
ABSTRACT

CONGDON, ELISABETH RAQUEL. The Asymptotic Behavior of Coalescence Time in Critical
Branching Processes. (Under the Direction of Min Kang).

The random dynamics of a population evolving in time is a phenomenon worthy of

mathematical study. From examining genetic drift and tracing genetic diseases to the

recent increased interest in genetic ancestry reports, it is clear that there is a strong need for

deepening and expanding our knowledge in this area. In this research, we study a specific

type of stochastic process called a Markov process, for which the behavior of the current

population does not depend on the full history of the process, but merely the previous step.

Naturally, this type of stochastic process models the random creation and extinction of a

species in time and in such case is called a branching process. In this research, we clarify

and broaden previously found results relating to the so-called coalescence time for the

branching process. The generation of the most recent common ancestor of the members of

a generation belongs is called the total coalescence time for the generation in question, and

it is yet another random variable. This definition has a natural extension to the pairwise

coalescence time for any two randomly chosen individuals belonging to the generation in

question.

We explore the asymptotic behavior of the coalescence time conditioned on specific

observations imposed on the current generation. In particular, we consider the coalescence

time under conditioning by multi-scaled rare events associated with the n-th generation.

We conclude that certain events yield the same effect as conditioning on non-extinction,

while others give rise to distribution functions that show previously unexplored behavior

of the total coalescence time under these conditions. Additionally, we determine the effect

of similar conditioning on the pairwise coalescence time for the process, computing the

distribution function to which the conditioned process converges asymptotically.
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CHAPTER

1

INTRODUCTION

The pertinent definitions for this research are presented in Chapter 2. Sections 2.1

through 2.2 give rise to the definition of a branching process in Section 2.3 and subse-

quently the critical case considered in this research.

On the topic of branching processes in general, there has been a good deal of work

done. The topic was first given a thorough treatment by T.E. Harris in [11] and has since

been one of the major research topics in probability theory. The studies on the topic have

been divided into three categories called the sub-critical, super-critical, and critical cases

of the branching process. The essential distinction in these cases pertains to the concept of

extinction. Let Zn be a random variable representing the population size at time (genera-

tion) n of the process and Yn a random variable representing the total coalescence time

for the n-th generation. It can be shown that the expected number of offspring for a single

individual influences the expected extinction behavior, in that with Z0 = 1, when E(Z1)≤ 1,

extinction will eventually occur in finite time with probability 1 and when E(Z1) > 1, ex-

tinction eventually occurs with probability q ∈ (0, 1). Details on this work follow in Section

2.3. These categories are further distinguished by more sophisticated differences between

the cases where E(Z1)< 1 (sub-critical case) and E(Z1) = 1 (critical case). Other classifica-

tions of branching processes include time discrete or continuous, single-type or multi-type

populations, and Markovian or non-Markovian dynamics. In this research, we focus on the
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critical case for the discrete branching process for single-type populations with Markovian

dynamics.

Among the diverse literature of pertinent results to understanding such processes, there

are a set of results in [1] that utilize well-known convergence results for the population size

to explore the asymptotic behavior of the coalescence time in this case. The reader may refer

to [2] to read about the asymptotic behavior of the coalescence time in the super-critical

case. Several well-known results first proved by pioneers in this topic, Kolmogorov and Ya-

glom, are built upon. Kolmogorov in [15] found that while in the critical case P(Zn > 0)→ 0,

the rate of this convergence is of the order n−1. Further, Yaglom in [18] found that condi-

tioning on non-extinction and then cutting down the process by a factor of n , we get a

process that converges to a non-degenerate limit. These results are presented in Chapter 3

alongside a new result that explores the asymptotic behavior of the n-th population size in

an unconditioned setting.

Chapter 4 shows the application of Zubkov of previously found results to the coalescence

time. [3] indicates that in the critical case, the coalescence time is equally likely to have

occurred in the recent past as it is to have occurred in the early generations of the process.

This is not the case in the sub-critical or super-critical cases. Our research expounds on

this by exploring the asymptotic behavior of the coalescence time conditioned on specific

observations imposed on the current generation. In particular, we consider the coalescence

time under conditioning by multi-scaled rare events associated with the n-th generation.

We conclude that certain events yield the same effect as conditioning on non-extinction,

while others give rise to distribution functions that show previously unexplored behavior

of the total coalescence time. Section 4.2 considers a non-trivial adjustment to those men-

tioned above wherein we condition precise knowledge of the n-th population. For such

consideration, we take advantage of the theory of quasi-stationary distributions, presented

in Section 2.4.

Finally, we see in [1] that Athreya sought after an analogous result for the pairwise co-

alescence time for two randomly chosen individuals in the generation in question. His

result in this case is presented in Chapter 5. Directly following his theory, we see that the

pairwise coalescence time may be considered asymptotically under adjusted conditioning.

The main result in this section precisely defines the distribution function to which the

random variable representing pairwise coalescence converges asymptotically under the

conditioning considered. To this end, the reader may see prerequisite results pertaining to

point process theory in Section 2.5.1
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CHAPTER

2

BACKGROUND MATERIAL

2.1 Random Variables

The outcomes of random experiments are expressed as the values of a function known as a

random variable. The formal definition follows where (Ω,A ,P) is a probability triple with

A aσ-algebra on Ω and P a probability measure onA . All definitions in this section can

be found in [12].

Definition 2.1.1. A random variable is a function X : Ω→R such that it is measurable, i.e.,

{ω ∈Ω | X (ω)≤ x } ∈A

for all x ∈R.

In the case of a discrete random variable, X takes only values in some countable set

{x1, x2, . . .}. For the sake of this research, we will deal with random variables of the discrete

type.

For a random variable, X , we may seek after its distribution function, which can be shown

to always exist. First, we define the distribution function induced by a probability measure

in the general sense.
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Definition 2.1.2. The distribution function induced by a probability measure P on (R,B )
is the function F (x ) : R→ [0,1] given by F (x ) = P((−∞, x ]). Here,B represents the Borel

σ-algebra on R.

It can be shown that the distribution F (x ) uniquely characterizes the probability mea-

sure, as for any Borel set B ⊂R,P(B )may be obtained from the knowledge of F . As previously

mentioned, it is useful to extend this notion to the random variable X .

Definition 2.1.3. Let X be a random variable on (Ω,A ,P) taking values in (S ,S ) (S is a

σ-algebra on S). The distribution function of X (also called the law of X ) is the function

PX (B ) given by PX (B ) =P(X ∈ B ) for all B ∈S .

It is natural to consider the distribution function of the law of X , denoted by FX (x )where

FX (x ) =PX ((−∞, x ]) =P(X ≤ x ).

This distribution function is particularly useful in studying random variables, because it,

too, uniquely characterizes X and has certain useful properties. Note that with X acting

as a discrete random variable, FX (x ) is a jump function. We often call FX the cumulative

distribution function (CDF) of the random variable X .

It can be easily shown that the CDF satisfies the following:

• FX is right continuous

• FX is non-decreasing

• lim
x→−∞

FX (x ) = 0, lim
x→∞

FX (x ) = 1

We now set out to define the process of integration (countable summation in the discrete

case) against the law of a random variable. The expectation of a random variable is the

weighted average of its outcomes. Namely,

Definition 2.1.4. The expectation of the discrete random variable X taking values in (S ,S )
is defined by

E(X ) =
∑

x∈S

xP(X = x ),

whenever the sum is absolutely convergent.

The expected value E(X ) is often called the mean of X since it gives some intuition as to

the expected average outcome of the random variable. If we wanted to consider the average
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distance from the mean for the outcome of a random experiment, we could compute the

following, letting m denote the mean of X ,

E(|X −E(X )|) = E(|X −m |).

Instead of computing the above quantity, it is often easier to compute an adjusted expecta-

tion, defined in the following.

Definition 2.1.5. The variance of the random variable X is defined to be

σ2(X ) =E((X −m )2)

=E(X 2)−E(2m X ) +E(m 2)

=E(X 2)−2m 2+m 2

=E(X 2)−m 2,

=E(X 2)− [E(X )]2,

where the linearity of expectation is used at leisure.

Often times, we need to consider the outcome of an experiment conditioned upon

knowledge of a certain event occurring. For events A and B where P(B )> 0, it is well known

that the conditional probability of A given B is

P(A|B ) =
P(A ∩B )
P(B )

.

In such cases, the conditional expectation of the random variable X can be defined. Here,

it is given in a restrictive case, but nonetheless one that is sufficient for considering the

applications to come.

Definition 2.1.6. Let X and Y be random variables each taking countable many values

{x1, x2, . . .} and {y1, y2, . . .} in R respectively. If P(X = x j )> 0, then

E(Y |X = x j ) =
∞
∑

k=1

ykP(Y = yk |X = x j ).

As a final prerequisite for the computations to come, the following theorem allows for

considering the expected value concerning function composition with a random variable

as expectation against the law of the random variable. This is particularly useful when

evaluating the expectation of a functional of a random variable with whose distribution

function we are familiar.
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Theorem 2.1.1 (Expectation Rule). Let X be a random variable on (Ω,A ,P)with values in

(S ,S ) and distribution PX . Let f : (S ,S )→ (R,B ) be a measurable function. Then,

(a) f (X ) ∈L 1(Ω,A ,P) if and only if f ∈L 1(S ,S ,PX ).

(b) If f is positive or if it satisfies (a), then

∫

Ω

f (X )dP(x ) =
∫

R
f (x )dPX (x ).

Equivalently, EP( f (X )) =EPX ( f ).

2.1.1 Convergence of a Sequence of Random Variables

Consider now a sequence of random variables {Xn}n∈N defined on a common probability

space. Since these are merely measurable functions, we seek after the definition of conver-

gence in this context. There are various modes of convergence that are useful in probability

theory including but not limited to pointwise convergence, almost sure convergence,L p

convergence, and convergence in probability. In a class of its own is the notion of weak

convergence or convergence in distribution. In this case, it is not the random variables

themselves that are shown to converge, but rather their associated sequence of probability

distributions that is converging to a unique probability distribution. The theory and defini-

tions regarding convergence of such random variables can be found in a variety of sources

such as [12] or [4].

Definition 2.1.7. Let {Xn}n∈N and X be Rd -valued random variables. Xn converges in dis-

tribution to X if the sequence of distribution functions PXn converges weakly to PX .

As a result of this along with the result (2.1.1), it is immediate to see that this convergence

in distribution described above occurs if and only if we have

lim
n→∞
E( f (Xn )) =E( f (X )),

for all test functions f on Rd .

Probability theory takes advantage of numerous mathematical transforms that allow for

computing desired results in a more advantageous space than that in which the problem

was first posed. One such transform, defined in the following, is useful in many mathemat-

ical fields and lends itself well to considering the convergence of a sequence of random

variables.
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Definition 2.1.8. Let µ be a probability measure on Rn . Its Fourier transform is denoted bµ

and is a function on Rn given by

µ̂(u ) =

∫

e i 〈u ,x 〉dµ(x ),

where 〈u , x 〉 denotes the scalar product of u , x ∈Rn .

Each such Fourier transform of a probability measure can be shown to be a bounded

continuous function satisfying bµ(0) = 1. With this general definition in mind, we define the

characteristic function of a random variable by the Fourier transform against the law of the

random variable.

Definition 2.1.9. Let X be an Rn -valued random variable. Its characteristic function ϕX

defined on Rn is

ϕX (u ) =

∫

e i 〈u ,x 〉dPX (x ).

The following well-known theorem makes use of characteristic functions to re-frame

convergence of probability measures in a way that is often more advantageous to compute.

Theorem 2.1.2 (Levy’s Continuity Theorem). Let {µn}n≥1 be a sequence of probability mea-

sures on Rd , and let {bµ}n≥1 denote their Fourier transforms, or characteristic functions.

(a) If µn converges weakly to a probability measure µ, then bµn (u )→ bµ(u ) for all u ∈Rd .

(b) If bµn (u ) converges to a function f (u ) for all u ∈Rd , and if in addition f is continuous at

0, then there exists a probability µ onRd such that f (u ) = bµ(u ), and µn converges weakly

to µ.

Remark: The "weak" convergence of probability measures refers to convergence in distribution,

whereas the convergence of characteristic functions is in the pointwise sense.

In its most general form, Levy’s Continuity Theorem applies to sequences of probability

measures. Let {Xn}n∈N, X be random variables on (Ω,A ,P) taking values in (S ,S ) with

associated distribution functions {PX
n }n∈N, PX . Applying Theorem 2.1.2 to this sequence of

random variables, we see that the weak convergence of a sequence of random variables

is essentially equivalent to the pointwise convergence of their associated characteristic

functions.

In the study of convergence of sequences of random variables (To the end of applying

this theory to point processes in Section 2.5.1), it is also helpful to consider the Laplace

transform of a random variable.

7



Definition 2.1.10. Let X be an Rn -valued random variable. Its Laplace transform defined

on Rn is

L (t ) =E(e −t X ),

t ∈R+.

Recalling what weak convergence of random variables looks like from definition (2.1.7),

we see immediately that weak convergence of a sequence of Rd -valued random variables,

{Xn}n∈N to some random variable X , is equivalent to convergence of their Laplace trans-

forms.

2.2 Markov Chains

A Markov Chain is a random process wherein the future of the chain is not dependent on

the full history of the process, but rather on the current value. These processes are defined

in terms of a sequence of random variables where the value of the random variable at a

given time step gives the state of the process at that time. In the case of Markov chains, the

index set is considered to be discrete (often representing time) and the state space, or set

of possible outcomes, is assumed to be countable and discrete. The following definitions

come from [9].

Definition 2.2.1. The process X = {Xn : n ∈N } is a Markov chain if it satisfies the Markov

property:

P(Xn = xn | Xn−1 = xn−1, . . . , X0 = x0) = P(Xn = xn | Xn−1 = xn−1)

for all n ≥ 1 and for all x0, . . . , xn ∈ S.

The conditional probabilities expressed in this definition describe the dynamics of the

chain and are thus given a name and expounded upon to consider chain behavior as is

carried out over a period of many "steps" of the process.

Definition 2.2.2. The one-step transition probabilities for the process are given by

P(x , y ) =P(Xn+1 = y | Xn = x )

for x , y ∈ S, and for any m ≥ 0, the m-step transition probabilities are given by

Pm (x , y ) =P(Xn+m = y | Xn = x )

for x , y ∈ S.
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Homogeneity is a standard assumption in the study of such processes, which necessi-

tates that the transition probabilities are stationary, i.e. unchanging in time. Considering

px y as the x y -th entry in a potentially infinite dimensional matrix P (dimensioned |S |×|S |),

we obtain a matrix that contains the information on how this process moves from step to

step in the process. This matrix P is often termed the transition matrix. By nature of its

entries as values of a probability measure, it is straightforward to deduce that the following

hold for P= (px y ):

• px y ≥ 0 for all x , y ∈ S

•
∑

y px y = 1 for all x ∈ S

A consequence of the following theorem along with the homogeneity assumption is that

Pm (x , y ) =Pm .

Theorem 2.2.1 (Chapman-Kolmogorov Equation).

pi j (m , m +n + r ) =
∑

k

pi k (m , m +n )pk j (m +n , m +n + r )

2.3 Branching Processes

A branching process is a special case of a Markov chain wherein the state of the process at

n gives the population of a species. Naturally, the countable index set is taken to represent

time, for which purpose we will take n ∈ N. In this setting, the so-called "offspring" of

generation n count towards the value of the chain at generation n + 1. We make several

natural and standard assumptions:

1. Each individual is assumed to produce offspring according to an identical distri-

bution function. This distribution function is further assumed to give a nontrivial

probability of producing more than one offspring, as well as not putting mass one on

any particular state (or nonnegative integer).

2. Each individual is assumed to behave independently of one another.

3. The branching process begins at time 0 with an initial population size of 1 (An easily

generalized assumption due to assumptions 1 and 2.)

Assumptions 1 and 2 above are considered in conjunction with one another by saying that

the reproductions all occur in an i.i.d. fashion. The definition is made rigorous below and

can be found in [3].
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Definition 2.3.1. A branching process {Zn , n ∈N} is a Markov chain for which Zn represents

population size of the n-th generation.

• Its offspring distribution is given by {py }y≥0 =P(ξn ,i = y )where {ξn ,i , i ≥ 1, n ≥ 0} is a

family of independent random variables and for any n , i , ξn ,i denotes the number of

offspring of individual i in generation n.

• Its transition function is given by P(x , y ) = p ∗xy for y ≥ 0 and x ≥ 1 and P(0, y ) =δ0y for

y ≥ 0. Here, δi j is the Kronecker delta and {p ∗ij } j≥0 is the i-fold convolution of {pj } j≥0.

It is clear to see that a recursive formulation of generation n +1 may be given by

Zn+1 =







∑Zn

i=1ξn ,i if Zn > 0

0 if Zn = 0
.

A useful transform in the study of branching process is the probability generating function

defined below for an arbitrary random variable.

Definition 2.3.2. The probability generating function (PGF) for a random variable X is given

by E(t X ) =
∑∞

j=0 t jP(X = j ) for all t ∈R for which the sum converges.

