
ABSTRACT

BÙI, MINH NHỰT. The Warped Resolvent of a Set-Valued Operator: Theory and Applications.
(Under the direction of Patrick L. Combettes.)

This dissertation develops novel nonlinear analysis tools and methodologies to advance

the field of monotone operator theory and its applications. First, we show that the Douglas–

Rachford algorithm and Spingarn’s method of partial inverses can fail to converge strongly. Sec-

ond, we introduce the notion of a warped resolvent as an extension of the classical resolvent,

study its properties, and propose weakly and strongly convergent warped proximal iteration

principles. This framework unifies and extends several so-far unrelated ones, such as projec-

tive splitting and Tseng’s forward-backward-forward method. In addition, the warped resolvent

framework is shown to be an effective device to produce new and flexible splitting methods

for complex monotone inclusion problems. Next, we introduce a Bregman forward-backward

method for solving monotone inclusions, establish its weak convergence, and show that it cap-

tures and extends several iterative methods. Another contribution is to propose a new saddle

presentation to study and solve highly structured systems of monotone inclusions. This leads

to highly flexible asynchronous block-iterative algorithms. Applications of warped resolvents

in the context of variational inequalities, convex optimization, Nash equilibrium, and network

flows are discussed. Finally, we analyze the merits and performance of block-activated algo-

rithms for solving multicomponent fully nonsmooth minimization problems with applications

to machine learning and image recovery.
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NOTATION AND DEFINITIONS

The following notation is used throughout this dissertation.

General notation

• H, Hi, G, Gk, K, Ki: Real Hilbert spaces.

• 〈 · | · 〉: Scalar product of a real Hilbert space.

• ‖·‖: Norm.

•
⊕

i∈I Hi: Hilbert direct sum of a family (Hi)i∈I of real Hilbert spaces, that is,

⊕
i∈I
Hi =

{
x = (xi)i∈I ∈×

i∈I
Hi

∣∣∣∣∣ ∑
i∈I
‖xi‖2i < +∞

}

equipped with the scalar product (x,y) 7→
∑

i∈I 〈xi | yi〉i.

• Id: Identity operator.

• 2H: Power set of H.

• L∗: Adjoint of a bounded linear operator L : H → G.

• →: Strong convergence.

• ⇀: Weak convergence.

• ‖L‖ = sup
{
‖Lx‖ | x ∈ H, ‖x‖ 6 1

}
: Norm of a bounded linear operator L : H → G.

Notation and definitions relative to a function f : H → [−∞,+∞]

• dom f =
{
x ∈ H | f(x) < +∞

}
: Domain of f .

• epi f =
{

(x, ξ) ∈ H × R | f(x) 6 ξ
}

: Epigraph of f .

• f is proper if −∞ /∈ f(H) and dom f 6= ∅.

• Suppose that f is proper. Then Argmin f =
{
x ∈ H | f(x) = inf f(H)

}
is the set of mini-

mizers of f over H.

• f is convex if epi f is a convex subset of H⊕ R.

• f is lower semicontinuous if epi f is a closed subset of H⊕ R.

• Γ0(H): Set of proper lower semicontinuous convex functions from H to ]−∞,+∞].

• Let (Hi)i∈I be a finite family of real Hilbert spaces and, for every i ∈ I, let fi : Hi →
]−∞,+∞]. Then ⊕

i∈I
fi :

⊕
i∈I
Hi → ]−∞,+∞] : (xi)i∈I 7→

∑
i∈I

fi(xi). (1)

• f∗ : H → [−∞,+∞] : x∗ 7→ supx∈H(〈x | x∗〉 − f(x)): Conjugate of f .
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• Suppose that f is proper. Then

∂f : H → 2H : x 7→
{
x∗ ∈ H | (∀y ∈ H) 〈y − x | x∗〉+ f(x) 6 f(y)

}
(2)

is the subdifferential of f .

• Suppose that f ∈ Γ0(H). Then, for every x ∈ H, proxfx denotes the unique minimizer of

the function f+(1/2)‖·−x‖2. The proximity operator of f is proxf : H → H : x 7→ proxfx.

Notation and definitions relative to a subset C of H

• ιC : Indicator function of C, that is,

ιC : H → [0,+∞] : x 7→

0, if x ∈ C;

+∞, if x 6∈ C.
(3)

• intC: Interior of C.

• C: Closure of C.

• sriC: Strong relative interior of C, that is,

sriC =

x ∈ C
∣∣∣∣∣∣

⋃
λ∈]0,+∞[

λ(C − x) is a closed vector subspace of H

 . (4)

• riC: Relative interior of C, that is,

riC =

x ∈ C
∣∣∣∣∣∣

⋃
λ∈]0,+∞[

λ(C − x) is a vector subspace of H

 . (5)

• dC : H → [0,+∞] : x 7→ inf ‖C − x‖: Distance function to C.

• Suppose that C is nonempty, closed, and convex. Then projC = proxιC .

Notation and definitions relative to an operator T : H → H

• FixT =
{
x ∈ H | Tx = x

}
: Set of fixed points of T .

• T is cocoercive with constant β ∈ ]0,+∞[ if

(∀x ∈ H)(∀y ∈ H) 〈x− y | Tx− Ty〉 > β‖Tx− Ty‖2. (6)

• T is Lipschitzian with constant β ∈ [0,+∞[ if

(∀x ∈ H)(∀y ∈ H) ‖Tx− Ty‖ 6 β‖x− y‖. (7)

ix



• T is nonexpansive if it is Lipschitzian with constant 1.

Notation and definitions relative to a set-valued operator M : H → 2H

• domM =
{
x ∈ H |Mx 6= ∅

}
: Domain of M .

• ranM =
⋃
x∈HMx: Range of M .

• zerM =
{
x ∈ H | 0 ∈Mx

}
: Set of zeros of M .

• graM =
{

(x, x∗) ∈ H ×H | x∗ ∈Mx
}

: Graph of M .

• M−1: Inverse of M , that is,

M−1 : H → 2H : x∗ 7→
{
x ∈ H | x∗ ∈Mx

}
. (8)

• JM = (Id +M)−1: Resolvent of M .

• M is monotone if

(
∀(x, x∗) ∈ graM

)(
∀(y, y∗) ∈ graM

)
〈x− y | x∗ − y∗〉 > 0. (9)

• M is maximally monotone if M is monotone and, for every monotone operator M̃ : H →
2H, graM ⊂ gra M̃ ⇒M = M̃ .
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Chapter 1
INTRODUCTION

1.1 Overview

Throughout this chapter, H and G are real Hilbert spaces. A fundamental problem in nonlinear

analysis is the following.

Problem 1.1 Let M : H → 2H be monotone. The objective is to

find x ∈ H such that 0 ∈Mx. (1.1)

From a theoretical viewpoint, Problem 1.1 is a powerful modeling framework that captures

concrete scenarios in fields as diverse as partial differential equations [22, 25, 28, 29, 37, 83,

88, 92, 95, 118, 126], mechanics [84, 97], image recovery [1, 2, 10, 35, 49, 51, 58, 85, 89, 102],

game theory [6,17,34,52,66,91,125], evolution inclusions [5,7,23,24,98], integral equations

[26, 27], network flows [7, 74, 80, 115, 116], systems theory [46], domain decomposition [6,

8], machine learning [9, 30], optimal control [13], signal processing [11, 31, 56, 62, 66, 68],

optimization [14,55,71,72,93,111,112], matrix estimation [16,47], mean field games [36,78,

87], statistics [50,59,60,90,108,124], neural networks [65], variational inequalities [77,121],

tensor completion [82,99], location problem [100,103], and optimal transportation [104,105].

From a practical viewpoint, the most elementary method for solving Problem 1.1 in the case

where M is maximally monotone is the proximal point algorithm [28,113]

(∀n ∈ N) xn+1 = JγnMxn, where γn ∈ ]0,+∞[ and JγnM = (Id + γnM)−1. (1.2)

The implementation of this method may be hindered by the difficulty of evaluating the re-

solvents (JγnM )n∈N; for example, there is no closed-form expression for the resolvent of the

maximally monotone operator

H⊕H → 2H⊕H : (x, v∗) 7→
(
∂f(x) + v∗

)
× (−x+ ∂g∗(v∗)), (1.3)

1



which arises in Rockafellar’s saddle formalism [111,112] for the problem of minimizing f + g,

where f ∈ Γ0(H) and g ∈ Γ0(H). To circumvent this issue, it is often assumed that the operator

M in Problem 1.1 can be expressed as the sum of maximally monotone operators A : H → 2H

and B : H → 2H, where the resolvents (JγA)γ∈]0,+∞[ are easy to compute and B satisfies one

of the following: the resolvents (JγB)γ∈]0,+∞[ are easy to compute, B : H → H is cocoercive, or

B : H → H is Lipschitzian.

Problem 1.2 Let A : H → 2H and B : H → 2H be maximally monotone. The objective is to

find x ∈ H such that 0 ∈ Ax+Bx. (1.4)

The three fundamental algorithms for solving Problem 1.2 are:

• (Douglas–Rachford algorithm [96]) Let x0 ∈ H and γ ∈ ]0,+∞[. Iterate

for n = 0, 1, . . . xn = JγByn

zn = JγA(2xn − yn)

yn+1 = yn + zn − xn.

(1.5)

• (Forward-backward algorithm [97]) In Problem 1.2, suppose that B : H → H and that

B is β-cocoercive for some β ∈ ]0,+∞[. Let x0 ∈ H and γ ∈ ]0, 2β[. Iterate

for n = 0, 1, . . .⌊
yn = xn − γBxn
xn+1 = JγAyn.

(1.6)

• (Tseng’s forward-backward-forward algorithm [122]) In Problem 1.2, suppose that

B : H → H and that B is β-Lipschitzian for some β ∈ ]0,+∞[. Let x0 ∈ H, let ε ∈
]0, 1/(β + 1)[, and let (γn)n∈N be in [ε, (1− ε)/β]. Iterate

for n = 0, 1, . . .
yn = xn − γnBxn
pn = JγnAyn

qn = pn − γnBpn
xn+1 = xn − yn + qn.

(1.7)

Many complex splitting algorithms in the literature (e.g., [7, 21, 32, 53, 54, 56, 63, 69, 73, 81,

86, 94, 114, 119, 123] and the references therein) are reformulations of (1.5)–(1.7) in suitable

spaces. Let us illustrate this by considering the state-of-the-art model [54].

Example 1.3 Let (Hi)i∈I and (Gk)k∈K be finite families of real Hilbert spaces and let (µi)i∈I

and (νk)k∈K be in [0,+∞[. For every i ∈ I and every k ∈ K, let Ai : Hi → 2Hi and Bk : Gk → 2Gk

2



be maximally monotone, let Ci : Hi → Hi be monotone and µi-Lipschitzian, let Dk : Gk → 2Gk

be maximally monotone and such that D−1
k : Gk → Gk is νk-Lipschitzian, let zi ∈ Hi, let rk ∈ Gk,

and let Lki : Hi → Gk be linear and bounded. The objective is to solve the primal system of

monotone inclusions

find (xi)i∈I ∈
⊕
i∈I
Hi such that

(∀i ∈ I) zi ∈ Aixi +
∑
k∈K

L∗ki

(
(Bk �Dk)

(∑
j∈I

Lkjxj − rk
))

+ Cixi, (1.8)

together with the dual system

find (vk)k∈K ∈
⊕
k∈K
Gk such that

−rk ∈ −
∑
i∈I

Lki(Ai + Ci)
−1

(
zi −

∑
j∈K

L∗jivk

)
+B−1

k vk +D−1
k vk. (1.9)

By applying Tseng’s forward-backward-forward algorithm (1.7) to the primal-dual setting
H =

(⊕
i∈I Hi

)
⊕
(⊕

k∈K Gk
)

A : H→ 2H :
(
(xi)i∈I , (vk)k∈K

)
7→
(×i∈I(−zi +Aixi)

)
×
(×k∈K(rk +B−1

k vk)
)

B : H→H :
(
(xi)i∈I , (vk)k∈K

)
7→
((
Cixi +

∑
k∈K L

∗
kivk

)
i∈I ,

(
D−1
k vk −

∑
i∈I Lkixi

)
k∈K

)
,

(1.10)

we obtain the splitting scheme [54, Eq. (2.4)] for solving Problem 1.2. This method achieves full

splitting of Problem 1.2 in the sense that the set-valued operators (Ai)i∈I and (Bk)k∈K are ac-

tivated independently via backward resolvent steps and the single-valued operators (D−1
k )k∈K

and (Lki)i∈I,k∈K are activated via forward steps.

Another approach to monotone inclusions is the projective splitting framework, which was

first proposed in [70] for the monotone inclusion

find x ∈ RN such that 0 ∈ L∗
(
B(Lx)

)
, where

B : RP → 2R
P

is maximally monotone

L : RN → RP is linear,
(1.11)

in [75] for Problem 1.2, and then in [76] for the problem of finding a zero of a sum of maximally

monotone operators. These approaches were unified and extended in [3], where the special

case of (1.8) where, for every i ∈ I and every k ∈ K, Ci = 0 and D−1
k = 0, was considered, i.e.,

find (xi)i∈I ∈
⊕
i∈I
Hi such that (∀i ∈ I) zi ∈ Aixi +

∑
k∈K

L∗ki

(
Bk

(∑
j∈I

Lkjxj − rk
))

. (1.12)
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The state of the art in projective splitting is [57], which is the first method where (1.12) is

solved by an algorithm which has the ability to incorporate the result of calculations initiated

at earlier iterations, and requires to activate only a subgroup of operators at every iteration.

Despite the significant developments in the last decade, there remain many important open

questions in the area of monotone operator splitting. We list below the ones that will be ad-

dressed in this dissertation:

(Q1) The weak convergence of the sequence (xn)n∈N generated by (1.5) was established in

[120]. While various additional conditions on the operators A and B in Problem 1.2 have

been proposed to ensure the strong convergence of (xn)n∈N [14, 53, 96], it remains an

open question whether (xn)n∈N can fail to converge strongly in the general setting of

Problem 1.2.

(Q2) As mentioned above, the execution of (1.2) depends on the ease of evaluating

(JγnM )n∈N = ((Id + γnM)−1)n∈N, which is not the case in many situations. For exam-

ple, in [10, 14, 18–20, 33, 54, 57, 63, 69, 107, 123], M is a composite operator assembled

from several elementary blocks that can be linear operators and monotone operators and

there is no convenient way to express JγM in terms of these elementary blocks. A question

is therefore to seek an extension of the classical resolvent that can be tailored to the struc-

ture of M and is thus potentially easier to compute than the classical resolvent. Further,

can we explore a new path for solving Problem 1.1 with this new resolvent at the core of

our analysis?

(Q3) Several forward-backward methods based on Bregman distances have been proposed with

various assumptions [12,67,101,109] for solving some special cases of finding a zero of

the sum of two maximally monotone operators acting on a Banach space. Is there a Breg-

man forward-backward framework that unifies these algorithms and can solve problems

beyond their reach? The motivation for this is that standard splitting algorithms are not

applicable beyond Hilbert spaces. In addition, there has been a significant body of work

(see, e.g., [11,12,15,48,61,79,101,104,117]) showing the benefits of replacing standard

distances by Bregman distances, even in Euclidean spaces.

(Q4) What is the connection between the approach of [32, 54, 63] and the projective splitting

method of [3, 70, 75, 76]? Beyond the fact that they both rely on the Fejér monotonicity

principle, connections remain elusive.

(Q5) Splitting methods have been applied to solving Nash equilibrium under convexity as-

sumption, but with simple settings (see, e.g., [6,17,34,52,66,91,125] and the references

therein). Can we develop flexible splitting algorithms for more general Nash equilibrium

models?

(Q6) Rockafellar proposed in [116] a multicommodity network equilibrium model and studied

some of its properties. The pertinence of this model is demonstrated in [115, Chapter 8]

and [116], where it is shown to capture formulations arising in areas such as traffic

4



assignment, hydraulic networks, and price equilibrium. Thus far, the numerical aspect of

this model has not been considered. Can we develop an efficient algorithm for this model?

(Q7) There seem to be only two primary methods for solving multicomponent fully nonsmooth

minimization that are block-activated in the sense that they require to activate only a sub-

group of functions at each iteration [57, 64]. Nevertheless, little effort has been devoted

to assessing them. Can we shed more light on the implementation, the features, and the

behavior of these algorithms, compare their merits, and provide numerical experiments

illustrating their performance?

(Q8) Rockafellar’s saddle formalism plays a central role in analyzing and solving primal-dual

convex optimization problems [111, 112]. What is the extension of this notion to mono-

tone inclusions in duality in the sense of [106, 110]? This is motivated by the fact that

there are monotone inclusions arising in applications which involve non-subdifferential

operators (see, e.g., [7,55,66,77,92] and the references therein).

1.2 Contributions and organization

This dissertation, which produced the articles [38–45], provides answers to the open questions

(Q1)–(Q8). More precisely, the main contributions of this dissertation are the following:

• We answer (Q1) in Chapter 2 by providing counterexamples showing that the Douglas–

Rachford algorithm [96] and the method of partial inverses [119] can fail to converge

strongly.

• To address (Q2), we introduce in Chapter 3 the novel notion of a warped resolvent and in-

vestigate its properties. Moreover, we provide weak and strong warped proximal iteration

principles and establish their convergence in Theorems 3.16 and 3.22. In Section 3.2.5,

the warped proximal iterations are shown to capture [3, 4, 122] and to provide new and

flexible splitting algorithms for complex monotone inclusions.

• Chapter 4 is devoted to (Q3). There, a Bregman forward-backward splitting algorithm

for monotone inclusions in Banach spaces is introduced, and its weak convergence is

established. This scheme is shown to unifies [12,67,101,109]. We also establish rates of

convergence in the minimization setting.

• An answer to (Q4) is provided in Chapter 5, where we show that [57, Algorithm 12] can

be viewed as an instantiation of the warped proximal iterations of Theorem 3.16. Thus,

the frameworks of [3, 32, 54, 63, 70, 75, 76] are special cases of the warped resolvent

iterations.

• We address (Q5) in Chapter 6. We propose an asynchronous block-iterative algorithm

for solving a highly modular Nash equilibrium problem. Our methodology relies on the

warped resolvent algorithm of Theorem 3.16.

5



• Chapter 7 focuses on (Q6). We present a flexible decomposition method based on [57,

Algorithm 12] for solving the multicommodity network equilibrium model proposed by

Rockafellar in [116].

• To address (Q7), we devote Chapter 8 to assess the block-activated algorithms of [57,64].

Our numerical experiments are in the areas of machine learning and image recovery.

• In Chapter 9, we focus on (Q8). A saddle formulation for studying and solving highly

structured systems of monotone inclusions is proposed. Various applications are discussed,

and instantiations of the proposed framework in the context of variational inequalities and

minimization problems are presented.

• We conclude this dissertation in Chapter 10 with future research directions.
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[18] R. I. Boţ and E. R. Csetnek, ADMM for monotone operators: Convergence analysis and

rates, Adv. Comput. Math., vol. 45, pp. 327–359, 2019.
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[20] R. I. Boţ and C. Hendrich, A Douglas-Rachford type primal-dual method for solving

inclusions with mixtures of composite and parallel-sum type monotone operators, SIAM

J. Optim., vol. 23, pp. 2541–2565, 2013.
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Chapter 2
THE DOUGLAS–RACHFORD
ALGORITHM CONVERGES ONLY
WEAKLY

2.1 Introduction and context

We provide a complete answer to question (Q1) of Chapter 1 in Counterexample 2.2. In ad-

dition, Counterexample 2.4 shows that the method of partial inverses can fail to converge

strongly.

This chapter presents the following article:

M. N. Bùi and P. L. Combettes, The Douglas–Rachford algorithm converges only

weakly, SIAM Journal on Control and Optimization, vol. 58, no. 2, pp. 1118–

1120, 2020.

2.2 Article: The Douglas–Rachford algorithm converges only

weakly

Abstract. We show that the weak convergence of the Douglas–Rachford algorithm for finding

a zero of the sum of two maximally monotone operators cannot be improved to strong conver-

gence. Likewise, we show that strong convergence can fail for the method of partial inverses.

The original Douglas–Rachford splitting algorithm was designed to decompose positive sys-

tems of linear equations [3]. It evolved in [5] into a powerful method for finding a zero of

the sum of two maximally monotone operators in Hilbert spaces, a problem which is ubiqui-

tous in applied mathematics (see [1] for background on monotone operators). In this context,
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the Douglas–Rachford algorithm constitutes a prime decomposition method in areas such as

control, partial differential equations, optimization, statistics, variational inequalities, mechan-

ics, optimal transportation, machine learning, and signal processing. Its asymptotic behavior is

described next.

Theorem 2.1 Let H be a real Hilbert space, and let A and B be set-valued maximally monotone
operators from H to 2H with resolvents JA = (Id + A)−1 and JB = (Id + B)−1. Suppose that
zer(A+B) =

{
x ∈ H | 0 ∈ Ax+Bx

}
6= ∅, let y0 ∈ H, and iterate

(∀n ∈ N) xn = JByn and yn+1 = yn + JA(2xn − yn)− xn. (2.1)

Then the following hold for some (y, x) ∈ gra JB:

(i) x = JA(2x− y), yn ⇀ y, and x ∈ zer(A+B).

(ii) xn ⇀ x.

Property (i) was established in [5]. Let us note that, since JB is not weakly sequentially

continuous in general, the weak convergence of (yn)n∈N in (i) does not imply (ii). The latter

was first established in [7] (see also [1, Theorem 26.11(iii)] for an alternate proof). While

various additional conditions on A and B have been proposed to ensure the strong convergence

of the sequence (xn)n∈N in (2.1) [1,2,5], it remains an open question whether it can fail in the

general setting of Theorem 2.1. We show that this is indeed the case. Our argument relies on a

result of Hundal [4] concerning the method of alternating projections.

Counterexample 2.2 In Theorem 2.1, suppose that H is infinite-dimensional and separable.

Let (ek)k∈N be an orthonormal basis of H, let V = {e0}⊥, let y0 = e2, and let K be the smallest

closed convex cone containing the set

{
exp

(
−100ξ3

)
e0 + cos

(
π(ξ − bξc)/2

)
ebξc+1 + sin

(
π(ξ − bξc)/2

)
ebξc+2

∣∣ ξ ∈ [0,+∞[
}
, (2.2)

where bξc denotes the integer part of ξ ∈ [0,+∞[. Let projV and projK be the projection

operators onto V and K, and set

A : x 7→

V ⊥, if x ∈ V ;

∅, if x /∈ V
and B =

(
projV ◦ projK ◦ projV

)−1 − Id. (2.3)

Then A and B are maximally monotone, and the sequence (xn)∈N constructed in Theorem 2.1

converges weakly, but not strongly, to a zero of A+B.

Proof. We first note that A is maximally monotone by virtue of [1, Examples 6.43 and and

20.26]. Now set T = projV ◦ projK ◦ projV . Then it follows from [1, Example 4.14] that T is
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firmly nonexpansive, that is,

(∀x ∈ H)(∀y ∈ H) 〈x− y | Tx− Ty〉 > ‖Tx− Ty‖2. (2.4)

In turn, we derive from [1, Proposition 23.10] that B = T−1− Id is maximally monotone. Next,

we observe that 0 ∈ zerA and that, since K is a closed cone, 0 ∈ K. Thus, 0 = (projV ◦ projK ◦
projV )0, which implies that 0 ∈ zerB. Hence,

0 ∈ zer(A+B). (2.5)

Now set

z0 = exp(−100)e0 + e2 and (∀n ∈ N) zn+1 = projK
(
projV zn

)
. (2.6)

Then, by nonexpansiveness of projK ,

(∀n ∈ N) ‖zn+1‖2 = ‖projK
(
projV zn

)
− projK0‖2 6 ‖projV zn‖2 = ‖zn‖2 − ‖projV zn − zn‖2

(2.7)

and, therefore,

projV zn − zn → 0. (2.8)

As shown in [4], we also have

zn ⇀ 0 and zn 6→ 0. (2.9)

On the other hand, we derive from (2.3) that

JA = projV and JB = projV ◦ projK ◦ projV , (2.10)

and from (2.6) that projV z0 = e2 = y0. It thus follows from (2.1) and (2.6) that x0 =

projV (projK(projV y0)) = projV (projK(projV z0)) = projV z1. Now, assume that, for some n ∈ N,

yn = projV zn and xn = projV zn+1. Since xn and yn lie in V , we derive from (2.1) and (2.10)

that

yn+1 = yn + projV (2xn − yn)− xn = xn = projV zn+1 (2.11)

and hence that

xn+1 =
(
projV ◦ projK ◦ projV

)(
projV zn+1

)
= projV

(
projK

(
projV zn+1

))
= projV zn+2. (2.12)

We have thus proven by induction that

(∀n ∈ N) xn = projV zn+1. (2.13)

In view of (2.8), we obtain xn − zn+1 → 0 and therefore derive from (2.9) and (2.5) that

xn ⇀ 0 ∈ zer(A+B) and xn 6→ 0.
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Next, we settle a similar open question for Spingarn’s method of partial inverses [6] by

showing that its strong convergence can fail.

Theorem 2.3 ([6]) Let H be a real Hilbert space, let B : H → 2H be maximally monotone, and
let V be a closed vector subspace of H. Suppose that the problem

find x ∈ V and u ∈ V ⊥ such that u ∈ Bx (2.14)

has at least one solution. Let x0 ∈ V , let u0 ∈ V ⊥, and iterate

(∀n ∈ N) xn+1 = projV
(
JB(xn + un)

)
and un+1 = projV ⊥

(
JB−1(xn + un)

)
. (2.15)

Then (xn, un)n∈N converges weakly to a solution to (2.14).

Counterexample 2.4 Define H, V , K, and B as in Counterexample 2.2, and set x0 = e2 and

u0 = 0. Then (0, 0) solves (2.14) and the sequence (xn, un)n∈N constructed in Theorem 2.3

converges weakly, but not strongly, to (0, 0).

Proof. Since JB = projV ◦ projK ◦ projV and JB−1 = Id− JB, (2.15) implies that

(∀n ∈ N)

xn+1 =
(
projV ◦ projK ◦ projV

)
(xn + un)

un+1 = projV ⊥
(
xn + un −

(
projV ◦ projK ◦ projV

)
(xn + un)

)
.

(2.16)

We therefore obtain inductively that

(∀n ∈ N) xn+1 = projV
(
projKxn

)
and un = 0. (2.17)

Now define (zn)n∈N as in (2.6). Then, by induction, (∀n ∈ N) xn = projV zn. Hence, in view of

(2.8) and (2.9), we conclude that 0 6← xn⇀ 0.
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Chapter 3
WARPED PROXIMAL ITERATIONS FOR
MONOTONE INCLUSIONS

3.1 Introduction and context

To address question (Q2) of Chapter 1, we introduce the notion of a warped resolvent as

a generalization of the classical resolvent, study its properties, and devise warped proximal

iteration principles. The pertinence of this warped resolvent framework is illustrated.

This chapter presents the following article:

M. N. Bùi and P. L. Combettes, Warped proximal iterations for monotone inclu-

sions, Journal of Mathematical Analysis and Applications, vol. 491, no. 1, art.

124315, 21 pp., 2020.

3.2 Article: Warped proximal iterations for monotone inclusions

Abstract. Resolvents of set-valued operators play a central role in various branches of mathe-

matics and in particular in the design and the analysis of splitting algorithms for solving mono-

tone inclusions. We propose a generalization of this notion, called warped resolvent, which

is constructed with the help of an auxiliary operator. The properties of warped resolvents are

investigated and connections are made with existing notions. Abstract weak and strong con-

vergence principles based on warped resolvents are proposed and shown to not only provide a

synthetic view of splitting algorithms but to also constitute an effective device to produce new

solution methods for challenging inclusion problems.
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3.2.1 Introduction

A generic problem in nonlinear analysis and optimization is to find a zero of a maximally

monotone operator M : X → 2X , where X is a real Hilbert space. The most elementary method

designed for this task is the proximal point algorithm [34]

(∀n ∈ N) xn+1 = JγnMxn, where γn ∈ ]0,+∞[ and JγnM = (Id + γnM)−1. (3.1)

In practice, the execution of (3.1) may be hindered by the difficulty of evaluating the resolvents

(JγnM )n∈N. Thus, even in the simple case when M is the sum of two monotone operators A

and B, there is no mechanism to express conveniently the resolvent of M in terms of opera-

tors involving A and B separately. To address this issue, various splitting strategies have been

proposed to handle increasingly complex formulations in which M is a composite operator as-

sembled from several elementary blocks that can be linear operators and monotone operators

[5,7,9–12,17,18,21,22,30,37]. In the present paper, we explore a different path by placing at

the core of our analysis the following extension of the classical notion of a resolvent.

Definition 3.1 (Warped resolvent) Let X be a reflexive real Banach space with topological

dual X ∗, let D be a nonempty subset of X , let K : D → X ∗, and let M : X → 2X
∗

be such that

ranK ⊂ ran(K + M) and K + M is injective (see Definition 3.2). The warped resolvent of M

with kernel K is JKM = (K +M)−1 ◦K.

A main motivation for introducing warped resolvents is that, through judicious choices of

a kernel K tailored to the structure of an inclusion problem, one can create simple patterns to

design and analyze new, flexible, and modular splitting algorithms. At the same time, the theory

required to analyze the static properties of warped resolvents as nonlinear operators, as well

as the dynamics of algorithms using them, needs to be developed as it cannot be extrapolated

from the classical case, where K is simply the identity operator. In the present paper, this task is

undertaken and we illustrate the pertinence of warped iteration methods through applications

to challenging monotone inclusion problems.

The paper is organized as follows. Section 3.2.2 is dedicated to notation and background. In

Section 3.2.3, we provide important illustrations of Definition 3.1 and make connections with

constructions found in the literature. The properties of warped resolvents are also discussed

in that section. Weakly and strongly convergent warped proximal iteration methods are intro-

duced and analyzed in Section 3.2.4. Besides the use of kernels varying at each iteration, our

framework also features evaluations of warped resolvents at points that may not be the current

iterate, which adds considerable flexibility and models in particular inertial phenomena and

other perturbations. New splitting algorithms resulting from the proposed warped iteration

constructs are devised in Section 3.2.5 to solve monotone inclusions.
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3.2.2 Notation and background

Throughout the paper, X , Y, and Z are reflexive real Banach spaces. We denote the canonical

pairing between X and its topological dual X ∗ by 〈·, ·〉, and by Id the identity operator. The

weak convergence of a sequence (xn)n∈N to x is denoted by xn ⇀ x, while xn → x denotes its

strong convergence. The space of bounded linear operators from X to Y is denoted by B(X ,Y),

and we set B(X ) = B(X ,X ).

Let M : X → 2X
∗
. We denote by graM =

{
(x, x∗) ∈ X × X ∗ | x∗ ∈Mx

}
the graph of M , by

domM =
{
x ∈ X | Mx 6= ∅

}
the domain of M , by ranM =

{
x∗ ∈ X ∗ | (∃x ∈ X ) x∗ ∈Mx

}
the range of M , by zerM =

{
x ∈ X | 0 ∈Mx

}
the set of zeros of M , and by M−1 the inverse

of M , i.e., graM−1 =
{

(x∗, x) ∈ X ∗ ×X | x∗ ∈Mx
}

. Further, M is monotone if

(
∀(x, x∗) ∈ graM

)(
∀(y, y∗) ∈ graM

)
〈x− y, x∗ − y∗〉 > 0, (3.2)

and maximally monotone if, in addition, there exists no monotone operator A : X → 2X
∗

such that graM ⊂ graA 6= graM . We say that M is uniformly monotone with modulus

φ : [0,+∞[→ [0,+∞] if φ is increasing, vanishes only at 0, and

(
∀(x, x∗) ∈ graM

)(
∀(y, y∗) ∈ graM

)
〈x− y, x∗ − y∗〉 > φ

(
‖x− y‖

)
. (3.3)

In particular, M is strongly monotone with constant α ∈ ]0,+∞[ if it is uniformly monotone

with modulus φ = α| · |2.

Definition 3.2 An operator M : X → 2X
∗

is injective if (∀x ∈ X )(∀y ∈ X ) Mx ∩My 6= ∅ ⇒
x = y.

The following lemma, which concerns a type of duality for monotone inclusions studied in

[20,29,32], will be instrumental.

Lemma 3.3 Let A : Y → 2Y
∗

and B : Z → 2Z
∗

be maximally monotone, let L ∈ B(Y,Z), let
s∗ ∈ Y∗, and let r ∈ Z. Suppose that X = Y × Z × Z∗ (hence X ∗ = Y∗ ×Z∗ ×Z), define

M : X → 2X
∗
: (x, y, v∗) 7→ (−s∗ +Ax+ L∗v∗)× (By − v∗)× {r − Lx+ y}, (3.4)

and set Z =
{

(x, v∗) ∈ Y × Z∗ | s∗ − L∗v∗ ∈ Ax and Lx− r ∈ B−1v∗
}

. In addition, denote by
P the set of solutions to the primal problem

find x ∈ Y such that s∗ ∈ Ax+ L∗
(
B(Lx− r)

)
, (3.5)

and by D the set of solutions to the dual problem

find v∗ ∈ Z∗ such that − r ∈ −L
(
A−1(s∗ − L∗v∗)

)
+B−1v∗. (3.6)
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Then the following hold:

(i) Z is a closed convex subset of P ×D .

(ii) M is maximally monotone.

(iii) Suppose that (x, y, v∗) ∈ zerM . Then (x, v∗) ∈ Z, x ∈P, and v∗ ∈ D .

(iv) P 6= ∅⇔ D 6= ∅⇔ Z 6= ∅⇔ zerM 6= ∅.

Proof. (i): [20, Proposition 2.1(i)(a)].

(ii): Define C : X → 2X
∗
: (x, y, v∗) 7→ (−s∗ +Ax)×By × {r}

S : X → X ∗ : (x, y, v∗) 7→ (L∗v∗,−v∗,−Lx+ y).
(3.7)

It follows from the maximal monotonicity of A and B that C is maximally monotone. On the

other hand, S is linear and bounded, and

(
∀(x, y, v∗) ∈ X

) 〈
(x, y, v∗), S(x, y, v∗)

〉
= 〈x, L∗v∗〉 − 〈y, v∗〉+ 〈y − Lx, v∗〉 = 0. (3.8)

Thus, we derive from [35, Section 17] that S is maximally monotone with domS = X . In turn,

[35, Theorem 24.1(a)] asserts that M = C + S is maximally monotone.

(iii): We deduce from (3.4) that s∗ ∈ Ax + L∗v∗, v∗ ∈ By, and y = Lx − r; hence v∗ ∈
B(Lx− r). Consequently, s∗−L∗v∗ ∈ Ax and Lx− r ∈ B−1v∗, which yields (x, v∗) ∈ Z. Finally,

(i) entails that x ∈P and v∗ ∈ D .

(iv): By [20, Proposition 2.1(i)(c)], P 6= ∅ ⇔ D 6= ∅ ⇔ Z 6= ∅. In addition, in view

of (iii), zerM 6= ∅ ⇒ Z 6= ∅. Suppose that (x, v∗) ∈ Z and set y = Lx − r. Then y =

Lx− r ∈ B−1v∗ and s∗ ∈ Ax+ L∗v∗. Hence 0 ∈ By − v∗ and 0 ∈ −s∗ +Ax+ L∗v∗. Altogether,

0 ∈ (−s∗ +Ax+ L∗v∗)× (By − v∗)× {r − Lx+ y} = M(x, y, v∗), i.e., (x, y, v∗) ∈ zerM .

Now suppose that X is a real Hilbert space with scalar product 〈· | ·〉. An operator T : X →
X is nonexpansive if it is 1-Lipschitzian, α-averaged with α ∈ ]0, 1[ if Id + (1/α)(T − Id) is

nonexpansive, firmly nonexpansive if it is 1/2-averaged, and β-cocoercive with β ∈ ]0,+∞[ if

βT is firmly nonexpansive. Averaged operators were introduced in [4]. The projection operator

onto a nonempty closed convex subset C of X is denoted by projC . The resolvent ofM : X → 2X

is JM = (Id +M)−1.

3.2.3 Warped resolvents

We provide illustrations of Definition 3.1 and then study the properties of warped resolvents.

Our first example is the warped resolvent of a subdifferential. This leads to the following

notion, which extends Moreau’s classical proximity operator in Hilbert spaces [28].

Example 3.4 (Warped proximity operator) Let D be a nonempty subset of X , let K : D →
X ∗, and let ϕ : X → ]−∞,+∞] be a proper lower semicontinuous convex function such that
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ranK ⊂ ran(K + ∂ϕ) and K + ∂ϕ is injective. The warped proximity operator of ϕ with kernel

K is proxKϕ = (K + ∂ϕ)−1 ◦K. It is characterized by the variational inequality

(
∀(x, p) ∈ X × X

)
p = proxKϕ x ⇔ (∀y ∈ X ) 〈y − p,Kx−Kp〉+ ϕ(p) 6 ϕ(y). (3.9)

In particular, in the case of normal cones, we arrive at the following definition (see Fig-

ure 3.1).

Example 3.5 (Warped projection operator) Let D be a nonempty subset of X , let K : D →
X ∗, and let C be a nonempty closed convex subset of X with normal cone operator NC such

that ranK ⊂ ran(K + NC) and K + NC is injective. The warped projection operator onto C

with kernel K is projKC = (K +NC)−1 ◦K. It is characterized by

(
∀(x, p) ∈ X × X

)
p = projKC x ⇔

[
p ∈ C and (∀y ∈ C) 〈y − p,Kx−Kp〉 6 0

]
.

(3.10)

p1

p2 p3

Figure 3.1 Warped projections onto the closed unit ball C centered at the origin in the Euclidean
plane. Sets of points projecting onto p1, p2, and p3 for the kernels K1 = Id (in green) and
K2 : (ξ1, ξ2) 7→ (ξ31/2 + ξ1/5− ξ2, ξ1 + ξ2) (in red). Note that K2 is not a gradient.

Example 3.6 Suppose that X is strictly convex, let M : X → 2X
∗

be maximally monotone, and

let K be the normalized duality mapping of X . Then JKM is a well-defined warped resolvent

which was introduced in [26].

Example 3.7 Let M : X → 2X
∗

be maximally monotone such that zerM 6= ∅, let f : X →
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]−∞,+∞] be a Legendre function [6] such that domM ⊂ int dom f , and set K = ∇f . Then

it follows from [6, Corollary 3.14(ii)] that JKM is a well-defined warped resolvent, called the

D-resolvent of M in [6].

Example 3.8 Let M : X → 2X
∗

be maximally monotone and let K : X → X ∗ be strictly mono-

tone, surjective, and 3∗ monotone in the sense that [39, Definition 32.40(c)]

(∀x ∈ domM)(∀x∗ ∈ ranM) sup
(y,y∗)∈graM

〈x− y, y∗ − x∗〉 < +∞. (3.11)

Then it follows from [8, Theorem 2.3] that JKM is a well-defined warped resolvent, called the

K-resolvent of M in [8].

Example 3.9 Let A : X → 2X
∗

and B : X → 2X
∗

be maximally monotone, and let f : X →
]−∞,+∞] be a proper lower semicontinuous convex function which is essentially smooth [6].

Suppose that D = (int dom f) ∩ domA is a nonempty subset of int domB, that B is single-

valued on int domB, that ∇f is strictly monotone on D, and that (∇f −B)(D) ⊂ ran(∇f +A).

Set M = A + B and K : D → X ∗ : x 7→ ∇f(x) − Bx. Then the warped resolvent JKM is well

defined and coincides with the Bregman forward-backward operator (∇f + A)−1 ◦ (∇f − B)

investigated in [13], where it is shown to capture a construction found in [31].

Example 3.10 Consider the setting of Lemma 3.3. For simplicity (more general kernels can be

considered), take s∗ = 0, r = 0, and assume that Y and Z∗ are strictly convex with normalized

duality mapping KY and KZ∗ . As seen in Lemma 3.3(i), finding a zero of the Kuhn–Tucker

operator U : Y × Z∗ → 2Y
∗×Z : (x, v∗) 7→ (Ax + L∗v∗) × (B−1v∗ − Lx) provides a solution to

the primal-dual problem (3.5)–(3.6). Now set K : (x, v∗) 7→ (KYx − L∗v∗, Lx + KZ∗v
∗). Then

the warped resolvent JKU is well defined and

JKU : (x, v∗) 7→
(
(KY +A)−1(KYx− L∗v∗), (KZ∗ +B−1)−1(Lx+KZ∗v

∗)
)
. (3.12)

For instance, in a Hilbertian setting, JKU : (x, v∗) 7→ (JA(x− L∗v∗), JB−1(Lx+ v∗)), whereas JU
is intractable; note also that the kernel K is a non-Hermitian bounded linear operator.

Further examples will appear in Section 3.2.5. Let us turn our attention to the properties of

warped resolvents.

Proposition 3.11 (viability) LetD be a nonempty subset of X , letK : D → X ∗, and letM : X →
2X
∗

be such that ranK ⊂ ran(K +M) and K +M is injective. Then JKM : D → D.

Proof. By assumption, dom JKM = dom((K+M)−1◦K) =
{
x ∈ domK |Kx ∈ dom(K +M)−1

}
={

x ∈ D | Kx ∈ ran(K +M)
}

= D. Next, observe that

ran JKM = ran
(
(K +M)−1 ◦K

)
⊂ ran(K +M)−1 = dom(K +M) ⊂ domK = D. (3.13)
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Finally, to show that (K+M)−1 is at most single-valued, suppose that (x∗, x1) ∈ gra(K+M)−1

and (x∗, x2) ∈ gra(K + M)−1. Then {x∗} ⊂ (K + M)x1 ∩ (K + M)x2 and, since K + M is

injective, it follows that x1 = x2.

Sufficient conditions that guarantee that warped resolvents are well defined are made ex-

plicit below.

Proposition 3.12 Let D be a nonempty subset of X , let K : D → X ∗, and let M : X → 2X
∗
. Then

the following hold:

(i) Suppose that one of the following is satisfied:

[a] K +M is surjective.

[b] K +M is maximally monotone and D ∩ domM is bounded.

[c] K + M is maximally monotone, K + M is uniformly monotone with modulus φ, and
φ(t)/t→ +∞ as t→ +∞.

[d] K +M is maximally monotone and strongly monotone.

[e] M is maximally monotone, D = X , and K is maximally monotone, strictly monotone,
3∗ monotone, and surjective.

[f] K is maximally monotone and there exists a lower semicontinuous coercive convex
function ϕ : X → R such that M = ∂ϕ.

Then ranK ⊂ ran(K +M).

(ii) Suppose that one of the following is satisfied:

[a] K +M is strictly monotone.

[b] M is monotone and K is strictly monotone on domM .

[c] K is monotone and M is strictly monotone.

[d] −(K +M) is strictly monotone.

Then K +M is injective.

Proof. Set A = K +M .

(i): Item [a] is clear. We prove the remaining ones as follows.

[b]: It follows from [39, Theorem 32.G] that ranA = X ⊃ ranK.

[c]&[d]: Since [20, Lemma 2.7(ii)] and [39, Corollary 32.35] assert that A is surjective, the

claim follows from (i)[a].

[e]: See [8, Theorem 2.3].

[f]: Take z ∈ D and set B = A( · + z)−Kz. By coercivity of ϕ, there exists ρ ∈ ]0,+∞[ such

that

(∀x ∈ X ) ‖x‖ > ρ ⇒ inf〈x, ∂ϕ(x+ z)〉 > ϕ(x+ z)− ϕ(z) > 0. (3.14)

Now take (x, x∗) ∈ graB and suppose that ‖x‖ > ρ. Then x∗+Kz−K(x+ z) ∈ ∂ϕ(x+ z) and

it follows from (3.14) and the monotonicity of K that

0 6 〈x, x∗ +Kz −K(x+ z)〉 = 〈x, x∗〉 − 〈(x+ z)− z,K(x+ z)−Kz〉 6 〈x, x∗〉. (3.15)
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On the other hand, since dom ∂ϕ = X [38, Theorems 2.2.20(b) and 2.4.12], A is maximally

monotone [35, Theorem 24.1(a)], and so is B. Altogether, [33, Proposition 2] asserts that there

exists x ∈ X such that 0 ∈ Bx. Consequently, Kz ∈ A(x+ z) ⊂ ran(K +M).

(ii): We need to prove only [a] since [b] and [c] are special cases of it, and [d] is similar. To

this end, let (x1, x2) ∈ X 2 and suppose that Ax1 ∩ Ax2 6= ∅. We must show that x1 = x2. Take

x∗ ∈ Ax1∩Ax2. Then (x1, x
∗) and (x2, x

∗) lie in graA. In turn, since A is strictly monotone and

〈x1 − x2, x
∗ − x∗〉 = 0, we obtain x1 = x2.

Proposition 3.13 Let M : X → 2X
∗
, let γ ∈ ]0,+∞[, and let K : X → X ∗ be such that ranK ⊂

ran(K + γM) and K + γM is injective. Then the following hold:

(i) Fix JKγM = zerM .

(ii) Let x ∈ X and p ∈ X . Then p = JKγMx⇔ (p, γ−1(Kx−Kp)) ∈ graM .

(iii) Suppose that M is monotone. Let x ∈ X and y ∈ X , and set p = JKγMx and q = JKγMy. Then
〈p− q,Kx−Ky〉 > 〈p− q,Kp−Kq〉.

(iv) Suppose that M is monotone, that K is uniformly continuous and φ-uniformly monotone,
and that ψ : t 7→ φ(t)/t is real-valued on ]0, ξ[ for some ξ ∈ ]0,+∞[ and strictly increasing.
Then JKγM is uniformly continuous.

(v) Suppose that M is monotone and that K is β-Lipschitzian and α-strongly monotone for some
α ∈ ]0,+∞[ and β ∈ ]0,+∞[. Then JKγM is (β/α)-Lipschitzian.

(vi) Suppose that M is monotone. Let x ∈ X , and set y = JKγMx and y∗ = γ−1(Kx−Ky). Then
zerM ⊂

{
z ∈ X | 〈z − y, y∗〉 6 0

}
.

Proof. (i): We derive from Proposition 3.11 that (∀x ∈ X ) x ∈ zerM ⇔ Kx ∈ Kx + γMx ⇔
x = JKγMx⇔ x ∈ Fix JKγM .

(ii): We have p = JKγMx⇔ p = (K + γM)−1(Kx)⇔ Kx ∈ Kp+ γMp⇔ Kx−Kp ∈ γMp

⇔ (p, γ−1(Kx−Kp)) ∈ graM .

(iii): This follows from (ii) and the monotonicity of M .

(iv): Let x and y be in X , and set p = JKγMx and q = JKγMy. Then we deduce from (iii) that

φ(‖p− q‖) 6 〈p− q,Kp−Kq〉 6 〈p− q,Kx−Ky〉 6 ‖p− q‖ ‖Kx−Ky‖. (3.16)

Now fix ε ∈ ]0, ξ[ and let η ∈ ]0, ψ(ε)]. By uniform continuity of K, there exists δ ∈ ]0,+∞[ such

that ‖x − y‖ 6 δ ⇒ ‖Kx − Ky‖ 6 η. Without loss of generality, suppose that p 6= q. Then, if

‖x − y‖ 6 δ, we derive from (3.16) that ψ(‖p − q‖) 6 ‖Kx −Ky‖ 6 η 6 ψ(ε). Consequently,

since ψ is strictly increasing, ‖p− q‖ 6 ε.
(v): Let x and y be in X and set p = JKγMx and q = JKγMy. Then we deduce from (iii) that

α‖p− q‖2 6 〈p− q,Kp−Kq〉 6 〈p− q,Kx−Ky〉 6 ‖p− q‖ ‖Kx−Ky‖ 6 β‖p− q‖ ‖x− y‖.
(3.17)

In turn, ‖p− q‖ 6 (β/α)‖x− y‖.
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(vi): Suppose that z ∈ zerM . Then (z, 0) ∈ graM . On the other hand, we derive from (ii)

that (y, y∗) ∈ graM . Hence, by monotonicity of M , 〈y − z, y∗〉 > 0.

In Hilbert spaces, standard resolvents are firmly nonexpansive, hence 1/2-averaged. A re-

lated property for warped resolvents is the following.

Proposition 3.14 Suppose that X is a Hilbert space. Let M : X → 2X be maximally monotone
and let K : X → X be averaged with constant α ∈ ]0, 1[. Suppose that K + M is 1-strongly
monotone. Then JKM is averaged with constant 1/(2− α).

Proof. Since K is nonexpansive by virtue of [7, Remark 4.34(i)], it follows from the Cauchy–

Schwarz inequality that

(∀x ∈ X )(∀y ∈ X ) 〈x− y | (2Id +K)x− (2Id +K)y〉 = 2‖x− y‖2 + 〈x− y | Kx−Ky〉

> 2‖x− y‖2 − ‖x− y‖2

= ‖x− y‖2 (3.18)

and therefore, by continuity of 2Id + K, that 2Id + K is maximally monotone [7, Corol-

lary 20.28]. Thus, in the light of [7, Corollary 25.5(i)], 2Id+K+M is maximally monotone. In

turn, since 2Id +K +M is strongly monotone by (3.18), [7, Proposition 22.11(ii)] entails that

ran(3Id +K +M − Id) = ran(2Id +K +M) = X , which yields ran(Id + (K +M − Id)/3) = X .

