ABSTRACT

ALOUDAH, NOUFE. Hochschild-Serre Spectral Sequence for Lie Conformal Algebras.
(Under the direction of Bojko Bakalov).

Lie conformal algebras, originally introduced by Kac, encode an axiomatic description
of the operator product expansion of chiral fields in conformal field theory. In particular,
Lie conformal algebras provide a powerful tool for studying the infinite-dimensional Lie
algebras and associative algebras satisfying the locality property. The most important
examples of Lie conformal algebra include the Virasoro algebra Vir, the current algebra
Curg, and their semidirect product Vir x Curg.

In this thesis, we construct the Hochschild-Serre spectral sequence for Lie conformal
algebras. This construction follows a similar approach to the original work done by G.
Hochschild and J-P. Serre for the case of Lie algebras. In addition, we describe the
inflation-restriction exact sequence, a special case of the five-term exact sequence. As
an application of this construction, we provide a different approach for calculating the
cohomology of the semidirect product Vir x Curg with trivial coefficients. In addition,
we offer explicit computations for the basic cohomology of Vir and Vir x Curg with

coefficients in their finite conformal modules Ma , and Ma o 17, respectively.
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Chapter 1
Introduction

Conformal algebra is an axiomatic description of the operator product expansion of chiral
fields in conformal field theory. It appears naturally in the context of formal distribution
Lie algebras. Likewise, conformal modules over conformal algebras appear naturally in
the context of conformal modules over formal distribution Lie algebras [21]. Conformal
algebras were first introduced by Victor G. Kac in 1996 [20]. Moreover, conformal algebras
correspond to vertex algebras in the same way as Lie algebras correspond to their
associative enveloping algebras [20]. In a more general term, conformal algebras are
defined as Lie algebras in a particular pseudotensor category [1].

In particular, a Lie conformal algebra is a C[d]-module A endowed with a bilinear
product, called a A-bracket, [-y] : A ® A — A[\] = C[\] ® A, that satisfies the following

properties

i Conformal sesquilinearity: [Da)b] = —\[ayb], [ax0b] = (0 + A)[axb],
ii Skew-symmetry: [a b] = —[b_r_sa],
iii Jacobi identity: [ax[b,c]] = [[arb]x+nuc] + [bulaxrd]],

for a,b,c € A. It is, to some extent, a generalization of a Lie algebra and an adequate
tool for the study of infinite dimensional Lie algebras satisfying the locality property [19].
Some basic examples of Lie conformal algebras are (1) the Virasoro conformal algebra
Vir, a rank 1 free C[0]—module generated by an element L, with a A—bracket defined by
[LyL] = (0 + 2X\)L, (2) the current conformal algebra associated to a finite dimensional
Lie algebra g, which is defined by Curg = C[0] ® g with the A—bracket [g\h] = [g, h] for
g,h €g.



Over the last few years, the structure theory [8], conformal module and their extensions
[5, 6], and general cohomology theory [2] of finite (i.e., finitely generated as a C[0]—module)
Lie conformal algebras have been well developed. The Lie conformal algebras of rank 1
and rank 2 were classified in [8, 3], respectively. Simple/semisimple Lie conformal algebras
have been intensively investigated. The classification of finite simple and semisimple Lie
conformal algebras was completed in [8]. It shows that a finite semisimple Lie conformal
algebra is isomorphic to a direct sum of Lie conformal algebras of the following types: the
Virasoro conformal algebra Vir, the current conformal algebra Curg associated with a
simple finite dimensional Lie algebra g, or the semidirect product of Vir and Curg.

The construction of finite nonsimple Lie conformal algebras and their structures, includ-
ing central extensions, conformal derivations, and conformal modules, were also studied
afterward. This includes the Schrédinger-Virasoro type and the extended Schrédinger-
Virasoro type Lie confformal algebras [26], and the Lie conformal algebra W(a,b) [17],
which are related to the Virasoro algebra. In addition, several infinite dimensional Lie
conformal algebras have been developed recently such as the infinite rank Schrédinger-
Virasoro type Lie conformal algebras [11], the Loop Heisenberg-Virasoro Lie conformal
algebra [10], and the Lie conformal algebra of Block type [35].

The cohomology theory of conformal algebras with coefficients in an arbitrary module
was developed in [2|. It describes extensions and deformations and explicitly computes
cohomology of the first two types of the semisimple Lie conformal algebra. The study of
the cohomology of semisimple Lie conformal algebra of the third type was done in [33].
The low dimensional cohomologies of the infinite rank general Lie conformal algebras
gcn with trivial coefficients were computed in [25]. The cohomologies of special cases of
nonsimple Lie conformal algebra of type W(a, b) were studied in [30, 31].

Inspired by the main computational tools of Lie algebra cohomology, we construct
the Hochschild-Serre spectral sequence for Lie conformal algebras. The notion of spectral
sequences generally appears in homological algebra, algebraic topology, and algebraic
geometry. The French mathematician Jean Leray first invented it in 1964 to compute
sheaf cohomology. Henceforth, they have become powerful tools to compute the homology
and cohomology of complicated spaces. In addition to the Leray spectral sequence, some
well-known spectral sequences are the Serre spectral sequence of a fibration, Lyndon-
Hochschild-Serre spectral sequence in group cohomology, and Adams spectral sequence in
stable homotopy theory.

Cohomological spectral sequence is a collection of C[0]—module {EP?} for all r > 0,
together with maps dP? : EP9 — EPT4—+1 guch that dPt" "l o dP? = 0 and E, ., =



ker d??/im dP~"9"~4, The term E** is called F,—term and the spectral sequence collapses
at the N—th term if d, = 0 for all r >> N.

An important observation to make about the spectral sequences is that one can
proceed with computation and describing the algebraic structure of some E,-term without
knowledge of the differentials, d,.. Moreover, spectral sequence low-degree terms can be
described even when a spectral sequence does not collapse. In this case, one can construct
some useful exact sequence such as the five-term and seven-term exact sequence.

The Hochschild—Serre spectral sequence, named after Gerhard Hochschild and Jean-
Pierre Serre, was first introduced in the context of group theory in 1953 [13]. It describes
the relation between the cohomology groups of a group G, a normal subgroup N of G,
and the quotient group G/N. The main result states that for any group G and a normal
subgroup N of G, there is a spectral sequence of cohomological type whose Es;—term
is H?(G/N,H?(N,A)) and whose Ey—term is H?T9(G, A), where A is an arbitrary
G—module. A similar result holds for Lie algebras, as shown in [14].

As mentioned previously, the objective of this thesis is to describe the Hochschild-Serre
spectral sequence in the field of Lie conformal algebras. We believe this construction will
provide a valuable tool to calculate the cohomology of Lie conformal algebras.

This thesis is structured as follows. In Chapter 2, we recall the basic notions of Lie
conformal algebras, including their relation to the formal distribution of Lie algebras and
basic examples. Then we provide a summary of the cohomology theory of Lie conformal
algebras.

Chapter 3 presents the essential concepts on spectral sequences needed to describe the
Hochschild-Serre spectral sequence for Lie conformal algebras.

In Chapter 4, we construct the Hochschild-Serre spectral sequence associated with Lie
conformal algebras’ basic complex, which is the main result of this thesis (see Theorem
4.1.1). Then we introduce the inflation-restriction exact sequence (see Theorem 4.2.2).

In Chapter 5, we conclude the thesis by giving several applications, including the
computation of the basic cohomology of Vir with coefficients in the Vir—module Ma , (see
Theorem 5.1.2), and the cohomology of Vir x Curg with coefficients in the trivial module
C, for a € C and with coefficients in the Vir x Curg—module Ma o (see Theorems
5.2.1, 5.2.2, 5.4.1).

Unless otherwise specified, all vector spaces, linear maps, and tensor products are
considered over the field C of complex numbers, and we denote the sets of all nonnegative

integers by Z, .



Chapter 2
Lie Conformal Algebras

This chapter is an introduction of the basic notions for Lie conformal algebras that are

used in this thesis. For a detailed introduction, we refer the reader to [2], [8] and [5].

2.1 Basic Definitions

Definition 2.1.1 ([21]). A Lie conformal algebra over C is a C[0]-module A equipped
with a bilinear product, called a A-bracket, [-5-] : A® A — A[\ = C[]A\] ® A, that satisfies

the following axioms:

i Conformal sesquilinearity: [Da\b] = —A[axb], [ax0b] = (0 + A)[axb],
it Skew-symmetry: [axb] = —[b_x_sal,
i Jacobi identity: [ax[buc]] = [[axb]asuc] + [Dularc]],

for all a,b,c € A.

A generating set of A over C[0] is a subset C' of A such that the smallest C[0]-
module of A containing C' is A itself. If the generating set is finite, then A is called a
finite Lie conformal algebra. Otherwise, A is called infinite. A Lie conformal algebra A
is called abelian if [a)b] = 0 for all a,b € A.

Definition 2.1.2. A subalgebra of a Lie conformal algebra A is a C[0]-module B such
that [axb] € B[\] for all a,b € B.

Definition 2.1.3. An ideal of a Lie conformal algebra A is a subalgebra T of A such
that [axb] € Z[\] for alla € A and b € T.



Definition 2.1.4 (|2]). A conformal module M over a Lie conformal algebra A is a
C[0]-module endowed with a C-linear map A® M — M|[)\],a ® v — ayv, such that for
any a,b € A and v € M then,

ax(buv) — bu(axv) = [aab]rspv,
(0a) v = —Aayv,

ax(0v) = (0 + Nayv.

A conformal module M is called finite if M is finitely generated over C[0]. The rank
of a conformal module M is its rank as a C[0]—module. An element v of a conformal
module M over a Lie conformal algebra A is called an invariant if ayv = 0 for all a € A.
The set of all invariant elements of M forms a conformal A—submodule of M, denoted by
M°. An A—module M is said to be trivial if M° = M. Moreover, a conformal module
M is called irreducible if it has no nontrivial submodules.

An element v € M is called torsion if there exists a nonzero polynomial p(9) € C[J]
such that p(0)v = 0. A finite conformal .A—module M is called torsion free over C[0] if
and only if 0 is the only torsion element of M. Moreover, a finitely-generated torsion-free

A—module M is free C[0]—module.

Lemma 2.1.1 ([19]). Let M be a conformal A—module, and v is a torsion element of
M. Then, Ayv = 0.

Definition 2.1.5 ([8]). Let M, N be modules over A. A conformal linear map from M
to N is a C-linear map f: M — N[A| denoted f\: M — N, such that f\0 = (0 + \) fi.
The space of conformal linear maps is denoted by Chom(M, N), and it is a C[0] and an

A—module with actions

(Of)x = =Afa,

(apflav = au(fr—pv) — fr-plauv),

fora e Ajv € M, and f € Chom(M,N). The A—module Chom(M, N) is conformal

when M and N are conformal and finite.

The space of conformal linear endomorphisms Chom (M, M) is denoted by Cend M,
and it is an associative conformal algebra. i.e., for any f,g € Cend M, v € M, then
(£29),v = fa(gu—rv). The A-bracket [frg] = frg — g-»—af, defines a Lie conformal algebra
structure on Cend M denoted by ge(M).



Definition 2.1.6. Let A be a Lie conformal algebra. A conformal derivation of A is

a conformal linear map dy : A — A such that
dx([aub]) = [(dra)rspb] + lan(drb)]

for all a,b € A.

The space of all conformal derivations of A is denoted by CDer(A). For any a € A,
then the linear map (ada)y : A — A defined by (ada) b = [a)b] for all b € A is a
conformal derivation of A. Any conformal derivation of this type is called an inner

derivation. The space of all inner derivations is denoted by Clnn(.A).

2.2 Lie Conformal Algebras in the Context of Formal
Distribution Lie Algebras

This section will review the construction of Lie conformal algebras, their mod associated
to the formal distribution Lie algebras, and vice versa. This section’s material primarily
follows [20] and [21].

Let U be a complex vector space. A U-valued formal distribution in one indeter-
minate z is a formal power series of the form a(z) = 3, ., a,27 """, where a, € U is
defined by a,, = Res,z"a(z) such that Res,a(z) = a_;. The set of all such distributions
form a vector space over C denoted by U[[z, z7!]]. Moreover, the derivative of a(z) is
defined by da(z) =)

Likewise, a U-valued formal distribution in two indeterminates z and w is a power

ez (=1 — a,z""2

series of the form

—n—1, —m—1
a(z,w) = E Q2 "W g, € UL
nme”L

One important example of a C-valued formal distributions is the formal delta-function
d(z — w), which is given by:

iz —w) = z’lz(%) :

nel



Definition 2.2.1. A U-valued formal distribution a(z,w) is called local if
(z —w)Na(z,w) =0, for N > 0.

Theorem 2.2.1 ([20], Corollary 2.2). Every local U-valued formal distribution a(z,w) is

uniquely represented by the expansion

a(z,w) = A (w)OVS(z — w), (2.1)

where ¢ (w) = Res,a(z, w)(z—w)? and oY) = &7 /4). This expansion is called the operator
product expansion (OPE) of a(z,w) and ¢/(w) are called OPE coefficients of

a(z,w).

Now let U be the Lie algebra g, and a(z) and b(w) be g-valued formal distributions.
We will review the notion of locality of g-valued formal distributions as further explained
in [20].

Definition 2.2.2. The pair a(z) and b(w) is called local if the g-valued formal distribution
[a(z2),b(w)] € g[[z, 27, w,w™]] is local, i.e. if

(z —w)Na(z),b(w)] = 0, for N > 0.

Definition 2.2.3. For each n € Z,, the n-th product a(w)u)b(w) on the space of

g-valued formal distribution is given by:

a(w)b(w) = Res.[a(z), b(w))(z —w)"

Given two local g-valued formal distributions a(z) and b(w), then their OPE (2.1) is

equivalent to the expansion:

[a(2), b(w)] = D (a(w);b(w) I 6(z — w). (2.2)



Moreover, define the A-bracket [a(z) \b(w)] as follows:

[a(2)ab(w)] = Z A (a(w) gyb(w)). A = N /1. (2:3)

Now let F be a subset of g[[z,27']] consisting of pairwise local g-valued formal
distributions such that the coefficients of all distributions from F span g. Then the

bracket of such coefficients is given by

(R N () [ 2.4)

JEL+

The pair (g, F) is called a formal distribution Lie algebra. Denote by F the minimal
subspace of g[[z, 27!]] that contains F such that for all a(z),b(z) € F, then

a(z)jb(w) € F and O(F) C F.

Then the pair (g, F) is a formal distribution Lie algebra with the bracket defined in (2.4).

Let Conf(g, F) = C[J]F, then the A\-bracket [a)b] = P A9 (a(;)b) defines a C-linear
map

Conf(g, F) ® Conf(g, F) — C[\] ®c Conf(g, F)

The A-bracket satisfies the conformal sesquilinearity, the skew-symmetry and the Jacobi

identity axioms. Therefore, C[9,]F = Conf(g, F) is a Lie conformal algebra.

The formal distribution Lie algebra associated to a Lie conformal algebra A is con-
structed as follows. Let Lie A = ,1/5,1 where A = Alt, t71] with d =0+ 0, and the j-th
product defined by:

(@® fipb@g) =D (agrab) @ (37 1)g), (2.5)

Elsy/m

where a,b € A, f,g € C[t,t7!] and j € Z,.
Let a, = a ®t", the k-th product (2.5) is written as:

CSIUSED Dl () [ (26)

keZ4



for any m,n € Z. Now define the Lie bracket on Lie A by (2.4). It follows that Lie A is a
Lie algebra and every a € A induces a formal distribution a(z) = )", _, a,z~""! where
a, € Lie A.

Denote by F the set of such distributions. Then they span Lie A and are pairwise
local formal distributions because (2.6) is equivalent to (2.2) with & = 0 and a(;)b = 0 for
j > 0. Therefore, the pair (Lie A, F) is a formal distribution Lie algebra.

Observe that the derivation —1 ® 0, of the 0-th product of the conformal algebra A
induces a derivation T' of the Lie algebra Lie A. The derivation T is given by:

T(a,) = —na,_1, n € Z,.

Definition 2.2.4. Let A be a Lie conformal algebra and let (Lie A, F) be the associated

formal distribution Lie algebra. The set
(Lie A)_ =span{a, |a € A, n € Z,},

is a subalgebra of Lie A, called the annihilation Lie algebra of A. The semidirect sum
(Lie A)- = CT & (Lie A)_ is called the extended annihilation Lie algebra of A.

2.3 Virasoro Conformal Algebra, Vir

Let 2Uect C* be the Lie algebra of regular vector fields on C* with a basis consists of
vector fields "0, where n € Z. The Uect C*-valued formal distribution

L(z) == (t"9)z""",

nel

satisfies the condition
[L(2), L(w)] = 0p L(w)d(z — w) + 2L(w) 0,0 (2 — w),

and hence is local with respect to itself. Then, the pair (Yect C*,{L}) is a formal

distribution Lie algebra. The corresponding Lie conformal algebra, Vir, is defined by

Vir = C[9)L, [LaL] = (9 +2)\)L,



and is called the Virasoro conformal algebra. The maximal formal distribution Lie algebra
is Lie (Vir, {L}) = Yect C*. The corresponding annihilation algebra (Yect C*)_ = Yect C,
the Lie algebra of regular vector fields on C, and (Uect C*)~ = Yect C @ £, where £ is
the 1-dimensional Lie algebra [2],[8].

Theorem 2.3.1 ([5], Theorem 3.2). Every irreducible finite Vir-module is Ma o where
A a € C and A # 0 such that

Mpo=C[0ly, Lyv=(0+a+ A\.

2.4 Current Conformal Algebra, Curg

Let g = g[t,t7 '] = g ® C[t,¢t!] be the associated centerless current algebra to the Lie
algebra g, endowed with the Lie bracket:

[at™, bt"] = [a, b)t™*", a,b€g and m,n € Z.

Let

a(z) = Z at™z "
be a g[[z, 2~ !]]-valued formal distributions for a € g. Then
[a(2), b(w)] = la, b (w)d(z — w).

The family F = {a(z) | a € g} consists of pairwise local formal distributions and the pair

(g, F) is called the current formal distribution Lie algebra. The minimal subspace
F=Clo|F=C0®g,

with the A-bracket given by:
laxb] = [a,b], a,beEg,

is a Lie conformal algebra called the Current conformal algebra associated to g and is
denoted by Curg. The Lie algebra g is identified with the subspace of Curg spanned
by elements of the form 1 ® g, where g € g. It The maximal formal distribution Lie
algebra associated to Curg is Lie (Curg, F). The corresponding annihilation Lie algebra

10



is g_ = g[t] and the extended annihilation Lie algebra is C0o, + g[t] |2, 8].

Lemma 2.4.1 (|20], Example 2.8a). Let U be a finite dimensional module over a finite

dimensional Lie algebra g. Then we have:
1. U=U[t,t™Y] is a g-module.

2. ((7, E) is a conformal module over the current formal distribution Lie algebra (g, F),

where

E={u(z)=> (ut")z""" =ud(z—1t) |uecU}.

nez

3. M(U) =C[0] ®c U is a finite conformal Cur g-module defined by
axu=au, acgucdl.

M(U) is irreducible iff U is a nontrivial irreducible g-module.

Theorem 2.4.1 (|5], Theorem 3.2). Let g be a finite dimensional semisimple Lie alge-

bra. Then every conformal finite irreducible Cur g-module is M (U), where U is a finite

dimensional 1rreducible g-module.

2.5 The Standard Semidirect Product, Vir x Curg

Let Cur g be the current conformal algebra associated to the finite dimensional Lie algebra
g. Let dV': Curg — Curg be a conformal linear map defined by d¥g = (9 + \)g for all
g € g and L is the standard generator of Vir. Note that for any g, h € g,

[(d59)r+h] + [gx(dﬁh)] = [(0 + N)grruh] + [92(0 + p)h]

(A = Wgrtuh] + Algatuh] + (0 + A)[grh] + plgah]
= —p[gruh] + (0 + A+ p)[grh]

= —plg,h] + (0 + A+ p)g, h]

= (04 A)lg, ]

= dy[g,h).

Thus, the map d* is a conformal derivation and it satisfies [d¥ yd*| = (0 + 2)\)d*. The

semidirect product of Vir and Curg, called the standard semidirect product, is the

11



C[0]-module Vir & Cur g endowed with the A-bracket
[LAL] = (0+2N)L,  [gxh] =g, h],  [Lag] = (9 + Ny,
for g, h € g. Note that Curg is an ideal of Vir x Curg and for any g, h € g,

[(L, 9)A(L, h)] = ([LaL]; [g, k] + [Lah] = [L-a-2g])-

The annihilation Lie algebra of Vir x Curg is Uect C x g, where Uect C is the Lie algebra
of regular vector fields on C, and g = g[t], the positive part of the associated current
algebra g[t,t7]. |2, 8].

