
ABSTRACT

ALOUDAH, NOUFE. Hochschild-Serre Spectral Sequence for Lie Conformal Algebras.
(Under the direction of Bojko Bakalov).

Lie conformal algebras, originally introduced by Kac, encode an axiomatic description
of the operator product expansion of chiral fields in conformal field theory. In particular,
Lie conformal algebras provide a powerful tool for studying the infinite-dimensional Lie
algebras and associative algebras satisfying the locality property. The most important
examples of Lie conformal algebra include the Virasoro algebra Vir, the current algebra
Curg, and their semidirect product Vir n Curg.

In this thesis, we construct the Hochschild–Serre spectral sequence for Lie conformal
algebras. This construction follows a similar approach to the original work done by G.
Hochschild and J-P. Serre for the case of Lie algebras. In addition, we describe the
inflation-restriction exact sequence, a special case of the five-term exact sequence. As
an application of this construction, we provide a different approach for calculating the
cohomology of the semidirect product Vir n Curg with trivial coefficients. In addition,
we offer explicit computations for the basic cohomology of Vir and Vir n Curg with
coefficients in their finite conformal modules M∆,α and M∆,α,U , respectively.
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Chapter 1

Introduction

Conformal algebra is an axiomatic description of the operator product expansion of chiral
fields in conformal field theory. It appears naturally in the context of formal distribution
Lie algebras. Likewise, conformal modules over conformal algebras appear naturally in
the context of conformal modules over formal distribution Lie algebras [21]. Conformal
algebras were first introduced by Victor G. Kac in 1996 [20]. Moreover, conformal algebras
correspond to vertex algebras in the same way as Lie algebras correspond to their
associative enveloping algebras [20]. In a more general term, conformal algebras are
defined as Lie algebras in a particular pseudotensor category [1].

In particular, a Lie conformal algebra is a C[∂]-module A endowed with a bilinear
product, called a λ-bracket, [·λ·] : A⊗A → A[λ] = C[λ]⊗A, that satisfies the following
properties

i Conformal sesquilinearity: [∂aλb] = −λ[aλb], [aλ∂b] = (∂ + λ)[aλb],

ii Skew-symmetry: [aλb] = −[b−λ−∂a],

iii Jacobi identity: [aλ[bµc]] = [[aλb]λ+µc] + [bµ[aλc]],

for a, b, c ∈ A. It is, to some extent, a generalization of a Lie algebra and an adequate
tool for the study of infinite dimensional Lie algebras satisfying the locality property [19].
Some basic examples of Lie conformal algebras are (1) the Virasoro conformal algebra
Vir, a rank 1 free C[∂]−module generated by an element L, with a λ−bracket defined by
[LλL] = (∂ + 2λ)L, (2) the current conformal algebra associated to a finite dimensional
Lie algebra g, which is defined by Curg = C[∂]⊗ g with the λ−bracket [gλh] = [g, h] for
g, h ∈ g.
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Over the last few years, the structure theory [8], conformal module and their extensions
[5, 6], and general cohomology theory [2] of finite (i.e., finitely generated as a C[∂]−module)
Lie conformal algebras have been well developed. The Lie conformal algebras of rank 1

and rank 2 were classified in [8, 3], respectively. Simple/semisimple Lie conformal algebras
have been intensively investigated. The classification of finite simple and semisimple Lie
conformal algebras was completed in [8]. It shows that a finite semisimple Lie conformal
algebra is isomorphic to a direct sum of Lie conformal algebras of the following types: the
Virasoro conformal algebra Vir, the current conformal algebra Curg associated with a
simple finite dimensional Lie algebra g, or the semidirect product of Vir and Curg.

The construction of finite nonsimple Lie conformal algebras and their structures, includ-
ing central extensions, conformal derivations, and conformal modules, were also studied
afterward. This includes the Schrödinger-Virasoro type and the extended Schrödinger-
Virasoro type Lie confformal algebras [26], and the Lie conformal algebra W(a, b) [17],
which are related to the Virasoro algebra. In addition, several infinite dimensional Lie
conformal algebras have been developed recently such as the infinite rank Schrödinger-
Virasoro type Lie conformal algebras [11], the Loop Heisenberg-Virasoro Lie conformal
algebra [10], and the Lie conformal algebra of Block type [35].

The cohomology theory of conformal algebras with coefficients in an arbitrary module
was developed in [2]. It describes extensions and deformations and explicitly computes
cohomology of the first two types of the semisimple Lie conformal algebra. The study of
the cohomology of semisimple Lie conformal algebra of the third type was done in [33].
The low dimensional cohomologies of the infinite rank general Lie conformal algebras
gcN with trivial coefficients were computed in [25]. The cohomologies of special cases of
nonsimple Lie conformal algebra of type W(a, b) were studied in [30, 31].

Inspired by the main computational tools of Lie algebra cohomology, we construct
the Hochschild-Serre spectral sequence for Lie conformal algebras. The notion of spectral
sequences generally appears in homological algebra, algebraic topology, and algebraic
geometry. The French mathematician Jean Leray first invented it in 1964 to compute
sheaf cohomology. Henceforth, they have become powerful tools to compute the homology
and cohomology of complicated spaces. In addition to the Leray spectral sequence, some
well-known spectral sequences are the Serre spectral sequence of a fibration, Lyndon-
Hochschild-Serre spectral sequence in group cohomology, and Adams spectral sequence in
stable homotopy theory.

Cohomological spectral sequence is a collection of C[∂]−module {Ep,q
r } for all r ≥ 0,

together with maps dp,qr : Ep,q
r −→ Ep+r,q−r+1

r such that dp+r,q−r+1
r ◦ dp,qr = 0 and Er+1 =
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ker dp,qr /im dp−r,q+r−qr . The term E∗,∗r is called Er−term and the spectral sequence collapses
at the N−th term if dr = 0 for all r >> N .

An important observation to make about the spectral sequences is that one can
proceed with computation and describing the algebraic structure of some Er-term without
knowledge of the differentials, dr. Moreover, spectral sequence low-degree terms can be
described even when a spectral sequence does not collapse. In this case, one can construct
some useful exact sequence such as the five-term and seven-term exact sequence.

The Hochschild–Serre spectral sequence, named after Gerhard Hochschild and Jean-
Pierre Serre, was first introduced in the context of group theory in 1953 [13]. It describes
the relation between the cohomology groups of a group G, a normal subgroup N of G,
and the quotient group G/N . The main result states that for any group G and a normal
subgroup N of G, there is a spectral sequence of cohomological type whose E2−term
is Hp(G/N,Hq(N,A)) and whose E∞−term is Hp+q(G,A), where A is an arbitrary
G−module. A similar result holds for Lie algebras, as shown in [14].

As mentioned previously, the objective of this thesis is to describe the Hochschild-Serre
spectral sequence in the field of Lie conformal algebras. We believe this construction will
provide a valuable tool to calculate the cohomology of Lie conformal algebras.

This thesis is structured as follows. In Chapter 2, we recall the basic notions of Lie
conformal algebras, including their relation to the formal distribution of Lie algebras and
basic examples. Then we provide a summary of the cohomology theory of Lie conformal
algebras.

Chapter 3 presents the essential concepts on spectral sequences needed to describe the
Hochschild-Serre spectral sequence for Lie conformal algebras.

In Chapter 4, we construct the Hochschild-Serre spectral sequence associated with Lie
conformal algebras’ basic complex, which is the main result of this thesis (see Theorem
4.1.1). Then we introduce the inflation-restriction exact sequence (see Theorem 4.2.2).

In Chapter 5, we conclude the thesis by giving several applications, including the
computation of the basic cohomology of Vir with coefficients in the Vir−moduleM∆,α (see
Theorem 5.1.2), and the cohomology of Vir n Curg with coefficients in the trivial module
Ca for a ∈ C and with coefficients in the Vir n Curg−module M∆,α,U (see Theorems
5.2.1, 5.2.2, 5.4.1).

Unless otherwise specified, all vector spaces, linear maps, and tensor products are
considered over the field C of complex numbers, and we denote the sets of all nonnegative
integers by Z+.
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Chapter 2

Lie Conformal Algebras

This chapter is an introduction of the basic notions for Lie conformal algebras that are
used in this thesis. For a detailed introduction, we refer the reader to [2], [8] and [5].

2.1 Basic Definitions

Definition 2.1.1 ([21]). A Lie conformal algebra over C is a C[∂]-module A equipped
with a bilinear product, called a λ-bracket, [·λ·] : A⊗A → A[λ] = C[λ]⊗A, that satisfies
the following axioms:

i Conformal sesquilinearity: [∂aλb] = −λ[aλb], [aλ∂b] = (∂ + λ)[aλb],

ii Skew-symmetry: [aλb] = −[b−λ−∂a],

iii Jacobi identity: [aλ[bµc]] = [[aλb]λ+µc] + [bµ[aλc]],

for all a, b, c ∈ A.

A generating set of A over C[∂] is a subset C of A such that the smallest C[∂]-
module of A containing C is A itself. If the generating set is finite, then A is called a
finite Lie conformal algebra. Otherwise, A is called infinite. A Lie conformal algebra A
is called abelian if [aλb] = 0 for all a, b ∈ A.

Definition 2.1.2. A subalgebra of a Lie conformal algebra A is a C[∂]-module B such
that [aλb] ∈ B[λ] for all a, b ∈ B.

Definition 2.1.3. An ideal of a Lie conformal algebra A is a subalgebra I of A such
that [aλb] ∈ I[λ] for all a ∈ A and b ∈ I.
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Definition 2.1.4 ([2]). A conformal module M over a Lie conformal algebra A is a
C[∂]-module endowed with a C-linear map A⊗M → M [λ], a⊗ υ 7→ aλυ, such that for
any a, b ∈ A and υ ∈M then,

aλ(bµυ)− bµ(aλυ) = [aλb]λ+µυ,

(∂a)λυ = −λaλυ,

aλ(∂υ) = (∂ + λ)aλυ.

A conformal module M is called finite if M is finitely generated over C[∂]. The rank
of a conformal module M is its rank as a C[∂]−module. An element υ of a conformal
module M over a Lie conformal algebra A is called an invariant if aλυ = 0 for all a ∈ A.
The set of all invariant elements of M forms a conformal A−submodule of M , denoted by
M0. An A−module M is said to be trivial if M0 = M . Moreover, a conformal module
M is called irreducible if it has no nontrivial submodules.

An element υ ∈M is called torsion if there exists a nonzero polynomial p(∂) ∈ C[∂]

such that p(∂)υ = 0. A finite conformal A−module M is called torsion free over C[∂] if
and only if 0 is the only torsion element of M . Moreover, a finitely-generated torsion-free
A−module M is free C[∂]−module.

Lemma 2.1.1 ([19]). Let M be a conformal A−module, and υ is a torsion element of
M . Then, Aλυ = 0.

Definition 2.1.5 ([8]). Let M,N be modules over A. A conformal linear map from M

to N is a C-linear map f : M → N [λ] denoted fλ : M −→ N , such that fλ∂ = (∂ + λ)fλ.
The space of conformal linear maps is denoted by Chom(M,N), and it is a C[∂] and an
A−module with actions

(∂f)λ = −λfλ,

(aµf)λυ = aµ(fλ−µυ)− fλ−µ(aµυ),

for a ∈ A, υ ∈ M , and f ∈ Chom(M,N). The A−module Chom(M,N) is conformal
when M and N are conformal and finite.

The space of conformal linear endomorphisms Chom(M,M) is denoted by Cend M ,
and it is an associative conformal algebra. i.e., for any f, g ∈ Cend M, υ ∈ M , then
(fλg)µυ = fλ(gµ−λυ). The λ-bracket [fλg] = fλg− g−λ−∂f , defines a Lie conformal algebra
structure on Cend M denoted by gc(M).
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Definition 2.1.6. Let A be a Lie conformal algebra. A conformal derivation of A is
a conformal linear map dλ : A −→ A such that

dλ([aµb]) = [(dλa)λ+µb] + [aµ(dλb)]

for all a, b ∈ A.

The space of all conformal derivations of A is denoted by CDer(A). For any a ∈ A,
then the linear map (ad a)λ : A → A defined by (ad a)λb = [aλb] for all b ∈ A is a
conformal derivation of A. Any conformal derivation of this type is called an inner
derivation. The space of all inner derivations is denoted by CInn(A).

2.2 Lie Conformal Algebras in the Context of Formal

Distribution Lie Algebras

This section will review the construction of Lie conformal algebras, their mod associated
to the formal distribution Lie algebras, and vice versa. This section’s material primarily
follows [20] and [21].

Let U be a complex vector space. A U-valued formal distribution in one indeter-
minate z is a formal power series of the form a(z) =

∑
n∈Z anz

−n−1, where an ∈ U is
defined by an = Reszz

na(z) such that Resza(z) = a−1. The set of all such distributions
form a vector space over C denoted by U [[z, z−1]]. Moreover, the derivative of a(z) is
defined by ∂a(z) =

∑
n∈Z(−n− 1)anz

−n−2.
Likewise, a U -valued formal distribution in two indeterminates z and w is a power

series of the form

a(z, w) =
∑
n,m∈Z

an,mz
−n−1w−m−1, an,m ∈ U.

One important example of a C-valued formal distributions is the formal delta-function
δ(z − w), which is given by:

δ(z − w) = z−1
∑
n∈Z

(w
z

)n
.
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Definition 2.2.1. A U-valued formal distribution a(z, w) is called local if

(z − w)Na(z, w) = 0, for N � 0.

Theorem 2.2.1 ([20], Corollary 2.2). Every local U -valued formal distribution a(z, w) is
uniquely represented by the expansion

a(z, w) =
N−1∑
j=0

cj(w)∂(j)
w δ(z − w), (2.1)

where cj(w) = Resza(z, w)(z−w)j and ∂(j)
w = ∂jw/j!. This expansion is called the operator

product expansion (OPE) of a(z, w) and cj(w) are called OPE coefficients of
a(z, w).

Now let U be the Lie algebra g, and a(z) and b(w) be g-valued formal distributions.
We will review the notion of locality of g-valued formal distributions as further explained
in [20].

Definition 2.2.2. The pair a(z) and b(w) is called local if the g-valued formal distribution
[a(z), b(w)] ∈ g[[z, z−1, w, w−1]] is local, i.e. if

(z − w)N [a(z), b(w)] = 0, for N � 0.

Definition 2.2.3. For each n ∈ Z+, the n-th product a(w)(n)b(w) on the space of
g-valued formal distribution is given by:

a(w)(n)b(w) = Resz[a(z), b(w)](z − w)n.

Given two local g-valued formal distributions a(z) and b(w), then their OPE (2.1) is
equivalent to the expansion:

[a(z), b(w)] =
N−1∑
j=0

(a(w)(j)b(w))∂(j)
w δ(z − w). (2.2)

7



Moreover, define the λ-bracket [a(z)λb(w)] as follows:

[a(z)λb(w)] =
∞∑
j=0

λ(j)(a(w)(j)b(w)), λ(j) = λj/j!. (2.3)

Now let F be a subset of g[[z, z−1]] consisting of pairwise local g-valued formal
distributions such that the coefficients of all distributions from F span g. Then the
bracket of such coefficients is given by

[am, bn] =
∑
j∈Z+

(
m

j

)
(a(j)b)m+n−j. (2.4)

The pair (g,F) is called a formal distribution Lie algebra. Denote by F the minimal
subspace of g[[z, z−1]] that contains F such that for all a(z), b(z) ∈ F , then

a(z)(j)b(w) ∈ F and ∂(F) ⊆ F .

Then the pair (g,F) is a formal distribution Lie algebra with the bracket defined in (2.4).

Let Conf(g,F) = C[∂]F , then the λ-bracket [aλb] =
∑∞

j=0 λ
(j)(a(j)b) defines a C-linear

map
Conf(g,F)⊗ Conf(g,F) −→ C[λ]⊗C Conf(g,F)

The λ-bracket satisfies the conformal sesquilinearity, the skew-symmetry and the Jacobi
identity axioms. Therefore, C[∂z]F = Conf(g,F) is a Lie conformal algebra.

The formal distribution Lie algebra associated to a Lie conformal algebra A is con-
structed as follows. Let Lie A = Ã/∂̃Ã, where Ã = A[t, t−1] with ∂̃ = ∂ + ∂t and the j-th
product defined by:

(a⊗ f)(j)(b⊗ g) =
∑
s∈Z+

(a(j+s)b)⊗ ((∂
(s)
t f)g), (2.5)

where a, b ∈ A, f, g ∈ C[t, t−1] and j ∈ Z+.
Let an = a⊗ tn, the k-th product (2.5) is written as:

(am)(k)(bn) =
∑
k∈Z+

(
m

j

)
(a(k+j)b)m+n−j, (2.6)
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for any m,n ∈ Z. Now define the Lie bracket on Lie A by (2.4). It follows that Lie A is a
Lie algebra and every a ∈ A induces a formal distribution a(z) =

∑
n∈Z anz

−n−1 where
an ∈ Lie A.

Denote by F the set of such distributions. Then they span Lie A and are pairwise
local formal distributions because (2.6) is equivalent to (2.2) with k = 0 and a(j)b = 0 for
j � 0. Therefore, the pair (Lie A,F) is a formal distribution Lie algebra.

Observe that the derivation −1⊗ ∂t of the 0-th product of the conformal algebra Ã
induces a derivation T of the Lie algebra Lie A. The derivation T is given by:

T (an) = −nan−1, n ∈ Z+.

Definition 2.2.4. Let A be a Lie conformal algebra and let (Lie A,F) be the associated
formal distribution Lie algebra. The set

(Lie A)− = span{an | a ∈ A, n ∈ Z+},

is a subalgebra of Lie A, called the annihilation Lie algebra of A. The semidirect sum
(Lie A)− = CT ⊕ (Lie A)− is called the extended annihilation Lie algebra of A.

2.3 Virasoro Conformal Algebra, Vir

Let Vect C× be the Lie algebra of regular vector fields on C× with a basis consists of
vector fields tn∂t where n ∈ Z. The Vect C×-valued formal distribution

L(z) = −
∑
n∈Z

(tn∂t)z
−n−1,

satisfies the condition

[L(z), L(w)] = ∂wL(w)δ(z − w) + 2L(w)∂wδ(z − w),

and hence is local with respect to itself. Then, the pair (Vect C×, {L}) is a formal
distribution Lie algebra. The corresponding Lie conformal algebra, Vir, is defined by

Vir = C[∂]L, [LλL] = (∂ + 2λ)L,
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and is called the Virasoro conformal algebra. The maximal formal distribution Lie algebra
is Lie (Vir, {L}) ∼= Vect C×. The corresponding annihilation algebra (Vect C×)− = Vect C,
the Lie algebra of regular vector fields on C, and (Vect C×)− ∼= Vect C⊕ L, where L is
the 1-dimensional Lie algebra [2],[8].

Theorem 2.3.1 ([5], Theorem 3.2). Every irreducible finite Vir-module is M∆,α where
∆, α ∈ C and ∆ 6= 0 such that

M∆,α = C[∂]ν, Lλν = (∂ + α + ∆λ)ν.

2.4 Current Conformal Algebra, Curg

Let g̃ = g[t, t−1] = g ⊗ C[t, t−1] be the associated centerless current algebra to the Lie
algebra g, endowed with the Lie bracket:

[atm, btn] = [a, b]tm+n, a, b ∈ g and m,n ∈ Z.

Let
a(z) =

∑
m∈Z

atmz−m−1,

be a g̃[[z, z−1]]-valued formal distributions for a ∈ g. Then

[a(z), b(w)] = [a, b](w)δ(z − w).

The family F = {a(z) | a ∈ g} consists of pairwise local formal distributions and the pair
(g̃,F) is called the current formal distribution Lie algebra. The minimal subspace

F = C[∂]F ∼= C[∂]⊗ g,

with the λ-bracket given by:

[aλb] = [a, b], a, b ∈ g,

is a Lie conformal algebra called the Current conformal algebra associated to g and is
denoted by Curg. The Lie algebra g is identified with the subspace of Curg spanned
by elements of the form 1 ⊗ g, where g ∈ g. It The maximal formal distribution Lie
algebra associated to Curg is Lie (Curg,F). The corresponding annihilation Lie algebra
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is g̃− = g[t] and the extended annihilation Lie algebra is C∂t + g[t] [2, 8].

Lemma 2.4.1 ([20], Example 2.8a). Let U be a finite dimensional module over a finite
dimensional Lie algebra g. Then we have:

1. Ũ = U [t, t−1] is a g̃-module.

2. (Ũ , E) is a conformal module over the current formal distribution Lie algebra (g̃,F),
where

E = {u(z) =
∑
n∈Z

(utn)z−n−1 = uδ(z − t) | u ∈ U}.

3. M(Ũ) = C[∂]⊗C U is a finite conformal Curg-module defined by

aλu = au, a ∈ g, u ∈ U.

M(Ũ) is irreducible iff U is a nontrivial irreducible g-module.

Theorem 2.4.1 ([5], Theorem 3.2). Let g be a finite dimensional semisimple Lie alge-
bra. Then every conformal finite irreducible Curg-module is M(Ũ), where U is a finite
dimensional irreducible g-module.

2.5 The Standard Semidirect Product, Virn Curg

Let Curg be the current conformal algebra associated to the finite dimensional Lie algebra
g. Let dL : Curg −→ Curg be a conformal linear map defined by dLλg = (∂ + λ)g for all
g ∈ g and L is the standard generator of Vir. Note that for any g, h ∈ g,

[(dLλg)λ+µh] + [gλ(d
L
µh)] = [(∂ + λ)gλ+µh] + [gλ(∂ + µ)h]

= (−λ− µ)[gλ+µh] + λ[gλ+µh] + (∂ + λ)[gλh] + µ[gλh]

= −µ[gλ+µh] + (∂ + λ+ µ)[gλh]

= −µ[g, h] + (∂ + λ+ µ)[g, h]

= (∂ + λ)[g, h]

= dLλ [gµh].

Thus, the map dL is a conformal derivation and it satisfies [dL λd
L] = (∂ + 2λ)dL. The

semidirect product of Vir and Curg, called the standard semidirect product, is the
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C[∂]-module Vir⊕ Curg endowed with the λ-bracket

[LλL] = (∂ + 2λ)L, [gλh] = [g, h], [Lλg] = (∂ + λ)g,

for g, h ∈ g. Note that Curg is an ideal of Vir n Curg and for any g, h ∈ g,

[(L, g)λ(L, h)] = ([LλL], [g, h] + [Lλh]− [L−∂−λg]).

The annihilation Lie algebra of Vir n Curg is Vect Cn g̃, where Vect C is the Lie algebra
of regular vector fields on C, and g̃ = g[t], the positive part of the associated current
algebra g[t, t−1]. [2, 8].

Theorem 2.5.1 ([5], Theorem 3.2). Every nontrivial finite irreducible conformal module
over Vir n Curg is M(∆, α, U) = C[∂]⊗ U , where U is a finite dimensional irreducible
g-module, which is nontrivial if ∆ = 0, and

Lλu = (α + ∂ + ∆λ)u, gλu = g · u,

where ∆, α ∈ C, u ∈ U and g ∈ g.

2.6 Classification of Finite Simple and Semisimple Lie

Conformal Algebras

We now review the classification of finite simple and semisimple Lie conformal algebras as
studied in [8].

Definition 2.6.1. A Lie conformal algebra A is called simple if it is not commutative
and contains no nontrivial proper ideals.

Theorem 2.6.1 ([8], Theorem 5.1). A simple finite Lie conformal algebra is isomorphic
either to a current conformal algebra Curg, where g is a simple finite dimensional Lie
algebra, or to the Virasoro conformal algebra, Vir.

Definition 2.6.2. A Lie conformal algebra is called semisimple if it contains no non-
zero abelian ideals.

Theorem 2.6.2 ([8], Theorem 7.1). Any finite semisimple Lie conformal algebra is
uniquely decomposed in a finite direct sum of Lie conformal algebras each of which is
isomorphic to one of the following three types:
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1. Virasoro conformal algebra; Vir.

2. Current conformal algebra; Curg, where g is a simple finite dimensional Lie algebra.

3. semidirect product of Vir and Curg, defined by [Lλg] = (∂ + λ)g, g ∈ g.

2.7 Cohomology of Lie Conformal Algebras

In this section, we will review the notations and the primary results of the Lie conformal
algebra cohomology following the work of [2].

Definition 2.7.1 ([2], Definition 2.1). An n-cochain, (n ∈ Z+) of a conformal algebra
A with coefficients in a module M over it is a C-linear map

γ : A⊗n →M [λ1, ..., λn]

a1 ⊗ ...⊗ an 7→ γλ1,...,λn(a1, ..., an)

satisfying the following conditions:

i Conformal antilinearity:

γλ1,...,λn(a1, ..., ∂ai, ..., an) = −λiγλ1,...,λn(a1, ..., ai, ..., an), for all i.

ii Skew-symmetry:

γλ1,...,λi,λj ,...,λn(a1, ..., ai, aj, ..., an) = −γλ1,...,λj ,λi,...,λn(a1, ..., aj, ai, ..., an), for all i, j.

A 0-cochain is an element of the module M , where A⊗0 = C. If the module M is not
conformal, we consider the space of formal power series M [[λ1, ..., λn]] instead of the space
of polynomials M [λ1, ..., λn] in the Definition 2.7.1.

The differential d of a n-cochain γ is defined by;

(dγ)λ1,...,λn+1
(a1, ..., an+1)

=
n+1∑
i=1

(−1)i+1aiλiγλ1,...,λ̂i,...,λn+1
(a1, ..., âi, ..., an+1)

+
n+1∑
i,j=1
i<j

(−1)i+jγλi+λj ,λ1,...,λ̂i,...,λ̂j ,...,λn+1
([aiλiaj], a1, ..., âi, ..., âj, ..., an+1).

(2.7)
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If γ ∈M , is a 0-cochain, then (dγ)λ(a) = aλγ. The differential d preserves the space
of cochains, and d2 = 0. Hence, the space of cochains of a conformal algebra A with
coefficients in a module M form a complex, called the basic complex,

C̃• = C̃•(A,M) =
⊕
n∈Z+

C̃n(A,M).

The basic complex C̃•(A,M) is a C[∂]-module with action,

(∂ · γ)λ1,...,λn(a1, ..., an) = (∂M +
n∑
i=1

λi) γλ1,...,λn(a1, ..., an), (2.8)

where ∂M is the action of ∂ on M . Moreover, the differential commutes with the action ∂.
Hence, the graded subspace ∂C̃•(A,M) forms a subcomplex of the complex C̃•(A,M).
The quotient complex that is defined by,

C• = C•(A,M) = C̃•(A,M)/∂C̃•(A,M) =
⊕
n∈Z+

Cn(A,M). (2.9)

is called the reduced complex.

