groups of the other monomer in the lowest energy
conformations, because such conformations minimize the steric effect for conformations with
small x1 values. For the same reason, at large x1 values, the unlocked conformation is more
favorable than the locked conformation. As a result, the optimized geometries differ on opposite
sides of 120 degrees. The cusp of the true PES makes this local region poorly described by the
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PES approximation with x1 and x2. Furthermore, due to the global definition of the interpolation
basis functions, the quality of the entire surrogate is affected.

Figure 5.6 Locked and unlocked structures near x1 = 120 and x2 = 0.

As a caveat, the trigonometric interpolation algorithm we presented should only be used
in problems where the PES is periodic in all components of x (i.e., all interesting geometry
features are bond angles or dihedral angles). Approximating a non-periodic function with sines
and cosines leads to poor accuracy at the edges of the domain, known as the Gibbs phenomenon
[91]. The next chapter addresses what to do when the relaxed PES has a mixture of periodic
and nonperiodic inputs.
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CHAPTER

6

MOLECULAR DYNAMICS WITH
MIXED-BASIS SURROGATES

In the previous chapter, we constructed surrogate PESs with sparse trigonometric interpola-
tion [81, 84, 140] on a tungsten molecule where the design variables are all periodic [141]. The
interpolation basis functions in this case are sines and cosines. This method enforces periodicity
to numerical tolerances and also produces a slightly more accurate surrogate PES than sparse
polynomial interpolation on the same system [141].

A limitation of existing interpolative PES approximation methods is that the same class
of basis functions must be applied to each design variable [140, 144]. However, many chemi-
cal systems of interest involve both periodic coordinates (e.g., full-rotation torsion angles) and
nonperiodic coordinates (e.g., bond lengths, bond angles). In these systems, polynomial interpo-
lation on periodic coordinates will lead to nonphysical phenomena due to the lack of periodicity
in the surrogate PES gradient. However, trigonometric interpolation on nonperiodic coordinates
will lead to persistent inaccuracies at the domain boundary called Gibbs effects [91].

We chose azomethane for testing the mixed sparse polynomial and trigonometric interpola-
tive PES approximation method. Azomethane is a relatively small molecule (N = 10 atoms),
but it has interesting chemical properties to simulate. It has two stable conformations in the S0

state, which are trans and cis, and it is known to decompose into N2 and two methyl radicals by
stepwise dissociation when it is excited to the S1 state in gas phase (Figure 6.1) [5, 35]. Liu et al
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Figure 6.1 Isomerization and dissociation scheme of azomethane.

investigated the dissociation mechanism with state-average complete active space self-consistent-
field (saCASSCF) and multireference configuration interaction with single and double excitation
(MRCISD) methods to prove that dissociation of the C–N bond is sequential [128]. This was
further studied by Sellner and coworkers using nonadiabatic ab initio surface-hopping dynamics
with MCSCF-GVB-CAS and MRCISD methods [185]. The azomethane dynamics in solution
are also studied with QM/MM to show that C–N dissociation is suppressed with the presence
of polar or nonpolar solvents [183]. Cattaneo et al constructed a PES of azomethane at the
CASSCF level and used trajectory surface hopping (TSH) and molecular dynamics surface hop-
ping (MDSH) to show similar results [37, 38]. While we are focusing on the construction of and
dynamics on the mixed-basis surrogate S0 PES of azomethane in this chapter, the constructed
mixed basis PES for azomethane will be used for a reduced-dimensional TSH photoexcitation
and relaxation simulation in the future.

In this chapter, we present a mixed-basis interpolative method that uses the Smolyak sparse
grid construction [192]. This method applies trigonometric interpolation to the periodic design
variables and polynomial interpolation to all others. We construct a mixed-basis surrogate PES
for azomethane and use it to drive a reduced-dimensional MD simulation of azomethane isomer-
ization paths. This method requires fewer electronic structure evaluations than all-polynomial
interpolation to obtain realistic energy barriers and locations of minima and transition states.
Furthermore, we demonstrate explicitly that the mixed-basis surrogate appropriately conserves
total energy over the entire time integration, while the all-polynomial surrogate does not.
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Figure 6.2 Structure of azomethane and design variables q.

6.1 Computational details

In this section, we discuss how to construct a mixed-basis surrogate potential energy surface
(PES), as well as describe the reduced-dimensional molecular dynamics (MD) framework. The
full PES E(x) of an N -atom molecule is a function of the internal coordinates x ∈ R3N−6.
We first partition x = (q, ξ), where q ∈ Rd are the design variables and ξ are the remainder
variables. Then we minimize over ξ to compute the relaxed PES:

E(q) = min
ξ
E(q, ξ) . (6.1)

Recently there have been studies on automatically detecting the relevant design variables [86,
184], but one often selects the design variables based on a priori chemical knowledge or empir-
ical studies of the system. Additionally, the full Cartesian geometry of the molecule must be
continuous with respect to q, which will be discussed in Section 6.1.1. If a certain remainder
variable has discontinuities that cannot be smoothed out, then that variable may be added to the
design variables to enforce continuity. Based on continuity requirements and previous studies of
azomethane [36–38], we chose the design variables shown in Figure 6.2. Three of the controlled
geometric parameters (q1, q4, q5) were chosen to illustrate three pathways for conformational
transition between trans and cis: rotation, inversion and methyl dissociation. The two methyl
rotations (q2, q3) were controlled to prevent hydrogen atoms from unpredictably permuting their
ordering during structure optimization. We describe q in much greater detail in Section 6.2.2.

Equation (6.1) requires an optimization over ξ, in addition to an approximate solution of
the Schrödinger equation for q = (x, ξ) at each optimization step. Due to the computational
cost, directly evaluating (6.1) repeatedly (e.g., in a dynamics simulation) is highly impractical
for molecules with N > 10, rendering a surrogate model V (q) = Es(q) necessary. Compared
to least-squares, an advantage of interpolatory surrogates is that, in general, fewer evaluations
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Figure 6.3 7215 mixed basis nodes composed of 111 trigonometric nodes (left) and 65 polynomial
nodes (right).

of the true function are necessary to achieve a given accuracy threshold. Sparse interpolation
is an attractive choice because of the improved ratio of approximation accuracy to the number
of interpolation nodes, leading to a more accurate surrogate with respect to the number of
expensive ab initio calculations. Each ab initio calculation is independent of the others, and
therefore populating the nodes is naturally parallelizable.

Previously, sparse polynomial and trigonometric interpolation have been used to construct
Es(q), where one chooses the interpolation basis at the front end and applies it to each compo-
nent of q. In this chapter, however, we aim to apply trigonometric interpolation to the periodic
coordinates and polynomial interpolation to everything else. We use the mixed-basis algorithm
in Section 2.5, with the nodes shown in Figure 6.3.

6.1.1 Reduced-dimensional molecular dynamics

We follow the relaxed reduced-dimensional molecular dynamics framework originally developed
by Liu and coworkers [125], which we briefly summarize here. Specifically, we use the NVE
ensemble and Langevin thermostat to demonstrate the flexibility of our method. One difference
between Liu’s work and this thesis is that we have implemented our MD code in Python since
Tasmanian’s Python interface is much faster than its Matlab interface. The codes, including
examples, are freely available on GitHub.1

In the Hamiltonian formalism [52, 115], the equations of motion for the design variables q
1 https://github.com/zbmorrow/mixed_basis_rrmd
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and the generalized momenta p are 
q̇ = ∂H

∂p

ṗ = −∂H
∂q

. (6.2)

The classical Hamiltonian is a sum of potential and kinetic energy terms, expressed as

H(q,p) = V (q) +K(q,p) (6.3)

where V (q) is the sparse interpolant of the relaxed PES and K(q,p) involves the momenta and
the mass-metric tensor G:

K(q,p) = 1
2 p

T G−1(q)p, (6.4)

Gij(q) =
3N∑
k=1

mk
∂Xk(q)
∂qi

∂Xk(q)
∂qj

(6.5)

The function X : Rd → R3N maps the design variables to the full Cartesian molecular ge-
ometry, and mk is the atomic mass corresponding to Cartesian component Xk. In order to be
approximated with sparse interpolation, X(q) must be continuous.

To integrate the system forward in time, we must first choose q(0) = q0 and compute
p(0) = p0. The momenta are computed by selecting a starting temperature T and drawing 3N
Cartesian velocities from a Boltzmann distribution

v0 =
√
kBM−1 T Rt , Rt ∼ N (0, I). (6.6)

Here, kB is the Boltzmann constant in appropriate units,M = diag(m1, . . . ,m3N ), and Rt is a
3N -dimensional standard normal random variable realized at time t. We then project the initial
velocities onto the reduced-dimensional space by setting

p(0) = X ′(q)T v0 , (X ′(q))ij = ∂Xi(q)
∂qj

. (6.7)

From Equations (6.3)–(6.5), we need to construct a surrogate PES V (q) and Cartesian mapping
function X(q), which we approximate using sparse interpolation.

6.1.1.1 NVE simulations

In the NVE ensemble, we wish to simulate the trajectory of a molecule while conserving total
energy. We integrate the system forward in time with the Störmer–Verlet method, which con-
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serves total energy [199, 218]. At step t = tn, the system is propagated forward by the three-step
process 

qn+1/2 = qn + ∆t
2
∂H(qn+1/2,pn)

∂p

pn+1 = pn −
∆t
2

[
∂H(qn+1/2,pn)

∂q
+
∂H(qn+1/2,pn+1)

∂q

]
qn+1 = qn+1/2 + ∆t

2
∂H(qn+1/2,pn+1)

∂p

. (6.8)

The first step is an implicit Euler half-step in q, the second is a full Crank–Nicolson step in p,
and the third is an explicit Euler half-step in q [76]. The derivatives are expressed as

∂H
∂q

= ∂V

∂q
+ ∂K

∂q
(6.9)

∂H
∂p

= G−1(q)p (6.10)

and then evaluated numerically. The first two steps of Störmer–Verlet involve solving a nonlinear
system of equations. For the all-polynomial surrogates, we use a derivative-free optimizer in
the SciPy package [173, 221] since polynomial gradients are not guaranteed to be continuous
across the periodic boundary [141]. Such derivative-free methods are more computationally
costly, but they are the only option for regions near the periodic boundary, where Vpoly(q) is not
differentiable. An advantage of the mixed-basis method is that we may solve the nonlinear system
with Newton’s method [104, 105], which is much cheaper computationally, since Vmixed(q) is
differentiable across the periodic boundary.

6.1.1.2 Langevin thermostat

The Langevin thermostat is a very popular algorithm for NVT simulations, in which temperature
is conserved. The equations of motion (6.2) become a system of stochastic differential equations
with additional terms to incorporate the coupling between the system and a thermal bath [4].
In Cartesian coordinates (Q,P ), the Langevin equations are

dQ = ∂H
∂P

dt

dP = −∂H
∂Q

dt− γP dt+ σ dw
(6.11)

where Q and P are the position and momentum of the particle. The additional terms capture
the viscosity of the bath (−γP ) and random forces (σ dw), without which (6.11) and (6.2) are
equivalent. From the fluctuation–dissipation theorem, the coefficient σi can be written in terms
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of γ as
σi =

√
2γmikBT (6.12)

where T is the target temperature [4, 119]. Like Liu and coworkers [125], we employ the BAOAB
method of Leimkuhler and Matthews [118, 119] to integrate (6.11). In the reaction coordinates
(q,p), the BAOAB method is

(BA)


pn+1/2 = pn −

∆t
2
∂H(qn,pn+1/2)

∂q

qn+1/2 = qn + ∆t
2
∂H(qn,pn+1/2)

∂p

, (6.13)

(O)
{
p′n+1/2 = e−γ∆tpn+1/2 +

√
1− e−2γ∆tX ′(qn+1/2)T

√
kBMT Rt , (6.14)
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∂H(qn+1,p

′
n+1/2)

∂p

pn+1 = p′n+1/2 −
∆t
2
∂H(qn+1,p

′
n+1/2)

∂q

. (6.15)

6.2 Results and discussion

We used our mixed-basis formulation to construct surrogates for the S0 PES and the Cartesian
mapping functionX(q). In an NVE framework, we compared the performance of the mixed-basis
surrogate to both Born–Oppenheimer molecular dynamics (BOMD) [90, 215] and the previous
state of the art, which uses an all-polynomial interpolation basis [125]. We then use a Langevin
thermostat to demonstrate that our mixed-basis surrogate produces accurate temperature dis-
tributions and that azomethane isomerization is not likely to occur on the S0 surface alone, even
at high temperatures.

6.2.1 Electronic structure of azomethane

All electronic structure calculations utilized the Gaussian 16 software package [73] with the
B3LYP hybrid functional [15, 16, 117, 198] and the 6-311G* basis set [112]. The computing
environment was Henry2, a high-performance computing cluster at North Carolina State Uni-
versity. Each Gaussian instance used 16 cores on an Intel Xeon processor and was allocated
32GB RAM. Further details on the electronic structure calculations are in Section 6.2.2 and
Appendix A.2.

One of the chemical properties of azomethane that is important to note is that its lowest-
energy electronic state changes with the conformational change. As illustrated in Figure 6.4,
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Figure 6.4 Natural orbitals of azomethane at q1 = 180◦ and 90◦ with occupation numbers.

natural orbitals of azomethane, which are nitrogen lone pairs and π∗ of nitrogen 2p orbitals,
at its ground state become degenerate when q1 is 90◦. Therefore when the PES is calculated
with closed-shell restricted wavefunctions, we observe a sharp peak near q1 = 90◦. In order to
obtain a smooth PES, the stability tests [13] of DFT wavefunctions were performed after each
calculation.

6.2.2 Constructing the surrogate PES

Each geometry is supplied to Gaussian in Cartesian coordinates, but the optimization uses re-
dundant internal coordinates. Each Gaussian job proceeds as follows: (1) stability check [13]
on wavefunction, (2) optimization [122] over remainder variables, (3) stability check, (4) opti-
mization and frequency analysis, and (5) stability check. The safeguards are to ensure that the
relaxation over ξ found a true minimum and that the lowest-energy wavefunction is selected. In
this way, we can build surrogates for ES0(q) and XS0(q). We provide sample Gaussian input
files in Appendix A.2.