In the case of the branching process being considered, there are multiple PGFs we

may look at. On its simplest level, the identical probability distribution itself, py , will be

present in the PGF for the random variable ξn ,i . In fact, the values p0, p1, . . . turn out to

be coefficients of a power series in the representation that follows. In the sense that the

distribution of each ξn ,i is identically given, the subscripts on the random variables are

suppressed in the computation.

Definition 2.3.3. The PGF for the offspring distribution is given by

f (t ) .=E(t ξ) =
∞
∑

j=0

P(ξ= j )t j =
∞
∑

j=0

pj t j =
∞
∑

j=0

P(1, j )t j ,

for all t ∈R for which the sum converges.

We then expect that since the offspring from generation n contribute to generation

n +1, the PGF for the random variable Zn , call it f(n )(t ), may be expressed in terms of f (t ).

Note that Zn is a random sum of N of the random variables ξwhere N is independent of
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{ξi }. We compute:

f(n )(t ) =E(t Zn )

=E(t ξn−1,1+···+ξn−1,Zn−1 )

=E(t ξn−1,1 . . . t ξn−1,Zn−1 )

=P(Zn−1 = 0) +
∞
∑

k=1

E(t ξn−1,1 · · · t ξn−1,Zn−1 |Zn−1 = k )P(Zn−1 = k )

=
∞
∑

k=0

( f (t ))kP(Zn−1 = k )

= f(n−1)( f (t ))

Thus we see that this generating function for the branching process is really just the iterated

generating function for the offspring distribution;

f(n )(t ) = fn (t ) =
∞
∑

j=0

Pn (1, j )t j .

When the moments of these processes exist, they can be computed in terms of the PGF and

its derivatives.

E(Z1) =
∞
∑

j=1

j pj =
∞
∑

j=1

jP(1, j ) = f ′(1) .= m ,

the mean of the process. It then follows that E(Zn ) =
∑∞

j=1 jPn (1, j ) = m n . There is

a trichotomy of long-term behavior in branching processes about the mean value; the

cases m < 1, m = 1, or m > 1 are termed the sub-critical, critical, and super-critical cases

respectively.

We may also see that ifσ2 = var(Z1), then

var(Zn ) =







σ2m n−1(m n−1)
(m−1) m 6= 1

nσ2 m = 1
.

There is a useful connection between the PGF for Zn and the mean value m that has

implications for the probability of the process going extinct. Aptly named, the extinction

probability gives the probability of the chain reaching state 0 in finite time and thus can no

longer produce any more offspring. In settings such as this, the state 0 is called an absorbing

state because upon reaching this state, the chain has no chance of ever leaving it. We see
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that

lim
n→∞

fn (0) = lim
n→∞
P(Zn = 0) = P(Zi = 0, for some i ≥ 1) : the extinction probability. (2.1)

The limit above must exist because fn (t ) is monotone decreasing in n and is bounded

below by 0. In order for the chain to go extinct, one of two events must occur. Either the

fist individual produces no offspring, or it produces k offspring that each themselves go

extinct in finite time. Letting q denote the yet unknown extinction probability, this simple

argument makes clear that

q = p0+
∞
∑

k=1

P (1, k )q k = f (q )

and so q must be a fixed point of f (t ). By nature of f (t ) being strictly convex and increasing

in [0, 1] and the knowledge that f (0) = p0, f (1) = 1, q may be computed in the various cases.

Claim: If m≤ 1, then f(t)> t for t ∈ [0, 1).

Proof. m = f ′(1)≤ 1. Assume to the contrary that ∃ρ0 ∈ [0, 1) such that f (ρ0) =ρ0. Then by

the Mean Value Theorem, ∃c ∈ (ρ0, 1) such that

f ′(c ) =
f (1)− f (ρ0)

1−ρ0
=

1−ρ0

1−ρ0
= 1.

This is a contradiction of the fact that f ′(s )< f ′(1)≤ 1 for all s ∈ (0,1] by the convexity of

f (t ).

Claim: If m> 1, then f(t) = t has a unique root in [0, 1).

Proof. We proceed with a proof by construction. We know that f (0)−0= p0 > 0. Further, by

Taylor’s Theorem and since f ′(1)> 1 in this case, f (t ∗)− t ∗ < 0 for some t ∗ ∈ (0, 1) sufficiently

close to 1. Therefore, we may apply the Intermediate Value Theorem to obtain ρ0 ∈ (0, t ∗)

such that f (ρ0) =ρ0.

As a result of the claims above, in the sub-critical and critical cases, the only fixed point

of f (t ) in [0,1] occurs at the endpoint where t = 1 and hence the extinction probability

must be 1. In the super-critical case, the following computation shows that the smaller such

fixed point, ρ ∈ (0,1), gives the probability of extinction. Letting q denote the extinction

probability (and the limit of fn (0) as shown in (2.1)) and ρ denote any root of f (t ) = t on

[0, 1],

0≤ρ −→ fn (0)≤ fn (ρ) =ρ −→ q ≤ρ.

12



It follows that q =ρ.

For more information about branching processes and related limit theorems, see [17] and

[13].

2.3.1 The Critical Case

In particular, when m = 1, the branching process will almost surely go extinct in finite time

by the previous remarks. For the purposes of this research, we mainly focus on the critical

case, and thus we impose conditioning that attempts to "fix" this degenerate behavior.

There is more than one way to adjust the critical branching process and avoid the fated

extinction. The method that we employ in the work that follows deals with considering the

same branching process Zn , only conditioned on the event that the process is not extinct

up until the current generation n . Hence, the branching process {Zn} under P{Zn>0} will be

looked at more closely in the subsequent chapters.

2.4 The Quasi-Stationary Distribution

Analogous to the well-known notion of the stationary distribution for Markov chains, the

quasi stationary distribution (QSD) is invariant under time evolution for the process condi-

tioned on non-extinction. The theory that follows in this section is adapted from [7]. You

may see [6] for more results pertaining to QSDs.

Let T0 denote the time of extinction for the branching process. Because 0 is an absorbing

state, T0 = inf{t > 0 | Zt = 0}. We continue to let S ⊂ R+ denote the state space for the

general Markov process. Prior to time T0, the process takes values in S a .= S \ {0}, the space

of so-called allowed states. Recall that q denotes the probability of extinction in finite time,

q = P (T0 < ∞). Further, let {PX , x ∈ S} be the family of distributions with the initial

condition x ∈ S .

Definition 2.4.1. A probability measure ν on S a is said to be a Quasi-Stationary Distribution

(QSD) if for all measurable B ⊂ S a , n ∈Z+,

Pν(Zn ∈ B | n < T0) = ν(B ).

Equivalently,

Pν(Zn ∈ B ) = ν(B )Pν(n < T0),

where we use the fact that Pν(Zn ∈ B , n < T0) =Pν(Zn ∈ B )when B ⊂ S a .

As usual, Pν =
∫

S a Px dν(x ). This must be true for all t .
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In the case of the discrete Markov chain that is the critical branching process, a QSD ν

satisfies

Pν(Zn = x | n < T0) = ν(x ),

for all x ∈ S a , for all t . In the critical case of the branching process being considered, the

population will eventually go extinct with probability one, i.e. q = 1, as seen in section (2.3).

Once the population reaches 0, there is no more opportunity for reproduction and 0 is

thus an absorbing state that is bound to be reached in finite time. This extinction time,

however, may not occur for a very long time during which the population may exhibit some

behaviors in which we are interested. This is precisely why we apply the study of QSD.

When one or more QSD can be shown to exist, they have certain useful properties, such

as the following. Theorem 2.4.1 shows that when starting the process Z from a QSD ν,

the killing time T0 is geometrically distributed. It follows that the killing time T0 has an

exponential law. This implies that the rate of survival must be at most exponential for a

QSD to exist (See Theorem 2.4.2.)

Theorem 2.4.1. If ν is a QSD, then there exists α(ν) ∈ [0, 1] such that

Pν(n < T0) =α(ν)
n

for all n ∈Z+.

Proof. We obtain the following by the Markov property.

Pν(n < T0) =Pν(Z0 6= 0, . . . , Zn 6= 0)

=Pν(Zn 6= 0 | Z0 6= 0, . . . , Zn−1 6= 0)Pν(n −1< T0)

=Pν(Zn 6= 0 | Zn−1 6= 0)Pν(n −1< T0)

=Pν(Z1 6= 0 | Z0 6= 0)Pν(n −1< T0)

=Pν(1< T0)Pν(n −1< T0).

Thus,

Pν(n −1< T0) =
Pν(n < T0)
Pν(1< T0)

,

finishing the proof.

By induction, this theorem tells us that in particular, Pν(n < T0) = Pν(1< T0)n and hence

α(ν) =Pν(1< T0).

In Theorem 2.4.1 above, we saw that there exists α(ν) ∈ [0,1] such that Pν(n < T0) =αn for
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all n ∈Z+. Letting α(ν) ∈ (0, 1) to avoid trivialities, we may let θ (ν) .=− logα(ν)n . Then,

Pν(n < T0) = e −θ (ν)n

for all n ∈Z+. We say that θ (ν) gives the exponential rate of survival of ν.

Note that we may return to the definition of QSD and write an equivalent statement, namely

that ν is a QSD if there exists θ (ν) ∈ (0,∞) such that for all measurable B ⊂ S a , for all n ∈Z+,

Pν(Zn ∈ B ) = ν(B )e −θ (ν)n .

Furthermore, if ν is a QSD then for all θ < θ (ν)we have that Eν(e θn )<∞.

To see this, recall that under Pν, T0 is geometrically distributed with parameter θ (ν), that is,

Then

Eν(e θT0) =

∫

S a

Ex (e
θT0) dν(x ) =

1− e −θ (ν)

e −θ − e −θ (ν)
<∞.

The finiteness of this integral proves the assertion. This shows that in order for a QSD to

exist, it is necessary that some exponential moments be finite. Let

θ ∗x
.= sup{θ :Ex (e

θT0)<∞},

denote the exponential rate of survival of the process. Then for a QSD to exist, we must see

that θ ∗x > 0. This is formalized in the following:

Theorem 2.4.2. The following equality holds:

θ ∗x = lim inf
t→∞

−
1

t
logPx (t < T0).

Also a necessary condition for the existence of QSD is the existence of a positive exponential

moment or equivalently, a positive exponential rate of survival: ∃x ∈ S a such that θ ∗x > 0.

When this condition is met, we say that the process is exponentially killed.

A final area of interest sufficient for our coverage of QSD is an interesting connection

to linear algebraic topics. Let P = (p (x , y ), x , y ∈ S ) be the transition matrix for Z . Let

Pa = (p (x , y ) : x , y ∈ S a ) be the transition kernel restricted to the allowed states and denote

by Pn
a the n-th power of Pa for n ∈ Z+. If ν is a probability distribution on S a , denote by

ν̃= (ν(x ) : x ∈ S a ) the associated row probability vector indexed by S a . Then

Pν(Zn = y ) = ν̃Pn
a (y ).
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In the following, let ν be a QSD. As a result of Theorem 2.4.1, we have for all n ∈Z+,

Pν(Zn = y ) = ν̃Pn
a (y )

=⇒

Pν(n < T0)ν̃= ν̃Pn
a

=⇒

αn ν̃= ν̃Pn
a

for some α ∈ (0, 1). Equivalently,

αν̃= ν̃Pa

and so ν̃ is a left eigenvector of Pa with associated eigenvalue α.

2.4.1 The Yaglom Limit

Definition 2.4.2. A probability measure µ on S a is said to be a Yaglom Limit of the process if

for all y ∈ S a ,

lim
n→∞
Px (Zn = y | n < T0) = µ(y )

⇐⇒

lim
n→∞

Px (Zn = y )
Px (n < T0)

= µ(y ).

It is important to note that this limit quotient given above need not exist in general.

Furthermore, this limit may sometimes coincide with the QSD (or one of the QSD) of the

process, if there is one. The reader may refer to [16] and [5] to see several Yaglom-type limit

results in the sub-critical and super-critical cases of the branching process respectively.

We set out to find the Yaglom limit for the general branching process. A few helpful results

lead up to the main Yaglom limit result in Theorem 2.4.6. Let

b̃ j
.=

π j q j

∑∞
j=1π j q j

≥ 0,

where q denotes the extinction probability as before. This quantity turns up in Theorem

2.4.6 below, but to see why, see the remarks made in the theorems to come, which are

crucial to our research. These results regarding the Yaglom Limit, among others, can be

found in [3].
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Lemma 2.4.3.

f ( j )n (t ) = an , j (t ) + f ′[ fn−1(t )] f
( j )

n−1(t ), n , j ≥ 1,

where an , j (t ) is a power series with nonnegative coefficients.

Proof. The proof of this result is by induction on j .

Base case, j = 1:

Since fn (t ) = f ( fn−1(t )), by the chain rule for derivatives,

f ′n (t ) = f ′( fn−1(t )) · f ′n−1(t ),

and so the result is true with an ,1(t )≡ 0.

Inductive step, assume true for some k > 1 and show true for k +1:

Assume that there exists a power series an ,k (t )with non-negative coefficients such that

f (k )n (t ) = an ,k (t ) + f ′( fn−1(t )) f
(k )

n−1(t ).

Now we compute

f (k+1)
n (t ) =

�

f (k )n (t )
�′

=
�

an ,k (t ) + f ′( fn−1(t )) f
(k )

n−1(t )
�′

= a ′n ,k (t ) + f ′( fn−1(t )) f
(k+1)

n−1 (t ) + f (k )n−1(t ) f
′′( fn−1(t )) f

′
n−1(t ),

and so the result is true with

an ,k+1(t ) = a ′n ,k (t ) + f (k )n−1(t ) f
′′( fn−1(t )) f

′
n−1(t ).

Lemma 2.4.4. Assume that p1 6= 0. Then

Pn (1, j )
Pn (1, 1)

↑π j ≤∞, j ≥ 1.

Proof. To see that this ratio must converge as n→∞ to a well-defined (potentially infinite)

limit, it is sufficient to prove that
Pn (1, j )
Pn (1, 1)

is a non-decreasing sequence. Since p1 6= 0, P n (1, 1) 6= 0 for all n . In the following calculations,

recall that P n (1, 1) = f ′n (0) and with f ( j )n (t ) =
∑∞

j≥0 j !P n (1, j )t 0, we see that P n (1, j ) = 1
j ! f ( j )n (0).
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We use Lemma 2.4.3 to compute

Pn (1, j )
Pn (1, 1)

=
f ( j )n (0)
j ! f ′n (0)

=
an , j (0) + f ′[ fn−1(0)] f

( j )
n−1(0)

j ! f ′( fn−1(0) f ′n−1(0)

≥
f ′[ fn−1(0)] f

( j )
n−1(0)

j ! f ′( fn−1(0) f ′n−1(0)

=
f ( j )n−1(0)

j ! f ′n−1(0)

=
Pn−1(1, j )
Pn−1(1, 1)

Because of the probabilistic implications of results surrounding the sequence π j , we

will denote its PGF byP (t ), that is,

P (t ) =
∞
∑

n=1

πn t n .

Theorem 2.4.5. Assume that p1 > 0. P (t ) converges for t ∈ [0,1). Furthermore,
∑

π j con-

verges if m < 1 and diverges if m ≥ 1.

This theorem has some very important implications for the ratio b̃ j
.= π j q j

∑∞
j=1π j q j . In the

case m = 1, q = 1 and so with
∑

π j diverging by Theorem 2.4.5,

b̃ j = 0 for j ≥ 1 (2.2)

In the case m 6= 1, Theorem 2.4.5 concludes that

∑

b̃ j = 1 and b̃ j > 0 for all j ≥ 1 such that Pn (1, j )> 0 for some n ≥ 1. (2.3)

See notes within the proof of the following Theorem 2.4.6 to see the important implications

of these observations on the Yaglom limit.

Theorem 2.4.6. Assume q > 0 gives the extinction probability.

(a) limn→∞P(Zn = j | Zn > 0) = b j exists.
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(b) If m 6= 1, the b j is a probability function and its generating functionB (t ) =
∑∞

j=0 b j t j is

the unique solution to

B
� f (t q )

q

�

= f ′(q )B (t ) + (1− f ′(q )) (2.4)

among generating functions vanishing at 0.

(c) If p1 > 0, then b j = b̃ j andB (s ) = P (q s )
P (q ) .

Remark: Part (b) gives a property that the generating function must hold in the noncritical

cases. In the super-critical case, considering the Yaglom limit is not particularly interesting

since limn→∞P(Zn > 0) = 1. Part (c) shows that in the critical case, the Yaglom limit is trivial,

based on (2.2) above. That is, limn→∞P (Zn = j | Zn > 0) = 0 when m = 1.

Proof. In order to obtain that

P(Zn = k | Zn > 0)
n→∞−−−→ bk ,

for some sequence of constants {bk}k∈S , we would need to see this convergence for each

k ∈ S , which is exhaustive. We turn to Levy’s Continuity Theorem, Theorem 2.1.2, for

an alternate approach. Consider P{Zn | Zn>0} and note that we seek to find its limit in the

distributional sense.

