
ABSTRACT

MYERS, NICHOLAS J. Applications of Mathematical Modeling in Ecology and Health Care. (Under
the direction of H.T. Banks and Hien Tran.)

Mathematical modeling is a valuable tool in multidisciplinary research that has found use in a

variety of fields such as physics, chemistry, engineering and biology. Modeling using differential

equations is common in biological applications such as modeling populations or physiological based

pharmacokinetics. This research follows two distinct projects: one related to ecology and toxicology

and the other in health care modeling immunosuppression. With regards to the first project, the

focus is on using mathematical modeling to examine the annual cycle of bumblebee colonies.

There is a global decline of pollinators for reasons that include habitat loss and pesticides. While

honeybees are well studied, less is known about bumblebees and their decline. Using the species

Bombus terrestris as an example, population dynamics of each individual class are modeled using

delay differential equations since this is common with insect populations. Initially the development

of the differential equation model is presented. This model includes important aspects of colonies

over their annual lifestyle such as each class’s metamorphosis, resource dynamics (pollen and

nectar), and a switch time for the colony. Next, the model is updated significantly yielding the

ability to explore the effects of common pesticides (e.g., imidacloprid) on survivability of the colony.

Currently in the United States, risk assessment on all arthropods is based on acute toxicity tests

(LC50) on the European honeybee Apis mellifera. These tests fail to account for sub-lethal effects

of these pesticides on the bumblebee colonies and the model shows the dangers that sub-lethal

effects present to the survivability of a colony. The second project examines immunosuppression in

the case of renal transplant recipients. Millions of Americans suffer from chronic kidney disease

(CKD) and the individuals diagnosed as Stage 5 have almost entirely lost kidney functionality. Their

only available treatment options are a lifetime of dialysis or kidney transplantation. The solid organ

the host receives undergoes some degree of rejection in almost all cases since the host’s immune

system treats the allograft as foreign tissue. A variety of drugs are used presently to suppress the

host’s immune system to prevent the rejection of the allograft and preserve its functionality for the

host. Immunosuppressed renal transplant patients have an increased risk of infection by pathogens,

in particular human polyomavirus type 1 (also known as BK virus or BKV). BK virus presents a

significant danger to renal transplant patients because an infection attacks renal tubule cells within

the allograft damaging kidney function. Therefore, a balanced treatment is needed with enough

immunosuppression occurring to prevent rejection of the allograft while avoiding over-suppression

where the immune system cannot fight off pathogens. Currently, protocols for immunosuppressant

treatments vary by treatment center and this research aims to assist physicians in finding well

balanced treatment strategies. The model presented in this work accounts for the efficacy of an

immunosuppression treatment and the effect it has on the dynamics of the host’s immune system,



allograft and BK virus concentrations. The model includes a control theory framework to produce

a receding horizon controller that represents immunosuppression efficacy over time in order to

find a balance treatment. The ensemble Kalman filter is also utilized to include patient data as a

feedback mechanism for the model.
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CHAPTER

1

INTRODUCTION

Today, an essential tool in multidisciplinary research across many fields is mathematical modeling.

Mathematical modeling is the practice of using mathematical methods to determine meaningful

approximations of real world systems for the purpose of gaining insight and guidance to understand

those systems. These mathematical models can be as simple as an equation describing a savings

account with regular deposits and withdrawals. More advanced modeling is often found in physical

science applications such as the movement of particles in fluids or weather forecasting. Chemistry

and biology also harness the power of mathematical modeling in research.

Many biological applications have utilized mathematical modeling as a tool. Differential equations

are often used in constructing these mathematical models in the biological sciences. Modeling of

metabolic pathways in crops and animals is becoming common in systems biology applications.

Other examples include modeling animal populations in ecology, chemical and drug absorption

in physiological based pharmacokinetic (PBPK) modeling, and diseases both in populations of

susceptible individuals and at an organic level to further understand disease behavior. Our research

explores bumblebee population modeling in ecotoxicolgy (chapters 2 and 3) and also immuno-

suppression modeling in humans (chapter 4).

The motivation behind our work on bumblebees stems from interest in the world wide decline of

pollinator populations which is occurring for a variety of reasons including the use of pesticides

and resource limitations. Declining pollinator populations are negatively effecting both biodiveristy

and the global food supply. Bumblebees are the primary pollinators for a variety wild plants and

have interactions (both direct and indirect) with hundreds of other species. As the population of
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bumblebees declines in a habitat so will the abundance of the species that depend on bumblebees

and complete loss of bumblebees would result in loss of many of those species as well. In agriculture,

there are a number of crops that rely specifically on insect pollination (predominantly honey bees

and bumblebees) where further decreases of their populations would likely result in less crop yield

or higher costs due to need for more expensive mechanical pollination. Although much research has

been focused on honey bees, much less is known about bumblebee populations. We examine the

bumblebee species Bombus terrestris in this work in order to provide insight into colony dynamics.

In chapter 2, we develop a mathematical model for bumblebee colonies while focusing on the

individual level of the hive, i.e., queens, workers, males, and gynes. We also include two known

food sources for bumblebees, nectar and pollen which sustain a colony through an annual cycle.

The mathematical model utilizes delay differential equations to represent the different groups of

individuals and also the resources. Since bumblebee development involves three pre-adult stages,

progression through the stages are easily captured using a system of delay differential equations. In

addition, bumblebee colonies expire at the end of an annual cycle hence, the success of a colony

can be attributed to the number of gynes that survive long enough to hibernate and also the number

of males available to mate with gynes outside the colony to preserve genetic information.

Following the work in the previous chapter, the focus of chapter 3 is to understand pesticide effects

on the reproductive output of bumblebee colonies. There is a variety of pesticides approved for use

on crops which bumblebee populations can become exposed to. These pesticides can be lethal at

certain doses and also have alternative effects at sub-lethal doses. We examine some of these sub-

lethal effects on the viability of a Bombus terrestris colony. To examine sub-lethal effects of pesticides

on colonies, adjustments to the model presented in chapter 2 are necessary. The larval stage of the

bumblebee life cycle is most sensitive to resource dynamics within the colony, thus making the

larval stage vital to include in the mathematical model. Other changes involve the introduction of

oophagy and larval ejection mechanisms to provide realisic loss functions for pre-adult members of

the colony. This updated mathematical model allows us to understand the sub-lethal and lethal

effects of pesticides on individual classes within a colony.

In chapter 4, we address a need for better drug dosing regimens in renal transplant patients. Many

of the individuals on the solid organ transplant list require a kidney transplant which is the result

of severe impairment of the patient’s existing kidneys. Chronic kidney disease is the most likely

cause for kidney impairment where individuals at stage 5 have lost almost all kidney function and

are required to undergo regular dialysis. Renal transplantation is the only other treatment option

available. For transplant recipients, an immunosuppression treatment is necessary to prevent the

host’s immune system from attacking the allograft. A balanced suppression regimen is necessary to

prevent the over-suppression of the immune system which results in the bodies inability to protect

itself from pathogens.

With the lack of universally accepted treatment schemes, control theory methods for the problem
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are revisited. A differential equation model for a renal transplant patient is utilized, focusing on renal

tubule cells (susceptible and infected), BK virus which attacks the kidneys during infection, serum

creatinine levels as a surrogate for kidney function and lastly separate immune responses to both

BK virus and the allograft. A receding horizon controller is used to find optimal controllers between

discrete days when patient data is available. As a feedback mechanism for introducing patient

data into the model, the ensemble Kalman filter (EnKF) provides a methodology that preserves the

nonlinearities of the differential equation model. The EnKF provides better approximations to the

state of transplant patient than either the differential equation model or data alone.

In chapter 5, we focus on the future directions for both modeling pesticide effects on bumblebee

populations and immunosuppression in kidney transplant patients. Assumptions made in develop-

ing the mathematical model of bumblebee colonies could be revisited for a more generalized

version of the model such as assuming a dynamic switch time, changes to modeling larval dynamics,

and developing a framework for multi-year simulations. With regards to immunosuppression

modeling, specific drug types and treatment schemes are considered for making more accurate

modeling predictions. Methods such as parameter estimation are discussed to make the model

more personalized. A conclusion of our work is also provided.
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CHAPTER

2

MODELING BUMBLEBEE POPULATION

DYNAMICS WITH DELAY DIFFERENTIAL

EQUATIONS

Adopted from publication: Ecological Modeling, Volume 351, March 2017 [14]

2.1 Introduction

The protection of bumblebee populations, among other pollinators, is vital to sustain global agricul-

tural food production [110, 77], biodiversity and ecosystem functioning [71, 140]. It is now widely

accepted that bumblebee diversity has dramatically declined in the past several decades [27, 33,

36]. Diminishing populations have been ascribed to habitat loss, resulting in loss of nest and flower

resources, pathogens, climate change and exposure to chemical insecticides [156, 193]. The buff-

tailed bumblebee Bombus terrestris has been the subject of much study (see for example, [63, 146, 62,

63, 7]), as it is abundant in Europe and known to be an important pollinator [109]. Much experimental

and analytic effort has been devoted to mapping its biology and natural history [32, 84]. However,

much less is understood about its population dynamics over time and the growth of bumblebee

populations subjected to pressures and limitations of resources (see [51]).

Mathematical modeling based on empirical information on life history parameters can be a strong

tool to project population dynamics and identify vulnerable traits and life stages, e.g., through

sensitivity analysis [52, 21, 133]. With a realistic time-dependent model, it is possible to implement
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and study many suggested single and combined pressures that may affect bumblebees. Empirical

research has concluded that forage resources (pollen and nectar) in the landscape affect overall

bumblebee abundance. Furthermore, explicit modeling of resource dynamics over time has the

potential to elucidate the mechanisms underlying these patterns and explain observed discrepancies

(e.g., [190, 162, 41, 194]) in which life stages (of queens, workers, males, and gynes) are supported

under contrasting timing, amount, type and quality of food resources. Previous theoretical [143]

and empirical [31] work has focused on the influence of particular aspects of foraging behavior

and queen survival on colony growth. Special attention in particular has been given to modeling

the allocation of resources among workers and sexual offspring and its implications for colony

growth [143], with some evidence that optimal tradeoffs are a function of colony size as well as

queen egg-laying rates [152, 30]. We take a broader approach here, developing a population model

in which we can explicitly test hypotheses about how landscape use and exposure to environmental

toxins affect bumblebee populations.

We are motivated by the desire to understand the various ways in which B. terrestris populations

are dynamically affected by environmental pressures, including pesticide exposure and resource

limitation [81, 85, 120]. Mathematical modeling, especially in an iterative approach [21], can be

used for projecting population abundance and understanding the importance of life history traits,

such as survival, reproduction and seasonal reproductive switch times under contrasting scenarios.

Mathematical modeling, particularly when paired with rich empirical data, provides analytic tools

that experimentation alone cannot offer [19]. In this paper, we present a delay differential equation

(DDE) model to simulate the abundance of different bumblebee castes and in-nest resources over

time, with dynamics including colony establishment, mortality, colony growth, reproduction, and

queen hibernation. Delay equations have been used in various applications, including biology,

ecology, engineering (see [9, 53, 83, 100] for examples) and even honeybee population modeling

[108]. We refer the reader to [168] for an introduction to DDEs and applications, as well as [112] for

DDEs in ecology.

We present our model with the underlying assumptions, including a description of the literature

references which provided us either direct or indirect estimates of some model parameters. We

naturally introduce the class of DDEs and provide a brief overview for the reader. We introduce

a linear spline approximation method for obtaining a numerical solution to our model. Next, we

provide model simulations in the absence of pressures. Lastly, we propose ways in which pressures

such as resource limitation and insecticide exposure can be reflected in the model.
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2.2 Model

2.2.1 Our Proposed Model

As we shall further develop below, our model is naturally a nonlinear system of delay differential

equations (DDE) which describe six state variables in a collection of bumblebee colonies: in-nest

nectar abundance A(t ), in-nest pollen abundance B (t ), queens Q (t ), workers W (t ), males M (t ) and

gynes (daughter queens) G (t ). According to [80], only 70% of foragers return to their own colony

after a foraging trip; we therefore assume that there is not-insignificant interaction between colonies

and model a collection of bumblebee colonies which share a common pool of resources. While our

model certainly allows for multiple year projections, we consider a time span of less than one year

here. We define the first day of spring TS := 0, which denotes the day on which all hibernating gynes

emerge from hibernation to become queens and found new colonies. The independent variable t

measures time in days.

We consider the following assumptions and basic seasonal timeline [84, 63, 134, 32]. Hibernating

gynes emerge and become queens that found new colonies at t = TS . These queens immediately

begin foraging for and storing resources (nectar and pollen) inside the nest, as well as producing

worker eggs. In the absence of information about queen foraging efficacy, we assume that the queen

accumulates a negligible store of resources during this time, primarily providing for herself and

the initial brood of workers. Assuming a 22-day worker incubation time (from an egg laid to the

emergence of an adult worker) [84, 63], the first workers emerge at t = TS+22. At this time, the workers

take over resource foraging to develop a store of in-nest resources and tending to new eggs, while the

queens devote all energy to production of worker eggs [84]. The authors of [84, 32] discuss in detail

the somewhat mysterious process of bumblebee reproduction. There are varying theories on what

factors contribute to the switch from worker to male and queen offspring production; these factors

include, but are not limited to, queen condition during the season or during hibernation, queen

pheromones, and worker abundance [84, 32, 97, 161, 64, 63, 119, 134]. Environmental conditions

can also cause nests to have either early or late season switch times [63]. In our model, we assume at

some time t = T ∗, the queen begins to lay sexual (male and gyne) eggs while continuing to produce

worker eggs [32]. At time t = T ∗∗, the queen stops producing worker eggs and devotes all energy

to sexual egg production. At time t = T ∗∗+22, the last new worker emerges. At times t = T ∗+26,

and t = T ∗+30, respectively, the first males and gynes emerge (assuming respective 26 and 30 day

incubation periods [63]).

Sexuals continue to emerge until time t = TW , at which point workers, queens and males die, and

gynes go into hibernation and prepare to become queens in the following year [84, 32]. The exact

values of these timeline points depend greatly on geography, environment and weather. Furthermore,

we believe that allowing T ∗ and T ∗∗ to be functions of the worker population will allow us, in future

6



work, to explore whether environmental changes and pressures such as insecticide exposure can

have an indirect effect on reproductive switch times. A timeline of the bumblebee’s seasonal life

cycle is depicted in Figure 2.1. To demonstrate the usefulness of the DDE model, we fix timeline

values T ∗, T ∗∗, TS and TW at the values estimated by [134] as given in Table 2.2 and described in

section 2.2.2 below.

Figure 2.1 Timeline of bumblebee seasonal dynamics

We assume that the founding queen, workers, as well as worker, male and gyne larvae consume

both nectar and pollen [63]. We explicitly assume that nectar and pollen consumption in the nest is

negligible for adult males and adult gynes; [84] notes that males leave the colony a few days after

reaching adulthood and that gynes may stay in the nest and forage for some time before finding a

place to hibernate. In the absence of estimations for the resource consumption by emerging males

and gynes in a colony, we assume that this short period of consumption is negligible and do not

include it in the current model. We also assume that all colony members have a mortality rate,

which encompasses mortality by aging and mortality during foraging trips. Although we assume

that adult workers and queens consume resources, we do not model their mortality as a function of

resources. We now present the mathematical model as well as the pre-spring history information in

(2.1) and (2.2). Because of the previously described changes in seasonal dynamics, some differential

equations are piecewise defined. All model variables, switch times, and parameters are described in

Table 2.2. In addition, to elucidate the definitions of d A
d t and d B

d t , we have included a description of

seasonal resource (nectar and pollen) consumption and collection changes in Table 2.1. Resource
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consumption by larvae, given by the functions lW , lM , and lG in (2.1), and its functional dependence

on Qt (a ) =Q (t −a ), a ∈ [α,β ]will be described later in more detail.

d A

d t
=
�

bAW −µAW

�

W −µAQQ −2(lW (t ,Qt ) + lM (t ,Qt ) + lG (t ,Qt ))

d B

d t
=
�

bBW −µBW

�

W −µBQQ − (lW (t ,Qt ) + lM (t ,Qt ) + lG (t ,Qt ))

dQ

d t
=−µQQ

d W

d t
= bW (t −22)Q (t −22)

1

9

∫ t−9

t−18

L (γW W (s ))L

 

A(s ) + B (s )
dB

Q (s )
�

Ama x +
Bma x

dB

�

!

d s −µW W

d M

d t
= bM (t −26)Q (t −26)

1

11

∫ t−11

t−22

L (γM W (s ))L

 

A(s ) + B (s )
dB

Q (s )
�

Ama x +
Bma x

dB

�

!

d s −µM M

d G

d t
= bG (t −30)Q (t −30)

1

13

∫ t−13

t−26

L (γG W (s ))L

 

A(s ) + B (s )
dB

Q (s )
�

Ama x +
Bma x

dB

�

!

d s −µG G

(2.1)

A(t ) =















0 t < TS +22;

A0 t = TS +22;

0 t ≥ TW ;

W (t ) =















0 t < TS +22;

W0 t = TS +22;

0 t ≥ TW ;

B (t ) =















0 t < TS +22;

B0 t = TS +22

0 t ≥ TW ;

M (t ) =















0 t < T ∗;

M0 t = T ∗+26;

0 t ≥ TW ;

Q (t ) =















0 t < TS ;

G (TS −1) t = TS ;

0 t ≥ TW ;

G (t ) =















G0e −µGW t t < TS ;

0 t = TS ;

G1 t = T ∗+30;

(2.2)
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Table 2.1 Seasonal time intervals and corresponding effects of colony members on resources, nectar
and pollen.

Time interval Resource collection and consumption

[TS , TS +22) queen collecting and consuming resources

worker larvae consuming resources after TS +4

negligible accumulation of in-nest resources

[TS +22, T ∗) workers collecting and consuming resources

queen consuming resources

worker larvae consuming resources

[T ∗, T ∗∗+22) workers collecting and consuming resources

queen consuming resources

worker larvae consuming resources until T ∗∗+13

male larvae consuming resources after T ∗+4

gyne larvae consuming resources after T ∗+4

[T ∗∗+22, TW ) workers collecting and consuming resources

queen consuming resources

male larvae consuming resources until TW −11

gyne larvae consuming resources until TW −13
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Table 2.2 Model variables and parameters. The selected value for simulations is given in the last
column; we include a source reference for values drawn from the literature.