The design variables, shown in Figure 6.2, are defined as follows:

1. q1 ∈ [−180, 180] is the C1–N1=N2–C2 dihedral angle;

2. q2 ∈ [−180, 180] is equal to the N2=N1–C1–H dihedral angle plus (q1 + 180), which we
will explain shortly;

3. q3 ∈ [−180, 180] is the N1=N2–C2–H′ dihedral angle;

4. q4 ∈ [1.1, 2.5] is the N1–C1 bond length; and

5. q5 ∈ [90, 270] is the N2=N1–C1 bond angle.
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Angles are measured in degrees, and bond lengths in Å. The variables q1, q2, and q3 are periodic,
while q4 and q5 are nonperiodic. We allow q5 to be linear or greater than 180◦ in order to
capture methyl inversion, in accordance with previous work [36, 38]. The lower bound on q4

and both bounds on q5 were chosen to be the widest possible bounds without the molecule
dissociating during the optimization process. We need a large enough domain on either side
of the equilibrium q5 value to capture the well. Furthermore, the PES is mostly flat in the q4

direction for q4 > 2.5 [38], so we truncated the domain to ensure that X(q) is continuous; if q4

drifts beyond 2.5 Å during the course of an MD simulation, we consider the molecule dissociated
and terminate the simulation. The design variable q2 was originally not part of our set of design
variables but was added to maintain continuity of X(q).

Since the energy of a molecule is invariant with respect to translations or rotations of the
entire system, we must reconstruct the Cartesian geometries at the nodes in a consistent manner
in order to buildX(q). Liu, Jakubikova, and Kelley used Kabsch alignment to minimize the root-
mean-squared deviation between each node and the global minimum. However, their application
was NH3 inversion, in which all atoms except nitrogen are moving confluently; in our system,
several atoms (e.g. N1, N2, C2) are mostly stationary. To obtain consistent Cartesian geometries,
we apply translations and rotations of the entire molecule to place N1 at the origin, N2 on the
positive x-axis, and C2 in Quadrant I of the xy-plane. We then load these geometries into
Tasmanian to construct X(q).

Since the molecule can be linear or q5 > 180 and since the Cartesian mapping functionX(q)
must be smooth, we need to take special care to encode the geometry properly in our input files.
For a given sparse grid node qi, we apply the following transformations before converting from
internal coordinates to Cartesian:

1. If qi5 > 180, then we set qi1 ← 180 + qi1, qi2 ← 180 + qi2, and qi5 ← 360− qi5.

2. After Step 1, if qi5 < 180, we recover the N2=N1–C1–H dihedral by setting qi2 ← qi2− (qi1 +
180). This step is necessary to avoid multivalued geometries in the limit q5 → 180.

After finishing one batch sparse grid nodes, we examine the surrogate PESs by plotting
various 2-D slices and optimizing the geometry on the surface to a local minimum or transition
state. We also animated randomly generated one-dimensional trajectories by restricting four of
the design variables. We refine the sparse grid until (1) the calculated energies, relative to the
trans- minimum, are within ∼5% of their Gaussian-optimized value and (2) all animations are
smoothly varying. We show two representative slices near the global minimum in Figure 6.5.
Table A.3 in Appendix A.2 shows the energies and geometries at minima and saddle points for
the highest level of refinement, as well as a selection of animations of X(q).
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Figure 6.5 Mixed-basis surrogate PESs for the singlet ground state.

Table 6.1 Minimizers for the trans- conformation.

# nodes argmin (q1, q2, q3, q4, q5)
Gaussian — [180.00, 122.20, 122.20, 1.46, 113.00]

Mixed basis 7215 [−179.71, 121.91, 121.84, 1.46, 116.06]
All polynomial 17233 [−179.63, 137.91,−155.80, 1.47, 113.16]

6.2.3 NVE: Mixed vs. all-polynomial basis

We begin by subjecting the surrogates to a relatively easy test: an NVE simulation at the trans-
minimum on the S0 surface [125]. We will compare BOMD, a mixed-basis surrogate, and an
all-polynomial surrogate. Table 6.1 shows the initial geometry used for each flavor of surrogate.
Ten initial velocities v(0) ∈ R3N are drawn from a Boltzmann distribution at 298.15 Kelvin.
These are immediately used to run BOMD. For reduced-dimensional MD, we project the initial
velocities onto p(0) using the surrogateX(q) corresponding to the basis in use. We integrate up
to 2.5 ps with step size ∆t = 0.1 fs. The computing environment for the reduced-dimensional MD
simulations was XSEDE Bridges-2 [158, 212], while BOMD ran on Henry2, a high-performance
computing cluster at North Carolina State University.

When measuring energy conservation in an MD simulation, one first stores kinetic and total
energy at each time step. Then, the general principle is that one wants

σ({Ki + Vi})
σ({Ki})

≤ O(10−4) (6.16)

where σ denotes the standard deviation of the observations [4]. We computed these ratios for
each run and method and show the results in Table 6.2. The sample means for BOMD and
mixed-basis MD are within the usual bound, while that of the all-polynomial surrogate is orders
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Table 6.2 Statistics of energy conservation ratios for each method, along with performance.

BOMD Mixed basis All-polynomial
Mean 7.5× 10−4 1.8× 10−5 1.8× 10−1

Stdev 4.0× 10−4 1.2× 10−5 1.0× 10−1

Min 3.4× 10−4 6.2× 10−6 6.5× 10−2

Max 1.6× 10−3 4.5× 10−5 4.1× 10−1

Avg wall time (hr) 41.11 0.67 7.04
Cores 16 1 5
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Figure 6.6 Solid line: total energy. Dotted lines: q1, q2, or q3 is within 0.03◦ of ±180◦.

of magnitude too large. Furthermore, the runtime is much lower when using a surrogate model,
particularly for the mixed basis, which has the fastest turnaround time and lowest core usage.
The core-hour usage of mixed-basis NVE MD is an order of magnitude lower than that of all-
polynomial MD and two orders of magnitude lower than BOMD. In Figure 6.6, we show the
iteration history of total energy during one of polynomial-basis simulations. When each jump
occurs, at least one periodic design variables is near ±180◦.

In Figure 6.7 we show histograms for selected design variables, remainder variables, and
potential energy. Table 6.3 shows the mean, standard deviation, and range of each histogram. We
show the all-polynomial results for completeness, but we re-emphasize that the all-polynomial
surrogate does not conserve total energy. The degeneracy noted in Section 6.2.1 does not appear
in these BOMD results since q1 never drifts outside [167.4, 192.0]. For the N=N distance, the
distribution of the mixed-basis trajectory is tight around its mean value since r(N=N) was
optimized out when populating the sparse grid. For the design variables, certain distributions
appear to have roughly the correct shape but are shifted right or left from BOMD. This is due
to the surrogate PESs having slightly different equilibrium values for the trans- minimum.
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Figure 6.7 Histograms of selected design variables, remainder variables, and potential energy.

Since both reduced-dimensional surrogates use less than the full 3N−6 internal coordinates,
while BOMD uses all of them, we estimate the contribution of the remainder variables ξ in a
manner analogous to Liu and coworkers [125]. At time step i, we add the contributions from ξ

by setting
V corrected
i = V surrogate

i + ηi

where ηi is a uniform random variable on the interval [0,HBOMD−Hsurrogate]. Ideally, we would
isolate the effects of the BOMD framework from the usage of additional design variables (i.e.
by using a full-dimensional surrogate PES), but constructing the full 24-dimensional PES is
computationally infeasible. As a result, the corrected distributions for V (q) in Figure 6.7 do not
match BOMD exactly.

6.2.4 Langevin thermostat

In this section, we focus only on the mixed-basis surrogate since it has been demonstrated that
a polynomial surrogate will not properly capture energy when crossing a periodic boundary.
We wish to study the effect of temperature on azomethane geometry. We start at the trans-
minimum on the S0 surface and integrate to 40 ps with a time step of ∆t = 0.05 fs at various
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Table 6.3 Statistics from NVE MD trajectories.

BOMD Mixed basis All-polynomial

q1 (deg)
mean 180.0 180.3 179.9
stdev 4.0 3.7 5.8
range [167.4, 192.0] [168.0, 192.3] [159.3, 198.6]

q2 (deg)
mean 122.2 122.1 140.8
stdev 11.0 8.5 5.7
range [77.6, 178.0] [95.3, 147.7] [119.5, 159.1]

q4 (Å)
mean 1.47 1.46 1.47
stdev 0.02 0.03 0.03
range [1.39, 1.56] [1.37, 1.56] [1.37, 1.59]

q5 (deg)
mean 112.9 115.9 113.2
stdev 1.9 2.1 2.5
range [106.9, 119.6] [110.4, 121.0] [106.1, 121.2]

r(N=N) (Å)
mean 1.24 1.23 1.23
stdev 0.013 0.001 0.013
range [1.19, 1.28] [1.22, 1.23] [1.19, 1.28]

V (q) (kcal/mol)
mean 3.8 4.6 4.8
stdev 1.5 2.8 2.4
range [0.00, 8.9] [0.02, 12.56] [0.03, 12.53]

target temperatures T .2 The time step needs to be suitably small for Newton’s method to
converge. We used a relatively modest value for the friction coefficient, γ = 0.01 fs−1 [36, 125].
Initial velocities are drawn from a Boltzmann distribution at temperature T and then projected
onto p(0).

We show the results in Figure 6.8. The average runtime of each thermostat simulation was
22.9 hours on XSEDE Bridges-2 with a single core [158, 212]. Even 3000 Kelvin is not hot enough
to overcome the torsion transition structure (q1 ≈ 90). Furthermore, the dissociation energy of
the C1–N1 bond is lower than the energy barrier of the torsion transition state [37]. As a result,
isomerization is not energetically favorable via S0 and temperature alone. In Figure 6.8(b), we
have plotted the sample means and standard deviations of ensemble temperature versus their
theoretical expectation values. Instantaneous temperature T (q,p) is related to kinetic energy
K(q,p) by

T (q,p) = 2K(q,p)
d kB

where d is the number of design variables. From the equipartition theorem [143], maximum
2We determined to need ∆t = 0.05 fs for T = 3000 K, and we used it in all runs for consistency.
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Figure 6.8 Left: Geometry distribution (solid) and average total energy (dashed lines) at different
temperatures. Right: Predicted (lines) and observed (dots/triangles) statistical values for temperature.

likelihood estimators for the mean and standard deviation of T are given by

µ(T ) = T

σ(T ) =
√

2/d T

where T is the target temperature of the thermostat. The theoretical and observed statistics
agree closely with each other.

6.3 Conclusions

We have presented a mixed-basis interpolation algorithm that uses trigonometric interpolation
on periodic design variables and polynomial interpolation on nonperiodic design variables. Unlike
previous methods, it is not limited to molecules with purely periodic or purely nonperiodic
reaction coordinates, and therefore is an improvement over the prior state of the art (same-
basis interpolation) and widely generalizable to different systems. The results demonstrate that
our method conserves total energy within accepted tolerances, is computationally efficient, and
accurately reproduces the temperature distribution of a thermostat in a reduced-dimensional MD
framework. The Python codes for mixed-basis interpolative PES approximation and reduced-
dimensional MD are freely available on GitHub.1

This chapter has investigated only the lowest-lying singlet state of azomethane, but it is
known that light-induced S0 → S1 excitation is a likely isomerization and decomposition path-
way for azomethane [36, 38, 185]. An extension of our surrogate PES approximation will be to
implement a reduced-dimensional version of Tully’s fewest-switches surface hopping algorithm.

107



CHAPTER

7

REDUCED-DIMENSIONAL SURFACE
HOPPING

Molecular dynamics simulations often classically evolve the nuclear geometry on adiabatic po-
tential energy surfaces (PESs), punctuated by random hops between energy levels in regions of
strong coupling, in an algorithm known as surface hopping. However, the computational expense
of integrating the geometry on a full-dimensional PES and computing the required couplings
can quickly become prohibitive as the number of atoms increases. In this chapter, we describe a
method for surface hopping that uses only important reaction coordinates, performs all expen-
sive evaluations of the true PESs and couplings only once before simulating dynamics (offline),
and then queries the stored values during the surface hopping simulation (online). Our Python
codes are freely available on GitHub.1 Using photodissociation of azomethane as a test case,
this method is able to reproduce experimental results that have thus far eluded ab initio surface
hopping studies.

Many important phenomena in chemistry are the result of nonadiabatic, femtosecond-level
quantum transitions between electronic states [222]. Light-induced electronic transitions, for
example, have attracted considerable recent study [169]. Applications include the mechanism of
vision [78, 170], photophysics of DNA [159], photocatalysis [46, 49, 62], photovoltaics [31, 72,
129, 145, 187], and spectroscopy [9, 164, 197]. Due to the computational expense of simulating

1 https://github.com/zbmorrow/rrFSSH
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nonadiabatic processes with a fully quantum mechanical treatment, modern techniques favor a
mixed quantum–classical dynamics (MQCD) approach [101, 222]. A popular and straightforward
MQCD framework is the Ehrenfest (mean-field) method, where the nuclei evolve classically on
a single potential energy surface (PES) that is the weighted average of the different quantum
states [66, 175]. However, the mean-field approach is generally only valid in regions with weak
coupling or similar nuclear behavior between quantum states [222].

Trajectory-based approaches seek to overcome the limitations of the pure mean-field approx-
imation by using multiple PESs and computing PES couplings along a classical trajectory [169].
Indeed, these methods have become immensely popular over the last two and a half decades
[169, 222]. Two of the most popular trajectory-based methods are multiple spawning [19, 136,
137, 220] and surface hopping [10, 85, 174, 176, 214]. Multiple spawning begins with Gaus-
sian wave packets centered around the classical trajectory on a given PES and stochastically
spawns new wave packets on a different PES when the classical trajectory approaches a conical
intersection [136]. In this way, dynamics proceed on multiple PESs simultaneously. In surface
hopping, however, the trajectory marches along a given PES and intermittently hops between
surfaces in regions of strong coupling. Each surface hopping simulation runs on exactly one PES
at any given time. The framework of multiple spawning treats quantum effects more rigorously
from first principles [169], while surface hopping is attractive because it is straightforward to
implement and analyze. The two methods typically produce similar results at similar costs if
time integration is done efficiently [169]. Due to its ubiquity and simplicity, surface hopping is
the MQCD approach we utilize here.

Computing the nonadiabatic coupling (NAC) vector required for surface hopping is an area
of much recent activity, enabled by advances in computing power [74, 124, 186]. However, the
computational expense of time-dependent density functional theory (TD-DFT) is still large
enough that it is impractical to query the ab initio excitation energies and nonadiabatic couplings
at each time point of every trajectory in the surface-hopping swarm.

Furthermore, the full (3N − 6)-dimensional PES Ei(x) of an N -atom molecule in electronic
state i typically includes only a handful of relevant reaction coordinates for a particular reaction.
One can partition the geometry into the relevant coordinates (called design variables, q ∈ Rd)
and everything else (called remainder variables, ξ ∈ R3N−6−d). Then the so-called “relaxed PES”
comes from optimizing over the remainder variables to produce a surface that is only a function
of the design variables, as given by (1.2).