Definition 2.7.2 ([2], Definition 2.2). The basic cohomology H̃•(A,M) of a conformal
algebra A with coefficients in a moduleM is the cohomology of the basic complex C̃•(A,M).
The reduced cohomology H•(A,M) is the cohomology of the reduced complex C•(A,M).

A q-cochain γ ∈ C̃q(A,M) is called a q-cocycle if dγ = 0, and is called a q-
coboundary or a trivial q-cocycle if there is a (q − 1)-cochain φ ∈ C̃q−1(A,M) such
that γ = dφ. Furthermore, a q-cochain γ ∈ C̃q(A,M) is called a reduced q-cocycle
if dγ = ∂φ for some φ ∈ C̃q+1(A,M). Two q-cochains γ and ψ are equivalent if γ − ψ
is a q-coboundary. Denote by D̃q(A,M) and by B̃q(A,M) the spaces of q-cocycles and
q-coboundaries, respectively. Then we have,

H̃q(A,M) = D̃q(A,M)/B̃q(A,M) = { equivalent classes of q-cocycles }.

The following proposition and theorem describe the relation between the basic coho-
mology H̃•(A,M) and the reduced cohomology H•(A,M).

Proposition 2.7.1 ([2], Remark 2.3). The short exact sequence of complexes 0 −→
∂C̃•

ι−−→ C̃•
π−−→ C• −→ 0 where ι is the embedding and π is the natural projection gives
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the long exact sequence of cohomology groups

0 −→ H0(∂C̃•) −→ H̃0(A,M) −→ H0(A,M) −→

−→ H1(∂C̃•) −→ H̃1(A,M) −→ H1(A,M) −→

−→ H2(∂C̃•) −→ H̃2(A,M) −→ H2(A,M) −→ · · ·

(2.10)

Theorem 2.7.1 ([2], Proposition 2.1). The complexes C̃• and ∂C̃• are isomorphic under
the map γ 7→ ∂γ in degrees ≥ 1. Therefore, H̃q(A,M) ∼= Hq(∂C̃•) for all q ≥ 1, and
for all q ≥ 0 if the module M is C[∂]-free. Moreover, the sequence 0 −→ Ker ∂[0] −→
H̃0(A,M) −→ H0(∂C̃•) −→ 0 , where Ker ∂[0] is the subcomplex Ker ∂ ⊂ C̃• concentrated
in degree zero, is exact.

In the next theorem, we review the low degree cohomology spaces of a Lie conformal
algebra A with coefficients in an A−module M .

Theorem 2.7.2 ([2], Theorem 3.1). 1. H̃0(A,M) = MA = {υ ∈M |aλυ = 0 ∀a ∈ A}.

2. The isomorphism classes of extensions 0→M → E → C→ 0 of the trivial A−module
C by a conformal A−module M correspond bijectively to H0(A,M).

3. The isomorphism classes of C[∂]-split extensions 0→M → E → N → 0 of conformal
modules over a conformal algebra A correspond bijectively to H1(A,Chom(N,M)),
where M and N are assumed to be finite and Chom(N,M) is the A−module of
conformal linear maps from N to M . If, in particular, N = C is the trivial module,
then there exist no nontrivial C[∂]-split extensions.

4. Let C be a conformal A−module, considered as a conformal algebra with respect to
the zero λ-bracket. Then the equivalence classes of C[∂]-split “abelian” extensions
0→ C → Ã → A → 0 of the conformal algebra A correspond bijectively to H2(A, C).

5. The equivalence classes of first-order deformations of a conformal algebra A, leaving
the C[∂]-action intact, correspond bijectively to H2(A,A).

For any a ∈ A, the A−module structure on the basic complex C̃•(A,M) is defined as
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follows

(θλ(a)γ)λ1,...,λn(a1, ..., an) = aλγλ1,...,λn(a1, ..., an)

−
n∑
i=1

γλ1,...,λ+λi,...,λn(a1, ...[aλai], ..., an).
(2.11)

Define the operator ιλ(a) by

(ιλ(a)γ)λ1,...,λn−1(a1, ..., an−1) = γλ,λ1,...,λn−1(a, a1, ..., an−1). (2.12)

It follows that Cartan’s identity
dιλ + ιλd = θλ, (2.13)

holds for Lie conformal algebras, and hence dθ = θd. Therefore, the induced action of A
on the basic cohomology H̃•(A,M) is trivial.

Let A be a conformal algebra and M is a conformal A−module. Then M is a module
over the annihilation Lie algebra g− = (LieA)−. Let C•(g−,M) be the Chevalley–Eilenberg
complex defining the cohomology of g− with coefficients in M . Then, C•(g−,M) has the
C[∂]-module structure given by

(∂γ) (a1 ⊗ · · · ⊗ an) = ∂ (γ (a1 ⊗ · · · ⊗ an))

−
n∑
i=1

γ (a1 ⊗ · · · ⊗ ∂ai ⊗ · · · ⊗ an) ,
(2.14)

for γ ∈ Cn (g−,M). From [2], we have the following theorem.

Theorem 2.7.3 ([2], Theorem 6.1). The basic complex, C̃•(A,M) is isomorphic to the
Chevalley–Eilenberg complex, C•(g−,M), and the isomprphism is compatible with the
C[∂]-action. Consequently, C•(A,M) ∼= C•(g−,M)/∂C•(g−,M).

Corollary 2.7.1 ([2], Corollary 6.1). H̃•(A,M) ∼= H•(g−,M).

The study of the cohomology of simple conformal algebras, Vir and Curg, was done
in [2] as follows.

Theorem 2.7.4 ([2], Theorem 7.1 & Remark 7.2). For the Virasoro conformal algebra,
the following statements hold:
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1. For the trivial Vir-module C,

dim H̃q(Vir,C) =

1 if q = 0 or 3,

0 otherwise ,

and

dim Hq(Vir,C) =

1 if q = 0, 2 or 3,

0 otherwise .

2. For the module Ca, a 6= 0, H̃q(Vir,Ca) ∼= H̃q(Vir,C), and Hq(Vir,Ca) = 0, for all
q.

Theorem 2.7.5 ([2], Theorem 8.1 & Remark 8.1). For the current conformal algebra,
we have:

1. For the trivial Curg-module C,

H̃•(Curg,C) = H•(g,C),

and
Hq(Curg,C) = Hq(g,C)⊕ Hq+1(g,C), for all q.

2. For the module Ca, a 6= 0, H̃q(Curg,Ca) ∼= H̃q(Curg,C), and Hq(Curg,Ca) = 0,
for all q.
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Chapter 3

Spectral Sequences

The aim of this chapter is to review a few concepts on spectral sequences needed to describe
the Hochschild-Serre spectral sequence for the Lie conformal algebras. The majority of
this chapter’s material is adapted from [24].

3.1 Definitions and Basic Properties

Definition 3.1.1. A first quadrant cohomological spectral sequence {Ep,q
r , dr} for

all r, p, q ≥ 0, is a collection of bigraded C[∂]−modules {Ep,q
r } together with a C[∂]−linear

map
dp,qr : Ep,q

r −→ Ep+r,q−r+1
r ,

called the differential such that

dp−r,q+r−1
r ◦ dp,qr = 0,

and
Ep,q
r+1
∼= Hp,q(E∗,∗r , dr),

where Hp,q(E∗,∗r , dr) = ker dp,qr : Ep,q
r −→ Ep+r,q−r+1

r /im dp−r,q+r−1
r : Ep−r,q+r−1

r −→ Ep,q
r .

Observe that E∗,∗r+1 (not dr+1) is determined by E∗,∗r and dr. The term E∗,∗r is called
the Er−term or Er−page, and the indexing can begin at any integer, regularly at 2.
One can visualize the spectral sequence as a grid notebook, where each page refers to the
Er−term equipped with the differentials for all r. Here p, q refer to the position on the
grid, where p is the x−coordinate and the degree q is the y−coordinate. The following
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diagrams show the Er−term for small r:

0 1 2 3 4

0

1

2

3

E0,0
0 E1,0

0 E2,0
0 E3,0

0 E4,0
0

E0,1
0 E1,1

0 E2,1
0 E3,1

0 E4,1
0

E0,2
0 E1,2

0 E2,2
0 E3,2

0 E4,2
0

E0,3
0 E1,3

0 E2,3
0 E3,3

0 E4,3
0

Figure 3.1: Ep,q
0 −page.
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2
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E0,0
1 E1,0

1 E2,0
1 E3,0

1 E4,0
1

E0,1
1 E1,1

1 E2,1
1 E3,1

1 E4,1
1

E0,2
1 E1,2

1 E2,2
1 E3,2

1 E4,2
1

E0,3
1 E1,3

1 E2,3
1 E3,3

1 E4,3
1

Figure 3.2: Ep,q
1 −page.
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E0,0
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2 E2,0
2 E3,0

2 E4,0
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E0,1
2 E1,1

2 E2,1
2 E3,1

2 E4,1
2

E0,2
2 E1,2

2 E2,2
2 E3,2

2 E4,2
2

E0,3
2 E1,3

2 E2,3
2 E3,3

2 E4,3
2

Figure 3.3: Ep,q
2 −page.

Now consider Ep,q
r for r > max(p, q+1). Since r > q+1 implies Ep+r,q−r+1

r = 0, ker dr =

Ep,q
r . Also, r > p implies that Ep−r,q+r−1

r = 0, i.e., im dr = 0. Hence, Ep,q
r+1 = ker dr = Ep,q

r .
Continuing the same way, we have Ep,q

r+k = Ep,q
r for all k ≥ 0. The C[∂]−module Ep,q

r in
this case is denoted by Ep,q

∞ .

Definition 3.1.2. The spectral sequence collapses at the N−th term if dr = 0 for all
r ≥ N , and we write E∗,∗N ∼= E∗,∗N+1

∼= . . . ∼= E∗,∗∞ .

Lemma 3.1.1 ([24], Example 1.B.). Let {E∗,∗r , dr} be a first quadrant spectral sequence.
Suppose that Ep,q

2 = 0 for all p > n1 and q > n2 where n1, n2 ∈ Z+. Then the spectral
sequence collapses at the N th−term where N = min(n1 + 1, n2 + 2).

Proof. We need to show that dr : Ep,q
r → Ep+r,q−r+1

r is zero for r ≥ N . The Er−term can
be pictured in the following two cases:

p

q

n1

n2

Case I
p

q

n1

n2

Case II
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Case I: Let n1 ≤ n2 + 1 then N = n1 + 1. Since r ≥ N implies that p+ r ≥ p+N > n1,
then Ep+r,q−r+1

r = 0. Hence, dr = 0.

Case II: Let n2 + 1 < n1, then N = n2 + 2. But, q − r + 1 ≤ q − n2 − 1 < 0. Thus,
Ep+r,q−r+1
r = 0 and dr = 0.

Therefore, the spectral sequence collapses at EN and E∗,∗N ∼= E∗,∗N+1
∼= · · · ∼= E∗,∗∞ .

Now, we will describe the spectral sequence as subquotient C[∂]−module of E2. For
each r ≥ 2, write

Zr = Zp,q
r = ker dp,qr ,

Br = Bp,q
r = im dp−r,q+r−1

r ,

Er = Ep,q
r .

Using d ◦ d = 0, we get Br ⊆ Zr ⊆ Er. From the definition, Er+1
∼= Zr/Br. Now denote

Z̄r+1 = ker dr+1, a C[∂]−submodule of Er. It can be written as Z̄r+1 = Zr+1/Br, where
Zr+1 is an C[∂]−submodule of Zr. Similarly, denote B̄r+1 = im dr+1 which is isomorphic
to d(Zr+1)/Br

∼= Br+1/Br, with Br+1 is a C[∂]−submodule of Zr. Hence we have,

Er+2
∼= Z̄r+1/B̄r+1

∼= (Zr+1/Br)/(Br+1/Br) ∼= Zr+1/Br+1.

which can be represented as a tower of inclusions Br ⊂ Br+1 ⊂ Zr+1 ⊂ Zr. Therefore, the
spectral sequence can be written as an infinite sequence of C[∂]−submodules of E2 as
follows:

B2 ⊂ B3 ⊂ . . . ⊂ Bn ⊂ . . . . . . ⊂ Zn ⊂ . . . ⊂ Z3 ⊂ Z2 ⊂ E2. (3.1)

with En+1
∼= Zn/Bn. Then we have the short exact sequence induced by dn+1,

0 −→ Zn+1/Bn −→ Zn/Bn
dn+1−−−−−→ Bn+1/Bn −→ 0.

which induces an isomorphism Zn/Zn+1
∼= Bn+1/Bn for all n.

Now, suppose that the spectral sequence collapses at the N th−term. Denote

Z∞ = Zp,q
∞ =

∞⋂
r=0

Zp,q
r , B∞ = Bp,q

∞ =
∞⋃
r=0

Bp,q
r
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Then, Ep,q
∞ = Zp,q

∞ /Bp,q
∞ , and the tower of C[∂]−submodules (3.1) becomes

B2 ⊂ B3 ⊂ . . . ⊂ BN−1 = BN = · · · = B∞

⊂ Z∞ = . . . = ZN = ZN−1 ⊂ . . . ⊂ Z3 ⊂ Z2 ⊂ E2.

3.2 Spectral Sequence of Filtered Differential Modules

Spectral sequences arise naturally in two general ways: the first is from filtered differential
modules, and the second is from exact couples. These approaches are equivalent to each
other. In this section, we will review the spectral sequence of a filtered complex.

A filtration F ∗ on a C[∂]−module A is a family of submodules {F pA} for p ∈ Z,
such that

· · · ⊂ F p+1A ⊂ F pA ⊂ F p−1A ⊂ · · · ⊂ A (decreasing filtration),

or · · · ⊂ F p−1A ⊂ F pA ⊂ F p+1A ⊂ · · · ⊂ A (increasing filtration).

The filtration is called a bounded filtration if there exist p, q ∈ Z such that F pA = 0

and F qA = A. For any filtered C[∂]−module A, its associated graded C[∂]−module,
Ep

0(A), is given by

Ep
0(A) =

F pA/F p+1A, when F is decreasing,

F pA/F p−1A, when F is increasing.

If A∗ is a filtered graded C[∂]−module, then one can define a filtration on each degree by
F pAn = F pA∗ ∩ An. The associated bigraded C[∂]−module to A can be defined by:

Ep,q
0 (A∗, F ) =

F pAp+q/F p+1Ap+q, when F is decreasing,

F pAp+q/F p−1Ap+q, when F is increasing.

We now use the associated graded C[∂]−module definition to describe the convergence
of spectral sequences. Here and further, we will consider the case of a decreasing filtration.

Definition 3.2.1. A first quadrant cohomological spectral sequence {Ep,q
r , dr} is said to

converge to a graded C[∂]−module H∗, often written Ep,q
r ⇒ Hp+q, if there is a bounded
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filtration F on H∗ such that

Ep,q
∞
∼= F pHp+q/F p+1Hp+q

where E∗,∗∞ is the limit term of the spectral sequence.

Now we give the definition of the filtered differential graded C[∂]−module, the object
needed to construct a spectral sequence.

Definition 3.2.2. A filtered differential graded C[∂]−module A is a module over
C[∂] such that the following conditions are satisfied:

(i) A =
⊕∞

n=0A
n,

(ii) There is a C[∂]−linear map, d : A→ A of degree 1 satisfying d ◦ d = 0,

(iii) A has a decreasing filtration F such that d : F pA→ F pA.

Because the differential preserves the filtration, d(F pAn) ⊆ F pAn+1 for all p and n.
Then the filtration F induces a filtration on the cohomology of A, with F pH(A, d) defined
as the image of H(F pA, d) under the map induced by the inclusion F pA ↪→ A.

Now that the fundamental definitions are in place, we give the main theorem.

Theorem 3.2.1 ([24], Theorem 2.6). Suppose (A, d, F ∗) is a filtered differential graded
C[∂]−module, where d has degree 1. Then there exists a spectral sequence {E∗,∗r } of
cohomological type such that

Ep,q
1
∼= Hp+q(F pA/F p+1A).

Moreover, if the filtration is bounded, then the spectral sequence converges to H∗(A, d),
i.e.,

Ep,q
∞
∼= F pHp+q(A, d)/F p+1Hp+q(A, d).

Proof. Consider the following decreasing filtration on A:

. . . ⊂ F p+1Ap+q ⊂ F pAp+q ⊂ F p−1Ap+q ⊂ . . . .
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such that the differential preserves the filtration, i.e., d(F pAp+q) ⊂ F pAp+q+1. For all
r ≥ 0, denote:

Zp,q
r = elements in F pAp+q that have boundaries in F p+rAp+q+1

= F pAp+q ∩ d−1(F p+rAp+q+1).

Bp,q
r = elements in F pAp+q that form the image of d from F p−rAp+q−1

= F pAp+q ∩ d(F p−rAp+q−1).

Zp,q
∞ = ker d ∩ F pAp+q.

Bp,q
∞ = im d ∩ F pAp+q.

Since the filtration is decreasing and d respects the filtration, we obtain the following
tower of C[∂]−submodules:

Bp,q
0 ⊂ Bp,q

1 ⊂ Bp,q
2 ⊂ . . . ⊂ Bp,q

∞ ⊂ Zp,q
∞ ⊂ . . . ⊂ Zp,q

2 ⊂ Zp,q
1 ⊂ Zp,q

0 .

Note that d(Zp−r,q+r−1
r ) = d(F p−rAp+q−1 ∩ d−1(F pAp+q)) = F pAp+q ∩ d(F p−rAp+q−1) =

Bp,q
r .

For all 0 ≤ r ≤ ∞, define

Ep,q
r = Zp,q

r /(Zp+1,q−1
r−1 +Bp,q

r−1)

and let ηp,qr : Zp,q
r → Ep,q

r be the canonical projection with ker ηp,qr = Zp+1,q−1
r−1 + Bp,q

r−1.
Note that d(Zp,q

r ) = Bp+r,q−r+1
r ⊂ Zp+r,q−r+1

r and,

d(Zp+1,q−1
r−1 +Bp,q

r−1) = d(Zp+1,q−1
r−1 ) + d(Bp,q

r−1)

⊆ Bp+r,q−r+1
r−1 + 0

⊆ Zp+r+1,q−r
r−1 +Bp+r,q−r+1

r−1 .

Hence, the differential d as a map d : Zp,q
r → Zp+r,q−r+1

r induces a homomorphism
dr : Ep,q

r → Ep+r,q−r+1
r such that the following diagram commutes:
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Zp,q
r Zp+r,q−r+1

r

Ep,q
r Ep+r,q−r+1

r

d

ηp,qr ηp+r,q−r+1
r

dp,qr

It follows that dr ◦ dr=0, and we have

Ep−r,q+r−1
r

dp−r,q+r−1
r−−−−−−−−−−→ Ep,q

r
dp,qr−−−−−−→ Ep+r,q−r+1

r .

Now consider the following diagram:

Zp+1,q−1
r +Bp,q

r Zp,q
r+1 Zp,q

r Zp+r,q−r+1
r

ker dr Ep,q
r Ep+r,q−r+1

r

Hp,q(E∗,∗r , dr)

0

ηp,qr |Zp,qr+1

γ

d

ηp,qr ηp+r,q−r+1
r

dp,qr

We first prove that ker dp,qr = ηp,qr (Zp,q
r+1). Observe that, dp,qr (ηp,qr (z)) = 0 ⇔ dz ∈

Zp+r+1,q−r
r−1 +Bp+r,q−r+1

r−1 , which is, by definition, equivalent to z ∈ Zp,q
r+1 + Zp+1,q−1

r−1 . Hence,
ker dp,qr = ηp,qr (Zp,q

r+1 + Zp+1,q−1
r−1 ) = ηp,qr (Zp,q

r+1), because Zp+1,q−1
r−1 ∈ ker ηp,qr .

Now, observe that im dp−r,q+r−1
r = ηp,qr d(Zp−r,q+r−1

r )) = ηp,qr (Bp,q
r ), hence we have:

(ηp,qr )−1(im dp−r,q+r−1
r ) = Bp,q

r + ker ηp,qr

= Bp,q
r + Zp+1,q−1

r−1 +Bp,q
r−1

= Bp,q
r + Zp+1,q−1

r−1 ,

and by definition,

Zp+1,q−1
r−1 ∩ Zp,q

r+1 =
(
F p+1Ap+q ∩ d−1(F p+rAp+q+1)

)
∩
(
F pAp+q ∩ d−1(F p+r+1Ap+q+1)

)
= F p+1Ap+q ∩ d−1(F p+r+1Ap+q+1) = Zp+1,q−1

r .
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Therefore we get:

Zp+1,q−1
r+1 ∩ (ηp,qr )−1im dp−r,q+r−1

r = Zp+1,q−1
r +Bp,q

r .

Now we describe the isomorphism Er+1
∼= Hp,q(E∗,∗r , dr). Let γ, the dashed map in

the diagram, be the composition of ηp,qr |Zp,qr+1
with the canonical projection π : ker dr →

Hp,q(E∗,∗r , dr). The kernel of γ is Zp+1,q−1
r+1 ∩ (ηp,qr )−1(im dp−r,q+r−1

r ). Because γ is surjective,
by the first isomorphism theorem, we get:

Ep,q
r+1 = Zp,q

r+1/Z
p+1,q−1
r +Bp,q

r

∼=−−−−→ Hp,q(E∗,∗r , dr).

Using the definition, we have Ep,q
0 = Zp,q

0 /(Zp+1,q−1
−1 +Bp,q

−1) such that

Zp+1,q−1
−1 = F p+1Ap+q, Bp,q

−1 = d(F p+1Ap+q−1).

But d respects the filtration, so we have:

Ep,q
0 = F pAp+q ∩ d−1(F pAp+q+1)/F p+1Ap+q + d(F p+1Ap+q−1)

= F pAp+q/F p+1Ap+q.

The differential d0 is induced by the differential d(F pAp+q) ⊆ F pAp+q+1. Thus we have,

Ep,q
1
∼= Hp,q(F pAp+q/F p+1Ap+q).

Now consider ηp,q∞ : Zp,q
∞ → Ep,q

∞ and π : ker d→ H(A, d), then we obtain:

F pHp+q(A, d) = im (Hp+q(F pA, d) ↪→ Hp+q(A, d))

= π(F pAp+q ∩ ker d) = π(Zp,q
∞ ).

Observe that π(ker ηp,q∞ ) = π(Zp+1,q−1
∞ +Bp,q

∞ ) = F p+1Hp+q(A, d). Thus, π induces a map
d∞ : Ep,q

∞ → F pHp+q(A, d)/F p+1H+q(A, d) with

ker d∞ = ηp,q∞ (π−1(F p+1Hp+q(A, d)) ∩ Zp,q
∞ )

= ηp,q∞ (Zp+1,q−1
∞ ∩ d(A) ∩ Zp,q

∞ )

⊂ ηp,q∞ (Zp+1,q−1
∞ +Bp,q

∞ ) = {0}.

Hence, d∞ is an isomorphism, i.e., Ep,q
∞
∼= F pHp+q(A, d)/F p+1H+q(A, d).
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3.3 Applications

An important observation to make about spectral sequences is that one can proceed with
computation and describing the algebraic structure of some Er−term without knowledge
of the differentials, dr. In this section, we recall some important applications about spectral
sequences that will be needed in this dissertation.

Proposition 3.3.1 ([4], Proposition 5.3, 5.3a, 5.5). (The edge maps) Suppose that the
filtration on Hn is convergent then the following hold:

(i) If Em,n−m
∞ = 0 for m > p then F p+1Hn = 0 and there exists a monomorphism

Ep,n−p
r → Ep,n−p

∞ ↪→ Hn(A).

(ii) If Em,n−m
∞ = 0 for m < p then Hn = F pHn and there exists an epimorphism

Hn(A)→ Ep,n−p
∞ ↪→ Ep,n−p

r .

(iii) If Em,n−m
∞ = 0 for m 6= p, p+ k where k > 0. Then there is a short exact sequence

0 −→ Ep+k,n−p−k
∞ −→ Hn(A) −→ Ep,n−p

∞ −→ 0.

Example 3.3.1 ([24], Example 1.A). (The five-term exact sequence) Suppose that
there is a first quadrant cohomological spectral sequence such that Ep,q

2 ⇒ Hp+q(A). Then
H0(A) = E0,0

2 , and there is an exact sequence

0 −→ E1,0
2 −→ H1(A) −→ E0,1

2
d2−−→ E2,0

2 −→ H2(A). (3.2)

Remark 3.3.1. The five-term exact sequence can be extended to the following seven-term
exact sequence

0 −→ E1,0
2 −→ H1(A) −→ E0,1

2 −→ E2,0
2 −→ ker(H2(A)→ E0,2

2 ) −→ E1,1
2 −→ E3,0

2 .

(3.3)

Theorem 3.3.1 ([4], Theorem 5.12.). Assume that the filtration is convergent and Ep,q
2 = 0

for p, q < 0. Assume further that Ep,q
2 = 0 for 0 < q < n. Then

Ei,0
2
∼= H i(A) ∀ i < n
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and the sequence

0 −→ En,0
2 −→ Hn(A) −→ E0,n

2 −→ En+1,0
2 −→ Hn+1(A)

is exact.

Theorem 3.3.2 ([24], Exercise 1.3). (The Wang sequence) Let {E∗,∗r , dr} be a first
quadrant spectral sequence of cohomological type that converges to H∗, such that Ep,q

2 = 0

unless p = 0 or p = n for some n ≥ 2. Then there exists an exact sequence

· · · −→ En,q−n
2 −→ Hq −→ E0,q

2
d0,qn−−−−−−→ En,q−n+1

2 −→ Hq+1 −→ E0,q+1
2 −→ · · · .

In particular, for 0 ≤ q < n− 1, then Hq ∼= E0,q
2 .

Proof. The E2−term has two no-trivial columns, the 0−th and n−th columns, as in the
following diagram.

Ep,q
2 - page

0 n

dn

E0,q
2

En,q−n+1
2

Hence, the only possible non-trivial differential is dn : E0,q
2 −→ En,q−n+1

2 , for all
q ≥ n− 1. Hence,

Ep,q
2
∼= Ep,q

3
∼= · · · ∼= Ep,q

n

and,
Ep,q
n+1
∼= Ep,q

n+2
∼= · · · ∼= Ep,q

∞ .
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Now since Ep,q
n+1
∼= H(Ep,q

n , dn), then we have

E0,q
∞
∼= ker (dn : E0,q

n −→ En,q−n+1
n ) / im (dn : E−n,q+n−1

n −→ E0,q
n ),

En,q−n+1
∞

∼= ker (dn : En,q−n+1
n −→ E2n,q−2n+2

n ) / im (dn : E0,q
n −→ En,q−n+1

n ).