Variable Description Units Estimate

t time days

A(t ) amount of nectar in colonies ml

B (t ) amount of pollen in colonies g

Q (t ) number of queens individuals (queens)

W (t ) number of workers individuals (workers)

M (t ) number of males individuals (males)

G (t ) number of gynes individuals (gynes)

Timeline

TS first day of spring TS := 0

T ∗ first day male/gyne eggs laid 40 [134]

T ∗∗ end of worker eggs laid 44 [134]

TW beginning of winter 120

Parameters

µAQ queen nectar consumption rate ml
day·individual (Q ) 1

µBQ queen pollen consumption rate g
day·individual (Q ) 0.8

µQ queen death rate 1
day 0.0154 [79]

bAW worker nectar collection rate ml
day·individual (W ) 0.6[87, 146]

bBW worker pollen collection rate g
day·individual (W ) 0.4[87, 68]

µAW worker nectar consumption rate ml
day·individual (W ) 0.15

µBW worker pollen consumption rate g
day·individual (W ) 0.15

bW (t ) worker birth rate workers
queen·day 2.4

µW worker death rate 1
day 0.05

γW worker-worker larvae survival coefficient 1
individual (W ) 0.0025

bM (t ) male birth rate males
queen·day 1.2

µM male death rate 1
day 0.01

γM worker-male larvae survival coefficient 1
individual (W ) 0.0025

bG (t ) gyne birth rate gynes
queen·day 0.8

µG in-season gyne death rate 1
day 0.01

µGW
hibernation gyne death rate 1

day

γG worker-gyne larvae survival coefficient 1
individual (W ) 0.0025

Ama x in-nest nectar maximum (per nest) ml
individual(Q ) 150

Bma x in-nest pollen maximum (per nest) g
individual(Q ) 150

dB pollen grain density g
ml 1[37]

P0 initial larval pollen consumption g
individual(W )·day 0.001 [158]

r̄ larval pollen consumption 1
day 0.25 [158]

growth rate
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2.2.2 Model and Parameter Considerations

For our simulations, additional model and parameters considerations were necessary. We searched

the literature to determine reasonable values for various model assumptions and parameters.

Other parameters in the model, such as the death rate of adult bees, are difficult to empirically

assess in natural environments. Even parameters for which a measured value can be found in

the literature may be scenario dependent and expected to vary between applications. For these

remaining parameters, we select values which are feasible in the defined units and, for the purpose

of demonstrating the interplay between resources, workers, and sexual bees, do not result in total

population loss. In Table 2.2 all model variables, time points, parameters and initial conditions are

reported with corresponding units and literature comments. We now comment further on these

choices.

The function L used at several places in (2.1) is defined by

L (x ) =
1− e −x

1+ e −x
.

This is an increasing, saturating sigmoid function depending on the argument x (much like a

cumulative distribution function to describe probability of survival) [108]. The function L is bounded

in [0, 1] and used to describe various daily survival rates of worker, male and gyne larvae, where x

depends on the population of worker bees which tend to the larvae or in-nest resources. In (2.1),

the product of the two daily survival rates are averaged (using a weighted integral) over the time

frame for which members of a class would be in their larval state. For example in d W
d t , emerging

workers are in their larval state between t −18 and t −9 which are the bounds for the integral and

the weight 1/9 is required for the 9 days these workers spent in the larval phase.

In our model equations for workers, males and gynes, we see the term A(s ) +d−1
B B (s ), quantifying

the net resources at time s . Because A is measured in milliliters, and B is measured in grams, it is

reasonable to use a unit of either ml or g, so without loss of generality, we choose the unit ml. We

can convert the mass of pollen B into volume using the density of pollen. In other words,

BV (t ) = d−1
B B (t ),

where BV (t ) denotes the volume of pollen and dB denotes its density (a constant). There are various

species of pollen, each with different specific material densities. According to [37], an estimated

value for pollen grain density is 1g/ml. So we choose dB = 1 for the preliminary simulations.

When modeling resource consumption we use the fact that a bumblebee goes through three

sequential stages: egg, larval, and pupal before becoming an adult. Larvae consume resources

but eggs and pupa do not; we note the effect this has on seasonal resource consumption in Table 2.1.

Larval stage length can be modified based on food availability [174] or in-nest temperature. For
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simplicity, we assume that bumblebees have constant incubation schedules, seen in Table 2.3 [63].

Table 2.3 Bumblebee incubation breakdown by caste

Caste Total no. incubation days Egg (days) Larva (days) Pupa (days)

Workers 22 4 9 9

Males 26 4 11 11

Gynes 30 4 13 13

Our model tracks resources (pollen and nectar) and adult colony members (queens, workers, males

and gynes). However, all larvae contribute to resource consumption as well and this dynamic must

be included in the model. In Table 2.1, we summarize the effects of all colony members on resources

at all phases of the season. We tentatively assume, for sake of simplicity, that the last worker emerges

when the first male emerges (because of our knowledge of incubation times of 22 and 26 days for

workers and males, respectively, and our estimate that T ∗ = 40 and T ∗∗ = 44, as seen in Table 2.2).

With these assumptions, we have three functionals lW (t ,Qt ), lM (t ,Qt ) and lG (t ,Qt ), in (2.1), which

reflect larval pollen consumption and require definition.

According to [158, 159, 148] daily pollen intake (measured in mass of pollen per larvae per day)

increases exponentially as age increases. Therefore, we can model daily pollen intake per worker

larvae by P0e r̄ a where a measures age with unit [day], for some positive constants P0 and r̄ . The

expected number of worker larvae of age a at time t is given by bW (t −a )Q (t −a ), for 4≤ a ≤ 13.

Therefore, we can model pollen consumption per day by worker larvae as

lW (t ,Qt ) =

∫ 13

4

bW (t −a )Q (t −a )P0e r̄ a d a . (2.3)

A simple change of variables can be used to express this in terms of hysteretic dependence on Q

given by

lW (t ,Qt ) =

∫ t−4

t−13

bW (s )Q (s )P0e r (t−s )d s .

Note that this functional lW (t ,Qt ) depends on the values of Q (s ), t − 13 ≤ s ≤ t − 4. Similarly, we

have

lM (t ,Qt ) =

∫ 15

4

bM Q (t −a )P0e r̄ a d a , (2.4)

for pollen consumption by male larvae which can be written as

lM (t ,Qt ) =

∫ t−4

t−15

bM (s )Q (s )P0e r (t−s )d s ,
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and

lG (t ,Qt ) =

∫ 17

4

bG Q (t −a )P0e r̄ a d a , (2.5)

for pollen consumption by gyne larvae which can be written as

lG (t ,Qt ) =

∫ t−4

t−17

bG (s )Q (s )P0e r (t−s )d s .

We note that the functional dependence on Q (s ) is different in each of (2.3), (2.4) and (2.5). We will

however simply denote the dependence by Qt in a slight abuse of notation which should not result

in confusion for the reader.

By examining data in [158], we assume that initial larval consumption (per larva) P0 is constant

across castes, along with exponential consumption rate r̄ . In addition, according to [147], larval diet

consists of approximately 34% pollen, and the rest is a combination of nectar and a trivial amount

of digestive enzymes. Consequently, we can assume an approximate 2:1 ratio of nectar to pollen for

larval consumption, which explains the larval consumption terms in the model for d A
d t . We note,

however, that the functionals lW , lM , and lG assume consumption by larvae with total survivability

into adulthood, while (2.1) assumes some proportion of all larvae do not survive to adulthood.

Our model underestimates the store of in-nest resources available to hives by overestimating the

consumption of these resources by larvae. Furthermore to capture the first brood (W0) dynamics

of the colony [63], the first brood is assumed to have the necessary resources and size to grow to

adulthood, while larval consumption (and the necessary resource collection) controls the hive

dynamics for all larvae after the initiation of a queen’s first brood.

Since different colonies within a region can exhibit different growth and reproductive strategies [84],

the initial conditions in (2.2) may be non-zero valued in order to capture the appropriate dynamics.

To accurately simulate first brood dynamics, the initial condition W0 = 192 accounts for the number

of workers produced at TS +22 [63] corresponding to the number of beginning colonies, G0 = 20.

Similarly, M0 and G1 allow for large emergence of males and gynes respectively. The non-zero initial

values A0 and B0 may represent in-nest stores of pollen and nectar which remain after the queen

rears the first brood. As indicated previously, we assume no in-nest stores when workers emerge at

TS +22. We also assume no large emergence of males and gynes, taking M0,G1 = 0.

In addition, we simplify the model by letting the worker, male and gyne birth rates bW (t ), bM (t ),

and bG (t ) respectively, be time dependent expressions given by
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bW (t ) =

¨

b W TS ≤ t ≤ T ∗∗

0 else

bM (t ) =

¨

b M T ∗ ≤ t ≤ TW −26

0 else
(2.6)

bG (t ) =

¨

b G T ∗ ≤ t ≤ TW −30

0 else.

This allows for proper simulation of the phases described in Table 2.1 by equations (2.3) - (2.5).

To determine the seasonal switch times (T ∗,T ∗∗), we use the following information taken from [134].

Let the term “first egg" denote the first egg laid in the colony, regardless of caste determination. In

the experiments conducted in [134], the average time from first egg to last worker emergence was

approximately 66 days; assuming a 22 day incubation time, this implies that T ∗∗ = 44. The average

time from first egg to first emergence of gynes and males was 70 and 65 days, respectively. Assuming

30 and 26 day incubation periods for gynes and males, respectively, this provides two estimates for

T ∗: T ∗ = 40 or T ∗ = 39. Because these values are so similar, we assume T ∗ = 40 for our simulations.

Also from the literature, values for bW and µQ were determined; the reference [134] provides an

estimate for the average number of workers produced per day in a given colony, which gives us a

direct estimate: bW = 2.4. Then by [79], we used the information that 14 out of 40 total colonies saw

mother queen loss (hence 26 queens survived) in a given experiment lasting 28 days. We performed

a simple inverse problem for the model

dQ

d t
=−µQQ , Q (0) = 40

with the sole data point Q (28) = 26. This returns the best fitting estimate µQ = 0.0154. We initially

use these values in our simulations.

Last, we note that the state variables may be properly viewed as components of the 6×1-vector x

satisfying delay differential equations [9, 10, 11, 16, 20, 53, 105, 104, 83, 168]which have been widely

used over the last several decades in population models. As is known, these delay equations require

not only the initial values, η, of the states at time 0 (t ≡ TS ), but also the history information,φ for all

t ∈ [−τ, 0), for τ defined by the model (in this case, τ= 30). For now, we further simplify the model

by changing the history information for the gyne population, G . Instead of the exponential decay

we see in (2.2) for t < TS , we will first assume that G remains a non-zero constant value G0 for t < TS .

Initially, we made these choices of history information,

η= [A0, B0,Q0, 0, 0, 0]T
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where Q0 =G (TS −1) =G0 (i.e., the number of queens when spring begins is the number of gynes at

t =−1, i.e., at the end of last season), and

φ = [0, 0, 0, 0, 0,G0]
T ,

for some constants A0, B0, and G0. With these choices of history information, all history functions

are continuous except at t = 0 where there is a jump discontinuity in four of the six variables. While

this is theoretically acceptable for our numerical solution method of using spline approximations

(discussed briefly below and in more detail in [15, 13]), in practice this jump discontinuity creates a

computational error in our model that is propagated over time (because solving delay equations

requires iteratively solving large linear systems, which are described in detail in [15]). To alleviate

this, we instead chose a continuous history function by incorporating “ramp" functions for nectar,

pollen, queens, and gynes. For example, letφA(t ) and ηA denote the history function on t ∈ [−τ, 0)

for nectar and A(0), respectively. Then we have

φA(t ) =







0 −τ< t <−2;

ηA(
t
−2 +1) −2≤ t < 0;

.

Defining similar ramp functions and incorporating them into our history for pollen, gynes and

queens alleviates the computational error faced with the jump discontinuities at t = 0.

The Banks-Kappel spline methodology, described in [10, 20, 11, 13], is used to find a linear spline

approximation to the solution of the system of equations in (2.1)-(2.2). This method is useful since

our model is defined piecewise (in terms of reproduction) and when solving in phases (see Table

2.1), history functions can easily be determined from prior phases. The linear spline solutions also

allow for easy approximation of the integral expressions found in the model. The Banks-Kappel

spline methodology produces auspicious results for our model as shown below.

2.3 Results

In Figure 2.2 we plot the solution to the system with the default parameter set described in Table

2.2. In the collection of colonies, the total number of workers decreases throughout the season,

with the slowest rate of decrease occurring between days 40 and 60. The workers enter a phase of

purely exponential decay towards the end of the season, driven by our definition of the period in

which new workers are produced. The males and gynes both experience growth, but this growth is

slow and levels off quickly. Resource levels increase significantly after workers emerge, with pollen

growing at a slower rate than nectar by choice of parameters. In the colonies, the nectar and pollen

resources level off toward the end of the season.
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Figure 2.2 Population levels simulated with the default parameter set. Bee castes are plotted in the
left graphs and resource levels are plotted in the right graphs.
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Figure 2.3 Sensitivity of the final populations of workers, males, and gynes to changes in bAW , bBW ,
γ, and W0.
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In Figure 2.3 we plot the final population levels of the workers, males, and gynes as functions of

parameters bAW (worker nectar collection rate), bBW (worker pollen collection rate), γ (worker to

larvae survival coefficient), and W0 (size of initial worker brood). In Figure 2.4, we plot the final

nectar and pollen levels as functions of the same parameters.

The final worker, male, and gyne populations do not appear to be sensitive to bAW or bBW . However,

these parameters have significant impacts on the amount of nectar and pollen available to bumblebee

larvae; the final amount of nectar increases with bAW and, similarly, the final amount of pollen

increases with bBW .

The final level of all populations and resources share a positive, saturating relationship with γ. We

note that for γ= .4, we have L (γW )≥ .999 for all W ≥ 25. That is, we have almost no larval mortality

due to worker neglect while W ≥ 25. Since W0 = 192, there are sufficient worker bees for much of

the season to guarantee that L (γW )≥ .999. It is not surprising that increasing the value of γ beyond

this value does not significantly affect the final state of the system.

All states share a positive, linear relationship with W0. We note that the final worker population does

not exhibit high sensitivity to any of the tested parameters. This is not surprising; because workers

enter a phase of exponential decay around t = 70, they may be highly sensitive to the parameters,

but this effect is diminished by the end of the season.
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Figure 2.4 Sensitivity of the final nectar and pollen levels to changes in bAW , bBW , γ, and W0.
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2.4 Discussion

In this paper, we present a delay differential equation model to describe population dynamics of a

collection of bumblebee colonies. Following [51], we place significant importance on the colonies’

collection of nectar and pollen in determining larval survival and hive dynamics. We chose the

natural use of delay equations to accurately capture the incubation times and dependence on the

history of resource availability in bumblebee birth rates. We present the solutions to the model in a

season where a lack of resources does not cause significant environmental pressure and the switch

to production of bees occurs at a fixed time, independent of bee populations.

Without data, we cannot conclude that our model captures the behavior of a particular collection

of bumblebee colonies. We find that compared to other theoretical works, our model performs

adequately in describing bumblebee dynamics. In [51], total colony weight was expected to increase

exponentially and subsequently decrease once workers begin to die and sexuals begin to leave the

nests. Without modeling subadult stages, we cannot quantify colony weight for a direct comparison;

we do note, however, that prior to the emergence of sexuals we see rapid growth of in-nest resources,

measured in grams. Rates of birth into subadult classes are assumed to be constant, but we cannot

draw conclusions about larval contributions to hive weight due to assumed mortality and adult

emergence. Furthermore, queen production in [51], as in our model, was driven by multiple mechan-

isms, including floral resources. The general trend of increased total population until worker death

and sexual dispersal seen in the model and experimental data of [51] lended further support to

our proposed model, though Poitrineau et al. and others emphasize that this may be mitigated by

worker efficiency and queen egg-laying rates [30, 152].

Our simulations capture late-season death of workers and the emergence of sexual bees, although

nectar and pollen levels do not decrease late in the season, making it unlikely that colony weight

decreases as observed in [51]. This is far from an optimal strategy for hive consumption of resources

and may be an artifact of uncertainty in our parameters instead of a likely population dynamic; it is

necessary in future work that we corroborate model output with available data in order to calibrate

our assumed parameters for resource collection and consumption. Due to the manual selection of

critical model parameters and the inherent uncertainty in those taken from the literature, we do not

necessarily conclude that the model cannot replicate this weight pattern. Instead, we must in future

efforts better estimate model parameters in order to match this classically assumed behavior.

The authors of [152, 121]model bumblebee reproductive switch times by optimal strategies; as

explained in our model development, we assume an overlapping switch in which queens lay worker

and sexual eggs simultaneously. Our choice of reproductive strategy is in line with the behaviors

modeled in [152], but our model’s assumed incubation times for sexual bees results in dynamics

similar to those in [121], where the worker population is in complete decline when sexuals begin to

emerge. With data, we can calibrate model parameters to obtain resource and population outputs
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at physically reasonable levels.

We can see in the sensitivity results that the size of the first brood of workers has a more significant

impact on the male population than the gyne population. This may be affected by the birth rate

of the males, which is higher than the gyne birth rate. However, the fact that males have a shorter

development time (4 days less) may also enhance this effect; the history that affects an emerging

male bee at time t overlaps with, but is distinct from, the history that affects a gyne emerging at that

same time. These types of delay dynamics are uniquely captured by our choice of model. Although

the use of a DDE produced a more complex mathematical and computational problem to solve, we

suggest that an ODE-based model would be insufficient to describe seasonal bumblebee population

dynamics in this way.

The results from the sensitivity analysis also indicate that changes need to be made to the model in

future simulations. We would expect that parameter values which can cause low levels of nectar or

pollen in the hive (such as bAW and bBW ) would have a significant impact on larval survivability and

therefore the final populations of males and gynes, but our model does not capture this behavior.

This may be caused by considering the quantity A+B/dB in larval survivability; even when pollen

resources are near zero, larval survivability can be high if nectar resources are sufficiently high. At

the default parameter set presented here, resources are plentiful and the lack of resource-dependent

mortality does not play a significant role. Resource scarcity also has no effect on adult mortality

in the current model, which may contribute to the lack of sensitivity to bAW and bBW . However,

at extremely low resource levels, a persistent worker bee population may cause a rebound effect

for resources, where total colony collapse would be more realistic. We note that the conflation of

uncertainty in model assumptions and parameters makes it difficult to determine a single cause of

model dynamics.

2.5 Research Contributions

As mentioned previously, it is important to understand bumblebee population dynamics in the

presence of various environmental pressures, including resource scarcity and insecticide exposure.

The model developed in this work is the first delayed differential equation model in the literature

that focuses on individual classes of bumblebees within a colony and in addition addresses resource

management. This amount of detail describing the processes which occur inside the hive is not

found in other modeling attempts of bumblebee colonies (with the exception of an agent-based

model [29] developed simultaneously with our work). Our results indicate that our model holds

high promise for better understanding bumblebee population dynamics, especially in response to

anthropogenic disturbance. For instance, there are multiple ways to incorporate both lethal and

sub-lethal effects of insecticide-exposure into population models of this sort, including changes in

worker death rate, worker collection rate, worker productivity rates, queen death rate, and queen
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reproduction rates. In [40] the authors show that varying parameterizations of an ODE model can

result in colony loss under sub-lethal stresses. Next, we progress to the motivating problem of

understanding how pressures such as neonicotinoid exposure may have lethal and/or sublethal

effects on bumblebee colonies.
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CHAPTER

3

LETHAL AND SUBLETHAL EFFECTS OF

TOXICANTS ON BUMBLEBEE

POPULATIONS: A MODELING APPROACH

Adopted from Open Access publication: Ecotoxicology, February 2020 [22]

3.1 Introduction

The protection of ecosystem services has become a major focus of applied ecology, with one

emphasis on understanding population processes of pollinators and biological control agents.