Due to the expense of evaluating the full or relaxed PES with an electronic structure pro-
gram, construction of surrogate PESs is an active area of research. These surrogates allow the
costly optimizations to be contained as an up-front cost in the offline phase, incurred only when
first constructing the surrogate. Techniques of surrogate PES construction include permutation-
ally invariant polynomials [2, 28, 29, 33], neural networks [99, 123, 135], interpolative moving
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least-squares [71, 83, 133, 134], modified Shepard interpolation [42–44, 209], Gaussian processes
[48, 216], and the finite-element method [22]. Previous work in our group has approximated
PESs with sparse interpolation. To build the surrogate, one simply needs to evaluate the true
PES in the offline phase at a set of known design variable values {qj}. The Smolyak sparse
interpolation algorithm ensures that the number of nodes qj grows polynomially—rather than
exponentially—in d, the number of design variables [84, 156, 192, 206]. In addition, a relaxed
reduced-dimensional molecular dynamics (rr-MD) method, also from our group, allows for online
MD simulations of the design variables only [125].

Construction of surrogate PESs with sparse interpolation in our group has used polynomial
[145–147], trigonometric [140, 141], and mixed polynomial–trigonometric (Section 2.5) basis
functions. The original development of trigonometric surrogate PESs occurred because energy
would not be conserved in NVE rr-MD simulations with a polynomial surrogate PES if a com-
ponent of q were periodic and crossed the periodic boundary, as we demonstrated in Chapter 6.

This chapter presents an implementation of Tully’s fewest-switches surface hopping (FSSH)
algorithm [214] in a reduced-dimensional framework (rr-FSSH) where all expensive electronic
structure calculations are performed in the offline phase. We organize the remainder of this chap-
ter as follows. In Section 7.1, we describe the computational details of our method: reduced-
dimensional molecular dynamics, reduced-dimensional surface hopping, sparse grids, and the
approximation of nonadiabatic couplings. In Section 7.2, we test our method on the photodisso-
ciation of azomethane in vacuo and compare against known experimental and ab initio results
[30, 36–38, 53, 55, 138, 154, 183, 185].

7.1 Computational methods

In this section, we describe our online and offline computational methods. In the online phase,
we run a swarm of molecular dynamics trajectories that rely on the surrogate PESs and NACs.
In the offline phase, we use electronic structure programs to evaluate the required high-fidelity
ground-state energies, excitation energies, and coupling vectors. The classical dynamics are
governed by the reduced-dimensional molecular dynamics algorithms described in Section 6.1.1,
along with mixed-basis sparse interpolation from Section 2.5. The rest of this section describes
an implementation of surface hopping in a reduced-dimensional setting.

7.1.1 Reduced-dimensional FSSH

We now present the reduced-dimensional adaptation of Tully’s immensely popular fewest-switches
surface hopping method [214]. We let Ĥ0(z;X) denote the electronic Hamiltonian, where z is
the electronic coordinate and X is the Cartesian geometry of the molecule. We opt to use the
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adiabatic eigenfunctions Φj(z;X) of Ĥ0 as the expansion basis. With this choice, we define the
matrix elements

V cart
ij (x) = 〈Φi(z;X)|Ĥ0(z;X)|Φj(z;X)〉 = Ei(X)δij (7.1)

where Ei(X) is the full PES of state i as a function of Cartesian geometry, δij is the Kro-
necker delta, and the brackets denote integration over z. In Tully’s original formulation, the
nonadiabatic coupling vector in Cartesian coordinates is

dcartij (X) = 〈Φi(z;X)|∇XΦj(z;X)〉 . (7.2)

However, we now want the couplings in terms of the design variables q. Since X = X(q)
reconstructs the Cartesian geometry after optimizing the remainder variables, we get

Vij(q) = Ei(q)δij (7.3)

The chain rule yields

dij(q) = 〈Φi(z;X(q))|∇qΦj(z;X(q))〉 = X ′(q)T dcartij (X(q)) . (7.4)

We now express the wavefunction of the electronic state of our system at time t in terms of
the electronic basis functions

Ψ(z, q, t) =
∑
j

cj(t)Φj(z; q) (7.5)

where we have expressed dependence directly in terms of q for notational ease. Combining (7.5)
with the time-dependent Schrödinger equation, we may derive

i}ċk =
∑
j

(Ek(q)δkj − i}q̇ · dkj(q)) cj . (7.6)

With adiabatic electronic wavefunctions, the probability of transition from state i to state j
during a time interval [t, t+ ∆t] is [176, 214]

P (i→ j) = max
{

2Re
(
cj
ci
q̇ · dij(q)

)
∆t, 0

}
. (7.7)

We integrate (7.6) with the Crank–Nicolson method [47, 76], which conserves the `2 norm of the
solution, so that all state occupations sum to 1. The time step required to integrate (7.6) accu-
rately is much smaller than that used for the classical dynamics (6.2), so we linearly interpolate
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all relevant quantities during intermediate steps [85, 214].
The transition probability in (7.7) is evaluated at each classical time step. If a switch from

state i to j occurs at t = tn and Ej(qn) 6= Ei(qn), then we must adjust the momentum pn to
conserve total energy [214]. Similarly to Hammes–Schiffer and Tully [85], we set

pcorrn = pn − αdij(qn) (7.8)

and solve for α in light of (6.3)-(6.5), yielding the equation

1
2(dTG−1d)α2 − (pTG−1d)α+ (Ej − Ei) = 0 . (7.9)

Above, for notational simplicity, d = dij and all quantities are evaluated at t = tn or q = qn. If
Ej > Ei and momentum is insufficient to overcome the energy gap, i.e.

(pTG−1d)2 − 2(dTG−1d)(Ej − Ei) < 0, (7.10)

then we have a frustrated hop. In this case, we reflect momentum in the direction of d by setting

α = 2 p
TG−1d

dTG−1d
. (7.11)

If, however, the inequality in (7.10) is reversed and two solutions of (7.9) exist, we have

α =
(pTG−1d)±

√
(pTG−1d)2 − 2(dTG−1d)(Ej − Ei)

dTG−1d
(7.12)

and we take the “+” solution if pTG−1d < 0 and the “−” solution otherwise [85]. We then
proceed with the dynamics in (6.2) using V (q) = Ej(q), q = qn, and p = pcorrn .

7.1.2 Approximation of nonadiabatic couplings

The computation of dcartij in (7.2) is relatively costly, so we would like to avoid doing it at every
time step in the online phase. The Landau–Zener formula [116, 225, 230] is a popular approach
to computing the transition probability (7.7) because it avoids NACs and is derived from first
principles. However, the Landau–Zener formula is only applicable where the energy difference
Ei(q)−Ej(q) is at a local minimum along the trajectory q = q(t) [18, 207]. Another possibility
is to define custom diabatic wavefunctions that allow for easier evaluation of the NACs [37],
but such methods tend to be molecule-specific. We desire a general, molecule-blind method of
querying the transition probability at all time steps and not only those corresponding to a local
minimum of the energy difference along the trajectory.
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Many components of the coupling vector will peak sharply in a small region and be zero over
large portions of the design variable domain, behavior which is not amenable to interpolation
with globally defined basis functions. As a result, we compute dcartij in the offline phase at a list
of design variable values known mathematically to possess a space-filling property known as low
discrepancy [56, 151]. At every time point in the online phase, we approximate the NAC along
the simulation trajectory using the known coupling at the nearby space-filling points.

We obtain the space-filling points from the Sobol’ sequence [193], which is implemented in
Matlab and part of a class of sequences known as quasi-random. Such sequences are determin-
istic but fill a domain in much the same way that uniformly distributed random variables would.
However, the number of quasi-random points needed to fill a domain is much lower than that of
random variables. Quasi-random sequences are the core of quasi-Monte Carlo integration, which
has significantly faster convergence than fully stochastic Monte Carlo techniques [56, 151] and
is an active area of research [3, 75, 88, 142].

Using Matlab, we obtain a set of Sobol’ points {qsobolm } ⊂ [0, 1]d such that no point is more
than 0.02 away from its nearest neighbor. We then transform these points, in place, by converting
each component of qsobolm from [0, 1] to the corresponding physical domain (see Table 7.1). We
evaluate the Cartesian NACs (7.2) at the geometries X(qsobolm ), m = 1, . . . , Nsobol.

At time t = tn in the online phase, we approximate dcartij (qn) as the weighted average of all
dcartij (qsobolm ) within some user-adjustable radius R of qn. (For notational simplicity, we express
dependence of dcartij only on q.) We define the set

Sn(R) = {m ∈ N, 1 ≤ m ≤ Nsobol : ‖D−1(qsobolm − qn)‖2 ≤ R} , (7.13)

where D is a diagonal matrix with Dii being the length of the physical domain of component
qi. We include D to account for different length scales across components. If Sn(R) is empty,
then we use the nearest neighbor:

dcartij (qn) ≈ dcartij

(
arg min

1≤m≤Nsobol

‖D−1(qsobolm − qn)‖2

)
. (7.14)

Otherwise, we compute the weights

wm = bm∑
k∈Sn(R) bk

, m ∈ Sn(R),

bm = exp

(
− ‖D−1(qsobolm − qn)‖2

mink∈Sn(R) ‖D−1(qsobolk − qn)‖2

)
, m ∈ Sn(R),
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and take
dcartij (qn) ≈

∑
m∈Sn(R)

wm d
cart
ij (qsobolm ) . (7.15)

Lastly, we use Equation (7.4) and continue with the trajectory.
While this approach will be less accurate than exactly evaluating dij at each classical time

step, it will also be less costly since we perform only Nsobol evaluations of the NACs. In our exam-
ples, we have Nsobol = 10000, and with possibly thousands of members of a trajectory swarm, the
computational savings quickly become apparent. Furthermore, the maximum nearest-neighbor
distance of the Sobol points at most 0.02, so we have a robust set of data with which to com-
pute (7.15).

7.2 Results and discussion

In this section, we describe the simulation setup and present ab initio results for our test reaction:
the photodissociation of gaseous azomethane in a vacuum.

7.2.1 Electronic structure calculations

We perform ground-state density-functional theory (DFT) optimizations of azomethane at the
nodes of the mixed-basis grid in Gaussian 16 [73] at the B3LYP/6-311G* level of theory [15, 16,
112, 117, 198]. After each geometry optimization, we perform stability analysis [13] to determine
whether a closed- or open-shell wavefunction yields lower energy. If an instability is found, the
geometry is reoptimized. We use Orca v4.2.1 [149, 150] to compute S0 → S1 excitation energies
(TD-DFT) at the optimized ground-state geometries, as well as Hellmann–Feynman nonadia-
batic couplings at the Sobol’ points (CIS). We use the stability-tested wavefunction to compute
the NACs. We have included example input files for Gaussian and Orca in Appendix A.2. We
refine the sparse grid until the energy differences of the minima and transition states on the S0

surface are within ∼5% of their Gaussian-optimized value (Tables A.2 and A.3) and X(q) is
smoothly varying. The final mixed-basis grid has 7215 nodes.†

We have previously described the design variables q (Figure 6.2) in great detail in Chapter 6,
but we briefly reiterate them here. Table 7.1 summarizes the d = 5 design variables we use for
this study, chosen to capture rotation, inversion, and dissociation transition states and strongly
motivated by Cattaneo and Persico’s 2001 study [38]. A preliminary 1998 study by Cattaneo
and Persico [36] simplified the molecular geometry by treating the two methyl groups as point
masses, which unfortunately eliminated several high- and low-frequency normal modes [38]. We
opted to include the two methyl dihedrals not only to capture two of the low-frequency modes,
like Cattaneo and Persico’s 2001 study, but also to ensure smoothness of the interpolatedX(q).
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Table 7.1 List of design variables from Figure 6.2.

Label Structural coordinate Domain Periodic?
q1 C2–N2–N1–C1 torsion [−180, 180] deg Y
q2 N2–N1–C1–H torsion [−180, 180] deg Y
q3 N1–N2–C2–H′ torsion [−180, 180] deg Y
q4 N1–C1 distance [1.1, 2.5] Å N
q5 N2–N1–C1 angle [90, 270] deg N

As described in Chapter 6, since q5 can be linear or larger than 180◦, we must do internal
bookkeeping to encode the variables appropriately in an electronic structure program. Specifi-
cally, if q5 > 180, then we add q1 to 180◦ and subtract q5 from 360. Since the linear structure is
within the q5 domain, we also must take care to avoid multivalued geometries as q5 → 180. We
accomplish this by offsetting q2 by (q1 + 180) whenever q5 6= 180.

(a) (b)

Figure 7.1 (a) Mixed-basis S0 and S1 PESs (kcal/mol) with stability-checked wavefunctions. Energies
are relative to the optimized trans- structure. (b) PESs using restricted wavefunctions.

In Figure 7.1a, we show a slice of the mixed-basis S0 and S1 PESs constructed with stability
checks. Unlike previous work [36, 185], the unrestricted PES does not have a crossing seam, lead-
ing to small nonadiabatic coupling between the S0 and S1 surfaces. Indeed, we will demonstrate
this phenomenon in the following section with a surface hopping swarm; see Figures 7.2, 7.3c,
and 7.3e and associated discussion. To capture the crossing seam, we construct the S0 PES by
performing single-point energy calculations with restricted (closed-shell) wavefunctions at the
geometries that were optimized with stability checks. We do this because directly performing
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Figure 7.2 (a) First hopping times using unrestricted PESs and NACs. (b) State populations for the
same.

constrained optimizations with restricted wavefunctions yielded undesirable structures, in which
hydrogen atoms migrate between the C and N atoms. We show the resulting restricted S0 PES
in Figure 7.1b. For this PES, we compute the couplings using restricted wavefunctions only. We
did not observe meaningful changes in the S1 PES between the two cases. Therefore, in both
cases we employed the S1 PES constructed from the TD-DFT calculations using the restricted
S0 PES as a reference.

7.2.2 Surface hopping swarm

We sample 2000 initial geometries and momenta by running a reduced-dimensional Langevin
thermostat (Section 6.1.1) on the S0 PES at 298.15 K (γ = 0.01 fs−1), starting at the trans-
conformation. The experimental boiling point of azomethane at 1 atm is 273.45 K [63], which
ensures that we are in the gaseous regime. We integrate the Langevin equations for a burn-in
period of 10 ps and then sample every 20 fs to construct an ensemble of q0 and p0, similarly to
Cattaneo and Persico [36, 38].

For each ensemble member, we excite vertically to the S1 surface but keep q0 and p0 un-
changed. We integrate the classical dynamics (6.2) with a time step of ∆tc = 0.25 fs and the
quantum amplitudes (7.6) with ∆tq = 0.01 fs, up to 5 ps. The transition probabilities and mo-
menta adjustments (including for frustrated hops) are given in Section 7.1.1. We approximate
the NACs according to Section 7.1.2 using 10000 space-filling Sobol’ points† and the cutoff radius
R = 0.05. The computing environment is XSEDE Bridges-2 [158, 212], where each trajectory
receives 2 GB RAM and one core of an AMD EPYC 7742 CPU. All codes are freely available
on GitHub.1

We show the results of surface hopping with the unrestricted PES and couplings in Figure 7.2.
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Figure 7.3 Results using the restricted PESs and NACs. (a) Values of q1 at first hop. (b) Values of
q1 vs time of first hop. (c) Time of first S1 → S0 transition. (d) Lag between final S1 → S0 transition
and dissociation. (e) Populations of the S0/S1 states and undissociated molecules. (f) Values of q1 at
dissociation.