But E∗,∗r is a first quadrant spectral sequence, so E−n,q+n−1
n

∼= E−n,q+n−1
2 = 0. Moreover,

Ep,q
n
∼= Ep,q

2 is trivial for p 6= 0, n, i.e., E2n,q−2n+2
n

∼= E2n,q−2n+2
2 = 0. Hence we have,

E0,q
∞
∼= ker (dn : E0,q

2 −→ En,q−n+1
2 ) ∼= ker d0,q

n ,

En,q−n+1
∞

∼= En,q−n+1
2 / im (dn : E0,q

2 −→ En,q−n+1
2 ) ∼= coker d0,q

n .

Thus, we have the exact sequence for each q,

0 −→ E0,q
∞ −→ E0,q

2
dn−−−−−→ En,q−n+1

2 −→ En,q−n+1
∞ −→ 0. (3.4)

From Proposition 3.3.1, there exists a short exact sequence

0 −→ En,q−n
∞ −→ Hq −→ E0,q

∞ −→ 0 (3.5)

for each q ≥ 0. Then we splice the exact sequences (3.4) and (3.5) together as in the
following diagram.

0

·· En,q−n
2 En,q−n

∞ 0

Hq 0

0 E0,q
∞ E0,q

2 En,q−n+1
2 En,q−n+1

∞ 0

0 Hq+1

0 E0,q+1
∞ E0,q+1

2 ··

0

dn

dn

dn
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Hence, we obtain the desired exact sequence,

· · · −→ En,q−n
2 −→ Hq −→ E0,q

2
d0,qn−−−−−−→ En,q−n+1

2 −→ Hq+1 −→ E0,q+1
2 −→ · · · (3.6)

Note that for 0 ≤ q < n− 1, then En,q−n
2 = 0 and En,q−n+1

2 = 0. Thus, Hq ∼= E0,q
2 .
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Chapter 4

Hochschild-Serre Spectral Sequence for
Lie Conformal Algebras

In this chapter, we present the main result of this thesis in which we construct the
Hochschild–Serre spectral sequence for Lie conformal algebras. This construction is similar
to what was done in [14] for the case of Lie algebras.

4.1 The Hochschild–Serre Spectral Sequence Associ-

ated with the Basic Complex

Theorem 4.1.1. Suppose that A is a Lie conformal algebra, B is an ideal of A, and M is
a conformal A-module. Then there exists a first-quadrant cohomological spectral sequence

{Ep,q
r , dr : Ep,q

r → Ep+r,q−r+1
r }, r ≥ 0,

with the following properties:

(i) Ep,q
0
∼= C̃q(B, C̃p(A/B,M)).

(ii) Ep,q
1
∼= H̃q(B, C̃p(A/B,M)).

(iii) Ep,q
2
∼= H̃p(A/B, H̃q(B,M)), and Ep,0

2
∼= H̃p(A/B,MB).

(iv) The Ep,q
∞ −page is adjoint to H̃∗(A,M), and the natural homomorphism H̃q(A,M)→

H̃q(B,M) can be represented as the composition H̃q(A,M) → E0,q
∞ ↪→ E0,q

1
∼=

H̃q(B,M).
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The proof of Theorem 4.1.1 will be done by several lemmas in the following sections.

4.1.1 Spectral Sequence Associated to an Ideal

Let A be a Lie conformal algebra, B be an ideal of A, and M be a conformal A-module.
Consider the filtration F̃ on the basic cohomology complex associated to the conformal
algebra A and the A-module M , C̃n(A,M) defined by

F̃ pC̃n(A,M) = C̃n(A,M), for p ≤ 0,

F̃ pC̃n(A,M) = {γ ∈ C̃n(A,M); γλ1,...,λn(a1, ..., an) = 0 if a1, ..., an−p+1 ∈ B},

for p ≥ 1.

(4.1)

The filtration F̃ is a bounded decreasing filtration on C̃n(A,M) because,

C̃n(A,M) = F̃ 0C̃n(A,M)

⊃ F̃ 1C̃n(A,M) = {γ ∈ C̃n(A,M); γλ1,...,λn(a1, ..., an) = 0 for a1, ..., an ∈ B}

⊃ F̃ 2C̃n(A,M) = {γ ∈ C̃n(A,M); γλ1,...,λn(a1, ..., an) = 0 for a1, ..., an−1 ∈ B}

⊃ ...

⊃ F̃ nC̃n(A,M) = {γ ∈ C̃n(A,M); γλ1,...,λn(a1, ..., an) = 0 for a1 ∈ B}

⊃ F̃ n+1C̃n(A,M) = {0}.

Let γλ1,...,λn(a1, ..., an) ∈ F̃ pC̃n(A,M), then the differential d of γ is given by

(dγ)λ1,...,λn+1(a1, ..., an+1) =
n+1∑
i=1

(−1)i+1aiλiγλ1,...,λ̂i,...,λn+1
(a1, ..., âi, ..., an+1)

+
n+1∑
i,j=1
i<j

(−1)i+jγλi+λj ,λ1,...,λ̂i,...,λ̂j ,...,λn+1
([aiλiaj], a1, ..., âi, ..., âj, ..., an+1)

Note that both terms in the right hand side vanish whenever n− p+ 2 arguments of
γ are in B. This means both terms are in F̃ pC̃n+1(A,M), and then dγ ∈ F̃ pC̃n+1(A,M).
Hence, dF̃ pC̃n(A,M) ⊂ F̃ pC̃n+1(A,M).

Therefore, (C̃n+1(A,M), d, F̃ ) is a filtered differential graded module, and we have
the following lemma.

Lemma 4.1.1. There exists a spectral sequence {Ep,q
r , dr : Ep,q

r → Ep+r,q−r+1
r }, r, p, q ≥ 0,
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for (C̃n(A,M), d, F̃ ) with the following properties:

(i) Ep,q
0
∼= F̃ pC̃p+q(A,M)/F̃ p+1C̃p+q(A,M).

(ii) Ep,q
r+1
∼= H̃p+q(Ep,q

r , dr).

(iii) Ep,q
∞
∼= F̃ pH̃p+q(A,M)/F̃ p+1H̃p+q(A,M).

Proof. Follows from Theorem 3.2.1.

Now consider a (p+ q)-cochain γλ1,...,λp+q(a1, ..., ap+q) ∈ C̃p+q(A,M) such that its first
q−arguments are in B, then

P (λ1, ..., λp+q) = γλ1,...,λp+q(a1, ..., ap+q)

is a polynomial in M [λ1, ..., λp+q]. Hence γ determines a map from B⊗q onto C̃p(A,M)

given by

b1 ⊗ ...⊗ bq 7−→ γpA(b1 ⊗ ...⊗ bq) = γλ1,...,λq(b1, ..., bq)γλq+1,...,λq+p(a1, ..., ap)

= γλ1,...,λq ,λq+1,...,λq+p(b1, ..., bq, a1, ..., ap).

Consider the quotient conformal algebra A/B = {a+ B : a ∈ A}, then the inclusion
C̃p(A/B,M) ⊂ C̃p(A,M) defines a map from B⊗q onto C̃p(A/B,M) given by

b1 ⊗ ...⊗ bq 7−→ γ̄pA(b1 ⊗ ...⊗ bq) = γλ1,...,λq(b1, ..., bq)γλq+1,...,λq+p(ā1, ..., āp)

= γλ1,...,λq ,λq+1,...,λq+p(b1, ..., bq, a1, ..., ap)

where ā1, ..., āp are the classes of elements a1, ..., ap in A/B. Note that the image of this
map consists of all (p+ q)-cochains that vanish with q + 1 arguments of a1, ..., ap+q in B.
Hence, we obtain a map

ψ : F̃ pC̃p+q(A,M) −→ C̃q(B, C̃p(A/B,M))

γλ1,...,λp+q(a1, ..., ap+q) 7−→ γ̄pA(b1 ⊗ ...⊗ bq).
(4.2)

which is a C[∂]−module homomorphism. Indeed, for any γ, γ′ ∈ F̃ pC̃p+q(A,M), we obtain

ψ(∂γ + γ′)λ1,...,λp+q(a1, . . . , ap+q)

= (∂γ + γ′)
p

A(b1 ⊗ ...⊗ bq)
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= (∂γ + γ′)λ1,...,λq(b1, ..., bq)γλq+1,...,λq+p(ā1, ..., āp)

= (∂γ)λ1,...,λq(b1, ..., bq)γλq+1,...,λq+p(ā1, ..., āp) + γ′λ1,...,λq(b1, ..., bq)γλq+1,...,λq+p(ā1, ..., āp)

= ∂ψ(γ)λ1,...,λp+q(a1, . . . , ap+q) + ψ(γ′)λ1,...,λp+q(a1, . . . , ap+q).

Remark 4.1.1. For an ideal B of a Lie conformal algebra A, then A/B is a trivial B−module
since [bλ(a+ B)] = [bλa] + B = 0 for a ∈ A and b ∈ B.

Remark 4.1.2. Note that for any a ∈ A, C̃p(A,M) is an A-module, with the action θλ(a)

given by

(θλ(a)γ)λ1,...,λn(a1, ..., an) = aλγλ1,...,λn(a1, ..., an)

−
n∑
i=1

γλ1,...,λ+λi,...,λn(a1, ..., [aλai], ..., an).

Thus, C̃p(A,M) is a B−module with the action induced by the inclusion B ⊂ A.
Then, C̃p(A/B,M) has a B−module structure induced by the inclusion C̃p(A/B,M) ⊂
C̃p(A,M).

Lemma 4.1.2. The map ψ induces an isomorphism of Ep,q
0 onto C̃q(B, C̃p(A/B,M)) for

all p, q ≥ 0.

Proof. Let β = γ̄pA(b1 ⊗ ....⊗ bq) ∈ C̃q(B, C̃p(A/B,M)). Define γ ∈ F̃ pC̃p+q(A,M) by

γ = γλ1,...,λq ,λq+1,...,λq+p(b1, ..., bq, a1, ..., ap).

Then, ψ(γ) = β. i.e., ψ is onto. Note that for any γλ1,...,λp+q(a1, ..., ap+q) ∈ F̃ pC̃p+q(A,M),
its image vanishes whenever q of its arguments a1, ..., ap+q are in B. Hence, kerψ is
F̃ p+1C̃p+q(A,M). Therefore, ψ induces an isomorphism

Ep,q
0
∼= F̃ pC̃p+q(A,M)/F̃ p+1C̃p+q(A,M) −→ C̃q(B, C̃p(A/B,M)).

The following lemma shows that the differential commutes with the induced isomor-
phism in Lemma 4.1.2.

Lemma 4.1.3. Let Ψ denote the isomorphism of Ep,q
0 onto C̃q(B, C̃p(A/B,M)). Then

dΨ = Ψd.
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Proof. Let γ̄ ∈ Ep,q
0 . Then γ̄ = γ + F̃ p+1C̃p+q(A,M), where γ ∈ F̃ pC̃p+q(A,M), and

Ψ(γ̄) = ψ(γ). Thus, we will show that dψ = ψd.
Let γ ∈ F̃ pC̃p+q(A,M), b1, ..., bq+1 ∈ B, a1, ..., ap ∈ A and ā1, ..., āp be the classes of

elements a1, ..., ap in A/B. We have

(ψd)γλ1,..,λq+1(b1, .., bq+1)γλq+2,..,λq+p+1(ā1, .., āp)

= dγλ1,..,λq+1,λq+2,..,λq+p+1(b1, .., bq+1, a1, .., ap)

=

q+1∑
i=1

(−1)i+1biλiγλ1,..,λ̂i,..,λq+1,λq+2,..,λq+p+1
(b1, .., b̂i, .., bq+1, a1, .., ap)

+

p∑
i=1

(−1)i+1aiλiγλ1,..,λq+1,λq+2,..,λ̂i,..,λq+p+1
(b1, .., bq+1, a1, .., âi, .., ap)

+

q+1∑
i,j=1
i<j

(−1)i+jγλi+λj ,λ1,..,λ̂i,..,λ̂j ,..,λq+1,λq+2,..,λq+p+1
([biλibj], b1, .., b̂i, .., b̂j, .., bq+1, a1, .., ap)

+

p∑
i,j=1
i<j

(−1)i+jγλi+λj ,λ1,..,λq+1,λq+2,..,λ̂i,..,λ̂j ,..,λq+p+1
(b1, .., bq+1, [aiλiaj], a1, .., âi, .., âj, .., ap)

+

q+1∑
i=1

p∑
j=1

(−1)i+jγλi+λj ,λ1,..,λ̂i,..,λq+1,λq+2,..,λ̂j ,..,λq+p+1
(b1, .., b̂i, .., bq+1, [biλiaj], a1, .., âj, .., ap)

Note that γ in the second, fourth, and fifth terms of the right hand side have q + 1 of its
arguments in B. Then, they all vanish, and by (4.2) and the definition of the differential
we have,

(ψd)γλ1,..,λq+1(b1, .., bq+1)γλq+2,..,λq+p+1(ā1, .., āp)

=

q+1∑
i=1

(−1)i+1biλiγλ1,..,λ̂i,..,λq+1,λq+2,..,λq+p+1
(b1, .., b̂i, .., bq+1, a1, .., ap)

+

q+1∑
i,j=1
i<j

(−1)i+jγλi+λj ,λ1,..,λ̂i,..,λ̂j ,..,λq+1,λq+2,..,λq+p+1
([biλibj], b1, .., b̂i, .., b̂j, .., bq+1, a1, .., ap)

=

q+1∑
i=1

(−1)i+1biλiψ
(
γλ1,..,λ̂i,..,λq+1

(b1, .., b̂i, .., bq+1)γλq+2,..,λq+p+1(ā1, .., āp)
)

+

q+1∑
i,j=1
i<j

(−1)i+jψ
(
γλi+λj ,λ1,..,λ̂i,..,λ̂j ,..,λq+1

([biλibj], b1, .., b̂i, .., b̂j, .., bq+1)γλq+2,..,λq+p+1(ā1, .., āp)
)
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= (dψ)γλ1,..,λq+1(b1, .., bq+1)γλq+2,..,λq+p+1(ā1, .., āp).

i.e., dψ = ψd and hence, d commutes with the isomorphism Ψ.

Using Lemma 4.1.1, we have Ep,q
1
∼= H̃p+q(Ep,q

0 , d0). From Lemmas, 4.1.2 and 4.1.3,
we describe the first page of the Hochschild-Serre spectral sequence for Lie conformal
algebras in the following theorem.

Theorem 4.1.2. Let A be a Lie conformal algebra, B be an ideal of A and M be an
A-module, then

Ep,q
1
∼= H̃q(B, C̃p(A/B,M)),

for all p, q ≥ 0.

Now let g− = (Lie A/B)− be the annihilation Lie algebra of A/B. Then M is g−-
module, and we have

C̃p(A/B,M) ∼= Cp(g−,M) ∼= Hom(Λpg−,M)

where Cp(g−,M) is the Chevalley-Eilenberg complex defining the cohomology of g− with
coefficients in M . In the following theorem, we give a description for the second page of
the Hochschild-Serre spectral sequence for Lie conformal algebras.

Theorem 4.1.3. Let A be a Lie conformal algebra, B be an ideal of A and M be an
A-module, then

Ep,q
2
∼= H̃p(A/B, H̃q(B,M)), p, q ≥ 0.

Proof. From Theorem 4.1.2, we have

Ep,q
1
∼= H̃q(B, C̃p(A/B,M)) ∼= H̃q(B,Hom(Λpg−,M))

∼= (Λpg−)∗ ⊗ H̃q(B,M)

∼= Hom(Λpg−, H̃
q(B,M))

∼= Cp(g−, H̃
q(B,M))

∼= C̃p(A/B, H̃q(B,M)).

Hence,
Ep,q

2
∼= H̃p(A/B, H̃q(B,M)).
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Remark 4.1.3. The basic complex C̃q(B,M) has the A-module structure induced by
the inclusion C̃q(B,M) ⊂ C̃q(A,M), and the differential d commute with the action
θλ(a), a ∈ A. Hence, H̃q(B,M) is anA-module. Moreover, H̃q(B,M) is a trivial B−module.
Thus, H̃q(B,M) is an A/B-module.

Corollary 4.1.1. Ep,0
2
∼= H̃p(A/B,MB) where MB = {m ∈M | bλm = 0, ∀ b ∈ B}, the

A/B-module of B−invariants in M .

4.1.2 Convergence of the Spectral Sequence

Theorem 4.1.4. The Ep,q
∞ -page is adjoint to H̃∗(A,M), and the natural homomorphism

H̃q(A,M) −→ H̃q(B,M) can be represented as the composition H̃q(A,M) → E0,q
∞ ↪→

E0,q
1
∼= H̃q(B,M).

Proof. From Lemma 4.1.1, we have

Ep,q
∞
∼= F̃ pH̃p+q(A,M)/F̃ p+1H̃p+q(A,M),

where F̃ •H̃•(A,M) is the filtration induced by the filtration F̃ on the basic complex
C̃n(A,M). i.e., The Hochschild-Serre spectral sequence for Lie conformal algebras con-
verges to H̃•(A,M), and we write Ep,q

r ⇒ H̃p+q(A,M).
The cochain map res : C̃q(A,M) −→ C̃q(B,M) which restricts a q-cochain on A to

a q-cochain on B induces homomorphisms H̃q(A,M) −→ H̃q(B,M). If p = 0, then we
obtain

E0,q
∞
∼= F̃ 0H̃q(A,M)/F̃ 1H̃q(A,M) ∼= H̃q(A,M)/F̃ 1H̃q(A,M).

So we get a surjective map H̃q(A,M) → E0,q
∞ . Since Ep,q

r is a first quadrant spectral
sequence, then all the differentials that are mapped into E0,q

r are zero. Hence we have the
inclusion E0,q

∞ ↪→ ... ↪→ E0,q
r+1 ↪→ E0,q

r . Therefore, we have the composition H̃q(A,M) →
E0,q
∞ ↪→ E0,q

1 . From Theorem 4.1.2,

E0,q
1
∼= H̃q(B, C̃0(A,M)) ∼= H̃q(B,M).

Hence, the natural homomorphism H̃q(A,M) −→ H̃q(B,M) can be represented as the
composition H̃q(A,M)→ E0,q

∞ ↪→ E0,q
1
∼= H̃q(B,M).

37



4.2 The Inflation-Restriction Exact Sequence

Let A and A′ be Lie conformal algebras, M and M ′ be A−module and A′−module,
respectively, and ϕ and f be two homomorphisms ϕ : A′ −→ A and f : M −→ M ′.
Then ϕ and f are said to be compatible pair if f(ϕ(a′)λm) = a′λf(m) for a′ ∈ A′

and m ∈M . From such a compatible pair of homomorphisms, we get a homomorphism
ψ : C̃n(A,M) −→ C̃n(A′,M ′) given by γ 7→ f ◦ γ ◦ϕ. Then we have the following lemma:

Lemma 4.2.1. The maps ψ : C̃n(A,M) −→ C̃n(A′,M ′) defined by γ 7→ f ◦ γ ◦ ϕ for
γ ∈ C̃n(A,M) induce maps on cohomology H̃n(A,M) −→ H̃n(A′,M ′) for all n ≥ 0.

Proof. We need only to check that ψ is compatible with the differential d defined in (2.7).
Let γ ∈ C̃n(A,M). Then we have

(ψ(dγ))λ1,...,λn+1(a1, . . . , an+1)

= f(dγ)λ1,...,λn+1(ϕ(a1), . . . , ϕ(an+1))

= f
( n+1∑
i=1

(−1)i+1ϕ(ai)λiγλ1,...,λ̂i,...,λn+1
(ϕ(a1), . . . , ϕ̂(ai), . . . , ϕ(an+1))

+
n+1∑
i,j=1
i<j

γλi+λj ,λ1,...,λ̂i,...,λ̂j ,...,λn+1
([ϕ(ai)λiϕ(aj)], ϕ(a1), . . . , ϕ̂(ai), . . . , ϕ̂(aj), . . . , an+1)

)

=
n+1∑
i=1

(−1)i+1ϕ(ai)λi(fγ)λ1,...,λ̂i,...,λn+1
(ϕ(a1), . . . , ϕ̂(ai), . . . , ϕ(an+1))

+
n+1∑
i,j=1
i<j

(fγ)λi+λj ,λ1,...,λ̂i,...,λ̂j ,...,λn+1
([ϕ(ai)λiϕ(aj)], ϕ(a1), . . . , ϕ̂(ai), . . . , ϕ̂(aj), . . . , an+1)

= d(f(γ))λ1,...,λn+1(ϕ(a1), . . . , an+1)

= d(ψ(γ))λ1,...,λn+1(a1, . . . , an+1).

i.e., dψ = ψd. Hence, ψ induce maps on cohomology H̃n(A,M) −→ H̃n(A′,M ′) for all
n ≥ 0.

Consider the subalgebra B of a Lie conformal algebra A, and the A−module M .
Then the pair (ι, id) where ι : B ↪→ A and id : M −→ M induces the restriction map
res : C̃n(A,M) −→ C̃n(B,M) which by Lemma 4.2.1 gives the homomorphism on the
cohomology

res : H̃n(A,M) −→ H̃n(B,M)
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called the restriction. If B is an ideal of A, then consider the B−module MB = {m ∈
M |bλm = 0 ∀ b ∈ B}. The injection ι : MB ↪→ M and the projection π : A −→ A/B
form a compatible pair of homomorphisms. By Lemma 4.2.1, the pair (ι, π) induces a
homomorphism

inf : H̃n(A/B,MB) −→ H̃n(A,M)

called the inflation homomorphism. Note that MB is an A/B−module.

Example 4.2.1. In degree 0, the restriction homomorphism res : MA −→ MB and
the inflation homomorphism inf : (MB)A/B −→ MA are the inclusion and the identity,
respectively.

Example 4.2.2. The edge maps (Proposition 3.3.1) are the inflation H̃q(A/B,MB) −→
H̃q(A,M) and the restriction H̃q(A,M) −→ H̃q(B,M)A/B.

Now suppose that for a Lie conformal algebra A there exists a Hchschild-Serre spectral
sequence, Ep,q

2 = H̃p(A/B, H̃q(B,M)) ⇒ H̃p+q(A,M), where B ⊂ A is an ideal and
M is a conformal A−module. Then we have the following results which describe the
inflation-restriction exact sequence that arises from the Hchschild-Serre spectral sequence.

Theorem 4.2.1. (Inflation-Restriction exact sequence) The Hochschild-Serre spec-
tral sequence for Lie conformal algebras yields the following exact sequence

0 −→ H̃1(A/B,MB)
inf−−→ H̃1(A,M)

res−−→ H̃1(B,M)A/B −→
d2−−→ H̃2(A/B,MB)

inf−−→ H̃2(A,M)
(4.3)

whereMB is the invariant submodule ofM , and res and inf are the inflation and restriction
maps, respectively.

Proof. Follows directly from the five-term exact sequence (see Example 3.3.1).

Corollary 4.2.1. Suppose that B acts trivially on M and H̃q(A/B,M) = 0 for q = 1, 2,
then H̃1(A,M) ∼= H̃1(B,M)A/B.

Proof. Follows from Theorem 4.2.1.

Corollary 4.2.2. Suppose H̃1(B,M) = H̃2(B,M) = 0, then H̃q(A,M) ∼= H̃q(A/B,MB)

for q = 1, 2.
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Proof. The seven-term exact sequence (see Remark 3.3.1), of a conformal algebra A and
its ideal B with coefficients in an A−module is given by

0 −→ H̃1(A/B, H̃0(B,M)) −→ H̃1(A,M) −→ H̃0(A/B, H̃1(B,M)) −→

−→ H̃2(A/B, H̃0(B,M)) −→ ker
(
H̃2(A,M)→ H̃0(A/B, H̃2(B,M))

)
−→

−→ H̃1(A/B, H̃1(B,M)) −→ H̃3(A/B, H̃0(B,M)).

But H̃q(B,M) = 0 for q = 1, 2, so we have

0 −→ H̃1(A/B, H̃0(B,M)) −→ H̃1(A,M) −→ 0

0 −→ H̃2(A/B, H̃0(B,M)) −→ H̃2(A,M) −→ 0.

which implies H̃q(A,M) ∼= H̃q(A/B,MB) for q = 1, 2.

Theorem 4.2.2. (Higher Degree Inflation-Restriction exact sequence) Let B be
an ideal of a Lie conformal algebra A and M an A−module. Suppose that H̃q(B,M) = 0

for 1 ≤ q < q′. Then the inflation homomorphism induces isomorphisms

H̃q(A,M) ∼= H̃q(A/B,MB)

for 0 ≤ q < q′, and there is an exact sequence

0 −→ H̃q′(A/B,MB)
inf−−→ H̃q′(A,M)

res−−→ H̃q′(B,M)A/B −→
d2−−→ H̃q′+1(A/B,MB)

inf−−→ H̃q′+1(A,M).

Proof. Using Theorem 3.3.1 with n = q′ we have

H̃q(A,M) ∼= Eq,0
2 = H̃q(A/B,MB) ∀ q < q′

and the sequence 0 −→ H̃q′(A/B,MB) −→ H̃q′(A,M) −→ H̃q′(B,M)A/B
d2−−→

H̃q′+1(A/B,MB) −→ H̃q′+1(A,M) is exact
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4.3 The Hochschild–Serre Spectral Sequence Associ-

ated with the Reduced Complex

Recall that for any filtration F on an C[∂]−module M , and N is a submodule of M , then
the induced filtrations on N and M/N , are given by F rN = N ∩ F rM and F r(M/N) =

(F rM +N)/N , respectively.
Let A be a Lie conformal algebra, and M be a conformal A−module. Consider the

induced filtration F • of F̃ • on the reduced complex C•(A,M), then we have

F pCn(A,M) = F̃ p
(
C̃n(A,M)/∂C̃n(A,M)

)
=
(
F̃ pC̃n(A,M) + ∂C̃n(A,M)

)
/∂C̃n(A,M), for all p.

Observe that,

F 0Cn(A,M) =
(
F̃ 0C̃n(A,M) + ∂C̃n(A,M)

)
/∂C̃n(A,M)

∼= F̃ 0C̃n(A,M)/
(
F̃ 0C̃n(A,M) ∩ ∂C̃n(A,M)

)
= C̃n(A,M)/

(
C̃n(A,M) ∩ ∂C̃n(A,M)

)
= Cn(A,M),

F n+1Cn(A,M) =
(
F̃ n+1C̃n(A,M) + ∂C̃n(A,M)

)
/∂C̃n(A,M)

= ∂C̃n(A,M)/∂C̃n(A,M) = {0}.

