
ABSTRACT
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Subalgebras. (Under the direction of Dr. Ernest Stitzinger).

This paper classifies finite dimensional nilpotent Leibniz algebras with isomorphic maxi-

mal subalgebras by their coclass. A complete classification of the described algebras will be given

for coclasses zero, one, and two. The results are field dependent.
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1 Introduction

In 1990 Péter Z. Hermann worked on coclass for finite p-groups with isomorphic maximal subal-

gebras. [2] For these groups G, we define a series of increasing normal subgroups: Z1 (G) = Z (G)

and Zi+1 (G) is the subgroup such that Zi+1 (G)/Zi (G) = Z (G/Zi (G)). Alternatively, it can be

defined by Zi+1 (G) = {x ∈ G|[x,y] ∈ Zi (G)}. If this series terminates at G, then G is nilpotent,

and the upper central series of G is given by

{e}= Z0 (G)E Z1 (G)E · · ·E Zc−1 (G)E Zc (G) = G

and we say G is of class c. If G is of order pn, then the coclass of G is given by cc(G) = n− c.

Hermann found that there were 3 possibilities for groups with coclass 1, and 12 possibilities for

groups of coclass 2, up to isomorphism. Some of Hermann’s results were later improved in ([5]).

These results were extended to Lie algebras by Karen Holmes. [4, 3] This work classified

the Lie algebras of coclass 0, 1, and 2. The upper central series of a nilpotent Lie algebra L is given

by

0 = Z0 (L)⊂ Z1 (L)⊂ Z2 (L)⊂ ·· · ⊂ Zc (L) = L

where Zi(L) is the largest subalgebra of L such that [Zi (L) ,L] ⊆ Zi−1 (L), for all i ≤ c, where c is

the of class L. Here, the coclass of L is given by cc(L) = dim(L)− c.

In this paper, we further extend the results to Leibniz algebras. All of the results contained

in this paper hold over the complex numbers, but at times the results are broader. We will make

note when the results are restricted to C. Furthermore, throughout this paper, we will refer to

two properties: P1 is the property that all maximal subalgebras are isomorphic; P2 refers to the

property that, for any maximal subalgebra M, dim(Zi (M)) depends only on i, and not M. Note that

P1 implies P2. At times, we will use P2 instead of P1 as it is easier to work with. However, this

does not impact the final results, as the algebras that are found can be seen to have P1. All group

theory, Lie, and Leibniz results are given in Section (6).
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2 Background

We begin be giving some information on Leibniz algebras. Note that Lie algebras are skew-

symmetric Leibniz algebras. We begin with the formal definition.

Definition 2.1. Let A be a vector space over F. Then A is a left Leibniz algebra if it is equipped

with a bilinear map,

[, ] : A×A−→ A

which satisfies

[a, [b,c]] = [[a,b] ,c]+ [b, [a,c]] . (1)

We note that the bilinear map is often referred to as a multiplication, and (1) is called the

Leibniz identity. This paper will refer to left Leibniz algebras simply as Leibniz algebras, which

will be denoted as A.

Definition 2.2. Let B be a subspace of a Leibniz algebra A. Then B is subalgebra if [B,B]⊆ B.

Definition 2.3. Let I be a subalgebra of A. Then I is a left ideal of A if [A, I] ⊆ I, and is denoted

by I El A. Similarly, I is a right ideal if [I,A]⊆ I, denoted I Er A. If I is both a left and right ideal,

then it is called an ideal of A, denoted I E A. A proper ideal is denoted by I /A.

Similar to Lie algebras, given two ideals I and J, then I + J and I ∩ J are ideals, but [I,J]

need not be an ideal. For a counterexample, see ([6], Example 2.4).

Definition 2.4. Let B be a subalgebra of A. The left centralizer of B is given by Cl (B) = {x ∈ A |

[x,b] = 0 for all b ∈ B}, and the right centralizer is given by Cr (B) = {x ∈ A | [b,x] = 0 for all b ∈

B}. Then C (B) =Cl (B)∩Cr (B) is the centralizer of B. The left center of A is given by Zl (A) =

{x∈A | [x,a] = 0 for all a∈A}, and the right center is given by Zr (A)= {x∈A | [a,x] = 0 for all a∈

A}. Then Z (A) = Zl (A)∩Zr (A) is the center of A.

Definition 2.5. Let A be a Leibniz algebra. Then A is abelian if [x,y] = 0 for all x,y ∈ A.
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A useful proposition states that we may write elements of the Leibniz algebra as a linear

combination of other elements. The following proof is adapted from ([8], Proposition 4.2). We

will also see a corollary to this proposition for nilpotent algebras in the next section. We note that

an element is left normed if it is expressed as [a1, [a2, [. . . , [an−1,an] . . .]]].

Proposition 2.6. Let A be a Leibniz algebra. An element of A that is the product of n elements can

be written as a linear combination of the product of the n elements, with each term left normed.

Proof. There is nothing to prove if n = 1 or n = 2. Suppose n = 3, and we have the multiplica-

tion [[a,b] ,c]. By the Leibniz identity, [[a,b] ,c] = [a, [b,c]]− [b, [a,c]], and the result holds. By

induction, we assume the result holds for k = n− 1. Consider a product of n elements, given by

[x,y], where x contains i elements and y contains n− i elements. If i = 1, the result holds since x

is only one element, and y is n− 1 elements, so using the induction hypothesis and linearity, the

product can be rewritten as desired. Take i ≥ 2. By the induction hypothesis, x can be written as

[a, t], where a is a single element, and t is product of i− 1 elements which are left normed. So

[x,y] = [[a, t] ,y] = [a, [t,y]]− [t, [a,y]]. Since [t,y] is the product of (i−1)+ (n− i) = n− 1 ele-

ments, by induction it can be written as desired. This implies [a, [t,y]] can be written as a linear

combination of the product of elements as well, using the bilinearity of the given map. Similarly,

[a,y] has n− i+1 elements, and so [a,y] can be written as a linear combination of the elements, all

of which are left normed. Again using the bilinearity of the map, the result holds.

Definition 2.7. Let A be a Leibniz algebra and M a vector space. We call M a module if we have

two bilinear maps [, ] : A×M −→M and [, ] : M×A−→M such that

[a, [b,m]] = [[a,b] ,m]+ [b, [a,m]]

[a, [m,b]] = [[a,m] ,b]+ [m, [a,b]]

[m, [a,b]] = [[m,a] ,b]+ [a, [m,b]]

for all a,b ∈ A and m ∈M.

3



We denote the associative algebra of all endomorphisms of M by End (M). Let M be an

A-module. Then the maps Ta : m −→ [a,m] and Sa : m −→ [m,a] are both endomorphisms of M.

We also note that the maps from A to End (M) given by Ta : a−→ Ta and Sa : a−→ Sa are linear.

The associated representation of the A-module M is the ordered pair (T,S), where T,S are maps

T,S : A−→ End (M) with T (a) = Ta and S (a) = Sa.

We denote Leib(A) = span{[a,a] |a ∈ A}. If [a,a] = a2 = 0 for all a ∈ A, then A is a Lie

algebra ([6], page 42). We also note that Leib(A) is an ideal, and the minimal ideal such that

A/Leib(A) is a Lie algebra ([6], page 43).

4



3 Nilpotent Leibniz Algebras

In this section we begin by considering preliminary results about nilpotent Leibniz algebras. We

then consider properties of the upper central series for nilpotent Leibniz algebras and the Frattini

subalgebra.

Lemma 3.1. Suppose that A is nilpotent and I E A. Then Z (I)E A.

Proof. For Z (I) to be an ideal of A, we need to prove that [Z (I) ,A] ⊆ Z (I) and that [A,Z (I)] ⊆

Z (I). Let x ∈ Z (I), y ∈ A, and z ∈ I. We consider [[x,y] ,z] = [x, [y,z]]− [y, [x,z]]. Since I is an

ideal, [y,z] ∈ I, and so the first term goes to 0 since x ∈ Z (I). For the second term [x,z] = 0, and

so this goes to 0 as well. Hence, we have that [[x,y] ,z] = 0, and so Zl (I)E A. Similarly, we have

that [z, [x,y]] = [[z,x] ,y] + [x, [z,y]] = 0 using the same reasoning. This gives Zr (I) E A, and so

Z (I)E A.

Definition 3.2. Let A be a Leibniz algebra. We say that A is nilpotent of class c if every product

of c+1 elements is zero, and there is some product of c elements that is not zero. We will denote

this by cl (A).

Definition 3.3. Given a Leibniz algebra A we can define the lower central series to be

A = A1 ⊇ A2 ⊇ ·· ·

where the Ai are ideals given by Ai+1 =
[
A,Ai]. Note that A need not be nilpotent to define this

series.

We may alternatively define nilpotent.

Corollary 3.4. ([6], Corollary 4.3) The Leibniz algebra A is nilpotent of class c if Ac+1 = 0 but

Ac 6= 0.

Lemma 3.5. For a nilpotent Leibniz algebra A, the dim(Z (A))> 0.
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Proof. Since A is nilpotent, Ac 6= 0, but Ac+1 = 0 for some c. Take any 0 6= x ∈ Ac. We have that

[x,A] = [A,x] = 0 since Ac+1 = 0. So x ∈ Z (A) and dim(Z (A))> 0.

Our next Lemma will require a version of Engel’s theorem for Leibniz algebras. Note that

a subset S of a Leibniz algebra A is a Lie set if it is closed under multiplication and it’s linear span

is A.

Theorem 3.6. ([6], Theorem 4.5) Let A be a Leibniz algebra, L be a Lie subset that spans A, and

M be an A-module with associated representation (T,S). Suppose that Ta is nilpotent for all a ∈ L.

Then A acts nilpotently on M, and there exists an element 0 6= m ∈M such that [a,m] = [m,a] = 0

for all a ∈ A.

More can actually be said about the operators in these circumstances.

Lemma 3.7. ([7], Lemma) Let A be a finite dimensional Leibniz algebra, and let a ∈ A. Let M be

a finite dimensional A-bimodule such that Ta is nilpotent on M. Then Sa is nilpotent, and 〈Sa,Ta〉,

the algebra generated by all Sb,Tb,b ∈ 〈a〉, is nilpotent.

Lemma 3.8. Suppose A is a nilpotent Leibniz algebra of class c. Then for a nontrivial ideal,

0 6= N E A, we have N∩Z (A) 6= 0.

Proof. Suppose that A is acting on N, and consider Ta. Since A is nilpotent of class c, we have

T c+1
a (n) = [a, [a, · · · [a,n]]] = 0 for any a ∈ A, n ∈ N. By Theorem (3.6), there exists 0 6= m ∈ N

such that [a,m] = [m,a] = 0 for all a ∈ A, which implies m ∈ Z (A). Hence, N∩Z (A) 6= 0.

We may also define an upper central series for A.

Definition 3.9. Suppose A is nilpotent of class c. The upper central series is given by

0 = Z0 (A)⊆ Z1 (A)⊆ ·· · ⊆ Zc (A) = A

where Zi(A) is the largest subalgebra of A such that [Zi(A),A]⊆ Zi−1(A) and [A,Zi(A)]⊆ Zi−1(A)

for any i≤ c. Alternatively, Zi(A)/Zi−1(A) = Z(A/Zi−1(A)). Also, Z(A) = Z1(A) since [Z1 (A) ,A],

[A,Z1(A)]⊆ Z0(A) = 0.
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Lemma 3.10. Let N E A such that dim(N) = s and A nilpotent. Then N ⊆ Zs (A).

Proof. Let A act on N by left and right multiplications. Since A is nilpotent, Theorem (3.6), implies

there exists 0 6= n∈N such that [a,n] = [n,a] = 0 for all a∈ A. Now define M1 to be the submodule

of all vectors of N that are taken to zero. Now let A act on N/M1 with the induced multiplications.

Again, we get an element 0 6= n2 ∈N such that [a,n2]+M = [n2,a]+M = 0∈N/M1. Define M2 to

be the submodule of all vectors of N/M1 that are taken to zero. Call this set P/M1. Multiplications

of elements in P/M1 are taken to N/M1, which are then taken to zero. We now have a chain

of an increasing number of vectors whose multiplication by elements of A go to zero. We note

that M1 ⊆ Z1 (A) and M2 ⊆ Z2 (A). We repeat this process beginning with N/P. We construct

increasing chains of submodules Mi that are contained in Zi (A). We eventually get to N, which

will be contained in Zs (A).

In Lie algebra, it is a known result that if dim(L) = n, then dim(Z (L)) 6= n−1, where L is

a Lie algebra ([4], Lemma 5). However, in Leibniz algebras this result does not hold since we do

not require [a,a] = 0 for any element a. We can however make the following statement.

Lemma 3.11. Suppose A is nilpotent, dim(A) = n and dim(Z (A)) = n−1. Then A = I⊕J, where

I is the ideal with basis
{

a,a2} for some 0 6= a ∈ A and a2 ∈ Z (A), and J is the ideal with the same

basis elements as Z (A) without a2.

Proof. Let a ∈ A but a /∈ Z(A). Then a2 6= 0, as otherwise it would be in Z(A). Then I =

span{a,a2} with a2 ∈ Z(A). Take complementary subspace J of a2 ∈ Z(A), and the statement

follows.

Lemma 3.12. Let I / A and J / A, with I and J distinct. Suppose dim(A) = n and dim(I) =

dim(J) = n−1. Then dim(I∩ J) = n−2.

Proof. Using linear algebra we have the relation

dim(I + J) = dim(I)+dim(J)−dim(I∩ J) .

7



Since I and J are distinct, and dim(I) = dim(J) = n−1 with dim(A) = n, it must be the case that

I + J = L. This implies

n = (n−1)+(n−1)−dim(I∩ J) .

Rearranging this yields dim(I∩ J) = n−2.

The next few lemmas concern the upper central series of A. Our goal is to start building up

the theory necessary to relate the upper central series and the Frattini subalgebra when the property

P2 holds.

Lemma 3.13. Let M a maximal subalgebra of nilpotent A. We have that Zi (A)∩M ⊆ Zi (M).

Proof. Proceed by induction on i. If i = 1, then x ∈ Z1 (A)∩M implies [x,M] = 0 = [M,x], and so

x ∈ Z1 (M). Assume Zi (A)∩M ⊆ Zi (M). Let x ∈ Zi+1 (A)∩M. Then [x,m] , [m,x] ∈ Zi (A)∩M ⊆

Zi (M) by assuption, for all m ∈M. Hence, x ∈ Zi+1 (M).

Lemma 3.14. Let x1,x2, . . . ,xm ∈ A, A nilpotent, and y ∈ Zn (A) . Then [y, [xm, [· · · [x2,x1]]]] and

[[xm, [· · · [x2,x1]]] ,y] ∈ Zn−m (A).

Proof. We prove this using induction. Suppose that m = 1. By definition, we have that [x1,y],

[y,x1] ∈ Zn−1(A). Begin with the left-normed bracket. Assume this holds for k = m− 1, so

[y, [xm−1, [· · · [x2,x1]]]] ∈ Zn−(m−1) (A). By the Leibniz identity, we have that

[y, [xm, [· · · [x2,x1]]]] = [[y,xm] , [xm−1, [· · · [x2,x1]]]]+ [xm, [y, [xm−1 [· · · [x2,x1]]]]] . (2)

Define z = [y,xm] ∈ Zn−1 (A) and w = [y, [xm−1, [· · · [x2,x1]]]] ∈ Zn−(m−1) (A) by the induction hy-

pothesis. So (2) becomes

[y, [xm, [· · · [x2,x1]]]] = [z, [xm−1, [· · · [x2,x1]]]]+ [xm,,w]

⊆ Zn−1−(m−1) (A)+Zn−(m−1)−1 (A)

= Zn−m (A)+Zn−m (A)

= Zn−m (A) .

8



The other side can be done similarly.