The median hopping time is 1760 fs, which is far larger than previous theoretical predictions
of 100–500 fs [36–38, 138, 183, 185]. Indeed, the S1 population persists even after 5000 fs (Fig-
ure 7.2b). Therefore, we now use the restricted S0 PES described in the previous section. We
compare the maximum elements of the NAC vectors between the two cases, and we find that
S0/S1 couplings are 20 times stronger for the restricted S0 surface than for the unrestricted S0

surface. We explain this observation by noting that the unrestricted S0 PES exhibits an avoided
crossing near q1 ≈ ±90, while the restricted S0 PES shows a crossing seam in the same region.

We show the results for the restricted PES in Figure 7.3. All trajectories dissociated within
5 ps (defined as q4 > 2.5 Å), and all dissociations occur on the S0 surface. From Figs. 7.3a
and 7.3b, we can see that the molecule is near the S0/S1 crossing seam (q1 ≈ ±90◦) when the
first hop occurs. The slight curvature in the swarms of Figure 7.3b reflects the geometry of the
molecule cycling through the minimum on the S1 surface. The median time of first hop is 276 fs
(Figure 7.3c), and the median lag time between final hop and dissociation is 224 fs (Figure 7.3d),
implying that dissociation happens relatively quickly after internal conversion (IC). We fit the
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S1 and nondissociated populations of Figure 7.3e to the exponential decay function

y = exp (−(t− t1)/t2) (7.16)

where t1 and t2 are the latency and decay times, respectively. The overall lifetime is τ = t1 + t2.
For the S1 population, we obtain t1 = 78 fs and t2 = 342 fs, yielding a lifetime of τ = 420 fs.
For the lifetime of the nondissociated molecule, we find t1 = 188 fs and t2 = 675 fs, yielding a
lifetime of τ = 863 fs. We note that the latency time of the nondissociated population decay
is smaller than the lifetime of the S1 population, again showing an overlap between the time
scales of IC and dissociation.

Figure 7.3f shows the values of q1 at dissociation. Upon dissociation, we find very few trajec-
tories in the vicinity of the crossing seam; most have relaxed into either cis- or trans- structures.
If, like Cattaneo and Persico [38], we define trans- as q1 ∈ [−180,−150] ∪ [150, 180) and cis- as
q1 ∈ [−30, 30] (for q5 < 180), then 31% of trajectories ended in trans and 37% in cis. This is
in agreement with the vibrational frequency of C–N–N–C torsion (290.90 cm−1), which yields a
period of 115 fs. Since dissociation occurs around 224 fs after the last hop (in the median), then
there is ample time to relax to the cis- or trans- conformations.

We also test the robustness of our method with respect parameter choices by altering various
values while holding all others constant: ∆tc = 0.05 fs, ∆tq = 0.001 fs; Nsobol = 5000; Nsobol =
1000; R = 0.20; R = 10−4 (forced nearest-neighbor); and R = 10−4, Nsobol = 1000. Here, R is
the radius in Equation (7.13). We display the results in Table 7.2. Our results also appear to be
consistent across parameter choices, with the exception of excessively large radius R. Refining
the time step does not significantly alter the results. Similarly, forcing the nearest-neighbor
NAC approximation (R = 10−4) does not cause a large change in the outputs. The nearest-
neighbor NAC approximation appears to comparable in accuracy to the weighted average—
without needing to compute exponential weights. Furthermore, if the evaluation of the NACs
in the offline phase is quite costly, these results indicate that one may use a smaller number of
Sobol’ points (Nsobol = 5000, d = 5) to obtain lifetimes in agreement with previous ab initio
studies. However, if Nsobol is too small, the accuracy tends to degrade somewhat (Nsobol = 1000
in our examples).

7.2.3 Discussion

The photochemical and thermal properties of azoalkanes have a long history of study [67, 179,
180, 185], particularly azomethane, as the simplest member of this class of compounds. This
wealth of prior work makes azomethane a desirable test system. Recent literature is in very good
agreement on the lifetime of azomethane in the S1 state: 70–100 fs (experimental) [55] and 100–
500 fs (theoretical) [36–38, 138, 183, 185]. The spread within theoretical results is largely due to
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Table 7.2 Comparison of results for various parameter modifications.

S1 time constants
Alteration t1 (fs) t2 (fs) τ (fs) Med. hop–dissoc. gap (fs)
None (baseline) 78 342 420 224
∆tc = 0.05, ∆tq = 0.001 108 285 393 232
Nsobol = 5000 119 324 443 232
Nsobol = 1000 140 407 547 241
R = 0.20 190 790 980 230
R = 10−4 109 290 399 236
Nsobol = 1000, R = 10−4 142 404 546 236

a variety of model chemistries and simulation parameters. Our computed least-squares lifetime
of τ = 420 fs, obtained with reduced-dimensional dynamics and a relatively simple underlying
model chemistry, is in excellent agreement with the previous theoretical results. Also, a series of
studies within the last three decades has established that the photodissociation of azomethane
happens stepwise in the S0 state [36, 38, 53, 55, 154]:

CH3NNCH3 → CH3NN · + CH3 · (7.17)

CH3NN · + CH3 · → N2 + 2CH3 · (7.18)

with the second dissociation very quickly (femtosecond-level) following the first. Because this
reaction mechanism is well-established, we include only one C–N bond length in our design
variables, focusing on the first step of the mechanism.

However, as noted by Sellner and coworkers [185], the time scale of dissociation following
S0 ← S1 de-excitation is the subject of interesting, unresolved debate. Dissociation occurs either
on a picosecond time-scale after relaxation to trans- or cis- conformations (statistical model), or
on a femtosecond time-scale shortly after de-excitation (impulsive model). Lee’s group observed
experimental results favoring the statistical model [30, 154], while the experimental findings
of Zewail’s group favor the impulsive model [53, 55]. As noted by Zewail’s group in Science,
many fast femtosecond-level reactions do in fact occur, though they violate Rice–Ramsperger–
Kassel–Marcus (RRKM) theory and the underlying assumption of statistical redistribution of
vibrational energy [54].

In spite of the split experimental findings, all recent ab initio simulations of azomethane
photodissociation favor the statistical model. Cattaneo and Persico [38] observed only 20% of
dissociations within 1 ps of initial S0 → S1 excitation, with 10% occurring before 400 fs and
almost none before 250 fs. The same study required 100 ps before 75% of trajectories dissociated.
Simulations from Lischka’s group [183, 185] using the Newton-X package [10] observed a small
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number of dissociations (∼5%) prior to 500 fs when additional vibrational quanta are added to
the torsional rotation. Without additional torsional bias, no dissociations occurred prior to 500
fs [183, 185].

Unlike previous ab initio studies, our results favor a dissociation time faster than the ∼ 1
ps prediction of the statistical model. Experimentally, Zewail’s group found a 70–100 fs rise
time of the CH3NN · fragment, clearly favoring the impulsive model. In our simulations, 50%
of trajectories dissociated within 700 fs of initial S0 → S1 excitation and 72% within 1 ps, so
subpicosecond dissociation is dominant. Moreover, our median time between the last hop and
dissociation is on the order of 200 fs; there are intermediate hops back to S1 before the trajectory
finally settles on S0. Though our results do not resolve the statistical–impulsive debate, they
provide evidence that the impulsive findings of Zewail’s group merit further study and could be
justifiable on ab initio grounds.
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CHAPTER

8

CONCLUSION

This dissertation has presented novel methodological developments within sparse grids as well
as novel applications to molecular dynamics (MD) simulations and potential energy surface
(PES) approximation. In Chapter 2, we began by discussing prior work on sparse grids for both
polynomial and trigonometric basis choices [11, 84, 155, 156, 206]. We worked upwards from one-
dimensional rules to sparse grids and presented exactness results and error estimates in both
cases. We then presented a dimensionally adaptive refinement algorithm for sparse trigonometric
interpolation that estimates the smoothness in each dimension based on the decay rates of the
interpolation coefficients [139]. We concluded by presenting mixed-basis interpolation method
that uses a tensor product of polynomial and trigonometric sparse grids, which can be applied
to functions of mixed periodicity.

Chapter 3 provided an overview of the Tasmanian sparse grid package [200], where the
author implemented sparse trigonometric interpolation and the adaptive refinement method. In
Chapter 4, we gave an introduction to quantum and computational chemistry, beginning with
exactly solvable problems and then discussing methods of approximating solutions to the many-
body Schrödinger equation. We concluded Chapter 4 with a discussion of density functional
theory (DFT), an immensely popular method for electronic structure calculations.

The remaining chapters described applications of sparse grids to different chemical systems.
In Chapter 5, we applied sparse trigonometric interpolation to a tungsten molecule and demon-
strate that the trigonometric basis accurately captures the periodicity of the PES gradient,
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while the polynomial basis does not. We showed additionally that the trigonometric interpolant
is more accurate than the polynomial interpolant.

In Chapter 6, we uses mixed polynomial–trigonometric interpolation on azomethane to
demonstrate the validity and practicality of mixed-basis interpolation. We constructed a mixed-
basis surrogate PES and used it in reduced-dimensional MD simulations [125]. We compared
this surrogate to an all-polynomial surrogate, the previous state of the art. We found that the
mixed-basis surrogate leads to energy conservation, whereas the all-polynomial surrogate clearly
fails to do so. In addition, the mixed-basis PES required fewer electronic structure calculations to
reach a given level of accuracy compared to the all-polynomial PES. In Chapter 7, we turned our
attention to nonadiabatic dynamics, which are important for light-induced phenomena following
photoexcitation. We presented a modification of Tully’s fewest-switches surface hopping (FSSH)
algorithm [85, 214] in a reduced-dimensional setting. We then combined interpolation-enabled
MD with an offline–online method of estimating expensive nonadiabatic coupling vectors.

The adaptive refinement algorithm presented in Chapter 2 is able to improve the convergence
rate of sparse trigonometric interpolation over isotropic refinement, and it learns the anisotropy
of the target function on the fly, without prior knowledge. The mixed-basis interpolant in Chap-
ter 6 demonstrates a way to preserve periodicity where needed and not impose periodicity where
it does not exist. As such, mixed-basis interpolation is applicable to a wider class of systems
than prior work, which either needed all-periodic design variables (trigonometric interpolation
in Chapter 5) or no periodic variables (if energy is to be conserved with polynomial interpo-
lation). Mixed-basis interpolation conserves the energy in a microcanonical ensemble within
chemically accepted metrics, whereas all-polynomial interpolation does not. Additionally, the
simulations with mixed-basis surrogates are much less computationally expensive. The surface
hopping algorithm presented in Chapter 7 is applicable in reduced-dimensional settings that are
less expensive than using the full-dimensional PES. Furthermore, the method of approximating
the nonadiabatic coupling vector with Sobol’ points provides a means of controlling the compu-
tational effort of a surface hopping simulation. We applied this approach to photodissociation
of azomethane and found that our method was able to reproduce experimental results that
have thus far eluded ab initio studies. In the future, this framework (combining sparse grids,
reduced-dimensional MD, and offline computation of nonadiabatic couplings) can be used to
study nonadiabatic dynamics in more complex molecules, such as those in solar cells [72, 129,
145].
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APPENDIX

A

SUPPORTING INFORMATION

A.1 Tungsten

A.1.1 Electronic structure calculations

Each ground-state geometry is optimized in Gaussian 16 [73]. The computing environment is
XSEDE Bridges [212]. Every node on Bridges has 128 GB RAM and two Intel Haswells with 14
cores each. Each Gaussian instance requests 14 cores and 16 GB RAM. The nodes and relative
energies1 for both interpolation bases are available in XLSX format.

The route section is as follows:

# opt=(Z-matrix,maxStep=5,MaxCycles=500,calcFC) b3lyp/gen nosymm
pseudo=cards scf=(vtl,xqc,maxconventionalcycles=512)

To find the stationary points and the corresponding energies in the “Results” section of the
article, we used the following route section:

# opt=(Z-matrix,maxStep=5,MaxCycles=500,calcALL) freq
b3lyp/gen nosymm pseudo=cards scf=(vtl,xqc,maxconventionalcycles=512)

1In kcal/mol with the global-minimum energy at 0
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For minima, we use no additional keywords. For saddle points, we use opt=(noeigentest, TS);
for maxima, we use opt=(noeigentest,Saddle=2).

We define the geometry with the following Z-matrix (x1 and x2 explicitly labeled):

W
W 1 A2B
X 1 A3B 2 A3A
X 1 A4B 2 A4A 3 A4D
X 2 A5B 1 A5A 3 x1
X 2 A6B 1 A6A 5 A6D
C 3 A7B 1 A7A 2 A7D
C 7 A8B 3 A8A 1 A8D
C 8 A9B 7 A9A 3 A9D
C 9 A10B 8 A10A 7 A10D
C 10 A11B 9 A11A 8 A11D
H 7 A12B 8 A12A 9 A12D
H 8 A13B 9 A13A 10 A13D
H 9 A14B 10 A14A 11 A14D
H 10 A15B 11 A15A 7 A15D
H 11 A16B 7 A16A 8 A16D
C 5 A17B 2 A17A 1 x2
C 17 A18B 5 A18A 2 A18D
C 18 A19B 17 A19A 5 A19D
C 19 A20B 18 A20A 17 A20D
C 20 A21B 19 A21A 18 A21D
H 17 A22B 18 A22A 19 A22D
H 18 A23B 19 A23A 20 A23D
H 19 A24B 20 A24A 21 A24D
H 20 A25B 21 A25A 17 A25D
H 21 A26B 17 A26A 18 A26D
C 6 A27B 2 A27A 1 A27D
C 27 A28B 6 A28A 2 A28D
C 28 A29B 27 A29A 6 A29D
O 27 A30B 28 A30A 29 A30D
O 28 A31B 29 A31A 27 A31D
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O 29 A32B 27 A32A 28 A32D
C 4 A33B 1 A33A 2 A33D
C 33 A34B 4 A34A 1 A34D
C 34 A35B 33 A35A 4 A35D
O 33 A36B 35 A36A 34 A36D
O 34 A37B 35 A37A 33 A37D
O 35 A38B 33 A38A 34 A38D

We use the following frozen variables in the optimizations:

x1 180.00000000
A7B 1.25000018
A8A 55.74675452
A9D 0.03089568
A17B 1.25000028
x2 0.00000000
A18A 56.62702009
A19D -0.14060370
A27B 1.40245011
A28A 36.77258089
A29D -5.66520328
A33B 1.88220570
A34A 22.52656874
A35D 7.19375855

The values above are for the specimen node (x1, x2) = (180, 0). Importantly, for the comparison
of stationary points between DFT and the surrogates, we do not freeze x1 and x2 in the DFT
calculations. We employed four dummy atoms (X) to define the Z-matrix. To eliminate the
additional 4 · 3 = 12 degrees of freedom, additional constraints were introduced into the Z-
matrix. Because exactly three constraints were introduced for each dummy atom with respect
to three carbon atoms, no additional constraints were applied to other atoms.