Moreover, F pCn(A,M) ⊂ F p−1Cn(A,M) for all p. Thus, F is a bounded decreasing
filtration on Cn(A,M). Furthermore, the differential d preserves the filtration F • because

d
(
F pCn(A,M)

)
= d
(
F̃ pC̃n(A,M) + ∂C̃n(A,M)

)
/∂C̃n+1(A,M)

= d
(
F̃ pC̃n(A,M)

)
+ ∂dC̃n(A,M)/∂C̃n+1(A,M)

⊂ F̃ pC̃n+1(A,M) + ∂C̃n+1(A,M)/∂C̃n+1(A,M)

= F pCn+1(A,M),

for all p. Therefore, (Cn(A,M), d, F ) is a filtered differential graded C[∂]−module. Thus,
by Theorem 3.2.1, there exists a first quadrant cohomological spectral sequence {Ep,q

r , dr}
for r ≥ 0 that satisfies the following properties:

1. Ep,q
0
∼= F pCp+q(A,M)/F p+1Cp+q(A,M).

2. Ep,q
1
∼= Hp+q(Ep,q

0 , d0).
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3. Ep,q
∞
∼= F pHp+q(A,M)/F p+1Hp+q(A,M),

Now suppose that the second term of the spectral sequence associated with the reduced
complex is given by Ep,q

2 = Hp(A/B,Hq(B,M)), where B is an ideal of A. Then by the
convergence of the spectral sequence we have Ep,q

2 ⇒ Hp+q(A,M). In this section we will
show that the arising spectral sequence does not converge to the reduced cohomology
H∗(A,M).

Due to [33], the dimension of the reduced cohomology of Vir n Curg with trivial
coefficients is given by

dimHq(Vir n Curg,C) = dim H̃q(Vir n Curg,C) + dim H̃q+1(Vir n Curg,C)

= dim Hq(g,C) + dim Hq−3(g,C) + dim Hq+1(g,C) + dim Hq−2(g,C)

= dim Hq(Curg,C) + dim Hq−3(Curg,C), (4.4)

for all q ≥ 0. Now suppose that the Hochschild-Serre spectral sequence with respect to
the reduced complex C•(Vir n Curg,C) is given by

Ep,q
2 = Hp(Vir,Hq(Curg,C))⇒ Hp+q(Vir n Curg,C) (4.5)

for all p, q ≥ 0. Then by Theorem 2.7.5, Hq(Curg,C) = Hq(g,C)
⊕

Hq+1(g,C) for all q,
which is a trivial Vir−module (Lemma 5.2.1). Then (4.5) can be rewritten as

Ep,q
2 = Hp(Vir,C)⊗ Hq(Curg,C)⇒ Hp+q(Vir n Curg,C).

By Theorem 2.7.4, Hp(Vir,C) = 0 unless p = 0, 2, 3. So, the E2-term is given by

Ep,q
2 =



Hq(g,C)⊕ Hq+1(g,C) if p = 0,

P2[Hq(g,C)⊕ Hq+1(g,C)] if p = 2,

Λ3[Hq(g,C)⊕ Hq+1(g,C)] if p = 3,

0 otherwise.

where q ≥ 0, P2 = λ3
1 − λ3

2 and Λ3 = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3). Then the corner of the
E2 page is shown in the following figure.
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0 1 2 3 4

0

1

2

3

4

5

6

C 0 P2C Λ3C 0

0 0 0 0 0

H2(Curg,C) 0 P2H2(Curg,C) Λ3H2(Curg,C) 0

H3(Curg,C) 0 P2H3(Curg,C) Λ3H3(Curg,C) 0

H4(Curg,C) 0 P2H4(Curg,C) Λ3H4(Curg,C) 0

H5(Curg,C) 0 P2H5(Curg,C) Λ3H5(Curg,C) 0

H6(Curg,C) 0 P2H6(Curg,C) Λ3H6(Curg,C) 0

Figure 4.1: Ep,q
2 -page for (C•(Vir n Curg,C), F •, d).

Suppose that any q−cochain γ̄ ∈ Cq(Curg,C), a representative of a cohomology class
[γ̄] ∈ Hq(Curg,C), can be extended to a q−cochain in γ̄ ∈ Cq(Vir n Curg,C) as the
following

(ιλ(L)dγ̄)λ1,...,λq(g1, . . . , gq) = 0,

γ̄λ1,...,λs,λs+1,...,λq(L, . . . , L, gs+1, . . . , gq) = 0, for all 2 ≤ s ≤ q.
(4.6)

Then γ̄ ∈ E0,q
2 for all q ≥ 0. Tracking the differential d2 in the Figure 4.1, observe that the

only possible nontrivial differential is d0,q
2 : Hq(Curg,C)→ P2Hq−1(Curg,C), where q ≥ 3.

Then, for γ ∈ C̃q(Curg,C), a representative of a reduced q−cocycle γ̄ ∈ Hq(Curg,C) we
have

d0,q
2 (γ̄) = dγ̄ = dγ mod ∂C̃q−1(Curg,C) = P2β mod ∂C̃q−1(Curg,C) = P2β̄

for some β ∈ C̃q−1(Curg,C), where P2 = λ3
1 − λ3

2. On the other hand, we have

dγλ1,...,λq+1(L,L, g3, . . . , gq+1)

= (λ2 − λ1)γλ1+λ2,λ3,...,λq+1(L, g3, . . . , gq+1)

+

q+1∑
j=3

(−1)i+1λjγλ1+λj ,λ2,...,λ̂j ,...,λq+1
(gj, L, g3, . . . , ĝj, . . . , gq+1)
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+

q+1∑
j=3

(−1)i+2λjγλ2+λj ,λ1,...,λ̂j ,...,λq+1
(gj, L, g3, . . . , ĝj, . . . , gq+1)

+

q+1∑
i,j=3
i<j

(−1)i+jγλi+λj ,λ1,...,λ̂i,...,λ̂j ,...,λq+1
([giλigj], L, L, g3, . . . , ĝi, . . . , ĝj, . . . , gq+1)

= (λ2 − λ1)γλ1+λ2,λ3,...,λq+1(L, g3, . . . , gq+1)

+

q+1∑
j=3

λjγλ2,...,λ1+λj ,...,λq+1(L, g3, . . . , gj, . . . , gq+1)

−
q+1∑
j=3

λjγλ1,...,λ2+λj ,...,λq+1(L, g3, . . . , gj, . . . , gq+1). (4.7)

where the last equality holds due to (4.6) and the skew symmetry of γ. Since Hq(Curg,C) =

Hq(g,C) ⊕ Hq+1(g,C), γ̄ does not depend on λ3, . . . , λq+1. Then we can set γ = c′0

for some c′0 ∈ C when evaluated on the elements of g. On the other hand, we have
dγ̄ = P2β̄ ∈ P2Hq−1(Curg,C) for some β ∈ C̃q−1(Curg,C). Then β̄ is a constant and dγ̄
is a skew symmetric polynomial of degree 3. It follows that γ is a quadratic homogeneous
polynomial in one variable. Then we can rewrite (4.7) as

dγλ1,...,λq+1(L,L, g3, . . . , gq+1)

= c′0(λ2 − λ1)(λ1 + λ2)2 + c′0(λ3 + . . .+ λq+1)λ2
2

− c′0(λ3 + . . .+ λq+1)λ2
1

= c′0(λ2
2 − λ2

1)(λ1 + λ2 + λ3 + . . .+ λq+1)

(4.8)

Since ∂C̃q(Vir n Curg,C) = (
∑q

i=1 λi)∂C̃
q(Vir n Curg,C), dγ = 0 and thus, d0,q

2 vanishes
for all q ≥ 0. Therefore, Ep,q

3
∼= Ep,q

2 for all p, q ≥ 0. The corner of the E3−page is shown
in the following diagram.
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0 1 2 3 4

0

1

2

3

4

5

6

C 0 P2C Λ3C 0

0 0 0 0 0

H2(Curg,C) 0 P2H2(Curg,C) Λ3H2(Curg,C) 0

H3(Curg,C) 0 P2H3(Curg,C) Λ3H3(Curg,C) 0

H4(Curg,C) 0 P2H4(Curg,C) Λ3H4(Curg,C) 0

H5(Curg,C) 0 P2H5(Curg,C) Λ3H5(Curg,C) 0

H6(Curg,C) 0 P2H6(Curg,C) Λ3H6(Curg,C) 0

Figure 4.2: Ep,q
3 -page for (C•(Vir n Curg,C), F •, d).

Now assume that any q−cochain γ̄ ∈ Cq(Curg,C), a representative of a cohomology
class [γ̄] ∈ Hq(Curg,C), can be extended to a q−cochain in γ̄ ∈ Cq(Vir n Curg,C) as
the following

(ιλ(L)dγ̄)λ1,...,λq(g1, . . . , gq) = 0,

γ̄λ1,...,λs,λs+1,...,λq(L, . . . , L, gs+1, . . . , gq) = 0, for all 3 ≤ s ≤ q. (4.9)

Then γ̄ ∈ E0,q
3 for all q ≥ 0. From Figure 4.2, the only possible nontrivial differential is

d0,q
3 : Hq(Curg,C) −→ Hq−2(Curg,C) for q ≥ 2. Observe that for any γ̄ ∈ Cq(Curg,C),

the differential d0,q
3 can be written as follows

d0,q
3 γ̄ = dγ̄ = dγ mod ∂C̃q−2(Curg,C) = Λ3β mod ∂C̃q−2(Curg,C) = Λ3β̄

for some β ∈ C̃q−2(Curg,C), where Λ3 = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3). By the definition
of the differential, we have

dγλ1,...,λq+1(L,L, L, g3, . . . , gq+1)

= (λ2 − λ1)γλ1+λ2,λ3,λ4,...,λq+1(L,L, g4, ..., gq+1)

+ (λ1 − λ3)γλ1+λ3,λ2,λ4,...,λq+1(L,L, g4, ..., gq+1)

+ (λ3 − λ2)γλ2+λ3,λ1,λ4,...,λq+1(L,L, g4, ..., gq+1)
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−
q+1∑
j=4

λjγλ2,λ3,λ4,...,λi−1,λ1+λj ,λi+1,...λq+1(L,L, g4, ..., gj, ..., gq+1)

+

q+1∑
j=4

λjγλ1,λ3,λ4,...,λi−1,λ2+λj ,λi+1,...λq+1(L,L, g4, ..., gj, ..., gq+1)

−
q+1∑
j=4

λjγλ1,λ2,λ4,...,λi−1,λ3+λj ,λi+1,...λq+1(L,L, g4, ..., gj, ..., gq+1). (4.10)

Since dγ̄ = Λ3β̄ ∈ Λ3Hq(Curg,C) where β ∈ C̃q−2(Curg,C), then γ is a quadratic skew
symmetric homogeneous polynomial in two variables that is a constant on g. So we can
rewrite (4.10) as

dγλ1,...,λq+1(L,L, L, g3, . . . , gq+1)

= (λ2 − λ1)
[
(λ1 + λ2)2 − λ2

3

]
+ (λ1 − λ3)

[
(λ1 + λ3)2 − λ2

2

]
+ (λ3 − λ2)

[
(λ2 + λ3)2 − λ2

1

]
−

q+1∑
j=4

λj
[
λ2

2 − λ2
3

]
+

q+1∑
j=4

λj
[
λ2

1 − λ2
3

]
−

q+1∑
j=4

λj
[
λ2

1 − λ2
2

]
= 0.

(4.11)

So we have d0,q
3 (γ̄) = dγ̄ = 0 for all q ≥ 0. It follows that Ep,q

4
∼= Ep,q

3 for all p, q ≥ 0.
Moreover, the differential dr for all r ≥ 4 is zero, and hence Ep,q

∞
∼= Ep,q

4 for all p, q ≥ 0.
Thus we have,

Hn(Vir n Curg,C) ∼=
⊕
p+q=n

Hp(Vir,C)⊗ Hq(Curg,C)

∼= H0(Vir,C)⊗ Hn(Curg,C)⊕ H2(Vir,C)⊗ Hn−2(Curg,C)

⊕ H3(Vir,C)⊗ Hn−3(Curg,C)

∼= Hn(Curg,C)⊕ P2Hn−2(Curg,C)⊕ Λ3Hn−3(Curg,C).

where P2 = λ3
1 − λ3

2 and Λ3 = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3). i.e., dim Hn(Vir n Curg,C) =

dim Hn(Curg,C) + dim Hn−2(Curg,C) + dim Hn−3(Curg,C), which contradicts (4.4).
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Chapter 5

Applications

According to [8], every finite semisimple Lie conformal algebra is uniquely decomposed in
a finite direct sum of Lie conformal algebras each of which is isomorphic to a Virasoro
conformal algebra, Vir, a current conformal algebra, Curg where g is a semisimple finite
dimensional Lie algebra, or a semidirect product of Vir and Curg, defined by [Lλg] =

(∂ + λ)g, g ∈ g. The cohomology of the first two types was extensively studied in [2], and
the cohomology of Vir n Curg was done in [33].

In this chapter, we will start by computing the basic cohomology of Vir with coefficient
in a Vir−module M∆,α. Then we will use the Lie conformal algebra’s Hochschild-Serre
spectral sequence to compute the cohomology of Vir n Curg with trivial coefficients. In
addition, we give explicit computations for the basic cohomology of Vir n Curg with
coefficients in the module M∆,α,U .

5.1 Cohomology of Vir with coefficients in M∆,α

Recall (Theorem 2.3.1) that every irreducible finite Vir-module is M∆,α where ∆, α ∈ C
and ∆ 6= 0 such that

M∆,α = C[∂]ν, Lλν = (∂ + α + ∆λ)ν.

The following theorem describes the reduced cohomology of Vir with coefficients in M∆,α

which was studied in [2].

Theorem 5.1.1 ([2], Theorem 7.2). 1. H•(Vir,M∆,α) = 0 if α 6= 0.

2. Hq(Vir,M∆,0) ∼= Hq(Vect0C, U∆−1)⊕ Hq−1(Vect0C, U∆−1) for any q.
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3. dim Hq(Vir,M∆,0) = dim Hq(VectC,C[t, t−1](dt)1−∆). Explicitly:

dim Hq(Vir,M1−(3r2±r)/2,0) =


2 for q = r + 1

1 for q = r, r + 2

0 otherwise

and Hq(Vir,M∆,0) = 0 if ∆ 6= 1− (3r2 ± r)/2 for any r ∈ Z+.

In this section, we will compute the basic cohomology of Vir with coefficients in the
Vir-module M∆,α where ∆, α ∈ C.

Theorem 5.1.2. For the Virasoro conformal algebra Vir, for any α ∈ C,

1. dim H̃q(Vir,M0,α) = 0 for q > 3

2. dim H̃q(Vir,M1,α) = 0 for q 6= 1, 2.

3. dim H̃q(Vir,M(3r−r2)/2,α) = 0 for q > r where r ∈ Z+ and r ≥ 4.

Proof. We first identify the basic cohomology complex C̃•(Vir,M∆,α). Any n-cochain
γ ∈ C̃n(Vir,M∆,α) is determined by its value on L⊗n:

P (λ1, . . . , λn) = γλ1,...,λn(L, . . . , L),

where P (λ1, . . . , λn) is a skew-symmetric polynomial in n variables with values in M∆,α.
The differential is given by the following formula:

(dP )(λ1, . . . , λn+1) =
n+1∑
i=1

(−1)i+1(∂M + α + ∆λi)P (λ1, . . . , λ̂i, . . . , λn+1)

+
n+1∑
i,j=1
i<j

(−1)i+j(λi − λj)P (λi + λj, λ1, . . . , λ̂i, . . . , λ̂j, . . . , λn+1).

Following [2], consider the homotopy operator

κ : C̃q(Vir,M∆,α) −→ C̃q−1(Vir,M∆,α)

κγλ1,...,λq−1(L, . . . , L) =
∂

∂λ
ιλ(L)γλ1,...,λq−1(L, . . . , L)|λ=0.
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Then by Cartan’s identity we have

(κd+ dκ)γλ1,...,λq(L, . . . , L)

=
∂

∂λ
(ιλ(L)d+ dιλ(L))γλ1,...,λq(L, . . . , L)|λ=0

=
∂

∂λ
θλ(L)γλ1,...,λq(L, . . . , L)|λ=0

=
∂

∂λ

(
(∂ + α + ∆λ)γλ1,...,λq(L, . . . , L)|λ=0 +

q∑
i=1

(λi − λ)γλ1,...,λi+λ,...,λq(L, . . . , L)|λ=0

)
= (degλ γ − q + ∆)γλ1,...,λq(L, . . . , L).

where degλ γ is the total degree of γ in λ1, . . . , λq. Then, for a q−cochain γ, it contributes
to the cohomology of C̃q(Vir,M∆,α) only if its degree as a polynomial is equal to q −∆.
Thus, ∆ must be an integer, otherwise H̃q(Vir,M∆,α) = 0 for all q. Since γγλ1,...,λq (L, . . . , L)

as a polynomial in λ1, . . . , λq is a skew-symmetric, then it is divisible by Πi<j(λi − λj)
whose polynomial degree is q(q − 1)/2.

Consider the quadratic inequality q(q − 1)/2 ≤ q −∆, whose discriminant is 9− 8∆.
Then q ∈ I = [(3−

√
9− 8∆)/2, (3 +

√
9− 8∆)/2]. Let r be a nonnegative integer such

that r ∈ I, then we have ∆ = (3r − r2)/2. It follows that the only integral solutions for
the inequality q(q − 1)/2 ≤ q −∆ are

q =


0, 1, 2, 3 if ∆ = 0,

1, 2 if ∆ = 1,

0, 1, . . . , r if ∆ = (3r − r2)/2.

where r ∈ Z+ such that r ≥ 4. Therefore, for ∆ = 0, we have H̃q(Vir,M0,α) = 0 for all
q > 3, and for ∆ = 1 we obtain H̃q(Vir,M1,α) = 0 for all q 6= 1, 2. If ∆ = (3r − r2)/2 for
r ∈ Z+ such that r ≥ 4, then we have H̃q(Vir,M∆,α) = 0 for all q > r.

As shown in Proposition 2.7.1, the short exact sequences of complexes 0 −→ ∂C̃• −→
C̃• −→ C• −→ 0 gives the following long exact sequence of cohomology groups:

0 H0(∂C̃•) H̃0(Vir,M∆,α) H0(Vir,M∆,α)

H1(∂C̃•) H̃1(Vir,M∆,α) H1(Vir,M∆,α)

H2(∂C̃•) H̃2(Vir,M∆,α) H2(Vir,M∆,α) · · ·

ι0 π0 w0

ι1 π1 w1

ι2 π1 w2

(5.1)
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where ιi and πi are the homomorphisms induced by the embedding ∂C̃•
ι
↪−→ C̃• and the

canonical projection π : C̃• −→ C̃•/∂C̃•, respectively, and wi is the i−th connecting
homomorphism. Then, we have the following lemma.

Lemma 5.1.1. The map ιq : Hq(∂C̃•) −→ H̃q(Vir,M∆,α) is zero for all q ≥ 0.

Proof. Let γ ∈ C̃q(Vir,M∆,α) be a representative of cohomology class [γ] ∈ H̃q(Vir,M∆,α)

then by Theorem 5.1.2, γλ1,...,λq(L, . . . , L) = P (λ1, . . . , λq) where P (λ1, . . . , λq) is a skew
symmetric polynomial in λ1, . . . , λq of total degree, degλ P = q −∆.

Consider the q−cocycle [∂γ] ∈ Hq(∂C̃•) for nonzero [γ] ∈ H̃q(Vir,M∆,α), then
ιq([∂γ]) = [∂γ] ∈ H̃q(Vir,M∆,α). So, ∂γ can be identified with a skew symmetric polyno-
mial ∂P of degree q −∆. From the definition we have

∂ · γλ1,...,λq = ∂ · P (λ1, . . . , λq) = (∂M +

q∑
i=1

λi)P (λ1, . . . , λq).

So we get degλ ∂γ = degλ P + 1 = q −∆ + 1, a contradiction. Then, ∂γ must be zero in
H̃q(Vir,M∆,α), i.e., the image of ιq is zero for all q ≥ 0.

Theorem 5.1.3. For all q ≥ 0,

dim Hq(Vir,M∆,α) = dim H̃q(Vir,M∆,α) + dim H̃q+1(Vir,M∆,α).

Proof. By Lemma 5.1.1, we have im ιq = 0 for all q ≥ 0. Thus, kerπq = 0, and im wq =

Hq+1(∂C̃•). Then the long exact sequence (5.1) gives the following short exact sequence
for each q ≥ 0:

0 −→ H̃q(Vir,M∆,α) −→ Hq(Vir,M∆,α) −→ H̃q+1(∂C̃•) −→ 0

Thus, for all q ≥ 0 we have dim Hq(Vir,M∆,α) = dim H̃q(Vir,M∆,α) + dim H̃q+1(∂C̃•) =

dim H̃q(Vir,M∆,α) + dim H̃q+1(Vir,M∆,α) by Theorem 2.7.1.

Theorem 5.1.4. H̃•(Vir,M∆,α) = 0 for α 6= 0.

Proof. Follows from Theorem 5.1.1 and Theorem 5.1.3.
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Theorem 5.1.5. For the Virasoro conformal algebra,

dim H̃q(Vir,M0,0) =

1 if q = 2 or 3,

0 otherwise.

In particular, H̃2(Vir,M0,0) ∼= C(λ2
1−λ2

2)ν, and H̃3(Vir,M0,0) ∼= C(λ1−λ2)(λ1−λ3)(λ2−
λ3)ν.

Proof. By Theorem 5.1.2, we have r = 0 or 3 and dim H̃q(Vir,M0,0) = 0 for all q ≥ 4.
Using Theorem 5.1.1, we obtain

dim Hq(Vir,M0,0) =


2 if q = 2,

1 if q = 1 or 3,

0 otherwise.

Then by Theorem 5.1.3, dim H̃q(Vir,M0,0) = 1 for q = 2 or 3, and is zero otherwise. To find
a basis for H̃q(Vir,M0,0) and q = 2, 3, recall that the only skew symmetric homogeneous
polynomials of degree q −∆ contribute to the cohomology of C̃•(Vir,M0,0). For q = 2,
the only skew symmetric homogeneous polynomial of degree 2 in two variables is λ2

1 − λ2
2.

Setting γλ,µ(L,L) = m(λ2 − µ2) where m = p(∂)ν ∈M0,0, we get

dγλ1,λ2,λ3(L,L, L)

= Lλ1γλ2,λ3(L,L)− Lλ2γλ1,λ3(L,L) + Lλ3γλ1,λ2(L,L)− γλ1+λ2,λ3([Lλ1L], L)

+ γλ1+λ3,λ2([Lλ1L], L)− γλ2+λ3,λ1([Lλ2L], L)

= Lλ1
(
p(∂)(λ2

2 − λ2
3)ν
)
− Lλ2

(
p(∂)(λ2

1 − λ2
3)ν
)

+ Lλ3
(
p(∂)(λ2

1 − λ2
2)ν
)

− (λ1 − λ2)γλ1+λ2,λ3(L,L) + (λ1 − λ3)γλ1+λ3,λ2(L,L)− (λ2 − λ3)γλ2+λ3,λ1(L,L)

= p(∂ + λ1)
(
∂M(λ2

2 − λ2
3)ν
)
− p(∂ + λ2)

(
∂M(λ2

1 − λ2
3)ν
)

+ p(∂ + λ3)
(
∂M(λ2

1 − λ2
2)ν
)

− p(∂)(λ1 − λ2)
(
(λ1 + λ2)2 − λ2

3

)
ν + p(∂)(λ1 − λ3)

(
(λ1 + λ3)2 − λ2

2

)
ν

− p(∂)(λ2 − λ3)
(
(λ2 + λ3)2 − λ2

1

)
ν

= p(∂ + λ1)(∂ − λ2 − λ3)(λ2
2 − λ2

3)ν − p(∂ + λ2)(∂ − λ1 − λ3)(λ2
1 − λ2

3)ν

+ p(∂ + λ3)(∂ − λ1 − λ2)(λ2
1 − λ2

2)ν. (5.2)
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Setting p(∂) =
∑n

i=0 ui∂
i with un 6= 0, then plugging this into (5.2) with λ3 = 0 yields

(∂λ2
2 − λ3

2)
n∑
i=0

ui(∂ + λ1)i − (∂λ2
1 − λ3

1)
n∑
i=0

ui(∂ + λ2)i

+(∂ − λ1 − λ2)(λ2
1 − λ2

2)
n∑
i=0

ui∂
i = 0.

(5.3)

Comparing the coefficients of λ3
2∂

n−1 in (5.3) gives nunλ1 = 0, i.e., n = 0. Hence,
dγλ1,λ2,λ3(L,L, L) = 0 only if p(∂) is a constant, i.e., an element of C. Thus, λ2

1 − λ2
2, up

to a constant factor (ν ∈M0,0), is a 2−cocycle of C̃2(Vir,M0,0).
Observe that λ2

1 − λ2
2 represents a nontrivial class in the cohomology. Indeed, assume

that there exists a nonzero φ ∈ C̃1(Vir,M0,0) such that dφλ1,λ2(L,L) = λ2
1 − λ2

2. Since φ
is identified with a polynomial in one variable λ, then we can set φλ(L) = λf(λ) for some
polynomial f(λ) =

∑n
i=0 ai(λ)∂i ∈M0,0[λ]. So we have

λ2
1 − λ2

2 = dφλ1,λ2(L,L)

= Lλ1(λ2f(λ2))− Lλ2(λ1f(λ1))− (λ1 − λ2)(λ1 + λ2)f(λ1 + λ2)

= (
n∑
i=0

ai(λ2)(∂ + λ1)i)(∂ − λ2)λ2 − (
n∑
i=0

ai(λ1)(∂ + λ2)i)(∂ − λ1)λ1

− (λ2
1 − λ2

2)(
n∑
i=0

ai(λ1 + λ2)∂i).

(5.4)

Letting λ2 = 0 in (5.4) we get

−λ2
1 = λ1(∂ − λ1)(

n∑
i=0

ai(λ1)∂i) + λ2
1(

n∑
i=0

ai(λ1)∂i)

= (λ1(∂ − λ1) + λ2
1)(

n∑
i=0

ai(λ1)∂i = λ1

n∑
i=0

ai(λ1)∂i+1.