Hence, by monotonicity of K + M − Id and Minty’s theorem [7, Theorem 21.1], we infer

that K + M − Id is maximally monotone. Thus, in view of [7, Corollary 23.9], (K + M)−1 =

(Id + K + M − Id)−1 is averaged with constant 1/2. Consequently, we infer from [7, Proposi-

tion 4.44] that JKM = (K +M)−1 ◦K is averaged with constant 1/(2− α).

3.2.4 Warped proximal iterations

Throughout this section, X is a real Hilbert space identified with its dual. We start with an

abstract principle for the basic problem of finding a zero of a maximally monotone operator.

Proposition 3.15 LetM : X → 2X be a maximally monotone operator such that Z = zerM 6= ∅,
let x0 ∈ X , let ε ∈ ]0, 1[, let (λn)n∈N be a sequence in [ε, 2 − ε], and let (yn, y

∗
n)n∈N be a sequence

in graM . Set

(∀n ∈ N) xn+1 =

xn +
λn〈yn − xn | y∗n〉

‖y∗n‖2
y∗n, if 〈yn − xn | y∗n〉 < 0;

xn, otherwise.
(3.19)

Then the following hold:

(i)
∑

n∈N ‖xn+1 − xn‖2 < +∞.

(ii) Suppose that every weak sequential cluster point of (xn)n∈N is in Z. Then (xn)n∈N converges
weakly to a point in Z.
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Proof. By [7, Proposition 23.39], Z is a nonempty closed convex subset of X . Set (∀n ∈ N)

Hn =
{
z ∈ X | 〈z − yn | y∗n〉 6 0

}
. For every z ∈ Z and every n ∈ N, since (z, 0) and (yn, y

∗
n)

lie in graM , the monotonicity of M forces 〈yn − z | y∗n〉 > 0. Thus Z ⊂
⋂
n∈NHn. In addition,

[7, Example 29.20] asserts that

(∀n ∈ N) projHnxn =

xn +
〈yn − xn | y∗n〉
‖y∗n‖2

y∗n, if 〈yn − xn | y∗n〉 < 0;

xn, otherwise.
(3.20)

Hence, we derive from (3.19) that

(∀n ∈ N) xn+1 = xn + λn(projHnxn − xn). (3.21)

Therefore (i) follows from [16, Equation (10)] and (ii) follows from [16, Proposition 6i)].

To implement the conceptual principle outlined in Proposition 3.15, one is required to con-

struct points in the graph of the underlying monotone operator. Towards this end, our strategy

is to use Proposition 3.13(ii). We shall then seamlessly obtain in Section 3.2.5 a broad class of

algorithms to solve a variety of monotone inclusions. It will be convenient to use the notation

(∀y∗ ∈ Y∗) (y∗)] =


y∗

‖y∗‖
, if y∗ 6= 0;

0, if y∗ = 0.

(3.22)

Our first method employs, at iteration n, a warped resolvent based on a different kernel,

and this warped resolvent is applied at a point x̃n that may not be the current iterate xn.

Theorem 3.16 Let M : X → 2X be a maximally monotone operator such that Z = zerM 6= ∅,
let x0 ∈ X , let ε ∈ ]0, 1[, let (λn)n∈N be a sequence in [ε, 2 − ε], and let (γn)n∈N be a sequence in
[ε,+∞[. Further, for every n ∈ N, let x̃n ∈ X and let Kn : X → X be a monotone operator such
that ranKn ⊂ ran(Kn + γnM) and Kn + γnM is injective. Iterate

for n = 0, 1, . . .

yn = JKnγnM
x̃n

y∗n = γ−1
n (Knx̃n −Knyn)

if 〈yn − xn | y∗n〉 < 0⌊
xn+1 = xn +

λn〈yn − xn | y∗n〉
‖y∗n‖2

y∗n

else⌊
xn+1 = xn.

(3.23)

Then the following hold:

(i)
∑

n∈N ‖xn+1 − xn‖2 < +∞.
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(ii) Suppose that the following are satisfied:

[a] x̃n − xn → 0.

[b]
〈
x̃n − yn | (Knx̃n −Knyn)]

〉
→ 0 ⇒

x̃n − yn ⇀ 0

Knx̃n −Knyn → 0.

Then (xn)n∈N converges weakly to a point in Z.

Proof. By Proposition 3.13(ii),

(∀n ∈ N) (yn, y
∗
n) ∈ graM. (3.24)

Therefore, (i) follows from Proposition 3.15(i). It remains to prove (ii). To this end, take a

strictly increasing sequence (kn)n∈N in N and a point x ∈ X such that xkn ⇀ x. In view of

Proposition 3.15(ii), we must show that x ∈ Z. We infer from (ii)[a] that

x̃kn ⇀ x. (3.25)

Next, by (3.22) and (3.23), for every n ∈ N, if 〈xn − yn | y∗n〉 > 0, then y∗n 6= 0 and

〈
xn − yn | (y∗n)]

〉
=
〈xn − yn | y∗n〉
‖y∗n‖

= λ−1
n ‖xn+1 − xn‖ 6 ε−1‖xn+1 − xn‖; (3.26)

otherwise, 〈xn − yn | y∗n〉 6 0 and it thus results from (3.22) that

〈
xn − yn | (y∗n)]

〉
=


0, if y∗n = 0;

〈xn − yn | y∗n〉
‖y∗n‖

, otherwise

6 0

= ε−1‖xn+1 − xn‖. (3.27)

Therefore, using (i) and the monotonicity of (Kn)n∈N, we obtain

0← ε−1‖xn+1 − xn‖

> 〈xn − yn | (y∗n)]〉

=
〈
xn − x̃n | (Knx̃n −Knyn)]

〉
+
〈
x̃n − yn | (Knx̃n −Knyn)]

〉
>
〈
xn − x̃n | (Knx̃n −Knyn)]

〉
. (3.28)

However, by the Cauchy–Schwarz inequality and (ii)[a],

∣∣〈xn − x̃n | (Knx̃n −Knyn)]
〉∣∣ 6 ‖xn − x̃n‖ → 0. (3.29)

Hence, (3.28) implies that 〈x̃n − yn | (Knx̃n −Knyn)]〉 → 0. In turn, we deduce from (ii)[b]

that x̃n − yn ⇀ 0 and Knx̃n −Knyn → 0. Altogether, since supn∈N γ
−1
n 6 ε−1, it follows from
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(3.24) and (3.25) that

ykn = x̃kn + (ykn − x̃kn) ⇀ x (3.30)

and

Mykn 3 y∗kn = γ−1
kn

(Kkn x̃kn −Kknykn)→ 0. (3.31)

Appealing to the maximal monotonicity of M , [7, Proposition 20.38(ii)] allows us to conclude

that x ∈ Z.

Remark 3.17 Condition (ii)[b] in Theorem 3.16 is satisfied in particular when there exist α

and β in ]0,+∞[ such that the kernels (Kn)n∈N are α-strongly monotone and β-Lipschitzian.

Remark 3.18 The auxiliary sequence (x̃n)n∈N in Theorem 3.16 can serve several purposes. In

general, it provides the flexibility of not applying the warped resolvent to the current iterate.

Here are some noteworthy candidates.

(i) At iteration n, x̃n can model an additive perturbation of xn, say x̃n = xn + en. Here

the error sequence (en)n∈N need only satisfy ‖en‖ → 0 and not the usual summability

condition
∑

n∈N ‖en‖ < +∞ required in many methods, e.g., [11,17,21,37].

(ii) Mimicking the behavior of so-called inertial methods [3, 19], let (αn)n∈N be a bounded

sequence in R and set (∀n ∈ N r {0}) x̃n = xn + αn(xn − xn−1). Then Theorem 3.16(i)

yields ‖x̃n − xn‖ = |αn| ‖xn − xn−1‖ → 0 and therefore assumption (ii)[a] holds in The-

orem 3.16. More generally, weak convergence results can be derived from Theorem 3.16

for iterations with memory, that is,

(∀n ∈ N) x̃n =

n∑
j=0

µn,jxj , where (µn,j)06j6n ∈ Rn+1 and
n∑
j=0

µn,j = 1. (3.32)

Here condition (ii)[a] holds if (1 − µn,n)xn −
∑n−1

j=0 µn,jxj → 0. In the case of standard

inertial methods, weak convergence requires more stringent conditions on the weights

(µn,j)n∈N,06j6n [19].

(iii) Nonlinear perturbations can also be considered. For instance, at iteration n, x̃n =

projCnxn is an approximation to xn from some suitable closed convex set Cn ⊂ X .

Remark 3.19 The independent work [23] was posted on arXiv at the same time as the report

[14] from which our paper is derived. The former uses a notion of resolvents subsumed by

Definition 3.1 to explore the application of an algorithm similar to (3.23) with no perturbation

(i.e., for every n ∈ N, x̃n = xn). The work [23] nicely complements ours in the sense that

it proposes applications to splitting schemes not discussed here, which further attests to the

versatility and effectiveness of the notion of warped proximal iterations.

We now turn our attention to a variant of Theorem 3.16 that guarantees strong conver-

gence of the iterates to a best approximation. In the spirit of Haugazeau’s algorithm (see [24,
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Théorème 3-2] and [7, Corollary 30.15]), it involves outer approximations consisting of the

intersection of two half-spaces. For convenience, given (x, y, z) ∈ X 3, we set

H(x, y) =
{
u ∈ X | 〈u− y | x− y〉 6 0

}
(3.33)

and, if R = H(x, y) ∩H(y, z) 6= ∅, Q(x, y, z) = projRx. The latter can be computed explicitly

as follows (see [24, Théorème 3-1] or [7, Corollary 29.25]).

Lemma 3.20 Let (x, y, z) ∈ X 3. Set R = H(x, y) ∩H(y, z), χ = 〈x− y | y − z〉, µ = ‖x − y‖2,
ν = ‖y − z‖2, and ρ = µν − χ2. Then exactly one of the following holds:

(i) ρ = 0 and χ < 0, in which case R = ∅.

(ii) [ ρ = 0 and χ > 0 ] or ρ > 0, in which case R 6= ∅ and

Q(x, y, z) =


z, if ρ = 0 and χ > 0;

x+ (1 + χ/ν)(z − y), if ρ > 0 and χν > ρ;

y + (ν/ρ)
(
χ(x− y) + µ(z − y)

)
, if ρ > 0 and χν < ρ.

(3.34)

Our second abstract convergence principle can now be stated.

Proposition 3.21 LetM : X → 2X be a maximally monotone operator such that Z = zerM 6= ∅,
let x0 ∈ X , and let (yn, y

∗
n)n∈N be a sequence in graM . For every n ∈ N, set

xn+1/2 =

xn +
〈yn − xn | y∗n〉
‖y∗n‖2

y∗n, if 〈yn − xn | y∗n〉 < 0;

xn, otherwise
and xn+1 = Q

(
x0, xn, xn+1/2

)
.

(3.35)

Then the following hold:

(i)
∑

n∈N ‖xn+1 − xn‖2 < +∞ and
∑

n∈N ‖xn+1/2 − xn‖2 < +∞.

(ii) Suppose that every weak sequential cluster point of (xn)n∈N is in Z. Then (xn)n∈N converges
strongly to projZx0.

Proof. Set (∀n ∈ N) Hn =
{
z ∈ X | 〈z − yn | y∗n〉 6 0

}
. Then, as in the proof of Proposition 3.15,

Z is a nonempty closed convex subset of X and Z ⊂
⋂
n∈NHn. On the one hand,

(∀n ∈ N) xn+1/2 = projHnxn and xn+1 = Q
(
x0, xn, xn+1/2

)
. (3.36)

On the other hand, by (3.33),

(∀n ∈ N) H
(
xn, xn+1/2

)
=

X , if x ∈ Hn;

Hn, otherwise

⊃ Z. (3.37)
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The claims therefore follow from [2, Proposition 2.1].

Theorem 3.22 Let M : X → 2X be a maximally monotone operator such that Z = zerM 6= ∅,
let x0 ∈ X , and let (γn)n∈N be a sequence in ]0,+∞[ such that infn∈N γn > 0. For every n ∈ N, let
x̃n ∈ X and let Kn : X → X be a monotone operator such that ranKn ⊂ ran(Kn + γnM) and
Kn + γnM is injective. Iterate

for n = 0, 1, . . .

yn = JKnγnM
x̃n

y∗n = γ−1
n (Knx̃n −Knyn)

if 〈yn − xn | y∗n〉 < 0⌊
xn+1/2 = xn +

〈yn − xn | y∗n〉
‖y∗n‖2

y∗n

else⌊
xn+1/2 = xn

xn+1 = Q(x0, xn, xn+1/2).

(3.38)

Then the following hold:

(i)
∑

n∈N ‖xn+1 − xn‖2 < +∞ and
∑

n∈N ‖xn+1/2 − xn‖2 < +∞.

(ii) Suppose that the following are satisfied:

[a] x̃n − xn → 0.

[b]
〈
x̃n − yn | (Knx̃n −Knyn)]

〉
→ 0 ⇒

x̃n − yn ⇀ 0

Knx̃n −Knyn → 0.

Then (xn)n∈N converges strongly to projZx0.

Proof. Proposition 3.13(ii) asserts that (∀n ∈ N) (yn, y
∗
n) ∈ graM . Thus, we obtain (i) from

Proposition 3.21(i). In the light of Proposition 3.21(ii), to establish (ii), we need to show that

every weak sequential cluster point of (xn)n∈N is a zero of M . Since (i) asserts that xn+1/2 −
xn → 0, this is done as in the proof of Theorem 3.16(ii).

We complete this section with the following remarks.

Remark 3.23 Suppose that Y and Z are real Hilbert spaces and that X = Y×Z. LetA : Y → 2Y

and B : Z → 2Z be maximally monotone, and let L ∈ B(Y,Z). Define

M : X → 2X : (x, v∗) 7→ (Ax+ L∗v∗)× (−Lx+B−1v∗). (3.39)

In [1,2,18] the problem of finding a zero of M (and hence a solution to the monotone inclusion

0 ∈ Ax + L∗(B(Lx))) is approached by generating, at each iteration n, points (an, a
∗
n) ∈ graA

and (bn, b
∗
n) ∈ graB. This does provide a point (yn, y

∗
n) = ((an, b

∗
n), (a∗n + L∗b∗n,−Lan + bn)) ∈

graM , which shows that the algorithms proposed in [1,2,18] are actually instances of the con-
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ceptual principles laid out in Propositions 3.15 and 3.21. In particular, the primal-dual frame-

work of [1] corresponds to applying Theorem 3.16 to the operator M of (3.39) with kernels

(∀n ∈ N) Kn : X → X : (x, v∗) 7→
(
γ−1
n x− L∗v∗, Lx+ µnv

∗). (3.40)

Likewise, that of [2] corresponds to the application of Theorem 3.22 to this setting.

Remark 3.24 In Theorems 3.16 and 3.22, the algorithms operate by using a single point

(yn, y
∗
n) in graM at iteration n. It may be advantageous to use a finite family (yi,n, y

∗
i,n)i∈In

of points in graM , say

(∀i ∈ In) (yi,n, y
∗
i,n) =

(
J
Ki,n
γi,nM

x̃i,n, γ
−1
i,n (Ki,nx̃i,n −Ki,nyi,n)

)
. (3.41)

By monotonicity of M , (∀i ∈ In)(∀z ∈ zerM) 〈z | y∗i,n〉 6 〈yi,n | y∗i,n〉. Therefore, using ideas

found in the area of convex feasibility algorithms [15, 27], at every iteration n, given strictly

positive weights (ωi,n)i∈In adding up to 1, we average these inequalities to create a new half-

space Hn containing zerM , namely

zerM ⊂ Hn =
{
z ∈ X | 〈z | y∗n〉 6 ηn

}
, where

y∗n =
∑

i∈In ωi,ny
∗
i,n

ηn =
∑

i∈In ωi,n〈yi,n | y
∗
i,n〉.

(3.42)

Now set

Λn =


∑

i∈In ωi,n〈yi,n − xn | y
∗
i,n〉∥∥∑

i∈In ωi,ny
∗
i,n

∥∥2 , if
∑

i∈In ωi,n〈xn − yi,n | y
∗
i,n〉 > 0;

0, otherwise.

(3.43)

Then, employing projHnxn = xn+Λn
∑

i∈In ωi,ny
∗
i,n as the point xn+1 in (3.23) and as the point

xn+1/2 in (3.38) results in multi-point extensions of Theorems 3.16 and 3.22.

3.2.5 Applications

We apply Theorem 3.16 to design new algorithms to solve complex monotone inclusion prob-

lems in a real Hilbert space X . We do not mention explicitly minimization problems as they

follow, with usual constraint qualification conditions, by considering monotone inclusions in-

volving subdifferentials as maximally monotone operators [7, 17]. For brevity, we do not men-

tion either the strongly convergent counterparts of each of the corollaries below that can be

systematically obtained using Theorem 3.22.

Let us note that the most basic instantiation of Theorem 3.16 is obtained by setting (∀n ∈ N)

Kn = Id, x̃n = xn, and λn = 1. In this case, the warped proximal algorithm (3.23) reduces to

the basic proximal point algorithm (3.1).
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In connection with Remark 3.18, let us first investigate the convergence of a novel perturbed

forward-backward-forward algorithm with memory. This will require the following fact.

Lemma 3.25 Let B : X → X be Lipschitzian with constant β ∈ ]0,+∞[, let W : X → X be
strongly monotone with constant α ∈ ]0,+∞[, let ε ∈ ]0, α[, let γ ∈ ]0, (α− ε)/β], and set
K = W − γB. Then the following hold:

(i) K is ε-strongly monotone.

(ii) Suppose that α = 1 and W = Id. Then K is cocoercive with constant 1/(2− ε).

Proof. (i): By the Cauchy–Schwarz inequality,

(∀x ∈ X )(∀y ∈ X ) 〈x− y | Kx−Ky〉 = 〈x− y |Wx−Wy〉 − γ〈x− y | Bx−By〉

> α‖x− y‖2 − γ‖x− y‖ ‖Bx−By‖

> α‖x− y‖2 − γβ‖x− y‖2

> ε‖x− y‖2. (3.44)

(ii): Since γB is (1− ε)-Lipschitzian, [7, Proposition 4.38] entails that γB is averaged with

constant (2−ε)/2. Hence, since γB = Id−K, [7, Proposition 4.39] implies that K is cocoercive

with constant 1/(2− ε).

Corollary 3.26 Let A : X → 2X be maximally monotone, let B : X → X be monotone and β-
Lipschitzian for some β ∈ ]0,+∞[, let (α, χ) ∈ ]0,+∞[2, and let ε ∈ ]0, α/(β + 1)[. For every
n ∈ N, let Wn : X → X be α-strongly monotone and χ-Lipschitzian, and let γn ∈ [ε, (α− ε)/β].
Take x0 ∈ X , let (λn)n∈N be a sequence in ]0, 2[ such that 0 < infn∈N λn 6 supn∈N λn < 2, and let
(en)n∈N be a sequence in X such that en → 0. Furthermore, letm ∈ Nr{0} and let (µn,j)n∈N,06j6n

be a real array that satisfies the following:

[a] For every integer n > m and every integer j ∈ [0, n−m− 1], µn,j = 0.

[b] For every n ∈ N,
∑n

j=0 µn,j = 1.

[c] supn∈N max06j6n |µn,j | < +∞.

Iterate
for n = 0, 1, . . .

x̃n = en +
∑n

j=0 µn,jxj

v∗n = Wnx̃n − γnBx̃n
yn = (Wn + γnA)−1v∗n

y∗n = γ−1
n (v∗n −Wnyn) +Byn

if 〈yn − xn | y∗n〉 < 0⌊
xn+1 = xn +

λn〈yn − xn | y∗n〉
‖y∗n‖2

y∗n

else⌊
xn+1 = xn.

(3.45)
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Suppose that zer(A+B) 6= ∅. Then the following hold:

(i)
∑

n∈N ‖xn+1 − xn‖2 < +∞.

(ii) (xn)n∈N converges weakly to a point in zer(A+B).

Proof. We apply Theorem 3.16 with M = A + B and (∀n ∈ N) Kn = Wn − γnB. First, [7,

Corollary 20.28] asserts that B is maximally monotone. Therefore, M is maximally monotone

by virtue of [7, Corollary 25.5(i)]. Next, in view of Lemma 3.25(i), the kernels (Kn)n∈N are

ε-strongly monotone. Furthermore, the kernels (Kn)n∈N are Lipschitzian with constant α + χ

since

(∀x ∈ X )(∀y ∈ X ) ‖Knx−Kny‖ 6 ‖Wnx−Wny‖+ γn‖Bx−By‖

6 χ‖x− y‖+
α− ε
β

β‖x− y‖

6 (α+ χ)‖x− y‖. (3.46)

Therefore, for every n ∈ N, sinceKn+γnM is maximally monotone, Proposition 3.12(i)[d]&(ii)[b]

entail that ranKn ⊂ ran(Kn + γnM) and Kn + γnM is injective. Let us also observe that (3.45)

is a special case of (3.23).

(i): This follows from Theorem 3.16(i).

(ii): Set µ = supn∈N max06j6n |µn,j |. For every integer n > m, it results from [a] and [b]

that

‖x̃n − xn‖ =

∥∥∥∥en +
n∑

j=n−m
µn,j(xj − xn)

∥∥∥∥
6 ‖en‖+

n∑
j=n−m

|µn,j |‖xj − xn‖

6 ‖en‖+ µ

n∑
j=n−m

‖xj − xn‖

= ‖en‖+ µ

m∑
j=0

‖xn − xn−j‖. (3.47)

Therefore, (i) and [c] imply that x̃n − xn → 0. On the other hand, it follows from Remark 3.17

that condition (ii)[b] in Theorem 3.16 is satisfied. Hence, the conclusion follows from Theo-

rem 3.16(ii).

Next, we recover Tseng’s forward-backward-forward algorithm [7,36].

Corollary 3.27 Let A : X → 2X be maximally monotone, let B : X → X be monotone and
β-Lipschitzian for some β ∈ ]0,+∞[. Suppose that zer(A + B) 6= ∅, take x0 ∈ X , let
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ε ∈ ]0, 1/(β + 1)[, and let (γn)n∈N be a sequence in [ε, (1− ε)/β]. Iterate

for n = 0, 1, . . . v∗n = γnBxn

yn = JγnA(xn − v∗n)

xn+1 = yn − γnByn + v∗n.

(3.48)

Then (xn)n∈N converges weakly to a point in zer(A+B).

Proof. We apply Theorem 3.16 with M = A+B and (∀n ∈ N) Kn = Id−γnB and x̃n = xn. Note

that the kernels (Kn)n∈N are cocoercive with constant 1/(2 − ε) by virtue of Lemma 3.25(ii).

Moreover, using Lemma 3.25(i), we deduce that the kernels (Kn)n∈N are strongly monotone

with constant ε. Thus, for every n ∈ N, since Kn + γnM = Id + γnA is maximally monotone,

Proposition 3.12(i)[d]&(ii)[b] assert that ranKn ⊂ ran(Kn + γnM) and Kn + γnM is injective.

Now set

(∀n ∈ N) y∗n = γ−1
n (Knxn −Knyn) and λn =


γn‖y∗n‖2

〈xn − yn | y∗n〉
, if 〈xn − yn | y∗n〉 > 0;

ε, otherwise.
(3.49)

Fix n ∈ N. Then, by strong monotonicity of Kn and the Cauchy–Schwarz inequality,

ε‖xn − yn‖2 6 〈xn − yn | Knxn −Knyn〉 6 ‖xn − yn‖ ‖Knxn −Knyn‖. (3.50)

This implies that 〈xn − yn | y∗n〉 = γ−1
n 〈xn − yn | Knxn −Knyn〉 6 γ−1

n ‖xn − yn‖ ‖Knxn −
Knyn‖ 6 (εγn)−1‖Knxn − Knyn‖2 = ε−1γn‖y∗n‖2 and therefore that λn > ε. In addition, by

cocoercivity of Kn, γn‖y∗n‖2 = γ−1
n ‖Knxn − Knyn‖2 6 (2 − ε)γ−1

n 〈xn − yn | Knxn −Knyn〉 =

(2 − ε)〈xn − yn | y∗n〉 and thus λn 6 2 − ε. Next, we derive from (3.48) that yn =

JKnγnM
xn. If 〈xn − yn | y∗n〉 > 0, then (3.48) and (3.49) yield xn+1 = xn − γny

∗
n = xn +

λn〈yn − xn | y∗n〉y∗n/‖y∗n‖2. Otherwise, 〈xn − yn | y∗n〉 6 0 and the cocoercivity of Kn yields

‖y∗n‖2 = γ−2
n ‖Knxn−Knyn‖2 6 (2−ε)γ−2

n 〈xn − yn | Knxn −Knyn〉 6 0. Hence, y∗n = 0 and we

therefore deduce from (3.48) that xn+1 = xn. Thus, (3.48) is an instance of (3.23). Next, con-

dition (ii)[a] in Theorem 3.16 is trivially satisfied and, in view of Remark 3.17, condition (ii)[b]

in Theorem 3.16 is also fulfilled.

We conclude this section by further illustrating the effectiveness of warped resolvent iter-

ations by designing a new method to solve an intricate system of monotone inclusions and

its dual. We are not aware of a splitting method that could handle such a formulation with a

comparable level of flexibility. Special cases of this system appear in [1,10,18,25].

Problem 3.28 Let (Yi)i∈I and (Zj)j∈J be finite families of real Hilbert spaces. For every i ∈ I
and j ∈ J , let Ai : Yi → 2Yi and Bj : Zj → 2Zj be maximally monotone, let Ci : Yi → Yi be

monotone and µi-Lipschitzian for some µi ∈ ]0,+∞[, let Dj : Zj → Zj be monotone and νj-
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Lipschitzian for some νj ∈ ]0,+∞[, let Lji ∈ B(Yi,Zj), let s∗i ∈ Yi, and let rj ∈ Zj . Consider

the system of coupled inclusions

find (xi)i∈I ∈×
i∈I
Yi such that

(∀i ∈ I) s∗i ∈ Aixi +
∑
j∈J

L∗ji

(
(Bj +Dj)

(∑
k∈I

Ljkxk − rj
))

+ Cixi, (3.51)

its dual problem

find (v∗j )j∈J ∈×
j∈J
Zj such that

(
∃ (xi)i∈I ∈×

i∈I
Yi
)

(∀i ∈ I)(∀j ∈ J)


s∗i −

∑
k∈J

L∗kiv
∗
k ∈ Aixi + Cixi

v∗j ∈ (Bj +Dj)

(∑
k∈I

Ljkxk − rj
)
,

(3.52)

and the associated Kuhn–Tucker set

Z =

{(
(xi)i∈I , (v

∗
j )j∈J

) ∣∣∣∣ (∀i ∈ I) xi ∈ Yi and s∗i −
∑
k∈J

L∗kiv
∗
k ∈ Aixi + Cixi,

and (∀j ∈ J) v∗j ∈ Zj and
∑
k∈I

Ljkxk − rj ∈ (Bj +Dj)
−1v∗j

}
. (3.53)

We denote by P and D the sets of solutions to (3.51) and (3.52), respectively. The problem is

to find a point in Z.

Corollary 3.29 Consider the setting of Problem 3.28. For every i ∈ I and every j ∈ J , let
(αi, χi, βj , κj) ∈ ]0,+∞[4, let εi ∈ ]0, αi/(µi + 1)[, let δj ∈ ]0, βj/(νj + 1)[, let (Fi,n)n∈N be oper-
ators from Yi to Yi that are αi-strongly monotone and χi-Lipschitzian, let (Wj,n)n∈N be operators
from Zj to Zj that are βj-strongly monotone and κj-Lipschitzian; in addition, let (γi,n)n∈N and
(τj,n)n∈N be sequences in [εi, (αi − εi)/µi] and [δj , (βj − δj)/νj ], respectively. Suppose that Z 6= ∅
and that

Y =×
i∈I
Yi, Z =×

j∈J
Zj , and X = Y × Z × Z. (3.54)

Let ((xi,0)i∈I , (yj,0)j∈J , (v
∗
j,0)j∈J) and ((x̃i,n)i∈I , (ỹj,n)j∈J , (ṽ

∗
j,n)j∈J)n∈N be in X , and let (λn)n∈N

be a sequence in ]0, 2[ such that 0 < infn∈N λn 6 supn∈N λn < 2. Iterate
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for n = 0, 1, . . .

for every i ∈ I l∗i,n = Fi,nx̃i,n − γi,nCix̃i,n − γi,n
∑

j∈J L
∗
jiṽ
∗
j,n

ai,n =
(
Fi,n + γi,nAi

)−1
(l∗i,n + γi,ns

∗
i )

o∗i,n = γ−1
i,n (l∗i,n − Fi,nai,n) + Ciai,n

for every j ∈ J
t∗j,n = Wj,nỹj,n − τj,nDj ỹj,n + τj,nṽ

∗
j,n

bj,n =
(
Wj,n + τj,nBj

)−1
t∗j,n

f∗j,n = τ−1
j,n (t∗j,n −Wj,nbj,n) +Djbj,n

cj,n =
∑

i∈I Ljix̃i,n − ỹj,n + ṽ∗j,n − rj
for every i ∈ I⌊
a∗i,n = o∗i,n +

∑
j∈J L

∗
jicj,n

for every j ∈ J⌊
b∗j,n = f∗j,n − cj,n
c∗j,n = rj + bj,n −

∑
i∈I Ljiai,n

σn =
∑

i∈I ‖a∗i,n‖2 +
∑

j∈J
(
‖b∗j,n‖2 + ‖c∗j,n‖2

)
θn =

∑
i∈I 〈ai,n − xi,n | a∗i,n〉+

∑
j∈J
(
〈bj,n − yj,n | b∗j,n〉+ 〈cj,n − v∗j,n | c∗j,n〉

)
if θn < 0⌊
ρn = λnθn/σn

else⌊
ρn = 0

for every i ∈ I⌊
xi,n+1 = xi,n + ρna

∗
i,n

for every j ∈ J⌊
yj,n+1 = yj,n + ρnb

∗
j,n

v∗j,n+1 = v∗j,n + ρnc
∗
j,n.

(3.55)

Suppose that

(∀i ∈ I)(∀j ∈ J) x̃i,n − xi,n → 0, ỹj,n − yj,n → 0, and ṽ∗j,n − v∗j,n → 0. (3.56)

Set (∀n ∈ N) xn = (xi,n)i∈I and v∗n = (v∗j,n)j∈J . Then (xn)n∈N converges weakly to a point x ∈P,
(v∗n)n∈N converges weakly to a point v∗ ∈ D , and (x, v∗) ∈ Z.
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Proof. Define 

A : Y → 2Y : (xi)i∈I 7→×
i∈I

(Aixi + Cixi)

B : Z → 2Z : (yj)j∈J 7→×
j∈J

(Bjyj +Djyj)

L : Y → Z : (xi)i∈I 7→
(∑

i∈I
Ljixi

)
j∈J

s∗ = (s∗i )i∈I and r = (rj)j∈J .

(3.57)

We observe that

L∗ : Z → Y : (v∗j )j∈J 7→

(∑
j∈J

L∗jiv
∗
j

)
i∈I

. (3.58)

In the light of [7, Proposition 20.23], A and B are maximally monotone. On the other hand,

we deduce from (3.53), (3.57), and (3.58) that

Z =
{

(x, v∗) ∈ Y × Z | s∗ − L∗v∗ ∈ Ax and Lx− r ∈ B−1v∗
}
. (3.59)

Define

M : X → 2X : (x, y, v∗) 7→ (−s∗ +Ax+ L∗v∗)× (By − v∗)× {r − Lx+ y}. (3.60)

Lemma 3.3(ii) entails that M is maximally monotone. Furthermore, since Z 6= ∅,

Lemma 3.3(iv) yields zerM 6= ∅. Next, set

S : X → X : (x, y, v∗) 7→ (−L∗v∗, v∗, Lx− y) (3.61)

and, for every n ∈ N,

Kn : X → X : (x, y, v∗) 7→
((
γ−1
i,nFi,nxi−Cixi

)
i∈I−L

∗v∗,
(
τ−1
j,nWj,nyj−Djyj

)
j∈J+v∗, Lx−y+v∗

)
(3.62)

and

Tn : X → X : (x, y, v∗) 7→
((
γ−1
i,nFi,nxi − Cixi

)
i∈I ,

(
τ−1
j,nWj,nyj −Djyj

)
j∈J , v

∗
)
. (3.63)

For every i ∈ I and every n ∈ N, using the facts that Ci is µi-Lipschitzian, that Fi,n is αi-

strongly monotone, and that γi,n ∈ [εi, (αi − εi)/µi], Lemma 3.25(i) implies that Fi,n − γi,nCi
is εi-strongly monotone and therefore, since γ−1

i,n > µi/(αi − εi), it follows that γ−1
i,nFi,n − Ci

is strongly monotone with constant εiµi/(αi − εi). Likewise, for every j ∈ J and every n ∈ N,

τ−1
j,nWj,n −Dj is strongly monotone with constant δjνj/(βj − δj). Thus, upon setting

ϑ = min

{
min
i∈I

εiµi
αi − εi

,min
j∈J

δjνj
βj − δj

, 1

}
, (3.64)
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we get

(∀n ∈ N)
(
∀(x, y, v∗) ∈ X

)(
∀(a, b, c∗) ∈ X

)〈
(x, y, v∗)− (a, b, c∗) | Tn(x, y, v∗)− Tn(a, b, c∗)

〉
=
∑
i∈I

〈
xi − ai |

(
γ−1
i,nFi,nxi − Cixi

)
−
(
γ−1
i,nFi,nai − Ciai

)〉
+
∑
j∈J

〈
yj − bj |

(
τ−1
j,nWj,nyj −Djyj

)
−
(
τ−1
j,nWj,nbj −Djbj

)〉
+ ‖v∗ − c∗‖2

> ϑ
∑
i∈I
‖xi − ai‖2 + ϑ

∑
j∈J
‖yj − bj‖2 + ϑ‖v∗ − c∗‖2

= ϑ‖(x, y, v∗)− (a, b, c∗)‖2. (3.65)

Hence, the operators (Tn)n∈N are ϑ-strongly monotone. However, S is linear, bounded, and

S∗ = −S. It follows that the kernels (Kn)n∈N = (Tn +S)n∈N are ϑ-strongly monotone. Now, for

every i ∈ I and every n ∈ N, since γ−1
i,nFi,n is Lipschitzian with constant χi/εi, we deduce that

γ−1
i,nFi,n−Ci is Lipschitzian with constant χi/εi +µi. Likewise, for every j ∈ J and every n ∈ N,

τ−1
j,nWj,n −Dj is Lipschitzian with constant κj/δj + νj . Hence, upon setting

η = max
{

max
i∈I
{χi/εi + µi},max

j∈J
{κj/δj + νj}, 1

}
, (3.66)

we obtain

(∀n ∈ N)
(
∀(x, y, v∗) ∈ X

)(
∀(a, b, c∗) ∈ X

)
‖Tn(x, y, v∗)− Tn(a, b, c∗)‖2

=
∑
i∈I

∥∥(γ−1
i,nFi,nxi − Cixi

)
−
(
γ−1
i,nFi,nai − Ciai

)∥∥2

+
∑
j∈J

∥∥(τ−1
j,nWj,nyj −Djyj

)
−
(
τ−1
j,nWj,nbj −Djbj

)∥∥2
+ ‖v∗ − c∗‖2

6 η2
∑
i∈I
‖xi − ai‖2 + η2

∑
j∈J
‖yj − bj‖2 + η2‖v∗ − c∗‖2

= η2‖(x, y, v∗)− (a, b, c∗)‖2. (3.67)

This implies that the operators (Tn)n∈N are η-Lipschitzian. On the other hand, S is Lipschitzian

with constant ‖S‖. Altogether, the kernels (Kn)n∈N are Lipschitzian with constant η + ‖S‖. In

turn, using Proposition 3.12(i)[d]&(ii)[b], we infer that, for every n ∈ N, ranKn ⊂ ran(Kn +

M) and Kn +M is injective. Now set

(∀n ∈ N) pn =
(
(xi,n)i∈I , (yj,n)j∈J , (v

∗
j,n)j∈J

)
, p̃n =

(
(x̃i,n)i∈I , (ỹj,n)j∈J , (ṽ

∗
j,n)j∈J

)
,

qn =
(
(ai,n)i∈I , (bj,n)j∈J , (cj,n)j∈J

)
, and q∗n =

(
(a∗i,n)i∈I , (b

∗
j,n)j∈J , (c

∗
j,n)j∈J

)
. (3.68)
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In view of (3.62), (3.60), (3.57), and (3.58), we deduce that (3.55) assumes the form

for n = 0, 1, . . .

qn = JKnM p̃n

q∗n = Knp̃n −Knqn

if 〈qn − pn | q∗n〉 < 0⌊
pn+1 = pn +

λn〈qn − pn | q∗n〉
‖q∗n‖2

q∗n

else⌊
pn+1 = pn.

(3.69)

In addition, (3.56) implies that p̃n − pn → 0. Altogether, in the light of Theorem 3.16 and

Remark 3.17, there exists (x, y, v∗) ∈ zerM such that pn ⇀ (x, y, v∗). It follows that xn ⇀ x and

v∗n ⇀ v∗. Further, we conclude by using Lemma 3.3(iii) that x ∈ P, v∗ ∈ D , and (x, v∗) ∈ Z.
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Chapter 4
BREGMAN FORWARD-BACKWARD
OPERATOR SPLITTING

4.1 Introduction and context

We devote this chapter to question (Q3) of Chapter 1. We propose a novel forward-backward

splitting algorithm based on Bregman distances, which is shown to bring together and extend

several Bregman iterative methods scattered in the literature. Its weak convergence is estab-

lished and, in the minimization setting, rates of convergence are obtained.

This chapter presents the following article:

M. N. Bùi and P. L. Combettes, Bregman forward-backward operator splitting, Set-

Valued and Variational Analysis, vol. 29, no. 3, pp. 583–603, September 2021.

4.2 Article: Bregman forward-backward operator splitting

Dedicated to Terry Rockafellar on the occasion of his 85th birthday

Abstract. We establish the convergence of the forward-backward splitting algorithm based on

Bregman distances for the sum of two monotone operators in reflexive Banach spaces. Even

in Euclidean spaces, the convergence of this algorithm has so far been proved only in the case

of minimization problems. The proposed framework features Bregman distances that vary over

the iterations and a novel assumption on the single-valued operator that captures various prop-

erties scattered in the literature. In the minimization setting, we obtain rates that are sharper

than existing ones.
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4.2.1 Introduction

Throughout, X is a reflexive real Banach space with topological dual X ∗. We are concerned with

the following monotone inclusion problem (see Section 4.2.2.1 for notation and definitions).

Problem 4.1 Let A : X → 2X
∗

and B : X → 2X
∗

be maximally monotone, let f ∈ Γ0(X ) be

essentially smooth, and letDf be the Bregman distance associated with f . Set C = (int dom f)∩
domA and S = (int dom f) ∩ zer(A + B). Suppose that C ⊂ int domB, S 6= ∅, B is single-

valued on int domB, and there exist δ1 ∈ [0, 1[, δ2 ∈ [0, 1], and κ ∈ [0,+∞[ such that

(∀x ∈ C)(∀y ∈ C)(∀z ∈ S )(∀y∗ ∈ Ay)(∀z∗ ∈ Az)〈
y − x,By −Bz

〉
6 κDf (x, y) +

〈
y − z, δ1(y∗ − z∗) + δ2

(
By −Bz

)〉
. (4.1)

The objective is to

find x ∈ int dom f such that 0 ∈ Ax+Bx. (4.2)

The central problem (4.2) has extensive connections with various areas of mathematics and

its applications. In Hilbert spaces, if B is cocoercive, a standard method for solving (4.2) is the

forward-backward algorithm, which operates with the update xn+1 = (Id + γA)−1(xn − γBxn)

[17]. This iteration is not applicable beyond Hilbert spaces sinceAmaps toX ∗ 6= X . In addition,

there has been a significant body of work (see, e.g., [3, 6, 8, 12, 13, 16, 18, 19, 23]) showing

the benefits of replacing standard distances by Bregman distances, even in Euclidean spaces.

Given a sequence (γn)n∈N in ]0,+∞[ and a suitable sequence of differentiable convex functions

(fn)n∈N, we propose to solve (4.2) via the iterative scheme

(∀n ∈ N) xn+1 =
(
∇fn + γnA

)−1(∇fn(xn)− γnBxn
)
, (4.3)

which consists of first applying a forward (explicit) step involving B and then a backward

(implicit) step involving A. Let us note that the convergence of such an iterative process has

not yet been established, even in finite-dimensional spaces with a single function fn = f and

constant parameters γn = γ. Furthermore, the novel scheme (4.3) will be shown to unify and

extend several iterative methods which have thus far not been brought together:

• The Bregman monotone proximal point algorithm

(∀n ∈ N) xn+1 =
(
∇f + γnA

)−1(∇f(xn)
)

(4.4)

of [6] for finding a zero of A in int dom f , where f is a Legendre function.

• The variable metric forward-backward splitting method

(∀n ∈ N) xn+1 =
(
Un + γnA

)−1(
Unxn − γnBxn

)
(4.5)

of [15] for finding a zero of A + B in a Hilbert space, where (Un)n∈N is a sequence of
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strongly positive self-adjoint bounded linear operators.

• The splitting method

(∀n ∈ N) xn+1 =
(
∇fn + γn∂ϕ

)−1(∇fn(xn)− γn∇ψ(xn)
)

(4.6)

of [18] for finding a minimizer of the sum of the convex functions ϕ and ψ in int dom f .

• The Renaud–Cohen algorithm

(∀n ∈ N) xn+1 =
(
∇f + γA

)−1(∇f(xn)− γBxn
)

(4.7)

of [20] for finding a zero of A+B in a Hilbert space, where f is real-valued and strongly

convex.

Problems which cannot be solved by algorithms (4.4)–(4.7) will be presented in Example 4.10

as well as in Sections 4.2.3.2 and 4.2.3.4. New results on the minimization setting will be

presented in Section 4.2.3.3.

The goal of the present paper is to investigate the asymptotic behavior of (4.3) under mild

conditions on A, B, and (fn)n∈N. Let us note that the convergence proof techniques used in the

above four frameworks do not extend to (4.3). For instance, the tools of [18] rely heavily on

functional inequalities involving ϕ and ψ. On the other hand, the approach of [15] exploits spe-

cific properties of quadratic kernels in Hilbert spaces, while [6] relies on Bregman monotonicity

properties of the iterates that will no longer hold in the presence of B. Finally, the proofs of

[20] depend on the strong convexity of f , the underlying Hilbertian structure, and the fact that

the updating equation is governed by a fixed operator. Our analysis will not only capture these

frameworks but also provide new methods to solve problems beyond their reach. It hinges on

the theory of Legendre functions and the new condition (4.1), which will be seen to cover in

particular various properties such as the cocoercivity assumption used in the standard forward-

backward method in Hilbert spaces [7, 17], as well as the seemingly unrelated assumptions

used in [6,15,18,20] to study (4.4)–(4.7).

The main result on the convergence of (4.3) is established in Section 4.2.2 for the gen-

eral scenario described in Problem 4.1. Section 4.2.3 is dedicated to special cases and applica-

tions. In the context of minimization problems, convergence rates on the worst behavior of the

method are obtained.

4.2.2 Main results

4.2.2.1 Notation and definitions

The norm of X is denoted by ‖·‖ and the canonical pairing between X and X ∗ by 〈· , ·〉. If X
is Hilbertian, its scalar product is denoted by 〈· | ·〉. The symbols ⇀ and→ denote respectively

weak and strong convergence. The set of weak sequential cluster points of a sequence (xn)n∈N

in X is denoted by W(xn)n∈N.
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Let M : X → 2X
∗

be a set-valued operator. Then graM =
{

(x, x∗) ∈ X × X ∗ | x∗ ∈Mx
}

is the graph of M , domM =
{
x ∈ X | Mx 6= ∅

}
the domain of M , ranM ={

x∗ ∈ X ∗ | (∃x ∈ X )x∗ ∈Mx
}

the range of M , and zerM =
{
x ∈ X | 0 ∈Mx

}
the set of

zeros of M . Moreover, M is monotone if

(
∀(x1, x

∗
1) ∈ graM

)(
∀(x2, x

∗
2) ∈ graM

)
〈x1 − x2, x

∗
1 − x∗2〉 > 0, (4.8)

and maximally monotone if, furthermore, there exists no monotone operator from X to 2X
∗

the

graph of which properly contains graM .

A function f : X → ]−∞,+∞] is coercive if lim‖x‖→+∞ f(x) = +∞ and supercoercive

if lim‖x‖→+∞ f(x)/‖x‖ = +∞. Γ0(X ) is the class of lower semicontinuous convex functions

f : X → ]−∞,+∞] such that dom f =
{
x ∈ X | f(x) < +∞

}
6= ∅. Now let f ∈ Γ0(X ).

The conjugate of f is the function f∗ ∈ Γ0(X ∗) defined by f∗ : X ∗ → ]−∞,+∞] : x∗ 7→
supx∈X (〈x, x∗〉 − f(x)), and the subdifferential of f is the maximally monotone operator

∂f : X → 2X
∗
: x 7→

{
x∗ ∈ X ∗ | (∀y ∈ X ) 〈y − x, x∗〉+ f(x) 6 f(y)

}
. (4.9)

In addition, f is a Legendre function if it is essentially smooth in the sense that ∂f is both locally

bounded and single-valued on its domain, and essentially strictly convex in the sense that ∂f∗

is locally bounded on its domain and f is strictly convex on every convex subset of dom ∂f [5].

Suppose that f is Gâteaux differentiable on int dom f 6= ∅. The Bregman distance associated

with f is
Df : X × X → [0,+∞]

(x, y) 7→

f(x)− f(y)− 〈x− y,∇f(y)〉, if y ∈ int dom f ;

+∞, otherwise.

(4.10)

Given α ∈ ]0,+∞[, we define

Cα(f) =
{
g ∈ Γ0(X ) | dom g = dom f, g is Gâteaux differentiable on int dom f, Dg > αDf

}
.

(4.11)

4.2.2.2 On condition (4.1)

The following proposition provides several key illustrations of the pertinence of (4.1) in terms

of capturing concrete scenarios.

Proposition 4.2 Consider the setting of Problem 4.1. Then (4.1) holds in each of the following
cases:

(i) δ1 ∈ [0, 1[, δ2 = 1, and (∀x ∈ C)(∀y ∈ C)(∀z ∈ S ) 〈z − x,By −Bz〉 6 κDf (x, y).
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(ii) δ1 = 0, δ2 = 1, and B = ∂ψ, where ψ ∈ Γ0(X ) satisfies

(∀x ∈ C)(∀y ∈ C)(∀z ∈ S ) Dψ(x, y) 6 κDf (x, y) +Dψ(x, z) +Dψ(z, y). (4.12)

(iii) δ1 = 0, δ2 = 1, and there exists ψ ∈ Γ0(X ) such that B = ∂ψ and (∀x ∈ C)(∀y ∈ C)

Dψ(x, y) 6 κDf (x, y).

(iv) domB = X , there exists β ∈ ]0,+∞[ such that

(
∀(x, x∗) ∈ gra(A+B)

)(
∀(y, y∗) ∈ gra(A+B)

)
〈x− y, x∗ − y∗〉 > β‖Bx−By‖2, (4.13)

f is Fréchet differentiable on X ,∇f is α-strongly monotone on domA for some α ∈ ]0,+∞[,
ε ∈ ]0, 2β[, κ = 1/(α(2β − ε)), and δ1 = δ2 = (2β − ε)/(2β).

(v) A+B is strongly monotone with constant µ ∈ ]0,+∞[,B is Lipschitzian on domB = X with
constant ν ∈ ]0,+∞[, f is Fréchet differentiable on X , ∇f is α-strongly monotone on domA

for some α ∈ ]0,+∞[, ε ∈
]
0, 2µ/ν2

[
, κ = ν2/(α(2µ−εν2)), and δ1 = δ2 = (2µ−εν2)/(2µ).

(vi) domB = X , β ∈ ]0,+∞[, f is Fréchet differentiable on X , ∇f is α-strongly monotone on
domA for some α ∈ ]0,+∞[, ε ∈ ]0, 2β[, κ = 1/(α(2β − ε)), δ1 = 0, δ2 = (2β − ε)/(2β),
and one of the following is satisfied:

[a] B is β-cocoercive, i.e.,

(∀x ∈ X )(∀y ∈ X ) 〈x− y,Bx−By〉 > β‖Bx−By‖2. (4.14)

[b] B is ν-Lipschitzian for some ν ∈ ]0,+∞[, and angle bounded with constant 1/(4βν),
i.e.,

(∀x ∈ X )(∀y ∈ X )(∀z ∈ X ) 〈y − z,Bz −Bx〉 6 1

4βν
〈x− y,Bx−By〉. (4.15)

[c] B is (1/β)-Lipschitzian and there exists ψ ∈ Γ0(X ) such that B = ∇ψ.

Proof. (i): Let x ∈ C, y ∈ C, and z ∈ S . Then 〈y − x,By −Bz〉 = 〈z − x,By −Bz〉 +

〈y − z,By −Bz〉 6 κDf (x, y) + 〈y − z, δ2(By −Bz)〉. In view of the monotonicity of A, we

obtain (4.1).