Lemma 3.15. Let A be nilpotent and x1, . . . ,xm+1 ∈ A and xi ∈ Zn (A) for some i ∈ 1,2, . . . , m+1.

Then [xm+1, [xm, [· · · [x2,x1]]]]∈ Zn−m (A). Further, we note that for any product (left multiplication,

right multiplication, or any combination thereof) of an element w ∈ Zn−(i−1) (A), with m+ 1− i

elements of A is in Zn−m (A).

Proof. If i = m+1 done by previous lemma. For i 6= m+1, define xi = y. Then we have that

[xm+1, [xm, [· · ·y, [· · · [x2,x1] · · · ]] · · · ]] = [xm+1, [xm, · · · [xi+1,w]]]

where w = [y, [· · · [x2,x1]]] ∈ Zn−(i−1) (A) by previous lemma. Then [xm+1, [xm, · · · [xi+1,w]]] is the

multiplication of an element of Zn−(i−1) (A) and m+ 1− i elements of A, and so by definition of

Z j, we have that [xm+1, [xm, · · · [xi+1,w]]] ∈ Zn−(i−1)−m−1+i (A) = Zn−m (A) as desired. Last, we

consider w ∈ Zn−(i−1) (A). By definition, [x,w] ∈ Zn−i (A) and [w,x] ∈ Zn−i (A) for any x ∈ A.

Repeating this process, the second result follows immediately.

Lemma 3.16. Let M be a maximal subalgebra of nilpotent A with x ∈ Zn (M) and y1, . . . ,yn ∈

M∪Zn (A). Then [yn, [· · · [y1,x]]] = 0.

Proof. First suppose that yi ∈ Zn (A) for some 1 ≤ i ≤ n. By lemma (3.15), [yn, [· · · [y1,x]]] ∈

Zn−n (A) = Z0 (A) = 0. On the other hand, suppose the yi ∈M for all i. Then by the definition of

Zn (M), we have [yn, [· · · [y1,x]]] = 0.

Lemma 3.17. Suppose A is nilpotent and Zi (A) is not contained in a maximal subalgebra M for

some i. Then Zi (M) = Zi (A)∩M.

Proof. Since M is maximal, and A nilpotent, M is an ideal. Also, Zi (A) is an ideal by definition.

This implies M +Zi (A) is also an ideal, and by maximality of M, M +Zi (A) = A. By definition,

Zi (A)∩M ⊆ Zi (M). Let x ∈ Zi (M) which is contained in M. It remains to show that x ∈ Zi (A).

Let a1, . . . ,ai ∈ A with a j = m j + z j for m j ∈M, z j ∈ Zi (A), for all 1≤ j ≤ i. Now

[ai, [· · · [a1,x]]] =
[
m j + z j, [· · · [m1 + z1,x]]

]
= ∑

[
y j, [· · · [y1,x]]

]
9



by repeatedly using bilinearity, where yk ∈M or yk ∈ Zi (A). By lemma (3.16), every product on

the right side is 0, and so the sum is 0. Hence, x ∈ Zi (A).

We can now begin discussing the Frattini subalgebra, denoted by φ (A), which is the inter-

section of all maximal subalgebras.

Lemma 3.18. Suppose A is nilpotent and has P2. If cl (A) = c, then Zc−1 (A)⊆ φ (A).

Proof. Let M1 be a maximal subalgebra satisfying Zc−1 (A) ⊆ M1. This implies Zc−1 (M1) ⊇

Zc−1 (A) and so dim(Zc−1 (M1)) ≥ dim(Zc−1 (A)). Now suppose there exists a maximal subalge-

bra M2 such that Zc−1 (A)* M2. Then Zc−1 (M2) = Zc−1 (A)∩M2 by Lemma (3.17). This implies

Zc−1 (M2)⊆ Zc−1 (A), and so dim(Zc−1 (M2))≤ dim(Zc−1 (A)). Since dim(Zi (M)) depends only

on i, it must be the case that dim(Zc−1 (M1)) = dim(Zc−1 (M2)) = dim(Zc−1 (A)). Combining

this with the above, we get that Zc−1 (M1) = Zc−1 (M2) = Zc−1 (A) ⊆M. This is a contradiction.

Therefore, for all maximal subalgebras M, Zc−1 (A)⊆M. Hence, Zc−1 (A)⊆ φ (A).

Lemma 3.19. Suppose M and N are distinct maximal subalgebras of A. Then Zi (M)∩Z j (N) ⊆

Zi+ j−1 (A).

Proof. Let x ∈ Zi (M)∩ Z j (N) ⊆ Zi+ j−1 (A). We need to show that x ∈ Zi+ j−1 (A). Since A =

M + N, for any a ∈ A we can write a = m + n for some m ∈ M and n ∈ N. Define k = i +

j− 1, and let a1, . . . ,ak ∈ A with al = ml + nl for all 1 ≤ l ≤ k. Consider [ak, [· · · [a1,x]]] =

[mk +nk, [· · · [m1 +n1,x]]]. Repeatedly using bilinearity, we can simplify this to sums of multi-

plications of the form [yk, [· · · [y1,x]]] where each yl ∈M or N. Since k = i+ j−1, there are at least

i terms in M or j terms in N, and so each term goes to 0 by definition of Zi (M) and Zi (N). This

implies x ∈ Zi+ j−1 (A).

Before continuing, it is important to make a few notes about the Frattini subalgebra. For

nilpotent Leibniz algebras, φ (A) = [A,A]. To see this, we make use of the fact that the dimension

of a maximal subalgebra is one less than the dimension of Leibniz algebra, where the algebra is

nilpotent.
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Lemma 3.20. For a nilpotent Leibniz algebra A, φ (A) = [A,A]. It is also the smallest ideal such

that A/φ (A) is abelian.

Proof. Since A is nilpotent and A/M is one dimensional, it is abelian, and so [A,A] ⊆ M for all

maximal subalgebra M. Hence, [A,A]⊆ φ (A). If x /∈ [A,A], then there exists a maximal subalgebra

that does not contain x. Hence x /∈ φ (A) and φ (A)⊆ [A,A]. Therefore φ (A) = [A,A].

Proposition 3.21. Suppose A is nilpotent and has P2. If cl (A) = c, then Zc−1 (A) = φ (A).

Proof. By Lemma (3.18), Zc−1(A) ⊆ φ(A). By definition, A/Zc−1(A) = Zc(A)/Zc−1(A) =

Z(A/Zc−1(A)) is abelian. By Lemma (3.20), φ(A) ⊆ Zc−1(A), since φ(A) is the smallest sub-

algebra which gives an abelian quotient algebra. Hence, Zc−1(A) = φ(A).

Lemma 3.22. Suppose dim(A) > 1. Then A is cyclic if and only if the Frattini subalgebra has

codimension 1 in A.

Proof. Since A is nilpotent, φ (A) = [A,A]. Suppose A is cyclic. Then the derived algebra has

codimension 1, and hence the Frattini subalgebra has codimension 1. Conversely, suppose the

Frattini subalgebra is of codimension 1. Then φ (A) is the only maximal subalgebra. Let a ∈ A,

such that a /∈ φ (A). The algebra it generates is contained in a maximal subalgebra or is A. The

former is not possible since a /∈ φ (A). Hence, a generates A, and A is cyclic.

Lemma 3.23. Suppose A is nilpotent and dim(A)> 1. Then dim
(
A/A2)= dim(A/φ (A))≥ 2 or

A is cyclic, and dim
(
A/A2)= 1.

Proof. By Lemma (3.22), dim
(
A/A2) = 1 if and only if A is cyclic. Otherwise, A has at least 2

maximal subalgebras and their intersection has codimension 2 in A. The Frattini subalgebra then

has codimension greater than or equal to 2 in A.

Corollary 3.24. Suppose A is nilpotent and has P2. Then dim(A/Zc−1 (A))≥ 2 or A is cyclic.

Proof. This is an immediate consequence of Proposition (3.21) and Lemma (3.23).
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4 Coclasses 0 and 1

In this section, and the following section, we explore the coclass of A, which we will denote by

cc(A), and its effect on the structure of the upper central series. The coclass of A is given by

cc(A) = dim(A)− cl (A). For a nilpotent Leibniz algebra A, every consecutive term in the series

must increase in dimension by at least one. However, when two consecutive terms increase by

more than one dimension, the result is a nonzero coclass. For example, if the cc(A) = 1, then one

of the terms of the upper central series increases in dimension by two instead of one. If cc(A) = 2,

there are two terms in the upper central series that increase in dimension by two, or one term that

increases in dimension by three. It is hard to determine where these increases in dimension occur,

but we know that they occur.

Lemma 4.1. Suppose N E A with A nilpotent and dim(N) = s. Then cc(A/N)≤ cc(A).

Proof. Lemma 3.10 implies N ⊆ Zs (A). Note that cl(A/Zs(A))= cl(A)−s, which implies cl(A/N)

≥ cl(A/Zs(A)) = cl(A)− s. This gives the following:

cc(A/N) = dim(A/N)− cl (A/N)

≤ dim(A)−dim(N)− (cl (A)− s)

= dim(A)− s− cl (A)+ s

= dim(A)− cl (A)

= cc(A) .

Lemma 4.2. Let N E A, A nilpotent, with N ⊆ Z (A) and dim(N)> 1. Then cc(A/N)≤ cc(A)−1.

Proof. Since A is nilpotent, by definition of the upper central series cl (A/Z (A))= cl (A)−1. Since
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N ⊆ Z (A), cl (A/N)≥ cl (A)−1. Hence,

cc(A/N) = dim(A/N)− cl (A/N)

≤ dim(A)−dim(N)− (cl (A)−1)

≤ dim(A)−2− cl (A)+1

= cc(A)−1.

It is a known result in Lie algebra that if dim(L) > 2 and L has P2, then dim(Z2 (L)) > 2

([4], Lemma 17). However, as we can see in the following example, this result does not hold for

Leibniz algebras. The proof that the following is a Leibniz algebra can be found in ([9], Theorem

2.2). The lemma after the example provides an alternative for Leibniz algebras.

Example 4.3. Let A = span{x1,x2,x3,x4} with nonzero multiplications given by [x1,x1] = x2,

[x1,x2] = x3, and [x1,x3] = x4. It is easily checked that the only maximal subalgebra is given by

{x2,x3,x4} which is abelian. As it is the only maximal subalgebra, A has P2. But we have the

following upper central series for A: Z1 (A) = Z (A) = span{x4}, Z2 (A) = span{x3,x4}, Z3 (A) =

span{x2,x3,x4}, and Z4 (A) = span{x1,x2,x3,x4}. From this, we have that dim(Z2 (A)) = 2.

Lemma 4.4. Suppose nilpotent A has P2. If dim(A)≤ 2, then A is cyclic or abelian. If dim(A)> 2,

then A is cyclic, dim(Leib(A)) = 1, or dim(Z2 (A))> 2.

Proof. We may assume that dim(A) > 2 and that A is not cyclic. If dim(Leib(A)) = 0, then A

is Lie and dim(Z2(A)) > 2 by ([3], Lemma 6). Suppose dim(Leib(A)) > 1. We will show that

dim(Z2 (A)) > 2. Suppose that dim(Z2 (A)) = 2. Then dim(Z (A)) = 1. Since A is nilpotent,

Z (A)∩Leib(A) = Z (A) and Z2(A)∩Leib(A) = Z2(A). Now [Leib(A) ,A] = 0 always holds. Thus,

for any x ∈ Z2 (A), x /∈ Z(A), [A,x] 6= 0. The kernel, M, of Rx, is shown to be a subalgebra of A.

Hence, it is an ideal since it has codimension 1 in the nilpotent A. Also, x ∈ Z2 (A)⊂ Leib(A) and

x2 = 0, so x ∈M. Then dim(Z (M))≥ 2 as M contains both x and Z (A).
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Let N be another maximal subalgebra of A such that N 6=M. Then N is an ideal of A. Hence,

Z (A)∩N 6= 0. Therefore, Z (A) ⊂ N and Z (A) ⊂ Z (N). Also, dim(Z (N)) = dim(Z (M)) ≥ 2.

Therefore, Z2 (A)∩Z (N) = Z2 (A) and Z2 (A)⊂ Z (N). So Rx (a) = [a,x] = 0 for all a ∈ N. Thus,

N = M, a contradiction.

Lemma 4.5. Suppose dim(A) = n and A is abelian. Then cc(A) = n−1.

Proof. Since A is abelian, [A,A] = 0, which implies cl (A) = 1. We get that Z (A) = A. Hence,

cc(A) = dim(A)− cl (A) = n−1.

Proposition 4.6. Suppose cc(A) = 0. Then A is cyclic, or dim(A)≤ 1.

Proof. If A is cyclic, then cc(A) = dim(A)− cl (A) = 0. Suppose A is not cyclic. First, take A

to be abelian. Then lemma (4.5) implies that 0 = cc(A) = dim(A)−1, and so dim(A) = 1. Now

take A to not be abelian, and assume dim(A)> 1. Consider φ (A) = [A,A]. Then by Lemma (3.23)

dim(A/φ (A)) ≥ 2. For any x,y ∈ A, we have [x+φ (A) ,y+φ (A)] = [x,y]+φ (A) = φ (A) since

φ (A) = [A,A]. This implies [A/φ (A) ,A/φ (A)] = φ (A)/φ (A) = 0, and so A/φ (A) is abelian, and

thus has class 1. Then Lemma (4.1), combined with φ (A)E A, gives

cc(A)≥ cc(A/φ (A))

= dim(A/φ (A))− cl (A/φ (A))

≥ 2−1

= 1

which is a contradiction, and so dim(A)≤ 1.

Theorem 4.7. Let A be a nilpotent Leibniz algebra that satisfies P2 and is of coclass 1. Then one

of the following holds:

1.) A is a Lie algebra, and so A is abelian of dimension 2, or A is the Heisenberg Lie

algebra of dimension 3
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2.) A = Z2 (A) and dim(A) = 3. If A = span{x,y,z}, then [x,x] = z, [y,y] = τz, [x,y] = λ z,

[y,x] = εz, where τ 6= 0 and (λ + ε)2−4 is not a square.

Proof. By Lemma (4.4), if dim(A)> 2, then A is cyclic, or dim(Leib(A)) = 1 or dim(Z2 (A))> 2.

We look at each case.

Case 1: If A is cyclic, then cc(A) = 0. If A is Lie, the result holds by ([3], Proposition 3).

Case 2: Suppose dim(Z2 (A))> 2. If dim(Z2 (A))≥ 4, then cc(A)≥ 2. Hence, dim(Z2(A))

= 3. Then Z2 (A) = A since A is not cyclic and the next to the last term in the upper central series

has codimension greater than 1 in A. Therefore, dim(Z2 (A)) = 3 and A = Z2 (A). This also implies

dim(Z (A)) = 1. Since A is not Lie, [A,A] = Leib(A) = Z (A).

Suppose A = span{x,y,z} with non-zero squares given by one of

a.) x2 = z

b.) x2 = z, y2 = τz

and Z (A)= span{z}. One maximal subalgebra is M1 = span{x,z} and another is M2 = span{y,z}.

Since they must be isomorphic, τ 6= 0 and A satisfies (b). Therefore, the algebra satisfies the

multiplication in 2 in the statement of the theorem.

M1 is cyclic, so any maximal subalgebra is also cyclic. Hence, M3 = span{αx+βy,z}with

α 6= 0 or β 6= 0 must have

0 6= (αx+βy)2

= α
2 [x,x]+αβ [x,y]+αβ [y,x]+β

2 [y,y]

= α
2z+αβλ z+αβεz+β

2
τz.

We may take β = 1. Consider α2 +α (λ + ε)+ τ . A satisfies P2 if and only if this expression is

not 0 for any α , which is equivalent to (λ + ε)2−4τ not being a square in F.

