ABSTRACT

BUI, MINH NHUT. The Warped Resolvent of a Set-Valued Operator: Theory and Applications.
(Under the direction of Patrick L. Combettes.)

This dissertation develops novel nonlinear analysis tools and methodologies to advance
the field of monotone operator theory and its applications. First, we show that the Douglas—
Rachford algorithm and Spingarn’s method of partial inverses can fail to converge strongly. Sec-
ond, we introduce the notion of a warped resolvent as an extension of the classical resolvent,
study its properties, and propose weakly and strongly convergent warped proximal iteration
principles. This framework unifies and extends several so-far unrelated ones, such as projec-
tive splitting and Tseng’s forward-backward-forward method. In addition, the warped resolvent
framework is shown to be an effective device to produce new and flexible splitting methods
for complex monotone inclusion problems. Next, we introduce a Bregman forward-backward
method for solving monotone inclusions, establish its weak convergence, and show that it cap-
tures and extends several iterative methods. Another contribution is to propose a new saddle
presentation to study and solve highly structured systems of monotone inclusions. This leads
to highly flexible asynchronous block-iterative algorithms. Applications of warped resolvents
in the context of variational inequalities, convex optimization, Nash equilibrium, and network
flows are discussed. Finally, we analyze the merits and performance of block-activated algo-
rithms for solving multicomponent fully nonsmooth minimization problems with applications
to machine learning and image recovery.
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NOTATION AND DEFINITIONS

The following notation is used throughout this dissertation.

General notation

H, Hi, G, Gk, K, K;: Real Hilbert spaces.
(-] -): Scalar product of a real Hilbert space.
||-||: Norm.

D, Hi: Hilbert direct sum of a family (#;);c; of real Hilbert spaces, that is,

@H {iL‘ = xZ)ZEI € XH

el el

S o < +oo}

el

equipped with the scalar product (z,y) — > ;o7 (% | vi);-
Id: Identity operator.

27: Power set of .

L*: Adjoint of a bounded linear operator L: H — G.

—: Strong convergence.

—: Weak convergence.

IL|| = sup {||Lz|| | = € H, ||lz|| < 1}: Norm of a bounded linear operator L: H — G.

Notation and definitions relative to a function f: H — [—o0, +o0]

domf={zeH|f(z)< —i—oo}: Domain of f.
epi f = {(z,§) € H xR | f(z) < &}: Epigraph of f.
f is proper if —oco ¢ f(H )and dom f # @.

Suppose that f is proper. Then Argmin f = {z € H | f(z) =inf f(#)} is the set of mini-
mizers of f over H.

f is convex if epi f is a convex subset of H & R.
f is lower semicontinuous if epi f is a closed subset of H & R.
I'o(#H): Set of proper lower semicontinuous convex functions from # to |—oo, +o00].

Let (H;);er be a finite family of real Hilbert spaces and, for every i € I, let f;: H; —
] —00, +00]. Then

D fi: @ Hi =100, +oc] : (wi)ier = Y filw:). (1)

icl i€l i€l

[*:H — [—o0,4+00] : ¥ = sup,q((z | 2*) — f(z)): Conjugate of f.
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* Suppose that f is proper. Then
of i H— 2"z — {:c* EH|(VyeH) (y—x|x")+ f(x) éf(y)} 2)

is the subdifferential of f.

* Suppose that f € I'g(#). Then, for every x € H, prox,z denotes the unique minimizer of
the function f+(1/2)||- —z||>. The proximity operator of f is prox;: H — H: x > prox,x.

Notation and definitions relative to a subset C of H

e ¢ Indicator function of C, that is,

0, if xeC;
o H — [0, +00] : x> (3)
+oo, if zgC.
e int C: Interior of C.
e C': Closure of C.
e sriC: Strong relative interior of C, that is,
stiC=<zeC U A(C — z) is a closed vector subspace of H . 4
A€]0,4-00[
e 1riC: Relative interior of C, that is,
riC = {w eC U A(C — z) is a vector subspace of ’H} . (5
A€]0,+o00]

dc: H — [0,+00] : z — inf||C — z||: Distance function to C.

Suppose that C' is nonempty, closed, and convex. Then proj. = prox,_..

Notation and definitions relative to an operator T: H — H

* FixT = {z € H | Tw = }: Set of fixed points of T'.

» T is cocoercive with constant 5 € |0, +-oo] if
(Vo e H)(Vy € H) (z—y|Tz—Ty) > pl|Tz - Ty|* (6)
* T is Lipschitzian with constant 5 € [0, +o0[ if

(Ve e H)(Vy e H) || Tz —Tyll < Bllz -yl 7)
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* T is nonexpansive if it is Lipschitzian with constant 1.

Notation and definitions relative to a set-valued operator M : H — 27

* domM = {z € H | Mz # @}: Domain of M.

* ran M = |J 4, Mx: Range of M.

* zerM = {x € H |0 € Mz}: Set of zeros of M.

« graM = {(z,2%) € H x H | 2* € Mz}: Graph of M.

e M~!: Inverse of M, that is,
M_I:H%QH:$*F—>{JUEH|:E*EM$}. €))

e Jy = (Id + M)~ !: Resolvent of M.

e M is monotone if
(V(z,z*) e graM) (V(y,y*) egraM) (z—y|a*—y*)>0. 9

* M is maximally monotone if M is monotone and, for every monotone operator M:H—
2" graM C graM = M = M.



Chapter

INTRODUCTION

1.1 Overview

Throughout this chapter, # and G are real Hilbert spaces. A fundamental problem in nonlinear

analysis is the following.
Problem 1.1 Let M : H — 2% be monotone. The objective is to
find £ € H such that 0 € M7. (1.1D)

From a theoretical viewpoint, Problem 1.1 is a powerful modeling framework that captures
concrete scenarios in fields as diverse as partial differential equations [22, 25, 28, 29, 37, 83,
88,92,95,118, 126], mechanics [84, 97], image recovery [1, 2,10, 35,49,51,58, 85,89,102],
game theory [6,17,34,52,66,91,125], evolution inclusions [5, 7,23, 24,98], integral equations
[26,27], network flows [7, 74,80, 115, 116], systems theory [46], domain decomposition [6,
8], machine learning [9, 30], optimal control [13], signal processing [11, 31, 56, 62, 66, 68],
optimization [14,55,71,72,93,111,112], matrix estimation [16,47], mean field games [36,78,
87], statistics [50,59,60,90,108,124], neural networks [65], variational inequalities [77,121],
tensor completion [82,99], location problem [100,103], and optimal transportation [104,105].
From a practical viewpoint, the most elementary method for solving Problem 1.1 in the case
where M is maximally monotone is the proximal point algorithm [28,113]

(Vn € N) 2p41 = Jy, s, where 7, €]0,+0c[ and J,,n = (Id + M) (1.2)

The implementation of this method may be hindered by the difficulty of evaluating the re-
solvents (J,, ar)nen; for example, there is no closed-form expression for the resolvent of the
maximally monotone operator

HOH — 2P (2,0%) = (0f () +0%) x (—z + dg*(v*)), (1.3)



which arises in Rockafellar’s saddle formalism [111, 112] for the problem of minimizing f + g,
where f € T'g(H) and g € I'y(H). To circumvent this issue, it is often assumed that the operator
M in Problem 1.1 can be expressed as the sum of maximally monotone operators A: H — 27
and B: H — 27, where the resolvents (.J, A)~el0,4+00| aT€ easy to compute and B satisfies one
of the following: the resolvents (.J,5).cj0,+o0 ar€ €asy to compute, B: H — H is cocoercive, or
B: H — H is Lipschitzian.

Problem 1.2 Let A: H — 2" and B: H — 2" be maximally monotone. The objective is to
find z € H such that 0 € A7 + BZ. (1.4)

The three fundamental algorithms for solving Problem 1.2 are:
* (Douglas-Rachford algorithm [96]) Let 2o € H and v € ]0, +o0[. Iterate

forn=0,1,...
Tn = J’yByn
Zn = 7A(237n - yn)

Yn+1 = Yn + Zn — Tn.

(1.5)

* (Forward-backward algorithm [97]) In Problem 1.2, suppose that B: H — H and that
B is B-cocoercive for some S € ]0, +oo]. Let zp € H and «y € |0, 20][. Iterate

forn=0,1,...

Tn+1l = J’yAyn-

* (Tseng’s forward-backward-forward algorithm [122]) In Problem 1.2, suppose that
B: H — M and that B is (-Lipschitzian for some 5 € ]0,+oo[. Let g € H, let ¢ €
10,1/(8 + 1)[, and let (7, )nen be in [g, (1 — €)/3]. Iterate

forn=0,1,...
Yn = Tn — ’Yann
Pn = Jy, AYn (1.7)

Gn = Pn — YnBpn
Tn+l = Tn — Yn + Qn-

Many complex splitting algorithms in the literature (e.g., [7, 21, 32,53, 54, 56, 63, 69, 73, 81,
86,94,114,119,123] and the references therein) are reformulations of (1.5)-(1.7) in suitable
spaces. Let us illustrate this by considering the state-of-the-art model [54].

Example 1.3 Let (#;)ic;r and (Gi)rex be finite families of real Hilbert spaces and let (u;)cr
and (vg)rer bein [0, +oo[. For every i € I and every k € K, let A;: H; — 2" and By: G, — 29k



be maximally monotone, let C;: H; — #; be monotone and ;-Lipschitzian, let Dy, : G, — 29
be maximally monotone and such that Dk_1 : Gr — Gy, is v -Lipschitzian, let z; € H;, let v, € Gy,
and let Ly;: H; — Gy be linear and bounded. The objective is to solve the primal system of
monotone inclusions

find (%;)ic; € @ Hi such that

iel

(Viel) z € Ami+ Y Li ((Bk 0Dy (ZLW]- - rk>> + Ci7;, (1.8)

keK jeI

together with the dual system

find (U)rex € @D Gr such that
keK

—rE € — Z Lk;i(Ai + Ci)_l <ZZ' — Z Ljivk> + B,;lﬁk + Dlzlﬁk. (1.9

iel jeK

By applying Tseng’s forward-backward-forward algorithm (1.7) to the primal-dual setting

H=(Dic; Hi) ® (Drex 9r)

A:H — 2% ((.Ti)ie[, (Uk)keK) > (Xiel(—zi + Azzcl)) X (XkeK(rk + Bk_lvk))

B:H — H: ((wi)ier, (p)ker) = <(szz + 2 kex Lzz'”k)iep (Dk‘lvk = Yier Lkimi)keK)’

(1.10)

we obtain the splitting scheme [54, Eq. (2.4)] for solving Problem 1.2. This method achieves full
splitting of Problem 1.2 in the sense that the set-valued operators (A;);cr and (By)rck are ac-
tivated independently via backward resolvent steps and the single-valued operators (D,;l)ke K
and (Ly;)ier kex are activated via forward steps.

Another approach to monotone inclusions is the projective splitting framework, which was
first proposed in [70] for the monotone inclusion

B:RP — 2R” is maximally monotone

find 7 € RY such that 0 € L*(B(Lz)), where
L: RN - RP is linear,

(1.11)

in [75] for Problem 1.2, and then in [76] for the problem of finding a zero of a sum of maximally

monotone operators. These approaches were unified and extended in [3], where the special

case of (1.8) where, for every i € [ and every k € K, C; = 0 and D,;l = 0, was considered, i.e.,

find (Z;)ic; € @ Hi suchthat (Vi I) z € Az + > Lj, (Bk(Zijxj - rk)> (1.12)

iel keK jeI



The state of the art in projective splitting is [57], which is the first method where (1.12) is

solved by an algorithm which has the ability to incorporate the result of calculations initiated

at earlier iterations, and requires to activate only a subgroup of operators at every iteration.

Despite the significant developments in the last decade, there remain many important open

questions in the area of monotone operator splitting. We list below the ones that will be ad-

dressed in this dissertation:

QD)

(Q2)

(Q3)

(Q4)

(Q5)

(Q6)

The weak convergence of the sequence (x,),en generated by (1.5) was established in
[120]. While various additional conditions on the operators A and B in Problem 1.2 have
been proposed to ensure the strong convergence of (x,)nen [14, 53, 96], it remains an
open question whether (x,),en can fail to converge strongly in the general setting of
Problem 1.2.

As mentioned above, the execution of (1.2) depends on the ease of evaluating
(Jy,m)nen = ((Id + v M )" 1)nen, which is not the case in many situations. For exam-
ple, in [10, 14,18-20, 33, 54,57,63,69,107,123], M is a composite operator assembled
from several elementary blocks that can be linear operators and monotone operators and
there is no convenient way to express .J, s in terms of these elementary blocks. A question
is therefore to seek an extension of the classical resolvent that can be tailored to the struc-
ture of M and is thus potentially easier to compute than the classical resolvent. Further,
can we explore a new path for solving Problem 1.1 with this new resolvent at the core of
our analysis?

Several forward-backward methods based on Bregman distances have been proposed with
various assumptions [12,67,101, 109] for solving some special cases of finding a zero of
the sum of two maximally monotone operators acting on a Banach space. Is there a Breg-
man forward-backward framework that unifies these algorithms and can solve problems
beyond their reach? The motivation for this is that standard splitting algorithms are not
applicable beyond Hilbert spaces. In addition, there has been a significant body of work
(see,e.g., [11,12,15,48,61,79,101,104,117]) showing the benefits of replacing standard
distances by Bregman distances, even in Euclidean spaces.

What is the connection between the approach of [32,54,63] and the projective splitting
method of [3,70,75,76]? Beyond the fact that they both rely on the Fejér monotonicity
principle, connections remain elusive.

Splitting methods have been applied to solving Nash equilibrium under convexity as-
sumption, but with simple settings (see, e.g., [6,17,34,52,66,91,125] and the references
therein). Can we develop flexible splitting algorithms for more general Nash equilibrium
models?

Rockafellar proposed in [116] a multicommodity network equilibrium model and studied
some of its properties. The pertinence of this model is demonstrated in [115, Chapter 8]
and [116], where it is shown to capture formulations arising in areas such as traffic



(Q7)

(Q8)

1.2

assignment, hydraulic networks, and price equilibrium. Thus far, the numerical aspect of
this model has not been considered. Can we develop an efficient algorithm for this model?

There seem to be only two primary methods for solving multicomponent fully nonsmooth
minimization that are block-activated in the sense that they require to activate only a sub-
group of functions at each iteration [57, 64]. Nevertheless, little effort has been devoted
to assessing them. Can we shed more light on the implementation, the features, and the
behavior of these algorithms, compare their merits, and provide numerical experiments

illustrating their performance?

Rockafellar’s saddle formalism plays a central role in analyzing and solving primal-dual
convex optimization problems [111,112]. What is the extension of this notion to mono-
tone inclusions in duality in the sense of [106,110]? This is motivated by the fact that
there are monotone inclusions arising in applications which involve non-subdifferential
operators (see, e.g., [7,55,66,77,92] and the references therein).

Contributions and organization

This dissertation, which produced the articles [38-45], provides answers to the open questions

(Q1)-(Q8). More precisely, the main contributions of this dissertation are the following:

We answer (Q1) in Chapter 2 by providing counterexamples showing that the Douglas—
Rachford algorithm [96] and the method of partial inverses [119] can fail to converge
strongly.

To address (Q2), we introduce in Chapter 3 the novel notion of a warped resolvent and in-
vestigate its properties. Moreover, we provide weak and strong warped proximal iteration
principles and establish their convergence in Theorems 3.16 and 3.22. In Section 3.2.5,
the warped proximal iterations are shown to capture [3,4,122] and to provide new and
flexible splitting algorithms for complex monotone inclusions.

Chapter 4 is devoted to (Q3). There, a Bregman forward-backward splitting algorithm
for monotone inclusions in Banach spaces is introduced, and its weak convergence is
established. This scheme is shown to unifies [12,67,101,109]. We also establish rates of
convergence in the minimization setting.

An answer to (Q4) is provided in Chapter 5, where we show that [57, Algorithm 12] can
be viewed as an instantiation of the warped proximal iterations of Theorem 3.16. Thus,
the frameworks of [3, 32, 54, 63, 70, 75, 76] are special cases of the warped resolvent
iterations.

We address (Q5) in Chapter 6. We propose an asynchronous block-iterative algorithm
for solving a highly modular Nash equilibrium problem. Our methodology relies on the
warped resolvent algorithm of Theorem 3.16.



Chapter 7 focuses on (Q6). We present a flexible decomposition method based on [57,
Algorithm 12] for solving the multicommodity network equilibrium model proposed by
Rockafellar in [116].

To address (Q7), we devote Chapter 8 to assess the block-activated algorithms of [57,64].

Our numerical experiments are in the areas of machine learning and image recovery.

In Chapter 9, we focus on (Q8). A saddle formulation for studying and solving highly
structured systems of monotone inclusions is proposed. Various applications are discussed,
and instantiations of the proposed framework in the context of variational inequalities and

minimization problems are presented.

We conclude this dissertation in Chapter 10 with future research directions.
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Chapter

THE DOUGLAS-RACHFORD
ALGORITHM CONVERGES ONLY
WEAKLY

2.1 Introduction and context

We provide a complete answer to question (Q1) of Chapter 1 in Counterexample 2.2. In ad-
dition, Counterexample 2.4 shows that the method of partial inverses can fail to converge
strongly.

This chapter presents the following article:

M. N. Bui and P L. Combettes, The Douglas—Rachford algorithm converges only
weakly, SIAM Journal on Control and Optimization, vol. 58, no. 2, pp. 1118-
1120, 2020.

2.2 Article: The Douglas-Rachford algorithm converges only
weakly

Abstract. We show that the weak convergence of the Douglas—Rachford algorithm for finding
a zero of the sum of two maximally monotone operators cannot be improved to strong conver-
gence. Likewise, we show that strong convergence can fail for the method of partial inverses.

The original Douglas—Rachford splitting algorithm was designed to decompose positive sys-
tems of linear equations [3]. It evolved in [5] into a powerful method for finding a zero of
the sum of two maximally monotone operators in Hilbert spaces, a problem which is ubiqui-
tous in applied mathematics (see [1] for background on monotone operators). In this context,

16



the Douglas—Rachford algorithm constitutes a prime decomposition method in areas such as
control, partial differential equations, optimization, statistics, variational inequalities, mechan-
ics, optimal transportation, machine learning, and signal processing. Its asymptotic behavior is
described next.

Theorem 2.1 Let H be a real Hilbert space, and let A and B be set-valued maximally monotone
operators from H to 27 with resolvents J4, = (Id + A)~! and Jg = (Id + B)~'. Suppose that
zer(A+ B)={z € 1|0 € Az + Baz} # @, let yo € H, and iterate

(VneN) z,=Jpy, and yp+1=Yn+ Ja2xy —yn) — =p. 2.1

Then the following hold for some (y,x) € gra Jpg:
1) z=Ja2x —y), yo, — y, and = € zer(A + B).

() z, — .

Property (i) was established in [5]. Let us note that, since Jp is not weakly sequentially
continuous in general, the weak convergence of (y,,),en in (i) does not imply (ii). The latter
was first established in [7] (see also [1, Theorem 26.11(iii)] for an alternate proof). While
various additional conditions on A and B have been proposed to ensure the strong convergence
of the sequence (z,,)nen in (2.1) [1,2,5], it remains an open question whether it can fail in the
general setting of Theorem 2.1. We show that this is indeed the case. Our argument relies on a
result of Hundal [4] concerning the method of alternating projections.

Counterexample 2.2 In Theorem 2.1, suppose that 7 is infinite-dimensional and separable.
Let (eg)ren be an orthonormal basis of #H, let V = {eg}, let yo = e, and let K be the smallest

closed convex cone containing the set

{exp (—100%)eg + cos(m (& — |£])/2)e(¢)41 + sin(m(€ — [€])/2)eg)42 | € € [0,400[}, (2.2)

where |£]| denotes the integer part of £ € [0,+oo|. Let proj;,, and proj, be the projection
operators onto V' and K, and set

VL, if z € V, . . . -1
Az and B = (projy o projy o projy,) —Id. (2.3)
g, fx¢V

Then A and B are maximally monotone, and the sequence (z,,)cy constructed in Theorem 2.1
converges weakly, but not strongly, to a zero of A + B.

Proof. We first note that A is maximally monotone by virtue of [1, Examples 6.43 and and
20.26]. Now set T = projy, o projy o proj;,. Then it follows from [1, Example 4.14] that T is
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firmly nonexpansive, that is,
(Ve e H)(Vy € H) (z—y|Te—Ty)>|Tz—Ty|> (2.4)

In turn, we derive from [1, Proposition 23.10] that B = 7! —Id is maximally monotone. Next,
we observe that 0 € zer A and that, since K is a closed cone, 0 € K. Thus, 0 = (projy, o proj o
projy-)0, which implies that 0 € zer B. Hence,

0 € zer(A + B). (2.5)

Now set
z0 = exp(—100)eg + ez and (Vn € N)  z,41 = projg (projy zn ). (2.6)

Then, by nonexpansiveness of proj,

(vn € N) [201]2 = [proj (projy ) — Proj 0l < [lprojy 2|l = [l2a2 = [projy 2, — zu]

2.7)
and, therefore,
Projy zn — 2n — 0. (2.8)
As shown in [4], we also have
zn — 0 and 2z, A 0. (2.9)
On the other hand, we derive from (2.3) that
Ja =proj,, and Jp = projy; o projy o projy, (2.10)

and from (2.6) that proj,z9p = ex = yp. It thus follows from (2.1) and (2.6) that zy =
projy, (proj i (Projyyo)) = projy (projx (projy z0)) = projy-z1. Now, assume that, for some n € N,
Yn = Projy 2z, and z, = projy z,+1. Since z, and y, lie in V, we derive from (2.1) and (2.10)
that

Yn+1 = Yn + PIOjy, (22, — ypn) — p = Ty, = Projy, Zn41 (2.11D)

and hence that
Zp41 = (Projy o projy o projy) (projy 2n+1) = Projy (Proj (Projy 2n+1)) = Projy zps2. (2.12)
We have thus proven by induction that
(Vn € N)  z, = projy zn+1. (2.13)

In view of (2.8), we obtain x,, — 2,11 — 0 and therefore derive from (2.9) and (2.5) that
xn —0€zer(A+ B)and x, A 0. O
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Next, we settle a similar open question for Spingarn’s method of partial inverses [6] by

showing that its strong convergence can fail.

Theorem 2.3 ([6]) Let H be a real Hilbert space, let B: H — 2 be maximally monotone, and
let V' be a closed vector subspace of H. Suppose that the problem

find x €V and w e V* such that u € Bz (2.14)
has at least one solution. Let zo € V, let ug € V+, and iterate
(Vn e N) zp41 = projy (JB(xn + un)) and  Up4+1 = Projy . (JB_l(xn + un)) (2.15)
Then (x,, un )nen converges weakly to a solution to (2.14).

Counterexample 2.4 Define H, V, K, and B as in Counterexample 2.2, and set o = e2 and
uo = 0. Then (0,0) solves (2.14) and the sequence (z,, uy)nen constructed in Theorem 2.3

converges weakly, but not strongly, to (0, 0).

Proof. Since Jp = projy, o projy o proj,, and Jg-1 =Id — Jp, (2.15) implies that

Tpy1 = (projv O projy o projv)(xn + up)

(Vn € N) ‘ R _ (2.16)
Un41 = PrOjyy 1 (@n + uy — (PIOjy, © Projg o Projy ) (xn + uy)).
We therefore obtain inductively that
(Vn € N)  xp4q = projy, (projgz,) and wu, = 0. (2.17)

Now define (z,)nen as in (2.6). Then, by induction, (Vn € N) z,, = proj;, z,,. Hence, in view of
(2.8) and (2.9), we conclude that 0</ z,— 0. O
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Chapter

WARPED PROXIMAL ITERATIONS FOR
MONOTONE INCLUSIONS

3.1 Introduction and context

To address question (Q2) of Chapter 1, we introduce the notion of a warped resolvent as
a generalization of the classical resolvent, study its properties, and devise warped proximal
iteration principles. The pertinence of this warped resolvent framework is illustrated.

This chapter presents the following article:

M. N. Bui and P L. Combettes, Warped proximal iterations for monotone inclu-
sions, Journal of Mathematical Analysis and Applications, vol. 491, no. 1, art.
124315, 21 pp., 2020.

3.2 Article: Warped proximal iterations for monotone inclusions

Abstract. Resolvents of set-valued operators play a central role in various branches of mathe-
matics and in particular in the design and the analysis of splitting algorithms for solving mono-
tone inclusions. We propose a generalization of this notion, called warped resolvent, which
is constructed with the help of an auxiliary operator. The properties of warped resolvents are
investigated and connections are made with existing notions. Abstract weak and strong con-
vergence principles based on warped resolvents are proposed and shown to not only provide a
synthetic view of splitting algorithms but to also constitute an effective device to produce new
solution methods for challenging inclusion problems.
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3.2.1 Introduction

A generic problem in nonlinear analysis and optimization is to find a zero of a maximally
monotone operator M : X — 2%, where X is a real Hilbert space. The most elementary method
designed for this task is the proximal point algorithm [34]

(VneN) zp41 =J,, mx,, where ~,€]0,+00[ and J,,» = (Id+ Y M)TL o (3.1)

In practice, the execution of (3.1) may be hindered by the difficulty of evaluating the resolvents
(Jy.M)nen. Thus, even in the simple case when M is the sum of two monotone operators A
and B, there is no mechanism to express conveniently the resolvent of M in terms of opera-
tors involving A and B separately. To address this issue, various splitting strategies have been
proposed to handle increasingly complex formulations in which M is a composite operator as-
sembled from several elementary blocks that can be linear operators and monotone operators
[5,7,9-12,17,18,21,22,30,37]. In the present paper, we explore a different path by placing at
the core of our analysis the following extension of the classical notion of a resolvent.

Definition 3.1 (Warped resolvent) Let X’ be a reflexive real Banach space with topological
dual X*, let D be a nonempty subset of X, let K: D — X* and let M: X — 2" be such that
ran K C ran(K + M) and K + M is injective (see Definition 3.2). The warped resolvent of M
with kernel K is JE = (K + M)~ o K.

A main motivation for introducing warped resolvents is that, through judicious choices of
a kernel K tailored to the structure of an inclusion problem, one can create simple patterns to
design and analyze new, flexible, and modular splitting algorithms. At the same time, the theory
required to analyze the static properties of warped resolvents as nonlinear operators, as well
as the dynamics of algorithms using them, needs to be developed as it cannot be extrapolated
from the classical case, where K is simply the identity operator. In the present paper, this task is
undertaken and we illustrate the pertinence of warped iteration methods through applications
to challenging monotone inclusion problems.

The paper is organized as follows. Section 3.2.2 is dedicated to notation and background. In
Section 3.2.3, we provide important illustrations of Definition 3.1 and make connections with
constructions found in the literature. The properties of warped resolvents are also discussed
in that section. Weakly and strongly convergent warped proximal iteration methods are intro-
duced and analyzed in Section 3.2.4. Besides the use of kernels varying at each iteration, our
framework also features evaluations of warped resolvents at points that may not be the current
iterate, which adds considerable flexibility and models in particular inertial phenomena and
other perturbations. New splitting algorithms resulting from the proposed warped iteration
constructs are devised in Section 3.2.5 to solve monotone inclusions.
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3.2.2 Notation and background

Throughout the paper, X, ), and Z are reflexive real Banach spaces. We denote the canonical
pairing between X and its topological dual X* by (-,-), and by Id the identity operator. The
weak convergence of a sequence (x,),en to z is denoted by z,, — z, while x,, — = denotes its
strong convergence. The space of bounded linear operators from X to ) is denoted by B(X, ),
and we set B(X) = B(X, X).

Let M: X — 2*". We denote by gra M = {(z,2*) € X x X* | z* € Mx} the graph of M, by
domM = {z € X | Mz # @} the domain of M, by ranM = {z* € X* | (Jz € X) z* € Mz}
the range of M, by zer M = {z € X | 0 € Mz} the set of zeros of M, and by M~ the inverse
of M, ie., graM ! = {(z* z) € X* x X | 2* € Mx}. Further, M is monotone if

(V(z,2*) € graM) (V(y,y*) e graM) (z—y,a*—y*) >0, (3.2)

and maximally monotone if, in addition, there exists no monotone operator A: X — 2%°
such that graM C graA # graM. We say that M is uniformly monotone with modulus
¢: [0, 400[ — [0, +00] if ¢ is increasing, vanishes only at 0, and

(V(z,z*) € graM) (V(y,y*) e graM) (z—y,z* —y*) = o(|z —yl). (3.3)

In particular, M is strongly monotone with constant a € |0, +oo[ if it is uniformly monotone
with modulus ¢ = o - |2.

Definition 3.2 An operator M : X — 2% is injective if (Vz € X)(Vy € X) Mz N My # @ =

T =y.

The following lemma, which concerns a type of duality for monotone inclusions studied in
[20,29,32], will be instrumental.

Lemma 3.3 Let A: Y — 2Y and B: Z — 22" be maximally monotone, let L € B(Y, Z), let
s* € Y*, and let r € Z. Suppose that X =Y x Z x Z* (hence X* = Y* x Z* x Z), define

M: X — 2% (z,y,0") = (=" + Az + L*v*) x (By —v*) x {r — Lz + y}, 3.4

and set Z = {(z,v*) € Y x Z* | s* — L*v* € Az and Lz —r € B~'w*}. In addition, denote by
P the set of solutions to the primal problem

find x € Y such that s* € Az + L*(B(Lz —r)), (3.5)
and by 9 the set of solutions to the dual problem

find v* € Z* such that —r € —L(A_l(s* — L*v*)) + B~ 1v*. (3.6)
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Then the following hold:

(i) Z is a closed convex subset of &2 x 2.

(ii) M is maximally monotone.

(iii) Suppose that (z,y,v*) € zer M. Then (z,v*) € Z, x € &, and v* € 2.

(v) P40 D+ 7+<0<zer M #+ 2.

Proof. (i): [20, Proposition 2.1(i)(a)].
(ii): Define

C: X — 2% (x,y,v*) — (—s* 4+ Az) x By x {r}
S: X = X (z,y,0%) = (L*v*, —v*, —Lx + y).

(3.7)

It follows from the maximal monotonicity of A and B that C' is maximally monotone. On the
other hand, S is linear and bounded, and

(V(a:,y,v*) € X) <(x,y,v*), S(x,y,v*)> = (z, L*v*) — (y,v™) + (y — Lz, v*) = 0. (3.8

Thus, we derive from [35, Section 17] that S is maximally monotone with dom .S = X. In turn,
[35, Theorem 24.1(a)] asserts that M = C' + S is maximally monotone.

(iii): We deduce from (3.4) that s* € Ax + L*v*, v* € By, and y = Lx — r; hence v* €
B(Lz —r). Consequently, s* — L*v* € Az and Lz —r € B~'v*, which yields (z,v*) € Z. Finally,
(i) entails that x € &2 and v* € 2.

(iv): By [20, Proposition 2.1(1))(c)], ¥ # @ & 9 # @ & Z # &. In addition, in view
of (iii), zer M # @& = Z # &. Suppose that (z,v*) € Z and set y = Lz — r. Then y =
Lx —r € B~'v* and s* € Az + L*v*. Hence 0 € By —v* and 0 € —s* + Ax + L*v*. Altogether,
0€ (=s*+ Ax + L*v*) x (By —v*) x {r — Lv + y} = M(x,y,v*), i.e, (z,y,v*) € zer M. O

Now suppose that X" is a real Hilbert space with scalar product (- | -). An operator 7': X —
X is nonexpansive if it is 1-Lipschitzian, a-averaged with o« € ]0,1[ if Id + (1/a)(T — Id) is
nonexpansive, firmly nonexpansive if it is 1/2-averaged, and -cocoercive with 5 € |0, +oo[ if
BT is firmly nonexpansive. Averaged operators were introduced in [4]. The projection operator
onto a nonempty closed convex subset C of & is denoted by proj.. The resolvent of M : X — 2%
is Jy = (Id + M)~L.

3.2.3 Warped resolvents

We provide illustrations of Definition 3.1 and then study the properties of warped resolvents.
Our first example is the warped resolvent of a subdifferential. This leads to the following
notion, which extends Moreau’s classical proximity operator in Hilbert spaces [28].

Example 3.4 (Warped proximity operator) Let D be a nonempty subset of X, let K: D —
X*, and let p: X — |—o00, +0o0] be a proper lower semicontinuous convex function such that
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ran K C ran(K + d¢) and K + Oy is injective. The warped proximity operator of ¢ with kernel
K is proxg = (K + 0p)~! o K. It is characterized by the variational inequality

(V(z,p) e X x X) p=proxie & (WedX) (y—p Ke—Kp)+op) <ely). 3.9

In particular, in the case of normal cones, we arrive at the following definition (see Fig-
ure 3.1).

Example 3.5 (Warped projection operator) Let D be a nonempty subset of X, let K: D —
X*, and let C' be a nonempty closed convex subset of X with normal cone operator N¢ such
that ran K C ran(K + N¢) and K + N¢ is injective. The warped projection operator onto C'
with kernel K is proj5 = (K + N¢)~' o K. It is characterized by

(V(z,p) € X x X) p=rprojis o [peC and (VyeC) (y—p Kz—Kp)<O0].
(3.10)

D2 D3

Figure 3.1 Warped projections onto the closed unit ball C' centered at the origin in the Euclidean
plane. Sets of points projecting onto pi, p2, and ps for the kernels K; = Id (in green) and
Ko: (&1,6) = (£3/2 4 &1/5 — &, &1 + &) (in red). Note that K is not a gradient.

Example 3.6 Suppose that X is strictly convex, let M : X — 2% be maximally monotone, and
let K be the normalized duality mapping of X'. Then JI is a well-defined warped resolvent

which was introduced in [26].

Example 3.7 Let M: X — 2% be maximally monotone such that zer M # @, let f: X —
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|—00, +00] be a Legendre function [6] such that dom M C intdom f, and set K = Vf. Then
it follows from [6, Corollary 3.14(ii)] that J ﬁ is a well-defined warped resolvent, called the
D-resolvent of M in [6].

Example 3.8 Let M : X — 2% be maximally monotone and let K: X — X* be strictly mono-
tone, surjective, and 3* monotone in the sense that [39, Definition 32.40(c)]

(Vz € dom M)(Vz* € ran M) sup  (z—y,y" — ") < +oo. (3.11)
(y,y*)egraM

Then it follows from [8, Theorem 2.3] that J ﬁ is a well-defined warped resolvent, called the
K-resolvent of M in [8].

Example 3.9 Let A: X — 2% and B: X — 2% be maximally monotone, and let f: X —
|—00, +00] be a proper lower semicontinuous convex function which is essentially smooth [6].
Suppose that D = (intdom f) N dom A is a nonempty subset of intdom B, that B is single-
valued on intdom B, that V f is strictly monotone on D, and that (Vf — B)(D) C ran(V f + A).
Set M = A+ Band K: D — X*: x — Vf(x) — Bz. Then the warped resolvent J& is well
defined and coincides with the Bregman forward-backward operator (Vf + A)~! o (Vf — B)
investigated in [13], where it is shown to capture a construction found in [31].

Example 3.10 Consider the setting of Lemma 3.3. For simplicity (more general kernels can be
considered), take s* = 0, » = 0, and assume that )) and Z* are strictly convex with normalized
duality mapping Ky and Kz-. As seen in Lemma 3.3(i), finding a zero of the Kuhn-Tucker
operator U: Y x Z* — 2Y" %2 (z,v*) — (Az + L*v*) x (B~'* — Lz) provides a solution to
the primal-dual problem (3.5)-(3.6). Now set K : (z,v*) — (Kyx — L*v*, L + Kz+v*). Then

the warped resolvent JJ is well defined and
I (,0%) = (Ky + A) 7 (Kyz — L), (Kz« + B~ (L + Kz-v%)). (3.12)

For instance, in a Hilbertian setting, J& : (z,v*) = (Ja(x — L*v*), Jg-1(Lx + v*)), whereas Jy/
is intractable; note also that the kernel K is a non-Hermitian bounded linear operator.

Further examples will appear in Section 3.2.5. Let us turn our attention to the properties of
warped resolvents.

Proposition 3.11 (viability) Let D be a nonempty subset of X, let K: D — X*, andlet M : X —
2% be such that ran K C ran(K + M) and K + M is injective. Then JI: D — D.

Proof. By assumption, dom J§; = dom((K+M) oK) = {z € dom K | Kz € dom(K + M)~'} =
{z € D| Kz e ran(K + M)} = D. Next, observe that

ranJj; =ran (K + M) ' oK) C ran(K + M)™! =dom(K + M) C domK = D. (3.13)
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Finally, to show that (K + M)~ is at most single-valued, suppose that (z*, z;) € gra(K + M)~}
and (z*,15) € gra(K + M)~ !. Then {2*} C (K + M)xz1 N (K + M)xy and, since K + M is
injective, it follows that 2y = x5. O

Sufficient conditions that guarantee that warped resolvents are well defined are made ex-
plicit below.

Proposition 3.12 Let D be a nonempty subset of X, let K: D — X*, and let M : X — 2%, Then
the following hold:

(i) Suppose that one of the following is satisfied:

[a] K + M is surjective.

[b] K + M is maximally monotone and D N dom M is bounded.

[c] K + M is maximally monotone, K + M is uniformly monotone with modulus ¢, and
o(t)/t — +ooast — +oo.

[d] K + M is maximally monotone and strongly monotone.

[e] M is maximally monotone, D = X, and K is maximally monotone, strictly monotone,
3* monotone, and surjective.

[f] K is maximally monotone and there exists a lower semicontinuous coercive convex
function ¢: X — R such that M = O¢.

Then ran K C ran(K + M).
(i) Suppose that one of the following is satisfied:

[a] K + M is strictly monotone.

[b] M is monotone and K is strictly monotone on dom M.
[c] K is monotone and M is strictly monotone.

[d] —(K + M) is strictly monotone.

Then K + M is injective.

Proof Set A=K + M.

(i): Item [a] is clear. We prove the remaining ones as follows.

[b]: It follows from [39, Theorem 32.G] thatran A = X D ran K.

[c]&[d]: Since [20, Lemma 2.7(ii)] and [39, Corollary 32.35] assert that A is surjective, the
claim follows from (i)[a].

[e]: See [8, Theorem 2.3].

[f]: Take z € D and set B = A(- + z) — K z. By coercivity of ¢, there exists p € |0, 400 such
that

Ve X) |z[|=p = inf(z,0p(z+2)) > ¢(x+z2)—¢(z)=0. (3.14)

Now take (z,z*) € gra B and suppose that ||z|| > p. Then z* + Kz — K(z + z) € d¢(x + z) and
it follows from (3.14) and the monotonicity of K that

0< (z,2"+ Kz—K(x+2)) =(z,2") — (v +2) — 2, K(z + 2) — Kz) < (z,z").  (3.15)
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On the other hand, since domdy = X’ [38, Theorems 2.2.20(b) and 2.4.12], A is maximally
monotone [35, Theorem 24.1(a)], and so is B. Altogether, [33, Proposition 2] asserts that there
exists T € X such that 0 € Bz. Consequently, Kz € A(Z + z) C ran(K + M).

(ii): We need to prove only [a] since [b] and [c] are special cases of it, and [d] is similar. To
this end, let (z1,z2) € X? and suppose that Az; N Azy # @. We must show that 1 = x,. Take
x* € Ax1 N Azy. Then (z1, 2*) and (x9, z*) lie in gra A. In turn, since A is strictly monotone and

(1 — x9,2* —2*) = 0, we obtain x; = x9. O

Proposition 3.13 Let M: X — 2%, let v € |0, +o0o, and let K: X — X* be such that ran K C
ran(K + M) and K + vM is injective. Then the following hold:

6] FiXJK = zer M.

(ii) Let z € X and p € X. Then p = J& S = (p, “1(Kz — Kp)) € gra M.

(iii) Suppose that M is monotone. Let x € X and y € X, and set p = Jfo and q = JfMy. Then
(p— ¢, Kz — Ky) > (p— ¢, Kp — Kq).

(iv) Suppose that M is monotone, that K is uniformly continuous and ¢-uniformly monotone,
and that ¢: t — ¢(t)/t is real-valued on ]0, [ for some & € |0, +oo] and strictly increasing.
Then JX o 1s uniformly continuous.