(ii)⇒(i): In the light of [9, Proposition 4.1.5 and Corollary 4.2.5], ψ is Gâteaux differen-

tiable on int domψ and B = ∇ψ on int domψ = int domB ⊃ C. Hence, we derive from (4.12),

(4.10), and [6, Proposition 2.3(ii)] that

(∀x ∈ C)(∀y ∈ C)(∀z ∈ S ) κDf (x, y) > Dψ(x, y)−Dψ(x, z)−Dψ(z, y) = 〈z − x,By −Bz〉.
(4.16)

(iii)⇒(ii): Clear.

(iv): It results from [9, Theorem 4.2.10] that ∇f is continuous. Thus, using the strong
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monotonicity of ∇f on domA, we obtain

(∀x ∈ domA)(∀y ∈ domA) 〈x− y,∇f(x)−∇f(y)〉 > α‖x− y‖2. (4.17)

Given x and y in domA, define φ : R→ R : t 7→ f(y + t(x− y)), and observe that, since domA

is convex [24, Theorem 3.11.12], [x, y] ⊂ domA and therefore (4.17) yields

Df (x, y) =

∫ 1

0
φ′(t)dt− 〈x− y,∇f(y)〉

=

∫ 1

0

〈
x− y,∇f(y + t(x− y))−∇f(y)

〉
dt

>
∫ 1

0
tα‖x− y‖2dt

=
α

2
‖x− y‖2. (4.18)

In turn, using (4.13) and (4.18), we deduce that

(∀x ∈ C)
(
∀(y, y∗) ∈ graA

)(
∀(z, z∗) ∈ graA

)
〈y − x,By −Bz〉 6

∥∥∥∥∥ y − x√
2β − ε

∥∥∥∥∥∥∥√2β − ε(By −Bz)
∥∥

6
‖y − x‖2

2(2β − ε)
+

2β − ε
2
‖By −Bz‖2 (4.19)

6 κDf (x, y) +
〈
y − z, δ1(y∗ − z∗) + δ2(By −Bz)

〉
. (4.20)

(v)⇒(iv): Set β = µ/ν2. Then

(
∀(x, x∗) ∈ gra(A+B)

)(
∀(y, y∗) ∈ gra(A+B)

)
〈x− y, x∗ − y∗〉 > µ‖x− y‖2 > β‖Bx−By‖2. (4.21)

(vi): We consider each case separately.

[a]: By arguing as in (4.18), we obtain (∀x ∈ domA)(∀y ∈ domA) Df (x, y) > (α/2)‖x −
y‖2. It thus follows from (4.19) and (4.14) that

(∀x ∈ C)
(
∀(y, y∗) ∈ graA

)(
∀(z, z∗) ∈ graA

)
〈y − x,By −Bz〉 6 ‖y − x‖

2

2(2β − ε)
+

2β − ε
2
‖By −Bz‖2

6 κDf (x, y) +
〈
y − z, δ2(By −Bz)

〉
. (4.22)

[b]⇒[a]: We derive from [1, Proposition 4] that B is cocoercive with constant β.

[c]⇒[a]: This follows from [1, Corollaire 10].
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Remark 4.3 Condition (iv) in Proposition 4.2 first appeared in [20] and does not seem to have

gotten much notice in the literature. The cocoercivity condition (vi)[a] was first used in [17]

to prove the weak convergence of the classical forward-backward method in Hilbert spaces.

Finally, in reflexive Banach space minimization problems, (iii) appears in [18]; see also [3] for

the Euclidean case.

Remark 4.4 Condition (iii) is satisfied in particular when X is a Hilbert space, f = ‖·‖2/2,

domψ = X , and ∇ψ is Lipschitzian [7, Theorem 18.15], in which case it is known as the

“descent lemma.” Condition (ii) can be viewed as an extension of this standard descent lemma

involving triples (x, y, z) and an arbitrary Bregman distance Df in reflexive Banach spaces. Let

us underline that (ii) is more general than (iii). Indeed, consider the setting of Problem 4.1 with

the following additional assumptions: X is a Hilbert space, 0 ∈ int dom f , A is the normal cone

operator of some self-dual cone K, and there exists a Gâteaux differentiable convex function

ψ : X → R such that

B = ∇ψ, Argminψ = {0}, and ∇ψ(K) ⊂ K. (4.23)

Then C = (int dom f) ∩ domA ⊂ K and S = {0}. Further, for every x ∈ C and every y ∈ C,

(4.23) yields Dψ(x, y) − Dψ(x, 0) − Dψ(0, y) = 〈−x | ∇ψ(y)−∇ψ(0)〉 = 〈−x | ∇ψ(y)〉 6 0 6

Df (x, y). Therefore, (4.12) is satisfied. On the other hand, (iii) does not hold in general. For

instance, take X = R, K = [0,+∞[, f = | · |2/2, and ψ = | · |3/2.

4.2.2.3 Forward-backward splitting for monotone inclusions

The formal setting of the proposed Bregman forward-backward splitting method is as follows.

Algorithm 4.5 Consider the setting of Problem 4.1. Let α ∈ ]0,+∞[, let (γn)n∈N be in ]0,+∞[,

and let (fn)n∈N be in Cα(f). Suppose that the following hold:

[a] infn∈N γn > 0, supn∈N(κγn) 6 α, and supn∈N(δ1γn+1/γn) < 1.

[b] There exists a summable sequence (ηn)n∈N in [0,+∞[ such that (∀n ∈ N) Dfn+1 6 (1 +

ηn)Dfn .

[c] For every n ∈ N, ∇fn is strictly monotone on C and (∇fn − γnB)(C) ⊂ ran(∇fn + γnA).

Take x0 ∈ C and set (∀n ∈ N) xn+1 = (∇fn + γnA)−1(∇fn(xn)− γnBxn).

Let us establish basic asymptotic properties of Algorithm 4.5, starting with the fact that its

viability domain is C.

Proposition 4.6 Let (xn)n∈N be a sequence generated by Algorithm 4.5 and let z ∈ S . Then
(xn)n∈N is a well-defined sequence in C and the following hold:

(i) (Dfn(z, xn))n∈N converges.

(ii)
∑

n∈N(1− κγn/α)Dfn(xn+1, xn) < +∞ and
∑

n∈N(1− κγn/α)Df (xn+1, xn) < +∞.
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(iii)
∑

n∈N〈xn+1 − z, γ−1
n (∇fn(xn)−∇fn(xn+1))−Bxn +Bz〉 < +∞.

(iv)
∑

n∈N(1− δ2)〈xn − z,Bxn −Bz〉 < +∞.

(v) Suppose that one of the following is satisfied:

[a] C is bounded.

[b] f is supercoercive.

[c] f is uniformly convex.

[d] f is essentially strictly convex with dom f∗ open and ∇f∗ weakly sequentially continu-
ous.

[e] X is finite-dimensional and dom f∗ is open.

[f] f is essentially strictly convex and ρ = inf
x∈int dom f
y∈int dom f

x 6=y

Df (x, y)

Df (y, x)
∈ ]0,+∞[.

Then (xn)n∈N is bounded.

Proof. Take n ∈ N, and suppose that (y∗, y1) and (y∗, y2) belong to gra(∇fn+γnA)−1. Then y∗ ∈
(∇fn + γnA)y1 and y∗ ∈ (∇fn + γnA)y2. However, by virtue of condition [c] in Algorithm 4.5,

∇fn + γnA is strictly monotone. Therefore, since 〈y1 − y2, y
∗ − y∗〉 = 0, we infer that y1 = y2.

Hence

(∇fn + γnA)−1 is single-valued on dom(∇fn + γnA)−1 = ran(∇fn + γnA). (4.24)

Moreover, it follows from [9, Proposition 4.2.2] and (4.11) that

ran(∇fn + γnA)−1 = dom∇fn ∩ domA = (int dom fn) ∩ domA = C. (4.25)

Next, we observe that, since x0 ∈ C ⊂ int domB, ∇f0(x0)− γ0Bx0 is a singleton. Furthermore,

in view of condition [c] in Algorithm 4.5, ∇f0(x0)− γ0Bx0 ∈ ran(∇f0 + γ0A). We thus deduce

from (4.24) that x1 = (∇f0 +γ0A)−1(∇f0(x0)−γ0Bx0) is uniquely defined. In addition, (4.25)

yields x1 ∈ ran(∇f0 + γ0A)−1 = C. The conclusion that (xn)n∈N is a well-defined sequence in

C follows by invoking these facts inductively.

(i)–(iv): Condition [a] in Algorithm 4.5 entails that there exists ε ∈ ]0, 1[ such that

δ1γn+1 6 (1− ε)γn. (4.26)

Now take x∗0 ∈ Ax0 and set

x∗n+1 = γ−1
n

(
∇fn(xn)−∇fn(xn+1)

)
−Bxn

∆n = Dfn(z, xn) + δ1γn〈xn − z, x∗n +Bz〉

θn = (1− κγn/α)Dfn(xn+1, xn)

+εγn〈xn+1 − z, x∗n+1 +Bz〉+ (1− δ2)γn〈xn − z,Bxn −Bz〉.

(4.27)
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In view of (4.27),

(xn+1, x
∗
n+1) ∈ graA. (4.28)

In turn, since (z,−Bz) ∈ graA and A is monotone,

〈xn+1 − z, x∗n+1 +Bz〉 > 0. (4.29)

Hence, invoking condition [a] in Algorithm 4.5 and the monotonicity of B, we obtain θn > 0.

Next, since z ∈ int dom f = int dom fn by (4.11), we derive from (4.27) and [6, Proposi-

tion 2.3(ii)] that

0 =
〈
xn+1 − z,∇fn(xn)−∇fn(xn+1)− γnBxn − γnx∗n+1

〉
=
〈
xn+1 − z,∇fn(xn)−∇fn(xn+1)

〉
+ γn〈z − xn+1, Bxn −Bz〉 − γn〈xn+1 − z, x∗n+1 +Bz〉

= Dfn(z, xn)−Dfn(z, xn+1)−Dfn(xn+1, xn) + γn〈z − xn+1, Bxn −Bz〉

− γn〈xn+1 − z, x∗n+1 +Bz〉. (4.30)

Thus, since (z,−Bz) ∈ graA and fn ∈ Cα(f), we infer from (4.26), (4.29), (4.28), and (4.1)

that

Dfn(z, xn+1) + δ1γn+1〈xn+1 − z, x∗n+1 +Bz〉

6 Dfn(z, xn+1) + γn〈xn+1 − z, x∗n+1 +Bz〉 − εγn〈xn+1 − z, x∗n+1 +Bz〉

= Dfn(z, xn)−Dfn(xn+1, xn) + γn〈z − xn+1, Bxn −Bz〉 − εγn〈xn+1 − z, x∗n+1 +Bz〉

= Dfn(z, xn)−Dfn(xn+1, xn) + γn〈xn − xn+1, Bxn −Bz〉 − γn〈xn − z,Bxn −Bz〉

− εγn〈xn+1 − z, x∗n+1 +Bz〉

6 Dfn(z, xn)−Dfn(xn+1, xn) + κγnDf (xn+1, xn) + δ1γn〈xn − z, x∗n +Bz〉

+ δ2γn〈xn − z,Bxn −Bz〉 − γn〈xn − z,Bxn −Bz〉 − εγn〈xn+1 − z, x∗n+1 +Bz〉

6 Dfn(z, xn) + δ1γn〈xn − z, x∗n +Bz〉 − (1− κγn/α)Dfn(xn+1, xn)

− εγn〈xn+1 − z, x∗n+1 +Bz〉 − (1− δ2)γn〈xn − z,Bxn −Bz〉

= ∆n − θn. (4.31)

Consequently, by condition [b] in Algorithm 4.5 and (4.29),

∆n+1 = Dfn+1(z, xn+1) + δ1γn+1〈xn+1 − z, x∗n+1 +Bz〉

6 (1 + ηn)
(
Dfn(z, xn+1) + δ1γn+1〈xn+1 − z, x∗n+1 +Bz〉

)
6 (1 + ηn)(∆n − θn)

6 (1 + ηn)∆n − θn. (4.32)
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Hence, [7, Lemma 5.31] asserts that

(∆n)n∈N converges and
∑
n∈N

θn < +∞. (4.33)

In turn, we infer from (4.27) and condition [a] in Algorithm 4.5 that

∑
n∈N

(1− κγn/α)Dfn(xn+1, xn) < +∞∑
n∈N
〈xn+1 − z, x∗n+1 +Bz〉 < +∞∑

n∈N
(1− δ2)〈xn − z,Bxn −Bz〉 < +∞.

(4.34)

Thus, since (fn)n∈N lies in Cα(f), we obtain
∑

n∈N(1 − κγn/α)Df (xn+1, xn) < +∞. It results

from (4.33) and (4.27) that (Dfn(z, xn))n∈N converges.

(v): Recall that (xn)n∈N lies in C.

[a]: Clear.

[b]: We derive from (i) that (Df (z, xn))n∈N is bounded. In turn, [5, Lemma 7.3(viii)] asserts

that (xn)n∈N is bounded.

[c]: It results from [24, Theorem 3.5.10] that there exists a function φ : [0,+∞[→ [0,+∞]

that vanishes only at 0 such that limt→+∞ φ(t)/t→ +∞ and

(∀x ∈ int dom f)(∀y ∈ dom f) 〈y − x,∇f(x)〉+ f(x) + φ
(
‖x− y‖

)
6 f(y). (4.35)

Hence, in the light of (i), supn∈N φ(‖xn − z‖) 6 supn∈NDf (z, xn) 6 (1/α) supn∈NDfn(z, xn) <

+∞ and (xn)n∈N is therefore bounded.

[d]: Suppose that there exists a subsequence (xkn)n∈N of (xn)n∈N such that ‖xkn‖ → +∞.

We deduce from [5, Lemma 7.3(vii)] and (i) that

sup
n∈N

Df∗
(
∇f(xn),∇f(z)

)
= sup

n∈N
Df (z, xn) 6

1

α
sup
n∈N

Dfn(z, xn) < +∞. (4.36)

However, f∗ is a Legendre function by virtue of [5, Corollary 5.5] and ∇f(z) ∈ int dom f∗ by

virtue of [5, Theorem 5.10]. Thus, [5, Lemma 7.3(v)] guarantees thatDf∗( · ,∇f(z)) is coercive.

It therefore follows from (4.36) that (∇f(xkn))n∈N is bounded, and then from the reflexivity

of X ∗ that W(∇f(xkn))n∈N 6= ∅. In turn, there exist a subsequence (xlkn )n∈N of (xkn)n∈N and

x∗ ∈ X ∗ such that ∇f(xlkn ) ⇀ x∗. The weak lower semicontinuity of f∗ and (4.36) yield

Df∗(x
∗,∇f(z)) 6 limDf∗(∇f(xlkn ),∇f(z)) < +∞. Therefore

∇f(xlkn ) ⇀ x∗ ∈ dom f∗ = int dom f∗. (4.37)

Moreover, [5, Theorem 5.10] asserts that ∇f∗(x∗) ∈ int dom f and (∀n ∈ N) ∇f∗
(
∇f(xn)

)
=
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xn. Hence, (4.37) and the weak sequential continuity of ∇f∗ imply that xlkn =

∇f∗(∇f(xlkn )) ⇀ ∇f∗(x∗). This yields supn∈N ‖xlkn‖ < +∞ and we reach a contradiction.

[e]: A consequence of [5, Lemma 7.3(ix)] and (i).

[f]: It results from [5, Lemma 7.3(v)] that Df ( · , z) is coercive. In turn, since

supn∈NDf (xn, z) 6 (1/ρ) supn∈NDf (z, xn) < +∞ by (i), (xn)n∈N is bounded.

As seen in Proposition 4.6, by construction, an orbit of Algorithm 4.5 lies in C and therefore

in int dom f . Next, we proceed to identify sufficient conditions that guarantee that their weak

sequential cluster points are also in int dom f .

Proposition 4.7 Let (xn)n∈N be a sequence generated by Algorithm 4.5 and suppose that one of
the following holds:

[a] dom f ∩ domA ⊂ int dom f .

[b] f is essentially strictly convex with dom f∗ open and ∇f∗ weakly sequentially continuous.

[c] f is strictly convex on int dom f and ρ = inf
x∈int dom f
y∈int dom f

x 6=y

Df (x, y)

Df (y, x)
∈ ]0,+∞[.

[d] X is finite-dimensional.

Then W(xn)n∈N ⊂ int dom f .

Proof. Suppose that x ∈W(xn)n∈N, say xkn ⇀ x, and fix z ∈ S .

[a]: Since dom f is closed and convex, it is weakly closed [10, Corollary II.6.3.3(i)]. Hence,

since Proposition 4.6 asserts that (xn)n∈N lies in C ⊂ dom f , we infer that W(xn)n∈N ⊂ dom f .

Likewise, since domA is a closed convex set [24, Theorem 3.11.12] and (xn)n∈N lies in C ⊂
domA, we obtain W(xn)n∈N ⊂ domA. Altogether, W(xn)n∈N ⊂ dom f ∩ domA ⊂ int dom f .

[b]: Using an argument similar to that of the proof of Proposition 4.6(v)[d], we infer that

there exist a strictly increasing sequence (lkn)n∈N in N and x∗ ∈ int dom f∗ such that xlkn ⇀

∇f∗(x∗). Thus, appealing to [5, Theorem 5.10], we conclude that x = ∇f∗(x∗) ∈ int dom f .

[c]: Proposition 4.6(i) and the weak lower semicontinuity of Df ( · , z) yield

Df (x, z) 6 limDf (xkn , z) 6 (1/ρ) limDf (z, xkn) 6 (αρ)−1 limDfkn
(z, xkn) < +∞. (4.38)

Thus x ∈ dom f . We show that dom f is open. Suppose that there exists y ∈ dom f r int dom f ,

let (αn)n∈N be a sequence in ]0, 1[ such that αn → 1, and set (∀n ∈ N) yn = αny + (1 − αn)z.

Then {yn}n∈N ⊂ ]y, z[ ⊂ (int dom f) r {z} [10, Proposition II.2.6.16]. Moreover, yn → y and,

by convexity of f , (∀n ∈ N) Df (yn, z) 6 αn(f(y)− f(z)− 〈y − z,∇f(z)〉). Hence

limDf (yn, z) 6 f(y)− f(z)− 〈y − z,∇f(z)〉 = Df (y, z). (4.39)

However, it results from the lower semicontinuity of f that limDf (yn, z) = lim(f(yn)− f(z))−
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lim〈yn − z,∇f(z)〉 > f(y)− f(z)− 〈y − z,∇f(z)〉 = Df (y, z). Hence, (4.39) forces

limDf (yn, z) = Df (y, z). (4.40)

In addition, by convexity of f , (∀n ∈ N) Df (z, yn) > αn(f(z)−f(y)−〈z − y,∇f(yn)〉). However,

[5, Theorem 5.6] and the essential smoothness of f entail that

〈z − y,∇f(yn)〉 = 〈z − y,∇f(y + (1− αn)(z − y))〉 → −∞. (4.41)

Thus,

+∞ = lim
(
αn
(
f(z)− f(y)− 〈z − y,∇f(yn)〉

))
6 limDf (z, yn). (4.42)

It results from (4.40) and (4.42) that 0 < ρ 6 limDf (yn, z)/Df (z, yn) = 0, so that we reach a

contradiction. Consequently, dom f is open and hence x ∈ dom f = int dom f .

[d]: Proposition 4.6(i) ensures that (xkn)n∈N is a sequence in int dom f such that

(Df (z, xkn))n∈N is bounded. Therefore, [4, Theorem 3.8(ii)] and the essential smoothness of f

yield x ∈ int dom f .

Definition 4.8 Algorithm 4.5 is focusing if, for every z ∈ S ,

(
Dfn(z, xn)

)
n∈N converges∑

n∈N

〈
xn+1 − z, γ−1

n

(
∇fn(xn)−∇fn(xn+1)

)
−Bxn +Bz

〉
< +∞∑

n∈N
(1− δ2)

〈
xn − z,Bxn −Bz

〉
< +∞∑

n∈N
(1− κγn/α)Dfn(xn+1, xn) < +∞

⇒ W(xn)n∈N ⊂ zer(A+B). (4.43)

Our main result establishes the weak convergence of the orbits of Algorithm 4.5.

Theorem 4.9 Let (xn)n∈N be a sequence generated by Algorithm 4.5 and suppose that the follow-
ing hold:

[a] (xn)n∈N is bounded.

[b] W(xn)n∈N ⊂ int dom f .

[c] Algorithm 4.5 is focusing.

[d] One of the following is satisfied:

1/ S is a singleton.

2/ There exists a function g in Γ0(X ) which is Gâteaux differentiable on int dom g ⊃ C,
with ∇g strictly monotone on C, and such that, for every sequence (yn)n∈N in C and
every y ∈W(yn)n∈N ∩ C, ykn ⇀ y ⇒ ∇fkn(ykn) ⇀ ∇g(y).
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Then (xn)n∈N converges weakly to a point in S .

Proof. It results from [a] and the reflexivity of X that

(xn)n∈N lies in a weakly sequentially compact set. (4.44)

On the other hand, [c] and items (i)–(iv) in Proposition 4.6 yield W(xn)n∈N ⊂ zer(A + B). In

turn, it results from [b] that

∅ 6= W(xn)n∈N ⊂ S ⊂ C. (4.45)

In view of [7, Lemma 1.35] applied in Xweak, it remains to show that W(xn)n∈N is a sin-

gleton. If [d]1/ holds, this follows from (4.45). Now suppose that [d]2/ holds, and take

y1 and y2 in W(xn)n∈N, say xkn ⇀ y1 and xln ⇀ y2. Then y1 ∈ S and y2 ∈ S by

virtue of (4.45), and we therefore deduce from Proposition 4.6(i) that (Dfn(y1, xn))n∈N and

(Dfn(y2, xn))n∈N converge. However, condition [b] in Algorithm 4.5 and [7, Lemma 5.31] as-

sert that (Dfn(y1, y2))n∈N converges. Hence, appealing to [6, Proposition 2.3(ii)], it follows that

(〈y1 − y2,∇fn(xn)−∇fn(y2)〉)n∈N = (Dfn(y2, xn) + Dfn(y1, y2) − Dfn(y1, xn))n∈N converges.

Set ` = lim〈y1 − y2,∇fn(xn)−∇fn(y2)〉. Since (xn)n∈N is a sequence in C, we infer from (4.45)

and [d]2/ that ` ← 〈y1 − y2,∇fln(xln)−∇fln(y2)〉 → 〈y1 − y2,∇g(y2)−∇g(y2)〉 = 0, which

yields ` = 0. However, invoking [d]2/, we obtain ` ← 〈y1 − y2,∇fkn(xkn)−∇fkn(y2)〉 →
〈y1 − y2,∇g(y1)−∇g(y2)〉. It therefore follows that 〈y1 − y2,∇g(y1)−∇g(y2)〉 = 0 and hence

from the strict monotonicity of ∇g on C that y1 = y2.

Example 4.10 We provide an example with operating conditions that are not captured by any

of the methods described in (4.4)–(4.7). Let p ∈ ]1,+∞[, let (χn)n∈N be a sequence in [1,+∞[

such that χn → 1, and let (ηn)n∈N be a summable sequence in [0,+∞[ such that (∀n ∈ N)

χn+1 6 (1 + ηn)χn. We denote by z = (ζk)k∈N a sequence in `p(N). Set X = `p(N) × R, hence

X ∗ = `p/(p−1)(N)× R, and define the Legendre functions

(∀n ∈ N) fn : X → ]−∞,+∞] : (z, ξ) 7→



χn
p
‖z‖p + 1− ξ + ξ ln ξ, if ξ > 0;

χn
p
‖z‖p + 1, if ξ = 0;

+∞, if ξ 6 0

(4.46)

and

f = g : X → ]−∞,+∞] : (z, ξ) 7→



1

p
‖z‖p − ξ + ξ ln ξ, if ξ > 0;

1

p
‖z‖p, if ξ = 0;

+∞, if ξ 6 0.

(4.47)

Now let ψ : X → [0,+∞[ : (z, ξ) 7→ ‖z‖p/p, set B = ∇ψ, and let A : X → 2X
∗

be any maximally
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monotone operator such that

domA ⊂ `p(N)× ]0,+∞[ and zer(A+B) 6= ∅. (4.48)

Let us check that this setting conforms to that of Theorem 4.9. First, Proposition 4.2(iii) implies

that (4.1) is satisfied with δ1 = 0 and δ2 = κ = 1. Next, we note that int dom f = `p(N) ×
]0,+∞[, that (fn)n∈N lies in C1(f), and that condition [b] in Algorithm 4.5 holds. Furthermore,

we derive from (4.46) that

(∀n ∈ N) ∇fn : `p(N)× ]0,+∞[→ X ∗ : (z, ξ) 7→
(
χn
(

sign(ζk)|ζk|p−1
)
k∈N, ln ξ

)
(4.49)

and we observe that

(∀n ∈ N) ran∇fn = X ∗ and dom(γnA) ⊂ dom∇fn. (4.50)

It therefore follows from the Brézis–Haraux theorem [11, Théorème 4] that

(∀n ∈ N) ran(∇fn + γnA) = X ∗, (4.51)

and hence that condition [c] in Algorithm 4.5 holds. It remains to verify condition [d]2/ in

Theorem 4.9. Set ϕ : `p(N) → [0,+∞[ : z 7→ ‖z‖p/p and (∀n ∈ N) ϕn : `p(N) → [0,+∞[ : z 7→
χn‖z‖p/p. Take a sequence (zn, ξn)n∈N in domA and a point (z, ξ) ∈ domA such that (zn, ξn) ⇀

(z, ξ). We have ξn → ξ and (∀k ∈ N) ζn,k → ζk. Now let (ek)k∈N be the canonical Schauder basis

of `p(N). Then

(∀k ∈ N)
〈
ek,∇ϕn(zn)

〉
= χn sign(ζn,k)|ζn,k|p−1 → sign(ζk)|ζk|p−1 =

〈
ek,∇ϕ(z)

〉
(4.52)

and (∇ϕn(zn))n∈N is bounded. It therefore follows from [2, Théorème VIII-2] that ∇ϕn(zn) ⇀

∇ϕ(z) and, in turn, that ∇fn(zn, ξn) ⇀ ∇g(z, ξ) by (4.47) and (4.49). Note that the above

setting is not covered by the assumptions underlying (4.4)–(4.7): the fact that B 6= 0 excludes

[6], the fact that X is not a Hilbert space excludes [15] and [20], and [18] is excluded because

A is not a subdifferential.

4.2.3 Special cases and applications

We illustrate the general scope of Theorem 4.9 by recovering apparently unrelated results and

also by deriving new ones. Sufficient conditions for [a] and [b] in Theorem 4.9 to hold can be

found in Propositions 4.6(v) and 4.7, respectively. As to checking the focusing condition [c],

the following fact will be useful.

Lemma 4.11 [13, Proposition 2.1(iii)] Let M1 : X → 2X
∗

and M2 : X → 2X
∗

be maximally
monotone, let (an, a

∗
n)n∈N be a sequence in graM1, let (bn, b

∗
n)n∈N be a sequence in graM2, let
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x ∈ X , and let y∗ ∈ X ∗. Suppose that an ⇀ x, b∗n ⇀ y∗, a∗n + b∗n → 0, and an − bn → 0. Then
x ∈ zer(M1 +M2).

4.2.3.1 Recovering existing frameworks for monotone inclusions

In this section, we show that the existing results of [6,15,20] discussed in the Introduction can

be recovered from Theorem 4.9. As will be clear from the proofs, more general versions of these

results can also be derived at once from Theorem 4.9. First, we derive from Theorem 4.9 the

convergence of the Bregman-based proximal point algorithm (4.4) studied in [6, Section 5.5].

Corollary 4.12 Let A : X → 2X
∗

be maximally monotone, let f ∈ Γ0(X ) be a supercoercive
Legendre function such that ∅ 6= zerA ⊂ domA ⊂ int dom f and ∇f is weakly sequentially
continuous, and let (γn)n∈N be a sequence in ]0,+∞[ such that infn∈N γn > 0. Suppose that, for
every bounded sequence (yn)n∈N in int dom f ,

Df (yn+1, yn)→ 0 ⇒ ∇f(yn+1)−∇f(yn)→ 0. (4.53)

Take x0 ∈ C and set (∀n ∈ N) xn+1 = (∇f + γnA
)−1

(∇f(xn)). Then (xn)n∈N converges weakly
to a point in zerA.

Proof. We apply Theorem 4.9 with B = 0, α = 1, κ = δ1 = δ2 = 0, and (∀n ∈ N) fn = f . First,

(4.1) together with conditions [a] and [b] in Algorithm 4.5 are trivially fulfilled. On the other

hand, since f is a Legendre function and domA ⊂ int dom f , condition [c] in Algorithm 4.5

follows from [6, Theorem 3.13(iv)(d)]. Next, condition [a] in Theorem 4.9 follows from Propo-

sition 4.6(v)[b]. Furthermore, in view of the weak sequential continuity of ∇f , condition [d]2/

in Theorem 4.9 is satisfied with g = f . Next, to show that the algorithm is focusing, suppose

that
∑

n∈NDf (xn+1, xn) < +∞ and take x ∈ W(xn)n∈N, say xkn ⇀ x. Since (xn)n∈N is a

bounded sequence in int dom f , we derive from (4.53) that ∇f(xn+1) −∇f(xn) → 0. In turn,

since infn∈N γn > 0, it follows that γ−1
n (∇f(xn+1) − ∇f(xn)) → 0. However, by construction,

(∀n ∈ N) γ−1
kn−1(∇f(xkn−1) − ∇f(xkn)) ∈ Axkn . Therefore, upon invoking Lemma 4.11 (with

M1 = A and M2 = 0), we obtain x ∈ zerA and the algorithm is therefore focusing. This also

shows that W(xn)n∈N ⊂ zerA ⊂ int dom f . Condition [b] in Theorem 4.9 is thus satisfied.

The next application of Theorem 4.9 is a variable metric version of the Hilbertian forward-

backward method (4.5) established in [15, Theorem 4.1].

Corollary 4.13 Let X be a real Hilbert space, let A : X → 2X be maximally monotone, let α and
β be in ]0,+∞[, and let B : X → X satisfy

(∀x ∈ X )(∀y ∈ X ) 〈x− y | Bx−By〉 > β‖Bx−By‖2. (4.54)

Further, for every n ∈ N, let Un : X → X be a bounded linear operator which is α-strongly
monotone and self-adjoint. Suppose that zer(A+B) 6= ∅ and that there exists a summable sequence
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(ηn)n∈N in [0,+∞[ such that

(∀n ∈ N)(∀x ∈ X ) 〈x | Un+1x〉 6 (1 + ηn)〈x | Unx〉. (4.55)

Let ε ∈ ]0, 2β[ and let (γn)n∈N be a sequence in ]0,+∞[ such that 0 < infn∈N γn 6 supn∈N γn 6

(2β − ε)α. Define a sequence (xn)n∈N via the recursion

x0 ∈ domA and (∀n ∈ N) xn+1 = (Un + γnA)−1(Unxn − γnBxn). (4.56)

Then (xn)n∈N converges weakly to a point in zer(A+B).

Proof. Set f = ‖·‖2/2, C = domA, and S = zer(A + B). In addition, for every n ∈ N,

define fn : X → R : x 7→ 〈x | Unx〉/2. Let us apply Theorem 4.9 with κ = 1/(2β − ε), δ1 = 0,

and δ2 = (2β − ε)/(2β) ∈ ]0, 1[. First, f ∈ Γ0(X ) is a supercoercive Legendre function with

dom f = X and, for every n ∈ N, since ∇fn = Un is α-strongly monotone, fn ∈ Cα(f).

Furthermore, it follows from Proposition 4.2(vi)[a] that (4.1) is fulfilled. We also observe that

condition [a] in Algorithm 4.5 is satisfied. Next, by (4.55) and the assumption that the operators

(Un)n∈N are self-adjoint,

(∀n ∈ N)(∀x ∈ X )(∀y ∈ X ) Dfn+1(x, y) =
1

2
〈x− y | Un+1(x− y)〉

6
1 + ηn

2
〈x− y | Un(x− y)〉

= Dfn(x, y) (4.57)

and condition [b] in Algorithm 4.5 therefore holds. Now take n ∈ N. Since ∇fn = Un is

maximally monotone with dom∇fn = X and A is maximally monotone, [7, Corollary 25.5(i)]

entails that ∇fn + γnA is maximally monotone. Thus, since ∇fn + γnA is α-strongly monotone,

[7, Proposition 22.11(ii)] implies that ran(∇fn + γnA) = X and it follows that condition [c]

in Algorithm 4.5 is satisfied. Next, in view of Proposition 4.6(v)[b], (xn)n∈N is bounded, while

W(xn)n∈N ⊂ X = int dom f . Now set µ = supn∈N ‖Un‖. For every n ∈ N, since it results from

(4.55) and [7, Fact 2.25(iii)] that

(∀x ∈ X ) ‖x‖ 6 1 ⇒ 〈x | Unx〉 6
(∏
k∈N

(1+ηk)

)
〈x | U0x〉 6

(∏
k∈N

(1+ηk)

)
‖U0‖, (4.58)

we derive from [7, Fact 2.25(iii)] that ‖Un‖ 6 ‖U0‖
∏
k∈N(1+ηk). Hence µ < +∞ and therefore,

appealing to [14, Lemma 2.3(i)], there exists an α-strongly monotone self-adjoint bounded

linear operator U : X → X such that (∀w ∈ X ) Unw → Uw. Define g : X → R : x 7→ 〈x | Ux〉/2.

Then ∇g = U is strongly monotone (and thus strictly monotone). Furthermore, given (yn)n∈N

in C and y ∈W(yn)n∈N ∩ C, say ykn ⇀ y, we have

(∀w ∈ X ) 〈w | ∇fkn(ykn)〉 = 〈Uknw | ykn〉 → 〈Uw | y〉 = 〈w | Uy〉 = 〈w | ∇g(y)〉 (4.59)
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and thus ∇fkn(ykn) ⇀ ∇g(y). Therefore, condition [d]2/ in Theorem 4.9 is satisfied. Let us

now verify that (4.56) is focusing. Towards this goal, take z ∈ S and suppose that
∑

n∈N(1 −
δ2)〈xn − z | Bxn −Bz〉 < +∞ and

∑
n∈N(1 − κγn/α)Dfn(xn+1, xn) < +∞. Since δ2 < 1 and

supn∈N(κγn) < α, we infer from (4.54) that

∑
n∈N
‖Bxn −Bz‖2 6

1

β

∑
n∈N
〈xn − z | Bxn −Bz〉 < +∞ (4.60)

and
∑

n∈N ‖xn+1−xn‖2 = 2
∑

n∈NDf (xn+1, xn) 6 (2/α)
∑

n∈NDfn(xn+1, xn) < +∞. It follows

that

‖Un(xn+1 − xn)‖ 6 µ‖xn+1 − xn‖ → 0. (4.61)

Now take x ∈ W(xn)n∈N, say xkn ⇀ x, and set (∀n ∈ N) x∗n+1 = γ−1
n Un(xn − xn+1) − Bxn.

It results from (4.56) that (xkn+1, x
∗
kn+1)n∈N lies in graA and from (4.61) that xkn+1 ⇀ x.

Moreover, (4.61) yields x∗kn+1 + Bxkn → 0. Altogether, Lemma 4.11 (applied to the sequences

(xkn+1, x
∗
kn+1)n∈N in graA and (xkn , Bxkn)n∈N in graB) guarantees that x ∈ zer(A+ B). Con-

sequently, Theorem 4.9 asserts that (xn)n∈N converges weakly to a point in S .

Example 4.14 The classical forward-backward method is obtained by setting Un ≡ Id in Corol-

lary 4.13, which yields

x0 ∈ domA and (∀n ∈ N) xn+1 = (Id + γnA)−1(xn − γnBxn). (4.62)

The case when the proximal parameters (γn)n∈N are constant was first addressed in [17].

We now turn to the Renaud–Cohen algorithm (4.7) and recover [20, Theorem 3.4].

Corollary 4.15 Let X be a real Hilbert space, let A : X → 2X and B : X → X be maximally
monotone, and let f : X → R be convex and Fréchet differentiable. Suppose that zer(A+B) 6= ∅,
that ∇f is 1-strongly monotone on domA and Lipschitzian on bounded sets, and that there exists
β ∈ ]0,+∞[ such that

(
∀(x, x∗) ∈ gra(A+B)

)(
∀(y, y∗) ∈ gra(A+B)

)
〈x− y | x∗ − y∗〉 > β‖Bx−By‖2. (4.63)

Let γ ∈ ]0, 2β[, take x0 ∈ domA, and set (∀n ∈ N) xn+1 = (∇f + γA)−1(∇f(xn) − γBxn).
Suppose, in addition, that ∇f is weakly sequentially continuous. Then (xn)n∈N converges weakly
to a point in zer(A+B).

Proof. Let ε ∈ ]0, 2β[ be such that γ < 2β−ε. We apply Theorem 4.9 with C = domA, α = 1, κ =

1/(2β−ε), δ1 = δ2 = (2β−ε)/(2β) ∈ ]0, 1[, and (∀n ∈ N) fn = f and ηn = 0. Proposition 4.2(iv)

asserts that (4.1) is satisfied. Furthermore, as shown in the proof of Proposition 4.2(iv),

(∀x ∈ domA)(∀y ∈ domA) Df (x, y) >
1

2
‖x− y‖2. (4.64)
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Next, note that conditions [a] and [b] in Algorithm 4.5 are trivially satisfied. Since ∇f + γA

is strongly monotone and since, by [7, Corollary 25.5(i)], ∇f + γA is maximally monotone,

it follows from [7, Proposition 22.11(ii)] that ran(∇f + γA) = X and therefore that con-

dition [c] in Algorithm 4.5 holds. We observe that condition [b] in Theorem 4.9 is trivially

satisfied and that condition [a] in Theorem 4.9 follows from (4.64) and Proposition 4.6(i).

Furthermore, since ∇f is weakly sequentially continuous and 1-strongly monotone on C,

condition [d]2/ in Theorem 4.9 is satisfied with g = f . Now take z ∈ zer(A + B) and

suppose that
∑

n∈N(1 − κγ)Df (xn+1, xn) < +∞,
∑

n∈N(1 − δ2)〈xn − z | Bxn −Bz〉 < +∞,

and
∑

n∈N 〈xn+1 − z | γ−1(∇f(xn)−∇f(xn+1))−Bxn +Bz〉 < +∞. Then, since κγ < 1 and

δ2 < 1, it follows that∑
n∈N

Df (xn+1, xn) < +∞ and
∑
n∈N
〈xn − z | Bxn −Bz〉 < +∞, (4.65)

and therefore that∑
n∈N

〈
xn+1 − z | γ−1(∇f(xn)−∇f(xn+1))−Bxn +Bxn+1

〉
< +∞. (4.66)

Since (z, 0) ∈ gra(A + B) and since the sequence (xn+1, γ
−1(∇f(xn) − ∇f(xn+1)) − Bxn +

Bxn+1)n∈N lies in gra(A + B) by construction, it follows from (4.63) and (4.66) that∑
n∈N ‖Bxn −Bz‖2 < +∞. On the other hand, since (xn)n∈N lies in domA by Proposition 4.6,

we deduce from (4.64) and (4.65) that xn+1−xn → 0. In turn, it results from the Lipschitz conti-

nuity of∇f on the bounded set {xn}n∈N that∇f(xn)−∇f(xn+1)→ 0. Now take x ∈W(xn)n∈N,

say xkn ⇀ x, and set (∀n ∈ N) x∗n+1 = γ−1(∇f(xn)−∇f(xn+1))−Bxn. Then (xkn+1, x
∗
kn+1)n∈N

lies in graA. Furthermore, x∗kn+1 + Bxkn = γ−1(∇f(xkn) − ∇f(xkn+1)) → 0 and, since

xn − xn+1 → 0, xkn+1 ⇀ x. Thus, applying Lemma 4.11 with the sequences (xkn+1, x
∗
kn+1)n∈N

and (xkn , Bxkn)n∈N yields x ∈ zer(A+B), and we conclude that condition [c] in Theorem 4.9

is satisfied as well.

4.2.3.2 The finite-dimensional case

We discuss the finite-dimensional case, a setting in which the assumptions can be greatly sim-

plified and the results presented below are new.

Corollary 4.16 Let (xn)n∈N be a sequence generated by Algorithm 4.5. In addition, suppose that
the following hold:

[a] X is finite-dimensional.

[b] f is essentially strictly convex and dom f∗ is open.

[c] (int dom f) ∩ domA ⊂ int domB.

[d] supn∈N(κγn) < α.
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[e] There exists a function g in Γ0(X ) which is differentiable on int dom g ⊃ int dom f , with ∇g
strictly monotone on C, and such that, for every sequence (yn)n∈N in C and every sequential
cluster point y ∈ int dom f of (yn)n∈N, ykn → y ⇒ ∇fkn(ykn)→ ∇g(y).

Then (xn)n∈N converges to a point in S .

Proof. It follows from Proposition 4.6(v)[e] that (xn)n∈N is bounded and from Proposition 4.7[d]

that W(xn)n∈N ⊂ int dom f . In view of Theorem 4.9, it remains to show that Algorithm 4.5

is focusing. Towards this goal, let z ∈ S , and suppose that (Dfn(z, xn))n∈N converges and∑
n∈N(1 − κγn/α)Dfn(xn+1, xn) < +∞, and let x be a sequential cluster point of (xn)n∈N, say

xkn → x. Using [d] and the fact that (fn)n∈N lies in Cα(f), we obtain

(
Df (z, xn)

)
n∈N is bounded and

∑
n∈N

Dfn(xn+1, xn) < +∞. (4.67)

Since (xkn)n∈N lies in int dom f , [4, Theorem 3.8(ii)] and (4.67) imply that

x ∈ int dom f (4.68)

and [5, Theorem 5.10] thus yields

∇f(xkn)→ ∇f(x) ∈ int dom f∗. (4.69)

Next, it results from [b], [5, Lemma 7.3(vii)], and (4.67) that

(
Df∗(∇f(xn),∇f(z))

)
n∈N =

(
Df (z, xn)

)
n∈N is bounded. (4.70)

Therefore, since ∇f(z) ∈ int dom f∗ [5, Theorem 5.10] and since f∗ is a Legendre function

[5, Corollary 5.5], it results from [5, Lemma 7.3(v)] that (∇f(xkn+1))n∈N is bounded. In turn,

there exists a strictly increasing sequence (lkn)n∈N in N and a point x∗ ∈ X ∗ such that

∇f(xlkn+1)→ x∗. (4.71)

By lower semicontinuity of Df∗( · ,∇f(z)) and (4.70), x∗ ∈ dom f∗. On the other hand, appeal-

ing to [5, Lemma 7.3(vii)] and (4.67), we obtain

0 6 Df∗
(
∇f(xlkn ),∇f(xlkn+1)

)
= Df

(
xlkn+1, xlkn

)
6

1

α
Dflkn

(
xlkn+1, xlkn

)
→ 0. (4.72)

Thus, since (∇f(xn))n∈N lies in int dom f∗ by virtue of Proposition 4.6 and [5, Theorem 5.10],

we derive from [4, Theorem 3.9(iii)], (4.69), and (4.71) that x∗ = ∇f(x) and, hence, from

(4.71) that ∇f(xlkn+1) → ∇f(x). It thus follows from [5, Theorem 5.10] that xlkn+1 → x. In

turn, by using respectively [e] with the sequences (xn)n∈N and (xn+1)n∈N, we get∇flkn (xlkn )→
∇g(x) and∇flkn (xlkn+1)→ ∇g(x). Now set (∀n ∈ N) x∗n+1 = γ−1

n (∇fn(xn)−∇fn(xn+1))−Bxn.

Then, by construction of (xn)n∈N, (∀n ∈ N) (xn+1, x
∗
n+1) ∈ graA. In addition, since infn∈N γn >
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0 and ∇flkn (xlkn )−∇flkn (xlkn+1)→ ∇g(x)−∇g(x) = 0, we deduce that x∗lkn+1 +Bxlkn → 0.

On the other hand, since (xn)n∈N lies in domA and xkn → x, it follows that x ∈ domA and

therefore, by (4.68) and [c], that x ∈ int domB. Hence, using [21, Corollary 1.1], we obtain

Bxlkn → Bx. Altogether, Lemma 4.11 (applied to the sequence (xlkn+1, x
∗
lkn+1)n∈N in graA and

the sequence (xlkn , Bxlkn )n∈N in graB) asserts that x ∈ zer(A + B). In view of Theorem 4.9,

we conclude that (xn)n∈N converges to a point in S .

4.2.3.3 Forward-backward splitting for convex minimization

In this section, we study the convergence of (4.6). Our results improve on and complement

those of [18].

Problem 4.17 Let ϕ ∈ Γ0(X ), let ψ ∈ Γ0(X ), and let f ∈ Γ0(X ) be essentially smooth. Set

C = (int dom f) ∩ dom ∂ϕ and S = (int dom f) ∩ Argmin(ϕ + ψ). Suppose that ϕ + ψ is

coercive, ∅ 6= C ⊂ int domψ, S 6= ∅, ψ is Gâteaux differentiable on int domψ, and there

exists κ ∈ ]0,+∞[ such that

(∀x ∈ C)(∀y ∈ C) Dψ(x, y) 6 κDf (x, y). (4.73)

The objective is to find a point in S .

In the context of Problem 4.17, given γ ∈ ]0,+∞[ and g ∈ Cα(f), we define proxgγϕ =

(∇g + γ∂ϕ)−1.

Algorithm 4.18 Consider the setting of Problem 4.17. Let α ∈ ]0,+∞[, let (γn)n∈N be in

]0,+∞[, and let (fn)n∈N be in Cα(f). Suppose that the following hold:

[a] There exists ε ∈ ]0, 1[ such that 0 < infn∈N γn 6 supn∈N γn 6 α(1− ε)/κ.

[b] There exists a summable sequence (ηn)n∈N in [0,+∞[ such that (∀n ∈ N) Dfn+1 6 (1 +

ηn)Dfn .

[c] For every n ∈ N, int dom fn = dom ∂fn and ∇fn is strictly monotone on C.

Take x0 ∈ C and set (∀n ∈ N) xn+1 = proxfnγnϕ(∇fn(xn)− γn∇ψ(xn)).

Theorem 4.19 Let (xn)n∈N be a sequence generated by Algorithm 4.18 and suppose that the
following hold:

[a] W(xn)n∈N ⊂ int dom f .

[b] One of the following is satisfied:

1/ S is a singleton.

2/ There exists a function g in Γ0(X ) which is Gâteaux differentiable on int dom g ⊃ C,
with ∇g strictly monotone on C, and such that, for every sequence (yn)n∈N in C and
every y ∈W(yn)n∈N ∩ C, ykn ⇀ y ⇒ ∇fkn(ykn) ⇀ ∇g(y).
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Then the following hold:

(i) (xn)n∈N converges weakly to a point in S .

(ii) (xn)n∈N is a monotone minimizing sequence: ϕ(xn) + ψ(xn) ↓ min(ϕ+ ψ)(X ).

(iii)
∑

n∈N((ϕ+ψ)(xn)−min(ϕ+ψ)(X )) < +∞ and (ϕ+ψ)(xn)−min(ϕ+ψ)(X ) = o(1/n).

(iv)
∑

n∈N n(Dfn(xn+1, xn) +Dfn(xn, xn+1)) < +∞.

Proof. (i): We shall derive this result from Theorem 4.9 with A = ∂ϕ, B = ∂ψ, δ1 = 0, and

δ2 = 1. First, appealing to [24, Theorem 2.4.4(i)], B is single-valued on int domB = int domψ

and B = ∇ψ on int domB. Next, set θ = ϕ+ ψ. Since ∅ 6= (int dom f) ∩ dom ∂ϕ ⊂ int domψ,

we have domϕ ∩ int domψ 6= ∅. Hence, [9, Theorem 4.1.19] yields A + B = ∂θ. Therefore,

Argmin θ = zer ∂θ = zer(A + B) and S = (int dom f) ∩ zer(A + B). Next, in view of Propo-

sition 4.2(iii), (4.1) is fulfilled. On the other hand, conditions [a] and [b] in Algorithm 4.5

are trivially satisfied. To verify condition [c] in Algorithm 4.5, it suffices to show that, for every

n ∈ N, (∇fn−γnB)(C) ⊂ ran(∇fn+γnA), i.e., since C ⊂ int domB and B = ∇ψ on int domB,

that (∇fn − γn∇ψ)(C) ⊂ ran(∇fn + γnA). To do so, fix temporarily n ∈ N, let x ∈ C, and set

An = ∇fn + γnA−∇fn(x) + γn∇ψ(x). (4.74)

Then, since dom ∂fn ∩ domA = (int dom fn) ∩ domA = (int dom f) ∩ domA 6= ∅ by condi-

tion [c] in Algorithm 4.18, it results from [6, Proposition 3.12] that An is maximally monotone.

Next, we deduce from condition [a] in Algorithm 4.18 and (4.73) that

(∀u ∈ C)(∀v ∈ C) γnDψ(u, v) 6 α(1− ε)Dψ(u, v)/κ 6 α(1− ε)Df (u, v) 6 (1− ε)Dfn(u, v).

(4.75)

In turn,

(∀u ∈ C)(∀v ∈ C) γn〈u− v,∇ψ(u)−∇ψ(v)〉 = γn
(
Dψ(u, v) +Dψ(v, u)

)
6 (1− ε)

(
Df (u, v) +Df (v, u)

)
= (1− ε)〈u− v,∇fn(u)−∇fn(v)〉. (4.76)

However, by coercivity of θ, there exists ρ ∈ ]0,+∞[ such that

(∀y ∈ X ) ‖y‖ > ρ ⇒ inf〈y, (A+B)(y + x)〉 = inf〈y, ∂θ(y + x)〉 > θ(y + x)− θ(x) > 0.