Note that in principle the constraints applied to dummy atoms do not prevent the distortion
of Cp rings to be coupled to the rotation of Cp ring along the x2 coordinate. However, we did
not observe any significant geometry changes of Cp rings during geometry relaxations. As a
result, the dummy atoms X1 and X3 always remain close to the center of Cp rings, which makes
the coordinates x1 and x2 good approximations for the rotation of the [W(Cp)(CO)3] monomer
and the rotation of one of the Cp rings.
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Finally, we have the basis set footer at the end of the input file:

W 0
sdd
****
O C H 0
3-21G
****

W 0
sdd

A.1.2 Comparison of DFT with crystal structure

In Table A.1, we compare selected structural parameters for [W(Cp)(CO)3]2 complex obtained
at the B3LYP/(SDD,3-21G) level of theory with the crystal structure [26]. The angle bracket,
〈·〉, represents the average value of structural parameters of the same type. R(W−CCp) and
R(W−CCO) denote the W–C bond lengths for C in the Cp ring and CO groups, respectively.
〈θ(H−C−W−W)〉 represents the average of θ(H1−C1−W1−W2) and θ(H2−C2−W2−W1),
and 〈θ(C−W−W−C)〉 is the average of 〈θ(C1−W1−W2−C4)〉 and 〈θ(C2−W2−W1−C3)〉. All
atoms are labeled in the same way as in Figure 3 of Chapter 5. The crystal structure agrees
closely with the optimized global minimum from Gaussian, indicating that our model chemistry
is suitably accurate.
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Crystal structure Optimized structure

R(W1−W2) [Å] 3.22 3.29

〈R(W−CCp)〉 [Å] 2.34 2.42

〈R(W−CCO)〉 [Å] 1.98 1.99

θ(C1−W1−W2−C2) [deg] 180.0 180.0

〈θ(H−C−W−W)〉 [deg] 3.9 0.0

θ(C3−W1−W2−C4) [deg] 180.0 180.0

〈θ(C−W−W−C)〉 [deg] 2.4 0.0

Table A.1 Comparison of crystal structure with optimized structure at B3LYP/(SDD,
3-21G) level of theory.

A.2 Azomethane

A.2.1 Details of electronic structure calculations

All electronic structure calculations occur in Gaussian 16. Each optimization requests 16 cores
and 32GB RAM. We have included two example input files, corresponding to a linear and
nonlinear structure. The difference between the two is that the modredundant section includes
the L keyword for linear structures, while for nonlinear structures, L is replaced by A and D.

All calculations of excitation energies and nonadiabatic coupling vectors occur in Orca as
some of them employ open-shell ground state as a reference, for which the TD-DFT implemen-
tation in Orca is more suitable.
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A.2.1.1 Example 1: linear structure

%chk=chkfiles/scan_zmat_1.chk
%mem=32GB
%nprocshared=16
# stable=opt b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none

azomethane stability 1

0 1
N 0.00000000 0.00000000 0.00000000
N 1.21001503 0.00000000 0.00000000
C 1.94413820 1.36087129 0.00000000
C -1.80000000 0.00000000 0.00000000
H 3.01529271 1.16666079 0.00000000
H 1.65967212 1.92152238 -0.89311136
H 1.65967124 1.92152000 0.89311218
H -2.30534096 0.96713099 0.00000000
H -1.92067884 -0.57054140 -0.90903927
H -1.92068356 -0.57054030 0.90903849

--Link1--
%chk=chkfiles/scan_zmat_1.chk
%mem=32GB
%nprocshared=16
# opt=(newton,tight,modredundant,maxstep=1,calcall,maxcycles=30)
geom=check guess=read b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none

azomethane opt 1

0 1

B 1 4 F
D 1 2 3 5 F
L 2 1 4 3 F
D 8 4 1 3 F

--Link1--
%chk=chkfiles/scan_zmat_1.chk
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%mem=32GB
%nprocshared=16
# stable=opt geom=check guess=read b3lyp/6-311g(d) pop=always
integral=grid=ultrafine scf=(xqc,vtl,maxconventionalcycles=512)
symmetry=none

azomethane stability 2

0 1

--Link1--
%chk=chkfiles/scan_zmat_1.chk
%mem=32GB
%nprocshared=16
# opt=(newton,tight,modredundant,maxstep=1,calcall,maxcycles=30) freq
guess=read geom=check b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none

azomethane opt 2

0 1

--Link1--
%chk=chkfiles/scan_zmat_1.chk
%mem=32GB
%nprocshared=16
# stable=opt geom=check guess=read b3lyp/6-311g(d) pop=always
integral=grid=ultrafine scf=(xqc,vtl,maxconventionalcycles=512)
symmetry=none

azomethane stability 3

0 1
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A.2.1.2 Example 2: nonlinear structure

%chk=chkfiles/scan_zmat_2.chk
%mem=32GB
%nprocshared=16
# stable=opt b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none

azomethane stability 1

0 1
N 0.00000000 0.00000000 0.00000000
N 1.23874400 0.00000000 0.00000000
C 1.80434700 1.38280600 0.00000000
C 0.00000000 -1.80000000 0.00000000
H 2.89084000 1.30705300 0.00000000
H 1.47283200 1.92607900 -0.88854700
H 1.47283200 1.92607900 0.88854700
H -1.02105000 -2.18591100 0.00000000
H 0.54010800 -2.04428300 -0.90535200
H 0.54010800 -2.04428300 0.90535200

--Link1--
%chk=chkfiles/scan_zmat_2.chk
%mem=32GB
%nprocshared=16
# opt=(newton,modredundant,maxstep=1,calcall,maxcycles=30) geom=check
guess=read b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none

azomethane opt 1

0 1

B 1 4 F
D 1 2 3 5 F
D 4 1 2 3 F
A 2 1 4 F
D 8 4 1 2 F

--Link1--
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%chk=chkfiles/scan_zmat_2.chk
%mem=32GB
%nprocshared=16
# stable=opt geom=check guess=read b3lyp/6-311g(d) pop=always
integral=grid=ultrafine scf=(xqc,vtl,maxconventionalcycles=512)
symmetry=none

azomethane stability 2

0 1

--Link1--
%chk=chkfiles/scan_zmat_2.chk
%mem=32GB
%nprocshared=16
# opt=(newton,modredundant,maxstep=1,calcall,maxcycles=30) freq
guess=read geom=check b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none

azomethane opt 2

0 1

--Link1--
%chk=chkfiles/scan_zmat_2.chk
%mem=32GB
%nprocshared=16
# stable=opt geom=check guess=read b3lyp/6-311g(d) pop=always
integral=grid=ultrafine scf=(xqc,vtl,maxconventionalcycles=512)
symmetry=none

azomethane stability 3

0 1
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A.2.1.3 Example 3: excited states

The Orca input file azo.inp (with stability checks) is shown below:

!B3LYP 6-311g(d) TightSCF
%CIS

HFNacme true
END
%SCF

MaxIter 100
HFType UHF
STABPerform true

END
%TDDFT

NROOTS 10
END
* xyzfile 0 1 geomfiles/azo.xyz

The file geomfiles/azo.xyz contains the geometry specified in Cartesian coordinates:

10
azomethane
N 0.00000000 0.00000000 0.00000000
N 1.22915061 0.00000000 0.00000000
C 1.87275627 1.37687217 0.00000000
C -1.61279073 0.01401353 -0.00653607
H 2.62923902 1.39536387 -0.79264170
H 1.13534982 2.18398066 -0.12897983
H 2.39160980 1.47760052 0.95776512
H -1.88615071 0.21731351 1.02800251
H -1.91964069 0.83289353 -0.66933412
H -1.97129227 -0.96664721 -0.33283514
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A.2.2 Final refinement

Table A.2 shows the parameters used in the grids after all refinement was completed. Table A.3
contains the stationary points and energies (relative to the trans- minimum on a particular
surface) for the grids specified in Table A.2. The energy relative to the global minimum is
within ∼5% or 1 kcal/mol of the Gaussian-optimized value. Furthermore, since the predicted
mixed-basis energies are all smaller than the Gaussian-optimized values, the relative barriers in
the mixed-basis surrogate remain comparable.

Trig grid Polynomial grid

Mixed basis
d = 3 d = 2
L = 5 L = 8

α = (1, 2, 2) α = 1

All polynomial
— d = 5
— L = 12
— α = 1

Table A.2 Specification of final grids.
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Structure Surrogate Optimized q ∆E (kcal/mol)

trans- minimum
Gaussian [180.00, 122.20, 122.20, 1.46, 113.00] 0
mixed [−179.71, 121.91, 121.84, 1.46, 116.06] 0

polynomial [−179.63, 137.91,−155.80, 1.47, 113.16] 0

cis- minimum
Gaussian [0.00,−119.38,−60.33, 1.48, 120.21] 10.48
mixed [0.95,−118.43,−50.84, 1.49, 124.18] 9.57

polynomial [1.29,−121.79,−63.01, 1.48, 119.32] 10.11

Inversion TS
Gaussian [−180.00,−97.52, 121.18, 1.39, 180.00] 51.02
mixed [−92.16, 123.10, 121.72, 1.40, 180.00] 50.12

polynomial [−171.02,−107.46, 121.35, 1.39, 175.84] 49.49

Torsion TS
Gaussian [−89.50, 145.77, 55.27, 1.47, 117.79] 45.71
mixed [−87.46, 138.92, 141.04, 1.46, 118.78] 43.16

polynomial [−88.54, 138.50, 7.08, 1.47, 114.54] 47.80

Table A.3 Locations of minima and transition states, as well as energy barriers relative to the trans-
minimum on a given PES.
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APPENDIX

B

CODES

B.1 MD Codes: User’s Guide

This purpose of this section is to describe how to use the reduced-dimensional MD codes as well
as the backend software to populate the nodes.

The first step is to install Tasmanian, described in Section 3.1 and at https://tasmanian.
ornl.gov/ (online manual under “Manual” tab). Skilled Unix users may want to use the cmake
build options; other users are encouraged to use the basic install.sh script or pip. Regardless
of the installation option, make sure that the Matlab wrapper is enabled. All codes have been
verified to work with Tasmanian v7.1 and Python 3.8 (Anaconda). After installing Tasmanian,
add the installation directory to your Python and Matlab paths as described in Section 3.1.

Next, clone the Github repository for Chapter 6: https://github.com/zbmorrow/mixed_
basis_rrmd/. In the terminal, navigate into your local copy and type the following commands:

cd examples
python md_rrSurf_mixed.py 1 100 0.5
python md_rrSurf_poly.py 1 100 0.5
python md_rrSurf_thermo.py 1 100 0.5

156

https://tasmanian.ornl.gov/
https://tasmanian.ornl.gov/
https://github.com/zbmorrow/mixed_basis_rrmd/
https://github.com/zbmorrow/mixed_basis_rrmd/


Do not be concerned if md_rrSurf_poly.py takes longer than the other two codes. These com-
mands will run the examples with the trajectory index set to 1, the initial/target temperature
set to 100 Kelvin, and the final time set to 0.5 fs. The default input values are (respectively) 1,
298.15 K, and 2.5 ps (NVE) or 20 ps (Langevin thermostat). The trajectory index keeps track
of each specific member of the swarm. In the src folder, rrmd_core.py contains MD-specific
functions, while interpolation backend functions are stored in rrmd_math_utils.py.

Lastly, clone the Github repository for the backend software: https://github.ncsu.edu/
zbmorrow/populate_nodes/. This repository contains the codes to generate the mixed-basis
grid, create Gaussian input files for each node, harvest energies, and plot the interpolant. Mat-

lab, the bash shell, and the pcregrep command-line package are required on the local machine;
access to Gaussian is necessary to run the input files.

To have a broad example base, this repository uses 2-butene as the molecule of interest. The
design variables are the C3–C1–C2–C4 torsion angle (q1) and the C1–C2 bond length (q2). To
replicate the work-flow, use the following process:

1. Create the directories infiles, logfiles, chkfiles, and seedfiles if they do not exist.

2. In the seedfiles directory, create a template Gaussian input file with the design variables
declared as FOO 0.0 on their respective lines. An example, scan_zmat.gjf, is already
there. This file is molecule-specific.

3. Generate the grid by running gen_grid.m.While not molecule-specific, the grid will
change if you do any refinement.

4. Make the Gaussian input files by typing bash gen_jobs.sh into the terminal. This will
automatically replace the frozen variables in the template input file with the node values
at the grid. This file is molecule-specific.

5. Upload your local project folder to the computing environment where you will run Gaus-
sian.

6. Run the electronic structure calculations and label the output files with the same index
as the corresponding input file. The script run_jobs.sh will do this for you on NCSU
Henry2. Be sure that infiles, logfiles, chkfiles, and seedfiles exist in the remote
submit folder where run_jobs.sh lives.

7. Download the finished logfiles directory from the cluster to your local project folder.
Navigate back to the project folder, and type bash extract_energies.sh in your local
terminal.

8. Run plot_interp.m to plot the interpolant.
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Though this repository does not address how to harvest the data for the Cartesian mapping
function X(q), pre-existing codes will do the job. For example, to apply the transformations in
Section 6.2.2, we used prepare_files_c2z.py, located in the surface_dynamic repository at

src/utilities/data_prepare/prepare_files_c2z.py

This will store the geometries for each node in Z-matrix format. From there, we used azomethane-
specific code to convert back to Cartesian coordinates systematically, placing N1 at the origin,
N2 on the positive x-axis, and C2 in Quadrant I of the xy-plane.

B.2 Tasmanian

B.2.1 Interface examples

B.2.1.1 Python

In this example, we interpolate f(x1, x2) = x1 sin(x2) on [−2, 5] × [−10, 10] in the Python
interface. We will use a global grid with the Clenshaw–Curtis points, the isotropic Smolyak
tensor space, L = 4, d = 2, and one output dimension on the interval using the Python interface.
We will also evaluate this grid at the points [0.5, 0.2] and [1.5, 7].

From the Tasmanian manual [200], the user may look up the keyword that corresponds to
the tensor-selection strategy for Θ. In our case, “level” is the classical Smolyak space.