Theorem 2.5.1 ([5], Theorem 3.2). Every nontrivial finite irreducible conformal module
over Vir x Curg is M (A, o, U) = C[0] ® U, where U is a finite dimensional irreducible

g-module, which is nontriwial if A =0, and
Lyu=(a+0+ANu, gu=g-u,

where A, € C, ue U and g € g.

2.6 Classification of Finite Simple and Semisimple Lie

Conformal Algebras

We now review the classification of finite simple and semisimple Lie conformal algebras as
studied in [8].
Definition 2.6.1. A Lie conformal algebra A is called simple if it is not commutative

and contains no nontrivial proper ideals.

Theorem 2.6.1 ([8], Theorem 5.1). A simple finite Lie conformal algebra is isomorphic
either to a current conformal algebra Curg, where g is a simple finite dimensional Lie

algebra, or to the Virasoro conformal algebra, Vir.

Definition 2.6.2. A Lie conformal algebra is called semisimple if it contains no non-

zero abelian ideals.

Theorem 2.6.2 (|8], Theorem 7.1). Any finite semisimple Lie conformal algebra is
uniquely decomposed in a finite direct sum of Lie conformal algebras each of which is

1somorphic to one of the following three types:
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1. Virasoro conformal algebra; Vir.
2. Current conformal algebra; Curg, where g is a simple finite dimensional Lie algebra.

3. semidirect product of Vir and Curg, defined by [Lrg] = (0 + N)g, g € g.

2.7 Cohomology of Lie Conformal Algebras

In this section, we will review the notations and the primary results of the Lie conformal

algebra cohomology following the work of [2].

Definition 2.7.1 ([2], Definition 2.1). An n-cochain, (n € Z ) of a conformal algebra

A with coefficients in a module M over it is a C-linear map

v AP Mg, A

a1 ® . @ Ay > Yoyonn (A1 ooy Q)
satisfying the following conditions:
i Conformal antilinearity:
Mg (A1 ey Oy oy ) = = NiYapon, (G ooy Qi oy @), for all i
1 Skew-symmetry:
VA i A oo (A5 oy Wiy iy ooy A ) = = YAy Ay i dn (1 -0y @y Uiy ooy Q) fOT all @, .
A 0-cochain is an element of the module M, where A% = C. If the module M is not

conformal, we consider the space of formal power series M[[\y, ..., A,]] instead of the space
of polynomials M|\, ..., A,] in the Definition 2.7.1.

The differential d of a n-cochain « is defined by;

<d7))\1,...,)\n+1 (a17 SES) Cln+1)
n+1

— Z(—1)1"'!‘10/7;)\7:'7)\1’“.7):7:’.”7)\"_’_1 (a]_7 ceey di, ceey an+1)
=1

n+1

+ Z (_1)i+j7)\i+)\j,,\17,,,7):i:-~~7/\Aj7~~~:)\n+1 ([ai&aj]’ A1y ey di, ceey dj, ceny an+1).
g =1
li]<j

(2.7)
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If v € M, is a 0-cochain, then (dvy)x(a) = ayy. The differential d preserves the space
of cochains, and d?> = 0. Hence, the space of cochains of a conformal algebra A with

coefficients in a module M form a complex, called the basic complex,

C*=C*(A,M) = P C"(A M).

n6Z+

The basic complex C*(A, M) is a C[0]-module with action,

(8"}/)>\1 77777 )\n(al,.. ) 6M+Z)\ ’}/)\1 77777 ,\"(al,...,a ), (28)

where J); is the action of 0 on M. Moreover, the differential commutes with the action 0.
Hence, the graded subspace 9C* (A, M) forms a subcomplex of the complex 5'(./4, M).
The quotient complex that is defined by,

C* = C*(A, M) = C* (A, M)/0C* (A, M) = P C"(A, M). (2.9)

TLEZ+
is called the reduced complex.

Definition 2.7.2 ([2], Definition 2.2). The basic cohomology H*(A, M) of a conformal
algebra A with coefficients in a module M is the cohomology of the basic complex 6"(A, M).
The reduced cohomology H*(A, M) is the cohomology of the reduced complex C*(.A, M).

A g-cochain v € 6‘1(A, M) is called a g-cocycle if dy = 0, and is called a ¢-
coboundary or a trivial g-cocycle if there is a (¢ — 1)-cochain ¢ € éq’l(A, M) such
that v = d¢. Furthermore, a g-cochain v € éq(A, M) is called a reduced ¢-cocycle
if dy = 9¢ for some ¢ € C™(A, M). Two g-cochains v and ¢ are equivalent if v — ¢
is a g-coboundary. Denote by 15‘1(./4, M) and by Eq(A, M) the spaces of g-cocycles and

g-coboundaries, respectively. Then we have,

HY(A, M) = DA, M)/B%(A, M) = { equivalent classes of g-cocycles }.

The following proposition and theorem describe the relation between the basic coho-
mology H*(A, M) and the reduced cohomology H*(A, M).

Proposition 2.7.1 (|2|, Remark 2.3). The short exact sequence of complexes 0 —
dC* - C* =5 C* —> 0 where ¢ is the embedding and 7 s the natural projection gives
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the long exact sequence of cohomology groups

0 — H(8C*) — HO(A, M) —s H(A, M) —
— H'(0C*) — H' (A, M) — H'(A, M) —> (2.10)
— H2(0C*) — H2(A, M) — H2(A, M) —> - - -

Theorem 2.7.1 ([2], Proposition 2.1). The complezes C* and OC* are isomorphic under
the map v — 07v in degrees > 1. Therefore, ﬁq(A, M) = Hq(ﬁé') for all g > 1, and
for all ¢ > 0 if the module M is C[0]-free. Moreover, the sequence 0 — Ker J0[0] —
HO(A, M) — H(OC*) —> 0 , where Ker 8[0] is the subcomplez Ker & C C* concentrated

in degree zero, 18 exact.

In the next theorem, we review the low degree cohomology spaces of a Lie conformal

algebra A with coefficients in an A—module M.
Theorem 2.7.2 ([2], Theorem 3.1). 1. HO(A, M) = M4 = {v € M|ayv = 0 Va € A}.

2. The isomorphism classes of extensions 0 — M — E — C — 0 of the trivial A—module
C by a conformal A—module M correspond bijectively to HO(A, M).

3. The isomorphism classes of C|0]-split extensions 0 - M — E — N — 0 of conformal
modules over a conformal algebra A correspond bijectively to H(A, Chom(N, M)),
where M and N are assumed to be finite and Chom(N, M) is the A—module of
conformal linear maps from N to M. If, in particular, N = C is the trivial module,

then there ezist no nontrivial C[0]-split extensions.

4. Let C be a conformal A—module, considered as a conformal algebra with respect to
the zero \-bracket. Then the equivalence classes of C[0]-split “abelian” extensions
05C A A0 of the conformal algebra A correspond bijectively to H*(A, C).

5. The equivalence classes of first-order deformations of a conformal algebra A, leaving
the C[0]-action intact, correspond bijectively to H*(A, A).

For any a € A, the A—module structure on the basic complex 5’(A, M) is defined as
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follows

n (2.11)

(L/\(a)fY))q ,,,,, >\n—1<a17 "'aan—l) = YA n—1 (a7a17 "'aa’n—l)' (212>

It follows that Cartan’s identity
dL)\ + L)\d = 9>\, (213)

holds for Lie conformal algebras, and hence df = 6d. Therefore, the induced action of A
on the basic cohomology ﬁ'(A, M) is trivial.

Let A be a conformal algebra and M is a conformal A—module. Then M is a module
over the annihilation Lie algebra g_ = (Lie A)_. Let C*(g_, M) be the Chevalley—Eilenberg
complex defining the cohomology of g_ with coefficients in M. Then, C*(g_, M) has the
C[0]-module structure given by

O (@ @an) = (y(1 @ @an))

n (2.14)
N (@@ Q0@ @ay),
1=1

for v € C™ (g—, M). From [2]|, we have the following theorem.

Theorem 2.7.3 (|2], Theorem 6.1). The basic complex, 5'(A, M) is isomorphic to the
Chevalley—FEilenberg complez, C*(g_, M), and the isomprphism is compatible with the
C[0]-action. Consequently, C*(A, M) = C*(g_, M)/0C*(g_, M).

Corollary 2.7.1 ([2], Corollary 6.1). H*(A, M) = H*(g_, M).

The study of the cohomology of simple conformal algebras, Vir and Cur g, was done

in [2] as follows.

Theorem 2.7.4 (|2], Theorem 7.1 & Remark 7.2). For the Virasoro conformal algebra,
the following statements hold:
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1. For the trivial Vir-module C,

~ 1 4fq=0or3,
dim HY(Vir,C) = ra

0  otherwise ,

and

_ ) 1 ifqg=0,2 or3,
dim HY(Vir,C) =

0 otherwise .

2. For the module C,, a # 0, I:iq(\/'ir, C,) = ﬁq(Vir, C), and HY(Vir,C,) =0, for all
q.

Theorem 2.7.5 (|2], Theorem 8.1 & Remark 8.1). For the current conformal algebra,

we have:

1. For the trivial Cur g-module C,
H*(Curg, C) = H*(g, C),

and
H?(Curg, C) = H(g,C) ® H""'(g,C), for all q.

2. For the module C,, a # 0, H(Curg, C,) = H4(Curg, C), and H¢(Curg,C,) = 0,
for all q.
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Chapter 3
Spectral Sequences

The aim of this chapter is to review a few concepts on spectral sequences needed to describe
the Hochschild-Serre spectral sequence for the Lie conformal algebras. The majority of

this chapter’s material is adapted from [24].

3.1 Definitions and Basic Properties

Definition 3.1.1. A first quadrant cohomological spectral sequence {EP9,d,.} for
all ,p,q > 0, is a collection of bigraded C[0]—modules { EP9} together with a C[0]—linear

map
dff’q . E;”,”q , E'713+1“,q—1”+17

called the differential such that
APt =l o gPa — 0,
and
Effl = HP,Q(E?*’ dr)a
where HP9(EX* d,) = ker dP9 : EP1 — Ef*"q‘“rl/im dff‘“q”_l : E}Z"’q“_l — EP1.

Observe that £, (not d,1,) is determined by E** and d,. The term E’* is called
the F.—term or E.—page, and the indexing can begin at any integer, regularly at 2.
One can visualize the spectral sequence as a grid notebook, where each page refers to the
E,—term equipped with the differentials for all . Here p, ¢ refer to the position on the

grid, where p is the x—coordinate and the degree ¢ is the y—coordinate. The following
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diagrams show the E,—term for small r:

0,3 1,3 2,3 3,3 4,3
3 | EY®  EY  E¥ E® E

| A

0,2 1,2 2,2 3,2 4,2
2 | By Ey £y E; E,

A A

0,1 1,1 2,1 3,1 4,1

0,0 1,0 2,0 3,0 4,0
0 E, E, £y £y E,

0 1 2 3 4

Figure 3.1: E}?—page.

1 2 4
3 | B)—E®—EP—EP— R

0,2 1,2 2,2 3,2 4,2
2 | By — B — B — k)" — E)

0,1 1,1 2,1 3,1 4,1
1 | By —E) — bk —E] — L]

0,0 1,0 2,0 3,0 4,0
0 | EY—E—EX—EY—E}

0 1 2 3 4

Figure 3.2: E7"?—page.
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S

0,1 1, 2, 3,1 4,1
1 | E, £y £ E, E,

0 | By B CEY TEY B

0 1 2 3 4

Figure 3.3: EY?—page.

Now consider EP4 for r > max(p, ¢+1). Since r > g+1 implies EPT¢ "1 = 0, kerd, =
EP4. Also, r > p implies that EP~"4t""1 =0, i.e., im d, = 0. Hence, E¥f, = kerd, = EP.
Continuing the same way, we have EY, = EP9 for all £ > 0. The C[0]—module EP? in

this case is denoted by E2:4.
Definition 3.1.2. The spectral sequence collapses at the N—th term if d. = 0 for all
r> N, and we write Ey" = B, = ... = E3*

Lemma 3.1.1 ([24], Example 1.B.). Let {E"*,d,} be a first quadrant spectral sequence.
Suppose that ES? = 0 for all p > ny and q > ny where ny,ny € Z. Then the spectral

sequence collapses at the N"™"—term where N = min(ny + 1,ny + 2).

Proof. We need to show that d, : EP? — EPT47"t1 ig zero for 7 > N. The E,—term can

be pictured in the following two cases:

q q

No

nq Sy

Case 1 Case 11
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Case I: Let n; < ng+1then N =ny + 1. Since r > N implies that p+r > p+ N > ny,

then EPT™4~"1 = (). Hence, d, = 0.

Case II: Let no +1 < ny, then N =ns +2. But, g —r+1 < qg—no —1 < 0. Thus,
Ertma=rtl = () and d, = 0.

Y

Therefore, the spectral sequence collapses at Ey and Ey* = E | = .- = B4 O

Now, we will describe the spectral sequence as subquotient C[0]—module of E,. For

each r > 2, write

_ 7pq _ p,q
Z, = ZP1 = ker dP?,

— RPY _ ; p—7,g+7—1
B, = B =im dF ,

E, = EPA.

Using dod =0, we get B, C Z, C E,. From the definition, E,,; = Z,/B,. Now denote
Zyi1 = kerd, 1, a C[0]—submodule of E,. It can be written as Z,, = Z,,1/B,, where
Z,11 is an C[0]—submodule of Z,. Similarly, denote B,,; = im d,; which is isomorphic
to d(Zy41)/ By = By11/B,, with B, is a C[0]—submodule of Z,. Hence we have,

Er+2 = ZT+1/BT'+1 = (ZT+1/BT)/(BT‘+1/BT‘> = Zr—l—l/Br—i-l-

which can be represented as a tower of inclusions B, C B,y C Z,.1 C Z,. Therefore, the
spectral sequence can be written as an infinite sequence of C[0]—submodules of Ey as
follows:

B,cBsC...CB,C...... CZ,C...CZ3C ZyC Es. (3.1)

with E,11 = Z,/B,. Then we have the short exact sequence induced by d,,1,
0 — Zys1/By — Zo)By —= s Byt /B, — 0.

which induces an isomorphism Z,, /7,1 = B,1/B, for all n.

Now, suppose that the spectral sequence collapses at the N**—term. Denote

Zoo = Zog' = ﬁ ZP1, By =B = D Br

r=0 r=0
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Then, EP? = ZP4/BP4 and the tower of C[0]—submodules (3.1) becomes

By, CBsC...CBy_.1=By=--+-=DB
Chlo=...=LN=UN_1C...C 43 C Zy C Es.

3.2 Spectral Sequence of Filtered Differential Modules

Spectral sequences arise naturally in two general ways: the first is from filtered differential
modules, and the second is from exact couples. These approaches are equivalent to each

other. In this section, we will review the spectral sequence of a filtered complex.

A filtration F* on a C[0]—module A is a family of submodules {FPA} for p € Z,
such that

- CFPTYACFPACFP'AC---C A (decreasing filtration),
or - - CFPF'ACFPACFPTAC..-CA (increasing filtration).

The filtration is called a bounded filtration if there exist p,q € Z such that FPA = 0
and FYA = A. For any filtered C[0]—module A, its associated graded C[0]—module,
E¥(A), is given by

FPA/FPYL A, when F is decreasing,
E§(A) =
FPA/FP~'A, when F is increasing.

If A* is a filtered graded C[0]—module, then one can define a filtration on each degree by
FPA™ = FPA* N A™. The associated bigraded C[0]—module to A can be defined by:

FPAPTa /PP APYe - when F is decreasing,

EVI(A* F) =
FPAPta [Pl ApTa when F' is increasing.

We now use the associated graded C[0]—module definition to describe the convergence

of spectral sequences. Here and further, we will consider the case of a decreasing filtration.

Definition 3.2.1. A first quadrant cohomological spectral sequence {EP,d,.} is said to

converge to a graded C[0]—module H*, often written EP? = HPT9 if there is a bounded
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filtration I on H* such that
EP4 >~ FP Hrta / et pgpta
where E%* is the limit term of the spectral sequence.

Now we give the definition of the filtered differential graded C[0]—module, the object

needed to construct a spectral sequence.

Definition 3.2.2. A filtered differential graded C[0]—module A is a module over
C[0] such that the following conditions are satisfied:

(i) A= @, A",
(i1) There is a C[0]—linear map, d : A — A of degree 1 satisfying d o d = 0,
(i1i) A has a decreasing filtration F' such that d : FPA — FPA.

Because the differential preserves the filtration, d(FPA™) C FPA™! for all p and n.
Then the filtration F' induces a filtration on the cohomology of A, with FPH (A, d) defined
as the image of H(F?A,d) under the map induced by the inclusion FPA — A.

Now that the fundamental definitions are in place, we give the main theorem.

Theorem 3.2.1 (|24], Theorem 2.6). Suppose (A,d, F*) is a filtered differential graded
C[0]—module, where d has degree 1. Then there exists a spectral sequence {E**} of
cohomological type such that

Ef’q o HP+Q(FPA/FP+1A).

Moreover, if the filtration is bounded, then the spectral sequence converges to H*(A,d),
1.€.,

E&q ~ FpHZ”q(A, d)/Fp+1Hp+q(A, d).

Proof. Consider the following decreasing filtration on A:

... C FPHLAPYe ¢ FPAPTE — FPrlppta
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such that the differential preserves the filtration, i.e., d(FPAP*?) C FPAPTIHL For all
r > 0, denote:

7ZP% = elements in F* APT that have boundaries in FP*" AP+t
= FPAPYI O g1 (P APTatT),

BPY = elements in F?AP*? that form the image of d from FP~"APte1
— FPAPTI N d(ppfrAanqfl)'

ZP1 =kerd N FPAP*,

BP9 =im d N FPAPT,

Since the filtration is decreasing and d respects the filtration, we obtain the following

tower of C[0]—submodules:
ByfcBYMcBYYC...cBYlCcZb C...CcZyt C Ytz

Note that d(Zf*rvq”*l) = d(FP7 Arta—l O g1 (FPAPTY)) = FPAPHI O d(FP—" APta1) =
Bra.
For all 0 < r < oo, define

Bp0 = Z09/(20417 + B2

and let ¢ : ZP9 — EP4 be the canonical projection with kern?¢ = ZPtH91 4 gra
Note that d(ZP?) = Brtma—r+l c zptra=r+l and,

AZE + B = d(ZE ) + d(BY)
C Bp+1“7q—7"+1 +0

+r+1,q—7r +r,g—r+1
CZ T+ BT

Hence, the differential d as a map d : ZP? — ZP™47"t! induces a homomorphism

d, : EPY — EPTra=7+1 guch that the following diagram commutes:

24



d -
zZpa N wa,q r+1

) +rq—r+1
e g

EPa L Eptrg—r+l
T s

It follows that d, o d,=0, and we have

p—r,q+r—1
dy

P,q
p—r,q+r—1 pq A p+r,g—r+1
B , pra " g .

Now consider the following diagram:

p+1,g-1 Dq < c Psq d pAr,g—r+1
VA + BP A > P > ZF
//
/ U PEE e Rt
I/ v df'q 1
7 kerd, > EPd > Eptma—rt
\
\
\
\
\
A
> v
HP(EX* d,)

We first prove that ker d?? = nP4(Z77 ). Observe that, d24(n?%(z)) = 0 & dz €
ZuHther o e which s, by definition, equivalent to 2 € ZP% 4+ ZPF7 1. Hence,
ker db? = nP1(Z0f + Zpﬂ’q Y = npa(Z28), because ZPH 1 € kernpa.

Now, observe that im d@t="4T"~1 = ppad(Zp="at7=1)) = nP9( BP9), hence we have:

1y _ -1

(n21) ™ (im @27 = BP9 4 ker
_ DRpa p+1,9—1 D,q
— Bpd 4 zrtla-l L pgpa
_ PP p+1l,q—1
— Bpa 4 gptlbatl

and by definition,

ZPH"I e Zr+1 = (FP+1AP+¢1 N d—l(Fp+rAp+q+1)) N (FpAzH—q N d—l(Fp+r+1Ap+q+1))
— Fp—l—lAp-i-q N d—l(Fp+r+1Ap+q+1) — Zp—&-l,q—l‘
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Therefore we get:
pt+l,g-1 p,q\—1; p—r,q+r—1 _ 7p+lq-1 D.q
Z7T N (P i df = ZF + B2,

Now we describe the isomorphism E,.; = HPI(E** d,). Let -, the dashed map in
the diagram, be the composition of 7P| 7r8, with the canonical projection 7 : ker d, —
HP4(E**, d,). The kernel of 7 is Z297" 1 (n29) ! (im d2—"977~1). Because 7 is surjective,

by the first isomorphism theorem, we get:
Bty = 200 /207 B Sy P ),
Using the definition, we have EF? = z2%/(zPtH971 1 BPY) such that
Zﬁrl,qfl — FP+IAP+!17 Bljil — d(FerlAerqfl)'
But d respects the filtration, so we have:

Eg,q — FPAPTI N d—l(FpAp+q+1)/Fp+1Ap+q + d(Fp+1Ap+q—1)
— FpAp-x-q/Fp-&-lAp—i-q'

The differential dy is induced by the differential d(FP?APT?) C FP AP+4t1 Thus we have,
E{uq oY) Hp,q(FpAerq/FpHAerq).
Now consider n2? : Z%? — EP4 and 7 : kerd — H(A, d), then we obtain:

FPHP-HI(A’d) — im (Hp+q(FpA,d) SN Hp+q(A,d))
= W(FpAerq Nkerd) = n(Z%7).