(4.77)

Now suppose that (y, y∗) ∈ graAn( · + x) satisfies ‖y‖ > ρ. Then y + x ∈ dom∇fn ∩ domA =

(int dom fn) ∩ domA = C and y∗ −∇fn(y + x) + γn∇ψ(y + x) +∇fn(x)− γn∇ψ(x) ∈ γn(A+

B)(y + x). Thus, it follows from (4.77) and (4.76) that

0 6 〈y, y∗〉 −
〈
(y + x)− x, (∇fn − γn∇ψ)(y + x)− (∇fn − γn∇ψ)(x)

〉
6 〈y, y∗〉. (4.78)

Therefore, in view of [22, Proposition 2] and the maximal monotonicity of An( · + x), there
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exists y ∈ X such that 0 ∈ An(y + x). Hence (∇fn − γn∇ψ)(x) ∈ ∇fn(y + x) + γnA(y + x) ⊂
ran(∇fn + γnA), as desired. Since (xn+1, γ

−1
n (∇fn(xn) −∇fn(xn+1)) −∇ψ(xn)) lies in gra ∂ϕ

by construction, we derive from [6, Proposition 2.3(ii)] that

(∀x ∈ C) ϕ(x) > ϕ(xn+1)− 〈x− xn+1,∇ψ(xn)〉+ γ−1
n 〈x− xn+1,∇fn(xn)−∇fn(xn+1)〉

> ϕ(xn+1)− 〈x− xn+1,∇ψ(xn)〉

+ γ−1
n

(
Dfn(x, xn+1) +Dfn(xn+1, xn)−Dfn(x, xn)

)
. (4.79)

On the other hand, (4.75) and the convexity of ψ entail that

(∀x ∈ C) ψ(xn+1) 6 ψ(xn) + 〈xn+1 − xn,∇ψ(xn)〉+ (1− ε)γ−1
n Dfn(xn+1, xn)

= ψ(xn) + 〈x− xn,∇ψ(xn)〉+ 〈xn+1 − x,∇ψ(xn)〉

+ (1− ε)γ−1
n Dfn(xn+1, xn)

6 ψ(x) + 〈xn+1 − x,∇ψ(xn)〉+ (1− ε)γ−1
n Dfn(xn+1, xn). (4.80)

Altogether, upon adding (4.79) and (4.80), we obtain

(∀x ∈ C) θ(xn+1) + γ−1
n Dfn(x, xn+1) + εγ−1

n Dfn(xn+1, xn) 6 θ(x) + γ−1
n Dfn(x, xn). (4.81)

In particular, since xn ∈ C,

θ(xn+1) + γ−1
n

(
Dfn(xn, xn+1) + εDfn(xn+1, xn)

)
6 θ(xn). (4.82)

This shows that (
θ(xn)

)
n∈N decreases. (4.83)

In turn, using the coercivity of θ, we infer that (xn)n∈N is bounded, which secures [a] in Theo-

rem 4.9. It remains to verify that Algorithm 4.18 is focusing. Towards this end, let z ∈ S and

suppose that (
Dfn(z, xn)

)
n∈N converges (4.84)

and

ε
∑
n∈N

Dfn(xn+1, xn) 6
∑
n∈N

(1− κγn/α)Dfn(xn+1, xn) < +∞. (4.85)

Set γ = infn∈N γn and ` = limDfn(z, xn). It follows from (4.81) applied to z ∈ C that

(∀n ∈ N) γ
(
θ(xn+1)−min θ(X )

)
+Dfn(z, xn+1) + εDfn(xn+1, xn) 6 Dfn(z, xn) (4.86)

and therefore from condition [b] in Algorithm 4.18 that

(∀n ∈ N) γ
(
θ(xn+1)−min θ(X )

)
+Dfn+1(z, xn+1) + εDfn(xn+1, xn)
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6 (1 + ηn)
(
γ
(
θ(xn+1)−min θ(X )

)
+Dfn(z, xn+1) + εDfn(xn+1, xn)

)
6 (1 + ηn)Dfn(z, xn). (4.87)

Hence, lim γ(θ(xn+1)−min θ(X )) + ` 6 ` and therefore lim(θ(xn+1)−min θ(X )) = 0. Thus

θ(xn)→ min θ(X ). (4.88)

Now take x ∈W(xn)n∈N, say xkn ⇀ x. By weak lower semicontinuity of θ, min θ(X ) 6 θ(x) 6

lim θ(xkn) = min θ(X ) and it follows that x ∈ Argmin θ = zer(A + B). Consequently, Theo-

rem 4.9 asserts that (xn)n∈N converges weakly to a point in S .

(ii): Combine (4.83) and (4.88).

(iii)&(iv): Fix z ∈ S and set γ = infn∈N γn. Arguing along the same lines as above, we

obtain

(∀n ∈ N) γ
(
θ(xn+1)−min θ(X )

)
+Dfn+1(z, xn+1) + εDfn(xn+1, xn) 6 (1 + ηn)Dfn(z, xn)

(4.89)

and therefore [7, Lemma 5.31] guarantees that
∑

n∈N(θ(xn) −min θ(X )) < +∞. In addition,

(θ(xn) − min θ(X ))n∈N is decreasing by virtue of (4.83). However, recall that if (αn)n∈N is a

decreasing sequence in [0,+∞[ such that
∑

n∈N αn < +∞, then

αn = o

(
1

n

)
and

∑
n∈N

n(αn − αn+1) < +∞. (4.90)

Hence, θ(xn) − min θ(X ) = o(1/n) and
∑

n∈N n(θ(xn) − θ(xn+1)) < +∞. Consequently, since

(4.81) yields

(∀n ∈ N) γ−1
n Dfn(xn, xn+1) + εγ−1

n Dfn(xn+1, xn) 6 θ(xn)− θ(xn+1), (4.91)

we infer that
∑

n∈N n(Dfn(xn+1, xn) +Dfn(xn, xn+1)) < +∞.

Remark 4.20 Let us relate Theorem 4.19 to the literature.

(i) The conclusions of items (i) and (ii) are obtained in [18, Theorem 1(2)] under more

restrictive conditions on the sequences (γn)n∈N and (fn)n∈N. Thus, we do not require in

Theorem 4.19 the additional condition (∀n ∈ N) (1+ηn)γn−γn+1 6 αηn/κ. Furthermore,

we do not suppose either that − ran∇ψ ⊂ domϕ∗ or that the functions (fn)n∈N are

cofinite.

(ii) Items (iii) and (iv) are new even in Euclidean spaces. In the finite-dimensional setting,

partial results can be found in [3], where:

(a) A single convex function is used: (∀n ∈ N) fn = f .

(b) The viability of the sequence (xn)n∈N is a blanket assumption, while it is guaranteed

in Theorem 4.19.
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(c) Only the rates
∑

n∈NDf (xn+1, xn) < +∞ and (ϕ+ψ)(xn)−min(ϕ+ψ)(X ) = O(1/n)

are obtained.

4.2.3.4 Further applications

Theorems 4.9 and 4.19 operate under broad assumptions which go beyond those of the existing

forward-backward methods of [6, 15, 18, 20] described in (4.4)–(4.7). Here are two examples

which do not fit the existing scenarios and exploit this generality.

Example 4.21 Consider the setting of Problem 4.1. Suppose, in addition, that the following

hold:

[a] A is uniformly monotone on bounded sets.

[b] There exist ψ ∈ Γ0(X ) and κ ∈ ]0,+∞[ such that B = ∂ψ and (∀x ∈ C)(∀y ∈ C)

Dψ(x, y) 6 κDf (x, y).

[c] f is supercoercive.

[d] zer(A+B) ⊂ int dom f .

Let (γn)n∈N be a sequence in ]0,+∞[ such that 0 < infn∈N γn 6 supn∈N γn < 1/κ, take x0 ∈ C,

and set (∀n ∈ N) xn+1 = (∇f+γnA)−1(∇f(xn)−γn∇ψ(xn)). Then (xn)n∈N converges strongly

to the unique zero of A+∇ψ.

The next example concerns variational inequalities.

Example 4.22 Let ϕ ∈ Γ0(X ), let B : X → 2X
∗

be maximally monotone, let f ∈ Γ0(X ) be

essentially smooth, and set C = (int dom f) ∩ dom ∂ϕ. Suppose that C ⊂ int domB and B is

single-valued on int domB. Consider the problem of finding a point in

S =
{
x ∈ C | (∀y ∈ X ) 〈x− y,Bx〉+ ϕ(x) 6 ϕ(y)

}
, (4.92)

which is assumed to be nonempty. This is a special case of Problem 4.1 with A = ∂ϕ and, given

x0 ∈ C, Algorithm 4.5 produces the iterations (∀n ∈ N) xn+1 = proxfnγnϕ(∇fn(xn)−γnBxn). The

weak convergence of (xn)n∈N to a point in S is discussed in Theorem 4.9. Even in Euclidean

spaces, this scheme is new and of interest since, as shown in [3,13,18], the Bregman proximity

operator proxfnγnϕ may be easier to compute for a particular fn than for the standard kernel

‖·‖2/2. Altogether, our framework makes it possible to solve variational inequalities by forward-

backward splitting with non-cocoercive operators and/or outside of Hilbert spaces.
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Chapter 5
PROJECTIVE SPLITTING AS A WARPED
PROXIMAL ALGORITHM

5.1 Introduction and context

We complement Chapter 3 by showing that the asynchronous block-iterative algorithm [6, Al-

gorithm 12] can be viewed as a special case of the warped proximal algorithm of Theorem 3.16.

This answers question (Q4) of Chapter 1.

This chapter presents the following article:

M. N. Bùi, Projective splitting as a warped proximal algorithm, submitted.

5.2 Article: Projective splitting as a warped proximal algorithm

Abstract. We show that the asynchronous block-iterative primal-dual projective splitting frame-

work introduced by P. L. Combettes and J. Eckstein in their 2018 Math. Program. paper can be

viewed as an instantiation of the recently proposed warped proximal algorithm.

In [4], the warped proximal algorithm was proposed and its pertinence was illustrated

through the ability to unify existing methods such as those of [1, 2, 8, 9], and to design novel

flexible ones for solving challenging monotone inclusions. Let us state a version of [4, Theo-

rem 4.2].

Fact 5.1 Let H be a real Hilbert space, let M : H → 2H be a maximally monotone operator such
that zerM 6= ∅, let x0 ∈ H, let ε ∈ ]0, 1[, let α ∈ ]0,+∞[, and let β ∈ [α,+∞[. For every n ∈ N,
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let Kn : H→ H be α-strongly monotone and β-Lipschitzian, and let λn ∈ [ε, 2− ε]. Iterate

for n = 0, 1, . . .

take x̃n ∈ H

yn = (Kn + M)−1(Knx̃n)

y∗n = Knx̃n −Knyn
if 〈xn − yn | y∗n〉 > 0⌊

xn+1 = xn −
λn〈xn − yn | y∗n〉

‖y∗n‖2
y∗n

else⌊
xn+1 = xn.

(5.1)

Then the following hold:

(i) (xn)n∈N is bounded.

(ii)
∑

n∈N ‖xn+1 − xn‖2 < +∞.

(iii) (∀n ∈ N) 〈xn − yn | y∗n〉 6 ε−1‖y∗n‖ ‖xn+1 − xn‖.

(iv) Suppose that x̃n − xn → 0. Then (xn)n∈N converges weakly to a point in zerM.

A problem of interest in modern nonlinear analysis is the following (see, e.g, [1, 5, 6] and

the references therein for discussions on this problem).

Problem 5.2 Let (Hi)i∈I and (Gk)k∈K be finite families of real Hilbert spaces. For every i ∈ I
and every k ∈ K, let Ai : Hi → 2Hi and Bk : Gk → 2Gk be maximally monotone, let z∗i ∈ Hi, let

rk ∈ Gk, and let Lk,i : Hi → Gk be linear and bounded. The problem is to

find (xi)i∈I ∈×
i∈I
Hi and (v∗k)k∈K ∈×

k∈K
Gk such that


(∀i ∈ I) z∗i −

∑
k∈K

L∗k,iv
∗
k ∈ Aixi

(∀k ∈ K)
∑
i∈I

Lk,ixi − rk ∈ B−1
k v∗k.

(5.2)

The set of solutions to (5.2) is denoted by Z.

The first asynchronous block-iterative algorithm to solve Problem 5.2 was proposed in [6,

Algorithm 12] as an extension of projective splitting techniques found in [1, 7]. The present

paper shows that [6, Algorithm 12] can be viewed as a special case of (5.1). Towards this goal,

we first derive an abstract weak convergence principle from Fact 5.1. We refer the reader to [3]

for background in monotone operator theory and nonlinear analysis.

Theorem 5.3 Let H be a real Hilbert space, let A : H → 2H be a maximally monotone operator,
and let S : H → H be a bounded linear operator such that S∗ = −S. In addition, let x0 ∈ H, let
ε ∈ ]0, 1[, let α ∈ ]0,+∞[, let ρ ∈ [α,+∞[, and for every n ∈ N, let Fn : H → H be α-strongly
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monotone and ρ-Lipschitzian, and let λn ∈ [ε, 2− ε]. Iterate

for n = 0, 1, . . .

take un ∈ H, e∗n ∈ H, and f∗n ∈ H

u∗n = Fnun − Sun + e∗n + f∗n
yn = (Fn + A)−1u∗n
a∗n = u∗n − Fnyn
y∗n = a∗n + Syn
πn = 〈xn | y∗n〉 − 〈yn | a∗n〉
if πn > 0 τn = ‖y∗n‖2

θn = λnπn/τn

xn+1 = xn − θny∗n
else⌊
xn+1 = xn.

(5.3)

Suppose that zer(A + S) 6= ∅. Then the following hold:

(i)
∑

n∈N ‖xn+1 − xn‖2 < +∞.

(ii) Suppose that un − xn → 0, that e∗n → 0, that (f∗n)n∈N is bounded, and that there exists
δ ∈ ]0, 1[ such that

(∀n ∈ N)

〈un − yn | f∗n〉 > −δ〈un − yn | Fnun − Fnyn〉

〈a∗n + Sun − e∗n | f∗n〉 6 δ‖a∗n + Sun − e∗n‖2.
(5.4)

Then (xn)n∈N converges weakly to a point in zer(A + S).

Proof. Set M = A + S and (∀n ∈ N) Kn = Fn − S. Then, it follows from [3, Example 20.35 and

Corollary 25.5(i)] that M is maximally monotone with zerM 6= ∅. Now take n ∈ N. We have

Kn + M = Fn + A. (5.5)

Since S∗ = −S, we deduce that

Kn is α-strongly monotone and β-Lipschitzian, (5.6)

where β = ρ + ‖S‖. Thus, [3, Corollary 20.28 and Proposition 22.11(ii)] guarantee that there

exists x̃n ∈ H such that

u∗n = Knx̃n. (5.7)

Hence, by (5.3) and (5.5),

yn = (Kn + M)−1(Knx̃n) and y∗n = u∗n − Fnyn + Syn = Knx̃n −Knyn. (5.8)
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At the same time, we have 〈yn | Syn〉 = 0 and it thus results from (5.3) that πn = 〈xn | y∗n〉 −
〈yn | a∗n + Syn〉 = 〈xn − yn | y∗n〉. Altogether, (5.3) is a special case of (5.1).

(i): Fact 5.1(ii).

(ii): In the light of Fact 5.1(iv), it suffices to verify that x̃n − xn → 0. For every n ∈
N, since Kn + M is maximally monotone [3, Corollary 25.5(i)] and α-strongly monotone,

[3, Example 22.7 and Proposition 22.11(ii)] implies that (Kn + M)−1 : H → H is (1/α)-

Lipschitzian. Therefore, we derive from (5.3), (5.5), [4, Proposition 3.10(i)], and (5.6) that

(∀z ∈ zerM)(∀n ∈ N) α‖yn − z‖ = α‖(Kn + M)−1u∗n − (Kn + M)−1(Knz)‖ 6 ‖u∗n − Knz‖ =

‖Knun − Knz + e∗n + f∗n‖ 6 ‖Knun − Knz‖ + ‖e∗n‖ + ‖f∗n‖ 6 β‖un − z‖ + ‖e∗n‖ + ‖f∗n‖. Thus,

since Fact 5.1(i) and our assumption imply that (un)n∈N is bounded, it follows that (yn)n∈N is

bounded. At the same time, for every n ∈ N, we get from (5.3) that

y∗n = Fnun − Fnyn + e∗n + f∗n − (Sun − Syn) = Knun −Knyn + e∗n + f∗n (5.9)

and, thus, from (5.6) that ‖y∗n‖ 6 ‖Knun −Knyn‖+ ‖e∗n‖+ ‖f∗n‖ 6 β‖un − yn‖+ ‖e∗n‖+ ‖f∗n‖.
Thus, (y∗n)n∈N is bounded, from which, (i), and Fact 5.1(iii) we obtain lim 〈xn − yn | y∗n〉 6 0. In

turn, since xn − un → 0 and e∗n → 0, it results from (5.9) and (5.4) that

0 > lim 〈xn − yn | y∗n〉

= lim
(
〈un − yn | y∗n〉+ 〈xn − un | y∗n〉

)
= lim 〈un − yn | y∗n〉

= lim
(
〈un − yn | Fnun − Fnyn + e∗n + f∗n〉 − 〈un − yn | Sun − Syn〉

)
= lim

(
〈un − yn | Fnun − Fnyn + f∗n〉+ 〈un − yn | e∗n〉

)
> lim

(
(1− δ)〈un − yn | Fnun − Fnyn〉+ 〈un − yn | e∗n〉

)
> limα(1− δ)‖un − yn‖2

> limα(1− δ)ρ−2‖Fnun − Fnyn‖2. (5.10)

Hence, Fnun − Fnyn → 0. On the other hand, since (f∗n)n∈N is bounded and since (5.3) yields

(a∗n + Sun − e∗n)n∈N = (Fnun − Fnyn + f∗n)n∈N, we derive from (5.4) that

lim(1− δ)‖f∗n‖2 = lim
(
〈Fnun − Fnyn | f∗n〉+ (1− δ)‖f∗n‖2

)
= lim

(
〈Fnun − Fnyn + f∗n | f∗n〉 − δ‖f∗n‖2

)
6 lim

(
δ‖Fnun − Fnyn + f∗n‖2 − δ‖f∗n‖2

)
= lim

(
δ‖Fnun − Fnyn‖2 + 2δ〈Fnun − Fnyn | f∗n〉

)
= 0. (5.11)

Therefore, f∗n → 0. Consequently, by (5.6), (5.7), and (5.3), α‖x̃n − xn‖ 6 ‖Knx̃n − Knxn‖ =

‖Knun −Knxn + e∗n + f∗n‖ 6 β‖un − xn‖+ ‖e∗n‖+ ‖f∗n‖ → 0.
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We are now ready to recover [6, Theorem 13]. Recall that, given a real Hilbert spaceH with

identity operator Id, the resolvent of an operator A : H → 2H is JA = (Id +A)−1.

Corollary 5.4 ([6]) Consider the setting of Problem 5.2 and suppose that Z 6= ∅. Let (In)n∈N be
nonempty subsets of I and (Kn)n∈N be nonempty subsets of K such that

I0 = I, K0 = K, and (∃T ∈ N)(∀n ∈ N)
n+T⋃
j=n

Ij = I and
n+T⋃
j=n

Kj = K. (5.12)

In addition, let D ∈ N, let ε ∈ ]0, 1[, let (λn)n∈N be in [ε, 2− ε], and for every i ∈ I and every
k ∈ K, let (ci(n))n∈N and (dk(n))n∈N be in N such that

(∀n ∈ N) n−D 6 ci(n) 6 n and n−D 6 dk(n) 6 n, (5.13)
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let (γi,n)n∈N and (µk,n)n∈N be in [ε, 1/ε], let xi,0 ∈ Hi, and let v∗k,0 ∈ Gk. Iterate

for n = 0, 1, . . .

for every i ∈ In
take ei,n ∈ Hi
l∗i,n =

∑
k∈K L

∗
k,iv
∗
k,ci(n)

ai,n = Jγi,ci(n)Ai

(
xi,ci(n) + γi,ci(n)(z

∗
i − l∗i,n) + ei,n

)
a∗i,n = γ−1

i,ci(n)(xi,ci(n) − ai,n + ei,n)− l∗i,n
for every i ∈ I r In⌊
ai,n = ai,n−1

a∗i,n = a∗i,n−1

for every k ∈ Kn

take fk,n ∈ Gk
lk,n =

∑
i∈I Lk,ixi,dk(n)

bk,n = rk + Jµk,dk(n)Bk

(
lk,n + µk,dk(n)v

∗
k,dk(n) + fk,n − rk

)
b∗k,n = v∗k,dk(n) + µ−1

k,dk(n)(lk,n − bk,n + fk,n)

tk,n = bk,n −
∑

i∈I Lk,iai,n

for every k ∈ K rKn bk,n = bk,n−1

b∗k,n = b∗k,n−1

tk,n = bk,n −
∑

i∈I Lk,iai,n

for every i ∈ I⌊
t∗i,n = a∗i,n +

∑
k∈K L

∗
k,ib
∗
k,n

πn =
∑

i∈I
(
〈xi,n | t∗i,n〉 − 〈ai,n | a∗i,n〉

)
+
∑

k∈K
(
〈tk,n | v∗k,n〉 − 〈bk,n | b∗k,n〉

)
if πn > 0⌊
τn =

∑
i∈I ‖t∗i,n‖2 +

∑
k∈K ‖tk,n‖2

θn = λnπn/τn

else⌊
θn = 0

for every i ∈ I⌊
xi,n+1 = xi,n − θnt∗i,n

for every k ∈ K⌊
v∗k,n+1 = v∗k,n − θntk,n.

(5.14)
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In addition, suppose that there exist η ∈ ]0,+∞[, χ ∈ ]0,+∞[, σ ∈ ]0, 1[, and ζ ∈ ]0, 1[ such that

(∀n ∈ N)(∀i ∈ In)


‖ei,n‖ 6 η

〈xi,ci(n) − ai,n | ei,n〉 > −σ‖xi,ci(n) − ai,n‖2

〈ei,n | a∗i,n + l∗i,n〉 6 σγi,ci(n)‖a∗i,n + l∗i,n‖2
(5.15)

and that

(∀n ∈ N)(∀k ∈ Kn)


‖fk,n‖ 6 χ

〈lk,n − bk,n | fk,n〉 > −ζ‖lk,n − bk,n‖2

〈fk,n | b∗k,n − v∗k,dk(n)〉 6 ζµk,dk(n)‖b∗k,n − v∗k,dk(n)‖
2.

(5.16)

Then ((xi,n)i∈I , (v
∗
k,n)k∈K)n∈N converges weakly to a point in Z.

Proof. Denote by H and G the Hilbert direct sums of (Hi)i∈I and (Gk)k∈K , set H = H⊕ G, and

define the operators

A : H→ 2H :
(
(xi)i∈I , (v

∗
k)k∈K

)
7→
(
×
i∈I

(
−z∗i +Aixi

))
×
(
×
k∈K

(
rk +B−1

k v∗k
))

(5.17)

and

S : H→ H :
(
(xi)i∈I , (v

∗
k)k∈K

)
7→

((∑
k∈K

L∗k,iv
∗
k

)
i∈I

,

(
−
∑
i∈I

Lk,ixi

)
k∈K

)
. (5.18)

Using the maximal monotonicity of the operators (Ai)i∈I and (Bk)k∈K , we deduce from [3,

Proposition 20.23] that A is maximally monotone. In addition, we observe that S is a bounded

linear operator with S∗ = −S. At the same time, it results from (5.17), (5.18), and (5.2) that

zer(A + S) = Z 6= ∅. (5.19)

Furthermore, (5.14) yields

[
(∀i ∈ I)(∀n ∈ N) a∗i,n ∈ −z∗i +Aiai,n

]
and

[
(∀k ∈ K)(∀n ∈ N) bk,n ∈ rk +B−1

k b∗k,n
]
.

(5.20)

Next, define

(∀i ∈ I)(∀n ∈ N)


`i(n) = max

{
j ∈ N | j 6 n and i ∈ Ij

}
, `i(n) = ci

(
`i(n)

)
u∗i,n = γ−1

i,`i(n)xi,`i(n) − l∗i,`i(n)
+ γ−1

i,`i(n)ei,`i(n)

w∗i,n =
∑

k∈K L
∗
k,iv
∗
k,ϑk(n) − l

∗
i,`i(n)

.

(5.21)
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Then, for every i ∈ I and every n ∈ N, it follows from (5.14) that

ai,n = ai,`i(n) = Jγi,`i(n)Ai

(
γi,`i(n)(u

∗
i,n + z∗i )

)
=
(
γ−1
i,`i(n)Id− z

∗
i +Ai

)−1
u∗i,n (5.22)

and, therefore, that

a∗i,n = a∗
i,`i(n)

= u∗i,n − γ−1
i,`i(n)ai,`i(n) = u∗i,n − γ−1

i,`i(n)ai,n. (5.23)

Likewise, for every k ∈ K and every n ∈ N, upon setting
ϑk(n) = max

{
j ∈ N | j 6 n and k ∈ Kj

}
, ϑk(n) = dk

(
ϑk(n)

)
vk,n = µk,ϑk(n)v

∗
k,ϑk(n) + lk,ϑk(n) + fk,ϑk(n)

wk,n = lk,ϑk(n) −
∑

i∈I Lk,ixi,`i(n),

(5.24)

we get from (5.14) and [3, Proposition 23.17(iii)] that

bk,n = bk,ϑk(n) = Jµk,ϑk(n)Bk( ·−rk)vk,n (5.25)

and, in turn, from (5.14) and [3, Proposition 23.20] that

b∗k,n = b∗
k,ϑk(n)

(5.26)

= µ−1
k,ϑk(n)

(
vk,n − bk,ϑk(n)

)
= µ−1

k,ϑk(n)(vk,n − bk,n) (5.27)

= Jµ−1
k,ϑk(n)

(rk+B−1
k )

(
µ−1
k,ϑk(n)vk,n

)
=
(
µk,ϑk(n)Id + rk +B−1

k

)−1
vk,n. (5.28)

Let us set

(∀n ∈ N)



xn =
(
(xi,n)i∈I , (v

∗
k,n)k∈K

)
, un =

((
xi,`i(n)

)
i∈I ,

(
v∗k,ϑk(n)

)
k∈K

)
e∗n =

(
(w∗i,n)i∈I , (wk,n)k∈K

)
, f∗n =

((
γ−1
i,`i(n)ei,`i(n)

)
i∈I ,

(
fk,ϑk(n)

)
k∈K

)
u∗n =

(
(u∗i,n)i∈I , (vk,n)k∈K

)
, yn =

(
(ai,n)i∈I , (b

∗
k,n)k∈K

)
a∗n =

(
(a∗i,n)i∈I , (bk,n)k∈K

)
, y∗n =

(
(t∗i,n)i∈I , (tk,n)k∈K

)
Fn : H→ H :

(
(xi)i∈I , (v

∗
k)k∈K

)
7→
((
γ−1
i,`i(n)xi

)
i∈I ,

(
µk,ϑk(n)v

∗
k

)
k∈K

)
.

(5.29)

Then, the operators (Fn)n∈N are ε-strongly monotone and (1/ε)-Lipschitzian. For every n ∈ N,

by virtue of (5.21) and (5.24), we deduce from (5.18) that

Sun − e∗n =
((
l∗
i,`i(n)

)
i∈I ,

(
−lk,ϑk(n)

)
k∈K

)
, (5.30)
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which yields

u∗n = Fnun − Sun + e∗n + f∗n. (5.31)

Furthermore, we infer from (5.22), (5.28), and (5.17) that

(∀n ∈ N) yn = (Fn + A)−1u∗n. (5.32)

At the same time, (5.23) and (5.27) imply that

(∀n ∈ N) a∗n = u∗n − Fnyn, (5.33)

while (5.29), (5.14), and (5.18) guarantee that

(∀n ∈ N) y∗n = a∗n + Syn and πn = 〈xn | y∗n〉 − 〈yn | a∗n〉. (5.34)

Altogether, it follows from (5.31)–(5.34) that (5.14) is an instantiation of (5.3). Hence, Theo-

rem 5.3(i) yields
∑

n∈N ‖xn+1 − xn‖2 < +∞. In turn, using (5.12), (5.13), (5.21), and (5.24),

we deduce from [5, Lemma A.3] that, for every i ∈ I and every k ∈ K, we have x`i(n)− xn → 0

and xϑk(n) − xn → 0. This and (5.29) imply that

un − xn → 0. (5.35)

Moreover, we deduce from (5.21) that

(∀i ∈ I) ‖w∗i,n‖ 6
∑
k∈K
‖L∗k,i‖

∥∥v∗k,ϑk(n) − v
∗
k,`i(n)

∥∥ 6∑
k∈K
‖L∗k,i‖ ‖xϑk(n) − x`i(n)‖ → 0 (5.36)

and from (5.24) that

(∀k ∈ K) ‖wk,n‖ 6
∑
i∈I
‖Lk,i‖ ‖xi,ϑk(n) − xi,`i(n)‖ 6

∑
i∈I
‖Lk,i‖ ‖xϑk(n) − x`i(n)‖ → 0. (5.37)

Therefore, e∗n → 0. By (5.15) and (5.16), (f∗n)n∈N is bounded. In view of (5.29), (5.15), and

(5.16), we get from (5.22) and (5.26) that

(∀n ∈ N) 〈un − yn | f∗n〉 =
∑
i∈I

〈
xi,`i(n) − ai,n | γ−1

i,`i(n)ei,`i(n)

〉
+
∑
k∈K

〈
v∗k,ϑk(n) − b

∗
k,n | fk,ϑk(n)

〉
> −σ

∑
i∈I

γ−1
i,`i(n)‖xi,`i(n) − ai,n‖2 − ζ

∑
k∈K

µk,ϑk(n)‖v∗k,ϑk(n) − b
∗
k,n‖2

> −max{σ, ζ}〈un − yn | Fnun − Fnyn〉, (5.38)
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and from (5.30), (5.23), and (5.25) that

〈a∗n + Sun − e∗n | f∗n〉 =
∑
i∈I

〈
a∗
i,`i(n)

+ l∗
i,`i(n)

| γ−1
i,`i(n)ei,`i(n)

〉
+
∑
k∈K

〈
bk,ϑk(n) − lk,ϑk(n) | fk,ϑk(n)

〉
6 σ

∑
i∈I

∥∥a∗
i,`i(n)

+ l∗
i,`i(n)

∥∥2
+ ζ

∑
k∈K

∥∥bk,ϑk(n) − lk,ϑk(n)

∥∥2

6 max{σ, ζ}‖a∗n + Sun − e∗n‖2. (5.39)

Altogether, the conclusion follows from Theorem 5.3(ii).

Remark 5.5 Using similar arguments, one can show that the asynchronous strongly convergent

block-iterative method [6, Algorithm 14] can be viewed as an instance of [4, Theorem 4.8].
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Chapter 6
A WARPED RESOLVENT ALGORITHM
TO CONSTRUCT NASH EQUILIBRIA

6.1 Introduction and context

We address question (Q5) of Chapter 1 by providing an application of the warped resolvent

framework of Theorem 3.16 to solving the Nash equilibrium model (6.3) in Problem 6.1.

This chapter presents the following article:

M. N. Bùi and P. L. Combettes, A warped resolvent algorithm to construct Nash

equilibria, submitted.

6.2 Article: A warped resolvent algorithm to construct Nash equi-

libria

Abstract. We propose an asynchronous block-iterative decomposition algorithm to solve Nash

equilibrium problems involving a mix of nonsmooth and smooth functions acting on linear

mixtures of strategies. The methodology relies heavily on monotone operator theory and in

particular on warped resolvents.

6.2.1 Introduction

We consider a noncooperative game with m players indexed by I = {1, . . . ,m}, in which the

strategy xi of player i ∈ I lies in a real Hilbert space Hi. A strategy profile is a point x = (xi)i∈I

in the Hilbert direct sum H =
⊕

i∈I Hi, and the associated profile of the players other than

i ∈ I is the vector xri = (xj)j∈Ir{i} in Hri =
⊕

j∈Ir{i}Hj . Given an index i ∈ I and a vector

(xi,y) ∈ Hi ×H, we set (xi;yri) = (y1, . . . , yi−1, xi, yi+1, . . . , ym).

84



A fundamental equilibrium notion was introduced by Nash in [20, 21] to describe a state

in which the loss of each player cannot be reduced by unilateral deviation. In our context, a

formulation of the Nash equilibrium problem is

find x ∈H such that (∀i ∈ I) xi ∈ Argmin
xi∈Hi

θi(xi) + `i(xi;xri), (6.1)

where the global loss function of player i ∈ I is the sum of an individual loss θi : Hi →
]−∞,+∞] and a joint loss `i : H → ]−∞,+∞] that models the interactions with the other

players. Under convexity assumptions, numerical methods to solve (6.1) have been investi-

gated since the early 1970s [4] and they have since involved increasingly sophisticated tools

from nonlinear analysis; see [1, 5, 8, 11, 14–19, 25]. In the present paper, we consider the fol-

lowing highly modular Nash equilibrium problem wherein the functions (θi)i∈I and (`i)i∈I of

(6.1) are decomposed into elementary components that are easier to process numerically.

Problem 6.1 Let (Hi)i∈I , (Ki)i∈I , and (Gk)k∈K be finite families of real Hilbert spaces, and set

H =
⊕

i∈I Hi, K =
⊕

i∈I Ki, and G =
⊕

k∈K Gk. Suppose that the following are satisfied:

[a] For every i ∈ I, ϕi : Hi → ]−∞,+∞] is proper, lower semicontinuous, and convex, αi ∈
[0,+∞[, and ψi : Hi → R is convex and differentiable with an αi-Lipschitzian gradient.

[b] For every i ∈ I, fi : K → R is such that, for every y ∈ K, fi( · ;yri) : Ki → R is convex

and Gâteaux differentiable, and we denote its gradient at yi ∈ Ki by ∇ifi(y). Further, the

operator Q : K→ K : y 7→ (∇ifi(y))i∈I is monotone and Lipschitzian. Finally, (χi)i∈I are

positive numbers such that

(∀y ∈ K)(∀y′ ∈ K) 〈y − y′ | Qy −Qy′〉 6
∑
i∈I

χi‖yi − y′i‖2. (6.2)

[c] For every k ∈ K, gk : Gk → ]−∞,+∞] is proper, lower semicontinuous, and convex, βk ∈
[0,+∞[, and hk : Gk → R is convex and differentiable with a βk-Lipschitzian gradient.

[d] For every i ∈ I and every k ∈ K,Mi : Hi → Ki and Lk,i : Hi → Gk are linear and bounded,

and, for every x ∈H, we write Lk,rixri =
∑

j∈Ir{i} Lk,jxj and Mx = (Mjxj)j∈I .

The goal is to

find x ∈H such that (∀i ∈ I)

xi ∈ Argmin
xi∈Hi

ϕi(xi) + ψi(xi) + fi
(
Mixi; (Mx)ri

)
+
∑
k∈K

(gk + hk)(Lk,ixi +Lk,rixri). (6.3)

In Problem 6.1, the individual loss of player i ∈ I consists of a nonsmooth component ϕi
and a smooth component ψi, while his joint loss is decomposed into a smooth function fi and a

sum of nonsmooth functions (gk)k∈K and smooth functions (hk)k∈K acting on linear mixtures

of the strategies. We aim at solving (6.3) with a numerical procedure that can be implemented
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in a flexible fashion and that is able to cope with possibly very large scale problems. This leads

us to adopt the following design principles:

• Decomposition: Each function and each linear operator in Problem 6.1 is activated sep-

arately.

• Block-iterative implementation: Only a subgroup of functions needs to be activated at

any iteration. This makes it possible to best modulate and adapt the computational load

of each iteration in large-scale problems.

• Asynchronous implementation: The computations are asynchronous in the sense that

the result of calculations initiated at earlier iterations can be incorporated at the current

one.

Our methodology is to first transform (6.3) into a system of monotone set-valued inclusions

and then approach it via monotone operator splitting techniques. Since no splitting technique

tailored to (6.3) and compliant with the above principles appears to be available, we adopt a

fresh perspective hinging on the theory of warped resolvents [9]. In Section 6.2.2 we provide

the necessary notation and background on monotone operator theory. Section 6.2.3 is devoted

to the derivation of the proposed asynchronous block-iterative algorithm to solve Problem 6.1.

Application examples are provided in Section 6.2.4.

6.2.2 Notation and background

General background on monotone operators and related notions can be found in [3].

Let H be a real Hilbert space. We denote by 2H the power set of H and by Id the identity

operator on H. The weak convergence and the strong convergence of a sequence (xn)n∈N in H
to a point x in H are denoted by xn ⇀ x and xn → x, respectively. Let A : H → 2H. The domain

of A is domA =
{
x ∈ H | Ax 6= ∅

}
, the range of A is ranA =

⋃
x∈domAAx, the graph of A is

graA =
{

(x, x∗) ∈ H ×H | x∗ ∈ Ax
}

, the set of zeros of A is zerA =
{
x ∈ H | 0 ∈ Ax

}
, and

the inverse of A is A−1 : H → 2H : x∗ 7→
{
x ∈ H | x∗ ∈ Ax

}
. Now suppose that A is monotone,

that is, (
∀(x, x∗) ∈ graA

)(
∀(y, y∗) ∈ graA

)
〈x− y | x∗ − y∗〉 > 0. (6.4)

Then A is maximally monotone if, for every monotone operator Ã : H → 2H, graA ⊂ gra Ã⇒
A = Ã; A is strongly monotone with constant ς ∈ ]0,+∞[ if A − ςId is monotone; and A is 3∗

monotone if

(∀x ∈ domA)(∀x∗ ∈ ranA) sup
(y,y∗)∈graA

〈x− y | y∗ − x∗〉 < +∞. (6.5)

Γ0(H) is the set of lower semicontinuous convex functions ϕ : H → ]−∞,+∞] which are proper

in the sense that domϕ =
{
x ∈ H | ϕ(x) < +∞

}
6= ∅. Let ϕ ∈ Γ0(H). Then ϕ is supercoer-

cive if lim‖x‖→+∞ ϕ(x)/‖x‖ = +∞ and uniformly convex if there exists an increasing function
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φ : [0,+∞[→ [0,+∞] that vanishes only at 0 such that

(∀x ∈ domϕ)(∀y ∈ domϕ)(∀α ∈ ]0, 1[)

ϕ
(
αx+ (1− α)y

)
+ α(1− α)φ

(
‖x− y‖

)
6 αϕ(x) + (1− α)ϕ(y). (6.6)

For every x ∈ H, proxϕx denotes the unique minimizer of ϕ + (1/2)‖· − x‖2.

The subdifferential of ϕ is the maximally monotone operator ∂ϕ : H → 2H : x 7→{
x∗ ∈ H | (∀y ∈ H) 〈y − x | x∗〉+ ϕ(x) 6 ϕ(y)

}
. Let C be a convex subset of H. The indica-

tor function of C is

ιC : H → [0,+∞] : x 7→

0, if x ∈ C;

+∞, otherwise,
(6.7)

and the strong relative interior of C is

sriC =

x ∈ C
∣∣∣∣∣∣

⋃
λ∈ ]0,+∞[

λ(C − x) is a closed vector subspace of H

 . (6.8)

The following notion of a warped resolvent will be instrumental to our approach.

Definition 6.2 ([9]) Suppose that X is a real Hilbert space. Let D be a nonempty subset of X ,

let K : D→ X , and let A : X → 2X be such that ranK ⊂ ran(K+A) and K+A is injective. The

warped resolvent of A with kernel K is JK
A = (K + A)−1 ◦K.

We now provide a warped resolvent algorithm to find a zero of a maximally monotone op-

erator A : X → 2X , where X is a real Hilbert space. This algorithm has a simple geometric

interpretation: at iteration n, we use the evaluation of the warped resolvent JKn
A at a pertur-

bation x̃n of the current iterate xn to construct a point (yn, y
∗
n) ∈ graA. By monotonicity of

A,

zerA ⊂ Hn =
{
z ∈ X | 〈z− yn | y∗n〉 6 0

}
, (6.9)

and the update xn+1 is a relaxed projection of xn onto the half-space Hn.

Proposition 6.3 Let X be a real Hilbert space and let A : X → 2X be a maximally monotone
operator such that zerA 6= ∅. Let x0 ∈ X , let ε ∈ ]0, 1[, let ς ∈ ]0,+∞[, and let $ ∈ ]ς,+∞[.
Further, for every n ∈ N, let λn ∈ [ε, 2− ε], let x̃n ∈ X , and let Kn : X → X be a ς-strongly
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monotone and $-Lipschitzian operator. Iterate

for n = 0, 1, . . .

yn = JKn
A x̃n;

y∗n = Knx̃n −Knyn;

if 〈yn − xn | y∗n〉 < 0⌊
xn+1 = xn +

λn〈yn − xn | y∗n〉
‖y∗n‖2

y∗n;

else⌊
xn+1 = xn.

(6.10)

Then the following hold:

(i)
∑

n∈N ‖xn+1 − xn‖2 < +∞.

(ii) Suppose that x̃n − xn → 0. Then xn − yn → 0 and (xn)n∈N converges weakly to a point in
zerA.

Proof. It follows from [9, Proposition 3.9(i)[d]&(ii)[b]] that the warped resolvents (JKn
A )n∈N

in (6.10) are well defined. In turn, we derive (i) and the weak convergence claim from [9,

Theorem 4.2 and Remark 4.3]. It thus remains to prove that xn − yn → 0. It is shown in the

proof of [9, Theorem 4.2(ii)] that Knx̃n − Knyn → 0. At the same time, for every n ∈ N, every

x ∈ X , and every y ∈ X , we deduce from the Cauchy–Schwarz inequality that ς‖x − y‖2 6
〈x− y | Knx−Kny〉 6 ‖x− y‖ ‖Knx−Kny‖, from which it follows that

ς‖x− y‖ 6 ‖Knx−Kny‖. (6.11)

Therefore, ‖xn − yn‖ 6 ‖xn − x̃n‖ + ‖x̃n − yn‖ 6 ‖xn − x̃n‖ + (1/ς)‖Knx̃n − Knyn‖ → 0, as

desired.

6.2.3 Algorithm

As mentioned in Section 6.2.1, there exists no method tailored to the format of Problem 6.1

that can solve it in an asynchronous block-iterative fashion. Our methodology to design such

an algorithm can be broken down in the following steps:

1. We rephrase (6.3) as a monotone inclusion problem in H, namely,

find x ∈H such that 0 ∈ Ax+M∗(Q(Mx)
)

+L∗
(
B(Lx)

)
, (6.12)
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where Q and M are defined in Problem 6.1[b] and Problem 6.1[d], respectively, and
A : H→ 2H : x 7→×

i∈I

(
∂ϕi(xi) +∇ψi(xi)

)
B : G → 2G : z 7→×

k∈K

(
∂gk(zk) +∇hk(zk)

)
L : H→ G : x 7→

(∑
i∈I Lk,ixi

)
k∈K .

(6.13)

2. The inclusion in (6.12) involves more than two operators, namely A, B, Q, L, and M .

Hence, in the spirit of the decomposition methodologies of [9,12,13], a space bigger than

H is required to devise a splitting method to solve it. We set X = H ⊕K ⊕ G ⊕K ⊕ G
and consider the inclusion problem

find x ∈ X such that 0 ∈ Ax, (6.14)

where

A : X → 2X : (x,y, z,u∗,v∗) 7→

(Ax+M∗u∗ +L∗v∗)× {Qy − u∗} × (Bz − v∗)× {y −Mx} × {z −Lx}. (6.15)

3. We show that, if x = (x,y, z,u∗,v∗) solves (6.14), then x solves (6.12) and, therefore,

(6.3).

4. To solve (6.14), we implement the warped resolvent algorithm of Proposition 6.3 with a

specific choice of the auxiliary points (x̃n)n∈N and the kernels (Kn)n∈N that will lead to

an asynchronous block-iterative splitting algorithm.

The methodology just described is put in motion in our main theorem, which we now state

and prove.

Theorem 6.4 Consider the setting of Problem 6.1. Let η ∈ ]0,+∞[ and ε ∈ ]0, 1[ be such that
1/ε > max{αi+η, βk +η, χi+η}i∈I,k∈K , let (λn)n∈N be in [ε, 2− ε], and let D ∈ N. Suppose that
the following are satisfied:

[a] For every i ∈ I and every n ∈ N, τi(n) ∈ N satisfies n−D 6 τi(n) 6 n, γi,n ∈ [ε, 1/(αi + η)],
µi,n ∈ [ε, 1/(χi + η)], σi,n ∈ [ε, 1/ε], xi,0 ∈ Hi, yi,0 ∈ Ki, and u∗i,0 ∈ Ki.

[b] For every k ∈ K and every n ∈ N, δk(n) ∈ N satisfies n − D 6 δk(n) 6 n, νk,n ∈
[ε, 1/(βk + η)], %k,n ∈ [ε, 1/ε], zk,0 ∈ Gk, and v∗k,0 ∈ Gk.

[c] (In)n∈N are nonempty subsets of I and (Kn)n∈N are nonempty subsets of K such that, for
some P ∈ N,

I0 = I, K0 = K, and (∀n ∈ N)

n+P⋃
j=n

Ij = I and
n+P⋃
j=n

Kj = K. (6.16)
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Iterate

for n = 0, 1, . . .

for every i ∈ In

qi,n = yi,τi(n) + µi,τi(n)

(
u∗i,τi(n) −∇ifi

(
yτi(n)

))
;

c∗i,n = u∗i,τi(n) + σi,τi(n)

(
Mixi,τi(n) − yi,τi(n)

)
;

x∗i,n = xi,τi(n) − γi,τi(n)

(
∇ψi

(
xi,τi(n)

)
+M∗i u

∗
i,τi(n) +

∑
k∈K L

∗
k,iv
∗
k,τi(n)

)
;

ai,n = proxγi,τi(n)ϕi
x∗i,n;

s∗i,n = γ−1
i,τi(n)(x

∗
i,n − ai,n) +∇ψi(ai,n) +M∗i c

∗
i,n;

ci,n = qi,n −Miai,n;

for every i ∈ I r In⌊
qi,n = qi,n−1; c∗i,n = c∗i,n−1; ai,n = ai,n−1; s∗i,n = s∗i,n−1; ci,n = ci,n−1;

for every k ∈ Kn

d∗k,n = zk,δk(n) + νk,δk(n)

(
v∗k,δk(n) −∇hk

(
zk,δk(n)

))
;

bk,n = proxνk,δk(n)gk
d∗k,n;

e∗k,n = v∗k,δk(n) + %k,δk(n)

(∑
i∈I Lk,ixi,δk(n) − zk,δk(n)

)
;

b∗k,n = ν−1
k,δk(n)(d

∗
k,n − bk,n) +∇hk(bk,n)− e∗k,n;

ek,n = bk,n −
∑

i∈I Lk,iai,n;

for every k ∈ K rKn⌊
bk,n = bk,n−1; e∗k,n = e∗k,n−1; b∗k,n = b∗k,n−1; ek,n = bk,n −

∑
i∈I Lk,iai,n;

for every i ∈ I⌊
a∗i,n = s∗i,n +

∑
k∈K L

∗
k,ie
∗
k,n;

q∗i,n = ∇ifi(qn)− c∗i,n;

πn =
∑

i∈I
(
〈ai,n − xi,n | a∗i,n〉+ 〈qi,n − yi,n | q∗i,n〉+ 〈ci,n | c∗i,n − u∗i,n〉

)
+
∑

k∈K
(
〈bk,n − zk,n | b∗k,n〉+ 〈ek,n | e∗k,n − v∗k,n〉

)
;

if πn < 0

θn = λnπn/
(∑

i∈I
(
‖a∗i,n‖2 + ‖q∗i,n‖2 + ‖ci,n‖2

)
+
∑

k∈K
(
‖b∗k,n‖2 + ‖ek,n‖2

))
;

for every i ∈ I⌊
xi,n+1 = xi,n + θna

∗
i,n; yi,n+1 = yi,n + θnq

∗
i,n; u∗i,n+1 = u∗i,n + θnci,n;

for every k ∈ K⌊
zk,n+1 = zk,n + θnb

∗
k,n; v∗k,n+1 = v∗k,n + θnek,n;

else
for every i ∈ I⌊
xi,n+1 = xi,n; yi,n+1 = yi,n; u∗i,n+1 = u∗i,n;

for every k ∈ K⌊
zk,n+1 = zk,n; v∗k,n+1 = v∗k,n.

(6.17)
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Furthermore, suppose that there exist x̂ ∈H, û∗ ∈ K, and v̂∗ ∈ G such that
(∀i ∈ I) û∗i = ∇ifi(Mx̂)

(∀k ∈ K) v̂∗k ∈ (∂gk +∇hk)
(∑

j∈I Lk,j x̂j
)

(∀i ∈ I) −M∗i û∗i −
∑

k∈K L
∗
k,iv̂
∗
k ∈ ∂ϕi(x̂i) +∇ψi(x̂i).

(6.18)

Then (xn)n∈N converges weakly to a solution to Problem 6.1.