Case 3: Suppose that dim(Leib(A)) = 1. Then A/Leib(A) is a Lie algebra of coclass 0

or 1 and satisfies P2. If A/Leib(A) has coclass 0, then dim(A/Leib(A)) ≤ 1. If A/Leib(A) has

dimension 0, then A = Leib(A) which is impossible. If dim(A/Leib(A)) = 1, then dim(A) = 2
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and A is cyclic. Then cc(A) = 0, which is a contradiction.

Suppose cc(A/Leib(A)) = 1. Then A/Leib(A) is 2-dimensional abelian or 3-dimensional

Heisenberg. In the first case. dim(A) = 3, dim(Z (A)) = 1, Z2 (A) = A, and Z (A) = Leib(A). This

is the algebra considered in the last case.

Suppose A/Leib(A) is Heisenberg. The next to last term in the upper central series of A

has codimension greater than 1. Therefore, dim(Z (A)) = 1, dim(Z2 (A)) = 2, and Z3 (A) = A is

4-dimensional. Then Z (A) = Leib(A). Hence, A = span{w,x,y,z} with Z (A) = span{z} and

Z2 (A) = span{y,z}.

The multiplication table for A is

Table 1: Multiplications in A

[·, ·] w x y z
w αz y+az bz 0
x −y+ âz β z cz 0
y b̂z ĉz γz 0
z 0 0 0 0

The Leibniz identity shows that b̂ = −b, ĉ = −c and γ = 0. There must be a non-zero square, so

with a change of basis, if necessary, we may assume that α 6= 0. Comparing M1 = span{w,y,z}

and M2 = span{x,y,z}, we have that β 6= 0. Tables for M1, M2, and M3 = span{mw+nx,y,z} are

Table 2: M1 = span{w,y,z}

[·, ·] w y z
w αz bz 0
y −bz 0 0
z 0 0 0

Table 3: M2 = span{x,y,z}

[·, ·] x y z
x β z cz 0
y −cz 0 0
z 0 0 0
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Table 4: M3 = span{mw+nx,y,z}

[·, ·] mw+nx y z
mw+nx

(
m2α +mna+mnâ+n2β

)
z (mb+nc)z 0

y −(mb+nc)z 0 0
z 0 0 0

If b = 0, then c = 0 since the center of M1 and M2 have the same dimension. Then cc(A) =

2, a contradiction. Hence, b 6= 0 6= c. Then mb+ nc 6= 0. But, we can find m and n such that

mb+nc = 0. Thus, A does not satisfy P2 in this case.
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5 Coclass 2

In this section, we classify nilpotent Leibniz algebras of coclass 2. Recall that P1 is used to

denote the property that all maximal subalgebras of A are isomorphic, and that P2 refers to the

property that dim(Zi (M)) depends only on i, and not on the maximal subalgebra M. Also recall

that P1 implies P2. This means cc(A) = dim(A)− cl (A) = 2, and so cl (A) = dim(A)− 2. This

happens in one of two ways. The first possibility is that there are two increases of dimension

two from some Zi(A) to Zi+1 (A) for two different values of i. The other is that there is one

increase of dimension 3 from some Zi (A) to Zi+1 (A). Assume cl (A) = c, and that A has P1. Since

cc(A) = 2, A is not cyclic. So by Lemma (3.22), we can immediately see that there must a increase

in dimension of at least two from Zc−1 (A) to Zc (A) = A. Furthermore, Proposition (3.21) tells us

that Zc−1 (A) = φ (A). By Lemma (3.23), dim
(
A/A2)= dim(A/φ (a)) = dim(A/Zc−1 (A))≥ 2. If

dim(A/φ (A)) = 3, then there is an increase of dimension 3 from Zc−1 (A) to Zc (A). Otherwise,

we will have dim(A/φ (A)) = 2, and so two increases of two dimensions. By Lemma (4.4), if

dim(Z2 (A)) > 2, then there must be a two-dimensional increase from 0 to Z (A) or from Z (A) to

Z2 (A). This leads to several possible scenarios:

1. One increase of dimension 3 from Zc−1 (A) to Zc (A) = A

2. Two increases of dimension 2, one from Zc−1 (A) to Zc (A) = A, and the other from either 0

to Z (A)

3. Two increases of dimension 2, one from Zc−1 (A) to Zc (A) = A, and the other from either

Z (A) to Z2 (A)

4. Two increases of dimension 2, one from Zc−1 (A) to Zc (A), and another from Zi−1 (A) to

Zi (A) for i≥ 3 (provided cl (A) = c is large enough).

A known result from Lie algebra is that there is no nilpotent Lie algebra L satisfying property P1

with Z (L) = Z (M) for all maximal subalgebras M and dim(Z (L)) = 1 ([4], Lemma 20). The

following example shows that this does not hold for Leibniz algebras.
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Example 5.1. Let A = span{x,y,z} with nonzero multiplications given by [x,x] = [y,y] = z over

R . Then Z (A) = span{z} and dim(Z (A)) = 1. Maximal subalgebras M are of the form M =

span{z,αx+βy}, where at least one of α,β are nonzero. Since z ∈ Z (A) and Z (M), only the

behavior of (αx+βy)2 needs to be considered. But

[αx+βy,αx+βy] = α
2z+β

2z =
(
α

2 +β
2)z 6= 0

over R, which cannot be 0. Therefore, all maximal subalgebras are two dimensional cyclic, and A

satisfies P1.

The following definition and lemma will be necessary for the work pertaining to cc(A) = 2.

Definition 5.2. If A can be written as the direct sum of at least two nontrivial ideals, then A is split.

Otherwise, A is non-split.

For a nilpotent algebra A to be split, we note that the dimension of the center must be

greater than 1. Suppose A = I⊕ J, where I,J are ideals and I ∩ J = 0. Since A is nilpotent Z (A)

intersects I and J nontrivially. But since I∩ J = 0, dim(Z (A))≥ 2.

We also need to know that if A has P2, then A/Z2 (A) has P2, so that we may apply earlier

theorems. This result can be seen in the following lemma, which gives a slightly stronger result.

Lemma 5.3. Let A be a nilpotent Leibniz algebra with P1 and cl (A) = c. Then A/Zi (A) has P1

for all i≤ c−1.

Proof. Let M1/Zi (A) and M2/Zi (A) be maximal subalgebras in A/Zi (A). Then M1 and M2 are

maximal subalgebras in A and there exists an isomorphism σ : M1 → M2. Since Zi (A) is σ -

invariant, there is an induced automorphism from M1/Zi (A) onto M2/Zi (A).

This previous Lemma will hold for any ideal contained in φ (A) that is invariant under

automorphisms as the same proof will apply.
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5.1 Leibniz Algebras of Coclass 2

The rest of Section (5) will focus on classifying the Leibniz algebras which are coclass 2. The final

results are summarized in the theorem below.

Theorem 5.4. The non-Lie nilpotent Leibniz algebras with P1 over C of coclass 2 are as follows:

1. If A is split, then A = span{x1,x2,x3,x4} with multiplications [x1,x1] = x3 and [x2,x2] = x4

2. If A is non-split and dim(A) = 4, then A = span{x1,x2,x3,x4}, with multiplications given by

one of the following:

(a) [x1,x1] = x3, [x2,x1] = x4, [x1,x2] = αx3, [x2,x2] =−x4,α ∈ C\{−1}

(b) [x1,x1] = x3, [x1,x2] = x3, [x2,x1] = x3 + x4, [x2,x2] = x4.

3. If A is non-split and dim(A) = 6, then A = span{t,u,w,x,y,z}, with multiplications given by

[t,u] =w=− [u, t], [t,w] = x=− [w, t], [u,w] = y=− [w,u], [w,w] = γz, [t,y] = dz, [y, t] = d̂z,

[u,x] = f z, [x,u] = f̂ z, with the restrictions that 2γ = d+ d̂ =− f − f̂ , − f = d, and − f̂ = d̂,

where γ,d, d̂, f , f̂ ∈ C.

Proof. All of the work is shown in the following sections.

Since the the abelian Leibniz algebra is a Lie algebra, it is excluded from the list above.

However, the proof that the abelian algebra is coclass 2 is given below.

Proposition 5.5. Suppose cc(A) = 2 and that A is abelian. Then dim(A) = 3.

Proof. By Lemma 4.5, 2 = cc(A) = dim(A)−1. This implies dim(A) = 3.

The rest of the cases assume that A is not abelian. If cc(A) = 2, then dim(Z2 (A)) is

between 2 and 4. If dim(Z2 (A)) = 4 and A is not cyclic, then dimc−1 (A) has codimension at least

two and it follows that A = Z2 (A). Hence, dim(Z2 (A)) = 2 or 3, unless A = Z2 (A), in which case

dim(A) = dim(Z2(A)) = 4. The following sections proceed using Lemma (4.4), which tells us

that dim(Z2(A))> 2 or dim(Leib(A)) = 1. However, the case where dim(A) = dim(Z2(A)) = 4 is
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considered separately from the case where dim(Z2(A)) = 3. Furthermore, some of this work relies

on the known classification of non-split Leibniz algebras of dimension four and five found in ([9])

and ([1]). The work determining which of these algebras have P1 can be found in Section (7).

5.2 Dim(Z2 (A))> 2

Let A be a nilpotent Leibniz algebra with P1. Suppose dim(Z2 (A)) = 3 and dim(Leib(A)) 6=

0. Then there must be a increase of dimension 2 from Zc−1 (A) to A, and the other increase of

dimension two occurs below Z2 (A). This implies cc(A/Z2 (A)) = 1, and so A/Z2 (A) falls into one

of the categories in Theorem (4.7) above.

Option 1: A/Z2 (A) is abelian of dimension 2

Option 2: A/Z2 (A) is 3 dimensional Heisenberg Lie algebra

Option 3: A = Z2 (A) = span{x,y,z}, with [x,x] = z, [y,y] = τz, [x,y] = λ z, [y,x] = εz,

where τ 6= 0 and (λ + ε)2−4 is not a square (A is a non-Lie Leibniz algebra)

We consider each of these cases individually. Options 1 and 3 do not result in any algebras.

Option 2 gives result result 3 in (5.4).

5.2.1 Case 1: A/Z2 (A) is abelian

We consider the case where dim(Z2 (A))= 3, cc(A/Z2 (A))= 1, A/Z2 (A) is abelian, and A is nilpo-

tent with P1. By Theorem (4.7), we have that dim(A/Z2 (A)) = 2, which implies dim(A) = 5. This

implies dim(Z3 (A)) = dim(A) = 5, dim(Z2 (A)) = 3, and dim(Z (A)) = 1 or 2. If dim(Z (A)) = 1,

then it is immediate that A is non-split. However, if dim(Z (A)) = 2, it needs to be determined if A

can be split.

Lemma 5.6. Suppose A is nilpotent and has P1, with dim(A) = 5, dim(Z2(A)) = 3, and dim(Z(A))

= 2. Then A is not split.

Proof. Suppose A = I⊕J, for ideals I and J, such that I∩J 6= /0. Then dim(I) = 1 and dim(J) = 4

or dim(I) = 2 and dim(J) = 3.
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Case 1: Suppose dim(I) = 1 and dim(J) = 4, that A = span{x,y,z,w, t}, with Z (A) =

span{w, t}, and Z2 (A) = span{z,w, t}. Since A has P1, then by Lemma (3.20) and Proposition

(3.21) [A,A] = φ (A) = Z2 (A). This implies there is at least one multiplication in [A,A] that gives

each of z, w, and t. Without loss of generality, say I = span{w}, since it must contain a center

element. But then J cannot be an ideal since there is some multiplication of elements that must

give w. So A cannot be split in this way.

Case 2: Suppose dim(I) = 2 and dim(J) = 3. Each ideal must contribute to the upper

central series. Since dim(Z (A)) = 2, one center element can be in each of I and J. Similarly,

each of I and J must contain an element in Z2 (A)/Z (A), which implies Z2 (A) is at least four

dimensional, a contradiction. Hence, A cannot split in this way either, and so A is non-split.

Proposition 5.7. There are no nilpotent non-Lie Leibniz algebras with P1 of coclass 2 where

dim(Z2 (A)) = 3 and A/Z2 (A) is an abelian Lie algebra over C.

Proof. Since dim(Z2 (A)) = 3, we have that cc(A/Z2 (A)) = 1. By Theorem (4.7), we get that

A/Z2 (A) has dimension 2. It follows immediately that dim(Z3 (A)) = dim(A) = 5, dim(Z2 (A)) =

3, and dim(Z (A)) = 1 or 2. By Lemma (5.6), A is non-split regardless of the dimension of the

center. Since we have a 5 dimensional non-split Leibniz algebra over C, we may use ([1]) to

determine possible algebras. By Section (7.2), the only algebras with P1 are A137, A138 (α), and

A139. However, examining these algebras, we see that for all of them, the center is given by

span{x3,x4,x5} and the second center is given by the entire 5 dimensional algebra. Hence, these

algebras are coclass 3. So there are no algebras satisfying the given conditions.

5.2.2 Case 2: A/Z2 (A) is Heisenberg

We consider the case where dim(Z2 (A)) = 3, cc(A/Z2 (A)) = 1, A/Z2 (A) is the three dimensional

Heisenberg Lie algebra, and A is non-Lie nilpotent with P1 over C. As Z2 (A) was dimension 3,

this implies dim(A) = 6. So we get the upper central series where dim(A) = 6, dim(Z3 (A)) =

4, dim(Z2 (A)) = 3, and dim(Z (A)) = 1 or 2, since cc(A) = 2 and Z3 (A) = φ (A) cannot be

codimension 1.
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First, consider the case where dim(Z (A)) = 2. Then A/Z (A) is 4 dimensional and is

coclass 1. Now Theorem (4.7) covers both Lie and non-Lie Leibniz algebras of coclass 1, and

there are no algebras of dimension 4. So A/Z (A) gives no possibilities, and so dim(Z (A)) 6= 2.

We now consider the case where dim(Z(A)) = 1. Then A/Z(A) is 5 dimensional and is coclass

2. A/Z(A) may be either a Lie or non-Lie Leibniz algebra. Consider the case where A/Z (A) is

a Lie algebra. So we consider Theorem 4 in ([3]), which has one 5 dimensional Lie algebra of

coclass 2, provided char (F) 6= 2. If we suppose that A = span{t,u,w,x,y,z}, Z (A) = span{z},

and Z2 (A) = span{x,y,z}. We get the following possible nonzero multiplications in A/Z (A):

Lie Multiplications Multiplications in A/Z (A)

[t,u] = w [t,u]+Z (A) = w+Z (A)

[t,w] = x [t,w]+Z (A) = x+Z (A)

[u,w] = y [u,w]+Z (A) = y+Z (A)

We note that with these multiplications, A/Z2 (A) is the Heisenberg Lie algebra as required, since

x,y ∈ Z2 (A). This gives the following possible multiplication in A:

Table 5: Multiplications in A

[·, ·] t u w x y z
t αz w+az x+bz cz dz 0
u −w+ âz β z y+ ez f z gz 0
w −x+ b̂z −y+ êz γz hz jz 0
x ĉz f̂ z ĥz µz kz 0
y d̂z ĝz ĵz k̂z σz 0
z 0 0 0 0 0 0

where α,β ,γ,µ,σ ,a, â,b, b̂,c, ĉ,d, d̂,e, ê, f , f̂ ,g, ĝ,h, ĥ, j, ĵ,k, k̂ ∈ C. We begin by considering the
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Leibniz identities, which place restrictions on the constants. Some of the identities, such as

[t, [t, t, ]] = [t,αz] = 0

[[t, t] , t]+ [t, [t, t]] = 0

have 0 on both sides of the identity, and so yield no information. Similarly, identities such as

[t, [t,u]] = [t,w+az] = x+bz

[[t, t] ,u]+ [t, [t,u]] = [αz,u]+ [t,w+az] = x+bz

yield no information since the result is the same on both sides. Leibniz identities of both of these

types will be omitted, as well as those that give duplicate earlier results. Information gained in

earlier Leibniz identities will be used in later ones for simplification.