Observe that 7(kernl:d) = w(Z2H4~1 + BPa) = FPH HPT4(A d). Thus, m induces a map
d : BP9 — FPHPY(A, d)/FPH (A, d) with

ker doo = n22 (-~  (FPH HPY9(A, d)) N Z29)
= (22 1 d(4) 1 229)

C kI (ZEH T + BYY) = {0}
Hence, do, is an isomorphism, i.e., E?4 = FPHPT(A d)/FPTPHT(A, d). O
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3.3 Applications

An important observation to make about spectral sequences is that one can proceed with
computation and describing the algebraic structure of some FE,—term without knowledge
of the differentials, d,. In this section, we recall some important applications about spectral

sequences that will be needed in this dissertation.

Proposition 3.3.1 ([4], Proposition 5.3, 5.3a, 5.5). (The edge maps) Suppose that the

filtration on H™ is convergent then the following hold:

(i) If E™"=™ = 0 for m > p then FPT'H™ = 0 and there exists a monomorphism
EPnp 5 Erp oy [7(A).

(i) If ET"™ = 0 for m < p then H" = FPH"™ and there ezists an epimorphism
H"(A) — Evrp <y Epo-s,

(i11) If E"=™ =0 for m # p,p + k where k > 0. Then there is a short exact sequence

0 — Errhn=r=k 5 ["(A) — EP"P — 0.

Example 3.3.1 ([24], Example 1.A). (The five-term exact sequence) Suppose that
there is a first quadrant cohomological spectral sequence such that EY? = HP*1(A). Then

H(A) = EJ°, and there is an exact sequence

0— By’ — HY(A) — ES' 2 B2 — H?(A). (3.2)
Remark 3.3.1. The five-term exact sequence can be extended to the following seven-term
exact sequence

0— E,° — HY(A) — Ey' — E3° — ker(H*(A) — EY?) — Ey' — E3°.
(3.3)

Theorem 3.3.1 (|4], Theorem 5.12.). Assume that the filtration is convergent and E5? =0
for p,q < 0. Assume further that EY? =0 for 0 < g <n. Then

EX>~H(A) V i<n
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and the sequence
0 — By’ — HY(A) — Ey" — EyTH0 — H™TL(A)

18 exact.

Theorem 3.3.2 (|24], Exercise 1.3). (The Wang sequence) Let {E**,d,} be a first
quadrant spectral sequence of cohomological type that converges to H*, such that E5? =0
unless p =10 or p=n for some n > 2. Then there exists an exact sequence

n,g—mn n

dp? .
oo — By —y HY Eg:q > F ntl _  pratt Eg,qﬂ

In particular, for 0 < q <n—1, then H1 = Ey?,

Proof. The Ey—term has two no-trivial columns, the O—th and n—th columns, as in the

following diagram.

0,q
E2

n,qg—n+1
E2

0 n
EYY - page

Hence, the only possible non-trivial differential is d, : Ey? — Ey9""' for all

q > n — 1. Hence,

and,

P,q ~ P,qd ~ e e I y2U
En+1 - En+2 - - Eoo .
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Now since E}Y, = H(EP?, d,,), then we have

B3 = ker (d, : Byt — Bt [ im (d, 0 B, — BYY),

Bt 2 ker (d, : EMH s B2y im (d,, 2 B9 — BT,

. _ _ - -1
But E* is a first quadrant spectral sequence, so ;44— =2 ™41 — () Moreover,

. : _ 2n,q—2n+2
EPr1 =~ P s trivial for 0,n, i.e., E2a—2nt2 2 prma=2m+2 — o Hence we have
n 2 s 1Oy )y Hn 2 )

E% >~ ker (d, : B9 — EJ9") = ker 429,

- 4 1 1 0) 4 1
Erantl o gramm it fim (d, - By? — By 22 coker d24.

Thus, we have the exact sequence for each ¢,
0— E% — g0t I, pramntl _y prg-ntl (3.4)
From Proposition 3.3.1, there exists a short exact sequence
0 — EM" — HI — E2 — 0 (3.5)

for each ¢ > 0. Then we splice the exact sequences (3.4) and (3.5) together as in the
following diagram.

l
Ho 0
L l

— 1 _
>Equ n+ )E;gq n+1 0

| o
0

£
HQ+1

> dn

0 —— EOetl 5 poatt oy

~
~
~
~
~

0 ke
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Hence, we obtain the desired exact sequence,
_ d% _
e EPUT s T ot T gt gt gt (3.6)

Note that for 0 < ¢ < n — 1, then E;*™" = 0 and Ey* """ = 0. Thus, H? = E)9.
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Chapter 4

Hochschild-Serre Spectral Sequence for
Lie Conformal Algebras

In this chapter, we present the main result of this thesis in which we construct the
Hochschild—Serre spectral sequence for Lie conformal algebras. This construction is similar

to what was done in [14] for the case of Lie algebras.

4.1 The Hochschild—Serre Spectral Sequence Associ-
ated with the Basic Complex

Theorem 4.1.1. Suppose that A is a Lie conformal algebra, B is an ideal of A, and M is

a conformal A-module. Then there exists a first-quadrant cohomological spectral sequence
{EP d, : EP9 — EPTTHY e > Q)

with the following properties:
(i) BP9~ Ci(B,CP(A/B, M)).
(i) EP? =~ HY(B,CP(A/B, M)).

(iii) EP* =~ HP(A/B,HY(B,M)), and EL° =~ HP(A/B, M®).

(iv) The EPA—page is adjoint to H* (A, M), and the natural homomorphism ﬁq(.A, M)
HY(B, M) can be represented as the composition HY(A, M) — E% — E%
H4(B, M).

R 4
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The proof of Theorem 4.1.1 will be done by several lemmas in the following sections.

4.1.1 Spectral Sequence Associated to an Ideal

Let A be a Lie conformal algebra, B be an ideal of A, and M be a conformal A-module.
Consider the filtration F on the basic cohomology complex associated to the conformal

algebra A and the A-module M, C"(A, M) defined by

FPC™(A, M) = C™(A, M), forp<0,
FPC™(A,M) = {y € C™(A, M) yn,..n, (@1, oy an) = 0 ag, ... an_ppr € B}, (4.1)
for p > 1.

The filtration F is a bounded decreasing filtration on 5"(.,4, M) because,

C™(A, M) = F°C™(A, M)
D ﬁlén(A, M)={ye€ 6”(A, M); v (a1, ..., a,) = 0 for ay, ..., a, € B}
> F2C"(A, M) = {y € C"(A, M); 7. an (a1, ...;an) = 0 for ay, ..., an_y € B}
D ..
D F"C"(A, M) = {y € C"(A, M);ya,...x, (a1, ..., a,) = 0 for a; € B}
> FC™(A, M) = {0}.

Let ., (a1, -y an) € FPC(A, M), then the differential d of 7 is given by

n+1
(@A g1 (@15 s @) = Y (=D ainyy 50 50 (@1 @iy e @)
1seeesAgyeesAn41
=1
n+1

+ Z(_l)iJrjfy)\iJr)\j,)\l ..... N X]‘ ..... )\Hl([auiaj],al,...,ai,...,aj,...,anﬂ)
l%J<:jl

Note that both terms in the right hand side vanish whenever n — p + 2 arguments of
~ are in B. This means both terms are in F?C™1(A, M), and then dy € FPC" (A, M).
Hence, dFPC™(A, M) C FPC™ (A, M).

Therefore, (CN'"“(A, M),d, F ) is a filtered differential graded module, and we have

the following lemma.

Lemma 4.1.1. There exists a spectral sequence { EP?,d, : EP? — EPTHa—TH1L r p g >0,

32



for (5”(./4, M), d, ﬁ’) with the following properties:
(i) EP? = FrCrta( A, M)/ FPiCrra( A, M).
(i) B2, = fra(Epa,d,).

(iii) EP = FPHPYa( A M)/ FPH HPY (A, M),

Proof. Follows from Theorem 3.2.1. O

.....

g—arguments are in B, then

P(>\17 o )\erq) = M1, ptq (CL1, e ap+q)

is a polynomial in M\, ..., \p1,). Hence v determines a map from B%? onto 5’7’(A, M)

given by

Consider the quotient conformal algebra A/B = {a+ B : a € A}, then the inclusion
C?(A/B, M) c CP(A, M) defines a map from B®4 onto CP(A/B, M) given by

by ® ... @ bg — V4 (01 @ ... @ bg) = Varng (01, - b)Yy 1Ay (@1, -y )

= VAL A Ag a1 >\q+p<bl’ ey bq7 A1y .-y ap)

where ay, ..., G, are the classes of elements ay, ..., a, in A/B. Note that the image of this
map consists of all (p + g)-cochains that vanish with ¢ + 1 arguments of ay, ..., ay1, in B.

Hence, we obtain a map

W - FPCPHI(A, M) —s CU(B, C"(A/B, M)

(4.2)
VatrApsg (@15 ooy Qpg) > V(01 @ ... @ by).

which is a C[0]—module homomorphism. Indeed, for any v,~" € F pépﬂ(A’ M), we obtain

VOV + Y )redprg (@15 Opig)
= (07 +7)albr ® ... @ by)
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.....

Remark 4.1.1. For an ideal B of a Lie conformal algebra A, then .A/B is a trivial B—module
since [by(a + B)] = [baa] + B=0 for a € A and b € B.

Remark 4.1.2. Note that for any a € A, CP(A, M) is an A-module, with the action 6 (a)
given by

Thus, CP(A, M) is a B—module with the action induced by the inclusion B C A.
Then, C?(A/B, M) has a B—module structure induced by the inclusion CP(A/B, M) C
CP(A, M).

Lemma 4.1.2. The map ¢ induces an isomorphism of E§? onto éq(B, 57’(./4/[3, M)) for
all p,qg > 0.

Proof. Let 8 =75(by ® .... ® by) € C1(B,C?(A/B, M)). Define v € FPCP+(A, M) by

Y=V, AgsAgt1seens Aqﬂ)(bl,...,bq,al,...,ap).

Then, ¥ (vy) = B. i.e., 1 is onto. Note that for any 7y, (a1, ..., aptq) € FrCPra(A, M),
its image vanishes whenever ¢ of its arguments ay, ..., a,4, are in B. Hence, kerv is

FriCeta( A, M). Therefore, ¢ induces an isomorphism

vvvv Ap+q

BP9 o ﬁpaerq(A, M)/ﬁp+16vp+q(,4, M) — éq([)’, 6’7’(-/4/87 M)).

[]

The following lemma shows that the differential commutes with the induced isomor-

phism in Lemma 4.1.2.

Lemma 4.1.3. Let U denote the isomorphism of EXY onto CU(B,C?(A/B, M)). Then
dV = Ud.
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Proof. Let ¥ € EJ?. Then 7 = v + fp+16'p+q(A, M), where v € fp5p+q(A, M), and
V(%) = ¥(v). Thus, we will show that di) = id.

Let v € ﬁpépﬂ(/l, M), by, ....;bg1 € B, ay,...,a, € A and ay, ..., a, be the classes of
elements ay, ..., a, in A/B. We have

<wd>7A17.-,Aq+1 <b17 ) bq+1)fy>\q+2,n,Aq+p+1 (ala ) ap)

- dry)\la“:)‘anl7)‘q+27-~a>‘q+p+1 (bh ) bq+17 ai, .., ap)
q+1

— } : _1)it1p, - D
- ( 1) bl)\i’y/\l,..,)\i,..,/\qul,)\q+2,..,)\q+p+1 <b17 t bl’ ) bQ+17 a1y .y ap)
i=1

p
i+1 . -~
+ E (_1) a’i)\iP)/)\L”,)\(H_l,)\q+2’,,7)\i,,,7,\q+p+1 (b17 <0y bq—i—la A1y ooy Qs ooy ap)
=1

q+1
> (-1 - b [
+ ( 1) ’Y)\i+)\j7)\17”7)\%.'7)\].7_'7)\q+17)\q+2’”7)\q+p+1([bl)\ib]}abla"7blv"7bj7"7bq+1aa'17"7a’p)
3,7=1
1<

P
E 1)t ~ - Ny O Qs
+ ( 1) 7Ai+)\j,Al,..,Aq_H,)\q+2,..,/\i,..,/\j,..,/\q+p+1 (b1> " bq+1? [al)\ia’]L A1y oy Ay ooy Ajy ooy ap)

=1
i<j
gtl p R
E E —1)¥H ~ ~ . vy 0
+ ( 1) VAi—i-)\j,Al,..,)\i,..,AqH,Aq+2,..,>\j,..,>\q+p+1 (blv s iy s th+1> [bZAiaJ]7 A1y o5 Ajy ooy ap)
i=1 j=1

Note that ~ in the second, fourth, and fifth terms of the right hand side have ¢ + 1 of its

arguments in B. Then, they all vanish, and by (4.2) and the definition of the differential
we have,

(¢d>7>\1,.-,>\q+1 (bl’ ) bq+1)7>\q+2,--,>\q+p+1 (C_Ll? ) ap)

g+1

_ § : i+1p - 7

- (_1) bz)\ify)\l,..,/\i,..,)\qul,>\q+2,..,)\q+p+1 (b17 tt bl’ o bQ+17 ay, .- aP)
=1
q+1

E : 1)t - - b, b b

+ ( 1) 7A,»+>\j,>\1,..,Ai,..,Aj,‘.,AqH,Aq+2,..,)\q+p+1 ([bl)\ib]L by, .., bi, -, bJ? B bq+17 am, .- ap)
i,j=1
1<j
q+1

= Z(_l)i_‘—lbi)\iw(7)\17._7/)\\1.7__,)\qu1 (b17 ) bia 3) bq+1)7)\q+2,..,>\q+p+1 (C_Lb ) C_Lp))
=1

q+1

+ Z <_1)i+jd}(’y)\ri-)\j,>\1,..,Xi,..,/):j,‘.,)\q+1 ([bmzb]]ﬂ bl? ) bi’ ! bj’ " bq‘H)ry)‘qu?"")‘quP*l ((_11, o ELP))
ij=1
1<j

35



= (d) V01, 21 (015 5 Dgr1) Vg2 Agipas (15 o Gp)-

i.e., dyp =1d and hence, d commutes with the isomorphism W. O

Using Lemma 4.1.1, we have E}'? & ﬁerq(Eg’q, do). From Lemmas, 4.1.2 and 4.1.3,
we describe the first page of the Hochschild-Serre spectral sequence for Lie conformal

algebras in the following theorem.

Theorem 4.1.2. Let A be a Lie conformal algebra, B be an ideal of A and M be an
A-module, then
EPT = HI(B,C*(A/B, M)),

for all p,qg > 0.

Now let g_ = (Lie A/B)_ be the annihilation Lie algebra of A/B. Then M is g_-

module, and we have
CP(A/B, M) = C*(g_, M) = Hom(A’g_, M)

where CP(g_, M) is the Chevalley-Eilenberg complex defining the cohomology of g_ with
coefficients in M. In the following theorem, we give a description for the second page of

the Hochschild-Serre spectral sequence for Lie conformal algebras.

Theorem 4.1.3. Let A be a Lie conformal algebra, B be an ideal of A and M be an
A-module, then
EY* = HP(A/B,HY(B, M)), p,q>0.

Proof. From Theorem 4.1.2, we have

EPY = HY(B,C*(A/B, M)) = H'(B, Hom(A*g_, M))
=~ (APg_)" @ H(B, M)
= Hom(APg_, HY(B, M))
~ C?(g_, HY(B, M))
~ CP(A/B,HIY(B, M)).

Hence,

ERY =~ HP(A/B,HY(B, M)).
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Remark 4.1.3. The basic complex C?(B, M) has the A-module structure induced by
the inclusion C4(B, M) c C9(A, M), and the differential d commute with the action
0x(a), a € A. Hence, ﬁq(B, M) is an A-module. Moreover, ﬁq(B, M) is a trivial B—module.
Thus, HY(B, M) is an .A/B-module.

Corollary 4.1.1. EP° = Hr(A/B, M®) where M® = {m € M | bym =0, V b € B}, the
A/B-module of B—invariants in M.

4.1.2 Convergence of the Spectral Sequence

Theorem 4.1.4. The EP¥-page is adjoint to ﬁ*(A, M), and the natural homomorphism
HY(A, M) —» H4(B, M) can be represented as the composition H1(A, M) — E% —
EY >~ H9(B, M).

Proof. From Lemma 4.1.1, we have
EP ﬁpﬁerq(A, M)/ﬁerlﬁerq(A’ M),

where F*H®(A, M) is the filtration induced by the filtration F on the basic complex
5”(A, M). i.e., The Hochschild-Serre spectral sequence for Lie conformal algebras con-
verges to H*(A, M), and we write EP7 = HPT9(A, M).
The cochain map res : C%(A, M) —s C%(B, M) which restricts a g-cochain on A to
a g-cochain on B induces homomorphisms ﬁq(.A, M) — ﬁq(B, M). If p = 0, then we
obtain
E%0 =~ FOHY(A, M)/F'HY(A, M) =~ HY(A, M)/F'HY(A, M).

So we get a surjective map ﬁq(.A, M) — E2%4. Since EPY is a first quadrant spectral
sequence, then all the differentials that are mapped into E%? are zero. Hence we have the
inclusion E% < ... < E%% — E%. Therefore, we have the composition HY(A, M) —
E% < EY?. From Theorem 4.1.2,

EY >~ HY(B,C°(A, M)) = HY(B, M).

Hence, the natural homomorphism ﬁq(A, M) — H¢ (B, M) can be represented as the
composition HY(A, M) — E% — E® ~ H(B, M). O
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4.2 The Inflation-Restriction Exact Sequence

Let A and A’ be Lie conformal algebras, M and M’ be A—module and A'—module,
respectively, and ¢ and f be two homomorphisms ¢ : A’ — A and f: M — M.
Then ¢ and f are said to be compatible pair if f(p(a’)ym) = a)f(m) for a’ € A’
and m € M. From such a compatible pair of homomorphisms, we get a homomorphism
¢ C"(A, M) —s C™(A', M") given by v — f o~ o. Then we have the following lemma:

Lemma 4.2.1. The maps 1 : C"(A, M) —s C™(A', M") defined by v — fo~yo for
v € C"(A, M) induce maps on cohomology H"(A, M) — H"(A', M") for all n > 0.

Proof. We need only to check that v is compatible with the differential d defined in (2.7).
Let v € C"(A, M). Then we have

(W (dy)as.... Ani1 (ar,...,an41)
= fdYV)rrdni (Pa1), - p(Anga))

n+1
- f< Z(_1>Z+1S0(al))‘i,y)\1 ..... AiyersAnt1 (90(0’1)7 ) QO((IZ'), R So(an—s—l))
i=1
Y N e ([P@n@(@)] (@), p(a), - plag), - ansn))
Z%]<:jl
n+1 —
= (D)™ 0(a)n (s sins (@), 0(ai), - o(any))
=1
+ Z (f/y))\i-‘r)\j,)\l ..... 5\1 ..... S\j ..... )\n_,_l([SO(a’i))\igp(aj)]’ @(al), DR/ SO(CLi), DR/ SD(G’J)7 ct 7a’n+1)
i,j=1
1<J

= d(f (Ve (1), angr)
= d(¢(7))>\1 ----- Ant1 (ala <o 7an+1)'

i.e., dip = 1d. Hence, 19 induce maps on cohomology ﬁ"(A, M) — ﬁ”(A’, M) for all
n > 0. O

Consider the subalgebra B of a Lie conformal algebra A, and the A—module M.
Then the pair (¢,id) where ¢ : B < A and id : M — M induces the restriction map
res : C"(A, M) — C"(B, M) which by Lemma 4.2.1 gives the homomorphism on the
cohomology

res : H"(A, M) — H"(B, M)
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called the restriction. If B is an ideal of A, then consider the B—module M? = {m €
Mlbym = 0V b € B}. The injection ¢+ : MP < M and the projection 7 : A — A/B
form a compatible pair of homomorphisms. By Lemma 4.2.1, the pair (¢, 7) induces a

homomorphism

inf : H"(A/B, M®) — H"(A, M)
called the inflation homomorphism. Note that M? is an .A/B—module.