Proof. Set X = H⊕K⊕G⊕K⊕G and consider the operators defined in (6.13) and (6.15). Let us

first examine some properties of the operator A in (6.15). For every i ∈ I, it results from Prob-

lem 6.1[a] and [3, Theorem 20.25 and Proposition 17.31(i)] that ∂ϕi and ∇ψi are maximally

monotone and, therefore, from [3, Corollary 25.5(i)] that ∂ϕi +∇ψi is maximally monotone.

Thus, in view of (6.13) and [3, Proposition 20.23], A is maximally monotone. Likewise, B is

maximally monotone. Hence, since Q is maximally monotone by virtue of Problem 6.1[b] and

[3, Corollary 20.28], [3, Proposition 20.23] implies that the operator

R : X → 2X : (x,y, z,u∗,v∗) 7→ Ax× {Qy} ×Bz × {0} × {0} (6.19)

is maximally monotone. On the other hand, since the operator

S : X → X : (x,y, z,u∗,v∗) 7→ (M∗u∗+L∗v∗)×{−u∗}×{−v∗}×{y−Mx}×{z−Lx} (6.20)

is linear and bounded with

S∗ = −S, (6.21)

we deduce from [3, Example 20.35] that S is maximally monotone. In turn, it follows from

(6.15), (6.19), and [3, Corollary 25.5(i)] that

A = R + S is maximally monotone. (6.22)

Upon setting ŷ = Mx̂ and ẑ = Lx̂, we derive from (6.18) and (6.13) that û∗ = Qŷ and

v̂∗ ∈ Bẑ. Further, since

M∗ : K→H : u∗ 7→ (M∗i u
∗
i )i∈I and L∗ : G →H : v∗ 7→

(∑
k∈K

L∗k,iv
∗
k

)
i∈I

, (6.23)

it results from (6.18) and (6.13) that −M∗û∗−L∗v̂∗ ∈ Ax̂. Therefore, we infer from (6.15)

that (x̂, ŷ, ẑ, û∗, v̂∗) ∈ zerA and, hence, that

zerA 6= ∅. (6.24)
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Define

(∀i ∈ I)(∀n ∈ N) `i(n) = max
{
j ∈ N | j 6 n and i ∈ Ij

}
and `i(n) = τi

(
`i(n)

)
(6.25)

and

(∀k ∈ K)(∀n ∈ N) ϑk(n) = max
{
j ∈ N | j 6 n and k ∈ Kj

}
and ϑk(n) = δk

(
ϑk(n)

)
.

(6.26)

In addition, let κ ∈ ]0,+∞[ be a Lipschitz constant of Q in Problem 6.1[b], setα =
√

2
(
ε−2 + maxi∈I α2

i

)
, β =

√
2
(
ε−2 + maxk∈K β2

k

)
, χ =

√
2(ε−2 + κ2)

ς = min{ε, η}, $ = ‖S‖+ max{α, β, χ, 1/ε},
(6.27)

and define

(∀n ∈ N)



En : H→H : x 7→
(
γ−1
i,`i(n)xi −∇ψi(xi)

)
i∈I

Fn : K→ K : y 7→
(
µ−1
i,`i(n)yi −∇ifi(y)

)
i∈I

Gn : G → G : z 7→
(
ν−1
k,ϑk(n)zk −∇hk(zk)

)
k∈K

Tn : X → X : (x,y, z,u∗,v∗) 7→
(
Enx,Fny,Gnz,

(
σ−1
i,`i(n)u

∗
i

)
i∈I ,

(
%−1
k,ϑk(n)v

∗
k

)
k∈K

)
Kn = Tn − S.

(6.28)

Fix temporarily n ∈ N. Then, using [a], the Cauchy–Schwarz inequality, and Problem 6.1[a],

we obtain

(∀x ∈H)(∀x′ ∈H) 〈x− x′ | Enx−Enx
′〉

=
∑
i∈I

(
γ−1
i,`i(n)‖xi − x

′
i‖2 − 〈xi − x′i | ∇ψi(xi)−∇ψi(x′i)〉

)
>
∑
i∈I

(
(αi + η)‖xi − x′i‖2 − ‖xi − x′i‖ ‖∇ψi(xi)−∇ψi(x′i)‖

)
>
∑
i∈I

(
(αi + η)‖xi − x′i‖2 − αi‖xi − x′i‖2

)
= η‖x− x′‖2 (6.29)

and

(∀x ∈H)(∀x′ ∈H) ‖Enx−Enx
′‖2

=
∑
i∈I

∥∥γ−1
i,`i(n)(xi − x

′
i)−

(
∇ψi(xi)−∇ψi(x′i)

)∥∥2

6 2
∑
i∈I

(
γ−2
i,`i(n)‖xi − x

′
i‖2 + ‖∇ψi(xi)−∇ψi(x′i)‖2

)
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6 2
∑
i∈I

(
ε−2‖xi − x′i‖2 + α2

i ‖xi − x′i‖2
)

6 α2‖x− x′‖2. (6.30)

Thus,

En is η-strongly monotone and α-Lipschitzian. (6.31)

Similarly, Fn is η-strongly monotone and χ-Lipschitzian

Gn is η-strongly monotone and β-Lipschitzian.
(6.32)

In turn, invoking (6.28), [a], [b], and (6.27), we deduce that Tn is strongly monotone with

constant ς and Lipschitzian with constant max{α, β, χ, 1/ε}. It therefore follows from (6.28)

and (6.27) that

Kn is ς-strongly monotone and $-Lipschitzian. (6.33)

Let us define (∀i ∈ I) Ei,n : Hi → Hi : xi 7→ γ−1
i,`i(n)xi −∇ψi(xi)

(∀k ∈ K) Gk,n : Gk → Gk : zk 7→ ν−1
k,ϑk(n)zk −∇hk(zk)

(6.34)

and let us introduce the variables

xn = (xn,yn, zn,u
∗
n,v

∗
n), yn = (an, qn, bn, c

∗
n, e
∗
n), y∗n = (a∗n, q

∗
n, b
∗
n, cn, en)

(∀i ∈ I)


x̃∗i,n = Ei,nxi,`i(n) − Ei,nxn +M∗i

(
u∗i,n − u∗i,`i(n)

)
+
∑

k∈K L
∗
k,i

(
v∗k,n − v∗k,`i(n)

)
q̃∗i,n = µ−1

i,`i(n)

(
yi,`i(n) − yi,n

)
+∇ifi(yn)−∇ifi

(
y`i(n)

)
+ u∗i,`i(n) − u

∗
i,n

c̃∗i,n = σ−1
i,`i(n)

(
u∗i,`i(n) − u

∗
i,n

)
+Mi

(
xi,`i(n) − xi,n

)
− yi,`i(n) + yi,n

(∀k ∈ K)

d̃∗k,n = Gk,nzk,ϑk(n) −Gk,nzk,n + v∗k,ϑk(n) − v
∗
k,n

ẽ∗k,n = %−1
k,ϑk(n)

(
v∗k,ϑk(n) − v

∗
k,n

)
− zk,ϑk(n) + zk,n +

∑
i∈I Lk,i

(
xi,ϑk(n) − xi,n

)
e∗n = (x̃∗n, q̃

∗
n, d̃

∗
n, c̃
∗
n, ẽ
∗
n).

(6.35)

Note that, by (6.17), (6.25), and (6.26), we have(∀i ∈ I) qi,n = qi,`i(n), c
∗
i,n = c∗

i,`i(n)
, ai,n = ai,`i(n), s

∗
i,n = s∗

i,`i(n)
, ci,n = ci,`i(n)

(∀k ∈ K) bk,n = bk,ϑk(n), e
∗
k,n = e∗

k,ϑk(n)
, b∗k,n = b∗

k,ϑk(n)
.

(6.36)

Hence, for every i ∈ I, we deduce from (6.17), (6.25), and (6.34) that

γ−1
i,`i(n)x

∗
i,`i(n)

= γ−1
i,`i(n)xi,`i(n) −∇ψi

(
xi,`i(n)

)
−M∗i u∗i,`i(n) −

∑
k∈K

L∗k,iv
∗
k,`i(n)
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= Ei,nxi,`i(n) −M∗i u∗i,`i(n) −
∑
k∈K

L∗k,iv
∗
k,`i(n)

= Ei,nxi,n −M∗i u∗i,n −
∑
k∈K

L∗k,iv
∗
k,n + x̃∗i,n, (6.37)

that

µ−1
i,`i(n)qi,n = µ−1

i,`i(n)qi,`i(n)

= µ−1
i,`i(n)yi,`i(n) −∇ifi

(
y`i(n)

)
+ u∗i,`i(n)

= µ−1
i,`i(n)yi,n −∇ifi(yn) + u∗i,n + q̃∗i,n, (6.38)

and that

σ−1
i,`i(n)c

∗
i,n = σ−1

i,`i(n)c
∗
i,`i(n)

= σ−1
i,`i(n)u

∗
i,`i(n) − yi,`i(n) +Mixi,`i(n)

= σ−1
i,`i(n)u

∗
i,n − yi,n +Mixi,n + c̃∗i,n. (6.39)

In a similar fashion,

(∀k ∈ K)

ν
−1
k,ϑk(n)d

∗
k,ϑk(n)

= Gk,nzk,n + v∗k,n + d̃∗k,n

%−1
k,ϑk(n)e

∗
k,n = %−1

k,ϑk(n)v
∗
k,n − zk,n +

∑
i∈I Lk,ixi,n + ẽ∗k,n.

(6.40)

Therefore, it results from (6.28), (6.34), (6.35), (6.20), (6.23), (6.13), and Problem 6.1[d] that

Knxn + e∗n

= Tnxn − Sxn + e∗n

=
((
γ−1
i,`i(n)x

∗
i,`i(n)

)
i∈I ,

(
µ−1
i,`i(n)qi,n

)
i∈I ,

(
ν−1
k,ϑk(n)d

∗
k,ϑk(n)

)
k∈K ,

(
σ−1
i,`i(n)c

∗
i,n

)
i∈I ,

(
%−1
k,ϑk(n)e

∗
k,n

)
k∈K

)
.

(6.41)

On the other hand, in the light of (6.28), (6.22), (6.19), (6.13), and [3, Proposition 16.44] we

get

(Kn + A)−1 : X → X : (x∗,y∗, z∗,u,v) 7→
((

proxγi,`i(n)ϕi
(γi,`i(n)x

∗
i )
)
i∈I ,

(
µi,`i(n)y

∗
i

)
i∈I ,(

proxνk,ϑk(n)gk
(νk,ϑk(n)z

∗
k)
)
k∈K ,

(
σi,`i(n)ui

)
i∈I ,

(
%k,ϑk(n)vk

)
k∈K

)
. (6.42)

Hence, since (6.36), (6.17), (6.25), and (6.26) entail that(∀i ∈ I) ai,n = ai,`i(n) = proxγi,`i(n)ϕi
x∗
i,`i(n)

(∀k ∈ K) bk,n = bk,ϑk(n) = proxνk,ϑk(n)gk
d∗
k,ϑk(n)

,
(6.43)
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we invoke (6.35) to get

yn = (Kn + A)−1(Knxn + e∗n). (6.44)

At the same time, it follows from (6.33) and [3, Corollary 20.28 and Proposition 22.11(ii)] that

Kn is surjective and, in turn, that there exists x̃n ∈ X such that

Knx̃n = Knxn + e∗n. (6.45)

Thus, (6.44) and Definition 6.2 yield

yn = JKn
A x̃n. (6.46)

In view of (6.17), (6.36), and (6.25), we derive from (6.37) that

(∀i ∈ I) a∗i,n = s∗i,n +
∑
k∈K

L∗k,ie
∗
k,n

= s∗
i,`i(n)

+
∑
k∈K

L∗k,ie
∗
k,n

= γ−1
i,`i(n)

(
x∗
i,`i(n)

− ai,`i(n)

)
+∇ψi

(
ai,`i(n)

)
+M∗i c

∗
i,`i(n)

+
∑
k∈K

L∗k,ie
∗
k,n

= γ−1
i,`i(n)x

∗
i,`i(n)

−

(
γ−1
i,`i(n)ai,n −∇ψi(ai,n)−M∗i c∗i,n −

∑
k∈K

L∗k,ie
∗
k,n

)

=

(
Ei,nxi,n −M∗i u∗i,n −

∑
k∈K

L∗k,iv
∗
k,n

)

−

(
Ei,nai,n −M∗i c∗i,n −

∑
k∈K

L∗k,ie
∗
k,n

)
+ x̃∗i,n, (6.47)

from (6.38) that

(∀i ∈ I) q∗i,n = ∇ifi(qn)− c∗i,n
=
(
µ−1
i,`i(n)yi,n −∇ifi

(
yn
)

+ u∗i,n
)
−
(
µ−1
i,`i(n)qi,n −∇ifi(qn) + c∗i,n

)
+ q̃∗i,n, (6.48)

and from (6.39) that

(∀i ∈ I) ci,n = ci,`i(n)

= qi,`i(n) −Miai,`i(n)

= qi,n −Miai,n

=
(
σ−1
i,`i(n)u

∗
i,n − yi,n +Mixi,n

)
−
(
σ−1
i,`i(n)c

∗
i,n − qi,n +Miai,n

)
+ c̃∗i,n. (6.49)
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A similar analysis shows that

(∀k ∈ K) b∗k,n =
(
Gk,nzk,n + v∗k,n

)
−
(
Gk,nbk,n + e∗k,n

)
+ d̃∗k,n (6.50)

and

(∀k ∈ K) ek,n =

(
%−1
k,ϑk(n)v

∗
k,n−zk,n+

∑
i∈I

Lk,ixi,n

)
−

(
%−1
k,ϑk(n)e

∗
k,n−bk,n+

∑
i∈I

Lk,iai,n

)
+ ẽ∗k,n.

(6.51)

Altogether, it follows from (6.35), (6.47)–(6.51), (6.34), (6.28), (6.20), (6.23), (6.13), and

(6.45) that

y∗n = (Tnxn − Sxn)− (Tnyn − Syn) + e∗n = Knxn −Knyn + e∗n = Knx̃n −Knyn. (6.52)

Further, in view of (6.17) and (6.35), we have

πn = 〈yn − xn | y∗n〉 and xn+1 =


xn +

λnπn
‖y∗n‖2

y∗n, if πn < 0;

xn, otherwise.
(6.53)

Combining (6.22), (6.24), (6.33), (6.46), (6.52), and (6.53), we conclude that (6.17) is an

instantiation of (6.10). Hence, Proposition 6.3(i) yields∑
n∈N
‖xn+1 − xn‖2 < +∞. (6.54)

For every i ∈ I and every integer n > P , (6.16) entails that i ∈
⋃n
j=n−P Ij and, in turn, (6.25)

and [a] imply that n− P −D 6 `i(n)−D 6 τi(`i(n)) = `i(n) 6 `i(n) 6 n. Consequently,

(∀i ∈ I)(∀n ∈ N) n > P +D ⇒ ‖xn − x`i(n)‖ 6
P+D∑
j=0

‖xn − xn−j‖, (6.55)

and we therefore infer from (6.54) that

(∀i ∈ I) xn − x`i(n) → 0. (6.56)

Likewise,

(∀k ∈ K) xn − xϑk(n) → 0. (6.57)

Hence, we deduce from (6.35), (6.34), (6.28), and (6.31) that

(∀i ∈ I) ‖x̃∗i,n‖ 6 ‖Ei,nxi,`i(n) − Ei,nxn‖+ ‖M∗i ‖ ‖u∗i,n − u∗i,`i(n)‖

+
∑
k∈K
‖L∗k,i‖ ‖v∗k,n − v∗k,`i(n)‖
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6 ‖Enx`i(n) −Enxn‖+ ‖M∗i ‖ ‖u∗n − u∗`i(n)‖+
∑
k∈K
‖L∗k,i‖ ‖v∗n − v∗`i(n)‖

6 α‖x`i(n) − xn‖+ ‖M∗i ‖ ‖u∗n − u∗`i(n)‖+
∑
k∈K
‖L∗k,i‖ ‖v∗n − v∗`i(n)‖

→ 0. (6.58)

Moreover, using (6.35), [a], and (6.56), we get

(∀i ∈ I) ‖q̃∗i,n‖ 6 µ−1
i,`i(n)‖yi,`i(n) − yi,n‖+

∥∥∇ifi(yn)−∇ifi
(
y`i(n)

)∥∥+ ‖u∗i,`i(n) − u
∗
i,n‖

6 ε−1‖y`i(n) − yn‖+ ‖Qyn −Qy`i(n)‖+ ‖u∗`i(n) − u
∗
n‖

6 (ε−1 + κ)‖y`i(n) − yn‖+ ‖u∗`i(n) − u
∗
n‖

→ 0 (6.59)

and

(∀i ∈ I) ‖c̃∗i,n‖ 6 σ−1
i,`i(n)‖u

∗
i,`i(n) − u

∗
i,n‖+ ‖Mi‖ ‖xi,`i(n) − xi,n‖+ ‖yi,`i(n) − yi,n‖

6 ε−1‖u∗`i(n) − u
∗
n‖+ ‖Mi‖ ‖x`i(n) − xn‖+ ‖y`i(n) − yn‖

→ 0. (6.60)

A similar analysis shows that

(∀k ∈ K) ‖d̃∗k,n‖ → 0 and ‖ẽ∗k,n‖ → 0. (6.61)

Altogether, we invoke (6.35) and (6.58)–(6.61) to get

e∗n → 0. (6.62)

Hence, arguing as in (6.11), (6.33) and (6.45) give

‖x̃n − xn‖ 6
‖Knx̃n −Knxn‖

ς
=
‖e∗n‖
ς
→ 0. (6.63)

Hence, Proposition 6.3(ii) asserts that there exists x = (x,y, z,u∗,v∗) ∈ zerA such that xn ⇀ x.

This yields xn ⇀ x. It remains to verify that x solves (6.3). Towards this end, let i ∈ I and set

fi = fi
(
· ; (Mx)ri

)
and (∀k ∈ K) g̃k = (gk + hk)( · +Lk,rixri). (6.64)

Then, by Problem 6.1[b], fi : Ki → R is convex and Gâteaux differentiable, with ∇fi(Mixi) =

∇ifi(Mx). In addition, (∀k ∈ K)(∀zk ∈ Gk) ∂g̃k(zk) = (∂gk + ∇hk)(zk + Lk,rixri). At the

same time, we deduce from (6.15) that u∗ = Qy = Q(Mx), z = Lx, v∗ ∈ Bz, and 0 ∈
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Ax+M∗u∗ +L∗v∗. Thus, it results from (6.13) and Problem 6.1[d] that
u∗i = ∇ifi(Mx) = ∇fi(Mixi)

(∀k ∈ K) zk =
∑

j∈I Lk,jxj = Lk,ixi +Lk,rixri

(∀k ∈ K) v∗k ∈ ∂gk(zk) +∇hk(zk) = (∂gk +∇hk)(Lk,ixi +Lk,rixri) = ∂g̃k(Lk,ixi)

(6.65)

and, in turn, from (6.23) and [3, Proposition 16.6(ii)] that

0 ∈ ∂ϕi(xi) +∇ψi(xi) +M∗i u
∗
i +

∑
k∈K

L∗k,iv
∗
k

⊂ ∂ϕi(xi) +∇ψi(xi) +M∗i
(
∇fi(Mixi)

)
+
∑
k∈K

L∗k,i
(
∂g̃k(Lk,ixi)

)
⊂ ∂

(
ϕi + ψi + fi ◦Mi +

∑
k∈K

g̃k ◦ Lk,i

)
(xi). (6.66)

Consequently, appealing to Fermat’s rule [3, Theorem 16.3] and (6.64), we arrive at

xi ∈ Argmin
xi∈Hi

ϕi(xi) + ψi(xi) + fi(Mixi) +
∑
k∈K

g̃k(Lk,ixi)

= Argmin
xi∈Hi

ϕi(xi) + ψi(xi) + fi
(
Mixi; (Mx)ri

)
+
∑
k∈K

(gk + hk)(Lk,ixi +Lk,rixri), (6.67)

which completes the proof.

Remark 6.5 Let us confirm that algorithm (6.17) complies with the principles laid out in Sec-

tion 6.2.1.

• Decomposition: In (6.17), the nonsmooth functions (ϕi)i∈I and (gk)k∈K are activated

separately via their proximity operators, while the smooth functions (ψi)i∈I , (fi)i∈I , and

(hk)k∈K are activated separately via their gradients.

• Block-iterative implementation: At any iteration n, the functions (fi)i∈I are activated

and we require only that the subfamilies (ϕi)i∈In , (ψi)i∈In , (gk)k∈Kn , and (hk)k∈Kn be

used. To guarantee convergence, we ask in condition [c] of Theorem 6.4 that each of

these functions be activated frequently enough.

• Asynchronous implementation: Given i ∈ I and k ∈ K, the asynchronous character of

the algorithm is materialized by the variables τi(n) and δk(n) which signal when the un-

derlying computations incorporated at iteration n were initiated. Conditions [a] and [b]

of Theorem 6.4 ask that the lag between the initiation and the incorporation of such com-

putations do not exceed D iterations. The introduction of such techniques in monotone

operator splitting were initiated in [13].

Remark 6.6 Consider the proof of Theorem 6.4. Since Proposition 6.3(ii) yields xn − yn → 0,

we obtain xn − an → 0 via (6.35) and thus an ⇀ x. At the same time, by (6.17), given i ∈ I,

98



the sequence (ai,n)n∈N lies in dom ∂ϕi ⊂ domϕi. In particular, if a constraint on xi is enforced

via ϕi = ιCi , then (ai,n)n∈N converges to the ith component of a solution x while being feasible

in the sense that Ci 3 ai,n ⇀ xi.

Remark 6.7 The proof of Theorem 6.4 implicitly establishes the convergence of an asyn-

chronous block-iterative algorithm to solve the more general system of monotone inclusions

find x ∈H such that

(∀i ∈ I) 0 ∈ Aixi +Rixi +M∗i
(
Qi(Mx)

)
+
∑
k∈K

L∗k,i

(
(Bk +Dk)

(∑
j∈I

Lk,jxj

))
(6.68)

under the following assumptions:

[a] For every i ∈ I, Ai : Hi → 2Hi is maximally monotone, αi ∈ [0,+∞[, and Ri : Hi → Hi is

monotone and αi-Lipschitzian.

[b] For every i ∈ I, Qi : K→ Ki. It is assumed that the operator Q : K→ K : y 7→ (Qiy)i∈I is

monotone and Lipschitzian. Furthermore, (χi)i∈I are positive numbers such that

(∀y ∈ K)(∀y′ ∈ K) 〈y − y′ | Qy −Qy′〉 6
∑
i∈I

χi‖yi − y′i‖2. (6.69)

[c] For every k ∈ K, Bk : Gk → 2Gk is maximally monotone, βk ∈ [0,+∞[, and Dk : Gk → Gk
is monotone and βk-Lipschitzian.

[d] For every i ∈ I and every k ∈ K,Mi : Hi → Ki and Lk,i : Hi → Gk are linear and bounded.

Moreover, we set M : H→ K : x 7→ (Mixi)i∈I .

Indeed, denote by Z the set of points (x,u∗,v∗) ∈H⊕K⊕ G such that
(∀i ∈ I) u∗i = Qi(Mx)

(∀k ∈ K) v∗k ∈ (Bk +Dk)
(∑

j∈I Lk,jxj
)

(∀i ∈ I) −M∗i u∗i −
∑

k∈K L
∗
k,iv
∗
k ∈ Aixi +Rixi.

(6.70)

Suppose that Z 6= ∅ and execute (6.17) with the following modifications:

• For every i ∈ I and every n ∈ N, proxγi,nϕi is replaced by J Id
γi,nAi

, ∇ψi by Ri, and ∇ifi by

Qi.

• For every k ∈ K and every n ∈ N, proxνk,ngk is replaced by J Id
νk,nBk

, and ∇hk by Dk.

Then there exists (x,u∗,v∗) ∈ Z such that (xn,u
∗
n,v

∗
n) ⇀ (x,u∗,v∗) and x solves (6.68).

Remark 6.8 By invoking [9, Theorem 4.8] and arguing as in the proof of Proposition 6.3, we

obtain a strongly convergent counterpart of Proposition 6.3 which, in turn, yields a strongly

convergent version of Theorem 6.4.
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Theorem 6.4 requires that (6.18) be satisfied. With the assistance of monotone operator the-

ory arguments applied to a set of primal-dual inclusions, we provide below sufficient conditions

for that. Let us start with a technical fact.

Lemma 6.9 Let H and G be real Hilbert spaces, letB : G → 2G be 3∗ monotone, and let L : H→
G be linear and bounded. Then L∗ ◦B ◦L is 3∗ monotone.

Proof. Set A = L∗ ◦B ◦ L. First, we deduce from [3, Proposition 20.10] that A is monotone.

Next, take x ∈ domA and x∗ ∈ ranA. On the one hand, Lx ∈ domB and there exists

z∗ ∈ ranB such that x∗ = L∗z∗. On the other hand, for every (y,y∗) ∈ graA, there exists

v∗ ∈ G such that (Ly,v∗) ∈ graB and y∗ = L∗v∗, from which we obtain

〈x− y | y∗ − x∗〉 = 〈x− y | L∗v∗ −L∗z∗〉

= 〈Lx−Ly | v∗ − z∗〉

6 sup
(w,w∗)∈graB

〈Lx−w | w∗ − z∗〉. (6.71)

Therefore, by 3∗ monotonicity of B,

sup
(y,y∗)∈graA

〈x− y | y∗ − x∗〉 6 sup
(w,w∗)∈graB

〈Lx−w | w∗ − z∗〉 < +∞. (6.72)

Consequently, A is 3∗ monotone.

Proposition 6.10 Consider the setting of Problem 6.1 and set

C =

{(∑
i∈I

Lk,ixi − zk

)
k∈K

∣∣∣∣∣ (∀i ∈ I) xi ∈ domϕi and (∀k ∈ K) zk ∈ dom gk

}
. (6.73)

Suppose that 0 ∈ sriC and that one of the following is satisfied:

[a] For every i ∈ I, one of the following holds:

1/ ∂(ϕi + ψi) is surjective.

2/ ϕi + ψi is supercoercive.

3/ domϕi is bounded.

4/ ϕi + ψi is uniformly convex.

[b] Q is 3∗ monotone and one of the following holds:

1/ M∗ ◦Q ◦M is surjective.

2/ Q is surjective and, for every i ∈ I, Mi is bijective.

Then (6.18) holds.

Proof. Let A, B, and L be as in (6.13) and define

T : H→ 2H : x 7→ Ax+L∗
(
B(Lx)

)
+M∗(Q(Mx)

)
. (6.74)
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Suppose that x̂ ∈ zerT and set û∗ = Q(Mx̂). On the one hand, in view of Problem 6.1[b],

(∀i ∈ I) û∗i = ∇ifi(Mx̂). On the other hand, it results from (6.74) that there exists v̂∗ ∈ B(Lx̂)

such that −M∗û∗ − L∗v̂∗ ∈ Ax̂ or, equivalently, by (6.23) and (6.13), (∀i ∈ I) −M∗i û∗i −∑
k∈K L

∗
k,iv̂
∗
k ∈ ∂ϕi(x̂i) + ∇ψi(x̂i). Further, using (6.13), we obtain (∀k ∈ K) v̂∗k ∈ (∂gk +

∇hk)(
∑

j∈I Lk,j x̂j). Altogether, we have shown that zerT 6= ∅ ⇒ (6.18) holds. Therefore, it

suffices to show that zerT 6= ∅. To do so, define
ϕ : H→ ]−∞,+∞] : x 7→

∑
i∈I
(
ϕi(xi) + ψi(xi)

)
g : G → ]−∞,+∞] : z 7→

∑
k∈K

(
gk(zk) + hk(zk)

)
P = A+L∗ ◦B ◦L.

(6.75)

Then, by (6.13) and [3, Proposition 16.9], A = ∂ϕ and B = ∂g. In turn, since (6.73) and

(6.13) imply that 0 ∈ sriC = sri(L(domϕ) − dom g), we derive from [3, Theorem 16.47(i)]

that P = A + L∗ ◦ B ◦ L = ∂(ϕ + g ◦ L). Therefore, in view of [3, Theorem 20.25 and

Example 25.13],

A, B, and P are maximally monotone and 3∗ monotone. (6.76)

[a]: Fix temporarily i ∈ I. By [3, Theorem 20.25], ∂(ϕi + ψi) is maximally monotone.

First, if [a]2/ holds, then [3, Corollary 16.30, and Propositions 14.15 and 16.27] entail that

ran ∂(ϕi + ψi) = dom ∂(ϕi + ψi)
∗ = Hi and, hence, [a]1/ holds. Second, if [a]3/ holds, then

dom ∂(ϕi + ψi) ⊂ dom(ϕi + ψi) = domϕi is bounded and, therefore, it follows from [3, Corol-

lary 21.25] that [a]1/ holds. Finally, if [a]4/ holds, then [3, Proposition 17.26(ii)] implies that

[a]2/ holds and, in turn, that [a]1/ holds. Altogether, it is enough to assume that the opera-

tors (∂(ϕi + ψi))i∈I are surjective and to show that zerT 6= ∅. Assume that (∂(ϕi + ψi))i∈I

are surjective and set R = −M ◦ P−1 ◦ (−M∗) + Q−1. Then we derive from (6.13) that A

is surjective. On the other hand, Lemma 6.9 asserts that L∗ ◦ B ◦ L is 3∗ monotone. Hence,

(6.76) and [3, Corollary 25.27(i)] yields domP−1 = ranP = H. In turn, since P−1 and

Q−1 are maximally monotone, [3, Theorem 25.3] implies that R is likewise. Furthermore, we

observe that domQ−1 ⊂ K = dom(−M ◦ P−1 ◦ (−M∗)) and, by virtue of (6.76), [3, Propo-

sition 25.19(i)], and Lemma 6.9, that −M ◦ P−1 ◦ (−M∗) is 3∗ monotone. Therefore, since

ranQ−1 = domQ = K, [3, Corollary 25.27(ii)] entails that R is surjective and, in turn, that

zerR 6= ∅. Consequently, [3, Proposition 26.33(iii)] asserts that zerT 6= ∅.

[b]1/: Lemma 6.9 asserts that M∗ ◦ Q ◦M is 3∗ monotone. At the same time, since Q

is maximally monotone and domQ = K, it results from (6.76) and [3, Theorem 25.3] that

T = P +M∗ ◦Q◦M is maximally monotone. Hence, sinceM∗ ◦Q◦M is surjective, we derive

from (6.76) and [3, Corollary 25.27(i)] that T is surjective and, therefore, that zerT 6= ∅.

[b]2/⇒[b]1/: Since the assumption implies thatM is bijective, so isM∗. This makesM∗ ◦
Q ◦M surjective.
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Remark 6.11 Sufficient conditions for 0 ∈ sriC to hold in Proposition 6.10 can be found in

[12, Proposition 5.3].

6.2.4 Application examples

We discuss problems which are shown to be realizations of Problem 6.1 and which can therefore

be solved by the asynchronous block-iterative algorithm (6.17) of Theorem 6.4.

Example 6.12 (quadratic coupling) Let K be a real Hilbert space and let I be a nonempty

finite set. For every i ∈ I, let Hi be a real Hilbert space, let ϕi ∈ Γ0(Hi), let αi ∈ [0,+∞[, let

ψi : Hi → R be convex and differentiable with an αi-Lipschitzian gradient, let Mi : Hi → K be

linear and bounded, let Λi be a nonempty finite set, let (ωi,`,j)`∈Λi,j∈Ir{i} be in [0,+∞[, and let

(κi,`)`∈Λi be in ]0,+∞[. Additionally, set H =
⊕

i∈I Hi and K =
⊕

i∈I K. The problem is to

find x ∈H such that

(∀i ∈ I) xi ∈ Argmin
xi∈Hi

ϕi(xi) + ψi(xi) +
∑
`∈Λi

κi,`
2

∥∥∥∥∥Mixi −
∑

j∈Ir{i}

ωi,`,jMjxj

∥∥∥∥∥
2

. (6.77)

It is assumed that

(∀y ∈ K)(∀y′ ∈ K)
∑
i∈I

∑
`∈Λi

κi,`

〈
yi − y′i

∣∣∣∣ yi − y′i − ∑
j∈Ir{i}

ωi,`,j(yj − y′j)
〉
> 0. (6.78)

Define

(∀i ∈ I) fi : K→ R : y 7→
∑
`∈Λi

κi,`
2

∥∥∥∥∥yi − ∑
j∈Ir{i}

ωi,`,jyj

∥∥∥∥∥
2

. (6.79)

Then, for every i ∈ I and every y ∈ K, fi( · ;yri) is convex and differentiable with

∇ifi(y) =
∑
`∈Λi

κi,`

(
yi −

∑
j∈Ir{i}

ωi,`,jyj

)
. (6.80)

Hence, in view of (6.78), the operator Q : K → K : y 7→ (∇ifi(y))i∈I is monotone and Lips-

chitzian. Thus, (6.77) is a special case of (6.3) with (∀i ∈ I) Ki = K and (∀k ∈ K) gk = hk = 0.

In particular, suppose that, for every i ∈ I, Hi = K, Ci is a nonempty closed convex subset of

Hi, ϕi = ιCi , ψi = 0, Mi = Id, Λi ⊂ I r {i}, and

(∀` ∈ Λi)


κi,` = 1

(∀j ∈ I r {i}) ωi,`,j =

1, if j = `;

0, if j 6= `.

(6.81)
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Then (6.77) becomes

find x ∈H such that (∀i ∈ I) xi ∈ Argmin
xi∈Ci

1

2

∑
`∈Λi

‖xi − x`‖2. (6.82)

This unifies models found in [2].

Example 6.13 (minimax) Let I be a finite set and suppose that ∅ 6= J ⊂ I. Let (Hi)i∈I be real

Hilbert spaces, and set U =
⊕

i∈IrJ Hi and V =
⊕

j∈J Hj . For every i ∈ I, let ϕi ∈ Γ0(Hi),
let αi ∈ [0,+∞[, let ψi : Hi → R be convex and differentiable with an αi-Lipschitzian gradient.

Further, let L : U ⊕ V → R be differentiable with a Lipschitzian gradient and such that, for

every u ∈ U and every v ∈ V , the functions −L(u, ·) and L( · ,v) are convex. Finally, for every

i ∈ I r J and every j ∈ J , let Lj,i : Hi → Hj be linear and bounded. Consider the multivariate

minimax problem

minimize
u∈U

maximize
v∈V

∑
i∈IrJ

(
ϕi(ui)+ψi(ui)

)
−
∑
j∈J

(
ϕj(vj)+ψj(vj)

)
+L(u,v)+

∑
i∈IrJ

∑
j∈J
〈Lj,iui | vj〉.

(6.83)

Now set H = U ⊕ V and define

(∀i ∈ I) fi : H→ R : (u,v) 7→

L(u,v) +
〈
ui |

∑
j∈J L

∗
j,ivj

〉
, if i ∈ I r J ;

−L(u,v)−
〈∑

k∈IrJ Li,kuk | vi
〉
, if i ∈ J.

(6.84)

Then H =
⊕

i∈I Hi and (6.83) can be put in the form

find x ∈H such that (∀i ∈ I) xi ∈ Argmin
xi∈Hi

ϕi(xi) + ψi(xi) + fi(xi;xri). (6.85)

Let us verify Problem 6.1[b]. On the one hand, we have

(∀i ∈ I)(∀x ∈H) ∇ifi(x) =

∇iL(x) +
∑

j∈J L
∗
j,ixj , if i ∈ I r J ;

−∇iL(x)−
∑

k∈IrJ Li,kxk, if i ∈ J.
(6.86)

On the other hand, the operator

R : H→H : x 7→
((
∇iL(x)

)
i∈IrJ ,

(
−∇jL(x)

)
j∈J
)

(6.87)

is monotone [22,23] and Lipschitzian, while the bounded linear operator

S : H→H : x 7→

((∑
j∈J

L∗j,ixj

)
i∈IrJ

,

(
−
∑
k∈IrJ

Li,kxk

)
i∈J

)
(6.88)

satisfies S∗ = −S and it is therefore monotone [3, Example 20.35]. Hence, since the operator

Q in Problem 6.1[b] can be written as Q = R + S, it is therefore monotone and Lipschitzian.
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Altogether, (6.83) is an instantiation of (6.3). Special cases of (6.83) can be found in [14,24].

Example 6.14 In Problem 6.1, consider the following scenario: K = {1}, G1 is the standard

Euclidean space RM , r ∈ G1, g1 = ιE , where E = r + [0,+∞[M , h1 = 0, and, for every i ∈ I,

Hi is the standard Euclidean space RNi , ψi = 0, and ϕi = ιCi , where Ci is a nonempty closed

convex subset of Hi. Then, upon setting N =
∑

i∈I Ni, we obtain the model

find x ∈ RN such that (∀i ∈ I) xi ∈ Argmin
xi∈Ci

L1,ixi+L1,rixri∈E

fi(xi;xri) (6.89)

investigated in [25].

Example 6.15 (minimization) Consider the setting of Problem 6.1 where [b] is replaced by

[b’] For every i ∈ I, fi = f , where f : K → R is a differentiable convex function such that

Q = ∇f is Lipschitzian,

and, in addition, the following is satisfied:

[e] For every k ∈ K, gk : Gk → R is Gâteaux differentiable.

Then (6.3) reduces to the multivariate minimization problem

minimize
x∈H

∑
i∈I

(
ϕi(xi) + ψi(xi)

)
+ f(Mx) +

∑
k∈K

(gk + hk)

(∑
j∈I

Lk,jxj

)
. (6.90)

The only asynchronous block-iterative algorithm we know of to solve (6.90) is [10, Algo-

rithm 4.5], which is based on different decomposition principles. Special cases of (6.90) are

found in partial differential equations [1], machine learning [6], and signal recovery [7], where

they were solved using synchronous and non block-iterative methods.
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Chapter 7
A DECOMPOSITION METHOD FOR
SOLVING MULTICOMMODITY
NETWORK EQUILIBRIUM

7.1 Introduction and context

This chapter addresses question (Q6) of Chapter 1. We devise a flexible algorithm for solving

the multicommodity network equilibrium model proposed by Rockafellar in [13].

This chapter presents the following article:

M. N. Bùi, A decomposition method for solving multicommodity network equi-

librium, submitted.

7.2 Article: A decomposition method for solving multicommodity

network equilibrium

Abstract. We consider the numerical aspect of the multicommodity network equilibrium prob-

lem proposed by Rockafellar in 1995. Our method relies on the flexible monotone operator

splitting framework recently proposed by Combettes and Eckstein.

7.2.1 Problem formulation

Rockafellar proposed in [13] the important multicommodity network equilibrium model (see

(7.6) in Problem 7.2) and studied some of its properties. In the present paper, we devise a

flexible numerical method for solving this problem based on the asynchronous block-iterative

decomposition framework of [6].
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The following notion of a network from [12, Section 1A] plays a central role in our problem.

Definition 7.1 A network consists of nonempty finite sets N and A — whose elements are

called nodes and arcs, respectively — and a mapping ϑ : A→ N×N: j 7→ (ϑ1(j), ϑ2(j)) such

that, for every j ∈ A, ϑ1(j) 6= ϑ2(j). We call ϑ1(j) and ϑ2(j) the initial node and the terminal

node of arc j, respectively. In addition, we set

(∀i ∈N)

A+(i) =
{
j ∈ A | node i is the initial node of arc j

}
A−(i) =

{
j ∈ A | node i is the terminal node of arc j

}
.

(7.1)

Recall that, given a Euclidean space G with scalar product 〈 · | · 〉, an operator A : G → 2G is

maximally monotone if

(
∀(x, x∗) ∈ G × G

)
(x, x∗) ∈ graA ⇔

[ (
∀(y, y∗) ∈ graA

)
〈x− y | x∗ − y∗〉 > 0

]
, (7.2)

where graA =
{

(x, x∗) ∈ G × G | x∗ ∈ Ax
}

is the graph of A. (The reader is referred to [2] for

background and complements on monotone operator theory and convex analysis.) The problem

of interest is the following.

Problem 7.2 Under consideration is a network (N,A, ϑ), together with a nonempty finite

set C of commodities transiting on the network. Equip H = RC with the scalar product

((ξk)k∈C, (ηk)k∈C) 7→
∑

k∈C ξkηk and let us introduce the spacesX =
{
x = (xj)j∈A | (∀j ∈ A) xj = (ξj,k)k∈C ∈ H

}
V =

{
v∗ = (v∗i )i∈N | (∀i ∈N) v∗i = (ν∗i,k)k∈C ∈ H

}
.

(7.3)

An element x ∈ X is called a flow on the network, where ξj,k is the flux of commodity k on arc

j. The divergence of a flow x ∈ X at node i is

divi x =
∑

j∈A+(i)

xj −
∑

j∈A−(i)

xj . (7.4)

We refer to an element v∗ ∈ V as a potential on the network, where ν∗i,k is the potential of

commodity k at node i. Given v∗ ∈ V and j ∈ A, the tension (or potential difference) across

arc j relative to the potential v∗ is

∆jv
∗ = v∗ϑ2(j) − v

∗
ϑ1(j). (7.5)

For every j ∈ A, the flow-tension relation on arc j is modeled by the sum Qj +Rj of maximally

monotone operators Qj : H → 2H and Rj : H → 2H. Further, for every i ∈ N, the divergence-

potential relation at node i is modeled by a maximally monotone operator Si : H → 2H. The
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task is to

find a flow x ∈ X and a potential v∗ ∈ V such that

(∀j ∈ A) ∆jv
∗ ∈ Qjxj +Rjxj

(∀i ∈N) divi x ∈ S−1
i v∗i ,

(7.6)

under the assumption that (7.6) has a solution.

Remark 7.3 The pertinence of Problem 7.2 is demonstrated in [12, Chapter 8] and [13], where

it is shown to capture formulations arising in areas such as traffic assignment, hydraulic net-

works, and price equilibrium.

7.2.2 A block-iterative decomposition method

Notation. Throughout, G is a Euclidean space. Let A : G → 2G be maximally monotone and let

x ∈ G. Then, in terms of the variable p ∈ G, the inclusion x ∈ p + Ap has a unique solution,

which is denoted by JAx. The operator JA : G → G : x 7→ JAx is called the resolvent of A.

Our algorithm (see (7.8) in Proposition 7.4) is derived from [6, Algorithm 12] and it thus

inherits the following attractive features from the framework of [6]:

• No additional assumption, such as Lipschitz continuity or cocoercivity, is imposed on the

underlying operators.

• Algorithm (7.8) achieves full splitting in the sense that the operators (Qj)j∈A, (Rj)j∈A,

and (Si)i∈N are activated independently via their resolvents.

• Algorithm (7.8) is block-iterative, that is, at iteration n, only blocks (Qj)j∈An , (Rj)j∈An ,

and (Si)i∈Nn of operators need to be activated. To guarantee convergence of the iterates,

the mild sweeping condition (7.7) needs to be fulfilled.

We shall denote elements in X and V by bold letters, e.g., qn = (qj,n)j∈A and s∗n = (s∗i,n)i∈N.

Proposition 7.4 Consider the setting of Problem 7.2. Let T ∈ N, let (An)n∈N be nonempty subsets
of A, and let (Nn)n∈N be nonempty subsets of N such that A0 = A, N0 = N, and

(∀n ∈ N)
n+T⋃
k=n

Ak = A and
n+T⋃
k=n

Nk = N. (7.7)

Let (λn)n∈N be a sequence in ]0, 2[ such that infn∈N λn > 0 and supn∈N λn < 2. Moreover, for every
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j ∈ Aand every i ∈N, let (xj,0, x
∗
j,0, v

∗
i,0) ∈ H3 and (γj , µj , σi) ∈ ]0,+∞[3. Iterate

for n = 0, 1, . . .

for every j ∈ An
l∗j,n = x∗j,n −∆jv

∗
n

qj,n = JγjQj (xj,n − γjl∗j,n)

q∗j,n = γ−1
j (xj,n − qj,n)− l∗j,n

rj,n = JµjRj (xj,n + µjx
∗
j,n)

r∗j,n = x∗j,n + µ−1
j (xj,n − rj,n)

for every j ∈ ArAn⌊
qj,n = qj,n−1; q∗j,n = q∗j,n−1; rj,n = rj,n−1; r∗j,n = r∗j,n−1

for every i ∈Nn
li,n = divi xn
si,n = JσiSi(li,n + σiv

∗
i,n)

s∗i,n = v∗i,n + σ−1
i (li,n − si,n)

ti,n = si,n − divi qn
for every i ∈NrNn⌊
si,n = si,n−1; s∗i,n = s∗i,n−1

ti,n = si,n − divi qn
for every j ∈ A⌊
t∗j,n = q∗j,n + r∗j,n −∆js

∗
n

uj,n = rj,n − qj,n
τn =

∑
j∈A

(
‖t∗j,n‖2 + ‖uj,n‖2

)
+
∑

i∈N‖ti,n‖2

if τn > 0
πn =

∑
j∈A

(
〈xj,n | t∗j,n〉 − 〈qj,n | q∗j,n〉+ 〈uj,n | x∗j,n〉 − 〈rj,n | r∗j,n〉

)
+
∑

i∈N
(
〈ti,n | v∗i,n〉 − 〈si,n | s∗i,n〉

)
θn = λn max{πn, 0}/τn

else⌊
θn = 0

for every j ∈ A⌊
xj,n+1 = xj,n − θnt∗j,n
x∗j,n+1 = x∗j,n+1 − θnuj,n

for every i ∈N⌊
v∗i,n+1 = v∗i,n − θnti,n.

(7.8)

Then ((xj,n)j∈A, (v
∗
i,n)i∈N)n∈N converges to a solution to (7.6).

Proof. Let us consider the multivariate monotone inclusion problem
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find x ∈ X , x∗ ∈ X , and v∗ ∈ V such that

(∀j ∈ A) ∆jv
∗ − x∗j ∈ Qjxj and xj ∈ R−1

j x∗j

(∀i ∈N) divi x ∈ S−1
i v∗i .

(7.9)

Then

(∀x ∈ X )(∀v∗ ∈ V) (x,v∗) solves (7.6)

⇔ (∃x∗ ∈ X )

(∀j ∈ A) ∆jv
∗ ∈ Qjxj + x∗j and x∗j ∈ Rjxj

(∀i ∈N) divi x ∈ S−1
i v∗i

⇔ (∃x∗ ∈ X ) (x,x∗,v∗) solves (7.9). (7.10)

Therefore, since (7.6) has a solution, so does (7.9). Next, define

(∀i ∈N)(∀j ∈ A) εi,j =


1, if node i is the initial node of arc j;

−1, if node i is the terminal node of arc j;

0, otherwise.

(7.11)

It results from (7.4) and (7.1) that

(∀x ∈ X )(∀i ∈N) divi x =
∑
j∈A

εi,jxj , (7.12)

and from (7.5) that

(∀v∗ ∈ V)(∀j ∈ A) ∆jv
∗ = −

∑
i∈N

εi,jv
∗
i . (7.13)

We now verify that (7.9) is a special case of [6, Problem 1] with the setting

I = A, K = A∪N, and (∀j ∈ I)(∀k ∈ K)



Hj = Gk = H

Aj = Qj

Bk =

Rk, if k ∈ A;

Sk, if k ∈N

z∗j = rk = 0

Lk,j =


Id, if k = j;

0, if k ∈ A and k 6= j;

εk,jId, if k ∈N.

(7.14)
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We deduce from (7.12) that

(∀x ∈ X )(∀k ∈ K)
∑
j∈I

Lk,jxj =

xk, if k ∈ A;∑
j∈I εk,jxj , if k ∈N

=

xk, if k ∈ A;

divk x, if k ∈N,
(7.15)

and from (7.13) that

(∀x∗ ∈ X )(∀v∗ ∈ V)(∀j ∈ I)
∑
k∈A

L∗k,jx
∗
k +

∑
k∈N

L∗k,jv
∗
k = x∗j +

∑
k∈N

εk,jv
∗
k = x∗j −∆jv

∗. (7.16)

Hence, in the setting of (7.14), (7.9) is an instantiation of [6, Problem 1] and (7.8) is a realiza-

tion of [6, Algorithm 12], where (∀n ∈ N) In = An and Kn = An ∪Nn. Thus, upon letting

(∀n ∈ N) xn = (xj,n)j∈A, x∗n = (x∗j,n)j∈A, and v∗n = (v∗i,n)i∈N, (7.17)

we infer from [6, Theorem 13] that (xn,x
∗
n,v

∗
n)n∈N converges to a solution (x,x∗,v∗) to (7.9).

Consequently, (7.10) asserts that (x,v∗) solves (7.6).

112



Remark 7.5 Some comments are in order.

(i) One might be tempted to consider (7.6) as a special case of [6, Problem 1] with the setting

I = A, K = N, and (∀j ∈ I)(∀k ∈ K)



Hj = Gk = H

Aj = Qj +Rj

Bk = Sk

z∗j = rk = 0

Lk,j = εk,jId,

(7.18)

where (εi,j)i∈N,j∈A are defined in (7.11), and then specialize [6, Algorithm 12] to (7.18).

However, this approach necessitates the computation of the resolvents of the operators

(Qj+Rj)j∈A, which cannot be expressed in terms of the resolvents of (Qj)j∈A and (Rj)j∈A

in general (see Examples 7.6 and 7.7).