[t, [u, t]] = [t,−w+ âz] =−x−bz

[[t,u] , t]+ [u, [t, t]] = [w+az, t]+ [u,αz] =−x+ b̂z

⇒−b = b̂

[t, [w, t]] = [t,−x−bz] =−cz

[[t,w] , t]+ [w, [t, t]] = [x+bz, t]+ [w,αz] = ĉz

⇒−c = ĉ
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[t, [u,w]] = [t,y+ ez] = dz

[[t,u] ,w]+ [u, [t,w]] = [w+az,w]+ [u,x+bz] = γz+ f z

⇒ d = γ + f

[t, [w,u]] = [t,−y+ êz] =−dz

[[t,w] ,u]+ [w, [t,u]] = [x+bz,u]+ [w,w+az] = f̂ z+ γz

⇒−d = f̂ + γ

[t, [u,x]] = [t, f z] = 0

[[t,u] ,x]+ [u, [t,x]] = [w+az,x]+ [u,cz] = hz

⇒ h = 0

[t, [x,u]] =
[
t, f̂ z

]
= 0

[[t,x] ,u]+ [x, [t,u]] = [cz,u]+ [x,w+az] = ĥz

⇒ ĥ = 0
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[t, [u,y]] = [t,gz] = 0

[[t,u] ,y]+ [u, [t,y]] = [w+az,y]+ [u,dz] = jz

⇒ j = 0

[t, [y,u]] = [t, ĝz] = 0

[[t,y] ,u]+ [y, [t,u]] = [dz,u]+ [y,w+az] = ĵz

⇒ ĵ = 0

[t, [w,x]] = [t,0] = 0

[[t,w] ,x]+ [w, [t,x]] = [x+bz,x]+ [w,cz] = µz

⇒ µ = 0

[t, [w,y]] = [t,0] = 0

[[t,w] ,y]+ [w, [t,y]] = [x+bz,y]+ [w,dz] = kz

⇒ k = 0
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[t, [y,w]] = [t,0] = 0

[[t,y] ,w]+ [y, [t,w]] = [dz,w]+ [y,x+bz] = k̂z

⇒ k̂ = 0

[t, [u,u]] = [t,β z] = 0

[[t,u] ,u]+ [u, [t,u]] = [w+az,u]+ [u,w+az] =−y+ êz+ y+ ez = (e+ ê)z

⇒−e = ê

[u, [t,w]] = [u,x+bz] = f z

[[u, t] ,w]+ [t, [u,w]] = [−w+ âz,w]+ [t,y+ ez] =−γz+dz

⇒ f =−γ +d

[u, [w, t]] = [u,−x−bz] =− f z

[[u,w] , t]+ [w, [u, t]] = [y+ ez, t]+ [w,−w+ âz] = d̂z− γz

⇒− f = d̂− γ
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[u, [w,u]] = [u,−y− ez] =−gz

[[u,w] ,u]+ [w, [u,u, ]] = [y+ ez,u]+ [w,β z] = ĝz

⇒−g = ĝ

[u, [w,y]] = [u,0] = 0

[[u,w] ,y]+ [w, [u,y]] = [y+ ez,y]+ [w,gz] = σz

⇒ σ = 0

[w, [t,u]] = [w,w+az] = γz

[[w, t] ,u]+ [t, [w,u]] = [−x−bz,u]+ [t,−y− ez] =− f̂ z−dz

⇒ γ =− f̂ −d

[w, [u, t]] = [w,−w+ âz] =−γz

[[w,u] , t]+ [u, [w, t]] = [−y− ez, t]+ [u,−x−bz] =−d̂z− f z

⇒−γ =−d̂− f

In total, there are 20 Leibniz identities given above, and 105 excluded for yielding no

information, or no new information, for a total of 125 Leibniz identities considered. Using the

above, we may simplify the multiplication table for A. Note that there are six results concerning γ ,

three unique, that will be used later.

28



Table 6: Updated Multiplications in A

[·, ·] t u w x y z
t αz w+az x+bz cz dz 0
u −w+ âz β z y+ ez f z gz 0
w −x−bz −y− ez γz 0 0 0
x −cz f̂ z 0 0 0 0
y d̂z −gz 0 0 0 0
z 0 0 0 0 0 0

This table can be further simplified. Let w′ = w+az, x′ = x+bz, y′ = y+ez, and ā = a+ â.

We can then check all of the multiplications using the new definitions.

[t,u] = w+az = w′[
t,w′

]
= x+bz = x′[

t,x′
]
= [t,x+bz] = cz[

t,y′
]
= [t,y+ ez] = dz

[u, t] =−w+ âz =−w−az+ āz =−w′+ āz[
w′, t

]
= [w+az, t] =−x′[

x′, t
]
= [x+bz, t] =−cz[

y′, t
]
= [y+ ez, t] = d̂z[

w′,u
]
= [w+az,u] =−y′[

y′,u
]
= [y+ ez,u] =−gz[

x′,u
]
= [x+bz,u] = f̂ z[

u,w′
]
= [u,w+az] = y′[

u,x′
]
= [u,x+bz] = f z[

u,y′
]
= [u,y+ ez] = gz

We can then simplify the results for multiplications in A. Note that we delete the primes (’)
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from the new variables for ease.

Table 7: Second Updated Multiplications in A

[·, ·] t u w x y z
t αz w x cz dz 0
u −w+ āz β z y f z gz 0
w −x −y γz 0 0 0
x −cz f̂ z 0 0 0 0
y d̂z −gz 0 0 0 0
z 0 0 0 0 0 0

We continue to work on restrictions of the constants while ensuring that A has P1. Consider

maximal subalgebra M = span{t,w,x,y,z} and v = rx+ sy ∈ Z (M). Then

0 = [t,rx+ sy] = (rc+ sd)z

0 = [rx+ sy, t] = (−rc+ sd̂)z

Adding the two equations together gives 0= s
(
d + d̂

)
z. So either s= 0 or−d = d̂. If s= 0, then ei-

ther r = 0 or c = 0. If s = 0 = r, then v = 0, and dim(Z (M)) = 1. Let M̂ = span{mt +nu,w,x,y,z}

and consider r̂x+ ŝy ∈ Z
(
M̂
)
. Then

0 = [mt +nu, r̂x+ ŝy] = (mr̂c+mŝd +nr̂ f +nŝg)z

and

0 = [r̂x+ ŝy,mt +nu] = (−mr̂c+nr̂ f̂ +mŝd̂−nŝg)z

Adding these two equations together gives 0 = mŝ
(
d + d̂

)
+nr̂

(
f + f̂

)
. Solving for r̂ and

ŝ shows Z (M2) can have center greater than 1, which means A does not satisfy P1. Hence, we

cannot have both s = 0 = r.

So either −d = d̂ or c = 0. Likewise, using M1 = span{u,w,x,y,z} and v′ = r′x+ s′y ∈

Z (M1) gives − f = f̂ or g = 0. There are four cases:
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1.) f̂ =− f and d̂ =−d

2.) f̂ =− f and c = 0 and g 6= 0

3.) d̂ =−d and g = 0 and c 6= 0

4.) g = 0 and c = 0.

Case 2 cannot hold. If it did, M2 = span{x,z} ⊆ Z (M) but M2
1 = span{y,z} * Z (M1), a contra-

diction since Mand M1 must be isomorphic. For the same reason, case 3 cannot hold. From the

calculations done above we have the following three identities:

γ = d− f

γ =−d− f̂

γ = d̂ + f

Subtracting the third from the second gives −d− d̂ = f̂ + f . Adding the first to second and the

first to third gives 2γ = d + d̂ = − f − f̂ . Considering these equations, case 1 implies that γ = 0.

If α = 0, then M is a Lie algebra, and so M1 must also be a Lie algebra, which means β = 0. Let

M2 = span{t +u,w,x,y,z}, which must also be Lie. This implies

0 = [t +u, t +u] = [t,u]+ [u, t] = w−w+ āz = āz

and so ā = 0. We now have that all multiplications in A are skew-symmetric and Leib(A) = {0}.

Hence A is Lie, and is given in ([3], Theorem 4).

What remains is case 4, where g = 0 = c. If γ = 0, then f̂ = − f and d̂ = −d, which was

the case just considered. Suppose γ 6= 0, and take M3 = span{mt +nu,w,x,y,z}. Consider

[mt +nu,mt +nu] = m2
αz+mnw−mnw+mnāz+n2

β z

= m2
αz+mnāz+n2

β z

which is a polynomial in m. As we are over the complex numbers, for any n, we can find m to
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satisfy m2α +mnā+ n2 = 0. If α and β are not both 0, then M3 is not isomorphic to M or M1.

Hence α = 0 = β . Then mnā = 0 implies ā = 0 and [t,u] = − [u, t]. Compare the multiplication

table for M and M4 = span{mt +nu,w,mx+ny,y,z}, which must be isomorphic.

Table 8: Multiplications in M

[·, ·] t w x y z
t 0 x 0 dz 0
w −x γz 0 0 0
x 0 0 0 0 0
y d̂z 0 0 0 0
z 0 0 0 0 0

Table 9: Multiplications in M4

[·, ·] mt +nu w mx+ny y z
mt +nu 0 mx+ny mn(d + f )z mdz 0

w −(mx+ny) γz 0 0 0
mx+ny mn

(
d̂ + f̂

)
z 0 0 0 0

y md̂z 0 0 0 0
z 0 0 0 0 0

We have that M3 = 0 and M3
4 = 0. It can be checked that a change of a basis cannot be done to

make M4 look like M. It is necessary that mn(d + f ) = 0 = mn
(
d̂ + f̂

)
. Thus d =− f and d̂ =− f̂ .

We can make the table for M4 be the same as the table for M, as follows:

Table 10: Alternative Multiplications in M4

[·, ·] mt +nu w mx+ny 1
my z

mt +nu 0 mx+ny 0 dz 0
w −(mx+ny) γz 0 0 0

mx+ny 0 0 0 0 0
1
my d̂z 0 0 0 0
z 0 0 0 0 0

Then the maximal subalgebras are isomorphic, A satisfies P1 and cc(A) = 2. We then have
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Table 11: Final Multiplications in A

[·, ·] t u w x y z
t 0 w x 0 dz 0
u −w 0 y f z 0 0
w −x −y γz 0 0 0
x 0 f̂ z 0 0 0 0
y d̂z 0 0 0 0 0
z 0 0 0 0 0 0

with the restrictions that 2γ = d + d̂ =− f − f̂ , − f = d, and − f̂ = d̂.

It remains to consider the case where A/Z (A) is a 5 dimensional Leibniz algebra. In this

case, we still know that A/Z2 (A) is the 3 dimensional Heisenberg Lie algebra and dim(Z (A)) = 1.

This implies the upper central series of B = A/Z (A) is dim(Z (B)) = 2, dim(Z2 (B)) = 3, and

dim(B) = 5. Since A has P1, B will have P1 by Lemma (5.3), so we know that φ (A) = [A,A] =

Z2 (B). The only possible Leibniz algebras fitting these requirements and having P1 are A137,

A138 (α), and A139 in Subsection (7.2), which were coclass 3. Hence, there are no possibilities for

this case.

To summarize, in this section we considered the case where dim(A) = 6 and A/Z2(A) is

the three dimensional Heisenberg Lie algebra. The upper central series is given by dim(A) =

6, dim(Z3 (A)) = 4, dim(Z2 (A)) = 3, and dim(Z (A)) = 1. Also, A/Z(A) is 5 dimensional and

coclass 2. When A/Z(A) is a non-Lie Leibniz algebra, no algebras are found. When A/Z(A) is

the 5 dimensional Lie algebra in ([3], Theorem 4), a Leibniz algebra is found. This results in the

following proposition, which states result 3 in Theorem (5.4).

Proposition 5.8. Suppose A is a nilpotent Leibniz algebra over C with P1 where A/Z2(A) is the

three dimensional Heisenberg Lie algebra. Then dim(A) = 6 and Z/(A) is a 5 dimensional Lie

algebra. Then A is defined by the following multiplications, where A = span{t,u,w,x,y,z} and

γ,d, d̂, f , f̂ ∈C: [t,u] =w=− [u, t], [t,w] = x=− [w, t], [u,w] = y=− [w,u], [w,w] = γz, [t,y] = dz,

[y, t] = d̂z, [u,x] = f z, [x,u] = f̂ z, with the restrictions that 2γ = d + d̂ = − f − f̂ , − f = d, and

− f̂ = d̂, where γ,d, d̂, f , f̂ ∈ C.
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Proof. The work shown above.

5.2.3 A/Z2(A) is a non-Lie Leibniz Algebra

The last possibility is that A/Z2 (A) is a non-Lie Leibniz algebra in Theorem (4.7). However, as

we are working over the complex numbers, the conditions in the proposition will not be satisfied.

Hence, there are no possible algebras for this case.

5.3 Dim(Leib(A)) = 1

By Lemma (4.4), we know that A is cyclic, dim(Z2 (A)) > 2, or dim(Leib(A)) = 1. Above, we

determined that dim(Z2 (A)) = 2 or 3, and dim(Z2 (A)) = 4 only if A = Z2 (A). All possibilities for

dim(Z2 (A)) = 3 have been considered. We now turn to assuming that dim(Leib(A)) = 1. Since

there were no restrictions on the dimension of Leib(A) in Subsection (5.2), we may assume that

dim(Z2 (A)) = 2 or A = Z2 (A) with dim(A) = 4.

If dim(Z2 (A)) = 2, this means dim(Z (A)) = 1, as nilpotent Leibniz algebras have a non-

trivial center. We must still have at least an increase of dimension 2 from Zc−1 (A) to A = Zc (A). If

this increase is of dimension 2, there is another increase of dimension 2 from Zi−1 (A) to Zi (A) for

i = 3, . . . ,c− 1. Otherwise, there is a increase of dimension 3 from from Zc−1 (A) to A = Zc (A).

Furthermore, since the center of a nilpotent Leibniz algebra intersects all ideals nontrivially, we

have that Leib(A)∩Z (A) 6= 0. Since both Leib(A) and Z (A) have dimension 1, it must be the case

that Leib(A)= Z (A). Now A/Leib(A) is a Lie algebra, and since the dimension only increases by 1

from 0 to Z (A) = Leib(A) in the upper central series, it must be the case that cc(A/Leib(A)) = 2.

This means A/Leib(A) is one of the algebras in the following theorem. We note that L in the

following theorem is a nilpotent Lie algebra.

Theorem 5.9. ([4], Theorem 4) If dim(L) = n. cc(L) = 2, and L has P1 then L is isomorphic to

one of the following algebras:

(i) 〈〈a,b,c〉〉 where [a,b] = [a,c] = [b,c] = 0
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(ii) 〈〈x,y,z,a,b〉〉 where [x,y] = z, [x,z] = a, [y,z] = b

(iii) 〈〈a,b,c,x,y,z〉〉 where [a,b] = c, [a,c] = x, [b,c] = y, [a,x] = z, [b,y] = γz where −γ is not a

perfect square

We consider A/Leib(A) being each of the above possibilities separately. The case where A= Z2 (A)

with dim(A) = dim(Z2 (A)) = 4 is handled later. None of the options (i), (ii), or (iii) result in a

new Leibniz algebra.