Pollinator conservation in particular has received much attention due to their well-documented

decline coupled with their ability to significantly contribute to crop pollination [110, 195]. Globally,

chemical pesticides (especially the class known as neonicotinoids) have been implicated in hy-

menopteran decline [59, 86, 120, 163]. Exposure to pesticides has been implicated in deficits in

both short- and long-term learning as well as memory and sensory capabilities, all of which can

affect foraging efficiency and provisioning [178, 111]. Within-colony behavior related to caretaking,

which can have implications for thermoregulation and colony survival, may also be affected by

pesticide exposure [49]. Despite our increased understanding of the effects of pesticide exposure

on bee physiology and behavior, the overall effects of pesticides on population dynamics of bees

remain poorly understood. Furthermore, much of what we do know about population processes of

pollinators stems from work conducted with honeybees (Apis melifera); recent simulation models

have identified the potential for sublethal effects on honeybees stemming from varroa mites and
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other stressors [28, 182], while other models have underscored the complex relationships between

food availability and honeybee foraging and survival [108, 149].

More recently, attention has increasingly focused on non-Apis bees, especially wild bees. In particular,

declines and shifts in community composition of bumblebees (Bombus sp.) have been documented

in North America and Europe [33, 36, 27]. A suite of lethal and sublethal effects of pesticides on

bumblebee populations have been demonstrated, including reductions in foraging ability and other

behavioral changes [38, 68, 26, 169, 175, 150, 115]. A population-level perspective is critical in linking

what we know about individual toxicant effects to the long-term effects of pesticide exposure on

bumblebee populations.

Pesticide risk assessment in the United States for all arthropods is based on acute toxicity tests

(LC50) on a single species – the European honeybee (A. mellifera) – making that organism an ideal

starting point for understanding the effects of chemical stressors for other bees. However, we have

shown that, due to subtle differences in life histories, even closely related hymenopteran species

can exhibit markedly different population responses to the same toxic insults [25, 24]. Further

complicating matters, work done at the physiological level reveals that different bee species exhibit

different levels of susceptibility to the same chemical pesticides [125]. Taken together, what we

know about the effects of toxicants on one species (e.g., honeybees) does not necessarily translate

to a good understanding of the effects of toxicants on other even closely related species such as

bumblebees; responses to toxicants need to be evaluated for each species. Furthermore, it is now

well established that acute tests such as LC/LD50, historically the gold standard for comparing

toxicological effects, fail to capture longer-term population outcomes (including sublethal effects)

and could be woefully misleading [23, 170, 171, 59, 72, 34, 173]. Finally, most studies of chemical

toxicity related to bumblebees have focused on a single toxicant or pesticide, when in practice in

the field bees are subjected to multiple toxicants acting in both lethal and sublethal ways [172]Here

we seek a better understanding of toxicant effects on a developing colony of bumblebees over time,

as well as insights into how acute and sublethal effects (either from the same or different chemical

toxicants) may combine to affect population outcomes.

The utilization of computational models in bumblebee research has increased in recent years

although it still has not been as exhaustive as efforts on honeybees. Many models have focused on

foraging dynamics by workers as they influence different metrics of colony growth [143, 141, 51,

91]. Becher et al. (2018) used agent-based modeling to understand hive dynamics, examining the

influence of pesticides on multi-generational colony dynamics, though they did not explore effects

on colony interior dynamics. Other similar models indicate that pesticides and other stressors can

impact colony dynamics, for example by impairing worker bee productivity or queen fecundity

[40, 50]. These studies rely on differential and difference equations, in which changes to the colony

at any time depend on the current state of the colony. However, changes to a colony might also

depend on prior states of the colony, for example due to the length of larval incubation or history
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of resource availability. We describe these dependencies with a delay differential equation model,

parameterized with values taken from the literature.

3.2 Methods and Materials

A delay differential equation (DDE) framework is appropriate to use in age structured population

models [137, 90, 12, 14]. We modeled a single colony of bumblebees using a non-linear system of

delay differential equations that describe twelve state variables: in-nest nectar abundance N(t),

in-nest pollen abundance P(t), workers W(t) and their larvae (modeled as a two-stage population,

L (w )1 ,L (w )2 ), males M(t) and their larvae (modeled as a two-stage population, (L (m )1 ,L (m )2 ), and gynes

(new queens) G(t) and their larvae (modeled as a three-stage population, (L
(g )
1 , L

(g )
2 , L

(g )
3 ). These

variables are described in (3.1) - (3.12) and we note that the expressions exp[x ] = e [x ] for easier

reading.

Bumbleebee Colony Model

Resources:

d N

d t
= (bN W −µN W )W −2[c1(L

(w )
1 + L (m )1 + L

(g )
1 ) + c2L (w )2 + c3L (m )2 + c4L

(g )
2 + c5L

(g )
3 ] (3.1)

d P

d t
= (bP W −µP W )W − [c1(L

(w )
1 + L (m )1 + L

(g )
1 ) + c2L (w )2 + c3L (m )2 + c4L

(g )
2 + c5L

(g )
3 ] (3.2)

Workers:

d W

d t
= b ∗W (t −22)exp[Φ(w )(t −18)−Φ(w )(t −9)]−µW W (3.3)

d L (w )1

d t
= b ∗W (t −4)−µ(w )(t ) L (w )1 W − b ∗W (t −10)exp[Φ(w )(t −6)−Φ(w )(t )] (3.4)

d L (w )2

d t
= b ∗W (t −10)exp[Φ(w )(t −6)−Φ(w )(t )]−µ(w )(t ) L (w )2 W − b ∗W (t −13)exp[Φ(w )(t −9)−Φ(w )(t )]

(3.5)

Males:

d M

d t
= b ∗M (t −26)exp[Φ(m )(t −22)−Φ(m )(t −11)] (3.6)

d L (m )1

d t
= b ∗M (t −4)−µ(m )(t ) L (m )1 W − b ∗M (t −12)exp[Φ(m )(t −8)−Φ(m )(t )] (3.7)

d L (m )2

d t
= b ∗M (t −12)exp[Φ(m )(t −8)−Φ(m )(t )]−µ(m )(t ) L (m )2 W − b ∗M (t −15)exp[Φ(m )(t −11)−Φ(m )(t )]

(3.8)
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Gynes:

d G

d t
= b ∗G (t −30)exp[Φ(g )(t −26)−Φ(g )(t −13)] (3.9)

d L
(g )
1

d t
= b ∗G (t −4)−µ(g )(t ) L

(g )
1 W − b ∗G (t −10)exp[Φ(g )(t −6)−Φ(g )(t )] (3.10)

d L
(g )
2

d t
= b ∗G (t −10)exp[Φ(g )(t −6)−Φ(g )(t )]−µ(g )(t ) L

(g )
2 W − b ∗G (t −13)exp[Φ(g )(t −9)−Φ(g )(t )]

(3.11)

d L
(g )
3

d t
= b ∗G (t −13)exp[Φ(g )(t −9)−Φ(g )(t )]−µ(g )(t ) L

(g )
3 W − b ∗G (t −17)exp[Φ(g )(t −13)−Φ(g )(t )]

(3.12)

Larval Mortality:

dΦ(k )

d t
=µ(k )(t )W (t ), where index k denotes class w, m, or g (3.13)

For θ ∈ [Ts −8, Ts +22],
N (θ ) =N0 W (θ ) =R (W0).

P (θ ) = P0 L (w )1 (θ ) =R (L (W )0 )

M (θ ) = 0 L (w )2 (θ ) = 0

L (m )1 (θ ) = 0 G (θ ) = 0

L (m )2 (θ ) = 0 L
(g )
1 (θ ) = 0

L
(g )
2 (θ ) = 0 L

(g )
3 (θ ) = 0

Φ(k )(θ ) = 0,

(3.14)

where k indicates class w,m, or g and R () is a ramp function.

The model describes the development of the reproductive classes by means of important colony

functions such as resource management, worker caregiving, and population control. It utilizes larval

development as the link between colony resources and the adult bumblebee members. Parameter

values are given in Table 3.2. Solutions of the bumblebee colony model are found using the Matlab

delay differential equation solver dde23 [126]. This solver was chosen over the Banks-Kappel spline

method [20, 11] for three reasons: results have a higher order solution, integrals are no longer present
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in the description of the dynamics and lastly, the increase of unique discrete delays from 7 to 15 are

easier to manage with dde23.

Here we model a bumblebee colony over a single year capturing the behavior of a colony from

its initiation in the spring (Ts ) until hive functions cease in winter (Tw ). With limited information

in the literature regarding the behavior of queens prior to the emergence of the first brood, our

simulated colony begins 22 days after hive initiation in the spring (T s +22), when the first brood

of workers emerge to begin gathering nectar and pollen as well as larval feeding and ejection (if

necessary). This is observed in the necessary history functions of model defined on the time domain

φ ∈ [Ts − 8, Ts + 22] in (3.14). This choice reflects the longest fixed delay in the model of 30 days

which represents the time for complete metamorphosis of gynes, see Table 3.1. The switch time,

which represents the time when a colony changes from producing worker offspring to male and

gyne offspring, is a distinguishing event in a colony’s development [63]. We fixed a late switch time

at T ∗ = 40, so that male and gyne larvae appear at day T ∗∗ = 44, coincidentally the same day the last

worker eggs are laid (see Figure 2.1). Development time for each larval subclass was assumed to be

fixed as described Table 3.1.

In order to model the bumblebee life cycle, it is important to understand that bumblebees develop

over a series of life stages for which we have made certain assumptions in the model. Eggs are

introduced into the hive by the queen at fixed rates (bw , bm , bg ), require minimal care from the

workers, and under the stress of resource limitation are removed by oophagy thereby decreasing

the size of the brood prior to its larval phase. During the larval phase, workers care for and feed

juveniles under normal conditions. When the hive is under stress either by resource limitation or

insufficient worker population, larval ejection by the workers can occur as an additional population

control on juveniles [160]. Each of the juvenile phases have fixed duration in the model and once a

larva pupates it will emerge as an adult after the fixed time delay, see Table 3.1.

The primary sources of nourishment in a bumblebee colony includes in-nest stores of pollen

and nectar. Once the first workers emerge, some members commence foraging for the resources

(bN W ,bP W ) while others act as caregivers, remaining in the hive to distribute resources to the larvae

and consume stored resources (µN W ,µP W ). Larval consumption is the primary draw from the stored

resources where nectar is consumed at twice the rate of pollen [147]. Each of the larval subclasses

grow at different rates which is directly related to the amount of resources that are consumed at each

stage [158]. This is reflected in the five different consumption parameters, ci ’s as seen in expression

c1(L
(w )
1 + L (m )1 + L

(g )
1 ) + c2L (w )2 + c3L (m )2 + c4L

(g )
2 + c5L

(g )
3 from (3.1) and (3.2). Note the first stage of

each subclass is defined such that their members share the same consumption rate but members of

L (w )1 , L (m )1 , and L
(g )
1 consist of different age groups. Consumption of stored resources by the queen

was considered but due to a lack of quantifying information for queen behavior in the literature this

mechanism was omitted in carrying out the simulations.

The driving force of the model is larval population control in the presence (or lack thereof) of
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resources and worker caregivers. To enter into the initial larval stage for any class their eggs must

have been laid 4 days prior as can be seen in the egg laying expression b ∗W (t −4) in (3.3).The model

also includes time varying larval ejection rates per worker (µ(w )(t), µ(m )(t), µ(g )(t) ) which are found

in (3.13) and based on past values of the worker, pollen and nectar variables. These expressions allow

for the calculation of brood development independent of each other over a continuous spectrum.

To calculate the cumulative effect of larval ejection over time, the ejection rates (µ(k )W (t ))can be

integrated over fixed temporal bounds in the delay differential equation (3.13), with a delay of zero

days (t − 0). The basis for this idea follows that given a particular brood L (k )(t ;a ), the maximum

number of members are present at time t = a when this brood enters one of the larval stages,

L (k )1 , L (k )2 or L (k )3 . Loss of larval members can only occur for this particular brood and is described by

the decay dynamics below where larval ejection is described by an interaction between available

workers and brood members,

d L (k )(t ; a )
d t

=−µ(k )(t )W (t )L (k )(t ; a ). (3.15)

The workers present to perform the ejection W (t ) do not depend on the current brood L (k )(t ; a ) so

solving (3.15) yields that any particular brood can be described as the following with a constant, B

and variable Φ defined in the model equation (3.13),

L (k )(t ; a ) = B exp

�∫ t

a

−µ(k )(s )W (s )d s

�

,

L (k )(t ; a ) = B exp

�∫ t

a

dΦ(k )

d t
(s )d s

�

,

L (k )(t ; a ) = B exp
�

Φ(k )(t )−Φ(k )(a )
�

Since the size of a brood can only decrease after all eggs have been laid, an expression such as

exp[Φ(m )(t −8)−Φ(m )(t )] (see (3.8))represents the proportion of decay of a specific male brood over

the previous 8 days by larval ejection. We multiply this expression by the number of male eggs that

entered the larval state 8 days ago, b ∗M (t −12), to determine how many male larvae survived and

are entering the second male larvae state L (m )2 in (3.8). Considering Table 3.1, male juveniles would

be entering state L (m )2 at the precise time of 12 days post the laying of their eggs given they had not

been ejected during the prior 8 day period in the L (m )1 state. Essentially, delays in states Φ(w ), Φ(m ),

and Φ(g ) allow the model to compute the survival of individual broods (defined by the day their

eggs were laid) without having to track them explicitly. This functionality makes delayed differential

equations a more appropriate method for this system as opposed to ordinary differential equations.

The larval mortality rate represents the rate at which larvae are ejected from the hive per worker.

Larval Ejection is a biological mechanism in bumblebee colonies which controls the number of

larvae present. This behavior is not well studied; we propose this behavior could occur when not

enough workers are present to care for the larvae and when the hive is under stress by a resource
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deficiency [160, 180, 154, 181, 78]. With regard to the resource criteria for ejection, a comparison

between desired pollen consumption and the available pollen P(t) at that time is required. By

defining the amount of pollen that existing larvae want to consume as

C = c1(L
(w )
1 + L (m )1 + L

(g )
1 ) + c2L (w )2 + c3L (m )2 + c4L

(g )
2 + c5L

(g )
3 , (3.16)

we recognize this as the larval consumption term for our resources in (3.2). A corresponding version

for nectar can be found in (3.1). It follows from P being the available amount of in-nest pollen that

a shortage of pollen would be represented by positive values of the expression C −P . To determine

the severity of the resource deficiency, we use the expression:

C −P

C +ε
=

deficiency

consumption
, (3.17)

where ε is a small value to ensure the factor is well defined particularly in case where all larval classes

become too close to zero. This deficiency factor for pollen will be negative anytime C < P and can

fall within the range (0, 1)when C > P . The deficiency factor is designed on the range (0, 1) to scale

the maximum larval ejection when there is a resource shortage. A similar factor is used for nectar

deficiency as well.

Now in order to design a mechanism for neglect, consider that there exists an optimal larvae to

worker ratio Z .Then the sustainable larval population is Z W which determines the number of

larvae that receive proper feeding and care by the available workers within the colony [154, 181]. It

follows that the total larval population in the colony is the sum of its larval subclasses, L =
∑

i ,k L (k )i

where i = 1, 2, 3 and k indicates class w,m, or g. Using the terms above, we define the excess larvae

(i.e. those that cannot be cared for) as L −Z W and can create a scaling factor for neglect here:

L −Z W

L +ε
=

excess larvae

total larvae
. (3.18)

This factor is negative when L < Z W and approaches 1 as L exceeds Z W . Putting all the scaling

terms together with maximum larval ejection rates per worker (α and β ), we produce an expression

for the actual larval ejection rate per worker,

µ(k )(t ) =αmax
�

L −Z W

L +ε
, 0
�

+βmax
�

C −P

C +ε
,

2C −N

2C +ε
, 0
�

. (3.19)

It is reasonable to assume that negligence and resource deficiency have different contributions

in the larval ejection behavior, hence the equation has 2 different maximum larval ejection rates,

α and β . This can be justified by considering that in the case of resource deficiency without any

negligence where at least a sufficient number of workers are present inside the hive to care for all the

larvae. A resource shortage that triggers larval ejection in the colony would have a large number of

workers, relatively, to assist in performing this behavior. By contrast in the case of larval neglect with

sufficient resources, not enough works are present in the hive to care for all the larvae which triggers
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ejection to occur. Here the behavior of ejecting larvae may be more taxing on the existing workers

as opposed to a sufficient number of workers were present. We note here that in our simulations α

and β are set to the same value but future research would help determine the differences between

these two maximum ejection rates.

Another form of population regulation within a hive was exhibited through oophagy, or the consump-

tion of eggs by the workers or queen. Although this behavior is not strictly a population control

measure, it can be a significant behavior when malnourishment occurs in the hive. Although this

mechanism is not well studied, oophagy has been observed in relation to bumblebee pollen diets.

For example, low pollen quality or low amounts of protein available for the colony appears to

correlate with high amounts of oophagy [78]. The degree of oophagy was calculated using a factor

derived from desired resource consumption and availability of resources, in the same way that larval

ejection was calculated from (3.17) and also the nectar counterpart. We expect high oophagy when

the factor is close to 1 and no oophagy when it’s negative. To model oophagy, these expressions are

not used directly in the system of DDE’s but rather are incorporated directly into egg survival rates

b ∗W (t ), b ∗M (t ), and b ∗G (t ). This is accomplished by scaling the egg laying rates (bW ,bM ,bG ) within

corresponding egg survival rates.The egg survival rates are defined as follows:

b ∗k (t −τ) = bk

�

1−max
�

C (t −τ)−P (t −τ)
C (t −τ) +ε

,
2C (t −τ)−N (t −τ)

2C (t −τ) +ε
, 0
��

. (3.20)

which represents the number of eggs laid at the time t −τ that become larvae at time t ; k denotes

the worker, male or gyne class of bumblebee.Overall, these mechanisms yield model expressions

such as b ∗W (t − 22)exp[Φ(w )(t − 18)−Φ(w )(t − 9), which represented new workers on day t whose

eggs were laid 22 days prior, having begun the second larval phase 18 days prior and survived to

undergo pupation for the previous 9 days.

With the foundation of model as described above, we are able to explore pesticides effects on

bumblebees. We used the model to simulate toxicant effects in different scenarios that reflect well-

documented impacts of pesticide exposure in the literature. In particular, we simulated (i) acute

direct effects on workers, (ii) sublethal effects via reduced foraging abilities, (iii) lethal and sublethal

effects on larvae via reductions in development/survival. We ran simulations for each of these,

incorporating acute and sublethal effects into the model and measuring the reproductive output

(number of males and gynes) as our primary metric of population effect. In order to explore these

toxicant effects, we parameterized the model using values from the literature where possible to use

as a baseline/control. Then we modified the parameters to simulate toxicant effects.

First, we simulated an acute effect of pesticides acting directly on worker survivorship, corresponding

to an LD50 . We varied the time of exposure to the pesticide, noting the impact that delaying

exposure may have on reproductive output. Second, we simulated the sublethal effect of reduced

foraging ability, reducing pollen and nectar resources available to the colony and measuring the

resulting reproductive output. Third, we simulated reductions in new brood, corresponding to a
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sublethal effect on the queen’s egg-laying rate, and noted especially the effects of brood reduction on

subsequent broods and overall reproductive output. Finally, we simulated both acute and sublethal

effects and noted their combined effects on reproductive output.

Table 3.1 Fixed Duration (in Days) of Bumblebee Life Stages for Model.