(v) Suppose that M is monotone and that K is 3-Lipschitzian and «a-strongly monotone for some
€10, +o0f and § € 10, +-ool. Then J%y, is (8/«)-Lipschitzian.
(vi) Suppose that M is monotone. Let x € X, and set y = JX M and y* = v~ Y(Kx — Ky). Then
zer M C {z€ X | (z—y,y") <0}

Proof. (i): We derive from Proposition 3.11 that (Vx € X) z € zer M < Kz € Kz +yMzx &
x=J e e FixJl,.
(ii): We have p = JX Swr e p=(K +yM) Y Kz)© Kz € Kp+~yMp < Kz — Kp € yMp
& (p,7 'Kz — Kp)) € graM.
(iii): This follows from (ii) and the monotonicity of M.
(iv): Let  and y be in X, and set p = J SMT and ¢ = J& MY Then we deduce from (iii) that

o(lp—dqll) <p—a¢, Kp—Kq) < (p—q, Kz — Ky) < |lp—q|| | Kz — Ky (3.16)

Now fix ¢ € ]0,¢[ and let n € ]0, ¢ (¢)]. By uniform continuity of K, there exists ¢ € |0, +oo[ such
that ||z — y|| < 6 = ||Kz — Ky| < n. Without loss of generality, suppose that p # ¢. Then, if
|z — y|| < 6, we derive from (3.16) that (||p — ¢||) < ||Kz — Ky|| < n < ¢(g). Consequently,
since 1 is strictly increasing, ||p — ¢|| <

(v): Let z and y be in X and set p = JVKMx and ¢ = JJ§;y. Then we deduce from (iii) that

alp—a’<p—a¢.Kp—Kq) < (p—q. Kz — Ky) < |lp—q| ||Kz — Ky|| < Bllp — q| ||z — y|.
(3.17)

In turn, |p — ¢ < (B/a)l|lz -y
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(vi): Suppose that z € zer M. Then (z,0) € gra M. On the other hand, we derive from (ii)
that (y, y*) € gra M. Hence, by monotonicity of M, (y — z,y*) > 0. O

In Hilbert spaces, standard resolvents are firmly nonexpansive, hence 1/2-averaged. A re-
lated property for warped resolvents is the following.

Proposition 3.14 Suppose that X is a Hilbert space. Let M : X — 2% be maximally monotone
and let K: X — X be averaged with constant o € ]0,1]. Suppose that K + M is 1-strongly

monotone. Then JI is averaged with constant 1/(2 — ).

Proof. Since K is nonexpansive by virtue of [7, Remark 4.34(i)], it follows from the Cauchy-
Schwarz inequality that

Vze X)(VyeX) (r—y|@d+K)z— (2d+ K)y) = 2|z —y|> + (z —y | Kz — Ky)
> 2|z — y[* = [l — yl?
= [lz — yI? (3.18)

and therefore, by continuity of 2Id + K, that 2Id + K is maximally monotone [7, Corol-
lary 20.28]. Thus, in the light of [7, Corollary 25.5()], 2Id + K + M is maximally monotone. In
turn, since 2Id + K + M is strongly monotone by (3.18), [7, Proposition 22.11(ii)] entails that
ran(3ld + K + M —1d) = ran(2Id + K + M) = X, which yields ran(Id + (K + M —1d)/3) = X.
Hence, by monotonicity of K + M — Id and Minty’s theorem [7, Theorem 21.1], we infer
that K + M — Id is maximally monotone. Thus, in view of [7, Corollary 23.9], (K + M)~ =
(Id + K + M —1d)~! is averaged with constant 1/2. Consequently, we infer from [7, Proposi-
tion 4.44] that JI = (K + M)~! o K is averaged with constant 1/(2 — ). 0O

3.2.4 Warped proximal iterations

Throughout this section, X" is a real Hilbert space identified with its dual. We start with an
abstract principle for the basic problem of finding a zero of a maximally monotone operator.

Proposition 3.15 Let M : X — 2% be a maximally monotone operator such that Z = zer M # @,
let xg € X, let € € ]0, 1], let (An)nen be a sequence in [e,2 — €|, and let (yn, ¥ )nen be a sequence
in gra M. Set

An(Yn — Tn y:L * . *
(VneN) 41 = [yl (3.19)

Tn, otherwise.

Then the following hold:
D Ynen a1 — za||? < +oo.

(ii) Suppose that every weak sequential cluster point of (zy)nen 1S in Z. Then (z,,)nen cOnverges
weakly to a point in Z.
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Proof. By [7, Proposition 23.39], Z is a nonempty closed convex subset of X. Set (Vn € N)
H, ={z€ X | (z—yn|y;) <0}. For every z € Z and every n € N, since (z,0) and (yn, y};)
lie in gra M, the monotonicity of M forces (y, — z | y;;) > 0. Thus Z C (), oy Hy. In addition,
[7, Example 29.20] asserts that

<yn — Tn | y;:) .
xn"‘fy;;: 1f<yn_$n|y:1><0;
vn € N) proj, o, = |2 (3.20)
H,

Ty, otherwise.
Hence, we derive from (3.19) that
(Yn € N) z,11 = 2p + M (Projy, n — Tn). (3.21)

Therefore (i) follows from [16, Equation (10)] and (ii) follows from [16, Proposition 6i)]. O
To implement the conceptual principle outlined in Proposition 3.15, one is required to con-
struct points in the graph of the underlying monotone operator. Towards this end, our strategy
is to use Proposition 3.13(ii). We shall then seamlessly obtain in Section 3.2.5 a broad class of
algorithms to solve a variety of monotone inclusions. It will be convenient to use the notation

v
T if Y #0;
(Vg € V) (y) =< vl (3.22)
0, if y* =0.

Our first method employs, at iteration n, a warped resolvent based on a different kernel,
and this warped resolvent is applied at a point z,, that may not be the current iterate z,,.

Theorem 3.16 Let M: X — 2% be a maximally monotone operator such that Z = zer M # @,
let xg € X, let ¢ € |0, 1], let (An)nen be a sequence in [e,2 — €], and let (v, )nen be a sequence in
[e, +ocl. Further, for every n € N, let z,, € X and let K,,: X — X be a monotone operator such
that ran K,, C ran(K,, +v,M) and K,, + v, M is injective. Iterate

3.23
)‘n<yn — In ’ Yn) y ( )
[y ]2 "

Then the following hold:

@ YnenllTntr — znl? < +oo.
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(i) Suppose that the following are satisfied:

[a] z,, —zy, — 0.

[b] <xn —Un | (KnZTn — Knyn)n> -0 = ~ !
K,x, — Knyn — 0.

Then (x,,)nen converges weakly to a point in Z.

Proof. By Proposition 3.13(ii),
(VneN)  (yn,y,) € graM. (3.24)

Therefore, (i) follows from Proposition 3.15(i). It remains to prove (ii). To this end, take a
strictly increasing sequence (ky),en in N and a point x € X' such that z;, — x. In view of
Proposition 3.15(ii), we must show that x € Z. We infer from (ii)[a] that

.%k — . (3.25)

n

Next, by (3.22) and (3.23), for every n € N, if (z,, — y,, | ;) > 0, then y # 0 and

(e =y | G2)F) = <”j”'y> AT st — ]l < e fones — 2l (3.26)
n

otherwise, (x,, — yn | ¥;;) < 0 and it thus results from (3.22) that

u 07 lf y:; = O;
(Tn =y | (42)") = {Tn = yn | Yn) otherwise
vl ’
<0
T — (3-27)

Therefore, using (i) and the monotonicity of (K, ),cn, We obtain

0« €*1Hxn+1 — Ty ||

> (0 = yn | (yn)")
= — Tn ’ K2, — Knyn)u> + <:If'n Yn | ( nTn — Knyn)ﬁ>
< — Tn | (KnZn — Knyn)). (3.28)

However, by the Cauchy—Schwarz inequality and (ii)[a],
Kl‘n —Tp | (KpTy — Knyn)“>] < zp — Zn|] — 0. (3.29)

Hence, (3.28) implies that (Z,, — y, | (KZn — Knyn)?) — 0. In turn, we deduce from (ii)[b]
that Z,, — y, — 0 and K, 7, — K.y, — 0. Altogether, since sup,,c.y 7, < £}, it follows from
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(3.24) and (3.25) that
Ykn = Tk + Yky, — Tr,,) = @ (3.30)

and
My, > yi, = 'yk_nl (K, T, — K, yk,) — 0. (3.31)

Appealing to the maximal monotonicity of M, [7, Proposition 20.38(ii)] allows us to conclude
thatz € Z. O

Remark 3.17 Condition (ii)[b] in Theorem 3.16 is satisfied in particular when there exist «
and $ in ]0, +oo[ such that the kernels (K, ),cn are a-strongly monotone and f-Lipschitzian.

Remark 3.18 The auxiliary sequence (Z,),cn in Theorem 3.16 can serve several purposes. In
general, it provides the flexibility of not applying the warped resolvent to the current iterate.
Here are some noteworthy candidates.
(i) At iteration n, T, can model an additive perturbation of z,, say z, = x, + e,. Here
the error sequence (e,)nen Need only satisfy ||e,|| — 0 and not the usual summability
condition ), -\ ||en|| < 400 required in many methods, e.g., [11,17,21,37].

(ii) Mimicking the behavior of so-called inertial methods [3, 19], let («;,)nen be a bounded
sequence in R and set (Vn € N\ {0}) =,, = @, + an(zp, — x5—1). Then Theorem 3.16(i)
yields ||Z,, — zn|| = |an|||zn — zn—1]] — 0 and therefore assumption (ii)[a] holds in The-
orem 3.16. More generally, weak convergence results can be derived from Theorem 3.16
for iterations with memory, that is,

n n
(VTL S N) 5n = Z,un’jxj, where (Mn,j)Oéjén S Rn+1 and Zun,j =1. (332)
§=0 =0

Here condition (ii)[a] holds if (1 — pnn)2n — Z;‘;& tn,jz; — 0. In the case of standard
inertial methods, weak convergence requires more stringent conditions on the weights
(Hnj)nen,0<j<n [19].

(iii) Nonlinear perturbations can also be considered. For instance, at iteration n, z, =
projc, r, is an approximation to x,, from some suitable closed convex set C;,, C &X'

Remark 3.19 The independent work [23] was posted on arXiv at the same time as the report
[14] from which our paper is derived. The former uses a notion of resolvents subsumed by
Definition 3.1 to explore the application of an algorithm similar to (3.23) with no perturbation
(i.e., for every n € N, z,, = x,,). The work [23] nicely complements ours in the sense that
it proposes applications to splitting schemes not discussed here, which further attests to the
versatility and effectiveness of the notion of warped proximal iterations.

We now turn our attention to a variant of Theorem 3.16 that guarantees strong conver-
gence of the iterates to a best approximation. In the spirit of Haugazeau’s algorithm (see [24,
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Théoreme 3-2] and [7, Corollary 30.15]), it involves outer approximations consisting of the
intersection of two half-spaces. For convenience, given (z,vy,z) € X3, we set

H(z,y)={ueX|(u—y|z—y) <0} (3.33)

and, if R = H(x,y) N H(y, 2) # @, Q(x,y,z) = projpz. The latter can be computed explicitly
as follows (see [24, Théoreme 3-1] or [7, Corollary 29.25]).

Lemma 3.20 Let (‘T’y, Z) € Xg' Set R = H(CL’,y) N H(ya Z); X = <27 -y ‘ Y- Z>: n= H‘T - y||2;
v=|ly—z||% and p = pv — X% Then exactly one of the following holds:
(i) p=0and x <0, in which case R = @.

(i) [p=0and x > 0] or p > 0, in which case R # & and

z, if p=0and x > 0;
Q(z,y,2) =z + (1 +x/v)(z —y), if p>0and xv > p; (3.34)
y+ v/p)(x(x—y)+uz—y)), ifp>0andxv <p.

Our second abstract convergence principle can now be stated.

Proposition 3.21 Let M : X — 2% be a maximally monotone operator such that Z = zer M # @,
let xo € X, and let (yn, Y. )nen be a sequence in gra M. For every n € N, set

_ *
ot WL i | ) < O
Tnt1/2 = HynH and Tn+1l = Q(Zﬁo,l'n, $n+1/2).
T, otherwise

(3.35)
Then the following hold:

@ > en 1T — z,||? < 400 and > onen 1Tngi1/2 — x| < 4o0.
(ii) Suppose that every weak sequential cluster point of (zy,)nen s in Z. Then (z,,)nen cOnverges

strongly to proj,xo.

Proof. Set (Vn € N) H, = {z € X | (z — yn | y;;) < 0}. Then, as in the proof of Proposition 3.15,

Z is a nonempty closed convex subset of X and Z C (,,cy H». On the one hand,

(Vn €N) x4/ =Projy, v, and 41 = Q(xg,xn,:rnH/Q). (3.36)
On the other hand, by (3.33),

X, ifxe Hy;
(Vn € N) H($n,$n+1/2) = 'n
H,, otherwise

D Z (3.37)
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The claims therefore follow from [2, Proposition 2.1]. O

Theorem 3.22 Let M: X — 2% be a maximally monotone operator such that Z = zer M +# @,
let zp € X, and let (y,)nen be a sequence in |0, +o00] such that inf,cy v, > 0. For every n € N, let
ZTn € X and let K,,: X — X be a monotone operator such that ran K,, C ran(K,, + v, M) and
K, + v, M is injective. Iterate

formn=0,1,...
Yn = J,\I/?}\/[En
y;kz = 'Vn_l(Kn%n - Knl/n)

I (Yn —zn | yp) <0

(Yn —xn | ys) (3.38)
ez o

\‘ Tnt1/2 = Tn +
else
\‘ Tpi1/2 = Tn

Tn4+1 = Q(x(]v Tn, $n+1/2)'

Then the following hold:
D Xpenllznt1 — zall* < oo and 3, ey |nt1/2 — nl? < +oo.

(ii) Suppose that the following are satisfied:

[a] z, —z, — 0.

_ ~ Tn—Yn —0

[b] <xn —Yn | (KpTy — Knyn)”> -0 = " N "
KpFn — Knyn — 0.

Then (zp,)nen converges strongly to proj,xo.

Proof. Proposition 3.13(ii) asserts that (Vn € N) (y,,y;) € gra M. Thus, we obtain (i) from
Proposition 3.21(i). In the light of Proposition 3.21(ii), to establish (ii), we need to show that
every weak sequential cluster point of (x,)nen is a zero of M. Since (i) asserts that x,, 1/, —
xn — 0, this is done as in the proof of Theorem 3.16(ii). O

We complete this section with the following remarks.

Remark 3.23 Suppose that ) and Z are real Hilbert spaces and that ¥ = Y x Z. Let A: ) — 2Y
and B: Z — 2% be maximally monotone, and let L € B(), Z). Define

M: X — 2% (z,v") — (Az + L*v*) x (—Lz + B~ 'v"). (3.39)

In [1,2,18] the problem of finding a zero of M (and hence a solution to the monotone inclusion
0 € Az + L*(B(Lx))) is approached by generating, at each iteration n, points (a,,a}) € gra A
and (b, b’) € gra B. This does provide a point (y,,v) = ((an,b}), (a} + L*b, —La, + b,)) €
gra M, which shows that the algorithms proposed in [1,2,18] are actually instances of the con-
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ceptual principles laid out in Propositions 3.15 and 3.21. In particular, the primal-dual frame-
work of [1] corresponds to applying Theorem 3.16 to the operator M of (3.39) with kernels

(VneN) K,: X = X: (2,0") = (7, 'z — L*v*, La + pnv*). (3.40)
Likewise, that of [2] corresponds to the application of Theorem 3.22 to this setting.

Remark 3.24 In Theorems 3.16 and 3.22, the algorithms operate by using a single point
(Yn,yy,) in gra M at iteration n. It may be advantageous to use a finite family (y;n,y;,,)icr,

of points in gra M, say

. * Kz n -~ — ~
(Vl € In) (yi,m yi7n) = (J%.’T’LMxi,m ’)’i,nl (Ki,nxi,n - Ki,n.%’,n)) . (3.41)
By monotonicity of M, (Vi € I,,)(Vz € zer M) (2| y;,) < (Yin | y;,). Therefore, using ideas
found in the area of convex feasibility algorithms [15,27], at every iteration n, given strictly
positive weights (w; ,,)icr,, adding up to 1, we average these inequalities to create a new half-
space H,, containing zer M, namely

*x . *
Yn = Zie[n Wi,nYin

zer M C Hy={z€ X |(z|y;) <nn}, where (3.42)
Nin = Zie[n wi,n<yi,n ‘ y;“:n>‘
Now set
Z' In wi,n<yi,n — Tn | y* > . %
ic i inl f Yier, Win{Tn — Yin | Yin) > 0
An = | ier, winin (3.43)

0, otherwise.

Then, employing projy, on = x5 +An D _icr winy;, as the point x4 in (3.23) and as the point
Tpy1/2 in (3.38) results in multi-point extensions of Theorems 3.16 and 3.22.

3.2.5 Applications

We apply Theorem 3.16 to design new algorithms to solve complex monotone inclusion prob-
lems in a real Hilbert space X'. We do not mention explicitly minimization problems as they
follow, with usual constraint qualification conditions, by considering monotone inclusions in-
volving subdifferentials as maximally monotone operators [7, 17]. For brevity, we do not men-
tion either the strongly convergent counterparts of each of the corollaries below that can be
systematically obtained using Theorem 3.22.

Let us note that the most basic instantiation of Theorem 3.16 is obtained by setting (¥Vn € N)
K, =1d, 7, = xz,, and A\, = 1. In this case, the warped proximal algorithm (3.23) reduces to
the basic proximal point algorithm (3.1).
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In connection with Remark 3.18, let us first investigate the convergence of a novel perturbed
forward-backward-forward algorithm with memory. This will require the following fact.

Lemma 3.25 Let B: X — X be Lipschitzian with constant 5 € ]0,+oco[, let W: X — X be
strongly monotone with constant o € |0,4o00[, let € € 10,af, let v € ]0,(a—¢€)/f], and set
K = W — ~B. Then the following hold:

(i) K is e-strongly monotone.

(ii) Suppose that o« =1 and W = Id. Then K is cocoercive with constant 1/(2 — ¢).

Proof. (i): By the Cauchy-Schwarz inequality,

(Ve e X)(Vy e X) (z—y|Kz—Ky)=(x—y|Wz—-Wy)—~(z—y|Bz— By)
> allz - y|* —7llz — yll [| Bz — By

> allz —y|I* —18[lz — yl|?

P

ellz —y|? (3.44)

(ii): Since vB is (1 — ¢)-Lipschitzian, [7, Proposition 4.38] entails that B is averaged with
constant (2 —¢)/2. Hence, since vB = Id — K, [7, Proposition 4.39] implies that K is cocoercive
with constant 1/(2 —¢). O

Corollary 3.26 Let A: X — 2% be maximally monotone, let B: X — X be monotone and j3-
%, and let € € ]0,a/(8 +1)|. For every
n €N, let W,,: X — X be a-strongly monotone and x-Lipschitzian, and let v, € [e,(a —¢€)/f].

Lipschitzian for some [ € ]0,+o0], let (o, x) € ]0, 400

Take xo € X, let (A\,)nen be a sequence in |0, 2] such that 0 < inf,ey Ay, < SUp,,cy An < 2, and let
(en)nen be a sequence in X such that e, — 0. Furthermore, let m € N~ {0} and let (tn, j)nen,0<j<n
be a real array that satisfies the following:

[a] For every integer n > m and every integer j € [0,n —m — 1], up ; = 0.
[b] Foreveryn € N, 377  jinj = 1.

[c] sup,, ey maxog;<n [pn,j] < +oo.

Iterate
forn=0,1,...

Tn = €n + D 5o ln,jTj
vy = WyZp — BTy,
Yn = (Wi + 'YnA)_IU;
Yp = ’77;1(1’: — Waiyn) + Byn
I (Yn —2n [ yp) <0

An(Yn = n | Yn
T
n

(3.45)

else

\\ Tp+l = T
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Suppose that zer(A + B) # @. Then the following hold:

D Ynen lznt1 — zal|? < +oo.

(1) (zy)nen converges weakly to a point in zer(A + B).
Proof. We apply Theorem 3.16 with M = A+ B and (Vn € N) K,, = W,, — 7, B. First, [7,
Corollary 20.28] asserts that B is maximally monotone. Therefore, M is maximally monotone
by virtue of [7, Corollary 25.5(i)]. Next, in view of Lemma 3.25(i), the kernels (K,,),en are

e-strongly monotone. Furthermore, the kernels (K, ),en are Lipschitzian with constant o + x
since

(Vo e X)(Vy € X)  [|[Knz — Kny| < [[Woz — Wayll + vl Bz — By||
a—¢&
5 Pl =l

< (a4 x)llz =yl (3.46)

< xllz =yl +

Therefore, for every n € N, since K,,+~,, M is maximally monotone, Proposition 3.12(i) [d]&(ii) [b]
entail that ran K,, C ran(K,, +v,M) and K,, + v, M is injective. Let us also observe that (3.45)
is a special case of (3.23).

(1): This follows from Theorem 3.16(i).

(i): Set p = sup,,cy MaAXo<j<n |n,j
that

. For every integer n > m, it results from [a] and [b]

n

en + Z pn,j (75 — Tn)

j=n—m

|Tn — 20| =

n
<leall+ D Ipnglllzs —2al

j=n—m

n
<leall +1 D llaj = all

j=n—m

= llenll + 1) llen = znjll- (3.47)
7=0

Therefore, (i) and [c] imply that z,, — x,, — 0. On the other hand, it follows from Remark 3.17
that condition (ii)[b] in Theorem 3.16 is satisfied. Hence, the conclusion follows from Theo-
rem 3.16(ii). O

Next, we recover Tseng’s forward-backward-forward algorithm [7, 36].

Corollary 3.27 Let A: X — 2% be maximally monotone, let B: X — X be monotone and
B-Lipschitzian for some [ € ]0,4o00|. Suppose that zer(A + B) # o, take zy € X, let
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€€]0,1/(8+ 1), and let (v, )nen be a sequence in [e, (1 — ¢)/f]. Iterate

forn=0,1,...
vy = Y Bxy,
Yn = Jo,a(Tn —vp)
Tpt1 = Yn — YnByn + vy

(3.48)

Then (zy,)nen converges weakly to a point in zer(A + B).

Proof. We apply Theorem 3.16 with M = A+ B and (Vn € N) K,, = 1d—~,, B and z,, = x,,. Note
that the kernels (K, ),en are cocoercive with constant 1/(2 — ¢) by virtue of Lemma 3.25(ii).
Moreover, using Lemma 3.25(i), we deduce that the kernels (K,),en are strongly monotone
with constant e. Thus, for every n € N, since K,, + v,M = Id + ~, A is maximally monotone,
Proposition 3.12(i)[d]&(ii) [b] assert that ran K,, C ran(K,, +v,M) and K,, +~, M is injective.
Now set

Yallynll? .
——n i (ry —yn | YE) >0
(Vn €N) o =, Y(Kpzn — Knyn) and A, =< (Tn—yn | 45) (Tn —Yn | yn)
g, otherwise.
(3.49)
Fix n € N. Then, by strong monotonicity of K,, and the Cauchy—Schwarz inequality,
ellan = gl < (@n = g | Kitn = Ko < on = gall [ Kntn = Kogll. - (3:50)

This implies that (zn, —yn | ¥5) = Y (@0 — Un | Knzn — Knyn) < v 120 — ynll | Knzn —
Knyn|l < (E'Yn)ilHanEn - nyn||2
cocoercivity of K, ’Y”Hy’;kLHQ = ’YTZIHKnxn - KnynH2 <(2- 5)7;1@771 —Yn | KnTn — Kpyn) =
(2 — e){xn —yn |y:) and thus A, < 2 — e. Next, we derive from (3.48) that y, =
T n. I (zn —yn | y3) > 0, then (3.48) and (3.49) yield zpy1 = @ — Wy = Tn +
Aalyn — o [ ym)un/ lynl1>.
”y;HQ = 7772”Knxn _Kn?JNHQ < (2_5)%72@71 — Yn | Knzn — Knyn) < 0. Hence, y;, = 0 and we
therefore deduce from (3.48) that x,,,1 = x,. Thus, (3.48) is an instance of (3.23). Next, con-
dition (ii) [a] in Theorem 3.16 is trivially satisfied and, in view of Remark 3.17, condition (ii)[b]
in Theorem 3.16 is also fulfilled. O

We conclude this section by further illustrating the effectiveness of warped resolvent iter-

= ey, |ly;||* and therefore that )\, > e. In addition, by

Otherwise, (z,, —yn | ¥) < 0 and the cocoercivity of K, yields

ations by designing a new method to solve an intricate system of monotone inclusions and
its dual. We are not aware of a splitting method that could handle such a formulation with a
comparable level of flexibility. Special cases of this system appear in [1, 10, 18,25].

Problem 3.28 Let ();)ic; and (Z;);e be finite families of real Hilbert spaces. For every i € I
and j € J, let A;: V; — 2% and B;: Z; — 2% be maximally monotone, let C;: J; — ); be
monotone and ;-Lipschitzian for some y; € |0, +o0], let D;: Z; — Z; be monotone and v;-
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Lipschitzian for some v; € ]0, 400, let L;j; € B(YV;, Z;), let s7 € V;, and let r; € Z;. Consider
the system of coupled inclusions

find (x;)icr € X Vi such that

el
(Viel) Sf € Ajx; + Z L;i ((Bj + Dj) < Z ija:k — Tj)) + C;xz;, (3.51)
jed kel
its dual problem
find (v})jes € X Z; such that
jed
57— Z Lyv € Aizi + Ciz;
<3 (i)ier € X yz> (Viel)(Vjeld) ket (3.52)
i€l v € (Bj + Dj) < Z Lijgxy — 7“j>,
kel

and the associated Kuhn-Tucker set

(Vi € I) x; €Y; and S;k — ZLLUZ € Ajx; + Cixy,
keJ

7 = {((wi)ieh (v})jer)

and (V] S J) U; S Zj and Zijxk —7r; € (Bj + Dj)_l’l);f}. (3.53)
kel
We denote by &2 and Z the sets of solutions to (3.51) and (3.52), respectively. The problem is

to find a point in Z.

Corollary 3.29 Consider the setting of Problem 3.28. For every i € I and every j € J, let
(i, Xi» By, F55) € 10, +oo[?, let &5 € 10, i/ (us + 1), let 65 € 10, Bj/(vj + 1)|, let (F;)nen be oper-
ators from ); to Y; that are a;-strongly monotone and x;-Lipschitzian, let (W}, )nen be operators
from Z; to Z; that are (;-strongly monotone and k;j-Lipschitzian; in addition, let (v;,)nen and
(Tjn)nen be sequences in [e;, (cy — €;)/ 1) and [94, (B — 65)/v;], respectively. Suppose that Z # &
and that

Y=XVi, Z2=X2Zj, and X =Y xZx 2. (3.54)

iel jed

Let ((wi0)ier: (j.0)jers (Vio)jer) and ((Tin)ier, (Uin)jess (U},) e )nen be in X, and let (An)nen
be a sequence in ]0, 2[ such that 0 < inf,,cn A\, < SUp,,cy An < 2. Iterate
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forn=0,1,...

oreveryi €1

y

lin = FinTin — ’Yz',ncfi,n = Yin 2 jes Lji%n
aip = (Fin +YinAi) (5 + vins])
L 010 = Vi (1 = Finain) + Ciaig

orevery j € J

I
tin = Winljn — TinDjlin + TjnVjn
-1

;n = Tjn (t;,n - Wj,nbj,n) + Djbjyn
| Cin = Dier LjiTim — Yjn + 05, — 1
foreveryie I

L az:n = Oz(,n + ZjeJ L;-ij

orevery j € J
f Ty j

b;:n = ]*,n —Cin
G =15+ bjn — Dier Ljittim

2 2 2
2+ 2 e (185,07 + llesa %)

On = ier Ha;'k,n

if6, <0

Pn = Anbn/om
else

pn =20

foreveryiel
Tin+1 = Tin + Pna;,
f;)r every j € J
Yjn+1 = Yjn + pnbj

* K *
L Yjnt1 = Y+ PnCjyp

Suppose that

(\V/’L € I) (Vj € J) E’i,n — Tjp — 0, gj,n — Yjn — 0, and 5;:“ — U;':n — 0.

On = D icr (@in — Tim | af ) + 25y ((Ojn = Yim | 05,0 + (cjim — 05, 1 €50))

(3.55)

(3.56)

Set (Vn € N) zp, = (z5)ier and vy, = (vj ,,)jes. Then (zn)nen converges weakly to a point T € &,

(v )nen converges weakly to a point v* € 9, and (z,v*) € Z.
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Proof. Define

A Y = 2% (2)ier = X (A + Ciay)
iel
B: Z 27  (y5)jes — X (Bjy; + Djyj)
= (3.57)
L:Y — Z: (x)ier — (ZL]Z@)
iel jedJ
s* = (s)ier and 1= (r)jes-

\

We observe that

L' 2 Y: ]EJH<ZL]Z ]> : (3.58)
iel

JjeJ

In the light of [7, Proposition 20.23], A and B are maximally monotone. On the other hand,
we deduce from (3.53), (3.57), and (3.58) that

Z={(z,v)eYxZ|s*—Lv* € Avand Lz —r € B_lv*}. (3.59)
Define
M: X —2%: (z,y,0%) — (—s* + Az + L*v*) x (By — v*) x {r — Lz + y}. (3.60)

Lemma 3.3(ii) entails that M is maximally monotone. Furthermore, since Z # g,
Lemma 3.3(iv) yields zer M # @. Next, set

S: X = X: (x,y,0") — (=L*v",v*, Lx — y) (3.61)
and, for every n € N,

Kn: X = X (1:7y7v*) = ((’an i,nLi— 01:1) —L*v* ( ]ir}Wj,nyj*Djyj)jEJ‘FU*vLx*y+v*)
(3.62)
and

Th: X = X: (z,y,0") — ((’y&%FZ,an - C’wi)iel’ (T&%Wj,nyj — Djyj)jej,v*). (3.63)

For every i € I and every n € N, using the facts that C; is p;-Lipschitzian, that F;,, is ;-
strongly monotone, and that v; ,, € [g;, (o; — €;) /4], Lemma 3.25(i) implies that F; ,, — 7;,C;
is g;-strongly monotone and therefore, since Vi, nl > i/ (0 — €;), it follows that ~; anZ n — C;
is strongly monotone with constant ¢;u;/(co; — ¢;). Likewise, for every j € J and every n € N,
TJT,} W; ., — Dj is strongly monotone with constant 6,v;/(5; — ;). Thus, upon setting

il oy
9 = min { min —** ,min V] 15, (3.64)
iel o —e; jEJ Bj — 0;
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we get

(Vn € N)(V(z,y,v*) € X)(V(a,b,c*) € X)
((z,y,0") = (a,b,¢") | Tu(@,y,v") — Tula,b,c"))
= Z —ai | ( Y, A Fy i — Cixg) — (’YﬁFmai — Cia;))

el

+ > (Wi = bi | (7 i Winyj — Djyg) = (7,4 Winbj = Djbj)) + 0" — ¢*||?

JjeJ
> 03l =l + 0 Y s = byl 9o — |
i€l jeJ
= 0l y,0) — (0.5, (365

Hence, the operators (7),),cn are v¥-strongly monotone. However, S is linear, bounded, and
S* = —§S. It follows that the kernels (K,,)nen = (15, + S)nen are ¥-strongly monotone. Now, for
every i € I and every n € N, since % an n is Lipschitzian with constant y;/e;, we deduce that

”% F; ,, — C; is Lipschitzian with constant x;/e; + p;. Likewise, for every j € J and every n € N,
TJ;% W; ., — Dj is Lipschitzian with constant «;/J; + v;. Hence, upon setting

7 = max { I?E%X{Xi/ai + fi}s Tea}{ﬁj/éj + v}, 1}, (3.66)
we obtain

(Vn € N)(V(z,y,v*) € X) (V(a,b,¢*) € X) || Tu(z,y,v*) — Tn(a, b, c*)|?
= >l Ci Finei = Cii) = (s Fints = Ciai) |

i€l
- 2 * *
+ G Winys = Djwg) — (75 Winbs — Dibs)|[* + [lo” = e
Jj€J
< 7722 Hl‘z _ ai||2 +1722 ”y] _ bj||2 —{—772”’[)* - C*||2
el jeJ
= 7’2”(1“52/71}*) - (avbv C*)”2' (367)

This implies that the operators (7,),en are n-Lipschitzian. On the other hand, S is Lipschitzian
with constant ||.S||. Altogether, the kernels (K,,),en are Lipschitzian with constant n + ||S]|. In

turn, using Proposition 3.12(i) [d]&(ii) [b], we infer that, for every n € N, ran K,, C ran(K,, +
M) and K,, + M is injective. Now set

(Vn eN)  pn = ((@in)ier, Win)jes Win)ier), Pn= (Fin)ier, Gjn)jes, Win)jes),
an = ((ai,n)ielv (bjn)jeds (Cj,n)jeJ)7 and ¢, = ((a;‘k,n)iela (bj,n)jEJ7 (Cj,n)jEJ)- (3.68)
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In view of (3.62), (3.60), (3.57), and (3.58), we deduce that (3.55) assumes the form

forn=0,1,...
dn = J]\[/([nﬁn
QZ = Knﬁn — Knaqn

if <Qn — Pn | qn> <0 (369)

MG — Dn | @)
| o =y
n
else
\‘pn—&—l:pn-

In addition, (3.56) implies that p,, — p, — 0. Altogether, in the light of Theorem 3.16 and
Remark 3.17, there exists (z,y,v*) € zer M such that p,, — (Z,7, 7). It follows that z,, — 7 and
v} — v*. Further, we conclude by using Lemma 3.3(iii) that 7 € &, v* € &, and (z,7*) € Z.

0
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Chapter

BREGMAN FORWARD-BACKWARD
OPERATOR SPLITTING

4.1 Introduction and context

We devote this chapter to question (Q3) of Chapter 1. We propose a novel forward-backward
splitting algorithm based on Bregman distances, which is shown to bring together and extend
several Bregman iterative methods scattered in the literature. Its weak convergence is estab-
lished and, in the minimization setting, rates of convergence are obtained.

This chapter presents the following article:

M. N. Bui and P L. Combettes, Bregman forward-backward operator splitting, Set-
Valued and Variational Analysis, vol. 29, no. 3, pp. 583-603, September 2021.

4.2 Article: Bregman forward-backward operator splitting
Dedicated to Terry Rockafellar on the occasion of his 85th birthday

Abstract. We establish the convergence of the forward-backward splitting algorithm based on
Bregman distances for the sum of two monotone operators in reflexive Banach spaces. Even
in Euclidean spaces, the convergence of this algorithm has so far been proved only in the case
of minimization problems. The proposed framework features Bregman distances that vary over
the iterations and a novel assumption on the single-valued operator that captures various prop-
erties scattered in the literature. In the minimization setting, we obtain rates that are sharper
than existing ones.
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4.2.1 Introduction

Throughout, X is a reflexive real Banach space with topological dual X*. We are concerned with
the following monotone inclusion problem (see Section 4.2.2.1 for notation and definitions).

Problem 4.1 Let A: X — 2% and B: X — 2% be maximally monotone, let f € T'o(X) be
essentially smooth, and let D be the Bregman distance associated with f. Set C' = (intdom f)N
dom A and . = (intdom f) N zer(A + B). Suppose that C' C intdom B, . # @, B is single-
valued on intdom B, and there exist ¢; € [0, 1], d2 € [0, 1], and « € [0, +oo] such that

(Vz e C)(Vy € O)(Vz € &) (Vy* € Ay) (V=" € Az)
(y—x,By — Bz) < kDy(z,y) + (y — 2,61 (y" — 2*) + 62(By — Bz)). (4.1)

The objective is to
find z € intdom f such that 0 € Az + Buz. (4.2)

The central problem (4.2) has extensive connections with various areas of mathematics and
its applications. In Hilbert spaces, if B is cocoercive, a standard method for solving (4.2) is the
forward-backward algorithm, which operates with the update z,, .1 = (Id +~A)~(z,, — yBx,)
[17]. This iteration is not applicable beyond Hilbert spaces since A maps to X* # X'. In addition,
there has been a significant body of work (see, e.g., [3,6,8,12,13,16, 18,19, 23]) showing
the benefits of replacing standard distances by Bregman distances, even in Euclidean spaces.
Given a sequence (7, )nen in |0, +o00[ and a suitable sequence of differentiable convex functions
(fn)nen, we propose to solve (4.2) via the iterative scheme

(VneN) zp11 = (vfn + 'VnA)_l (vfn(l'n) - 'VnB-Tn)a (4.3)

which consists of first applying a forward (explicit) step involving B and then a backward
(implicit) step involving A. Let us note that the convergence of such an iterative process has
not yet been established, even in finite-dimensional spaces with a single function f,, = f and
constant parameters -, = . Furthermore, the novel scheme (4.3) will be shown to unify and
extend several iterative methods which have thus far not been brought together:

* The Bregman monotone proximal point algorithm
(Vn €N) @1 = (Vf +1mA)  (Vf(zn)) (4.4)

of [6] for finding a zero of A in intdom f, where f is a Legendre function.

* The variable metric forward-backward splitting method
(VneN) zp41 = (Un + fynA)fl(Una;n — 'ynB:cn) (4.5)

of [15] for finding a zero of A + B in a Hilbert space, where (Up,),cn is a sequence of
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strongly positive self-adjoint bounded linear operators.

* The splitting method

(VneN) zp11 = (vfn + 'Vna@)_l (vfn(l‘n) - 'an¢(xn)> (4.6)

of [18] for finding a minimizer of the sum of the convex functions ¢ and ¢ in intdom f.

* The Renaud-Cohen algorithm
(Yn €N) @1 = (Vf+7A4) " (Vf(zn) — vBzy) (4.7)

of [20] for finding a zero of A + B in a Hilbert space, where f is real-valued and strongly
convex.
Problems which cannot be solved by algorithms (4.4)—(4.7) will be presented in Example 4.10
as well as in Sections 4.2.3.2 and 4.2.3.4. New results on the minimization setting will be
presented in Section 4.2.3.3.

The goal of the present paper is to investigate the asymptotic behavior of (4.3) under mild
conditions on A, B, and (f,)nen- Let us note that the convergence proof techniques used in the
above four frameworks do not extend to (4.3). For instance, the tools of [18] rely heavily on
functional inequalities involving ¢ and . On the other hand, the approach of [15] exploits spe-
cific properties of quadratic kernels in Hilbert spaces, while [6] relies on Bregman monotonicity
properties of the iterates that will no longer hold in the presence of B. Finally, the proofs of
[20] depend on the strong convexity of f, the underlying Hilbertian structure, and the fact that
the updating equation is governed by a fixed operator. Our analysis will not only capture these
frameworks but also provide new methods to solve problems beyond their reach. It hinges on
the theory of Legendre functions and the new condition (4.1), which will be seen to cover in
particular various properties such as the cocoercivity assumption used in the standard forward-
backward method in Hilbert spaces [7, 17], as well as the seemingly unrelated assumptions
used in [6,15,18,20] to study (4.4)-(4.7).

The main result on the convergence of (4.3) is established in Section 4.2.2 for the gen-
eral scenario described in Problem 4.1. Section 4.2.3 is dedicated to special cases and applica-
tions. In the context of minimization problems, convergence rates on the worst behavior of the
method are obtained.

4.2.2 Main results

4.2.2.1 Notation and definitions

The norm of X is denoted by || || and the canonical pairing between X and X™* by (-,-). If X
is Hilbertian, its scalar product is denoted by (- | -). The symbols — and — denote respectively
weak and strong convergence. The set of weak sequential cluster points of a sequence (z,)neN
in X is denoted by 20(zy, )nen.
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Let M: X — 2% be a set-valued operator. Then graM = {(z,2*) € X x X* | z* € Mz}
is the graph of M, domM = {ze€X | Mz+# o} the domain of M, ranM =
{z* € X* | 3z € X)2* € Mz} the range of M, and zerM = {z € X | 0 € Mz} the set of
zeros of M. Moreover, M is monotone if

(V(:L‘l,x’{) € graM) (V(:rz,x;) € graM) (x1 — x, 2] —x5) >0, (4.8)

and maximally monotone if, furthermore, there exists no monotone operator from X to 2% the
graph of which properly contains gra M.