5.3.1 A/Leib(A) is abelian

The first possibility we consider is A/Leib(A) being the Lie algebra generated by 〈〈a,b,c〉〉 where

[a,b] = [a,c] = [b,c] = 0. In this case, A/Leib(A) is abelian and dimension 3. This implies

dim(A) = 4. Suppose A = span{a,b,c,x}, where Leib(A) = span{x} = Z (A). Based on the

given Lie algebra, all of the quotient group multiplications in A/Leib(A) are 0, and so are in the

span of Leib(A). So

[a,b] = α1x [b,a] = α2x

[a,c] = β1x [c,a] = β2x

[b,c] = γ1x [c,b] = γ2x

for αi,βi,γi ∈ C. Using the definition of Leib(A), we also get the following:

[a,a] = µ1x

[b,b] = µ2x

[c,c] = µ3x

for µi ∈ C. Since A is nilpotent, [x,x] = 0. Since Leib(A) = span{x}, at least one of the µi

are nonzero. By the above multiplications, it is clear that [A,A] = span{x}. Since A has P1,

[A,A] = Zc−1 (A) = φ (A), and all have dimension 1. We get the following upper central series:

0⊆ Z (A)⊆ Z2 (A) = A.
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Note that since dim(Z (A)) = 1, it is non-split. The only possible 4 dimensional non-split non-Lie

Leibniz algebras, with dim
(
A2)= 1, are given in Subsection (7.1), and none of which have P1 by

Lemma (7.2). So there are no possible algebras for this case.

5.3.2 A/Leib(A) is 5 dimensional

We now turn to the second possibility where dim(Leib(A)) = 1, Leib(A) = Z(A), and A/Leib(A) is

the Lie algebra of the form 〈〈x,y,z,a,b〉〉where [x,y] = z, [x,z] = a, [y,z] = b. Since dim(A/Leib(A))

= 5, then dim(A) = 6. Say A = span{x,y,z,a,b,c}. In A/Leib(A), we can list the three nontrivial

multiplications as

[x,y]+Leib(A) = z+Leib(A)

[x,z]+Leib(A) = a+Leib(A)

[y,z]+Leib(A) = b+Leib(A)

with other multiplications following similarly since A/Leib(A) is Lie, and so skew-symmetric.

All of the other multiplications in A/Leib(A) are 0, and so are in the span of Leib(A). Since the

multiplications in A/Leib(A) are nontrivial, and x, y, and z are clearly not in Z (A), it must be the

case that Leib(A) = Z (A) = span{c}. Furthermore, since Leib(A) is the span of squares, at least

one of x2, y2, z2, a2, or b2 must be c. Using this information, the multiplication table for A is given

next.

Table 12: Multiplications in A

[·, ·] x y z a b c
x αc z+dc a+ ec f c gc 0
y −z+ d̂c βc b+hc jc kc 0
z −a+ êc −b+ ĥc γc mc nc 0
a f̂ c ĵc m̂c µc pc 0
b ĝc k̂c n̂c p̂c σc 0
c 0 0 0 0 0 0
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for constants α,β ,γ,µ,σ ,d, d̂,e, ê, f , f̂ ,g, ĝ,h, ĥ, j, ĵ,k, k̂,m, m̂,n, n̂, p, p̂ ∈ C.

Given the three nontrivial multiplications in A/Leib(A) listed above and at least one of the

squares being nonzero, as well as A having P1, we get that dim
(
A2)= dim([A,A])= dim(Zc−1 (A))

= dim(φ (A)) = 4. From the beginning of this subsection, Subsection (5.3), recall that dim(Z (A))

= 1 and dim(Z2 (A)) = 2. So we get the upper central series

0⊆ Z (A)⊆ Z2 (A)⊆ Z3 (A)⊆ Z4 (A) = A

with dim(Z (A)) = 1, dim(Z2 (A)) = 2, dim(Z3 (A)) = 4, and dim(A) = 6, which corresponds with

cc(A) = 2. Looking at the table however, we can see that the dim(Z2(A)) = 3. Upon exmaining the

table, it can be seen that eliminating or altering constants can not be done to decrease the dimnesion

of just Z2(A), given the restrictions on the multiplication in A/Leib(A). In fact, although the letters

have changed to match the Lie algebra in Theorem (5.9), we can see that this is the exactly the

first table found in Subsection (5.2.2), in which dim(Z2(A)) = 3. Hence, we must get an algebra

that is isomorphic to A = span{t,u,w,x,y,z}, with multiplications given by [t,u] = w = − [u, t],

[t,w] = x =− [w, t], = [u,w] = y =− [w,u], [w,w] = γz, [t,y] = dz, [y, t] = d̂z, [u,x] = f z, [x,u] = f̂ z,

with the restrictions that 2γ = d + d̂ = − f − f̂ , − f = d, and − f̂ = d̂, where γ,d, d̂, f , f̂ ∈ C.

Therefore, there is no algebra which fits the criteria where dim(Leib(A)) = 1 and dim(Z2(A)) = 2.

This subsection results in no new algebras.

5.3.3 A/Leib(A) is 6 dimensional

We lastly consider the possibility where A/Leib(A) is the Lie algebra of the form 〈〈a,b,c,x,y,z〉〉

where [a,b] = c, [a,c] = x, [b,c] = y, [a,x] = z, [b,y] = γz where −γ is not a perfect square. How-

ever, we are over C, and so −γ will always be a perfect square. Hence, there are no possibilities in

this case.
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5.4 A = Z2(A) with dim(A) = 4

Lastly we consider the case where A = Z2 (A) with dim(A) = dim(Z2 (A)) = 4. We still assume

that A has P1, and so has P2. Since A is not cyclic it must be the case that dim([A,A]) = dim
(
A2)=

dim(φ (A)) = dim(Z) = 1 or 2 since Zc−1 (A) = Z (A) in this case. In this case, results 2 and 3

from Theorem (5.4) will be developed.

If dim(Z (A)) = 1, then A is non-split. Now suppose that dim(Z (A)) = 2, and that A can

be split. So A = I⊕ J, where I and J are ideals such that I ∩ J = {0}, and I and J each contain

one of the center elements. Suppose first that dim(I) = 3 and dim(J) = 1. Since dim(Z (A)) = 2,

I cannot split any further. Take maximal subalgebra M of I, then M⊕ J is a maximal subalgebra

of A that splits, but I is a maximal subalgebra that does not split. Thus I and M⊕ J are not

isomorphic, and P1 is violated. So this case is not possible. Now suppose dim(I) = dim(J) = 2.

Then I and J are both non-split since there are not enough center elements to split I or J further.

Suppose A = span{w,x,y,z} with Z (A) = span{y,z}. Since φ (A) = A2 = Z (A), there must exist

multiplications that give elements y and z as results. Suppose [w,w] = y and [x,x] = z. Without

loss of generality, it has to be the case that I = span{w,y} and J = span{x,z}. Since I and J

are ideals, we have that [w,x] = [x,w] = 0. Note as well then that the Leibniz identity holds upon

inspection. Note that both I and J are two cyclic ideals. All maximal subalgebras are of the form

M = span{αw+βx,y,z} with the only non-zero product given by

[αw+βx,αw+βx] = α
2y+β

2z.

This product is 0 if and only if α = β = 0, and at least one must be non-zero. So M is the direct sum

of a two-dimensional cyclic and a one dimensional algebra. Therefore, all maximal subalgebras

are isomorphic and A satisfies P1 and is of coclass 2. So we get a non-Lie split Leibniz algebra

A = span{w,x,y,z} with multiplications [w,w] = y and [x,x] = z. This gives result 1 in Theorem

(5.4).

Proposition 5.10. Suppose A is a split non-Lie nilpotent Leibniz algebra over C with P1 where
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dim(A) = dim(Z2(A)) = 4. Then A = span{w,x,y,z} with multiplications given by [w,w] = y and

[x,x] = z.

Proof. The work is shown above.

The above covers A being split. If A is not of this form, it must be non-split, and we can

use ([9]) to determine possible algebras. This is done in Section (7.1) below. There, we get two

possible algebras that have P1:

A18 :[x1,x1] = x3, [x2,x1] = x4, [x1,x2] = αx3, [x2,x2] =−x4,α ∈ C\{−1}

A19 :[x1,x1] = x3, [x1,x2] = x3, [x2,x1] = x3 + x4, [x2,x2] = x4.

It is easy to see that both of these are coclass 2. For both algebras, Z (A) = span{x3,x4} and Z2 (A)

is the algebra itself. So cc(A) = dim(A)−cl (A) = 4−2 = 2. This gives result 2 in Theorem (5.4).

Proposition 5.11. Suppose A is a non-split non-Lie nilpotent Leibniz algebra with P1 over C where

dim(A) = dim(Z2(A)) = 4. Then A is isomorphic to one of the following algebras:

1. [x1,x1] = x3, [x2,x1] = x4, [x1,x2] = αx3, [x2,x2] =−x4,α ∈ C\{−1}

2. [x1,x1] = x3, [x1,x2] = x3, [x2,x1] = x3 + x4, [x2,x2] = x4.

Proof. If A is a non-split non-Lie Leibniz algebra of dimension 4, then it must be found in ([9]).

Section (7.1) of this paper determines which of the four dimensional algebras found in ([9]) have

P1. The non-split non-Lie four dimensional Leibniz algebras with P1 are given in the proposition

statement and can be see to be coclass two.
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6 Summary of Final Results

In this section, we list the results for Leibniz algebras, as well Lie algebras and p-groups.

Proposition 6.1. Suppose cc(A)= 0 where A is a Leibniz algebra. Then A is cyclic, or dim(A)≤ 1.

Theorem 6.2. Let A be a nilpotent Leibniz algebra that satisfies P2 and is of coclass 1. Then one

of the following holds:

1. A is a Lie algebra, and so A is abelian of dimension 2, or A is the Heisenberg Lie algebra of

dimension 3

2. A = Z2 (A) and dim(A) = 3. If A = span{x,y,z} then [x,x] = z, [y,y] = τz, [x,y] = λ z,

[y,x] = εz, where τ 6= 0 and (λ + ε)2−4 is not a square.

Theorem 6.3. The non-Lie nilpotent Leibniz algebras with P1 over C of coclass 2 are as follows:

1. If A is split, then A = span{x1,x2,x3,x4} with multiplications [x1,x1] = x3 and [x2,x2] = x4

2. If A is non-split and dim(A) = 4, then A = span{x1,x2,x3,x4}, with multiplications given by

one of the following:

(a) [x1,x1] = x3, [x2,x1] = x4, [x1,x2] = αx3, [x2,x2] =−x4,α ∈ C\{−1}

(b) [x1,x1] = x3, [x1,x2] = x3, [x2,x1] = x3 + x4, [x2,x2] = x4.

3. If A is non-split and dim(A) = 6, then A = span{t,u,w,x,y,z}, with multiplications given by

[t,u] =w=− [u, t], [t,w] = x=− [w, t], [u,w] = y=− [w,u], [w,w] = γz, [t,y] = dz, [y, t] = d̂z,

[u,x] = f z, [x,u] = f̂ z, with the restrictions that 2γ = d+ d̂ =− f − f̂ , − f = d, and − f̂ = d̂,

where γ,d, d̂, f , f̂ ∈ C.

Proposition 6.4. ([3], Proposition 2) Let L be a nilpotent Lie algebra with P2. Then cc(L) = 0

implies dim(L)≤ 1.

Proposition 6.5. ([3], Proposition 3) Let L be a Lie algebra with P2 cc(L) = 1. Then either L is

two dimensional abelian or three dimensional Heisenberg.
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Theorem 6.6. ([3], Theorem 3) Let L be a Lie algebra and suppose that char (F) 6= 2. If dim(L) =

n, cc(L) = 2, and L has PI, then L is isomorphic to one of the following algebras:

1. 〈〈a,b,c〉〉 where [a,b] = [a,c] = [b,c] = 0

2. 〈〈x,y,z,a,b〉〉 where [x,y] = z, [x,z] = a, [y,z] = b

3. 〈〈a,b,c,x,y,z〉〉 where [a,b] = c, [a,c] = x, [b,c] = y, [a,x] = z, [b,y] = γz where −γ is not a

square.

Corollary 6.7. ([2], Corollary 1) Suppose G is a finite p-group with P1. Then G is of coclass 1 if

and only if it is

1. elementary abelian of order p2, or

2. nonabelian of order p3 and of exponent p with p > 2, or

3. the quaternion group of order 8.

Theorem 6.8. ([2], Theorem 2) Assume that G is a finite p-group with P1 and that cc(G) = 2.

Then G is isomorphic to one of the groups listed below.

1. Zp3

2. Zp×Zp×Zp

3. < a,b : ap2
= bp2

= 1,b−1ab = a1+p >

4. < a,b : a9 = b9 = [a,b]3 = [a,b,a,a] = [a,b,b,b] = 1, [a,b,a] = b3, [a,b,b] = a3 >

5. < a,b : a9 = b9 = [a,b]3 = [a,b,a,a] = [a,b,b,b] = 1, [a,b,a] = b6, [a,b,b] = a3 >

6. < a,b : ap2
= bp2

= [a,b]p = [a,b,a,a] = [a,b,b,b] = 1, [a,b,a] = bp, [a,b,b] = apm > (for

p≥ 5 and m the smallest quadratic non residue mod p)
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7. < a,b : ap2
= bp2

= [a,b]p = [a,b,a,a] = [a,b,b,b] = 1, [a,b,a] = bp, [a,b,b] = apgbp > (for

p ≥ 5, 1 ≤ g ≤ p−1 and 4g+1 any quadratic nonresidue mod p, which gives (p−1)/2

groups of this type)

8. < a,b : ap = bp = [a,b]p = [a,b,a]p = [a,b,b]p = [a,b,a,a] = [a,b,a,b] = [a,b,b,a]

= [a,b,b,b] = 1 > (for p≥ 5)

9. <a,b : ap2
= bp2

= [a,b]p = [a,b,a,b] = [a,b,b,a] = 1, [a,b,a] = ap, [a,b,b] = bP > (for

p≥ 5)

10. < a,b : ap = bp = [a,b]p = [a,b,a]p = [a,b,b]p = [a,b,a,a]p = [a,b,a,b] = [a,b,b,a] =

[a,b,a,a,a] = [a,b,a,a,b] = 1, [a,b,b,b] = [a,b,a,a]−m (for p ≥ 5 and m the smallest

quadratic nonresidue mod p)

11. < a,b : a9 = b9 = [a,b]3 = [a,b,a,a]3 = [a,b,a,a,a] = [a,b,a,a,b] = 1, [a,b,a] = b3, [a,b,b] =

a3, [a,b,a,a] = [a,b,b,b]>

12. < a,b : a9 = b9 = [a,b]3 = [a,b,a,a]3 = [a,b,a,a,a] = [a,b,a,a,b] = 1, [a,b,a]2 · [a,b,a,a] =

b3, [a,b,b] · [a,b,a,a]2 = a3, [a,b,a,a] = [a,b,b,b]>.
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7 Determination Of Leibniz Algebras that have P1

Throughout this section, Lemma (3.20), ie that [A,A] = φ (A), is used to determine what elements

are in the maximal subalgebra. Not all of the algebras of the specific dimensions are necessarily

listed, only those that are relevant to the work above.

7.1 Dimension 4 Algebras Having P1

Theorem 7.1. ([9], Theorem 2.1) Let A be a four-dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 1. Then A is isomorphic to a Leibniz algebra spanned by {x1,x2,x3,x4}

with the nonzero products given by one of the following:

A1: [x1,x3] = x4, [x3,x2] = x4

A2: [x1,x3] = x4, [x2,x2] = x4, [x2,x3] = x4, [x3,x1] = x4, [x3,x2] =−x4

A3: [x1,x2] = x4, [x2,x1] =−x4, [x3,x3] = x4

A4: [x1,x2] = x4, [x2,x1] =−x4, [x2,x2] = x4, [x3,x3] = x4

A5: [x1,x2] = x4, [x2,x1] = cx4, [x3,x3] = x4, x ∈ C\{1,−1}

A6: [x1,x1] = x4, [x2,x2] = x4, [x3,x3] = x4

Lemma 7.2. None of the algebras in Theorem (7.1) have P1.

Proof. A1: Take maximal subalgebra M1 = span{x1,x3,x4}, with Z (M1) = span{x4}, and M1 =

Z2 (M1). Now take maximal subalgebra M2 = span{x1,x2,x4}, which is abelian. Hence A1 does

not have P2, and so does not have P1.