P{Zn | Zn>0}
D−→ B

for some B if and only if

〈 f ,P{Zn | Zn>0}〉
n→∞−−−→ 〈 f , B 〉

for all f ∈Cb . Now taking f =χ
A

, this is equivalent to

P(Zn ∈ A | Zn > 0)
n→∞−−−→ B (A).

Finally, because our discrete state space is simply the disjoint union of singletons, we would

obtain our goal, i.e. that

P(Zn = k | Zn > 0)
n→∞−−−→ bk ,

for some sequence of constants {bk}k∈S

In the following, we will make use of some already determined results regarding the generat-

ing function, f (t ), for the process {Zn} and its iterates. We set out to calculate the pointwise

limit of E(t Zn | Zn > 0), if it exists. For the following calculations, we fix t .
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Case 1: m≤ 1 and therefore q= 1.

Recall that fn (t ) =
∑∞

k=0 t kP(Zn = k ) and hence fn (0) =P(Zn = 0).

lim
n→∞
E(t Zn | Zn > 0) = lim

n→∞

∞
∑

j=0

t jP(Zn = j | Zn > 0)

= lim
n→∞

1

P(Zn > 0)

∞
∑

j=0

t jP(Zn = j , Zn > 0)

= lim
n→∞

1

P(Zn > 0)

∞
∑

j=1

t jP(Zn = j )

= lim
n→∞

∑∞
j=0 t jP(Zn = j ) − P(Zn = 0)

1−P(Zn = 0)

= lim
n→∞

fn (t )− fn (0)
1− fn (0)

= 1 − lim
n→∞

1− fn (t )
1− fn (0)

,

It would be nice to know that this limit exists. How can we see that Gn (t )
.= 1− fn (t )

1− fn (0)
is increasing

in n? We may define Gn (t ) recursively via

Gn (t ) =
1− fn (t )
1− fn (0)

=
1− f ( fn−1(t ))

1− fn−1(t )
·

1− fn−1(0)
1− f ( fn−1(0))

·
1− fn−1(t )
1− fn−1(0)

=
1− f ( fn−1(t ))

1− fn−1(t )
·

1− fn−1(0)
1− f ( fn−1(0))

·Gn−1(t ).

Therefore, taking H (t ) .= 1− f (t )
1−t , this relationship can be expressed as

Gn (t ) =
H ( fn−1(t ))
H ( fn−1(0))

·Gn−1(t ).

H (t ) is non-decreasing in t , as is fn (t ) and therefore Gn (t ) is non-decreasing in n . Denote

by G (t ) the limit as n→∞ of Gn (t ). This proves that limn→∞Bn (t ) = 1−G (t ) =B (t ) exists.

This proves (i). We now may note that

Gn ( f (t )) = Gn+1(t )H ( fn (0)). (2.5)

As n →∞, fn (0)→ q = 1 and so we consider limx→1 H (x ) = limx→1
1− f (x )

1−x = f ′(1) =m . So,
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taking limits as n→∞ on both sides of (2.5) yields

G ( f (t )) = mG (t ), (2.6)

or

B ( f (t )) = mB (t ) + (1−m ). (2.7)

We now restrict the current case to m < 1. Letting γ= f ′(q ), with q = 1, γ=m . Thus,

B (
f (t q )

q
) = γB (t ) + (1−γ). (2.8)

To see that {b j } is a probability function, it remains to see that limt→1−B = 1. Well, taking

t → 1− in (2.6), limt→1−G ( f (t )) = limt→1− mG (t ) and so with m < 1, limt→1−G (t ) = 0 and

thus limt→1−B = 1. The last detail needed in part (ii) is that of uniqueness. Suppose thatR
is another solution to (2.4). Then bothB andR satisfy (2.4) as well as an iterative analogous

equation,

B [ fn (t )] = γ
nB (t ) + (γn−1+ · · ·+γ+1)(1−γ). (2.9)

Differentiating (2.9) yields

B ′[ fn (t )] f
′

n (t ) = γ
nB ′(t ). (2.10)

Now for any t ∈ [0, q ), there is a k such that fk (0)≤ t ≤ fk+1(0) and hence by (2.10),

R ′(s )
B ′(t )

=
R ′( fn (t ))
B ′( fn (t ))

≤
R ′( fn+k+1(0))
B ′( fn+k (0))

=
R ′( fn+k+1(0))
B ′( fn+k+1(0))

·
B ′( fn+k+1(0))
B ′( fn+k (0))

,

but also
R ′[ fn (0)]
B ′[ fn (0)]

=
R ′(0)
B ′(0)

= constant, n ≥ 1.

Hence,

R ′(t )
B ′(t )

≤
R ′(0)
B ′(0)

·
B ′( fn+k+1(0))
B ′( fn+k (0))

=
R ′(0)
B ′(0)

·
f ′n+k (0)

f ′n+k+1(0)
γ

=
R ′(0)
B ′(0)

·
γ

f ′( fn+k (0))
.

Letting n →∞, we see that R
′(t )

B ′(t ) ≤
R ′(0)
B ′(0) . The converse inequality holds similarly and so

sinceR(0) =B (0),R ≡B . This completes the proof of (ii) in this case. We turn our attention
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towards part (iii). Recall some important quantities:

P (t ) =
∞
∑

n=1

πn t n and b̃ j =
π j q j

∑∞
j=1π j q j

.

Recall that limn→∞P(Zn = j |Zn > 0) = b j . Wishing to express P(Zn = j |Zn > 0) in terms of

π j , we see that

P(Zn = j |Zn > 0) =
P(Zn = j , Zn > 0)
P(Zn > 0)

=
Pn (1, j )q j

∑∞
k=1Pn (1, k )q k

.

By Lemma 2.4.4,

Pn (1, j )q j

∑∞
k=1Pn (1, k )q k

=

�

Pn (1, j )
Pn (1,1)

�

q j

∑

k

�

Pn (1,k )
Pn (1,1)

�

q k

→
π j q j

∑

k πk q k
= b̃ j .

We have proven that b j = b̃ j . (2.3) and (2.2) tell precisely what the implications of this

equivalence are in the three cases of mean offspring behavior. Finally,

P (q t )
P (q )

=

∑∞
n=1πn q n t n

∑∞
n=1πn q n

=
∞
∑

j=1

b j t j = B (t ).

Case 2: m> 1 and therefore q ∈ (0, 1).

Similarly to case 1,

lim
n→∞
E(t Zn | Zn > 0) = lim

n→∞

1

P(Zn = 0)

∞
∑

j=1

t jP(Zn = j )

=

∑∞
j=1 t j q jP(Zn = j )
∑∞

j=1 q jP(Zn = j )

=
fn (t q )− fn (0)

q − fn (0)
.

Let gn (t ) be the n-fold iterate of g (t ) .= f (q t )
q . Then

fn (t q )− fn (0)
q − fn (0)

=
gn (t )− gn (0)

1− gn (0)
,

where gn (t ) has mean mg = g ′(1) = f ′(q ) = γ < 1. We may apply the reasoning from case
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1 to obtain the result (i). (2.4) also follows directly from substituting in g for f in (2.7),

completing the proof of part (ii). Finally, part (iii) is the same as in case 1.

2.5 Point Processes

Put simply, a point process is a random cloud of points. Let E ⊆ Rn , n ∈ N be a locally

compact topological space with a countable basis and E =B (E ), its Borelσ-algebra. The

prerequisite material presented below on the topic of point processes comes from [8]. See

also [14] for additional results pertaining to related processes.

Definition 2.5.1. A point measure m on E is a measure such that

m =
∞
∑

i=1

δxi
,

where δxi
is the dirac measure at xi ∈ E .

Definition 2.5.2. A measure m is said to be a Radon measure if m (K ) < ∞ for all K ∈ E
compact, and m is both inner regular and outer regular.

Further, let Mp (E ) be the space of all Radon point measures on E .

Definition 2.5.3. A point process on E is a measurable map from a probability space Ω to

Mp (E ) equipped with itsσ-algebraMp (E ).Mp (E ) is the smallestσ-algebra containing

{m ∈Mp (E ) : m (F ) ∈ B } for all F ∈ E and B ⊂ [0,∞] Borel.

For a point process, N , it is common to define the notion of the intensity of the process

via the following.

Definition 2.5.4. The function µ : E →R+ ∪{∞} given by

µ(B ) = E(N (B )),

for all B ∈ E is a measure called the intensity measure for the point process N .

One common extension of point process theory is a study into the so-called Poisson

point process, wherein the intensity measure of N has a Poissonian distribution with

parameter µ(B ).
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2.5.1 Convergence of Point Processes

Let N0
.= N∪{0} and let {Nn}n∈N0

be a sequence of point processes.

Definition 2.5.5. We say that Nn converges weakly to N0, if for all bounded, continuous,

real-valued functions f ,

lim
n→∞

∫

Mp (E )

f d (Nn )?P =
∫

Mp (E )

f d (N0)?P,

where (Nn )?P is the push-forward measure of P by Nn for each n. This measure is clearly

defined onMp (E ).

Section (2.1.1) affirms that weak convergence of a sequence of random variables is

equivalent to converge of their Laplace transforms. This concept lends itself well to the

study of point processes, as taking the Laplace transforms "smooths out" the process and

creates a more manageable object of which to consider the convergence.

Definition 2.5.6. For a point process N , the Laplace functional of N is the operator

LN ( f ) = E(e −N ( f )),

where N ( f ) = 〈 f , N 〉=
∑

x∈supp(N ) f (x )with f a non-negative function with bounded support.
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CHAPTER

3

ASYMPTOTIC BEHAVIOR OF THE

POPULATION SIZE IN THE CRITICAL

CASE

In this chapter, we begin our investigation into the asymptotic behavior of the coalescence

time by first making several observations about the random variable Zn and how its behavior

is dictated by the mean of the process. To that end, we recall from Definition 2.3.1 that the

random variable Zn represents the population size of the n-th generation. Section 2.3 goes

on to define several quantities that will appear in this chapter. In particular, m
.=E(Z1) is

introduced and explained to give the mean of the process {Zn , n ∈N}. The discussion and

results to follow will always consider the critical case of the branching process, wherein

m = 1.

Theorems 3.1.1 and 3.2.1 are previously known results pertaining to the asymptotic behavior

of the process. One considers the asymptotic behavior of {Zn} and the other considers

the process {Zn
n } under P{Zn>0}. Theorem 3.2.2 is an original result which considers the

asymptotic behavior of {Zn
n }, but not under any conditioning.
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3.1 Without Conditioning

It is clear that in the critical case, P(Zn > 0)will converge to 0 as n →∞, but one may be

interested in the speed of such a convergence. The following result from [3] explores this

notion.

Theorem 3.1.1. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, and σ2 .=
∑∞

j=1 j 2pj − 1 < ∞. Let

Z0 = k < ∞. Then,

lim
n→∞

nP(Zn > 0) =
2

σ2
.

Remark: We know that with m = 1 the process goes extinct eventually with probability 1, but

this theorem tells us just how fast. We see that P(Zn > 0)∼ 2
σ2n .

Proof. Recall that fn (t ) = E(t Zn ), so that fn (0) = P(Zn = 0) and P(Zn > 0) = 1− fn (0).

Suppose that

lim
n→∞

1

n

�

1

1− fn (t )
−

1

1− t

�

=
σ2

2
, (3.1)

uniformly for t ∈ [0, 1). Then in particular, when t = 0 we have

σ2

2
= lim

n→∞

1

n

�

1

1− fn (0)
−1

�

= lim
n→∞

1

n

�

1

P(Zn > 0)
−1

�

.

Thus we may turn our attention to proving (3.1) to obtain the desired result.

By L’Hopital’s Rule,

lim
t→1−

f (t )− t

(1− t )2
= lim

t→1−

f ′(t )−1

2t −2

= lim
t→1−

f ′′(t )
2

Now the generating function for the offspring distribution, f , is assumed to have finite vari-

ance, denoted byσ2. Because of this assumption and its correspondence to the regularity

of f , the limit above is well-defined. We may then let a be a finite real number such that

a
.= σ2

2 , and so, limt→1−
f ′′(t )

2 = a .

Let ε(t ) .= a − f (t )−t
(1−t )2 . Note that a = lim

t→1−

f (t )− t

(1− t )2
and further that f (t ) is strictly increasing.

Then the rational function f (t )−t
(1−t )2 is also strictly increasing to its limit a from the left-hand

side. (Note that f (t )− t > 0 for t ∈ [0,1) in the critical case as was proven in Section 2.3).

Then, a ≥ f (t )−t
(1−t )2 , and so ε(t ) ≥ 0. Further, lim

t→1−
ε(t ) = 0.

Let δ(t ) .= a −
�

1
1− f (t ) −

1
1−t

�

= a −
�

f (t )−t
(1− f (t ))(1−t )

�

. Since t ≤ f (t ) and δ(t ) ≤ ε(t ), we sum
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over i and replace t by fi (t ) to obtain

n−1
∑

i=0

δ( fi (t )) ≤
n−1
∑

i=0

ε( fi (t )).

We may note that fi (t ) increases to 1 and so ε( fi (t )) decreases to 0 on [0, 1). Then

n−1
∑

i=0

ε( fi (t )) ≤
n−1
∑

i=0

ε( fi (0)) ∼ o (n ).

We now need to look closer at
n−1
∑

i=0

δ( fi (t )). We have

δ(s ) = a −
�

1

1− f (s )
−

1

1− s

�

=
�

a ·
1− f (s )

1− s
−

f (s )− s

(1− f (s ))(1− s )
·

1− f (s )
1− s

��

1− s

1− f (s )

�

=
�

a ·
1− f (s )

1− s
−

f (s )− s

(1− s )2

��

1− s

1− f (s )

�

≥ a ·
s − f (s )
1− f (s )

,

since f (s )−s
(1−s )2 ≤ a .

= −a ·
f (s )− s

1− s
·

1− s

1− f (s )

= −a (1− s )(a −ε(s )) ·
1− s

1− f (s )
,

since f (s )−s
1−s = (1− s ) f (s )−s

(1−s )2 = (1− s )(a −ε(s )).

≥ −a 2(1− s ) ·
1− s

1− f (s )

≥ −a 2(1− s )
1

1− f (0)
,

since 1−s
1− f (s ) is decreasing and positive on [0, 1].
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So,
n−1
∑

i=0

δ( fi (t )) ≥
n−1
∑

i=0

−a 2(1− fi (t )) ·
1

1− f (0)
≥

−a 2

1− f (0)

n−1
∑

i=0

(1− fi (0)) ∼ o (n ).

We observe that

n−1
∑

i=0

δ( fi (t )) = a −
�

1

1− f (t )
−

1

1− t

�

+ . . . + a −
�

1

1− fn (t )
−

1

1− fn−1(t )

�

= na +
1

1− t
−

1

1− fn (t )
.

Thus,

a −
1

n

�

1

1− fn (t )
−

1

1− t

�

∼ o (1).

3.2 The Conditioned Process

In order to avoid the inevitable extinction of the critical process, we may be interested

in conditioning the process on non-extinction. Let {Zn | Zn > 0} denote the process {Zn}
under P{Zn>0}. In the critical case, observe a beneficial relationship linking the expected

value of the conditioned process at generation n with the probability of survival at that

same generation. Namely,

1 = E(Zn ) = P(Zn > 0) ·E(Zn | Zn > 0) + P(Zn = 0) ·E(Zn | Zn = 0).

Thus E(Zn | Zn > 0) = P(Zn > 0)−1, an inverse relationship that verifies the behavior of the

conditioned process. Theorem 3.1.1 shows that the convergence P(Zn > 0)→ 0 is of the

order n−1 and hence we have linear growth in the mean of the conditioned process. Cutting

down the process by a factor of n yields the following result, from [3].

Theorem 3.2.1. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, and σ2 .=
∑∞

j=1 j 2pj − 1 < ∞. Let

Z0 = k < ∞. Then as n→∞ and for 0 < u < ∞,

P
�

Zn > n u | Zn > 0
�

→ e
−2u
σ2 .

Remark: Equivalently, limn→∞P(
Zn
n > u | Zn > 0) = e −

2
σ2 u and so {Zn

n | Zn > 0} converges in

distribution to Y where Y is an exponentially distributed random variable with parameter
2
σ2 .
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Proof. By Levy’s Continuity Theorem, Theorem 2.1.2, a sequence of random variables Xn

converges in distribution to X ifϕXn
converges in the pointwise sense toϕX whereϕX is the

characteristic function of the random variable X . Thus, we must look at the characteristic

function for Zn
n under P{Zn>0}.