(ii) Algorithm (7.8) of Proposition 7.4 requires to evaluate the resolvents of the operators

(Qj)j∈A, (Rj)j∈A, and (Si)i∈N. Illustrations of such calculations in some special cases of

Problem 7.2 encountered in the literature are provided in Examples 7.6, 7.7 and 7.9–7.12.

(iii) Alternate algorithms [5,7,11] can also be used to solve (7.9) and, in turn, (7.6). Neverthe-

less, there are certain restrictions on the resulting algorithms. For example, the method of

[5] must activate all the operators (Qj)j∈A, (Rj)j∈A, and (Si)i∈N at every iteration, while

the frameworks of [7,11] do not allow for deterministic selections of the blocks (Qj)j∈An ,

(Rj)j∈An , and (Si)i∈Nn . Finally, the algorithm resulted from [7] involves the inversion of

a linear operator acting on RMN , where N = card C and M = 2 cardA+ cardN, which

may not be favorable in large-scale problems, e.g., [8].

Notation. Before proceeding further, let us recall some basic notion of convex analysis

(see [2] for details). Let ϕ : G → ]−∞,+∞] be proper, lower semicontinuous, and con-

vex. The subdifferential of ϕ is the maximally monotone operator ∂ϕ : G → 2G : x 7→{
x∗ ∈ G | (∀y ∈ G) 〈y − x | x∗〉+ ϕ(x) 6 ϕ(y)

}
. For every x ∈ G, the unique minimizer of

ϕ + (1/2)‖· − x‖2 is denoted by proxϕx. Let C be a nonempty closed convex subset of G.

The indicator function of C is the proper lower semicontinuous convex function

ιC : G → [0,+∞] : x 7→

0, if x ∈ C;

+∞, otherwise,
(7.19)

the normal cone operator of C is NC = ∂ιC , and the projector onto C is projC = proxιC .

Example 7.6 (Separable multicommodity flows) Consider the setting of Problem 7.2 and

suppose, in addition, that the following are satisfied:

[a] For every j ∈ A, cj : R → 2R is maximally monotone, Cj is a nonempty closed convex

113



subset of H, and

Qj : H → 2H : xj = (ξj,k)k∈C 7→

(
cj

(∑
k∈C

ξj,k

))
k∈C

and Rj = NCj . (7.20)

[b] For every i ∈N, si ∈ H and

S−1
i : H → 2H : v∗i 7→ {si}. (7.21)

Then (7.6) reduces to the separable multicommodity flow problem; see, e.g., [3, Section 8.3]

and the references listed in [3, Section 8.9]. Take j ∈ A, i ∈ N, and γ ∈ ]0,+∞[. We have

JγRj = projCj and JγSi = si. To compute JγQj , define L : H → R : (ξk)k∈C 7→
∑

k∈C ξk and set

N = card C. Then L∗ : R→ H : ξ 7→ (ξ)k∈C and, therefore, L ◦ L∗ = N Id. At the same time, by

(7.20), Qj = L∗ ◦ cj ◦ Lj . Thus, we derive from [2, Proposition 23.25(iii)] that

(
∀xj = (ξj,k)k∈C ∈ H

)
JγQjxj = xj +

1

N

(
JNγcj (Lxj)− Lxj

)
k∈C = (ξj,k + η)k∈C,

where η =

(
JNγcj

(∑
k∈C

ξj,k

)
−
∑
k∈C

ξj,k

)/
N. (7.22)

Example 7.7 The separable multicommodity flow problem with arc capacity constraints (see,

e.g., [3, Section 8.3]) is an instantiation of Example 7.6 with, for every j ∈ A, cj = ∂(φj +

ιΩj ), where φj : R → ]−∞,+∞] is a proper lower semicontinuous convex function and Ωj is

a nonempty closed interval in R such that Ωj ∩ domφj 6= ∅. In this setting, it follows from

[2, Example 23.3 and Proposition 24.47] that

(∀j ∈ A)
(
∀γ ∈ ]0,+∞[

)
Jγcj = proxγ(φj+ιΩj ) = projΩj ◦ proxγφj . (7.23)

Remark 7.8 Consider the standard traffic assignment problem, that is, the special case of Ex-

ample 7.6 where (∀j ∈ A) Cj = [0,+∞[C.

(i) In [1, Example 4.4], this problem was solved by an application of the forward-backward

method [1, Theorem 2.8], where it is further assumed that, for every j ∈ A, dom cj =

R and cj is Lipschitzian. However, some common operators found in the literature of

traffic assignment [4] do not fulfill this requirement; their resolvents are provided in

Examples 7.9–7.12.

(ii) The method of [9], which is an application of the Douglas–Rachford algorithm [10],

requires to compute the projectors onto polyhedral sets of the form(ξj)j∈A ∈ [0,+∞[A

∣∣∣∣∣∣ (∀i ∈N)
∑
j∈A

εi,jξj = δi

 , (7.24)
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where (εi,j)i∈N,j∈A are defined in (7.11). This results in solving a subproblem at every iteration

because there is no closed-form expression for such projectors.

Example 7.9 (Bureau of Public Roads capacity operator) Let (α, %, θ, p) ∈ ]0,+∞[4 and de-

fine

c : R→ R : ξ 7→

θ
(

1 + α

(
ξ

%

)p)
, if ξ > 0;

θ, if ξ < 0.

(7.25)

In addition, let γ ∈ ]0,+∞[ and ξ ∈ R. Then the following hold:

(i) Suppose that ξ > γθ. Then, in terms of the variable s ∈ R, the equation

αγθ

%p
sp + s+ γθ − ξ = 0 (7.26)

has a unique solution s and Jγcξ = s.

(ii) Suppose that ξ < γθ. Then Jγcξ = ξ − γθ.

Example 7.10 (Logarithmic capacity operator) Let ω ∈ ]0,+∞[, let θ ∈ [0,+∞[, and define

c : R→ 2R : ξ 7→


{
θ + ln

ω

ω − ξ

}
, if ξ < ω;

∅, if ξ > ω.
(7.27)

Then

(
∀γ ∈ ]0,+∞[

)
(∀ξ ∈ R) Jγcξ = ω − γW

(
ωγ−1 exp(θ − ξ/γ + ω/γ)

)
, (7.28)

where W is the Lambert W-function, that is, the inverse of [−1,+∞[ → [−1/e,+∞[ : ξ 7→
ξ exp(ξ).

Example 7.11 (Traffic Research Corporation capacity operator) Let (α, β, δ, ω) ∈ ]0,+∞[4

and define

c : R→ R : ξ 7→ δ + α(ξ − ω) +
√
α2(ξ − ω)2 + β. (7.29)

Then

(
∀γ ∈ ]0,+∞[

)
(∀ξ ∈ R) Jγcξ

=
−
√
γ2α2(ξ − γδ − ω)2 + (2γα+ 1)γ2β + γα(ξ − γδ + ω) + ξ − γδ

2γα+ 1
. (7.30)

Example 7.12 Let α ∈ ]1,+∞[, let θ ∈ ]0,+∞[, let p ∈ ]0,+∞[, and define

c : R→ R : ξ 7→ θαpξ. (7.31)
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Then (
∀γ ∈ ]0,+∞[

)
(∀ξ ∈ R) Jγcξ = ξ −

W
(
γθαpξp lnα

)
p lnα

. (7.32)
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Chapter 8
BLOCK-ACTIVATED ALGORITHMS FOR
MULTICOMPONENT FULLY
NONSMOOTH MINIMIZATION

8.1 Introduction and context

Our focus in this chapter is question (Q7) of Chapter 1. The numerical experiments concern

machine learning and image recovery.

This chapter presents the following article:

M. N. Bùi, P. L. Combettes, and Z. C. Woodstock, Block-activated algorithms for

multicomponent fully nonsmooth minimization, submitted.

8.2 Article: Block-activated algorithms for multicomponent fully

nonsmooth minimization

Abstract. Under consideration are multicomponent minimization problems involving a separa-

ble nonsmooth convex function penalizing the components individually, and nonsmooth convex

coupling terms penalizing linear mixtures of the components. We investigate block-activated

proximal algorithms for solving such problems, i.e., algorithms which, at each iteration, need

to use only a block of the underlying functions, as opposed to all of them as in standard meth-

ods. For smooth coupling functions, several block-activated algorithms exist and they are well

understood. By contrast, in the fully nonsmooth case, few block-activated methods are avail-

able and little effort has been devoted to assessing them. Our goal is to shed more light on the

implementation, the features, and the behavior of these algorithms, compare their merits, and

provide machine learning and image recovery experiments illustrating their performance.
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8.2.1 Introduction

The goal of many signal processing and machine learning tasks is to exploit the observed data

and the prior knowledge to produce a solution that represents information of interest. In this

process of extracting information from data, structured convex optimization has established

itself as an effective modeling and algorithmic framework; see, for instance, [3, 5, 8, 14, 19].

In state-of-the-art applications, the sought solution is often a tuple of vectors which reside

in different spaces [1, 2, 4, 6, 12, 13, 16, 17, 20]. The following multicomponent minimization

formulation captures such problems. It consists of a separable term penalizing the components

individually, and of coupling terms penalizing linear mixtures of the components.

Problem 8.1 Let (Hi)16i6m and (Gk)16k6p be Euclidean spaces. For every i ∈ {1, . . . ,m} and

every k ∈ {1, . . . , p}, let fi : Hi → ]−∞,+∞] and gk : Gk → ]−∞,+∞] be proper lower semi-

continuous convex functions, and let Lk,i : Hi → Gk be a linear operator. The objective is to

minimize
x1∈H1,...,xm∈Hm

m∑
i=1

fi(xi)︸ ︷︷ ︸
separable term

+

p∑
k=1

gk

(
m∑
i=1

Lk,ixi

)
︸ ︷︷ ︸
kth coupling term

. (8.1)

To solve Problem 8.1 reliably without adding restrictions (for instance, smoothness or strong

convexity of some functions involved in the model), we focus on flexible proximal algorithms

that have the following features:

À Nondifferentiability: None of the functions f1, . . . , fm, g1, . . . , gp needs to be differen-

tiable.

Á Splitting: The functions f1, . . . , fm, g1, . . . , gp and the linear operators are activated sepa-

rately.

Â Block activation: Only a block of the functions f1, . . . , fm, g1, . . . , gp is activated at each

iteration. This is in contrast with most splitting methods which require full activation, i.e.,

that all the functions be used at every iteration.

Ã Operator norms: Bounds on the norms of the linear operators involved in Problem 8.1

are not assumed since they can be hard to compute.

Ä Convergence guarantee: The algorithm produces a sequence which converges (possibly

almost surely) to a solution to Problem 8.1.

In view of features À and Á, the algorithms of interest should activate the functions

f1, . . . , fm, g1, . . . , gp via their proximity operators (even if some functions happened to be
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smooth, proximal activation is often preferable [6, 10]). The motivation for Á is that prox-

imity operators of composite functions are typically not known explicitly. Feature Â is geared

towards current large-scale problems. In such scenarios, memory and computing power limi-

tations make the execution of standard proximal splitting algorithms, which require activating

all the functions at each iteration, inefficient or simply impossible. We must therefore turn our

attention to algorithms which employ only blocks of functions (fi)i∈In and (gk)k∈Kn at itera-

tion n. If the functions (gk)16k6p were all smooth, one could use block-activated versions of

the forward-backward algorithm proposed in [15,25] and the references therein; in particular,

when m = 1, methods such as those of [11,18,23,26] would be pertinent. As noted in [15, Re-

mark 5.10(iv)], another candidate of interest could be the randomly block-activated algorithm

of [15, Section 5.2], which leads to block-activated versions of several primal-dual methods

(see [24] for detailed developments and [7] for an inertial version when m = 1). However,

this approach violates Ã as it imposes bounds on the proximal scaling parameters which de-

pend on the norms of the linear operators. Finally, Ä rules out methods that guarantee merely

minimizing sequences or ergodic convergence.

To the best of our knowledge, there are two primary methods that fulfill À–Ä:

• Algorithm 8.2: The stochastic primal-dual Douglas–Rachford algorithm of [15].

• Algorithm 8.3: The deterministic primal-dual projective splitting algorithm of [9].

In the case of smooth coupling functions (gk)16k6p, in (8.1), extensive numerical experience

has been accumulated to understand the behavior of block-activated methods, especially in the

case of stochastic gradient methods. By contrast, to date, very few numerical experiments with

the recent, fully nonsmooth Algorithms 8.2 and 8.3 have been conducted and no comparison of

their merits and performance has been undertaken. Thus far, Algorithm 8.2 has been employed

only in the context of machine learning (see also the variant of 8.2 in [6] for partially smooth

problems). On the other hand, Algorithm 8.3 has been used in image recovery in [10], but only

in full activation mode, and in feature selection in [22], but with m = 1.

Contributions and novelty: This paper investigates for the first time the use of block-

activated methods in fully nonsmooth multivariate minimization problems. It sheds more light

on the implementation, the features, and the behavior of Algorithms 8.2 and 8.3, compares

their merits, and provides experiments illustrating their performance.

Outline: Algorithms 8.2 and 8.3 are presented in Section 8.2.2. In Section 8.2.3, we analyze

and compare their features, implementation, and asymptotic properties. This investigation is

complemented in Section 8.2.4 by numerical experiments in the context of machine learning

and image recovery.

8.2.2 Block-activated algorithms for Problem 8.1

The subdifferential, the conjugate, and the proximity operator of a proper lower semicontinuous

convex function f : H → ]−∞,+∞] are denoted by ∂f , f∗, and proxf , respectively. Let us

consider the setting of Problem 8.1 and let us set H = H1 × · · · ×Hm and G = G1 × · · · × Gp. A
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generic element in H is denoted by x = (xi)16i6m and a generic element in G by y = (yk)16k6p.

As discussed in Section 8.2.1, two primary algorithms fulfill requirements À–Ä. Both op-

erate in the product space H × G. The first one employs random activation of the blocks. To

present it, let us introduce

L : H→ G : x 7→
( m∑
i=1

L1,ixi, . . . ,
m∑
i=1

Lp,ixi

)
V =

{
(x,y) ∈H× G | y = Lx

}
F : H× G → ]−∞,+∞]

(x,y) 7→
∑m

i=1 fi(xi) +
∑p

k=1 gk(yk).

(8.2)

Then (8.1) is equivalent to

minimize
(x,y)∈V

F (x,y). (8.3)

The idea is then to apply the Douglas–Rachford algorithm in block form to this prob-

lem [15]. To this end, we need proxF and proxιV = projV . Note that proxF : (x,y) 7→
((proxfixi)16i6m, (proxgkyk)16k6p). Now let x ∈ H and y ∈ G, and set t = (Id + L∗L)−1(x +

L∗y) and s = (Id +LL∗)−1(Lx− y). Then

projV (x,y) = (t,Lt) = (x−L∗s,y + s), (8.4)

and we write it coordinate-wise as

projV (x,y) =
(
Q1(x,y), . . . , Qm+p(x,y)

)
. (8.5)

Thus, given γ ∈ ]0,+∞[, z0 ∈ H, and y0 ∈ G, the standard Douglas–Rachford algorithm for

(8.3) is
for n = 0, 1, . . .

λn ∈ ]0, 2[

for every i ∈ {1, . . . ,m}⌊
xi,n+1 = Qi(zn,yn)

zi,n+1 = zi,n + λn
(
proxγfi(2xi,n+1 − zi,n)− xi,n+1

)
for every k ∈ {1, . . . , p}⌊
wk,n+1 = Qm+k(zn,yn)

yk,n+1 = yk,n + λn
(
proxγgk(2wk,n+1 − yk,n)− wk,n+1

)
.

(8.6)

The block-activated version of this algorithm is as follows.

Algorithm 8.2 ([15]) Let γ ∈ ]0,+∞[, let x0 and z0 be H-valued random variables (r.v.), let
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y0 and w0 be G-valued r.v. Iterate

for j = 1, . . . ,m+ p

bcompute Qj as in (8.4)–(8.5)

for n = 0, 1, . . .

λn ∈ ]0, 2[

select randomly ∅ 6= In ⊂ {1, . . . ,m} and ∅ 6= Kn ⊂ {1, . . . , p}
for every i ∈ In⌊
xi,n+1 = Qi(zn,yn)

zi,n+1 = zi,n + λn
(
proxγfi(2xi,n+1 − zi,n)− xi,n+1

)
for every i ∈ {1, . . . ,m}r In⌊

(xi,n+1, zi,n+1) = (xi,n, zi,n)

for every k ∈ Kn⌊
wk,n+1 = Qm+k(zn,yn)

yk,n+1 = yk,n + λn
(
proxγgk(2wk,n+1 − yk,n)− wk,n+1

)
for every k ∈ {1, . . . , p}rKn⌊

(wk,n+1, yk,n+1) = (wk,n, yk,n).

The second algorithm operates by projecting onto hyperplanes which separate the current

iterate from the set Z of Kuhn–Tucker points of Problem 8.1, i.e., the points x̃ ∈H and ṽ∗ ∈ G
such that (∀i ∈ {1, . . . ,m}) −

∑p
k=1 L

∗
k,iṽ
∗
k ∈ ∂fi(x̃i)

(∀k ∈ {1, . . . , p})
∑m

i=1 Lk,ix̃i ∈ ∂g∗k(ṽ∗k).
(8.7)

This process is explained in Fig. 8.1.

Algorithm 8.3 ([9]) Set I0 = {1, . . . ,m} and K0 = {1, . . . , p}. For every i ∈ I0 and every
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k ∈ K0, let {γi, µk} ⊂ ]0,+∞[, xi,0 ∈ Hi, and v∗k,0 ∈ Gk. Iterate

for n = 0, 1, . . .

λn ∈ ]0, 2[

if n > 0⌊
select ∅ 6= In ⊂ I0 and ∅ 6= Kn ⊂ K0

for every i ∈ In x∗i,n = xi,n − γi
∑p

k=1 L
∗
k,iv
∗
k,n

ai,n = proxγifix
∗
i,n

a∗i,n = γ−1
i (x∗i,n − ai,n)

for every i ∈ I0 r In⌊
(ai,n, a

∗
i,n) = (ai,n−1, a

∗
i,n−1)

for every k ∈ Kn
y∗k,n = µkv

∗
k,n +

∑m
i=1 Lk,ixi,n

bk,n = proxµkgky
∗
k,n

b∗k,n = µ−1
k (y∗k,n − bk,n)

tk,n = bk,n −
∑m

i=1 Lk,iai,n

for every k ∈ K0 rKn⌊
(bk,n, b

∗
k,n) = (bk,n−1, b

∗
k,n−1)

tk,n = bk,n −
∑m

i=1 Lk,iai,n

for every i ∈ I0⌊
t∗i,n = a∗i,n +

∑p
k=1 L

∗
k,ib
∗
k,n

τn =
∑m

i=1 ‖t∗i,n‖2 +
∑p

k=1 ‖tk,n‖
2

if τn > 0⌊
πn =

∑m
i=1

(
〈xi,n | t∗i,n〉 − 〈ai,n | a∗i,n〉

)
+
∑p

k=1

(〈
tk,n | v∗k,n

〉
−
〈
bk,n | b∗k,n

〉)
if τn > 0 and πn > 0

θn = λnπn/τn

for every i ∈ I0⌊
xi,n+1 = xi,n − θnt∗i,n

for every k ∈ K0⌊
v∗k,n+1 = v∗k,n − θntk,n

else
for every i ∈ I0⌊
xi,n+1 = xi,n

for every k ∈ K0⌊
v∗k,n+1 = v∗k,n.
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Figure 8.1 Let P be the set of solutions to Problem 8.1 and let D be the set of solutions to its dual.
Then the Kuhn–Tucker set Z is a subset of P × D . At iteration n, the proximity operators of blocks of
functions (fi)i∈In and (gk)k∈Kn

are used to construct a hyperplane Hn separating the current primal-
dual iterate (xn,v

∗
n) from Z, and the update (xn+1,v

∗
n+1) is obtained as its projection onto Hn [9].

8.2.3 Asymptotic behavior and comparisons

Let us first state the convergence results available for Algorithms 8.2 and 8.3. We make the

standing assumption that Z 6= ∅ (see (8.7)), which implies that the solution set P of Prob-

lem 8.1 is nonempty.

Theorem 8.4 ([15]) In the setting of Algorithm 8.2, define, for every n ∈ N and every j ∈
{1, . . . ,m+ p},

εj,n =

1, if j ∈ In or j −m ∈ Kn;

0, otherwise.
(8.8)

Suppose that the following hold:

(i) infn∈N λn > 0 and supn∈N λn < 2.

(ii) The r.v. (εn)n∈N are identically distributed.

(iii) For every n ∈ N, the r.v. εn and (zj ,yj)06j6n are mutually independent.

(iv) (∀j ∈ {1, . . . ,m+ p}) Prob[εj,0 = 1] > 0.

Then (xn)n∈N converges almost surely to a P-valued r.v.

Theorem 8.5 ([9]) In the setting of Algorithm 8.3, suppose that the following hold:

(i) infn∈N λn > 0 and supn∈N λn < 2.

(ii) There exists T ∈ N such that, for every n ∈ N,
⋃n+T
j=n Ij = {1, . . . ,m} and

⋃n+T
j=n Kj =

{1, . . . , p}.
Then (xn)n∈N converges to a point in P.
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Let us compare Algorithms 8.2 and 8.3.

a/ Auxiliary tasks: 8.2 requires the construction and storage of the operators (Qj)16j6m+p of

(8.4)–(8.5), which can be quite demanding as they involve inversion of a linear operator

acting on the product space H or G. By contrast, 8.3 does not require such tasks.

b/ Proximity operators: Both algorithms are block-activated: only the blocks of functions

(fi)i∈In and (gk)k∈Kn need to be activated at iteration n.

c/ Linear operators: In 8.2, the operators (Qi)i∈In and (Qm+k)k∈Kn selected at iteration n

are evaluated at (z1,n, . . . , zm,n, y1,n, . . . , yp,n) ∈ H × G. On the other hand, 8.3 activates

the local operators Lk,i : Hi → Gk and L∗k,i : Gk → Hi once or twice, depending on whether

they are selected. For instance, if we set N = dimH and M = dimG and if all the linear

operators are implemented in matrix form, then the corresponding load per iteration in

full activation mode of 8.2 is O((M +N)2) versus O(MN) in 8.3.

d/ Activation scheme: As 8.2 selects the blocks randomly, the user does not have complete

control of the computational load of an iteration, whereas the load of 8.3 is more pre-

dictable because of its deterministic activation scheme.

e/ Parameters: A single scale parameter γ is used in 8.2, while 8.3 allows the proximity

operators to have their own scale parameters (γ1, . . . , γm, µ1, . . . , µp). This gives 8.3 more

flexibility, but more effort may be needed a priori to find efficient parameters. Further, in

both algorithms, there is no restriction on the parameter values.

f/ Convergence: 8.3 guarantees sure convergence under the mild sweeping condition (ii)

in Theorem 8.5, while 8.2 guarantees only almost sure convergence.

g/ Other features: Although this point is omitted for brevity, unlike 8.2, 8.3 can be executed

asynchronously with iteration-dependent scale parameters [9].

8.2.4 Numerical experiments

We present two experiments which are reflective of our numerical investigations in solving

various problems using Algorithms 8.2 and 8.3. The main objective is to illustrate the block

processing ability of the algorithms (when implemented with full activation, i.e., In = I0 and

Kn = K0, Algorithm 8.3 was already shown in [10] to be quite competitive compared to

existing methods).

8.2.4.1 Experiment 1: Group-sparse binary classification

We revisit the classification problem of [12], which is based on the latent group lasso formula-

tion in machine learning [21]. Let {G1, . . . , Gm} be a covering of {1, . . . , d} and define

X =
{

(x1, . . . , xm) | xi ∈ Rd, support(xi) ⊂ Gi
}
. (8.9)
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Figure 8.2 Normalized error 20 log10(‖xn−x∞‖/‖x0−x∞‖) (dB), averaged over 20 runs, versus epoch
count in Experiment 1. The variations around the averages were not significant. The computational
load per epoch for both algorithms is comparable.

The sought vector is ỹ =
∑m

i=1 x̃i, where (x̃1, . . . , x̃m) solves

minimize
(x1,...,xm)∈X

m∑
i=1

‖xi‖2 +

p∑
k=1

gk

(
m∑
i=1

〈xi | uk〉

)
, (8.10)

with uk ∈ Rd and gk : R → R : ξ 7→ 10 max{0, 1 − βkξ}, where βk = ωk sign(〈y | uk〉) is the kth

measurement of the true vector y ∈ Rd (d = 10000) and ωk ∈ {−1, 1} induces 25% classification

error. There are p = 1000 measurements and the goal is to reconstruct the group-sparse vector

y. There are m = 1429 groups. For every i ∈ {1, . . . ,m−1}, each Gi has 10 consecutive integers

and an overlap with Gi+1 of length 3. We obtain an instance of (8.1), where Hi = R10, fi =

‖ · ‖2, and Lk,i = 〈 · | uk|Gi〉. The auxiliary tasks for Algorithm 8.2 (see a/) are negligible [12].

For each α ∈ {0.1, 0.4, 0.7, 1.0}, at iteration n ∈ N, In has dαme elements and the proximity

operators of the scalar functions (gk)16k6p are all used, i.e., Kn = {1, . . . , p}. We display in

Fig. 8.2 the normalized error versus the epoch, that is, the cumulative number of activated

blocks in {1, . . . ,m} divided by m.

8.2.4.2 Experiment 2: Image recovery

We revisit the image interpolation problem of [10, Section 4.3]. The objective is to recover

the image x ∈ C = [0, 255]N (N = 962) of Fig. 8.3(a), given a noisy masked observation

b = Mx + w1 ∈ RN and a noisy blurred observation c = Hx + w2 ∈ RN . Here, M masks all

but q = 39 rows (x(rk))16k6q of an image x, and H is a nonstationary blurring operator, while

w1 and w2 yield signal-to-noise ratios of 28.5 dB and 27.8 dB, respectively. Since H is sizable,

we split it into s = 384 subblocks: for every k ∈ {1, . . . , s}, Hk ∈ R24×N and the corresponding
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block of c is denoted ck. The goal is to

minimize
x∈C

‖Dx‖1,2 + 10

q∑
k=1

∥∥x(rk) − b(rk)
∥∥

2
+ 5

s∑
k=1

‖Hkx− ck‖22, (8.11)

where D : RN → RN ×RN models finite differences and ‖·‖1,2 : (y1, y2) 7→
∑N

j=1 ‖(η1,j , η2,j)‖2.

Thus, (8.11) is an instance of Problem 8.1, where m = 1; p = q+s+1; for every k ∈ {1, . . . , q},
Lk,1 : RN → R

√
N : x 7→ x(rk) and gk : yk 7→ 10‖yk − b(rk)‖2; for every k ∈ {q + 1, . . . , q + s},

Lk,1 = Hk−q, gk = 5‖· − ck‖22, and gp = ‖·‖1,2; Lp,1 = D; f1 : x 7→ 0 if x ∈ C; +∞ if x 6∈ C.

At iteration n, Kn has dαpe elements, where α ∈ {0.1, 0.4, 0.7, 1.0}. The results are shown

in Figs. 8.3–8.4, where the epoch is the cumulative number of activated blocks in {1, . . . , p}
divided by p.

8.2.4.3 Discussion

Our first finding is that, for both Algorithms 8.2 and 8.3, even when full activation is compu-

tationally possible, it may not be the best strategy (see Figs. 8.2 and 8.4). Second, a/–g/ and

our experiments suggest that 8.3 is preferable to 8.2. Let us add that, in general, 8.2 does not

scale as well as 8.3. For instance, in Experiment 2, if the image size scales up, 8.3 can still oper-

ate since it involves only individual applications of the local Lk,i operators, while 8.2 becomes

unmanageable because of the size of the Qj operators (see a/ and [6]).
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(a) (b)

(c) (d)

Figure 8.3 Experiment 2: (a) Original x. (b) Observation b. (c) Observation c. (d) Recovery (all recov-
eries were visually indistinguishable).
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Figure 8.4 Normalized error 20 log10(‖xn − x∞‖/‖x0 − x∞‖) (dB) versus epoch count in Experiment
2. Top: Algorithm 8.2. The horizontal axis starts at 140 epochs to account for the auxiliary tasks (see
a/). Bottom: Algorithm 8.3. The computational load per epoch for Algorithm 8.3 was about twice that
of Algorithm 8.2.

129



References

[1] A. Argyriou, R. Foygel, and N. Srebro, Sparse prediction with the k-support norm, Proc. Adv. Neural
Inform. Process. Syst. Conf., vol. 25, pp. 1457–1465, 2012.

[2] J.-F. Aujol and A. Chambolle, Dual norms and image decomposition models, Int. J. Comput. Vision,
vol. 63, pp. 85–104, 2005.

[3] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Optimization with sparsity-inducing penalties,
Found. Trends Machine Learn., vol. 4, pp. 1–106, 2012.

[4] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, Hy-
perspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches,
IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, vol. 5, pp. 354–379, 2012.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers, Found. Trends Machine Learn., vol. 3,
pp. 1–122, 2010.

[6] L. M. Briceño-Arias, G. Chierchia, E. Chouzenoux, and J.-C. Pesquet, A random block-coordinate
Douglas–Rachford splitting method with low computational complexity for binary logistic regres-
sion, Comput. Optim. Appl., vol. 72, pp. 707–726, 2019.

[7] A. Chambolle, M. J. Ehrhardt, P. Richtárik, and C.-B. Schönlieb, Stochastic primal-dual hybrid
gradient algorithm with arbitrary sampling and imaging applications, SIAM J. Optim., vol. 28, pp.
2783–2808, 2018.

[8] A. Chambolle and T. Pock, An introduction to continuous optimization for imaging, Acta Numer.,
vol. 25, pp. 161–319, 2016.

[9] P. L. Combettes and J. Eckstein, Asynchronous block-iterative primal-dual decomposition methods
for monotone inclusions, Math. Program. Ser. B, vol. 168, pp. 645–672, 2018.

[10] P. L. Combettes and L. E. Glaudin, Proximal activation of smooth functions in splitting algorithms
for convex image recovery, SIAM J. Imaging Sci., vol. 12, pp. 1905–1935, 2019.

[11] P. L. Combettes and L. E. Glaudin, Solving composite fixed point problems with block updates,
Adv. Nonlinear Anal., vol. 10, 2021.

[12] P. L. Combettes, A. M. McDonald, C. A. Micchelli, and M. Pontil, Learning with optimal interpola-
tion norms, Numer. Algorithms, vol. 81, pp. 695–717, 2019.

[13] P. L. Combettes and C. L. Müller, Perspective maximum likelihood-type estimation via proximal
decomposition, Electron. J. Stat., vol. 14, pp. 207–238, 2020.

[14] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, 2011.

[15] P. L. Combettes and J.-C. Pesquet, Stochastic quasi-Fejér block-coordinate fixed point iterations
with random sweeping, SIAM J. Optim., vol. 25, pp. 1221–1248, 2015.

[16] P. L. Combettes and J.-C. Pesquet, Fixed point strategies in data science, IEEE Trans. Signal Process.,
vol. 69, pp. 3878–3905, 2021.

[17] J. Darbon and T. Meng, On decomposition models in imaging sciences and multi-time Hamilton–
Jacobi partial differential equations, SIAM J. Imaging Sci., vol. 13, pp. 971–1014, 2020.

130



[18] A. J. Defazio, T. S. Caetano, and J. Domke, Finito: A faster, permutable incremental gradient
method for big data problems, Proc. Intl. Conf. Machine Learn., pp. 1125–1133, 2014.

[19] R. Glowinski, S. J. Osher, and W. Yin (Eds.), Splitting Methods in Communication, Imaging, Sci-
ence, and Engineering. Springer, 2016.

[20] M. Hintermüller and G. Stadler, An infeasible primal-dual algorithm for total bounded variation-
based inf-convolution-type image restoration, SIAM J. Sci. Comput., vol. 28, pp. 1–23, 2006.

[21] L. Jacob, G. Obozinski, and J.-Ph. Vert, Group lasso with overlap and graph lasso, Proc. Int. Conf.
Machine Learn., pp. 433–440, 2009.

[22] P. R. Johnstone and J. Eckstein, Projective splitting with forward steps, Math. Program. Ser. A,
published online 2020-09-30.

[23] K. Mishchenko, F. Iutzeler, and J. Malick, A distributed flexible delay-tolerant proximal gradient
algorithm, SIAM J. Optim., vol. 30, pp. 933–959, 2020.

[24] J.-C. Pesquet and A. Repetti, A class of randomized primal-dual algorithms for distributed opti-
mization, J. Nonlinear Convex Anal., vol. 16, pp. 2453–2490, 2015.

[25] S. Salzo and S. Villa, Parallel random block-coordinate forward-backward algorithm: A unified
convergence analysis, Math. Program. Ser. A, published online 2021-04-11.

[26] M. Schmidt, N. Le Roux, and F. Bach, Minimizing finite sums with the stochastic average gradient,
Math. Program. Ser. A, vol. 162, pp. 83–112, 2017.

131



Chapter 9
MULTIVARIATE MONOTONE
INCLUSIONS IN SADDLE FORM

9.1 Introduction and context

To answer question (Q8) of Chapter 1, we introduce a saddle formalism for systems of mono-

tone inclusions, study its properties, and provide abstract principles for finding a zero of the

associated saddle operator. This, in turn, leads to a flexible algorithm for solving systems of

monotone inclusions. Various applications are discussed in Section 9.2.4.

This chapter presents the following article:

M. N. Bùi and P. L. Combettes, Multivariate monotone inclusions in saddle form,

Mathematics of Operations Research, to appear.

9.2 Article: Multivariate monotone inclusions in saddle form

Abstract. We propose a novel approach to monotone operator splitting based on the notion

of a saddle operator. Under investigation is a highly structured multivariate monotone inclu-

sion problem involving a mix of set-valued, cocoercive, and Lipschitzian monotone operators,

as well as various monotonicity-preserving operations among them. This model encompasses

most formulations found in the literature. A limitation of existing primal-dual algorithms is

that they operate in a product space that is too small to achieve full splitting of our problem

in the sense that each operator is used individually. To circumvent this difficulty, we recast the

problem as that of finding a zero of a saddle operator that acts on a bigger space. This leads

to an algorithm of unprecedented flexibility, which achieves full splitting, exploits the specific

attributes of each operator, is asynchronous, and requires to activate only blocks of operators at

each iteration, as opposed to activating all of them. The latter feature is of critical importance

in large-scale problems. Weak convergence of the main algorithm is established, as well as the

132



strong convergence of a variant. Various applications are discussed, and instantiations of the

proposed framework in the context of variational inequalities and minimization problems are

presented.

9.2.1 Introduction

In 1979, several methods appeared to solve the basic problem of finding a zero of the sum

of two maximally monotone operators in a real Hilbert space [37, 38, 43]. Over the past forty

years, increasingly complex inclusion problems and solution techniques have been considered

[10, 14, 17, 19, 23, 25, 29, 34, 53] to address concrete problems in fields as diverse as game

theory [2, 15, 56], evolution inclusions [3], traffic equilibrium [3, 31], domain decomposition

[4], machine learning [6, 12], image recovery [7, 11, 16, 33], mean field games [18], convex

programming [24,36], statistics [26,55], neural networks [27], signal processing [28], partial

differential equations [32], tensor completion [39], and optimal transport [42]. In our view,

two challenging issues in the field of monotone operator splitting algorithms are the following:

• A number of independent monotone inclusion models coexist with various assumptions

on the operators and different types of operation among these operators. At the same

time, as will be seen in Section 9.2.4, they are not sufficiently general to cover important

applications.

• Most algorithms do not allow asynchrony and impose that all the operators be activated at

each iteration. They can therefore not handle efficiently modern large-scale problems. The

only methods that are asynchronous and block-iterative are limited to specific scenarios

[25,29,34] and they do not cover inclusion models such as that of [23].

In an attempt to bring together and extend the application scope of the wide variety of unre-

lated models that coexist in the literature, we propose the following multivariate formulation

which involves a mix of set-valued, cocoercive, and Lipschitzian monotone operators, as well

as various monotonicity-preserving operations among them.

Problem 9.1 Let (Hi)i∈I and (Gk)k∈K be finite families of real Hilbert spaces with Hilbert direct

sums H =
⊕

i∈I Hi and G =
⊕

k∈K Gk. Denote by x = (xi)i∈I a generic element in H. For every

i ∈ I and every k ∈ K, let s∗i ∈ Hi, let rk ∈ Gk, and suppose that the following are satisfied:

[a] Ai : Hi → 2Hi is maximally monotone, Ci : Hi → Hi is cocoercive with constant αc
i ∈

]0,+∞[, Qi : Hi → Hi is monotone and Lipschitzian with constant αl
i ∈ [0,+∞[, and

Ri : H→ Hi.

[b] Bm
k : Gk → 2Gk is maximally monotone, Bc

k : Gk → Gk is cocoercive with constant βc
k ∈

]0,+∞[, and Bl
k : Gk → Gk is monotone and Lipschitzian with constant βl

k ∈ [0,+∞[.

[c] Dm
k : Gk → 2Gk is maximally monotone, Dc

k : Gk → Gk is cocoercive with constant δck ∈
]0,+∞[, and Dl

k : Gk → Gk is monotone and Lipschitzian with constant δlk ∈ [0,+∞[.
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[d] Lki : Hi → Gk is linear and bounded.

In addition, it is assumed that

[e] R : H→H : x 7→ (Rix)i∈I is monotone and Lipschitzian with constant χ ∈ [0,+∞[.

The objective is to solve the primal problem

find x ∈H such that (∀i ∈ I) s∗i ∈ Aixi + Cixi +Qixi +Rix

+
∑
k∈K

L∗ki

(((
Bm
k +Bc

k +Bl
k

)
�
(
Dm
k +Dc

k +Dl
k

))(∑
j∈I

Lkjxj − rk

))
(9.1)

and the associated dual problem

find v∗ ∈ G such that (∃x ∈H)(∀i ∈ I)(∀k ∈ K)
s∗i −

∑
j∈K

L∗jiv
∗
j ∈ Aixi + Cixi +Qixi +Rix

v∗k ∈
((
Bm
k +Bc

k +Bl
k

)
�
(
Dm
k +Dc

k +Dl
k

))(∑
j∈I

Lkjxj − rk

)
.

(9.2)

Our highly structured model involves three basic monotonicity preserving operations,

namely addition, composition with linear operators, and parallel sum. It extends the state-

of-the-art model of [23], where the simpler form

(∀i ∈ I) s∗i ∈ Aixi +Qixi +
∑
k∈K

L∗ki

((
Bm
k �D

m
k

)(∑
j∈I

Lkjxj − rk

))
(9.3)

of the system in (9.1) was investigated; see also [3, 25] for special cases. In an increasing

number of applications, the sets I and K can be sizable. To handle such large-scale problems,

it is critical to implement block-iterative solution algorithms, in which only subgroups of the

operators involved in the problem need to be activated at each iteration. In addition, it is

desirable that the algorithm be asynchronous in the sense that, at any iteration, it has the ability

to incorporate the result of calculations initiated at earlier iterations. Such methods have been

proposed for special cases of Problem 9.1: first in [25] for the system

find x ∈H such that (∀i ∈ I) s∗i ∈ Aixi +
∑
k∈K

L∗ki

(
Bm
k

(∑
j∈I

Lkjxj − rk

))
, (9.4)

then in [29] for the inclusion (we omit the subscript ‘1’)

find x ∈ H such that 0 ∈
∑
k∈K

L∗k
(
Bm
k (Lkx)

)
, (9.5)
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and more recently in [34] for the inclusion

find x ∈ H such that 0 ∈ Ax+Qx+
∑
k∈K

L∗k
(
(Bm

k +Bl
k)(Lkx)

)
. (9.6)

It is clear that the formulations (9.4) and (9.6) are not interdependent. Furthermore, as we

shall see in Section 9.2.4, many applications of interest are not covered by either of them. From

both a theoretical and a practical viewpoint, it is therefore important to unify and extend these

approaches. To achieve this goal, we propose to design an algorithm for solving the general

Problem 9.1 which possesses simultaneously the following features:

À It has the ability to process all the operators individually and exploit their specific at-

tributes, e.g., set-valuedness, cocoercivity, Lipschitz continuity, and linearity.

Á It is block-iterative in the sense that it does not need to activate all the operators at each

iteration, but only a subgroup of them.

Â It is asynchronous.

Ã Each set-valued monotone operator is scaled by its own, iteration-dependent, parameter.

Ä It does not require any knowledge of the norms of the linear operators involved in the

model.

Let us observe that the method of [25] has features À–Ä, but it is restricted to (9.4). Likewise,

the method of [34] has features À–Ä, but it is restricted to (9.6).

Solving the intricate Problem 9.1 with the requirement À does not seem possible with ex-

isting tools. The presence of requirements Á–Ä further complicates this task. In particular, the

Kuhn–Tucker approach initiated in [14] — and further developed in [1, 10, 23, 25, 34, 35] —

relies on finding a zero of an operator acting on the primal-dual space H⊕ G. However, in the

context of Problem 9.1, this primal-dual space is too small to achieve full splitting in the sense

that each operator is used individually. To circumvent this difficulty, we propose a novel split-

ting strategy that consists of recasting the problem as that of finding a zero of a saddle operator

acting on the bigger space H ⊕ G ⊕ G ⊕ G. This is done in Section 9.2.2, where we define the

saddle form of Problem 9.1, study its properties, and propose outer approximation principles to

solve it. In Section 9.2.3, the main asynchronous block-iterative algorithm is presented and we

establish its weak convergence under mild conditions on the frequency at which the operators

are selected. We also present a strongly convergent variant. The specializations to variational

inequalities and multivariate minimization are discussed in Section 9.2.4, along with several

applications. Section 9.2.5 contains auxiliary results.

Notation. The notation used in this paper is standard and follows [9], to which one can refer

for background and complements on monotone operators and convex analysis. Let K be a real

Hilbert space. The symbols 〈· | ·〉 and ‖ · ‖ denote the scalar product of K and the associated

norm, respectively. The expressions xn ⇀ x and xn → x denote, respectively, the weak and the
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strong convergence of a sequence (xn)n∈N to x in K, and 2K denotes the family of all subsets

of K. Let A : K → 2K. The graph of A is graA =
{

(x, x∗) ∈ K ×K | x∗ ∈ Ax
}

, the set of zeros

of A is zerA =
{
x ∈ K | 0 ∈ Ax

}
, the inverse of A is A−1 : K → 2K : x∗ 7→

{
x ∈ K | x∗ ∈ Ax

}
,

and the resolvent of A is JA = (Id +A)−1, where Id is the identity operator on K. Further, A is

monotone if (
∀(x, x∗) ∈ graA

)(
∀(y, y∗) ∈ graA

)
〈x− y | x∗ − y∗〉 > 0, (9.7)

and it is maximally monotone if, for every (x, x∗) ∈ K ×K,

(x, x∗) ∈ graA ⇔
(
∀(y, y∗) ∈ graA

)
〈x− y | x∗ − y∗〉 > 0. (9.8)

If A is maximally monotone, then JA is a single-valued operator defined on K. The parallel sum

of B : K → 2K and D : K → 2K is B�D = (B−1 +D−1)−1. An operator C : K → K is cocoercive

with constant α ∈ ]0,+∞[ if (∀x ∈ K)(∀y ∈ K) 〈x− y | Cx− Cy〉 > α‖Cx − Cy‖2. We denote

by Γ0(K) the class of lower semicontinuous convex functions f : K → ]−∞,+∞] such that

dom f =
{
x ∈ K | f(x) < +∞

}
6= ∅. Let f ∈ Γ0(K). The conjugate of f is the function Γ0(K) 3

f∗ : x∗ 7→ supx∈K(〈x | x∗〉 − f(x)) and the subdifferential of f is the maximally monotone

operator ∂f : K → 2K : x 7→
{
x∗ ∈ K | (∀y ∈ K) 〈y − x | x∗〉+ f(x) 6 f(y)

}
. In addition, epi f

is the epigraph of f . For every x ∈ K, the unique minimizer of f + (1/2)‖· − x‖2 is denoted

by proxfx. We have proxf = J∂f . Given h ∈ Γ0(K), the infimal convolution of f and h is

f �h : K → [−∞,+∞] : x 7→ infy∈K(f(y) + h(x − y)); the infimal convolution f �h is exact if

the infimum is achieved everywhere, in which case we write f �h. Now let (Ki)i∈I be a finite

family of real Hilbert spaces and, for every i ∈ I, let fi : Ki → ]−∞,+∞]. Then⊕
i∈I

fi : K =
⊕
i∈I
Ki → ]−∞,+∞] : x 7→

∑
i∈I

fi(xi). (9.9)

The partial derivative of a differentiable function Θ: K → R relative to Ki is denoted by ∇i Θ.

Finally, let C be a nonempty convex subset of K. A point x ∈ C belongs to the strong relative

interior of C, in symbols x ∈ sriC, if
⋃
λ∈]0,+∞[ λ(C − x) is a closed vector subspace of K. If C

is closed, the projection operator onto it is denoted by projC and the normal cone operator of

C is the maximally monotone operator

NC : K → 2K : x 7→


{
x∗ ∈ K | sup 〈C − x | x∗〉 6 0

}
, if x ∈ C;

∅, otherwise.
(9.10)

9.2.2 The saddle form of Problem 9.1

A classical Lagrangian setting for convex minimization is the following. Given real Hilbert

spaces H and G, f ∈ Γ0(H), g ∈ Γ0(G), and a bounded linear operator L : H → G, consider the
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primal problem

minimize
x∈H

f(x) + g(Lx) (9.11)

together with its Fenchel–Rockafellar dual [47]

minimize
v∗∈G

f∗
(
−L∗v∗

)
+ g∗(v∗). (9.12)

The primal-dual pair (9.11)–(9.12) can be analyzed through the lens of Rockafellar’s saddle

formalism [49,50] as follows. Set h : H⊕G → ]−∞,+∞] : (x, y) 7→ f(x)+g(y) and U : H⊕G →
G : (x, y) 7→ Lx − y, and note that U∗ : G → H ⊕ G : v∗ 7→ (L∗v∗,−v∗). Then, upon defining

K = H⊕ G and introducing the variable z = (x, y) ∈ K, (9.11) is equivalent to

minimize
z∈K, Uz=0

h(z) (9.13)

and (9.12) to

minimize
v∗∈G

h∗
(
−U∗v∗

)
. (9.14)

The Lagrangian associated with (9.13) is (see [51, Example 4’] or [9, Proposition 19.21])

L : K ⊕ G → ]−∞,+∞]

(z, v∗) 7→

h(z) + 〈Uz | v∗〉, if z ∈ domh;

+∞, otherwise,

(9.15)

and the associated saddle operator [49,50] is the maximally monotone operator

S : K⊕G → 2K⊕G : (z, v∗) 7→ ∂L(·, v∗)(z)×∂
(
−L(z, ·)

)
(v∗) =

(
∂h(z)+U∗v∗

)
×{−Uz}. (9.16)

As shown in [49], a zero (z, v∗) of S is a saddle point of L, and it has the property that z

solves (9.13) and v∗ solves (9.14). Thus, going back to the original Fenchel–Rockafellar pair

(9.11)–(9.12), we learn that, if (x, y, v∗) is a zero of the saddle operator

S : H⊕ G ⊕ G → 2H⊕G⊕G : (x, y, v∗) 7→
(
∂f(x) + L∗v∗

)
×
(
∂g(y)− v∗

)
× {−Lx+ y}, (9.17)

then x solves (9.11) and v∗ solves (9.12). As shown in [24, Section 4.5], a suitable splitting of

S leads to an implementable algorithm to solve (9.11)–(9.12).

A generalization of Fenchel–Rockafellar duality to monotone inclusions was proposed in

[44, 46] and further extended in [23]. Given maximally monotone operators A : H → 2H and

B : G → 2G , and a bounded linear operator L : H → G, the primal problem

find x ∈ H such that 0 ∈ Ax+ L∗
(
B(Lx)

)
(9.18)
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is paired with the dual problem

find v∗ ∈ G such that 0 ∈ −L
(
A−1(−L∗v∗)

)
+B−1v∗. (9.19)

Following the same pattern as that described above, let us consider the saddle operator

S : H⊕ G ⊕ G → 2H⊕G⊕G : (x, y, v∗) 7→ (Ax+ L∗v∗)× (By − v∗)× {−Lx+ y}. (9.20)

It is readily shown that, if (x, y, v∗) is a zero of S, then x solves (9.18) and v∗ solves (9.19). We

call the problem of finding a zero of S the saddle form of (9.18)–(9.19). We now introduce a

saddle operator for the general Problem 9.1.

Definition 9.2 In the setting of Problem 9.1, let X = H ⊕ G ⊕ G ⊕ G. The saddle operator

associated with Problem 9.1 is

S : X → 2X : (x,y, z,v∗) 7→(
×
i∈I

(
−s∗i +Aixi + Cixi +Qixi +Rix+

∑
k∈K

L∗kiv
∗
k

)
,×
k∈K

(
Bm
k yk +Bc

k yk +Bl
kyk − v∗k

)
,

×
k∈K

(
Dm
k zk +Dc

k zk +Dl
kzk − v∗k

)
,×
k∈K

{
rk + yk + zk −

∑
i∈I

Lkixi

} )
, (9.21)

and the saddle form of Problem 9.1 is to

find x ∈ X such that 0 ∈ Sx. (9.22)

Next, we establish some properties of the saddle operator as well as connections with Prob-

lem 9.1.