A2: Take maximal subalgebra M1 = span{x1,x2,x4}, and M2 = span{2x1 + 2x2 + x3 +

2x4,2x1 + x2 +2x3 +2x4,x4}. Then we have the following multiplication tables:

Table 13: M1 Multiplication Table

[·, ·] x1 x2 x4
x1 0 0 0
x2 0 x4 0
x4 0 0 0
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Table 14: M1 Multiplication Table

[·, ·] 2x1 +2x2 + x3 +2x4 2x1 + x2 +2x3 +2x4 x4
2x1 +2x2 + x3 +2x4 12x4 11x4 0
2x1 + x2 +2x3 +2x4 5x4 9x4 0

x4 0 0 0

From the table above, it can be seen that M1 and M2 are not isomorphic, and so A2 does not have

P1.

A3: Take maximal subalgebra M1 = span{x1,x2,x4} and maximal subalgebra M2 =

span{x1,x3,x4}. Now

[αx1 +βx2 + γx4,αx1 +βx2 + γx4] = αβx4−αβx4 = 0

and so Leib(M1) = 0, which means M1 is a Lie algebra. However, Leib(M2) = span{x4}, and so

M2 is not a Lie algebra. Therefore A3 does not have P1.

A4: Take maximal subalgebra M1 = span{x1,x2,x4}, and M2 = span{x1 + 2x2 + x3 +

2x4,x1 + x2 + x3 + x4,x4}. Then we have the following multiplication tables:

Table 15: M1 Multiplication Table

[·, ·] x1 x2 x4
x1 0 x4 0
x2 −x4 x4 0
x4 0 0 0

Table 16: M2 Multiplication Table

[·, ·] x1 +2x2 + x3 +2x4 x1 + x2 + x3 + x4 x4
x1 +2x2 + x3 +2x4 5x4 2x4 0
x1 + x2 + x3 + x4 4x4 2x4 0

x4 0 0 0

From the table above, it can be seen that M1 and M2 are not isomorphic, and so A4 does not have
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P1.

A5: Take maximal subalgebra M1 = span{x1,x2,x4}, with Z (M1) = span{x4} and M1 =

Z2 (M1) = span{x1,x2,x4}. Now take maximal subalgebra M2 = span{x1,x3,x4}, with Z (M2) =

span{x1,x4} and M2 = Z2 (M2) = span{x1,x3,x4}. Hence A5 does not have P2, and so does not

have P1.

A6: Take maximal subalgebra M1 = span{x1,x2,x4}, with Z (M1) = span{x4}, and M1 =

Z2 (M1)= span{x1,x2,x4}. Now take maximal subalgebra M2 = span{x1 + ix2,x3,x4}, with Z (M2)

= span{x+ ix2,x4} and M2 = Z2 (M2) = span{x1 + ix2,x3,x4}. Thus A6 does not have P2, and so

does not have P1.

Theorem 7.3. ([9], Theorem 2.3) Let A be a four-dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 2, dim(A3) = 0 and dim(Leib(A)) = 1. Then A is isomorphic to a Leibniz

algebra spanned by {x1,x2,x3,x4} with the nonzero products given by one of the following:

A8: [x1,x1] = x4, [x1,x2] = x3 =−[x2,x1]

A9: [x1,x1] = x4, [x1,x2] = x3 =−[x2,x1], [x2,x2] = x4.

Lemma 7.4. None of the algebras in Theorem (7.3) have P1.

Proof. A8: Take maximal subalgebra M1 = span{x1,x3,x4}, with Z (M1)= span{x3,x4} and M1 =

Z2 (M1)= span{x1,x3,x4}. Now take maximal subalgebra M2 = span{x2,x3,x4}, which is abelian.

Hence A8 does not have P2, and so does not have P1.

A9: Take maximal subalgebra M1 = span{x1,x3,x4}, with Z (M1) = span{x3,x4} and

M1 = Z2 (M1) = span{x1,x3,x4}. Now take maximal subalgebra M2 = span{x1 + ix2,x3,x4},

which is abelian. Therefore A9 does not have P2, and so does not have P1.

Theorem 7.5. ([9], Theorem 2.4) Let A be a four-dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 2 and dim(Leib(A)) = 1 = dim(A3). Then A is isomorphic to a Leibniz

algebra spanned by {x1,x2,x3,x4} with the nonzero products given by one of the following:

A10: [x1,x1] = x4, [x1,x2] = x3 =−[x2,x1], [x1,x3] = x4 =−[x3,x1]

A11: [x1,x2] = x3 =−[x2,x1], [x2,x2] = x4, [x1,x3] = x4 =−[x3,x1]
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A12: [x1,x1] = x4, [x1,x2] = x3, [x2,x1] =−x3 + x4, [x1,x3] = x4 =−[x3,x1]

A13: [x2,x2] = x4, [x1,x2] = x3, [x2,x1] =−x3 + x4, [x1,x3] = x4 =−[x3,x1].

Lemma 7.6. None of the algebras in Theorem (7.5) have P1.

Proof. A10: Take maximal subalgebra M1 = span{x1,x3,x4}, with Z (M1) = span{x4}, and M1 =

Z2 (M1)= span{x1,x3,x4}. Now take maximal subalgebra M2 = span{x2,x3,x4}, which is abelian.

Hence A10 does not have P2, and so does not have P1.

A11: Take maximal subalgebra M1 = span{x1,x3,x4}, with Z (M1) = span{x4}, and M1 =

Z2 (M1) = span{x1,x3,x4}. Now take maximal subalgebra M2 = span{x2,x3,x4}, with Z (M2) =

span{x3,x4} and M2 = Z2 (M2) = span{x2,x3,x4}. As A11 does not have P2, it does not have P1.

A12: Take maximal subalgebra M1 = span{x1,x3,x4}, with Z (M1) = span{x4} and M1 =

Z2 (M1)= span{x1,x3,x4}. Now take maximal subalgebra M2 = span{x2,x3,x4}, which is abelian.

Therefore A12 does not have P2, and so does not have P1.

A13: Take maximal subalgebra M1 = span{x1,x3,x4}, with Z (M1) = span{x4} and M1 =

Z2 (M1) = span{x1,x3,x4}. Now take maximal subalgebra M2 = span{x2,x3,x4}, with Z (M2) =

span{x3,x4} and M2 = Z2 (M2) = span{x2,x3,x4}. Since A13 does not have P2, it does not have

P1.

Theorem 7.7. ([9], Theorem 2.5) Let A be a four-dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 2 = dim(Leib(A)) and dim(A3) = 0. Then, A is isomorphic to a Leibniz

algebra spanned by {x1,x2,x3,x4} with the nonzero products given by the following:

A14: [x1,x1] = x3, [x1,x2] = x4

A15: [x1,x1] = x3, [x2,x1] = x4

A16: [x1,x2] = x4, [x2,x1] = x3, [x2,x2] =−x3

A17: [x1,x1] = x3, [x1,x2] = x4, [x2,x1] = αx4, α ∈ C\{−1,0}

A18: [x1,x1] = x3, [x2,x1] = x4, [x1,x2] = αx3, [x2,x2] =−x4, α ∈ C\{−1}

A19: [x1,x1] = x3, [x1,x2] = x3, [x2,x1] = x3 + x4, [x2,x2] = x4.

Lemma 7.8. The only algebras in Theorem (7.7) that have P1 are A18 and A19.
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Proof. A14: Take maximal subalgebra M1 = span{x1,x3,x4}, with Z (M1) = span{x3,x4} and

M1 = Z2 (M1) = span{x1,x3,x4}. Now take maximal subalgebra M2 = span{x2,x3,x4}, which is

abelian. Hence A14 does not have P2, and so does not have P1.

A15: Take maximal subalgebra M1 = span{x1,x3,x4}, with Z (M1) = span{x3,x4} and

M1 = Z2 (M1) = span{x1,x3,x4}. Now take maximal subalgebra M2 = span{x2,x3,x4}, which is

abelian. Therefore A15 does not have P2, and so does not have P1.

A16: Take maximal subalgebra M1 = span{x1,x3,x4}, which is abelian. Now take maximal

subalgebra M2 = span{x2,x3,x4}, with Z (M2)= span{x3,x4} and M2 =Z2 (M2)= span{x2,x3,x4}.

As A16 does not have P2, it does not have P1.

A17: Take maximal subalgebra M1 = span{x1,x3,x4}, with Z (M1) = span{x3,x4} and

M1 = Z2 (M1) = span{x1,x3,x4}. Now take maximal subalgebra M2 = span{x2,x3,x4}, which is

abelian. Thus A17 does not have P2, and so does not have P1.

A18: All maximal subalgebras are of the form M = span{ax1 +bx2,x3,x4}. Now

[ax1 +bx2,ax1 +bx2] = a2x3 +abαx3 +abx4−b2x4

=
(
a2 +abα

)
x3 +

(
ab−b2)x4.

Change the basis for M, and let r = ax1+bx2 and s =
(
a2 +abα

)
x3+

(
ab−b2)x4. Choose t to be

complementary to s in {x3,x4}. Then all maximal subalgebras can be written as M′ = span{r,s, t}

and the only multiplication is r2 = s. As this holds for all maximal subalgebras, A18 has P1.

A19: All maximal subalgebras are of the form M = span{ax1 +bx2,x3,x4}. Now

[ax1 +bx2,ax1 +bx2] = a2x3 +abx3 +abx3 +abx4 +b2x4

=
(
a2 +2ab

)
x3 +

(
ab+b2)x4.

Change the basis for M, and let r = ax1+bx2 and s =
(
a2 +2ab

)
x3+

(
ab+b2)x4. Choose t to be

complementary to s in {x3,x4}. Then all maximal subalgebras can be written as M′ = span{r,s, t}

and the only multiplication is r2 = s. Since this holds for all maximal subalgebras, A19 has P1.
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7.2 Dimension 5 Algebras Having P1

The results in ([1]) give the possibilities for 5-dimensional non-split Leibniz algebras. The follow-

ing theorems list the results for when dim(A) = 5, and dim(Z2 (A)) = 3, where Z2 (A) = [A,A].

Theorem 7.9. ([1], Theorem 2.2) Let A be a 5−dimensional non-split non-Lie nilpotent Leibniz

algebra with dim
(
A2) = 3, dim

(
A3) = 2, dim

(
A4) = 1, and dim(Leib(A)) = 1. Then A is iso-

morphic to a Leibniz algebra spanned by {x1,x2,x3,x4,x5} with the nonzero products given by one

of the following:

A1: [x1,x1] = x5,[x1,x2] = x3 =−[x2,x1],[x1,x3] = x4 =−[x3,x1], [x1,x4] = x5 =−[x4,x1]

A2: [x1,x1] = x5,[x1,x2] = x3 =−[x2,x1],[x1,x3] = x4 =−[x3,x1], [x2,x3] = x5 =−[x3,x2],

[x1,x4] = x5 =−[x4,x1]

A3: [x1,x1] = x5,[x1,x2] = x3 =−[x2,x1],[x2,x3] = x4 =−[x3,x2],[x2,x4] = x5 =−[x4,x2]

A4: [x1,x1] = x5,[x1,x2] = x3 =−[x2,x1],[x1,x3] = x5 =−[x3,x1],[x2,x3] = x4 =−[x3,x2],

[x2,x4] = x5 =−[x4,x2]

A5 (α): [x1,x1] = x5,[x1,x2] = x3 =−[x2,x1],[x2,x2] = x5,[x1,x3] = x4 =−[x3,x1],

[x2,x3] = αx5 =−[x3,x2],[x1,x4] = x5 =−[x4,x1], α ∈ C

A6: [x1,x1] = x5,[x1,x2] = x3,[x2,x1] = −x3 + x5,[x1,x3] = x4 = −[x3,x1],[x1,x4] = x5 =

−[x4,x1]

A7: [x1,x1] = x5,[x1,x2] = x3,[x2,x1] = −x3 + x5,[x1,x3] = x4 = −[x3,x1],[x2,x3] = x5 =

−[x3,x2],[x1,x4] = x5 =−[x4,x1]

Lemma 7.10. None of the algebras in Theorem (7.9) have P1.

Proof. A1: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x5}, Z2 (M1)

= span{x4,x5}, M1 =Z3 (M1)= span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,

x3,x4,x5}, which is abelian. From this, it is clear that A1 cannot have P1, as M1 cannot be isomor-

phic to M2, as M2 is abelian, but M1 is not.

A2: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x5}, Z2 (M1)

= span{x4,x5}, M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 =
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span{x2,x3,x4,x5}, with Z (M2) = span{x4,x5}, Z2 (M2) = span{x2,x3,x4,x5}. Since A2 does

not have P2, it does not have P1.

A3: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x3,

x4,x5}, and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,

x4,x5}, with Z (M2) = span{x5}, Z2 (M2) = span{x4,x5}, and M2 = Z3 (M2) = span{x2,x3,x4,x5}.

As A3 does not have P2, it does not have P1.

A4: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,

x5}, and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,

x3,x4,x5}, with Z (M2) = span{x5}, Z2 (M2) = span{x4,x5}, and M2 = Z3 (M2) = span{x2,

x3,x4,x5}. As A4 does not have P2, it does not have P1.

A5 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) =

span{x5}, Z2 (M1) = span{x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maxi-

mal subalgebra M2 = span{x2,x3,x4,x5}. If α 6= 0, then Z (M2) = span{x4,x5} and Z2 (M2) =

span{x2,x3,x4,x5}. If α = 0, then Z (M2) = span{x3,x4,5 } and M2 = Z2 (M2) = span{x2,x3,x4,

x5}. In either case A5 does not have P2, so it does not have P1.

A6: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x5}, Z2 (M1)

= span{x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 =

span{x2,x3,x4,x5}, which is abelian. So A6 does not have P1.

A7: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x5}, Z2 (M1)

= span{x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 =

span{x2,x3,x4,x5}, with Z (M2) = span{x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Since

A7 does not have P2, it does not have P1.

Theorem 7.11. ([1], Theorem 2.3) Let A be a 5−dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2)= 3, dim(A3)= 2, dim(A4)= 0, and dim(Leib(A))= 1. Then A is isomorphic

to a Leibniz algebra spanned by {x1,x2,x3,x4,x5} with the nonzero products given by one of the

following:

A8: [x1,x1] = x5, [x1,x2] = x3 =−[x2,x1], [x1,x3] = x4 =−[x3,x1], [x2,x3] = x5 =−[x3,x2]
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A9: [x1,x1] = x5, [x1,x2] = x3 =−[x2,x1], [x1,x3] = x5 =−[x3,x1], [x2,x3] = x4 =−[x3,x2]

A10: [x1,x1] = x5, [x1,x2] = x3 =−[x2,x1], [x2,x2] = x5, [x1,x3] = x4 =−[x3,x1], [x2,x3] =

x5 =−[x3,x2]

A11: [x1,x1] = x5, [x1,x2] = x3, [x2,x1] =−x3+x5, [x1,x3] = x4 =− [x3,x1], [x2,x3] = x5 =

− [x3,x2]

Lemma 7.12. None of the algebras in Theorem 7.11 have P1.

Proof. A8: Take maximal subalgebra M1 = span{x1,x3,x4,x5} and maximal subalgebra M2 =

span{x2,x3,x4,x5}. In M1, the nonzero multiplications are given by [x1,x1] = x5, [x1,x3] = x4 =

− [x3,x1], so Leib(M1) = span{x5}, and M1 is not a Lie algebra. In M2, the only nonzero multi-

plications are given by [x2,x3] = x5 = − [x3,x2], and so Leib(M2) = 0, which implies M2 is Lie.

Hence M1 and M2 are not isomorphic, and A8 does not have P1.