Class Egg L (k )1 L (k )2 L (k )3 Pupa Total Age

Worker 4 6 3 - 9 22

Male 4 8 3 - 11 26

Gyne 4 5 4 4 13 30

3.3 Results

Control: In the absence of toxicological insult, the model produced an increase in the number

of workers until around day 60, after which workers decline and males and gynes (reproductives)

increased nearly exponentially before plateauing off around 100 days after the start of the simulation.

Pollen and nectar resource levels also declined between 70 and 80 days after the simulation, corre-

sponding roughly with the decline in the worker population, see Figure 3.1.
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Table 3.2 Model variables and parameters. The selected value for simulations are given in the last
column.

Variable Description Units Estimate

t time days

N (t ) amount of in-nest nectar ml

P (t ) amount of in-nest pollen g

W (t ) number of workers individuals (workers)

L (w )1 (t ),L
(w )
2 (t ) number of worker larvae individuals (larvae)

M (t ) number of males individuals (males)

L (m )1 (t ), L (m )2 (t ) number of male larvae individuals (larvae)

G (t ) number of gynes individuals (gynes)

L (g )1 (t ),L
(g )
2 (t ),L

(g )
3 (t ) number of gynes larvae individuals (larvae)

Timeline

TS first day of spring 0

TS +22 first workers emerge 22 [63]

T ∗ first day male/gyne eggs laid 40 [134]

T ∗∗ end of worker eggs laid 44 [134]

TW beginning of winter 120

Parameters

bN W worker nectar collection rate ml
day·individual (W ) 0.6 [87];[146]

bP W worker pollen collection rate g
day·individual (W ) 0.4 [87]; [68]

µN W worker nectar consumption rate ml
day·individual (W ) 0.35 [181]

µP W worker pollen consumption rate g
day·individual (W ) 0.25 [181]

ci larval pollen consumption rates g
day·individual (L) (0.01, 0.25) [158]

bW (t ) worker birth rate workers
day 8.5 [63]

bM (t ) male birth rate males
·day 2 [63]

bG (t ) gyne birth rate gynes
·day 2.6 [63]

µW worker death rate 1
day 0.05

Z larvae to worker ratio 4 [63]

α max ejection rate (negligence) individual (L)
day·individual (W ) 0.75

β max ejection rate (malnutrition) individual (L)
day·individual (W ) 0.75

ε roundoff correction factor 0.001
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Figure 3.1 Bumblebee colony simulation over 120 days, including dynamics for both resources,
adult workers and cumulative adult reproductive members (males and gynes).

Lethal pesticide effects: Acute pesticide effects were characterized as immediate reductions in the

worker population corresponding to the LD50 dose of pesticide applied. We varied the time of

exposure, noting the impact that delaying contact to pesticide may have on reproductive output.

Simulation of an acute effect of pesticides on workers – corresponding to the LD50 – resulted in

a marked decline of reproductive output when exposure to the toxicant occurred during the first

30 days of the simulation. However, results varied as a function of the timing of the exposure;

application of the toxicant at 36 days after the start and beyond resulted in much less severe effects,

see Figure 3.2.
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Figure 3.2 Acute effects of LD50 dose on cumulative males and gynes produced in the colony as a
function of the timing of pesticide application.

Sublethal pesticide effects: The effect of resource reduction was severe for both pollen and nectar

reduction levels above 20%. Though these effects were independent of each other, pollen reduction

had a slightly more severe impact on reproductive output than nectar reduction as shown in Figure

3.3. Reductions in new brood (first and second broods together) greater than 10% corresponding to

a sublethal effect on the queen’s egg-laying rate resulted in severe declines in reproductive output.

Also apparent, reductions in the first brood due exposure exacerbated the effects seen by a reduction

in the second brood (workers that emerge on day 35) in Figure 3.4. We emphasize this is an effect of

fewer workers produced by the queen as opposed to any lethal exposure of workers to a pesticide.
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Figure 3.3 Influence of sublethal effect of reducing foraging ability (by percentage) on bumblebee
reproductive output (males + gynes).

Lethal and sublethal effects combined: Simulations of combinations of lethal and sublethal effects

resulted in a non-linear interaction, demonstrating a synergistic effect. Declines in reproductives

occurred after approx. 30% reductions solely due to lethal effects, or 20% solely in pollen reductions;

the combination of these two levels resulted in nearly double the decline of reproductives as observed

in Figure 3.5.
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Figure 3.4 The effect of sublethal reduction to egg laying rates (on 1st and 2nd broods) on cumulative
reproductive output of the colony.
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Figure 3.5 Effects of combined lethal ("Acute") and sublethal ( "Pollen" reduction) toxic insults on
bumblebee reproductive output.

3.4 Discussion

The Millennium Ecosystem Assessment (2005) provided a conceptual framework for linking environ-

mental health and human well-being; protection of ecosystem services such as biocontrol and crop

pollination are central themes. In the past decade, significant efforts aimed at better understanding

the effects of toxicants such as pesticides on hymenoptera – especially honeybees – have been made

[120]. Although empirical studies on the effects of toxicants on non-Apis hymenoptera are increasing

(e.g., [163, 169], assuming that our knowledge of one species’ responses can be applied directly to

other species risks creating confusion and misunderstandings [24]. Recent physiological studies

have corroborated this, demonstrating that pesticides such as pyrethroids affect honeybees (A.

melifera) and bumblebees (B. terrestris) in fundamentally different ways (e.g., [102]). Assessment and

maintenance of the protection of ecosystem services relies fundamentally on a deep understanding

of population dynamics; both empirical and theoretical approaches are important tools in this effort.

Explorations of bumblebee population dynamics that incorporate our understanding of biological

processes with predictive mathematical models provide a powerful means of prescribing protective

measures and best practices. Here we have used a mechanistic model tailored to bumblebee colony
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development in an attempt to better understanding the response of bumblebees to toxicants such

as pesticides. Our use of a delay differential equation model enables us to explicitly describe the

effect of larval incubation and colony history on population outcomes. This level of detail allows

us to demonstrate the sensitivity of colony viability to the timing and severity of pesticide sprays.

Furthermore, the DDE model requires far fewer parameter estimations than approaches that use

agent-based or individual-based models (e.g., [28, 29]). Empirical efforts that track real- time

survivorship and behavior of larvae, workers and queens over a longer time period (similar to those

conducted by Crall et al. [48, 49] but extended to larvae and for longer time periods would be useful

for validating the DDE model presented here.

Understanding the mechanisms underlying the effects of resource availability on bumblebee

population growth is an increasing focus of field and theoretical studies [192, 191]; a recent study

by Crone and Williams (2016) illustrates the importance of parsing out the relative importance of

putatively important drivers (e.g., colony growth rates and floral resource availability) of bumblebee

population outcomes. Less is known about combinations of reduced resource provisioning and

diminished survivorship that may result from exposure to pesticides or mixtures of pesticides that

have both lethal and sublethal effects, though the potential for multiplicative effects have been

demonstrated in recent elegant experiments (e.g., [79]). Our simulations suggest that, even at low

levels, sublethal effects such as reduced pollen foraging ability may result in severe declines in

reproductive output if combined with lethal effects over 40%, for instance (see Figure 3.5). This

underscores the importance of better understanding the effects of exposure to mixtures of toxicants.

In the current analysis, our model highlights several important aspects pertaining to population

implications of pesticide exposure in bumblebees. First, the overall impact of acute effects such

as those exhibited by an LC50 or LD50 dose varies greatly with timing of exposure, with pesticides

applications later in the development of the colony having relatively little effect compared with

applications imposed within the first 30 days (Figure 3.2). The immediate reduction in workforce size

prevents the same level of foraging as seen before pesticide exposure, thereby limiting the resources

available to rear future broods. In addition, the reduced number of workers also results in neglected

larvae which ultimately limits future brood sizes and further impacts the production of reproductive

bees. Perry et al. (2015) similarly found that early reductions in foraging ability in honeybees could

have dramatic impacts at the population level later on; they suggest that these types of delayed

responses due to early stressors may help explain field observations and experiments documenting

colony collapse disorder. Our model results likewise suggest that delays in pesticide applications

could significantly lessen deleterious effects on bumblebee populations.

Second, sublethal effects on the population output due to reduced egg-laying rates may be lessened

if reductions are kept below 10%. However, higher levels of reduced egg-laying rates in the first

brood may interact synergistically with subsequent brood exposure (due to repeated exposure to

the same pesticide, or exposure to another, different chemical), wreaking havoc on the population
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at higher levels even for low levels of reductions on the second brood (Figure 3.4). Field studies

exploring combinations of pesticides on bumblebee colony outcomes have revealed similar effects

(e.g., [79]). Because bees in farmland mosaics are often exposed to multiple spray events, sometimes

with multiple pesticides, these types of knock-on effects may be difficult to mitigate in practice.

3.5 Research Contributions

In this work, we redesigned the bumblebee colony model to address a single hive and include

more accurate larval dynamics and the primary population controls found in colonies. The model

dynamics shown in the control closely resemble the description of bumble colonies presented by

Duchateau and Velthuis [63], one of the most comprehensive research articles on colony develop-

ment. The mathematical model presented in this work is the first individual specific differential

equation model to address mixed sublethal and lethal effects of toxicants on a bumblebee colony.

The only other individually detailed model currently that can address pesticide effects is an agent-

based model which is much more sophisticated and contains significantly more parameters than

our model which need to be calibrated particularly for North American species of bumblebees

[29]. Our bumblebee colony model presents an alternative for researchers interested in testing the

effects of toxicants on colonies. The reduced parameter set should allow for easier calibration and

in addition, the DDE model can be used in an inverse problem framework with sufficient data to

help determine values for those parameters which are studied less in literature.

The synergistic effects revealed in our simulations emphasize the need to carefully consider popula-

tion endpoints when gauging risk to bumblebees from pesticides and other toxicants; none of

these effects would be detectable from simple LC50 analyses. Taken together, our results suggest

that more sophisticated mathematical treatments of population processes are critical for assessing

mechanisms underlying the effects of pesticides on bumblebees. Particular attention should be

paid to timing of pesticide exposure, as well as the specifics of combinations of pesticides to which

bumblebee colonies might be exposed. Finally, empirical data should be generated to test and

validate the specific outcomes predicted by the model.
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CHAPTER

4

MODELING IMMUNOSUPPRESSION IN

RENAL TRANSPLANT PATIENTS

USING OPTIMAL CONTROL THEORY AND

KALMAN FILTERING

4.1 Introduction

Chronic kidney disease (CKD) affects 37 million American adults and millions of others remain at

risk [61]. CKD is most prominent in individuals over age 65 with approximately 38% of the group

affected while as many as 90% of people with CKD are unaware of its presence until significant

loss of kidney function occurs. CKD is characterized by conditions which damage the kidneys and

impair kidney function in the body. Many different conditions are known to cause chronic kidney

disease, yet the leading causes are diabetes and high blood pressure which account for 66% of cases

[73, 74]. Treatment options for CKD focus on controlling risk factors to slow the progression of the

disease since only a few forms of kidney disease have cures [43]. In the most severe cases of CKD,

the disease is no longer manageable and kidney failure is imminent.

Although studies are showing promise with regenerative therapies for patients with acute kidney

impairment, individuals suffering from CKD remain unable to restore kidney function [132, 144].
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The kidneys are a pair of bean-shaped organs located in the abdomen responsible for removing

waste products and excess fluid from the body while also regulating electrolytes. An adult kidney

includes approximately one million structures called nephrons where the removal and regulation

of the blood takes place. Inside each nephron, blood is filtered by the glomerulus to begin the

removal process and subsequently passes through a renal tubule which further removes wastes and

excess fluids to complete the process before returning the blood to the body, refer to Figure 4.1 [60].

Damaged renal tubules and subsequently nephrons result in irreversible impaired kidney function

since kidneys are unable to replace or regenerate nephrons [43]. The glomerular filtration rate

(GFR) is a widely accepted assessment of kidney function on a range from 0 to 90+mL per minute.

The best approximation to GFR is the estimated GFR test which takes into account an individual’s

concentration of creatinine in the blood and personal characteristics such as age, gender, weight,

height, and race [187, 129]. As a significant component of that test, creatinine is a waste product

related to muscle metabolism that kidneys remove from the blood with a typical range of 0.6 to 1.35

mg per dL in healthy adults [89, 88]. Since creatinine concentration is included in the determination

of the estimated GFR, blood tests for serum creatinine levels are often used as a surrogate for GFR

and can be used as a biomarker for renal health [135]. Patients that suffer from CKD experience loss

of kidney function and an increase of serum creatinine resulting in GFR values below 90 mL per

minute.

Figure 4.1 Diagram of a Healthy Nephron [60].

Chronic kidney disease can progress through 5 stages of deteriorating kidney functionality, each

described by a decreasing range of GFR values. The final stage of CKD, known as end stage renal
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disease (ESRD) occurs at GFR values below 15 indicating kidney failure has occurred or is highly likely

[74]. Treatments for ESRD are limited to primarily two options: routine dialysis at a clinic or solid

organ transplantation. In March 2018, 95,301 people were awaiting a kidney transplant representing

approximately 80% of people awaiting a solid organ transplant [142, 135]. If a compatible kidney is

available, transplant recipients see an increased chance of survival and lower costs compared to the

alternative hemodialysis [176]. Post transplant, recipients need to continue a cautionary lifestyle to

prevent CKD from reoccurring and resulting in allograft nephropathy.

Long-term allograft survival is a challenging goal for renal transplant patients. Transplant recipients

require daily drug treatments to suppress their immune system since it will regard the allograft as

foreign tissue resulting in an immune response that attacks the allograft [151]. Standard immunosup-

pression therapies involve first an induction therapy to prevent acute rejection of the organ immedi-

ately following the procedure. Maintenance therapy is also used which involves combinations of

immunosuppressive drugs in an effort to prevent chronic allograft nephropathy and allograft loss

[103]. In the case where drug doses are prescribed lower than a particular patient needs, the immune

response may not reject the allograft outright but will result in chronic allograft injury which is

common among transplant recipients. This under-suppression of the patient’s immune system can

result in reduction of kidney function. Alternatively, when prescribed drug doses are too high the

immune system becomes incapable of protecting the patient from pathogens.

The unintended consequence of the immunosuppression treatment is the susceptibility of the

patient to pathogens and in particular, naturally latent viruses. There are a variety of viruses,such as

cytomegalovirus, human herpes virus and human polyomavirus 1, that can infect patients while

most often they remain in a latent state until the individual becomes immunocompromised [185].

The human polyomavirus 1, also known as BK virus (BKV), is present in over 80% of the worldwide

population and in a latent state in the majority [6]. BK virus is particularly problematic to renal

transplant recipients since no known antiviral treatments exist to combat it. When BKV becomes

active in an immunocompromised individual, the virions target the cells of the renal tubules inside

the nephrons. Persistent BKV infection ultimately results in the loss of the ability for nephrons

to function. Understandably, two of the three leading causes of organ failure in renal transplant

patients are organ rejection and BKV nephropathy [166, 76].

Currently, optimal protocols for immunosuppression treatments have yet to be established given

the dependence on a variety of individual patient factors (e.g., age, diabetes, etc.) [139]. Treatment

protocols are typically based on physicians’ understanding of current literature and a patient’s data

in response to treatment. We expand upon a methodology which utilizes mathematical modeling and

optimal control theory to simulate immunosuppression for patients following a renal transplantation.

A number of mathematical and statistical modeling approaches have been taken to assist in under-

standing different aspects of renal transplantation since the 1970’s [189, 113, 183, 8, 123]. Ordinary

differential equations have been used previously for modeling immunosuppression in humans
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in relation to both HIV and transplantation applications [55, 186, 17]. In addition, many different

biological systems have seen control theory methodologies applied in mathematical models of their

systems, including areas such as cellular and chemical interactions, circadian rhythms in mammals,

and immunosuppression [47, 138, 1]. Following the findings of [136], we propose changes to their

approach of the receding horizon control in their mathematical model and demonstrate the utility

of using an alternative method for feedback, the ensemble Kalman filter.

4.2 Methods

Currently, protocols for immunosuppressant treatments in renal transplants vary by treatment

center and are inconsistent, differing based on the experience and interpretation of literature by

professionals at each center [139, 69, 5]. Dynamical systems models for immunosuppression therapy

in renal transplant patients can assist in developing more effective protocols for this therapy. The

ordinary differential equation model utilized in this work is the result of multiple iterations by

Banks et al. and Murad et al. [18, 136]. Mathematical methods from optimal control theory can

assist physicians in finding the desired balance of suppression necessary to prevent severe BK

viral infection (due to over-suppression) and allograft rejection by the immune system (due to

under-suppression). By using a closed loop control system, immunosuppression dosing can be

determined automatically by satisfying desirable biological criteria such as maintaining a healthy

functioning kidney and limiting BK viral loads below a threshold. Patient data can be introduced

into this mathematical framework by applying a Kalman filter into the model. The Extended Kalman

Filter (EKF) and Ensemble Kalman Filter (EnKF) are two methods implemented to provide direct

patient feedback in the model and create more personalized immunosuppression treatments.

4.2.1 Ordinary Differential Equation Model

An initial ordinary differential equation model for immunosuppression in renal transplant patients

was developed by Murad et al. (2018) and was chosen for this research because of two important

assumptions: the BK virus is the pathogen of interest and the kidney is unable to regenerate or replace

damaged cells within the nephrons. Under the first assumption, BK virus is important in part because

there are no known antiviral treatments available for it, thus BK virus is primarily controlled by the

patient’s immune system which is influenced by the efficacy of immunosuppression treatments.

Additionally, BKV specifically targets renal tubule cells inside the nephrons. In pathogens that do

not target the kidney, severe viral infection is the consequence of over-suppression, but with BKV

a severe viral infection results in reduced kidney functionality which can also be captured in the

model. The second assumption follows from the widely held understanding that adult kidneys are

composed of all the nephrons an individual will ever have and while under the stress of CKD, the

kidney is unable to regenerate or repair damaged nephrons at any rate that affects kidney function
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[99]. As nephron damage occurs (due to infection), reduced kidney functionality can be observed

through increases of the waste products in the blood such as serum creatinine levels later observed

in this model.

Table 4.1 State Variables in the Mathematical Model

State Description Unit

HS Concentration of susceptible graft cells cells/mL

HI Concentration of infected graft cells cells/mL

V Concentration of free BKV copies/mL

EV Concentration of BKV-specific CD8+ T-cells cells/mL

EK Concentration of allo-specific CD8+ T-cells cells/mL

C Concentration of serum creatinine mg/dL

Immunosuppression
Efficacy ε

Allo-specific
CD8+ T

cells, EK

BKV-specific
CD8+ T

cells, EV

Susceptible
cells
HS

Infected
cells
HI

Creatinine
C

BK
virus
V

βHSV

β̃HSEK δEHEVHI

δHIHI

ρV δHIHI

δV V

δEVEVδEKEK

(1− ε)
(
λEV +

ρEV V

V + κV
EV

)

(1− ε)
(
λEK +

ρEKBHS

HS + κKV

EK

)

δc0
HS

HS + κCH

C
λC

Figure 4.2 Compartment diagram for immunosuppression in a renal transplant patient

The mathematical model reduces the complexity of this biological system into 6 states as shown in

Table 4.1. It follows the template of a Susceptible-Infected model with dynamics between healthy
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(HS ) and infected (HI ) kidney cells (of the transplant) while also including a single pathogen, (V )

and the immune response split into two states. Since the immune system uniquely targets threats

using CD8+ T cells, 2 states are used to represent concentrations of the CD8+T cells specific to BKV

(EV ) and the allograft (EK ). The model also includes a state for accumulation of serum creatinine

indicating kidney functionality (C ). Figure 4.2 gives a visual relationship between these states. For

simplicity, the model chooses to focus on a single pathogen although a variety of of latent viruses

may be present within a transplant patient. Expanding the model, would require additional states

and specific immune responses for each pathogen to be included. The mathematical model is

shown in the system of equations (4.1) - (4.6) [136].