A function f: X — |—oo,+oo] is coercive if lim, 4o f(¥) = +oo and supercoercive
if limp 400 f(2)/[|2]| = +o00. To(X) is the class of lower semicontinuous convex functions
f: X — ]—o00,400] such that dom f = {z € X | f(z) < +oo} # @. Now let f € Io(X).
The conjugate of f is the function f* € To(X™*) defined by f*: X* — |—o0,+00]: z*
sup,cy((z,2*) — f(x)), and the subdifferential of f is the maximally monotone operator

of 1 X = 2% {zr e x*| (Vye X)(y—a,2%) + f(z) < f(y)} (4.9)

In addition, f is a Legendre function if it is essentially smooth in the sense that 0 f is both locally
bounded and single-valued on its domain, and essentially strictly convex in the sense that 9 f*
is locally bounded on its domain and f is strictly convex on every convex subset of dom df [5].
Suppose that f is Gateaux differentiable on intdom f # @. The Bregman distance associated
with f is
Dy: X x X — [0, 4]
f(x) = fy) = (x =y, V[(y)), if yeintdom f; (4.10)

~+00, otherwise.

(z,y) —
Given a € |0, 4+o0[, we define

Calf) ={g € To(X) | domg = dom f, gis Gateaux differentiable on intdom f, Dy > aDy}.
4.11)
4.2.2.2 On condition (4.1)

The following proposition provides several key illustrations of the pertinence of (4.1) in terms
of capturing concrete scenarios.

Proposition 4.2 Consider the setting of Problem 4.1. Then (4.1) holds in each of the following
cases:
(i) 01 €[0,1], 62 =1, and (Vz € C)(Vy € C)(Vz € .¥) (2 — x, By — Bz) < 6D¢(z,y).
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(i) 9, =0, 62 =1, and B = 01, where ¢ € T'y(X) satisfies

(Vze O)(Vy e C)(Vz € ) Dyl(x,y) < 6Dy¢(x,y) + Dy(z,2) + Dy(2,y). (4.12)

(iii) 01 = 0, 62 = 1, and there exists ¢ € T'o(X) such that B = 9v and (Vz € C)(Vy € C)
(iv) dom B = X, there exists 3 € |0, +oo| such that

(V(2,2%) € gra(A+B)) (V(y,y") € gra(A+B)) (x —y,a" —y°) > §l| Be—By|, (4.13)

[ is Fréchet differentiable on X, V f is a-strongly monotone on dom A for some « € ]0, +00],
£€]0,28], k =1/(a(26 —¢)), and 61 = d = (28 —€)/(25).

(v) A+ B is strongly monotone with constant u € |0, +oc[, B is Lipschitzian on dom B = X with
constant v € 10, +oc|, f is Fréchet differentiable on X, V f is a-strongly monotone on dom A
for some o € 10, 400[, € € ]0,2u/v%|, k = v?/(a(2p—ev?)), and 6, = 6 = 2u—ev?)/(2p).

(vi) dom B = X, § € |0,+o0|, f is Fréchet differentiable on X, V f is a-strongly monotone on
dom A for some o € |0, 400[, € € 10,28, K = 1/(a(28 —¢)), 61 =0, 62 = (28 — &) /(28),
and one of the following is satisfied:

[a] B is S-cocoercive, i.e.,
(Vo € X)(Vy € X) (z—y, Bz — By) > B||Bx — By|*. (4.14)

[b]l B is v-Lipschitzian for some v € ]0, 00|, and angle bounded with constant 1/(45v),

ie.,

(Ve e X)(Vye X)(Vze€ X) (y— =z, Bz— Bx) < Zl;y(gv —vy,Bx — By). (4.15)

[c] Bis (1/5)-Lipschitzian and there exists 1) € I'g(X) such that B = V).

Proof. (): Let x € C,y € C, and z € .. Then (y —x,By — Bz) = (2 —z,By — Bz) +
(y — 2,By — Bz) < kDs(x,y) + (y — z,02(By — Bz)). In view of the monotonicity of A, we
obtain (4.1).

(ii)=-(@1): In the light of [9, Proposition 4.1.5 and Corollary 4.2.5], v is Gateaux differen-
tiable on intdom ) and B = V4 on intdom = intdom B D C. Hence, we derive from (4.12),
(4.10), and [6, Proposition 2.3(ii)] that

Vxe C)(Vye C)(Vz € ) kDs(x,y) = Dy(x,y) — Dy(z,2) — Dy(2,y) = (z — z, By — Bz).
(4.16)

(iii)=-(ii): Clear.
(iv): It results from [9, Theorem 4.2.10] that Vf is continuous. Thus, using the strong
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monotonicity of V f on dom A, we obtain
(Vo € dom A)(Vy € dom A) (z —y, Vf(z) — V() = alz — y|*. (4.17)

Given z and y in dom A, define ¢: R — R: t — f(y + t(x — y)), and observe that, since dom A
is convex [24, Theorem 3.11.12], [z, y] C dom A and therefore (4.17) yields

1
Dy(z,y) = /0 & (1)t — (x — y, VI (1))
1
= /0 (x—y,Vf(y+tlx—y) —Vf(y))dt

1
>/ tal|lz — y||2dt
0

[0
= Sl — I (4.18)

In turn, using (4.13) and (4.18), we deduce that

(Vz € C)(V(y,y") € graA) (V(z,z*) € gra A)

(y -z, By — B2) < \/@% 128 —e(By - Bz)]|
ly —zl*  28-c¢ 2
< 225 - 2) + 5 |By — Bz|| (4.19)
< kDg(z,y) + <y —2,01(y" — 2") + d2(By — Bz)>. (4.20)

(v)=(iv): Set B = p/v?. Then

(V(z,2*) € gra(A+ B)) (V(y,y") € gra(A + B))
oy —y) > ulle —yl? > BB — Byl’. (4.2D)

(vi): We consider each case separately.
[a]: By arguing as in (4.18), we obtain (Vo € dom A)(Vy € dom A) Ds(x,y) > (a/2)|z —
y||?. It thus follows from (4.19) and (4.14) that

(Vz € C)(V(y,y*) € graA) (V(z,z*) € gra A)

ly —=|*> | 28—«
—x,By — Bz) <

< kDy(z,y) + (y — 2,02(By — Bz)). (4.22)

|By — Bz||?

[b]=-[a]: We derive from [1, Proposition 4] that B is cocoercive with constant /.
[c]=-[a]: This follows from [1, Corollaire 10]. 0O
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Remark 4.3 Condition (iv) in Proposition 4.2 first appeared in [20] and does not seem to have
gotten much notice in the literature. The cocoercivity condition (vi)[a] was first used in [17]
to prove the weak convergence of the classical forward-backward method in Hilbert spaces.
Finally, in reflexive Banach space minimization problems, (iii) appears in [18]; see also [3] for
the Euclidean case.

Remark 4.4 Condition (iii) is satisfied in particular when X is a Hilbert space, f = |- |?/2,
domy = X, and Vv is Lipschitzian [7, Theorem 18.15], in which case it is known as the
“descent lemma.” Condition (ii) can be viewed as an extension of this standard descent lemma
involving triples (z,y, z) and an arbitrary Bregman distance D/ in reflexive Banach spaces. Let
us underline that (ii) is more general than (iii). Indeed, consider the setting of Problem 4.1 with
the following additional assumptions: X’ is a Hilbert space, 0 € intdom f, A is the normal cone
operator of some self-dual cone K, and there exists a Gateaux differentiable convex function
1: X — R such that

B=Vy, Argming={0}, and Vu(K)C K. (4.23)

Then C' = (intdom f) Ndom A C K and . = {0}. Further, for every z € C' and every y € C,
(4.23) yields Dy(x,y) — Dy(x,0) — Dy(0,y) = {~z | Vib(y) — Vi(0)) = (~a | Vih(y)) < 0 <
Dy¢(z,y). Therefore, (4.12) is satisfied. On the other hand, (iii) does not hold in general. For
instance, take X = R, K = [0, +oc, f = |-|2/2, and ¢ = |- |*/2,

4.2.2.3 Forward-backward splitting for monotone inclusions

The formal setting of the proposed Bregman forward-backward splitting method is as follows.

Algorithm 4.5 Consider the setting of Problem 4.1. Let o € |0, +00], let (7, )nen be in |0, +o0],
and let (f,,)nen be in C4(f). Suppose that the following hold:

[a] inf,enyn > 0, sup,cn(km) < @, and sup,, (91 Vn+1/7n) < 1.
[b] There exists a summable sequence (7, )nen in [0, +oof such that (Vn € N) Dy, . < (1 +
) Dy,
[c] For every n € N, V f,, is strictly monotone on C' and (V f,, — v, B)(C) C ran(V f, + 7, A).
Take 2o € C and set (Vn € N) 2,01 = (Vi + 7% A) "NV fu(2n) — Yo Bay).

Let us establish basic asymptotic properties of Algorithm 4.5, starting with the fact that its

viability domain is C.

Proposition 4.6 Let (z,),en be a sequence generated by Algorithm 4.5 and let z € .. Then
(zn)nen is a well-defined sequence in C' and the following hold:

() (Dy,(z,2n))nen converges.

(D) > ,en(l = wym/a) Dy, (Tpy1,2n) < +ooand Y- (1 — kvn/a)Dy(Tni1,Tn) < 400.
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i) 3, cn(@nsr = 2,90 (Vin(zn) = Vin(2ni1)) = Ban + Bz) < +oc.
(v) > ,en(l = d2)(xp — 2, Bz, — Bz) < +00.
(v) Suppose that one of the following is satisfied:

[a] C is bounded.

[b] f is supercoercive.

[c] f is uniformly convex.

[d] f is essentially strictly convex with dom f* open and V f* weakly sequentially continu-

ous.
[e] X is finite-dimensional and dom f* is open.
D
[f] f is essentially strictly convex and p =  inf Dy(@,y) €10, 4o0].
z€intdom f Df (y, I’)
y€intdom f
Y

Then (x,,)nen is bounded.

Proof. Take n € N, and suppose that (y*,y;) and (y*, y2) belong to gra(V f,, +7,A) . Then y* €
(Vfn+mA)y and y* € (V fn + v A)y2. However, by virtue of condition [c] in Algorithm 4.5,
V fn + A is strictly monotone. Therefore, since (y; — y2,y* — y*) = 0, we infer that y; = y».
Hence

(Vfn + 7 A) "L is single-valued on dom(V f,, + 7,A4) " = ran(V £, + 7, A). (4.24)
Moreover, it follows from [9, Proposition 4.2.2] and (4.11) that
ran(Vf, + v,A)"! = dom V f,, N dom A = (intdom f,,) Ndom A = C. (4.25)

Next, we observe that, since 2o € C' C intdom B, V fo(z) — 70 By is a singleton. Furthermore,
in view of condition [c] in Algorithm 4.5, V fo(z¢) — voBxo € ran(V fy + 1 A). We thus deduce
from (4.24) that 21 = (V. fo+70A4) "1V fo(x0) — 0 Bwo) is uniquely defined. In addition, (4.25)
yields z1 € ran(V fy + 70A)~! = C. The conclusion that (z,,).cn is a well-defined sequence in
C follows by invoking these facts inductively.

(i)—(iv): Condition [a] in Algorithm 4.5 entails that there exists ¢ € |0, 1] such that

51 nt1 < (1= &) (4.26)

Now take zj; € Az and set

x:LJrl = Vgl(vfn(xn) - vfn(xn+1)) — Bz,
Ay, = Dy (z,25) + 017y (Tn — 2,2, + Bz
On = (1 — "VYH/O‘)Dfn (Tny1,Tn)

eV (Tny1 — 2,05 + Bz) + (1 = d2)yu(xn — 2, Br, — Bz).
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In view of (4.27),
(Tps1,25,1) € graA. (4.28)

In turn, since (2, —Bz) € gra A and A is monotone,
(Tps1 — 2,29 + Bz) > 0. (4.29)

Hence, invoking condition [a] in Algorithm 4.5 and the monotonicity of B, we obtain 0,, >
Next, since z € intdom f = intdom f, by (4.11), we derive from (4.27) and [6, Proposi-

tion 2.3(ii)] that

0= (zn+1 — 2, Vin(zn) = Vn(@nt1) = Brn — mii)
= <a:n+1 — 2, Vn(zy) — an(acn+1)> + V(2 = Tng1, Bry — Bz) — Yp(®ng1 — 2,054 + B2)
= Dy, (2z,2n) — Dy, (2, Tnt1) — Dy, (Xng1,Tn) + (2 — Tpy1, Bxy, — Bz)
— YnlTny1 — 2,251 + Bz). (4.30)

Thus, since (z, —Bz) € gra A and f,, € C,(f), we infer from (4.26), (4.29), (4.28), and (4.1)
that

Dy, (2, Zn41) + 01Yn41(Tns1 — 2, Ty + B2)
< Dy, (2, %p41) + Yn@ns1 — 2,251 + B2) — ey (Tng1 — 2,251 + Bz)
= Dy, (z,2n) — Dy, (Tps1,%n) + (2 — Tpg1, Bry — B2) — evp(Tng1 — 2,25, 1 + B2)
= Dy, (2z,2n) — Dy, (Tns1, Tn) + Wnl@n — Tny1, Bxy — Bz) — yn(xn — 2, Bxy, — Bz)
— eM{Tnt1 — 2, Ty 41 + Bz)
< Dy, (2,2n) — Dy, (Xng1,2n) + 69D (Tni1, Tn) + 617 (Tn — 2,2, + Bz)
+ 62 (®n — 2, Bxy — Bz) — Y (v — 2, Bxy — Bz) — eyn(Tny1 — 2,241 + B2)
< Dy, (2,20) + 012 — 2,2, + Bz) — (1 = ko /) Dy, (Tp41, Tn)
— eV (Tny1 — 2,251 + Bz) — (1 = 62)yn{wn — 2, Bx,, — Bz)
=A, —0,. (4.31)

Consequently, by condition [b] in Algorithm 4.5 and (4.29),

Ant1 =Dy, (2, Zp41) + 619m41(Tnt1 — 2, Tpqq + B2)
< (14 ) (Dy, (2, Zn+1) + 61941 (@ng1 — 2,21 + Bz))
S (L4 7)(An = 0n)
< (1 +n)A, — 6. (4.32)
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Hence, [7, Lemma 5.31] asserts that

(Ay)nen converges and Z 0, < 4o0. (4.33)
neN

In turn, we infer from (4.27) and condition [a] in Algorithm 4.5 that

Z(l — KYn/a) Dy, (Tnt1, Tn) < +00

neN

Z<1‘n+1 - Z, $Z+1 + BZ> < +00 (4.34)
neN

Z(l — 62){xp — 2z, Bxy, — Bz) < 400.

neN

Thus, since (f,)nen lies in C,(f), we obtain } (1 — £vn/a)Dy(2pi1, 2,) < +o00. It results
from (4.33) and (4.27) that (Dy, (2, z,))nen converges.

(v): Recall that (z,)pen lies in C.

[a]: Clear.

[b]: We derive from (i) that (D¢(z, 25 ))nen is bounded. In turn, [5, Lemma 7.3 (viii)] asserts
that (x,,)nen is bounded.

[c]: It results from [24, Theorem 3.5.10] that there exists a function ¢: [0, +o00[ — [0, +00]
that vanishes only at 0 such that lim;_, ;. ¢(t)/t — +o00 and

(Va € intdom f)(Vy € dom f) (y — &, Vf(2)) + f(z) + d(|a —yll) < fy).  (435)

Hence, in the light of (i), sup,,cy ¢(||zn — 2||) < sup,eny Ds(z,2n) < (1/a)sup, ey Dy, (2, 20) <
+oo and (z,)nen is therefore bounded.

[d]: Suppose that there exists a subsequence (xy, )nen Of (2y)nen such that ||z, || — +oc.
We deduce from [5, Lemma 7.3(vii)] and (i) that

sup Dy« (V f(n), Vf(2)) = sup Dy (z, ) < 1 sup Dy, (2, z,) < +00. (4.36)

neN neN & neN
However, f* is a Legendre function by virtue of [5, Corollary 5.5] and Vf(z) € intdom f* by
virtue of [5, Theorem 5.10]. Thus, [5, Lemma 7.3(v)] guarantees that D¢« (-, V f(z)) is coercive.
It therefore follows from (4.36) that (V f(x,))nen is bounded, and then from the reflexivity
of X* that W(V f(x, ) nen # @. In turn, there exist a subsequence (7, )nen Of (g, Jnen and
r* € X such that Vf(z;, ) — x*. The weak lower semicontinuity of f* and (4.36) yield
Dy(z*,Vf(2)) <lim Dy« (V f (2, ), Vf(2)) < +oc. Therefore

Vf(x,, ) — 2" € dom f* = intdom f. (4.37)

Moreover, [5, Theorem 5.10] asserts that V f*(z*) € intdom f and (Vn € N) Vf*(Vf(z,)) =
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r,. Hence, (4.37) and the weak sequential continuity of Vf* imply that =z, — =
ViV f(zy, )) = Vf*(x*). This yields sup, cy ||z, || < +oc and we reach a contradiction.

[e]: A consequence of [5, Lemma 7.3(ix)] and (i).

[f]: It results from [5, Lemma 7.3(v)] that D(-,z) is coercive. In turn, since
sup, ey Df(2n, 2) < (1/p) sup,eny Df (2, 25) < +00 by (i), (2n)nen is bounded. [

As seen in Proposition 4.6, by construction, an orbit of Algorithm 4.5 lies in C' and therefore
in intdom f. Next, we proceed to identify sufficient conditions that guarantee that their weak
sequential cluster points are also in intdom f.

Proposition 4.7 Let (z,),cn be a sequence generated by Algorithm 4.5 and suppose that one of
the following holds:
[a] dom f Ndom A C intdom f.

[b]l f is essentially strictly convex with dom f* open and V f* weakly sequentially continuous.

D
[c] f isstrictly convex on intdom f and p =  inf M
z€intdom f Df (y, 1‘)
y€intdom f
TF#Y

€ 10, 4-o0l.

[d] X is finite-dimensional.
Then W (xy,)nen C intdom f.

Proof. Suppose that x € 2(zp, )nen, say zx, — =, and fix z € .7.

[a]: Since dom f is closed and conves, it is weakly closed [10, Corollary I1.6.3.3(i)]. Hence,
since Proposition 4.6 asserts that (x,),en lies in C' C dom f, we infer that 20(zy,),en C dom f.
Likewise, since dom A is a closed convex set [24, Theorem 3.11.12] and (Zn)nen lies in C' C
dom A, we obtain 2(z,,)nen C dom A. Altogether, 23(x,),en C dom f Ndom A C intdom f.

[b]: Using an argument similar to that of the proof of Proposition 4.6(v)[d], we infer that
there exist a strictly increasing sequence (Ix, )nen in N and z* € intdom f* such that z;, —
V f*(«*). Thus, appealing to [5, Theorem 5.10], we conclude that x = V f*(z*) € intdom f.

[c]: Proposition 4.6(i) and the weak lower semicontinuity of D (-, z) yield

Dy(x,2) < lim Dy (wy,,2) < (1/p)im Dy (2, 2,) < (ap) ™" lim Dy, (z,zy,) < +oo. (4.38)

Thus x € dom f. We show that dom f is open. Suppose that there exists y € dom f \ intdom f,
let (o, )nen be a sequence in |0, 1] such that o,, — 1, and set (Vn € N) y, = a,y + (1 — ap)z.
Then {y, }nen C |y, 2] C (intdom f) \ {z} [10, Proposition I1.2.6.16]. Moreover, y,, — y and,
by convexity of f, (Vn € N) D¢(yn,2) < an(f(y) — f(2) — (y — 2,V f(2))). Hence

Um D (yn, 2) < f(y) = f(2) = (y = 2,V (2)) = Ds(y, ). (4.39)

However, it results from the lower semicontinuity of f that lim D (y,, 2) = lim(f(y,) — f(2)) —
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lim(y, — 2,V f(2)) = f(y) — f(2) = (y — 2,V f(2)) = D¢(y, 2). Hence, (4.39) forces
lim D¢ (yn, 2) = D¢(y, 2). (4.40)

In addition, by convexity of f, (Vn € N) Df(z,yn) = an(f(2)—f(y)—(z —y,V f(yn))). However,
[5, Theorem 5.6] and the essential smoothness of f entail that

(z=y, V() =z =y, VIly+ (1 —an)(z —y))) = —o0. (4.41)

Thus,
+00 = lim (an (f(2) = fy) = (z — v, Vf(yn)>)> < lim Dy(z, yn)- (4.42)

It results from (4.40) and (4.42) that 0 < p < lim D¢ (yn, 2)/Ds(2,yn) = 0, so that we reach a
contradiction. Consequently, dom f is open and hence =z € dom f = intdom f.

[d]: Proposition 4.6(i) ensures that (xj, )nen iS @ sequence in intdom f such that
(D¢(2,xk,))nen is bounded. Therefore, [4, Theorem 3.8(ii)] and the essential smoothness of f
yield z € intdom f. O

Definition 4.8 Algorithm 4.5 is focusing if, for every z € .7,

( (Dy, (2, xn))neN converges
Z <xn+1 - 37'7771(vfn(xn) - an(xnﬂ)) — Bxp + BZ> < +00
neN
Z(l - 62)<xn — z,Bx, — Bz> < +00
neN
Z(l — KkYn /) Dy, (Tpt1, Tn) < 400
\ neN

=  W(xn)nen C zer(A+ B). (4.43)
Our main result establishes the weak convergence of the orbits of Algorithm 4.5.

Theorem 4.9 Let (z,),cn be a sequence generated by Algorithm 4.5 and suppose that the follow-
ing hold:
[a] (zp)nen is bounded.
[b] W (zy)nen C intdom f.
[c] Algorithm 4.5 is focusing.
[d] One of the following is satisfied:
1/ .7 is a singleton.
2/ There exists a function g in I'o(X) which is Gdteaux differentiable on intdomg O C,
with Vg strictly monotone on C, and such that, for every sequence (y,)nen in C and
every y € W(yn)nen N C, Yk, — ¥ = Vi, (k) = Vg(y).
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Then (x,)nen converges weakly to a point in ..

Proof. It results from [a] and the reflexivity of X" that
(zn)nen lies in a weakly sequentially compact set. (4.44)

On the other hand, [c] and items (i)-(iv) in Proposition 4.6 yield 20(z,)nen C zer(A + B). In
turn, it results from [b] that
& # W (xp)ney C & C C. (4.45)

In view of [7, Lemma 1.35] applied in A%eak it remains to show that W(xn)nen is a sin-
gleton. If [d]1/ holds, this follows from (4.45). Now suppose that [d]2/ holds, and take
y1 and yo in W(zp)nen, say zx, — w1 and x;,, — yo. Then y; € & and y2 € & by
virtue of (4.45), and we therefore deduce from Proposition 4.6(i) that (D¢, (y1,%n))nen and
(Dy, (y2, zn))nen converge. However, condition [b] in Algorithm 4.5 and [7, Lemma 5.31] as-
sert that (Dy, (y1,y2) )nen converges. Hence, appealing to [6, Proposition 2.3(ii)], it follows that
(w1 = y2, Vin(an) = Vin(y2))nen = (Dy, (Y2, 2n) + Dy, (y1,92) — Dy, (y1,%n))nen converges.
Set ¢ = lim(y; — y2, V fn(zn) — Vfn(y2)). Since (z,,)nen is a sequence in C, we infer from (4.45)
and [d]2/ that £ « (y1 —y2, Vi, (x1,) = Vfi,(42)) = (y1 — y2, Vg(y2) — Vg(y2)) = 0, which
yields ¢ = 0. However, invoking [d]2/, we obtain ¢ <« (y1 —y2, Vfi, (k) — Vi, (y2)) —
(y1 — y2, Vg(y1) — Vg(y2)). It therefore follows that (y; — y2, Vg(y1) — Vg(y2)) = 0 and hence
from the strict monotonicity of Vg on C that y; = yo. O

Example 4.10 We provide an example with operating conditions that are not captured by any
of the methods described in (4.4)—(4.7). Let p € |1, 4+o0], let (xn)nen be a sequence in [1, +o0|
such that x,, — 1, and let (7,),en be a summable sequence in [0, +oo[ such that (Vn € N)
Xn+1 < (14 n,)xn. We denote by z = ((x)ren a sequence in /P(N). Set X = ¢P(N) x R, hence
X* = (p/(P=1)(N) x R, and define the Legendre functions

el 1 - €+ gIng, i €0
(v €N)  fa: & = ]-00,400] : (2,6) = § Xn yp 4 if ¢—o; (446
p

and .
];IIZH” —&{+€ng, if £>0;

f=9g: X = ]—00,4+00]: (2,§) — lnz”p’ if € =0 (4.47)

+00, if £<0.

Now let ¢: X — [0, +oo[ : (2,€) +— ||2||P/p, set B = V1), and let A: X — 2% be any maximally
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monotone operator such that
dom A C (N) x |0,+occ[ and zer(A+ B) # @. (4.48)

Let us check that this setting conforms to that of Theorem 4.9. First, Proposition 4.2(iii) implies
that (4.1) is satisfied with 6; = 0 and Jo = k = 1. Next, we note that intdom f = ¢P(N) x
10, 400, that (fy,)nen lies in C;(f), and that condition [b] in Algorithm 4.5 holds. Furthermore,
we derive from (4.46) that

(Vn € N)  Vfp: £P(N) x ]0, 400 = X*: (2,6) s (Xn(sign((k)|§k|p_1)k€N,ln£) (4.49)
and we observe that
(VneN) ranVf,=4&" and dom(y,A) C domVf,. (4.50)
It therefore follows from the Brézis—Haraux theorem [11, Théoréme 4] that
(Vn e N) ran(Vf, +mA) = X", (4.51)

and hence that condition [c] in Algorithm 4.5 holds. It remains to verify condition [d]2/ in
Theorem 4.9. Set ¢: P(N) — [0,400[: z — ||z]|P/p and (Vn € N) ¢,,: (P(N) — [0, 400 : 2z +—
Xnl|z||P/p. Take a sequence (z,, &, )nen in dom A and a point (z,¢) € dom A such that (z,,&,) —
(2,€). We have &, — ¢ and (Vk € N) (, 1 — ;. Now let (ex)ren be the canonical Schauder basis
of /P(N). Then

(Vk € N) <ek:7 Vgpn(zn» = Xn Sign(Cn,k)|Cn,k|p_1 — Sign(Ck)|Ck|p_1 = <€k7 V(p(z)> (4.52)

and (V,,(2n))nen is bounded. It therefore follows from [2, Théoreme VIII-2] that Vi, (z,) —
Vp(z) and, in turn, that Vf,(z,,&,) — Vg(z,§) by (4.47) and (4.49). Note that the above
setting is not covered by the assumptions underlying (4.4)—(4.7): the fact that B # 0 excludes
[6], the fact that X is not a Hilbert space excludes [15] and [20], and [18] is excluded because
A is not a subdifferential.

4.2.3 Special cases and applications

We illustrate the general scope of Theorem 4.9 by recovering apparently unrelated results and
also by deriving new ones. Sufficient conditions for [a] and [b] in Theorem 4.9 to hold can be
found in Propositions 4.6(v) and 4.7, respectively. As to checking the focusing condition [c],
the following fact will be useful.

Lemma 4.11 [13, Proposition 2.1(iii)] Let M;: X — 2% and M,: X — 2% be maximally
monotone, let (an,a})nen be a sequence in gra My, let (b, b))nen be a sequence in gra M, let
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x € X, and let y* € X*. Suppose that a,, — z, b, — y*, a} + b — 0, and a,, — b, — 0. Then
x € zer(My + My).

4.2.3.1 Recovering existing frameworks for monotone inclusions

In this section, we show that the existing results of [6,15,20] discussed in the Introduction can
be recovered from Theorem 4.9. As will be clear from the proofs, more general versions of these
results can also be derived at once from Theorem 4.9. First, we derive from Theorem 4.9 the
convergence of the Bregman-based proximal point algorithm (4.4) studied in [6, Section 5.5].

Corollary 4.12 Let A: X — 2% be maximally monotone, let f € T'o(X) be a supercoercive
Legendre function such that @ # zer A C dom A C intdom f and V[ is weakly sequentially
continuous, and let (y,)nen be a sequence in |0, +oo[ such that inf,,cny v, > 0. Suppose that, for
every bounded sequence (Y, )nen in intdom f,

Df(yn+17 yn) —0 = vf(yn—i-l) - vf(yn) — 0. (453)

Take xp € C and set (Vn € N) zp,11 = (Vf + ’ynA)fl(Vf(:rn)). Then (xy,)nen converges weakly
to a point in zer A.

Proof. We apply Theorem 4.9 with B =0, « =1, k = §; = 02 = 0, and (Vn € N) f,, = f. First,
(4.1) together with conditions [a] and [b] in Algorithm 4.5 are trivially fulfilled. On the other
hand, since f is a Legendre function and dom A C intdom f, condition [c] in Algorithm 4.5
follows from [6, Theorem 3.13(iv) (d)]. Next, condition [a] in Theorem 4.9 follows from Propo-
sition 4.6(v) [b]. Furthermore, in view of the weak sequential continuity of V f, condition [d]2/
in Theorem 4.9 is satisfied with ¢ = f. Next, to show that the algorithm is focusing, suppose
that 3 -~ Dys(Tni1,2,) < +oo and take x € W(xn)nen, saAY Tx, — . Since (T,)nen is a
bounded sequence in intdom f, we derive from (4.53) that Vf(x,+1) — Vf(x,) — 0. In turn,
since inf,en v, > 0, it follows that v, *(V f(zn+1) — Vf(2n)) — 0. However, by construction,
(Vn € N) y,gnl_l(v f(zk,—1) — Vf(zg,)) € Axy, . Therefore, upon invoking Lemma 4.11 (with
M; = A and M, = 0), we obtain = € zer A and the algorithm is therefore focusing. This also
shows that 20(z,, )neny C zer A C intdom f. Condition [b] in Theorem 4.9 is thus satisfied. O

The next application of Theorem 4.9 is a variable metric version of the Hilbertian forward-
backward method (4.5) established in [15, Theorem 4.1].

Corollary 4.13 Let X be a real Hilbert space, let A: X — 2 be maximally monotone, let o and
B bein 0,400l and let B: X — X satisfy

(Ve € X)(Vy € X) (x—y| Bz — By) > B||Bx — Byl|*. (4.54)

Further, for every n € N, let U,: X — X be a bounded linear operator which is a-strongly
monotone and self-adjoint. Suppose that zer(A+B) # @ and that there exists a summable sequence
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(Mn)nen in [0, +oo[ such that
(VneN)(Vo € X) (2| Uptaz) < (1 +mn)(z | Una). (4.55)

Let € € ]0,23] and let (v,)nen be a sequence in |0, +oo[ such that 0 < inf,en v, < SUP,eny Tn <
(28 — €)a. Define a sequence (y,)ncN via the recursion

xg€domA and (VneN) z,y1 = U, + %A)_I(Unzz:n — Y Bxy). (4.56)

Then (x,,)nen converges weakly to a point in zer(A + B).

Proof. Set f = ||-]|?/2, C = dom A4, and .¥ = zer(A + B). In addition, for every n € N,
define f,: X — R: z — (x| U,x)/2. Let us apply Theorem 4.9 with k = 1/(28 —¢), 61 = 0,
and 9y = (28 —¢)/(28) € ]0,1]. First, f € I'g(X) is a supercoercive Legendre function with
dom f = X and, for every n € N, since Vf, = U, is a-strongly monotone, f, € C,(f).
Furthermore, it follows from Proposition 4.2(vi)[a] that (4.1) is fulfilled. We also observe that
condition [a] in Algorithm 4.5 is satisfied. Next, by (4.55) and the assumption that the operators
(Un)nen are self-adjoint,

(¥n € N)(Vr € X)(Wy € X) Dy, (r.) = gz~ 9 | Unia (& — )

Sy | Unle — )

= Dy, (z,y) (4.57)

<

and condition [b] in Algorithm 4.5 therefore holds. Now take n € N. Since Vf, = U, is
maximally monotone with dom V f,, = X and A is maximally monotone, [7, Corollary 25.5(i)]
entails that V f,, + v, A is maximally monotone. Thus, since V f,, + v, A is a-strongly monotone,
[7, Proposition 22.11(ii)] implies that ran(V f,, + 7,4) = X and it follows that condition [c]
in Algorithm 4.5 is satisfied. Next, in view of Proposition 4.6(v) [b], (z,)nen is bounded, while
W(xn)neny C X = intdom f. Now set o = sup,,cy ||Ux||. For every n € N, since it results from
(4.55) and [7, Fact 2.25(iii)] that

(rex) el <t = (o))< ([J+n0) e tio) < ( [T0+00) 100l 458)
keN keN
we derive from [7, Fact 2.25(iii)] that | U, || < ||Uo|| [[,en(1+m:). Hence 11 < +oc and therefore,
appealing to [14, Lemma 2.3(i)], there exists an «-strongly monotone self-adjoint bounded
linear operator U: & — X such that (Vw € X') U,w — Uw. Define g: X — R: z — (x| Ux)/2.
Then Vg = U is strongly monotone (and thus strictly monotone). Furthermore, given (v, )nen
in C and y € 2(yn)nen N C, say yi, — y, we have

(Vw € X) (W [ Vi, Wk, )) = Ukpw [ Yr,) = {Uw [ y) = (w | Uy) = (w | Vg(y))  (4.59)
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and thus Vfi, (yx,) — Vg(y). Therefore, condition [d]2/ in Theorem 4.9 is satisfied. Let us
now verify that (4.56) is focusing. Towards this goal, take »z € .” and suppose that | (1 —
62)(zn — 2 | Bxy, — Bz) < 400 and ) (1 — kyn/a)Dy, (2ny1, ) < +o00. Since §2 < 1 and
sup,,en(kvn) < @, we infer from (4.54) that

1

> 1Bz~ B < 5

neN

> {an — 2| By — Bz) < 400 (4.60)
neN

and ZneN |Zn+1 —an? = QZnGN Dy¢(xps1,2n) < (2/a) ZneN Dy, (xn41,%n) < 4o00. It follows
that

1Un(@nss — 2]l < all2ngs — @l = 0. 4.61)

Now take x € W(x,)nen, say xx, — z, and set (Vn € N) z; | = Yl Un (2 — Tpy1) — By,
It results from (4.56) that (zy, 1,7}, . 1)nen lies in gra A and from (4.61) that g, 41 — .
Moreover, (4.61) yields z}, ,, + Bxg, — 0. Altogether, Lemma 4.11 (applied to the sequences
(Tk,+1, %), 1)nen in gra A and (zy,,, Bz, )nen in gra B) guarantees that x € zer(A + B). Con-
sequently, Theorem 4.9 asserts that (z,,),cn converges weakly to a point in .. [0

Example 4.14 The classical forward-backward method is obtained by setting U,, = Id in Corol-
lary 4.13, which yields

o €domA and (VneN) z,11=1d+ ’ynA)_l(:Un — v Bxy,). (4.62)

The case when the proximal parameters (v, ),cn are constant was first addressed in [17].

We now turn to the Renaud-Cohen algorithm (4.7) and recover [20, Theorem 3.4].

Corollary 4.15 Let X be a real Hilbert space, let A: X — 2% and B: X — X be maximally
monotone, and let f: X — R be convex and Fréchet differentiable. Suppose that zer(A + B) # &,
that V f is 1-strongly monotone on dom A and Lipschitzian on bounded sets, and that there exists
B €10, +oo[ such that

(V(z,2*) € gra(A + B)) (V(y,y") € gra(A+ B)) (z —y|a" —y*) > || Bz — By|*>. (4.63)

Let v € ]0,28], take zy € dom 4, and set (Vn € N) z,41 = (Vf +vA) "L (Vf(zn) — YBzy).
Suppose, in addition, that V f is weakly sequentially continuous. Then (z,,),en converges weakly
to a point in zer(A + B).

Proof. Let ¢ € |0, 23] be such that v < 25—¢. We apply Theorem 4.9 with C =dom A,a =1,k =
1/(28—¢), 01 = 02 = (28—¢)/(2B) € ]0,1[, and (vVn € N) f,, = f and n,, = 0. Proposition 4.2(iv)

asserts that (4.1) is satisfied. Furthermore, as shown in the proof of Proposition 4.2(iv),

(Vz € dom A)(Vy € dom A) Dy (x,y) > %HUC —yl*. (4.64)
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Next, note that conditions [a] and [b] in Algorithm 4.5 are trivially satisfied. Since Vf + vA
is strongly monotone and since, by [7, Corollary 25.5(i)], Vf + vA is maximally monotone,
it follows from [7, Proposition 22.11(ii)] that ran(Vf + yA) = X and therefore that con-
dition [c] in Algorithm 4.5 holds. We observe that condition [b] in Theorem 4.9 is trivially
satisfied and that condition [a] in Theorem 4.9 follows from (4.64) and Proposition 4.6(i).
Furthermore, since V[ is weakly sequentially continuous and 1-strongly monotone on C,
condition [d]2/ in Theorem 4.9 is satisfied with ¢ = f. Now take z € zer(A + B) and
suppose that ) (1 — k) Dy(Zni1,2n) < 400, Y cn(1 = 62)(xn — 2 | Bz, — Bz) < 400,
and Y, oy (@ns1 — 2 | YNV f () — Vf(@n11)) — Bz, 4+ Bz) < +oc. Then, since ky < 1 and
09 < 1, it follows that

ZDf(an,xn) < +o0o and Z (xn — 2z | Bxy, — Bz) < 400, (4.65)
neN neN

and therefore that

Z <.’L‘n+1 -z | V_I(Vf(:vn) —Vf(rp+1)) — Bx, + an+1> < +00. (4.66)
neN

Since (z,0) € gra(A + B) and since the sequence (z,,+1,7 *(Vf(zn) — Vf(2nt1)) — Bry +
Bxpi1)nen lies in gra(A + B) by construction, it follows from (4.63) and (4.66) that
> nen [Bzn — Bz||* < +oc. On the other hand, since (), lies in dom A by Proposition 4.6,
we deduce from (4.64) and (4.65) that x,, 11—, — 0. In turn, it results from the Lipschitz conti-
nuity of V f on the bounded set {z,, },en that V f(z,)—V f(2p4+1) — 0. Now take = € 20(xy, ) nen,
say x, — , and set (Vn € N) 27, =7 (Vf(2n) =V f(2n11)) — By. Then (zy, 11,2} 1 )nen
lies in gra A. Furthermore, =} ., + Buy, = v '(Vf(zx,) — Vf(2x,41)) — 0 and, since
Ty, — Tnt1 — 0, x, +1 — z. Thus, applying Lemma 4.11 with the sequences (xg, 11, x,’gnﬂ)neN
and (xg, , Bxy, )nen yields x € zer(A + B), and we conclude that condition [c] in Theorem 4.9
is satisfied as well. O

4.2.3.2 The finite-dimensional case

We discuss the finite-dimensional case, a setting in which the assumptions can be greatly sim-
plified and the results presented below are new.

Corollary 4.16 Let (x,,)nen be a sequence generated by Algorithm 4.5. In addition, suppose that
the following hold:

[a] X is finite-dimensional.

[b] f is essentially strictly convex and dom f* is open.

[c] (intdom f) Ndom A C intdom B.

[d] sup, ey (A7) < o
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[e] There exists a function g in T'o(X") which is differentiable on intdom g D intdom f, with Vg
strictly monotone on C, and such that, for every sequence (yn)nen in C and every sequential
cluster point y € intdom f of (Yn)nen, Yk, — ¥ = V i, (Yk,) = Vg(y).

Then (x,,)nen converges to a point in ..