Example 4.2.1. In degree 0, the restriction homomorphism res : MA —s MPB and
the inflation homomorphism inf : (MP)AB — M4 are the inclusion and the identity,

respectively.

Example 4.2.2. The edge maps (Proposition 3.3.1) are the inflation HY(A/B, M®) —
HY(A, M) and the restriction H1(A, M) —s H(B, M)A/5.

Now suppose that for a Lie conformal algebra A there exists a Hchschild-Serre spectral
sequence, BV = HP(A/B,HY(B, M)) = HPT9(A, M), where B C A is an ideal and
M is a conformal A—module. Then we have the following results which describe the

inflation-restriction exact sequence that arises from the Hchschild-Serre spectral sequence.

Theorem 4.2.1. (Inflation-Restriction exact sequence) The Hochschild-Serre spec-

tral sequence for Lie conformal algebras yields the following exact sequence

0 — H'(A/B, MB) 25 HY(A, M) 2 HY(B, M)AE —

o o (4.3)
25 H*(A/B, MP) 2% H*(A, M)

where MP is the invariant submodule of M, and res and inf are the inflation and restriction

maps, respectively.

Proof. Follows directly from the five-term exact sequence (see Example 3.3.1). O

Corollary 4.2.1. Suppose that B acts trivially on M and ﬁq(A/B, M) =0 forq=1,2,
then HY(A, M) = H (B, M)A4/5,

Proof. Follows from Theorem 4.2.1. m

Corollary 4.2.2. Suppose H'(B, M) = H%(B, M) = 0, then H1(A, M) = HI(A/B, M?)
forq=1,2.
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Proof. The seven-term exact sequence (see Remark 3.3.1), of a conformal algebra A and

its ideal B with coefficients in an A—module is given by

0 — H'(A/B,H(B, M)) — H'(A, M) — H°(A/B,H" (B, M)) —>
— T2(A/B,H(B, M)) — ker (H*(A, M) — H°(A/B,H*(B, M))) —
— HY(A/B,H (B, M)) — H*(A/B,H°(B, M)).

But ﬁq(B, M) =0 for ¢ = 1,2, so we have

0 — H'(A/B,H"(B,M)) — H'(A, M) — 0
0 — H%(A/B,H(B, M)) — H2(A, M) — 0.

which implies H?(A, M) = H%(A/B, M5) for ¢ = 1,2. 0

Theorem 4.2.2. (Higher Degree Inflation-Restriction exact sequence) Let B be
an ideal of a Lie conformal algebra A and M an A—module. Suppose that ﬁq(B, M)=0

for 1 < q < q. Then the inflation homomorphism induces isomorphisms
HY(A, M) = HI(A/B, M®)
for 0 < q < ¢, and there is an exact sequence

0 — H7 (A/B, MP) 25 HY (A4, M) == HY (B, M)A/F —s
5 HY(A/B, MP) 25 B (A, M).

Proof. Using Theorem 3.3.1 with n = ¢’ we have

HY(A, M) = B2 = HI(A/B,MP) V¥V q<d

and the sequence 0 —» H? (A/B, MB) —s HY (A, M) —s HY (B, M)A/8 N

HY+1(A/B, MB) — H7+1(A, M) is exact O
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4.3 The Hochschild—Serre Spectral Sequence Associ-
ated with the Reduced Complex

Recall that for any filtration ' on an C[0]—module M, and N is a submodule of M, then
the induced filtrations on N and M/N, are given by F"N = NN F"M and F"(M/N) =
(F"M + N)/N, respectively.

Let A be a Lie conformal algebra, and M be a conformal A—module. Consider the
induced filtration F* of F* on the reduced complex C*(A, M), then we have

FPC™"(A, M) = F?(C™(A, M)/OC™(A, M))
= (FPC"(A, M) + dC"(A, M)) /OC™(A, M), for all p.

Observe that,

FOC™"(A, M) = (F°C™(A, M) 4 dC™(A, M)) /oC™(A, M)
=~ FOC™(A, M)/ (F°C™(A, M) N IC™(A, M))
= C"(A, M)/ (C™(A, M) N IC™(A, M)) = C"(A, M),
FrHLom(A, M) = (F"1C™(A, M) + 9C™(A, M)) JoC™(A, M)
= OC™(A, M)/OC™(A, M) = {0}.

Moreover, FPC™"(A, M) C FP~'C"(A, M) for all p. Thus, F is a bounded decreasing
filtration on C™(A, M). Furthermore, the differential d preserves the filtration F** because

d(FPC™(A, M)) = d(FPC"(A, M) + dC™(A, M)) JOC™ (A, M)
= d(FPC"(A, M)) + 0dC™ (A, M) /OC™ (A, M)
C FPC" (A, M) + 0C™ (A, M) /OC™ (A, M)
= FPC"H (A, M),

for all p. Therefore, (C"(A, M),d, F) is a filtered differential graded C[0]—module. Thus,
by Theorem 3.2.1, there exists a first quadrant cohomological spectral sequence { EP?, d, }

for » > 0 that satisfies the following properties:
1. EM > pPOPra( A, M)/ FPHICPTI( A, M).

2. EPY =~ HPHa(EPY dy).
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3. Epa o FPHPYa (A, M)/ FPHHP (A, M),

Now suppose that the second term of the spectral sequence associated with the reduced
complex is given by FEY? = HP(A/B,H%(B, M)), where B is an ideal of A. Then by the
convergence of the spectral sequence we have E5? = HPT9( A, M). In this section we will

show that the arising spectral sequence does not converge to the reduced cohomology
H*(A, M).

Due to [33], the dimension of the reduced cohomology of Vir x Curg with trivial

coefficients is given by

dimH?(Vir x Curg, C) = dim H?(Vir x Curg, C) + dim H"*!(Vir x Curg, C)
= dim HY(g, C) + dim H?"3(g, C) + dim H*"!(g, C) + dim H? *(g, C)
= dim HY(Curg, C) + dim H? ?(Curg, C), (4.4)

for all ¢ > 0. Now suppose that the Hochschild-Serre spectral sequence with respect to
the reduced complex C*(Vir x Curg, C) is given by

EY4 = HP(Vir, H(Curg, C)) = H*"(Vir x Curg, C) (4.5)

for all p,q > 0. Then by Theorem 2.7.5, HY(Curg, C) = H%(g,C) @ H?"!(g, C) for all ¢,

which is a trivial Vir—module (Lemma 5.2.1). Then (4.5) can be rewritten as
EY? = HP(Vir,C) ® HY(Curg, C) = H?™(Vir x Curg, C).

By Theorem 2.7.4, H?(Vir,C) = 0 unless p = 0,2, 3. So, the E)-term is given by

/

H?(g,C) © H"*'(g,C) if p=0,
PQ[Hq(ga C) D Hq—H(ga C)] if b= 27
[H(

EPY —
3 H? g, (C) D Hq+1<gv C)] if b= 37

-

otherwise.

e}

\

where ¢ > 0, P, = A3 — A3 and A3 = (A\; — A2)(A1 — A3)(A2 — A3). Then the corner of the

E5 page is shown in the following figure.
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6 | HY(Curg,C) 0 PHO(Curg,C)  AsHS(Curg, C)

5 H5(curg,C)\o’p2H5(curg,<C) A3H5(Curg, C)

4 H4(curg,C)\O’P2H4(curg,<C) AsH4(Curg, C)

3 H3(curg,<C)\op2H3(curg,«:) A3H3(Curg, C)

2 H?(curg,C)\o’P2H2(curg,<C) A3H2(Curg, C)

1 0 o\m 0 0

0 C\0>P2<C AsC 0
0 1 2 3 4

Figure 4.1: EY?-page for (C*(Vir x Curg, C), F*,d).

Suppose that any g—cochain ¥ € C9(Curg, C), a representative of a cohomology class
[7] € Hi(Curg,C), can be extended to a g—cochain in 4 € C?(Vir x Curg, C) as the

following

I

(tA(L)dY)rr o ng (915 - - -

/7)\1 ..... Ass A5 1yeees )\q(L7"'7L7.gS+17"'

7gq) -

4.6
aQQ): ) ( )

for all 2 < s <gq.

Then v € ES"I for all ¢ > 0. Tracking the differential dy in the Figure 4.1, observe that the
only possible nontrivial differential is dy? : H4(Curg, C) — P,H4"'(Curg, C), where ¢ > 3.
Then, for v € éq(Curg, C), a representative of a reduced g—cocycle ¥ € H4(Curg, C) we

have
A7) =dy =dy mod ACT " (Curg,C) = P8 mod dC*(Curg, C) = P,J

for some 8 € C41(Curg, C), where P, = A3 — A3. On the other hand, we have

d%\l ..... Ag+1 (L7 L7 gz, ... 7gq+1)
= (A2 = M) M+ r0hamergss (Ls 93, - - Ggr1)
q+1
+Z(_1)1+1)\j7)\1+/\j7)\2 77777 j\j 77777 )\q+1(gj7L7g37"'7/g\j7"'7gq+1)
j=3
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i+2 ~
+Z<_1) * Aj/y)\zq—,\j’)\l 77777 j\j 77777 )\q+1(gj7L7g37"'7gj7"'7gq+1)

+ Z<_1)i+j’7)\i+)\j,)\1 ,,,,, Niyes A )\q+1([gi,\igj]>LaLag3>'"7/g\ia"-7/g\ja---7gq+1)

.....

= (A2 = M)W+ r0hamengss (Ls 93, - - Ggr1)

+Z)‘j’y)\2 ,,,,, A1+Aj .., )\q+1(L7g37'"7gj7"'7gq+1)

- Z >‘j’}/>\1 ----- A2+, g1 (L7 g3, 5 G5, 7gq+1)- (47)
=3

where the last equality holds due to (4.6) and the skew symmetry of 7. Since H?(Curg, C) =
H¢(g,C) @ H?™'(g,C), 7 does not depend on As,...,A,11. Then we can set v = ¢
for some ¢, € C when evaluated on the elements of g. On the other hand, we have
dy = Py € PHT ! (Curg, C) for some 3 € 5q_1(Curg, C). Then f is a constant and dy
is a skew symmetric polynomial of degree 3. It follows that v is a quadratic homogeneous

polynomial in one variable. Then we can rewrite (4.7) as

Vs, nger (Ly Ly G35 Ggi1)
=ch(Aa — M)+ X2 +ch( M3+ oo+ A1) A3
— (Mg 4o A1) AT
= (A3 =AM+ A+ A3+ M)

(4.8)

Since C(Vir x Curg, C) = ( H \;)0C4(Vir x Curg, C), dy = 0 and thus, d3'? vanishes
for all ¢ > 0. Therefore, EY? = EP? for all p, ¢ > 0. The corner of the E5—page is shown

in the following diagram.
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6 | H%(Curg,C) 0 PyH®(Curg,C) AzHS(Curg, C) 0

5 | H>(Curg, C) 0 ’(Curg,C) AzH?(Curg,C) 0
4 | H*(Curg,C) 0 H*(Curg,C) AzH*(Curg,C) 0
3 | H¥(Curg,C) 0 H3(Curg,C) A3H3(Curg,C) 0

H%(Curg,C) AsH?(Curg,C) 0

1 0 0 0 0 0
0 C 0 PC AsC 0
0 1 2 3 4

Figure 4.2:  EY%-page for (C*(Vir x Curg, C), F*,d).

Now assume that any g—cochain 4 € C9(Curg, C), a representative of a cohomology
class [y] € H1(Curg, C), can be extended to a g—cochain in 7 € C9(Vir x Curg, C) as
the following

(LA(L>df7)>\1 ,,,,, Aq (gla SR 79(1) =0,
Mt As ot trerg (L -3 Ly gsgrs -5 9q) = 0, for all 3 < s <gq. (4.9)

Then 7 € Eg’q for all ¢ > 0. From Figure 4.2, the only possible nontrivial differential is
dy? : HY(Curg, C) — H?%(Curg, C) for ¢ > 2. Observe that for any 5 € C(Curg, C),

the differential dy? can be written as follows
A%y = dy =dy mod OC**(Curg,C) = A3 mod C*%(Curg, C) = A3

for some 8 € C972(Curg, C), where Az = (A — A2)(A1 — A3) (A2 — A3). By the definition

of the differential, we have

+ (A1 = A3) Y rs e g (L Ly 94y ooy Ggr1)
+ (A3 = A2) Vo rs A g (L Ly 94y ooy Ggr1)
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q+1
- § : Aj7>\27>\37>\4,---7>\i—17>\1+>\j1>\i+1,--~)\q+1 (L7 L7 G4y -5 Gjy -0y gq—‘rl)
j=4

g+1

+ E >\j%\1,A3,,\4,..,,Ai,1,A2+,\j,Ai+1,..,Aq+1(LaL794, -y 95, ---,9q+1)
j=4
q+1

- Z )‘JJY)\l7>\2,)\4,~~-,Ai71,>\3+)\j,>\i+1,~->\q+1 (L7 L? 945 -3 G5y oo g(I+1>' (4'10>
=4

Since dy = A3 € A3H?(Curg, C) where 3 € 6‘1_2(Curg, C), then v is a quadratic skew
symmetric homogeneous polynomial in two variables that is a constant on g. So we can
rewrite (4.10) as

d%\l ----- /\q+1(L7 L7 Lag37"'>gq+1)
= (A2 = A)[(A1 4+ X2)? = A5] + (A = A3) [(A + A5)” = A3

q+1
+ (A3 = A) [(A2 4+ A3)® = A - Z 2[NS = A (4.11)
j=4
q+1 qg+1
+Y N =N =D -3 =0
=4 j=4

So we have dy?(3) = dy = 0 for all ¢ > 0. It follows that E?? = EP9 for all p,q > 0.
Moreover, the differential d, for all r > 4 is zero, and hence EP? = E) for all p,q > 0.

Thus we have,

H"(Vir x Curg,C) = @ H?(Vir, C) ® HY(Curg, C)

pHq=n
=~ H"(Vir, C) ® H"(Curg, C) @ H*(Vir,C) ® H**(Curg, C)
@® H?(Vir,C) ® H*3(Curg, C)
=~ H"(Curg, C) @ P,H" ?(Curg,C) @ AsH"*(Curg, C).

where P2 = )\‘% — )\% and A3 = (/\1 — )\2)(/\1 — )\3)()\2 — )\3) i.e., dim Hn(VII' X Curg, (C) =
dim H"(Curg, C) + dim H*"?(Curg, C) + dim H*3(Curg, C), which contradicts (4.4).
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Chapter 5
Applications

According to [8], every finite semisimple Lie conformal algebra is uniquely decomposed in
a finite direct sum of Lie conformal algebras each of which is isomorphic to a Virasoro
conformal algebra, Vir, a current conformal algebra, Curg where g is a semisimple finite
dimensional Lie algebra, or a semidirect product of Vir and Curg, defined by [Lg] =
(0+ N)g, g € g. The cohomology of the first two types was extensively studied in [2], and
the cohomology of Vir x Curg was done in [33].

In this chapter, we will start by computing the basic cohomology of Vir with coefficient
in a Vir—module Ma ,. Then we will use the Lie conformal algebra’s Hochschild-Serre
spectral sequence to compute the cohomology of Vir x Curg with trivial coefficients. In
addition, we give explicit computations for the basic cohomology of Vir x Curg with

coefficients in the module Ma o v

5.1 Cohomology of Vir with coefficients in Ma ,

Recall (Theorem 2.3.1) that every irreducible finite Vir-module is Ma , where A, € C
and A # 0 such that

Mp o =Cl0lv, Lyv=(0+a+ A\

The following theorem describes the reduced cohomology of Vir with coefficients in Ma ,

which was studied in [2].
Theorem 5.1.1 (|2], Theorem 7.2). 1. H*(Vir, Ma,) =0 if a # 0.

2. HY(Vir, Ma ) = HY(DectyC, Ua_1) & HT 1 (BectyC, Ua_1) for any q.
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3. dim HY(Vir, Ma o) = dim HY(BectC, C[t, t~1](dt)1=2). Eaplicitly:

2 forq=r+1
dim HY(Vir, My_(3,240y20) = S 1 forq=r,r+2

0 otherwise

and HI(Vir, Mao) =0 if A #1— (3r> £ 1) /2 for any r € Z,.

In this section, we will compute the basic cohomology of Vir with coefficients in the
Vir-module Ma o where A, a € C.

Theorem 5.1.2. For the Virasoro conformal algebra Vir, for any o € C,
1. dim HY(Vir, My,) = 0 for ¢ > 3

2. dim HY(Vir, My o) = 0 for ¢ # 1,2.

3. dim ﬁq(Vir, M3r—12)2.0) = 0 for ¢ > 1 where r € Zy and r > 4.

Proof. We first identify the basic cohomology complex 6"(Vir, Mn o). Any n-cochain
v e C"(Vir, M. A.a) is determined by its value on L®":

P()\la"wAn):’y/h ,,,,, )\n(La"'7L)7

where P(Ay,...,\,) is a skew-symmetric polynomial in n variables with values in Ma 4.

The differential is given by the following formula:

n+1
(AP)Y(A1, - An) = D (=)™ (Our + a+ AN)P(Ar, . A Ag)
=1
n+1 N N
+ ) (=D = AP+ A A A A An).
i,j=1
i<j

Following [2], consider the homotopy operator

K« CI(Vir, Ma o) — C7(Vir, Ma )
)

/{/’)/)\1 ..... )\qil(L,...,L) = 5[,,\([/)’)//\1 ..... /\qil(L,...,L)‘)\:().
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Then by Cartan’s identity we have

0
= 5(¢A(L)d+ dex(L))Varng (Ly -+ -5 L)a=0
0
= 59/\(11)7)\1 ,,,,, Aq (L> 7L)|)\—0
a q
= 5((3 +a+ ANV, (Lo L) a0 + Z()\z M)Vt rng (Ly -y L) x=o)

where deg), 7y is the total degree of v in Ay, ..., A;. Then, for a g—cochain ~, it contributes
to the cohomology of C (Vir, Ma ) only if its degree as a polynomial is equal to ¢ — A.

.....

Thus, A must be an integer, otherwise ﬁq(Vir, Ma o) = 0 for all g. Since 7, Ny (L,...,L)
as a polynomial in Aj,..., A\, is a skew-symmetric, then it is divisible by I, ;(\; — A;)
whose polynomial degree is ¢(q — 1)/2.

Consider the quadratic inequality ¢(q¢ — 1)/2 < ¢ — A, whose discriminant is 9 — 8A.

Then g € I =[(3 —v9—8A)/2,(3+ v9 —8A)/2]. Let r be a nonnegative integer such
that r € I, then we have A = (3r — r?)/2. It follows that the only integral solutions for
the inequality ¢(q — 1)/2 < ¢ — A are

0,1,2,3 if A=0,
g=11,2 if A=1,
0,1,....,r if A= 3r—1r?))/2.
where r € Z, such that » > 4. Therefore, for A = 0, we have ﬁq(\/ir, My o) = 0 for all

q > 3, and for A = 1 we obtain ﬁq(Vir, M) =0forall g #1,2. If A = (3r —r?)/2 for
r € Z, such that r > 4, then we have H?(Vir, Mna,) =0 for all ¢ > 7. O

As shown in Proposition 2.7.1, the short exact sequences of complexes 0 —> oC* —
C*—C*—0 gives the following long exact sequence of cohomology groups:

0 —— HO(AOC®) —2 HO(Vir, Ma o) —2 HO(Vir, Ma Q) —2—
—— HY(OC*) —2— HY(Vir, Ma o) —— H (Vir, Mp,) —2— (5.1)

- HQ((?@') 2. ﬁQ(Vir, M) —— H2(Vir, Mp o) —2—
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where ¢; and 7; are the homomorphisms induced by the embedding dC* <% C* and the
canonical projection 7 : c* —s C* / (‘95', respectively, and w; is the 1—th connecting

homomorphism. Then, we have the following lemma.
Lemma 5.1.1. The map 1, : H1(OC*) — H9(Vir, M o) is zero for all ¢ > 0.

Proof. Let v € C4(Vir, Ma ) be a representative of cohomology class [y] € HY(Vir, Ma )
then by Theorem 5.1.2, yx,,..»,(L,..., L) = P(A1,...,A;) where P(A1,...,),) is a skew
symmetric polynomial in Aq, ..., A\, of total degree, deg, P = ¢ — A.