Renal Model:

ḢS =−βHS V χ(V >V ∗)− β̃HS EK χ(EK >E ∗K ) (4.1)

ḢI =βHS V χ(V >V ∗)−δH I HI −δE H EV HIχ(EV >E ∗V ) (4.2)

V̇ =ρV δH I HI −δV V −βHS V χ(V >V ∗) (4.3)

ĖV = (1−ε)
�

λE V +
ρE V V

V +κV
EV

�

−δE V EV (4.4)

ĖK = (1−ε)
�

λE K +
ρE K HS

HS +κK H
EK

�

−δE K EK (4.5)

Ċ =λC −δC 0
HS

HS +κC H
C (4.6)

Equation (4.1) represents the interactions that affect the decrease in the healthy cell population. The

concentration of healthy susceptible cells (HS ) are measured in cells per mL which can be reduced by

two different interactions. The first loss termβHS V of (4.1) represents free flowing virus in the blood

interacting with the healthy cells within the nephron which results in infection of these susceptible

cells. The parameter β represents the frequency that the interactions between healthy cells and

virus result in infection of the cell and thereby removing these kidney cells from the susceptible

population. The second loss term β̃HS EK of ḢS takes place in regards to the immune response.

Since the immune system responds to the allograft as foreign tissue, EK represents allo-specific

CD8 +T cells which target the healthy kidney tissue. The interactions between these allo-specific

CD8 +T cells and the susceptible cells results in healthy cell death at a rate β̃ . We recognize the lack

of a source for healthy kidney cells which follows from our initial assumption that the body cannot

replace or regenerate the healthy cells. This means the initial population of susceptible cells HS at

time t = 0 is the maximum number of cells the patient will ever have.

In equations (4.1) - (4.3), the characteristic function is utilized to represent dynamics when certain

43



states only exist in trace amounts. By using the characteristic function of the form:

χ(X>X ∗) =







X ≤ X ∗, χ = 0

X > X ∗, χ = 1
(4.7)

where X ∗ is a threshold parameter, associated interactions will be active when a particular state

exceeds the threshold. According to Murad, work with this model and its earlier iterations showed

that some interactions were negligible when trace amounts of virus or CD8 +T cells were present

[135]. The thresholds E ∗K and E ∗V are set to 2500 cells per mL and 500 cells per mL respectively

as determined by Murad. We assume that concentrations of CD8 +T cells below the thresholds

do not represent an active immune response and therefore will not reduce healthy kidney cell

concentration. Similarly, V ∗ is set to 1000 copies per mL, a choice made in [135] to represent BKV

in its latent state. We note this level is below the lower limit of quantification (1750 copies per mL)

for the assay performed by the Mayo Clinic Laboratories [114, 179]. Observing the characteristic

terms in (4.1), χ(V >V ∗) indicates healthy cells will not be infected while the BK virus remains in its

latent state, i.e. when V <V ∗. In the case of allo-specific CD8 +T cells (EK ), the concentration can

occur in trace amounts, for instance when the patient is immunosuppressed, and satisfy the criteria

EK < E ∗K . When this occurs, rejection of the allograft by the patient’s immune response will cease as

shown in the second loss term of (4.1).

The change in the infected kidney cell concentration occurs in (4.2) which contains expressions

resembling those described in ḢS . The source for infected cells follows from the expression presented

in (4.1) as expected since β represents the rate at which healthy cells become infected by virus when

it is active. These infected cells may also be targeted by the BKV-specific CD8 +T cells when there is

an immune response. This interaction occurs in the final loss term at the rate δE H where infected

cells are removed from the patient. Upon infection, the cellular machinery begins producing copies

of the virus called virions. The cell will continue to make virions until lysis eventually occurs. This

natural cell death of the infected cells is found in the first loss term, occurring at rate δHI
and results

in virions being released into the bloodstream.

The free virions are found in the patient’s bloodstream where some remain until they pass through

nephrons in the kidney providing the potential to infect susceptible cells. These virions are represent-

ed by V in the model and measured by copies per mL of blood plasma. New copies of the virus

are introduced to the bloodstream during the lysis of infected cells as shown in ρV δH I HI . Over

the course of the infection, each infected cell will produce ρV copies of the virus on average. The

BK virus can also be cleared from the body and may be found in the urine. This natural clearance

of virions from the body occurs in the first loss term of (4.3) at the exponential rate δV . When

infecting susceptible cells, a single virion is removed from the blood for each susceptible cell infected.

Since there is a 1:1 ratio between virions and infected cells, the expression for infection seen in
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(4.1) is also repeated in (4.3). This loss of BKV due to infection occurs at rate β as shown in the

loss expression βHS V . These dynamics complete the virus-nephron interaction loop which is the

principal system when over-suppression is present in patients. This can be observed in Figure 4.2

between compartments HS , HI , and V .

Modeling the immune response in a renal transplant patient is presented in equations (4.4) - (4.5).

As described earlier, the immune system uniquely responds to the BK virus and the allograft in ĖV

and ĖK , respectively. Both equations follow the same framework and rely on similar assumptions

but differ in the values of their corresponding parameters. In Murad et al. (2018), (4.4) - (4.5) follow

the assumption that the immune system maintains a low level defense before any threat arises as

represented by constant source terms λE V and λE K , respectively. The immune response reacts to

the magnitudes of present threats such as increase in active virus in the bloodstream or introduction

of foreign tissues to the body which are described in the fractional source terms of (4.4) - (4.5). These

source terms provide a simple framework that captures sufficient complexity of BKV-specific CD8

+T cells response to changes in the quantity of virions with a half-saturation constant κV for viral

level and maximum growth rate of ρE V for the CD8 +T cells. A similar expression is used in (4.5)

characterizing the relationship between the allograft and the allo-specific immune response. In

both immune responses, exponential decay is exhibited with the natural death rates of δE V and

δE K .

The initial expression for both equations (4.4) and (4.5) is (1−ε) and formulates the idea behind

immunosuppression for the patient. The parameter, ε represents the efficacy of the immunosuppres-

sion treatment on a scale from 0 to 1 where a value of 0 indicates no suppression (fully competent

immune system) and 1 indicates full suppression (completely compromised immune response). This

choice generalizes the model to any variety of treatments based on their effectiveness at suppressing

the patient’s immune system. This immunosuppression expression is multiplied by both sources of

the immune response thereby reducing production of the CD8 +T cells that make up the immune

system in the model. In the case of full suppression (ε = 1) this expression completely nullifies

CD8 +T cell production resulting in decay of the initial quantity of cells. Alternatively, setting the

suppression treatment to ε= 0.5, indicates the treatments are suppressing the immune system by

50% and therefore only producing half of the cells in a typical response to both BKV and the allograft.

The model also includes serum creatinine levels, C , as a surrogate for determining healthy levels

of kidney function (as mentioned in section 4.1). Serum creatinine can be collected at regular

checkups through blood and/or urine analysis thus providing data about the patient. Including the

serum creatinine state in the model provides the benefit of allowing collected data to be utilized

for model validation or the implementation of patient feedback mechanisms as we will show in a

later section. The creatinine state has a single constant source term that comes from the natural

metabolic process of breaking down creatine which ranges from 0.6 to 3 mg/dL in adults without

ESRD [44, 89]. Clearing of serum creatinine is also modeled as an interaction between the healthy
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functioning renal cells and the amount of metabolite in the blood. Here the half-saturation is κC H

and the maximum clearance rate of creatinine is δC 0. As the allograft loses healthy cells due to

infection and rejection, the deterioration of kidney function is characterized by a reduced clearance

rate of serum creatinine. The difference between the clearance rate and constant source produces

serum creatinine accumulation as is observed in renal transplant recipients.

Table 4.2 Parameters and values used in the Mathematical Model [135]

Parameter Description Unit Value

β̃ Attack rate on HS by EK mL/(cells·day) 0.0001

β Infection rate of HS by V mL/(copies·day) 8.22×10−8

δH I Death rate of HI by V /day 0.085

δE H Elimination rate of HI by EV mL/(cells·day) 0.0018

ρV Virions produced by HI before death copies/cells 15000

δV Natural clearance rate of V /day 0.05

λE V Source rate of EV cells/(mL·day) 285

ρE V Maximum proliferation rate for EV /day 0.36

κV Half saturation constant copies/mL 106

δE V Death rate of EV /day 0.17

λE K Source rate of EK cells/(mL·day) 285

ρE K Maximum proliferation rate for EK /day 0.137

κK H Half saturation constant cells /mL 103

δE K Death rate of EK /day 0.09

λC Production rate for C mg/(dL·day) 0.01

δC 0 Maximize clearance rate for C /day 0.2

κC H Half saturation constant cells/mL 104

E ∗K Threshold concentration of allo-specific CD8+ T-cells cells/mL 2500

V ∗ Threshold concentration of BKV copies/mL 1000

E ∗V Threshold concentration of BKV-specific CD8+ T-cells cells/mL 500

It is important that this model captures the extremes of immunity over- and under-suppression.

When complete over-suppression occurs (ε= 1), the immune systems ability to produce CD8+T cells

is significantly impaired and can be seen by the nullification of source terms in both (4.4) and (4.5).

This results in initial quantities of both immune response cells (EK (0) = EK 0 and EV (0) = EV 0) being

left to decay at their specific rates and essentially negates their influence on healthy and infected

cells. This can be observed in the loss terms of both (4.1) and (4.2) where EK and EV become smaller

over time. Uninhibited accumulation of infected kidney cells leads to increasing amounts of virions

in the bloodstream (i.e. V grows quickly) and severe BKV infection with reduced kidney function
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Table 4.3 Initial Values for the system of ODE’s [135]

State Value Reasoning

HS0 1025 cells/mL Value from [135]

HI 0 2 ×10−16 cells/mL Trace concentration given BKV is latent

V0 1200 copies/mL Limited detectable level [92, 114]

C0 0.7 Value from [135]

EV 0 100 cells/mL Limited level given BKV is latent

EK 0 2 ×10−16 cells/mL Trace concentration pre-transplantation

(i.e. reduced HS ), the ultimate consequence. Table 4.4 shows these dynamics in the case where ε

is high with increasing infection and serum creatinine. Alternatively during under-suppression

(ε= 0), all sources for CD8 +T cells are fully active providing state growth relative to the size of V for

EV and HS for EK . This results in low V populations as EV removes a majority of infected cells in

(4.2). The unfortunate consequence of under-suppression occurs in (4.1) where initially the HS cell

population is at its largest quantity leading to the highest growth of allo-specific CD8 +T cells at

day 0. This results in a quick loss of healthy kidney cells to the immune response driving increased

serum creatinine levels. Table 4.4 presents the dynamics where CD8 +T cells at their highest push

both virions in the blood and susceptible allograft cells to significantly low levels thus high amounts

of creatinine accumulate in the blood.

Table 4.4 State dynamics in terms of immunosuppression [135]

ε CD8+ T cells BKV Infected Cells Susceptible Cells Creatinine

High ↓ ↑ ↑ ↓ ↑
Balanced ↓ ↓ ↓ ↑ ↓

Low ↑ ↓ ↓ ↓ ↑

This model is simulated using the MATLAB 2018a software package [127]. The built-in integrator

ode15s is used to solve the system of ordinary differential equations described in the (4.1) - (4.6)

with ’RelTol’ = 1e −12, ’MaxOrder’ = 4, and ’MaxStep’ = 0.1. These settings are necessary to balance

numerical error and runtime. For forward simulations, the mathematical model is solved over the

time interval t0 = 0 to T = 280 days. The 280 day final time is chosen since it allows a reasonable

amount of simulated patient data to be used as feedback while keeping simulation runtimes (which

include feedback) under 24 hours. Descriptions of the model states, initial values, and parameters

used in the simulations are provided in Tables 4.1, 4.2, and 4.3 respectively.
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4.2.2 Log Transform Model

A notable feature of immunosuppression in renal transplant patients is the difference in scale of the

important quantities such as viral load (copies per mL), susceptible/infected kidney cells (cells per

mL), and serum creatinine levels (mg per dL). Following [135], our work assumes the initial kidney

cell population begins below 1500 cells per mL while infected cell counts remain below 100 cells

per mL at any moment due to the relatively short duration cells spend in this state. On the other

hand, viral levels can change very rapidly and approach hundreds of thousands of copies when

a severe BK viral infection occurs placing this state orders of magnitude larger than kidney cells

populations. Furthermore, serum creatinine levels for new ESRD patients range from 4 to 16 mg

per dL, therefore these levels for renal transplant patients can be as much as 5 orders of magnitude

lower than viral loads [70]. Due to these differences in magnitude of the state variables along with

the potential of drastic changes in quantities such as viral load, it is common for researchers to treat

these quantities on a log scale especially in viral dynamics [94, 95, 145].

A log transformation of mathematical models has been used in other viral dynamics research

for a variety of benefits; see [2, 18, 135]. Log transformation will restrict the numerical solutions

of the states to non-negative values. This quality is advantageous in biological modeling where

negative states are often unrealistic and numerical solutions can be affected by round-off error.

Log transforming the model standardizes the scale of the solutions making optimization more

efficient when the stopping criteria involves state variables. Large differences in the scale of model

quantities can increase condition numbers causing slower convergence in the numerical methods.

Additionally from a statistical perspective, a log transformation of observations provides a more

normally distributed grouping [18]. This property will assist in the discussion on Kalman Filtering

and feedback in section 4.4.

The mathematical model described in equations (4.1) - (4.6) can be rewritten by defining the

solution vector ȳ (t ) = [HS (t ), HI (t ), V (t ), EV (t ), EK (t ), C (t )]T . Here the bar notation on ȳ represents

an unscaled vector. Furthermore the model takes the form

˙̄y = ḡ (t , ȳ ; q ) (4.8)

with initial conditions ȳ (0) = [HS (0), HI (0), V (0), EV (0), EK (0), C (0)]T . Here ḡ is the vector of differen-

tial equations ((4.1)-(4.6)) and q is the vector of parameters as described in Table 4.2. For the

dynamics of an individual state, let the scaled state yi be such that yi = l o g10 ȳi . The base-10

logarithm scaled model equations for i = 1, .., 5 can be written as

d yi

d t
=

ḡ i (t , ȳ ; q )
ln(10)10yi

. (4.9)

This formulation for the log transformed model is chosen since the transform is applied to the first
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five state variables (HS , HI , V , EV , EK ) while the final state, C remains unscaled and in the original

form from equation (4.6). The scaling of serum creatinine is unnecessary since quantities occur at

a magnitude comparable to the other transformed states and changes occur slowly over time. We

can further generalize the model combining the transformed states with the unscaled creatinine

state into the vector y (t ) = [x1, x2, x3, x4, x5, x̄6]T and similarly their corresponding derivatives in

the vector valued function f such that

d y

d t
= f (t , y ; q ) (4.10)

with the appropriate transformed initial values where y (0) = y0.

4.3 Control Methodology

4.3.1 Optimal Control of Immunosuppression

Optimal control theory provides the framework for finding the ideal outcome in an application

and is particularly useful in nonlinear systems of ordinary differential equations. In practice, given

a mathematical model and cost functional to describe an optimal outcome, a controller can be

designed to achieve this outcome when the cost functional is minimized. Optimal control strategies

have seen extensive use in finding effective immunotherapies most notably in research with HIV,

cancer, and solid organ transplant [167, 17, 1]. Here, the optimal controller is designed to find

immunosuppression treatment strategies that keep creatinine and BK viral levels low while prevent-

ing the loss of allograft cells.

Almost every transplant recipient requires a lifetime of daily anti-rejection treatments. Treatment

comprises a combination of drugs which are used to prevent acute rejection of the allograft and

chronic allograft nephropathy [103]. The prescribed treatments are at the discretion of the attending

physicians and are often based on the physicians’ observations and knowledge of the literature.

These selections for immunosuppression treatments may be sufficient, but are likely suboptimal.

Some experts in the field acknowledge that optimal therapies still have not been established for renal

transplant recipients [139]. For generality, we focus on the effectiveness of nondescript treatment

strategies since various combinations and dosages of anti-rejection drugs could produce similar

subduing effects on the immune system. As discussed in section 4.2.1, the model uses treatment

efficacy ε to determine the activity of the immune system. The continuous controller will take the

place of ε in the model allowing drug prescriptions to change over time in response to the patient’s

condition.

There are two types of nonlinear control systems: open loop control (feedforward) and closed loop

control (feedback) systems. In open loop control systems, the controller depends on the initial state
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and either a fixed final state or fixed final time, i.e. , the final state of the optimal control is unknown

but lies within an acceptable range of values. This control does not depend on intermediate values

of the state variables. The closed loop control system in contrast depends on both the initial state

and intermediate states allowing for feedback to be utilized when finding the optimal controller.

Managing immunosuppression is best accomplished using a closed loop control problem since the

precise final states are less important than maintaining low BK viral and serum creatinine levels,

while the number of healthy functioning cells within the nephrons must remain as high as possible.

The dependence of the closed loop control on intermediary state values also allows for patient data

to be introduced into the model as feedback; this will be discussed in detail in section 4.4.

The open loop optimal control problem is set up initially in the following manner. Let the drug

efficacy controller be a continuous function in time, u (t ). Consider the vector s ∈RT+1, where sk is

the efficacy of the prescribed treatment on day k = 0,1, ... , T . Using a linear spline approach, the

controller u is defined as

u (t ) = sk + (sk+1− sk )(t −k ). (4.11)

More advanced functions could be chosen for the controller but that is left for future work. We

update the general model in (4.10) to include the controller as follows

d y

d t
= f (y (t ), u (t ), t ; q ) (4.12)

with the same initial conditions y0 to describe the dynamics for the continuous nonlinear control

problem. This control problem has a free final state at a fixed final time T since an infinite number

of solutions will have final states y (T ) that yield favorable results: a healthy kidney and controlled

BK viral levels and serum creatinine concentrations. The general cost functional has the form

J (t0) =φ(y (T ), T ) +

∫ T

t0

L (y (t ), u (t ), t )d t . (4.13)

The optimal controller can be found by solving the 2-point boundary problem using Lagrange

multipliers (λ) as described in [118]:

Hamiltonian: H (y , u , t ) = L (y , u , t ) +λT f (y , u , t ; q ) (4.14)

State: ẏ =
∂H

∂ λ
= f (y , u , t ; q ), t ≥ t0 (4.15)

Costate: − λ̇=
∂H

∂ y
=
∂ f T

∂ y
λ+

∂ L

∂ y
, t ≤ T (4.16)

Constraints: 1) y0 given

2) (φy −λ)T |T d y (T ) = 0. (4.17)
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We wish to satisfy Pontryagin’s Minimum Principle

H (y ∗, u∗,λ∗, t )≤H (y ∗, u ,λ∗, t ), (4.18)

with * representing optimal quantities and controllers, u , are taken from the space of all admissible

controllers,U [56]. Thus we find the optimal controller (where 0≤ u (t )≤ 1) that satisfies

u∗(t ) = argmin
u∈U

H (y ∗(t ), u (t ),λ∗(t ), t ).