ϕ Zn
n
(θ ) = EP{Zn>0}

�

(e i θn )Zn
�

=
∞
∑

k=1

e i θn kP(Zn = k | Zn > 0)

=

∑∞
k=1 e i θn kP(Zn = k )
P(Zn > 0)

=

∑∞
k=0 e i θn kP(Zn = k ) − P(Zn = 0)

1−P(Zn = 0)

=
fn (e i θn ) − fn (0)

1 − fn (0)

=

�

fn (e i θn ) − 1
�

+
�

1 − fn (0)
�

1 − fn (0)

= 1−
�

1 − fn (e i θn )
1 − fn (0)

�

= 1−
�

1

1 − fn (0)

��

1
1

1 − fn (e i θn )

�

= 1−
�

1

n (1 − fn (0))

��

1
1

n (1 − fn (e i θn ))
− 1

n (1 − e i θn )
+ 1

n (1 − e i θn )

�

Recall now the uniform convergence stated in (3.1). Because this convergence is uniform,

we may consider tn = e i θn and letting n→∞we obtain

ϕ Zn
n
(θ ) → 1 −

1

a

�

1
1
a + limn→∞

1

n (1 − e i θn )

�

= 1 −
1

a

�

1
1
a +

1
−iθ

�

,

= 1 −
1

1+ a
θ i

=
a
θ i

1 + a
θ i

=
1

1 − θ
a i

.

This is continuous at 0 as is required by Theorem 2.1.2 and is a well-known characteristic
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function. The density function of the exponential distribution with parameter λ is given by

λe −λxχ (0,∞). It is easy to see that

∫

R
e iθ xλe −λxχ (0,∞) d x =

λ

λ− iθ
=

1

1 − θ
λ i

.

Thus, the characteristic function to which sequence of characteristic functions converges

to is that of the exponential distribution with parameter λ = a = 2
σ2 . So we have seen that

P(Zn ≤ un | Zn > 0) → Fexp(u ) (3.2)

where Fexp(u ) is the distribution function for the exponential random variable with param-

eter λ, thus proving the equivalent theorem statement.

Now we present the first original result that builds to our larger research goals in the

sections to come.

Theorem 3.2.2. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, and σ2 .=
∑∞

j=1 j 2pj − 1 < ∞. Let

Z0 = k < ∞. Then as n→∞ and for 0 < u < ∞,

nP(Zn > n u ) →
2

σ2
e −

2
σ2 u .

Remark: We know that with m = 1 the process goes extinct eventually with probability 1.

Clearly, then limn→∞P(Zn > n u ) = 0, but the rate of convergence is clarified in this theorem.

Note that in particular, this result tells us that nP(Zn > n )→ 2
σ2 e −

2
σ2 as n→∞.

Proof. From (3.2),

nP(Zn > n u )
nP(Zn > 0)

= P(Zn > n u | Zn > 0) → 1 − Fexp(u ),

where

1− Fexp(u ) =

∫ ∞

u

λe −λx d x = e −λu ,

with λ = 2
σ2 . By Theorem 3.1.1, limn→∞nP(Zn > 0) = 2

σ2 . Thus, as n→∞,

nP(Zn > n u ) → (1 − Fexp(u )) · lim
n→∞

nP(Zn > 0) =
2

σ2
e −

2
σ2 u .

30



CHAPTER

4

ASYMPTOTIC BEHAVIOR OF THE TOTAL

COALESCENCE TIME

In the following, we introduce the notion of coalescence. Let Z (k )n−k ,i denote the size of the

(n −k )-th generation of a branching process initiated by individual i in the generation k .

Then individual i in generation k is said to be a common ancestor of two individuals in

generation n ≥ k if those individuals count towards the random variable {Z (k )n−k ,i }.

Definition 4.0.1. The total coalescence time is the generation of the most recent ancestor for

any whole generation of the branching process. Denote by Yn the random variable represent-

ing the total coalescence time for generation n.

See [10] for some results pertaining to the coalescence time for branching processes.

To find the value of the total coalescence time, trace back the lineage of each of the Zn

individuals in generation n until their distributions meet at one common ancestor. The

generation number of this ancestor is the value of Yn . Based on this definition, we note that

for any k ∈N, the event {Yn ≥ k} occurs if each of the Zn individuals from generation n are

offspring from a single individual in generation k , i.e. from generation n −k of a branching

process initiating with that single individual.

For ease of notation, let Im
.= [1, . . . , m ]. Then the event {Yn ≥ k} occurs if and only if
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Z (k )n−k ,i = 0 for all but exactly one i , where i takes values in IZk
. This fact will be used as a

starting point for the proofs of Theorems (4.1.1)-(4.1.5), (4.2.4) and (4.2.5). It must also be

noted that the conditioning on the event {Z0 = 1} is suppressed but is always implied. It is

shown when it clarifies the direction of the argument.

4.1 Conditioning on Inequalities

The first theorem given in this section from [1] is Theorem 4.1.1 and it was first proved

by Zubkov. It provides an intuitive understanding between the distribution of the total

coalescence time Yn and that of Zn asymptotically. Theorems 4.1.2-4.1.5, help to gain a

more complete understanding of Yn under multi-scale conditioning.

Cases where the coalescence time is bounded below by functions of order 1 and of order

n are considered in our research to follow - reasonably so due to the nature of bounding

below the coalescence time for generation n . The population size of the n-th generation

will be considered in various cases as well, bounding it below by functions of various orders

with respect to n . There are less restrictions on this conditioning, a result of the open-ended

potential of the random variable Zn , which is reflected in the results to come.

4.1.1 Case I

Theorem 4.1.1. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, and σ2 .=
∑∞

j=1 j 2pj −1 < ∞. Then for

0 < u < 1,

lim
n→∞
P(Yn > n u | Zn > 0) = 1−u .

Remark: Equivalently, limn→∞P(Yn ≤ n u | Zn > 0) = u. Thus, { Yn
n | Zn > 0} converges in

distribution to Y where Y is uniformly distributed on [0, 1].

Proof. We first considerP(Yn ≥ k |Zn > 0), and then we will let k
n → u as k , n→∞. Letting

qn
.=P(Zn = 0 | Z0 = 1), we have by the remarks at the start of Chapter 4,

P(Yn ≥ k | Zn > 0) =
P(Z (k )n−k ,i = 0 for all but one i ∈ IZk

, Zk > 0)

P(Zn > 0)
(4.1)

Since
∑∞

m=1 f (m )P(Zk =m ) = E( f (Zk )),

P(Z (k )n−k ,i = 0 for all but one i ∈ IZk
, Zk > 0)

P(Zn > 0)
= E

�

Zk q Zk−1
n−k (1−qn−k ) | Zk > 0

�P(Zk > 0)
P(Zn > 0)

.

(4.2)
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In (4.2), we see the following terms appear. Zk is the random variable representing the

number of individuals in generation k , that is, the number of choices to make for which

one of the individuals will "live on" to generation n . qn−k =P(Zn−k = 0) and so q Zk−1
n−k gives

the probability that each other individual in the k -th generation dies out by generation n .

(1−qn−k ) =P(Zn−k > 0), thus giving the probability of the one individual living to generation

n . The factor P(Zk > 0) is gained due to the conditioning on the event that Zk > 0), which is

a necessity in order to consider the events previously listed. Regrouping terms of the same

order yields

P(Yn ≥ k | Zn > 0) = E
�

Zk

k
q Zk−1

n−k (n −k )(1−qn−k ) | Zk > 0
�P(Zk > 0)
P(Zn > 0)

k

n −k
.

Under the given conditions, we may apply previously stated theorems to obtain the follow-

ing results as n , k →∞ and k
n → u .

Theorem 3.1.1 allows for considering the asymptotic behavior of P(Zn > 0) as n→∞ and

more specifically its rate of convergence to 0. Noting that as n →∞, k →∞ as well, we

have

lim
n→∞

P(Zk > 0)
P(Zn > 0)

= lim
n→∞

kP(Zk > 0)n
nP(Zn > 0)k

=
2/σ2

2/σ2

1

u

=
1

u
.

(4.3)

Next, it is clear to see that

lim
n→∞

k

n −k
= lim

n→∞

k
n

1− k
n

=
u

1−u
.

(4.4)

Now we must consider the conditional expectation E
�

Zk
k q Zk−1

n−k (n −k )(1−qn−k ) | Zk > 0
�

.

We see that what we have is the expected value of a convergent functional of a convergent

sequence of random variables. Let Xk
.= Zk

k . By Theorem 3.2.1, {Xk | Zk > 0} asymptotically

converges in distribution to Y where Y is an exponentially distributed random variable

with parameter 2
σ2 . We then know that the conditional expectation will converge to the

expectation of the functional defined at the limit of the sequence of random variables in

question, when computed under P{Zk>0}.

We turn next to the limiting behavior of q Zk−1
n−k as n , k →∞. In this case, we must take note
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that qn−k is itself a functional, here acting on a sequence of random variables. As such,

qn−k is changing as n and k change, as is the sequence of random variables Zk . In order

to consider the asymptotic behavior, we may note that by nature of qn−k as a probability

function, it is uniformly bounded because its value will always fall between 0 and 1. Because

of this, even (qn−k )M will be uniformly bounded above by 1 for any real number M . In our

case, M is the value of a random variable, so this uniform bounding is key. As a result, we

may use the Lebesgue Dominated Convergence Theorem to compute the limit in question.

First we expand the following:

q Zk−1
n−k = (q n−k

n−k )
Zk −1
n−k . (4.5)

Now,

q n−k
n−k =

�

1−
(n −k )(1−qn−k )

n −k

�n−k

=
�

1+
1

n −k
(−(n −k )(1−qn−k ))

�
1

1/(n−k )

.

(4.6)

We also know that

lim
n→∞

(n −k )(1−qn−k ) = lim
n→∞

(n −k )P(Zn−k > 0)

=
2

σ2
,

(4.7)

as a direct application of Theorem 3.1.1 and since n−k →∞under the asymptotic behavior

considered. From L’Hopital’s Rule, it is clear that for y ∈R,

lim
x→0+
(1+ y x )1/x = exp

�

lim
x→0+

1

x
ln (1+ y x )

�

= exp
�

lim
x→0+

y

1+ x

�

= e y .

(4.8)

So, q n−k
n−k is uniformly bounded and converges in distribution to e −

2
σ2 under P{Zk>0}. We now

need to determine the asymptotic behavior of the random functional Zk−1
n−k under P{Zk>0}.

First,
Zk −1

n −k
=
�

Zk −1

k

��

k/n

1−k/n

�

. (4.9)

We may observe the asymptotic behavior of (4.9) as n→∞, k →∞, and k
n → u . First, by
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Theorem 3.2.1

lim
n→∞

Zk −1

k
= lim

n→∞

�

Zk

k
−

1

k

�

=
σ2

2
η,

(4.10)

in distribution under P{Zk>0} where η is an exponentially distributed random variable with

parameter 1. (4.4) has previously considered the remaining limit, verifying that as n , k →∞,

Zk −1

n −k
→
σ2

2
η

u

1−u
. (4.11)

By way of combining (4.5)-(4.11), we arrive at the asymptotic behavior of the functional

in question as n , k →∞ and n
k → u , namely that the Lebesgue Dominated Convergence

Theorem yields

q Zk−1
n−k → exp

�−2

σ2
·
σ2

2
·η ·

u

1−u

�

= exp
�

−
u

1−u
·η
�

,
(4.12)

in distribution under P{Zk>0} where η is an exponentially distributed random variable with

parameter 1. Therefore, taking the expected value of the convergent sequence of functionals

evaluated at a sequence random variables (Xk ), converging under P{Zk>0}, will yield a finite

result. In particular, Theorems 3.2.1 and 2.1.1, and (4.7) and (4.12) yield that as n , k →∞
and n

k → u ,

E
�

Zk

k
q Zk−1

n−k (n −k )(1−qn−k ) | Zk > 0
�

→ E
�

ηexp
�

−
u

1−u
η
�

�

=

∫ ∞

0

x exp
�

−
u

1−u
x
�

e −x d x

=
1

�

1+ u
1−u

�2 .

(4.13)

This follows from the convergence of Zk
k in the distributional sense under the conditional

probability measure P{Zk>0}. Above, we use the fact that for any θ > 0,

∫ ∞

0

x e −θ x e −x d x =
1

(1+θ )2
. (4.14)
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Therefore combining (4.13), (4.3), and (4.4),

lim
n→∞
P(Yn ≥ k | Zn > 0) =

1
�

1+ u
1−u

�2

1

1−u

= 1−u .

4.1.2 Case II

Theorem 4.1.2. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, andσ2 .=
∑∞

j=1 j 2pj −1 < ∞. Consider

the asymptotic behavior of the conditional probability,

lim
n→∞
P(Yn > g (n ) | Zn > h (n ))

where g (n ) and h (n ) are functions of n. Suppose that limn→∞
g (n )

n = c1 and limn→∞
h (n )

n = c2

where c1 ∈ (0, 1), c2 > 0. Then,

lim
n→∞
P(Yn > g (n ) | Zn > h (n )) = (1− c1)e

−2c1 c2
σ2(1−c1) .

Proof. We first consider P(Yn > k1 | Zn > k2), and we will take k1
n → c1 and k2

n → c2 for

c1 ∈ (0,1), c2 > 0 as n →∞. As in Theorem 4.1.1, let qn
.= P(Zn = 0 | Z0 = 1). As a direct

extension of (4.1) and (4.2), we have

P(Yn > k1 | Zn > k2) = E
�

Zk1
q

Zk1−1

n−k1
P(Zn−k1

> k2 | Z0 = 1) | Zk1
> 0

� P(Zk1
> 0)

P(Zn > k2)
.

The term (1−qn−k ) in Theorem 4.1.1 represented the probability that the one individual

from generation k would still be alive at generation n . Based on our adjusted conditioning,

we now require that this one individual not only live on, but that it also contributes at least

k2 offspring to generation n . Thus, the term P(Zn−k1
> k2 | Z0 = 1) above is necessary in this

case. Regrouping the terms of the same order yields

P(Yn > k1 | Zn > k2) = E
�Zk1

k1
q

Zk1−1

n−k1

k1

n −k1
(n −k1)P(Zn−k1

> k2) | Zk1
> 0

� P(Zk1
> 0)

P(Zn > k2)

= E
�Zk1

k1
q

Zk1−1

n−k1
| Zk1

> 0
� P(Zk1

> 0)
P(Zn > k2)

(n −k1)P(Zn−k1
> k2)

k1

n −k1
.

Now under the given conditions, we may apply previously stated theorems to obtain the

following results as k1
n → c1 and k2

n → c2 as n→∞.
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First consider

lim
n→∞

P(Zk1
> 0)

P(Zn > k2)
.

Multiplying by one and applying Theorems 3.1.1 and 3.2.2 to the numerator and denomi-

nator respectively, we have

lim
n→∞

P(Zk1
> 0)

P(Zn > k2)
= lim

n→∞

k1P(Zk1
> 0)n

nP(Zn > k2)k1

= e 2c2/σ
2
·

1

c1
.

(4.15)

Next, from (4.4),

lim
n→∞

k1

n −k1
=

c1

1− c1
. (4.16)

Now, we look at

(n −k1)P(Zn−k1
> k2) = (n −k1)P

�

Zn−k1
>

k2

n −k1
(n −k1)

�

.

By applying Theorem 3.2.2 and noting that as n→∞, n −k1→∞, we obtain

lim
n→∞

(n −k1)P(Zn−k1
> k2) =

2

σ2
e

−2c2
σ2(1−c1) , (4.17)

in the distributional sense. It remains to consider the conditional expectation

E
�Zk1

k1
q

Zk1−1

n−k1
| Zk1

> 0
�

.

This can be computed in much the same way as was done in Theorem 4.1.1. Again, by

Theorem 3.2.1,
Zk1
k1

underP{Zk1 > 0} converges in distribution to Y where Y is an exponentially

distributed random variable with parameter 2
σ2 . As shown in (4.12), q

Zk1−1

n−k1
under P{Zk1 > 0}

converges in distribution to e −
c1

1−c1
η, whereη is an exponentially distributed random variable

with parameter 1.

Putting these together, as n , k1→∞ and k1
n → c1,

E
�Zk1

k1
q

Zk1−1

n−k1
| Zk1

> 0
�

→ E
�

σ2

2
ηexp

�

−
c1

1− c1
η
�

�

=
σ2

2

∫ ∞

0

x exp
�

−
c1

1− c1
x
�

e −x d x

=
σ2

2

1
�

1+ c1
1−c1

�2 .

(4.18)
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This follows from the convergence of
Zk1
k1

in the distributional sense under the conditional

probability measure P{Zk1>0}. Again, we used (4.14) to compute the integral. Combining

(4.15) -(4.18),

lim
n→∞
P(Yn > k1 | Zn ≥ k2) =

σ2

2

1
�

1+ c1
1−c1

�2

2

σ2
e

−2c2
σ2(1−c1) e 2c2/σ

2
·

1

c1

c1

1− c1

= (1− c1)e
−2c2

σ2(1−c1) e 2c2/σ
2

= (1− c1)e
−2c1 c2
σ2(1−c1) .

4.1.3 Case III

Theorem 4.1.3. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, andσ2 .=
∑∞

j=1 j 2pj −1 < ∞. Consider

the asymptotic behavior of the conditional probability,

lim
n→∞
P(Yn > g (n ) | Zn > h (n ))

where g (n )and h (n )are functions of n. Suppose that limn→∞ g (n ) = c1 and limn→∞h (n ) = c2

where c1, c2 ∈N. Then,

lim
n→∞
P(Yn > g (n ) | Zn > h (n )) = 1.