Consider the g—cocycle [9y] € H(AC®) for nonzero [7] € HY(Vir,Ma,), then
1o([07]) = [07] € HI(Vir, M ). So, @y can be identified with a skew symmetric polyno-

.....

mial OP of degree ¢ — A. From the definition we have
O Mirg = 0 P(Aq, .. 8M—|—Z)\ (AL, Ag)-

So we get deg, 0y = deg, P+ 1 =¢q— A+ 1, a contradiction. Then, 9y must be zero in
ﬁq(\/ir, MAa o), i.e., the image of ¢, is zero for all ¢ > 0. ]

Theorem 5.1.3. For all ¢ > 0,
dim HY(Vir, Ma o) = dim HY(Vir, Ma o) 4 dim H (Vir, Ma o).

Proof. By Lemma 5.1.1, we have im ¢, = 0 for all ¢ > 0. Thus, ker 7, = 0, and im w, =
Het(AC*). Then the long exact sequence (5.1) gives the following short exact sequence
for each ¢ > 0:

0 — H(Vir, Mp o) — HY(Vir, Ma o) — HTH(OC*) — 0

Thus, for all ¢ > 0 we have dim H?(Vir, Ma ) = dim HY(Vir, Ma o) + dim HiH(9C®) =
dim H?(Vir, Ma o) + dim H (Vir, Ma ) by Theorem 2.7.1. O

Theorem 5.1.4. H*(Vir, Ma o) = 0 for a # 0.

Proof. Follows from Theorem 5.1.1 and Theorem 5.1.3. ]
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Theorem 5.1.5. For the Virasoro conformal algebra,

o~ 1 if ¢q=2 or 3,
dim HY(Vir, My ) =

0 otherwise.

In particular, H2(Vir, My o) = C(A2 — A2)v, and H3(Vir, Mo o) 2 C(A; — X)) (A1 — As)(Aa —
)\3)1/.

Proof. By Theorem 5.1.2, we have r = 0 or 3 and dim ﬁq(\/ir, M) = 0 for all ¢ > 4.
Using Theorem 5.1.1, we obtain

2 if qg=2,
dim HY(Vir, Moo) =41 if ¢=1 or 3,

0 otherwise.

Then by Theorem 5.1.3, dim ﬁq(Vir, My) = 1for ¢ = 2 or 3, and is zero otherwise. To find
a basis for ﬁq(Vir, M) and g = 2, 3, recall that the only skew symmetric homogeneous
polynomials of degree ¢ — A contribute to the cohomology of 6"(Vir, Myy). For ¢ = 2,
the only skew symmetric homogeneous polynomial of degree 2 in two variables is A\? — A\3.
Setting yx (L, L) = m(A\* — p?) where m = p(9)v € My, we get

dYa, xons (Ly L, L)
= LMo (L L) = Ly vaaas (Lo L) + Ly g e (Ly L) = Yageao,0 ([E, L], L)
+ Puas e ([La L1 L) = Yaoas o ([Dao L], L)
= L, (p(9)(A3 = A3)v) — Ly (p(O) (AT = A)v) + Loy (p(O)(A] — A3)v)
— (A1 = A2) W aens (L, L) + (A = A3) a4 as0 (s L) — (A2 — A3)Vaggas o (L L)
= p(0+ A )(8M()\2 —A)v) = p(0+ A2) (Onr(AT — M) + (9 + A3) (O (AT — A3)v)
— (@) = ) (O + A)? = A2)w + p(@) (A — As) (A + Aa)? — A2)w
—p(0) (A2 = A3) (A2 + A3)* = AT)w
@+ M) = A2 = A3) (A3 = A)w = p(D+ XA)(9 — M — Ag) (AT = A
(D4 A3) (D — A1 — X)) (AT = ). (5.2)

+p
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Setting p(9) = > 7, w;0" with u, # 0, then plugging this into (5.2) with A3 = 0 yields

(OX5 = A D ui(D+ M) — (A = A) D w0+ Xo)’

i=0 =0

. 5.3
HO =M = )\ = A)D wd =0.
i=0
Comparing the coefficients of A390"! in (5.3) gives nu,A\; = 0, i.e., n = 0. Hence,

dYa e (L, L, L) = 0 only if p(9) is a constant, i.e., an element of C. Thus, A? — A3, up
to a constant factor (v € Myy), is a 2—cocycle of 52(Vir, Myp).

Observe that A2 — A2 represents a nontrivial class in the cohomology. Indeed, assume
that there exists a nonzero ¢ € C*(Vir, My,) such that do, a,(L, L) = A2 — A2. Since ¢
is identified with a polynomial in one variable A, then we can set ¢»(L) = Af(\) for some
polynomial f(\) =", a;(A\)d" € Myo[A]. So we have

)‘% - )‘g = d¢>\1,>\2 (L7 L)
= Ly, (M2f(A2)) = L, (A1 f (A1) — (A1 — A2) (A1 + A2) [ (A1 + Ag)

= (Zn: a;(A2)(0 + A1)")(0 — A2) Az — (Zn: a;(M)(0+ X))@ = A\ (5:4)
= (=29 ailh +22)0).

Letting Ay = 0 in (5.4) we get

R = 00 A @) + XS @A)
- = (5.5)
= (MO =)+ A a(M)d =\ Zai()q)@i“.

Note that the left hand side of (5.5) does not depend on 0, hence all coefficients of nonzero
powers of 0 must be 0. So we have a;(A)\ = 0, which implies that a;(A) = 0 for all
0 <i<mn.ie., f(A) =0, a contradiction. Therefore, \¥ — A3 is not a 2—coboundary and
H2(Vir, Myo) = C(A2 — M\2)v.

For ¢ = 3, the only skew symmetric homogeneous polynomial of degree 3 in 3 variables
is Az = (A — M) (A1 — As) (A2 — As). Let v ,6(L, L, L) = mAy™? where m = p(d)v a
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nonzero element of My, and A3*” = (A — p)(A — B8)(1 — ). Then we have

Ao s (Ly Ly Ly L)
- L)\lfy)‘Q’)B’)“l (L’ L’ L) - L)\2FY)\1)\37)\4 (L7 L> L) + L)\37)\1,>\2,)\4 (L? L7 L)
N LA4,Y>\1’A2’A3<L’ L’ L) B <>\1 - )\2)’7)\14')\27)\3,)\4([/7 L, L) + ()‘1 - )‘3>7>\1+>\3,>\2,)\4 (L» L’ L)
- ()\1 o )\4)’%‘1"")‘4 A2, )‘3(L L L) - ()‘ - )\3)’7/)\2-"-)\37)\1,/\4 (Lv L7 L)
+ (A2 = A)Vaotrah s (L L, L) — (A3 = M) Vst (L, L, L)
:p(a—i-)\ )(8 )\2 )A)\z A3, )\4 (a+)\2)(a_)\l _)\3 —)\4)/\?;\1’)\3’)\41/
(8 + )\3)(8 )\1 )\2 -\ )Az\l JA2, )\4 p(a + )\4)(8 o )\1 o )\2 . )\3)A§1,/\2,)\3V
v+ [ty y _ A3,
(8)( )A)\1+)\2 JA3,A4 p( )( )A)\1+)\3 A2, p(a> (/\1 )\4)A§1+)\4 A2,\3
B v TV — - i 72
(8)()\2 )A§\2+)‘3 A1,M p( )( )AA2+)\4 A1,A3 p<a) (/\3 /\4)A§\3+>\4 1,2

Letting p(9) = D1 u;0" with w, # 0, then dyy, x, 0.0(L, L, L, L) = 0 becomes

)\2)\3(8 — )\2 — )\3)()\2 — /\3) Zul(ﬁ + )\1)Z — )\1)\3(8 — )\1 — )\3)(/\1 — /\3) Zul(ﬁ + )\2)Z
=0 1=0

+/\1)\2(8 — )\1 — )\2)()\1 — )\2) ul(ﬁ + )\3)Z + ()\%()\2 — )\3)(/\1 — 8)

1=0

A5 (A1 = A3) (A2 + 9) — Aj(A — M) (A3 + 0)) (i u;0') =

Comparing the coefficients if Ay A3A\30" 1 implies that nu,, = 0, hence n = 0. It follows
that dyx, s (L, L, L, L) = 0 only if p(0) is a constant. Thus, Aj, up to a constant
factor (v € Myyp), is a 3—cocycle.

Now assume that there exists a 2—cochain ¢ € 52(Vir, My ) such that d¢ = AGTAes,
Because ¢ can be identified with a skew symmetric polynomial in two variables, then we
can write ¢y ,(L, L) = (A — p) f(A, p) for some nonzero symmetric polynomial f(\, p) €
Mo o[A, pt]. So we have

A2 = dey v, ae (L, L, L)
= Ly, (A2 = A3) f( X2, A3)) — Ly (A1 — A3) f( A1, A3)) + Lag (A1 — A2) f(A1, A2))
— (A= A2) (A + A2 = A3) F (A1 + A2, Az) + (A1 — Az) (A1 + Az — A2) (A1 + Az, Ao)
+ (A2 = A3) (A1 = A2 = A3) f(A1, A2 + A3). (5.6)

53



Setting f(A, 1) = > 1 o ai(A, p)d" in (5.6). Then, for A3 = 0, (5.6) becomes

n n

WA =) = O () a0+ 0)) = (Y @+ 1))
+ O (A — Ag)(zn; ai(A1, A2)0") — (N2 — A%)(Zn; ai(A1 + A2)0")
. AS)(éai<A1, 220
- mwxgaxwa ) - (0 M)(M)(iaxmw )
+ (0= A1 — X)) (A1 — )\2)(2 ai(A, A2)0") — (A2 — )\g)(i; ai(A1 + A2)0")
. A%xf;ai(m, 220
— (- A2><A2><fg‘ai<x2><a ) = (0= M) )0+ 1))
+ 0\ — )\2)(; ai(A1, A2)0") — (A2 — )\3)(12:; ai(A1 + X)0")
—\ (()\1 . a)(é a;(A)(0 + Ao)?) + ; a; (A1, Ag)OH! — Al(i a;( M + M)@i))
+ A ((a - AQ)(Z: a;(0a)(0 + A7) — 27_1; a; (A1, M) O+ Az(é a; (A1 + Ag)ai)).
(5.7)
Equating similar terms in both sides of (5.7) we obtain
(A — a)(zn: a;(M) (0 + X2)") + zn: a;( A, Ag)0"! — )\I(Zn: a;( A1 + A2)0%) = Aoy — A2,
(0 — Ag)(i a;i(A2) (0 + \1)") — i a;i(A, M) 0" + AZ(i a;i( AL+ A2)0") = A2 — Ay,
(5.8)
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which implies that

n n

(A =0)(Q_ai(M)(@+ A2)') + (0 — )\2)(2 ai(X2) (0 + M)
+(A2 — )\1)(2”: a;i( M+ A)d") = AT = A5, (5.9)

Now letting Ay = 0 in (5.9) yields

n n

00 " ai(0)(0+ M) =) a;(M)oT = AL (5.10)

=0 =0

The right hand side of (5.10) does not depend on 0, then all the coefficients of nonzero
powers of d must be zero. So we have a, (A1) = a,(0) and a;(A1) = a;(0) + (i + 1)a;51(0) N\
forall i =0,...,n — 1. Plugging this into (5.8) gives

n n

(A1 — 0)(2(%(0) + (i + Dais1(0)A) (0 + A2)') + Z ai(Ar; A2)0"!

Comparing the coefficients of \;0"™ for alli = 0,...,n—11n (5.11), we get (i+1)a;11(0) =
0. It follows that a;(0) = 0 for all ¢ = 1,...,n. Hence, a;(\;) =0 fori =1,...,n and
ap(A1) = ap(0). Plugging this into (5.8) yields

—ao(O)a + Z ai()\l, Ag)@”l = /\2)\1 - )\%
=0

It follows that f(A1, A2) = ag(A1, A2) = ag(0), a constant. Set f(A1, A2) = cv for some
c € C. Then doy, a,0s (L, L, L) = 0, a contradiction. Therefore, A3 represents a nontrivial
class in the cohomology and we have ﬁ3(Vir, My) = CAsv. O

Theorem 5.1.6. For the Virasoro conformal algebra,

o~ 1 if g=1 or 2,
dim HY(Vir, M, o) =
0 otherwise.

In particular, H'(Vir, M, o) = Cv and H2(Vir, M o) = C(A — Ag)v.
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Proof. Using Theorem 5.1.1, we get dim H'(Vir, M o) = 2, dim HY(Vir, M) = 1 for ¢ =
0, 2 and is zero otherwise. Then by Theorem 5.1.2 and Theorem 5.1.3, dim ﬁq(\/ir, Mp) =1
for ¢ = 1,2 and zero otherwise. Now, we construct a basis for ﬁq(Vir, M, ) where ¢ =1, 2.

For ¢ = 1, then only polynomials of degree 0 contribute to the cohomology of
C*(Vir, My ). For any v € C(Vir, My ) such that deg, v = 0 then we can write v,(L) =
p(0)v for some p(0) € C[J]. So we have

d7A1,)\2(L’ L) = L)\l,y)\Q(L) - L/\2’7>\1 (L) - ’}/)\1+)\2([L)\1L])
=p(0 + A1) (Our + M)y — p(9 + A2) (Omr + A2)v — (A1 — Ag)p(9)v
=p(8+ )@+ M)y —p(d+ A) (D4 Xo)v — (A1 — Xo)p(O)v.

Let p(9) = >_1 , u;0" such that u, # 0. Then dvyy, »,(L, L) = 0 yields

D wi(@ +M)'v =) w0+ A)'v = (A= A) Y uy(9)'w = 0. (5.12)
i=0 =0 =0

Setting Ay = 0 in (5.12) and comparing the coefficients of 9" gives nu, A = 0, which implies
n = 0. i.e., p(9) must be a constant. Then, v = cv for some ¢ € C is a 1—cocycle. Now
suppose that there exists ¢ € 50(Vir, M, o) such that d¢ = v and ¢ = p(9)v, then we have
dp = Ly(p(0)v) = p(0 + ) (Om + Nv. ie., deg,(dp) = 1. Thus, v is not 1—coboundary
and we have H!(Vir, My 4) = Cu.

For ¢ = 2, let vy, »,(L, L) be a 2—cocycle, then it must be a skew-symmetric homoge-
neous polynomial of degree 1 in two variables, so it is Ay — Aa. Let vy ,(L, L) = m(A — p)

for some nonzero m = p(d)v € M. Then we have

dYa aons (Ly L, L)
=p(0+ M) (On + A1) (v (A2 = A3)) = p(O + A2)(On + A2) (v (A1 — A3))

+ (0 + A3)(Our + A3)((A = A2)) — (A = A2) (p(O)v (A1 + Az — A3))

+ (A1 = A3)(P(A)r( A + A3 — A2)) — (Ao — A3)(p(Q)v(Aa + A3 — A1)

=p(0+ M) (On + A1) (r(A2 = A3)) — p(0 + A2) (O + A2) (v (A1 — A3))

+ (0 + A3)(On + A3)(v( A1 — A2))

=p(@+ )OO =Xy = A3+ A1) (A2 — A3)) = p(O 4+ X2) (0 — A1 — A3 + X)) (¥ (A1 — A3))

+p(0 — A1 — Aa + A3)(Onr + A3) (VA — A2)).
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Let p(9) = >, u;0" such that u, # 0. Then dyy, »,0(L, L, L) = 0 implies that

i=0 i=0

Comparing the coefficients of M Ajt! gives u; = 0 fori = 1,...,n. i.e., dyy sy (L, L, L) =
0 only if m is independent of J. Thus, Ay — A2, up to a constant factor v € M, is a
2—cocycle. Moreover, if ¢ € 5’1(\/11", M, ) such that doy, », (L, L) = Ay — Ag, then

)\1 - )\2 — d¢>\1)\2 (L, L)
= (O + A)oay (L) — (Oar + A2) @, (L) — (A1 — A2) @, 2, (L) (5.13)
= (a + A= /\2>¢)\2(L> - (a - A+ )‘2)¢>\1 (L) - </\1 - >‘2)¢>\1+>\2(L)'

Since ¢ is identified with a polynomial in one variable, then it can be written as ¢, (L) =
Af(X) for a nonzero polynomial polynomial f()\) € M o[A]. Setting f(\) = >7, a; ()9
such that a,(\) # 0, then (5.13) becomes

n

M=o = (04 A = A) (M) ai(Xa) (@ + M)

— (@ =M\ + AQ)MI)(Z a;(M) (04 X)) — (A1 — Aa) (A1 + Ao)( ’ ai(A 4 X2)00).

(5.14)

Letting Ao = 0 in (5.14), we get
A= —(0 = 2O ai(M)d) = X ai(M)d) = -\ Zai(xl)ai“. (5.15)

=0 i=0

The left hand side of (5.15) does not depend on 0. Then all coefficients of nonzero powers
of d must be zero. So, a;(A\)A; = 0 for all i = 0,...,n. It follows that ¢,(L) = 0, a
contradiction. Thus, A; — Ay is not a 2—coboundary and ﬁQ(Vir, Mp) =CA—X)v. O

Theorem 5.1.7. For ¢ =0,1, ﬁq(Vir, M3r—12y20) = {0} where r € Z and r > 4.

Proof. By Theorem 2.7.2, part (1) we have HO(Vir, Ma o) = MY'§ = {m € Mao|Lxm = 0}.
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So, for m = Z?:o u;0" € Ma such that Lym = 0, then we have

. =0 . (5.16)
=D w(@+ N0+ AN u(d+N) =0.

Comparing the coefficients of "' and 9" in (5.16), we get u,, = 0 and (A+n)u,A\+u,_1 =

0, respectively, which yields u,,_; = 0. Proceeding in a similar way, we obtain
((A+k)uk)\+uk_1)0k =0, VO<k<n.

It follows that u; = 0 for all 4, so we have m = 0, i.e., ﬁO(Vir, M3,_2y20) = {0}.
For ¢ = 1, then any 1—cocycle v € 51(Vir, Mnayp) can be identified with a skew
symmetric polynomial of degree 1 — A in one variable. So we can write (L) = Af(A) for

some nonzero symmetric polynomial f(\) € Ma o[\ of degree of degree n = —A. Letting
fON) =30, a;(A\)d", then we have

dfy)\l,)\z (Lv L)
= LMPY)\Q(L) - LA27/\1( ) 7)\1+>\2([L)\1 ])

n n

= L>\1 (/\2 Z CLZ‘<)\2)8Z) — L>\2 ()\1 az(/\l)cf)z) — ()\1 — )\2)()\1 + /\2) a,i(>\1 —+ )\2)8’
= (O + AA) ) (D ai(0)(@ + X)) = (O + A)\Q)(/\l)(z a;(M)(0 + Aa2)')

n

— (AT =)D ai(h + A)D
i=0
where A = (3r —r?)/2 for r € Z, and r > 4. Letting Ay = 0, then dy = 0 implies

(OpAi + AD) Zal (A)DY) = (0 = M)A + A F(A) = M f(\) =0

So f(M) = 0, a contradiction. Thus v must be zero and therefore H!(Vir, Ma o) = {0}.
[
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5.2 Cohomology of Vir x Curg with Trivial Coefficients

In this section we will compute, using the Hochschild-Serre spectral sequence for Lie
conformal algebra, the cohomology of Vir x Curg with trivial coefficients C, where g
is a finite dimensional semisimple Lie algebra with dv = 0 and ayv = 0 for v € C
and a € Vir X Curg. The computation of ﬁ'(Vir x Curg, C) was done in [33] using the
Hochschild-Serre spectral sequence for Bect C x g[t], that is the Lie annihilation algebra
of Vir x Curg.

5.2.1 The Basic Cohomology
Theorem 5.2.1. For the standard semidirect product Vir x Curg, then

H"(Vir x Curg, C) = H"(g,C) @ AsH"3(g,C), for all n >0,

where we set H*(g,C) =0 for all k < 0.
The proof of Theorem 5.2.1 will be done by the following lemmas.
Lemma 5.2.1. H%(Curg,C) is a trivial Vir-module.

Proof. Let v € 5‘1(Curg, C), be a representative of a cohomology class [y] in ﬁq(Curg, C),
then by (2.8) we have

So C4(Curg, C) = (>, /\i)éq(Curg, C). Using Theorem 2.7.5, we have H?(Curg, C) =
H4(g,C). Thus, v is independent of the choice of \.s. i.e., 7y is constant on g. Then we

can set Ay = ... = A\, = 0, and hence we get,

<8 ) ’7)/\1 ..... )\q(gl, ...,gq) =0,

for all [7] € H4(Curg,C). By Lemma 2.1.1, we conclude that Viryy = 0 for all [y] €
H4(Curg, C). i.e., HY(Curg, C) is a trivial Vir-module.
[l
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Lemma 5.2.2. The Hochschild-Serre spectral sequence for A = Vir x Curg, B = Curg
and M = C is given by

Hq(g7 C)a it p=0,
qu = Aqu(g, (C)7 if b= 37
0, otherwise.
where ¢ > 0 and Az = (A — Xa) (A1 — A3) (A2 — A3). Moreover,
(i) &5 =0 for all p,q > 0.
(11) EYT = EP? for all p,q > 0.
(i1i) The spectral sequence collapses at the fourth page.
Proof. Using Theorem 4.1.1, the Hochschild-Serre spectral sequence for A = Vir x Curg,
B = Curg and M = C is given by

EY? = HP(Vir, HY(Curg, C)) = HP*(Vir x Curg,C), p,q > 0.