We choose a cost functional that penalizes two conditions: high levels of BKV in the blood and

deteriorating kidney function. The cost functional to achieve this objective is

J (t0) =

∫ T

t0

ωV V (t )2+ωC C̄ 2(t ) +ωH S (l o g10HS0−HS )
2, (4.19)

where theω’s are weights and the bar notation represents an unscaled quantity. This functional

penalizes the controller for all virus present in the blood and rising levels of creatinine in the blood.

These are important quantities because not only are serum creatinine levels a surrogate for kidney

function, but both viral concentrations in the blood and serum creatinine concentrations can

be obtained during routine checkups to assess changes in treatment [187]. The benefit provided

by the inclusion of these states is the ability of the cost functional to react to patient data which

translates into a patient specific optimal controller. Serum creatinine levels in the blood are not

always sufficient to control the loss of kidney function so the final term of (4.19) with respect to HS

is included to increase the cost for loss of kidney function by penalizing a diminished quantity of

susceptible kidney cells. We note that in comparison to (4.13), our J (t ) setsφ(y (T ), T ) = 0 since a

penalty for deviation from a final state is unnecessary. In addition, the form of (4.19) and the free

final state assumption affect the boundary condition described in (4.17). It follows that d y (T ) 6= 0

given that the final state is free, hence (φy −λ)T |T = 0 in (4.17) which implies λ(T ) = 0 for our final

constraint.

Only the simplest of nonlinear control problems have closed form solutions. Numerical methods

provide a means for solving the 2-point boundary problem. We employ the algorithm in [56] to find

our optimal controller:

1. Solve the state equation (4.15) forward in time over the interval (t0, T ) using the initial state y0.

2. Solve the costate equation (4.16) backward in time from T to t0 using the constraint λ(T ) = 0.

3. Compute the cost J (u ) and gradient Hu =∇J using a first order approximation [153].

4. Provide the J and∇J to the numerical optimization function.

5. Determine the optimal controller until convergence tolerances are met.
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The MATLAB optimization function fmincon is chosen to find the optimal control using settings

’TolFun’= 0.1 and ’TolX’= 1e −4. This method requires the choice of an initial guess for the controller

denoted u0, a continuous function in time. Since we have no prior knowledge of the form of the

optimal controller, u0 is chosen as a fixed controller such that 0< u0(t )< 1 for all t ∈ [t0, T ]. This

follows from u (t ) representing drug efficacy defined specifically on this range.

4.3.2 Receding Horizon Controller Scheme

Renal transplant recipients attend regular post-transplant visitations with their transplant physicians

while the duration between these appointments may vary patient to patient. These routine check-

ups often involve blood analyses and may include urine analysis [45]. The medical tests can provide

patient data regarding serum creatinine levels and BKV blood levels at the time of the appointment.

This data can be used as feedback to update the nonlinear control problem in the search for a

controller that provides the best immunosuppression treatment for specific patients. We employ

this feedback mechanism (and create a closed loop control system) by using the receding horizon

control (RHC) methodology as described in [57].

The time frame of interest for this problem is from t0 to T days. The discrete days for which routine

check-ups take place is the set of ti for i = 1, 2, 3, ... such that ti < T . The control horizon, tc h ,i is the

fixed amount of time over which an optimal controller will be determined, such that tc h ,i ≥ ti+1− ti .

The RHC problem can be seen as a sequence of nonlinear control problems, Oi , over their respective

intervals [ti , ti+1]. For each interval, the 2-point boundary control problem will be solved with initial

time ti and fixed final time ti + tc h ,i , where the cost functional is

Ji =φ(y (ti + tc h ,i ), ti + tc h ,i ) +

∫ ti+tc hi

ti

L (y , u , t )d t , (4.20)

with initial condition y (ti ) and boundary condition λ(ti + tc h ,i ) = 0. The process for finding the

optimal control with feedback at times, ti for i = 1,2,3... is an iterative process that follows these

steps [57]:

1. Given the constraints y (ti ) and λ(ti + tc h ,i ) = 0, solve the control problem Oi on the interval

[ti , ti + tc h ,i ].

2. Use the controller defined on [ti , ti + tc h ,i ] and forward solve the model on the time interval

[ti , ti+1].

3. Use observation or state estimator to update y (ti+1).

4. Repeat steps 1-3 over the next time interval [ti+1, ti+2] using y (ti+1) as the initial condition.
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The process described here finds the optimal controller over a time interval defined by the control

horizon, tc h ,i . The portion of that optimal control used for the model solution lies over the interval

[ti , ti+1] which represents the time between the initialization of the controller at ti until the next

observation is available at ti+1. The observation can be introduced as feedback into our system to

update y (ti+1). The next optimal control problem is then solved using this new information and

the process repeats until the final time of interest T is reached. An example of this method can be

observed in Figure 4.3, where this example sets tc h ,i = T . The blue controller in this figure represents

the collected portions of each optimal controller used over their respective time intervals.This yields

a controller for the problem from time t0 to T as desired with feedback at the discrete ti ’s.

Figure 4.3 RHC example with control horizon, T [57]

In our nonlinear control problem, routine visits with transplant physicians are chosen to occur every

20 days, yielding a set of discrete observation time points as ti = 20, 40, 60, ...260 with simulations

concluding at T = 280 days. We chose these time points due to the unavailability of a dataset

with sufficient observations which would otherwise dictate the values for ti . Following [135], the

control horizon is chosen as tc h ,i = 200 days since no benefit appeared for exceeding this value. The

implementation of the receding horizon control requires a mechanism to introduce observations

(simulated data) or state estimators as feedback for the controller which is explained in the following

section.
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4.4 Kalman Filtering Model Feedback

Feedback driven control is a primary focus for this modeling effort which suggests the inclusion of

patient data into model. Solid organ transplant patients require routine post-transplant visitations

with their physicians for continued assessment of allograft success and patient health. Renal

transplant patients typically undergo blood and/or urine analysis with each visit to check allograft

function, general immune response, and presence of infection [45]. Since tests account for total

immune system health, determining the portion of the response related to allograft rejection or

a particular disease is unlikely since determining BKV specific CD8+ T cells is extremely difficult

even in healthy subjects [188].Therefore, this data is not reliable for use as feedback since our model

focuses on specific components of the immune system and not the complete response on a cellular

level.

However, assays are presently in use to provide the concentration of BKV in a patient’s blood [114,

92]. Serum creatinine levels are also collected which provide the GFR surrogate assessment of

kidney function which can be compared to model output. Our ideal dataset would comprise of

regular viral and creatinine data points. Since a dataset is unavailable, patient data was simulated

using the model output for both viral and creatinine levels drawn from a normal distributions with

means V (ti ) and C̄ (ti ) respectively. The covariance for the data is represented by R . A method for

introducing patient data as feedback into the receding horizon control problem is called Kalman

filitering. Maybeck offers the apt description, "a Kalman filter combines all available measurement

data, plus prior knowledge about the system and measuring devices, to produce an estimate of the

desired variables in such a manner that the error is minimized statistically" [128]. The Kalman filter

uses a predictor-corrector framework to produce a state estimator that utilizes the mathematical

model solution and the patient data taking into account the uncertainty of both. Variations of the

Kalman filter have been developed and applied to control problems in biology [57, 135, 130]. The

extended Kalman filter and ensemble Kalman filter are variations of the Kalman filter for nonlinear

systems and both are applied individually to the RHC in this research.

The general form of a continuous-discrete nonlinear Kalman filter requires system dynamics and

an observation process as described by:

ẏ = f (y (t ), u (t ), t ,ω(t )), ω∼N (0,Q ), (4.21)

zk =H (yk ) +νk , ν∼N (0, R ), (4.22)

whereω(t ) and νk are white noise processes [117]. Here the uncertainty in the mathematical model

is Q which can be understood as inherent error of the model given that it approximates a real

phenomenon. Although Q can be obtained through model validation with an appropriate dataset,

it can also be used as a tunable quantity for filter. The uncertainty in the data is labeled R and can

be determined by the statistics of the dataset and accuracy of the data collection techniques.
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To characterize the uncertainty in our state information, first consider the mathematical model

which simplifies a complex system by making assumptions and captures most of the driving

dynamics of the system. This simplification inherently includes an amount of uncertainty. In

addition, the numerical solutions to the mathematical model include generalized amounts of error

based on the numerical methods used and the behavior of the solution. Although the numerical

error can somewhat be quantified, the uncertainty due to model assumption is less clear. There is

also uncertainty in the methods used to obtain patient data, precisely in the collection and analysis

of blood and urine. The error in the precise methods used in gathering the data can be determined

through literature.

Just as in section 4.3.2, the set of ti with i = 0,1,2, ... represents discrete time points for which

complete patient data is available. The continuous dynamics between any time points ti and ti+1

can be determine using (4.21) since no data exists between the endpoints of this interval. The

predictor step of the method (also referred to as the Time Update) requires finding the state estimate

at ti+1 using the system dynamics. The corrector step of the method (also called the Measurement

Update) generates the Kalman gain Kk using the uncertainty in the model (Q ), data (R ) and states

(P ). The Kalman gain is a matrix that adjusts the state estimates and is scaled by the difference

between the estimate and the data. This process corrects the state estimate from the model using the

data. The contrast in scale between values in Q and R provides confidence that the source (model

or data) with the lower uncertainty is a better approximation of the true state values. In the case

where less uncertainty is in the data than the model, the Kalman gain corrects the model output

(state estimates) to a level closer to the data. The updated state estimate includes feedback from the

model and the predictor-corrector process can continue on the next time interval from tk to tk+1.

This process repeats until the final time of the simulation is reached.

4.4.1 Extended Kalman Filter

The Extended Kalman filter (EKF) is an extension of the original Kalman filter for use in nonlinear

problems and can be applied to problems with continuous dynamics and discrete data points as in

our problem [117]. The EKF simplifies the problem of nonlinearity by linearizing the dynamics and

observation process around the mean state estimate at the discrete sample times ti when data is

introduced as feedback. The uncertainty in the model is a weighted white noise process withω(t )

that is described by a 0 mean and covariance Q . The uncertainty in the data is a white noise process

νk described by mean 0 and covariance R . These processes for our problem are described as:

ẏ = f (y (t ), u (t ), t ) +ω(t ), whereω(t )∼N (0,Q ) (4.23)

zk = h (y (tk ), k ) +νk , where νk ∼N (0, R ). (4.24)

55



For the time update step, both the mean state and covariance are propagated forward in time

between the previous time data was collected,tk and next introduction of data at tk+1 using

ẏ = f (y (t ), u (t ), t ) (4.25)

Ṗ = P∇ f ( ŷ )T∇ f ( ŷ )P +Q . (4.26)

We observe in (4.26) the Jacobian matrix of f which is a result of linearizing the nonlinear problem.

This system of equations will be solved iteratively with initial values ŷ (tk−1) and P (tk−1). The result

includes both the state and covariance estimates yielded by the model dynamics at tk which

are ŷ −k = ŷ (tk ) and P −k = P (tk ), notationally. In the measurement update, the Jacobian matrix

of the observation process (∇h) is used when working with observation estimates in the linearized

methods. To calculate the Kalman gain, the state covariance estimate, uncertainty in collected data

R , and observation Jacobian are used:

Kk = P −k ∇h ( ŷk )
T [∇h ( ŷk )P

−
k ∇h ( ŷk )

T +R ]−1. (4.27)

This matrix determines how much the observed and unobserved states should be adjusted and

will be scaled based on the error between the data and the observation estimates. We also include

the gain when updating the state covariance estimate. The measurement update concludes with

finding the mean state estimate and covariance based on feedback from the data (zd )as follows:

ŷk = ŷ −k +Kk [zd −h ( ŷ −k , k )] (4.28)

Pk = [I −Kk∇h ( ŷ −k , k )]P −k . (4.29)

The values obtained from (4.28) and (4.29) represent a shift from the output of model at time tk

toward the data in the observed states and estimates for corresponding unobserved states given the

known uncertainties. The new estimates reflect the source with the most certainty, i.e., the lower

covariance values. To demonstrate this idea, the model is considered to capture important dynamics

with immunosuppression in a renal transplant patient but we recognize it does not capture all of

the processes influencing the dynamics. Instead, we believe the data captures a representation

the dynamics missing from the model within a specific patient even with the uncertainty in data

collection methods. Since a sufficient dataset is unavailable to obtain a realistic scale of Q or R , in

our work the scale of the covariances is adjusted in an attempt to determine a reasonable amount

of noise the model can process given available computation power and time.

By utilizing the Kalman gain, the EKF adjusts the model output closer to the data collected from

individual patients when R is close to or greater than Q thereby personalizing the treatment to the

individual. These more personalized estimates of the mean state and covariance are then used as

the initial conditions for the model dynamics until the next patient data is available at tk+1 where a

new Kalman gain can be calculated and utilized. We provide the EKF algorithm in Algorithm 1.
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Algorithm 1 Continuous-Discrete Extended Kalman Filter (EKF) [117, 135]

Nonlinear dynamic model with discrete measurements:

ẏ (t ) = f (y (t ), u (t ), t ) +ω(t ), ω∼N (0,Q )

zk = h (y (tk ), k ) +νk , νk ∼N (0, R )

Initialization of state and covariance (k = 0):

y (0)∼N (y0, P0)

ŷ (0) = y0

P (0) = P0

For k = 1,2,3, ...

Time Update:

1. Find the controller, u (t ), over tk−1 < t < tk using the state mean ŷ (tk−1)

2. Compute the Jacobians:

A(y , t ) =∇ f (y , t ), C (y ) =∇h (y , k )

3. Solve the system over the interval (tk−1, tk ) using ŷ (tk−1) = ŷk−1 and P (tk−1) = Pk−1

˙̂y (t ) = f ( ŷ (t ), u (t ), t )

Ṗ (t ) = PAT ( ŷ , t ) +A( ŷ , t )P +Q

Let ŷ −k = ŷ (tk ) and P −k = P (tk )

Measurement Update:

4. Compute the Kalman Gain

Kk = P −k C T ( ŷ −k )[C ( ŷ
−

k )P
−

k C T ( ŷ −k ) +R ]−1

5. Update state mean and covariance

ŷk = ŷ −k +Kk [zd −h ( ŷ −k , k )]

Pk = [I −Kk C ( ŷ −k , k )]P −k

57



4.4.2 Ensemble Kalman Filter

In contrast to the EKF, the Ensemble Kalman filter (EnKF) maintains the nonlinear dynamics and

observation process throughout the application of the filter. Similar to the EKF, the uncertainty

in the model and data are assumed to be related to white noise random variablesωk and νk . The

formulation of the state and observation process with weights gω and gν are:

ẏ = f (y (t ), u (t ), t ), ∀t > tk−1 (4.30)

yk = y (tk ; yk−1, u ) + gω(k )ωk , whereωk ∼N (0,Q ) (4.31)

zk = h (y (tk ), k ) + gν(k )νk , where νk ∼N (0, R ). (4.32)

The EnKF assumes initially that the state is normally distributed such that y (t0)∼N ( ŷ0, P (t )0). A

sample of q points are drawn from the initial distribution creating an ensemble of initial values.

Each initial value will produce a solution denoted y j (t ) for j = 1, ..., q . The propagation of each

element through the nonlinear dynamics and observation process are used to calculate the necessary

statistics for the filter. We assume the patient will respond to treatment similar to the sample mean

hence the controller u (t ) over an interval from tk−1 to tk is determined using ŷ (tk−1) as the initial

value. One might consider finding the set of optimal controllers for each y j (t ) and determining the

optimal controller for the patient from the set of optimal controllers. This method would require

too much computational power to be feasible and also falls outside the scope of this research.

The time update begins with calculating the solution for each member of the ensemble using the

dynamics in (4.30) over the interval from tk−1 to tk (i.e. , between observations). At time tk when the

next patient data is available, the state estimates (y
j−

k ) and observation estimates (z
j−

k ) for j = 1, ..., q

are calculated using model dynamics, model noise, and the observation process [4]:

y
j−

k = y j (tk , u ; y
j

k−1) + gω(k )ωk (4.33)

z
j−

k = h (y j−
k , k ). (4.34)

Since simulated data is being used, we assume the patient behaves similar to model dynamics with

initial value ŷ (tk−1) and call this solution yd (t ) over the time interval between data points. Given

that q elements are in the ensemble, q data points are generated using the observation process in

(4.32) in the following manner [4]:

z
j

d (tk ) = h (yd (tk ))+ν
j
k , for j = 1, ..., q . (4.35)

The corrector portion of the algorithm occurs in the measurement update where sample statistics

are used to determine the Kalman gain. The estimated sample and observation means are calculated

58



using the state and observation estimates from the time update:

ŷ −k =
1

q

∑

j

y
j−

k (4.36)

ẑ−k =
1

q

∑

j

z
j−

k . (4.37)

Next, covariance estimates can be determined by finding the necessary differences between the

estimated states and observations and their respective mean values:

E
y

k = [y
1−

k − ŷ −k , ..., y
q−

k − ŷ −k ]
T (4.38)

E z
k = [z

1−
k − ẑ−k , ..., z

q−
k − ẑ−k ]

T (4.39)

Py zk
=

1

q −1
E

y
k (E

z
k )

T (4.40)

Pz zk
=

1

q −1
E z

k (E
z

k )
T . (4.41)

The Kalman gain is built from these covariance estimates and the uncertainty in the data as follows:

Kk = Py zk
(Pz zk

+R )−1. (4.42)

Now each element of the ensemble is updated using the gain which is scaled by the difference

between the observation estimate and the associated data. After the entire ensemble is updated,

the sample mean is calculated to be used for finding the control (and simulated patient data) over

the next interval from tk to tk+1. These steps can be seen here:

y
j

k = y
j−

k +Kk (z
j

d (tk )− z
j−

k ), for j = 1, ..., q (4.43)

ŷk =
1

q

∑

j

y
j

k . (4.44)

The ensemble Kalman filter algorithm is provided in Algorithm 2.

4.5 Results

4.5.1 Fixed Efficacy Treatments

In the case where the immunosuppression treatments provide a fixed effectiveness at suppressing

the host’s immune system, both the optimal control and Kalman filters are not utilized. Examples of

fixed efficacy treatments are provided in Figures 4.4 and 4.5 where the dose effectiveness is 40%
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Algorithm 2 Continuous-Discrete Ensemble Kalman Filter (EnKF) [66, 106]

Nonlinear dynamic model with discrete measurements:

ẏ (t ) = f (y (t ), u (t ), t )

yk = y (tk ; yk−1, u ) + gω(k )ωk , ωk ∼N (0,Q )

zk = h (y (tk ), k ) + gν(k )νk , νk ∼N (0, R )

Initialization of state and covariance (k = 0):

ŷ0 = E [y (t0)]

P0 = E [(y (t0)−E [y (t0)])(y (t0)−E [y (t0)]
T )

Sample q particles from the initial state distribution, y 1
0 , y 2

0 , ..., y
q

0

For k = 1,2,3, ...