Remark: This result confirms that when h (n )> 0, we achieve an the same resulting limit for

g (n ) of order 1. In fact, it can be shown that when h (n ) is of any order less than or equal to n,

this same limit holds for g (n ) of order 1.

Proof. We first consider P(Yn > k1 | Zn > k2), and then we will let k1(n )→ c1 and k2(n )→ c2

as n→∞. As in Theorem 4.1.1, let qn
.=P(Zn = 0 | Z0 = 1). As a direct extension of (4.1) and

(4.2), we have

P(Yn > k1 | Zn > k2) = E
�

Zk1
q

Zk1−1

n−k1
P(Zn−k1

> k2 | Z0 = 1) | Zk1
> 0

� P(Zk1
> 0)

P(Zn > k2)
.

Based on our adjusted conditioning, we now require that this one individual not only

live on, but that it also contributes at least k2 offspring to generation n . Thus, the term

P(Zn−k1
> k2 | Z0 = 1) above is necessary in this case. Regrouping the terms of the same
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order yields

P(Yn > k1 | Zn > k2) = E
�

Zk1
q

Zk1−1

n−k1
(n −k1)P(Zn−k1

> k2) | Zk1
> 0

� P(Zk1
> 0)

(n −k1)P(Zn > k2)

= E
�

Zk1
q

Zk1−1

n−k1
| Zk1

> 0
� P(Zk1

> 0)
(n −k1)P(Zn > k2)

(n −k1)P(Zn−k1
> k2).

Note that in the line above, P(Zk1
> 0) is asymptotically constant. However, since Zk1

is

still not a deterministic term, we only consider that E(g (Zk1
) | Zk1

> 0) becomes constant

asymptotically. This slight change from the previous cases drastically alters the way the

asymptotic behavior of the remaining terms must be computed. Under the given conditions,

we may apply previously stated theorems to obtain the following results as n →∞ and

consequently, k1→ c1 and k2→ c2.

First let us consider the asymptotic behavior of (n−k1)P(Zn−k1
> k2)by looking at rP(Zr > k )

where k is a constant and r
.= n − k1 → ∞ as n → ∞. The definition of conditional

probability gives
rP(Zr > k )
rP(Zr > 0)

= P(Zr > k | Zr > 0).

As such, it will be useful to simply compute the asymptotic behavior of

P(Zr > k | Zr > 0) · rP(Zr > 0).

We may compute the two parts separately since they will both have finite limits. By Theorem

3.2.1,

lim
r→∞
P(Zr > k | Zr > 0) = lim

r→∞
P(

Zr

r
>

k

r
| Zr > 0)

= 1,
(4.19)

since Zr
r

d→ Y under P{Zr > 0}, where Y has exponential distribution with parameter 2
σ2 . Then

by (4.19) and Theorem 3.1.1, and due to the continuity of conditional probability measure,

lim
r→∞

rP(Zr > k ) = lim
r→∞
P
�Zr

r
>

k

r
| Zr > 0

�

· rP(Zr > 0)

= 1 ·
2

σ2

=
2

σ2
.

(4.20)
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So, in (4.20) we may replace r by n −k1 once again to see that

lim
n→∞

(n −k1)P(Zn−k1
> k2) =

2

σ2
. (4.21)

As a result, we are also able to compute the asymptotic behavior of the following:

lim
n→∞

(n −k1)P(Zn > k2) = lim
n→∞

n −k1

n
nP(Zn > k2)

= 1 ·
2

σ2

=
2

σ2
.

(4.22)

Next, we consider the asymptotic behavior of q
Zk1−1

n−k1
in order to compute the desired condi-

tional expectation. We may use algebra to rewrite the following:

q
Zk1−1

n−k1
= exp

�

(Zk1
−1) ln (qn−k1

)
�

= exp
�

(Zk1
−1) ln

�

1− (1−qn−k1
)
��

= exp
�

(Zk1
−1)(1−qn−k1

)
ln
�

1− (1−qn−k1
)
�

1−qn−k1

�

.

This algebra is particularly advantageous since in the critical case considered, qr → 1 as

r →∞ by definition and so 1−qn−k1
→ 0 as n→∞. From limu→0

ln (1−u )
u = −1, we obtain

lim
n→∞

q
Zk1−1

n−k1
= lim

n→∞
exp

�

(Zk1
−1)(1−qn−k1

)
ln
�

1− (1−qn−k1
)
�

1−qn−k1

�

= 1,

(4.23)

in distribution, under P{Zn>0}. It remains to consider the asymptotic behavior of the condi-

tional expectation as well as the remaining term outside of the expectation:

E
�

Zk1
q

Zk1−1

n−k1
| Zk1

> 0
�

P(Zk1
> 0).

As n →∞, Zk1
→ Zc1

, the population size at generation c1, in the pointwise sense. So it

is left to look at E
�

Zc1
· 1 | Zc1

> 0
�

P(Zc1
> 0). Let the event A

.= {Zc1
> 0}. Recall that

PA(B ) = P(B | A) for all events A ∈A . Now since dPA is absolutely continuous with respect
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to dP, the Radon-Nikodym derivative dPA
dP exists and it is dPA

dP =
1
P(A)χ A

. Thus

E(Zc1
| A)P(A) =

1

P(A)
E (Zc1

·χ
A
)P(A)

= E(Zc1
)

= 1,

(4.24)

since we are dealing with the critical case for the branching process. Combining the results

from (4.21), (4.22), and (4.24), we have

lim
n→∞
P(Yn > k1 | Zn > k2) = 1 ·

1

2/σ2

2

σ2

= 1.

4.1.4 Case IV

Theorem 4.1.4. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, andσ2 .=
∑∞

j=1 j 2pj −1 < ∞. Consider

the asymptotic behavior of the conditional probability,

lim
n→∞
P(Yn > g (n ) | Zn > h (n ))

where g (n ) and h (n ) are functions of n. Suppose that limn→∞
g (n )

n = c1 and

limn→∞h (n )nα = c2 where c1, α ∈ (0, 1) and c2 > 0. Then,

lim
n→∞
P(Yn > g (n ) | Zn > h (n )) = 1− c1.

Remark: Recall the result in Theorem 4.1.1 and compare it to the result above. This theorem

clarifies that for h (n ) of any order strictly less than n, we achieve the same result in this case,

conditioning on {Zn > h (n )}, as with conditioning on non-extinction where h (n ) ≡ 0.

Proof. Now we consider P(Yn > k1 | Zn > k2), assuming that k1
n → c1 and k2nα → c2 as

n →∞. As in Theorem 4.1.1, let qn
.= P(Zn = 0 | Z0 = 1). As a direct extension of (4.1) and

(4.2), we have

P(Yn > k1 | Zn > k2) = E
�

Zk1
q

Zk1−1

n−k1
P(Zn−k1

> k2 | Z0 = 1) | Zk1
> 0

� P(Zk1
> 0)

P(Zn > k2)
.
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Based on our adjusted conditioning, we now require that this one individual not only

live on, but that it also contributes at least k2 offspring to generation n . Thus, the term

P(Zn−k1
> k2 | Z0 = 1) above is necessary in this case. Regrouping the terms of the same

order yields

P(Yn > k1 | Zn > k2) = E
�Zk1

k1
q

Zk1−1

n−k1

k1

n −k1
(n −k1)P(Zn−k1

> k2) | Zk1
> 0

� P(Zk1
> 0)

P(Zn > k2)

= E
�Zk1

k1
q

Zk1−1

n−k1
| Zk1

> 0
� P(Zk1

> 0)
P(Zn > k2)

· (n −k1)P(Zn−k1
> k2)

k1

n −k1
.

Under the given conditions, we may apply previously stated theorems to obtain the follow-

ing results as k1
n → c1 and k2

nα → c2 as n→∞.

First consider limn→∞
P(Zk1 > 0)
P(Zn > k2)

. Scaling appropriately and applying Theorems 3.1.1 and

3.2.2 respectively, we obtain

lim
n→∞

P(Zk1
> 0)

P(Zn > k2)
= lim

n→∞

k1P(Zk1
> 0)n

nP(Zn > k2)k1

=
2/σ2

2
σ2 exp

�

− 2
σ2 limn→∞nα−1c2

� ·
1

c1

=
1

c1
exp

� 2

σ2
lim

n→∞
nα−1c2

�

=
1

c1
.

(4.25)

In the equation above, we compute the asymptotic behavior of nP(Zn > k2) via Theorem

3.2.2 and taking advantage of the continuity of the exponential function. Next from (4.4),

lim
n→∞

k1

n −k1
=

c1

1− c1
. (4.26)

Now, by Theorem 3.2.2 and since limn→∞
k2

n−k1
= 0 in the present case,

lim
n→∞

(n −k1)P(Zn−k1
> k2 | Z0 = 1) = lim

n→∞
(n −k1)P

�

Zn−k1
>

k2

n −k1
(n −k1)

�

=
2

σ2
.

(4.27)

It remains to consider the conditional expectation E
�

Zk1
k1

q
Zk1−1

n−k1
| Zk1

> 0
�

. Because of the

limiting nature of k1 being identical to that in Theorem 4.1.2, the same proof technique

shown in (4.18) is employed here to verify that as n →∞ and concurrently k1
n → c1 and
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k2
nα → c2,

E
�Zk1

k1
q

Zk1−1

n−k1
| Zk1

> 0
�

→
σ2

2

1
�

1+ c1
1−c1

�2 . (4.28)

This follows from the convergence of
Zk1
k1

in the distributional sense under the conditional

probability measure P{Zk1>0}. Combining the results from (4.25)-(4.28),

lim
n→∞
P(Yn > k1 | Zn > k2) =

σ2

2

1
�

1+ c1
1−c1

�2

1

c1

2

σ2

c1

1− c1

=
1

�

1+ c1
1−c1

�2

1

1− c1

= 1− c1.

4.1.5 Case V

Theorem 4.1.5. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, andσ2 .=
∑∞

j=1 j 2pj −1 < ∞. Consider

the asymptotic behavior of the conditional probability,

lim
n→∞
P(Yn > g (n ) | Zn > h (n ))

where g (n ) and h (n ) are functions of n. Suppose that limn→∞
g (n )

n = c1 and limn→∞
h (n )
nα = c2

where c1 ∈ (0, 1), c2 > 0, and α ∈ (1,∞). Then,

lim
n→∞
P(Yn > g (n ) | Zn > h (n )) =

1
�

1+ c1
1−c1

�2 .

Proof. We first consider P(Yn > k1 | Zn > k2), and then we will let k1
n → c1 and k2

nα → c2 for

α > 1 as k1, k2, n→∞. As in Theorem 4.1.1, let qn
.=P(Zn = 0 | Z0 = 1). As a direct extension

of (4.1) and (4.2), we have

P(Yn > k1 | Zn > k2) = E
�

Zk1
q

Zk1−1

n−k1
P(Zn−k1

> k2 | Z0 = 1) | Zk1
> 0

� P(Zk1
> 0)

P(Zn > k2)
.

Based on our adjusted conditioning, we now require that this one individual not only

live on, but that it also contributes at least k2 offspring to generation n . Thus, the term

P(Zn−k1
> k2 | Z0 = 1) above is necessary in this case. Regrouping the terms of the same

43



order yields

P(Yn > k1 | Zn > k2) = E
�Zk1

k1
k1q

Zk1−1

n−k1
P(Zn−k1

> k2 | Z0 = 1) | Zk1
> 0

� P(Zk1
> 0)

P(Zn > k2)

= E
�Zk1

k1
q

Zk1−1

n−k1
| Zk1

> 0
�k1P(Zk1

> 0)
P(Zn > k2)

·P(Zn−k1
> k2).

Under the given conditions, we may apply previously stated results to obtain the following

results as k1
n → c1 and k2

nα → c2 as n→∞.

First, by Theorem 3.1.1, we see that

lim
n→∞

k1P(Zk1
> 0) =

2

σ2
. (4.29)

Now we must consider the asymptotic behavior of

P(Zn−k1
> k2)

P(Zn > k2)
. (4.30)

We may wish to first understand the asymptotic behavior of the random variable Zn
nα under

the conditional measureP{Zn>0}. For this, consider the Laplace transform of Zn
nα underP{Zn>0}.

E(e −θ
Zn
n | Zn > 0) =E(e −

θ
nα Zn | Zn > 0)

=
fn (e −

θ
nα − fn (0)

1− fn (0)

= 1 −
1− fn (e −

θ
nα )

1− fn (0)

= 1 −

�

n (1− fn (0))
�−1

�

n (1− fn (e −
θ

nα ))
�−1 .

(4.31)

Let a
.= 2/σ2 and recall from Theorem 3.1.1 that limn→∞nP(Zn > 0) = a . Further, (3.1)

affirms that

lim
n→∞

1

n

�

1

1− fn (t )
−

1

1− t

�

=
1

a
,

where this convergence is uniform for t ∈ [0, 1). Thus,

lim
n→∞

�

n (1− fn (e
− θ

nα ))
�−1
=

1

a
+ lim

n→∞

�

n (1− e −
θ

nα )
�−1

, (4.32)
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which diverges to∞ since α> 1. Using the limit from (4.32) in (4.31), we see that

lim
n→∞
E(e −θ

Zn
n | Zn > 0) = 1.

In conclusion, the random variable Zn
nα converges in distribution to 0 under the probability

measure P{Zn>0}. Equivalently, both the numerator and denominator of (4.30) converge to

0, recalling that k1/n→ c1 ∈ (0, 1).

It will be shown in Theorem 4.2.3 that under the same conditions as those considered in

the present case, n 2P(Zn = k ) converges asymptotically to some finite limit, for any k ∈N.

Then, by nature of P(Zn > k2) as a summation over k ∈N of P(Zn = k ) beginning with an

arbitrarily large number k2, it is clear that the asymptotic behavior of P(Zn > k2) is the same

as that of the integral
∫ ∞

k2

1

x 2
d x =

1

k2
.

Thus,

lim
k2→∞

k2

∫ ∞

k2

1

x 2
d x = b ,

where b is a finite constant. Regardless of the precise value of this constant, we may compute

the desired limit from (4.30) to see that

lim
n→∞

P(Zn−k1
> k2)

P(Zn > k2)
= 1. (4.33)

It remains to consider the conditional expectation E
�

Zk1
k1

q
Zk1−1

n−k1
| Zk1

> 0
�

. Because of the

limiting nature of k1 being identical to that in Theorem 4.1.2, the same proof technique

shown in (4.18) is employed here to verify that as n →∞ and concurrently k1
n → c1 and

k2
nα → c2,

E
�Zk1

k1
q

Zk1−1

n−k1
| Zk1

> 0
�

→
σ2

2

1
�

1+ c1
1−c1

�2 . (4.34)

This follows from the convergence of
Zk1
k1

in the distributional sense under the conditional

probability measure P{Zk1>0}. Combining (4.29), (4.33), and (4.34),

lim
n→∞
P(Yn > k1 | Zn > k2) =

2

σ2
·
σ2

2
·

1
�

1+ c1
1−c1

�2 ·1

=
1

�

1+ c1
1−c1

�2
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4.2 Conditioning on Fixed Population Size

The goal in this section is to consider the limits of the form

lim
n→∞
P(Yn > g (n ) | Zn = h (n )).

In such cases, we are assuming that exact knowledge of the asymptotic behavior of the pop-

ulation size is known, under proper scaling. The culmination of this section are Theorems

4.2.4 and 4.2.5, which give the resulting limiting behavior where g (n ) is assumed to have

asymptotic behavior dictated by two distinct functions of n . In both cases, h (n ) is assumed

to converge to a natural number.

In order to compute the resulting limits and determine the desired asymptotic behavior

for the total coalescence time, we need to investigate the right order of convergence of

P(Zn = k ) to 0. Surely, this quantity will converge to 0 asymptotically, since it has already

been seen in Theorem 3.1.1 that P(Zn > 0) decays at a rate in the order of n−1. Since

P(Zn > 0) =
∞
∑

i=1

P(Zn = i ),

it is intuitively clear thatP(Zn = k ) should decay at an even faster rate. One potential method

for obtaining the proper scaling for this limit is to utilize theory of the Yaglom limit and

the notion of the quasi-stationary distribution. Recall that in the case of the conditioned

process, we have already seen many results pertaining to the Yaglom limit

lim
n→∞
P(Zn = k | Zn > 0)

in Section 2.4.1.

Note that

P(Zn = k ) = P(Zn = k | Zn > 0) P(Zn > 0).

If one could observe thatP(Zn = k |Zn > 0) converges to some finite and nontrivial constant,

then it would be clear that P(Zn = k ) converges to 0 in the same fashion as P(Zn > 0), which

is known (See Theorem 3.1.1). Unfortunately, Theorem 2.4.6 shows that in the critical case,

lim
n→∞
P(Zn = k | Zn > 0) = 0.
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More refined conditioning onP(Zn = k ) is required to go one step closer to a full understand-

ing on the conditional convergence result of the critical branching process. In fact, Theorem

2.4.6 proves to be helpful towards the end of constructing a non-degenerate limit. To this

end, we state the following lemmas found in [3], but with a proof included to illuminate

reasoning and show the usefulness of the generating function in this context.