From Theorem 2.7.4 and Theorem 2.7.5 we have ﬁp(\/ir, C) =0 for all p # 0,3 and
H?(Curg, C) = H4(g, C) for all ¢. Hence, the E2? terms vanish unless p is zero or three,

and we get

E% =~ HO(Vir, C) ® HY(Curg, C) = HY(Curg, C) = H%(g, C),

E3 =~ H3(Vir, C) ® HY(Curg, C) = A;H?(Curg, C) = A;H(g, C).
where ¢ > 0 and Az = (A1 — A2)(A1 — A3)(A2 — A3). It follows that the only nonzero
columns of the Fs page are the zeroth and the third columns. For a finite dimensional

semisimple complex Lie algebra g, H (g, C) = 0, where i = 1,2, 4 ([7], (18.3)). Thus, the

corner of the 5 page is shown in Figure 5.1.
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6 | HS(g,C) 0 AsHS(g,C) 0 0
5 HS(g,C)o\»\o’Aﬁ (g,C)o\»o
4 0 0\\0 0 o\o
3 | H3(g,C) 0 AsH3(g,C) 0 0
2 0 0\0 0 o\o
1 0 0 0 0 0 0
0 C O\OAgc 0 0

0 1 2 3 4 5

Figure 5.1: EY%-page for (5”(\/11" x Curg, C), F*, d).

Observe that the differential d5? shifts two points to the right and one point down,
ie., dy?: EPY — EVY*71 and it is zero for all p,q. Hence, E?? 2 ker db? =2 EP for all
p, q. Since H?(g,C) = 0 for all ¢ > dimg =n > 2 ([7]), then EY? =0 for all p > 3 and
q > n. By Lemma 3.1.1, we have N = min(4,n + 2) = 4. Thus, the Hochschild-Serre
spectral sequence collapses at E7.

L]

In the following lemma, we will describe the isomorphism H¢(Curg, C) — ES.

Lemma 5.2.3. Let vy € éq(Curg, C), be a representative of the cohomology class [y] in
ﬁq(Curg,C), that satisfies the following conditions:

(A(L)dY)n,ng (915 -5 9g) = 0,

(5.17)
QL VI VS VU ,\q(L, coos Ly gst1, -, 99) =0, for all 3 <s<gq.

Then ~v € ES for all ¢ > 0.

Proof. Let A = Vir x Curg, and v € éq(Curg,C) be a g—cocycle that satisfies the

conditions in (5.17). First, from the proof of Theorem 3.2.1, we have

EYY = 72/ BY1
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{v € CUA,C) | dy € F3CT(A,C)}
d(Ca—1(A,C))
_{re éq(A, C) | dya,,..z, (@1, .. aq) = 0 whenever ay, ..., a,—1 € Curg}
B d(Cr1(A,C)) '

Now observe that

Drieergsa (91, - - Ggr1) =0, (5.18)

because 7 is a g—cocycle. Moreover, since ﬁq(Curg, C) is a trivial Vir—module, then by
Cartan’s identity (2.13), the first condition of (5.17) yields

(db)\(L),}/))\l ..... Ag (gh e 7gq) =0 = d’}/>\7)\1 ..... )\q(Lv g1, ... agq) =0. (519)
Now, let dx,,...a,_1 (9155 9g—1) = tx(L)Var,ng-1 (915 - - - Gg—1), then from (5.19) we get

(dex(L))ar,ng—1 (915 -5 Gg—1) =0
= (Ao (L) (D)) rerg 1 (G155 Gg1) =0
= (deA(L)V)x g orgr (L g1y o5 Gg-1) = 0
= dovaga (L Logr, .o, gg-1) = 0.

(5.20)

It follows that dv vanishes whenever evaluated at at least ¢ — 1 elements of Curg. So
dy € F3C (A, C), where the filtration F is as defined in (4.1). Thus, v € 2. Note
that v & BY' = d(C97(A, C)) since if there exists a (¢ — 1)—cochain ¢ such that v = do,
then 7 is a ¢g—coboundary. Hence, v € Eg’q for all ¢ > 0. ]

Using Lemma 5.2.2, the E3 page is pictured in the following diagram.
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0 1 2 3 4 ) 6

Figure 5.2: EL-page for (C*(Vir x Curg, C), F*, d).

Note that the differential d5? shifts three points to the right and two points down, i.e.,
dy?: P — EPY¥97% and it is zero for all p, ¢ except when p =0 and ¢ = 5,7,8, ... In

the following lemma we will show that dg’q =0 for all ¢ > 0.
Lemma 5.2.4. The differential dg’q vanishes for all q.

Proof. The differential dy? : By — E3“"* is induced by the differential d of the basic
complex C?(Vir x Curg, C). Since E & H4(Curg, C) and E34% = AsH72(Curg, C),
then for each v € C7(Curg, C), a representative of the cohomology class [y] in H?(Curg, C),
such that v satisfies the conditions (5.17), we have

d3?([y] = [dy] = As[B], B € C"*(Curg,C). (5.21)
The differential dvy € Agﬁq’2(Cur g, C) is given by:

d’Y)q ..... /\q+1<L7 LJ Lag47”'7gq+1)
= T M+, 41 ([LM L]v L7 g4, .- gq+1>
+ Yarrsde g (I L], Ly g4y o, Ggg1)

q+1
+ Z<_1)]+1’Y>\1+)\j7>\2 ,,,,, ;\j,,,_)\q+1 ([Lklg]L L7 L7 94y -, /9\37 SEE) gq+1)
j=4
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q+1
+ Z(_l)]+27)\2+)\j7)\1,_,,,;\j,,,_)\q+1 ([Lk2g]]7 L7 L7 94y -y /9\]7 EET) gq+1>

g+1
+ Z<_1)]+37A3+>\j7)\1:-~7/A\j:-~~/\q+1 ([L)\ggj]> L7 L7 7P /g\j> SAED) gq+1)

g+1

+ Z(_ % R VIS VNI VIS VIO qH([Qm gy] L,L,L,gy,.. -,§i7~-->§j,~-->gq+1)
ij=4
i<j

= (>‘2 - )‘1>7A1+)\2,>\3,.--,>\q+1 (La La g4, -, gq+1)
+ <)\1 - >\3)f7)\1+)\3,)\2,)\4,...,)\q+1 (L> L7 g4, .-, gq+1>
+ (A3 — )\2)'7)\2+>\3,)\1,>\4,...,>\q+1(L7 L,g4,.... 9q41)

q+1
+ § : J’VA1+,\J,A2, Ao q+1(g]7L L, gy, .. -,Qj,---79q+1)
q+1

+ Z(_1)j+1)\j’y)\2+>\j7)\17---75\j7 Ag+1 (9]7 L L y 94, - '7§j7 -”7gq+1)

g+1
+Z f)/)\3+)\]7)\1, VI )\q_H(g]aL L, gy, .. 7937- 7gq+1)

(/\2 — A1)V 20 080 A (Lo Ly Gas ooy Ggy1)
+ (A — >\3)7/\1+)\3,/\2,)\4,...,)\q+1(L7 L, g4, ... 9q4+1)

+ ()\3 - )\2)’}/)\2+)\37)\15)\4,~~-7)\q+1 (L7 L? ga, ..., gq+1)
q+1

- E : )\j’y)\27>\37/\47~--7)\i717)\1+/\j7)\i+17~--/\q+1 (Lv L, g4, ..., Gjs - gq+1)
Jj=4
q+1

+ Z )\jfy)‘l>)\37/\4:-~~7)\7;717)\2+/\j7)\i+1:-~~>\q+1 (L7 L,ga, ..., Gjy ey gq+1)
j=4
q+1

- § : )\j/yA17>\27/\47---7)\i—17>\3+)\j7>\i+17--->\q+1 (La L, 94y o595y ey gq+1)'
j=4

By Theorem 2.7.5, we have ﬁq(Curg, C) 2 H4(g,C). Thus, v is independent of the choice

of A4, ..., \g41, i.e., 7y is constant on the elements of g. Then we can set A4, ..., \j41 to be
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all zero. Hence we have

+ <)\1 - )\3)7)\14»/\3,)\2,)\4 ..... )\q+1 (L7 LJ 947 seey gq+1)‘)\4=0 ,,,,, )\q+1=0

+ <)\3 - )\2)7)\2—{-)\3,)\1,)\4 ..... )\q+1 (LJ L7 947 sevy gq+1)‘)\4:0 ..... )\q+1:O'

neous quadratic polynomial in A and o where A = X\;+ X, p = Ay and ¢, 5,k = 1,2, 3. From
the definition of cochains, 7 is a skew symmetric polynomial. Since the only quadratic

skew symmetric polynomial in two variables is A — u?, then we obtain

+ CO()\I — )\3)[()\1 + )\3)2 — )\g]
+ Co()\g — )\2)[()\2 + )\3)2 — )\%] =0.

Therefore, dy = 0 for all ¢ > 0, and consequently, dg’q =0 for all ¢ > 0.

Proof of Theorem 5.2.1.

Proof. In Lemma 5.2.2, we proved that the Hochschild-Serre spectral sequence collapses at
the fourth page, i.e., E}'? = EP for all p, q. Since d4? is zero for all p, ¢, then ker d5? = EY.
But EY? = ED? and EP? = ED? for all p, q. That implies EY? = EY? for all p, . Therefore,

H"(Vir x Curg, C) 2 @ HP(Vir, C) @ HY(Curg, C)

pt+g=n
~ H(Vir, C) ® H*(Curg, C) & H*(Vir,C) @ H**(Curg, C)
~ C®H"(g,C) ® AsC ® H"(g,C)
= Hn(ﬂ? (C) ©® A3Hn73<gv C>7

where Az = (A — Xa) (A1 — A3) (A2 — A3) and H¥(g,C) = {0} for all k£ < 0. O

65



Remark 5.2.1. Let v be a g—cocycle in ﬁq(Vir x Curg, C), then v can be written as
v = ¢+ Asa where ¢ € H(g,C) and o € H73(g, C). Since each k—cocycle of H*(g, C) is
independent of the choice of \}s, i.e., ¢ and « are of degree 0. Then we conclude that ~ is

either a constant or a skew symmetric polynomial of degree 3 in A1, Ay, As.

Corollary 5.2.1 ([33], Theorem 1.1 (i)). For the standard semidirect product Vir x Curg,
dim HY(Vir x Curg, C) = dim H(g, C) + dim H* (g, C)

where dim H*(g,C) = 0 for k < 0.

5.2.2 The Reduced Cohomology

To compute the reduced cohomology of Vir x Curg with trivial coefficients, we prove the
following theorem. The purpose of the theorem is generalize the approach used in [2]
to describe the reduced cohomology of the current conformal algebra Curg with trivial
coefficients. It is also used to compute the reduced cohomology of the Heisenberg-Virasoro
conformal algebra HV in [30] and of the W(2,2) conformal algebra in [31].

Theorem 5.2.2. Let A be a Lie conformal algebra. Suppose that any q—cocycle v €
5‘1(./4, C) can be written as a sum of cocycles vy, ...,Vn, n which each cocycle ; is of
A-degree ky, for some nonnegative integer k,, such that k,, —k,, # 1 for alli,j=1,...,n

where \-degree refers to the total degree in A1, ..., \,. Then
HI(A,C) = H(A,C) @ H™(A,C), ¢ 20,

where C 1s the trivial A-module.

Proof. Let v € C9(A, C), be representative of the cohomology class [y] in HY(A, C), such
that ~ is written as a direct sum of cocycle 74,...,7,, in which each cocycle ~; is a
homogeneous polynomial of A\-degree k,, for some nonnegative integers k, such that
kg — kg # 1 for all 4,5 = 1,...,n, where A\-degree refers to the total degree of v in
Alyeoy Age

Consider the long exact sequence of cohomology groups,

Wq

. — HY8C*) — HI(A,C) — HI(A,C)

Sey latl | T Tqt1 wat1 (5.23)
— HTMH(9C®) — H"™(A,C) — HI™(A,C) —— ---
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where ¢, m, are the maps induced by the embedding ¢ : dC* — C* and the natural
projection 7 : C1 — C*, respectively, and w,, is the n-th connecting homomorphism [see
Proposition 2.7.1].

For ¢ = 0, then C°(A,C) = C, and 9C° = dC = 0. Hence, H(OC*) = 0, and
1o : HO(AC*) — HO(A, C) is the zero map.

For ¢ > 1, let ¢ be a cocycle in HY (85') such that ¢ = 9v for a nonzero cocycle
v €E ﬁq(A, C). Then t,([¢]) = [to @] = [¢] € ﬁq(A, C), which implies that ¢ = 0 can be
written as 0y = 0v1 + ...+ 07,, where each of v; is a homogeneous of A—degree k,,. Since

the action of 0 on C is trivial, then

It follows that each dv; is of A—degree k,, + 1. Since k,, — k,, # 1 for all i,j = 1,...,n,
then k,, + 1 # ky, for any ¢,j = 1,...,n. Hence, ¢ must be a zero cocycle in ﬁq(A, C).

i.e., the image of ¢, is zero for all ¢ > 1. The exactness of (5.23) shows that

ker my =im ¢, =0

im w, = kerigyq = HIY(OC*),  ¢>1.
Thus, the long exact sequence (5.23) splits into the following short exact sequences
0 — HY(A,C) —— H9(A,C) —— HI*(C*) — 0.

Therefore,
H'(A,C) = HY(A,C) @ H'"(A,C), ¢>0.

Corollary 5.2.2. For the standard semidirect product Vir x Curg,
HY(Vir x Curg, C) = HY(Vir x Curg, C) ® H!(Vir x Curg,C), ¢ > 0.

Proof. Remark 5.2.1 shows that each g—cocycle v € ﬁq(\/ir x Curg, C) can be written as
a sum of two cocycles vy and v such that deg, v, = 0 and deg, 72 = 0 or 3. By Theorem
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5.2.2, we get
HY(Vir x Curg, C) = H%(Vir x Curg, C) ® H™!(Vir x Curg,C), ¢ > 0.

O

Corollary 5.2.3 ([33|, Theorem 1.1 (ii)). For the standard semidirect product Vir x Curg,

dim H?(Vir x Curg, C) = dim H%(g, C) + dim H? *(g, C) + dim H*"'(g, C)
+ dim H??(g, C).

for all ¢ >0, and dim H%(g,C) =0 for ¢ < 0.

5.2.3 Central Extensions

Let A be a Lie conformal algebra and C' be an abelian conformal algebra. A short exact

sequence of Lie conformal algebras
0—C—A—A—0

-~

is called an extension of A by C. This extension is called central if [C).A] = 0 and

0C' = 0. Furthermore, a central extension
0—C—A"5A-—0
is called universal if for every central extension
0—C— A3 A—0
there exists a unique homomorphism ¢ : A — A such that 7 = 7 o 0.
The M-bracket on A is given by:
[axb]" = [axb] + ax(a, b),

where [a)b] is the A-bracket on A and a,(+,+) : A x A — C[A] @ C' is a C-bilinear map.
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From the axioms of Lie conformal algebras, a,(-,-) satisfies the following properties:

ax(0a,b) = —Aay(a,b), ax(a,0b) = (A + 0)ax(a, b),
ay(a,b) = —a_,_g(b,a),
ax(a, [b,uc]) = aA+u([a/\b]> c) + au<bv laxd]),

for all a,b,c € A. The map «,, is called a 2—cocycle of A, and is a 2-coboundary or trivial

2—cocycle if there exists a C[0]-module homomorphism f : A — C such that

ax(a,b) = f(laxb]).

Two 2—cocycles o and o, are equivalent if o'\ — ) is a 2-coboundary, i.e.,
a\(a,b) = ax(a,b) + f([ab]).

The trivial 2—cocycle defines a trivial extension, and the equivalent 2—cocycles o/} (a, b) and
ay(a, b) define isomorphic extensions. By Theorem 2.7.2, part (4), the central extensions
of A by C' are parameterized by H?(A, C).

Let Virmrg be a central extension of Vir x Curg by a one-dimensional center Cec.
Then, Virmrg = Vir X Curg & Cc and the \-bracket on Virmrg is given by

[L/\L]A = (8 + 2)\>L + Oé)\(L, L)C,
[Lag]" = (04 N)g + an(L, g)c, (5.24)
[93h]" = [g, 7] + ax(g, h)e.

where g,h € g C Curg, L is the standard generator of Vir, and «a,(a,b) is in C[A] for

a,b € {L} Ug. Moreover, we have dc = 0 and [a)¢]" = 0.
Using Theorem 5.2.2 and Corollary 5.2.1, we obtain

dim H?(Vir x Curg, C) = dim H3(Vir x Curg, C) + dim H*(Vir x Curg, C)
= dim H?*(g, C) + dim H (g, C) + dim H*(g, C)
+dim H’(g, C) = 2.

It follows that there are, up to isomorphism, only two nontrivial central extensions of the

semidirect product Lie conformal algebra, Vir x Curg.
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According to (8], the universal central extension of Vir x Curg is a combination of the
universal central extension of Vir and Curg where g is a finite dimensional semisimple
Lie algebra. The universal central extension of Vir has one-dimensional center and the
corresponding 2—cocycle is given by ay(L, L) = a\3, a € C. Furthermore, the universal
central extension of Curg is identified with the space B of all invariant bilinear forms on
g and the corresponding 2—cocycle is af\c(g, h) = f(g,h) where f € B and g,h € g. In this
section, we will compute explicitly the universal central extension of Vir x Curg.

First we compute a(L, L) by using the Jacobi identity for (L, L, L). Here we have

(LAILW L) = [[LAL]xg L) + [Lu[LaL])
— (L, (L)) = aru([EaLL, L) + g (L, [LaL])
= ax(L, (04 2p)L) = x4, ((0 +2XN)L, L) + (L, (04 2X)L)
= (A4 2p)an(L, L) = (A — p)arsn,(L, L) + (1 + 2N\, (L, L).

(5.25)

Now set ay(L,L) = Y i ,a;\" such that a; € C for all 7 and a,, # 0. Then we rewrite
(5.25) as the following

A2 XN = A=) > aiA+p) + (+20)> a'.
i=0 i=0 i=0
Comparing the coefficients of A™ in both sides we obtain

20, A" = (napp — app)\" = 2a,u = (n — )a,p = n=3.

Thus, we have (L, L) = ag + a1\ + ax\* + a3\ for some ay, ay, as, a3 € C. By the skew

symmetry of oy we have

ax(L, L)e = (ap + a1 A + a2A* + az\’)c
= —(ao+ a1(—=A = 9) + as(—A — 9)* + az(—\ — 9)*)¢
= —a_y_o(L, L)c.

Comparing the coefficients of similar terms, we obtain ay = as = 0 and hence,

ax(L,L) = a1\ + az\?, ar,as € C. (5.26)
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Now we compute a, (L, g) by writing the Jacobi identity for (L, L, g), so we have

A+ par(L, g) = (A = parpu(L, g) + (1 + Nau(L, g). (5.27)

Similarly, we set ax(L,g) = > i b\ b € C, b, # 0 in (5.27) and then compare the

coefficients of A". We obtain
bup A" = (nbppt — bpp)N* = by = (n — )byt = n = 2.

Hence, a(L, g) = by + b1\ + by A? for some by, by, by € C. By the skew symmetry of a, we

have

OQ\(L, g)C = (bo + bl)\ + bg)\2)c
= —(bo+ by (=X — 3) + by(—X — 9)%)c = —a_s_s(L, g)c.

which implies that by = by = 0. Therefore,
CV)\(L,g) = bl)\, bl e C. (528)

Finally, we compute a, (g, h) for g,h € g, we apply the Jacobi identity to (L, g, h).

Here we get
an(Ly[g, k) = —paneu(g. k) + (A + w)au(g, h). (5.20)

Let a,(g,h) = >0 geip’ and ang,(g,h) = Y iy ci(A + p)' where ¢; € C for all ¢ and
cn 7 0. By (5.28), we have a,)(L, [g, h]) = biA. Plugging this into (5.29) and comparing

the coefficients of similar terms in both sides, we obtain

i\ = Co)\ = b = Co,

and —ne A\ e A\ =0 = n=1.