Time Update:

1. Find the controller, u (t ), over tk−1 < t < tk using the state mean ŷ (tk−1)

2. Propagate the particles through the nonlinear dynamics and observation process over
tk−1 < t < tk where j = 1, ..., q ,

ẏ j (t ) = f (y j (t ), u (t ), t ),

y
j−

k = y j (tk ; y
j

k−1, u ) + gω(k )ωk ,

z
j−

k = h (y j−
k , k )

3. Compute the ensemble mean, ensemble state and output deviations

ŷ −k =
1

q

q
∑

j=1

y
j−

k , ẑ−k =
1

q

q
∑

j=1

z
j−

k

E
y

k = [y
1−

k − ŷ −k , y 2−
k − ŷ −k , ..., y

q−
k − ŷ −k ]

E z
k = [z

1−
k − ẑ−k , z 2−

k − ẑ−k , ...z
q−
k − ẑ−k ]

Py zk
=

1

q −1
E

y
k (E

z
k )

T , Pz zk
=

1

q −1
E z

k (E
z

k )
T

Measurement Update:

4. Compute the Kalman Gain
Kk = Py zk

(Pz zk
+R )−1
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Measurement Update (cont.):

5. Update state ensemble and compute state mean and covariance

y
j

k = y
j−

k +Kk (z
j

d (tk )− z
j−

k )

ŷk =
1

q

q
∑

j=1

y i
k

Ek = [y
1

k − ŷk , y 2
k − ŷk , ..., y

q
k − ŷk ]

Pk =
1

q −1
Ek E T

k

(ε= 0.4) and 60% (ε= 0.6), respectively. In Figure 4.4 where the treatment suppresses the immune

system by 40%, the patient is significantly under-suppressed and the CD8+ T cell populations keep

the BK viral levels (mid left) under control and attack the susceptible allograft cells (top left). In the

plot of BK virus, the virion concentration is noticeably below the 10,000 copies per mL threshold

(red dashes). This threshold represents the detection level for BK viremia, which is a precursor to

BKV nephropathy, i.e., noticeable loss of the kidney function [65, 35]. Due to the under-suppressive

nature of this treatment level, the immune response is strong enough to significantly impact the

allograft. The healthy cell population falls below the lower bound of 15% of initial cells (≈ 154 cells

per mL) indicating that nephropathy and more likely allograft loss has occurred. In the creatinine

plot, gradual accumulation of serum creatinine levels are observed and due to the sudden loss of

kidney function. These levels exceed 1.9 mg per dL (red dashes) which is the upper bound for healthy

patients with a single functioning kidney [58]. In normal healthy males the range of creatinine levels

is 0.74 to 1.35 mg per dL while normal healthy females range from 0.6 to 1.1 mg per dL due to lower

muscle mass [44, 88]. Overall this plot is a good example of the effects from the under-suppression

of a recipient’s immune system.

Figure 4.5 shows the effects of an immunosuppression treatment which suppresses the immune

response by 60% of its maximum. In contrast to Figure 4.4, there are noticeable decreases in the

concentrations of the CD8+ T cells, both allo-specific and BKV-specific. This reduction in the

immune response leads to BK viremia as shown in the virus plot and suggests that BKV nephropathy

is likely which coincides with the significant decrease in the healthy kidney cell population. We

point out that not all cases of BK veremia lead to BKV nephropathy instead only up to 50% of

patients with viremia develop nephropathy [3, 35]. In Figure 4.5, the infection appears to be taken

care of by 280 days (end of simulation) where trace amounts of detectable virus remain in the

patient’s blood. The healthy kidney cell population approaches a level approximately 35% of the

initial concentration which indicates nephropathy and an approximate 35% of kidney function

remains, i.e., approximately 65% of renal tubule cells are no longer functioning. This assumption

slightly over simplifies this relationship since there could be less function loss if the infected renal
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Figure 4.4 Fixed treatment efficacy of 40 % (ε= 0.4).

tubule cells are spread among a number of nephrons, although it is more likely the infected cells

spread quicker within a nephron than initially infecting many nephrons. Despite this noticeable

loss of kidney function, allograft loss has not occurred although it may at some time after the 280

days of the simulation. Since creatinine levels respond slowly to loss of kidney function in the

simulations, a rise in serum creatinine levels is observed but remains at acceptable levels. This

particular treatment represents a moderate over-suppression of the recipient’s immune response

and increasing treatment effectiveness (≥ 70%) would ultimately lead to significant over-suppression

with a more severe BKV infection and allograft loss.

4.5.2 Receding Horizon Control and Kalman Filtering Calibration

Implementation of the receding horizon control framework requires extensive calibration of the

cost functional weights as described in section 4.3. There are three weights of interest associated

with viral levels (ωV ), creatinine levels (ωC ), and susceptible kidney cell concentration (ωH S ). Each

weight takes a positive real number for a value resulting in an infinite number of possible weight

combinations. Many simulations were run with both the Extended Kalman filter and Ensemble

Kalman filter to determine acceptable weights for the cost functional. The vast majority resulted in

allograft loss typically due to extremely large viral concentrations or combinations of BKV and the
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Figure 4.5 Fixed treatment efficacy of 60 % (ε= 0.6).

allo-specific CD8+ T cells. In addition to determining a set of acceptable cost functional weights,

establishing the best initial guess for the receding horizon control is important. Figures 4.4 and 4.5

from the previous section set respectable bounds for this problem. Fixed treatment efficacy below

40% resulted in severe under-suppression and subsequently allograft loss while fixed treatments of

70% established a boundary for severe over-suppression also leading to allograft loss within 280 days.

For simplicity, initial guesses for the receding horizon controller were assumed to be fixed over the

initial 20 day interval and were drawn from the range of 0.4 to 0.7 for epsilon. It was determined that

cost functional weightsωV = 0.57,ωC = 0.7, andωH S = 125 (for viral, creatinine and susceptible

cell levels respectively) produced reasonable results as will be shown in sections 4.5.3 and 4.5.4. The

fact that each cost functional weight can take on any positive real number and the long runtime of

the model made it difficult to determine the best combination of weights.

In addition to calibration of the control problem, the Kalman filters require that the white noise

processes and the covariance of the initial random model states to be known. For the ideal setup,

a robust patient data set would be used to determine the variance in the initial state random

variables, P0, and also methods for collecting the data set would establish an appropriate variance

for uncertainty in the data, R . A data set was unavailable for this work so values of P0 and R were

chosen as large as possible to determine maximal covariances the model and filter could tolerate

with the available computational power. Since the objective of this research is to influence model
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output with feedback from patient data, simulated patient data is used in conjunction with the

assumption that the model noise covariance, Q , and data noise covariance, R , will be close in

magnitude or the magnitude of R will be considerably greater than that of Q . Diagonal matrices

are used for Q and R while the best results come from the elements of Q being approximately 1

order of magnitude higher than the elements of R , which was considered as being close. With this

criteria the Kalman filters were able to adjust model output based on the proximity of the estimated

observable model states and the simulated data while limiting the frequency of runs where the

Kalman gain would adjust unobservable states outside biologically realistic model values. This is a

common occurrence while calibrating the EnKF. It is also observed that when the elements of P0, R ,

and Q were too high, simulations would result in integrator errors where step sizes could not be met

or memory problems occurred likely due to large sudden changes in one or more state variables,

e.g., virus concentration grows too quickly which also forces susceptible kidney cell concentrations

to plummet to zero too quickly. The values in 4.5.2 are taken from Murad [135] for comparing our

results with theirs. According to Murad, these variance values were chosen to be close since they felt

there would be difficulty determining if more noise is present in the model or measurements. The

values used were:

P0 =





















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





















, Q =





















0.01 0 0 0 0 0

0 0.0025 0 0 0 0

0 0 0.0004 0 0 0

0 0 0 0.0049 0 0

0 0 0 0 0.0036 0

0 0 0 0 0 0.0196





















(4.45)

R =

�

0.09 0

0 0.0225

�

4.5.3 Feedback with the Extended Kalman Filter

The initial focus for implementation of the extended Kalman filter is for comparison and extension

of the work done by Murad [135]. In Murad’s use of the EKF, the cost functional only contained

the first two terms found in (4.19) for viral and creatinine levels with weights set asωV =ωC = 1.

Murad’s results are show in Figure 4.6. In their work, the patient data was simulated using a fixed

immunosuppression efficacy at 60% with additive measurement noise. The utility of these results

is a demonstration of the effectiveness of the EKF to adjust state estimates closer to patient data

particularly when they did not follow the RHC described treatment. When reproducing the results

from [135] for Figure 4.6, we determined that the transplant patient described is in a state of over-

suppression given the low BKV levels (mid left) overall and substantial kidney loss (top left). The
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Figure 4.6 Murad Results with all state plots (ε0 = 0.45).

high initial spikes in both allo-specific (bottom left) and BKV-specific (mid right) CD8+ T cell

concentrations further support this conclusion. The initial spike in virus also contributes to the

loss of kidney cells until the BKV-specific CD8+ T cells begin reducing viral levels. These effects

of under-suppression together lead to acute rejection of the kidney which usually occurs within

days or weeks of the transplantation and here it occurs at day 21 [184]. We believe the reason for low

creatinine concentrations (bottom right) is the fact that creatinine accumulation is a slow process

in the model and speculate creatinine levels will cross the 1.9 mg per mL upper bound (red dashed

line) sometime after the 280 days shown in the results due to the total loss of kidney function. Figure

4.7 features the receding horizon controller associated with the results in Figure 4.6. Observing the

receding horizon controller confirms that initial under-suppression of the patient’s immune system

is likely the cause for the acute allograft rejection. Within the first 20 days the receding horizon

control has treatment efficacies ≤ 20% thereby allowing the immune response to behave closer to

normal levels than not. We acknowledge that Figure 4.7 matches the controller in [135] for the initial

60 days and show similar patterns the remainder of the time. Despite the controllers not being

identical, they produced the exact same virus and creatinine concentrations as presented in [135].

This discrepancy is most likely related to changes in the MATLAB optimization functions in newer

builds since our results were produced on build R2018a (released March 2018) while Murad’s results

were likely produced on a pre-2018 build since [135]was published in spring 2018 [101].
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Figure 4.7 Murad receding horizon controller.

For comparison with Murad’s results, the cost functional in (4.19) is used instead of the orginial

found in [135]while addressing the same renal transplant patient whom follows a fixed 60% dose

efficacy instead of the recommended treatment. These results in Figure 4.8 show distinct differences

with Figure 4.6 where particularly noticeable differences are seen in the plots for susceptible kidney

cell, BKV, and allo-specific immune cell concentrations. In Figure 4.8, the susceptible healthy kidney

cell concentration (top left) remains higher throughout the time frame compared to its counterpart

in Figure 4.6. Figure 4.8 also displays a significant increase in BK viral cell concentration (mid left)

leading to BK viremia with a likelihood of nephropathy (which occurs when exceeding the red

dashed threshold) as opposed to Murad’s results which show no significant BKV viremia.

Our results using the new cost functional, indicate that the loss of kidney cells occurs predominately

due to the BKV infection as opposed to the deterioration of the kidney by allo-specific CD8+ T

cells as observed in Figure 4.6. The new cost functional helps determine a controller that prevents

treatment schemes which cause acute kidney rejection as shown in Figure 4.8. The receding horizon

controller found using this new cost functional is shown in Figure 4.9 and displays a controller

with both a higher lower bound and lower upper bound than the controller in Figure 4.7. With

less extreme fluctuations, this controller stays close to the treatment efficacy range of 40% to 60%

indicating that mid-range treatment efficacies can prevent allograft rejection but possibly lack

the ability to completely control BK viral concentrations. Unfortunately, with the controller from
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Figure 4.8 EKF model with Murad settings and data using new RHC cost functional (4.19) (ε0 = 0.45).

Murad’s work, the allograft rejection at day 21 makes it difficult to determine if periodically higher

treatment efficacy values or the significant reduction in susceptible cells are more responsible for

the low BK viral concentrations.

In order to focus our EKF method on the behavior of patients that attempt to follow immunosuppres-

sion treatments suggested by the controller, we utilize simulated patient data as described in section

4.4.2 equation (4.24) where patient data is generated by solving the system of ODE’s using both

the updated average state estimate and the receding horizon controller then adding white noise

for the measurement variability in the data [4]. First, we note that variance values in (4.5.4) from

the next section are used for this application of the model with the EKF since there appeared to

be no reasonable upper bound for additive noise. Fixed initial guesses for the controller are used

as well. Initially, the case of ε0 = 0.5 (50% immunosuppression) is presented, see Figure 4.10. In

these plots, the concentrations of susceptible kidney cells (top left) and BKV (mid left) indicate

there is under-suppression of the immune system. The under-suppression of this treatment appears

moderate due to the fact that allo-specific CD8+ T cell concentrations (bottom left) are initially kept

at a low enough level to prevent acute rejection of the allograft.The treatment is unable to control

the BKV-specific CD8+ T cell concentration (mid right) leading to a severe BKV infection with levels

significantly above the threshold. In this case, nephropathy occurs as kidney function is reduced by
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Figure 4.9 EKF model controller when using new cost functional (4.19)

over 60%. It also appears that allograft loss will occur after the 280 days shown in the results. The

receding horizon controller that describes the immunosuppression treatment for this patient, in

Figure 4.11, begins close to the initial guess which surprisingly is enough immunosuppression to

prevent acute transplant rejection but not control BKV. The controller overall displays a periodic

form that remains in the range of 36% to 67% with a downward trend. This trend is most likely a

result of attempting to control the increase of virus concentration observed in Figure 4.10.

For comparison, an initial guess of ε0 = 0.55 is used with the EKF model. The results for this choice

of initial guess are shown in Figure 4.12 where we observe very similar results to those in the ε0 = 0.5

case. Yet the receding horizon controller for the ε0 = 0.55 case, in Figure 4.13, is noticeably different

from the previous controller (ε0 = .5). In particular, the first 40 days show a periodic form unseen

in Figure 4.11 with lower values overall. The upper bound of the range of the controller is also

increased from 67% to over 80% from cases ε0 = 0.5 to ε0 = 0.55, respectively. We note that the choice

of initial value plays an important role since changes in initial guesses produce distinct receding

horizon controllers as seen Figures 4.11 and 4.13 and will also be seen to more extreme in the next

section. This difference in controllers indicates that the space of controllers, which are used to create

the receding horizon control, has many local minima creating a difficulty in locating the optimal

controller over any time period for our models. We also acknowledge, as is the case with the EKF

model, that different receding horizon controllers may produce very similar model results. Lastly,
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the decrease in creatinine concentration (bottom right) is unexpected indicating future work with

this model should address creatinine as discussed in chapter 5.

Figure 4.10 Model with the EKF and initial guess ε0 = 0.5.
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Figure 4.11 EKF model controller when using initial guess ε0 = 0.5.
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Figure 4.12 EKF model with initial guess ε0 = 0.55.
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Figure 4.13 EKF model with controller using initial guess ε0 = 0.55.

4.5.4 Feedback with the Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) is the second Kalman filter applied to our receding horizon

control problem. The EnKF framework draws a sample of states from the initial distribution of

the random state variables to form an ensemble that approximates this initial distribution. By

propagating each element of the ensemble through the RHC problem, the ensemble approximates

the distribution of the state random variables throughout the solution of the nonlinear control

problem particularly at discrete time points where data is collected. Sample mean and covariance

can be generated from the ensemble for the EnKF. Data was simulated for use with the EnKF as

described in equation (4.32) where the noise is state-dependent. This changes (4.31) and (4.32) in

the following way:

yk = y (tk ; yk−1, u ) +ωk y (tk ; yk−1, u ), whereωk ∼N (0,Q ) (4.46)

zk = h (y (tk ), k ) +νk h (y (tk ), k ), where νk ∼N (0, R ). (4.47)

The specific methods and tools utilized for taking measurements vary between medical institutions

which influences the sensitivity of their measurements. For instance, PCR methods for detecting BKV
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in the blood have lower bound thresholds of 1600 IU/mL and 200 IU/mL for Mayo Clinic Laboratory

and Indiana University Health Molecular Pathology Laboratory, respectively [114, 92]. In addition,

the laboratories have upper bound detection limits of 16 million IU/mL at Mayo Clinic Laboratories

and 20 million IU/mL at Indiana University Health Molecular Pathology Laboratory, thus assuming

measurement noise increases with the magnitude of the state is reasonable. A consequence of this

choice is that increased noise presents elements of the ensemble that push the limits of the ODE

solver and available computational power when solving for them. As the search for upper bounds to

the noise variances progressed, the following variances were found to be approaching the upper

bound for state-dependent noise when using the control problem with the EnKF:

P0 =





















0.1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 0.1 0 0 0

0 0 0 0.1 0 0

0 0 0 0 0.1 0

0 0 0 0 0 0.1





















, Q =





















0.0001 0 0 0 0 0
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0 0 0 0 0 0.0001





















(4.48)

R =

�

0.001 0

0 0.001

�

.

It was found that increasing any of the following variances by an order of magnitude often resulted

in either an integrator step size tolerance error (step size tolerance ’TolX’ = 0.0001) or memory

limitations in either case no numerical solutions could be determined. If a particular initial guess

for the controller did result in a numerical solution there would be one or more state variables

(usually unobserved) with biologically unrealistic values, for example, Kalman gain adjustments

to healthy cell concentration could elevate this state from a value below the initial value (HS0) to a

value ≥ 1.5 times the initial value. When implementing the EnKF methods with the variances from

(4.5.4), the numerical optimizing function requires an initial guess for the controller. For the model

with the EnKF, different fixed initial guesses are used for their simplicity. Further study could focus

on alternatives for initial guesses as discussed in chapter 5 and could lead to successful simulations

with higher magnitudes of noise.

Through a variety of fixed initial guesses, we determined that fixed initial guesses ≥ 60% produced

limited results since over-suppression often occurred with drastic increases to BKV. Many simulations

failed to complete as the integrator appeared unable to progress past the steepest changes in state

variables. Similarly for fixed initial guesses≤ 40%, under-suppression with acute transplant rejection

as the result took place. Most simulations could not be completed likely due to the extreme decrease

in kidney cell concentration leading to integrator problems during runtime. Initial guesses ε0 = 0.5
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Figure 4.14 Results of the model with the EnKF and initial guess ε0 = 0.5, i.e. 50% suppression.

and ε0 = 0.55 both represent balanced immunosuppression treatments and yielded favorable

results. In Figure 4.14, ε0 = 0.5 is used in the EnKF model and produces an immunosuppression

treatment that prevents acute kidney rejection as determined by minimal loss of healthy kidney

cells (top left) initially. A result of this is low serum creatinine levels (bottom right); the decrease

in serum creatinine is peculiar as mentioned previously and is discussed in the next chapter. This

treatment also displays some control of BKV. There is viremia with a likelihood of nephropathy

as indicated by the virus concentration exceeding the threshold (red dashed line). Examining the

susceptible cell concentration (top left), kidney loss has occurred with approximately 50% kidney

function remaining. It is difficult to discern if virus or allo-specific CD8+ T cells are more responsible

for this loss of susceptible cells. The most important results of this treatment regimen are that

kidney rejection has not occurred and that kidney functionally loss is slow which may prevent

allograft loss until years later. The results of this treatment appear to coincide with treatment results

described in literature where initial anti-rejection is a high priority in treatments and then shifts to

maintaining allograft functionality [75]. Chronic allograft nephropathy is not uncommon for renal

transplant recipients often leading to allograft loss to occur 2-10 years post-transplant with current

treatment regimes. The immunosuppression treatment when ε0 = 0.5 is displayed in Figure 4.15

where immunosuppression remains mostly within a balanced range of 40% to 60% efficacy with

periodic form.
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Figure 4.15 EnKF model receding horizon controller for initial guess ε0 = 0.5.