Lemma 4.2.1. If m
.=
∑∞

j=1 j pj = 1, p1 > 0, and p0 < 1, then for any k ∈N,

lim
n→∞
P(Zn = k | Zn > 0, Zn+1 = 0) =

∞
∑

k=1

πk p k
0

∑

πk p k
0

.= θk ,

where θk ≥ 0,
∑∞

k=1θk = 1.

Proof. We consider P(Zn = k | Zn > 0, Zn+1 = 0), where k ∈N. The additional conditioning

on the event {Zn+1 = 0} yields the term p k
0 in the following, because each of the k individuals

from generation n must die out at generation n +1. Recall that {py }y ∈N denotes the i.i.d.

offspring distribution of each of the individuals. Seeking to express P(Zn = k | Zn > 0, Zn+1 =

0) in terms of πk , we note that

P(Zn = k | Zn > 0, Zn+1 = 0) =
P(Zn = k , Zn > 0, Zn+1 = 0)
P(Zn > 0, Zn+1 = 0)

=
Pn (1, k )p k

0
∑∞

i=1Pn (1, i )p i
0

=
Pn (1,k )p k

0
Pn (1,1)

∑∞
i=1
Pn (1,i )
Pn (1,1)p

i
0

Taking the limit of each term as n→∞,

Pn (1, k )
Pn (1, 1)

→πk

by Lemma 2.4.4, thus proving the desired convergence toθk defined in the lemma statement.

This limit is well-defined because of the additional term p k
0 within the sum; In Theorem

2.4.5,
∑∞

k=1πk was shown to diverge in the critical case, however this denominator is now

converted into a power series in p0 ∈ [0, 1)where the πk s yield the coefficients.

Lemma 4.2.2. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, andσ2 .=
∑∞

j=1 j 2pj −1 < ∞. Then

lim
n→∞

n 2P(Zn > 0, Zn+1 = 0) =
2

σ2
.
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Proof. Consider that

P(Zn > 0, Zn+1 = 0) = P(Zn > 0) − P(Zn > 0, Zn+1 > 0) (4.35)

This implies that

P(Zn > 0, Zn+1 = 0) = P(Zn > 0) − P(Zn+1 > 0). (4.36)

Now,

P(Zn > 0, Zn+1 = 0) = (1− fn (0)) − (1− fn+1(0))

= fn+1(0)− fn (0).
(4.37)

We will take advantage of a previously given result about the generating function fn (t ) of

Zn . From (3.1) in the proof of Theorem 3.1.1,

lim
n→∞

1

n

�

1

1− fn (t )
−

1

1− t

�

=
σ2

2
,

uniformly on [0, 1). In this lemma, we wish to consider

fn+1(t )− fn (t ).

By definition of fn (t ),

fn+1(t )− fn (t ) = f ( fn (t ))− fn (t ).

It is known that as n →∞, fn (t )→ 1 and further that 1 is a fixed point of f (t ). Together,

this gives that as n →∞, f ( fn (t ))− fn (t )→ 0. The rate of convergence is of importance

here to obtain the proper scaling for the result. Consider the following limit:

lim
n→∞

f ( fn (t ))− fn (t )
( fn (t )−1)2

= lim
x→1−

f (x )− x

(x −1)2

= lim
x→1−

f ′(x )−1

2(x −1)

= lim
x→1−

f ′′(x )
2

=
σ2

2
.

(4.38)

As in Theorem 3.1.1, we are using the fact that the generating function for the offspring

distribution, f , is assumed to have finite variance, denoted byσ2. Because of this assump-

tion and its correspondence to theC 2-differentiability of f , the limit above is well-defined.
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Thus,
σ2

2
= lim

n→∞

f ( fn (t ))− fn (t )
( fn (t )−1)2

= lim
n→∞

n 2( fn+1(t )− fn (t ))
n 2( fn (t )−1)2

.

Since the result above from Theorem 3.1.1 gives limn→∞n ( fn (t )−1) = 2
σ2 , the denominator

converges to 4
σ4 . Then it must be the case that the numerator converges to 2

σ2 , i.e.

lim
n→∞

n 2( fn+1(t )− fn (t )) =
2

σ2
, t < 1. (4.39)

Applying this result for the case t = 0 to (4.37),

lim
n→∞

n 2P(Zn > 0, Zn+1 = 0) = lim
n→∞

n 2
�

fn+1(0)− fn (0)
�

=
2

σ2
.

We take advantage of the previous lemmas to conclude the following result that is useful

for determining the limit considered in Theorem 4.2.4, the culmination of this chapter.

Theorem 4.2.3. Let m
.=
∑∞

j=1 j pj = 1, 0< p1 < 1, andσ2 .=
∑∞

j=1 j 2pj −1 < ∞. Then for

any k ∈N,

lim
n→∞

n 2P(Zn = k ) =
2θk

σ2p k
0

.

Proof.

P(Zn = k , Zn > 0, Zn+1 = 0) = P(Zn = k | Zn > 0, Zn+1 = 0) P(Zn > 0, Zn+1 = 0). (4.40)

Then

P(Zn+1 = 0 | Zn = k ) P(Zn = k ) = P(Zn = k | Zn > 0, Zn+1 = 0) P(Zn > 0, Zn+1 = 0). (4.41)

Since p k
0 gives the probability of the k individuals each going extinct in the next generation,

p k
0 P(Zn = k ) = P(Zn = k | Zn > 0, Zn+1 = 0) P(Zn > 0, Zn+1 = 0). (4.42)

Now by Lemma 4.2.1, limn→∞P(Zn = k | Zn > 0, Zn+1 = 0) = θk and further, by Lemma 4.2.2,

limn→∞n 2P(Zn > 0, Zn+1 = 0) = 2
σ2 . Thus,

lim
n→∞

n 2P(Zn = k ) = lim
n→∞

1

p k
0

P(Zn = k | Zn > 0, Zn+1 = 0)n 2P(Zn > 0, Zn+1 = 0) =
2θk

σ2p k
0

.
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The following theorem is the culmination of what has been done in this chapter, and

gives new insight into the asymptotic behavior of the total coalescence time under more

precise conditioning than those previously considered.

Theorem 4.2.4. Let m
.=
∑∞

j=1 j pj = 1, 0< p1 < 1, andσ2 .=
∑∞

j=1 j 2pj −1 < ∞.

lim
n→∞
P(Yn > g (n ) | Zn = h (n )) = 1,

where limn→∞
g (n )

n = c1 and limn→∞h (n ) = c2 with c1 ∈ (0, 1), c2 ∈N.

Remark: This result confirms that the same limit holds when conditioning on h (n ) of order 1

and considering g (n ) of any order strictly less than n.

Proof. We first consider P(Yn > k1 | Zn = k2), and then we will let k1
n → c1 as n→∞ and

limn→∞k2 = c2. As in Theorem 4.1.1, let qn
.=P(Zn = 0 | Z0 = 1). As a direct extension of (4.1)

and (4.2), we have

P(Yn > k1 | Zn = k2) = E
�

Zk1
q

Zk1−1

n−k1
P(Zn−k1

= k2 | Z0 = 1) | Zk1
> 0

� P(Zk1
> 0)

P(Zn = k2)
.

Based on our adjusted conditioning, we now require that this one individual not only

live on, but that it also contributes exactly k2 offspring to generation n . Thus, the term

P(Zn−k1
= k2 | Z0 = 1) above is necessary in this case. Regrouping the terms of the same

order yields

P(Yn > k1 | Zn = k2) = E
�Zk1

k1
q

Zk1−1

n−k1
P(Zn−k1

= k2 | Z0 = 1) | Zk1
> 0

�k1P(Zk1
> 0)

P(Zn = k2)

= E
�Zk1

k1
q

Zk1−1

n−k1
| Zk1

> 0
�P(Zn−k1

= k2)
P(Zn = k2)

k1P(Zk1
> 0).

Under the given conditions, we may apply previously stated results to obtain the following

results as k1
n → c1 and k2→ c2 as n→∞.

First we consider the asymptotic behavior of the piece not yet handled by previous cases,

that is,
P(Zn−k1

= k2)
P(Zn = k2)

.

Let r
.= n −k1 and note that r is then of the order n and behaves as (1− c1)n asymptotically.

By Theorem 4.2.3, n 2P(Zn = k2)→
2θk2

σ2p
k2
0

as n→∞ and k2→ c2. Therefore, as n→∞ and
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concurrently k1
n → c1, and k2→ c2,

P(Zn−k1
= k2)

P(Zn = k2)
=

r 2P(Zr = k2)
n 2P(Zn = k2)

n 2

r 2

=
n 2

r 2

2θk2

σ2p
k2
0

2θk2

σ2p
k2
0

=
n 2

(n −k1)2

→
1

(1− c1)2
.

(4.43)

Next, from Theorem 3.1.1 and since as n→∞, k1→∞,

lim
n→∞

k1P(Zk1
> 0) =

2

σ2
. (4.44)

It remains to consider the conditional expectation E
�

Zk1
k1

q
Zk1−1

n−k1
| Zk1

> 0
�

. Let us recall the

corresponding part from Theorem 4.1.2 to verify that as n→∞ and concurrently k1
n → c1,

and k2→ c2,

E
�Zk1

k1
q

Zk1−1

n−k1
| Zk1

> 0
�

→
σ2

2

1
�

1+ c1
1−c1

�2 . (4.45)

Here we notice that this follows from the convergence of
Zk1
k1

in the distributional sense

under the conditional probability measure P{Zk1>0}. Then combining (4.43)-(4.45),

lim
n→∞
P(Yn > k1 | Zn = k2) =

σ2

2

1
�

1+ c1
1−c1

�2

1

(1− c1)2
2

σ2

= 1.

The result of Theorem 4.2.4 seems a bit disappointing at first glance, but it gives some

interesting new insight into the coalescence behavior in the critical case. With k2 of order 1

and k1
n → c1 ∈ (0, 1) as n→∞,

lim
n→∞
P(Yn > k1 | Zn = k2) = 1,

regardless of whether c1 is close to 0, close to 1, or anywhere in between. When c is arbitrarily

close to 1, this theorem narrows the region of coalescence to a very small range of possibility,
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thus yielding a particularly powerful result. The resulting limiting probability in Theorem

4.2.4 being equal to one indicates that we are not putting a strong enough constraint on

the asymptotic order of g (n ). We need to refine the order of the function g (n ) to obtain a

result that dives deeper into this phenomenon.

Consider, then, the timeline for the branching process between generations c1n and n . In

the case described above, the n-th generation will coalesce in this interval with probability

one, but perhaps more can be said by further decomposing the behavior of k1. First, consider

letting k1
n−n a → 1 where a ∈ (0,1) so that the order of k1 is comparable to n , though strictly

smaller than n , in opposition to the considerations in Theorem 4.2.4. Note that for n large

enough, n −n a will lie in-between c n and n for any c ∈ (0,1). See in the following that
n−n a

n → 1 asymptotically.

lim
n→∞

n −n a

n
= lim

n→∞
1−n a−1

= 1,
(4.46)

since a ∈ (0,1). In the following theorem, this research presents the resulting limit under

these considerations.

Theorem 4.2.5. Let m
.=
∑∞

j=1 j pj = 1, 0< p1 < 1, andσ2 .=
∑∞

j=1 j 2pj −1 < ∞.

lim
n→∞
P(Yn > g (n ) | Zn = h (n )) = 0,

where g (n ) = n −n a with a ∈ (0, 1), and limn→∞h (n ) = c1 with c1 ∈N.

Remark: Based on previous discussion, we may note that limn→∞
g (n )

n = 1.

Proof. We first consider P(Yn > k1 | Zn = k2), and then we will let k1
n−n a → 1 as n→∞ and

limn→∞k2 = c1 > 0. As in Theorem 4.1.1, let qn
.=P(Zn = 0 | Z0 = 1). As a direct extension of

(4.1) and (4.2), we have

P(Yn > k1 | Zn = k2) = E
�

Zk1
q

Zk1−1

n−k1
P(Zn−k1

= k2 | Z0 = 1) | Zk1
> 0

� P(Zk1
> 0)

P(Zn = k2)
.

Based on our adjusted conditioning, we now require that this one individual not only

live on, but that it also contributes exactly k2 offspring to generation n . Thus, the term

P(Zn−k1
= k2 | Z0 = 1) above is necessary in this case. Regrouping the terms of the same
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order yields

P(Yn > k1 | Zn = k2) = E
�Zk1

k1
q

Zk1−1

n−k1
P(Zn−k1

= k2 | Z0 = 1) | Zk1
> 0

�k1P(Zk1
> 0)

P(Zn = k2)

= E
�Zk1

k1
q

Zk1−1

n−k1
| Zk1

> 0
�P(Zn−k1

= k2)
P(Zn = k2)

k1P(Zk1
> 0)

= E
�Zk1

k1
q

Zk1−1

n−k1
n 2(1−a ) | Zk1

> 0
�n 2aP(Zn−k1

= k2)
n 2P(Zn = k2)

k1P(Zk1
> 0).

Note that n −k1 behaves asymptotically like n a when a ∈ (0, 1). Under the given conditions,

we may apply previously stated results to obtain the following results as k1
n−n a = 1 and k2→ c1

as n→∞.

First, note that since k1 behaves asymptotically like n −n a ,

lim
n→∞

k1 = lim
n→∞

n −n a

= ∞

So from Theorem 3.1.1,

lim
n→∞

k1P(Zk1
> 0) =

2

σ2
. (4.47)

Next, we consider the asymptotic behavior of the ratio

n 2aP(Zn−k1
= k2)

n 2P(Zn = k2)
.

By Theorem 4.2.3, m 2P(Zm = u )→ 2θu
σ2p u

0
as m→∞. Therefore,

lim
n→∞

n 2aP(Zn−k1
= k2)

n 2P(Zn = k2)
= lim

n→∞

2θk2

σ2p
k2
0

2θk2

σ2p
k2
0

= 1

(4.48)

Finally, we turn our attention to the asymptotic behavior of the conditional expectation

E
�Zk1

k1
q

Zk1−1

n−k1
n 2(1−a ) | Zk1

> 0
�

. (4.49)
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From (4.23),

q
Zk1−1

n−k1
= exp

�

(Zk1
−1)(1−qn−k1

)
ln
�

1− (1−qn−k1
)
�

1−qn−k1

�

= exp
�Zk1

−1

k1
·

ln
�

1− (1−qn−k1
)
�

1−qn−k1

· (n −k1)(1−qn−k1
) ·

k1

n −k1

�

.

(4.50)

Each term may be considered separately in the following work, using the fact that n −k1→
∞ and k1→∞ as n→∞.

First,

lim
n→∞

Zk1
−1

k1
= lim

n→∞

Zk1

k1
−

1

k1

=
σ2

2
η,

(4.51)

in distribution under P{Zk1>0} where η is an exponentially distributed random variable

with parameter 1. Next, limn→∞n − k1 = limn→∞n a =∞ for a ∈ (0,1), implying that

limn→∞1−qn−k1
= 0.

Then,

lim
n→∞

ln
�

1− (1−qn−k1
)
�

1−qn−k1

= −1, (4.52)

Since limu→0
ln(1−u )

u =−1.

Then,

lim
n→∞

(n −k1)(1−qn−k1
) =

2

σ2
, (4.53)

as in (4.7).

Finally, we observe that

lim
n→∞

k1

n −k1
= lim

n→∞

n −n a

n a

= lim
n→∞

n 1−a −1

= ∞,

(4.54)

since a ∈ (0,1). In particular, we will see that the rate of this divergence is crucial to the
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remainder of the proof. Combining (4.51)-(4.54) and returning to the equivalence in (4.50),

lim
n→∞

q
Zk1−1

n−k1
= lim

n→∞
exp

�Zk1
−1

k1
·

ln
�

1− (1−qn−k1
)
�

1−qn−k1

· (n −k1)(1−qn−k1
) ·

k1

n −k1

�

= 0,

(4.55)

where this convergence behaves in the same way as e −c ·n 1−a
, which is to say the convergence

to 0 is of exponential order.

We may now return to the conditional expectation from (4.49) and consider its asymptotic

behavior under P{Zk1>0}. We have seen that
Zk1
k1

converges to an exponentially distributed

random variable in the distributional sense under P{Zk1>0}. It remains to note that while

q
Zk1−1

n−k1
→ 0 exponentially,

lim
n→∞

n 2(1−a ) =∞, (4.56)

polynomially. Thus,

E
�Zk1

k1
q

Zk1−1

n−k1
n 2(1−a ) | Zk1

> 0
�

→ 0 (4.57)

as n→∞. Combining the results from (4.47), (4.48), and (4.57) verifies that

lim
n→∞
P(Yn > k1 | Zn = k2) = 0.

As a result of Theorems 4.2.4 and 4.2.5, we want to make some observations to appreciate

what these theorems imply in relation to the asymptotic behavior of the total coalescence

time in the critical branching process. Considering the coalescence time of the order n but

strictly away from n is not enough to gain the full picture of the desired limit in the critical

case. With the lower bound on total coalescence time behaving like c1n as in Theorem 4.2.4,

coalescence is almost surly between generation c1n and the present time n for any c1 < 1.