Proof. It follows from Proposition 4.6(v) [e] that (x,,),ecn is bounded and from Proposition 4.7[d]
that 2(x,,)neny C intdom f. In view of Theorem 4.9, it remains to show that Algorithm 4.5
is focusing. Towards this goal, let = € ., and suppose that (Dy, (2,%y))nen converges and
> nen(l = £vn/a) Dy, (41, 2,) < 400, and let 2 be a sequential cluster point of (z,,)nen, say
xr, — x. Using [d] and the fact that (f,,)nen lies in C,(f), we obtain

(Dy(z,2n)), o is bounded and > Dy, (2n41,2n) < +00. (4.67)
neN

Since (xf, )nen lies in intdom f, [4, Theorem 3.8(ii)] and (4.67) imply that
x € intdom f (4.68)
and [5, Theorem 5.10] thus yields
Vf(xg,) = Vf(x) € intdom f*. (4.69)
Next, it results from [b], [5, Lemma 7.3(vii)], and (4.67) that

(Dpe(Vf (), VI(2),,en = (Df(2,7n)),,p is bounded. (4.70)

Therefore, since V f(z) € intdom f* [5, Theorem 5.10] and since f* is a Legendre function
[5, Corollary 5.5], it results from [5, Lemma 7.3(v)] that (V f(xg,+1))nen is bounded. In turn,
there exists a strictly increasing sequence (lx, )nen in N and a point z* € X* such that

Vi, +1) = 2" (4.71)

By lower semicontinuity of D-(-,V f(2)) and (4.70), 2* € dom f*. On the other hand, appeal-
ing to [5, Lemma 7.3(vii)] and (4.67), we obtain

1
0< Dys (Vf(fL‘lkn), vf($lkn+1)) =Dy (:L'lkn_H, l‘lkn) < anlkn (:L'lkn_H, l‘lkn) — 0. (4.72)

Thus, since (V f(xy))nen lies in intdom f* by virtue of Proposition 4.6 and [5, Theorem 5.10],
we derive from [4, Theorem 3.9(iii)], (4.69), and (4.71) that 2* = V f(x) and, hence, from
(4.71) that V f(zy,, 1) — Vf(2). It thus follows from [5, Theorem 5.10] that x;, 1 — z. In
turn, by using respectively [e] with the sequences (z,,)nen and (7541)nen, we get V fy, (zy, ) —
Vg(z)and V fi, (w1, +1) = Vg(x). Nowset (Vn € N) x; ;= Vi MV fol@n) =V fr(2p41))— B,
Then, by construction of (z,)nen, (Vn € N) (2,41, 7}, ,,) € gra A. In addition, since inf,,cy vy, >
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0and Vfy, () — Vi, (i, +1) = Vg(z) — Vg(z) = 0, we deduce that z; ,, + Bz, — 0.
On the other hand, since (z,,),en lies in dom A and z, — =z, it follows that x € dom A and
therefore, by (4.68) and [c], that x € intdom B. Hence, using [21, Corollary 1.1], we obtain

B, — Buz. Altogether, Lemma 4.11 (applied to the sequence (z;,, +1, 7], +1)nen in gra A and
the sequence (7, , Bxy, )nen in gra B) asserts that x € zer(A + B). In view of Theorem 4.9,
we conclude that (z,,),en converges to a point in .7, O

4.2.3.3 Forward-backward splitting for convex minimization

In this section, we study the convergence of (4.6). Our results improve on and complement
those of [18].

Problem 4.17 Let ¢ € T'o(X), let ¢ € T'o(X), and let f € I'y(X') be essentially smooth. Set
C = (intdom f) N domdy and .¥ = (intdom f) N Argmin(y + ). Suppose that ¢ + 1) is
coercive, & # C C intdomv), .¥ # @, 1 is Gateaux differentiable on intdom, and there
exists k € ]0, +o0[ such that

(Ve € C)(Vy € C) Dy(x.y) < wDys(x.y). 4.73)

The objective is to find a point in ..

In the context of Problem 4.17, given v € ]0,+oc[ and g € Cu(f), we define prox?, =
(Vg +~0¢p)~ 1.

Algorithm 4.18 Consider the setting of Problem 4.17. Let a@ € ]0,+o0], let (y4)nen be in
10, +00[, and let ( f,,)nen be in €, (f). Suppose that the following hold:
[a] There exists € € ]0, 1] such that 0 < inf,,en 75 < SUP,ey Vo < (1 —€) /K.
[b] There exists a summable sequence (7, )nen in [0, +oo[ such that (Vn € N) Dy, ., < (1 +
1) Dy, -
[c] For every n € N, intdom f,, = dom df,, and V f,, is strictly monotone on C.
Take zp € C and set (Vn € N) x,,41 = prox,J;gw(an(xn) — Y V(zy)).

Theorem 4.19 Let (x,),en be a sequence generated by Algorithm 4.18 and suppose that the
following hold:
[a]l W (xp)nen C intdom f.
[b] One of the following is satisfied:
1/ .7 is a singleton.

2/ There exists a function g in I'o(X) which is Gdateaux differentiable on intdomg O C,
with Vg strictly monotone on C, and such that, for every sequence (y,)nen in C and

every y € W(yn)nen N C, Yk, =y = Vi, (Ur,) = Vg(y).
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Then the following hold:
(1) (xn)nen converges weakly to a point in ..

(ii) (zn)nen Is @ monotone minimizing sequence: o () + ¥ (xy,) J min(p + ) (X).

(i) 3 en(( + ) () — min(p +1)(X)) < 400 and (9 + ) () — min(ip +§)(X) = o(1/n).

(V) > nen(Dy, (Tn41,2n) + Dy, (T, Tnt1)) < +oo.
Proof. (i): We shall derive this result from Theorem 4.9 with A = d¢, B = ¢, §; = 0, and
09 = 1. First, appealing to [24, Theorem 2.4.4(i)], B is single-valued on intdom B = intdom ¢
and B = V¢ on intdom B. Next, set § = ¢ + 1. Since @ # (intdom f) Ndom dp C intdom 1),
we have dom p Nintdomvy # &. Hence, [9, Theorem 4.1.19] yields A + B = 96. Therefore,
Argmin§ = zer 00 = zer(A + B) and . = (intdom f) N zer(A + B). Next, in view of Propo-
sition 4.2(iii), (4.1) is fulfilled. On the other hand, conditions [a] and [b] in Algorithm 4.5
are trivially satisfied. To verify condition [c] in Algorithm 4.5, it suffices to show that, for every
neN,(Vf,—v.B)(C) Cran(V f,+7,A4), i.e., since C C intdom B and B = V1 on intdom B,
that (Vf, — v VY)(C) C ran(V f,, + 7, A). To do so, fix temporarily n € N, let z € C, and set

Ap =V +mA— Vi (x) + v Vi(x). 4.74)

Then, since domdf,, Ndom A = (intdom f,,) Ndom A = (intdom f) N dom A # & by condi-
tion [c] in Algorithm 4.18, it results from [6, Proposition 3.12] that A,, is maximally monotone.
Next, we deduce from condition [a] in Algorithm 4.18 and (4.73) that

(Vu e C)(Vv € C)  nDy(u,v) < a(l —e)Dy(u,v)/k < a(l —e)Ds(u,v) < (1 —e)Dy, (u,v).
(4.75)
In turn,

(Vue C)(Vv e Q) ynlu—v,Vip(u) — Vi(v)) = 7 (Dy(u,v) + Dy (v, u))
< (1—¢€)(Dy(u,v) + Dys(v,u))
=1 —-e){u—v,Vf(u)—Vf,(v)). (4.76)

However, by coercivity of 6, there exists p € ]0, +00] such that

(VyeX) lyll=p = inf(y,(A+ B)(y+x)) = inf(y, 00(y + x)) = 0(y + ) — 6(x) > 0.
4.77)
Now suppose that (y,y*) € gra A, (- + x) satisfies ||y|| > p. Theny + z € domV f,, Ndom A =
(intdom f,) Ndom A = C and y* — Vf,(y + ) + VY (y + ) + Vin(z) — V() € (A +
B)(y + x). Thus, it follows from (4.77) and (4.76) that

0< <y7y*> - <(y + .’L’) -, (vfn - Van)(y + .ZL') - (vfn - Van)(x)> < <y7y*>~ (478)

Therefore, in view of [22, Proposition 2] and the maximal monotonicity of A, (- + z), there
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exists y € X such that 0 € A, (¥ + z). Hence (Vf, — VY)(z) € V(G + ) + mA[TG+2) C
ran(Vf, + v, A), as desired. Since (z,41,7, L (V fa(2n) — Vfn(Tni1)) — Vio(z,,)) lies in gradyp
by construction, we derive from [6, Proposition 2.3(ii)] that

(Vo € C) () = p(zni1) — (& — Tni1, VO(2n)) + 75 (@ = Zng1, Vin(zn) = Vn(zng))
(Tn+1) = (T — Tpt1, VY (20))

+ ’y;l (Dfn (%, 2pq1) + Dy, (Tns1,n) — Dy, (, :cn)) 4.79)

Z
Z

On the other hand, (4.75) and the convexity of ¢ entail that

(Vz € C) $(zns1) < ¥(@n) + (Tnt1 — Tn, V(20)) + (1 — )75 ' Dy, (Tt 1, Tn)
= (@n) + (& — @0, VY (2n)) + (Tn1 — 2, V()
+(1- 5)7;1Dfn (Tpt1, Tn)
<P(@) + (Tns1 — 2, V(a)) + (1 — )7, ' Dy, (@ng1,20).  (4.80)

Altogether, upon adding (4.79) and (4.80), we obtain
(Vo € O) (1) + %, Dy, (2, 2n11) + %5 ' D, (€1, 0) < O(2) + 7, Dy, (2, 2,). (4.81)
In particular, since x,, € C,
0(zni1) + v (D, (T, tni1) + €Dy, (Tny1, 2n)) < O(zn). (4.82)

This shows that
(H(wn))neN decreases. (4.83)

In turn, using the coercivity of #, we infer that (z,),cy is bounded, which secures [a] in Theo-
rem 4.9. It remains to verify that Algorithm 4.18 is focusing. Towards this end, let z € . and
suppose that

(Dy, (2,2n)), o CONVerges (4.84)
and
€ Z Dy, (xpy1,2n) < Z(l — KkYn /) Dy, (Tnt1, Tn) < 400. (4.85)
neN neN

Set v = inf,en v, and ¢ = lim Dy, (2, x,,). It follows from (4.81) applied to z € C that
(Vn € N) y(0(znt1) — minb(X)) + Dy, (2, xnt1) + €Dy, (Tn1,20) < Dy, (2,2,)  (4.86)
and therefore from condition [b] in Algorithm 4.18 that

(vn € N) 3(0(@ns1) — minb(X)) + Dy, (2, 2011) + Dy, (@ni1, 20)
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<1+ nn)(fy(O(xn+1) —min6(X)) + Dy, (z,2n41) + €Dy, (Tn+1, xn))
< (1 + nn)Dfn (Z, xn) (4.87)

Hence, lim (6(x,,.1) — min#(X)) + ¢ < £ and therefore lim(#(x,,+1) — min (X)) = 0. Thus
0(zy) — minO(X). (4.88)

Now take x € 2(xy,)nen, say zx, — x. By weak lower semicontinuity of §, min §(X) < 0(x) <
lim 6(xg,) = miné(X’) and it follows that x € Argminf = zer(A + B). Consequently, Theo-
rem 4.9 asserts that (z,,),en converges weakly to a point in ..

(ii): Combine (4.83) and (4.88).

(iii)&(iv): Fix z € .¥ and set v = inf,cy7,. Arguing along the same lines as above, we
obtain

(Vn € N)  y(0(znq1) —mind(X)) + Dy, (2,2n41) + Dy, (Tng1, ) < (14 n0) Dy, (2, 20)
(4.89)
and therefore [7, Lemma 5.31] guarantees that ) _y(6(x,) —min#(X)) < +oc. In addition,
(0(xy,) — minf(X)),en is decreasing by virtue of (4.83). However, recall that if (ay,)nen is @
decreasing sequence in [0, +-oo[ such that | o, < +o0, then

n

o = o<1> and Z n(ay, — apt1) < +o0. (4.90)

Hence, 0(z,) — minf(X) = o(1/n) and > yn(0(z,) — 0(xny1)) < +oo. Consequently, since
(4.81) yields

(Vn € N) 77:1Dfn (@n, Tny1) + 57;1Dfn (i1, 2n) < 0(2n) — 0(Tnt1), (4.91)

we infer that ) n(Dy, (Tni1,2n) + Dy, (Tn, Tny1)) < 4o0. O

Remark 4.20 Let us relate Theorem 4.19 to the literature.

(i) The conclusions of items (i) and (ii) are obtained in [18, Theorem 1(2)] under more
restrictive conditions on the sequences (v, )nen and (fy,)nen. Thus, we do not require in
Theorem 4.19 the additional condition (Vn € N) (14n,)vn —Vn+1 < any,/k. Furthermore,
we do not suppose either that —ranViy C dom ™ or that the functions (fy)n,en are
cofinite.

(ii) Items (iii) and (iv) are new even in Euclidean spaces. In the finite-dimensional setting,

partial results can be found in [3], where:

(a) A single convex function is used: (Vn € N) f,, = f.
(b) The viability of the sequence (x,),ecn is a blanket assumption, while it is guaranteed
in Theorem 4.19.
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(c) Only therates ) Df(2ny1,7,) < 400 and (p+v)(z,) —min(p+v)(X) = O(1/n)
are obtained.

4.2.3.4 Further applications

Theorems 4.9 and 4.19 operate under broad assumptions which go beyond those of the existing
forward-backward methods of [6, 15, 18,20] described in (4.4)-(4.7). Here are two examples
which do not fit the existing scenarios and exploit this generality.

Example 4.21 Consider the setting of Problem 4.1. Suppose, in addition, that the following
hold:

[a] A is uniformly monotone on bounded sets.

[b] There exist ¢ € I'o(X) and x € |0,+oco[ such that B = 0¢y and (Vx € C)(Vy € C)
Dy(z,y) < kDy(z,y).
[c] f is supercoercive.
[d] zer(A+ B) C intdom f.
Let (vn)nen be a sequence in |0, +-oo[ such that 0 < inf,en v, < sup,,eyvn < 1/k, take 2o € C,
and set (Vn € N) 2,11 = (Vf+7,4) "1 (Vf(x,) — vV (x,)). Then (z,,)nen converges strongly
to the unique zero of A + V.

The next example concerns variational inequalities.

Example 4.22 Let ¢ € I'o(X), let B: X — 2% be maximally monotone, let f € Tz(X) be
essentially smooth, and set C' = (intdom f) N dom d¢. Suppose that C' C intdom B and B is
single-valued on intdom B. Consider the problem of finding a point in

S = {xEC\ (Vy € X) (x —y, Bz) + p(z) écp(y)}, (4.92)

which is assumed to be nonempty. This is a special case of Problem 4.1 with A = d¢ and, given
xg € C, Algorithm 4.5 produces the iterations (Vn € N) 2,11 = prox%c’; o(Vful(@n) —ymBxy). The
weak convergence of (z,,),en to a point in . is discussed in Theorem 4.9. Even in Euclidean
spaces, this scheme is new and of interest since, as shown in [3, 13, 18], the Bregman proximity
operator proxfé’; , may be easier to compute for a particular f,, than for the standard kernel
|| - |2 /2. Altogether, our framework makes it possible to solve variational inequalities by forward-
backward splitting with non-cocoercive operators and/or outside of Hilbert spaces.
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Chapter

PROJECTIVE SPLITTING AS A WARPED
PROXIMAL ALGORITHM

5.1 Introduction and context

We complement Chapter 3 by showing that the asynchronous block-iterative algorithm [6, Al-
gorithm 12] can be viewed as a special case of the warped proximal algorithm of Theorem 3.16.
This answers question (Q4) of Chapter 1.

This chapter presents the following article:

M. N. Bui, Projective splitting as a warped proximal algorithm, submitted.

5.2 Article: Projective splitting as a warped proximal algorithm

Abstract. We show that the asynchronous block-iterative primal-dual projective splitting frame-
work introduced by P L. Combettes and J. Eckstein in their 2018 Math. Program. paper can be

viewed as an instantiation of the recently proposed warped proximal algorithm.

In [4], the warped proximal algorithm was proposed and its pertinence was illustrated
through the ability to unify existing methods such as those of [1, 2, 8,9], and to design novel
flexible ones for solving challenging monotone inclusions. Let us state a version of [4, Theo-
rem 4.2].

Fact 5.1 Let H be a real Hilbert space, let M: H — 21 be a maximally monotone operator such
that zerM # @, let xo € H, let € € ]0,1], let « € ]0,+00[, and let 3 € [a, +o0]. For every n € N,
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let K,,: H — H be a-strongly monotone and [3-Lipschitzian, and let \,, € [e,2 — €]. Iterate

forn=0,1,...

take x,, € H

Yy, = (Ky + M)~ HK,.X,)
¥y = Knxn — Kpy,

if (Xn =¥, [y7) >0 (5.1)
MXn = Yo | Y5 .
n
else

[ Xn4+1 = Xp.

Then the following hold:

(i) (Xn)nen is bounded.
(ii) EneN ||Xn+1 - Xn”2 < +o00.
(i) (Vn € N) (xp —y, | y5) < e Hlynll [xn1 — xall.

(iv) Suppose that x,, — x,, — 0. Then (x,,)nen converges weakly to a point in zer M.

A problem of interest in modern nonlinear analysis is the following (see, e.g, [1, 5, 6] and
the references therein for discussions on this problem).

Problem 5.2 Let (H;);c; and (Gi)rex be finite families of real Hilbert spaces. For every i € [
and every k € K, let A;: H; — 2™ and Bj,: G, — 29 be maximally monotone, let zF € M, let
Ty € Gk, and let Ly ;: H; — Gy, be linear and bounded. The problem is to

(Viel) zf— > Lj ;€ AT

find (Z;)icr € X H; and (T})rex € X Gi such that keK
iel ke (Vk € K) Y Ly:@ — 4 € B}, 'Tj.
i€l
(5.2)
The set of solutions to (5.2) is denoted by Z.

The first asynchronous block-iterative algorithm to solve Problem 5.2 was proposed in [6,
Algorithm 12] as an extension of projective splitting techniques found in [1, 7]. The present
paper shows that [6, Algorithm 12] can be viewed as a special case of (5.1). Towards this goal,
we first derive an abstract weak convergence principle from Fact 5.1. We refer the reader to [3]
for background in monotone operator theory and nonlinear analysis.

Theorem 5.3 Let H be a real Hilbert space, let A: H — 2H be a maximally monotone operator;
and let S: H — H be a bounded linear operator such that S* = —S. In addition, let xo € H, let
€ 10,1[, let « € ]0,400], let p € [a,+00[, and for every n € N, let F,,: H — H be a-strongly
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monotone and p-Lipschitzian, and let \,, € [e,2 — €. Iterate

forn=0,1,...
takeu, € H, e} ¢ H, and f;, ¢ H
u’ = F,u, —Su, +e +f
Y, = (Fp + A)~lu}
a, =u, —Fpy,
Yn = a, + Sy,
T = (Xn [ y5) — (¥n | @}) (5.3)
ifmp, >0
7o = [ly5l
O, = AaTn/Tn
Xnt1 = X — Onyy,

else

L L Xpn+1 = Xp-

Suppose that zer(A + S) # &. Then the following hold:
@ 2 pen lXn41 — Xn|? < +o0.

(ii) Suppose that u, — x, — 0, that e} — 0, that (f} ),en is bounded, and that there exists
d €0, 1] such that

u, -y, | fr) > —-6u, —y, | Fou, — Fpoy,
(vn e N) (up —y, [ ) (up =y, | Yn) 5.4)
(a* + Su,, —eX | f) < §|ja¥ + Su,, — e |2,

Then (xy,)nen converges weakly to a point in zer(A + S).

Proof. Set M = A + S and (Vn € N) K,, = F,, — S. Then, it follows from [3, Example 20.35 and
Corollary 25.5(i)] that M is maximally monotone with zer M # @. Now take n € N. We have

K,+M=F, +A. (5.5)
Since S* = —S, we deduce that
K, is a-strongly monotone and (-Lipschitzian, (5.6)

where 8 = p + [|S||. Thus, [3, Corollary 20.28 and Proposition 22.11(ii)] guarantee that there
exists x,, € H such that
ul = K,X,. (5.7)

Hence, by (5.3) and (5.5),
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At the same time, we have (y,, | Sy,,) = 0 and it thus results from (5.3) that 7, = (x,, | y}) —
(Y, | @ +Sy,,) = (xn — ¥y, | ¥5). Altogether, (5.3) is a special case of (5.1).

(1): Fact 5.1(i1).

(ii): In the light of Fact 5.1(iv), it suffices to verify that x,, — x, — 0. For every n €
N, since K,, + M is maximally monotone [3, Corollary 25.5(i)] and a-strongly monotone,
[3, Example 22.7 and Proposition 22.11(ii)] implies that (K, + M)"': H — H is (1/a)-
Lipschitzian. Therefore, we derive from (5.3), (5.5), [4, Proposition 3.10(i)], and (5.6) that
(Vz € zerM)(Vn € N) ally, — z|| = af|(Kn, + M)"u;; — (Ky + M)7H(K,2)|| < [luf;, — Kozl =
1Koty — Knz + € + 31| < [Kuu — Kozl + lesll + [F0 < Bllu, — 2]l + e | + I£;]. Thus,
since Fact 5.1(i) and our assumption imply that (u,,),en is bounded, it follows that (y,,)nen is
bounded. At the same time, for every n € N, we get from (5.3) that

v = Fou, — Fry, + e + £ — (Su, — Sy,,) = Kuu, — Ky, + €, +F (5.9)

and, thus, from (5.6) that [|y;[| < [|Knun — Ky, || + [le5]] + [If5]] < Bllun — y,ll + lleq ]| + [
Thus, (y; )nen is bounded, from which, (i), and Fact 5.1(iii) we obtain lim (x,, —y,, | y;) < 0.In
turn, since x,, — u, — 0 and e}, — 0, it results from (5.9) and (5.4) that

0> lim(x, —y, |y,
= (U =¥, | y) + (Xn—up | ¥7))
= Up —Yn | y;kz>

[
3

— Y, | Foun, — Fry, + €5 +f5) — (u, —y,, | Su, — Sy,,))

¥, | Faun = Foy, + 1) + (un —y,, | €})

)(un =¥y, | Fotn — Fry,) + (un —y, | €}))

(1= 6)[lun =y, |7

a(l = 8)p?||Fpun — Fry,[°. (5.10)

I
5| 51 51 51 51 51 51 5
g1 81 8| 8| 81 8l 8] B
—_~ —~ —~ =
N N
= g
|3
(=)

AR\
Q

Hence, F,u,, — F,y,, — 0. On the other hand, since (f},),cn is bounded and since (5.3) yields
(ay, + Suy, — €} )nen = (Fru, — Fry,, + £ )nen, we derive from (5.4) that

Hm(1 — 6)[|f5||* = lim ((Fpu, — Foy,, [ ) + (1= 8)[f5]1%)
= Tim ((Fu, — Foy, + £, | £,) = 3]1f5[%)
< Tim (8] Fty — Fuy,, + £51% — 81165
= lim (6]|Fnun — Foy,||? + 26(Fnu, — Foy,, | £5))

I
e

(5.11)

Therefore, f;, — 0. Consequently, by (5.6), (5.7), and (5.3), a/x, — x,|| < ||KnXn — KpXy| =
[Knup — Knxn + e + £ || < Bllup — xu || + [lej || + [[F5[][ — 0. O
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We are now ready to recover [6, Theorem 13]. Recall that, given a real Hilbert space H with

identity operator Id, the resolvent of an operator A: H — 2" is J4 = (Id + A)~L.

Corollary 5.4 ([6]) Consider the setting of Problem 5.2 and suppose that Z # @. Let (I,,)nen be
nonempty subsets of I and (K, ),cn be nonempty subsets of K such that

n+T n+T
Iy=1I, K¢=K, and (3TeN)(vneN) |JI;=Tand |JK,;=K. (5.12)
j=n j=n

In addition, let D € N, let ¢ € ]0,1], let (\,)nen be in [e,2 — €], and for every ¢ € I and every
k € K, let (¢;(n))nen and (di(n))nen be in N such that

(VneN) n—D<c¢(n)<n and n— D < di(n) <n, (5.13)
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let (Vin)nen and (g n)nen be in [e,1/¢], let ;9 € H;, and let Vg o € G- Iterate

forn=0,1,...

forevery i€ I,

take e; , € H;

lin = 2ker Lk cin)

Ui = ;o) A (@i con) + Vises () (25 — 1) + €in)

L a:,n = 'Y;ci(n) (xi,ci(n) — Qin + €z‘,n) — l;‘k,n

foreveryi eI\ I,

Ajn = Gin—1

| %in

for every k € K,

take fi.n € Qi

e = 2ier Lki%idi(n)

Bk = Th + Tyug gy oy B (Uesn T Bk diy(m)VF, gy () T Fiom — 7)
;n = U;dk(n) + N];ilk(n)(lk,n — bk + frn)

thin = Ok — D ier Lii@in

f<-)r every k € K\ K,

Qa =a

*
,n—1

(5.149)
bk,n = bk,n—l

oo pF

knm = Ykn—1

L tk,n = bk,n - Zie[ Lk,iai,n

foreveryi el

L t;!:n = azn + ZkGK Z:,ibz,n

T = Yier ((Tin [ 15,) = {ain | a5 ,)) + Xer (e | 05,) = Orn | 07,0
if m, >0

Tn = Zie[ ”tanQ + ZkeK ”tk,nHQ
L an = )\nﬂ'n/Tn

else
0, =0
f_or everyi € 1
Tint1 = Tin — Hnt;n

forevery k € K

* ok
L vk,n—l—l - vk,n entk:n'
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In addition, suppose that there exist n € |0, +oc[, x € ]0,+o0|, o € ]0,1[, and ¢ € ]0, 1] such that

leinll <n

(VTL € N)(VZ S In) (xi,ci(n) — Qin | ei,n> = _O'H"L'i,ci(n) —Qjn ‘2 (5.15)

(eim | af, + 1) < Vicimllag, + 1,12
and that
[ frnll < X
(Vn e N)(VE € Kn)  § (lkn — brn | frm) = —Clllkin — brnll? (5.16)
o | O = Yk o)) < S 1070 = 05 gy oy 1
Then ((xin)ier (U ,) ke )nen converges weakly to a point in Z.

Proof. Denote by H and G the Hilbert direct sums of (#;);c; and (Gx)kek, set H =H & G, and
define the operators

A:H— oH. ((xi)iela (UZ)ICGK) — (X (—Z:< + A,xz)> X < X (Tk + Bk_l’l};;)> (5.17)
el keK
and
S:H — H: (((L’i)iej, (UZ)kGK) — (( Z LZ,i”Z) s (— ZLkﬂwz> ) (518)
keK iel iel keK

Using the maximal monotonicity of the operators (A;);c; and (By)ker, we deduce from [3,
Proposition 20.23] that A is maximally monotone. In addition, we observe that S is a bounded
linear operator with S* = —S. At the same time, it results from (5.17), (5.18), and (5.2) that

zer(A+S)=7Z# 0. (5.19)
Furthermore, (5.14) yields

[ (Vi € I)(Vn € N) a;, € —2; + Aiaip | and [(Vke K)(VneN) b, €+ Bélbi‘:,n ]
(5.20)
Next, define

El(n) = max {j eN | J<n and 7 € Ij}, f,(n) = c,(?z(n))
(Vie)(VneN) Suf, = %j;i(n)xi,w) —lamt %fém)@izi(m (5.21)

* * * *
Win = 2ker L%y ~ L)
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Then, for every i € I and every n € N, it follows from (5.14) that

Gin = ai,zi(n) - J’Yi«fi(")Ai (’Yi,&-(n) (u;n + Z:)) = (’y;é(n)ld Z + A ) U; n
and, therefore, that

* * % -1 _ A | .
j itin) = Wi T Yitim)%ii(n) = Yin T Vi, (n)Time

Likewise, for every k € K and every n € N, upon setting

Ek(n) = max {] eN ‘ js<n and k € Kj}, ?9k(n) = dk@k(n))
Ukin = Mk 9u(m) k9 (n) T eFi(n) T TR )

Wi = b, 3, (n) = 2oier Lkii g (n)

we get from (5.14) and [3, Proposition 23.17(iii)] that

Okin = bk, (m) =

Hie,0 (n) Br (- —7%) Vkn

and, in turn, from (5.14) and [3, Proposition 23.20] that

b};” - bz D (n)

- 'uk,ﬂk(n) (Vkn — br.3, (n))

= lig g (m) (Vi = Dion)

= —1

N J“l;;km) (Tk-er,;l) ('u’k,ﬂk(n)vk,n)

1\ —1
= (9, (m)1d + 12 + By, 1) V-

Let us set
(xn = ((@im)ier, (”Z,n)keK) up = ((xw(n))iep (v ﬂk(n))kEK)
e, = ((wf,)ier, (Wkn)er), = ((7; ,g () €32 () Dier Fegem) wex)
(VneN)  Su; = ((u],)ier, Wkn)ker): Yn = ((ain)ier, (b)) kex)
a; = ((af,)ier, brn)rex), ¥n = ((t5)iers (tkn)kek)
Fo: H = H: ((@i)icr, (v7) keK) = ((Viay ) ser (b0 )08 ke xc)-

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

Then, the operators (F,,),cn are e-strongly monotone and (1/¢)-Lipschitzian. For every n € N,

by virtue of (5.21) and (5.24), we deduce from (5.18) that

Su, — e, = ((lz*g (n))'LEI’ ( lk,ﬁk(n))keK)’
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which yields
u, = F,u, —Su, +e;, +f. (5.31)

Furthermore, we infer from (5.22), (5.28), and (5.17) that
(vneN) vy, = (F,+A) ur. (5.32)
At the same time, (5.23) and (5.27) imply that
(VneN) ay =u, —F,y,, (5.33)
while (5.29), (5.14), and (5.18) guarantee that
(VneN) vy, =a;, +Sy, and m, = (x,|y,) —(y,|a,). (5.34)

Altogether, it follows from (5.31)-(5.34) that (5.14) is an instantiation of (5.3). Hence, Theo-
rem 5.3(i) yields ) [[Xny1 — xn||? < 4o0. In turn, using (5.12), (5.13), (5.21), and (5.24),
we deduce from [5, Lemma A.3] that, for every i € I and every k € K, we have x,(,) —x, — 0
and xy, (,) — Xn — 0. This and (5.29) imply that

u, — x, — 0. (5.35)
Moreover, we deduce from (5.21) that
(Vi eD) il < 3 IR [0F 0 = Vi | < D0 1Lk %000y = Xeip | 0 (5.36)
keK keK

and from (5.24) that

(Vk € K)  Jlweall < D ILkill 1250, 00) = Zieson I < D I il %o,y = X, | = 0. (5.37)
i€l i€l

Therefore, e} — 0. By (5.15) and (5.16), (f}),en is bounded. In view of (5.29), (5.15), and
(5.16), we get from (5.22) and (5.26) that

(VneN) (u, —y,|f)= Z <xi,€¢(n) — Qjp | 'Y;gli(n)eiji(n)> + Z </U,;::719k(n) - Z,n | fkﬁk(n)>

icl keK
o S Wiy — @il = € S b9y oy — Vi
el keK
> —max{o, (}{u, —y, | Fou, — F.y,), (5.38)
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and from (5.30), (5.23), and (5.25) that

(a;, +Su, —e;, | f) = Z <azzi(n) + lzzi(n) | ’yijﬁli(n)ei,zi(n)> + Z <bk,5k(n) ~ () | fkﬁk(n)>
iel keK

SO Z “a:,ii(n) + l;zi(n) H2 +¢ Z ku’,gk(n) B lk’,gk(n)
icl keK
< max{o, (}||a’ + Su, — e} || (5.39)

I

Altogether, the conclusion follows from Theorem 5.3(ii). O

Remark 5.5 Using similar arguments, one can show that the asynchronous strongly convergent
block-iterative method [6, Algorithm 14] can be viewed as an instance of [4, Theorem 4.8].
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Chapter

A WARPED RESOLVENT ALGORITHM
TO CONSTRUCT NASH EQUILIBRIA

6.1 Introduction and context

We address question (Q5) of Chapter 1 by providing an application of the warped resolvent
framework of Theorem 3.16 to solving the Nash equilibrium model (6.3) in Problem 6.1.
This chapter presents the following article:

M. N. Bui and P L. Combettes, A warped resolvent algorithm to construct Nash
equilibria, submitted.

6.2 Article: A warped resolvent algorithm to construct Nash equi-
libria

Abstract. We propose an asynchronous block-iterative decomposition algorithm to solve Nash

equilibrium problems involving a mix of nonsmooth and smooth functions acting on linear

mixtures of strategies. The methodology relies heavily on monotone operator theory and in
particular on warped resolvents.

6.2.1 Introduction

We consider a noncooperative game with m players indexed by I = {1,...,m}, in which the
strategy x; of player i € I lies in a real Hilbert space H;. A strategy profile is a point © = (;);e;
in the Hilbert direct sum # = €, ; H;, and the associated profile of the players other than
i € I'is the vector @; = (%) jer- (i} in Hii = Djerq;y H;- Given an index i € I and a vector

(i, y) € Hi x H, we set (x3Y;) = (Y1, -+ Yi15 Tis Yit1s - -+ Ym)-
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A fundamental equilibrium notion was introduced by Nash in [20, 21] to describe a state
in which the loss of each player cannot be reduced by unilateral deviation. In our context, a
formulation of the Nash equilibrium problem is

find € H suchthat (Viel) 7; € Arggin 0;(x;) + £;(zi; ), (6.1)
T €EH;

where the global loss function of player i € I is the sum of an individual loss 60;: H; —
|—00,400] and a joint loss £;: H — |—o0,+o0] that models the interactions with the other
players. Under convexity assumptions, numerical methods to solve (6.1) have been investi-
gated since the early 1970s [4] and they have since involved increasingly sophisticated tools
from nonlinear analysis; see [1,5,8,11,14-19, 25]. In the present paper, we consider the fol-
lowing highly modular Nash equilibrium problem wherein the functions (6;);c; and (€;);cr of
(6.1) are decomposed into elementary components that are easier to process numerically.

Problem 6.1 Let (H;)cr, (Ki)ier, and (G )kex be finite families of real Hilbert spaces, and set
H=PB,c;Hi, K =P, Ki, and G = @, Gx- Suppose that the following are satisfied:
[a] For every i € I, p;: H; — |—00,+00] is proper, lower semicontinuous, and convex, «; €
[0, +o0[, and ;: H; — R is convex and differentiable with an «;-Lipschitzian gradient.
[b] For every i € I, f;: K — R is such that, for every y € IC, f;(-;y.;): Ki — R is convex
and Gateaux differentiable, and we denote its gradient at y; € KC; by V; f;(y). Further, the
operator Q: IC — K: y — (Vif;(y))ier is monotone and Lipschitzian. Finally, (x;).cs are
positive numbers such that

VyeK)(vy' eK) (y—v | Qu—Qy") <D xillv: — vill* (6.2)
el

[c] Forevery k € K, g: G — |—00, +0o0] is proper, lower semicontinuous, and convex, [ €
[0, +o0[, and hx: Gr — R is convex and differentiable with a i-Lipschitzian gradient.

[d] Foreveryi € I andevery k € K, M;: H; — K; and Ly ;: H; — Gy, are linear and bounded,
and, for every @ € H, we write Ly ;@i = >_jcr g7} Lijz; and Mz = (M;z;)jer.

The goal is to

find T € ‘H such that (Vi € I)
T; € Argmin @;(x;) + ¥i(x) + fi (Mi; (M) ;) + Z (g + hi)(Lgwi + Ly, x).  (6.3)

i€, kek
In Problem 6.1, the individual loss of player i € I consists of a nonsmooth component ¢;
and a smooth component v;, while his joint loss is decomposed into a smooth function f; and a
sum of nonsmooth functions (gx)rex and smooth functions (hx)rex acting on linear mixtures

of the strategies. We aim at solving (6.3) with a numerical procedure that can be implemented
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in a flexible fashion and that is able to cope with possibly very large scale problems. This leads
us to adopt the following design principles:
* Decomposition: Each function and each linear operator in Problem 6.1 is activated sep-
arately.

* Block-iterative implementation: Only a subgroup of functions needs to be activated at
any iteration. This makes it possible to best modulate and adapt the computational load
of each iteration in large-scale problems.

* Asynchronous implementation: The computations are asynchronous in the sense that
the result of calculations initiated at earlier iterations can be incorporated at the current
one.

Our methodology is to first transform (6.3) into a system of monotone set-valued inclusions
and then approach it via monotone operator splitting techniques. Since no splitting technique
tailored to (6.3) and compliant with the above principles appears to be available, we adopt a
fresh perspective hinging on the theory of warped resolvents [9]. In Section 6.2.2 we provide
the necessary notation and background on monotone operator theory. Section 6.2.3 is devoted
to the derivation of the proposed asynchronous block-iterative algorithm to solve Problem 6.1.
Application examples are provided in Section 6.2.4.

6.2.2 Notation and background

General background on monotone operators and related notions can be found in [3].

Let # be a real Hilbert space. We denote by 2* the power set of 7 and by Id the identity
operator on H. The weak convergence and the strong convergence of a sequence (x,,)necn in H
to a point z in # are denoted by z,, — x and x,, — x, respectively. Let A: { — 2. The domain
of AisdomA = {z € H | Az # @}, the range of A is ran A = (J,4om 4 A2, the graph of A is
graA = {(z,2*) € H x 1 | z* € Az}, the set of zeros of Ais zer A = {x € H | 0 € Az}, and
the inverse of Ais A~': H — 2M: 2* — {2 € H | 2* € Az}. Now suppose that A is monotone,
that is,

(V(z,2%) € grad)(V(y,y*) € grad) (z—y|a*—y*) >0 (6.4)

Then A is maximally monotone if, for every monotone operator A: H — 2*, graA c gra A =
A = A; A is strongly monotone with constant ¢ € ]0, +oo[ if A — ¢Id is monotone; and A is 3*
monotone if

(Vx € dom A)(Vz* € ran A) sup (z—y |y —2") < 4o0. (6.5)
(y,y*)egra A

I'o(H) is the set of lower semicontinuous convex functions ¢: H — |—o00, +00] which are proper
in the sense that domy = {z € H | p(z) < +oo} # @. Let ¢ € T'y(H). Then ¢ is supercoer-
cive if lim 1 ¢(2)/||z]| = +oc and uniformly convex if there exists an increasing function
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¢: [0,400[ — [0, +00] that vanishes only at 0 such that

(Vz € dom ¢)(Vy € dom ¢)(Va € 0, 1])
plaz+ (1= a)y) +a(l - a)é(|lz - yll) < ap(@) + (1 - a)p(y). (6.6)

For every z € #H, prox,z denotes the unique minimizer of ¢ + (1/2)[- — z|%
The subdifferential of ¢ is the maximally monotone operator dp: H — 2M:z —
{zreM | (VyeH) (y—a|z*)+¢(x) <p(y)}. Let C be a convex subset of H. The indica-

tor function of C'is

0, if xeC;
to: H —[0,+00] : x — (6.7)
400, otherwise,

and the strong relative interior of C is

sriC =Sz eC U A(C — ) is a closed vector subspace of H » . (6.8)
A€ ]0,4+00[

The following notion of a warped resolvent will be instrumental to our approach.

Definition 6.2 ([9]) Suppose that X is a real Hilbert space. Let D be a nonempty subset of X,
let K: D — X, and let A: X — 2% be such that ran K C ran(K + A) and K + A is injective. The
warped resolvent of A with kernel K is J§ = (K +A)"1 oK.

We now provide a warped resolvent algorithm to find a zero of a maximally monotone op-
erator A: X — 2%, where X is a real Hilbert space. This algorithm has a simple geometric
interpretation: at iteration n, we use the evaluation of the warped resolvent .J AK" at a pertur-
bation x,, of the current iterate x,, to construct a point (y,,,y:) € graA. By monotonicity of
A,

zetACH,={zeX|(z—y, |y, <0}, (6.9)

and the update x,,. 1 is a relaxed projection of x,, onto the half-space H,,.

Proposition 6.3 Let X be a real Hilbert space and let A: X — 2% be a maximally monotone
operator such that zer A # @. Let xg € X, let ¢ € ]0,1], let ¢ € |0, +o0], and let w € g, +00].
Further, for every n € N, let \,, € [e,2 —¢], let x,, € X, and let K,,: X — X be a ¢-strongly
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monotone and w-Lipschitzian operator. Iterate

forn=0,1,...

Yn = J/_\nim

Yr = Knxn — Kpy,;

U yn—Xn|yp) <0

{ X1 = X + An<yr]|;*>|<’; | y5)
n

(6.10)

* .
Yni

else

\\ Xn+1 = Xp-

Then the following hold:
) ZnEN Xn41 — Xn”2 < +-00.

(i) Suppose that x,, — x,, — 0. Then x,, —y,, — 0 and (x,,)nen converges weakly to a point in
zer A.