(5.5)

Note that the left hand side of (5.5) does not depend on ∂, hence all coefficients of nonzero
powers of ∂ must be 0. So we have ai(λ)λ = 0, which implies that ai(λ) = 0 for all
0 ≤ i ≤ n. i.e., f(λ) = 0, a contradiction. Therefore, λ2

1 − λ2
2 is not a 2−coboundary and

H̃2(Vir,M0,0) ∼= C(λ2
1 − λ2

2)ν.
For q = 3, the only skew symmetric homogeneous polynomial of degree 3 in 3 variables

is Λ3 = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3). Let γλ,µ,β(L,L, L) = mΛλ,µ,β
3 where m = p(∂)ν a
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nonzero element of M0,0 and Λλ,µ,β
3 = (λ− µ)(λ− β)(µ− β). Then we have

dγλ1,λ2,λ3,λ4(L,L, L, L)

= Lλ1γλ2,λ3,λ4(L,L, L)− Lλ2γλ1,λ3,λ4(L,L, L) + Lλ3γλ1,λ2,λ4(L,L, L)

− Lλ4γλ1,λ2,λ3(L,L, L)− (λ1 − λ2)γλ1+λ2,λ3,λ4(L,L, L) + (λ1 − λ3)γλ1+λ3,λ2,λ4(L,L, L)

− (λ1 − λ4)γλ1+λ4,λ2,λ3(L,L, L)− (λ2 − λ3)γλ2+λ3,λ1,λ4(L,L, L)

+ (λ2 − λ4)γλ2+λ4,λ1,λ3(L,L, L)− (λ3 − λ4)γλ3+λ4,λ1,λ2(L,L, L)

= p(∂ + λ1)(∂ − λ2 − λ3 − λ4)Λλ2,λ3,λ4
3 ν − p(∂ + λ2)(∂ − λ1 − λ3 − λ4)Λλ1,λ3,λ4

3 ν

+ p(∂ + λ3)(∂ − λ1 − λ2 − λ4)Λλ1,λ2,λ4
3 ν − p(∂ + λ4)(∂ − λ1 − λ2 − λ3)Λλ1,λ2,λ3

3 ν

− p(∂)(λ1 − λ2)Λλ1+λ2,λ3,λ4
3 ν + p(∂)(λ1 − λ3)Λλ1+λ3,λ2,λ4

3 ν − p(∂)(λ1 − λ4)Λλ1+λ4,λ2,λ3
3 ν

− p(∂)(λ2 − λ3)Λλ2+λ3,λ1,λ4
3 ν + p(∂)(λ2 − λ4)Λλ2+λ4,λ1,λ3

3 ν − p(∂)(λ3 − λ4)Λλ3+λ4,λ1,λ2
3 ν.

Letting p(∂) =
∑n

i=0 ui∂
i with un 6= 0, then dγλ1,λ2,λ3,0(L,L, L, L) = 0 becomes

λ2λ3(∂ − λ2 − λ3)(λ2 − λ3)
n∑
i=0

ui(∂ + λ1)i − λ1λ3(∂ − λ1 − λ3)(λ1 − λ3)
n∑
i=0

ui(∂ + λ2)i

+λ1λ2(∂ − λ1 − λ2)(λ1 − λ2)
n∑
i=0

ui(∂ + λ3)i +
(
λ2

1(λ2 − λ3)(λ1 − ∂)

+λ2
2(λ1 − λ3)(λ2 + ∂)− λ2

3(λ1 − λ2)(λ3 + ∂)
)
(
n∑
i=0

ui∂
i) = 0.

Comparing the coefficients if λ1λ
3
2λ3∂

n−1 implies that nun = 0, hence n = 0. It follows
that dγλ1,λ2,λ3,λ4(L,L, L, L) = 0 only if p(∂) is a constant. Thus, Λ3, up to a constant
factor (ν ∈M0,0), is a 3−cocycle.

Now assume that there exists a 2−cochain φ ∈ C̃2(Vir,M0,0) such that dφ = Λλ1,λ2,λ3
3 .

Because φ can be identified with a skew symmetric polynomial in two variables, then we
can write φλ,µ(L,L) = (λ− µ)f(λ, µ) for some nonzero symmetric polynomial f(λ, µ) ∈
M0,0[λ, µ]. So we have

Λλ1,λ2,λ3
3 = dφλ1,λ2,λ3(L,L, L)

= Lλ1((λ2 − λ3)f(λ2, λ3))− Lλ2((λ1 − λ3)f(λ1, λ3)) + Lλ3((λ1 − λ2)f(λ1, λ2))

− (λ1 − λ2)(λ1 + λ2 − λ3)f(λ1 + λ2, λ3) + (λ1 − λ3)(λ1 + λ3 − λ2)f(λ1 + λ3, λ2)

+ (λ2 − λ3)(λ1 − λ2 − λ3)f(λ1, λ2 + λ3). (5.6)
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Setting f(λ, µ) =
∑n

i=0 ai(λ, µ)∂i in (5.6). Then, for λ3 = 0, (5.6) becomes

λ1λ2(λ1 − λ2) = ∂M(λ2)(
n∑
i=0

ai(λ2)(∂ + λ1)i)− ∂M(λ1)(
n∑
i=0

ai(λ1)(∂ + λ2)i)

+ ∂M(λ1 − λ2)(
n∑
i=0

ai(λ1, λ2)∂i)− (λ2
1 − λ2

2)(
n∑
i=0

ai(λ1 + λ2)∂i)

+ (λ2
1 − λ2

2)(
n∑
i=0

ai(λ1, λ2)∂i)

= (∂ − λ2)(λ2)(
n∑
i=0

ai(λ2)(∂ + λ1)i)− (∂ − λ1)(λ1)(
n∑
i=0

ai(λ1)(∂ + λ2)i)

+ (∂ − λ1 − λ2)(λ1 − λ2)(
n∑
i=0

ai(λ1, λ2)∂i)− (λ2
1 − λ2

2)(
n∑
i=0

ai(λ1 + λ2)∂i)

+ (λ2
1 − λ2

2)(
n∑
i=0

ai(λ1, λ2)∂i)

= (∂ − λ2)(λ2)(
n∑
i=0

ai(λ2)(∂ + λ1)i)− (∂ − λ1)(λ1)(
n∑
i=0

ai(λ1)(∂ + λ2)i)

+ ∂(λ1 − λ2)(
n∑
i=0

ai(λ1, λ2)∂i)− (λ2
1 − λ2

2)(
n∑
i=0

ai(λ1 + λ2)∂i)

= λ1

(
(λ1 − ∂)(

n∑
i=0

ai(λ1)(∂ + λ2)i) +
n∑
i=0

ai(λ1, λ2)∂i+1 − λ1(
n∑
i=0

ai(λ1 + λ2)∂i)
)

+ λ2

(
(∂ − λ2)(

n∑
i=0

ai(λ2)(∂ + λ1)i)−
n∑
i=0

ai(λ1, λ2)∂i+1 + λ2(
n∑
i=0

ai(λ1 + λ2)∂i)
)
.

(5.7)

Equating similar terms in both sides of (5.7) we obtain

(λ1 − ∂)(
n∑
i=0

ai(λ1)(∂ + λ2)i) +
n∑
i=0

ai(λ1, λ2)∂i+1 − λ1(
n∑
i=0

ai(λ1 + λ2)∂i) = λ2λ1 − λ2
2,

(∂ − λ2)(
n∑
i=0

ai(λ2)(∂ + λ1)i)−
n∑
i=0

ai(λ1, λ2)∂i+1 + λ2(
n∑
i=0

ai(λ1 + λ2)∂i) = λ2
1 − λ1λ2,

(5.8)
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which implies that

(λ1 − ∂)(
n∑
i=0

ai(λ1)(∂ + λ2)i) + (∂ − λ2)(
n∑
i=0

ai(λ2)(∂ + λ1)i)

+(λ2 − λ1)(
n∑
i=0

ai(λ1 + λ2)∂i) = λ2
1 − λ2

2. (5.9)

Now letting λ2 = 0 in (5.9) yields

∂(
n∑
i=0

ai(0)(∂ + λ1)i)−
n∑
i=0

ai(λ1)∂i+1 = λ2
1. (5.10)

The right hand side of (5.10) does not depend on ∂, then all the coefficients of nonzero
powers of ∂ must be zero. So we have an(λ1) = an(0) and ai(λ1) = ai(0) + (i+ 1)ai+1(0)λ1

for all i = 0, . . . , n− 1. Plugging this into (5.8) gives

(λ1 − ∂)(
n∑
i=0

(ai(0) + (i+ 1)ai+1(0)λ1)(∂ + λ2)i) +
n∑
i=0

ai(λ1, λ2)∂i+1

−λ1(
n∑
i=0

(ai(0) + (i+ 1)ai+1(0)(λ1 + λ2))∂i) = λ2λ1 − λ2
2. (5.11)

Comparing the coefficients of λ1∂
i+1 for all i = 0, . . . , n−1 in (5.11), we get (i+1)ai+1(0) =

0. It follows that ai(0) = 0 for all i = 1, . . . , n. Hence, ai(λ1) = 0 for i = 1, . . . , n and
a0(λ1) = a0(0). Plugging this into (5.8) yields

−a0(0)∂ +
n∑
i=0

ai(λ1, λ2)∂i+1 = λ2λ1 − λ2
2

It follows that f(λ1, λ2) = a0(λ1, λ2) = a0(0), a constant. Set f(λ1, λ2) = cν for some
c ∈ C. Then dφλ1,λ2,λ3(L,L, L) = 0, a contradiction. Therefore, Λ3 represents a nontrivial
class in the cohomology and we have H̃3(Vir,M0,0) ∼= CΛ3ν.

Theorem 5.1.6. For the Virasoro conformal algebra,

dim H̃q(Vir,M1,0) =

1 if q = 1 or 2,

0 otherwise.

In particular, H̃1(Vir,M1,0) ∼= Cν and H̃2(Vir,M1,0) ∼= C(λ1 − λ2)ν.
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Proof. Using Theorem 5.1.1, we get dim H1(Vir,M1,0) = 2, dim Hq(Vir,M1,0) = 1 for q =

0, 2 and is zero otherwise. Then by Theorem 5.1.2 and Theorem 5.1.3, dim H̃q(Vir,M1,0) = 1

for q = 1, 2 and zero otherwise. Now, we construct a basis for H̃q(Vir,M1,0) where q = 1, 2.
For q = 1, then only polynomials of degree 0 contribute to the cohomology of

C̃1(Vir,M1,0). For any γ ∈ C̃1(Vir,M1,0) such that degλ γ = 0 then we can write γλ(L) =

p(∂)ν for some p(∂) ∈ C[∂]. So we have

dγλ1,λ2(L,L) = Lλ1γλ2(L)− Lλ2γλ1(L)− γλ1+λ2([Lλ1L])

= p(∂ + λ1)(∂M + λ1)ν − p(∂ + λ2)(∂M + λ2)ν − (λ1 − λ2)p(∂)ν

= p(∂ + λ1)(∂ + λ1)ν − p(∂ + λ2)(∂ + λ2)ν − (λ1 − λ2)p(∂)ν.

Let p(∂) =
∑n

i=0 ui∂
i such that un 6= 0. Then dγλ1,λ2(L,L) = 0 yields

n∑
i=0

ui(∂
i + λ1)iν −

n∑
i=0

ui(∂
i + λ2)iν − (λ1 − λ2)

n∑
i=0

ui(∂
i)iν = 0. (5.12)

Setting λ2 = 0 in (5.12) and comparing the coefficients of ∂n gives nunλ = 0, which implies
n = 0. i.e., p(∂) must be a constant. Then, γ = cν for some c ∈ C is a 1−cocycle. Now
suppose that there exists φ ∈ C̃0(Vir,M1,0) such that dφ = γ and φ = p(∂)ν, then we have
dφ = Lλ(p(∂)ν) = p(∂ + λ)(∂M + λ)ν. i.e., degλ(dφ) = 1. Thus, γ is not 1−coboundary
and we have H̃1(Vir,M1,0) ∼= Cν.

For q = 2, let γλ1,λ2(L,L) be a 2−cocycle, then it must be a skew-symmetric homoge-
neous polynomial of degree 1 in two variables, so it is λ1 − λ2. Let γλ,µ(L,L) = m(λ− µ)

for some nonzero m = p(∂)ν ∈M1,0. Then we have

dγλ1,λ2,λ3(L,L, L)

= p(∂ + λ1)(∂M + λ1)(ν(λ2 − λ3))− p(∂ + λ2)(∂M + λ2)(ν(λ1 − λ3))

+ p(∂ + λ3)(∂M + λ3)(ν(λ1 − λ2))− (λ1 − λ2)(p(∂)ν(λ1 + λ2 − λ3))

+ (λ1 − λ3)(p(∂)ν(λ1 + λ3 − λ2))− (λ2 − λ3)(p(∂)ν(λ2 + λ3 − λ1))

= p(∂ + λ1)(∂M + λ1)(ν(λ2 − λ3))− p(∂ + λ2)(∂M + λ2)(ν(λ1 − λ3))

+ p(∂ + λ3)(∂M + λ3)(ν(λ1 − λ2))

= p(∂ + λ1)(∂ − λ2 − λ3 + λ1)(ν(λ2 − λ3))− p(∂ + λ2)(∂ − λ1 − λ3 + λ2)(ν(λ1 − λ3))

+ p(∂ − λ1 − λ2 + λ3)(∂M + λ3)(ν(λ1 − λ2)).
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Let p(∂) =
∑n

i=0 ui∂
i such that un 6= 0. Then dγλ1,λ2,0(L,L, L) = 0 implies that

λ2(∂ − λ2 + λ1)(
n∑
i=0

ui(∂ + λ1)i)− λ1(∂ − λ1 + λ2)(
n∑
i=0

ui(∂ + λ2)i)

+(λ1 − λ2)(∂ − λ1 − λ2)(
n∑
i=0

ui∂
i) = 0.

Comparing the coefficients of λ2λ
i+1
1 gives ui = 0 for i = 1, . . . , n. i.e., dγλ1,λ2,λ3(L,L, L) =

0 only if m is independent of ∂. Thus, λ1 − λ2, up to a constant factor ν ∈ M1,0, is a
2−cocycle. Moreover, if φ ∈ C̃1(Vir,M1,0) such that dφλ1,λ2(L,L) = λ1 − λ2, then

λ1 − λ2 = dφλ1,λ2(L,L)

= (∂M + λ1)φλ2(L)− (∂M + λ2)φλ1(L)− (λ1 − λ2)φλ1+λ2(L)

= (∂ + λ1 − λ2)φλ2(L)− (∂ − λ1 + λ2)φλ1(L)− (λ1 − λ2)φλ1+λ2(L).

(5.13)

Since φ is identified with a polynomial in one variable, then it can be written as φλ(L) =

λf(λ) for a nonzero polynomial polynomial f(λ) ∈M1,0[λ]. Setting f(λ) =
∑n

i=0 ai(λ)∂i

such that an(λ) 6= 0, then (5.13) becomes

λ1 − λ2 = (∂ + λ1 − λ2)(λ2)(
n∑
i=0

ai(λ2)(∂ + λ1)i)

− (∂ − λ1 + λ2)(λ1)(
n∑
i=0

ai(λ1)(∂ + λ2)i)− (λ1 − λ2)(λ1 + λ2)(
n∑
i=0

ai(λ1 + λ2)∂i).

(5.14)

Letting λ2 = 0 in (5.14), we get

λ1 = −(∂ − λ1)(λ1)(
n∑
i=0

ai(λ1)∂i)− λ2
1(

n∑
i=0

ai(λ1)∂i) = −λ1

m∑
i=0

ai(λ1)∂i+1. (5.15)

The left hand side of (5.15) does not depend on ∂. Then all coefficients of nonzero powers
of ∂ must be zero. So, ai(λ)λ1 = 0 for all i = 0, . . . , n. It follows that φλ(L) = 0, a
contradiction. Thus, λ1−λ2 is not a 2−coboundary and H̃2(Vir,M1,0) = C(λ1−λ2)ν.

Theorem 5.1.7. For q = 0, 1, H̃q(Vir,M(3r−r2)/2,0) = {0} where r ∈ Z+ and r ≥ 4.

Proof. By Theorem 2.7.2, part (1) we have H̃0(Vir,M∆,0) = MVir
∆,0 = {m ∈M∆,0|Lλm = 0}.
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So, for m =
∑n

i=0 ui∂
i ∈M∆,0 such that Lλm = 0, then we have

Lλm = (∂ + ∆λ)
( n∑
i=0

ui(∂ + λ)i
)

=
n∑
i=0

ui(∂ + λ)i∂ + ∆λ
n∑
i=0

ui(∂ + λ)i = 0.

(5.16)

Comparing the coefficients of ∂n+1 and ∂n in (5.16), we get un = 0 and (∆+n)unλ+un−1 =

0, respectively, which yields un−1 = 0. Proceeding in a similar way, we obtain

(
(∆ + k)ukλ+ uk−1

)
∂k = 0, ∀ 0 ≤ k ≤ n.

It follows that ui = 0 for all i, so we have m = 0, i.e., H̃0(Vir,M(3r−r2)/2,0) = {0}.
For q = 1, then any 1−cocycle γ ∈ C̃1(Vir,M∆,0) can be identified with a skew

symmetric polynomial of degree 1−∆ in one variable. So we can write γλ(L) = λf(λ) for
some nonzero symmetric polynomial f(λ) ∈M∆,0[λ] of degree of degree n = −∆. Letting
f(λ) =

∑n
i=0 ai(λ)∂i, then we have

dγλ1,λ2(L,L)

= Lλ1γλ2(L)− Lλ2γλ1(L)− γλ1+λ2([Lλ1L])

= Lλ1
(
λ2

n∑
i=0

ai(λ2)∂i
)
− Lλ2

(
λ1

n∑
i=0

ai(λ1)∂i
)
− (λ1 − λ2)(λ1 + λ2)

n∑
i=0

ai(λ1 + λ2)∂i

= (∂M + ∆λ1)(λ2)
( n∑
i=0

ai(λ2)(∂ + λ1)i
)
− (∂M + ∆λ2)(λ1)

( n∑
i=0

ai(λ1)(∂ + λ2)i
)

− (λ2
1 − λ2

2)
n∑
i=0

ai(λ1 + λ2)∂i

where ∆ = (3r − r2)/2 for r ∈ Z+ and r ≥ 4. Letting λ2 = 0, then dγ = 0 implies

(∂Mλ1 + λ2
1)
( n∑
i=0

ai(λ1)∂i
)

= ((∂ − λ1)λ1 + λ2
1)f(λ1) = ∂λ1f(λ1) = 0.

So f(λ1) = 0, a contradiction. Thus γ must be zero and therefore H̃1(Vir,M∆,0) = {0}.
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5.2 Cohomology of Virn Curg with Trivial Coefficients

In this section we will compute, using the Hochschild-Serre spectral sequence for Lie
conformal algebra, the cohomology of Vir n Curg with trivial coefficients C, where g

is a finite dimensional semisimple Lie algebra with ∂υ = 0 and aλυ = 0 for υ ∈ C
and a ∈ Vir n Curg. The computation of H̃•(Vir n Curg,C) was done in [33] using the
Hochschild-Serre spectral sequence for Vect Cn g[t], that is the Lie annihilation algebra
of Vir n Curg.

5.2.1 The Basic Cohomology

Theorem 5.2.1. For the standard semidirect product Vir n Curg, then

H̃n(Vir n Curg,C) ∼= Hn(g,C)⊕ Λ3Hn−3(g,C), for all n ≥ 0,

where we set Hk(g,C) = 0 for all k < 0.

The proof of Theorem 5.2.1 will be done by the following lemmas.

Lemma 5.2.1. H̃q(Curg,C) is a trivial Vir-module.

Proof. Let γ ∈ C̃q(Curg,C), be a representative of a cohomology class [γ] in H̃q(Curg,C),
then by (2.8) we have

(∂ · γ)λ1,...,λq(g1, ..., gq) = (∂C +

q∑
i=1

λi)γλ1,...,λq(g1, ..., gq)

=
( q∑
i=1

λi
)
γλ1,...,λq(g1, ..., gq).

So ∂C̃q(Curg,C) =
(∑q

i=1 λi
)
C̃q(Curg,C). Using Theorem 2.7.5, we have H̃q(Curg,C) ∼=

Hq(g,C). Thus, γ is independent of the choice of λ′is. i.e., γ is constant on g. Then we
can set λ1 = . . . = λq = 0, and hence we get,

(∂ · γ)λ1,...,λq(g1, ..., gq) = 0,

for all [γ] ∈ H̃q(Curg,C). By Lemma 2.1.1, we conclude that Virλγ = 0 for all [γ] ∈
H̃q(Curg,C). i.e., H̃q(Curg,C) is a trivial Vir-module.
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Lemma 5.2.2. The Hochschild-Serre spectral sequence for A = Vir n Curg, B = Curg

and M = C is given by

Ep,q
2 =


Hq(g,C), if p = 0,

Λ3Hq(g,C), if p = 3,

0, otherwise.

where q ≥ 0 and Λ3 = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3). Moreover,

(i) dp,q2 = 0 for all p, q ≥ 0.

(ii) Ep,q
3
∼= Ep,q

2 for all p, q ≥ 0.

(iii) The spectral sequence collapses at the fourth page.

Proof. Using Theorem 4.1.1, the Hochschild-Serre spectral sequence for A = Vir n Curg,
B = Curg and M = C is given by

Ep,q
2
∼= H̃p(Vir, H̃q(Curg,C))⇒ H̃p+q(Vir n Curg,C), p, q ≥ 0.

From Theorem 2.7.4 and Theorem 2.7.5 we have H̃p(Vir,C) = 0 for all p 6= 0, 3 and
H̃q(Curg,C) ∼= Hq(g,C) for all q. Hence, the Ep,q

2 terms vanish unless p is zero or three,
and we get

E0,q
2
∼= H̃0(Vir,C)⊗ H̃q(Curg,C) ∼= H̃q(Curg,C) ∼= Hq(g,C),

E3,q
2
∼= H̃3(Vir,C)⊗ H̃q(Curg,C) ∼= Λ3H̃q(Curg,C) ∼= Λ3Hq(g,C).

where q ≥ 0 and Λ3 = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3). It follows that the only nonzero
columns of the E2 page are the zeroth and the third columns. For a finite dimensional
semisimple complex Lie algebra g, Hi(g,C) = 0, where i = 1, 2, 4 ([7], (18.3)). Thus, the
corner of the E2 page is shown in Figure 5.1.
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0 1 2 3 4 5

0

1

2

3

4

5

6

C 0 0 Λ3C 0 0

0 0 0 0 0 0

0 0 0 0 0 0

H3(g,C) 0 0 Λ3H3(g,C) 0 0

0 0 0 0 0 0

H5(g,C) 0 0 Λ3H5(g,C) 0 0

H6(g,C) 0 0 Λ3H6(g,C) 0 0

Figure 5.1: Ep,q
2 -page for (C̃•(Vir n Curg,C), F̃ •, d).

Observe that the differential dp,q2 shifts two points to the right and one point down,
i.e., dp,q2 : Ep,q

2 → Ep+2,q−1
2 and it is zero for all p, q. Hence, Ep,q

3
∼= ker dp,q2

∼= Ep,q
2 for all

p, q. Since Hq(g,C) = 0 for all q > dim g = n ≥ 2 ([7]), then Ep,q
2 = 0 for all p > 3 and

q > n. By Lemma 3.1.1, we have N = min(4, n + 2) = 4. Thus, the Hochschild-Serre
spectral sequence collapses at Ep,q

4 .

In the following lemma, we will describe the isomorphism H̃q(Curg,C)
∼=−−→ E0,q

3 .

Lemma 5.2.3. Let γ ∈ C̃q(Curg,C), be a representative of the cohomology class [γ] in
H̃q(Curg,C), that satisfies the following conditions:

(ιλ(L)dγ)λ1,...,λq(g1, . . . , gq) = 0,

γλ1,...,λs,λs+1,...,λq(L, . . . , L, gs+1, . . . , gq) = 0, for all 3 ≤ s ≤ q.
(5.17)

Then γ ∈ E0,q
3 for all q ≥ 0.

Proof. Let A = Vir n Curg, and γ ∈ C̃q(Curg,C) be a q−cocycle that satisfies the
conditions in (5.17). First, from the proof of Theorem 3.2.1, we have

E0,q
3 = Z0,q

3 /B0,q
2
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=
{γ ∈ C̃q(A,C) | dγ ∈ F 3C̃q+1(A,C)}

d(C̃q−1(A,C))

=
{γ ∈ C̃q(A,C) | dγλ1,...,λq(a1, . . . , aq) = 0 whenever a1, . . . , aq−1 ∈ Curg}

d(C̃q−1(A,C))
.

Now observe that
dγλ1,...,λq+1(g1, . . . , gq+1) = 0, (5.18)

because γ is a q−cocycle. Moreover, since H̃q(Curg,C) is a trivial Vir−module, then by
Cartan’s identity (2.13), the first condition of (5.17) yields

(dιλ(L)γ)λ1,...,λq(g1, . . . , gq) = 0 =⇒ dγλ,λ1,...,λq(L, g1, . . . , gq) = 0. (5.19)

Now, let φλ1,...,λq−1(g1, . . . , gq−1) = ιλ′(L)γλ1,...,λq−1(g1, . . . , gq−1), then from (5.19) we get

(dιλ(L)φ)λ1,...,λq−1(g1, . . . , gq−1) = 0

=⇒ (dιλ(L)(ιλ′(L)γ))λ1,...,λq−1(g1, . . . , gq−1) = 0

=⇒ (dιλ(L)γ)λ′,λ1,...,λq−1(L, g1, . . . , gq−1) = 0

=⇒ dγλ,λ′,λ1,...,λq−1(L,L, g1, . . . , gq−1) = 0.

(5.20)

It follows that dγ vanishes whenever evaluated at at least q − 1 elements of Curg. So
dγ ∈ F̃ 3C̃q+1(A,C), where the filtration F̃ is as defined in (4.1). Thus, γ ∈ Z0,q

3 . Note
that γ 6∈ B0,1

2 = d(C̃q−1(A,C)) since if there exists a (q− 1)−cochain φ such that γ = dφ,
then γ is a q−coboundary. Hence, γ ∈ E0,q

3 for all q ≥ 0.

Using Lemma 5.2.2, the E3 page is pictured in the following diagram.

62



0 1 2 3 4 5 6

0

1

2

3

4

5

6

C 0 0 Λ3C 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

H3(g,C) 0 0 Λ3H3(g,C) 0 0 0

0 0 0 0 0 0 0

H5(g,C) 0 0 Λ3H5(g,C) 0 0 0

H6(g,C) 0 0 Λ3H6(g,C) 0 0 0

Figure 5.2: Ep,q
3 -page for (C̃•(Vir n Curg,C), F̃ •, d).

Note that the differential dp,q3 shifts three points to the right and two points down, i.e.,
dp,q3 : Ep,q

3 → Ep+3,q−2
3 and it is zero for all p, q except when p = 0 and q = 5, 7, 8, .... In

the following lemma we will show that d0,q
3 = 0 for all q ≥ 0.

Lemma 5.2.4. The differential d0,q
3 vanishes for all q.