Further, with the bound on total coalescence time behaving asymptotically like n −n a

for a ∈ (0, 1) as in Theorem 4.2.5, coalescence is almost surely between the initial generation

and generation n −n a . This shows that there is very fine scaling required in order to further

restrict the region of coalescence and maintain a non-trivial limit in this case. In particular,

we would need to investigate a new bounding function g (n ) that will lie between c n and

n −n a for n large enough in order to gain a fuller picture of this asymptotic behavior.
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CHAPTER

5

ASYMPTOTIC BEHAVIOR OF THE

PAIRWISE COALESCENCE TIME

The goal of this final chapter is to construct results analogous to those found in Chapter 4,

but now for the so-called pairwise coalescence time.

Definition 5.0.1. The pairwise coalescence time of two randomly chosen individuals in any

generation is the generation number of their most recent common ancestor. This will be a

random variable and we denote by Xn the pairwise coalescence time for two randomly chosen

individuals from generation n.

In order to observe how the random variable Xn behaves asymptotically, we must

first obtain several results regarding a point process that will turn up in the main pairwise

coalescence convergence results, Theorems 5.2.1 and 5.2.2. Of these two culminating results

in Section 5.2, the reader may observe that the first theorem is previously known and the

second is an original theorem that broadens the scope of the situation in question. It can

also be seen that Theorem 5.2.1 may be obtained by considering a special case of Theorem

5.2.2.
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5.1 Convergence of a Particular Point Process

We have already seen that each {Zn
n | Zn > 0} converges to an exponential random variable

in the distributional sense. In the following result from [1], we are considering a random

number Zk of these points to see if they behave in the same way.

5.1.1 Case I

Theorem 5.1.1. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, and σ2 .=
∑∞

j=1 j 2pj − 1 < ∞. Let the

point process Vn be defined by

Vn
.=
§Z (k )n−k ,i

n −k
: 1 ≤ i ≤ Zk , Z (k )n−k ,i > 0

ª

.

Conditioned on the event {Zn > 0}, as n , k →∞, k
n → u, and with u ∈ (0, 1), Vn converges

to the point process given by

V
.= {ηi : 1 ≤ i ≤ Nu},

where {ηi }i≥1 are i.i.d. exponential random variables with parameter σ2

2 and Nu is inde-

pendent of {ηi }i≥1 with distribution P(Nu = k ) = (1− u )u k−1, k ≥ 1 with the intensity

1.

Remark: It is intuitive that we will still get convergence to exponential random variables

when considering random variables of this form (based on Theorem 3.2.1), but the interest

rests on the collective convergence of all of them as a point process governed by the random

variable Nu .

Proof. We may use the Laplace transform to prove an equivalent statement (See Section

2.5.1). Let f : R+→R+ be a bounded and continuous function such that f (0) = 0. If it can

be shown that for any s > 0,

E
�

exp
�

− s
Zk
∑

i=1

f
�Z (k )n−k ,i

n −k

�

·χ {Z (k )n−k ,i > 0}

�

�

� Zn > 0
�

−→ E
�

exp
�

− s
Nu
∑

i=1

f (ηi )
��

,

we conclude the desired result, that conditioned on {Zn > 0}, as n , k →∞, k
n → u , where

u ∈ (0, 1),
§Z (k )n−k ,i

n −k
: 1 ≤ i ≤ Zk , Z (k )n−k ,i > 0

ª

−→ {ηi : 1 ≤ i ≤ Nu},
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in distribution, as point processes. For 1≤ k ≤ n , let

Yn ,k
.= exp

�

− s
Zk
∑

i=1

f
�Z (k )n−k ,i

n −k

�

·χ {Z (k )n−k ,i > 0}

�

.

We must look at E(Yn ,k | Zn > 0). First we use the tower property for the conditional

expectation to see that

E(Yn ,k | Zn > 0) = E
�

E(Yn ,k ·χ {Zn > 0} | Fk ) | Zn > 0
�

, (5.1)

whereFk
.=σ({Z j | j ≤ k}), theσ-algebra generated by the set {Z j | j ≤ k}. We will return

to this equation, but first, consider the inside conditional expectation. We compute

E(Yn ,k ·χ {Zn>0} | Fk ) = E
�

Yn ,k ·χ {Zk>0} ·χ {Zn>0} | Zk

�

(by the Markov Property)

= E
�

Yn ,k ·χ {Zk>0} | Zk

�

− E
�

Yn ,k ·χ {Zk>0} ·χ {Zn=0} | Zk

�

= E
�

exp
�

− s
Zk
∑

i=1

f
�Z (k )n−k ,i

n −k

�

·χ {Z (k )n−k ,i>0}

�

·χ {Zk>0} | Zk

�

−E
�

exp
�

− s
Zk
∑

i=1

f
�Z (k )n−k ,i

n −k

�

·χ {Z (k )n−k ,i>0}

�

·χ {Zk>0} ·χ {Zn=0} | Zk

�

=

�

E
�

exp
�

− s f (
Zn−k

n −k
) ·χ {Zn−k>0}

�

| Z0 = 1
�

�Zk

·χ {Zk>0}

−
�

P
�

Zn−k = 0 | Z0 = 1
�

�Zk

·χ {Zk>0} (Due to conditional

independence)

=
�

gn−k (s )
�Zk ·χ {Zk>0} −

�

qn−k

�Zk ·χ {Zk>0},

where g j (s )
.= E

�

exp
�

− s f (Z j

j ) ·χ {Z j > 0}

�

| Z0 = 1
�

and q j
.= P

�

Z j = 0 | Z0 = 1
�

.

In summary, from above,

E(Yn ,k ·χ {Zn>0} | Fk ) =
�

gn−k (s )
�Zk ·χ {Zk>0} −

�

qn−k

�Zk ·χ {Zk>0}. (5.2)

Let g̃ j (s )
.= E

�

exp
�

−s f (Z j

j )
�

|Z j > 0, Z0 = 1
�

. Recall from Theorem 3.2.1 that
�Z j

j |Z j > 0
	 d−→

Y where Y is exponentially distributed with parameter 2
σ2 . Then since f is a bounded and
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continuous function, we observe the following as j →∞.

g̃ j (s ) =

∫

R
e −s f (x )d

�

P{Z j>0}
�

Z j
j
(x )

→
2

σ2

∫ ∞

0

e −s f (x )e
−2x
σ2 d x

.= g̃ (s ).

(5.3)

Now, if g j (s ) can be expressed in terms of g̃ j (s ), then we may observe its limiting behavior.

Note that

g̃ j (s ) = E
�

exp
�

− s f (
Z j

j
)
�

| Z j > 0, Z0 = 1
�

=
∞
∑

k=1

exp
�

− s f (k/ j )
�

P(Z j = k | Z j > 0, Z0 = 1)

=
∞
∑

k=1

exp
�

− s f (k/ j )
�

P(Z j = k , Z0 = 1) ·
1

P(Z j > 0, Z0 = 1)

=
∞
∑

k=1

exp
�

− s f (k/ j )
�

P(Z j = k , Z0 = 1) ·
1

P (Z j > 0 | Z0 = 1) ·P(Z0 = 1)

=
∞
∑

k=1

exp
�

− s f (k/ j )
�

P(Z j = k | Z0 = 1) ·
1

(1−P(Z j = 0 | Z0 = 1))

=
g j (s )− e −s f (0)q j

1−q j

=
g j (s )−q j

1−q j
,

where we used the fact that f (0) = 0. Then,

g j (s ) = q j + g̃ j (s )(1−q j )

= 1 + (1−q j )(g̃ j (s )−1).
(5.4)

Now that g j (s ) is known in terms of g̃ j (s ), we are able to determine the limiting behavior of

not just g j (s ), but (g j (s )) j , as well as q j
j . First, see the following equivalences:

(g j (s ))
j =

�

1 + (1−q j )(g̃ j (s )−1)
� j

= exp
�

j ln(1 + (1−q j )(g̃ j (s )−1))
�

= exp
�

j (1−q j )
ln(1 + (1−q j )(g̃ j (s )−1))

1−q j

�

,

(5.5)
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and

q j
j = exp

�

j ln(1− (1−q j ))
�

= exp
�

j (1−q j )
ln(1− (1−q j )

1−q j

�

.
(5.6)

Computing the limits of (5.5) and (5.6) respectively as j → ∞ yields

lim
j→∞
(g j (s ))

j = exp
�

2/σ2 lim
j→∞

ln(1 + (1−q j )(g̃ j (s )−1))

1−q j

�

= exp
�

2/σ2 lim
j→∞
(g̃ j (s )−1)

�

= exp
� 2

σ2
(g̃ (s )−1)

�

,

(5.7)

recalling from (5.3) that g̃ j (s )→ g̃ (s ) as j →∞. Also,

lim
j→∞

q j
j = exp

�

2/σ2 lim
j→∞

ln(1− (1−q j ))

1−q j

�

= exp
�

−2/σ2
�

.

(5.8)

Returning to (5.1) and using (5.2),

E(Yn ,k | Zn > 0) = E
�

�

�

gn−k (s )
�Zk ·χ {Zk > 0} −

�

qn−k

�Zk ·χ {Zk > 0}

�

| Zn > 0
�

. (5.9)

Consider the following to determine the limiting behavior of the two parts of the right-hand
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term in (5.9) as n→∞, k →∞, k
n → u , and with u ∈ (0, 1).

E
�

�

gn−k (s )
�Zk

�

� Zk > 0
�

= E
�

�

�

gn−k (s )
�n−k

�

Zk
k (

k
n−k ) �

� Zk > 0

�

→
2

σ2

∫ ∞

0

exp
�

2

σ2
(g̃ (s )−1) ·

u

1−u
· x
�

e
−2x
σ2 d x ,

recalling the limit computed in (5.5) and that from Theorem 3.2.1, Zk
k underP{Zk>0} converges

in distribution to Y where Y is an exponentially distributed random variable with parameter
2
σ2 .

=
2

σ2

∫ ∞

0

exp
�−2

σ2

�

1 −
(g̃ (s ) − 1)u

1 − u

�

x
�

d x

=
2

σ2
·

σ2

2
�

1 − (g̃ (s ) − 1)u
1 − u

�

=
1 − u

1 − ug̃ (s )
.

(5.10)

Also,

E
�

(qn−k )
Zk
�

� Zk > 0
�

= E
�

�

(qn−k )
n−k

�

Zk
k ·

k
n−k

�

� Zk > 0
�

→
2

σ2

∫ ∞

0

exp
�−2

σ2
·

u

1−u
· x
�

e
−2x
σ2 d x ,

recalling the limit computed in (5.6).

=
2

σ2

∫ ∞

0

exp
�−2

σ2

�

u

1−u
+ 1

�

x
�

d x

= 1−u .

(5.11)

From the (5.9), however, we must consider these expectations conditioned not on {Zk > 0}
but rather on {Zn > 0}. To that end, we use (5.10) and (5.11) to compute the following,
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applying Theorem 3.1.1 whenever necessary. As n→∞, k →∞, k
n → u , and with u ∈ (0, 1),

E
�

�

gn−k (s )
�Zk | Zn > 0

�

=
P(Zk > 0)
P(Zn > 0)

·E
�

�

gn−k (s )
�Zk

�

� Zk > 0
�

→
1

u
·

1 − u

1 − ug̃ (s )
,

(5.12)

recalling from Theorem 3.1.1 that mP(Zm > 0)→ 2
σ2 . Similarly, and under the same limiting

considerations,

E
�

(qn−k )
Zk | Zn > 0

�

= lim
n→∞

P(Zk > 0)
P(Zn > 0)

·E
�

(qn−k )
Zk
�

� Zk > 0
�

→
1

u
(1−u ).

(5.13)

Finally, we utilize (5.12) and (5.13) by returning to (5.9) and considering the asymptotic

behavior thereof as n→∞, k →∞, k
n → u , and with u ∈ (0, 1).

E(Yn ,k | Zn > 0) →
1 − u

u

�

1

1 − ug̃ (s )
− 1

�

= (1 − u ) ·
g̃ (s )

1 − ug̃ (s )

= (1 − u )
∞
∑

j=0

u j
�

g̃ (s )
� j+1

=
∞
∑

j=1

(1 − u )u j−1
�

g̃ (s )
� j

=
∞
∑

j=1

P(Nu = j )
�

2

σ2

∫ ∞

0

e −s f (x )e
−2x
σ2 d x

� j

=
∞
∑

j=1

P(Nu = j )E
�

e −s
∑ j

i=1 f (ηi )
�

.

(5.14)

Here we require the linear independence between the random variable Nu and the family

of exponential random variables {ηi }i≥1 to see that

∞
∑

j=1

P(Nu = j )E
�

e −s
∑ j

i=1 f (ηi )
�

= E
�

e −s
∑Nu

i=1 f (ηi )
�

. (5.15)

Then, combining (5.14) and (5.15), as n→∞, k →∞, k
n → u , and with u ∈ (0, 1),

E(Yn ,k | Zn > 0) → E
�

e −s
∑Nu

i=1 f (ηi )
�

,
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where the exponential random variables {ηi }i≥1 are i.i.d. with parameter σ2

2 and Nu is

geometrically distributed with parameter u and independent of {ηi }i≥1.

5.1.2 Case II

We now present an adjustment to the previous theorem as a result of our own consideration.

This non-trivial change to the conditions considered yields a new distribution function

with intensity dependent on a given constant which arises out of the limit in question.

Theorem 5.1.2. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, and σ2 .=
∑∞

j=1 j 2pj − 1 < ∞. Let the

point process Vn be defined by

Vn
.=
§Z (k )n−k1,i

n −k1
: 1 ≤ i ≤ Zk1

, Z (k1)
n−k1,i > 0

ª

.

Then conditioned on the event {Zn > k2}, as n , k1, k2 →∞, k1
n → u1, k2

n → u2, and with

u1 ∈ (0, 1) and u2 > 0, Vn converges to the point process

V
.= {ηi : 1≤ i ≤Nu1

},

where {ηi }i≥1 are i.i.d. exponential random variables with parameter σ
2

2 and Nu1
is indepen-

dent of {ηi }i≥1 with distribution P(Nu1
= k ) = (1 − u1)u k−1

1 , k ≥ 1, with intensity given by

e
2u2
σ2 .

Proof. We may again use the Laplace transform to prove an equivalent statement. Let

f : R+→R+ be a bounded and continuous function such that f (0) = 0. If it can be shown

that for any s > 0,

E
�

exp
�

− s

Zk1
∑

i=1

f
�Z (k1)

n−k1,i

n −k1

�

·χ {Z (k1)
n−k1,i > 0}

�

�

� Zn > k2

�

−→ E
�

exp
�

− s

Nu1
∑

i=1

f (ηi )
��

,

we conclude the desired result, that conditioned on {Zn > k2}, as n , k →∞, k1
n → u1,

k2
n → u2, where u1 ∈ (0, 1), u2 > 0,

§Z (k1)
n−k1,i

n −k1
: 1 ≤ i ≤ Zk1

, Z (k1)
n−k1,i > 0

ª

−→ {ηi : 1 ≤ i ≤ Nu1
},

in distribution, as point processes. For 1≤ k1 ≤ n , let

Yn ,k1

.= exp
�

− s

Zk1
∑

i=1

f
�Z (k1)

n−k1,i

n −k1

�

·χ {Z (k1)
n−k1,i > 0}

�

.

63



We must look at E(Yn ,k1
| Zn > k2). As in the proof of Theorem 5.1.1, we use the tower

property to see that

E(Yn ,k1
| Zn > k2) = E

�

E(Yn ,k1
·χ {Zn > 0} | Fk1

) | Zn > k2

�

, (5.16)

whereFk1

.=σ({Z j | j ≤ k1}), the σ-algebra generated by the set {Z j | j ≤ k1}. Recall (5.2),

which says that

E(Yn ,k1
·χ {Zn>0} | Fk1

) =
�

gn−k1
(s )
�Zk1 ·χ {Zk1>0} −

�

qn−k1

�Zk1 ·χ {Zk1>0}, (5.17)

where g j (s )
.= E

�

exp
�

− s f (Z j

j ) ·χ {Z j > 0}

�

| Z0 = 1
�

and q j
.= P

�

Z j = 0 | Z0 = 1
�

. Note

that this equivalence still holds because in Theorem 5.1.1, k
n → u as n→∞whereas here,

k1
n → u1 as n→∞.

Thus, (5.16) and (5.17) together yield

E(Yn ,k1
| Zn > k2) = E

�

�

gn−k1
(s )
�Zk1 ·χ {Zk1>0} −

�

qn−k1

�Zk1 ·χ {Zk1>0}

�

� Zn > k2

�

= E
�

�

gn−k1
(s )
�Zk1 ·χ {Zk1>0}

�

� Zn > k2

�

− E
�

�

qn−k1

�Zk1 ·χ {Zk1>0}

�

� Zn > k2

�

.