Proof. It follows from [9, Proposition 3.9(i)[d]&(ii)[b]] that the warped resolvents (JK")HGN
in (6.10) are well defined. In turn, we derive (i) and the weak convergence claim from [9,
Theorem 4.2 and Remark 4.3]. It thus remains to prove that x,, —y,, — 0. It is shown in the
proof of [9, Theorem 4.2(ii)] that K, x,, — K, y,, — 0. At the same time, for every n € N, every
x € X, and every y € X, we deduce from the Cauchy-Schwarz inequality that ¢||x — y||? <
(x—y | Kpx—Kpy) < |x—y| ||Knx — K,y||, from which it follows that

sllx =yl < IKnx — Kyyll. (6.11)

Therefore, [|x, — y,[| < [[xn = Xull + [[Xn = ¥l < [xn = Xul + (1/9)[[Knxn — Kpy, || — 0, as
desired. 0O
6.2.3 Algorithm

As mentioned in Section 6.2.1, there exists no method tailored to the format of Problem 6.1
that can solve it in an asynchronous block-iterative fashion. Our methodology to design such
an algorithm can be broken down in the following steps:

1. We rephrase (6.3) as a monotone inclusion problem in H, namely,

find € H such that 0 € AZ + M*(Q(M=)) + L*(B(Lx)), (6.12)
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where QQ and M are defined in Problem 6.1[b] and Problem 6.1[d], respectively, and

A:H 2" 2 X (0i(xi) + Vipi(w;))
el
B:G— 2g: zZ = >< (8gk(zk) + th(zk)) (6-13)
keK

L:H—>G:x— (Zz’el Lk,ixi)kel{'

2. The inclusion in (6.12) involves more than two operators, namely A, B, Q, L, and M.
Hence, in the spirit of the decomposition methodologies of [9,12,13], a space bigger than
?H is required to devise a splitting method to solve it. Weset X = HE K GHK B G
and consider the inclusion problem

find x € X such that 0 € Ax, (6.14)

where

A: X 2% (z,y,z,u" v*) —

(Ax + M*u* + L*v*) x {Qy —u*} x (Bz —v*) x {y — Mz} x {z — Lz}. (6.15)

3. We show that, if x = (x,y, 2z, u*, v*) solves (6.14), then x solves (6.12) and, therefore,
(6.3).

4. To solve (6.14), we implement the warped resolvent algorithm of Proposition 6.3 with a
specific choice of the auxiliary points (x,,),en and the kernels (K, ),cn that will lead to
an asynchronous block-iterative splitting algorithm.

The methodology just described is put in motion in our main theorem, which we now state
and prove.

Theorem 6.4 Consider the setting of Problem 6.1. Let n € ]0,+oco[ and € € |0, 1] be such that
1/e > max{o; +n, B + 1, Xi + N}icr kek, let (An)nen bein [e,2 — €], and let D € N. Suppose that
the following are satisfied:
[a] Foreveryi € I andeveryn € N, 7;(n) € Nsatisfies n—D < 13(n) < n, vin € [e,1/(ci + 1)),
tin € [6,1/(xi + )|, oin € [€,1/€], 10 € Hi, yio € Ki, and uf € K.
[b] For every k € K and every n € N, 0x(n) € N satisfies n — D < 0p(n) < n, v, €
[, 1/(Bk +m)], okn € [€,1/€], 20 € Gk, and v, € Gy.
[c] (In)nen are nonempty subsets of I and (K, ),cn are nonempty subsets of K such that, for

some P € N,
n+P n+P
Iy=I, Ko=K, and (YneN) |JL=Tand |JEK,;=K. (6.16)
j=n j=n
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Iterate

forn=0,1,...

foreveryi e I,
di;n = Yiri(n) + i s (n) (u;k,n(n) - vzfz (yn(n)))a
i = Uy T Timn) (Miiryn) = Yira(n))
Tin = Timg(n) — Vims(n) (Vi (@iri(n)) + MG ) + Dne i Lis iV i)
a;pn = Prox

* o,
Yi,r;(n)Pi mivn’
* _ —1

Sim = Vizy(n) (7, — ain) + Vbi(ain) + M ¢} s
Cin = Qion — M;a;n;

foreveryiec I\ I,

ek ko kL ok L
Qin = Qin—1; Cip = Cp_15 Gin = Qin—1; S;pn = S5 n_15 Cin = Cin—1;

forevery k € K,
di = 260m) T Vi) (Ve 5o m) — VI (260m));
b = proxyk’ék(n)gk dzm;
Chn = Ve spin) T Ohbn) ( Dier LiiTisn) = Zh.5y(n));
blt,n = V/.c_,;k(n) (dz,n - bk,n) + th(bk,n) - e;;,n;
| Ckn = bk:,n - Zie[ Lk,iai,n;
forevery k € K \ K,

bkﬂ = bk7n—1; elt:,n = ez,nfl; blt:,n = bz,nfl; €kn = bk,n - Zie[ Lk,iai:n;
foreveryi el
a:n = Sf,n + ZkEK L}::,ielt,n;
| 4, = Vifi(a,) — ¢
Tn = Zie[ (<ai,n — Tin ‘ a;:n> + <Qi,n ~Yin | q;,n> + <Cz’,n ’ Czn - uzn>)

+ ZkEK (<bk7” — Zk,n | bl));,n> =+ <€k,n ’ e;;n - Uz7n>);

if m, <0
O = Anﬂn/(ZieI (Haf,nH2 + HanHZ + llcin
foreveryi eI

) + kex (105,

2+ lewnl®));

L Tin41 = Tin + Ona] 5 Yint1 = Yim + Ondi s U7 1 = Ufp + OnCin;
forevery k € K

L Zkntl = Zkpn T enbl):;,n; U’:m—i‘l - v;;?" + Qnek,m

else
foreveryie I

L Tint1 = Tini Yim+l = Yins Ujpp1 = Uy ps

forevery k € K

— . * — ¥
L Zk7n+l - zkvn’ Uk,TL+1 - Uk,'I’L'

(6.17)
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Furthermore, suppose that there exist T € H, u* € K, and v* € G such that

(Viel) uf =V,f;,(Mz)

(Vk € K) U} € (g + Vi) (X jer Li.iT5) (6.18)
(Vi e I) —M;U; — Y pex Lk 05 € 00i(Ti) + Vibi(T:).

Then (x,,)nen converges weakly to a solution to Problem 6.1.

Proof. Set X = HOKBGHK DG and consider the operators defined in (6.13) and (6.15). Let us
first examine some properties of the operator A in (6.15). For every ¢ € I, it results from Prob-
lem 6.1[a] and [3, Theorem 20.25 and Proposition 17.31(i)] that dy; and V1); are maximally
monotone and, therefore, from [3, Corollary 25.5(i)] that dp; + V4; is maximally monotone.
Thus, in view of (6.13) and [3, Proposition 20.23], A is maximally monotone. Likewise, B is
maximally monotone. Hence, since @Q is maximally monotone by virtue of Problem 6.1[b] and
[3, Corollary 20.28], [3, Proposition 20.23] implies that the operator

R: X —»2%: (z,y,2z,u*,v") —» Az x {Qy} x Bz x {0} x {0} (6.19)
is maximally monotone. On the other hand, since the operator
S: X - X: (x,y,z,u",v") » (M*u"+L*v*) x{—u"} x{—v*} x{y—Ma} x{z—Lx} (6.20)

is linear and bounded with
S* = -S, (6.21)

we deduce from [3, Example 20.35] that S is maximally monotone. In turn, it follows from
(6.15), (6.19), and [3, Corollary 25.5(i)] that

A = R + S is maximally monotone. (6.22)

Upon setting y = Mz and z = Lz, we derive from (6.18) and (6.13) that u* = Qy and
v* € Bz. Further, since

M :K—H:u — (Mu)ier and L*: G —H:v" — (Z LZ,WZ) , (6.23)
keK icl

it results from (6.18) and (6.13) that —M*u*—L*v" € Az. Therefore, we infer from (6.15)
that (,y,z,u*,v") € zer A and, hence, that

zerA # &. (6.24)
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Define
(VieI)(VneN) fi(n)=max{jeN|j<nand i€ l;} and /4(n)=7(li(n)) (6.25)
and

(Vk € K)(Vn € N) Jy(n)=max{j e N|j<n and k€ K;} and Uy(n)= 6 (Jk(n)).

(6.26)
In addition, let x € ]0, +oo[ be a Lipschitz constant of Q in Problem 6.1[b], set
a= \/2(5*2 + maXxiey 0512)7 p= \/2(572 + maXge K 51%)7 X =/2(e7? +K?) 6.27)
¢ = min{e, n}, @ = [[S|| + max{e, 5, x, 1/¢},
and define
Ep: H = Hiawe (v, 07— Vi),
E,: K- K: Yy — (,Uzle(n) Yi — vlfz( ))ie[
(VneN) (Gn:G = G:ze (v (ah — Vhi(k)) ek
Tp: X = X: (x,y, z,u*, v*) — (Ena: F.y,Gnz, (o], M (n) Z)ng’ (Qk Or(n )UZ)k;eK>
Ky =T, —S.

(6.28)
Fix temporarily n € N. Then, using [a], the Cauchy—Schwarz inequality, and Problem 6.1[a],

we obtain

VzeH)(Ve' e H) (x—a' | E,xz— E,x')
=D (i llzs = 2il1? = (@i — 2} | Vepi(as) = V(7))

iel
> (i 4 )l — 241> = o — 2|l [Vebi(as) — Vabs(a)l])
icl
>3 (i + )i — 2il|* = el — 251
el
=z — '||” (6.29)

and

(Vz e H)(Vx' € H) |Enx — E.2'|?

=> it — (Vei(i) — V() ||”
el
<2 (0 p il = 2l + 11V9i(z) = Vai(a))|1?)
el
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<2) (e lwi — il + afllai — i)

i€l
< oz — 2| (6.30)
Thus,
E,, is n-strongly monotone and «-Lipschitzian. (6.31)
Similarly,

F,, is n-strongly monotone and y-Lipschitzian
n 1SN gly Xx-L1p (6.32)

G, is n-strongly monotone and f-Lipschitzian.
In turn, invoking (6.28), [a], [b], and (6.27), we deduce that T,, is strongly monotone with
constant ¢ and Lipschitzian with constant max{«, 53, x, 1/¢}. It therefore follows from (6.28)
and (6.27) that

K, is ¢-strongly monotone and w-Lipschitzian. (6.33)

Let us define
(VZ € I) EZ‘J-LI Hi = Hi: xi — /Yz_éll(n)ml — Vl/}z(x,)

(Vk‘ S K) ka: G — Gtz — Vl;}?k(n)zk — th(zk)

(6.34)

and let us introduce the variables

(
_ * * _ * * * * * *
XTL - (mnuynaznuun7,vn)7 y'n, - (a’nuqnub’rlncn)en)v yn - (an’qna bn7cn7en)

%i,n = Eivnxi,fi(”) - Ei:nxn + Mz* (u:n - u:&(n)) + ZkEK L;;,z (”Z,n - vlz,éi(n))
(VZ € I) Cﬁn = .u;gll(n) (yi,éi(n) - y’i,n) + szl(yn) - VZf’L (yél(n)) + u;éi(n) - u;f(,n
E?,n = U@'_,Zli(n) (uiél(n) - u::n) + M; (xi,éi(n) - mi,n) ~Yiti(n) T Yin

* _ % %
dk,n = G2k, (n) — GenZkn + Uk 9(n) ~ Uk

(VEe K) .
ezm = Qk,ﬂk(n) (U;;ﬂgk(n) - vzm) = Rk, (n) + Zkn + Zie[ Lk:,z' (xi,ﬂk(n) - xim)
e: = (%;?62?32752752)'
(6.35)
Note that, by (6.17), (6.25), and (6.26), we have
(Vl € I) Qi,n - qzjl(n)v c;‘in - szi(ny ai,?’b - ai,@(n)? S;n - S;Zl(ny Ci,n cl‘ji(n) (6 36)

(¥h € K) bin = b5, €hn =€ b, = b

kO, (n)’
Hence, for every i € I, we deduce from (6.17), (6.25), and (6.34) that

-1 * —1 %, ok * %k
Vists ()%t () = Vii(n)Titi(n) — Vi ("Ei,&-(n)) - M; Witi(n) — Z Lk,ivk,&-(n)
keK
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_ . kK
= LinTil;(n) — M; Ui p;(n) — Z levu

keK
= i,n$i7n — Mi*u;’(,n — Z LZJUZJI + .:Ej;’n, (6,37)
keK
that
-1 N _
Hoi g (n) i = H 0,(n) 93,05 (n)
-1
= Wy pymyYistitn) = Vifi (Uem)) + Ui )
= :“;,zli(n)yi,n = Vifi(yn) + uipn + G (6.38)
and that
=0}

Ti0;(n)Cin = %4.0;(n) i 7 (n)

—1
= O i)Yt (n) — Yisti(n) + Mii g, (n)

= Uijeli(n)u;ﬂ,n — Yin + Mixipn + E?n. (6.39)
In a similar fashion,

—1
d* = Grn2in + V5 n+d
(ke K)  { etum Ok T e SR T 0 (6.40)

Qk,ﬁk(n)ek,n = Qk,ﬂk(n)vk‘,n ~ Zkn + ZiEI Lkviajia" + gz,n
Therefore, it results from (6.28), (6.34), (6.35), (6.20), (6.23), (6.13), and Problem 6.1[d] that
K.x, + e,

= T,x, — Sx, + €,

—1 * -1 * —1 * -1 *
= (( Vi,0:(n) T By (n ))iep (/" 0;(n) 40, n)ze_[’ (Vk ﬁk(n)dk Tye(n ))keK’ (Ui,éi(n)ci,n)iel’ (Qk,ﬁk(n)ek,n)keK>‘
(6.41)
On the other hand, in the light of (6.28), (6.22), (6.19), (6.13), and [3, Proposition 16.44] we
get
(Kn + A)il X = X (CC*, y*7 Z*, u, ’U) = ((prox’n,zi(n)%‘ (71',&(11)1.?))2‘6[7 (:U'i,fi(n)y;k)iep
(Proka,ﬁk(n)gk(Vkﬁﬂk(")ZZ))keK’ (Uivfi(n)ui)iel’ (‘Qkﬁk(n)vk)kei()’ (6.42)

Hence, since (6.36), (6.17), (6.25), and (6.26) entail that

(Vi € I) Gin = a7,y = PIOX,,, 2%, - 6.43)
(Vk € K) byyp = bk,ﬁk(n) = proka,ﬂk(mgkdz,ﬁk(n)’
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we invoke (6.35) to get
Y, = (Kn+A) " (Kyx, +e). (6.44)

At the same time, it follows from (6.33) and [3, Corollary 20.28 and Proposition 22.11(ii)] that
K, is surjective and, in turn, that there exists x,, € X such that

Knx, = Kux, + €. (6.45)
Thus, (6.44) and Definition 6.2 yield
Yn = Jan"Xn. (6.46)
In view of (6.17), (6.36), and (6.25), we derive from (6.37) that

(VZ S I) a;k,n = S;‘k,n + Z Lz,iez,n

ke
= S:,Zi(n) + Z Ly i€
ke
—1 * * % * *
= Vit T2,y — i) + Vil0i7,0) + M0+ D Lhi€hn

keK

= ’)/ijll(n).f[?;z(n) — <’Y7:£12(n)az,n - vwi(az n M{" :(n Z Lk zek n)

keK
- (E — M, - L)

keK

- (E’L,’Vlalﬂ’b Ml* ;kn Z Lk ’Lek TL) ’L n7 (6-47)

keK

from (6.38) that

(szI) q;k,n*vfz(qn)_ i,n
= (i (Wi = Vifi(Yn) T uin) = (105 (din — Vifi(d@n) + ¢ 0) + Gps (648)
and from (6.39) that
(VZ S I) CZ',TL = Ci,zi(n)
=47;m) — Miai,zi(n)
= qin — Miaipn
= (74 Win = Yin + Mittin) = (074 (1 Chn — Qi + Mitin) +C;ppe (6.49)
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A similar analysis shows that
(Vk € K) b} = (Grnzhn + Vin) — (Grnbin + €hp) + di (6.50)

and

(VEeK) ep,= (g;}ék(n)v}z,n—zk,n—i—zLk,ixi’n> — (g;j?k(n)ezm—bk,n—i—z Lkﬂ-ai,n) + €

el el (6.51)
Altogether, it follows from (6.35), (6.47)-(6.51), (6.34), (6.28), (6.20), (6.23), (6.13), and
(6.45) that

Y, = (Tpx, — Sx,,) — (Tny, — Sy,,) + e, = Kux, — Kpy,, + e, = Kyx, — Ky, (6.52)

Further, in view of (6.17) and (6.35), we have

A .
Xn + 771%2 rif T, <0
Tn = (Yo —Xn | y),) and X411 = ;| (6.53)

Xp, otherwise.

Combining (6.22), (6.24), (6.33), (6.46), (6.52), and (6.53), we conclude that (6.17) is an
instantiation of (6.10). Hence, Proposition 6.3(i) yields

Z (%41 — Xn || < +o00. (6.54)
neN

For every i € I and every integer n > P, (6.16) entails that i € | J/ Ja— I and, in turn, (6.25)
and [a] imply that n — P — D < 4;(n) — D < 7;(¢;(n)) = £;(n) < ¢;(n) < n. Consequently,

P+D

VieD)VneN) n=P+D = |x0—xgmll < D %0 —xnjll, (6.55)
and we therefore infer from (6.54) that
(VZ S [) Xpn — Xg;(n) — 0. (656)
Likewise,
(Vk € K) Xn = Xgy(n) — 0. (6.57)

Hence, we deduce from (6.35), (6.34), (6.28), and (6.31) that
(VieI) |75, < [Ein®igm) — Eintnll + 1M [[ui, — g0l

+ D LRl 0k = Vol

keK
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<N Bagy ) — Enall + 1M 1] 1w, — g ol + D ILE N o5, — 07, )
keK

< all@ ) — @all + M 1w, — g o1+ D L o5 — 07, )
keK

— 0. (6.58)

Moreover, using (6.35), [a], and (6.56), we get

(Vi € 1) NG nll < 15 oy 19,00 = Yl + [V i) = Vi (Yesm) | + 1050, ) — w3l

e MYy = Ynll + 1QUn — Qye, oyl + lluf, () — uil

N

N

(™" + Yetny = Ynll + 10,y — il
0 (6.59)

1

and

(Vi€ D) IEinll < 07 oy 1 0,y = Wil + 1Ml 265y = Tinll + 195,6,00) = Y]
< e Mg,y — wnll + IMill g,y = ol + 192,00y — Yl
0. (6.60)

i

A similar analysis shows that
(Vk € K) |di,|—0 and &, — 0. (6.61)

Altogether, we invoke (6.35) and (6.58)-(6.61) to get
e

* 0. (6.62)

Hence, arguing as in (6.11), (6.33) and (6.45) give

i~ Kn~n B Kn n .
[ — %) < 1K — I_ ‘egn” -0, (6.63)

This ylelds x, — . It remains to verify that & solves (6.3). Towards this end, let ¢ € I and set
fi=Ffi(;(Mz);) and (Vk € K) gr = (gx + hi) (- + LiiT). (6.64)

Then, by Problem 6.1[b], f;: K; — R is convex and Gateaux differentiable, with V f;(M;z;) =
Vif;(Mz). In addition, (Vk € K)(Vz, € Gi) Ogr(zk) = (Ogr + Vhy)(zr + Ly iT;). At the
same time, we deduce from (6.15) that u* = Qy = Q(Mx), Z = Lz, v* € BZ,and 0 €
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AT + M*u* + L*v*. Thus, it results from (6.13) and Problem 6.1[d] that

u; = Vifi(Mz) =V fi(Mz;)
Vk e K) zp = Zje[ Ly ;7j = Ly ;7; + Ly T

Vk € K) ©}, € Ogr(Zr) + Vhi(Zr) = (Ogk + Vi) (L,iTi + Ly, i) = 0gr(LeiT:)
(6.65)

(
(
and, in turn, from (6.23) and [3, Proposition 16.6(ii)] that

0 € Dyi(T;) + Voi(T) + Mju; + | Lj,,wi
keK
C Jy; (fz) + Vl/h(f,) + Mi* (Vfl(MZT,)) + Z Lzﬂ» (8§k(Lk’iTi))
keK

C 3(%’ + i + fio M; + ZﬁkOLk,z) (T;). (6.66)

keK

Consequently, appealing to Fermat’s rule [3, Theorem 16.3] and (6.64), we arrive at

T; € Argmin () + i) + fi( M) + Y Gr(Li i)
zi€Hi keK

= Argmin gol(mz) + 1/12(561) + fz (Mzﬁl, (Mf)\l) + Z (gk + hk)(Lkﬂ-xi + Lk,\if\i); (667)
zi€H; keK

which completes the proof. O

Remark 6.5 Let us confirm that algorithm (6.17) complies with the principles laid out in Sec-
tion 6.2.1.
* Decomposition: In (6.17), the nonsmooth functions (y;);c;r and (gx)rex are activated
separately via their proximity operators, while the smooth functions (;);cs, (f;)icr, and
(hi)rex are activated separately via their gradients.

* Block-iterative implementation: At any iteration n, the functions (f;);c; are activated
and we require only that the subfamilies (¢;)icr,, (¥i)ier,, (9k)kek,,» and (hx)rek, be
used. To guarantee convergence, we ask in condition [c] of Theorem 6.4 that each of
these functions be activated frequently enough.

* Asynchronous implementation: Given i € [ and k € K, the asynchronous character of
the algorithm is materialized by the variables 7;(n) and d;(n) which signal when the un-
derlying computations incorporated at iteration n were initiated. Conditions [a] and [b]
of Theorem 6.4 ask that the lag between the initiation and the incorporation of such com-
putations do not exceed D iterations. The introduction of such techniques in monotone

operator splitting were initiated in [13].

Remark 6.6 Consider the proof of Theorem 6.4. Since Proposition 6.3(ii) yields x,, —y,, — 0,
we obtain x,, — a,, — 0 via (6.35) and thus a,, — . At the same time, by (6.17), given i € I,
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the sequence (a; ,,)nen lies in dom dy; C dom ;. In particular, if a constraint on z; is enforced
via ¢; = c;, then (a; »)nen converges to the ith component of a solution  while being feasible
in the sense that C; 3 a;, — 7;.

Remark 6.7 The proof of Theorem 6.4 implicitly establishes the convergence of an asyn-
chronous block-iterative algorithm to solve the more general system of monotone inclusions

find & € ‘H such that

(VieI) 0€ AT+ R + M; (Qi(M=)) + > L, <(Bk + Dy) (Z Lkﬁjxj» (6.68)
ke K jel
under the following assumptions:
[a] Foreveryi c I, A;: H; — 2" is maximally monotone, «; € [0, 4+oc[, and R;: H; — H; is
monotone and «;-Lipschitzian.
[b] Foreveryic I, Q;: K — K;. It is assumed that the operator Q: IC — K: y — (Q;y);cr is
monotone and Lipschitzian. Furthermore, (;);cs are positive numbers such that

VyeK)(vy' eK) (y—v | Qu—Qy") <D xillvi — vill* (6.69)
el

[c] Forevery k € K, By,: G, — 29 is maximally monotone, £}, € [0, +oo[, and Dy: G, — Gr,
is monotone and f-Lipschitzian.
[d] Foreveryi € I andevery k € K, M;: H; — K; and Ly ;: H; — Gy, are linear and bounded.
Moreover, we set M: H — K: x — (M;x;)icr-
Indeed, denote by Z the set of points (x, u*,v*) € H @& K ® G such that

(Viel) uj =Qi(Mwx)
(Vk € K) v} € (B + Di)( X jer Lk jzs) (6.70)
(Viel) —Mju; = ck Ly vr € Az + Riz;.

)

Suppose that Z # & and execute (6.17) with the following modifications:
* For everyi € I and every n € N, prox,. . is replaced by Jﬁ‘jn A, Vi by R;, and V; f; by
Qi-

* For every k € K and every n € N, prox is replaced by Jii B> and Vhy by Dy.

Vi n9k
Then there exists (&, u*,v*) € Z such that (x,,, u),v}) — (x,u*,v*) and T solves (6.68).

Remark 6.8 By invoking [9, Theorem 4.8] and arguing as in the proof of Proposition 6.3, we
obtain a strongly convergent counterpart of Proposition 6.3 which, in turn, yields a strongly
convergent version of Theorem 6.4.
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Theorem 6.4 requires that (6.18) be satisfied. With the assistance of monotone operator the-
ory arguments applied to a set of primal-dual inclusions, we provide below sufficient conditions

for that. Let us start with a technical fact.

Lemma 6.9 Let H and G be real Hilbert spaces, let B: G — 29 be 3* monotone, and let L: H —
G be linear and bounded. Then L* o B o L is 3* monotone.

Proof. Set A = L* o B o L. First, we deduce from [3, Proposition 20.10] that A is monotone.
Next, take * € dom A and z* € ran A. On the one hand, Lz € dom B and there exists
z* € ran B such that «* = L*z*. On the other hand, for every (y,y*) € gra A, there exists
v* € G such that (Ly,v*) € gra B and y* = L*v*, from which we obtain
(z-—yly" —a")=(x—y|Lv - L2
= (Lx — Ly | v* — z%)

< sup (Lx —w | w* — z%). (6.71)
(w,w*)cgra B

Therefore, by 3* monotonicity of B,

sup (z—y|y" —x*) < sup (Lx—w |w" —2") < +oo. (6.72)
(y,y*)egra A (w,w*)egra B

Consequently, A is 3* monotone. 0O

Proposition 6.10 Consider the setting of Problem 6.1 and set

C = { (ZLW:EZ — Zk>
i€l keK

Suppose that 0 € sri C and that one of the following is satisfied:

(Viel) x; €domy; and (Vk € K) z € domgk} . (6.73)

[a] For every i € I, one of the following holds:

1/ O(pi + 1) is surjective.

2/ ; + ; is supercoercive.

3/ dom ¢; is bounded.

4/ p; + 1; is uniformly convex.

[b] Q is 3* monotone and one of the following holds:

1/ M* o Q o M is surjective.
2/ Q is surjective and, for every i € I, M; is bijective.

Then (6.18) holds.

Proof. Let A, B, and L be as in (6.13) and define

T:H —2%: 2~ Az + L*(B(Lz)) + M*(Q(Mz)). (6.74)
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Suppose that € zerT and set u* = Q(Mz). On the one hand, in view of Problem 6.1[b],
(Vi € I uf = V;f;(Mz). On the other hand, it results from (6.74) that there exists v* € B(LZ)
such that —M*u"* — L*v" € Az or, equivalently, by (6.23) and (6.13), (Vi € I) —M}uf —
> ker Ly V5 € 0pi(Ti) + Vib(Z;). Further, using (6.13), we obtain (Vk € K) vy € (9gx +
Vhi)(3_ er Lk,j75)- Altogether, we have shown that zerT # @ = (6.18) holds. Therefore, it
suffices to show that zer T' # @. To do so, define

¢ H — |00, 400t @ = 3 p (ilw:) + i)
g:G —]-00,4+00]: 2= D ok (gk(zk) + hk(zk)) (6.75)
P=A+L"oBolL.

Then, by (6.13) and [3, Proposition 16.9], A = dp and B = dg. In turn, since (6.73) and
(6.13) imply that 0 € sriC = sriL(dom ¢) — dom g), we derive from [3, Theorem 16.47(i)]
that P = A+ L*oBo L = (¢ + g o L). Therefore, in view of [3, Theorem 20.25 and
Example 25.13],

A, B, and P are maximally monotone and 3" monotone. (6.76)

[a]: Fix temporarily ¢ € I. By [3, Theorem 20.25], d(y; + ;) is maximally monotone.
First, if [a]2/ holds, then [3, Corollary 16.30, and Propositions 14.15 and 16.27] entail that
ran d(p; + ¢;) = domd(p; + ¥;)* = H; and, hence, [a]1/ holds. Second, if [a]3/ holds, then
dom d(y; + ©;) C dom(y; + ;) = dom ¢; is bounded and, therefore, it follows from [3, Corol-
lary 21.25] that [a]1/ holds. Finally, if [a]4/ holds, then [3, Proposition 17.26(ii)] implies that
[a]2/ holds and, in turn, that [a]1/ holds. Altogether, it is enough to assume that the opera-
tors (O(yp; + v;))ier are surjective and to show that zerT # @. Assume that (9(p; + ;) )ier
are surjective and set R = —M o P! o (—~M*) + Q. Then we derive from (6.13) that A
is surjective. On the other hand, Lemma 6.9 asserts that L* o B o L is 3* monotone. Hence,
(6.76) and [3, Corollary 25.27(i)] yields dom P! = ran P = . In turn, since P~! and
Q! are maximally monotone, [3, Theorem 25.3] implies that R is likewise. Furthermore, we
observe that dom Q™! ¢ K = dom(—M o P~! o (—~M*)) and, by virtue of (6.76), [3, Propo-
sition 25.19(i)], and Lemma 6.9, that —M o P! o (—M™) is 3* monotone. Therefore, since
ranQ ! = domQ = K, [3, Corollary 25.27(ii)] entails that R is surjective and, in turn, that
zer R # @. Consequently, [3, Proposition 26.33(iii)] asserts that zer T # @.

[b]1/: Lemma 6.9 asserts that M™* o Q o M is 3* monotone. At the same time, since Q
is maximally monotone and dom Q = K, it results from (6.76) and [3, Theorem 25.3] that
T = P+ M*oQo M is maximally monotone. Hence, since M*oQ o M is surjective, we derive
from (6.76) and [3, Corollary 25.27(i)] that T is surjective and, therefore, that zer T # &.

[b]2/=-[b]1/: Since the assumption implies that M is bijective, so is M *. This makes M* o
Q o M surjective. [0
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Remark 6.11 Sufficient conditions for 0 € sriC to hold in Proposition 6.10 can be found in
[12, Proposition 5.3].

6.2.4 Application examples

We discuss problems which are shown to be realizations of Problem 6.1 and which can therefore
be solved by the asynchronous block-iterative algorithm (6.17) of Theorem 6.4.

Example 6.12 (quadratic coupling) Let K be a real Hilbert space and let I be a nonempty
finite set. For every i € I, let H; be a real Hilbert space, let ¢; € T'g(H;), let o; € [0, +oc], let
1;: H; — R be convex and differentiable with an «;-Lipschitzian gradient, let M;: H; — K be
linear and bounded, let A; be a nonempty finite set, let (w; ¢ ;)ren, jer~ (i} Pe in [0, +ocf, and let
(Ki,e)een, be in |0, +ool. Additionally, set H = P,.; H; and IC = @, ; K. The problem is to

find £ € ‘H such that
2

(Vi € I) T; € Argmin o;(z;) + ¥i(z;) + Z % (6.77)

M;x; — Z wiygijjfj
;€M leA;

jeI~{i}

It is assumed that

(Vy € K)(Vy' € K) Z Z mi,g<yi -y

i€l Lel;

Yi — Yi — Z Wi (y; — y;-)> >0. (6.78)
jeI~{i}

Define
2

Rie

Viel) fiK—Riyr Y 5

LeN;

(6.79)

Yi — Z Wi, 0,5Yj

jeI~{i}

Then, for every i € I and every y € IC, f;(-;y.;) is convex and differentiable with

Vifiy) = Z Ki <yz‘ - Z Wi,ﬂ,jy])- (6.80)

e, jeI{i}

Hence, in view of (6.78), the operator Q: K — K: y — (V;f;(y))icr is monotone and Lips-
chitzian. Thus, (6.77) is a special case of (6.3) with (Vi € I) K; = K and (Vk € K) g, = hy = 0.
In particular, suppose that, for every i € I, H; = K, C; is a nonempty closed convex subset of
Hi, i = Loy, ¥i =0, M; =1d, A; C I~ {i}, and

Kig =1
(Ve Ay) 1, if j=¢ (6.81)

(Vi€ I~{i}) wip; =
0, if j£0.
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Then (6.77) becomes

find Z € H such that (Vi € I) T; € Argmin — Z |z — T2 (6.82)
nel 2 [F,

This unifies models found in [2].

Example 6.13 (minimax) Let I be a finite set and suppose that @ # J C I. Let (H;);c; be real
Hilbert spaces, and set U = P,.; ;Hi and V = P, ; H;. For every i € I, let ¢; € I'o(H,),
let av; € [0, +o0], let 1;: H; — R be convex and differentiable with an «a;-Lipschitzian gradient.
Further, let £: U4 & V — R be differentiable with a Lipschitzian gradient and such that, for
every u € U and every v € V, the functions —£(u, -) and £(-, v) are convex. Finally, for every
iel~Jandevery jc J,let L;;: H; — H; be linear and bounded. Consider the multivariate
minimax problem

minimize maximize Z (gal(ul)ﬁm(uz))—z (5 (vj)+;(v;))+L(u, v) Z Z il | vj).

ueld vey

eINJ J€J ielINJ jed
(6.83)
Now set H =U ¢V and define
+ (U U if iel~J;
VieD) fiiH R (o) d Y (i | Xges Liavi): D)
—L(u,v) = (3 pery Ligug | vi), if i€ J.
Then H = @,.; H; and (6.83) can be put in the form
find © € H such that (Vi € I) 7; € Argmin p;(z;) + ¥i(zi) + f;(zi;@). (6.85)
z, €H;
Let us verify Problem 6.1[b]. On the one hand, we have
Vil(x)+> .., L%z, ifiel~J;
Vie (Ve e H) Vifi(z)= (@) 2 ger L s e (6.86)
*VZL($) — ZkEI\J Li,k$ka if ielJ
On the other hand, the operator
RH—-H x— ((Viﬁ(w))iel\w (—VjL(as))jeJ) (6.87)

is monotone [22,23] and Lipschitzian, while the bounded linear operator

S:H—H:x ((ZL%@-) ( > szm,ﬁ> ) (6.88)
JjeJ ielNJ kel~J ied

satisfies S* = —S and it is therefore monotone [3, Example 20.35]. Hence, since the operator
Q in Problem 6.1[b] can be written as @ = R + S, it is therefore monotone and Lipschitzian.
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Altogether, (6.83) is an instantiation of (6.3). Special cases of (6.83) can be found in [14,24].

Example 6.14 In Problem 6.1, consider the following scenario: K = {1}, G; is the standard
Euclidean space RM, r € G1, g1 = v, where E = r + [0, +oo[M, hi1 = 0, and, for every i € I,
H; is the standard Euclidean space R™:, ¢); = 0, and ¢; = tc,, where C; is a nonempty closed
convex subset of H;. Then, upon setting N =} . _; IV;, we obtain the model

find & € RY suchthat (Vi€ I) 7; €  Argmin fi(zi;® ) (6.89)
z, €C;
Ll,wﬂrLi\iE\ieE

investigated in [25].

Example 6.15 (minimization) Consider the setting of Problem 6.1 where [b] is replaced by
[b’] For every i € I, f, = f, where f: IC — R is a differentiable convex function such that
Q = V f is Lipschitzian,
and, in addition, the following is satisfied:
[e] Forevery k € K, gi: Gr — R is Gateaux differentiable.

Then (6.3) reduces to the multivariate minimization problem

minimize Z (cpz(xz) + wz(xl)) + f(Mx) + Z (g9x + hi) (Z L;wmj> ) (6.90)

cH
r el keK jel

The only asynchronous block-iterative algorithm we know of to solve (6.90) is [10, Algo-
rithm 4.5], which is based on different decomposition principles. Special cases of (6.90) are
found in partial differential equations [1], machine learning [6], and signal recovery [7], where
they were solved using synchronous and non block-iterative methods.
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Chapter 7

A DECOMPOSITION METHOD FOR
SOLVING MULTICOMMODITY
NETWORK EQUILIBRIUM

7.1 Introduction and context

This chapter addresses question (Q6) of Chapter 1. We devise a flexible algorithm for solving
the multicommodity network equilibrium model proposed by Rockafellar in [13].
This chapter presents the following article:

M. N. Bui, A decomposition method for solving multicommodity network equi-
librium, submitted.

7.2 Article: A decomposition method for solving multicommodity
network equilibrium
Abstract. We consider the numerical aspect of the multicommodity network equilibrium prob-

lem proposed by Rockafellar in 1995. Our method relies on the flexible monotone operator

splitting framework recently proposed by Combettes and Eckstein.

7.2.1 Problem formulation

Rockafellar proposed in [13] the important multicommodity network equilibrium model (see
(7.6) in Problem 7.2) and studied some of its properties. In the present paper, we devise a
flexible numerical method for solving this problem based on the asynchronous block-iterative
decomposition framework of [6].
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The following notion of a network from [12, Section 1A] plays a central role in our problem.

Definition 7.1 A network consists of nonempty finite sets N and o/ — whose elements are
called nodes and arcs, respectively — and a mapping ¢: i — N x N: j — (¥1(j),P2(j)) such
that, for every j € o, 91(j) # V=2(j). We call ¥;(j) and ¥2(j) the initial node and the terminal
node of arc j, respectively. In addition, we set

dt(i) = {j € 4 | node i is the initial node of arc j }

(VieN) (7.1)

g~ (i) = {j € 4 | node i is the terminal node of arc j}.

Recall that, given a Euclidean space G with scalar product (- | -), an operator A: G — 29 is
maximally monotone if

(V(z.2") €GxG) (r.a")cgrad & [(V(y.y)egrad) (x—y|a"—y")>0], (7.2)

where gra A = {(z,2*) € G X G | * € Az} is the graph of A. (The reader is referred to [2] for
background and complements on monotone operator theory and convex analysis.) The problem
of interest is the following.

Problem 7.2 Under consideration is a network (N,d,), together with a nonempty finite
set € of commodities transiting on the network. Equip # = R® with the scalar product

((&k)ree, (M)rer) — D reg kM and let us introduce the spaces

X = {z = (v))jea | (Vj €d) zj=(§r)rew € H}
V= {v" = (v])iew | (Vi € V) v = () )ress € H}.

(7.3)

An element x € X is called a flow on the network, where §; ;. is the flux of commodity % on arc
j. The divergence of a flow x € X at node i is

diVimz Z X5 — Z Zj. (74)
)

jed+(i jed—(4)

We refer to an element v* € V as a potential on the network, where v, is the potential of
commodity % at node i. Given v* € V and j € d, the tension (or potential difference) across
arc j relative to the potential v* is

A]"U* = U,&2(- - U'zl(,j) (7.5)

For every j € d, the flow-tension relation on arc j is modeled by the sum @; + R; of maximally
monotone operators Q;: H — 2% and R;: H — 2. Further, for every i € W, the divergence-
potential relation at node i is modeled by a maximally monotone operator S;: H — 2%, The
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task is to

Vied) Ay v* € QT + Rz
find a flow T € X and a potential v* € V such that (v ) A" € Q5T 3%
(Vie W) div;z € S; ',

(7.6)
under the assumption that (7.6) has a solution.

Remark 7.3 The pertinence of Problem 7.2 is demonstrated in [12, Chapter 8] and [13], where
it is shown to capture formulations arising in areas such as traffic assignment, hydraulic net-
works, and price equilibrium.

7.2.2 A block-iterative decomposition method

Notation. Throughout, G is a Euclidean space. Let A: G — 29 be maximally monotone and let
x € G. Then, in terms of the variable p € G, the inclusion € p + Ap has a unique solution,
which is denoted by J4x. The operator J4: G — G: x — Jax is called the resolvent of A.
Our algorithm (see (7.8) in Proposition 7.4) is derived from [6, Algorithm 12] and it thus
inherits the following attractive features from the framework of [6]:
* No additional assumption, such as Lipschitz continuity or cocoercivity, is imposed on the
underlying operators.

e Algorithm (7.8) achieves full splitting in the sense that the operators (Q;);jcu, (R;)jcd>
and (S;);cy are activated independently via their resolvents.

* Algorithm (7.8) is block-iterative, that is, at iteration n, only blocks (Q;);eu,,, (R;)jed,»
and (S;);cn, of operators need to be activated. To guarantee convergence of the iterates,
the mild sweeping condition (7.7) needs to be fulfilled.