Proof. The differential d0,q
3 : E0,q

3 −→ E3,q−2
3 is induced by the differential d of the basic

complex C̃q(Vir n Curg,C). Since E0,q
3
∼= H̃q(Curg,C) and E3,q−2

3
∼= Λ3H̃q−2(Curg,C),

then for each γ ∈ C̃q(Curg,C), a representative of the cohomology class [γ] in H̃q(Curg,C),
such that γ satisfies the conditions (5.17), we have

d0,q
3 ([γ] = [dγ] = Λ3[β], β ∈ C̃q−2(Curg,C). (5.21)

The differential dγ ∈ Λ3H̃q−2(Curg,C) is given by:

dγλ1,...,λq+1(L,L, L, g4, ..., gq+1)

=− γλ1+λ2,λ3,...,λq+1([Lλ1L], L, g4, ..., gq+1)

+ γλ1+λ3,λ2,λ4,...,λq+1([Lλ1L], L, g4, ..., gq+1)

− γλ2+λ3,λ1,λ4,...,λq+1([Lλ2L], L, g4, ..., gq+1)

+

q+1∑
j=4

(−1)j+1γλ1+λj ,λ2,...,λ̂j ,...λq+1
([Lλ1gj], L, L, g4, ..., ĝj, ..., gq+1)
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+

q+1∑
j=4

(−1)j+2γλ2+λj ,λ1,...,λ̂j ,...λq+1
([Lλ2gj], L, L, g4, ..., ĝj, ..., gq+1)

+

q+1∑
j=4

(−1)j+3γλ3+λj ,λ1,...,λ̂j ,...λq+1
([Lλ3gj], L, L, g4, ..., ĝj, ..., gq+1)

+

q+1∑
i,j=4
i<j

(−1)j+iγλi+λj ,λ1,...,λ̂i,...,λ̂j ,...,λq+1
([giλigj], L, L, L, g4, ..., ĝi, ..., ĝj, ..., gq+1)

= (λ2 − λ1)γλ1+λ2,λ3,...,λq+1(L,L, g4, ..., gq+1)

+ (λ1 − λ3)γλ1+λ3,λ2,λ4,...,λq+1(L,L, g4, ..., gq+1)

+ (λ3 − λ2)γλ2+λ3,λ1,λ4,...,λq+1(L,L, g4, ..., gq+1)

+

q+1∑
j=4

(−1)jλjγλ1+λj ,λ2,...,λ̂j ,...λq+1
(gj, L, L, g4, ..., ĝj, ..., gq+1)

+

q+1∑
j=4

(−1)j+1λjγλ2+λj ,λ1,...,λ̂j ,...λq+1
(gj, L, L, g4, ..., ĝj, ..., gq+1)

+

q+1∑
j=4

(−1)jλjγλ3+λj ,λ1,...,λ̂j ,...λq+1
(gj, L, L, g4, ..., ĝj, ..., gq+1)

= (λ2 − λ1)γλ1+λ2,λ3,λ4,...,λq+1(L,L, g4, ..., gq+1)

+ (λ1 − λ3)γλ1+λ3,λ2,λ4,...,λq+1(L,L, g4, ..., gq+1)

+ (λ3 − λ2)γλ2+λ3,λ1,λ4,...,λq+1(L,L, g4, ..., gq+1)

−
q+1∑
j=4

λjγλ2,λ3,λ4,...,λi−1,λ1+λj ,λi+1,...λq+1(L,L, g4, ..., gj, ..., gq+1)

+

q+1∑
j=4

λjγλ1,λ3,λ4,...,λi−1,λ2+λj ,λi+1,...λq+1(L,L, g4, ..., gj, ..., gq+1)

−
q+1∑
j=4

λjγλ1,λ2,λ4,...,λi−1,λ3+λj ,λi+1,...λq+1(L,L, g4, ..., gj, ..., gq+1).

By Theorem 2.7.5, we have H̃q(Curg,C) ∼= Hq(g,C). Thus, γ is independent of the choice
of λ4, ..., λq+1, i.e., γ is constant on the elements of g. Then we can set λ4, ..., λq+1 to be
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all zero. Hence we have

dγλ1,...,λq+1(L,L, L, g4, ..., gq+1)|λ4=0,...,λq+1=0

= (λ2 − λ1)γλ1+λ2,λ3,λ4,...,λq+1(L,L, g4, ..., gq+1)|λ4=0,...,λq+1=0

+ (λ1 − λ3)γλ1+λ3,λ2,λ4,...,λq+1(L,L, g4, ..., gq+1)|λ4=0,...,λq+1=0

+ (λ3 − λ2)γλ2+λ3,λ1,λ4,...,λq+1(L,L, g4, ..., gq+1)|λ4=0,...,λq+1=0.

(5.22)

From (5.21), the differential dγ is written as a product of Λ3β where β ∈ H̃q−2(Curg,C) ∼=
Hq−2(g,C). It follows that γλ,µ,λ4,...,λq+1(L,L, g4, ..., gq+1)|λ4=0,...,λq+1=0 must be a homoge-
neous quadratic polynomial in λ and µ where λ = λi+λj, µ = λk and i, j, k = 1, 2, 3. From
the definition of cochains, γ is a skew symmetric polynomial. Since the only quadratic
skew symmetric polynomial in two variables is λ2 − µ2, then we obtain

γλ,µ,λ4,...,λq+1(L,L, g4, ..., gq+1)|λ4=0,...,λq+1=0 = c0(λ2 − µ2),

for some c0 ∈ C. Plugging this in (5.22), we get

γλ,µ,λ4,...,λq+1(L,L, g4, ..., gq+1)|λ4=0,...,λq+1=0 = c0(λ2 − λ1)[(λ1 + λ2)2 − λ2
3]

+ c0(λ1 − λ3)[(λ1 + λ3)2 − λ2
2]

+ c0(λ3 − λ2)[(λ2 + λ3)2 − λ2
1] = 0.

Therefore, dγ = 0 for all q ≥ 0, and consequently, d0,q
3 = 0 for all q ≥ 0.

Proof of Theorem 5.2.1.

Proof. In Lemma 5.2.2, we proved that the Hochschild-Serre spectral sequence collapses at
the fourth page, i.e., Ep,q

4
∼= Ep,q

∞ for all p, q. Since dp,q3 is zero for all p, q, then ker dp,q3 = Ep,q
3 .

But Ep,q
3
∼= Ep,q

2 and Ep,q
4
∼= Ep,q

3 for all p, q. That implies Ep,q
4
∼= Ep,q

2 for all p, q. Therefore,

H̃n(Vir n Curg,C) ∼=
⊕
p+q=n

H̃p(Vir,C)⊗ H̃q(Curg,C)

∼= H̃0(Vir,C)⊗ H̃n(Curg,C)⊕ H̃3(Vir,C)⊗ H̃n−3(Curg,C)

∼= C⊗ Hn(g,C)⊕ Λ3C⊗ Hn−3(g,C)

∼= Hn(g,C)⊕ Λ3Hn−3(g,C),

where Λ3 = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3) and Hk(g,C) = {0} for all k < 0.
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Remark 5.2.1. Let γ be a q−cocycle in H̃q(Vir n Curg,C), then γ can be written as
γ = φ+ Λ3α where φ ∈ Hq(g,C) and α ∈ Hq−3(g,C). Since each k−cocycle of Hk(g,C) is
independent of the choice of λ′is, i.e., φ and α are of degree 0. Then we conclude that γ is
either a constant or a skew symmetric polynomial of degree 3 in λ1, λ2, λ3.

Corollary 5.2.1 ([33], Theorem 1.1 (i)). For the standard semidirect product Vir n Curg,

dim H̃q(Vir n Curg,C) = dim Hq(g,C) + dim Hq−3(g,C)

where dim Hk(g,C) = 0 for k < 0.

5.2.2 The Reduced Cohomology

To compute the reduced cohomology of Vir n Curg with trivial coefficients, we prove the
following theorem. The purpose of the theorem is generalize the approach used in [2]
to describe the reduced cohomology of the current conformal algebra Curg with trivial
coefficients. It is also used to compute the reduced cohomology of the Heisenberg-Virasoro
conformal algebra HV in [30] and of the W(2, 2) conformal algebra in [31].

Theorem 5.2.2. Let A be a Lie conformal algebra. Suppose that any q−cocycle γ ∈
C̃q(A,C) can be written as a sum of cocycles γ1, . . . , γn, in which each cocycle γi is of
λ-degree kqi for some nonnegative integer kqi such that kqi − kqj 6= 1 for all i, j = 1, . . . , n

where λ-degree refers to the total degree in λ1, . . . , λq. Then

Hq(A,C) ∼= H̃q(A,C)⊕ H̃q+1(A,C), q ≥ 0,

where C is the trivial A-module.

Proof. Let γ ∈ C̃q(A,C), be representative of the cohomology class [γ] in H̃q(A,C), such
that γ is written as a direct sum of cocycle γ1, . . . , γn, in which each cocycle γi is a
homogeneous polynomial of λ-degree kqi for some nonnegative integers kqi such that
kqi − kqj 6= 1 for all i, j = 1, . . . , n, where λ-degree refers to the total degree of γ in
λ1, . . . , λq.

Consider the long exact sequence of cohomology groups,

· · · −−→ Hq(∂C̃•)
ιq−−−→ H̃q(A,C)

πq−−−→ Hq(A,C)
ωq−−−→

−−→ Hq+1(∂C̃•)
ιq+1−−−→ H̃q+1(A,C)

πq+1−−−−→ Hq+1(A,C)
ωq+1−−−−→ · · ·

(5.23)
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where ιn, πn are the maps induced by the embedding ι : ∂C̃• → C̃• and the natural
projection π : C̃q → C•, respectively, and ωn is the n-th connecting homomorphism [see
Proposition 2.7.1].

For q = 0, then C̃0(A,C) = C, and ∂C̃0 = ∂C = 0. Hence, H0(∂C̃•) = 0, and
ι0 : H0(∂C̃•)→ H̃0(A,C) is the zero map.

For q ≥ 1, let φ be a cocycle in Hq(∂C̃•) such that φ = ∂γ for a nonzero cocycle
γ ∈ H̃q(A,C). Then ιq([φ]) = [ι ◦ φ] = [φ] ∈ H̃q(A,C), which implies that φ = ∂γ can be
written as ∂γ = ∂γ1 + . . .+ ∂γq, where each of γi is a homogeneous of λ−degree kqi . Since
the action of ∂ on C is trivial, then

(∂ · γ)λ1,...,λq(a1, ..., aq) = (∂γ1)λ1,...,λq(a1, ..., aq) + . . .+ (∂γq)λ1,...,λq(a1, ..., aq)

=
( q∑
i=1

λi
)
γ1λ1,...,λq(a1, ..., aq) + . . .+

( q∑
i=1

λi
)
γqλ1,...,λq(a1, ..., aq).

It follows that each ∂γi is of λ−degree kqi + 1. Since kqi − kqj 6= 1 for all i, j = 1, . . . , n,
then kqi + 1 6= kqj for any i, j = 1, . . . , n. Hence, φ must be a zero cocycle in H̃q(A,C).
i.e., the image of ιq is zero for all q ≥ 1. The exactness of (5.23) shows that

kerπq = im ιq = 0

im ωq = ker ιq+1 = Hq+1(∂C̃•), q ≥ 1.

Thus, the long exact sequence (5.23) splits into the following short exact sequences

0 −→ H̃q(A,C)
πq−−−→ Hq(A,C)

ωq−−−→ Hq+1(∂C̃•) −→ 0.

Therefore,
Hq(A,C) ∼= H̃q(A,C)⊕ H̃q+1(A,C), q ≥ 0.

Corollary 5.2.2. For the standard semidirect product Vir n Curg,

Hq(Vir n Curg,C) ∼= H̃q(Vir n Curg,C)⊕ H̃q+1(Vir n Curg,C), q ≥ 0.

Proof. Remark 5.2.1 shows that each q−cocycle γ ∈ H̃q(Vir n Curg,C) can be written as
a sum of two cocycles γ1 and γ2 such that degλ γ1 = 0 and degλ γ2 = 0 or 3. By Theorem
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5.2.2, we get

Hq(Vir n Curg,C) ∼= H̃q(Vir n Curg,C)⊕ H̃q+1(Vir n Curg,C), q ≥ 0.

Corollary 5.2.3 ([33], Theorem 1.1 (ii)). For the standard semidirect product Vir n Curg,

dim Hq(Vir n Curg,C) = dim Hq(g,C) + dim Hq−3(g,C) + dim Hq+1(g,C)

+ dim Hq−2(g,C).

for all q ≥ 0, and dim Hq(g,C) = 0 for q < 0.

5.2.3 Central Extensions

Let A be a Lie conformal algebra and C be an abelian conformal algebra. A short exact
sequence of Lie conformal algebras

0 −→ C −→ Â −→ A −→ 0

is called an extension of A by C. This extension is called central if [CλÂ] = 0 and
∂C = 0. Furthermore, a central extension

0 −→ Ĉ −→ Â π̂−−→ A −→ 0

is called universal if for every central extension

0 −→ C̃ −→ Ã π̃−−→ A −→ 0

there exists a unique homomorphism φ : Â → Ã such that π̂ = π̃ ◦ φ.

The λ-bracket on Â is given by:

[aλb]
∧ = [aλb] + αλ(a, b),

where [aλb] is the λ-bracket on A and αλ(·, ·) : A×A → C[λ]⊗C C is a C-bilinear map.
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From the axioms of Lie conformal algebras, αλ(·, ·) satisfies the following properties:

αλ(∂a, b) = −λαλ(a, b), αλ(a, ∂b) = (λ+ ∂)αλ(a, b),

αλ(a, b) = −α−λ−∂(b, a),

αλ(a, [bµc]) = αλ+µ([aλb], c) + αµ(b, [aλc]),

for all a, b, c ∈ A. The map αλ is called a 2−cocycle of A, and is a 2-coboundary or trivial
2−cocycle if there exists a C[∂]-module homomorphism f : A → C such that

αλ(a, b) = f([aλb]).

Two 2−cocycles αλ and α′λ are equivalent if α′λ − αλ is a 2-coboundary, i.e.,

α′λ(a, b) = αλ(a, b) + f([aλb]).

The trivial 2−cocycle defines a trivial extension, and the equivalent 2−cocycles α′λ(a, b) and
αλ(a, b) define isomorphic extensions. By Theorem 2.7.2, part (4), the central extensions
of A by C are parameterized by H2(A, C).

Let ̂Vir n Curg be a central extension of Vir n Curg by a one-dimensional center Cc.
Then, ̂Vir n Curg = Vir n Curg⊕ Cc and the λ-bracket on ̂Vir n Curg is given by

[LλL]∧ = (∂ + 2λ)L+ αλ(L,L)c,

[Lλg]∧ = (∂ + λ)g + αλ(L, g)c,

[gλh]∧ = [g, h] + αλ(g, h)c.

(5.24)

where g, h ∈ g ⊂ Curg, L is the standard generator of Vir, and αλ(a, b) is in C[λ] for
a, b ∈ {L} ∪ g. Moreover, we have ∂c = 0 and [aλc]

∧ = 0.
Using Theorem 5.2.2 and Corollary 5.2.1, we obtain

dim H2(Vir n Curg,C) = dim H̃2(Vir n Curg,C) + dim H̃3(Vir n Curg,C)

= dim H2(g,C) + dim H−1(g,C) + dim H3(g,C)

+ dim H0(g,C) = 2.

It follows that there are, up to isomorphism, only two nontrivial central extensions of the
semidirect product Lie conformal algebra, Vir n Curg.
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According to [8], the universal central extension of Vir n Curg is a combination of the
universal central extension of Vir and Curg where g is a finite dimensional semisimple
Lie algebra. The universal central extension of Vir has one-dimensional center and the
corresponding 2−cocycle is given by αλ(L,L) = aλ3, a ∈ C. Furthermore, the universal
central extension of Curg is identified with the space B of all invariant bilinear forms on
g and the corresponding 2−cocycle is αfλ(g, h) = f(g, h) where f ∈ B and g, h ∈ g. In this
section, we will compute explicitly the universal central extension of Vir n Curg.

First we compute αλ(L,L) by using the Jacobi identity for (L,L, L). Here we have

[Lλ[LµL]]∧ = [[LλL]λ+µL]∧ + [Lµ[LλL]]∧

=⇒ αλ(L, [LµL]) = αλ+µ([LλL], L) + αµ(L, [LλL])

=⇒ αλ(L, (∂ + 2µ)L) = αλ+µ((∂ + 2λ)L,L) + αµ(L, (∂ + 2λ)L)

=⇒ (λ+ 2µ)αλ(L,L) = (λ− µ)αλ+µ(L,L) + (µ+ 2λ)αµ(L,L).

(5.25)

Now set αλ(L,L) =
∑n

i=0 aiλ
i such that ai ∈ C for all i and an 6= 0. Then we rewrite

(5.25) as the following

(λ+ 2µ)
n∑
i=0

aiλ
i = (λ− µ)

n∑
i=0

ai(λ+ µ)i + (µ+ 2λ)
n∑
i=0

aiµ
i.

Comparing the coefficients of λn in both sides we obtain

2anµλ
n = (nanµ− anµ)λn =⇒ 2anµ = (n− 1)anµ =⇒ n = 3.

Thus, we have αλ(L,L) = a0 + a1λ+ a2λ
2 + a3λ

3 for some a0, a1, a2, a3 ∈ C. By the skew
symmetry of αλ we have

αλ(L,L)c =
(
a0 + a1λ+ a2λ

2 + a3λ
3
)
c

= −
(
a0 + a1(−λ− ∂) + a2(−λ− ∂)2 + a3(−λ− ∂)3

)
c

= −α−λ−∂(L,L)c.

Comparing the coefficients of similar terms, we obtain a0 = a2 = 0 and hence,

αλ(L,L) = a1λ+ a3λ
3, a1, a3 ∈ C. (5.26)
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Now we compute αλ(L, g) by writing the Jacobi identity for (L,L, g), so we have

(λ+ µ)αλ(L, g) = (λ− µ)αλ+µ(L, g) + (µ+ λ)αµ(L, g). (5.27)

Similarly, we set αλ(L, g) =
∑n

i=0 biλ
i; bi ∈ C, bn 6= 0 in (5.27) and then compare the

coefficients of λn. We obtain

bnµλ
n = (nbnµ− bnµ)λn =⇒ bnµ = (n− 1)bnµ =⇒ n = 2.

Hence, αλ(L, g) = b0 + b1λ+ b2λ
2 for some b0, b1, b2 ∈ C. By the skew symmetry of αλ we

have

αλ(L, g)c =
(
b0 + b1λ+ b2λ

2
)
c

= −
(
b0 + b1(−λ− ∂) + b2(−λ− ∂)2

)
c = −α−λ−∂(L, g)c.

which implies that b0 = b2 = 0. Therefore,

αλ(L, g) = b1λ, b1 ∈ C. (5.28)

Finally, we compute αλ(g, h) for g, h ∈ g, we apply the Jacobi identity to (L, g, h).
Here we get

αλ(L, [g, h]) = −µαλ+µ(g, h) + (λ+ µ)αµ(g, h). (5.29)

Let αµ(g, h) =
∑n

i=0 ciµ
i and αλ+µ(g, h) =

∑n
i=0 ci(λ + µ)i where ci ∈ C for all i and

cn 6= 0. By (5.28), we have αλ(L, [g, h]) = b1λ. Plugging this into (5.29) and comparing
the coefficients of similar terms in both sides, we obtain

b1λ = c0λ =⇒ b1 = c0,

and − ncnλµn + cnλµ
n = 0 =⇒ n = 1.

Hence, αλ(g, h) = c0 + c1λ for some c0, c1 ∈ C such that c0 = b1. Using the skew-symmetry
of αλ we have

αλ(g, h)c =
(
c0 + c1λ

)
c = −

(
c0 + c1(−λ− ∂)

)
c = −α−λ−∂(h, g)c.

Which implies that c0 = 0, thus b1 = 0, and therefore we have

αλ(L, g) = 0, and αλ(g, h) = c1λ, c1 ∈ C. (5.30)
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Theorem 5.2.3 ([8], Remark 8.4). 1. For nonzero a, b ∈ C, there exists a unique non-
trivial central extension of the semidirect product Lie conformal algebra, Vir n Curg

by a Lie conformal algebra Cc where c is a central element and the λ-brackets given by:

[LλL]∧ = (∂ + 2λ)L+ aλ3c, [Lλg]∧ = (∂ + λ)g,

[gλh]∧ = [g, h] + bλc.
(5.31)

2. There exists a unique nontrivial central extension of the semidirect product Lie confor-
mal algebra, Vir n Curg by a Lie conformal algebra Cc⊕Cc′ where c and c′ are central
elements and the λ-brackets defined by:

[LλL]∧ = (∂ + 2λ)L+ λ3c, [Lλg]∧ = (∂ + λ)g,

[gλh]∧ = [g, h] + λc′.
(5.32)

Proof. (1) Plugging (5.26) and (5.30) into (5.24) and replacing L by L− 1
2
ac with a3 = a

and c1 = b for nonzero a, b ∈ C, we obtain (5.31) as desired.

(2) Follows from part (1).

5.3 Cohomology of Virn Curg with Coefficients in Ca

Consider the Vir n Curg-module Ca, that is the one-dimensional vector space C such that
∂υ = aυ and uλυ = 0 for u ∈ Vir n Curg, υ ∈ C and a is a nonzero complex number.
Note that g is a finite dimensional complex semisimple Lie algebra.

5.3.1 The Basic Cohomology

Theorem 5.3.1. For all n ≥ 0, we have

H̃n(Vir n Curg,Ca) ∼= Hn(g,C)⊕ Λ3Hn−3(g,C).

Proof. The second term of the Hochschild-Serre spectral sequence for A = Vir n Curg,
B = Curg and M = Ca is

Ep,q
2
∼= H̃p(Vir, H̃q(Curg,Ca))⇒ H̃p+q(Vir n Curg,Ca).
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By Theorem 2.7.5, we have H̃q(Curg,Ca) ∼= H̃q(Curg,C) ∼= Hq(g,C) for all q ≥ 0. Let
γ ∈ C̃q(Vir n Curg,Ca) be a representative of a cohomology class [γ] ∈ H̃q(Curg,Ca).
Then we have

(∂ · γ)λ1,...,λq(g1, . . . , gq) =
(
a+

q∑
i=1

λi
)
γλ1,...,λq(g1, . . . , gq).

By the isomorphism H̃q(Curg,C) ∼= Hq(g,C), γ is constant on the element of g, hence
∂γ = aγ. Using Lemma 2.1.1, we conclude that H̃q(Curg,Ca) is a trivial Vir−module.
Thus,

Ep,q
2
∼= H̃p(Vir,Ca)⊗ H̃q(Curg,Ca)

∼= H̃p(Vir,C)⊗ H̃q(Curg,C)⇒ H̃p+q(Vir n Curg,Ca).

From Lemmas 5.2.2 and 5.2.4, we know that dp,qr = 0 for all p, q and r ≥ 2. Hence,
Ep,q
∞
∼= Ep,q

2
∼= H̃p(Vir,C)⊗ H̃q(Curg,C). So we obtain

H̃p+q(Vir n Curg,Ca) ∼=
⊕
p+q=n

H̃p(Vir,C)⊗ H̃q(Curg,C).

From Theorem 5.2.1, we conclude that

H̃n(Vir n Curg,Ca) ∼= Hn(g,C)⊕ Λ3Hn−3(g,C).

Corollary 5.3.1 ([33], Theorem 1.1 (i)). For the standard semidirect product Vir n Curg,

dim H̃q(Vir n Curg,Ca) = dim Hq(g,C) + dim Hq−3(g,C)

where a 6= 0 and dim Hk(g,C) = 0 for k < 0.

5.3.2 The Reduced Cohomology

Theorem 5.3.2 ([33], Theorem 1.1 (ii)). If a 6= 0, then dim Hq(Vir n Curg,Ca) = 0 for
all q ≥ 0.

Proof. For a 6= 0, define an operator κ : C̃q(Vir n Curg,Ca)→ C̃q−1(Vir n Curg,Ca) as
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follows:
κγλ1,...,λq−1(a1, . . . , aq−1) = ιλ(L)γλ1,...,λq−1(a1, . . . , aq−1)|λ=0,

for a1, . . . , aq−1 ∈ Vir n Curg, where ι is the operator defined in (2.12). Note that
∂C̃q(Vir n Curg,Ca) = (a +

∑q
i=1 λi)C̃

q(Vir n Curg,Ca). Using (2.13) and (2.11), we
have

((dκ+ κd)γ)λ1,...,λq(a1, . . . , aq) = ((dιλ(L) + ιλ(L)d)γ)λ1,...,λq(a1, . . . , aq)|λ=0

= (θλ(L)γ)λ1,...,λq(a1, . . . , aq)|λ=0

= Lλγλ1,...,λq(a1, . . . , aq)|λ=0

−
q∑
i=1

γλ1,...,λ+λi,...,λq(a1, . . . , [Lλai], . . . , aq)|λ=0

= −
q∑
i=1

γλ1,...,λ+λi,...,λq(a1, . . . , [Lλai], . . . , aq)|λ=0.

(5.33)

Now suppose that γ is a q−cochain of Vir n Curg evaluated at k copies of L and q − k
elements of g, gk+1, . . . , gq. Since [Lλai] = (∂ + 2λ)L when ai = L and [Lλgi] = (∂ + λ)gi

when ai = gi for some gi ∈ g, then (5.33) can be rewritten as

((dκ+ κd)γ)λ1,...,λk,λk+1,...,λq(L, . . . , L, gk+1, . . . , gq)

=
k∑
i=1

(λi − λ)γλ1,...,λ+λi,...,λk,λk+1,...,λq(L, . . . , L, gk+1, . . . , gq)|λ=0

+
k∑
i=1

λiγλ1,...,λk,λk+1,...,λ+λi,...,λq(L, . . . , L, gk+1, . . . , gq)|λ=0

= (∂ − a)γλ1,...,λk,λk+1,...,λq(L, . . . , L, gk+1, . . . , gq)

= −aγλ1,...,λk,λk+1,...,λq(L, . . . , L, gk+1, . . . , gq) mod ∂C̃q(Vir n Curg,Ca).

(5.34)

Now assume that γ is a reduced q−cocycle, i.e., γ ∈ C̃q(Vir n Curg,Ca) such that
dγ ∈ ∂C̃q+1(Vir n Curg,Ca). Then, there exists a (q+1)−cochain φ such that dγ = ∂φ =

(a+
∑q+1

i=1 λi)φ. Thus,

κdγ = κ∂φ = (a+

q∑
i=1

λi)κφ ∈ ∂C̃q(Vir n Curg,Ca).
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By (5.34), we have dκγ ≡ −aγ =⇒ γ ≡ d(a−1κγ), i.e., γ is a reduced q−coboundary.
Therefore, Hq(Vir n Curg,Ca) = 0 for all q ≥ 0.