A9: Take M1 = span{x1,x3,x4,x5} and maximal subalgebra M2 = span{x2,x3,x4,x5}. The

nonzero multiplications in M1 are given by: [x1,x1] = x5, [x1,x3] = x5 =− [x3,x1]. So Leib(M1) =

span{x5}, and M1 is not Lie. The nonzero multiplications in M2 are given by: [x2,x3] = x4 =

− [x3,x2]. So Leib(M2) = 0, and hence M2 is Lie. This implies M1 and M2 are not isomorphic, and

A9 does not have P1.

A10: Take maximal subalgebra M1 = span{x1,x3,x4,x5} and maximal subalgebra M2 =

span{x2,x3,x4,x5}. The nonzero multiplications in M1 are given by: [x1,x1] = x5, [x1,x3] = x4 =

−[x3,x1]. We can see that dim([M1,M1]) = 2. The nonzero multiplications in M2 are given by:

[x2,x2] = x5, [x2,x3] = x5 = −[x3,x2]. From this, we can see that dim([M2,M2]) = 1. Hence M1 is

not isomorphic to M2, and A10 does not have P1.

A11: Take maximal subalgebra M1 = span{x1,x3,x4,x5} and maximal subalgebra M2 =

span{x2,x3,x4,x5}. In M1 the nonzero multiplications are given by: [x1,x1] = x5, and [x1,x3] = x4.

So Leib(M1) = span{x5}, and M1 is not Lie. In M2, the only nonzero multiplications are given

by: [x2,x3] = x5 =− [x3,x2]. So Leib(M2) = 0, and M2 is a Lie algebra. Hence M1 and M2 are not

isomorphic, and A11 does not have P1.
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Theorem 7.13. ([1], Theorem 2.4) Let A be a 5−dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 3, dim(A3) = 1, and dim(Leib(A)) = 1. Then A is isomorphic to a Leibniz

algebra spanned by x1,x2,x3,x4,x5 with the nonzero products given by one of the following:

A12: [x1,x1] = x5, [x1,x2] = x3 =− [x2,x1], [x1,x3] = x4 =− [x3,x1]

A13: [x1,x2] = x3 =− [x2,x1], [x2,x2] = x5, [x1,x3] = x4 =− [x3,x1]

A14: [x1,x1] = x5, [x1,x2] = x3 =− [x2,x1], [x2,x2] = x5, [x1,x3] = x4 =− [x3,x1]

A15: [x1,x1] = x5, [x1,x2] = x3, [x2,x1] =−x3 + x5, [x1,x3] = x4 =− [x3,x1].

Lemma 7.14. None of the algebras in Theorem (7.13) have P1.

Proof. A12: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5},

Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5}, which

is abelian. So M1 and M2 are not isomorphic, and A12 does not have P1.

A13: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5} and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. So A13 does not have P1

as it does not have P2.

A14: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5} and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. So A14 does not have

P2, and so does not have P1.

A15: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5} and

Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5}, which is

abelian. Thus M1 and M2 are not isomorphic, and A15 does not have P1.

Theorem 7.15. ([1], Theorem 3.5) Let A be a 5−dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 3 = dim(Leib(A)), dim(A3) = 2 and dim(A4) = 1. Then A is isomor-

phic to a Leibniz algebra spanned by {x1,x2,x3,x4,x5} with nonzero products given by one of the

following:
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A64: [x1,x2] = x3, [x1,x3] = x4, [x1,x4] = x5

A65: [x1,x2] = x3, [x2,x1] = x5, [x1,x3] = x4, [x1,x4] = x5

A66: [x1,x2] = x3, [x2,x2] = x5, [x1,x3] = x4, [x1,x4] = x5

A67: [x1,x2] = x3, [x2,x1] = x5, [x2,x2] = x5, [x1,x3] = x4, [x1,x4] = x5

A68: [x1,x2] = x3, [x2,x2] = x4, [x1,x3] = x4, [x2,x3] = x5, [x1,x4] = x5

A69: [x1,x2] = x3, [x2,x1] = x5, [x2,x2] = x4, [x1,x3] = x4, [x2,x3] = x5, [x1,x4] = x5

A70 (α): [x1,x2] = x3, [x2,x1] = αx5, [x2,x2] = x4+x5, [x1,x3] = x4, [x2,x3] = x5, [x1,x4] =

x5, α ∈ C

A71: [x1,x1] = x3, [x2,x1] = x5, [x1,x3] = x4, [x1,x4] = x5

A72: [x1,x1] = x3, [x2,x2] = x5, [x1,x3] = x4, [x1,x4] = x5

A73 (α): [x1,x1] = x3, [x2,x1] = x4, [x2,x2] = αx5, [x1,x3] = x4, [x2,x3] = x5, [x1,x4] = x5,

α ∈ C

A74: [x1,x1] = x3, [x2,x1] = x4 + x5, [x2,x2] = 2x5, [x1,x3] = x4, [x2,x3] = x5, [x1,x4] = x5.

Remark. (1) If α1,α2 ∈ C such that α1 6= α2, then A70 (α1) and A70 (α2) are not isomor-

phic.

(2) If α1,α2 ∈ C such that α1 6= α2, then A73 (α1) and A73 (α2) are not isomorphic.

Lemma 7.16. None of the algebras in Theorem (7.15) have P1.

Proof. A64: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1)= span{x5}, Z2 (M1)

= span{x4,x5}, M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 =

span{x2,x3,x4,x5}, which is abelian. Hence, A64 does not have P1.

A65: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1)= span{x5}, Z2 (M1)

= span{x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 =

span{x2,x3,x4,x5}, which is abelian. So A65 does not have P1.

A66: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1)= span{x5}, Z2 (M1)

= span{x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 =

span{x2,x3,x4,x5}, with Z (M2) = span{x3,x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. So

A66 does not have P2, and so does not have P1.
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A67: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1)= span{x5}, Z2 (M1)

= span{x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 =

span{x2,x3,x4,x5}, with Z (M2)= span{x3,x4,x5} and M2 =Z2(M2)= span{x2,x3,x4,x5}. Hence

A67 does not have P2, and so does not have P1.

A68: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1)= span{x5}, Z2 (M1)

= span{x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 =

span{x2,x3,x4,x5}, with Z (M2) = span{x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Hence

A68 does not have P2, and so does not have P1.

A69: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1)= span{x5}, Z2 (M1)

= span{x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 =

span{x2,x3,x4,x5}, with Z (M2) = span{x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Hence

A69 does not have P2, and so does not have P1.

A70 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x5},

Z2 (M1) = span{x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra

M2 = span{x2,x3,x4,x5}, with Z (M2) = span{x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}.

Hence A70 does not have P2, and so does not have P1 for any value of α .

A71: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1)= span{x5}, Z2 (M1)

= span{x4,x5}, Z3 (M1) = span{x3,x4,x5}, and M1 = Z4 (M1) = span{x1,x3,x4,x5}. Now take

maximal subalgebra M2 = span{x2,x3,x4,x5}, which is abelian. Hence A71 does not have P1.

A72: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1)= span{x5}, Z2 (M1)

= span{x4,x5}, Z3 (M1) = span{x3,x4,x5}, and M1 = Z4 (M1) = span{x1,x3,x4,x5}. Now take

maximal subalgebra M2 = span{x2,x3,x4,x5}, with Z (M2)= span{x3,x4,x5} and M2 = Z2 (M2)=

span{x2,x3,x4,x5}. Hence A72 does not have P2, and so does not have P1.

A73 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x5},

Z2 (M1)= span{x4,x5}, Z3 (M1)= span{x3,x4,x5}, and M1 =Z4 (M1)= span{x1,x3,x4,x5}. Now

take maximal subalgebra M2 = span{x2,x3,x4,x5}, with Z (M2) = span{x4,x5} and Z2 (M2) =

span{x2,x3,x4,x5}. Hence A73 does not have P2, and so does not have P1, for any value of α .
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A74: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1)= span{x5}, Z2 (M1)

= span{x4,x5}, Z3 (M1) = span{x3,x4,x5}, and M1 = Z4 (M1) = span{x1,x3,x4,x5}. Now take

maximal subalgebra M2 = span{x2,x3,x4,x5}, with Z (M2) = span{x4,x5} and Z2 (M2) =

span{x2,x3,x4,x5}. Hence A74 does not have P2, and so does not have P1.

Theorem 7.17. ([1], Theorem 3.6) Let A be a 5−dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 3, dim(A3) = 2 = dim(Leib(A)) and A4 = 0. Then A is isomorphic to a

Leibniz algebra spanned by x1,x2,x3,x4,x5 with the nonzero products given by one of the following:

A75 (α): [x1,x2] = x3, [x2,x1] =−x3+x4, [x2,x2] = αx5, [x1,x3] = x4 =−[x3,x1], [x2,x3] =

x5 =−[x3,x2], α ∈ C\{0}

A76 (α): [x1,x1] = x5, [x1,x2] = x3, [x2,x1] = −x3 + x4, [x2,x2] = αx5, [x1,x3] = x4 =

−[x3,x1], [x2,x3] = x5 =−[x3,x2], α ∈ C

A77 (α): [x1,x1] = αx5, [x1,x2] = x3, [x2,x1] = −x3 + x4 + x5, [x1,x3] = x4 = −[x3,x1],

[x2,x3] = x5 =−[x3,x2], α ∈ C\{0}

A78 (α): [x1,x1] = αx5, [x1,x2] = x3, [x2,x1] =−x3 + x4 + x5, [x2,x2] = x5, [x1,x3] = x4 =

−[x3,x1], [x2,x3] = x5 =−[x3,x2], α ∈ C\{0}

A79 (α): [x1,x1] = αx5, [x1,x2] = x3, [x2,x1] = −x3 + x4 + x5, [x2,x2] = −1
2x5, [x1,x3] =

x4 =−[x3,x1], [x2,x3] = x5 =−[x3,x2], α ∈ C\
{
−1

6 ,0
}

A80 (α): [x1,x1] = αx5, [x1,x2] = x3 =−[x2,x1], [x2,x2] = x4+x5, [x1,x3] = x4 =−[x3,x1],

[x2,x3] = x5 =−[x3,x2], α ∈ C\
{
− 4

27 ,0
}

A81 (α,β ): [x1,x1] = αx5, [x1,x2] = x3, [x2,x1] = −x3 + x5, [x2,x2] = x4 +βx5, [x1,x3] =

x4 = −[x3,x1], [x2,x3] = x5 = −[x3,x2], α ∈ C\{0}, β ∈ C, 4αβ 6= 1, 8αβ 3 − 2β 2 + 1 6= 0,

16αβ 3 6= 1+6β 2±
√

4β 2 +12β +1, −27αβ 6= 9β 2 +2β 4±2
√

β 2 (3+β 2)
3

A82 (α,β ,γ): [x1,x1] = αx5, [x1,x2] = x3, [x2,x1] = −x3 + x4 + βx5, [x2,x2] = x4 + γx5,

[x1,x3] = x4 =− [x3,x1], [x2,x3] = x5 =− [x3,x2], α,β ,γ ∈ C

A83 (α,β ): [x1,x1] = x4 +αx5, [x1,x2] = x3, [x2,x1] = −x3 +βx5, [x2,x2] = x5, [x1,x3] =

x4 =−[x3,x1], [x2,x3] = x5 =−[x3,x2], α,β ∈ C.

Remarks:
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1) If α1,α2 ∈ C\{0} such that α1 6= α2, then A75(α1) and A75(α2) are not isomorphic.

2) If α1,α2 ∈ C such that α1 6= α2, then A76(α1) and A76(α2) are not isomorphic.

3) If α1,α2 ∈ C\{0} such that α1 6= α2, then A77(α1) and A77(α2) are not isomorphic.

4) If α1,α2 ∈ C\{0} such that α1 6= α2, then A78(α1) and A78(α2) are not isomorphic.

5) If α1,α2 ∈ C\
{
−1

6 ,0
}

such that α1 6= α2, then A79(α1) and A79(α2) are not isomor-

phic.

6) If α1,α2 ∈ C\
{
− 4

27 ,0
}

such that α1 6= α2, then A80(α1) and A80(α2) are not isomor-

phic.

7) Isomorphism conditions for the families A81 (α,β ), A82 (α,β ,γ), and A83 (α,β ) are

hard to compute.

Lemma 7.18. None of the Algebras in Theorem (7.17) have P1.

Proof. A75 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5},

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. In M1 we have that [x1,x3] =

x4 = −[x3,x1]. Note that [γx1 +βx3,γx1 +βx3] = 0, and the other elements are in center, so no

squared element can give a multiple of x4. In M2, [x2,x2] = αx5, and [x2,x3] = x5 = −[x3,x2]. So

M1 and M2 are not isomorphic since you cannot get a squared element in element M1 that gives a

center element.

A76 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5} for all α ∈ C.

Consider the case where α = 0. In M1 we have [x1,x1] = x5 and [x1,x3] = x4 = −[x3,x1].

In M2 we have [x2,x3] = x5 = −[x3,x2]. There are no elements in M2 that can multiply to give a

second center element, so M1 and M2 are not isomorphic

Consider the case where α 6= 0. In M1 we have [x1,x1] = x5 and [x1,x3] = x4 = −[x3,x1].

In M2 we have [x2,x2] = αx5, [x2,x3] = x5 = −[x3,x2]. There are no elements in M2 that can be

multiplied to give the other center element, so the maximal subalgebras are not isomorphic.
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A77 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5} and maximal subalgebra

M2 = span{x2,x3,x4,x5}. The nonzero multiplications in M1 are given by: [x1,x1] =αx5, [x1,x3] =

x4 = −[x3,x1]. So Leib(M1) = span{αx5} since α 6= 0, and M1 is not Lie. The nonzero multipli-

cations in M2 are given by: [x2,x3] = x5 = −[x3,x2]. Hence Leib(M2) = 0, M2 is a Lie algebra, and

M1 and M2 are not isomorphic. Hence A77 (α) does not have P1.

A78 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5},

and M1 = Z2 (M1)= span{x1,x3,x4,x5} for all α . Now take maximal subalgebra M2 = span{x2,x3,

x4,x5}, with Z (M2) = span{x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. In M1 we have

[x1,x1] = αx5 and [x1,x3] = x4 = −[x3,x1] where α cannot be 0 by assumption. In M2 we have

[x2,x2] = x5 and [x2,x3] = x5 = −[x3,x2]. Hence, M1 and M2 are not isomorphic since there are no

multiplications in M2 that give a second center element

A79 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. In M1 we have that [x1,x1] =

αx5 and [x1,x3] = x4 = −[x3,x1], where α cannot be 0. In M2 we have that [x2,x2] = −1
2x5 and

[x2,x3] = x5 = −[x3,x2]. Therefore, M1 and M2 are not isomorphic since no multiplications in M2

give the second center element.

A80 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}. The nonzero multiplica-

tions in M1 are given by:[x1,x1] = αx5, [x1,x3] = x4 = −[x3,x1], and α cannot be 0. This gives

dim([M1,M1]) = 2. We need to find a maximal subalgebra M2 such that dim([M2,M2]) = 1.

Since [A,A] = φ (A), and φ (A) is contained in all maximal subalgebras, φ (A) ∈ M2. Based

on the calculations in A80 (α), we can see that φ (A) = span{x3,x4,x5}. So we consider M2 =
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span{ax1 +bx2,x3,x4,x5}. We get the following nonzero multiplications:

[ax1 +bx2,ax1 +bx2] = a2
αx5 +b2x4 +b2x5

= b2x4 +
(
αa2 +b2)x5

[ax1 +bx2,x3] = ax4 +bx5

[x3,ax1 +bx2] =−ax4−bx5.

This gives a system of equations, and we need to coefficients to match so that dim([M2,M2]) = 1.

We require that a = b2. We now need b = αa2 +b2 = αb4 +b2, which implies αb4 +b2−b = 0.

Using software, it can be shown that a value for b is attainable, and A80 (α) does not have P1.