We shall denote elements in X and V by bold letters, e.g., g,, = (¢jn)jes and s}, = (s}, )ien-

Proposition 7.4 Consider the setting of Problem 7.2. Let T € N, let (d,,),cn be nonempty subsets
of d, and let (N, )nen be nonempty subsets of N such that dy = o, Ny = N, and

n+T n+T

(VneN) |(Jdp=9 and [J M =N (7.7)
k=n k=n

Let (An)nen be a sequence in |0, 2 such that inf,,cy A, > 0 and sup,,cy An, < 2. Moreover; for every
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j € dandevery i€ N, let (z;0,2],v]) € H3 and (v, 11, 04) € |0, +-00[>. Iterate

forn=0,1,...

forevery j € d,

U, =5, — Ajuy

Ui = Jv,Q, (Tjn — ’VJ'Z;,H)
G =7 @jn = ain) =
Tjn = Ju;Rr; (Tjn + “J’x;’,n)

| 75 = 15 (@0 — )
forevery jed ~d,

. . . . * . * . . — . . * I *
Qjn = 4n-15 9n = 4n-1> Tim = Tjn-15 Tjn = Tjn-1

foreveryi e N,
li,n = lez Ty

_ *
Sim = Jou5,(lim + 0iv],,)
* ok -1
Sin = Vin +0; (llan - Sim)
| ti,n = Sin — lei q,

foreveryie N N\ N,

* *
i,n i,n—1

| lin = Sin — div; q,, (7.8)
forevery j € o

Sim = Sin—1; Sjp = S

* % * A o*
tin = G T Tjn — DiSn

| Ujn = Tjn — djn

o = D jea (16517 +llwsnll?) + Xiew ltinll?

ifn, >0

T = Djeat (Zjn | ) = (@i | @) + (win | 25,0 = (g | 75,))

+ ZieN ((ti,n | Uz*n> - <3i,n | S;kn>)

0, = A\, max{m,,0}/7,

else
0,=0

ﬁ)r every j € d

Tjntl = Tjn — Gnt;f’n

| Ting1 = Tpag1 — Oy

foreveryie N

* S * _ .
Vin+l = Yin Ontin.

Then ((zj,n)jeu, (VF,)ien )nen converges to a solution to (7.6).

Proof. Let us consider the multivariate monotone inclusion problem
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(Vj e o) Ao —T; € Q;T; and T; € R, 'T}

findz € X, £© € X, and v* € V such that
(VieN) div;z € S; o,

(7.9)

Then
(Ve € X)(Yo* €V) (x,v") solves (7.6)
o @F e X) (Vjed) Ajp* € Q;z; +7; and T} € R;T;
(Vie W) div,z € S; '}
& (dx" e X) (T, x",v") solves (7.9). (7.10)
Therefore, since (7.6) has a solution, so does (7.9). Next, define
1, if node 7 is the initial node of arc j;
(Vie N)(Vjed) &;=4 -1, ifnodeiisthe terminal node of arc j; (7.11)
0, otherwise.
It results from (7.4) and (7.1) that
VzeX)(VieN) diviz=) &,z (7.12)
jedt
and from (7.5) that
(Vo* eV)(Vied) Ap*=-> &} (7.13)
ieN
We now verify that (7.9) is a special case of [6, Problem 1] with the setting
Hij=Gr=H
Aj=Qj
Ry, if ke d;
By =
Sk, ifkenN
I=d, K=dUN, and (Vjel)(VkeK)
z}f =r,=0
Id, if k=j;
Ly; =40, if kcd and k # j;
{ eryld, if ke W.
(7.14)
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We deduce from (7.12) that

ks if ked;
(Vz e X)(VEe€K) Y Lypjz; = '
jelI ZJEI €k,jTj, if keWN
Tk, if ke oA,
_ (7.15)
diviz, if k€W,

and from (7.13) that

(Va* € X)(Vor e V)(VjeI) Y Liah+ Y Lijvi=a+ Y exjof = — A (7.16)
ked keN keN

Hence, in the setting of (7.14), (7.9) is an instantiation of [6, Problem 1] and (7.8) is a realiza-
tion of [6, Algorithm 12], where (Vn € N) I,, = d,, and K,, = o,, UN,,. Thus, upon letting

*

(Vn S N) Ln = (xj,n)jedy Ly = (‘T;,n)jéﬁb and U:; = (UZn)iGJ\U (7.17)

we infer from [6, Theorem 13] that (z,, ), v} ),cn converges to a solution (z, *,7*) to (7.9).

n»wn

Consequently, (7.10) asserts that (&, 7*) solves (7.6). O
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Remark 7.5 Some comments are in order.

(i) One might be tempted to consider (7.6) as a special case of [6, Problem 1] with the setting

H; =G =H
Aj ZQj-i-Rj

I=d, K=V, and (Vjel)Vke K) (B, =S5 (7.18)
z]’-‘ =7, =0
Lk?,j :Ek,jld,

where (¢; )icn jeq are defined in (7.11), and then specialize [6, Algorithm 12] to (7.18).
However, this approach necessitates the computation of the resolvents of the operators
(Qj+R;) jeus, which cannot be expressed in terms of the resolvents of (Q;) jcy and (R;) jeu
in general (see Examples 7.6 and 7.7).

(i) Algorithm (7.8) of Proposition 7.4 requires to evaluate the resolvents of the operators
(Qj)jess (Rj)jea, and (S;);cn . Nlustrations of such calculations in some special cases of
Problem 7.2 encountered in the literature are provided in Examples 7.6, 7.7 and 7.9-7.12.

(iii) Alternate algorithms [5,7,11] can also be used to solve (7.9) and, in turn, (7.6). Neverthe-
less, there are certain restrictions on the resulting algorithms. For example, the method of
[5] must activate all the operators (Q;);jcu, (R;);jcu, and (S;);c at every iteration, while
the frameworks of [7,11] do not allow for deterministic selections of the blocks (Q;) ca,.,
(Rj)jes,> and (S;);cn, . Finally, the algorithm resulted from [7] involves the inversion of
a linear operator acting on RM¥ where N = card 6 and M = 2card d + card ¥, which
may not be favorable in large-scale problems, e.g., [8].

Notation. Before proceeding further, let us recall some basic notion of convex analysis
(see [2] for details). Let ¢: G — ]|—o0,+oc] be proper, lower semicontinuous, and con-
vex. The subdifferential of ¢ is the maximally monotone operator dp: G — 29: z —
{zxeG | (VyeG) (y—=|a*)+¢(x) <p(y)}. For every z € G, the unique minimizer of
¢ + (1/2)]|- — z||* is denoted by prox,z. Let C be a nonempty closed convex subset of .
The indicator function of C' is the proper lower semicontinuous convex function

0, if z€C;
to: G —[0,+00] : x — (7.19)
+o00, otherwise,

the normal cone operator of C' is N¢ = du¢, and the projector onto C' is proj = prox, .

Example 7.6 (Separable multicommodity flows) Consider the setting of Problem 7.2 and
suppose, in addition, that the following are satisfied:

[a] For every j € o, ¢;: R — 2% is maximally monotone, C; is a nonempty closed convex
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subset of #, and

Qj:H— oM. zj = (§k)keg — (c (Z &, k)) and Rj; = Ng;. (7.20)
ke®

k€6

[b] Foreveryi € N, s; € H and

St H = 2% vr e s (7.21)

Then (7.6) reduces to the separable multicommodity flow problem; see, e.g., [3, Section 8.3]
and the references listed in [3, Section 8.9]. Take j € o, i € N, and v € ]0,+o00[. We have
Jyr; = Projc, and J,s, = s;. To compute J,q,, define L: H — R: ({)ree — D oree Sk and set
N =card6. Then L*: R — H: { — (§)rew and, therefore, L o L* = NId. At the same time, by
(7.20), Q; = L* o ¢j o L;. Thus, we derive from [2, Proposition 23.25(iii)] that

1
(Va; = (Grres €M) Jyg,@j = + *(JNW]-(L%‘) — L)), o = &k + Mices

where 7 = (JNW ( > g k) > g k) / N. (7.22)

ke® k€6

Example 7.7 The separable multicommodity flow problem with arc capacity constraints (see,
e.g., [3, Section 8.3]) is an instantiation of Example 7.6 with, for every j € o, ¢; = 0(¢; +
Lq;), where ¢;: R — ]—o0, +00] is a proper lower semicontinuous convex function and §2; is
a nonempty closed interval in R such that Q; N dom¢; # @. In this setting, it follows from
[2, Example 23.3 and Proposition 24.47] that

(Vj e d)(Vy €]0,+00]) Jy, = PTOX. (4, 110,) = Projg, © Prox., . (7.23)

Remark 7.8 Consider the standard traffic assignment problem, that is, the special case of Ex-
ample 7.6 where (Vj € o) C; = [0, +00[®.
(i) In [1, Example 4.4], this problem was solved by an application of the forward-backward
method [1, Theorem 2.8], where it is further assumed that, for every j € o, dom¢; =
R and ¢; is Lipschitzian. However, some common operators found in the literature of
traffic assignment [4] do not fulfill this requirement; their resolvents are provided in
Examples 7.9-7.12.

(ii) The method of [9], which is an application of the Douglas—Rachford algorithm [10],
requires to compute the projectors onto polyhedral sets of the form

(&) jea € [0, +oo[* | (Vi€ W) Z&,jﬁj = 6i} , (7.24)

jesd
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where (¢;;)icn jes are defined in (7.11). This results in solving a subproblem at every iteration

because there is no closed-form expression for such projectors.

Example 7.9 (Bureau of Public Roads capacity operator) Let («, 0,6,p) € |0, +oo[4 and de-

fine
&Y :
9<1+a<>>, if £>0;
cR=aR: & 0 (7.25)

0, if £ <0.

In addition, let y € |0, +o0] and £ € R. Then the following hold:
(i) Suppose that £ > ~6. Then, in terms of the variable s € R, the equation

0
agipsp+3+w—§:0 (7.26)

has a unique solution 5 and J,£ = 5.

(ii) Suppose that & < +6. Then J, £ = £ —~0.

Example 7.10 (Logarithmic capacity operator) Let w € |0, +oo[, let 6 € [0, +00|, and define

6 +1n 2 } if :
R — 2R e { +nw—€ i<w (7.27)
, if £>w.
Then
(Vy €10, +00[ ) (VE €R)  Jyel = w — yW(wy L exp( — &/v +w /7)), (7.28)

where W is the Lambert W-function, that is, the inverse of [—1,+oc0] — [—1/e,+o0[: & —

§exp(§).

Example 7.11 (Traffic Research Corporation capacity operator) Let (a,3,8,w) € ]0,+oo[*

and define
CRoR:E=I+a(l —w)+Va2(E—w)?+ 5. (7.29)

Then

(Vv €]0,400[) (V€ €R)  Jye&
_ V(€10 —w)?+ 2+ DB+ ya(§ — 0 +w) + €90

.30
2ya+1 (7.30)

Example 7.12 Let a € |1, 400, let 6 € ]0, +o0], let p € ]0, +oc[, and define
¢: R— R: & — 0o, (7.31)
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Then
W(y0arpln o)

(Vy €]0,400[)(VEER) Jyl =€ — blno

(7.32)
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Chapter

BLOCK-ACTIVATED ALGORITHMS FOR
MULTICOMPONENT FULLY
NONSMOOTH MINIMIZATION

8.1 Introduction and context

Our focus in this chapter is question (Q7) of Chapter 1. The numerical experiments concern
machine learning and image recovery.

This chapter presents the following article:

M. N. Bui, P L. Combettes, and Z. C. Woodstock, Block-activated algorithms for
multicomponent fully nonsmooth minimization, submitted.

8.2 Article: Block-activated algorithms for multicomponent fully

nonsmooth minimization

Abstract. Under consideration are multicomponent minimization problems involving a separa-
ble nonsmooth convex function penalizing the components individually, and nonsmooth convex
coupling terms penalizing linear mixtures of the components. We investigate block-activated
proximal algorithms for solving such problems, i.e., algorithms which, at each iteration, need
to use only a block of the underlying functions, as opposed to all of them as in standard meth-
ods. For smooth coupling functions, several block-activated algorithms exist and they are well
understood. By contrast, in the fully nonsmooth case, few block-activated methods are avail-
able and little effort has been devoted to assessing them. Our goal is to shed more light on the
implementation, the features, and the behavior of these algorithms, compare their merits, and
provide machine learning and image recovery experiments illustrating their performance.
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8.2.1 Introduction

The goal of many signal processing and machine learning tasks is to exploit the observed data
and the prior knowledge to produce a solution that represents information of interest. In this
process of extracting information from data, structured convex optimization has established
itself as an effective modeling and algorithmic framework; see, for instance, [3, 5, 8, 14, 19].
In state-of-the-art applications, the sought solution is often a tuple of vectors which reside
in different spaces [1,2,4,6,12,13,16,17,20]. The following multicomponent minimization
formulation captures such problems. It consists of a separable term penalizing the components
individually, and of coupling terms penalizing linear mixtures of the components.

Problem 8.1 Let (H;)i1<i<m and (Gx)i<k<p be Euclidean spaces. For every i € {1,...,m} and
every k € {1,...,p}, let f;: H; — ]—00,4+00] and gi: Gr — |—00, +oc| be proper lower semi-
continuous convex functions, and let L;, ;: #; — G, be a linear operator. The objective is to

m P m
minimize Y fi(zi) + Y gn ( > Lk:c> . (8.1)
=1 k=1 =1

T1EHL, ., Tm EHm

—_——
separable term kth coupling term

To solve Problem 8.1 reliably without adding restrictions (for instance, smoothness or strong
convexity of some functions involved in the model), we focus on flexible proximal algorithms

that have the following features:

® Nondifferentiability: None of the functions fi,..., fm,01,...,9p needs to be differen-
tiable.

@ Splitting: The functions fi,..., fm, 41, ..., gp and the linear operators are activated sepa-
rately.

@ Block activation: Only a block of the functions fi,..., fm,g1,...,gp is activated at each

iteration. This is in contrast with most splitting methods which require full activation, i.e.,

that all the functions be used at every iteration.

@ Operator norms: Bounds on the norms of the linear operators involved in Problem 8.1
are not assumed since they can be hard to compute.

® Convergence guarantee: The algorithm produces a sequence which converges (possibly

almost surely) to a solution to Problem 8.1.

In view of features @ and @, the algorithms of interest should activate the functions
fi,--., fms91,...,gp via their proximity operators (even if some functions happened to be
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smooth, proximal activation is often preferable [6, 10]). The motivation for @ is that prox-
imity operators of composite functions are typically not known explicitly. Feature ® is geared
towards current large-scale problems. In such scenarios, memory and computing power limi-
tations make the execution of standard proximal splitting algorithms, which require activating
all the functions at each iteration, inefficient or simply impossible. We must therefore turn our
attention to algorithms which employ only blocks of functions (f;)icz, and (gx)rex, at itera-
tion n. If the functions (gi)i1<kx<p were all smooth, one could use block-activated versions of
the forward-backward algorithm proposed in [15,25] and the references therein; in particular,
when m = 1, methods such as those of [11,18,23,26] would be pertinent. As noted in [15, Re-
mark 5.10(iv)], another candidate of interest could be the randomly block-activated algorithm
of [15, Section 5.2], which leads to block-activated versions of several primal-dual methods
(see [24] for detailed developments and [7] for an inertial version when m = 1). However,
this approach violates @ as it imposes bounds on the proximal scaling parameters which de-
pend on the norms of the linear operators. Finally, ® rules out methods that guarantee merely
minimizing sequences or ergodic convergence.

To the best of our knowledge, there are two primary methods that fulfill ©-®:

* Algorithm 8.2: The stochastic primal-dual Douglas—Rachford algorithm of [15].

* Algorithm 8.3: The deterministic primal-dual projective splitting algorithm of [9].

In the case of smooth coupling functions (gj)1<k<p, in (8.1), extensive numerical experience
has been accumulated to understand the behavior of block-activated methods, especially in the
case of stochastic gradient methods. By contrast, to date, very few numerical experiments with
the recent, fully nonsmooth Algorithms 8.2 and 8.3 have been conducted and no comparison of
their merits and performance has been undertaken. Thus far, Algorithm 8.2 has been employed
only in the context of machine learning (see also the variant of 8.2 in [6] for partially smooth
problems). On the other hand, Algorithm 8.3 has been used in image recovery in [10], but only
in full activation mode, and in feature selection in [22], but with m = 1.

Contributions and novelty: This paper investigates for the first time the use of block-
activated methods in fully nonsmooth multivariate minimization problems. It sheds more light
on the implementation, the features, and the behavior of Algorithms 8.2 and 8.3, compares
their merits, and provides experiments illustrating their performance.

Outline: Algorithms 8.2 and 8.3 are presented in Section 8.2.2. In Section 8.2.3, we analyze
and compare their features, implementation, and asymptotic properties. This investigation is
complemented in Section 8.2.4 by numerical experiments in the context of machine learning
and image recovery.

8.2.2 Block-activated algorithms for Problem 8.1

The subdifferential, the conjugate, and the proximity operator of a proper lower semicontinuous
convex function f: H — ]—o0,+oo| are denoted by Jf, f*, and prox;, respectively. Let us
consider the setting of Problem 8.1 and letusset H = H; x --- x Hpand G =Gy x --- x G, A
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generic element in # is denoted by = (x;)1<i<m and a generic element in G by y = (yx)1<k<p-
As discussed in Section 8.2.1, two primary algorithms fulfill requirements @®-®. Both op-
erate in the product space H x G. The first one employs random activation of the blocks. To

present it, let us introduce

L:-H—>G:x— <§:L1,ixi7--w§:LP7i$i>
i=1

=1
V={(z,y) e L xG|y=Lx} (8.2)
F:HxG—]|—o00,+0]

(®,y) = 2% filwe) + D2k 9k (y)-

\

Then (8.1) is equivalent to

minimize F(x,y). (8.3)
(z,y)eV

The idea is then to apply the Douglas-Rachford algorithm in block form to this prob-
lem [15]. To this end, we need proxy and prox,, = projy. Note that proxgp: (z,y)
((prox s, i) 1<i<m, (PrOXy, Yk)1<k<p). Now let z € H and y € G, and set t = (Id + L*L) ' (x +
L*y)and s = (Id + LL*)"}(Lz — y). Then

projy (z,y) = (t,Lt) = (x — L*s,y + s), (8.4)
and we write it coordinate-wise as

projy (z,y) = (Q1(x,y), ..., Qmip(x,y)). (8.5)

Thus, given v € |0, +o0], 29 € H, and y, € G, the standard Douglas-Rachford algorithm for
(8.3) is
forn=0,1,...

An €]0,2]
foreveryi e {1,...,m}
Tint+1 = Qi(2n, Yp)
| Zin+l = Zin + An (prox, ;. (2Tini1 — 2Zin) — Tint1)
forevery k € {1,...,p}

Wgn+1 = Qm+k(Zn,Yy)
| Yknt1 = Ykn + An (prox.,, (2Wkmn+1 — Ykn) — Went1)-

(8.6)

The block-activated version of this algorithm is as follows.

Algorithm 8.2 ([15]) Let v € ]0, +o0[, let ¢y and z( be H-valued random variables (r.v.), let
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Yo and wg be G-valued r.v. Iterate

forj=1,....,m+p

|compute ; as in (8.4)—(8.5)

forn=0,1,...

An €]0,2]

select randomly @ # I,, C {1,...,m} and @ # K,, C {1,...,p}
for every i € I,

Tin+1 = Qi(2n,Yp)

| Zin1 = Zip + An (proxﬂ/fi(Qa:ijn_H — Zim) — xi7n+1)
foreveryi e {1,...,m} \ I,

(Tint1s Zins1) = (Tins 2in)

for every k € K,

WE.n+1 = Qm—l—k(zna yn)
L Ykn+1 = Ykn + An (Proxvgk (2wk,n+1 - yk,n) - wk,nJrl)
forevery k € {1,...,p} N\ K,

(wk,n+17 yk,n—i—l) = (wk,na yk,n)'

The second algorithm operates by projecting onto hyperplanes which separate the current
iterate from the set Z of Kuhn-Tucker points of Problem 8.1, i.e., the points z € H and v* € G
such that

(Vi € {1, . ,m}) — i:l Lz’ﬁ; € af@(fl)

(k€ {L....p}) S, Liids € Ogi(T).

This process is explained in Fig. 8.1.

(8.7)

Algorithm 8.3 ([9]) Set Iy = {1,...,m} and Ky = {1,...,p}. For every i € Iy and every
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k € Ko, let {7i, ux} C 10, +00], 710 € H;, and vf, ; € Gy. Iterate

forn=0,1,...

An €10,2]

ifn>0

L select @ # I,, C Ip and @ # K,, C K
for everyi € I,

x;kn = Ti;n — i 22:1 LZ,Z-UZ,“
Qin = PrOX,, (T},

al, = %-_l(xf,n —Qip)

for everyi € Iy \ I,

L (@im,af,,) = (@in-1,07,_1)
for every k € K,

Y = HEV , + D00 Lii%in
bin = proxukgky;;’n

O = Hio Wi = Oiin)

|tk = bk — D0y Liiain
for every k € Ko \ K,

Ok, b)) = (Okn—1,b5 ;1)
| tion = bk — Doiny Lkiain
for every i € I

| 1=+ S0 L b
Tn = Zzn;l Ht;nHQ + Z£:1 Itk
ifr, >0

T = 2o (@i | 6) = (aim [ afn)) + 22021 ((en | V5 ) = (o [ B5))
i_an >0and m, >0

O = AnTn /T

for every i € Iy

‘ 2

L Tin+1 = Tin — Hnt;n
for every k € Ky

* gk
L L Vkn+1l = Y — entkyn
else
for every i € I
L Tin+1l = Tin

for every k € K

*

* _
L L vkm—i—l - 7)k:,n’
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| r!%/ mn+1 wn ’7—‘

Figure 8.1 Let £ be the set of solutions to Problem 8.1 and let Z be the set of solutions to its dual.
Then the Kuhn-Tucker set Z is a subset of & x 2. At iteration n, the proximity operators of blocks of
functions (f;)icr, and (gr)kek, are used to construct a hyperplane H,, separating the current primal-
dual iterate (x,,, v;) from Z, and the update (x,,+1,v;, ;) is obtained as its projection onto H,, [9].

8.2.3 Asymptotic behavior and comparisons

Let us first state the convergence results available for Algorithms 8.2 and 8.3. We make the
standing assumption that Z # @& (see (8.7)), which implies that the solution set % of Prob-
lem 8.1 is nonempty.

Theorem 8.4 ([15]) In the setting of Algorithm 8.2, define, for every n € N and every j €
{1,....m+p},

1, ifjel,orj—me Ky;
Ejn = Jetors " (8.8)
0, otherwise.

Suppose that the following hold:
() inf,eny A > 0 and sup,,cy A < 2.
(ii) The rv. (ep)nen are identically distributed.
(iii) For every n € N, therv. €, and (z;, y;)o<j<n are mutually independent.
(iv) (Vje{l,...,m+p}) Problejo =1] > 0.

Then (x,,)nen converges almost surely to a &?-valued r.v.

Theorem 8.5 ([9]) In the setting of Algorithm 8.3, suppose that the following hold:
() inf,eny A > 0 and sup,cy A < 2.
(ii) There exists T € N such that, for every n € N, U;‘;Lg I = {1,...,m} and U?;T K; =
{1,...,p}.
Then (x,,)nen converges to a point in 2.
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Let us compare Algorithms 8.2 and 8.3.
a/ Auxiliary tasks: 8.2 requires the construction and storage of the operators (Q;)1<j<m+p of
(8.4)-(8.5), which can be quite demanding as they involve inversion of a linear operator
acting on the product space ‘H or G. By contrast, 8.3 does not require such tasks.

b/ Proximity operators: Both algorithms are block-activated: only the blocks of functions

(fi)ier, and (gx)rek, need to be activated at iteration n.

¢/ Linear operators: In 8.2, the operators (Q;);cr,, and (Qm+k)rek, selected at iteration n
are evaluated at (21,5, .-, Zmn, Yi,ns-- > Ypn) € H x G. On the other hand, 8.3 activates
the local operators Ly, ;: H; — Gj, and Ly i+ Gk — M, once or twice, depending on whether
they are selected. For instance, if we set N = dim‘H and M = dim G and if all the linear
operators are implemented in matrix form, then the corresponding load per iteration in
full activation mode of 8.2 is O((M + N)?) versus O(MN) in 8.3.

d/ Activation scheme: As 8.2 selects the blocks randomly, the user does not have complete
control of the computational load of an iteration, whereas the load of 8.3 is more pre-

dictable because of its deterministic activation scheme.

e/ Parameters: A single scale parameter ~ is used in 8.2, while 8.3 allows the proximity
operators to have their own scale parameters (1, ..., Ym, 41, - - - , i4p). This gives 8.3 more
flexibility, but more effort may be needed a priori to find efficient parameters. Further, in

both algorithms, there is no restriction on the parameter values.

f/ Convergence: 8.3 guarantees sure convergence under the mild sweeping condition (ii)

in Theorem 8.5, while 8.2 guarantees only almost sure convergence.

g/ Other features: Although this point is omitted for brevity, unlike 8.2, 8.3 can be executed
asynchronously with iteration-dependent scale parameters [9].

8.2.4 Numerical experiments

We present two experiments which are reflective of our numerical investigations in solving
various problems using Algorithms 8.2 and 8.3. The main objective is to illustrate the block
processing ability of the algorithms (when implemented with full activation, i.e., I,, = Iy and
K, = Ky, Algorithm 8.3 was already shown in [10] to be quite competitive compared to
existing methods).

8.2.4.1 Experiment 1: Group-sparse binary classification

We revisit the classification problem of [12], which is based on the latent group lasso formula-
tion in machine learning [21]. Let {G1, ..., Gy} be a covering of {1,...,d} and define

X = {({L‘l, S ,:Um) | x; € Rd, support(xi) C Gl} (8.9)
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Figure 8.2 Normalized error 201og,,(||Z, —l|/||Z0 —Z]||) (dB), averaged over 20 runs, versus epoch
count in Experiment 1. The variations around the averages were not significant. The computational
load per epoch for both algorithms is comparable.

The sought vector is y = Y ;" | Z;, where (Z1, ..., Z;,) solves
m1n1m1ze Ti||2 + (@i |u 8.10
Zu " zgk(g . ) (5.10)

with u;, € R and g: R — R: € — 10max{0, 1 — 3¢}, where S, = wy, sign((7 | ug)) is the kth
measurement of the true vector 5 € R? (d = 10000) and wy, € {—1, 1} induces 25% classification
error. There are p = 1000 measurements and the goal is to reconstruct the group-sparse vector
y. There are m = 1429 groups. For every i € {1,...,m— 1}, each G; has 10 consecutive integers
and an overlap with G, of length 3. We obtain an instance of (8.1), where H; = R, f; =
| - ll2, and Ly; = (- | ux|g,). The auxiliary tasks for Algorithm 8.2 (see a/) are negligible [12].
For each o € {0.1,0.4,0.7,1.0}, at iteration n € N, [, has [am| elements and the proximity
operators of the scalar functions (g;)1<k<, are all used, i.e., K,, = {1,...,p}. We display in
Fig. 8.2 the normalized error versus the epoch, that is, the cumulative number of activated
blocks in {1, ..., m} divided by m.

8.2.4.2 Experiment 2: Image recovery

We revisit the image interpolation problem of [10, Section 4.3]. The objective is to recover
the image 7 € C = |0, 255]N (N = 962) of Fig. 8.3(a), given a noisy masked observation
b= M% + w; € RY and a noisy blurred observation ¢ = HZ + wo € RY. Here, M masks all
but ¢ = 39 rows (2(™)),<x<, of an image z, and H is a nonstationary blurring operator, while
wy and wy yield signal-to-noise ratios of 28.5 dB and 27.8 dB, respectively. Since H is sizable,
we split it into s = 384 subblocks: for every k € {1,...,s}, Hy € R?**" and the corresponding
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block of ¢ is denoted c;. The goal is to

q s
minimize | Dzl + 10D ||l = b ||, + 5 || Hya — e, (8.11)
S
k=1 k=1

where D: RY — RY x RN models finite differences and ||-|[12: (y1,92) — Z;V:l (1.5 m2.5)|2-
Thus, (8.11) is an instance of Problem 8.1, where m = 1; p = ¢+s+1; forevery k € {1,...,q},
Lip: RY = RYN: 2 20 and gg.: gy, — 10y — b®)||y; for every k € {qg+1,...,q + s},
L1 = Hg—g, g = 5|+ —cxll3 and g, = || l1.2; Lpp = D; firz = 0ifx € C; +ooif z ¢ C.
At iteration n, K, has [ap]| elements, where o € {0.1,0.4,0.7,1.0}. The results are shown
in Figs. 8.3-8.4, where the epoch is the cumulative number of activated blocks in {1,...,p}
divided by p.

8.2.4.3 Discussion

Our first finding is that, for both Algorithms 8.2 and 8.3, even when full activation is compu-
tationally possible, it may not be the best strategy (see Figs. 8.2 and 8.4). Second, a/-g/ and
our experiments suggest that 8.3 is preferable to 8.2. Let us add that, in general, 8.2 does not
scale as well as 8.3. For instance, in Experiment 2, if the image size scales up, 8.3 can still oper-
ate since it involves only individual applications of the local L; ; operators, while 8.2 becomes
unmanageable because of the size of the (); operators (see a/ and [6]).
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Figure 8.3 Experiment 2: (a) Original Z. (b) Observation b. (c¢) Observation c. (d) Recovery (all recov-
eries were visually indistinguishable).
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Figure 8.4 Normalized error 201og, (||, — Zoo||/||[€0 — Z||) (dB) versus epoch count in Experiment
2. Top: Algorithm 8.2. The horizontal axis starts at 140 epochs to account for the auxiliary tasks (see
a/). Bottom: Algorithm 8.3. The computational load per epoch for Algorithm 8.3 was about twice that
of Algorithm 8.2.
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Chapter

MULTIVARIATE MONOTONE
INCLUSIONS IN SADDLE FORM

9.1 Introduction and context

To answer question (Q8) of Chapter 1, we introduce a saddle formalism for systems of mono-
tone inclusions, study its properties, and provide abstract principles for finding a zero of the
associated saddle operator. This, in turn, leads to a flexible algorithm for solving systems of
monotone inclusions. Various applications are discussed in Section 9.2.4.

This chapter presents the following article:

M. N. Bui and P L. Combettes, Multivariate monotone inclusions in saddle form,

Mathematics of Operations Research, to appear.

9.2 Article: Multivariate monotone inclusions in saddle form

Abstract. We propose a novel approach to monotone operator splitting based on the notion
of a saddle operator. Under investigation is a highly structured multivariate monotone inclu-
sion problem involving a mix of set-valued, cocoercive, and Lipschitzian monotone operators,
as well as various monotonicity-preserving operations among them. This model encompasses
most formulations found in the literature. A limitation of existing primal-dual algorithms is
that they operate in a product space that is too small to achieve full splitting of our problem
in the sense that each operator is used individually. To circumvent this difficulty, we recast the
problem as that of finding a zero of a saddle operator that acts on a bigger space. This leads
to an algorithm of unprecedented flexibility, which achieves full splitting, exploits the specific
attributes of each operator, is asynchronous, and requires to activate only blocks of operators at
each iteration, as opposed to activating all of them. The latter feature is of critical importance
in large-scale problems. Weak convergence of the main algorithm is established, as well as the
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strong convergence of a variant. Various applications are discussed, and instantiations of the
proposed framework in the context of variational inequalities and minimization problems are
presented.

9.2.1 Introduction

In 1979, several methods appeared to solve the basic problem of finding a zero of the sum
of two maximally monotone operators in a real Hilbert space [37,38,43]. Over the past forty
years, increasingly complex inclusion problems and solution techniques have been considered
[10,14,17,19,23, 25, 29, 34, 53] to address concrete problems in fields as diverse as game
theory [2, 15, 56], evolution inclusions [3], traffic equilibrium [3,31], domain decomposition
[4], machine learning [6, 12], image recovery [7,11, 16, 33], mean field games [18], convex
programming [24, 36], statistics [26,55], neural networks [27], signal processing [28], partial
differential equations [32], tensor completion [39], and optimal transport [42]. In our view,
two challenging issues in the field of monotone operator splitting algorithms are the following:
* A number of independent monotone inclusion models coexist with various assumptions
on the operators and different types of operation among these operators. At the same
time, as will be seen in Section 9.2.4, they are not sufficiently general to cover important
applications.

* Most algorithms do not allow asynchrony and impose that all the operators be activated at
each iteration. They can therefore not handle efficiently modern large-scale problems. The
only methods that are asynchronous and block-iterative are limited to specific scenarios
[25,29,34] and they do not cover inclusion models such as that of [23].

In an attempt to bring together and extend the application scope of the wide variety of unre-
lated models that coexist in the literature, we propose the following multivariate formulation
which involves a mix of set-valued, cocoercive, and Lipschitzian monotone operators, as well
as various monotonicity-preserving operations among them.

Problem 9.1 Let (H,;)icr and (Gx)rex be finite families of real Hilbert spaces with Hilbert direct
sums H = @, ; Hiand G = @), . i Gr- Denote by x = (z;);cr a generic element in 7. For every
i€ landeveryk € K, let s’ € H;, let r;, € Gk, and suppose that the following are satisfied:
[a] A;: H; — 2™ is maximally monotone, C;: H; — H, is cocoercive with constant af €
10, 4+00[, Qi: H; — H; is monotone and Lipschitzian with constant af € [0, +oc[, and
Ri: H — H,;.
[b] B*: G, — 29 is maximally monotone, Bf: G, — Gy is cocoercive with constant 3 €
10, +oc[, and B : Gy — Gy, is monotone and Lipschitzian with constant 3¢ € [0, +ocl.

[c] Di*: Gy — 29 is maximally monotone, Dy : G, — Gy, is cocoercive with constant §; €
10, +oc[, and D¢ : G, — Gy is monotone and Lipschitzian with constant §¢ € [0, +oc].
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[d] Ly;: H; — Gy, is linear and bounded.
In addition, it is assumed that
[e] R: H — H: x — (R;x);cs is monotone and Lipschitzian with constant x € [0, +o0].

The objective is to solve the primal problem

find € H such that (Vi € I) Sz( € Aiz; + C;T; + Q;%T; + Rix

+> L, (((B,T +Bf + Bf)O (D" + Df + Dg)) (Zijxj — rk>> (9.1)

keK jeI

and the associated dual problem

find " € G such that (3z € H)(Vi € I)(Vk € K)

82‘ — Z L;Z@; € Ajx; + Cix; + Q;r; + Rx
JjEK

9.2)
o € (B + Bf + BY)O(Dp + D + DY) (Zija:j —rk>.
JeI

Our highly structured model involves three basic monotonicity preserving operations,
namely addition, composition with linear operators, and parallel sum. It extends the state-
of-the-art model of [23], where the simpler form

(\V/Z' S I) S; € AT + Qi + Z in ((B;;n’ DDZL) (Z ijfj — Tk>> (9.3)

keK jerI

of the system in (9.1) was investigated; see also [3, 25] for special cases. In an increasing
number of applications, the sets I and K can be sizable. To handle such large-scale problems,
it is critical to implement block-iterative solution algorithms, in which only subgroups of the
operators involved in the problem need to be activated at each iteration. In addition, it is
desirable that the algorithm be asynchronous in the sense that, at any iteration, it has the ability
to incorporate the result of calculations initiated at earlier iterations. Such methods have been
proposed for special cases of Problem 9.1: first in [25] for the system

find © € H suchthat (Vi € I) s; € A;7; + Z Ly, <B,§”“ (Zij:nj - rk>>, (9.4)

keK jeI
then in [29] for the inclusion (we omit the subscript ‘1)
find 7 € # such that 0 € Y Li(B* (L)), (9.5)

keK
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and more recently in [34] for the inclusion

find = € # such that 0 € AZ+ Qz + Y _ Li((By* + Bf)(LyT)). (9.6)
keK

It is clear that the formulations (9.4) and (9.6) are not interdependent. Furthermore, as we
shall see in Section 9.2.4, many applications of interest are not covered by either of them. From
both a theoretical and a practical viewpoint, it is therefore important to unify and extend these
approaches. To achieve this goal, we propose to design an algorithm for solving the general
Problem 9.1 which possesses simultaneously the following features:

@ It has the ability to process all the operators individually and exploit their specific at-
tributes, e.g., set-valuedness, cocoercivity, Lipschitz continuity, and linearity.

@ It is block-iterative in the sense that it does not need to activate all the operators at each
iteration, but only a subgroup of them.

® It is asynchronous.
@ Each set-valued monotone operator is scaled by its own, iteration-dependent, parameter.

® It does not require any knowledge of the norms of the linear operators involved in the
model.

Let us observe that the method of [25] has features ®—®, but it is restricted to (9.4). Likewise,
the method of [34] has features ®—-®, but it is restricted to (9.6).

Solving the intricate Problem 9.1 with the requirement @ does not seem possible with ex-
isting tools. The presence of requirements @-® further complicates this task. In particular, the
Kuhn-Tucker approach initiated in [14] — and further developed in [1, 10, 23, 25, 34, 35] —
relies on finding a zero of an operator acting on the primal-dual space H & G. However, in the
context of Problem 9.1, this primal-dual space is too small to achieve full splitting in the sense
that each operator is used individually. To circumvent this difficulty, we propose a novel split-
ting strategy that consists of recasting the problem as that of finding a zero of a saddle operator
acting on the bigger space H © G & G @ G. This is done in Section 9.2.2, where we define the
saddle form of Problem 9.1, study its properties, and propose outer approximation principles to
solve it. In Section 9.2.3, the main asynchronous block-iterative algorithm is presented and we
establish its weak convergence under mild conditions on the frequency at which the operators
are selected. We also present a strongly convergent variant. The specializations to variational
inequalities and multivariate minimization are discussed in Section 9.2.4, along with several
applications. Section 9.2.5 contains auxiliary results.

Notation. The notation used in this paper is standard and follows [9], to which one can refer
for background and complements on monotone operators and convex analysis. Let X be a real
Hilbert space. The symbols (- | -) and || - || denote the scalar product of K and the associated
norm, respectively. The expressions z,, — z and z,, — x denote, respectively, the weak and the
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strong convergence of a sequence (2, )nen to « in K, and 2 denotes the family of all subsets
of K. Let A: K — 2%, The graph of Ais grad = {(z,2*) € K x K | 2* € Az}, the set of zeros
of AiszerA = {z € K |0 € Az}, the inverse of Ais A~1: K — 2X: 2* — {z € £ | 2* € Az},
and the resolvent of A is J4 = (Id + A)~!, where Id is the identity operator on K. Further, A is
monotone if

(V(z,z*) € grad)(V(y,y*) e grad) (z—yl|a*—y*) >0, 9.7)

and it is maximally monotone if, for every (z,z*) € K x K,
(z,2*) egrad & (V(y,y*) egrad) (z—y|z"—y") >0 (9.8)

If A is maximally monotone, then J4 is a single-valued operator defined on K. The parallel sum
of B: K —2and D: K — 2Xis BOD = (B~'4+D~1)~!. An operator C: K — K is cocoercive
with constant « € ]0, +oo[ if (Vo € K)(Vy € K) (z —y | Cz — Cy) > a|Cx — Cy||*>. We denote
by I'o(K) the class of lower semicontinuous convex functions f: X — |—oo,+o0] such that
dom f = {z € K| f(z) < +o0} # @. Let f € I'((K). The conjugate of f is the function I'o(K) >
f*ra* = sup,cc((x | 2*) — f(x)) and the subdifferential of f is the maximally monotone
operator Of : K — 2812 — {2 € K| (Vy € K) (y — x| 2*) + f(z) < f(y)}. In addition, epi f
is the epigraph of f. For every = € K, the unique minimizer of f + (1/2)||- — z||? is denoted
by prox;xz. We have prox; = Jys. Given h € T'o(K), the infimal convolution of f and h is
fOh: K — [—o00,400] : & — infycx(f(y) + h(x — y)); the infimal convolution fOh is exact if
the infimum is achieved everywhere, in which case we write fh. Now let (K;);c; be a finite
family of real Hilbert spaces and, for every i € I, let f;: K; — ]—00, +00]. Then

@fi: K:@Ki—)]—ood—oo] : xHZfZ(xZ) (9.9
i€l i€l iel
The partial derivative of a differentiable function ©: K — R relative to K; is denoted by V; ©.
Finally, let C' be a nonempty convex subset of K. A point = € C belongs to the strong relative
interior of C, in symbols z € sriC, if (J\¢jg 100 A(C — ) is a closed vector subspace of K. If C
is closed, the projection operator onto it is denoted by proj. and the normal cone operator of
C' is the maximally monotone operator

{z* € K |sup(C —z|a*) <0}, if z€C;

NC:IC—>2’C:xr—>{ (9.10)

o, otherwise.