5.4 Cohomology of Virn Curg with Coefficients inMα,∆,U

Recall that, (Theorem 2.5.1), every finite irreducible conformal module over Vir n Curg

is given by M∆,α,U = C[∂]⊗CU , where U is a finite dimensional irreducible g-module, and

Lλu = (α + ∂ + ∆λ)u, gλu = g · u,

for ∆, α ∈ C, u ∈ U and g ∈ g. The g-module U is nontrivial if ∆ = 0. In this section we
will compute the basic cohomology of Vir n Curg with coefficients in the module Mα,∆,U

for some ∆, α ∈ C, and the reduced cohomology when α 6= 0.

5.4.1 The Basic Cohomology

The second term of the Hochschild-Serre spectral sequence associated to the basic complex
of the semi direct product Vir n Curg with coefficients in M∆,α,U is given by

Ep,q
2
∼= H̃p(Vir, H̃q(Curg,M∆,α,U))⇒ H̃p+q(Vir n Curg,M∆,α,U)

for all p, q ≥ 0. To describe the cohomology space H̃p(Vir, H̃q(Curg,M∆,α,U)) we first
introduce the following lemma.

Lemma 5.4.1. For γ ∈ C̃q(Curg,M∆,α,U), we have

(θλ(L)γ)λ1,...,λq(g1, . . . , gq) = (∂ + α + ∆λ)γλ1,...,λq(g1, . . . , gq)

+

q∑
i=1

(∂ − ∂M − λ−
q∑
j=1
j 6=i

λj)γλ1,...,λ+λi,...,λq(g1, . . . , gq).

Proof. Let γ ∈ C̃q(Curg,M∆,α,U) then by (2.11), we get

(θλ(L)γ)λ1,...,λq(g1, . . . , gq)

= Lλγλ1,...,λq(g1, . . . , gq)−
q∑
i=1

γλ1,...,λ+λi,...,λq(g1, . . . , [Lλgi], . . . , gq)
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= (∂ + α + ∆λ)γλ1,...,λq(g1, . . . , gq) +

q∑
i=1

λiγλ1,...,λ+λi,...,λq(g1, . . . , gq). (5.35)

Using (2.8), the C[∂]−module structure on C̃q(Curg,M∆,α,U) is given by

(∂ · γ)λ1,...,λq(g1, . . . , gq) = (∂M +

q∑
i=1

λi)γλ1,...,λq(g1, . . . , gq).

Then we can rewrite λiγλ1,...,λ+λi,...,λq(g1, . . . , gq) as

λiγλ1,...,λ+λi,...,λq(g1, . . . , gq) = (∂ − ∂M − λ−
q∑
j=1
j 6=i

λj)γλ1,...,λ+λi,...,λq(g1, . . . , gq).

Plugging this into (5.35) we obtain

(θλ(L)γ)λ1,...,λq(g1, . . . , gq) = (∂ + α + ∆λ)γλ1,...,λq(g1, . . . , gq)

+

q∑
i=1

(∂ − ∂M − λ−
q∑
j=1
j 6=i

λj)γλ1,...,λ+λi,...,λq(g1, . . . , gq).

Theorem 5.4.1. For the Virasoro conformal algebra,

1. dim H̃p(Vir, H̃q(Curg,M0,α,U)) = 0 for p > 3.

2. dim H̃p(Vir, H̃q(Curg,M2,α,U)) = 0 for p 6= 1, 2.

3. dim H̃p(Vir, H̃q(Curg,M3r−r2,α,U)) = 0 for p > r where r ∈ Z+ and r ≥ 4.

4. dim H̃p(Vir, H̃q(Curg,M∆,α,U)) = 0 if ∆ 6= 3r − r2 for any r ∈ Z+.

Proof. As in the proof of Theorem 5.1.2, we first describe the basic cohomology complex
C̃•(Vir, H̃q(Curg,M∆,α,U)). For any n-cochain γ ∈ C̃n(Vir, H̃q(Curg,M∆,α,U)), then it is
determined by its value on L⊗n:

P (λ1, . . . , λn) = γλ1,...,...(L, . . . , L),
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where P (λ1, . . . , λn) is a skew-symmetric polynomial in n variables with values in
H̃q(Curg,M∆,α,U). The differential is given by the following formula:

(dP )(λ1, . . . , λn+1) =
n+1∑
i=1

(−1)i+1(∂ + α + ∆λi)P (λ1, . . . , λ̂i, . . . , λn+1)

+
n+1∑
i=1

( n+1∑
j=1

λjP (λ1, . . . , λi + λj, . . . , λ̂i, . . . , λn+1)
)

+
n+1∑
i,j=1
i<j

(−1)i+j(λi − λj)P (λi + λj, λ1, . . . , λ̂i, . . . , λ̂j, . . . , λn+1).

Following [2], consider the homotopy operator

κ : C̃p(Vir, H̃q(Curg,M∆,α,U)) −→ C̃p−1(Vir, H̃q(Curg,M∆,α,U))

κγλ1,...,λp−1(L, . . . , L) =
∂

∂λ
ιλ(L)γλ1,...,λp−1(L, . . . , L)|λ=0.

Then we have

(κd+ dκ)γλ1,...,λp(L, . . . , L)

=
∂

∂λ

(
Lλγλ1,...,λp(L, . . . , L)|λ=0 −

p∑
i=1

γλ1,...,λi+λ,...,λp(L, . . . , [LλL], . . . L)|λ=0

)
=

∂

∂λ

(
(∂ + α + ∆λ)γλ1,...,λp(L, . . . , L)|λ=0

+

p∑
i=1

(∂ − ∂M − λ−
p∑
j=1
j 6=i

λj)γλ1,...,λ+λi,...,λp(L, . . . , L)|λ=0

+

p∑
i=1

(λi − λ)γλ1,...,λi+λ,...,λp(L, . . . , L)|λ=0

)
= (2(degλ γ − p) + ∆)γλ1,...,λp(L, . . . , L),

where degλ γ is the total degree of γ in λ1, . . . , λp. Thus, a p−cocycle γ contributes to the
cohomology of C̃p(Vir, H̃q(Curg,M∆,α,U)) if its degree as a polynomial is equal to (2p−
∆)/2. These polynomials are skew symmetric, hence divisible by Λp = Πi≤j(λi−λj), whose
polynomial degree is p(p−1)/2. Consider the quadratic inequality p(p−1)/2 ≤ (2p−∆)/2.
Then we have p ∈ [(3−

√
9− 4∆)/2, (3 +

√
9− 4∆)/2]. A straightforward computation

shows that ∆ = 3r−r2 for any r ∈ Z+, otherwise H̃p(Vir, H̃q(Curg,M∆,α,U )) = {0}. Thus,
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the only integral solutions for the inequality p(p− 1)/2 ≤ (2p−∆)/2 are the following

p =


0, 1, 2, 3 if ∆ = 0,

1, 2 if ∆ = 2,

0, 1, . . . , r if ∆ = (3r − r2),

where r ∈ Z+ such that r 6= 0, 1, 2, 3. It follows that

i. H̃p(Vir, H̃q(Curg,M0,α,U)) = {0} ∀ p > 3.

ii. H̃p(Vir, H̃q(Curg,M2,α,U)) = {0} ∀ p 6= 1, 2.

iii. H̃p(Vir, H̃q(Curg,M3r−r2,α,U)) = {0} ∀ p > r, r ∈ Z+ and r ≥ 4.

iv. H̃p(Vir, H̃q(Curg,M∆,α,U)) = {0} if ∆ 6= 3r − r2 for any r ∈ Z+.

As shown in Proposition 2.7.1, we obtain the following long exact sequence of coho-
mology groups:

0 H0(∂C̃•) H̃0(Vir, N) H0(Vir, N)

H1(∂C̃•) H̃1(Vir, N) H1(Vir, N)

H2(∂C̃•) H̃2(Vir, N) H2(Vir, N) · · ·

ι0 π0 w0

ι1 π1 w1

ι2 π2 w2

(5.36)

where N = H̃q(Curg,M∆,α,U), and ιi and πi are the homomorphisms induced by the
embedding ∂C̃•

ι
↪−→ C̃• and the canonical projection π : C̃• −→ C̃•/∂C̃•, respectively, and

wi is the i−th connecting homomorphism. Then, we have the following theorem.

Theorem 5.4.2. For the Virasoro conformal algebra Vir,

dim Hp(Vir, H̃q(Curg,M∆,α,U)) = dim H̃p(Vir, H̃q(Curg,M∆,α,U))

+ dim H̃p+1(Vir, H̃q(Curg,M∆,α,U))

for all p ≥ 0.

Proof. Let ∂γ ∈ Hp(∂C̃•), for a nonzero γ ∈ H̃p(Vir, H̃q(Curg,M∆,α,U)) then ιp([∂γ]) =

[∂γ] ∈ H̃p(Vir, H̃q(Curg,M∆,α,U)). Using Theorem 5.4.1, ∂γ can be identified with a
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skew symmetric polynomial of degree (2p −∆)/2 for all p ≥ 0. On the other hand, by
definition, we have degλ ∂γ = degλ γ + 1 = (2p − ∆)/2 + 1. Thus, ∂γ = 0, and the
image of ιp is zero for all p ≥ 0. By the exactness of (5.36), im ιp = kerπp = 0 and
im wp = ker ιp+1 = Hp+1(∂C̃•) ∼= H̃p+1(Vir, H̃q(Curg,M∆,α,U)) for all p ≥ 0. Therefore,
we get the following short exact sequence

0 −→ H̃p(Vir, H̃q(Curg,M∆,α,U)) −→Hp(Vir, H̃q(Curg,M∆,α,U)) −→

−→ H̃p+1(Vir,H̃q(Curg,M∆,α,U)) −→ 0

which implies that for all p ≥ 0,

dim Hp(Vir, H̃q(Curg,M∆,α,U)) = dim H̃p(Vir, H̃q(Curg,M∆,α,U))

+ dim H̃p+1(Vir, H̃q(Curg,M∆,α,U)).

Theorem 5.4.3. If α 6= 0, then H̃•(Vir n Curg,M∆,α,U) = 0.

Now we introduce the following lemma, which is essential to prove Theorem 5.4.3.

Lemma 5.4.2. Hp(Vir, H̃q(Curg,M∆,α,U)) = 0 for all p ≥ 0 and α 6= 0.

Proof. Define the homotopy operator

κ : Cp(Vir, H̃q(Curg,M∆,α,U)) −→ Cp−1(Vir, H̃q(Curg,M∆,α,U))

κγλ1,...,λp−1(L, . . . , L) = ιλ(L)γλ1,...,λp−1(L, . . . , L)|λ=0.

Then we have,

((dκ+ κd)γ)λ1,...,λp(L, . . . , L)

= (θλ(L)γ)λ1,...,λp(L, . . . , L)|λ=0

= (∂M + α + ∆λ)γλ1,...,λp(L, . . . , L)|λ=0 +

p∑
i=0

λiγλ1,...,λ+λi,...,λp(L, . . . , L)|λ=0

−
p∑
i=1

(λ− λi)γλ1,...,λ+λi,...,λp(L, . . . , L)|λ=0

= (∂M + α + 2

p∑
i=1

λi)γλ1,...,λp(L, . . . , L)
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= (∂M + α + 2(∂ − ∂M))γλ1,...,λp(L, . . . , L)

= (α− ∂M)γλ1,...,λp(L, . . . , L) mod ∂C̃p(Vir, H̃q(Curg,M∆,α,U)). (5.37)

Assume that γ is a reduced p−cocycle, then γ ∈ C̃p(Vir, H̃q(Curg,M∆,α,U)) such that
dγ ∈ ∂C̃p+1(Vir, H̃q(Curg,M∆,α,U)), i.e., there exists a (p + 1)−cochain φ such that
dγ = ∂φ = (∂M +

∑p
i=1 λi)φ. Hence,

κdγ = κ∂α = (∂M +

p∑
i=1

λi)κφ ∈ ∂C̃p(Vir, H̃q(Curg,M∆,α,U)).

Now from (5.37), for α 6= 0, we have dκγ ≡ (α− ∂M )γ =⇒ γ ≡ d((α− ∂M )−1κγ), i.e., γ
is a reduced p−coboundary. Therefore, Hp(Vir, H̃q(Curg,M∆,α,U)) = 0 for all q ≥ 0 and
α 6= 0.

Proof of Theorem 5.4.3.

Proof. Using Theorem 5.4.2 and Lemma 5.4.2, we have

0 = dim Hp(Vir, H̃q(Curg,M∆,α,U)) = dim H̃p(Vir, H̃q(Curg,M∆,α,U))

+ dim H̃p+1(Vir, H̃q(Curg,M∆,α,U))

which implies that H̃p(Vir, H̃q(Curg,M∆,α,U)) = {0} for all p. Hence, Ep,q
2 = {0} for all

p, q, and then dp,qr = 0 for all p, q and r ≥ 2. Therefore, the Hochschild-Serre spectral
sequence collapses at the second page and we obtain H̃p(Vir n Curg,M∆,α,U) = 0 for all
p ≥ 0 and α 6= 0.

Theorem 5.4.4. For the semidirect product Lie conformal algebra Vir n Curg,

dim H̃q(Vir n Curg,M0,0,U) = dim H̃q−2(Curg,M0,0,U) + dim H̃q−3(Curg,M0,0,U)

for all q ≥ 0. In particular,

H̃n(Vir n Curg,M0,0,U) ∼= P2H̃n−2(Curg,M0,0,U)⊕ Λ3H̃n−3(Curg,M0,0,U),

where P2 = λ2
1 − λ2

2 and Λ3 = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3).
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Proof. The second term of the Hochschild-Serre spectral sequence associated to the basic
complex of Vir n Curg with coefficients in M0,0,U is given by

Ep,q
2
∼= H̃p(Vir, H̃q(Curg,M0,0,U))⇒ H̃p+q(Vir n Curg,M0,0,U)

for all p, q ≥ 0. From Theorem 5.4.1, we have dim H̃p(Vir, H̃q(Curg,M0,0,U)) = 0 for all
p > 3 and only p−cochains that is identified with skew symmetric polynomials of degree
p contribute to the cohomology of C̃p(Vir, H̃q(Curg,M0,0,U)) where p = 0, 1, 2 and 3.

For p = 0, and for any nonzero γ ∈ C̃0(Vir, H̃q(Curg,M0,0,U)) = H̃q(Curg,M0,0,U)

such that dγ = 0 we have

0 = dγµ1,...,µq(g1, . . . , gq) = Lλγµ1,...,µq(g1, . . . , gq)

= ∂Mγµ1,...,µq(g1, . . . , gq) +

q∑
i=1

µiγµ1,...,λ+µi,...,µq(g1, . . . , gq).

Set γ =
∑n

i=0 ai(µ1, . . . , µq)∂
i such that an(µ1, . . . , µq) 6= 0. Letting λ = 0 in (5.38) yields

0 = dγµ1,...,µq(g1, . . . , gq) = ∂M
( n∑
i=0

ai(µ1, . . . , µq)∂
i
)

+

q∑
i=1

µi
( n∑
i=0

ai(µ1, . . . , µq)∂
i
)

=
(
∂M +

q∑
i=1

µi
) n∑
i=0

ai(µ1, . . . , µq)∂
i

= ∂
( n∑
i=0

ai(µ1, . . . , µq)∂
i
)
.

It follows that ai(λ1, . . . , λq) = 0 for all i, i.e., γ = 0, a contradiction. Thus, any 0−cocycle
γ must be zero and so we get H̃0(Vir, H̃q(Curg,M0,0,U)) = {0}.

For p = 1, let γ ∈ C̃1(Vir, H̃q(Curg,M0,0,U)) such that dγ = 0, then λ which is the
only polynomial of degree 1 in one variable. Letting γλ(L) = γ′λ where γ′ is a nonzero
q−cocycle in H̃q(Curg,M0,0,U), we have

dγλ1,λ2(L,L)

= ∂Mγλ2(L) + λ2γλ1+λ2(L)− ∂Mγλ1(L)− λ1γλ1+λ2(L)− (λ1 − λ2)γλ1+λ2(L)

= (∂ − λ2)(γ′λ2) + γ′λ2(λ1 + λ2)− (∂ − λ1)(γ′λ1)− γ′λ1(λ1 + λ2)

− γ′(λ1 − λ2)(λ1 + λ2)

= γ′(λ2 − λ1)(∂ + λ1 + λ2).
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i.e., dγλ(L) = 0 implies that γλ(L) = 0. Hence, H̃1(Vir, H̃q(Curg,M0,0,U)) = {0}.
If p = 2, then the only skew symmetric homogeneous polynomial of degree 2 in two

variables is λ2
1 − λ2

2. Here we have

dγλ1,λ2,λ3(L,L, L)

= ∂Mγλ2,λ3(L,L) + λ2γλ1+λ2,λ3(L,L) + λ3γλ2,λ1+λ3(L,L)− ∂Mγλ1,λ3(L,L)

− λ1γλ1+λ2,λ3(L,L)− λ3γλ1,λ2+λ3(L,L) + ∂Mγλ1,λ2(L,L) + λ1γλ1+λ3,λ2(L,L)

+ λ2γλ1,λ2+λ3(L,L)− (λ1 − λ2)γλ1+λ2,λ3(L,L) + (λ1 − λ3)γλ1+λ3,λ2(L,L)

− (λ2 − λ3)γλ2+λ3,λ1(L,L)

= ∂M(λ2
2 − λ2

3) + λ2((λ1 + λ2)2 − λ2
3) + λ3(λ2

2 − (λ1 + λ3)2)− ∂M(λ2
1 − λ2

3)

− λ1((λ1 + λ2)2 − λ2
3)− λ3(λ2

1 − (λ2 + λ3)2) + ∂M(λ2
1 − λ2

2) + λ1((λ1 + λ3)2 − λ2
2)

+ λ2(λ2
1 − (λ2 + λ3)2)− (λ1 − λ2)((λ1 + λ2)2 − λ2

3) + (λ1 − λ3)((λ1 + λ3)2 − λ2
2)

− (λ2 − λ3)((λ2 + λ3)2 − λ2
1) = 0.

It follows that λ2
1 − λ2

2 is 2−cocycle. Now let φ ∈ C̃1(Vir, H̃q(Curg,M0,0,U)) such that
dφ = λ2

1 − λ2
2 then we have

λ2
1 − λ2

2 = dφλ1,λ2(L,L)

= ∂Mφλ2(L) + λ2φλ1+λ2(L)− ∂Mφλ1(L)− λ1φλ1+λ2(L)− (λ1 − λ2)φλ1+λ2(L)

= (∂ − λ2)φλ2(L) + λ2φλ1+λ2(L)− (∂ − λ1)φλ1(L)− λ1φλ1+λ2(L)

− (λ1 − λ2)φλ1+λ2(L). (5.38)

Since φ is a 1−cochain that it is identified with a polynomial in one variable λ, then
we can rewrite φλ(L) = λf(λ) for some nonzero polynomial f(λ) ∈ H̃q(Curg,M0,0,U).
Plugging this into (5.38) gives

λ2
1 − λ2

2 = (∂ − λ2)λ2f(λ2) + λ2(λ1 + λ2)f(λ1 + λ2)− (∂ − λ1)λ1f(λ1)

− λ1(λ1 + λ2)f(λ1 + λ2)− (λ1 − λ2)(λ1 + λ2)f(λ1 + λ2)

= (∂ − λ2)λ2f(λ2)− (∂ − λ1)λ1f(λ1) + 2(λ2 − λ1)(λ1 + λ2)f(λ1 + λ2).

(5.39)

Letting λ2 = 0 in (5.39) implies λ2
1 = −(∂ + λ1)λ1f(λ1). Set f(λ1) =

∑n
i=0 ai(λ1)∂i such
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that an(λ1) 6= 0. Assume that n > 1, then we have

λ2
1 = −(∂ + λ1)λ1

( n∑
i=0

ai(λ1)∂i
)
. (5.40)

Equating the coefficients of ∂n+1 we get an(λ1) = 0, a contradiction. Then f(λ1) =

a0(λ1) + a1(λ1)∂. Plugging this into (5.40) we get

λ2
1 = −(∂ + λ1)λ1

(
a0(λ1) + a1(λ1)∂

)
.

Equating similar terms of both sides yields a1(λ1) = a0(λ1) = 0, hence f(λ1) = 0.
That implies φ = 0, a contradiction. Hence, λ2

1 − λ2
2 represents a nontrivial class in the

cohomology, and we have H̃2(Vir, H̃q(Curg,M0,0,U)) = (λ2
1 − λ2

2)H̃q(Curg,M0,0,U).
For p = 3, the only skew symmetric homogeneous polynomial of degree 3 in three

variables is Λλ1,λ2,λ3
3 = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3), and it is a 3−cocycle because

dγλ1,λ2,λ3,λ4(L,L, L, L)

= ∂Mγλ2,λ3,λ4(L,L, L) + λ2γλ1+λ2,λ3,λ4(L,L, L) + λ3γλ2,λ1+λ3,λ4(L,L, L)

+ λ4γλ2,λ3,λ1+λ4(L,L, L)− ∂Mγλ1,λ3,λ4(L,L, L)− λ1γλ1+λ2,λ3,λ4(L,L, L)

− λ3γλ1,λ2+λ3,λ4(L,L, L)− λ4γλ1,λ3,λ2+λ4(L,L, L) + ∂Mγλ1,λ2,λ4(L,L, L)

+ λ1γλ1+λ3,λ2,λ4(L,L, L) + λ2γλ1,λ2+λ3,λ4(L,L, L) + λ4γλ1,λ2,λ3+λ4(L,L, L)

− ∂Mγλ1,λ2,λ3(L,L, L)− λ1γλ1+λ4,λ2,λ3(L,L, L)− λ2γλ1,λ2+λ4,λ3(L,L, L)

− λ3γλ1,λ2,λ3+λ4(L,L, L)− (λ1 − λ2)γλ1+λ2,λ3,λ4(L,L, L)

+ (λ1 − λ3)γλ1+λ3,λ2,λ4(L,L, L)− (λ1 − λ4)γλ1+λ4,λ2,λ3(L,L, L)

− (λ2 − λ3)γλ2+λ3,λ1,λ4(L,L, L) + (λ2 − λ4)γλ2+λ4,λ1,λ3(L,L, L)

− (λ3 − λ4)γλ3+λ4,λ1,λ2(L,L, L)

= ∂MΛλ2,λ3,λ4
3 + λ2Λλ1+λ2,λ3,λ4

3 + λ3Λλ2,λ1+λ3,λ4
3 + λ4Λλ2,λ3,λ1+λ4

3

− ∂MΛλ1,λ3,λ4
3 − λ1Λλ1+λ2,λ3,λ4

3 − λ3Λλ1,λ2+λ3,λ4
3 − λ4Λλ1,λ3,λ2+λ4

3

+ ∂MΛλ1,λ2,λ4
3 + λ1Λλ1+λ3,λ2,λ4

3 + λ2Λλ1,λ2+λ3,λ4
3 + λ4Λλ1,λ2,λ3+λ4

3

− ∂MΛλ1,λ2,λ3
3 − λ1Λλ1+λ4,λ2,λ3

3 − λ2Λλ1,λ2+λ4,λ3
3 − λ3Λλ1,λ2,λ3+λ4

3

− (λ1 − λ2)Λλ1+λ2,λ3,λ4
3 + (λ1 − λ3)Λλ1+λ3,λ2,λ4

3 − (λ1 − λ4)Λλ1+λ4,λ2,λ3
3

− (λ2 − λ3)Λλ2+λ3,λ1,λ4
3 + (λ2 − λ4)Λλ2+λ4,λ1,λ3

3 − (λ3 − λ4)Λλ3+λ4,λ1,λ2
3 = 0,
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where Λ
λi,λj ,λk
3 = (λi − λj)(λi − λk)(λj − λk) for i, j, k ∈ {1, 2, 3, 4}. Now suppose that

there exists a 2−cochain φ such that dφ = Λλ1,λ2,λ3
3 . Then we have

(λ1−λ2)(λ1 − λ3)(λ2 − λ3) = dφλ1,λ2,λ3(L,L, L)

= ∂Mφλ2,λ3(L,L) + λ2φλ1+λ2,λ3(L,L) + λ3φλ2,λ1+λ3(L,L)− ∂Mφλ1,λ3(L,L)

− λ1φλ1+λ2,λ3(L,L)− λ3φλ1,λ2+λ3(L,L) + ∂Mφλ1,λ2(L,L) + λ1φλ1+λ3,λ2(L,L)

+ λ2φλ1,λ2+λ3(L,L)− (λ1 − λ2)φλ1+λ2,λ3(L,L) + (λ1 − λ3)φλ1+λ3,λ2(L,L)

− (λ2 − λ3)φλ2+λ3,λ1(L,L)

= (∂ − λ2 − λ3)φλ2,λ3(L,L) + λ2φλ1+λ2,λ3(L,L) + λ3φλ2,λ1+λ3(L,L)

− (∂ − λ1 − λ3)φλ1,λ3(L,L)− λ1φλ1+λ2,λ3(L,L)− λ3φλ1,λ2+λ3(L,L)

+ (∂ − λ1 − λ2)φλ1,λ2(L,L) + λ1φλ1+λ3,λ2(L,L) + λ2φλ1,λ2+λ3(L,L)

− (λ1 − λ2)φλ1+λ2,λ3(L,L) + (λ1 − λ3)φλ1+λ3,λ2(L,L)

− (λ2 − λ3)φλ2+λ3,λ1(L,L). (5.41)

Since φλ,µ(L,L) is a skew symmetric polynomial then it can be written as (λ− µ)f(λ, µ)

for some symmetric polynomial f(λ, µ) ∈ H̃q(Curg,M0,0,U )[λ, µ]. Plugging this into (5.41)
yields

(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)

= (∂ − λ2 − λ3)(λ2 − λ3)f(λ2, λ3) + λ2(λ1 + λ2 − λ3)f(λ1 + λ2, λ3)

+ λ3(λ2 − λ1 − λ3)f(λ2, λ1 + λ3)− (∂ − λ1 − λ3)(λ1 − λ3)f(λ1, λ3)

− λ1(λ1 + λ2 − λ3)f(λ1 + λ2, λ3)− λ3(λ1 − λ2 − λ3)f(λ1, λ2 + λ3)

+ (∂ − λ1 − λ2)(λ1 − λ2)f(λ1, λ2) + λ1(λ1 + λ3 − λ2)f(λ1 + λ3, λ2)

+ λ2(λ1 − λ2 − λ3)f(λ1, λ2 + λ3)− (λ1 − λ2)(λ1 + λ2 − λ3)f(λ1 + λ2, λ3)

+ (λ1 − λ3)(λ1 + λ3 − λ2)f(λ1 + λ3, λ2)− (λ2 − λ3)(λ2 + λ3 − λ1)f(λ2 + λ3, λ1)

= (∂ − λ2 − λ3)(λ2 − λ3)f(λ2, λ3)− (∂ − λ1 − λ3)(λ1 − λ3)f(λ1, λ3)

+ (∂ − λ1 − λ2)(λ1 − λ2)f(λ1, λ2)− 2(λ1 − λ2)(λ1 + λ2 − λ3)f(λ1 + λ2, λ3)

+ 2(λ1 − λ3)(λ1 + λ3 − λ2)f(λ1 + λ3, λ2)− 2(λ2 − λ3)(λ2 + λ3 − λ1)f(λ2 + λ3, λ1).