In Python:

import sys

sys.path.append("<tasmanian-install-directory>/share/Tasmanian/python")
import Tasmanian as tsg

import numpy as np

grid = tsg.SparseGrid()
grid.makeGlobalGrid(2,1,4,"level","clenshaw-curtis")

# set the domain to [-2,5] x [-10,10]
grid.setDomainTransform(np.array([[-2,5],[-10,10]]))

nodes = grid.getNeededPoints()
fvals = nodes[:,0] * np.sin(nodes[:,1]) # generate data
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# reshape so that col dim is explicitly 1
fvals = np.reshape(fvals, (-1,1))

grid.loadNeededPoints(fvals)
y = grid.evaluateBatch(np.array([[0.5,0.2],[-1.5,7]]))

B.2.1.2 MATLAB

We repeat the above example with the Matlab interface. We first verify the ordering of the
input arguments:

help tsgMakeGlobal

The Matlab code is as follows:

addpath('<tasmanian-install-directory>/share/Tasmanian/matlab');
[example_grid, nodes] =

tsgMakeGlobal('thesis_example',2,1,'clenshaw-curtis','level', 4, [-2, 5;
-10, 10]);

↪→

↪→

fvals = nodes(:,1) .* sin(nodes(:,2)); % generate data
tsgLoadValues(example_grid, fvals); % load data
y = tsgEvaluate(example_grid, [0.5, 0.2; -1.5, 7]); % evaluate
tsgDeleteGrid(example_grid); % remove temp files from MATLAB folder
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B.2.2 Source code for trigonometric grids

• Git commit hash for this version: cce29011e624d798fd66731ed970397ab8525469

• Pull requests on Tasmanian GitHub with my commit history: 39, 50, 51, 56, 68, 74, 102,
104, 105, 110, 122, 292, 296–303, 420, 562

B.2.2.1 tsgGridFourier.hpp (version as of Aug 9, 2018)

1 /*
2 * Copyright (c) 2017, Miroslav Stoyanov
3 *
4 * This file is part of
5 * Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
6 *
7 * Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:↪→

8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.↪→

10 *
11 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions↪→

12 * and the following disclaimer in the documentation and/or other materials provided with the
distribution.↪→

13 *
14 * 3. Neither the name of the copyright holder nor the names of its contributors may be used to

endorse↪→

15 * or promote products derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS

OR IMPLIED WARRANTIES,↪→

18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED.↪→

19 * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY,↪→

20 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA,↪→

21 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY,↪→

22 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.↪→

23 *
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24 * UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL
WARRANTIES, BOTH EXPRESSED AND IMPLIED.↪→

25 * THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,↪→

26 * COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE
INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.↪→

27 * THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF
ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,↪→

28 * IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
29 */
30

31 #ifndef __TASMANIAN_SPARSE_GRID_FOURIER_HPP
32 #define __TASMANIAN_SPARSE_GRID_FOURIER_HPP
33

34 #include <cstdlib>
35 #include <math.h>
36 #include <complex>
37

38 #include "tsgEnumerates.hpp"
39 #include "tsgIndexSets.hpp"
40 #include "tsgCoreOneDimensional.hpp"
41 #include "tsgIndexManipulator.hpp"
42 #include "tsgLinearSolvers.hpp"
43 #include "tsgOneDimensionalWrapper.hpp"
44 #include "tsgGridCore.hpp"
45

46 #include "tsgAcceleratedDataStructures.hpp"
47

48 namespace TasGrid{
49

50 class GridFourier : public BaseCanonicalGrid {
51 public:
52 GridFourier();
53 GridFourier(const GridFourier &fourier);
54 ~GridFourier();
55

56 void write(std::ofstream &ofs) const;
57 void read(std::ifstream &ifs, std::ostream *logstream = 0);
58

59 void writeBinary(std::ofstream &ofs) const;
60 void readBinary(std::ifstream &ifs, std::ostream *logstream = 0);
61
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62 void makeGrid(int cnum_dimensions, int cnum_outputs, int depth, TypeDepth type,
const int* anisotropic_weights = 0, const int* level_limits = 0);↪→

63 void copyGrid(const GridFourier *fourier);
64

65 void setTensors(IndexSet* &tset, int cnum_outputs);
66 int* referenceExponents(const int levels[], const IndexSet *list);
67

68 int getNumDimensions() const;
69 int getNumOutputs() const;
70 TypeOneDRule getRule() const;
71

72 int getNumLoaded() const;
73 int getNumNeeded() const;
74 int getNumPoints() const; // returns the number of loaded points unless no

points are loaded, then returns the number of needed points↪→

75

76 void loadNeededPoints(const double *vals, TypeAcceleration acc = accel_none);
77

78 void getLoadedPoints(double *x) const;
79 void getNeededPoints(double *x) const;
80 void getPoints(double *x) const; // returns the loaded points unless no points

are loaded, then returns the needed points↪→

81

82 void getInterpolationWeights(const double x[], double weights[]) const;
83

84 void getQuadratureWeights(double weights[]) const;
85

86 void evaluate(const double x[], double y[]) const;
87 void evaluateBatch(const double x[], int num_x, double y[]) const;
88

89 void evaluateFastCPUblas(const double x[], double y[]) const;
90 void evaluateFastGPUcublas(const double x[], double y[], std::ostream *os)

const;↪→

91 void evaluateFastGPUcuda(const double x[], double y[], std::ostream *os) const;
92 void evaluateFastGPUmagma(int gpuID, const double x[], double y[], std::ostream

*os) const;↪→

93

94 void evaluateBatchCPUblas(const double x[], int num_x, double y[]) const;
95 void evaluateBatchGPUcublas(const double x[], int num_x, double y[],

std::ostream *os) const;↪→

96 void evaluateBatchGPUcuda(const double x[], int num_x, double y[], std::ostream
*os) const;↪→
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97 void evaluateBatchGPUmagma(int gpuID, const double x[], int num_x, double y[],
std::ostream *os) const;↪→

98

99 void integrate(double q[], double *conformal_correction) const;
100

101 void evaluateHierarchicalFunctions(const double x[], int num_x, double y[])
const;↪→

102 void evaluateHierarchicalFunctionsInternal(const double x[], int num_x, double
M_real[], double M_imag[]) const;↪→

103 void setHierarchicalCoefficients(const double c[], TypeAcceleration acc,
std::ostream *os);↪→

104

105 void clearAccelerationData();
106 void clearRefinement();
107 void mergeRefinement();
108

109 const int* getPointIndexes() const;
110 const IndexSet* getExponents() const;
111 const double* getFourierCoefs() const;
112

113 protected:
114 void reset();
115 void calculateFourierCoefficients();
116

117 int convertIndexes(const int i, const int levels[]) const;
118

119 template<bool interwoven>
120 void computeExponentials(const double x[], double w[]) const{
121 std::complex<double> unit_imag(0.0,1.0);
122 std::complex<double> **cache = new

std::complex<double>*[num_dimensions];↪→

123 int *middles = new int[num_dimensions];
124 for (int j=0; j<num_dimensions; j++){
125 int num_level_points = wrapper->getNumPoints(max_levels[j]);
126 int middle = (num_level_points - 1)/2;
127 middles[j] = middle;
128 cache[j] = new std::complex<double>[num_level_points];
129 cache[j][middle] = std::complex<double>(1.0,0.0);
130 if (num_level_points > 1){
131 cache[j][middle+1] = std::exp(2*M_PI*unit_imag*x[j]);
132 for (int i=middle+2; i<num_level_points; i++){
133 cache[j][i] = cache[j][middle+1] *

cache[j][i-1];↪→
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134 }
135

136 cache[j][middle-1] = std::conj(cache[j][middle+1]);
137 for (int i=middle-2; i>=0; i--){
138 cache[j][i] = cache[j][middle-1] *

cache[j][i+1];↪→

139 }
140 }
141 }
142

143 IndexSet *work = (points == 0 ? needed : points);
144 int num_points = work->getNumIndexes();
145

146 for (int i=0; i<num_points; i++){
147 std::complex<double> basis_entry(1.0,0.0);
148 for (int j=0; j<num_dimensions; j++) basis_entry *=

cache[j][exponents->getIndex(i)[j] + middles[j]];↪→

149 if (interwoven){
150 w[2*i] = basis_entry.real();
151 w[2*i + 1] = basis_entry.imag();
152 }else{
153 w[i] = basis_entry.real();
154 w[i + num_points] = basis_entry.imag();
155 }
156 }
157

158 for (int j=0; j<num_dimensions; j++) { delete[] cache[j]; }
159 delete[] cache;
160 delete[] middles;
161 }
162

163 private:
164 int num_dimensions, num_outputs;
165

166 OneDimensionalWrapper *wrapper;
167

168 IndexSet *tensors;
169 IndexSet *active_tensors;
170 int *active_w;
171 int *max_levels;
172 IndexSet *points;
173 IndexSet *needed;
174 IndexSet *exponents;
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175

176 double *fourier_coefs;
177 int **exponent_refs;
178 int **tensor_refs;
179

180 StorageSet *values;
181

182 mutable BaseAccelerationData *accel;
183

184 };
185

186 }
187

188 #endif
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B.2.2.2 tsgGridFourier.cpp (version as of Aug 9, 2018)

1 /*
2 * Copyright (c) 2017, Miroslav Stoyanov
3 *
4 * This file is part of
5 * Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
6 *
7 * Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:↪→

8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.↪→

10 *
11 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions↪→

12 * and the following disclaimer in the documentation and/or other materials provided with the
distribution.↪→

13 *
14 * 3. Neither the name of the copyright holder nor the names of its contributors may be used to

endorse↪→

15 * or promote products derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS

OR IMPLIED WARRANTIES,↪→

18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED.↪→

19 * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY,↪→

20 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA,↪→

21 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY,↪→

22 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.↪→

23 *
24 * UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL

WARRANTIES, BOTH EXPRESSED AND IMPLIED.↪→

25 * THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,↪→

26 * COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE
INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.↪→
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27 * THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF
ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,↪→

28 * IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
29 */
30

31 #ifndef __TASMANIAN_SPARSE_GRID_FOURIER_CPP
32 #define __TASMANIAN_SPARSE_GRID_FOURIER_CPP
33

34 #include "tsgGridFourier.hpp"
35 #include "tsgHiddenExternals.hpp"
36

37 namespace TasGrid{
38

39 GridFourier::GridFourier() : num_dimensions(0), num_outputs(0), wrapper(0), tensors(0),
active_tensors(0), active_w(0),↪→

40 max_levels(0), points(0), needed(0), exponents(0), fourier_coefs(0), exponent_refs(0),
tensor_refs(0), values(0), accel(0)↪→

41 {}
42

43 GridFourier::GridFourier(const GridFourier &fourier) : num_dimensions(0),
num_outputs(0), wrapper(0), tensors(0), active_tensors(0),↪→

44 active_w(0), max_levels(0), points(0), needed(0), exponents(0), fourier_coefs(0),
exponent_refs(0), tensor_refs(0), values(0), accel(0){↪→

45 copyGrid(&fourier);
46 }
47

48 GridFourier::~GridFourier(){ reset(); }
49

50 void GridFourier::write(std::ofstream &ofs) const{
51 ofs << std::scientific; ofs.precision(17);
52 ofs << num_dimensions << " " << num_outputs << endl;
53 if (num_dimensions > 0){
54 tensors->write(ofs);
55 active_tensors->write(ofs);
56 ofs << active_w[0];
57 for(int i=1; i<active_tensors->getNumIndexes(); i++){
58 ofs << " " << active_w[i];
59 }
60 ofs << endl;
61 if (points == 0){
62 ofs << "0" << endl;
63 }else{
64 ofs << "1 ";
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65 points->write(ofs);
66 }
67 if (needed == 0){
68 ofs << "0" << endl;
69 }else{
70 ofs << "1 ";
71 needed->write(ofs);
72 }
73 ofs << max_levels[0];
74 for(int j=1; j<num_dimensions; j++){
75 ofs << " " << max_levels[j];
76 }
77 ofs << endl;
78 if (num_outputs > 0){
79 values->write(ofs);
80 if (fourier_coefs != 0){
81 ofs << "1";
82 for(int i=0; i < 2*num_outputs*getNumPoints(); i++){
83 ofs << " " << fourier_coefs[i];
84 }
85 }else{
86 ofs << "0";
87 }
88 }
89

90 /* not needed right now; will need later for refinement
91 if (updated_tensors != 0){
92 ofs << "1" << endl;
93 updated_tensors->write(ofs);
94 updated_active_tensors->write(ofs);
95 ofs << updated_active_w[0];
96 for(int i=1; i<updated_active_tensors->getNumIndexes(); i++){
97 ofs << " " << updated_active_w[i];
98 }
99 }else{

100 ofs << "0";
101 }
102 */
103

104 ofs << endl;
105 }
106 }
107

168



108 void GridFourier::read(std::ifstream &ifs, std::ostream *logstream){
109 reset();
110 ifs >> num_dimensions >> num_outputs;
111 if (num_dimensions > 0){
112 int flag;
113

114 tensors = new IndexSet(num_dimensions); tensors->read(ifs);
115 active_tensors = new IndexSet(num_dimensions);

active_tensors->read(ifs);↪→

116 active_w = new int[active_tensors->getNumIndexes()]; for(int i=0;
i<active_tensors->getNumIndexes(); i++){ ifs >> active_w[i]; }↪→

117 ifs >> flag; if (flag == 1){ points = new IndexSet(num_dimensions);
points->read(ifs); }↪→

118 ifs >> flag; if (flag == 1){ needed = new IndexSet(num_dimensions);
needed->read(ifs); }↪→

119 max_levels = new int[num_dimensions]; for(int j=0; j<num_dimensions;
j++){ ifs >> max_levels[j]; }↪→

120

121 IndexSet *work = (points != 0) ? points : needed;
122

123 if (num_outputs > 0){
124 values = new StorageSet(0, 0); values->read(ifs);
125 ifs >> flag;
126 if (flag == 1){
127 fourier_coefs = new double[2 * num_outputs *

work->getNumIndexes()];↪→

128 for(int i=0; i<2*num_outputs*work->getNumIndexes();
i++){↪→

129 ifs >> fourier_coefs[i];
130 }
131 }else{
132 fourier_coefs = 0;
133 }
134 }
135

136 IndexManipulator IM(num_dimensions);
137 int oned_max_level = max_levels[0];
138 int nz_weights = active_tensors->getNumIndexes();
139 for(int j=1; j<num_dimensions; j++){ if (oned_max_level <

max_levels[j]) oned_max_level = max_levels[j]; }↪→

140

141 OneDimensionalMeta meta(0);
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142 wrapper = new OneDimensionalWrapper(&meta, oned_max_level,
rule_fourier, 0.0, 0.0, logstream);↪→

143

144 UnsortedIndexSet *exponents_unsorted = new
UnsortedIndexSet(num_dimensions, work->getNumIndexes());↪→

145 int *exponent = new int[num_dimensions];
146

147 for (int i=0; i<work->getNumIndexes(); i++){
148 for(int j=0; j<work->getNumDimensions(); j++){
149 exponent[j] = (work->getIndex(i)[j] % 2 == 0 ?