Proposition 9.3 Consider the setting of Problem 9.1 and Definition 9.2. Let P be the set of solu-
tions to (9.1), let D be the set of solutions to (9.2), and let

Z =

{
(x,v∗) ∈H⊕ G

∣∣∣∣ (∀i ∈ I)(∀k ∈ K) s∗i −
∑
j∈K

L∗jiv
∗
j ∈ Aixi + Cixi +Qixi +Rix and

∑
j∈I

Lkjxj − rk ∈
(
Bm
k +Bc

k +Bl
k

)−1
v∗k +

(
Dm
k +Dc

k +Dl
k

)−1
v∗k

}
(9.23)

be the associated Kuhn–Tucker set. Then the following hold:

(i) S is maximally monotone.

(ii) zerS is closed and convex.

(iii) Suppose that x = (x,y, z,v∗) ∈ zerS. Then (x,v∗) ∈ Z ⊂P ×D .

(iv) D 6= ∅⇔ zerS 6= ∅⇔ Z 6= ∅⇒P 6= ∅.
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(v) Suppose that one of the following holds:

[a] I is a singleton.

[b] For every k ∈ K, (Bm
k +Bc

k +Bl
k)� (Dm

k +Dc
k +Dl

k) is at most single-valued.

[c] For every k ∈ K, (Dm
k +Dc

k +Dl
k)−1 is strictly monotone.

[d] I ⊂ K, the operators ((Bm
k +Bc

k +Bl
k)� (Dm

k +Dc
k +Dl

k))k∈KrI are at most single-
valued, and (∀i ∈ I)(∀k ∈ I) k 6= i⇒ Lki = 0.

Then P 6= ∅⇒ Z 6= ∅.

Proof. Define 

A : H→ 2H : x 7→ Rx+×i∈I
(
Aixi + Cixi +Qixi

)
B : G → 2G : y 7→×k∈K

(
Bm
k yk +Bc

k yk +Bl
kyk
)

D : G → 2G : z 7→×k∈K
(
Dm
k zk +Dc

k zk +Dl
kzk
)

L : H→ G : x 7→
(∑

i∈I Lkixi
)
k∈K

s∗ = (s∗i )i∈I and r = (rk)k∈K .

(9.24)

Then the adjoint of L is

L∗ : G →H : v∗ 7→

(∑
k∈K

L∗kiv
∗
k

)
i∈I

. (9.25)

Hence, in view of (9.21) and (9.24),

S : X → 2X : (x,y, z,v∗) 7→
(
−s∗+Ax+L∗v∗

)
×
(
By−v∗

)
×
(
Dz−v∗

)
×
{
r−Lx+y+z

}
.

(9.26)

(i): Let us introduce the operatorsP : X → 2X : (x,y, z,v∗) 7→ (−s∗ +Ax)×By ×Dz × {r}

W : X → X : (x,y, z,v∗) 7→ (L∗v∗,−v∗,−v∗,−Lx+ y + z).
(9.27)

Using Problem 9.1[a]–[c], we derive from [9, Example 20.31, Corollaries 20.28 and 25.5(i)]

that, for every i ∈ I and every k ∈ K, the operators Ai+Ci+Qi, Bm
k +Bc

k +Bl
k , and Dm

k +Dc
k +

Dl
k are maximally monotone. At the same time, Problem 9.1[e] and [9, Corollary 20.28] entail

that R is maximally monotone. Therefore, it results from (9.24), [9, Proposition 20.23 and

Corollary 25.5(i)], and (9.27) that P is maximally monotone. However, since Problem 9.1[d]

and (9.27) imply that W is linear and bounded with W∗ = −W, [9, Example 20.35] asserts

that W is maximally monotone. Hence, in view of [9, Corollary 25.5(i)], we infer from (9.26)–

(9.27) that S = P + W is maximally monotone.

(ii): This follows from (i) and [9, Proposition 23.39].

(iii): Using (9.24) and (9.25), we deduce from (9.23) that

Z =
{

(x,v∗) ∈H⊕ G | s∗ −L∗v∗ ∈ Ax and Lx− r ∈ B−1v∗ +D−1v∗
}

(9.28)
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and from (9.2) that

D =
{
v∗ ∈ G | −r ∈ −L

(
A−1(s∗ −L∗v∗)

)
+B−1v∗ +D−1v∗

}
. (9.29)

Suppose that (x,v∗) ∈ Z. Then it follows from (9.28) that x ∈ A−1(s∗ − L∗v∗) and, in turn,

that −r ∈ −Lx +B−1v∗ +D−1v∗ ⊂ −L(A−1(s∗ − L∗v∗)) +B−1v∗ +D−1v∗. Thus v∗ ∈ D

by (9.29). In addition, (9.23) implies that

(∀k ∈ K) v∗k ∈
(
(Bm

k +Bc
k +Bl

k)� (Dm
k +Dc

k +Dl
k)
)(∑

j∈I
Lkjxj − rk

)
(9.30)

and, therefore, that

(∀i ∈ I) s∗i ∈ Aixi + Cixi +Qixi +Rix+
∑
k∈K

L∗kiv
∗
k

⊂ Aixi + Cixi +Qixi +Rix

+
∑
k∈K

L∗ki

(((
Bm
k +Bc

k +Bl
k

)
�
(
Dm
k +Dc

k +Dl
k

))(∑
j∈I

Lkjxj − rk

))
.

(9.31)

Hence, x ∈ P. To summarize, we have shown that Z ⊂ P × D . It remains to show that

(x,v∗) ∈ Z. Since 0 ∈ Sx, we deduce from (9.26) that s∗ − L∗v∗ ∈ Ax, Lx − r = y + z,

0 ∈ By − v∗, and 0 ∈ Dz − v∗. Therefore, Lx − r ∈ B−1v∗ +D−1v∗ and (9.28) thus yields

(x,v∗) ∈ Z.

(iv): The implication zerS 6= ∅ ⇒ P 6= ∅ follows from (iii). Next, we derive from (9.29)

and (9.28) that

D 6= ∅⇔ (∃v∗ ∈ G) −r ∈ −L
(
A−1(s∗ −L∗v∗)

)
+B−1v∗ +D−1v∗

⇔
(
∃ (v∗,x) ∈ G ⊕H

)
−r ∈ −Lx+B−1v∗ +D−1v∗ and x ∈ A−1(s∗ −L∗v∗)

⇔
(
∃ (x,v∗) ∈H⊕ G

)
s∗ −L∗v∗ ∈ Ax and Lx− r ∈ B−1v∗ +D−1v∗

⇔ Z 6= ∅. (9.32)

However, (iii) asserts that zerS 6= ∅ ⇒ Z 6= ∅. Therefore, it remains to show that Z 6= ∅ ⇒
zerS 6= ∅. Towards this end, suppose that (x,v∗) ∈ Z. Then, by (9.28), s∗ − L∗v∗ ∈ Ax and

Lx − r ∈ B−1v∗ + D−1v∗. Hence, 0 ∈ −s∗ + Ax + L∗v∗ and there exists (y, z) ∈ G ⊕ G
such that y ∈ B−1v∗, z ∈ D−1v∗, and Lx − r = y + z. We thus deduce that 0 ∈ By − v∗,
0 ∈Dz − v∗, and r −Lx+ y + z = 0. Consequently, (9.26) implies that (x,y, z,v∗) ∈ zerS.

(v): In view of (iv), it suffices to establish that P 6= ∅⇒ D 6= ∅. Suppose that x ∈P.
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[a]: Suppose that I = {1}. We then infer from (9.1) that there exists v∗ ∈ G such that
s∗1 ∈ A1x1 + C1x1 +Q1x1 +R1x+

∑
k∈K

L∗k1v
∗
k

(∀k ∈ K) v∗k ∈
(
(Bm

k +Bc
k +Bl

k)� (Dm
k +Dc

k +Dl
k)
)
(Lk1x1 − rk).

(9.33)

Therefore, by (9.2), v∗ ∈ D .

[b]: Set (∀k ∈ K) v∗k = ((Bm
k + Bc

k + Bl
k)� (Dm

k + Dc
k + Dl

k))(
∑

j∈I Lkjxj − rk). Then v∗

solves (9.2).

[c]⇒[b]: See [23, Section 4].

[d]: Let i ∈ I. It results from our assumption that

s∗i ∈ Aixi + Cixi +Qixi +Rix+ L∗ii

((
(Bm

i +Bc
i +Bl

i )� (Dm
i +Dc

i +Dl
i )
)
(Liixi − ri)

)
+
∑

k∈KrI

L∗ki

(((
Bm
k +Bc

k +Bl
k

)
�
(
Dm
k +Dc

k +Dl
k

))(∑
j∈I

Lkjxj − rk

))
. (9.34)

Thus, there exists v∗i ∈ Gi such that v∗i ∈ ((Bm
i +Bc

i +Bl
i )� (Dm

i +Dc
i +Dl

i ))(Liixi − ri) and

that

s∗i ∈ Aixi + Cixi +Qixi +Rix+ L∗iiv
∗
i

+
∑

k∈KrI

L∗ki

(((
Bm
k +Bc

k +Bl
k

)
�
(
Dm
k +Dc

k +Dl
k

))(∑
j∈I

Lkjxj − rk

))
. (9.35)

As a result, upon setting

(∀k ∈ K r I) v∗k =
(
(Bm

k +Bc
k +Bl

k)� (Dm
k +Dc

k +Dl
k)
)(∑

j∈I
Lkjxj − rk

)
, (9.36)

we conclude that v∗ ∈ D .

Remark 9.4 Some noteworthy observations about Proposition 9.3 are the following.

(i) The Kuhn–Tucker set (9.23) extends to Problem 9.1 the corresponding notion introduced

for some special cases in [1,14,25].

(ii) In connection with Proposition 9.3(v), we note that the implication P 6= ∅ ⇒ Z 6= ∅
is implicitly used in [25, Theorems 13 and 15], where one requires Z 6= ∅ but merely

assumes P 6= ∅. However, this implication is not true in general (a similar oversight is

found in [1, 45, 52]). Indeed, consider as a special case of (9.1), the problem of solving

the system 0 ∈ B1(x1 + x2) +B2(x1 − x2)

0 ∈ B1(x1 + x2)−B2(x1 − x2)
(9.37)
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in the Euclidean plane R2. Then, by choosing B1 = {0}−1 and B2 = 1, we obtain P ={
(x1,−x1) | x1 ∈ R

}
, whereas Z = ∅.

(iii) As stated in Proposition 9.3(iii), any Kuhn–Tucker point is a solution to (9.1)–(9.2). In

the simpler setting considered in [25], a splitting algorithm was devised for finding such

a point. However, in the more general context of Problem 9.1, there does not seem to

exist a path from the Kuhn–Tucker formalism in H ⊕ G to an algorithm that is fully split

in the sense of À. This motivates our approach, which seeks a zero of the saddle operator

S defined on the bigger space X and, thereby, offers more flexibility.

(iv) Special cases of Problem 9.1 can be found in [1, 25, 34, 35], where they were solved by

algorithms that proceed by outer approximation of the Kuhn–Tucker set in H ⊕ G. In

those special cases, Algorithm 9.12 below does not reduce to those of [1,25,34,35] since

it operates by outer approximation of the set of zeros of the saddle operator S in the

bigger space X .

The following operators will induce a decomposition of the saddle operator that will lead to

a splitting algorithm which complies with our requirements À–Ä.

Definition 9.5 In the setting of Definition 9.2, set

M : X → 2X : (x,y, z,v∗) 7→(
×
i∈I

(
−s∗i +Aixi +Qixi +Rix+

∑
k∈K

L∗kiv
∗
k

)
,×
k∈K

(
Bm
k yk +Bl

kyk − v∗k
)
,

×
k∈K

(
Dm
k zk +Dl

kzk − v∗k
)
,×
k∈K

{
rk + yk + zk −

∑
i∈I

Lkixi

} )
(9.38)

and

C : X → X : (x,y, z,v∗) 7→
((
Cixi

)
i∈I ,

(
Bc
k yk
)
k∈K ,

(
Dc
k zk
)
k∈K ,0

)
. (9.39)

Proposition 9.6 In the setting of Problem 9.1 and of Definitions 9.2 and 9.5, the following hold:

(i) S = M + C.

(ii) M is maximally monotone.

(iii) Set α = min{αc
i , β

c
k , δ

c
k }i∈I,k∈K . Then the following hold:

(a) C is α-cocoercive.
(b) Let (p,p∗) ∈ graM and q ∈ X . Then zerS ⊂

{
x ∈ X | 〈x− p | p∗ + Cq〉 6 (4α)−1‖p− q‖2

}
.

Proof. (i): Clear from (9.21), (9.38), and (9.39).

(ii): This is a special case of Proposition 9.3(i), where, for every i ∈ I and every k ∈ K,

Ci = 0 and Bc
k = Dc

k = 0.

(iii)(a): Take x = (x,y, z,v∗) and y = (a, b, c,w∗) in X . By (9.39) and Problem 9.1[a]–[c],

〈x− y | Cx− Cy〉
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=
∑
i∈I
〈xi − ai | Cixi − Ciai〉+

∑
k∈K

(
〈yk − bk | Bc

k yk −Bc
k bk〉+ 〈zk − ck | Dc

k zk −Dc
k ck〉

)
>
∑
i∈I

αc
i ‖Cixi − Ciai‖2 +

∑
k∈K

(
βc
k ‖Bc

k yk −Bc
k bk‖2 + δck ‖Dc

k zk −Dc
k ck‖2

)
> α

∑
i∈I
‖Cixi − Ciai‖2 + α

∑
k∈K

(
‖Bc

k yk −Bc
k bk‖2 + ‖Dc

k zk −Dc
k ck‖2

)
= α‖Cx− Cy‖2. (9.40)

(iii)(b): Suppose that z ∈ zerS. We deduce from (i) that −Cz ∈ Mz and from our assump-

tion that p∗ ∈ Mp. Hence, (ii) implies that 〈z− p | p∗ + Cz〉 6 0. Thus, we infer from (iii)(a)

and the Cauchy–Schwarz inequality that

〈z− p | p∗ + Cq〉 = 〈z− p | p∗ + Cz〉 − 〈z− q | Cz− Cq〉+ 〈p− q | Cz− Cq〉

6 −α‖Cz− Cq‖2 + ‖p− q‖ ‖Cz− Cq‖

= (4α)−1‖p− q‖2 −
∣∣∣(2√α)−1‖p− q‖ −

√
α‖Cz− Cq‖

∣∣∣2
6 (4α)−1‖p− q‖2, (9.41)

which establishes the claim.

Next, we solve the saddle form (9.22) of Problem 9.1 via successive projections onto the

outer approximations constructed in Proposition 9.6(iii)(b).

Proposition 9.7 Consider the setting of Problem 9.1 and of Definitions 9.2 and 9.5, and suppose
that zerS 6= ∅. Set α = min{αc

i , β
c
k , δ

c
k }i∈I,k∈K , let x0 ∈ X , let ε ∈ ]0, 1[, and iterate

for n = 0, 1, . . .

(pn,p
∗
n) ∈ graM; qn ∈ X ;

t∗n = p∗n + Cqn;

∆n = 〈xn − pn | t∗n〉 − (4α)−1‖pn − qn‖2;

if ∆n > 0⌊
λn ∈ [ε, 2− ε] ;

xn+1 = xn − (λn∆n/‖t∗n‖2) t∗n;

else⌊
xn+1 = xn.

(9.42)

Then the following hold:

(i) (∀z ∈ zerS)(∀n ∈ N) ‖xn+1 − z‖ 6 ‖xn − z‖.

(ii)
∑

n∈N ‖xn+1 − xn‖2 < +∞.

(iii) Suppose that (t∗n)n∈N is bounded. Then lim ∆n 6 0.

(iv) Suppose that xn − pn ⇀ 0, pn − qn → 0, and t∗n → 0. Then (xn)n∈N converges weakly to a
point in zerS.
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Proof. (i)&(ii): Proposition 9.3(ii) and our assumption ensure that zerS is a nonempty closed

convex subset of X . Now, for every n ∈ N, set ηn = (4α)−1‖pn − qn‖2 + 〈pn | t∗n〉 and Hn ={
x ∈ X | 〈x | t∗n〉 6 ηn

}
. On the one hand, according to Proposition 9.6(iii)(b), (∀n ∈ N) zerS ⊂

Hn. On the other hand, (9.42) gives (∀n ∈ N) ∆n = 〈xn | t∗n〉 − ηn. Altogether, (9.42) is an

instantiation of (9.142). The claims thus follow from Lemma 9.28(i)&(ii).

(iii): Set µ = supn∈N ‖t∗n‖. For every n ∈ N, if ∆n > 0, then (9.42) yields ∆n =

λ−1
n ‖t∗n‖ ‖xn+1 − xn‖ 6 ε−1µ‖xn+1 − xn‖; otherwise, ∆n 6 0 = ε−1µ‖xn+1 − xn‖. We there-

fore invoke (ii) to get lim ∆n 6 lim ε−1µ‖xn+1 − xn‖ = 0.

(iv): Let x ∈ X , let (kn)n∈N be a strictly increasing sequence in N, and suppose that xkn ⇀ x.

Then pkn = (pkn − xkn) + xkn ⇀ x. In addition, (9.42) and Proposition 9.6(i) imply that

(pkn ,p
∗
kn

+Cpkn)n∈N lies in gra(M+C) = graS. We also note that, since C is (1/α)-Lipschitzian

by Proposition 9.6(iii)(a), (9.42) yields ‖p∗n+Cpn‖ = ‖t∗n−Cqn+Cpn‖ 6 ‖t∗n‖+‖Cpn−Cqn‖ 6
‖t∗n‖ + ‖pn − qn‖/α → 0. Altogether, since S is maximally monotone by Proposition 9.3(i),

[9, Proposition 20.38(ii)] yields x ∈ zerS. In turn, Lemma 9.28(iii) guarantees that (xn)n∈N

converges weakly to a point in zerS.

The next outer approximation scheme is a variant of the previous one that guarantees strong

convergence to a specific zero of the saddle operator.

Proposition 9.8 Consider the setting of Problem 9.1 and of Definitions 9.2 and 9.5, and suppose
that zerS 6= ∅. Define

Ξ: ]0,+∞[× ]0,+∞[× R× R→ R2

(∆, τ, ς, χ) 7→


(1,∆/τ), if ρ = 0;(
0, (∆ + χ)/τ

)
, if ρ 6= 0 and χ∆ > ρ;(

1− χ∆/ρ, ς∆/ρ
)
, if ρ 6= 0 and χ∆ < ρ,

where ρ = τς − χ2, (9.43)

set α = min{αc
i , β

c
k , δ

c
k }i∈I,k∈K , and let x0 ∈ X . Iterate

for n = 0, 1, . . .

(pn,p
∗
n) ∈ graM; qn ∈ X ;

t∗n = p∗n + Cqn;

∆n = 〈xn − pn | t∗n〉 − (4α)−1‖pn − qn‖2;

if ∆n > 0 τn = ‖t∗n‖2; ςn = ‖x0 − xn‖2; χn = 〈x0 − xn | t∗n〉;
(κn, λn) = Ξ(∆n, τn, ςn, χn);

xn+1 = (1− κn)x0 + κnxn − λnt∗n;

else⌊
xn+1 = xn.

(9.44)
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Then the following hold:

(i) (∀n ∈ N) ‖xn − x0‖ 6 ‖xn+1 − x0‖ 6 ‖projzerSx0 − x0‖.

(ii)
∑

n∈N ‖xn+1 − xn‖2 < +∞.

(iii) Suppose that (t∗n)n∈N is bounded. Then lim ∆n 6 0.

(iv) Suppose that xn − pn ⇀ 0, pn − qn → 0, and t∗n → 0. Then xn → projzerSx0.

Proof. Set (∀n ∈ N) ηn = (4α)−1‖pn − qn‖2 + 〈pn | t∗n〉 and Hn =
{
x ∈ X | 〈x | t∗n〉 6 ηn

}
. As

seen in the proof of Proposition 9.7, zerS is a nonempty closed convex subset of X and, for

every n ∈ N, zerS ⊂ Hn and ∆n = 〈xn | t∗n〉 − ηn. This and (9.43) make (9.44) an instance of

(9.143).

(i)&(ii): Apply Lemma 9.29(i)&(ii).

(iii): Set µ = supn∈N ‖t∗n‖. Take n ∈ N. Suppose that ∆n > 0. Then, by construction of Hn,

projHnxn = xn−(∆n/‖t∗n‖2) t∗n. This implies that ∆n = ‖t∗n‖ ‖projHnxn−xn‖ 6 µ‖projHnxn−xn‖.
Next, suppose that ∆n 6 0. Then xn ∈ Hn and therefore ∆n 6 0 = µ‖projHnxn−xn‖. Altogether,

(∀n ∈ N) ∆n 6 µ‖projHnxn − xn‖. Consequently, Lemma 9.29(ii) yields lim ∆n 6 0.

(iv): Follow the same procedure as in the proof of Proposition 9.7(iv), invoking

Lemma 9.29(iii) instead of Lemma 9.28(iii).

9.2.3 Asynchronous block-iterative outer approximation methods

We exploit the saddle form of Problem 9.1 described in Definition 9.2 to obtain splitting algo-

rithms with features À–Ä. Let us comment on the impact of requirements À–Ã.

À For every i ∈ I and every k ∈ K, each single-valued operator Ci, Qi, Ri, Bc
k , Bl

k , Dc
k , Dl

k,

and Lki must be activated individually via a forward step, whereas each of the set-valued

operators Ai, Bm
k , and Dm

k must be activated individually via a backward resolvent step.

Á At iteration n, only operators indexed by subgroups In ⊂ I and Kn ⊂ K of indices

need to be involved in the sense that the results of their evaluations are incorporated.

This considerably reduces the computational load compared to standard methods, which

require the use of all the operators at every iteration. Assumption 9.10 below regulates

the frequency at which the indices should be chosen over time.

Â When an operator is involved at iteration n, its evaluation can be made at a point based

on data available at an earlier iteration. This makes it possible to initiate a computation at

a given iteration and incorporate its result at a later time. Assumption 9.11 below controls

the lag allowed in the process of using past data.

Ã Assumption 9.9 below describes the range allowed for the various scaling parameters in

terms of the cocoercivity and Lipschitz constants of the operators.
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Assumption 9.9 In the setting of Problem 9.1, set α = min{αc
i , β

c
k , δ

c
k }i∈I,k∈K , let σ ∈ ]0,+∞[

and ε ∈ ]0, 1[ be such that

σ > 1/(4α) and 1/ε > max
{
αl
i + χ+ σ, βl

k + σ, δlk + σ
}
i∈I,k∈K , (9.45)

and suppose that the following are satisfied:

[a] For every i ∈ I and every n ∈ N, γi,n ∈
[
ε, 1/(αl

i + χ+ σ)
]
.

[b] For every k ∈ K and every n ∈ N, µk,n ∈
[
ε, 1/(βl

k + σ)
]
, νk,n ∈

[
ε, 1/(δlk + σ)

]
, and

σk,n ∈ [ε, 1/ε].

[c] For every i ∈ I, xi,0 ∈ Hi; for every k ∈ K, {yk,0, zk,0, v∗k,0} ⊂ Gk.

Assumption 9.10 I andK are finite sets, P ∈ N, (In)n∈N are nonempty subsets of I, and (Kn)n∈N

are nonempty subsets of K such that

I0 = I, K0 = K, and (∀n ∈ N)
n+P⋃
j=n

Ij = I and
n+P⋃
j=n

Kj = K. (9.46)

Assumption 9.11 I andK are finite sets, T ∈ N, and, for every i ∈ I and every k ∈ K, (πi(n))n∈N

and (ωk(n))n∈N are sequences in N such that (∀n ∈ N) n−T 6 πi(n) 6 n and n−T 6 ωk(n) 6 n.

Our first algorithm is patterned after the abstract geometric outer approximation principle

described in Proposition 9.7. As before, bold letters denote product space elements, e.g., xn =

(xi,n)i∈I ∈H.

Algorithm 9.12 Consider the setting of Problem 9.1 and suppose that Assumption 9.9–9.11 is
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in force. Let (λn)n∈N be a sequence in [ε, 2− ε] and iterate

for n = 0, 1, . . .

for every i ∈ In
l∗i,n = Qixi,πi(n) +Rixπi(n) +

∑
k∈K L

∗
kiv
∗
k,πi(n);

ai,n = Jγi,πi(n)Ai

(
xi,πi(n) + γi,πi(n)(s

∗
i − l∗i,n − Cixi,πi(n))

)
;

a∗i,n = γ−1
i,πi(n)(xi,πi(n) − ai,n)− l∗i,n +Qiai,n;

ξi,n = ‖ai,n − xi,πi(n)‖2;

for every i ∈ I r In⌊
ai,n = ai,n−1; a∗i,n = a∗i,n−1; ξi,n = ξi,n−1;

for every k ∈ Kn

u∗k,n = v∗k,ωk(n) −B
l
kyk,ωk(n);

w∗k,n = v∗k,ωk(n) −D
l
kzk,ωk(n);

bk,n = Jµk,ωk(n)B
m
k

(
yk,ωk(n) + µk,ωk(n)(u

∗
k,n −Bc

k yk,ωk(n))
)
;

dk,n = Jνk,ωk(n)D
m
k

(
zk,ωk(n) + νk,ωk(n)(w

∗
k,n −Dc

k zk,ωk(n))
)
;

e∗k,n = σk,ωk(n)

(∑
i∈I Lkixi,ωk(n) − yk,ωk(n) − zk,ωk(n) − rk

)
+ v∗k,ωk(n);

q∗k,n = µ−1
k,ωk(n)(yk,ωk(n) − bk,n) + u∗k,n +Bl

kbk,n − e∗k,n;

t∗k,n = ν−1
k,ωk(n)(zk,ωk(n) − dk,n) + w∗k,n +Dl

kdk,n − e∗k,n;

ηk,n = ‖bk,n − yk,ωk(n)‖2 + ‖dk,n − zk,ωk(n)‖2;

ek,n = rk + bk,n + dk,n −
∑

i∈I Lkiai,n;

for every k ∈ K rKn⌊
bk,n = bk,n−1; dk,n = dk,n−1; e∗k,n = e∗k,n−1; q∗k,n = q∗k,n−1; t∗k,n = t∗k,n−1;

ηk,n = ηk,n−1; ek,n = rk + bk,n + dk,n −
∑

i∈I Lkiai,n;

for every i ∈ I⌊
p∗i,n = a∗i,n +Rian +

∑
k∈K L

∗
kie
∗
k,n;

∆n = −(4α)−1
(∑

i∈I ξi,n +
∑

k∈K ηk,n
)

+
∑

i∈I 〈xi,n − ai,n | p∗i,n〉

+
∑

k∈K
(
〈yk,n − bk,n | q∗k,n〉+ 〈zk,n − dk,n | t∗k,n〉+ 〈ek,n | v∗k,n − e∗k,n〉

)
;

if ∆n > 0

θn = λn∆n/
(∑

i∈I ‖p∗i,n‖2 +
∑

k∈K
(
‖q∗k,n‖2 + ‖t∗k,n‖2 + ‖ek,n‖2

))
;

for every i ∈ I⌊
xi,n+1 = xi,n − θnp∗i,n;

for every k ∈ K⌊
yk,n+1 = yk,n − θnq∗k,n; zk,n+1 = zk,n − θnt∗k,n; v∗k,n+1 = v∗k,n − θnek,n;

else
for every i ∈ I⌊
xi,n+1 = xi,n;

for every k ∈ K⌊
yk,n+1 = yk,n; zk,n+1 = zk,n; v∗k,n+1 = v∗k,n.

(9.47)
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The convergence properties of Algorithm 9.12 are laid out in the following theorem.

Theorem 9.13 Consider the setting of Algorithm 9.12 and suppose that the dual problem (9.2)

has a solution. Then the following hold:

(i) Let i ∈ I. Then
∑

n∈N ‖xi,n+1 − xi,n‖2 < +∞.

(ii) Let k ∈ K. Then
∑

n∈N ‖yk,n+1 − yk,n‖2 < +∞,
∑

n∈N ‖zk,n+1 − zk,n‖2 < +∞, and∑
n∈N ‖v∗k,n+1 − v∗k,n‖2 < +∞.

(iii) Let i ∈ I and k ∈ K. Then xi,n − ai,n → 0, yk,n − bk,n → 0, zk,n − dk,n → 0, and
v∗k,n − e∗k,n → 0.

(iv) There exist a solution x to (9.1) and a solution v∗ to (9.2) such that, for every i ∈ I and
every k ∈ K, xi,n ⇀ xi, ai,n ⇀ xi, and v∗k,n ⇀ v∗k. In addition, (x,v∗) is a Kuhn–Tucker
point of Problem 9.1 in the sense of (9.23).

Proof. We use the notation of Definitions 9.2 and 9.5. We first observe that zerS 6= ∅ by virtue

of Proposition 9.3(iv). Next, let us verify that (9.47) is a special case of (9.42). For every i ∈ I,

denote by ϑi(n) the most recent iteration preceding an iteration n at which the results of the

evaluations of the operators Ai, Ci, Qi, and Ri were incorporated, and by ϑi(n) the iteration at

which the corresponding calculations were initiated, i.e.,

ϑi(n) = max
{
j ∈ N | j 6 n and i ∈ Ij

}
and ϑi(n) = πi

(
ϑi(n)

)
. (9.48)

Similarly, we define

(∀k ∈ K)(∀n ∈ N) %k(n) = max
{
j ∈ N | j 6 n and k ∈ Kj

}
and %k(n) = ωk

(
%k(n)

)
.

(9.49)

By virtue of (9.47),

(∀i ∈ I)(∀n ∈ N) ai,n = ai,ϑi(n), a∗i,n = a∗
i,ϑi(n)

, ξi,n = ξi,ϑi(n), (9.50)

and likewise

(∀k ∈ K)(∀n ∈ N)

bk,n = bk,%k(n), dk,n = dk,%k(n), ηk,n = ηk,%k(n)

e∗k,n = e∗k,%k(n), q
∗
k,n = q∗k,%k(n), t

∗
k,n = t∗k,%k(n).

(9.51)
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To proceed further, set

(∀n ∈ N)



xn = (xn,yn, zn,v
∗
n)

pn = (an, bn,dn, e
∗
n)

p∗n =
(
p∗n − (Cixi,ϑi(n))i∈I , q

∗
n − (Bc

k yk,%k(n))k∈K , t
∗
n − (Dc

k zk,%k(n))k∈K , en
)

qn =
(
(xi,ϑi(n))i∈I , (yk,%k(n))k∈K , (zk,%k(n))k∈K , (e

∗
k,n)k∈K

)
t∗n = (p∗n, q

∗
n, t
∗
n, en).

(9.52)

For every i ∈ I and every n ∈ N, it follows from (9.50), (9.48), (9.47), and [9, Proposi-

tion 23.2(ii)] that

a∗i,n − Cixi,ϑi(n) = a∗
i,ϑi(n)

− Cixi,πi(ϑi(n))

= γ−1
i,πi(ϑi(n))

(
xi,πi(ϑi(n)) − ai,ϑi(n)

)
− l∗

i,ϑi(n)
− Cixi,πi(ϑi(n)) +Qiai,ϑi(n)

∈ −s∗i +Aiai,ϑi(n) +Qiai,ϑi(n)

= −s∗i +Aiai,n +Qiai,n (9.53)

and, therefore, that

p∗i,n − Cixi,ϑi(n) = a∗i,n − Cixi,ϑi(n) +Rian +
∑
k∈K

L∗kie
∗
k,n

∈ −s∗i +Aiai,n +Qiai,n +Rian +
∑
k∈K

L∗kie
∗
k,n. (9.54)

Analogously, we invoke (9.51), (9.49), and (9.47) to obtain

(∀k ∈ K)(∀n ∈ N) q∗k,n −Bc
k yk,%k(n) ∈ Bm

k bk,n +Bl
kbk,n − e∗k,n (9.55)

and

(∀k ∈ K)(∀n ∈ N) t∗k,n −Dc
k zk,%k(n) ∈ Dm

k dk,n +Dl
kdk,n − e∗k,n. (9.56)

In addition, (9.47) states that

(∀k ∈ K)(∀n ∈ N) ek,n = rk + bk,n + dk,n −
∑
i∈I

Lkiai,n. (9.57)

Hence, using (9.52) and (9.38), we deduce that (pn,p
∗
n)n∈N lies in graM. Next, it results from

(9.52) and (9.39) that (∀n ∈ N) t∗n = p∗n+Cqn. Moreover, for every n ∈ N, (9.47)–(9.52) entail

that∑
i∈I

ξi,n +
∑
k∈K

ηk,n
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=
∑
i∈I

ξi,ϑi(n) +
∑
k∈K

ηk,%k(n)

=
∑
i∈I

∥∥ai,ϑi(n) − xi,πi(ϑi(n))

∥∥2
+
∑
k∈K

(∥∥bk,%k(n) − yk,ωk(%k(n))

∥∥2
+
∥∥dk,%k(n) − zk,ωk(%k(n))

∥∥2
)

=
∑
i∈I

∥∥ai,n − xi,ϑi(n)

∥∥2
+
∑
k∈K

(∥∥bk,n − yk,%k(n)

∥∥2
+
∥∥dk,n − zk,%k(n)

∥∥2
)

= ‖pn − qn‖2 (9.58)

and, in turn, that

∆n = 〈xn − pn | t∗n〉 − (4α)−1‖pn − qn‖2. (9.59)

To sum up, (9.47) is an instantiation of (9.42). Therefore, Proposition 9.7(ii) asserts that∑
n∈N
‖xn+1 − xn‖2 < +∞. (9.60)

(i)&(ii): These follow from (9.60) and (9.52).

(iii)&(iv): Proposition 9.7(i) implies that (xn)n∈N is bounded. It therefore results from

(9.52) that

(xn)n∈N, (yn)n∈N, (zn)n∈N, and (v∗n)n∈N are bounded. (9.61)

Hence, (9.51), (9.47), (9.49), and Assumption 9.9[b] ensure that

(∀k ∈ K) (e∗k,n)n∈N =

(
σk,%k(n)

(∑
i∈I

Lkixi,%k(n)−yk,%k(n)−zk,%k(n)−rk
)

+v∗k,%k(n)

)
n∈N

is bounded.

(9.62)

Next, we deduce from (9.61) and Problem 9.1[e] that

(∀i ∈ I)
(
Rixϑi(n)

)
n∈N is bounded. (9.63)

In turn, it follows from (9.47), (9.61), the fact that (Qi)i∈I and (Ci)i∈I are Lipschitzian, and

Assumption 9.9[a] that

(∀i ∈ I)
(
xi,ϑi(n) + γi,ϑi(n)

(
s∗i − l∗i,ϑi(n)

− Cixi,ϑi(n)

))
n∈N

is bounded. (9.64)

An inspection of (9.50), (9.47), (9.48), and Lemma 9.25 reveals that

(∀i ∈ I) (ai,n)n∈N =
(
Jγi,ϑi(n)Ai

(
xi,ϑi(n) + γi,ϑi(n)

(
s∗i − l∗i,ϑi(n)

− Cixi,ϑi(n)

)))
n∈N

is bounded.

(9.65)

Hence, we infer from (9.50), (9.47), (9.61), and Assumption 9.9[a] that

(∀i ∈ I) (a∗i,n)n∈N is bounded. (9.66)
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Accordingly, by (9.47), (9.61), and Assumption 9.9[b],

(∀k ∈ K)
(
yk,%k(n) + µk,%k(n)

(
u∗k,%k(n) −B

c
k yk,%k(n)

))
n∈N

is bounded. (9.67)

Therefore, (9.51), (9.47), (9.49), and Lemma 9.25 imply that

(∀k ∈ K) (bk,n)n∈N =
(
Jµk,%k(n)B

m
k

(
yk,%k(n) + µk,%k(n)

(
u∗k,%k(n) −B

c
k yk,%k(n)

)))
n∈N

is bounded.

(9.68)

Thus, (9.51), (9.47), (9.61), (9.62), and Assumption 9.9[b] yield

(q∗n)n∈N is bounded. (9.69)

Likewise,

(dn)n∈N and (t∗n)n∈N are bounded. (9.70)

We deduce from (9.57), (9.68), (9.70), and (9.65) that

(en)n∈N is bounded. (9.71)

On the other hand, (9.47), (9.66), (9.65), Problem 9.1[e], and (9.62) imply that

(p∗n)n∈N is bounded. (9.72)

Hence, we infer from (9.52) and (9.69)–(9.71) that (t∗n)n∈N is bounded. Consequently, (9.59)

and Proposition 9.7(iii) yield

lim
(
〈xn − pn | t∗n〉 − (4α)−1‖pn − qn‖2

)
= lim ∆n 6 0. (9.73)

Let L and W be as in (9.24) and (9.27). For every n ∈ N, set
(∀i ∈ I) Ei,n = γ−1

i,ϑi(n)Id−Qi
(∀k ∈ K) Fk,n = µ−1

k,%k(n)Id−B
l
k , Gk,n = ν−1

k,%k(n)Id−D
l
k

En : X → X : (x,y, z,v∗) 7→
(
(Ei,nxi)i∈I , (Fk,nyk)k∈K , (Gk,nzk)k∈K , (σ

−1
k,%k(n)v

∗
k)k∈K

)
(9.74)

and

x̃n =
(
(xi,ϑi(n))i∈I , (yk,%k(n))k∈K , (zk,%k(n))k∈K , (v

∗
k,%k(n))k∈K

)
v∗n = Enxn − Enpn, w∗n = Wpn −Wxn

r∗n =
(
(Rian −Rixn)i∈I ,0,0,0

)
, r̃∗n =

(
(Rian −Rixϑi(n))i∈I ,0,0,0

)
l∗n =

((
−
∑

k∈K L
∗
kiv
∗
k,ϑi(n)

)
i∈I ,

(
v∗k,%k(n)

)
k∈K ,

(
v∗k,%k(n)

)
k∈K ,(∑

i∈I Lkixi,%k(n) − yk,%k(n) − zk,%k(n)

)
k∈K

)
.

(9.75)
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In view of Problem 9.1[a]–[c] and Assumption 9.9[a]&[b], we deduce from Lemma 9.26 that

(∀n ∈ N)

the operators (Ei,n)i∈I are (χ+ σ)-strongly monotone

the operators (Fk,n)k∈K and (Gk,n)k∈K are σ-strongly monotone,
(9.76)

and from (9.74) that there exists κ ∈ ]0,+∞[ such that

the operators (En)n∈N are κ-Lipschitzian. (9.77)

It results from (9.50), (9.47), (9.48), and (9.74) that

(∀i ∈ I)(∀n ∈ N) a∗i,n = a∗
i,ϑi(n)

=
(
γ−1
i,πi(ϑi(n))

xi,πi(ϑi(n)) −Qixi,πi(ϑi(n))

)
−
(
γ−1
i,πi(ϑi(n))

ai,ϑi(n) −Qiai,ϑi(n)

)
−Rixπi(ϑi(n)) −

∑
k∈K

L∗kiv
∗
k,πi(ϑi(n))

= Ei,nxi,ϑi(n) − Ei,nai,n −Rixϑi(n) −
∑
k∈K

L∗kiv
∗
k,ϑi(n) (9.78)

and, therefore, that

(∀i ∈ I)(∀n ∈ N) p∗i,n = a∗i,n +Rian +
∑
k∈K

L∗kie
∗
k,n

= Ei,nxi,ϑi(n) − Ei,nai,n +Rian −Rixϑi(n) −
∑
k∈K

L∗kiv
∗
k,ϑi(n) +

∑
k∈K

L∗kie
∗
k,n.

(9.79)

At the same time, (9.51), (9.47), (9.49), and (9.74) entail that

(∀k ∈ K)(∀n ∈ N) q∗k,n = q∗k,%k(n)

=
(
µ−1
k,ωk(%k(n))yk,ωk(%k(n)) −Bl

kyk,ωk(%k(n))

)
−
(
µ−1
k,ωk(%k(n))bk,%k(n) −Bl

kbk,%k(n)

)
+ v∗k,ωk(%k(n)) − e

∗
k,%k(n)

= Fk,nyk,%k(n) − Fk,nbk,n + v∗k,%k(n) − e
∗
k,n (9.80)

and that

(∀k ∈ K)(∀n ∈ N) t∗k,n = Gk,nzk,%k(n) −Gk,ndk,n + v∗k,%k(n) − e
∗
k,n. (9.81)

Further, we derive from (9.51), (9.47), and (9.49) that

(∀k ∈ K)(∀n ∈ N) rk = σ−1
k,%k(n)v

∗
k,%k(n)−σ

−1
k,%k(n)e

∗
k,n−yk,%k(n)−zk,%k(n)+

∑
i∈I

Lkixi,%k(n) (9.82)
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and, in turn, from (9.57) that

(∀k ∈ K)(∀n ∈ N) ek,n = σ−1
k,%k(n)v

∗
k,%k(n) − σ

−1
k,%k(n)e

∗
k,n − yk,%k(n) − zk,%k(n)

+
∑
i∈I

Lkixi,%k(n) + bk,n + dk,n −
∑
i∈I

Lkiai,n. (9.83)

Altogether, it follows from (9.52), (9.79)–(9.81), (9.83), (9.74), (9.75), (9.27), and (9.25) that

(∀n ∈ N) t∗n = Enx̃n − Enpn + r̃∗n + l∗n + Wpn. (9.84)

Next, in view of (9.60), (9.48), (9.49), and Assumption 9.10–9.11, we learn from Lemma 9.27

that

(∀i ∈ I)(∀k ∈ K)

xϑi(n) − xn → 0, x%k(n) − xn → 0, and v∗ϑi(n) − v
∗
n → 0

y%k(n) − yn → 0, z%k(n) − zn → 0, and v∗%k(n) − v
∗
n → 0.

(9.85)

Thus, (9.75), (9.27), (9.25), and (9.24) yield

l∗n + Wxn → 0, (9.86)

while Problem 9.1[e] gives

(∀i ∈ I) ‖Rixϑi(n) −Rixn‖ 6 χ‖xϑi(n) − xn‖ → 0. (9.87)

On the other hand, we infer from (9.77), (9.75), and (9.85) that

‖Enx̃n − Enxn‖ 6 κ‖x̃n − xn‖ → 0. (9.88)

Combining (9.84), (9.75), and (9.86)–(9.88), we obtain

t∗n −
(
v∗n + r∗n + w∗n

)
= l∗n + Wxn + Enx̃n − Enxn + r̃∗n − r∗n → 0. (9.89)

Now set

(∀n ∈ N) q̃n = (xn,yn, zn, e
∗
n). (9.90)

Then (q̃n)n∈N is bounded by virtue of (9.61) and (9.62). On the one hand, (9.52), (9.62),

(9.65), (9.68), and (9.70) imply that (pn)n∈N is bounded. On the other hand, (9.52) and (9.85)

give

q̃n − qn → 0. (9.91)

Therefore, appealing to the Cauchy–Schwarz inequality, we obtain

∣∣〈pn − q̃n | q̃n − qn〉
∣∣ 6 ( sup

m∈N
‖pm‖+ sup

m∈N
‖q̃m‖

)
‖q̃n − qn‖ → 0 (9.92)
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and, by (9.89),

∣∣〈xn − pn | t∗n − (v∗n + r∗n + w∗n)〉
∣∣ 6 ( sup

m∈N
‖xm‖+ sup

m∈N
‖pm‖

)
‖t∗n−(v∗n+r∗n+w∗n)‖ → 0. (9.93)

However, since W∗ = −W by (9.27), it results from (9.75) that (∀n ∈ N) 〈xn − pn | w∗n〉 = 0.

Thus, by (9.73) and (9.91)–(9.93),

0 > lim
(
〈xn − pn | t∗n〉 − (4α)−1‖pn − qn‖2

)
= lim

(
〈xn − pn | v∗n + r∗n + w∗n〉+ 〈xn − pn | t∗n − (v∗n + r∗n + w∗n)〉 − (4α)−1‖pn − qn‖2

)
= lim

(
〈xn − pn | v∗n + r∗n〉 − (4α)−1

(
‖pn − q̃n‖2 + 2〈pn − q̃n | q̃n − qn〉+ ‖q̃n − qn‖2

))
= lim

(
〈xn − pn | v∗n + r∗n〉 − (4α)−1‖pn − q̃n‖2

)
. (9.94)

On the other hand, we deduce from (9.75), (9.52), (9.74), (9.76), Assumption 9.9[b], the

Cauchy–Schwarz inequality, Problem 9.1[e], and (9.90) that, for every n ∈ N,

〈xn − pn | v∗n + r∗n〉 − (4α)−1‖pn − q̃n‖2

= 〈xn − pn | Enxn − Enpn〉+ 〈xn − pn | r∗n〉 − (4α)−1‖pn − q̃n‖2

=
∑
i∈I
〈xi,n − ai,n | Ei,nxi,n − Ei,nai,n〉+

∑
k∈K
〈yk,n − bk,n | Fk,nyk,n − Fk,nbk,n〉

+
∑
k∈K
〈zk,n − dk,n | Gk,nzk,n −Gk,ndk,n〉+

∑
k∈K

σ−1
k,%k(n)‖v

∗
k,n − e∗k,n‖2

+ 〈xn − an | Ran −Rxn〉 − (4α)−1‖pn − q̃n‖2

> (χ+ σ)‖xn − an‖2 + σ‖yn − bn‖2 + σ‖zn − dn‖2

+ ε‖v∗n − e∗n‖2 − ‖xn − an‖ ‖Ran −Rxn‖ − (4α)−1‖pn − q̃n‖2

> (χ+ σ)‖xn − an‖2 + σ‖yn − bn‖2 + σ‖zn − dn‖2

+ ε‖v∗n − e∗n‖2 − χ‖xn − an‖2 − (4α)−1‖pn − q̃n‖2

=
(
σ − (4α)−1

)(
‖xn − an‖2 + ‖yn − bn‖2 + ‖zn − dn‖2

)
+ ε‖v∗n − e∗n‖2. (9.95)

Hence, since σ > 1/(4α) by (9.45), taking the limit superior in (9.95) and invoking (9.94) yield

xn − an → 0, yn − bn → 0, zn − dn → 0, and v∗n − e∗n → 0, (9.96)

which establishes (iii). In turn, (9.52) and (9.77) force

xn − pn → 0 and ‖Enxn − Enpn‖ 6 κ‖xn − pn‖ → 0 (9.97)

and (9.85) thus yields pn − qn → 0. Further, we infer from (9.75), (9.96), and Problem 9.1[e]

that

‖r∗n‖2 = ‖Ran −Rxn‖2 6 χ2‖an − xn‖2 → 0. (9.98)
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Altogether, it follows from (9.75), (9.89), (9.97), and (9.98) that

t∗n =
(
t∗n −

(
v∗n + r∗n + w∗n

))
+
(
Enxn − Enpn

)
+ W(pn − xn) + r∗n → 0. (9.99)

Hence, Proposition 9.7(iv) guarantees that there exists x = (x,y, z,v∗) ∈ zerS such that xn ⇀

x. This and (9.96) imply that, for every i ∈ I and every k ∈ K, xi,n ⇀ xi, ai,n ⇀ xi, and

v∗k,n ⇀ v∗k. Finally, Proposition 9.3(iii) asserts that (x,v∗) lies in the set of Kuhn–Tucker points

(9.23), that x solves (9.1), and that v∗ solves (9.2).

Some infinite-dimensional applications require strong convergence of the iterates; see, e.g.,

[3,4]. This will be guaranteed by the following variant of Algorithm 9.12, which hinges on the

principle outlined in Proposition 9.8.