9.2.2 The saddle form of Problem 9.1

A classical Lagrangian setting for convex minimization is the following. Given real Hilbert
spaces H and G, f € T'o(H), g € T'9(G), and a bounded linear operator L: H — G, consider the
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primal problem
minirgize f(x)+ g(Lx) (9.11)
xe

together with its Fenchel-Rockafellar dual [47]
minirréize (L") + g*(v*). (9.12)
vre

The primal-dual pair (9.11)-(9.12) can be analyzed through the lens of Rockafellar’s saddle
formalism [49,50] as follows. Set h: H®&G — |—o0, +o0] : (z,y) — f(z)+9(y) and U: HSHG —
G: (z,y) — Lx — y, and note that U*: G — H ® G: v* — (L*v*, —v*). Then, upon defining
K = H @ G and introducing the variable z = (z,y) € K, (9.11) is equivalent to

minimize h(z) (9.13)
zelC,Uz=0
and (9.12) to
mininéize r* (—U*v"). (9.14)
v*e

The Lagrangian associated with (9.13) is (see [51, Example 4’] or [9, Proposition 19.21])

L:KDG — |—00,+00]

h(z) +{Uz | v*), if z € domh; (9.15)
(z,0%) —
~+o00, otherwise,

and the associated saddle operator [49,50] is the maximally monotone operator
8: KaG — 2899 (2,0%) = 9L(-,v*)(2) x (—L(2, ) (v*) = (Oh(2)+U*v*) x {~Uz}. (9.16)

As shown in [49], a zero (Z,7*) of 8 is a saddle point of £, and it has the property that z
solves (9.13) and 7* solves (9.14). Thus, going back to the original Fenchel-Rockafellar pair
(9.11)-(9.12), we learn that, if (z,7,7*) is a zero of the saddle operator

S:HBGDHG — 2899, (x,y,v") — (8f(a;) + L*v*) X (ag(y) - v*) x {—Lz+y}, (9.17)

then 7 solves (9.11) and v* solves (9.12). As shown in [24, Section 4.5], a suitable splitting of
8 leads to an implementable algorithm to solve (9.11)-(9.12).

A generalization of Fenchel-Rockafellar duality to monotone inclusions was proposed in
[44,46] and further extended in [23]. Given maximally monotone operators A: H — 2% and
B: G — 29, and a bounded linear operator L: 7 — G, the primal problem

find 7 € H such that 0 € Az + L*(B(Lz)) (9.18)
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is paired with the dual problem
find v* € G such that 0 € —L(A™'(—L*0*)) + B~ 'v". (9.19)
Following the same pattern as that described above, let us consider the saddle operator
S:HB®GDG — 2MY999 . (1 y v*) = (Az + L*v*) x (By —v*) x {—Lz +y}.  (9.20)

It is readily shown that, if (Z,7,7") is a zero of 8, then 7 solves (9.18) and 7* solves (9.19). We
call the problem of finding a zero of 8 the saddle form of (9.18)-(9.19). We now introduce a
saddle operator for the general Problem 9.1.

Definition 9.2 In the setting of Problem 9.1, let X = H & G & G @& G. The saddle operator
associated with Problem 9.1 is

$: X 2% (z,y,2,v") —

< X <—5f + Ajz; + Cizy + Qixi + Ry + Z L}szz) X (Bf"yr + Biyk + BLye — vi),
i€l keK keK

X (Di*zi + Dizi + Dizi — vp), X {Tk + Yk + 26 — ZL]{)Z$Z} ) ; (9.21)
keK keK el

and the saddle form of Problem 9.1 is to
find x € X such that 0 € 8x. (9.22)

Next, we establish some properties of the saddle operator as well as connections with Prob-
lem 9.1.

Proposition 9.3 Consider the setting of Problem 9.1 and Definition 9.2. Let & be the set of solu-
tions to (9.1), let 2 be the set of solutions to (9.2), and let

Z= {(az,v*) cHDG ‘ (Vie (Ve K) sf— > LiU; € AT+ CiZi + QiTi + Ri® and
jeK
S" Lz — i, € (B* + Bf + BY) " 'vi + (D + Df + Dg)—lv;;} (9.23)
jeI
be the associated Kuhn-Tucker set. Then the following hold:
(i) 8 is maximally monotone.
(ii) zerS is closed and convex.

(iii) Suppose thatx = (z,y,z,v") € zer8. Then (z,v*) € Z C & x 9.
(iv) 240 <czer8§ #0 & L+ 0= P + 2.
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(v) Suppose that one of the following holds:
[a] I is a singleton.
[b] Forevery k € K, (BJ"™ + Bf + B{) 0 (D™ + Df + DY) is at most single-valued.
[c] Forevery k € K, (D}* 4+ D} + Di)_1 is strictly monotone.
[d] I C K, the operators ((Bf"* + Bf + B) O (D™ + Df + DY))rex-1 are at most single-
valued, and (Vi € I)(Vk € I) k # i = Ly; = 0.
Then &P + & = 7 #+ @.

Proof. Define
A:H—-2". 2~ Rr+ Xier (Aixi + Ciz; + QZ'SL‘Z')

B: G — 29y Xyer (Bl vk + Biye + Bjyr)

D:G—29: z X, (D2, + Df 21, + Diz) 9.24)
L:H—->G: x> (ZieILkixi)

keK
8" = (s7)ier and r = (7 )rek-
Then the adjoint of L is
L*:G - H: v~ ( > L’,;iv,’;> : (9.25)
keK el

Hence, in view of (9.21) and (9.24),

$: X 2% (x,y,2,v") — (—s"+ Az + L*v*) x (By—v*) x (Dz—v*) x {r— Lz +y+z}.
(9.26)
(i): Let us introduce the operators

P: X —2%: (x,y,2,v*) — (—s* + Az) x By x Dz x {r} 9.27)
W: X - X: (z,y,2,v") = (L*v*, —v*, —v*, —Lx + y + z). .

Using Problem 9.1[a]-[c], we derive from [9, Example 20.31, Corollaries 20.28 and 25.5(i)]
that, for every i € I and every k € K, the operators A; +C; +Q;, B + By + B!, and D+ Dy +
Dz are maximally monotone. At the same time, Problem 9.1[e] and [9, Corollary 20.28] entail
that R is maximally monotone. Therefore, it results from (9.24), [9, Proposition 20.23 and
Corollary 25.5(i)], and (9.27) that P is maximally monotone. However, since Problem 9.1[d]
and (9.27) imply that W is linear and bounded with W* = —W, [9, Example 20.35] asserts
that W is maximally monotone. Hence, in view of [9, Corollary 25.5(i)], we infer from (9.26)-
(9.27) that 8 = P + W is maximally monotone.

(ii): This follows from (i) and [9, Proposition 23.39].

(iii): Using (9.24) and (9.25), we deduce from (9.23) that

Z={(z,v")eH®G|s" — Lv* € Az and Lz —r € B 'v* + D 'v*} (9.28)

139



and from (9.2) that
2={v'eG|-re—-L(A'(s*— L*v"))+B v+ D 'v*}. (9.29)

Suppose that (x,v*) € Z. Then it follows from (9.28) that x € A~!(s* — L*v*) and, in turn,
that —r € —La + B 'v* + D 'v* ¢ —L(A7!(s* — L*v*)) + B 'v* + D 'v*. Thus v* € 2
by (9.29). In addition, (9.23) implies that

(Vk € K) wvp € ((Bf* + Bf + BL)O(Dy* + Df + DY) (Zijxj - rk> (9.30)
J€eI

and, therefore, that

(Viel) s;je€Axi+ Ciwi+ Qv + Rix + Z Ly,
keK
C Ajx; + Cizy + Qi + Rix

+ > L <((B,§” + B + BY)O(Dj + Df + Di)) (Zijmj - rk>>
keK jerl
(9.31)

Hence, x € £. To summarize, we have shown that Z C & x 2. It remains to show that
(z,v*) € Z. Since 0 € 8%, we deduce from (9.26) that s* — L*v* € Az, Lx —r =y + Z,
0 € By — 7%, and 0 € Dz — ©*. Therefore, L — r € B~'%* + D~'%* and (9.28) thus yields
(z,v%) € Z.

(iv): The implication zer8 # @ = & # o follows from (iii). Next, we derive from (9.29)
and (9.28) that

92+ @« (3 €G) —re —L(A™'(s*— L'v")) + B"'v* + D 'v*
s (3@ z)eGaH) —re—Lz+B v+ D v and T€ A (s* — L*vY)
& (3@ v)eHDG) 8"~ L'v" € Az and Lz —r € B"'v" + D™ 'v"
S 71+£0. (9.32)

However, (iii) asserts that zerS # @ = Z # @. Therefore, it remains to show that Z # o =

zer 8§ # ©. Towards this end, suppose that (z,v*) € Z. Then, by (9.28), s* — L*v* € Ax and

Lz —r € B 'o* + D 'v*. Hence, 0 € —s* + Ax + L*v* and there exists (7,2) € GO G

such that y € B~'%*, Z € D™'%*, and LT — r = 5 + Z. We thus deduce that 0 € By — o*,

0 € Dz —v*, and r — LT + 3 + Z = 0. Consequently, (9.26) implies that (Z,y,z,7*) € zerS.
(v): In view of (iv), it suffices to establish that & # @ = 2 # &. Suppose that T € .
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[a]: Suppose that I = {1}. We then infer from (9.1) that there exists v* € G such that

s1 € AT+ O T + QT + RiZ+ Y Ly
ke (9.33)
(Vk € K) v} € (Bf* + Bf + BL)O(DJ* + Df + DY) (LinT1 — 1)

Therefore, by (9.2), v* € 2.

[bl: Set (Vk € K) vy = ((Bf* + B + Bf,) O(Dj* + Df + D)) (X s LijTj — ri). Then v*
solves (9.2).

[c]=[b]: See [23, Section 4].

[d]: Let i € I. It results from our assumption that

s; € ATy + Cimi + QiT; + Rix + Lj; (((Bzm + BY + BYHYO(DY™ + DY + D)) (Liw; — Tz))

+ > L <((B,§” +Bf + B O (D + Df + Di)) (Zija:j - rk>> (9.34)
keK~T jel

Thus, there exists 7} € G; such that 7¢ € (B + Bf + BY)O (D™ + D¢ + DY))(L;;Z; — r;) and

that

sy € AT + CiTi + QiT; + Ri® + L0}

i

+ > Zi(((Bzzn+BE+B£)D(D,’€"’+D§+D£))(Zij:nj—rk>>. (9.35)

keI jeI

As a result, upon setting

(Vk e K\ I) = ((Bf"+ By + BL)D(Dy + Di + Dy)) (Zijxj - rk), (9.36)
jel

we conclude thatv* € 9. 0O

Remark 9.4 Some noteworthy observations about Proposition 9.3 are the following.

(i) The Kuhn-Tucker set (9.23) extends to Problem 9.1 the corresponding notion introduced
for some special cases in [1, 14, 25].

(i) In connection with Proposition 9.3(v), we note that the implication & # @ = Z # &
is implicitly used in [25, Theorems 13 and 15], where one requires Z # @& but merely
assumes & # @. However, this implication is not true in general (a similar oversight is
found in [1, 45, 52]). Indeed, consider as a special case of (9.1), the problem of solving
the system

0 € Bi(z1 + x2) + Ba(x1 — x2)
0 € Bi(z1 + x2) — Ba(z1 — 22)

(9.37)
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in the Euclidean plane R?. Then, by choosing B; = {0}~! and B, = 1, we obtain & =
{(z1,—z1) | 21 € R}, whereas Z = @.

(iii) As stated in Proposition 9.3(iii), any Kuhn-Tucker point is a solution to (9.1)-(9.2). In
the simpler setting considered in [25], a splitting algorithm was devised for finding such
a point. However, in the more general context of Problem 9.1, there does not seem to
exist a path from the Kuhn-Tucker formalism in H & G to an algorithm that is fully split
in the sense of @. This motivates our approach, which seeks a zero of the saddle operator
8 defined on the bigger space X and, thereby, offers more flexibility.

(iv) Special cases of Problem 9.1 can be found in [1, 25, 34, 35], where they were solved by
algorithms that proceed by outer approximation of the Kuhn-Tucker set in ‘H & G. In
those special cases, Algorithm 9.12 below does not reduce to those of [1,25,34,35] since
it operates by outer approximation of the set of zeros of the saddle operator 8 in the
bigger space X.

The following operators will induce a decomposition of the saddle operator that will lead to
a splitting algorithm which complies with our requirements ®-®.

Definition 9.5 In the setting of Definition 9.2, set
M: X = 2% (z,y,2,0") —

( X <—8f + Aizi + Qizi + Riz + Z LZiUZ>> X (Bi*yi + Biyr — v}),

i€l keK keK
X (D zx + Dz, — vfh), X {Tk+yk+2k—Zmei}> (9.38)
keK ke K i€l
and
C: X = X (w.y,2,07) = ((Cors)seps (BEW) s (D7) eer ) (9.39)

Proposition 9.6 In the setting of Problem 9.1 and of Definitions 9.2 and 9.5, the following hold:
i 8§=M+C
(i) M is maximally monotone.
(iii) Set a = min{ay, B¢, 6 }ier kek- Then the following hold:
(a) Cis a-cocoercive.

(b) Let (p,p*) € graMandq € X. Thenzer8 C {x € X | (x —p | p* + Cq) < (4a)"!{lp — q|?}.

Proof. (i): Clear from (9.21), (9.38), and (9.39).

(ii): This is a special case of Proposition 9.3(i), where, for every i € I and every k € K,
C; =0and B = Dy =0.

(iii) (a): Take x = (x,y, z,v*) and y = (a, b, ¢, w*) in X. By (9.39) and Problem 9.1[a]-[c],

(x—y|Cx—Cy)
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= (wi—a; | Ciwi = Ciai) + Y ({yn — br | Bfye — BEbk) + (2 — cx | Dz — D ex))

1€l keK
> af||Ciwi — Ciail > + > (BIBEyk — BEbk|® + 68| Df 21 — D ex|?)
el keK
>a ) ||Cix; — Ciail|* + Y (IIBfyx — Bibxl® + [1Df 2 — Di exl|?)
el keK
= a//Cx — Cy||%. (9.40)

(iii) (b): Suppose that z € zer 8. We deduce from (i) that —Cz € Mz and from our assump-
tion that p* € Mp. Hence, (ii) implies that (z— p | p* + Cz) < 0. Thus, we infer from (iii)(a)
and the Cauchy-Schwarz inequality that

(z—p|p"+Cq)=(z—p|p"+C2) —(z—q|Cz-Cq)+(p—q|Cz-Cq)
< —al/Cz — Cql* +[lp — ql|[|Cz — Cq]

_ 2
— (40)"'[lp — al* -~ | (2va) 'l - all - valiCz - Ca]
< (4a)7lp —alf*, (9.41)

which establishes the claim. 0O
Next, we solve the saddle form (9.22) of Problem 9.1 via successive projections onto the
outer approximations constructed in Proposition 9.6(iii) (b).

Proposition 9.7 Consider the setting of Problem 9.1 and of Definitions 9.2 and 9.5, and suppose
that zer 8 # @. Set o = min{ay, 57,07 Vier ek, let xg € X, let € € ]0,1[, and iterate

forn=0,1,...

(Pn:Py) € graM; q, € X;

t, = p, + Cay;

Ap = (%0 — Py | ) — (4a) 7P, — 4|1

if A, >0 (9.42)
An € [6,2 —€];

Xn41 = Xp — ()\nAn/Hth) t;

else

i L Xn+1 = Xp.

Then the following hold:
(i) (Vz € zer8)(Vn € N) [[xp+1 — z|| < [|xn, — 2]
() > ,en Xnt1 — Xn||? < +o00.
(iii) Suppose that (t}),cn is bounded. Then lim A,, <0.

(iv) Suppose that x,, — p,, — 0, p,, — q,, — 0, and t, — 0. Then (x,,)nen converges weakly to a
point in zer 8.
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Proof. (i)&(ii): Proposition 9.3(ii) and our assumption ensure that zer 8 is a nonempty closed
convex subset of X. Now, for every n € N, set n, = (4a)~}||p,, — q,,/|*> + (p,, | t}) and H,, =
{x € 2| (x| t}) < n,}.On the one hand, according to Proposition 9.6(iii) (b), (Vn € N) zer§ C
H,.. On the other hand, (9.42) gives (Vn € N) A,, = (x, | t}) — n,. Altogether, (9.42) is an
instantiation of (9.142). The claims thus follow from Lemma 9.28 (i) &(ii).

(iii): Set p = sup,y|t;||. For every n € N, if A, > 0, then (9.42) yields A, =
A HIEE N I%na1 — Xnll < e tpllxng1 — xn||; otherwise, A, < 0 = e 1u|x41 — Xn||. We there-
fore invoke (ii) to get im A,, < lime ™! pu||x,, 11 — X,|| = 0.

(iv): Let x € X, let (ky)nen be a strictly increasing sequence in N, and suppose that x;,, — x.
Then p,, = (P, — Xk,) + Xk, — X. In addition, (9.42) and Proposition 9.6(i) imply that
(P, > Py, +CPy, Jnen lies in gra(M + C) = gra 8. We also note that, since C is (1/«)-Lipschitzian
by Proposition 9.6(iii) (a), (9.42) yields ||p: +Cp,,|| = ||t: —Caq,,+Cp, || < |It:||+]/Cp,,—Ca,]| <
lt: ]| + ||p,, — a,ll/ac — 0. Altogether, since 8§ is maximally monotone by Proposition 9.3(i),
[9, Proposition 20.38(ii)] yields x € zer8. In turn, Lemma 9.28(iii) guarantees that (x,)nen
converges weakly to a point in zer8. [0

The next outer approximation scheme is a variant of the previous one that guarantees strong
convergence to a specific zero of the saddle operator.

Proposition 9.8 Consider the setting of Problem 9.1 and of Definitions 9.2 and 9.5, and suppose
that zer 8 # &. Define

2: 0, +00[ x 0, 400 x R x R — R?

(1,A/7), if p=0;
(A, 7,6,x) = § (0, (A+x)/7), if p#0 and xA > p;
(1=xA/p,sA/p), if p#0 and xA <p,

where p=71¢— X%, (9.43)
set a = min{ay, B¢, 6f }ier kek, and let xo € X. Iterate

forn=0,1,...

(Pn,p;,) € graM; q,, € X;

t, =p, +Ca,;

Ap = (%0 =Py | 1) = (da) Py, — 4,

ifA, >0
T = [IE511%5 60 = lIx0 = Xall*s X = (X0 — Xn | £7,);
(Kny An) = E(An; Tn,y Sns Xn);
Xnt+1 = (1 — Kp)Xo + KnXn — Aptl;

(9.44)

else

{ Xn4+1 = Xp.
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Then the following hold:
@ (vn € N) lxn = xol| < [[xn41 = xol| < [[Projzersxo — xoll-
(D) Y,en Xnt1 — xn|? < +oo.

(iii) Suppose that (t}),cn is bounded. Then lim A,, <0.

(iv) Suppose that x, —p,, — 0, p,, —q,, — 0, and t}, — 0. Then x,, — Proj,.,sXo.

Proof. Set (Vn € N) 1, = (4a)7|p, — /> + (p,, | t,) and H, = {x € X | (x| t}}) <7, }. As
seen in the proof of Proposition 9.7, zer 8 is a nonempty closed convex subset of X and, for
every n € N, zer§ C H,, and A,, = (x,, | t};) — 7. This and (9.43) make (9.44) an instance of
(9.143).

(1) &(ii): Apply Lemma 9.29(i) &(ii).

(iii): Set u = sup, <y [|t;;||. Take n € N. Suppose that A,, > 0. Then, by construction of H,,,
Projyy X = Xn—(An/|[£5]2) t5. This implies that A, = 5] [projy, xn—xall < 1lprojy, xn—xall.
Next, suppose that A,, < 0. Then x,, € H,, and therefore A, <0 = pl|projy x,—x,||. Altogether,
(Vn € N) Ay, < plprojy, xn — Xn||. Consequently, Lemma 9.29(ii) yields lim A, <0.

(iv): Follow the same procedure as in the proof of Proposition 9.7(iv), invoking
Lemma 9.29(iii) instead of Lemma 9.28(iii). O

9.2.3 Asynchronous block-iterative outer approximation methods

We exploit the saddle form of Problem 9.1 described in Definition 9.2 to obtain splitting algo-
rithms with features ®-®. Let us comment on the impact of requirements ®-®.
@ For every i € I and every k € K, each single-valued operator C;, Q;, R;, Bf, B¢, D¢, Dt,
and Lj; must be activated individually via a forward step, whereas each of the set-valued
operators A;, B;"*, and D;"* must be activated individually via a backward resolvent step.

@ At iteration n, only operators indexed by subgroups I,, C I and K,, C K of indices
need to be involved in the sense that the results of their evaluations are incorporated.
This considerably reduces the computational load compared to standard methods, which
require the use of all the operators at every iteration. Assumption 9.10 below regulates
the frequency at which the indices should be chosen over time.

® When an operator is involved at iteration n, its evaluation can be made at a point based
on data available at an earlier iteration. This makes it possible to initiate a computation at
a given iteration and incorporate its result at a later time. Assumption 9.11 below controls
the lag allowed in the process of using past data.

@ Assumption 9.9 below describes the range allowed for the various scaling parameters in
terms of the cocoercivity and Lipschitz constants of the operators.

145



Assumption 9.9 In the setting of Problem 9.1, set o = min{«, 8¢, 0% }ierkek, let o € ]0,400]
and € € ]0, 1] be such that

o>1/(4a) and 1/6>max{af—|—x+a,ﬁg+a,6}i+a} (9.45)

i€l ke K’
and suppose that the following are satisfied:
[a] Foreveryi€ I andeveryn €N, v;, € [e,1/(af + x + 0)].

[b] For every k € K and every n € N, pi,, € [e,1/(8% 4+ 0)], ven € [e,1/(6 + 0)], and
Okm € [g,1/¢].

[c] Foreveryic I, x;0 € H;; for every k € K, {yx, zho,vzﬂ} C Gp.

Assumption 9.10 [ and K are finite sets, P € N, (I,),cn are nonempty subsets of I, and (K, )nen
are nonempty subsets of K such that

n+P n+P

Iy=1I, K¢=K, and (WneN) |JIL=Tand |JK;=K. (9.46)
j=n j=n

Assumption 9.11 [ and K are finite sets, T' € N, and, for every i € I and every k € K, (m;(n))nen
and (wg(n))pen are sequences in N such that (Yn € N)n—T < mi(n) < nandn—T < wi(n) < n.

Our first algorithm is patterned after the abstract geometric outer approximation principle
described in Proposition 9.7. As before, bold letters denote product space elements, e.g., x,, =
(®in)ier € H.

Algorithm 9.12 Consider the setting of Problem 9.1 and suppose that Assumption 9.9-9.11 is
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in force. Let (A, )nen be a sequence in [, 2 — €] and iterate

forn=0,1,...
for everyi € I,
l;ﬁ,n = lel,m('ﬂ) + Rza:m(n) + ZkEK LZiUZ,Wi(n);
Ain = ‘]’Yi,wim)Ai (xi,m(n) + ’Yim(n)(sj - l;'k,n - Cixim(n)));
—1 .
a;” = ’ylyﬂ'l(n) (xlﬂrl(n) - al”n) - l::n + Qiai’n’
2.
gi,n = ”ai,n — T mi(n) H )
foreveryi e I\ I,
[ Ajp = Qjn—1; aZn = a;nfﬁ ‘Si,n = fz’,n—ﬁ

for every k € K,

U = Von(n) B;‘;yk,wkm);

Wy, = UI:@k(n) - Dgzk,wk (n)>

bk = Juk,wk(n)BLn (yk,wk(n) + Hiwi(n) (UZ,n - BlgykMk(n)));

D = Tup o D (B () + Ve () (Wi — DE 2o ()

€hn = Ohwn(n) ( Lier LhiTiwy(n) = Ykwi(n) — Zhawn(n) = k) T Vi oy ()

G = i () e ion(m) = D) + f, + Bibin — €

trn = Viws () Fhon(n) = dien) + W}, + Didin — € 5

M = 10k = Y|+ 1k — Ziop () I
| ekn =Tk + b + din — Y i Liitin;
forevery k € K \ K, (9.47)
bk = bkn—15 dien = dign—13 €, = €15 Qo = Qhn—13 thn = Upn—1
| Mk = Mhen—15 €k = Tk + Ok + din — D e LiiQing
foreveryi e I
| Pin = @iyt Ritn 4 ) e Lieg
A = —(4a)_1 ( Zz‘e] Ein + ZkeK nk,n) + Zie[ (Tin — ain | p');,n>

+ 2 ker (Whm = bkn | G5 0) + (Zhm — dien | T ) + (e | 0, — €5.0))5

if A, >0

On = M/ (s IPnll” + Xier (165,117 + 116,117 + llernll*));
foreveryie I

— . *
Tin+l = Tip — enpz‘,m

forevery k € K

i Ykn+1 = Ykn — anq;’;n; Zkn+1 = Zkn — gntzm; v;;,n—l—l = UZJ’L - enek,n;
else
foreveryie I

Tin+1 = Tin;

forevery k € K

*

i Yen+1 = Yken; Zkn+l = Zkn; v/:,n-l—l = Vg p-
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The convergence properties of Algorithm 9.12 are laid out in the following theorem.

Theorem 9.13 Consider the setting of Algorithm 9.12 and suppose that the dual problem (9.2)
has a solution. Then the following hold:

(i) Let: e I. Then Tin 1—.%'Z'n2<+00.
TLGN » + )

(i) Let k € K. Then Y, o lUknt1 — Uknll? < +00, Y nen |2emt1 — zenl® < +oo, and
Ponen 107 1 — Vi ull? < oo

(iii) Let i € I and k € K. Then %y — aim — 0, Yo — bkn — 0, 2k — dpy, — 0, and
”Z,n — ez’n — 0.

(iv) There exist a solution = to (9.1) and a solution ©* to (9.2) such that, for every i € I and
every k € K, x;n — Ty, ajn, — Tj, and Ult,n — . In addition, (z,v*) is a Kuhn-Tucker
point of Problem 9.1 in the sense of (9.23).

Proof. We use the notation of Definitions 9.2 and 9.5. We first observe that zer 8§ # & by virtue
of Proposition 9.3(iv). Next, let us verify that (9.47) is a special case of (9.42). For every i € I,
denote by ¥J;(n) the most recent iteration preceding an iteration n at which the results of the
evaluations of the operators 4;, C;, Q;, and R; were incorporated, and by ¥;(n) the iteration at
which the corresponding calculations were initiated, i.e.,

Ji(n)=max{j eN|j<nand i€ I;} and ¥;(n) =m(Ji(n)). (9.48)

Similarly, we define

(Vk € K)(Vn €N) gp(n)=max{j e N|j<n and k€ K;} and ox(n) = wi(o,(n)).

(9.49)
By virtue of (9.47),
(Vie )(Vn€N) ain =05, Gin= a;.kﬁi(n), §im = & 5,(n)> (9.50)
and likewise
(Vk c K) (Vn c N) bk,n = bk@k(n)v dk,n = dk,Ek(n)a Nkn = Mk, (n) (951)

% % % % g%
ek:,n - ek@k(n)’ qk,n - qk@k,(n)’ tk,n - tk@k(n)'
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To proceed further, set

xn = (:Bn7 yn7 Zn, U:L)

= (an, by, dy,€))
(Vn € N) (P C iLi9; n))iela q: - (B,Igyk or(n ))k:EKa t;kz - (Dg'zk,gk (n))kEKa en)
(( zela yk Ok (n))kGK: (Zk gk(n))kEKa (ek n)kGK)

::(pn,qn,tn,en)

(9.52)

For every i € I and every n € N, it follows from (9.50), (9.48), (9.47), and [9, Proposi-

tion 23.2(ii)] that

i p = Ci%ig,m) = 0,5 v — Cix

€ =87 + Aitig, ) T Qitti g (n)
= —s; + Aiain + Qiaipn

and, therefore, that

Pin = Ciig,(n) = a5 — City g,y + Rittn + > Lii€h.n
keK

€ —s; + Aiain + Qitin + Rian + Z Lyl n-
keK

Analogously, we invoke (9.51), (9.49), and (9.47) to obtain
(Vk € K)(Yn € N) g}, — BfYk.on(n) € Bi bk + Bhbin — €},

and

(Vk € K)(VTL € N) t;;n - Dlgzk,gk(n) € Dl::ndk,n + Dlﬁdk,n - 6}27”.

In addition, (9.47) states that

(Vk € K)(Yn €N) e =%+ bin + dim — O Liitin.
el

%,m@(n))(xz',m@i(n)) = @5,m) ~ Lgym) ~ Ci%im @) T Qi)

(9.53)

(9.54)

(9.55)

(9.56)

(9.57)

Hence, using (9.52) and (9.38), we deduce that (p,,, p};)nen lies in gra M. Next, it results from
(9.52) and (9.39) that (Vn € N) t, = p} + Cq,,. Moreover, for every n € N, (9.47)-(9.52) entail

that
Z Si,n + Z nk,n
iel keK
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=D &y T D )

el keK

=Y 5.0~ Tim@on | + 2 (12,00 = vn@on I* + ez, = 2|
i€l keK

=3 lloin = zial® + D (15 = vl + din = 2100 |I°)
el keK

= P, — a4, (9.58)

and, in turn, that
Ap = (% =Py | ) = (40) P, — % (9.59)

To sum up, (9.47) is an instantiation of (9.42). Therefore, Proposition 9.7(ii) asserts that

> " lxnt1 — xn* < +o0. (9.60)
neN

(1) &(ii): These follow from (9.60) and (9.52).
(iii) &(iv): Proposition 9.7(i) implies that (x,),en is bounded. It therefore results from
(9.52) that

(Tr)nen, (Yp)neN, (Zn)nen, and (v))nen are bounded. (9.61)

Hence, (9.51), (9.47), (9.49), and Assumption 9.9[b] ensure that

(Vk‘ S K) (ez’n)neN = (Uk:,gk(n) <Z Lkiwim(n)—yk@k(n)—zk@k(n)—rk) +U7§,gk(n)> is bounded.
ne

iel
(9.62)
Next, we deduce from (9.61) and Problem 9.1[e] that
(Vie) (Rimﬂi(n))neN is bounded. (9.63)

In turn, it follows from (9.47), (9.61), the fact that (Q;);c; and (C;);er are Lipschitzian, and
Assumption 9.9[a] that

(Vi S I) (.%'wi(n) + Yi,04(n) (8,2k - l:@(n) — Cixi,ﬁi (n))>n€N is bounded. (9.64)
An inspection of (9.50), (9.47), (9.48), and Lemma 9.25 reveals that

(\V/’L € I) (ai,n)nEN = (J’Yi,ﬁi(n)Ai (mi,ﬁi(n) + 1,9, (n) (5: - ljﬁl(n) - C’ixz’,ﬁi(n))))neN is bounded.
(9.65)
Hence, we infer from (9.50), (9.47), (9.61), and Assumption 9.9[a] that

(Vi€ I) (a;,)nen is bounded. (9.66)
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Accordingly, by (9.47), (9.61), and Assumption 9.9[b],

(k€ K) (b0t + 00 (W) Bﬁykﬂgk(n)))nEN is bounded. (9.67)

Therefore, (9.51), (9.47), (9.49), and Lemma 9.25 imply that

(Vk € K) (bk,n)neN = (Juk,gk(n)BL” (yk,gk(n) + Kk, (n) (UZ,@k(n) - Blfyk,gk("))»neN is bounded.

9.68
Thus, (9.51), (9.47), (9.61), (9.62), and Assumption 9.9[b] yield ( :
(@), )nen is bounded. (9.69)
Likewise,
(dn)nen and (t))nen are bounded. (9.70)
We deduce from (9.57), (9.68), (9.70), and (9.65) that
(en)nen is bounded. (9.71)
On the other hand, (9.47), (9.66), (9.65), Problem 9.1[e], and (9.62) imply that
(P, )nen is bounded. (9.72)

Hence, we infer from (9.52) and (9.69)-(9.71) that (t}),en is bounded. Consequently, (9.59)
and Proposition 9.7(iii) yield

lim (<Xn —p, | tr) — (4a)‘1||pn — qn||2) =1limA,, 0. (9.73)
Let L and W be as in (9.24) and (9.27). For every n € N, set

(Viel) By, = fy;;i (ld — Qi
(Vk € K) Fyp = M;zk(n)ld —~ B, Gpn= u,;;k mld— D¢

E,: X = A& (ma Yy, z, ’U*) = ((Ei,n$i)i€1'a (Fk‘,nyk’)k’el{a (kazk)kEKv (U];;k(n)U]t)kEK)

9.74)
and
Xn = ((Ti.0:(n))iels Yh.op(m) ke (k0 (n) ke (UF 51 () heK)
v = E,x, — E;p,,, w;, =Wp, —Wx,
5= ((Rian — Rizn)icr,0,0,0), ¥, = ((Rian, — Rixy,())ier, 0,0,0) (9.75)
l: = ((_ ZkEK LZivz,ﬁi(n))iGI’ (Uz,gk(n))keK’ (Uz,gk(n))keK’
. (Ziel Lki®i,0,(n) = Y,on(n) — Zkan(n))k:EK)'
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In view of Problem 9.1[a]-[c] and Assumption 9.9[a]&[b], we deduce from Lemma 9.26 that

)

the operators (F;,);c; are (x + o)-strongly monotone
I~ { perators (Eiy)ier are (x + o)-strongly

(9.76)

the operators (F},)rex and (Gjn)kerx are o-strongly monotone,

and from (9.74) that there exists « € |0, 4+o0[ such that
the operators (E,),cn are x-Lipschitzian.
It results from (9.50), (9.47), (9.48), and (9.74) that

(Vie H(VneN) a, =

1y

- < Vs (05(n)) " imi (D — Qi @, (n))) N (7;;(51-(71))“@@(11)

R 5, (n)) ZLM Vg

keK

= Ei,nxi,ﬂi(n) - Ei,nai n - R; :1:19 Z Lkzvk 94(
keK

and, therefore, that

(VieI)(VvneN) p, =a;,+ Ria, + Z Lyi€rn
keK

(9.77)

- Qiai,gi(n))

(9.78)

= Ein%;i9,(n) — Lintin + Rian — Ri®y,(n) — Z LV g,y T Z Li€kn-

keK

At the same time, (9.51), (9.47), (9.49), and (9.74) entail that

(Vk € K)(Vn €N) gk = G5 5,m)

(.- ¢
= (Mk,wk(Ek(n))ykvwk(@c(”)) - Bkyk,wk@k(n))>

keK
(9.79)

—1 t * *
- (Mk,wk(ﬁk(n))bk:?k(”) - Bkbk»?ﬂ@) T V(@ (n) ~ Ckai(n)

*

= FinYk,ox (n) — Flonbipn + UZ,Qk (n) ~ Sk

and that

(Vk € K)(Vn € N)  t,, = Gt gy tm) — Chndion + Vs gy (n) — Chm- (9.81)

Further, we derive from (9.51), (9.47), and (9.49) that

(Vk € K)(Yn €N) rp =04} (Vb= T b (n)e;n—ym(n)—zm(nﬁz Lii%i o (n) (9.82)

el
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and, in turn, from (9.57) that

—1 * —1 *
(Vk € K)(Vn € N) ekyn = O—k7gk(n)vk,gk(n) - O—k,gk(n)ekyn - yk?@k(n) - Zkv@k(n)

+ 3 Lkitti g (n) + bkn + Ak — > Liitin.  (9.83)
i€l i€l

Altogether, it follows from (9.52), (9.79)-(9.81), (9.83), (9.74), (9.75), (9.27), and (9.25) that
(Vn € N) tf =E.X, —E.p, +7.+ 1% +Wp,. (9.84)

Next, in view of (9.60), (9.48), (9.49), and Assumption 9.10-9.11, we learn from Lemma 9.27
that

(Vi € I)(Vk € K) {a:qu(n) —x, =0, T, n)— Tpn — 0, and v:;i(n) —v: —0 9.85)
Yorn) — Yn — 0, Zg (n) — 2n — 0, and vy )~ Un 0.
Thus, (9.75), (9.27), (9.25), and (9.24) yield
I +Wx, — 0, (9.86)
while Problem 9.1[e] gives
(Viel) |Rizg,n)— Riznl < Xl|T9,(n) — Zall — 0. (9.87)
On the other hand, we infer from (9.77), (9.75), and (9.85) that
|EnXn — Enxyn|| < K|[Xn — xp|| — 0. (9.88)
Combining (9.84), (9.75), and (9.86)—-(9.88), we obtain
t;, — (v, +rn+w)) =1, +Wx, + E X, — Epx, + 7, — 1), — 0. (9.89)
Now set
(VneN) a,, = (Zn, Y, 2n, €),)- (9.90)

Then (q,,)nen is bounded by virtue of (9.61) and (9.62). On the one hand, (9.52), (9.62),
(9.65), (9.68), and (9.70) imply that (p,,),cn is bounded. On the other hand, (9.52) and (9.85)
give

4, —q, — 0. (9.91)

Therefore, appealing to the Cauchy-Schwarz inequality, we obtain

(P — G | 8 — 0] < <sup 1Pl + sup Hamu) 6, — a,]l = 0 9.92)
meN meN
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and, by (9.89),
(ke — P | € — (v ¥+ w))| < (sup ool + sup ||pm||) It — (V2w | — 0. (9.93)
meN meN

However, since W* = —W by (9.27), it results from (9.75) that (Vn € N) (x,, — p,, | w) = 0.
Thus, by (9.73) and (9.91)-(9.93),

0= lim ((x, — p,, | t3) — (4) " "[Ip,, — q,,[1%)
T (0 — Py V5 4 W)+ (60— Py | € — (v 0+ W) — (40) b, — %)
=1im ((x, — p, | v}, + 1) — (40) "' (Ip, — @,1> + 2(p, — Gy, | G, — @) + [[9,, — a,[*))
T ({0 — Py | Vi, + 12 — (40) b, — G, ). (9.94)

On the other hand, we deduce from (9.75), (9.52), (9.74), (9.76), Assumption 9.9[b], the
Cauchy-Schwarz inequality, Problem 9.1[e], and (9.90) that, for every n € N,

(0 — P [ V5 +13) = (4) 7 Iy, — @, )I°
= (%n = Py | EnXn = Enpy) + (0 — Py, [ 1) = (40) 7D, — G, I

= Z <$i,n — Qin | Ei,nxi,n - E@',nai,n> + Z <yk‘,n - bk,n | Fk,nyk,n - Fk,nbk,n>
el keK

+ Z <Zk,n - dk,n ‘ Gk,nzk,n - Gk,ndk,n> + Z U];Z)k(n)nvlz,n - ez,nH2
keK keK

+ (@ — an | Ran, — Ray,) — (40[)71”')71 - anHQ
> (x +0)|#n — anl + olly, — bal® + ol zn — dn?

+¢l|vy, — eZHQ = [len — anl| [Ray — Ray || — (404)7al71 - anH2
> (x +0)|#n — anl* + olly, — bal® + ol|zn — dn]?

+ellv;, — enll? = xllzn — anl® — (40) " |lp, — @, 12

= (0~ (40) ™) (2 — @nll? + ly — ball® + 20 — dal?) + oy — €% (9.95)
Hence, since o > 1/(4«) by (9.45), taking the limit superior in (9.95) and invoking (9.94) yield
T, —ap, —0, y,—b,—0, z,—d, —0, and v, — e, — 0, (9.96)

which establishes (iii). In turn, (9.52) and (9.77) force
X, — P, =0 and |[E.,x, — E.p, || < k|xn —p,l| =0 (9.97)

and (9.85) thus yields p,, — q,, — 0. Further, we infer from (9.75), (9.96), and Problem 9.1[e]
that
I l” = [[Ran — Ray|” < x*[lan — 2,1 — 0. (9.98)
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Altogether, it follows from (9.75), (9.89), (9.97), and (9.98) that
ty = (t; — (v +r, +w)) + (Enxn — Exp,) + W(p, — Xp) + 15 — 0. (9.99)

Hence, Proposition 9.7(iv) guarantees that there exists x = (¥,¥y, z,v*) € zer 8 such that x,, —
x. This and (9.96) imply that, for every ¢ € I and every k € K, z;,, — T4, a;, — T;, and
Uk, — Uy Finally, Proposition 9.3(iii) asserts that (z,v") lies in the set of Kuhn-Tucker points
(9.23), that = solves (9.1), and that v* solves (9.2). 0O

Some infinite-dimensional applications require strong convergence of the iterates; see, e.g.,
[3,4]. This will be guaranteed by the following variant of Algorithm 9.12, which hinges on the
principle outlined in Proposition 9.8.