Hence, a)(g, h) = o+ c1 A for some g, ¢; € C such that cg = b;. Using the skew-symmetry

of oy, we have
ax(g,h)e = (co+ aX)e = —(co+ ci(—=A = 9))ec = —a_x_g(h, g)c.
Which implies that ¢y = 0, thus b; = 0, and therefore we have

ax(L,g) =0, and  ax(g,h) = 1A, c €C. (5.30)
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Theorem 5.2.3 ([8], Remark 8.4). 1. For nonzero a,b € C, there exists a unique non-
trivial central extension of the semidirect product Lie conformal algebra, Vir x Curg
by a Lie conformal algebra Cc where ¢ is a central element and the A-brackets given by:

[LAL]" = (0 + 2L + aX’c, [Lag)" = (0 + N)g,

[gxh]" = [g, h] + bAc. (5.31)

2. There exists a unique nontrivial central extension of the semidirect product Lie confor-
mal algebra, Vir x Curg by a Lie conformal algebra Cc & Cc" where ¢ and ¢ are central
elements and the \-brackets defined by:

[LAL) = (04 2)\)L + AP, [Lyg]" = (04 N)g,

[9rh]" = [g,h] + X' (5.32)

Proof. (1) Plugging (5.26) and (5.30) into (5.24) and replacing L by L — Lac with a3 = a
and ¢; = b for nonzero a,b € C, we obtain (5.31) as desired.

(2) Follows from part (1).

5.3 Cohomology of Vir x Curg with Coefficients in C,

Consider the Vir x Cur g-module C,, that is the one-dimensional vector space C such that
Ov = av and uyv = 0 for u € Vir x Curg, v € C and a is a nonzero complex number.

Note that g is a finite dimensional complex semisimple Lie algebra.

5.3.1 The Basic Cohomology

Theorem 5.3.1. For alln > 0, we have

H"(Vir x Curg, C,) = H"(g,C) & AsH" (g, C).

Proof. The second term of the Hochschild-Serre spectral sequence for A = Vir x Curg,
B =Curg and M =C, is

B} 2= HY(Vir, H(Curg, C,)) = H7*1(Vir x Curg, Co).
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By Theorem 2.7.5, we have H?(Curg, C,) = H¢(Curg, C) = H%(g, C) for all ¢ > 0. Let
v € C(Vir x Curg, C,) be a representative of a cohomology class [y] € H/(Curg, C,).

Then we have

By the isomorphism ﬁq(Curg, C) =2 H%(g,C), v is constant on the element of g, hence
0v = av. Using Lemma 2.1.1, we conclude that ﬁq(Curg, C,) is a trivial Vir—module.
Thus,

EP? =~ HP(Vir, C,) @ H(Curg, C,)
~ HP(Vir, C) ® HY(Curg, C) = H*(Vir x Curg, C,).

From Lemmas 5.2.2 and 5.2.4, we know that d?¢ = 0 for all p,q and r > 2. Hence,
Epa >~ EPY >~ Hr(Vir, C) ® H?(Curg, C). So we obtain

HP*1(Vir x Curg, C,) = (P H?(Vir,C) @ H(Curg, C).

p+q=n
From Theorem 5.2.1, we conclude that

H"(Vir x Curg, C,) = H"(g,C) ® A;H" (g, C).

]

Corollary 5.3.1 ([33], Theorem 1.1 (i)). For the standard semidirect product Vir x Curg,
dim H?(Vir x Curg, C,) = dim H(g, C) 4 dim H?~3(g, C)
where a # 0 and dim H*(g,C) = 0 for k < 0.

5.3.2 The Reduced Cohomology

Theorem 5.3.2 ([33], Theorem 1.1 (ii)). If a # 0, then dim HY(Vir x Curg,C,) = 0 for
all g > 0.

Proof. For a # 0, define an operator « : éq(Vir x Curg,C,) — éq_l(Vir x Curg, C,) as
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follows:

KV, Aq,l(ala e 7aq—1) = LA<L)’Y)\1 ,,,,, ,\q,l(al, S 7aq—1)’)\:07

for ay,...,a,-1 € Vir x Curg, where ¢ is the operator defined in (2.12). Note that
dC(Vir x Curg, C,) = (a + Y \;)C4(Vir x Curg, C,). Using (2.13) and (2.11), we

have

((dk + £d)Y)ay, g (a1, -y ag) = (dex(L) + ix(L)d)Y)ar 2, (@15 - - ag) =0
= (OA(L)Y)As... Ay (a1, ...,aq)|r=0

= L)\V)\l ,,,,, Aq (ala s ’aq)|>\:0
q (5.33)
- Z VAt At (@15 s [Daad], s ag) =0
i=1
q
== Prirng (@1, [Laai], - ag) =0
i=1

Now suppose that v is a g—cochain of Vir x Curg evaluated at k copies of L and g — k
elements of g, gkt1, ..., gy Since [Lya;] = (0 + 2)\)L when a; = L and [Lyg;| = (0 + \)g;

when a; = g; for some g; € g, then (5.33) can be rewritten as
((d"’i + /id)’y))\l ..... Ak >sAkf 1500 Aq (L7 ) L7 Gk+1,y - - - 7gq)

k
= (A= Medide e sedg (Ds - Ly Grsts - 99 Ia=o

+ ) Y OV VI VSIS W W Aq(L, cos Ly Grtts - -5 Gg) a=o

= (a—@)%\l ..... Al Ak Lseees )xq(Lw"aLagk—‘rl)"'vgq)
= =Yy, Mo ertseg (Lo - Ly Gyt -, gg)  mod OCY(Vir x Curg, C,).
(5.34)

Now assume that v is a reduced g—cocycle, i.e., v € éq(Vir x Curg,C,) such that
dvy € 85‘1“(\/11“ x Curg, C,). Then, there exists a (¢+ 1)—cochain ¢ such that dy = ¢ =
(a4 2 \)¢. Thus,

q
rdy = kO¢ = (a + Z \)ko € OC(Vir x Curg, C,).

i=1
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By (5.34), we have dky = —ay = v = d(a k), i.e., v is a reduced ¢g—coboundary.

Therefore, H?(Vir x Curg, C,) = 0 for all ¢ > 0.

5.4 Cohomology of Vir x Curg with Coeffic

]

lents in M, A ¢/

Recall that, (Theorem 2.5.1), every finite irreducible conformal module over Vir x Curg

is given by Ma v = C[0] ®c U, where U is a finite dimensional irreducible g-module, and

Lyu = (a+ 0+ A))u, g = g - u,

for A,a € C, uw e U and g € g. The g-module U is nontrivial if A =

0. In this section we

will compute the basic cohomology of Vir x Curg with coefficients in the module M, A 7

for some A, € C, and the reduced cohomology when « # 0.

5.4.1 The Basic Cohomology

The second term of the Hochschild-Serre spectral sequence associated

to the basic complex

of the semi direct product Vir x Curg with coefficients in Ma , ¢ is given by

L ﬁp(Vil”> ﬁq(Curg, Maav)) = ﬁp+q(\/ir x Curg,

MA,a,U)

for all p,q > 0. To describe the cohomology space ﬁp(\/ir, ﬁq(Curg, Mnaov)) we first

introduce the following lemma.

Lemma 5.4.1. Fory € C%(Curg, Ma o), we have

—i—Z(@—@M—)\—Z)\])%\l ,,,,, )\4’)\1'
i=1 j=1
J#i

75

,,,,, /\q(gla o Gq)-



q
(a 7)/\1 ,,,,, Aq (917 7gq) = (aM + Z Ai)7A1 ..... Aq (gh 79(])'

i=1

Then we can rewrite Aiyx,,.. A+xi..0q (915 - - -5 Gq) aS

Plugging this into (5.35) we obtain

(OANL)YV)Arong (9155 9¢) = (O + a+ ANV, 0, (91,5 9g)

+ Z(@ — Oy — A — Z A3 ) VA0 At A A (G1s - - -5 Gq)
i=1 j=1
J#i

Theorem 5.4.1. For the Virasoro conformal algebra,

1. dim H?(Vir, H/(Curg, My au)) =0 forp> 3.

2. dim ﬁp(Vir, ﬁq(Curg, Msau)) =0 forp#1,2.

3. dim ﬁp(Vir, ﬁq(Curg, M3, 2 00)) =0 for p>r wherer € Zy and r > 4.
4. dim H?(Vir, H(Cur g, Ma o)) = 0 if A # 3r —r2 for any r € Z..

Proof. As in the proof of Theorem 5.1.2, we first describe the basic cohomology complex
C*(Vir, H?(Curg, MAa ov)). For any n-cochain v € C™(Vir, H9(Curg, MAa ov)), then it is

determined by its value on L®":
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where P(Aq,...,\,) is a skew-symmetric polynomial in n variables with values in

ﬁq(Curg, MAa o). The differential is given by the following formula:

n+1

(AP)(Ar,- - Au) = D (=1 @+ a+ AN P Ay, Ang)

=1
n+1 n+l N

YO NP AN A Ae)
i=1 =1
n+1 N N

+ ) (=D = AP+ A A A A Au).
ij=1
1<j

Following [2], consider the homotopy operator

K 51"(\/'ir7 ﬁq(Curg, Maov)) — 6’7”1(\/11", ﬁq(Curg, Maov))

0
K., Ap—l(L7 ceey L) = a_)\LA(L),YAl ~~~~~ Ap—1 <L’ T ’L)|)‘:0'
Then we have
(Hd + d5)7A1 ..... Ap (L7 . ) L)
8 p
= a([z,\’y/\l 77777 Ap(L, ,L)|,\:0 _Z'Y)q ..... Ai A, )\p<L7"'7[L)\L]7"'L)|>\:0)
=1
0
= 5((8+OK+A)\>7/\1 ..... )\p(La 7L)|/\—0
p p
+ ) (0= 0 = A=Y A Vwrirn (L5 L)azo
i=1 j=1
i
p
+ Z<)\l )\)’7)\1 ..... iAo A (L> 7L)‘)\:D)
=1

= (2(degy v — p) + A)vay,n (L, oo, L),

where deg, 7y is the total degree of v in Ay,..., A,. Thus, a p—cocycle v contributes to the
cohomology of ép(Vir, ﬁq(Curg, Ma ov)) if its degree as a polynomial is equal to (2p —
A)/2. These polynomials are skew symmetric, hence divisible by A, = II,<;(\; — A;), whose
polynomial degree is p(p—1)/2. Consider the quadratic inequality p(p—1)/2 < (2p—A)/2.
Then we have p € [(3 — /9 — 4A)/2, (3 4+ V9 — 4A)/2]. A straightforward computation
shows that A = 3r — 12 for any r € Z, , otherwise H?(Vir, H?(Curg, Mna o)) = {0}. Thus,
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the only integral solutions for the inequality p(p — 1)/2 < (2p — A)/2 are the following

0,1,2,3 if A=0,
p=141,2 it A =2
0,1,...,r if A= (3r—1?),

where r € Z, such that r # 0,1, 2, 3. It follows that
i. HP(Vir, H4(Curg, Moop)) = {0} V p>3.
ii. HP(Vir, H1(Curg, Myop)) = {0} V p#1,2.
iii. HP(Vir, H(Curg, Ms,_2.00)) = {0} ¥ p>r reZ, andr >4,
iv. HP(Vir, H1(Curg, Maop)) = {0} if A # 3r —r2 for any r € Z,.
O

As shown in Proposition 2.7.1, we obtain the following long exact sequence of coho-

mology groups:
0 — HO(OC*) —2 HO(Vir, N) —2~ H(Vir, N) —=—
—— HYOC*) —— H'(Vir, N) —=— H'(Vir, N) —2— (5.36)
—— H2(0C*) —2— H%(Vir, N) —2 H2(Vir, N) —2
where N = H? (Curg, Ma o), and ¢; and m; are the homomorphisms induced by the

embedding dC* <% C* and the canonical projection 7 : c*— C* / 85', respectively, and

w; is the 1—th connecting homomorphism. Then, we have the following theorem.

Theorem 5.4.2. For the Virasoro conformal algebra Vir,

dim H? (Vir, ﬁq(Cur 9, Mp o u)) = dim ﬁp(Vir, ﬁq(CUFQ; Mn o))
+ dim HP*! (Vir, ﬁq(Curg, Maov))

for all p > 0.

Proof. Let 8~ € HP(C*), for a nonzero v € H?(Vir, H?(Curg, Mp o,v)) then 1,([07]) =
[07] € HP(Vir,H4(Curg, Ma oy )). Using Theorem 5.4.1, &y can be identified with a
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skew symmetric polynomial of degree (2p — A)/2 for all p > 0. On the other hand, by
definition, we have deg, 0y = deg,v+ 1 = (2p — A)/2 + 1. Thus, 0y = 0, and the
image of ¢, is zero for all p > 0. By the exactness of (5.36), im ¢, = kerm, = 0 and
im w, = ker iy = HP+HL(HC*) = HPH(Vir, ﬁq(Curg,MA7a7U)) for all p > 0. Therefore,

we get the following short exact sequence

0 — HP(Vir, H(Curg, Ma o)) —H?(Vir, H(Cur g, Ma o)) —
— ﬁp+1(Vir,ﬁq(Curg, Maou)) — 0

which implies that for all p > 0,

dim HP(Vir, H*(Curg, M o)) = dim H?(Vir, H(Curg, Ma o.v))
+ dim P! (Vir, ﬁq(Curg, Maov)).

O
Theorem 5.4.3. If a # 0, then ﬁ'(Vir x Curg, Manp) =0.
Now we introduce the following lemma, which is essential to prove Theorem 5.4.3.
Lemma 5.4.2. H?(Vir, H?(Curg, Mpov)) =0 for allp >0 and o # 0.
Proof. Define the homotopy operator
k : CP(Vir, ﬁq(Curg, Ma ov)) — CP71(Vir, ﬁq(Curg, Maov))
KV p1 (Ls ooy L) = ix(L)Yag,n,—1 (Ly - o, L) [a=o-
Then we have,
((dk + Kd)Y)r,on, (Ly ..., L)
= (O\(L)Y)ar,np (L - o, L) |a=0
p
= (O +a+ AN, ,\p(L, ooy L) azo + Z AiYA e AN /\p(L, ooy L) =0
=0

— Z()\ — )\i)'y/h ..... A iy )\p(L7 s 7L)|)\:0
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= (Om +a+2(0 = 0m)) W, (Ls -, L)
= (@ = ), (Ly .., L) mod dCP(Vir, HY(Curg, Ma o). (5.37)

Assume that 7 is a reduced p—cocycle, then v € CP(Vir, H?(Curg, Mn o)) such that
dy € dCPT(Vir, H4(Curg, Maap)), i-e., there exists a (p + 1)—cochain ¢ such that
dy=0¢ = (Om + Y0, N\i)$. Hence,

p
kdy = kda = (O + Y M)k € OCP(Vir, H(Curg, Ma av))-

=1

Now from (5.37), for a # 0, we have dky = (o — )y = v = d((a — Oy) 1K), ie.,
is a reduced p—coboundary. Therefore, HP(Vir, ﬁq(Curg, Ma ov)) =0 for all ¢ > 0 and
a# 0. O

Proof of Theorem 5.4.3.

Proof. Using Theorem 5.4.2 and Lemma 5.4.2, we have

0 = dim H? (Vir, ﬁq(Curg, Ma op)) = dim ﬁp(\/ir, ﬁq(Curg, Mnaov))
+ dim ﬁp“(\/’ir, ﬁq(Curg, Maouv))

which implies that H?(Vir, H?(Curg, Ma o)) = {0} for all p. Hence, E2¢ = {0} for all
p,q, and then d?? = 0 for all p,q and r > 2. Therefore, the Hochschild-Serre spectral
sequence collapses at the second page and we obtain HP (Vir x Curg, Ma o) = 0 for all
p>0and a # 0. O

Theorem 5.4.4. For the semidirect product Lie conformal algebra Vir x Curg,
dim ﬁq(\/ir x Curg, Moo ) = dim ﬁq_Q(Curg, My o) + dim ﬁq_?’(Curg, Moou)
for all ¢ > 0. In particular,
ﬁ"(\/ir x Curg, Myou) = P2ﬁ"_2(Curg, Moou) ® Agﬁ"_?’(Curg, Moyou),

where Pg = )\% — )\% and A3 = ()\1 — )\2)()\1 — )\3)()\2 — )\3)
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Proof. The second term of the Hochschild-Serre spectral sequence associated to the basic

complex of Vir x Curg with coefficients in My ¢ is given by
qu = ﬁp(\/ir, ﬁq(Curg, MO,O,U)) = ﬁp+q(Vir X Curg, M(LO,U)

for all p,g > 0. From Theorem 5.4.1, we have dim ﬁp(\/ir, ﬁq(Curg, My o)) = 0 for all
p > 3 and only p—cochains that is identified with skew symmetric polynomials of degree
p contribute to the cohomology of 5P(Vir, ﬁq(Curg, My o,v)) where p=10,1,2 and 3.

For p = 0, and for any nonzero v € C°(Vir, H*(Curg, Mooy)) = H%(Curg, Myou)
such that dy = 0 we have

0= d%ﬂ ,,,,, #q(gh R >gq) = L/Wm ~~~~~ uq<glv <o 7gq>

i—1
Set v = > gai(pu, ..., pg)0" such that a, (1, ..., pe) # 0. Letting A = 0 in (5.38) yields

n

q n
0= d’Y,ul ..... #q(gh cee ng) - aM(Zai(/'Lh s 7:“(1)81) + Zﬂz(za’l(ﬂla s 7/“Lq)al)
=1 0

=0 = =
n

q
= (Om + Z/M,) Z ai(ps - - -, fig)0"
i=1 i=0

= a(zai(ﬂb e ,Mq)ai)-

1=0

It follows that a;(Aq, ..., A,) = 0 for all 7, i.e., v = 0, a contradiction. Thus, any 0—cocycle
~v must be zero and so we get HO(Vir, H¢(Curg, Moov)) = {0}.

For p = 1, let v € C*(Vir, H4(Curg, My )) such that dy = 0, then X which is the
only polynomial of degree 1 in one variable. Letting v,(L) = 4'A where 7/ is a nonzero

g—cocycle in ﬁq(Curg, My 0,v), we have

dya . (L, L)
= O Vao (L) + A2 (L) = Onvas (L) — Mivagne (L) — (A = A2) a4 (L)
= (0= A2)(YA2) + 7 A2 (A1 + A2) = (9 = M) (VM) — 7' Ar(A + Ao
— ' (A1 = Xa) (AL + o)
=7 (A2 — A1) (0 + A1 + o).
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i.c., dvz(L) = 0 implies that v,(L) = 0. Hence, H(Vir, H¢(Curg, Moov)) = {0}.
If p = 2, then the only skew symmetric homogeneous polynomial of degree 2 in two

variables is A7 — \3. Here we have

A dons (Ly Ly L)
= O Vaons (Ly L) 4 Ao saons (L L) + AsVagni4as (Ls L) — Onryag as (L, L)
— A aehs (L L) = As¥ag aoas (L L) + Onrvag xo (Ly L) + Aiyag 4asne (L, L)
+ Ao o025 (Ls L) = (A = A2)Waaa s (L L) + (A1 = A3) a0 (L, L)
— (A2 = A3)Matrsn (L: L)
= (A3 = A3) + Aa((M + A2)? = A3) + A3(A3 — (M1 + A3)?) — O (A — A)
— M1+ 22)2 =A%) — A3(AF — M2+ A3)%) + (AT = A3) + M((A1 + A3)2 = A3)
F A (A] = (A2 4+ 23)%) = (A = Xa) (A1 +A2)” = A9) + (A = A3) (M1 4+ A3)” = A3)
— (A2 = 23) (M2 4+ A3)? =A%) = 0.

It follows that A2 — A2 is 2—cocycle. Now let ¢ € C(Vir, H?(Curg, Myoy)) such that
dé = A¥ — )2 then we have

AT = A3 = déx, 2, (L, L)
= OmPay (L) + Xaday 12, (L) = Onror, (L) — Ay 10, (L) — (A1 — A2) x40, (L)
= (0 = X2)0x (L) + Ao 42, (L) = (9 = A1)da (L) — Mgy, (L)
— = )b (D). (5.38)

Since ¢ is a 1—cochain that it is identified with a polynomial in one variable A, then
we can rewrite ¢(L) = Af()) for some nonzero polynomial f(\) € H?(Curg, Moov).
Plugging this into (5.38) gives

AT =A% = (0= A)Aaf(N2) + Aa( A1 4 X2) fF(A1 4+ X2) — (0 — M) ALf (A1)
O£ ) FO A Ae) — (A — )Mt 4 Aa) F O + Aa) (5.39)
= (0 = A)A2f(A2) = (O = M)A f (A1) +2(A2 — A) (AL + Ag) f( A+ A2).