(5.42)
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Letting λ3 = 0 in (5.42), we obtain

λ1λ2(λ1 − λ2) = λ1

(
(∂ + λ1)f(λ1, λ2)− (∂ − λ1)f(λ1)− 2λ1f(λ1 + λ2)

)
,

+ λ2

(
(∂ − λ2)f(λ2)− (∂ + λ2)f(λ1, λ2) + 2λ2f(λ1 + λ2)

)
.

(5.43)

Equating similar terms of both sides, we have

λ2(λ1 − λ2) = (∂ + λ1)f(λ1, λ2)− (∂ − λ1)f(λ1)− 2λ1f(λ1 + λ2)

λ1(λ1 − λ2) = (∂ − λ2)f(λ2)− (∂ + λ2)f(λ1, λ2) + 2λ2f(λ1 + λ2)

=⇒ λ2
1 − λ2

2 = (∂ − λ2)f(λ2)− (∂ − λ1)f(λ1)− 2(λ1 − λ2)f(λ1 + λ2)

+ (λ1 − λ2)f(λ1, λ2).

(5.44)

Letting λ2 = 0 in the last equation of (5.44) gives λ2
1 = ∂

(
f(0)− f(λ1)

)
. Observe that

the left hand side does not depend on ∂, so we have f(0)− f(λ1) = 0. Plugging this into
the first equation of (5.44) we get

λ2(λ1 − λ2) = (∂ + λ1)f(λ1, λ2)− (∂ − λ1)f(0)− 2λ1f(0)

= (∂ + λ1)(f(λ1, λ2)− f(0)).
(5.45)

Set f(λ) =
∑n

i=0 ai(λ)∂i such that an(λ) 6= 0, and f(λ, µ) =
∑n

i=0 ai(λ, µ)∂i such that
ai(λ, µ) 6= 0. Plugging this into (5.45) and comparing the coefficients of similar terms
we get ai(λ1, λ2) = ai(0) for all i. Hence, f(λ, µ) =

∑n
i=0 ai(0)∂i. Using this in (5.42)

yields Λ3 = 0, a contradiction. It follow that Λ3 is not a 3−coboundary and thus we have
H̃3(Vir, H̃q(Curg,M0,0,U)) ∼= Λ3H̃q(Curg,M0,0,U).

Therefore, the second term of the Hochschild-Serre spectral sequence is given by

Ep,q
2 =


P2H̃q(Curg,M0,0,U) if p = 2

Λ3H̃q(Curg,M0,0,U) if p = 3

0 otherwise,

where P2 = λ2
1 − λ2

2 and Λ3 = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3). Then the corner of the E2

page for the Hochschild-Serre spectral sequence associated to C̃•(Vir n Curg,M0,0,U) is
shown in the following figure.
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Figure 5.3: Ep,q
2 -page for (C̃•(Vir n Curg,M0,0,U), F̃ •, d).

Here N q
0,0,U = H̃q(Curg,M0,0,U ). Since the differential dp,qr with r ≥ 2 shifts r points to

the right and q − r + 1 points down, we conclude that dp,qr = 0 for all p, q ≥ 0 and r ≥ 2.
It follows that the Hochschild-Serre spectral sequence collapses at the second page, i.e.,
Ep,q
∞
∼= Ep,q

2 for all p, q ≥ 0. Therefore,

H̃n(Vir n Curg,M0,0,U) ∼=
⊕
p+q=n

H̃p(Vir, H̃q(Curg,M0,0,U))

∼= H̃2(Vir, H̃n−2(Curg,M0,0,U))⊕ H̃3(Vir, H̃n−3(Curg,M0,0,U))

∼= P2H̃n−2(Curg,M0,0,U)⊕ Λ3H̃n−3(Curg,M0,0,U)

for all n ≥ 2 and H̃n(Vir n Curg,M2,0,U) = {0} for n ≤ 1.

Theorem 5.4.5. For the semidirect product Lie conformal algebra Vir n Curg,

dim H̃q(Vir n Curg,M2,0,U) = dim H̃q−1(Curg,M2,0,U) + dim H̃q−2(Curg,M2,0,U)

for all q ≥ 0. In particular,

H̃q(Vir n Curg,M2,0,U) ∼= H̃q−1(Curg,M2,0,U)⊕ (λ1 − λ2)H̃q−2(Curg,M2,0,U).
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Proof. As mentioned previously in this section, we have

Ep,q
2
∼= H̃p(Vir, H̃q(Curg,M2,0,U))⇒ H̃p+q(Vir n Curg,M2,0,U)

for all p, q ≥ 0. We begin our proof by computing the cohomology H̃p(Vir, H̃q(Curg,M2,0,U )).
Using Theorem 5.4.1, we know that dim H̃p(Vir, H̃q(Curg,M2,0,U)) = 0 unless p = 1, 2.
Moreover, only skew symmetric polynomials of degree p− 1 contribute to the cohomology
of C̃p(Vir, H̃q(Curg,M2,0,U)).

For p = 1, then any 1−cocycle is a polynomial of degree zero, i.e., an element of
H̃q(Curg,M2,0,U). Now, let γ ∈ C̃1(Vir, H̃q(Curg,M2,0,U)) such that γλ1(L) = φ for some
nonzero φ ∈ H̃q(Curg,M2,0,U). Then γ is a 1−cocycle because

dγλ1,λ2(L,L) = (∂M + 2λ1)γλ2(L) + λ2γλ1+λ2(L)− (∂M + 2λ2)γλ1(L)

− λ1γλ1+λ2(L)− (λ1 − λ2)γλ1+λ2(L)

= (∂M + 2λ1)γλ2(L)− (∂M + 2λ2)γλ1(L)− 2(λ1 − λ2)γλ1+λ2(L)

= (∂M + 2λ1)φ− (∂M + 2λ2)φ− 2(λ1 − λ2)φ = 0.

(5.46)

Now suppose that there exists a 0−cochain γ′ ∈ C̃0(Vir, H̃q(Curg,M2,0,U)) such that
dγ′λ(L) = Lλγ

′ = γ for each γ ∈ C̃1(Vir, H̃q(Curg,M2,0,U)), a representative of a
1−cocycle in H̃1(Vir, H̃q(Curg,M2,0,U)). Since degλ(dγ

′) = 1, and degλ(γ) = 0, then γ

represents a nontrivial class in the cohomology and we have H̃1(Vir, H̃q(Curg,M2,0,U )) ∼=
H̃q(Curg,M2,0,U).

For p = 2, the only skew symmetric homogeneous polynomial of degree 1 in two
variable is λ1 − λ2, which is a 2−cocycle.

dγλ1,λ2,λ3(L,L, L)

= (∂M + 2λ1)γλ2,λ3(L,L) + λ2γλ1+λ2,λ3(L,L) + λ3γλ2,λ1+λ3(L,L)

− (∂M + 2λ2)γλ1,λ3(L,L)− λ1γλ1+λ2,λ3(L,L)− λ3γλ1,λ2+λ3(L,L)

+ (∂M + 2λ3)γλ1,λ2(L,L) + λ1γλ1+λ3,λ2(L,L) + λ2γλ1,λ2+λ3(L,L)

− (λ1 − λ2)γλ1+λ2,λ3(L,L) + (λ1 − λ3)γλ1+λ3,λ2(L,L)− (λ2 − λ3)γλ2+λ3,λ1(L,L)

= (∂M + 2λ1)(λ2 − λ3) + λ2(λ1 + λ2 − λ3) + λ3(λ2 − λ1 − λ3)

− (∂M + 2λ2)(λ1 − λ3)− λ1(λ1 + λ2 − λ3)− λ3(λ1 − λ2 − λ3)

+ (∂M + 2λ3)(λ1 − λ2) + λ1(λ1 + λ3 − λ2) + λ2(λ1 − λ2 − λ3)

− (λ1 − λ2)(λ1 + λ2 − λ3) + (λ1 − λ3)(λ1 + λ3 − λ2)− (λ2 − λ3)(λ2 + λ3 − λ1) = 0.
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Observe that λ1 − λ2 represents a nontrivial cohomology class because if there exists
φ ∈ C̃1(Vir, H̃q(Curg,M2,0,U)) such that dφλ1,λ2(L,L) = λ1 − λ2, then we have

λ1 − λ2 = dφλ1,λ2(L,L)

= (∂M + 2λ1)φλ2(L) + λ2φλ1+λ2(L)− (∂M + 2λ2)φλ1(L)

− λ1φλ1+λ2(L)− (λ1 − λ2)φλ1+λ2(L)

= (∂ − λ2 + 2λ1)φλ2(L)− (∂ − λ1 + 2λ2)φλ1(L)

− 2(λ1 − λ2)φλ1+λ2(L).

(5.47)

Since φλ(L) is a 1−cochain that is identified with a polynomial in one variable λ, then it
can be written as φλ(L) = λf(λ) for a nonzero polynomial f(λ) ∈ H̃q(Curg,M2,0,U)[λ].
Then (5.47) becomes

λ1 − λ2 = (∂ − λ2 + 2λ1)(λ2f(λ2))− (∂ − λ1 + 2λ2)(λ1f(λ1))

− 2(λ2
1 − λ2

2)f(λ1 + λ2).
(5.48)

Set f(λ) =
∑n

i=0 ai(λ)∂i such that an(λ) 6= 0. Plugging this into (5.48) with λ2 = 0 we
obtain

λ1 = −(∂λ1 + λ2
1)f(λ1) = −(∂λ1 + λ2

1)
n∑
i=0

ai(λ1)∂i. (5.49)

Since the left hand side of (5.49) does not depends on ∂, then all the coefficients of nonzero
powers of ∂ are zero. So we have,

an(λ1)λ1∂
n+1 = 0, − a0(λ1)λ2

1 = λ1,(
ai+1(λ1)λ2

1 + ai(λ1)λ1

)
∂i+1 = 0 ∀i ≥ 0.

It follows that ai(λ1) = 0 for all i. Thus, φλ(L) = 0, a contradiction. Therefore,
H̃2(Vir, H̃q(Curg,M2,0,U)) ∼= (λ1 − λ2)H̃q(Curg,M2,0,U).

Then the corner of the E2 page for the Hochschild-Serre spectral sequence associated
to C̃•(Vir n Curg,M2,0,U) is shown in the following figure.
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Figure 5.4: Ep,q
2 -page for (C̃•(Vir n Curg,M2,0,U), F̃ •, d).

Since the differential dp,qr with r ≥ 2 shifts r points to the right and 1− r points down,
then from Figure 5.4 we conclude that dp,qr = 0 for all p, q ≥ 0 and r ≥ 2. It follows that
the Hochschild-Serre spectral sequence collapses at the second page, i.e., Ep,q

∞
∼= Ep,q

2 for
all p, q ≥ 0. Therefore,

H̃n(Vir n Curg,M2,0,U) ∼=
⊕
p+q=n

H̃p(Vir, H̃q(Curg,M2,0,U))

∼= H̃1(Vir, H̃n−1(Curg,M2,0,U))⊕ H̃2(Vir, H̃n−2(Curg,M2,0,U))

∼= H̃n−1(Curg,M2,0,U)⊕ Λ1H̃n−2(Curg,M2,0,U),

for all n ≥ 1 and H̃n(Vir n Curg,M2,0,U) = {0} for n ≤ 0.

Lemma 5.4.3. Let E∗,∗r be the Hochschild-Serre spectral sequence associated to the basic
complex of Vir n Curg with coefficients in the module M∆,0,U where ∆ = 3r − r2 for
r ∈ Z+ and r ≥ 4. Then we have

1. dim H̃p(Vir, H̃q(Curg,M∆,0,U)) = 0 for p = 0, 1.

2. Ep,q
2 = H̃p(Vir, H̃q(Curg,M∆,0,U )) for all 2 ≤ p ≤ r and q ≥ 0, and Ep,q

2 = 0 otherwise.

3. If dim H̃q(Curg,M∆,0,U ) = 0 for all q > s then Ep,q
∞ = Ep,q

n where n = min(r+ 1, s+ 2).
Otherwise, Ep,q

∞ = Ep,q
r+1.
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Proof. 1. From Theorem 5.4.1, only homogeneous skew symmetric polynomial of degree
(2p − ∆)/2 contribute to the cohomology of C̃p(Vir, H̃q(Curg,M∆,0,U)). For p = 0, let
γ ∈ C̃0(Vir, H̃q(Curg,M∆,0,U)) be a 0−cocycle. Then γ can be identified with a nonzero
q−cochain γ′ ∈ H̃q(Curg,M∆,0,U) and dγ = Lλγ

′ = 0. Then we have

0 = Lλγ
′
µ1,...,µq

(g1, . . . , gq) = (∂M + ∆λ)γ′µ1,...,µq(g1, . . . , gq)

+

q∑
i=1

µiγ
′
µ1,...,µi+λ,...,µq

(g1, . . . , gq)

Setting λ = 0 yields

0 = (∂M +

q∑
i=1

µi)γ
′
µ1,...,µq

(g1, . . . , gq) = ∂γ′µ1,...,µq(g1, . . . , gq).

It follows that H̃q(Curg,M∆,0,U) is a trivial Vir−module (Lemma 2.1.1), contradiction.
Then γ′ must be zero thus H̃0(Vir, H̃q(Curg,M∆,0,U)) = {0}.

If p = 1, let γ ∈ C̃1(Vir, H̃q(Curg,M∆,0,U)) be a 1−cocycle. Then γ is a polynomial
of degree n = (2 − ∆)/2 in one variable, so we can write γλ(L) = λf(λ) for nonzero
polynomial f(λ) ∈ H̃q(Curg,M∆,0,U)[λ]. By the definition of the differential we have

dγλ1,λ2(L,L)

= (∂M + ∆λ1)γλ2(L) + λ2γλ1+λ2(L)− (∂M + ∆λ2)γλ1(L)− λ1γλ1+λ2(L)

− (λ1 − λ2)γλ1+λ2(L)

= (∂ − λ2 + ∆λ1)λ2f(λ2) + 2λ2(λ1 + λ2)f(λ1 + λ2)− (∂ − λ1 + ∆λ2)λ1f(λ1)

− 2λ1(λ1 + λ2)f(λ1 + λ2).

Letting λ2 = 0 yields (∂λ1 + λ2
1)f(λ1) = 0, so f(λ1) = 0, a contradiction. Then, γ must

be zero and so we have H̃1(Vir, H̃q(Curg,M∆,0,U)).
2. Follows directly from Theorem 5.4.1 and part (1).
3. If dim H̃q(Curg,M∆,0,U) = 0 for all q > s, then by Lemma 3.1.1 and part (2), the

Hochschild-Serre spectral sequence collapses at the nth-page where n = min(r + 1, s+ 2).
Otherwise, by part (2), Ep,q

2 = 0 for all p ≥ r+ 1 and thus Ep,q
s = 0 for all p ≥ r+ 1. Since

the differential dr shifts r points to the right and 1− r points down. Then dr+1 = 0 for all
r > 4. Hence, the Hochschild-Serre spectral sequence collapses at the (r + 1)th−page.

Theorem 5.4.6. If ∆ = 3r − r2 such that r ∈ Z+ and r ≥ 4 then
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1. dim H̃n(Vir n Curg,M∆,0,U) = 0 for n = 0, 1.

2. dim H̃2(Vir n Curg,M∆,0,U) = dim H̃2(Vir,MCur g
∆,0,U) .

Proof. Let ∆ = 3r− r2 for r ∈ Z+ and r ≥ 4. From Example, 3.3.1, we have H̃0 = E0,0
∞ =

E0,0
2 . By Lemma 5.4.3, E0,0

2 = 0. Thus, dim H̃0(Vir n Curg,M∆,0,U ) = 0. For n = 1, 2, the
seven-term exact sequence (3.3) looks as follows:

0 −→ H̃1(Vir, H̃0(Curg,M∆,0,U)) −→ H̃1(Vir n Curg,M∆,0,U) −→

−→ H̃0(Vir, H̃1(Curg,M∆,0,U)) −→ H̃2(Vir, H̃0(Curg,M∆,0,U)) −→

−→ ker(H̃2(Vir n Curg,M∆,0,U)→ H̃0(Vir, H̃2(Curg,M∆,0,U))) −→

−→ H̃1(Vir, H̃1(Curg,M∆,0,U)) −→ H̃3(Vir, H̃0(Curg,M∆,0,U)).

(5.50)

From Lemma 5.4.3, H̃p(Vir, H̃q(Curg,M∆,0,U)) = 0 for p = 0 and 1, then the long exact
sequence (5.50) can be rewritten as

0 −→ H̃1(Vir n Curg,M∆,0,U) −→ 0 −→ H̃2(Vir, H̃0(Curg,M∆,0,U)) −→

−→ ker(H̃2(Vir n Curg,M∆,0,U)→ 0) −→ 0.

Therefore,

H̃1(Vir n Curg,M∆,0,U) = {0},

H̃2(Vir n Curg,M∆,0,U) ∼= H̃2(Vir, H̃0(Curg,M∆,0,U)) ∼= H̃2(Vir,MCur g
∆,0,U).

5.4.2 The Reduced Cohomology

According to [33], H•(Vir n Curg,M∆,α,U ) = 0 if α 6= 0. In this section we will give another
proof for this result using Theorem 5.4.3 and show that the zeroth reduced cohomology
of Vir n Curg with coefficients in M∆,α,U vanishes for all ∆, α ∈ C and ∆ 6= 2.

Theorem 5.4.7 ([33], Theorem 1.1 (iii)). H•(Vir n Curg,M∆,α,U) = 0 if α 6= 0.

Proof. Using Theorem 5.4.3, the long exact sequence of cohomology groups associated
with (2.10) for the semi direct product Lie conformal algebra Vir n Curg with coefficients
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in the irreducible module M∆,α,U where α 6= 0 is given by

0 H0(∂C̃•) 0 H0(Vir n Curg,M∆,α,U)

0 0 H1(Vir n Curg,M∆,α,U)

0 0 H2(Vir n Curg,M∆,α,U) · · ·

Hence, Hq(Vir n Curg,M∆,α,U) = {0} for all q ≥ 0.

Theorem 5.4.8. H0(Vir n Curg,M∆,0,U) = {0} for all ∆ ∈ C and ∆ 6= 2.

Proof. The long exact sequence of cohomology groups associated with (2.10) for the
semidirect product Lie conformal algebra Vir n Curg with coefficients in the irreducible
module M∆,0,U looks as follows

0 −→H0(∂C̃•) −→ H̃0(Vir n Curg,M∆,0,U) −→ H0(Vir n Curg,M∆,0,U) −→

−→H1(∂C̃•) −→ H̃1(Vir n Curg,M∆,0,U) −→ H1(Vir n Curg,M∆,0,U) −→

−→H2(∂C̃•) −→ H̃2(Vir n Curg,M∆,0,U) −→ H2(Vir n Curg,M∆,0,U) −→ · · ·

(5.51)

From Theorem 5.4.4 and Theorem 5.4.6, dim H̃n(Vir n Curg,M∆,0,U ) = 0 for n = 0, 1 and
∆ 6= 2. Plugging this into (5.51) we get dim H0(Vir n Curg,M∆,0,U) = 0 for all ∆ ∈ C
and ∆ 6= 2.

Remark 5.4.1. Since H2(Vir,Mα,∆,U) = 0 for α 6= 0, we conclude that there exist no
nontrivial C[∂]-split extension of Vir n Curg by Mα,∆,U .

92



REFERENCES

[1] B. Bakalov, A. D’Andrea, and V. G. Kac. Theory of finite pseudoalgebras. Advances
in Mathematics, 162:1–140, 2001.

[2] B. Bakalov, V. G. Kac, and A. A. Voronov. Cohomology of conformal algebras.
Communications in Mathematical Physics, 200(3):561–598, 1999.

[3] R. Biswal, A. Chakhar, and X. He. Classification of rank two Lie conformal algebras,
2019. arXiv: 1712.05478.

[4] H. Cartan and S. Eilenberg. Homological algebra. Princeton University Press,
Princeton, 1956.

[5] S.-J. Cheng and V. G. Kac. Conformal modules. Asian Journal of Mathematics,
1(1):181–193, 1997.

[6] S.-J. Cheng, V. G. Kac, and M. Wakimoto. Extensions of conformal modules. In
M. Kashiwara, A. Matsuo, K. Saito, and I. Satake, editors, Topological Field Theory,
Primitive Forms and Related Topics, pages 79–129. Birkhäuser Boston, Boston, MA,
1998.

[7] C. Chevalley and S. Eilenberg. Cohomology theory of Lie groups and Lie algebras.
Transactions of the American Mathematical Society, 63:85–124, 1948.

[8] A. D’Andrea and V. G. Kac. Structure theory of finite conformal algebras. Selecta
Mathematica, 4(3):377–418, 1998.

[9] G. Fan, Y. Hong, and Y. Su. Generalized conformal derivations of Lie conformal
algebras. Journal of Algebra and Its Applications, 18(09):1950175, 2019.

[10] G. Fan, Y. Su, and H. Wu. Loop Heisenberg-Virasoro Lie conformal algebra. Journal
of Mathematical Physics, 55(12):123508, 2014.

[11] G. Fan, Y. Su, and C. Xia. Infinite rank Schrödinger-Virasoro type Lie conformal
algebras. Journal of Mathematical Physics, 57(8):081701, 2016.

[12] J. Guo and Y. Tan. Conformal derivations of semidirect products of Lie conformal
algebras and their conformal modules. Proceedings of the American Mathematical
Society, 142(5):1471–1483, 2014.

[13] G. Hochschild and J.-P. Serre. Cohomology of group extensions. Transactions of the
American Mathematical Society, 74(1):110–134, 1953.

[14] G. Hochschild and J.-P. Serre. Cohomology of Lie algebras. Annals of Mathematics,
57(3):591–603, 1953.

93



[15] Y. Hong. On Schrödinger-Virasoro type Lie conformal algebras. Communications in
Algebra, 45(7):2821–2836, 2017.

[16] Y. Hong. Central extensions and conformal derivations of a class of Lie conformal
algebras. Linear and Multilinear Algebra, pages 1–22, 2020.

[17] Y. Hong, L. Luo, and Z. Wu. Finite irreducible modules of Lie conformal algebras
W(a, b) and some Schrödinger-Virasoroo type Lie conformal algebras. International
Journal of Mathematics, 30(06):1950026, 2019.

[18] Y. Hong, Z. Wu, and M. Xu. Finite irreducible conformal modules of rank two Lie
conformal algebras. Journal of Algebra and Its Applications, page 2150145, 2020.

[19] V. G. Kac. The idea of locality. In H. D. Doebner, editor, Physical Applications
and Mathematical Aspects of Geometry, Groups and Algebras, pages 16–32. World
Science Publisher, Singapore, 1997.

[20] V. G. Kac. Vertex Algebras for Beginners (University Lecture Series). American
Mathematical Society, Second edition, 1998.

[21] V. G. Kac. Formal distribution algebras and conformal algebras. In XIIth Interna-
tional Congress in Mathematical Physics (ICMP’97), pages 80–97. Internat. Press,
1999.

[22] K. Ling and L. Yuan. Extensions of Schrödinger–Virasoro conformal modules.
Communications in Algebra, 47(7):2883–2903, 2019.

[23] W. Liu, Y. Xiao, and X. Yue. Classification of finite irreducible conformal modules
over Lie conformal algebra W(a, b, r). Electronic Research Archive, 29(3):2445–2456,
2021.

[24] J. McCleary. A User’s Guide to Spectral Sequences. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Second edition, 2001.

[25] Y. Su. Low dimensional cohomology of general conformal algebras gcN . Journal of
Mathematical Physics, 45(1):509–524, 2004.

[26] Y. Su and L. Yuan. Schrödinger-Virasoro Lie conformal algebra. Journal of Mathe-
matical Physics, 54(5):053503, 2013.

[27] W. Wang and C. Xia. Structure of a class of rank two Lie conformal algebras. Algebra
Colloquium, 28(01):169–180, 2021.

[28] W. Wang, C. Xia, and Y. Xu. A class of Schrödinger–Virasoro type Lie conformal
algebras. International Journal of Mathematics, 26(08):1550058, 2015.

[29] C. A. Weibel. An Introduction to Homological Algebra. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 1994.

94



[30] H. Wu and L. Yuan. Cohomology of Heisenberg-Virasoro conformal algebra. Journal
of Lie Theory, 26(4):1187–1197, 2016.

[31] H. Wu and L. Yuan. Structures ofW(2, 2) Lie conformal algebra. Open Mathematics,
14(1):629–640, 2016.

[32] H. Wu and L. Yuan. Classification of finite irreducible conformal modules over
some Lie conformal algebras related to the Virasoro conformal algebra. Journal of
Mathematical Physics, 58(4):041701, 2017.

[33] M. Xu, Y. Tan, and Z. Wu. Cohomology of Lie conformal algebra VirnCurg. Algebra
Colloquium, 28(03):507–520, 2021.

[34] Y. Xu and X. Yue. W(a, b) Lie conformal algebra and its conformal module of rank
one. Algebra Colloquium, 22(03):405–412, 2015.

[35] L. Yuan. A Lie conformal algebra of block type, 2016. arXiv: 1601.07388.

95


	List of Figures
	Introduction
	Lie Conformal Algebras
	Basic Definitions
	Lie Conformal Algebras in the Context of Formal Distribution Lie Algebras
	Virasoro Conformal Algebra, TEXT
	Current Conformal Algebra, TEXT
	The Standard Semidirect Product, TEXT
	Classification of Finite Simple and Semisimple Lie Conformal Algebras
	Cohomology of Lie Conformal Algebras

	Spectral Sequences
	Definitions and Basic Properties
	Spectral Sequence of Filtered Differential Modules
	Applications

	Hochschild-Serre Spectral Sequence for Lie Conformal Algebras
	The Hochschild–Serre Spectral Sequence Associated with the Basic Complex
	Spectral Sequence Associated to an Ideal
	Convergence of the Spectral Sequence

	The Inflation-Restriction Exact Sequence
	The Hochschild–Serre Spectral Sequence Associated with the Reduced Complex

	Applications
	Cohomology of TEXT with coefficients in TEXT
	Cohomology of TEXT with Trivial Coefficients
	The Basic Cohomology
	The Reduced Cohomology
	Central Extensions

	Cohomology of TEXT with Coefficients in TEXT
	The Basic Cohomology
	The Reduced Cohomology

	Cohomology of TEXT with Coefficients in TEXT
	The Basic Cohomology
	The Reduced Cohomology


	References