-work->getIndex(i)[j]/2 :
(work->getIndex(i)[j]+1)/2);

↪→

↪→

150 }
151 exponents_unsorted->addIndex(exponent);
152 }
153

154 exponents = new IndexSet(exponents_unsorted);
155 delete[] exponent;
156 delete exponents_unsorted;
157

158 exponent_refs = new int*[nz_weights];
159 tensor_refs = new int*[nz_weights];
160 #pragma omp parallel for schedule(dynamic)
161 for(int i=0; i<nz_weights; i++){
162 exponent_refs[i] =

referenceExponents(active_tensors->getIndex(i), exponents);↪→

163 tensor_refs[i] =
IM.referenceNestedPoints(active_tensors->getIndex(i),
wrapper, work);

↪→

↪→

164 }
165 work = 0;
166 }
167 }
168

169 void GridFourier::writeBinary(std::ofstream &ofs) const{
170 int num_dim_out[2];
171 num_dim_out[0] = num_dimensions;
172 num_dim_out[1] = num_outputs;
173 ofs.write((char*) num_dim_out, 2*sizeof(int));
174 if (num_dimensions > 0){
175 tensors->writeBinary(ofs);
176 active_tensors->writeBinary(ofs);
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177 ofs.write((char*) active_w, active_tensors->getNumIndexes() *
sizeof(int));↪→

178 char flag;
179 if (points == 0){
180 flag = 'n'; ofs.write(&flag, sizeof(char));
181 }else{
182 flag = 'y'; ofs.write(&flag, sizeof(char));
183 points->writeBinary(ofs);
184 }
185 if (needed == 0){
186 flag = 'n'; ofs.write(&flag, sizeof(char));
187 }else{
188 flag = 'y'; ofs.write(&flag, sizeof(char));
189 needed->writeBinary(ofs);
190 }
191 ofs.write((char*) max_levels, num_dimensions * sizeof(int));
192

193 if (num_outputs > 0){
194 values->writeBinary(ofs);
195 if (fourier_coefs != 0){
196 flag = 'y'; ofs.write(&flag, sizeof(char));
197 ofs.write((char*) fourier_coefs, 2 * getNumPoints() *

num_outputs * sizeof(double));↪→

198 }else{
199 flag = 'n'; ofs.write(&flag, sizeof(char));
200 }
201 }
202

203 /* don't need this right now; will need later when refinement is added
204 if (updated_tensors != 0){
205 flag = 'y'; ofs.write(&flag, sizeof(char));
206 updated_tensors->writeBinary(ofs);
207 updated_active_tensors->writeBinary(ofs);
208 ofs.write((char*) updated_active_w,

updated_active_tensors->getNumIndexes() * sizeof(int));↪→

209 }else{
210 flag = 'n'; ofs.write(&flag, sizeof(char));
211 }
212 */
213 }
214 }
215

216 void GridFourier::readBinary(std::ifstream &ifs, std::ostream *logstream){
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217 reset();
218 int num_dim_out[2];
219 ifs.read((char*) num_dim_out, 2*sizeof(int));
220 num_dimensions = num_dim_out[0];
221 num_outputs = num_dim_out[1];
222

223 if (num_dimensions > 0){
224 tensors = new IndexSet(num_dimensions); tensors->readBinary(ifs);
225 active_tensors = new IndexSet(num_dimensions);

active_tensors->readBinary(ifs);↪→

226 active_w = new int[active_tensors->getNumIndexes()];
227 ifs.read((char*) active_w, active_tensors->getNumIndexes() *

sizeof(int));↪→

228

229 char flag;
230 ifs.read((char*) &flag, sizeof(char)); if (flag == 'y'){ points = new

IndexSet(num_dimensions); points->readBinary(ifs); }↪→

231 ifs.read((char*) &flag, sizeof(char)); if (flag == 'y'){ needed = new
IndexSet(num_dimensions); needed->readBinary(ifs); }↪→

232

233 IndexSet *work = (points != 0) ? points : needed;
234

235 max_levels = new int[num_dimensions];
236 ifs.read((char*) max_levels, num_dimensions * sizeof(int));
237

238 if (num_outputs > 0){
239 values = new StorageSet(0, 0); values->readBinary(ifs);
240 ifs.read((char*) &flag, sizeof(char));
241 if (flag == 'y'){
242 fourier_coefs = new double[2* num_outputs *

work->getNumIndexes()];↪→

243 ifs.read((char*) fourier_coefs, 2 * num_outputs *
work->getNumIndexes() * sizeof(double));↪→

244 }else{
245 fourier_coefs = 0;
246 }
247 }
248

249 IndexManipulator IM(num_dimensions);
250 int nz_weights = active_tensors->getNumIndexes();
251 int oned_max_level;
252 oned_max_level = max_levels[0];
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253 for(int j=1; j<num_dimensions; j++) if (oned_max_level < max_levels[j])
oned_max_level = max_levels[j];↪→

254

255 OneDimensionalMeta meta(0);
256 wrapper = new OneDimensionalWrapper(&meta, oned_max_level,

rule_fourier, 0.0, 0.0, logstream);↪→

257

258 UnsortedIndexSet* exponents_unsorted = new
UnsortedIndexSet(num_dimensions, work->getNumIndexes());↪→

259 int *exponent = new int[num_dimensions];
260

261 for (int i=0; i<work->getNumIndexes(); i++){
262 for(int j=0; j<work->getNumDimensions(); j++){
263 exponent[j] = (work->getIndex(i)[j] % 2 == 0 ?

-work->getIndex(i)[j]/2 :
(work->getIndex(i)[j]+1)/2);

↪→

↪→

264 }
265 exponents_unsorted->addIndex(exponent);
266 }
267 exponents = new IndexSet(exponents_unsorted);
268 delete[] exponent;
269 delete exponents_unsorted;
270

271 exponent_refs = new int*[nz_weights];
272 tensor_refs = new int*[nz_weights];
273 #pragma omp parallel for schedule(dynamic)
274 for(int i=0; i<nz_weights; i++){
275 exponent_refs[i] =

referenceExponents(active_tensors->getIndex(i), exponents);↪→

276 tensor_refs[i] =
IM.referenceNestedPoints(active_tensors->getIndex(i),
wrapper, work);

↪→

↪→

277 }
278 work = 0;
279 }
280 }
281

282 void GridFourier::reset(){
283 clearAccelerationData();
284 if (exponent_refs != 0){ for(int i=0; i<active_tensors->getNumIndexes(); i++){

delete[] exponent_refs[i]; exponent_refs[i] = 0; } delete[] exponent_refs;
exponent_refs = 0; }

↪→

↪→

173



285 if (tensor_refs != 0){ for(int i=0; i<active_tensors->getNumIndexes(); i++){
delete[] tensor_refs[i]; tensor_refs[i] = 0; } delete[] tensor_refs;
tensor_refs = 0; }

↪→

↪→

286 if (wrapper != 0){ delete wrapper; wrapper = 0; }
287 if (tensors != 0){ delete tensors; tensors = 0; }
288 if (active_tensors != 0){ delete active_tensors; active_tensors = 0; }
289 if (active_w != 0){ delete[] active_w; active_w = 0; }
290 if (max_levels != 0){ delete[] max_levels; max_levels = 0; }
291 if (points != 0){ delete points; points = 0; }
292 if (needed != 0){ delete needed; needed = 0; }
293 if (exponents != 0){ delete exponents; exponents = 0; }
294 if (values != 0){ delete values; values = 0; }
295 if (fourier_coefs != 0){ delete[] fourier_coefs; fourier_coefs = 0; }
296 num_dimensions = 0;
297 num_outputs = 0;
298 }
299

300 void GridFourier::makeGrid(int cnum_dimensions, int cnum_outputs, int depth, TypeDepth
type, const int* anisotropic_weights, const int* level_limits){↪→

301 IndexManipulator IM(cnum_dimensions);
302 IndexSet *tset = IM.selectTensors(depth, type, anisotropic_weights,

rule_fourier);↪→

303 if (level_limits != 0){
304 IndexSet *limited = IM.removeIndexesByLimit(tset, level_limits);
305 if (limited != 0){
306 delete tset;
307 tset = limited;
308 }
309 }
310

311 setTensors(tset, cnum_outputs);
312 }
313

314 void GridFourier::copyGrid(const GridFourier *fourier){
315 IndexSet *tset = new IndexSet(fourier->tensors);
316 setTensors(tset, fourier->num_outputs);
317 if ((num_outputs > 0) && (fourier->points != 0)){ // if there are values inside

the source object↪→

318 loadNeededPoints(fourier->values->getValues(0));
319 }
320 }
321

322 void GridFourier::setTensors(IndexSet* &tset, int cnum_outputs){
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323 reset();
324 num_dimensions = tset->getNumDimensions();
325 num_outputs = cnum_outputs;
326

327 tensors = tset;
328 tset = 0;
329

330 IndexManipulator IM(num_dimensions);
331

332 OneDimensionalMeta meta(0);
333 max_levels = new int[num_dimensions];
334 int max_level; IM.getMaxLevels(tensors, max_levels, max_level);
335 wrapper = new OneDimensionalWrapper(&meta, max_level, rule_fourier);
336

337 int* tensors_w = IM.makeTensorWeights(tensors);
338 active_tensors = IM.nonzeroSubset(tensors, tensors_w);
339

340 int nz_weights = active_tensors->getNumIndexes();
341

342 active_w = new int[nz_weights];
343 tensor_refs = new int*[nz_weights];
344 int count = 0;
345 for(int i=0; i<tensors->getNumIndexes(); i++){ if (tensors_w[i] != 0)

active_w[count++] = tensors_w[i]; }↪→

346

347 delete[] tensors_w;
348

349 needed = IM.generateNestedPoints(tensors, wrapper); // nested grids exploit
nesting↪→

350

351 UnsortedIndexSet* exponents_unsorted = new UnsortedIndexSet(num_dimensions,
needed->getNumIndexes());↪→

352 int *exponent = new int[num_dimensions];
353

354 for (int i=0; i<needed->getNumIndexes(); i++){
355 for(int j=0; j<needed->getNumDimensions(); j++){
356 exponent[j] = (needed->getIndex(i)[j] % 2 == 0 ?

-needed->getIndex(i)[j]/2 : (needed->getIndex(i)[j]+1)/2);↪→

357 }
358 exponents_unsorted->addIndex(exponent);
359 }
360

361 exponents = new IndexSet(exponents_unsorted);
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362 delete[] exponent;
363 delete exponents_unsorted;
364

365 exponent_refs = new int*[nz_weights];
366 #pragma omp parallel for schedule(dynamic)
367 for(int i=0; i<nz_weights; i++){
368 exponent_refs[i] = referenceExponents(active_tensors->getIndex(i),

exponents);↪→

369 tensor_refs[i] = IM.referenceNestedPoints(active_tensors->getIndex(i),
wrapper, needed);↪→

370 }
371

372 if (num_outputs == 0){
373 points = needed;
374 needed = 0;
375 }else{
376 values = new StorageSet(num_outputs, needed->getNumIndexes());
377 }
378

379 }
380

381 int* GridFourier::referenceExponents(const int levels[], const IndexSet *list){
382

383 /*
384 * This function ensures the correct match-up between Fourier coefficients and

basis functions.↪→

385 * The basis exponents are stored in an IndexSet whose ordering is different
from the needed/points↪→

386 * IndexSet (since exponents may be negative).
387 *
388 * The 1D Fourier coefficients are \hat{f}^l_j, where j = -(3^l-1)/2, ..., 0,

..., (3^l-1)/2 and↪→

389 *
390 * \hat{f}^l_j = \sum_{n=0}^{3^l-1} f(x_n) exp(-2 * pi * sqrt(-1) * j * x_n)
391 * = \sum_{n=0}^{3^l-1} f(x_n) exp(-2 * pi * sqrt(-1) * j * n/3^l)
392 *
393 * Now, \hat{f}^l_j is the coefficient of the basis function exp(2 * pi *

sqrt(-1) * j * x).↪→

394 * However, the Fourier transform code returns the coefficients with the
indexing j' = 0, 1,↪→

395 * ..., 3^l-1. For j' = 0, 1, ..., (3^l-1)/2, the corresponding basis function
has exponent j'.↪→
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396 * For j' = (3^l-1)/2 + 1, ..., 3^l-1, we march clockwise around the unit circle
to see↪→

397 * the corresponding exponent is -3^l + j'. Algebraically, for j' > (3^l-1)/2,
398 *
399 * \hat{f}^l_{j'} = \sum_{n=0}^{3^l-1} f(x_n) [exp(-2 * pi * sqrt(-1) * j'

/3^l)]^n↪→

400 * = \sum_{n=0}^{3^l-1} f(x_n) [exp(-2 * pi * sqrt(-1) * (j' -
3^l) /3^l) * exp(-2 * pi * sqrt(-1))]^n↪→

401 * = \sum_{n=0}^{3^l-1} f(x_n) [exp(-2 * pi * sqrt(-1) * (j' -
3^l) /3^l)]^n↪→

402 * = \hat{f}^l_{j' - 3^l}
403 */
404 int *num_points = new int[num_dimensions];
405 int num_total = 1;
406 for(int j=0; j<num_dimensions; j++){ num_points[j] =

wrapper->getNumPoints(levels[j]); num_total *= num_points[j]; }↪→

407

408 int* refs = new int[num_total];
409 int *p = new int[num_dimensions];
410

411 for(int i=0; i<num_total; i++){
412 int t = i;
413 for(int j=num_dimensions-1; j>=0; j--){
414 int tmp = t % num_points[j];
415 p[j] = (tmp <= (num_points[j]-1)/2 ? tmp : -num_points[j] +

tmp);↪→

416 t /= num_points[j];
417 }
418 refs[i] = list->getSlot(p);
419 }
420

421 delete[] p;
422 delete[] num_points;
423

424 return refs;
425 }
426

427 int GridFourier::getNumDimensions() const{ return num_dimensions; }
428 int GridFourier::getNumOutputs() const{ return num_outputs; }
429 TypeOneDRule GridFourier::getRule() const{ return rule_fourier; }
430

431 int GridFourier::getNumLoaded() const{ return (((points == 0) || (num_outputs == 0)) ?
0 : points->getNumIndexes()); }↪→
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432 int GridFourier::getNumNeeded() const{ return ((needed == 0) ? 0 :
needed->getNumIndexes()); }↪→

433 int GridFourier::getNumPoints() const{ return ((points == 0) ? getNumNeeded() :
points->getNumIndexes()); }↪→

434

435 void GridFourier::loadNeededPoints(const double *vals, TypeAcceleration){
436 if (accel != 0) accel->resetGPULoadedData();
437