Letting A2 = 0 in (5.39) implies A3 = —(9 + M)A f(A1). Set f(A1) = Y1 ai(M\)0" such
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that a, (A1) # 0. Assume that n > 1, then we have

n

A= =0+ MM (D) ai(M)d). (5.40)

1=0

Equating the coefficients of 9" we get a,(\;) = 0, a contradiction. Then f()\;) =
ao(A1) + ai(A1)0. Plugging this into (5.40) we get

)\% = —(8 + )\1))\1 (ao()\l) + CL1()\1)8).

Equating similar terms of both sides yields a;(A;) = ag(A1) = 0, hence f(A\;) = 0.
That implies ¢ = 0, a contradiction. Hence, A? — A2 represents a nontrivial class in the
cohomology, and we have H2(Vir, H4(Curg, Mo o)) = (A2 — A2)H?(Curg, Moo ).

For p = 3, the only skew symmetric homogeneous polynomial of degree 3 in three

variables is A3"*? = (A\; — X\2) (A1 — A3)(A2 — Ag), and it is a 3—cocycle because

dYa xoxsna(Ly Ly Ly L)
= O Vronsna (Ly Ly L) 4 Aa¥ag 4 a0ns.0a (L Ly L) + Asvag n a0 (Ls Ly L)
+ M Vaaas i (L Ly L) = Onrvag agona (L Ly L) — My 4o xsna (Ds Ly L)
= A e s (L Ly L) = Aavag as ot (L Ly L) + Onryag pona (L Ly L)
+ Mg as a2 (L Ly L) + Xovag aaeas v (Ls Ly L) + Aavag g xsaq (L Ly L)
— OV ns (L Ly L) — Mivagixadens (s Ly L) — Aoy o eaans (Ls Ly L)
— A3% e s xa (L Ly L) — (A1 — A2)Ya 4200504 (Ly L, L)
+ (A1 = A3)aasdena (D Ly L) — (Ar = Aa)as 4 xunens (L, Ly L)
— (A2 = A3) Mo rsnn (Ls Ly L) 4+ (A2 — Ad) Vot (L, L, L)
— (A3 = A)Matrann (L, L, L)
O AN AN Ly AN |y e A A
O AN 3 ANy AN AR Ay A A A
O AN\ AN |y AN ALy AN s
Y B W P e CE VR W P AR EEe PR W PR PR
~ O = M)A L (A AN (g AN e
— (g = M)A L (AN (N g
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where AA AR — () — AN — Ae) (A — Ag) for 4,5,k € {1,2,3,4}. Now suppose that
there exists a 2—cochain ¢ such that d¢ = Ag‘l”\Q’A:”. Then we have

(A1=A2) (A1 = A3) (A2 — Az) = dopa, aons (L, Ly L)
= O Do (Ly L) + Xa0x 40005 (Ly L) + A3Pag x40 (L L) — Onrdag e (L L)
= MOx 12008 (L5 L) = A30x; aatas (Ls L) + Onrdag ao (L L) + Xy 1ag no (L, L)
+ A2Pxay aotas (L L) = (A1 = A2) Py taans (L L) + (A1 = Az)dag x50, (L, L)
— (A2 = A3)Prgas5.0 (L L)
= (0 = A2 = A3)Pay 05 (L, L) + Aa@n; 4205 (L L) + A3@rg a5 (L L)
— (0 = A1 = A3)Day s (Ly L) — M1y 1ao s (Ly L) — A3day nons (L, L)
+ (0 = A1 = A2)da; ao (Ly L) + A1y 1agno (L L) + A2y pgins (L, L)
— (A1 = A2) a0 0 (L L) 4+ (A1 = A3) Dy 4n0,00 (L, L)
— (A2 — A3)Pagiasn (L, L). (5.41)

Since ¢y, (L, L) is a skew symmetric polynomial then it can be written as (A — ) f(A, p)
for some symmetric polynomial f(), ) € H?(Curg, Mo o,0)[A, pt]. Plugging this into (5.41)
yields

(A1 = A2) (A1 — A3) (A2 — A3)
= (0 — A2 — A3) (A2 — A3) f( A2, Az) + Aa( A1 4+ Ao — A3) f (A1 + A2, A3)
+ A3(Aa — A = A3) f( Ao, A+ A3) — (O — A — A3) (A1 — A3) f( A1, Ag)
— A (A1F A2 = A3) f(A1 + A2, A3) — As(A1 — Ao — A3) f( A1, Ao + Ag)
+ (0= A = X)) (A = X2) F( A1, A2) + A (A1 + Ag — o) f( A+ A3, Ag)
+ A2 (A1 = A = A3) f( A1, A2 + A3) — (A1 — A2) (A1 + A2 — Az) f (A1 + Ao, Az)
+ (A= A3) A1+ A3 = A2) f( A+ A3, de) — (Ao — A3) (Ao + Ag — A1) f( A + Az, Ap)
= (0 — A2 — A3) (A2 = A3) f( A2, Az) — (O — At — A3) (A1 — A3) f(A1, As)
+ (0 — A — X)) (A1 — A2) F( A1, Aa) — 2(A1 — Ao) (A + Ao — A3) f( A + Aay As)
)

+ 201 — A3) (A1 4+ A — ) O+ Az, ha) — 2000 — A3) (Ao + Az — M) F(ha =+ A, Ap).
(5.42)

84



Letting A3 = 0 in (5.42), we obtain

MAz(A1 = A2) = A (04 M) F(A, A2) — (0 — M) f(A1) — 2A1 f (A1 + A)),

(5.43)
+ X2 ((8 = X2) f(A2) = (84 X2) F(A1, A2) + 22X f (A1 + X2)).
Equating similar terms of both sides, we have
Aa(A = A2) = (04 A1) f (A, A2) = (9 — M) f(A1) = 2A1 f (A1 + Ao)
A(M ) (0 = A2) f(A2) = (O + A2) [ (A1, A2) + 2Xa f (A1 + A2) (5.44)
= A= A3 = (0= 2)f0) = (0= M)F() = 200 = 22)f (A + da) |

+ (A1 = A2) f(A1; M)

Letting A» = 0 in the last equation of (5.44) gives A} = 9(f(0) — f(\1)). Observe that
the left hand side does not depend on 0, so we have f(0) — f(A;) = 0. Plugging this into
the first equation of (5.44) we get

Ao(A1 = A2) = (9 + A1) (A1, Az) — (9 — A1) f(0) — 22X £(0)

(5.45)
= (0+ M) (f(A1, A2) — £(0)).

Set f(A) = Y7, a;(N)9" such that a,(A\) # 0, and f(\, ) = > 1 a;(\, u)9" such that
a;(\, ) # 0. Plugging this into (5.45) and comparing the coefficients of similar terms
we get a;(A1, A2) = ;(0) for all i. Hence, f(\, ) = > i, a;(0)9". Using this in (5.42)
yields A3 = 0, a contradiction. It follow that Aj is not a 3—coboundary and thus we have
H3(Vir, HY(Curg, Mo oy)) = AsH(Curg, Moop).

Therefore, the second term of the Hochschild-Serre spectral sequence is given by

Pgﬁq(Curg, MO,O,U) lf P = 2
Eg’q - Agﬁq(Curg, MO,O,U) if P = 3

0 otherwise,

where P2 = /\% — )\% and A3 = ()\1 — /\2)(/\1 — )\3)()\2 — )\3) Then the corner of the E2
page for the Hochschild-Serre spectral sequence associated to 6"(\/11‘ x Curg, Moyou) is

shown in the following figure.
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5 0 0 PoNg o AsNG,

/

4 0 0 PoNg o AsNg

i

3 0 0 P 00 U AS
2 0 0 PQN&O U A3N

i

1 0 0 PyNgou AsNgg,

o

0 0 0 Py N OOU A3N, OOU

0 1 2 3

Figure 5.3: E}“-page for (C*(Vir x Curg, Mo ov), F*.d).

Here Nj, ; = H%(Curg, Moy 0.v)- Since the differential d?? with r > 2 shifts r points to
the right and ¢ — r + 1 points down, we conclude that d?? = 0 for all p,q > 0 and r > 2.

It follows that the Hochschild-Serre spectral sequence collapses at the second page, i.e.,
EP1 >~ EP? for all p,q > 0. Therefore,

ﬁn(VII' X Curg, MO,O,U) = @ ﬁp(ViI', ﬁq(Curg, MO,O,U))
ptg=n
>~ H(Vir, H"2(Curg, Moov)) & H3(Vir, H*3(Curg, Mo o.v))
= Pgﬁn_2(Curg, MO,O,U) b Agﬁ”_?’(Curg, MO,O,U)

for all n. > 2 and H*(Vir x Curg, Magy) = {0} for n < 1.

Theorem 5.4.5. For the semidirect product Lie conformal algebra Vir x Curg,
dim HY(Vir x Curg, My y) = dim H™' (Curg, My p) + dim H2(Curg, M p)
for all ¢ > 0. In particular,

ﬁq(Vir x Curg, Mag ) = ﬁq_l(Curg, Myou) ® (M — )\Q)ﬁq_Q(Curg, Msou).
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Proof. As mentioned previously in this section, we have
B9 = HP(Vir, HY(Cur g, M) = HP*(Vir x Curg, M)

for all p, ¢ > 0. We begin our proof by computing the cohomology ﬁp(\/ir, ﬁq(Curg, Msou)).
Using Theorem 5.4.1, we know that dim ﬁp(\/ir, ﬁq(Curg, M) = 0 unless p = 1, 2.
Moreover, only skew symmetric polynomials of degree p — 1 contribute to the cohomology
of CP(Vir, HY(Curg, Msou)).

For p = 1, then any 1—cocycle is a polynomial of degree zero, i.e., an element of
H(Curg, Mooy ). Now, let v € C(Vir, HY(Curg, Mo )) such that vy, (L) = ¢ for some
nonzero ¢ € ﬁq(Curg, Ms0.7). Then v is a 1—cocycle because

A e (Ly L) = (Om + 2M) 75 (L) + A2Vai40, (L) — (Onr + 2A2) 7, (L)
= M (L) = (A = A2) a0, (L)
= (Onr + 22) 1 (L) — (Onr + 2X2) 0 (L) — 2(A1 = A2) a0 (L)
= (O 4+ 2M) P — (Opr +2X9) — 2(A1 — Ag)p = 0.

(5.46)

Now suppose that there exists a O—cochain ' € CO(Vir, H?(Curg, M) such that
dyi(L) = Lyxy' = ~ for each v € C*(Vir, ﬁq(Curg7M2,07U)), a representative of a
1—cocycle in H(Vir, H4(Curg, Ms ). Since degy(dy') = 1, and deg,(y) = 0, then v
represents a nontrivial class in the cohomology and we have H!(Vir, H¢(Curg, Msov)) =
ﬁq(cur% Mao0r)-

For p = 2, the only skew symmetric homogeneous polynomial of degree 1 in two

variable is A\ — A9, which is a 2—cocycle.

dYa ens(Ls Ly L)
= (On + 2201) Va0 ns (L, L) + Aovas 420,05 (Ls L) 4+ A3yaga 125 (L, L)
— (Om + 202) a0 20 (L L) = Miagaone (L L) — As¥ag potre (L L)
+ (Onr + 223) Va0 00 (L L) + AMvageas,00 (L L) + A2V pos (L5 L)
— (M1 = A2 120,05 (L5 L) 4+ (A1 = A3)uas 00 (Ls L) — (A2 — A3)Vapaa i (L5 L)
= (Om +2M) (A2 — A3) + A2(A1 + A2 — A3) + A3(Aa — A — A3)
— (O +2X2) (A — A3) = A (A + Ao — A3) — A3(A1 — Ao — A3)
+ (Om + 223) (A1 — A2) + A A1+ A3 — Aa) + XA — Ao — A3)
— (A =AM+ A= A3) + (A = A3)( A1+ A3 =) — (A — A3)( Ao+ A3 — Ay) =0.
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Observe that A; — Ay represents a nontrivial cohomology class because if there exists

¢ € C'(Vir, HY(Curg, Myy)) such that dey, x, (L, L) = Ay — Ay, then we have

A1 — Ao =doy, 2, (L, L)
= (Om + 2M1) 90, (L) + Xadry 12, (L) — (Oar + 2X2) 9, (L)
=MD an (L) — (A1 — A2)da, 0, (L) (5.47)
= (0= A+ 2M)Px, (L) — (9 — M+ 2X9) ¢, (L)
— 2(M — A2)dx, a0 (L)

Since ¢ (L) is a 1—cochain that is identified with a polynomial in one variable A, then it
can be written as ¢)(L) = Af()\) for a nonzero polynomial f()\) € H%(Curg, Ms o)A
Then (5.47) becomes

A= A2 = (0 — A2 +2M1) (M2 f(A2)) — (O — A1+ 2X2) (A1 f (A1)

(5.48)
—2(A7 = A5)f (A1 + Aa).

Set f(A) = D1, a;(A\)9" such that a,(A\) # 0. Plugging this into (5.48) with Ay = 0 we

obtain
n

M= =00+ XD () = =0 +A) Y ai(M)a'. (5.49)

i=0
Since the left hand side of (5.49) does not depends on 0, then all the coefficients of nonzero

powers of 0 are zero. So we have,

an()\l))\lanﬂ = 0, — CLO(>\1))\% = )\1,
(ai+1(>\1))\% + ai(Al))\l)ﬁiH =0 WYz Z 0.

It follows that a;(A;) = 0 for all i. Thus, ¢ (L) = 0, a contradiction. Therefore,
ﬁz(Vir, ﬁq(Curg, Mow)) = (M — )\Q)ﬁq(cur& Maou).
Then the corner of the Fy page for the Hochschild-Serre spectral sequence associated

to C*(Vir x Curg, Mo ) is shown in the following figure.
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Figure 5.4: E“-page for (C*(Vir x Curg, Ms o), F*.d).

Since the differential d?? with r > 2 shifts r points to the right and 1 —r points down,
then from Figure 5.4 we conclude that d?¢ = 0 for all p,q > 0 and r > 2. It follows that
the Hochschild-Serre spectral sequence collapses at the second page, i.e., E24 = EP? for

all p,q > 0. Therefore,

H"(Vir x Curg, My ) = @ HP (Vir, HY(Cur g, May,17))

p+a=n
> H(Vir, B} (Cur g, Ma,r)) ® H2(Vir, H"~*(Cur g, Mao,r))
=~ H Y (Curg, Mygy) @ AyH 2(Curg, Moo p),

for all n > 1 and ﬁ"(Vir x Curg, Mso ) = {0} for n <0.
]

Lemma 5.4.3. Let E* be the Hochschild-Serre spectral sequence associated to the basic
complez of Vir x Curg with coefficients in the module My where A = 3r — r? for
r € Zy andr > 4. Then we have

1. dim HP(Vir, HY(Curg, Maop)) = 0 for p=0,1.
2. EYT = ﬁp(\/ir, ﬁq(Curg, Mnaow)) forall2 <p<r and q> 0, and E5? =0 otherwise.

3. If dimHY(Curg, Maoy) = 0 for all ¢ > s then E29 = EP9 where n = min(r+1, s +2).

) P9 — P,q
Otherwise, E21 = B},
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Proof. 1. From Theorem 5.4.1, only homogeneous skew symmetric polynomial of degree
(2p — A)/2 contribute to the cohomology of CP(Vir, H(Curg, Maoy)). For p = 0, let
v € CO(Vir, HY(Curg, Ma /) be a 0—cocycle. Then v can be identified with a nonzero
g—cochain v € ﬁq(Curg, Mapv) and dy = Lyy" = 0. Then we have

Mq(glﬁ s agq) = (aM + AA)7L1 ----- Mq(gl’ T ’gq)

-----

0= (Do + > 1)V (91 -2 90) = V(915 90).

It follows that HY(Curg, Ma oy ) is a trivial Vir—module (Lemma 2.1.1), contradiction.
Then + must be zero thus H(Vir, H/(Curg, Maouv)) = {0}.

Ifp=1,let y € C! (Vir, ﬁq(Curg, Mapu)) be a 1—cocycle. Then « is a polynomial
of degree n = (2 — A)/2 in one variable, so we can write (L) = Af(A) for nonzero
polynomial f(\) € HY(Curg, Maoy)[A]. By the definition of the differential we have

dya (L, L)
= (O + AM) (L) + Aoa4x0 (L) = (O + Ad2) 1 (L) — Mivagas (L)
= (A1 = A2) a0 (L)
= (0= X2+ A A f(A2) + 2X2(A1 + A2) f(A1 + A2) — (0 — A1+ Adg) A f (M)
=220 (A1 + A2) f(A1 + Ag).

Letting Ay = 0 yields (OA; + A2) f(A1) =0, so f(\;) = 0, a contradiction. Then, v must
be zero and so we have H!(Vir, H4(Curg, Mao0)).

2. Follows directly from Theorem 5.4.1 and part (1).

3. If dim H(Curg, Mn o) =0 for all ¢ > s, then by Lemma 3.1.1 and part (2), the
Hochschild-Serre spectral sequence collapses at the n'-page where n = min(r + 1, s + 2).
Otherwise, by part (2), E5? =0 for all p > r+ 1 and thus E?? = 0 for all p > r+ 1. Since
the differential d,. shifts r points to the right and 1 —r points down. Then d,; = 0 for all
r > 4. Hence, the Hochschild-Serre spectral sequence collapses at the (r + 1)""—page. [

Theorem 5.4.6. If A = 3r —r? such that r € Z, and r > 4 then
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1. dim H™(Vir x Curg, Maoy) =0 forn=0,1.
2. dim H2(Vir x Curg, Maop) = dim H2(Vir, Mg}gf}) .

Proof. Let A = 3r —r2 for 7 € Z, and r > 4. From Example, 3.3.1, we have H® = E00 =
ES’O. By Lemma 5.4.3, ES’O = 0. Thus, dim ﬁO(Vir x Curg, Maop) =0. For n =1,2, the

seven-term exact sequence (3.3) looks as follows:

0o— ﬁl(Vir, ﬁO(Curg, Maouv)) — ﬁl(\/ir x Curg, Maop) —
— HO(Vir, H'(Curg, Ma o)) — H2(Vir, H(Curg, Ma ) —
— ker(ﬁ2(Vir x Curg, Maou) — ﬁO(Vir, ﬁ2(Curg, Maov))) —
— H'(Vir, H (Curg, Maop)) — H?(Vir, H(Curg, M o0)).

(5.50)

From Lemma 5.4.3, ﬁp(Vir, ﬁq(Curg, Mp o)) =0 for p=0 and 1, then the long exact

sequence (5.50) can be rewritten as

0— ﬁl(Vir x Curg, Maopy) — 0 — ﬁQ(Vir, ﬁO(Curg, Maov)) —

— ker(H?(Vir x Curg, Ma o) — 0) — 0.
Therefore,

H' (Vir x Curg, Maop) = {0},
H?(Vir x Curg, Ma o) = H2(Vir, H(Curg, Maov)) = H2(Vir, ng;;g,).

5.4.2 The Reduced Cohomology

According to [33], H*(Vir x Curg, Ma ov) = 0if a # 0. In this section we will give another
proof for this result using Theorem 5.4.3 and show that the zeroth reduced cohomology
of Vir x Curg with coefficients in Ma o vanishes for all A,a € C and A # 2.

Theorem 5.4.7 ([33], Theorem 1.1 (iii)). H*(Vir x Curg, Ma o) =0 if o # 0.

Proof. Using Theorem 5.4.3, the long exact sequence of cohomology groups associated

with (2.10) for the semi direct product Lie conformal algebra Vir x Cur g with coefficients
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in the irreducible module Ma , 7 where o # 0 is given by

0 HO(@CV'O) — () — H0<VII' X Curg,MA,a,U) -

. 0 v 0 » HY (Vir x Curg, MA 0 ) —
s 0 > 0 » H(Vir x Curg, Ma 0 ) ——
Hence, HY(Vir x Curg, Ma ov) = {0} for all ¢ > 0. =

Theorem 5.4.8. H(Vir x Curg, Ma o) = {0} for all A € C and A # 2.

Proof. The long exact sequence of cohomology groups associated with (2.10) for the
semidirect product Lie conformal algebra Vir x Curg with coefficients in the irreducible

module Ma o7 looks as follows

0 —>H0(66') — ﬁO(Vir x Curg, Maoy) — H°(Vir x Curg, Mapu) —
—H'(8C*) — H'(Vir x Curg, Ma o) — H (Vir x Curg, Maoy) — (5.51)
—>H2(85') — ﬁQ(Vir x Curg, Maop) — H?(Vir x Curg, Magy) — -

From Theorem 5.4.4 and Theorem 5.4.6, dim ﬁ”(Vir x Curg, Maop) =0forn=0,1and
A # 2. Plugging this into (5.51) we get dim H(Vir x Curg, Maop) = 0 for all A € C
and A # 2. m

Remark 5.4.1. Since H?(Vir, My ap) = 0 for a # 0, we conclude that there exist no
nontrivial C[0]-split extension of Vir x Curg by M, av.
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