The fixed initial guess of ε0 = 0.55 is used next with the EnKF model and displays a patient experienc-

ing a fairly balanced immunosuppression treatment. In Figure 4.16, the initial suppression of

the immune response prevents acute allograft rejection, similar to the results from ε0 = 0.5. The

concentration of BKV is also increased for the ε0 = 0.55 case which synergistically pairs with the

increase in infected kidney cells (top right), suggesting that BK infection may be more responsible

for the reduction in susceptible cells here. Furthermore, the loss of healthy kidney cells occurs more

gradually and the change in the slope is decreasing significantly suggesting the allograft could very

likely last longer than its counterpart from Figure 4.14 even though they share similar concentrations

at 280 days. Additionally, both CD8+ T cell concentrations appear more stable on the daily time

scale in Figure 4.16 when compared to the previous results. The changes in model output due to the

increase in the initial guess, ε0, appear to follow the trend toward the type of over-suppression seen

with the fixed initial guess of 60% suppression particularly with the increasing viral levels which lead

to loss of kidney function. In Figure 4.17 the receding horizon control remains in a much narrower

range (50% to 55%) when compared to the controller in Figure 4.15 and also lacks the periodicity

observed in the previous controller. Like in the EKF cases, the difference in initial guesses produce

distinct controllers and in this case vastly different which points to a space of controllers with

many local minima thus making the search for the best immunosuppression treatment schemes

troublesome.
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Figure 4.16 Results of the EnKF model with initial guess ε0 = 0.55, i.e. 55% suppression.
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Figure 4.17 Receding horizon controller for the model with the EnKF and initial guess ε0 = 0.55.

4.6 Discussion

The benefit of this research and these results is that our method produced a receding horizon

controller that responded to a patient’s condition (via data), controls an active BKV infection while

preventing/delaying allograph loss, and maintains low concentrations of serum creatinine. With the

use of extended Kalman filtering in Figures 4.10 - 4.13, the Kalman gain forces larger adjustments to

the state estimates due to the fact that the method linearizes the model while the simulated data

is taken directly from the solution of the nonlinear model with the receding horizon control. The

substantial infection may be due in part to error accumulating from the linearization used in the

EKF which forces large jumps in the viral state estimate. The low concentrations of serum creatinine

should be noted since levels remain this way despite the significant loss of healthy functioning

kidney cells. These results match the design of the controller (which tries to maintain low creatinine

concentration) but growth of this state appears slow to react to changes in the healthy kidney

cell state. Model adjustments may be necessary and are addressed in chapter 5. Similar results

are observed using ensemble Kalman filtering in Figures 4.14 - 4.17. The state estimates are only

adjusted by small amounts likely due to the fact that the distribution of the random state variables

is propagated through the nonlinear dynamics by the ensemble. Hence the simulated data (which is
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the solution to the nonlinear model using the initial state mean with state-dependent measurement

noise added) remains close to the state estimates throughout the 280 days. The drawback to using

EnKF for feedback comes from the number of model solves which far exceeds that of the EKF since all

the trajectories of the ensemble must be calculated. Also, simulations using the EnKF method were

on average 15-18 hours which is not ideal but can still assist physicians in prescribing treatments.

The main advantage to the EKF methodology is the access to fairly quick results where simulations

were 10 - 20 minutes. The receding horizon controllers can be significantly different as observed in

the EnKF results, once again suggesting the space of controller has many local minima.

The results in this work are supported by the literature further strengthening the utility that these

models could provide in the future. According to [75] in 2015, acute rejection of allografts in the

first year happens in roughly 10% of transplant recipients. This rejection often occurs due to under-

suppression of the immune system where donor-specific antibodies, particularly Immunoglobulin

G, are allowed to develop post-transplantation [197, 165]. This coincides with the results involving

the cost functional from Murad’s work in [135]where the receding horizon controller initially did

not provide enough suppression of the immune response leading to acute allograft rejection. There

is a reasonable connection between the number of B cells of the immune system, which produce

antibodies, and the effector cells, e.g., CD8+ T cells, since CD4+ T cells orchestrate rejection using

B cells, CD8+ T cells and a variety of others [165, 184]. In our results, the CD8+ T cells for both

allo-specific and BKV-specific initially grow towards a steady state and fluctuate around it for the

remainder of the 280 days. Weist et al. found that "there were no significant changes in frequencies

of BKV-specific CD8+ T cells between the onset of BKV reactivation and during or after the clearance

phase" which supports CD8+ T cell concentrations remaining near a steady state once enough cells

are present to deal with the specific antigen [188]. They also point out that BKV-specific CD8+ T

cells are extremely difficult to detect in patients but as methods improve, we recognize this could be

a potential source for additional data in the future.

Much research effort has gone into how BKV affects renal transplant patients given that some view

BKV infection as one of the most challenging causes of allograft dysfunction and loss [46]. Multiple

studies have shown that the prevalence of BK viremia occurs in approximately 20% percent of

patients and agree that a threshold of 10,000 BK viral copies is the criteria many clinics use to

begin allograft biopsies for determining if nephropathy is present [54, 46, 35, 96]. In our results, the

patients develop nephropathy but have not sustained allograft loss which occurs in approximately

50% of recipients that experience nephropathy [164]. Ultimately, the patients described in our results

experience under-suppression as noted by the significant viremia and subsequent nephropathy

but remain below the suggested criteria by Elfadawy et al., that nephropathy is certain to occur at

approximately 185,000 BK viral copies [65]. Future developments in choosing initial controllers for

the model may provide results that resemble a truly balanced suppression scheme and are discussed

further in chapter 5.
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Although other states in our model agree with conclusions found in other studies, serum creatinine

levels are more difficult to validate through literature. The creatinine levels are consistent with the

goal of the cost functional to maintain the lowest concentrations possible. Medical standards for

healthy creatniine levels in the blood vary between institutions but mostly overlap for healthy men

and women with concentration ranges of approximately 0.74 - 1.35 mg per dL in adult men and

0.6 - 1.1 mg per dL in adult women [44, 88]. For individuals with a single functioning kidney such

as patients after a kidney transplants but otherwise healthy can see creatinine levels as high as

1.9 mg per dL [58, 89]. For patients with continuing impairment to the allograft, serum creatinine

levels can rise above 5.0 mg per dL but it is recommended a physician is consulted if levels exceed

3.0 mg per dL as the likelihood of renal failure becomes greater past this concentration [58, 129].

None of the results from both the EKF and EnKF models where patients follow the recommended

treatments approach 3.0 mg per dL despite noticeable loss to susceptible kidney cells. This may

be a result of creatinine accumulation in the blood being a slow process. The literature is less clear

about how long it would take an individual with kidney damage to approach these levels. In 2002,

Hariharan et al. found in patients that saw increases ≥ 0.3 mg per dL of serum creatinine in one

year post transplant, a noticeably higher likelihood of kidney loss which got progressively larger as

the change in serum creatinine levels increased [89]. In the EnKF model (4.14 and 4.16) and fixed

immunosuppression simulations (4.4 and 4.5), there are increasing trends to the serum creatinine

levels after loss of kidney function and these levels appear consistent with the findings of Hariharan

et al. although higher serum creatinine concentrations may be expected in the EnKF model. At

this time, it is unclear if this is due to the ensemble Kalman filter or elsewhere in the model. We

acknowledge that the modeling of creatinine in the system of ODE’s may need to be re-examined.

4.7 Research Contributions

Given the support of the literature, the model captures the biological dynamics of immunosuppres-

sion in renal transplant patients well and also responds to patient data when recommended

treatment schemes are followed. A primary benefit of this work is the implementation of the

ensemble Kalman filter which preserves the nonlinear dynamics of the system of ODE’s. Through

the use of the EnKF and the updated cost functional, the model was able to produce results that were

better than those of prior research on this problem. In particular, the model provided treatment

strategies which showed patients with viremia subsequently having the BKV infection controlled

hence slowing the progress of BKV nephropathy so much so that the patient would only have mild

to moderate loss of kidney function (≈ 50%) according to the criteria for stage 3 of CKD. This is

a promising next step on the journey to fully balanced immunosuppression treatment strategies

provided through mathematical modeling. This research has helped pave the way for a collaboration

between the Duke Transplant Center, the Duke Center for Human Systems Immunology and the

North Carolina State University Center for Research in Scientific Computation which aims to improve
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upon the mathematical modeling presented here and acquire a sufficient dataset for their modeling

efforts.
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CHAPTER

5

CONCLUSION

5.1 Future Work

5.1.1 Directions for Bumblebee Colony Modeling

There are a variety of ways to push forward the modeling of pesticide effects on bumblebees.

One of the most important future directions would be assisting field researchers in acquiring an

experimental longitudinal dataset. The ideal dataset would likely include frequent measurements

quantifying the different classes of bumblebees as well as the larval classes and resource accumulation

in a colony from the initiation of the colony until its natural end. This would be a challenging

task since many members of the colony remain inside the hive along with all larvae, nectar and

pollen. Techniques for data collection observed in Malfi et al. [124] and Kerr et al. [107] indicate

that generating an ideal dataset may be possible with minimum colony disturbance. Some novel

methods for collecting the data may still need to be developed in order to complete this goal since

we are unaware of any such dataset at this time. Ultimately, the collection methods could provide

data about both healthy colonies and those exposed to individual and combined pressures including

resource limitations, pesticides and habitat loss. Parameter estimation would be possible with this

dataset, allowing for more accurate estimates of parameters values which are difficult to determine

from the literature alone. The dataset would provide a means for validating the mathematical model

under different conditions. Together parameter estimation and model validation could provide

more accurate results while also assisting in understanding under studied aspects of bumblebee
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colonies such as the switch time.

There are some additions that could be made to our model in future research. The current model is

built with a fixed switch time when in reality this feature of the colony is dynamic in the sense that

each colony begins producing reproductive members based on internal, external or mixed criteria.

The exact triggers that influence a queen to begin producing male and gyne eggs requires further

research. Some colonies have short switch times which occur within approximately 2 weeks after

colony initiation in contrast to late switching hives where the switch occurs closer to 3 weeks or

later [63]. Examining hypotheses about the factors that influence switch times would be interesting

research which this model could easily be updated to do. The model could also be modified to

be multi-seasonal allowing the gynes to hibernate after the end of the colony and later emerge to

begin new colonies. With this functionality, long term examination of the pesticide effects on the

progeny of an initial queen would be possible as well as the effects of changing habitats over time.

Some studies have focused on the influence of habitat on bumblebee colonies through criteria such

as floral abundance [191, 157]. In order to model habitat usage, more mechanics would need to

be added to the model in place of the current basic expressions for the foraging of resources. The

inclusion of new foraging dynamics would also allow for the examination of additional pesticide

effects. In [131], it was shown that imidacloprid reduces the ability of foraging bumblebees to find

their way back to the colony when the resources were ≥ 3 meters from the hive. This example could

be modeled with the suggestions above. The last suggested addition to the model relates to the

method used for modeling the larval classes. Workers and males both have two age classes of larvae

while gynes have three age classes and these classes are necessary for the increased consumption

of resources with age. In [158], Ribeiro showed a detailed analysis of the growth of bumblebee

larvae which influenced the consumption parameters in our model. In that study, the data displays

relationships between larval mass, pollen consumption, age and the percentage of body mass which

is pollen. Treating the larval states as partial differential equations (PDE) could allow for larvae

to be modeled more dynamically. There appears to be a correlation with mass and development

of larvae suggesting that periods of resource insecurity could affect development time of larvae.

Since development times in the DDE are fixed, the PDE representation may allow for slower larval

development when resources are scarce thus lengthening the time to pupation for particular broods.

A PDE could also improve how consumption is calculated to provide a more realistic estimate

of resources dynamics. Since larvae are the only subadults that are exposed to the workers and

resources, shifting from a DDE to PDE for larval dynamics might allow the exploration of direct

sub-lethal effects of pesticides on larvae.

5.1.2 Directions for Renal Transplant Immunosuppression Modeling

Similar to section 5.1.1, an ideal dataset for this project was unavailable for parameter estimation or

validation. Efforts to assist researchers in determining an ideal dataset for this model and obtaining
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that ideal dataset would be incredibly beneficial. In our model, a dataset consisting of periodic

measurements of BKV and creatitine concentrations in the blood is expected. For this work, a fixed

20 day period between routine office visits was assumed and further analysis of the model may reveal

that an ideal set of data may require shorter or longer delays between physician visits as well as having

a variable duration between each visit. With that ideal dataset, a personalized medicine approach

could be taken where the dataset is used to parameterize aspects of the model specifically to the

patient. Furthermore, future research may reveal methods to gather data for other states of interest.

For instance, the most accurate method for determining the onset of nephropathy is performing a

biopsy of the allograft to assess the severity of loss of function [35]. Ways to extrapolate concentrations

of healthy cells or percentage of kidney function from biopsies could provide additional data about

the currently unobserved states for susceptible and infected kidney cell concentrations. Additionally,

as research reveals more understanding into the immune response for renal transplant recipients,

methods for detecting specific B cells and T cells of the immune response may provide a way to

include data for the immune response.

Besides obtaining a robust dataset, improving the base system of ordinary differential equations

for the model could prove useful. In chapter 4, the slow reaction of creatinine levels due to loss of

kidney function is noted. It is reasonable to consider that creatinine levels may increase quicker due

to loss of kidney function than the model indicates despite the evidence that creatinine levels are

slow to reduce with a healthy allograft [89]. There could be differences in the rate of accumulation

and reduction of creatinine in the blood. If that is the case, improvements to the mechanisms that

account for changes in creatinine concentration could assist in producing more successful receding

horizon controllers. In addition to creatinine, reexamining the states associated with the immune

system could be beneficial. The body of research surrounding a patient’s immune response to

allografts and BKV has been growing. Current research is examining how antibody levels and types

influence acute rejection following the transplant procedure [165, 197]. In some cases, the host

may produce antibodies that are less cytotoxic which in turn prevents the production of antibodies

more likely to cause significant damage to the allograft. Acute rejection is less likely in these cases.

Antibodies, such as Immunoglobulin G may need to be included in future versions of the model given

their role in acute rejection [197]. Researchers are also exploring antibody related therapies to assist

in preventing acute rejection which indicates this state may be beneficial in determining the receding

horizon controller [122, 42, 93, 155]. The host’s immune response to BK virus is another aspect of

the model which could be explored for possible improvements as researches try to understand the

relationship between CD4+ T cells and BKV infection [188]. Literature suggests that CD4+ T cells

might be as equally important as CD8+T cells in controlling BKV clearance [3, 39, 67]. This may result

in changes to how allo-specific CD8+ T cells are modeled and/or the addition of an allo-specific

CD4+ T cell state variable. We also recognize there may be interest in examining multiple viruses or

other viruses related to the immunosuppression of transplant patients. There are a variety of other

pathogens that affect immunosuppressed individuals including but not limited to cytomegalovirus,

Epstein-Barr virus, and hepatitis viruses [185, 116]. Lastly, much research surrounds regenerative

83



therapies for CKD patients primarily using stem cells [98, 177, 196]. Therapies derived from this

research may change the important assumption that new kidney cells are not produced in any

manner that affects CKD patients. These therapies would provide another useful treatment that the

model could account for when determining the best treatments for individual patients.

Immunosuppression in the model can also be changed in a few specific ways. To understand

immunosuppression treatments designed for renal transplant patients, there are three distinct

treatment types: induction treatment, maintenance treatment and rejection treatment [151, 103].

The induction treatments are selected to help heavily suppress the host’s immune system to prevent

acute rejection in the few weeks after the transplantation. Current induction regimens typically

include either rATG or interleukin-2 receptor antagonists[69]. Maintenance therapies are more

varied than induction while serving the purpose of maintaining a healthy, immunosuppressed host

and preventing chronic allograft nephropathy beyond induction therapy. Maintenance therapy

includes a cocktail of drugs which include calcineurin inhibitors such as tacrolimus, corticosteroids,

and antiproliferative agents like mycophenolic acid [103, 151, 82, 69]. Adverse side effects from these

regimens include overuse of corticosteroids for some patients and drug-toxicity from calcineurin

inhibitors. Currently, researchers are trying to determine new and effective treatments for those

patients likely to exhibit those negative effects. Rejection treatments are being explored particularly

to overcome antibody-mediated rejection which prevents the long-term survival of the allograft

in some hosts [151, 103]. These drugs can be taken alongside maintenance treatments to prevent

certain long term effects of the host rejecting the kidney. In some cases, they are administered when

reduction of maintenance drugs is necessary to prevent drug toxicity.

With the variety of drugs used in immunosuppression treatments, modeling immunosuppression

could become more detailed in an updated model. The drug efficacy expression could be revisited

in terms of specific drugs or drug categories. This change could explore how treatments may affect

allo-specific immune responses differently than the BKV-specific immune responses. An even more

challenging change to immunosuppression in the model would be implementing particular drug

types directly into the model. This would fundamentally change the nature of the controller in this

model but could open the possibility of determining specific doses for standard drug combinations.

Realistic next steps for the continuation of this research with our model would be to examine the

initial guess for the optimal controller. In this work, fixed initial guesses were chosen for simplicity,

but alternative forms of the initial guess might produce better results. As noted previously, induction

and maintenance combinations produce a highly suppressed state immediately post transplantation

then maintenance therapy sustains a more moderate suppression. Another treatment strategy

involves decreasing drugs dosages when significant BK viremia is detected to allow the patient’s

immune system the opportunity to fight against the virus. These approaches can be used to influence

the form of the initial guess and subsequently the receding horizon controller and may yield

more balanced results. Altogether the suggestions in this section are possibilities in which this

mathematical model could become even more helpful in determining better immunosuppression
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treatments.

5.2 Conclusion

In this work, we set out to progress the research in both ecology and medicine by using mathematical

modeling methodologies. By using well established mathematical frameworks, we show advance-

ments in both fields. In the case of lethal and sub-lethal effects of pesticides on bumblebee colonies,

an individual specific delay differential equation model showed that literature supported results

can be obtained. The necessity for including larval dynamics when researching pesticide effects is

established. The results displayed the negative impacts that sub-lethal effects theoretically have on

bumblebee colonies indicating their importance for future discussions in determining safe levels of

pesticides for use in the environment.

For patients suffering from chronic kidney disease and obtaining a kidney transplant, we were able

to advance prior research efforts by the Center for Research in Scientific Computation at North

Carolina State University. A differential equation model is used that characterizes the interactions

between the allograft, BK virus and the patient’s immune system. Changes to the cost functional of

the control problem and implementation of a new filtering mechanism for feedback show promise

for producing reliable treatment schemes. With several avenues for future directions with this project,

this framework has the potential to provide a personalized medicine approach to the challenge of

determining balanced immunosuppression treatments for renal transplant patients. Through our

work, these research projects demonstrate positive steps forward in both fields using mathematical

modeling.
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