Algorithm 9.14 Consider the setting of Problem 9.1, define Ξ as in (9.43), and suppose that

Assumption 9.9–9.11 is in force. Iterate

for n = 0, 1, . . .∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for every i ∈ In
l∗i,n = Qixi,πi(n) +Rixπi(n) +

∑
k∈K L

∗
kiv
∗
k,πi(n);

ai,n = Jγi,πi(n)Ai

(
xi,πi(n) + γi,πi(n)(s

∗
i − l∗i,n − Cixi,πi(n))

)
;

a∗i,n = γ−1
i,πi(n)(xi,πi(n) − ai,n)− l∗i,n +Qiai,n;

ξi,n = ‖ai,n − xi,πi(n)‖2;

for every i ∈ I r In⌊
ai,n = ai,n−1; a∗i,n = a∗i,n−1; ξi,n = ξi,n−1;

for every k ∈ Kn

u∗k,n = v∗k,ωk(n) −B
l
kyk,ωk(n);

w∗k,n = v∗k,ωk(n) −D
l
kzk,ωk(n);

bk,n = Jµk,ωk(n)B
m
k

(
yk,ωk(n) + µk,ωk(n)(u

∗
k,n −Bc

k yk,ωk(n))
)
;

dk,n = Jνk,ωk(n)D
m
k

(
zk,ωk(n) + νk,ωk(n)(w

∗
k,n −Dc

k zk,ωk(n))
)
;

e∗k,n = σk,ωk(n)

(∑
i∈I Lkixi,ωk(n) − yk,ωk(n) − zk,ωk(n) − rk

)
+ v∗k,ωk(n);

q∗k,n = µ−1
k,ωk(n)(yk,ωk(n) − bk,n) + u∗k,n +Bl

kbk,n − e∗k,n;

t∗k,n = ν−1
k,ωk(n)(zk,ωk(n) − dk,n) + w∗k,n +Dl

kdk,n − e∗k,n;

ηk,n = ‖bk,n − yk,ωk(n)‖2 + ‖dk,n − zk,ωk(n)‖2;

ek,n = rk + bk,n + dk,n −
∑

i∈I Lkiai,n;

for every k ∈ K rKn⌊
bk,n = bk,n−1; dk,n = dk,n−1; e∗k,n = e∗k,n−1; q∗k,n = q∗k,n−1; t∗k,n = t∗k,n−1;

ηk,n = ηk,n−1; ek,n = rk + bk,n + dk,n −
∑

i∈I Lkiai,n;

for every i ∈ I⌊
p∗i,n = a∗i,n +Rian +

∑
k∈K L

∗
kie
∗
k,n;

(9.100)
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∆n = −(4α)−1
(∑

i∈I ξi,n +
∑

k∈K ηk,n
)

+
∑

i∈I 〈xi,n − ai,n | p∗i,n〉
+
∑

k∈K
(
〈yk,n − bk,n | q∗k,n〉+ 〈zk,n − dk,n | t∗k,n〉+ 〈ek,n | v∗k,n − e∗k,n〉

)
;

if ∆n > 0

τn =
∑

i∈I ‖p∗i,n‖2 +
∑

k∈K
(
‖q∗k,n‖2 + ‖t∗k,n‖2 + ‖ek,n‖2

)
;

ςn =
∑

i∈I ‖xi,0 − xi,n‖2

+
∑

k∈K
(
‖yk,0 − yk,n‖2 + ‖zk,0 − zk,n‖2 + ‖v∗k,0 − v∗k,n‖2

)
;

χn =
∑

i∈I 〈xi,0 − xi,n | p∗i,n〉
+
∑

k∈K
(
〈yk,0 − yk,n | q∗k,n〉+ 〈zk,0 − zk,n | t∗k,n〉+ 〈ek,n | v∗k,0 − v∗k,n〉

)
;

(κn, λn) = Ξ(∆n, τn, ςn, χn);

for every i ∈ I⌊
xi,n+1 = (1− κn)xi,0 + κnxi,n − λnp∗i,n;

for every k ∈ K yk,n+1 = (1− κn)yk,0 + κnyk,n − λnq∗k,n;

zk,n+1 = (1− κn)zk,0 + κnzk,n − λnt∗k,n;

v∗k,n+1 = (1− κn)v∗k,0 + κnv
∗
k,n − λnek,n;

else
for every i ∈ I⌊
xi,n+1 = xi,n;

for every k ∈ K⌊
yk,n+1 = yk,n; zk,n+1 = zk,n; v∗k,n+1 = v∗k,n.

Theorem 9.15 Consider the setting of Algorithm 9.14 and suppose that the dual problem (9.2)

has a solution. Then the following hold:

(i) Let i ∈ I. Then
∑

n∈N ‖xi,n+1 − xi,n‖2 < +∞.

(ii) Let k ∈ K. Then
∑

n∈N ‖yk,n+1 − yk,n‖2 < +∞,
∑

n∈N ‖zk,n+1 − zk,n‖2 < +∞, and∑
n∈N ‖v∗k,n+1 − v∗k,n‖2 < +∞.

(iii) Let i ∈ I and k ∈ K. Then xi,n − ai,n → 0, yk,n − bk,n → 0, zk,n − dk,n → 0, and
v∗k,n − e∗k,n → 0.

(iv) There exist a solution x to (9.1) and a solution v∗ to (9.2) such that, for every i ∈ I and
every k ∈ K, xi,n → xi, ai,n → xi, and v∗k,n → v∗k. In addition, (x,v∗) is a Kuhn–Tucker
point of Problem 9.1 in the sense of (9.23).

Proof. Proceed as in the proof of Theorem 9.13 and use Proposition 9.8 instead of Proposi-

tion 9.7.

9.2.4 Applications

In nonlinear analysis and optimization, problems with multiple variables occur in areas such as

game theory [2,15,56], evolution inclusions [3], traffic equilibrium [3,31], domain decomposi-

tion [4], machine learning [6,12], image recovery [13,16], infimal-convolution regularization
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[23], statistics [26, 55], neural networks [27], and variational inequalities [31]. The numeri-

cal methods used in the above papers are limited to special cases of Problem 9.1 and they do

not perform block iterations and they operate in synchronous mode. The methods presented in

Theorems 9.13 and 9.15 provide a unified treatment of these problems as well as extensions,

within a considerably more flexible algorithmic framework. In this section, we illustrate this in

the context of variational inequalities and multivariate minimization. Below we present only

the applications of Theorem 9.13 as similar applications of Theorem 9.15 follow using similar

arguments.

9.2.4.1 Application to variational inequalities

The standard variational inequality problem associated with a closed convex subset D of a real

Hilbert space G and a maximally monotone operator B : G → G is to

find y ∈ D such that (∀y ∈ D) 〈y − y | By〉 6 0. (9.101)

Classical methods require the ability to project onto D and specific assumptions on B such

as cocoercivity, Lipschitz continuity, or the ability to compute the resolvent [9, 30, 53]. Let us

consider a refined version of (9.101) in which B and D are decomposed into basic components,

and for which these classical methods are not applicable.

Problem 9.16 Let I be a nonempty finite set and let (Hi)i∈I and G be real Hilbert spaces.

For every i ∈ I, let Ei and Fi be closed convex subsets of Hi such that Ei ∩ Fi 6= ∅ and let

Li : Hi → G be linear and bounded. In addition, let Bm : G → 2G be at most single-valued

and maximally monotone, let Bc : G → G be cocoercive with constant βc ∈ ]0,+∞[, and let

Bl: G → G be Lipschitzian with constant βl ∈ [0,+∞[. The objective is to

find y ∈
∑
i∈I

Li(Ei ∩ Fi) such that
(
∀y ∈

∑
i∈I

Li(Ei ∩ Fi)
) 〈

y − y | Bmy +Bcy +Bly
〉
6 0.

(9.102)

To motivate our analysis, let us consider an illustration of (9.102).

Example 9.17 Let I be a nonempty finite set and let (Zi)i∈I and K be real Hilbert spaces. For

every i ∈ I, let Si ⊂ Zi be closed and convex, and let Mi : Zi → K be linear and bounded.

In addition, let f ∈ Γ0(K) be Gâteaux differentiable on dom ∂f , let ϕ : K → R be convex and

differentiable with a Lipschitzian gradient, let V be a real Hilbert space, let g ∈ Γ0(V) be such

that g∗ is Gâteaux differentiable on dom ∂g∗, let D be a closed convex subset of V such that

0 ∈ sri(D − dom g∗), (9.103)

let h ∈ Γ0(V) be strongly convex, and let L : K → V be linear and bounded. Note that, by

[9, Theorem 18.15], h∗ is differentiable on V and ∇h∗ is cocoercive. The objective is to solve
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the Kuhn–Tucker problem

find (x, v∗) ∈ K ⊕ V such that[
0

0

]
∈

[
∇f 0

0 ∇g∗

]
︸ ︷︷ ︸

monotone

[
x

v∗

]
+

[
∇ϕ 0

0 ∇h∗

]
︸ ︷︷ ︸

cocoercive

[
x

v∗

]
+

[
0 L∗

−L 0

]
︸ ︷︷ ︸

Lipschitzian

[
x

v∗

]
+

[
NC 0

0 ND

]
︸ ︷︷ ︸

normal cone

[
x

v∗

]
, (9.104)

where it is assumed that

C =
∑
i∈I

Mi(Si) is closed and 0 ∈ sri(C − dom f). (9.105)

Since domh∗ = V, we deduce from (9.103) and [9, Proposition 15.7(i)] that g�h�σD ∈
Γ0(V). It follows from standard convex calculus [9] that a solution (x, v∗) to (9.104) provides

a solution x to

minimize
x∈C

f(x) +
(
g�h�σD

)
(Lx) + ϕ(x), (9.106)

as well as a solution v∗ to the associated Fenchel–Rockafellar dual

minimize
v∗∈D

(
(f + ϕ)∗�σC

)
(−L∗v∗) + g∗(v∗) + h∗(v∗). (9.107)

To see that (9.104)–(9.105) is a special case of Problem 9.16, set G = K ⊕ V and

(∀i ∈ I) Li : Hi = Zi⊕V → G : (zi, v
∗) 7→ (Mizi, v

∗/ card I), Ei = Si×D, and Fi = Zi×V.
(9.108)

Note that

C ×D =
∑
i∈I

Li(Ei ∩ Fi). (9.109)

Further, in view of [9, Proposition 17.31(i)], let us define

Bm : G → 2G

(x, v∗) 7→ ∂(f ⊕ g∗)(x, v∗) =


(
∇f(x),∇g∗(v∗)

)
, if (x, v∗) ∈ dom ∂f × dom ∂g∗;

∅, otherwise

Bc : G → G : (x, v∗) 7→
(
∇ϕ(x),∇h∗(v∗)

)
Bl: G → G : (x, v∗) 7→ (L∗v∗,−Lx).

(9.110)

Then Bm is maximally monotone [9, Theorem 20.25], Bc is cocoercive [9, Corollary 18.17],

and Bl is a skew bounded linear operator, hence monotone and Lipschitzian [9, Exam-

ple 20.35]. In turn, combining (9.108) and (9.110), we conclude that (9.104) can be written
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as

find (x, v∗) ∈ K⊕V such that (0, 0) ∈ Bm(x, v∗)+Bc(x, v∗)+Bl(x, v∗)+NC×D(x, v∗) (9.111)

which, in the light of (9.109), fits the format of (9.102). Special cases of (9.106) involving

minimization over Minkowski sum of sets are found in areas such as signal and image pro-

cessing [5,28,41], location and network problems [40], as well as robotics and computational

mechanics [54].

We are going to reformulate Problem 9.16 as a realization of Problem 9.1 and solve it

via a block-iterative method derived from Algorithm 9.12. In addition, our approach employs

the individual projection operators onto the sets (Ei)i∈I and (Fi)i∈I , and the resolvents of the

operator Bm. We are not aware of any method which features such flexibility. For instance,

consider the special case discussed in [31, Section 4], where G = RN , Bc = Bl = 0, T : RN →
RM is a linear operator, and, for every i ∈ I, Hi = RN , Li = Id, Ei = T−1({di}) for some

di ∈ RM , and Fi = [0,+∞[N . There, the evaluations of all the projectors (projEi∩Fi)i∈I are

required at every iteration. Note that there are no closed-form expressions for (projEi∩Fi)i∈I in

general.

Corollary 9.18 Consider the setting of Problem 9.16. Let σ ∈ ]1/(4βc),+∞[, ε ∈]
0,min{1, 1/(βl + σ)}

[
, and K = I ∪ {k}, where k /∈ I. Suppose that Assumption 9.10 is in

force, together with the following:

[a] For every i ∈ I and every n ∈ N, {γi,n, µi,n, νi,n} ⊂ [ε, 1/σ] and σi,n ∈ [ε, 1/ε].

[b] For every n ∈ N, λn ∈ [ε, 2− ε], µk,n ∈
[
ε, 1/(βl + σ)

]
, νk,n ∈ [ε, 1/σ], and σk,n ∈ [ε, 1/ε].

[c] For every i ∈ I, {xi,0, yi,0, zi,0, v∗i,0} ⊂ Hi; {yk,0, zk,0, v
∗
k,0
} ⊂ G.
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Iterate

for n = 0, 1, . . .∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for every i ∈ In
l∗i,n = v∗i,n + L∗i v

∗
k,n

;

ai,n = projEi
(
xi,n − γi,nl∗i,n

)
;

a∗i,n = γ−1
i,n (xi,n − ai,n)− l∗i,n;

ξi,n = ‖ai,n − xi,n‖2;

for every i ∈ I r In⌊
ai,n = ai,n−1; a∗i,n = a∗i,n−1; ξi,n = ξi,n−1;

for every k ∈ Kn

if k ∈ I
bk,n = projFk

(
yk,n + µk,nv

∗
k,n

)
;

e∗k,n = σk,n(xk,n − yk,n − zk,n) + v∗k,n;

q∗k,n = µ−1
k,n(yk,n − bk,n) + v∗k,n − e∗k,n;

ek,n = bk,n − ak,n;

if k = k
u∗k,n = v∗k,n −Blyk,n;

bk,n = Jµk,nBm

(
yk,n + µk,n(u∗k,n −Bcyk,n)

)
;

e∗k,n = σk,n
(∑

i∈I Lixi,n − yk,n − zk,n
)

+ v∗k,n;

q∗k,n = µ−1
k,n(yk,n − bk,n) + u∗k,n +Blbk,n − e∗k,n;

ek,n = bk,n −
∑

i∈I Liai,n;

t∗k,n = ν−1
k,nzk,n + v∗k,n − e∗k,n;

ηk,n = ‖bk,n − yk,n‖2 + ‖zk,n‖2;

for every k ∈ K rKn

bk,n = bk,n−1; e∗k,n = e∗k,n−1; q∗k,n = q∗k,n−1; t∗k,n = t∗k,n−1; ηk,n = ηk,n−1;

if k ∈ I⌊
ek,n = bk,n − ak,n;

if k = k⌊
ek,n = bk,n −

∑
i∈I Liai,n;

for every i ∈ I⌊
p∗i,n = a∗i,n + e∗i,n + L∗i e

∗
k,n

;

(9.112)
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∆n = −(4βc)−1
(∑

i∈I ξi,n +
∑

k∈K ηk,n
)

+
∑

i∈I 〈xi,n − ai,n | p∗i,n〉
+
∑

k∈K
(
〈yk,n − bk,n | q∗k,n〉+ 〈zk,n | t∗k,n〉+ 〈ek,n | v∗k,n − e∗k,n〉

)
;

if ∆n > 0

θn = λn∆n/
(∑

i∈I ‖p∗i,n‖2 +
∑

k∈K
(
‖q∗k,n‖2 + ‖t∗k,n‖2 + ‖ek,n‖2

))
;

for every i ∈ I⌊
xi,n+1 = xi,n − θnp∗i,n;

for every k ∈ K⌊
yk,n+1 = yk,n − θnq∗k,n; zk,n+1 = zk,n − θnt∗k,n; v∗k,n+1 = v∗k,n − θnek,n;

else
for every i ∈ I⌊
xi,n+1 = xi,n;

for every k ∈ K⌊
yk,n+1 = yk,n; zk,n+1 = zk,n; v∗k,n+1 = v∗k,n.

Furthermore, suppose that (9.102) has a solution and that

(∀i ∈ I) NEi∩Fi = NEi +NFi . (9.113)

Then there exists (xi)i∈I ∈
⊕

i∈I Hi such that
∑

i∈I Lixi solves (9.102) and, for every i ∈ I,
xi,n ⇀ xi and ai,n ⇀ xi.

Proof. Set H =
⊕

i∈I Hi. Let us consider the problem

find x ∈H such that (∀i ∈ I) 0 ∈ NEixi +NFixi +L∗i (B
m +Bc +Bl)

(∑
j∈I

Ljxj

)
(9.114)

together with the associated dual problem

find
(
x∗, v∗

)
∈H⊕G such that

(
∃x ∈H

) (∀i ∈ I) −x∗i − L∗i v∗ ∈ NEixi and x∗i ∈ NFixi

v∗ = (Bm +Bc +Bl)
(∑

j∈I Ljxj
)
.

(9.115)

Denote by P and D the sets of solutions to (9.114) and (9.115), respectively. We observe that

the primal-dual problem (9.114)–(9.115) is a special case of Problem 9.1 with

(∀i ∈ I) Ai = NEi , Ci = Qi = 0, Ri = 0, and s∗i = 0, (9.116)
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and

(∀k ∈ K)



Gk = Hk, Bm
k = NFk , B

c
k = Bl

k = 0 if k ∈ I;

Gk = G, Bm
k

= Bm, Bc
k

= Bc, Bl
k

= Bl

Dm
k = {0}−1, Dc

k = Dl
k = 0, rk = 0

(∀j ∈ I) Lkj =


Id, if k = j;

0, if k ∈ I and k 6= j;

Lj , if k = k.

(9.117)

Further, we have
(∀i ∈ I)(∀n ∈ N) Jγi,nAi = projEi

(∀k ∈ K)(∀n ∈ N) Jνk,nDm
k

= 0 and Jµk,nBm
k

=

projFk , if k ∈ I;

Jµk,nBm, if k = k.

(9.118)

Therefore, (9.112) is a realization of Algorithm 9.12 in the context of (9.114)–(9.115). Now

define D =×i∈I(Ei ∩ Fi) and L : H→ G : x 7→
∑

i∈I Lixi. Then L∗ : G →H : y∗ 7→ (L∗i y
∗)i∈I .

Hence, by (9.102), [9, Proposition 16.9], and (9.113),

(∀y ∈ G) y solves (9.102)

⇔ (∃x ∈D)

y = Lx

(∀x ∈D)
〈
Lx−Lx | (Bm +Bc +Bl)(Lx)

〉
6 0

⇔ (∃x ∈D)

y = Lx

(∀x ∈D)
〈
x− x | L∗

(
(Bm +Bc +Bl)(Lx)

)〉
6 0

⇔ (∃x ∈H)

y = Lx

0 ∈ NDx+L∗
(
(Bm +Bc +Bl)(Lx)

)
⇔ (∃x ∈H)

y = Lx

(∀i ∈ I) 0 ∈ NEi∩Fixi + L∗i (B
m +Bc +Bl)

(∑
j∈I Ljxj

)
⇔ (∃x ∈H)

y = Lx

(∀i ∈ I) 0 ∈ NEixi +NFixi + L∗i (B
m +Bc +Bl)

(∑
j∈I Ljxj

)
⇔ (∃x ∈P) y = Lx. (9.119)

In turn, P 6= ∅ since (9.102) has a solution. Therefore, in view of (9.117), Proposi-

tion 9.3(v)[d] yields D 6= ∅. As a result, Theorem 9.13(iv) asserts that there exists (xi)i∈I ∈P

such that, for every i ∈ I, xi,n ⇀ xi and ai,n ⇀ xi. Finally, using (9.119), we conclude that∑
i∈I Lixi solves (9.102).
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Remark 9.19 Theorem 9.13 allows us to tackle other types of variational inequalities. For in-

stance, let (Hi)i∈I be a finite family of real Hilbert spaces and set H =
⊕

i∈I Hi. For every i ∈ I,

let ϕi ∈ Γ0(Hi) and let Ri : H→ Hi be such that Problem 9.1[e] holds. The objective is to

find x ∈H such that (∀i ∈ I) 0 ∈ ∂ϕi(xi) +Rix. (9.120)

This simple instantiation of Problem 9.1 shows up in neural networks [27] and in game theory

[2,15]. Thanks to Theorem 9.13, it can be solved using an asynchronous block-iterative strategy,

which is not possible with current splitting techniques such as those of [25,34].

9.2.4.2 Application to multivariate minimization

We consider a composite multivariate minimization problem involving various types of convex

functions and combinations between them.

Problem 9.20 Let (Hi)i∈I and (Gk)k∈K be finite families of real Hilbert spaces, and set H =⊕
i∈I Hi and G =

⊕
k∈K Gk. For every i ∈ I and every k ∈ K, let fi ∈ Γ0(Hi), let αi ∈ ]0,+∞[,

let ϕi : Hi → R be convex and differentiable with a (1/αi)-Lipschitzian gradient, let gk ∈ Γ0(Gk),
let hk ∈ Γ0(Gk), let βk ∈ ]0,+∞[, let ψk : Gk → R be convex and differentiable with a (1/βk)-

Lipschitzian gradient, and suppose that Lki : Hi → Gk is linear and bounded. In addition, let

χ ∈ [0,+∞[ and let Θ: H → R be convex and differentiable with a χ-Lipschitzian gradient.

The objective is to

minimize
x∈H

Θ(x) +
∑
i∈I

(
fi(xi) + ϕi(xi)

)
+
∑
k∈K

(
(gk + ψk)�hk

)(∑
j∈I

Lkjxj

)
. (9.121)

Special cases of Problem 9.20 are found in various contexts, e.g., [13,16,23,25,33,34]. For-

mulation (9.121) brings together these disparate problems and the following algorithm makes

it possible to solve them in an asynchronous block-iterative fashion in full generality.

Algorithm 9.21 Consider the setting of Problem 9.20 and suppose that Assumption 9.10–9.11

is in force. Set α = min{αi, βk}i∈I,k∈K , let σ ∈ ]1/(4α),+∞[, and let ε ∈ ]0,min{1, 1/(χ+ σ)}[.
For every i ∈ I, every k ∈ K, and every n ∈ N, let γi,n ∈ [ε, 1/(χ+ σ)], let {µk,n, νk,n} ⊂ [ε, 1/σ],
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let σk,n ∈ [ε, 1/ε], and let λn ∈ [ε, 2− ε]. In addition, let x0 ∈H and {y0, z0,v
∗
0} ⊂ G. Iterate

for n = 0, 1, . . .

for every i ∈ In
l∗i,n = ∇i Θ(xπi(n)) +

∑
k∈K L

∗
kiv
∗
k,πi(n);

ai,n = proxγi,πi(n)fi

(
xi,πi(n) − γi,πi(n)

(
l∗i,n +∇ϕi(xi,πi(n))

))
;

a∗i,n = γ−1
i,πi(n)(xi,πi(n) − ai,n)− l∗i,n;

ξi,n = ‖ai,n − xi,πi(n)‖2;

for every i ∈ I r In⌊
ai,n = ai,n−1; a∗i,n = a∗i,n−1; ξi,n = ξi,n−1;

for every k ∈ Kn

bk,n = proxµk,ωk(n)gk

(
yk,ωk(n) + µk,ωk(n)

(
v∗k,ωk(n) −∇ψk(yk,ωk(n))

))
;

dk,n = proxνk,ωk(n)hk

(
zk,ωk(n) + νk,ωk(n)v

∗
k,ωk(n)

)
;

e∗k,n = σk,ωk(n)

(∑
i∈I Lkixi,ωk(n) − yk,ωk(n) − zk,ωk(n)

)
+ v∗k,ωk(n);

q∗k,n = µ−1
k,ωk(n)(yk,ωk(n) − bk,n) + v∗k,ωk(n) − e

∗
k,n;

t∗k,n = ν−1
k,ωk(n)(zk,ωk(n) − dk,n) + v∗k,ωk(n) − e

∗
k,n;

ηk,n = ‖bk,n − yk,ωk(n)‖2 + ‖dk,n − zk,ωk(n)‖2;

ek,n = bk,n + dk,n −
∑

i∈I Lkiai,n;

for every k ∈ K rKn⌊
bk,n = bk,n−1; dk,n = dk,n−1; e∗k,n = e∗k,n−1; q∗k,n = q∗k,n−1; t∗k,n = t∗k,n−1;

ηk,n = ηk,n−1; ek,n = bk,n + dk,n −
∑

i∈I Lkiai,n;

for every i ∈ I⌊
p∗i,n = a∗i,n +∇i Θ(an) +

∑
k∈K L

∗
kie
∗
k,n;

∆n = −(4α)−1
(∑

i∈I ξi,n +
∑

k∈K ηk,n
)

+
∑

i∈I 〈xi,n − ai,n | p∗i,n〉

+
∑

k∈K
(
〈yk,n − bk,n | q∗k,n〉+ 〈zk,n − dk,n | t∗k,n〉+ 〈ek,n | v∗k,n − e∗k,n〉

)
;

if ∆n > 0

θn = λn∆n/
(∑

i∈I ‖p∗i,n‖2 +
∑

k∈K
(
‖q∗k,n‖2 + ‖t∗k,n‖2 + ‖ek,n‖2

))
;

for every i ∈ I⌊
xi,n+1 = xi,n − θnp∗i,n;

for every k ∈ K⌊
yk,n+1 = yk,n − θnq∗k,n; zk,n+1 = zk,n − θnt∗k,n; v∗k,n+1 = v∗k,n − θnek,n;

else
for every i ∈ I⌊
xi,n+1 = xi,n;

for every k ∈ K⌊
yk,n+1 = yk,n; zk,n+1 = zk,n; v∗k,n+1 = v∗k,n.

(9.122)
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Corollary 9.22 Consider the setting of Algorithm 9.21. Suppose that

(∀k ∈ K) epi(gk + ψk) + epihk is closed (9.123)

and that Problem 9.20 admits a Kuhn–Tucker point, that is, there exist x̃ ∈ H and ṽ∗ ∈ G such
that

(∀i ∈ I)(∀k ∈ K)

−
∑

j∈K L
∗
jiṽ
∗
j ∈ ∂fi(x̃i) +∇ϕi(x̃i) +∇i Θ(x̃)∑

j∈I Lkj x̃j ∈ ∂
(
g∗k �ψ

∗
k

)
(ṽ∗k) + ∂h∗k(ṽ

∗
k).

(9.124)

Then there exists a solution x to (9.121) such that, for every i ∈ I, xi,n ⇀ xi and ai,n ⇀ xi.

Proof. Set (∀i ∈ I) Ai = ∂fi, Ci = ∇ϕi, and Ri = ∇i Θ

(∀k ∈ K) Bm
k = ∂gk, B

c
k = ∇ψk, and Dm

k = ∂hk.
(9.125)

First, [9, Theorem 20.25] asserts that the operators (Ai)i∈I , (Bm
k )k∈K , and (Dm

k )k∈K are max-

imally monotone. Second, it follows from [9, Corollary 18.17] that, for every i ∈ I, Ci is αi-

cocoercive and, for every k ∈ K, Bc
k is βk-cocoercive. Third, in view of (9.125) and [9, Propo-

sition 17.7], R = ∇Θ is monotone and χ-Lipschitzian. Now consider the problem

find x ∈H such that

(∀i ∈ I) 0 ∈ Aixi + Cixi +Rix+
∑
k∈K

L∗ki

(((
Bm
k +Bc

k

)
�Dm

k

)(∑
j∈I

Lkjxj

))
(9.126)

together with its dual

find v∗ ∈ G such that

(
∃x ∈H

)
(∀i ∈ I)(∀k ∈ K)


−
∑
j∈K

L∗jiv
∗
j ∈ Aixi + Cixi +Rix

v∗k ∈
((
Bm
k +Bc

k

)
�Dm

k

)(∑
j∈I

Lkjxj

)
.

(9.127)

Denote by P and D the sets of solutions to (9.126) and (9.127), respectively. We observe

that, by (9.125) and [9, Example 23.3], Algorithm 9.21 is an application of Algorithm 9.12 to

the primal-dual problem (9.126)–(9.127). Furthermore, it results from (9.124) and Proposi-

tion 9.3(iv) that D 6= ∅. According to Theorem 9.13(iv), there exist x ∈ P and v∗ ∈ D such

that, for every i ∈ I and every k ∈ K,

xi,n ⇀ xi, ai,n ⇀ xi, and


−
∑
j∈K

L∗jiv
∗
j ∈ Aixi + Cixi +Rix

v∗k ∈
((
Bm
k +Bc

k

)
�Dm

k

)(∑
j∈I

Lkjxj

)
.

(9.128)
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It remains to show that x solves (9.121). Definef =
⊕

i∈I fi, ϕ =
⊕

i∈I ϕi, g =
⊕

k∈K gk, h =
⊕

k∈K hk, and ψ =
⊕

k∈K ψk

L : H→ G : x 7→
(∑

i∈I Lkixi
)
k∈K .

(9.129)

We deduce from [9, Theorem 15.3] that (∀k ∈ K) (gk+ψk)
∗ = g∗k �ψ

∗
k. In turn, (9.124) implies

that

(∀k ∈ K) ∅ 6= dom
(
g∗k �ψ

∗
k

)
∩ domh∗k = dom(gk + ψk)

∗ ∩ domh∗k. (9.130)

On the other hand, since the sets (epi(gk +ψk) + epihk)k∈K are convex, it follows from (9.123)

and [9, Theorem 3.34] that they are weakly closed. Therefore, [20, Theorem 1] and the

Fenchel–Moreau theorem [9, Theorem 13.37] imply that

(∀k ∈ K)
(
(gk + ψk)

∗ + h∗k
)∗

= (gk + ψk)
∗∗�h∗∗k = (gk + ψk)�hk. (9.131)

Hence, we derive from (9.125), [9, Corollaries 16.48(iii) and 16.30], (9.131), and [9, Proposi-

tion 16.42] that

(∀k ∈ K)
(
Bm
k +Bc

k

)
�Dm

k =
(
∂gk +∇ψk

)
� (∂hk)

=
((
∂(gk + ψk)

)−1
+ (∂hk)

−1
)−1

=
(
∂(gk + ψk)

∗ + ∂h∗k
)−1

=
(
∂
(
(gk + ψk)

∗ + h∗k
))−1

= ∂
(
(gk + ψk)

∗ + h∗k
)∗

= ∂
(
(gk + ψk)�hk

)
. (9.132)

Since it results from (9.129) and (9.131) that

(g +ψ)�h = (g +ψ)�h =
⊕
k∈K

(
(gk + ψk)�hk

)
, (9.133)

we deduce from [9, Proposition 16.9] and (9.132) that

∂
(
(g +ψ)�h

)
=×

k∈K
∂
(
(gk + ψk)�hk

)
=×

k∈K

(
(Bm

k +Bc
k )�Dm

k

)
. (9.134)

It thus follows from (9.128) and (9.129) that v∗ ∈ ∂((g + ψ)�h)(Lx). On the other hand,

since L∗ : G → H : v∗ 7→ (
∑

k∈K L
∗
kiv
∗
k)i∈I , we infer from (9.128), (9.125), (9.129), and [9,

Proposition 16.9] that −L∗v∗ ∈ (Cixi)i∈I + Rx +×i∈I Aixi = ∇ϕ(x) + ∇Θ(x) + ∂f(x).

Hence, we invoke [9, Proposition 16.6(ii)] to obtain

0 ∈ ∂f(x) +∇ϕ(x) +∇Θ(x) +L∗v∗
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⊂ ∂f(x) +∇ϕ(x) +∇Θ(x) +L∗
(
∂
(
(g +ψ)�h

)
(Lx)

)
⊂ ∂

(
f +ϕ+ Θ +

(
(g +ψ)�h

)
◦L
)

(x). (9.135)

However, thanks to (9.129) and (9.133), (9.121) is equivalent to

minimize
x∈H

f(x) +ϕ(x) + Θ(x) +
(
(g +ψ)�h

)
(Lx). (9.136)

Consequently, in view of Fermat’s rule [9, Theorem 16.3], (9.135) implies that x solves (9.121).

Remark 9.23 In [16], multicomponent image recovery problems were approached by applying

the forward-backward and the Douglas–Rachford algorithms in a product space. Using Corol-

lary 9.22, we can now solve these problems with asynchronous block-iterative algorithms and

more sophisticated formulations. For instance, the standard total variation loss used in [16] can

be replaced by the pth order Huber total variation penalty of [33], which turns out to involve

an infimal convolution.

To conclude, we provide some scenarios in which condition (9.123) is satisfied.

Proposition 9.24 Consider the setting of Problem 9.20. Suppose that there exist x̃ ∈ H and
ṽ∗ ∈ G such that

(∀i ∈ I)(∀k ∈ K)

−
∑

j∈K L
∗
jiṽ
∗
j ∈ ∂fi(x̃i) +∇ϕi(x̃i) +∇i Θ(x̃)∑

j∈I Lkj x̃j ∈ ∂
(
g∗k �ψ

∗
k

)
(ṽ∗k) + ∂h∗k(ṽ

∗
k)

(9.137)

and that, for every k ∈ K, one of the following is satisfied:

[a] 0 ∈ sri(dom g∗k + domψ∗k − domh∗k).

[b] Gk is finite-dimensional, hk is polyhedral, and domh∗k ∩ ri dom(gk + ψk)
∗ 6= ∅.

[c] Gk is finite-dimensional, gk and hk are polyhedral, and ψk = 0.

Then, for every k ∈ K, epi(gk + ψk) + epihk is closed.

Proof. Let k ∈ K. Since domψk = Gk, [9, Theorem 15.3] yields

(gk + ψk)
∗ = g∗k �ψ

∗
k. (9.138)

Therefore, (9.137) implies that

∅ 6= dom
(
g∗k �ψ

∗
k

)
∩ domh∗k = dom(gk + ψk)

∗ ∩ domh∗k. (9.139)

In view of (9.139), [20, Theorem 1], and [9, Theorem 3.34], it suffices to show that ((gk +

ψk)
∗ + h∗k)

∗ = (gk + ψk)
∗∗�h∗∗k .
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[a]: We deduce from [9, Proposition 12.6(ii)] and (9.138) that 0 ∈ sri(dom(g∗k �ψ
∗
k) −

domh∗k) = sri(dom(gk +ψk)
∗ − domh∗k). In turn, [9, Theorem 15.3] gives ((gk +ψk)

∗ + h∗k)
∗ =

(gk + ψk)
∗∗�h∗∗k .

[b]: Since [48, Theorem 19.2] asserts that h∗k is polyhedral, we infer from [48, Theo-

rem 20.1] that ((gk + ψk)
∗ + h∗k)

∗ = (gk + ψk)
∗∗�h∗∗k .

[c]: Since g∗k and h∗k are polyhedral by [48, Theorem 19.2], it follows from (9.139) and

[48, Theorem 20.1] that (g∗k + h∗k)
∗ = g∗∗k �h

∗∗
k .

9.2.5 Appendix

In this section, K is a real Hilbert space.

Lemma 9.25 Let A : K → 2K be maximally monotone, let (xn)n∈N be a bounded sequence in K,
and let (γn)n∈N be a bounded sequence in ]0,+∞[. Then (JγnAxn)n∈N is bounded.

Proof. Fix x ∈ K. Using the triangle inequality, the nonexpansiveness of (JγnA)n∈N, and [9,

Proposition 23.31(iii)], we obtain (∀n ∈ N) ‖JγnAxn − JAx‖ 6 ‖JγnAxn − JγnAx‖ + ‖JγnAx −
JAx‖ 6 ‖xn − x‖+ |1− γn| ‖JAx− x‖ 6 ‖x‖+ supm∈N ‖xm‖+ (1 + supm∈N γm)‖JAx− x‖.

Lemma 9.26 Let α ∈ [0,+∞[, let A : K → K be α-Lipschitzian, let σ ∈ ]0,+∞[, and let γ ∈
]0, 1/(α+ σ)]. Then γ−1Id−A is σ-strongly monotone.

Proof. By Cauchy–Schwarz,

(∀x ∈ K)(∀y ∈ K)
〈
x− y |

(
γ−1Id−A

)
x−

(
γ−1Id−A

)
y
〉

= γ−1‖x− y‖2 − 〈x− y | Ax−Ay〉

> (α+ σ)‖x− y‖2 − ‖x− y‖ ‖Ax−Ay‖

> (α+ σ)‖x− y‖2 − α‖x− y‖2

= σ‖x− y‖2, (9.140)

which proves the assertion.

Lemma 9.27 Let I be a nonempty finite set, let (In)n∈N be nonempty subsets of I, let P ∈ N, and
let (xn)n∈N be a sequence in K. Suppose that

∑
n∈N ‖xn+1 − xn‖2 < +∞, I0 = I, and (∀n ∈ N)⋃n+P

j=n Ij = I. Furthermore, let T ∈ N, let i ∈ I, and let (πi(n))n∈N be a sequence in N such that
(∀n ∈ N) n − T 6 πi(n) 6 n. For every n ∈ N, set ϑi(n) = max

{
j ∈ N | j 6 n and i ∈ Ij

}
and

ϑi(n) = πi(ϑi(n)). Then xϑi(n) − xn → 0.

Proof. For every integer n > P , since i ∈
⋃n
j=n−P Ij , we have n 6 ϑi(n)+P 6 πi(ϑi(n))+P+T =

ϑi(n) + P + T . Hence ϑi(n) → +∞ and therefore
∑ϑi(n)+P+T

j=ϑi(n) ‖xj+1 − xj‖2 → 0. However, it

results from our assumption that (∀n ∈ N) ϑi(n) = πi(ϑi(n)) 6 ϑi(n) 6 n. We thus deduce from

168



the triangle and Cauchy–Schwarz inequalities that

‖xn− xϑi(n)‖2 6

∣∣∣∣∣
ϑi(n)+P+T∑
j=ϑi(n)

‖xj+1− xj‖

∣∣∣∣∣
2

6 (P + T + 1)

ϑi(n)+P+T∑
j=ϑi(n)

‖xj+1− xj‖2 → 0. (9.141)

Consequently, xϑi(n) − xn → 0.

Lemma 9.28 ([22]) Let Z be a nonempty closed convex subset of K, x0 ∈ K, and ε ∈ ]0, 1[.
Suppose that

for n = 0, 1, . . .

t∗n ∈ K and ηn ∈ R satisfy Z ⊂ Hn =
{
x ∈ K | 〈x | t∗n〉 6 ηn

}
;

∆n = 〈xn | t∗n〉 − ηn;

if ∆n > 0⌊
λn ∈ [ε, 2− ε] ;

xn+1 = xn − (λn∆n/‖t∗n‖2) t∗n;

else⌊
xn+1 = xn.

(9.142)

Then the following hold:

(i) (∀z ∈ Z)(∀n ∈ N) ‖xn+1 − z‖ 6 ‖xn − z‖.

(ii)
∑

n∈N ‖xn+1 − xn‖2 < +∞.

(iii) Suppose that, for every x ∈ K and every strictly increasing sequence (kn)n∈N in N, xkn ⇀ x

⇒ x ∈ Z. Then (xn)n∈N converges weakly to a point in Z.

We now revisit ideas found in [8,21] in a format that is be more suited for our purposes.

169



Lemma 9.29 Let Z be a nonempty closed convex subset of K and let x0 ∈ K. Suppose that

for n = 0, 1, . . .

t∗n ∈ K and ηn ∈ R satisfy Z ⊂ Hn =
{
x ∈ K | 〈x | t∗n〉 6 ηn

}
;

∆n = 〈xn | t∗n〉 − ηn;

if ∆n > 0

τn = ‖t∗n‖2; ςn = ‖x0 − xn‖2; χn = 〈x0 − xn | t∗n〉; ρn = τnςn − χ2
n;

if ρn = 0⌊
κn = 1; λn = ∆n/τn;

else
if χn∆n > ρn⌊
κn = 0; λn =

(
∆n + χn

)
/τn;

else⌊
κn = 1− χn∆n/ρn; λn = ςn∆n/ρn;

xn+1 = (1− κn)x0 + κnxn − λnt∗n;

else⌊
xn+1 = xn.

(9.143)

Then the following hold:

(i) (∀n ∈ N) ‖xn − x0‖ 6 ‖xn+1 − x0‖ 6 ‖projZx0 − x0‖.

(ii)
∑

n∈N ‖xn+1 − xn‖2 < +∞ and
∑

n∈N ‖projHnxn − xn‖
2 < +∞.

(iii) Suppose that, for every x ∈ K and every strictly increasing sequence (kn)n∈N in N, xkn ⇀ x

⇒ x ∈ Z. Then xn → projZx0.

Proof. Define (∀n ∈ N) Gn =
{
x ∈ K | 〈x− xn | x0 − xn〉 6 0

}
. Then, by virtue of (9.143),

(∀n ∈ N) xn = projGnx0 and
[

∆n > 0 ⇒ projHnxn = xn −
(
∆n/‖t∗n‖2

)
t∗n
]
. (9.144)

Let us establish that

(∀n ∈ N) Z ⊂ Hn ∩Gn and xn+1 = projHn∩Gnx0. (9.145)

Since G0 = K, (9.143) yields Z ⊂ H0 = H0 ∩G0. Hence, we derive from (9.144) and (9.143)

that ∆0 > 0⇒ [ projH0
x0 = x0− (∆0/τ0) t∗0 and ρ0 = 0 ]⇒ [ projH0

x0 = x0− (∆0/τ0) t∗0, κ0 = 1,

and λ0 = ∆0/τ0 ] ⇒ x1 = x0 − (∆0/τ0) t∗0 = projH0
x0 = projH0∩G0

x0. On the other hand,

∆0 6 0 ⇒ x1 = x0 ∈ H0 = H0 ∩ G0 ⇒ x1 = projH0∩G0
x0. Now assume that, for some integer

n > 1, Z ⊂ Hn−1 ∩ Gn−1 and xn = projHn−1∩Gn−1
x0. Then, according to [9, Theorem 3.16],

Z ⊂ Hn−1 ∩ Gn−1 ⊂
{
x ∈ K | 〈x− xn | x0 − xn〉 6 0

}
= Gn. In turn, (9.143) entails that

Z ⊂ Hn ∩ Gn. Next, it follows from (9.143), (9.144), and [9, Proposition 29.5] that ∆n 6 0

⇒ [xn+1 = xn and projGnx0 = xn ∈ Hn ] ⇒ xn+1 = projGnx0 = projHn∩Gnx0. To complete
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the induction argument, it remains to verify that ∆n > 0⇒ xn+1 = projHn∩Gnx0. Assume that

∆n > 0 and set

yn = projHnxn, χ̃n = 〈x0 − xn | xn − yn〉, ν̃n = ‖xn − yn‖2, and ρ̃n = ςnν̃n − χ̃2
n.

(9.146)

Since ∆n > 0, we have Hn =
{
x ∈ K | 〈x− yn | xn − yn〉 6 0

}
and yn = xn − θnt

∗
n, where

θn = ∆n/τn > 0. In turn, we infer from (9.146) and (9.143) that

χ̃n = θnχn, ν̃n = θ2
nτn = θn∆n, and ρ̃n = θ2

nρn. (9.147)

Furthermore, (9.143) and the Cauchy–Schwarz inequality ensure that ρn > 0, which leads to

two cases.

• ρn = 0: On the one hand, (9.143) asserts that xn+1 = xn− (∆n/τn) t∗n = yn. On the other

hand, (9.147) yields ρ̃n = 0 and, therefore, since Hn ∩ Gn 6= ∅, [9, Corollary 29.25(ii)]

yields projHn∩Gnx0 = yn. Altogether, xn+1 = projHn∩Gnx0.

• ρn > 0: By (9.147), ρ̃n > 0. First, suppose that χn∆n > ρn. It follows from (9.143) that

xn+1 = x0− ((∆n +χn)/τn) t∗n and from (9.147) that χ̃nν̃n = θ2
nχn∆n > θ2

nρn = ρ̃n. Thus

[9, Corollary 29.25(ii)] and (9.147) imply that

projHn∩Gnx0 = x0 +

(
1 +

χ̃n
ν̃n

)
(yn − xn)

= x0 −
(

1 +
χn
θnτn

)
θnt
∗
n

= x0 −
θnτn + χn

τn
t∗n

= x0 −
∆n + χn

τn
t∗n

= xn+1. (9.148)

Now suppose that χn∆n < ρn. Then χ̃nν̃n < ρ̃n and hence it results from [9, Corol-

lary 29.25(ii)], (9.147), and (9.143) that

projHn∩Gnx0 = xn +
ν̃n
ρ̃n

(
χ̃n(x0 − xn) + ςn(yn − xn)

)
=
χ̃nν̃n
ρ̃n

x0 +

(
1− χ̃nν̃n

ρ̃n

)
xn +

ν̃nςn
ρ̃n

(yn − xn)

=
χn∆n

ρn
x0 +

(
1− χn∆n

ρn

)
xn −

τnςn
ρn

∆n

τn
t∗n

= xn+1. (9.149)

(i): Let n ∈ N. We derive from (9.145) that ‖xn+1−x0‖ = ‖projHn∩Gnx0−x0‖ 6 ‖projZx0−
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x0‖. On the other hand, since xn+1 ∈ Gn by virtue of (9.145), we have

‖xn − x0‖2 + ‖xn+1 − xn‖2 6 ‖xn − x0‖2 + ‖xn+1 − xn‖2 + 2〈xn+1 − xn | xn − x0〉

= ‖xn+1 − x0‖2. (9.150)

(ii): Let N ∈ N. In view of (9.150) and (i),
∑N

n=0 ‖xn+1 − xn‖2 6
∑N

n=0(‖xn+1 − x0‖2 −
‖xn−x0‖2) = ‖xN+1−x0‖2 6 ‖projZx0−x0‖2. Therefore,

∑
n∈N ‖xn+1−xn‖2 < +∞. However,

for every n ∈ N, since (9.145) asserts that xn+1 ∈ Hn, we have ‖projHnxn−xn‖ 6 ‖xn+1−xn‖.
Thus

∑
n∈N ‖projHnxn − xn‖

2 < +∞.

(iii): It results from (i) that (xn)n∈N is bounded. Now let x ∈ K, let (kn)n∈N be a strictly

increasing sequence in N, and suppose that xkn ⇀ x. Using [9, Lemma 2.42] and (i), we deduce

that ‖x − x0‖ 6 lim ‖xkn − x0‖ 6 ‖projZx0 − x0‖. Thus, since it results from our assumption

that x ∈ Z, we have x = projZx0, which implies that xn ⇀ projZx0 [9, Lemma 2.46]. In turn,

since lim ‖xn − x0‖ 6 ‖projZx0 − x0‖ by (i), [9, Lemma 2.51(i)] forces xn → projZx0.
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Chapter 10
CONCLUSION

10.1 Summary

We have addressed the important open questions (Q1)–(Q8) discussed in Chapter 1. In doing

so, we have developed novel nonlinear analysis tools and methodologies to advance the field

of monotone operator theory and its applications. More precisely:

• We have introduced the notion of a warped resolvent and developed a warped resolvent

algorithmic framework for monotone inclusions. This framework brought together two

seemingly different approaches: That of [4, 7, 9], which is based on Tseng’s forward-

backward-forward method [14], and that of [1, 10–12], which is based on the projective

splitting framework.

• We have developed Bregman forward-backward algorithm for solving monotone inclu-

sions in Banach spaces, as well as establishing its convergence.

• A saddle formalism was proposed for analyzing and solving highly structured system of

monotone inclusions.

• Flexible algorithms for solving highly modular Nash equilibria, variational inequalities,

and network flows were presented.

• We have shed more light on the implementation, the features, and the behavior of block-

activated algorithms for solving multicomponent fully nonsmooth minimization.

10.2 Future work

Direction 10.1 While we have only emphasized the cutting plane methods in Section 3.2.4,

we illustrated in [5, Section 3] that the proximal algorithm

(∀n ∈ N) xn+1 = JKnγnM
xn, (10.1)
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based on direct applications of warped resolvents is of interest. In general, however, they do not

conform to the format of (3.23), where the update equation is (we set λn = 1 for simplicity)

xn+1 = projHnxn, where Hn =
{
z ∈ H

∣∣∣ 〈z − JKnγnM
x̃n | Knx̃n −KnJ

Kn
γnM

x̃n
〉
6 0
}
.

(10.2)

These two approaches can be brought together as instantiations of the more general update

xn+1 = projQnHnxn, where Hn =
{
z ∈ H

∣∣∣ 〈z − JKnγnM
x̃n | Knx̃n −KnJ

Kn
γnM

x̃n
〉
6 0
}
,

(10.3)

which involves the warped projector of Example 3.5 with respect to an operator Qn : H → H.

If Qn = Kn and x̃n = xn, then (10.3) yields (10.1). On the other hand, if Qn = Id, then (10.3)

yields (10.2). Note also that if, Qn = Kn = ∇fn, for some Legendre function fn, and x̃n = xn,

then (10.3) gives the framework of [8]. Beyond this, replacing the standard projection projHnxn
by a warped projection projQnHnxn in Theorems 3.16 and 3.22 opens a vast field for algorithmic

development.

Direction 10.2 In Theorems 3.16 and 3.22, the algorithms operate by using a single point

(yn, y
∗
n) in graM at iteration n. It may be advantageous to use a finite family (yi,n, y

∗
i,n)i∈In of

points in graM , say

(∀i ∈ In) (yi,n, y
∗
i,n) =

(
J
Ki,n
γi,nM

x̃i,n, γ
−1
i,n (Ki,nx̃i,n −Ki,nyi,n)

)
. (10.4)

By monotonicity of M , (∀i ∈ In)(∀z ∈ zerM) 〈z | y∗i,n〉 6 〈yi,n | y∗i,n〉. Therefore, using ideas

found in the area of convex feasibility algorithms [6, 13], at every iteration n, given strictly

positive weights (ωi,n)i∈In adding up to 1, we average these inequalities to create a new half-

space Hn containing zerM , namely

zerM ⊂ Hn =
{
z ∈ X | 〈z | y∗n〉 6 ηn

}
, where

y∗n =
∑

i∈In ωi,ny
∗
i,n

ηn =
∑

i∈In ωi,n〈yi,n | y
∗
i,n〉.

(10.5)

Now set

Λn =


∑

i∈In ωi,n〈yi,n − xn | y
∗
i,n〉∥∥∑

i∈In ωi,ny
∗
i,n

∥∥2 , if
∑

i∈In ωi,n〈xn − yi,n | y
∗
i,n〉 > 0;

0, otherwise.

(10.6)

Then, employing projHnxn = xn+Λn
∑

i∈In ωi,ny
∗
i,n as the point xn+1 in (3.23) and as the point

xn+1/2 in (3.38) results in multi-point extensions of Theorems 3.16 and 3.22.

Direction 10.3 The Yosida approximation plays an important role in monotone operator theory

(see, e.g., [2,3,7]). As the warped resolvents can be much easier to compute than the standard

ones, an interesting question is therefore to seek an extension of the Yosida approximation
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based on the warped resolvents, and analyze its properties.

Direction 10.4 We have proposed a full solution for the Bregman forward-backward splitting

algorithm. It remains an open question what the Bregman version of the Douglas–Rachford

algorithm is. This topic could be pursued by using tools from Chapters 3 and 4.

Raleigh, September 13, 2021
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