Algorithm 9.14 Consider the setting of Problem 9.1, define = as in (9.43), and suppose that
Assumption 9.9-9.11 is in force. Iterate

forn=0,1,...
for everyi € I,
l;n = Qixi,m(n) + Riilim(n) + ZkeK LZin,m(n);
Qi = T, oy As (Timsm) + Vi (n) (87 = U = Cilti ()5
a5 =%, ;i(n) (Tims(n) — Qi) — U + Qitin;
Eim = llain — T r )|l
foreveryie I\ I,
{ Qi = Qin-13 Q7 , = 7 15 Ein = Gin—1;
for every k € K,
Upe iy = Vhoon(n) — Bgyk,wk(nﬁ
W = Vkop(n) — D} 2, (n)>
b = Juk,wk(n)B;'Cn (ykMk(n) + B (n) (UZ,n - Bl?ykwc(n))); (9.100)
i = Juy oy D (o (n) + Vo () (WF = DE 2k ()
€ = Than(m) ( Xier DhiTiw,(n) = Yhwi(n) = Zhan(n) = Tk) Vg ()
G = g () Yo (m) = Obn) 0y + B — € 5
B = Ve () (Fhwnn) = Do) + Wh, + Didin — €
M = 10k, = Y112+ 1k = Zion () I
| ekn = Tk + bk + din — Y i Liiin;
forevery k € K \ K,
bk = bkn—15 Ak = diyn—15 €5 = €15 G = Ghn—13 thm = Uhn—13
| Mk = Men—15 €kn = Tk + bk + din — D ier Liiin;
foreveryi e I

x % . x % .
pi,n - ai,n + Rla” + ZkGK Lkiek,n’
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Ay, = —(404)_1 ( Eie[ Sin + Zk:eK nk,n) + Zie[ (Tin — @i | p;n>
+ D rek ((yk,n — b | q;:',n> + (20 — dien | tZ,n> + (ekn | 7)Z,n
if A, >0
Tn = 2ier IPEnll” + Xher (Hq,’;nHQ + ||t1>:;nH2 + llexnll);
S = Yier l1Tio — Tinl?
+ 2 ker (19m0 = Yrnll? + 1210 = 2nll® + [0 o — vF L I17);
Xn = Ziel (T30 — i | p;‘k,n>

(Kns An) = E(An, Tis Sns Xn);
foreveryi € I
[ Tint1 = (1 — Kp)Ti0 + KnZipn — AnD s
forevery k € K
Yent1 = (1 = Kn)Uko + Enlkn — Anlh s
Zkmt1 = (1 — Kp) 26,0 + BnZkn — )\ntzm;
i U,’;nﬂ =(1- K,n)’UZ’O + an,’;’n — A\n€kn;
else
foreveryi e I
[ Tin+1 = Timn;

forevery k € K

i [ Yen+1 = Ykens Rkn+l = Zkn; Uz,n—i—l = U;::,n'

- elt:,n)) 3

+ 2 ker (W0 = Yrn | G ) + (210 = 2in | 8 ) + (ewn | vE g — vE )5

Theorem 9.15 Consider the setting of Algorithm 9.14 and suppose that the dual problem (9.2)

has a solution. Then the following hold:

() Letic I. Then ), .y |Tint1 — Tin 2 < 4o0.

(i) Let k € K. Then Y, vkt — yknll® < 400, 3 pen 12kt — 2kim

ZnGN Hvl:,n-l—l - UZ,RHQ < +00.

|2 < +oo, and

(iii) Let i« € I and k € K. Then %y — @i — 0, Yo — bkn — 0, 2k — dpy — 0, and

* *
/Uk),n - ek’n _> 0.

(iv) There exist a solution T to (9.1) and a solution v* to (9.2) such that, for every i € I and

every k € K, i, — T, ajn — T;, and v}, — Ty. In addition, (Z,v*) is a Kuhn-Tucker

point of Problem 9.1 in the sense of (9.23).

Proof. Proceed as in the proof of Theorem 9.13 and use Proposition 9.8 instead of Proposi-

tion 9.7. O

9.2.4 Applications

In nonlinear analysis and optimization, problems with multiple variables occur in areas such as
game theory [2,15,56], evolution inclusions [3], traffic equilibrium [3,31], domain decomposi-
tion [4], machine learning [6,12], image recovery [13, 16], infimal-convolution regularization
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[23], statistics [26, 55], neural networks [27], and variational inequalities [31]. The numeri-
cal methods used in the above papers are limited to special cases of Problem 9.1 and they do
not perform block iterations and they operate in synchronous mode. The methods presented in
Theorems 9.13 and 9.15 provide a unified treatment of these problems as well as extensions,
within a considerably more flexible algorithmic framework. In this section, we illustrate this in
the context of variational inequalities and multivariate minimization. Below we present only
the applications of Theorem 9.13 as similar applications of Theorem 9.15 follow using similar
arguments.

9.2.4.1 Application to variational inequalities

The standard variational inequality problem associated with a closed convex subset D of a real
Hilbert space G and a maximally monotone operator B: G — G is to

find y € D suchthat (Vy € D) (y—y | By) <0. (9.101)

Classical methods require the ability to project onto D and specific assumptions on B such
as cocoercivity, Lipschitz continuity, or the ability to compute the resolvent [9, 30, 53]. Let us
consider a refined version of (9.101) in which B and D are decomposed into basic components,
and for which these classical methods are not applicable.

Problem 9.16 Let I be a nonempty finite set and let (#;);c; and G be real Hilbert spaces.
For every i € I, let E; and F; be closed convex subsets of #H; such that F; N F; # & and let
Li: H; — G be linear and bounded. In addition, let B™: G — 29 be at most single-valued
and maximally monotone, let B°: G — G be cocoercive with constant 3¢ € |0, +oc[, and let
BY: G — G be Lipschitzian with constant 3¢ € [0, +-co[. The objective is to

find € Y Li(E;NF,) such that <vy €Y Li(E;N E-)) (y—y | B™y+ By + B'y) <.
el el
(9.102)

To motivate our analysis, let us consider an illustration of (9.102).

Example 9.17 Let I be a nonempty finite set and let (Z;);c; and K be real Hilbert spaces. For
every i € I, let S; C Z; be closed and convex, and let M;: Z; — K be linear and bounded.
In addition, let f € I'y(K) be Gateaux differentiable on dom df, let ¢: £ — R be convex and
differentiable with a Lipschitzian gradient, let } be a real Hilbert space, let g € I'y(V) be such
that ¢g* is Gateaux differentiable on dom d¢g*, let D be a closed convex subset of V such that

0 € sri(D —domg™), (9.103)

let h € T'g(V) be strongly convex, and let L:  — V be linear and bounded. Note that, by
[9, Theorem 18.15], h* is differentiable on V and Vh* is cocoercive. The objective is to solve
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the Kuhn-Tucker problem

find (z,7") € K& V such that

0 \% 0 T v 0 T 0 L*| |z N, 0 T
d ! ’ T+ e 1, 9.104)
0 0 Vg*| |v* 0 Vh*| |v* —-L 0] [v* 0 Np| |v*
| —
monotone cocoercive Lipschitzian normal cone
where it is assumed that
C= ZMi(Si) is closed and 0 € sri(C' — dom f). (9.105)
iel

Since dom h* = V, we deduce from (9.103) and [9, Proposition 15.7(i)] that gOhOop €
Iy (V). It follows from standard convex calculus [9] that a solution (Z,7*) to (9.104) provides
a solution 7 to

mirzliergize f(@)+ (9OhOop)(Lz) + ¢(x), (9.106)

as well as a solution 7* to the associated Fenchel-Rockafellar dual
minimize ((f + )" Dac) (—L*v*) + g"(v*) + h*(v"). (9.107)

v*eD

To see that (9.104)—(9.105) is a special case of Problem 9.16, set G = £ &V and

(Vl S I) Li:H;, =2,V —G: (ZZ',U*) — (Mizi,v*/cardl), E;,=8S;xD, and F;, = Z; x V.
(9.108)
Note that
CxD=> L(ENF). (9.109)
i€l
Further, in view of [9, Proposition 17.31(i)], let us define
(B™:. G — 29
Vf(x),Vg*(v*)), if (z,v*) € domdf x domdg*;
(0.07) o0 00 @ 7)o 7) = { T EFTI W) () € domofxdomdy
a, otherwise
B°:G = G: (x,0") = (Ve(z), VI*(v*))
B:G = G: (z,v*") — (L*v*, —Lx).

(9.110)
Then B™ is maximally monotone [9, Theorem 20.25], B? is cocoercive [9, Corollary 18.17],
and B’ is a skew bounded linear operator, hence monotone and Lipschitzian [9, Exam-
ple 20.35]. In turn, combining (9.108) and (9.110), we conclude that (9.104) can be written
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as
find (Z,7") € K&V such that (0,0) € B™(Z,7*)+B*(Z,7")+ B (Z,7°)+ Noxp(Z,7) (9.111)

which, in the light of (9.109), fits the format of (9.102). Special cases of (9.106) involving
minimization over Minkowski sum of sets are found in areas such as signal and image pro-
cessing [5,28,41], location and network problems [40], as well as robotics and computational
mechanics [54].

We are going to reformulate Problem 9.16 as a realization of Problem 9.1 and solve it
via a block-iterative method derived from Algorithm 9.12. In addition, our approach employs
the individual projection operators onto the sets (E;);c; and (F;);cs, and the resolvents of the
operator B . We are not aware of any method which features such flexibility. For instance,
consider the special case discussed in [31, Section 4], where G = RN, B* = B =0, T: RN —
RM is a linear operator, and, for every i € I, H; = RY, L; = Id, E; = T~'({d;}) for some
d; € RM, and F; = [0, +oo[N . There, the evaluations of all the projectors (projp. . )icr are
required at every iteration. Note that there are no closed-form expressions for (projp. . )icr in
general.

Corollary 9.18 Consider the setting of Problem 9.16. Let o € ]1/(48°¢),+oc|, € €
10, min{1,1/(8 + o)}, and K = I U {k}, where k ¢ I. Suppose that Assumption 9.10 is in
force, together with the following:

[a] Foreveryic I andevery n € N, {in, ltin,Vin} C [e,1/0] and 0; 5, € [g,1/€].

[b] Foreveryn € N, A, € [e,2 —¢], pig,, € [e,1/(B¢ + )], Vin € le,1/0], and o7, € [e,1/e].

[c] For every i € 1, {IL’Z'7(), Yi,05 2i,0, ’U;:O} C H;; {yﬁo, ZE,O’ U%,O} Cq.
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Iterate

forn=0,1,...

foreveryi € I,

G =i, + L:U%,n;

i = PrOj g, (Tin — Yinli,);
aly = Vi Tin — ain) — 1,5
| S = llain — zinll?;

foreveryie I\ I,
Qi = Qin—15 Q7 = 07 15 Ein = Sim—1;
fbr every k € K,
ifkel
bk = PrOj s, (Ykin + MoV )
€hn = Okn(Thn — Ykn — 2kn) + Vg o3
Qo = M;Z,ln(yk,n — bn) TV, — €
| €k = bk — Qs
ifk=k
uzn = v;;’n — nykm; (9.112)
Ok = g B (Yeom + ke (W, — B Ykn));
€hm = On( Yier LiTin — Yk — Zkn) + Vk
qzn==M;2Qmm**bmn)**uzn*%fﬁbhn**eﬁm
| Ckn = bk,n - Zie] Liai,m
Zm = Vk_Tllen + v,’;,n — ezvn;
L e = [0k — Yknll® + 250l
forevery k € K\ K,

bk,n = bkvnfl; ez,n = ez,n—l; ql:,n = qz,n—l; Z,n = tz,n—l; Mk, = Mk,n—13
ifkel

L Cikn = bk:,n — Qk.n;
ifk=k
{ ek = bkn — D ier LiGins

foreveryi el

x % * * %,
| Pin = Gip T Cip T L; S
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Ay =—AB°) N ( Cicr im + ke Mhn) + 2ics (Tin — aim | Pf,)
+ ZkeK (<yk,n - bk,n | q};,n) + <Zk,n ‘ t;;n> + <€k,n | UZJL - 627n>);
if A, >0

an = AnAn/(ZzeI przn
foreveryiel

2+ Yker (1,7 + 16 1% + llexnl?))s

{ Tin+1 = Lign — Onpj

forevery k € K

L Yknt1 = Yk — Ol ni 2kt = Zkn — Onth i Vg1 = Vg — On€ion;
else

foreveryie I

L Tin+1 = Tin;
forevery k € K

— . — . * — ¥
{ Yen+1 = Ykns Zkn+l = Zkns Vg pi1 = Vg

Furthermore, suppose that (9.102) has a solution and that
(ViEI) NEiﬁFi:NEi+NFi~ (9.113)

Then there exists (T;)ie; € @, Hi such that ), L;z; solves (9.102) and, for every i € I,
Tin — T and Qjn — Tj-

Proof. Set H = @, H;. Let us consider the problem

find & € H such that (Vi € I) 0 € Ng,T; + NpT; + L} (B™ + B° + BY) <ZL]':E]'> (9.114)
Jel

together with the associated dual problem

(Viel) —z; — Liv* € Ng,x; and T} € Npa;

find (z*,7") € H&G such that (x € H)
7" = (B™ + B® + Bf)(zjel Ljz;).

(9.115)
Denote by &2 and % the sets of solutions to (9.114) and (9.115), respectively. We observe that

the primal-dual problem (9.114)-(9.115) is a special case of Problem 9.1 with

(VZ S I) A = NEl., Ci=Q;,=0, R;=0, and s = 0, (9.116)

)
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and

Gy = Hk, B* =Np,, Bf =BL =0 if keI
A — — t _ npt
G;=G, B"=B™, B°=B°, Bf=B

D ={0}"%, Df =D =0, r,=0

(Vk € K) (9.117)
Id, if k=j;
(Vjel) Lyy=10, if kel and k # j;
L;, if k=k.
\

Further, we have

(Vie I)(Vn € N) J,, 4, = Projg,
projp, if ke, (9.118)

Jl’“k,an7 lf k: = k

Therefore, (9.112) is a realization of Algorithm 9.12 in the context of (9.114)-(9.115). Now
define D = X, (E;NF)and L: H — G: x> ), c; Liz;. Then L*: G — H: y* = (Liy")icr-
Hence, by (9.102), [9, Proposition 16.9], and (9.113),

(Vg € G) 7 solves (9.102)

y=Lz
& (3T eH)
(Vi€ I) 0 € Ng,nrTi+ Li(B™ + B + B) (Y c; LiT;)
7=Lz
& (3T eH)
(Vi € I) 0 € Ng,Ti + NpZi + Li(B™ 4+ B® + BY) (Y ;1 LiT;)
& @3z e P) y=Lz. (9.119)

In turn, & # @& since (9.102) has a solution. Therefore, in view of (9.117), Proposi-
tion 9.3(v)[d] yields & # @. As a result, Theorem 9.13(iv) asserts that there exists (Z;);c; € &
such that, for every i € I, x;, — 7; and a;, — T;. Finally, using (9.119), we conclude that
> icr LiT; solves (9.102). O
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Remark 9.19 Theorem 9.13 allows us to tackle other types of variational inequalities. For in-
stance, let (#;);c7 be a finite family of real Hilbert spaces and set H = @p,.; H;. For every i € I,
let p; € T'o(H;) and let R;: # — H; be such that Problem 9.1[e] holds. The objective is to

find © € H such that (Vi € I) 0 € 0p;(7;) + Ri@. (9.120)

This simple instantiation of Problem 9.1 shows up in neural networks [27] and in game theory
[2,15]. Thanks to Theorem 9.13, it can be solved using an asynchronous block-iterative strategy,
which is not possible with current splitting techniques such as those of [25,34].

9.2.4.2 Application to multivariate minimization

We consider a composite multivariate minimization problem involving various types of convex
functions and combinations between them.

Problem 9.20 Let (#;);c; and (Gi)rex be finite families of real Hilbert spaces, and set H =
@P,c;Hiand G = P, G- For every i € I and every k € K, let f; € To(H;), let oy € ]0, 4-00],
let ;: H; — R be convex and differentiable with a (1/«;)-Lipschitzian gradient, let g, € I'g(Gx),
let hy, € To(Gr), let B € |0, +o0[, let ¥ : G — R be convex and differentiable with a (1/5y)-
Lipschitzian gradient, and suppose that Ly;: ‘H; — Gy is linear and bounded. In addition, let
X € [0,+oc] and let ©: H — R be convex and differentiable with a x-Lipschitzian gradient.
The objective is to

minimize O(x) + > (fi(z:) + @i(zi)) + > ((gr + ) D) (Z ijxj> . (9.121)

cH
* iel keK jel

Special cases of Problem 9.20 are found in various contexts, e.g., [13,16,23,25,33,34]. For-
mulation (9.121) brings together these disparate problems and the following algorithm makes
it possible to solve them in an asynchronous block-iterative fashion in full generality.

Algorithm 9.21 Consider the setting of Problem 9.20 and suppose that Assumption 9.10-9.11
is in force. Set a = min{ay, Bk }icr kek, let o € ]1/(4a), +o0[, and let € € |0, min{1,1/(x + o)}[.
Foreveryi € I, every k € K,and everyn € N,letv; , € [e,1/(x + o)}, let {ppn, vk n} C [e,1/0],
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let o, , € [e,1/¢], and let \,, € [e,2 — ¢]. In addition, let g € H and {y,, 20, vj} C G. Iterate

forn=0,1,...
for everyi € I,
lin = ViO(@r,(n) + 2ker LiiVi ryn);
@i = PrOX, o (Tim(n) = Vimi(n) (i + Vil Tim,(m)));

* — - I L
ai7n - ’}/’L,Tl'i(n) ("Bi,ﬂi(n) az,n) li,nv

Ein = lain — @iz 1%
foreveryi e I \ I,
L Qi = Qip—1; A7 = ;15 Ein = Cin—1;
for every k € K,
Dk = PIOX, (g Yk (n) + b o) (Vo ) = VW (m))) )5
din =Prox,, o n, (Zhwp(n) + Vkwrm) V)
Chm = Thwy(n) ( el Lkii o (n) = Ykwr(n) — Zkv"-’k(")) + vl:,wk(n);
qz’n = N];i,k (n) (yk,wk (n) — bk,n) + Uz,wk (n) — ez,nQ
b = Vk_,tldk(n)(zk’”k(") = dipn) + UZ,wk(n) = Gk’
M = 10k.n = Yk I* + 1k = 2k () 1%
L ek = b + din — Y icr Lkitin;
forevery k € K \ K,
bk = bkn—1; den = =15 €y = €15 Qo = Gorn—15 thn = Uhn—13 ©.122)
| Mk = Mhn—15 €k = Okn + din — D e Lii@ting
foreveryi € I
| Pin = i+ ViO(an) + ek LiiChoni
Ay = _(4()‘)_1 ( Zie[ Ein + ZkeK nk,n) + ZiGI (xi,n — Q4n | pzn>

+ 2 ker (W = Okn | €500 + (b — din [ E5,) + (ern | 05, — €b0))5

if A, >0
On = Anln/(Lier IPnll” + Xpere (16 ul1” + 1180117 + llewnl®));
foreveryi e I

L Tin+l = Tin — an;in;

forevery k € K

L \‘ Yen+1 = Yk — enqz7n§ Rkn+1 = Zkn — entzm U’:,n-i-l = 'U]:m - enek,m
else

foreveryi € I

L Tin+1 = Lin;

forevery k € K

*

. — . * —
\‘ Ykn+1 = Ykn; Zkn+l = Zkns Uk,n—H - Uk;,f
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Corollary 9.22 Consider the setting of Algorithm 9.21. Suppose that
(Vk € K) epi(gx + ) + epihy is closed (9.123)

and that Problem 9.20 admits a Kuhn-Tucker point, that is, there exist * € H and v* € G such
that
deK ng i € 8f1<331) + V‘PZ(%) +V; O(z)

Then there exists a solution @ to (9.121) such that, for every i € I, x; , — T; and a; , — T;.

(Vi € I)(Vk € K) { (9.124)

Proof. Set

Viel A,‘:ai, C; =V, and R, =V;06
{(l ) / v (9.125)

(Vk S K) B;;n = Jgy, Blg = Vi, and DZ” = Ohy.
First, [9, Theorem 20.25] asserts that the operators (A;);cr, (B} )kek, and (D}*)rex are max-
imally monotone. Second, it follows from [9, Corollary 18.17] that, for every i € I, C; is «y-

cocoercive and, for every k € K, B is B-cocoercive. Third, in view of (9.125) and [9, Propo-

sition 17.7], R = VO is monotone and y-Lipschitzian. Now consider the problem

find & € ‘H such that

(Viel) 0€ Ajz; + CiT; + Ry + Z Ly, <( BI* + By) DDm> (ZLkJ.I'])) (9.126)

keK Jjel

together with its dual

find * € G such that

Z L]z j € Ajx; + Cix; + R
JeEK

re((Br+By)oDR) <Zija:]

jel

(3@ € H)(Vi € I)(Vk € K) > (9.127)

Denote by &2 and Z the sets of solutions to (9.126) and (9.127), respectively. We observe
that, by (9.125) and [9, Example 23.3], Algorithm 9.21 is an application of Algorithm 9.12 to
the primal-dual problem (9.126)—(9.127). Furthermore, it results from (9.124) and Proposi-
tion 9.3(iv) that 2 # &. According to Theorem 9.13(iv), there exist T € & and v* € Z such
that, for every i € I and every k € K,

Z levj € A;z; + CiT; + Ri®

JEK

ve ((Br+By)oDR) (ZijxJ

jel

Tip — Tj, Qjp — Ty, and

)

) (9.128)
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It remains to show that = solves (9.121). Define

{f =@icr fis ¢=DBicr¥vi» 9= Drex 9 h=@prex b, and ¥ = DBy Vi

L:H—>G: x— (Zie[ Lkixi)keK'
(9.129)

We deduce from [9, Theorem 15.3] that (Vk € K) (g, + )" = g;@+}. In turn, (9.124) implies
that
(Vk € K) @ # dom (g;;0¢;) Ndom hj, = dom(gy + ¥5)* N dom hj. (9.130)

On the other hand, since the sets (epi(gx + ¥x) + epihg)rcx are convex, it follows from (9.123)
and [9, Theorem 3.34] that they are weakly closed. Therefore, [20, Theorem 1] and the
Fenchel-Moreau theorem [9, Theorem 13.37] imply that

(Vk € K)  ((gx +vn)" +hi)" = (g + ¥r) " B = (g5 + ¥) D (9.131)

Hence, we derive from (9.125), [9, Corollaries 16.48(iii) and 16.30], (9.131), and [9, Proposi-
tion 16.42] that

(Vke K) (B[*+Bg)OD}" =

—

agr, + Vwk) O (Ohy,)

= (@i +w) ™+ @) )
— (O(gr + vu)* + 0h%)

O((gk +vn)" + hk))

( gk +Yr)" + hk)
((gr +r) D hy). (9.132)

/N

—

I Il
Qv QO

Since it results from (9.129) and (9.131) that

(g+¥)0h=(g+v)Th =P ((g + ¥x) D), (9.133)
keK

we deduce from [9, Proposition 16.9] and (9.132) that

(g +v)ah) = X O((gr + vw)Dhe) = X ((Bi* + Bg)ODy). (9.134)
keK keK

It thus follows from (9.128) and (9.129) that v* € 9((g + 1) @h)(Lx). On the other hand,
since L*: G — H: v* — (3 pcx Li;vr)ier, we infer from (9.128), (9.125), (9.129), and [9,
Proposition 16.9] that —L*v* € (CiT;i)ie; + BT + X, AiTi = Ve(x) + VO(T) + 0f(T).
Hence, we invoke [9, Proposition 16.6(ii)] to obtain

0cdf(x)+ Ve(x)+ VO(Z) + L*'v*
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C Of (&) + Vo(T) + VO(T) + L* (a((g + ) 0h) (Li))

ca(f+<p+@+((g+¢)mh)oL)@). (9.135)
However, thanks to (9.129) and (9.133), (9.121) is equivalent to

minimize f(z)+ ¢(z)+O(z) + ((g +¢)2h)(Lz). (9.136)

reH

Consequently, in view of Fermat’s rule [9, Theorem 16.3], (9.135) implies that & solves (9.121).
O

Remark 9.23 In [16], multicomponent image recovery problems were approached by applying
the forward-backward and the Douglas—Rachford algorithms in a product space. Using Corol-
lary 9.22, we can now solve these problems with asynchronous block-iterative algorithms and
more sophisticated formulations. For instance, the standard total variation loss used in [16] can
be replaced by the pth order Huber total variation penalty of [33], which turns out to involve
an infimal convolution.

To conclude, we provide some scenarios in which condition (9.123) is satisfied.

Proposition 9.24 Consider the setting of Problem 9.20. Suppose that there exist x € H and
v* € G such that

— Y jex L3i0r € 0fi(i) + V(@) + V; 0()

- - N (9.137)
Yjer Lii®; € 0(gx D) (07) + Oy (v)

(VieI)(Vk € K) {

and that, for every k € K, one of the following is satisfied:
[a] O € sri(dom g} 4+ dom v} — dom h}).
[b] G is finite-dimensional, hy, is polyhedral, and dom hj Nridom(gi, + v¥)* # @.
[c] G is finite-dimensional, g, and hy are polyhedral, and ), = 0.

Then, for every k € K, epi(gx + ¥x) + epihy, is closed.

Proof. Let k € K. Since dom ¢, = G, [9, Theorem 15.3] yields
(gk + ¢r)* = g DU (9.138)
Therefore, (9.137) implies that
@ # dom (g @4y) Ndom Ay = dom(gy, + )" N dom hj. (9.139)

In view of (9.139), [20, Theorem 1], and [9, Theorem 3.34], it suffices to show that ((gr +
Vi) + hi)* = (gr + Yr) DR
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[a]: We deduce from [9, Proposition 12.6(ii)] and (9.138) that 0 € sri(dom(g;Bv;) —
dom h}) = sri(dom(gy, + ¢)* — dom h}). In turn, [9, Theorem 15.3] gives ((gx + vx)* + h})* =

(g + )™ DR
[b]: Since [48, Theorem 19.2] asserts that hj is polyhedral, we infer from [48, Theo-

rem 20.1] that ((gx + ¥%)* + hp)* = (gx + Yr)* OhL".
[c]: Since g; and hj are polyhedral by [48, Theorem 19.2], it follows from (9.139) and
[48, Theorem 20.1] that (g; + h})* = g;*@h;*. O

9.2.5 Appendix

In this section, K is a real Hilbert space.

Lemma 9.25 Let A: K — 2K be maximally monotone, let (,),cn be a bounded sequence in K,
and let (7, )nen be a bounded sequence in |0, +oo[. Then (J,, 4%n)nen is bounded.

Proof. Fix « € K. Using the triangle inequality, the nonexpansiveness of (.J.,4)nen, and [9,
Proposition 23.31(iii)], we obtain (Vn € N) ||J,, azn, — Jaz|| < [|Jy, a2n — Iy, 4| + || Ty, 40 —
Jaz|| < llwn — 2l + 1 =yl [[Jaz — 2| < |[z]] + suppen [[#mll + (1 + supen ym) | Jaz — zf|. O

Lemma 9.26 Let a € [0,+oc], let A: K — K be a-Lipschitzian, let o € ]0,+oc], and let v €
10,1/(a + 0)]. Then y~'1d — A is o-strongly monotone.

Proof. By Cauchy-Schwarz,

VzeK)(Vye k) (z—y| (v 'ld—A)z— (v '1d— A)y)
=77z —yl* = (z -y | Az — Ay)
> (ot o)llz —yl? - |z — yll || Az — Ay]|
> (a+0)|z—yl® —alz—y|?
= ollz — y*, (9.140)

which proves the assertion. 0O

Lemma 9.27 Let I be a nonempty finite set, let (I,,),en be nonempty subsets of I, let P € N, and
let (zn)nen be a sequence in K. Suppose that 3, . |lznt1 — an||* < 400, Iy = I, and (Vn € N)
U?;f I; = I. Furthermore, let T' € N, let i € I, and let (m;(n))ncn be a sequence in N such that
(Vn € N)n—T < m(n) < n. For every n € N, set 9;(n) = max{j e N|j<nandiecI;} and

192(71) = 7T1<191(7”L)) Then mﬁl(n) —x, — 0.

Proof. For every integer n > P, sincei € Jj_,,_p I;, wehaven < 9;(n)+P < m; (9i(n))+P+T =

Yi(n) + P + T. Hence ¥;(n) — +oc and therefore Z?;(g_);;l)’%T

results from our assumption that (Vn € N) 9;(n) = 7;(¥;(n)) < 9;(n) < n. We thus deduce from

|zj+1 — x> — 0. However, it
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the triangle and Cauchy-Schwarz inequalities that

9i(n)+P+T 2 9i(n)+P+T
lzn =g, > < | D lejm—all| <S@+T+1) > [ —z)* = 0. (9.141)
j=9:(n) j=9;(n)

Consequently, xy,(,) — , — 0. O

Lemma 9.28 ([22]) Let Z be a nonempty closed convex subset of K, zy € K, and ¢ € |0, 1].
Suppose that

forn=0,1,...

tt € Kandn, € Rsatisfy Z C H, :{xelC\(x|t,’;><?7n};

Ap = <xn‘tz>_nn§

ifA, >0 142
An € [6,2 —¢]; (9.142)
Tni1 = T — MaDn/[[E5 %) 6

else

\‘ Tn4+1 = Tp-

Then the following hold:
(i) (Vze 2)(Vn eN) ||zps1 — 2| < |lan — 2]
() Y, en 1Tns1 — o < 4o0.

(iii) Suppose that, for every x € K and every strictly increasing sequence (ky)nen in N, zg, — =
= x € Z. Then (x,,)nen converges weakly to a point in Z.

We now revisit ideas found in [8,21] in a format that is be more suited for our purposes.
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Lemma 9.29 Let Z be a nonempty closed convex subset of K and let zy € K. Suppose that

forn=0,1,...
th e Kandn, € Rsatisfy Z C Hy, = {z € K| (& | t}) < };
Ay = (Tn [ 1) — s
ifA, >0
Tn = ||t2||25 Sn = [|mo — $n||2; Xn = (To — Tn | 1))} Pn = TnSn — X%?
i pn=0
L Fn =1; Ay = An/Ta;
else (9.143)
if xnQn = pn
{ fn =0; Ay = (A + Xn) /Tns
else
L kn =1— XnAn/pm An = §nAn/pn§
| Zng1 = (1 = Kn)T0 + KnZp — Anty;
else

[ Tp+l = T

Then the following hold:
@ (Vn €N) [lan — zo| < lzn1 — zoll < |lProjzzo — ol
(D) Y ,en 11 — 2nl|* < oo and Y-,y [IPrOj g, T — @al|? < +oc.
(iii) Suppose that, for every x € K and every strictly increasing sequence (ky)nen in N, zg, — =

= x € Z. Then x,, — proj .

Proof. Define (Vn € N) G,, = {z € K | (x — 2y, | o — x,) < 0}. Then, by virtue of (9.143),
(Vn € N) x, =projg 7o and [A, >0 = projy z, =z, — (Ay/[It5]*) t5]. (9.144)
Let us establish that
(V\neN) ZCH,NG, and z,.1=Pprojy ~q,Zo- (9.145)

Since Gy = K, (9.143) yields Z C Hy = Hy N Gy. Hence, we derive from (9.144) and (9.143)
that Ag > 0 = [projy,zo = zo — (Ao/70) 1y and po = 0] = [projy, zo = w0 — (Ao/70) g, Ko = 1,
and \o = Ag/70] = 1 = w0 — (Ao/70) 1§ = Projy, o = Projy,ng,ro- On the other hand,
Ao < 0= 21 =29 € Hy = Hyo N Go = x1 = Projy g, 0. Now assume that, for some integer
n>1,ZC Hy1NGy1 and z, = projy g, _,%o- Then, according to [9, Theorem 3.16],
Z C Hp1NGproy C {zeK | (-, | 20— 2n) <0} = Gp. In turn, (9.143) entails that
Z C Hy, N G,. Next, it follows from (9.143), (9.144), and [9, Proposition 29.5] that A, < 0
= [Tny1 = z, and projg, vo = @, € H,| = Tn41 = Projg, ro = Projy, ng, vo. To complete
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the induction argument, it remains to verify that A, > 0 = x,,41 = projy -, zo. Assume that
A, > 0 and set

Yn = PrOjg, Tns  Xn = (T0o — Tn | Tn —Yn)s Un = ||2pn — ynsz and  pp = Gl — SCVZ
(9.146)
Since A, > 0, we have H, = {z €K | (x —yn | n — yn) <0} and y,, = z, — O,t;, where
0, = A, /1, > 0. In turn, we infer from (9.146) and (9.143) that

Xn = OnXn, Up=0%1,=6,A,, and p,=0p,. (9.147)

Furthermore, (9.143) and the Cauchy-Schwarz inequality ensure that p,, > 0, which leads to
two cases.

* p, = 0: On the one hand, (9.143) asserts that z,,+1 = z, — (A, /7) t = yn. On the other
hand, (9.147) yields p,, = 0 and, therefore, since H, N G,, # &, [9, Corollary 29.25(ii)]
yields projy ~q, o = yn. Altogether, 2,1 = projy ~q. Zo-

* p, > 0: By (9.147), p, > 0. First, suppose that x,A, > p,. It follows from (9.143) that
Tni1 = 20 — ((Ap + xn) /)t and from (9.147) that X0, = 02xnAn = 62p, = py. Thus
[9, Corollary 29.25(ii)] and (9.147) imply that

PrOjgz. . @0 = To + (1 ; ’f) (v — )

Xn «
=x9— (1 Ot
o ( + QnTn) o

enTn + Xn 4
v tn

n
— 20— Ay, + Xn #
- n
Tn

Now suppose that y,A, < p,. Then Y,v, < p, and hence it results from [9, Corol-
lary 29.25(ii)], (9.147), and (9.143) that

. Up [~
PrOJy, NG, To = Tn + = (Xn(l’o —Tn) + Sn(Yn — xn))

Pn
= Xt o + <1 — Xﬁyn>xn + 25y, — )
_ Xnln Zo + (1 . XnAn>xn o Tngnﬁt;
Pn Pn Pn Tn
= Tnpi. (9.149)
(): Let n € N. We derive from (9.145) that ||z, 11 —zol| = [[Projy, g, To — ol < ||projzzo—
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xol|. On the other hand, since z,,11 € G,, by virtue of (9.145), we have

|lzn — CCOHQ + | Tnt1 — xn”2 < lzn — x0||2 + | Tns1 — an2 +2(Tpy1 — Tn | T — T0)

= ||lzni1 — ol (9.150)

(ii): Let N € N. In view of (9.150) and (i), SN |zns1 — al> < 0o (|1Zns1 — 2ol? —
| —20l|?) = |z n+1— 20> < ||proj,zo—zol|?. Therefore, >, |Zn+1—2n||* < +00. However,
for every n € N, since (9.145) asserts that 2,11 € H,, we have |projy x, — o, | < ||zp41 — 20|
Thus Y, o IPrOj g, n — @ |* < +o0.

(iii): It results from (i) that (z,),en is bounded. Now let = € K, let (k,)nen be a strictly
increasing sequence in N, and suppose that x;, — z. Using [9, Lemma 2.42] and (i), we deduce
that ||z — xo|| < lim||zg, — xo|| < ||proj,zo — xo||. Thus, since it results from our assumption
that z € Z, we have = = proj,z(, which implies that z,, — proj,zo [9, Lemma 2.46]. In turn,
since lim ||z, — o|| < ||projzo — ol by (i), [9, Lemma 2.51(i)] forces x,, — proj,xo. O
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o 1 )

CONCLUSION

10.1 Summary

We have addressed the important open questions (Q1)-(Q8) discussed in Chapter 1. In doing

so, we have developed novel nonlinear analysis tools and methodologies to advance the field

of monotone operator theory and its applications. More precisely:

We have introduced the notion of a warped resolvent and developed a warped resolvent
algorithmic framework for monotone inclusions. This framework brought together two
seemingly different approaches: That of [4, 7, 9], which is based on Tseng’s forward-
backward-forward method [14], and that of [1,10-12], which is based on the projective
splitting framework.

We have developed Bregman forward-backward algorithm for solving monotone inclu-
sions in Banach spaces, as well as establishing its convergence.

A saddle formalism was proposed for analyzing and solving highly structured system of
monotone inclusions.

Flexible algorithms for solving highly modular Nash equilibria, variational inequalities,
and network flows were presented.

We have shed more light on the implementation, the features, and the behavior of block-
activated algorithms for solving multicomponent fully nonsmooth minimization.

10.2 Future work

Direction 10.1 While we have only emphasized the cutting plane methods in Section 3.2.4,

we illustrated in [5, Section 3] that the proximal algorithm

(Yn €N) @1 = JL 5w, (10.1)
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based on direct applications of warped resolvents is of interest. In general, however, they do not
conform to the format of (3.23), where the update equation is (we set \,, = 1 for simplicity)

Tpy1 = Projy xn, where H, = {z eH ‘ <z - JfL’M&En | Koy — KnJVKn%'aE@ <0;.
(10.2)
These two approaches can be brought together as instantiations of the more general update

Tpg1 = projg’;xn, where H,, = {z ceH ‘ (z — Jffhin | KnZn — KnJWIi’;wiﬁ < 0} ,

(10.3)
which involves the warped projector of Example 3.5 with respect to an operator @Q,,: H — H.
If Q, = K,, and ', = x,,, then (10.3) yields (10.1). On the other hand, if Q,, = Id, then (10.3)
yields (10.2). Note also that if, Q,, = K,, = Vf,,, for some Legendre function f,,, and z,, = x,,
then (10.3) gives the framework of [8]. Beyond this, replacing the standard projection proj, z,
by a warped projection projg’; x, in Theorems 3.16 and 3.22 opens a vast field for algorithmic
development.

Direction 10.2 In Theorems 3.16 and 3.22, the algorithms operate by using a single point
(Yn,yy,) in gra M at iteration n. It may be advantageous to use a finite family (yin,y;,, )ier, of
points in gra M, say

. * Kzn ~ — ~
(Vi € L) (ims0in) = (T aTins Vit (KinTin — Kiyin) ). (10.4)

By monotonicity of M, (Vi € I,)(Vz € zer M) (2| y;,,) < (Yin | y;,). Therefore, using ideas
found in the area of convex feasibility algorithms [6, 13], at every iteration n, given strictly
positive weights (w; ,,)icr,, adding up to 1, we average these inequalities to create a new half-
space H,, containing zer M, namely

*

Yp = Zie[n wl,nyi,n

zetr M C Hy={z€ X |(z|y;) <nn}, where (10.5)
T = Zie[n wi,n<yi,n ‘ y;‘k,n>'
Now set
diel, Win(Yin — Tn | Yin)
e e, wWin{@n — Yim | ) > 0;
Ap = | Y ier, @in¥in|l (10.6)

0, otherwise.

Then, employing projy, on = o5 +An D _ic; winy;, as the point z,,4; in (3.23) and as the point
Tpy1/2 in (3.38) results in multi-point extensions of Theorems 3.16 and 3.22.

Direction 10.3 The Yosida approximation plays an important role in monotone operator theory
(see, e.g., [2,3,7]). As the warped resolvents can be much easier to compute than the standard
ones, an interesting question is therefore to seek an extension of the Yosida approximation
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based on the warped resolvents, and analyze its properties.

Direction 10.4 We have proposed a full solution for the Bregman forward-backward splitting
algorithm. It remains an open question what the Bregman version of the Douglas—Rachford
algorithm is. This topic could be pursued by using tools from Chapters 3 and 4.

Raleigh, September 13, 2021
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