(5.18)

As in Theorem 5.1.1, let g̃ j (s )
.= E

�

exp
�

− s f (Z j

j )
�

| Z j > 0, Z0 = 1
�

and note that (5.3)

computed lim j→∞ g̃ j (s )
.= g̃ (s ). (5.10) and (5.11) respectively show that as n , k1 →∞,

k1
n → u1, and with u1 ∈ (0, 1),

E
�

�

gn−k1
(s )
�Zk1

�

� Zk1
> 0

�

→
1 − u1

1 − u1g̃ (s )
, (5.19)

and

E
�

(qn−k1
)Zk1

�

� Zk1
> 0

�

→ 1−u1. (5.20)

From the (5.18), however, we must consider these expectations conditioned not on {Zk1
> 0}

but rather on {Zn > k2}. To that end, we use (5.19) and (5.20) to compute the following,

applying Theorem 3.1.1 whenever necessary and also using Theorem 3.2.1 to compute

limn→∞P(Zn > k2) in the present case. As n , k1, k2 → ∞, k1
n → u1, k2

n → u2, and with
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u1 ∈ (0, 1), u2 > 0,

E
�

�

gn−k1
(s )
�Zk1 ·χ {Zk1>0}

�

� Zn > k2

�

=
P(Zk1

> 0)
P(Zn > k2)

·E
�

�

gn−k1
(s )
�Zk1

�

� Zk1
> 0

�

→
1

u1
e

2u2
σ2 ·

1 − u1

1 − u1g̃ (s )
.

(5.21)

Similarly,

E
�

(qn−k1
)Zk1 | Zn > k2

�

=
P(Zk1

> 0)
P(Zn > k2)

·E
�

(qn−k1
)Zk1

�

� Zk1
> 0

�

→
1

u1
e

2u2
σ2 (1−u1).

(5.22)

Finally, we utilize (5.21) and (5.22) by returning to (5.18) and considering the asymptotic

behavior thereof as n , k2, k2→∞, k1
n → u1, k2

n → u2 and with u1 ∈ (0, 1), u2 > 0.

E(Yn ,k1
| Zn > k2) →

1

u1
e

2u2
σ2

�

1−u1

1 − u1g̃ (s )
− (1−u1)

�

= (1 − u1)e
2u2
σ2 ·

g̃ (s )
1 − u1g̃ (s )

= (1 − u1)e
2u2
σ2

∞
∑

j=0

u j
1

�

g̃ (s )
� j+1

=
∞
∑

j=1

(1 − u1)u
j−1
1 e

2u2
σ2
�

g̃ (s )
� j

=
∞
∑

j=1

e
2
σ2 u2P(Nu1

= j )
�

2

σ2

∫ ∞

0

e −s f (x )e
−2x
σ2 d x

� j

=
∞
∑

j=1

e
2
σ2 u2P(Nu1

= j )E
�

e −s
∑ j

i=1 f (ηi )
�

.

(5.23)

This is the characteristic function for the point process V defined above by

V = {ηi : 1≤ i ≤Nu1
},

where {ηi }i≥1 are i.i.d. exponential random variables with parameter σ
2

2 and Nu1
is indepen-

dent of {ηi }i≥1 with distribution P(Nu1
= k ) = (1 − u1)u k−1

1 , k ≥ 1, with intensity given by

e
2u2
σ2 .
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5.2 Main Pairwise Coalescence Results

The results given in Section 5.1 are particularly useful in that they contribute to gaining a

fuller understanding of the asymptotic behavior of the pairwise coalescence time under

multi-scale conditioning. Recall the definition of pairwise coalescence given in Definition

(5.0.1). Theorem (5.2.1) comes from Athreya’s work in [1] and gives way to an original result

based on adjusted conditioning in Theorem 5.2.2 that follows.

5.2.1 Case I

Theorem 5.2.1. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, andσ2 .=
∑∞

j=1 j 2pj −1 < ∞.

Then for 0< u < 1,

lim
n→∞
P(Xn < n u | Zn > 1) ≡ H (u )

where H (u ) exists and

H (u ) = 1−E(φ(Nu )) (5.24)

such that:

• Nu is a positive, integer-valued, geometrically-distributed random variable,

i.e. P(Nu = k ) = (1−u )u k−1 for all k ≥ 1;

• for j ≥ 1,

φ( j ) = E
�

∑ j
i=1η

2
i

�∑ j
i=1ηi

�2

�

; (5.25)

• {ηi }i≥0 are i.i.d. exponential random variables with mean 1.

Furthermore, H (·) is an absolutely continuous cumulative distribution function on [0, 1]with

limu→0+ H (u ) = 0 and limu→1− H (u ) = 1.

Proof. First, note that the event {Xn < k} occurs if and only if the two randomly chosen

individuals from generation n are offspring of 2 distinct individuals of generation k . Then

these two individuals are part of the (n −k )-th generation of trees starting by two distinct

individuals in generation k . This is due to analogous reasoning to that of considering the
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event {Yn > k} in Theorems 4.1.1-4.1.5. This yields

P(Xn < k | Zn > 1) = E
�

∑

1≤i 6= j≤Zk

Z (k )n−k ,i Z (k )n−k , j

Zn (Zn −1)

�

� Zn > 1
�

= E
�

�∑Zk

i=1 Z (k )n−k ,i

�2−
∑Zk

i=1(Z
(k )
n−k ,i )

2

Zn (Zn −1)

�

� Zn > 1
�

.

(5.26)

Note that each of the individuals in generation n must come from a branching process

initiated by one of the Zk individuals in generation k . Thus,

Zk
∑

i=1

Z (k )n−k ,i = Zn . (5.27)

We also observe the following as n→∞:

E(Zn | Zn > 0) grows in the order n ⇒
§

1

Zn

�

� Zn > 1
ª

→ 0

⇒
§

1−
1

Zn

�

� Zn > 1
ª

→ 1

⇒
§

Zn (Zn −1)
Z 2

n

�

� Zn > 1
ª

→ 1.

This confirms that under the present conditioning, 1
Zn (Zn−1) may be safely replaced by 1

Z 2
n

.

In light of (5.27) and the above observation, (5.26) may be rewritten as

P(Xn < k | Zn > 1) = E
�Z 2

n −
∑Zk

i=1(Z
(k )
n−k ,i )

2

Z 2
n

�

� Zn > 1
�

= E
�

1 −
∑Zk

i=1(Z
(k )
n−k ,i )

2

�∑Zk

i=1 Z (k )n−k ,i

�2

�

� Zn > 1
�

.

(5.28)

We want to show that the latter term in (5.26) converges to H (u ) as n→∞ and concurrently
k
n → u . In order to see this, (5.28) shows that we may equivalently prove

E
�

∑Zk

i=1(Z
(k )
n−k ,i )

2

�∑Zk

i=1 Z (k )n−k ,i

�2

�

� Zn > 1
�

−→ 1−H (u ) = E(φ(Nu )), (5.29)

as n →∞ and k
n → u . Note that there may be some individuals from generation k who

have "died out" before getting to generation n . To this end, let Gk be the set of all individuals

alive in the generation k , then let Jk
.= {i ∈ Gk : Z (k )n−k ,i > 0}, the set of individuals in the
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generation k still alive at generation n . Then

∑Zk

i=1(Z
(k )
n−k ,i )

2

�∑Zk

i=1 Z (k )n−k ,i

�2 =

∑

i∈Jk
(

Z (k )n−k ,i

n−k )
2

�∑

i∈Jk

Z (k )n−k ,i

n−k

�2
. (5.30)

In order to consider the asymptotic behavior of the point processes given here, we seek to

utilize Theorem 5.1.1. Jk is a continuous functional of the point process {Vn} as defined in

Theorem 5.1.1 and hence weak convergence obtained in the theorem would suffice to give

limiting behavior in this case. One key point, however, is that Theorem 5.1.1 considers the

point process conditioned on the event {Zn > 0} and in (5.30), we must consider conver-

gence of the point process under the event {Zn > 1}. To this end we compute the following,

bearing in mind that from Theorem 3.2.1, Zn
n under P{Zn>0} converges in distribution to Y

where Y is an exponentially distributed random variable with parameter 2
σ2 .

lim
n→∞
P(Zn > 1 | Zn > 0) = lim

n→∞
P
�Zn

n
>

1

n
| Zn > 0

�

= lim
n→∞
P
�

Y >
1

n

�

where Y has distribution e −2u/σ2
by Theorem 3.2.1.

= P(Y > 0)

= 1.

(5.31)

As a result, we may utilize the Theorem 5.1.1 to obtain the desired convergence, namely,

∑

i∈Jk
(

Z (k )n−k ,i

n−k )
2

�∑

i∈Jk

Z (k )n−k ,i

n−k

�2
−→

∑Nu

i=1η
2
i

�∑Nu

i=1ηi

�2 , (5.32)

in the distributional sense as n→∞ and k
n → u where {ηi }i≥0 and Nu are as given in the

statement of Theorem 5.1.1.

It remains only to see that H (u ) satisfies the desired limiting behavior. We have

H (u ) = 1−E(φ(Nu )).

As u→ 1−, we see that Nu →∞ almost surely and thus we consider the following. As a result

of applying the bounded convergence theorem to the sequence of absolutely bounded
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random variables f j
.=

∑ j
i=1η

2
i

�

∑ j
i=1ηi

�2 ,

lim
u→1−

φ(Nu ) = lim
u→1−
E
�

∑Nu

i=1η
2
i

�∑Nu

i=1ηi

�2

�

= E
�

lim
u→1−

∑Nu

i=1η
2
i

�∑Nu

i=1ηi

�2

�

.

(5.33)

Now, to observe the asymptotic behavior of f j , we utilize the strong law of large numbers.

Note that E(η1) =
σ2

2 > 0 and E(η2
i ) <∞ and so we may apply the strong law of large

numbers to obtain

(i) limu→1−
1

Nu

∑Nu

i=1ηi =
σ2

2 ;

(ii) limu→1−
1

Nu

∑Nu

i=1η
2
i =

�

σ2

2

�2
.

Then

lim
j→∞

f j = 0, (5.34)

with probability 1, for which we needed to recall the independence of the random variables

{ηi }i≥1 and the fact that Nu is independent of {ηi }i≥1. Together with (5.33), (5.34) concludes

that

lim
u→1−

φ(Nu ) = 0. (5.35)

Thus,

lim
u→1−

H (u ) = lim
u→1−
(1−E(φ(Nu )))

= 1 − lim
u→1−
E(φ(Nu ))

= 1.

Finally, since

H (u ) = 1−E(φ(Nu ))

= 1−
∞
∑

j=1

φ( j )P(Nu = j )

= 1−
∞
∑

j=1

φ( j )(1−u )u j−1,

(5.36)
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we see that

lim
u→0+

H (u ) = 1−φ(1)

= 1−E
�

η2
1

η2
1

�

= 0.

We observe that Theorem 5.2.1 equivalently states that {Xn
n | Zn > 1} converges in distri-

bution to Y where Y has distribution function H (u ). Also note that the double expectation

computation carried out in H (u ) is on account of the randomness of both the sequence of

random variables {ηi }i≥1 and that of Nu . The expectation in (5.25) kills the randomness of

the random variables {ηi }i≥1, while that of Nu is handled by the expectation in (5.24).

5.2.2 Case II

Theorem 5.2.2. Let m
.=
∑∞

j=1 j pj = 1, p1 < 1, andσ2 .=
∑∞

j=1 j 2pj −1 < ∞.

Then for u1 ∈ (0, 1) and u2 > 0,

lim
n→∞
P(Xn < n u1 | Zn > n u2) ≡ G (u1, u2)

where G (u1, u2) exists and

G (u1, u2) = 1−E(φ(V )) (5.37)

such that:

• V is the point process generated by {ηi }i≥1 and Nu1
with intensity given by e

2u2
σ2 ;

• {ηi }i≥1 are i.i.d. exponential random variables with parameter σ
2

2 and Nu1
is indepen-

dent of {ηi }i≥1 with distribution P(Nu1
= k ) = (1 − u1)u k−1

1 , k ≥ 1;

• for j ≥ 1,

φ( j ) = E
�

∑ j
i=1η

2
i

�∑ j
i=1ηi

�2

�

. (5.38)

Proof. As in the proof of Theorem 5.2.1, note that the event {Xn < k} occurs if and only if the

two randomly chosen individuals from generation n are offspring of 2 distinct individuals

of generation k . Then these two individuals are part of the (n −k )-th generation of trees
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starting by two distinct individuals in generation k . This is due to analogous reasoning to

that of considering the event {Yn > k} in Theorems 4.1.1-4.1.5.

P(Xn < k1 | Zn > k2) = E
�

∑

1≤i 6= j≤Zk1

Z (k1)
n−k1,i Z (k1)

n−k1, j

Zn (Zn −1)

�

� Zn > k2

�

= E
�

�∑Zk1
i=1 Z (k1)

n−k1,i

�2−
∑Zk1

i=1(Z
(k1)
n−k1,i )

2

Zn (Zn −1)

�

� Zn > k2

�

.

(5.39)

Recall that each of the individuals in generation n must come from a branching process

initiated by one of the Zk1
individuals in generation k1. Analogous to (5.27), we have

Zk1
∑

i=1

Z (k1)
n−k1,i = Zn . (5.40)

We also may observe the following as n→∞:

E(Zn | Zn > 0) grows in the order n ⇒
§

1

Zn

�

� Zn > 1
ª

→ 0

⇒
§

1

Zn

�

� Zn > n u2

ª

→ 0

⇒
§

1−
1

Zn

�

� Zn > n u2

ª

→ 1

⇒
§

Zn (Zn −1)
Z 2

n

�

� Zn > n u2

ª

→ 1.

This confirms that under the present conditioning, 1
Zn (Zn−1) may be safely replaced by 1

Z 2
n

.

In light of (5.40) and the observation above, (5.39) may be rewritten as

P(Xn < k1 | Zn > k2) = E
�Z 2

n −
∑Zk1

i=1(Z
(k1)
n−k1,i )

2

Z 2
n

�

� Zn > k2

�

= E
�

1 −

∑Zk1
i=1(Z

(k1)
n−k1,i )

2

�∑Zk1
i=1 Z (k1)

n−k1,i

�2

�

� Zn > k2

�

.

(5.41)

We want to show that the latter term in (5.39) converges to G (u1, u2) as n →∞ and con-

currently k1
n → u1 and k2

n → u2. In order to see this, (5.41) shows that we may equivalently

prove that

E
�

∑Zk1
i=1(Z

(k1)
n−k1,i )

2

�∑Zk1
i=1 Z (k1)

n−k1,i

�2

�

� Zn > k2

�

−→ 1−G (u1, u2) = E(φ(V )) (5.42)
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as n→∞, k1
n → u1, and k2

n → u2.

Note that there may be some individuals from generation k1 who have "died out" before

getting to generation n . To this end, let Gk1
be the set of all individuals alive in the generation

k1. Then let Jk1

.= {i ∈Gk1
: Z (k1)

n−k1,i > 0}, the set of individuals in generation k1 still alive at

generation n . Then

∑Zk1
i=1(Z

(k1)
n−k1,i )

2

�∑Zk1
i=1 Z (k1)

n−k1,i

�2 =

∑

i∈Jk1
(

Z
(k1)
n−k1,i

n−k1
)2

�∑

i∈Jk1

Z
(k1)
n−k1,i

n−k1

�2
. (5.43)

In order to consider the asymptotic behavior of the point processes given here, we seek to

utilize Theorem 5.1.2. Jk1
is a continuous functional of the point process {Vn} as defined in

Theorem 5.1.2 and hence weak convergence obtained in the theorem would suffice to give

limiting behavior in this case. As a result, we may utilize the Theorem 5.1.2 to obtain the

desired convergence under conditioning on the event {Zn > k2}. More precisely,

∑

i∈Jk1
(

Z
(k1)
n−k1,i

n−k1
)2

�∑

i∈Jk1

Z
(k1)
n−k1,i

n−k1

�2
−→

∑Nu1
i=1 η

2
i

�∑Nu1
i=1 ηi

�2 , (5.44)

in the distributional sense, as n→∞, k1
n → u1 ∈ (0, 1) and k2

n → u2 > 0.

∑Nu1
i=1 η

2
i

�∑Nu1
i=1 ηi

�2 = (φ(V )),

where V is the point process generated by {ηi }i≥1 and Nu1
with {ηi }i≥1 i.i.d. exponential

random variables with parameter σ2

2 and Nu1
independent of {ηi }i≥1 with distribution

P(Nu1
= k ) = (1 − u1)u k−1

1 , k ≥ 1, having intensity given by e
2u2
σ2 . This finishes the proof.

The goal of this research has been to expand upon previously known results pertaining

to the coalescence time for the critical branching process. The main results of Chapter 4

clarify the asymptotic behavior of the total coalescence time under multi-scale conditioning.

As an extension of these results, we also considered more precise conditioning in Section

4.2. Several interesting observations regarding the nature of these results leads to an open

question, inviting more fine-tuned scaling on the random variable Yn representing the total

coalescence time. Chapter 5 takes advantage of the theory of point processes to obtain

analogous results to those of Section 4.1 for the random variable representing the pairwise
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coalescence time, Xn .
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