438 if (points == 0){ //setting points for the first time
439 values->setValues(vals);
440 points = needed;
441 needed = 0;
442 }else{ //resetting the points
443 values->setValues(vals);
444 }
445 //if we add anisotropic or surplus refinement, I'll need to add a third case

here↪→

446

447 calculateFourierCoefficients();
448 }
449

450 void GridFourier::getLoadedPoints(double *x) const{
451 int num_points = points->getNumIndexes();
452 #pragma omp parallel for schedule(static)
453 for(int i=0; i<num_points; i++){
454 const int *p = points->getIndex(i);
455 for(int j=0; j<num_dimensions; j++){
456 x[i*num_dimensions + j] = wrapper->getNode(p[j]);
457 }
458 }
459 }
460 void GridFourier::getNeededPoints(double *x) const{
461 int num_points = needed->getNumIndexes();
462 #pragma omp parallel for schedule(static)
463 for(int i=0; i<num_points; i++){
464 const int *p = needed->getIndex(i);
465 for(int j=0; j<num_dimensions; j++){
466 x[i*num_dimensions + j] = wrapper->getNode(p[j]);
467 }
468 }
469 }
470 void GridFourier::getPoints(double *x) const{
471 if (points == 0){ getNeededPoints(x); }else{ getLoadedPoints(x); };
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472 }
473

474 int GridFourier::convertIndexes(const int i, const int levels[]) const {
475

476 /*
477 * This routine ensures that function values are loaded into the Fourier

transform in order of↪→

478 * increasing SPATIAL x-values.
479 *
480 * Take the example of the level-2 1D grid. Tasmanian's internal indexing

reports the points as↪→

481 *
482 * [0, 1, 2, ..., 8]
483 *
484 * which corresponds spatially to
485 *
486 * [0, 1/3, 2/3, 1/9, 2/9, 4/9, 5/9, 7/9, 8/9].
487 *
488 * That is, the new points added on level-2 appear after the level-1 points,

even though spatially↪→

489 * they are interwoven. We now order the grid spatially, in terms of increasing
x-values:↪→

490 *
491 * [0, 1/9, ..., 8/9]
492 *
493 * The input parameter i is the i-th entry in the spatially ordered list. The

output is the corresponding↪→

494 * internal index used by Tasmanian. For example, with p[0] = 2,
convertIndexes(1, p) would return 3 (the↪→

495 * index of 1/9 in the internally ordered list of points).
496 *
497 * ANOTHER EXAMPLE: consider spatial index 48 on a grid of level 4. There are 81

points total, so spatial↪→

498 * index 48 is 48/81 = 16/27. So the point first appears on the level with 27
points (level 3). Internal↪→

499 * indexing first loads the 9 points of the level-2 grid. Spatially, there are
floor(16/3) full subintervals↪→

500 * prior to arriving at 16/27 on the level-3 grid. In each of these 5 intervals,
there are 2 new points,↪→

501 * and 16 is the first point in the 6th subinterval. So the internal index is 9
+ 5*2 + 1 - 1 = 19 (minus↪→

502 * 1 since C++ indexing begins at 0).
503 */
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504

505 IndexSet *work = (points == 0 ? needed : points);
506

507 int* cnum_oned_points = new int[num_dimensions];
508 for(int j=0; j<num_dimensions; j++){
509 cnum_oned_points[j] = wrapper->getNumPoints(levels[j]);
510 }
511

512 // This i is spatial indexing
513 int t=i;
514 int* p=new int[num_dimensions];
515 for(int j=num_dimensions-1; j>=0; j--){
516 p[j] = t % cnum_oned_points[j];
517 t /= cnum_oned_points[j];
518 }
519 // p[] stores the spatial index as a tensor address
520

521 // Now we move from spatial to internal indexing
522 int *p_internal = new int[num_dimensions];
523 for(int j=0; j<num_dimensions; j++){
524 if (p[j] == 0){
525 p_internal[j] = 0;
526 }else{
527 int spatial_idx_when_added = p[j];
528 int division_count = 0;
529 while(spatial_idx_when_added % 3 == 0){ spatial_idx_when_added

/= 3; division_count++; }↪→

530

531 int level_when_added = levels[j] - division_count;
532

533 // 3 spatial points in each added full subinterval; 2 new
points for internal indexing↪→

534 int offset = 2 * (spatial_idx_when_added/3) +
(spatial_idx_when_added % 3);↪→

535 p_internal[j] = wrapper->getNumPoints(level_when_added-1) +
offset - 1;↪→

536 }
537 }
538

539 int result = work->getSlot(p_internal);
540 delete[] cnum_oned_points;
541 delete[] p_internal;
542 delete[] p;
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543 return result;
544 }
545

546 void GridFourier::calculateFourierCoefficients(){
547 int num_points = getNumPoints();
548

549 if (fourier_coefs != 0){ delete[] fourier_coefs; fourier_coefs = 0; }
550 fourier_coefs = new double[2 * num_outputs * num_points];
551 std::fill(fourier_coefs, fourier_coefs + 2*num_outputs*num_points, 0.0);
552 for(int k=0; k<num_outputs; k++){
553 for(int n=0; n<active_tensors->getNumIndexes(); n++){
554 const int* levels = active_tensors->getIndex(n);
555 int num_tensor_points = 1;
556 int* num_oned_points = new int[num_dimensions];
557 for(int j=0; j<num_dimensions; j++){
558 num_oned_points[j] = wrapper->getNumPoints(levels[j]);
559 num_tensor_points *= num_oned_points[j];
560 }
561

562 std::complex<double> *in = new
std::complex<double>[num_tensor_points];↪→

563 std::complex<double> *out = new
std::complex<double>[num_tensor_points];↪→

564 for(int i=0; i<num_tensor_points; i++){
565 // We interpret this "i" as running through the spatial

indexing; convert to internal↪→

566 int key = convertIndexes(i, levels);
567 const double *v = values->getValues(key);
568 in[i] = v[k];
569 }
570

571 // Execute FFT
572 TasmanianFourierTransform::discrete_fourier_transform(num_dimensions,

num_oned_points, in, out);↪→

573

574 for(int i=0; i<num_tensor_points; i++){
575 // Combine with tensor weights
576 fourier_coefs[num_outputs*(exponent_refs[n][i]) + k] +=

((double) active_w[n]) * out[i].real() / ((double)
num_tensor_points);

↪→

↪→

577 fourier_coefs[num_outputs*(exponent_refs[n][i] +
num_points) + k] += ((double) active_w[n]) *
out[i].imag() / ((double) num_tensor_points);

↪→

↪→
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578 }
579 delete[] in;
580 delete[] out;
581 delete[] num_oned_points;
582 }
583 }
584 }
585

586 void GridFourier::getInterpolationWeights(const double x[], double weights[]) const {
587 /*
588 I[f](x) = c^T * \Phi(x) = (U*P*f)^T * \Phi(x) (U represents

normalized forward Fourier transform; P represents reordering of f_i before going into FT)↪→

589 = f^T * (P^T * U^T * \Phi(x)) (P^T = P^(-1) since P is a permutation matrix)
590

591 Note that U is the DFT operator (complex) and the transposes are ONLY REAL
transposes, so U^T = U.↪→

592 */
593

594 std::fill(weights, weights+getNumPoints(), 0.0);
595 double *basisFuncs = new double[2* getNumPoints()];
596 computeExponentials<true>(x, basisFuncs);
597

598 for(int n=0; n<active_tensors->getNumIndexes(); n++){
599 const int *levels = active_tensors->getIndex(n);
600 int num_tensor_points = 1;
601 int *num_oned_points = new int[num_dimensions];
602

603 for(int j=0; j<num_dimensions; j++){
604 num_oned_points[j] = wrapper->getNumPoints(levels[j]);
605 num_tensor_points *= num_oned_points[j];
606 }
607

608 std::complex<double> *in = new std::complex<double>[num_tensor_points];
609 std::complex<double> *out = new

std::complex<double>[num_tensor_points];↪→

610

611 for(int i=0; i<num_tensor_points; i++){
612 in[i] = std::complex<double>(basisFuncs[2*exponent_refs[n][i]],

basisFuncs[2*exponent_refs[n][i] + 1]);↪→

613 }
614

615 TasmanianFourierTransform::discrete_fourier_transform(num_dimensions,
num_oned_points, in, out);↪→

182



616

617 for(int i=0; i<num_tensor_points; i++){
618 int key = convertIndexes(i, levels);
619 weights[key] += ((double) active_w[n]) *

out[i].real()/((double) num_tensor_points);↪→

620 }
621 delete[] in;
622 delete[] out;
623 delete[] num_oned_points;
624 }
625 delete[] basisFuncs;
626 }
627

628 void GridFourier::getQuadratureWeights(double weights[]) const{
629

630 /*
631 * When integrating the Fourier series on a tensored grid, all the
632 * nonzero modes vanish, and we're left with the normalized Fourier
633 * coeff for e^0 (sum of the data divided by number of points)
634 */
635

636 int num_points = getNumPoints();
637 std::fill(weights, weights+num_points, 0.0);
638 for(int n=0; n<active_tensors->getNumIndexes(); n++){
639 const int *levels = active_tensors->getIndex(n);
640 int num_tensor_points = 1;
641 for(int j=0; j<num_dimensions; j++){
642 num_tensor_points *= wrapper->getNumPoints(levels[j]);
643 }
644 for(int i=0; i<num_tensor_points; i++){
645 weights[tensor_refs[n][i]] += ((double) active_w[n])/((double)

num_tensor_points);↪→

646 }
647 }
648 }
649

650 void GridFourier::evaluate(const double x[], double y[]) const{
651 int num_points = getNumPoints();
652 double *w = new double[2 * num_points];
653 computeExponentials<false>(x, w);
654 TasBLAS::setzero(num_outputs, y);
655 for(int k=0; k<num_outputs; k++){
656 for(int i=0; i<num_points; i++){
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657 y[k] += (w[i] * fourier_coefs[i*num_outputs+k] -
w[i+num_points] *
fourier_coefs[(i+num_points)*num_outputs+k]);

↪→

↪→

658 }
659 }
660 delete[] w;
661 }
662 void GridFourier::evaluateBatch(const double x[], int num_x, double y[]) const{
663 #pragma omp parallel for
664 for(int i=0; i<num_x; i++){
665 evaluate(&(x[((size_t) i) * ((size_t) num_dimensions)]), &(y[((size_t)

i) * ((size_t) num_outputs)]));↪→

666 }
667 }
668

669 void GridFourier::evaluateFastCPUblas(const double x[], double y[]) const{
670 evaluate(x,y);
671 }
672 void GridFourier::evaluateFastGPUcublas(const double x[], double y[], std::ostream*)

const{↪→

673 evaluate(x,y);
674 }
675 void GridFourier::evaluateFastGPUcuda(const double x[], double y[], std::ostream*)

const{↪→

676 evaluate(x,y);
677 }
678 void GridFourier::evaluateFastGPUmagma(int, const double x[], double y[],

std::ostream*) const{↪→

679 evaluate(x,y);
680 }
681

682 void GridFourier::evaluateBatchCPUblas(const double x[], int num_x, double y[]) const{
683 evaluateBatch(x, num_x, y);
684 }
685 void GridFourier::evaluateBatchGPUcublas(const double x[], int num_x, double y[],

std::ostream*) const {↪→

686 evaluateBatch(x, num_x, y);
687 }
688 void GridFourier::evaluateBatchGPUcuda(const double x[], int num_x, double y[],

std::ostream*) const {↪→

689 evaluateBatch(x, num_x, y);
690 }
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691 void GridFourier::evaluateBatchGPUmagma(int, const double x[], int num_x, double y[],
std::ostream*) const {↪→

692 evaluateBatch(x, num_x, y);
693 }
694

695 void GridFourier::integrate(double q[], double *conformal_correction) const{
696 std::fill(q, q+num_outputs, 0.0);
697 if (conformal_correction == 0){
698 // everything vanishes except the Fourier coeff of e^0
699 int *zeros_num_dim = new int[num_dimensions];
700 std::fill(zeros_num_dim, zeros_num_dim + num_dimensions, 0);
701 int idx = exponents->getSlot(zeros_num_dim);
702 for(int k=0; k<num_outputs; k++){
703 q[k] = fourier_coefs[num_outputs * idx + k];
704 }
705 delete[] zeros_num_dim;
706 }else{
707 // Do the expensive computation if we have a conformal map
708 double *w = new double[getNumPoints()];
709 getQuadratureWeights(w);
710 for(int i=0; i<points->getNumIndexes(); i++){
711 w[i] *= conformal_correction[i];
712 const double *v = values->getValues(i);
713 for(int k=0; k<num_outputs; k++){
714 q[k] += w[i] * v[k];
715 }
716 }
717 delete[] w;
718 }
719 }
720

721 void GridFourier::evaluateHierarchicalFunctions(const double x[], int num_x, double
y[]) const{↪→

722 // y must be of size 2*num_x*num_points
723 int num_points = getNumPoints();
724 #pragma omp parallel for
725 for(int i=0; i<num_x; i++){
726 computeExponentials<true>(&(x[((size_t) i) * ((size_t)

num_dimensions)]), &(y[((size_t) i) * ((size_t) 2*num_points)]));↪→

727 }
728 }
729 void GridFourier::evaluateHierarchicalFunctionsInternal(const double x[], int num_x,

double M_real[], double M_imag[]) const{↪→
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730 // y must be of size num_x * num_nodes * 2
731 int num_points = getNumPoints();
732 #pragma omp parallel for
733 for(int i=0; i<num_x; i++){
734 double *w = new double[2 * num_points];
735 computeExponentials<false>(&(x[((size_t) i) * ((size_t)

num_dimensions)]), w);↪→

736 for(int m=0; m<num_points; m++){
737 M_real[i*num_points+m] = w[m];
738 M_imag[i*num_points+m] = w[m + num_points];
739 }
740 }
741 }
742

743 void GridFourier::setHierarchicalCoefficients(const double c[], TypeAcceleration,
std::ostream*){↪→

744 // takes c to be length 2*num_outputs*num_points
745 // first num_points*num_outputs are the real part; second

num_points*num_outputs are the imaginary part↪→

746

747 if (accel != 0) accel->resetGPULoadedData();
748 if (points == 0){
749 points = needed;
750 needed = 0;
751 }
752 if (fourier_coefs != 0) delete[] fourier_coefs;
753 fourier_coefs = new double[2 * getNumPoints() * num_outputs];
754 for(int i=0; i<2 * getNumPoints() * num_outputs; i++) fourier_coefs[i] = c[i];
755 }
756

757 void GridFourier::clearAccelerationData(){
758 if (accel != 0){
759 delete accel;
760 accel = 0;
761 }
762 }
763 void GridFourier::clearRefinement(){ return; } // to be expanded later
764 void GridFourier::mergeRefinement(){ return; } // to be expanded later
765

766 const int* GridFourier::getPointIndexes() const{
767 return ((points == 0) ? needed->getIndex(0) : points->getIndex(0));
768 }
769 const IndexSet* GridFourier::getExponents() const{
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770 return exponents;
771 }
772 const double* GridFourier::getFourierCoefs() const{
773 return ((double*) fourier_coefs);
774 }
775

776 } // end TasGrid
777

778 #endif
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