A81 (α,β ): Take maximal subalgebra M1 = span{x1,x3,x4,x5}. The nonzero multipli-

cations in M1 are given by: [x1,x1] = αx5, [x1,x3] = x4 = −[x3,x1], where α 6= 0. We can see

that dim([M1,M1]) = 2. We need to find a maximal subalgebra M2 such that dim([M2,M2]) = 1.

Since [A,A] = φ (A), and φ (A) is contained in all maximal subalgebras, φ (A) ∈ M2. Based

on the calculations in A81 (α,β ), we can see that φ (A) = span{x3,x4,x5}. So we consider

M2 = span{ax1 +bx2,x3,x4,x5}. We get the following nonzero multiplications:

[ax1 +bx2,ax1 +bx2] = αa2x5 +abx5 +b2x4 +βb2x5

= b2x4 +
(
αa2 +ab+βb2)x5

[ax1 +bx2,x3] = ax4 +bx5

[x3,ax1 +bx2] =−ax4−bx5.

This gives a system of equations, and we need to coefficients to match so that dim([M2,M2]) = 1.

We can see that it must be the case that a= b2. We also need b=αa2+ab+βb2 =αb4+b3+βb2,

which implies αb4 +b3 +βb2−b = 0. Using software, it can be shown that a value for b is exists

that makes dim([M2,M2]) = 1. Therefore, A81(α,β ) does not have P1.

A82 (α,β ,γ): Take maximal subalgebra M1 = span{x1,x3,x4,x5}. The nonzero multipli-
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cations are given by: [x1,x1] = αx5, [x1,x3] = x4 = − [x3,x1]. So dim([M1,M1]) = 2. We need

to find a maximal subalgebra M2 such that dim([M2,M2]) = 1. Since [A,A] = φ (A), and φ (A) is

contained in all maximal subalgebras, φ (A) ∈M2. Based on the calculations in A82 (α,β ,γ), we

can see that φ (A) = span{x3,x4,x5}. So we consider M2 = span{ax1 +bx2,x3,x4,x5}. We get the

following nonzero multiplications:

[ax1 +bx2,ax1 +bx2] = a2
αx5 +abx4 +b2x4 + γb2x5

=
(
ab+b2)x4 +

(
αa2 + γb2)x5

[ax1 +bx2,x3] = ax4 +bx5

[x3,ax1 +bx2] =−ax4−bx5.

This gives a system of equations, and we need coefficients so that dim([M2,M2]) = 1. First, we get

that a = ab+b2, and so a = b2/(1−b). We now need b = αa2+γb2 = αb2/(1−b)+γb2, which

implies αb2/(1−b)+ γb2−b = 0. Using software, we can solve for b that gives dim([M2,M2]).

So A82(α,β ,γ) does not have P1.

A83 (α,β ): Take maximal subalgebra M1 = span{x1,x3,x4,x5}. The nonzero multiplica-

tions are given by: [x1,x1] = x4 +αx5, [x1,x3] = x4 = −[x3,x1] . So dim([M1,M1]) = 2. We need

to find a maximal subalgebra M2 such that dim([M2,M2]) = 1. Since [A,A] = φ (A), and φ (A) is

contained in all maximal subalgebras, φ (A) ∈M2. Based on the calculations in A83 (α,β ), we can

see that φ (A) = span{x3,x4,x5}. So we consider M2 = span{ax1 +bx2,x3,x4,x5}. We get the
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following nonzero multiplications:

[ax1 +bx2,ax1 +bx2] = a2x4 +αa2x5 +abβx5 +b2x5

= a2x4 +
(
αa2 +abβ +b2)x5

[ax1 +bx2,x3] = ax4 +bx5

[x3,ax1 +bx2] =−ax4−bx5.

This gives a system of equations, and we need to coefficients to match so that dim([M2,M2]) = 1.

First, we get that a = a2. This implies a = 0,1. We now need b = αa2 +βab+b2. If a = 0, then

b = b2, and so b = 0,1. Take a = 0 and b = 1, so M2 = {x2,x3,x4,x5}. Then

[x2,x2] = x5

[x2,x3] = x5.

The dim([M2,M2]) = 1. So M1 is not isomorphic M2, and A83 (α,β ) does not have P1.

Theorem 7.19. ([1], Theorem 3.7) Let A be a 5−dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 3, dim(A3) = 1, dim(Z(A)) = 2 = dim(Leib(A)) and Leib(A) 6= Z(A).

Then A is isomorphic to a Leibniz algebra spanned by x1,x2,x3,x4,x5 with the nonzero products

given by one of the following:

A84: [x1,x2] = x3 + x4, [x2,x1] =−x3, [x1,x4] = x5

A85: [x1,x2] = x3 + x4, [x2,x1] =−x3, [x2,x2] = x5, [x1,x4] = x5

A86: [x1,x1] = x4, [x1,x2] = x3 =−[x2,x1], [x1,x4] = x5

A87: [x1,x1] = x4, [x1,x2] = x3 =−[x2,x1], [x2,x2] = x5, [x1,x4] = x5.

Lemma 7.20. None of the algebras in Theorem (7.19) have P1.

Proof. A84: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x3,x5}, and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

which is abelian. Hence A84 does not have P2, and so does not have P1.
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A85: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x3,x5}, and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5}, with M2 = Z2 (M2) = span{x2,x3,x4,x5}. Since A85 does not

have P1, it does not have P2.

A86: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x3,x5},

Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subal-

gebra M2 = span{x2,x3,x4,x5}, which is abelian. Since A86 does not have P2, it does not have

P1.

A87: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x3,x5},

Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalge-

bra M2 = span{x2,x3,x4,x5}, with Z (M2) = span{x3,x4,x5}, and Z2 (M2) = span{x1,x3,x4,x5}.

Since A87 does not have P2, it does not have P1.

Theorem 7.21. ([1], Theorem 3.8) Let A be a 5−dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 3, dim(A3) = 1, dim(Z(A)) = 2 = dim(Leib(A)) and Leib(A) = Z(A).

Then A is isomorphic to a Leibniz algebra spanned by {x1,x2,x3,x4,x5} with the nonzero products

given by one of the following:

A88: [x1,x1] = x5, [x1,x2] = x3, [x2,x1] =−x3 + x4, [x1,x3] = x5 =−[x3,x1]

A89: [x1,x2] = x3, [x2,x1] =−x3 + x4, [x2,x2] = x5, [x1,x3] = x5 =−[x3,x1]

A90: [x1,x1] = x5, [x1,x2] = x3, [x2,x1] =−x3 + x4, [x2,x2] = x5, [x1,x3] = x5 =−[x3,x1]

A91: [x1,x2] = x3, [x2,x1] =−x3 + x5, [x2,x2] = x4, [x1,x3] = x5 =−[x3,x1]

A92: [x1,x1] = x5, [x1,x2] = x3 =−[x2,x1], [x2,x2] = x4, [x1,x3] = x5 =−[x3,x1]

A93: [x1,x1] = x5, [x1,x2] = x3, [x2,x1] =−x3 + x5, [x2,x2] = x4, [x1,x3] = x5 =−[x3,x1]

A94 (α): [x1,x1] = x5, [x1,x2] = x3, [x2,x1] =−x3 + x4 +αx5, [x2,x2] = x4, [x1,x3] = x5 =

−[x3,x1], α ∈ C

A95: [x1,x1] = x4, [x1,x2] = x3, [x2,x1] =−x3 + x5, [x1,x3] = x5 =−[x3,x1]

A96: [x1,x1] = x4, [x1,x2] = x3 =−[x2,x1], [x2,x2] = x5, [x1,x3] = x5 =−[x3,x1].

Remark. If α1,α2 ∈C such that α1 6= α2 then A94 (α1) and A94 (α2) are isomorphic if and
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only if α2 =
α1

α1−1 .

Lemma 7.22. None of the algebras in Theorem (7.21) have P1.

Proof. A88: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}, and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

which is abelian. As A88 does not have P2, it does not have P1.

A89: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}, and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Since A89 does not have

P2, it does not have P1.

A90: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5} and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. As A90 does not have P2,

it does not have P1.

A91: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}, and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. So A91 does not have P2,

and so does not have P1.

A92: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}, and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. As A92 does not have P2,

it does not have P1.

A93: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}, and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Since A93 does not have

P2, it does not have P1.

A94 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5},

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

61



with Z (M2) = span{x3,x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. As A94 (α) does not have

P2, it does not have P1.

A95: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}, and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

which is abelian. Hence A95 does not have P2, and so does not have P1.

A96: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}, and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Since A96 does not have

P2, it does not have P1.

Theorem 7.23. ([1], Theorem 3.9) Let A be a 5−dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 3= dim(Leib(A)), dim(A3) = 1 and dim(Z(A)) = 2. Then A is isomorphic

to a Leibniz algebra spanned by {x1,x2,x3,x4,x5} with the nonzero products given by one of the

following:

A97: [x1,x1] = x3, [x2,x1] = x4, [x1,x3] = x5

A98: [x1,x1] = x3, [x2,x1] = x4, [x2,x2] = x5, [x1,x3] = x5

A99: [x1,x1] = x3, [x2,x2] = x4, [x1,x3] = x5

A100: [x1,x1] = x3, [x2,x1] = x5, [x2,x2] = x4, [x1,x3] = x5

A101: [x1,x1] = x3, [x2,x1] = x4, [x2,x2] = x4, [x1,x3] = x5

A102: [x1,x1] = x3, [x2,x1] = x4 + x5, [x2,x2] = x4, [x1,x3] = x5

A103: [x1,x1] = x3, [x1,x2] = x4, [x2,x1] = x5, [x1,x3] = x5

A104 (α): [x1,x1] = x3, [x1,x2] = x4, [x2,x1] = αx4, [x1,x3] = x5, α ∈ C\{−1}

A105 (α): [x1,x1] = x3, [x1,x2] = x4, [x2,x1] = αx4, [x2,x2] = x5, [x1,x3] = x5, α ∈C\{−1}

A106: [x1,x2] = x3, [x2,x2] = x4, [x1,x3] = x5

A107: [x1,x2] = x3, [x2,x1] = x5, [x2,x2] = x4, [x1,x3] = x5

A108: [x1,x2] = x3, [x2,x1] = x4, [x2,x2] = x4, [x1,x3] = x5

A109: [x1,x2] = x3, [x2,x1] = x4 + x5, [x2,x2] = x4, [x1,x3] = x5

A110: [x1,x1] = x4, [x1,x2] = x3, [x1,x3] = x5
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A111: [x1,x1] = x4, [x1,x2] = x3, [x2,x1] = x5, [x1,x3] = x5

A112: [x1,x] = x4, [x1,x2] = x3, [x2,x2] = x5, [x1,x3] = x5

A113: [x1,x1] = x4, [x1,x2] = x3, [x2,x1] = x5, [x2,x2] = x5, [x1,x3] = x5

A114: [x1,x1] = x4, [x1,x2] = x3, [x2,x1] = x4, [x1,x3] = x5

A115: [x1,x1] = x4, [x1,x2] = x3, [x2,x1] = x4, [x2,x2] = x5, [x1,x3] = x5

A116 (α): [x1,x1] = x4, [x1,x2] = x3, [x2,x1] = αx4, [x2,x2] = x4, [x1,x3] = x5, α ∈ C

A117 (α): [x1,x1] = x4, [x1,x2] = x3, [x2,x1] = αx4 + x5, [x2,x2] = x4, [x1,x3] = x5, α ∈ C

Remark. (1) If α1,α2 ∈ C\{−1} such that α1 6= α2, then A104(α1) and A104(α2) are not

isomorphic.

(2) If α1,α2 ∈C\{−1} such that α1 6=α2, then A105(α1) and A105(α2) are not isomorphic.

(3) If α1,α2 ∈ C such that α1 6= α2, then A116(α1) and A116(α2) are isomorphic if and

only if α2 =−α1.

(4) If α1,α2 ∈ C such that α1 6= α2, then A117(α1) and A117(α2) are isomorphic if and

only if α2 =−α1.

Lemma 7.24. None of the algebras in Theorem (7.23) have P1.

Proof. A97: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}, and

Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subal-

gebra M2 = span{x2,x3,x4,x5}, which is abelian. Hence, A97 does not have P2, and so does not

have P1.

A98: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}, and

Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalge-

bra M2 = span{x2,x3,x4,x5}, with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,

x5}. As A98 does not have P2, it does not have P1.

A99: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}, and

Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalge-

bra M2 = span{x2,x3,x4,x5}, with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,

x5}. Since A99 does not have P2, it does not have P1.

63



A100: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5},

and Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal sub-

algebra M2 = span{x2,x3,x4,x5}, with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,

x3,x4,x5}. As A100 does not have P2, it does not have P1.

A101: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5},

and Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal sub-

algebra M2 = span{x2,x3,x4,x5}, with Z (M2)= span{x3,x4,x5}, and M2 =Z2 (M2)= span{x2,x3,

x4,x5}. Hence A101 does not have P2, and so does not have P1.

A102: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5},

and Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal sub-

algebra M2 = span{x2,x3,x4,x5}, with Z (M2)= span{x3,x4,x5}, and M2 =Z2 (M2)= span{x2,x3,

x4,x5}. As A102 does not have P2, it does not have P1.

A103: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5},

and Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal sub-

algebra M2 = span{x2,x3,x4,x5}, which is abelian. Hence, A103 does not have P1.

A104 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1)= span{x4,x5},

and Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal sub-

algebra M2 = span{x2,x3,x4,x5}, which is abelian. Therefore, A104 (α) does not have P1 for any

value of α .

A105 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1)= span{x4,x5},

and Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal sub-

algebra M2 = span{x2,x3,x4,x5}, with Z (M2)= span{x3,x4,x5}, and M2 =Z2 (M2)= span{x2,x3,

x4,x5}. As A105 (α) does not have P2, it does not have P1, for any value of α .

A106: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Hence A106 does not

have P2, and so it does not have P1.
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A107: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. So A107 does not have

P2, and thus does not have P1.

A108: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Hence A108 does not

have P2, and so it does not have P1.

A109: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. As A109 does not have

P2, it does not have P1.

A110: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

which is abelian. Therefore, A110 does not have P2, and so does not have P1.

A111: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

which is abelian. Hence A106 does not have P2, and so does not have P1.

A112: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. As A112 does not have

P2, it does not have P1.

A113: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Hence A113 does not

have P2, and so it does not have P1.

A114: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}
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and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

which is abelian. So A114 does not have P2, and thus does not have P1.

A115: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. As A115 does not have

P2, and it does not have P1.

A116 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Hence A116 (α) does not

have P2, and so it does not have P1 for any value of α .

A117 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x4,x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5}, and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Thus A117 (α) does not

have P2, and so does not have P1 for any value of α .

Theorem 7.25. ([1], Theorem 3.10) Let A be a 5−dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 3, dim(A3) = 1= dim(Z(A)) and dim(Leib(A)) = 2. Then A is isomorphic

to a Leibniz algebra spanned by {x1,x2,x3,x4,x5} with the nonzero products given by one of the

following:

A118 : [x1,x2] =−x3 + x4, [x2,x1] = x3, [x2,x3] = x5 =−[x3,x2], [x1,x4] = x5

A119: [x1,x2] =−x3 + x4, [x2,x1] = x3, [x2,x2] = x5, [x2,x3] = x5 =−[x3,x2], [x1,x4] = x5

A120 (α): [x1,x2] = −x3 = [x2,x1], [x2,x2] = x4, [x2,x3] = −αx5, [x3,x2] = (α − 1)x5,

[x1,x4] = x5, α ∈ C

A121 (α): [x1,x2] = −x3 + x4, [x2,x1] = x3, [x2,x2] = x4, [x2,x3] = −αx5, [x3,x2] = (α −

1)x5, [x1,x4] = x5, α ∈ C

A122: [x1,x2] = x3, [x2,x1] =−x3 + x4, [x3,x1] = x5, [x1,x4] = x5

A123: [x1,x2] = x3, [x2,x1] =−x3 + x4, [x2,x2] = x5, [x3,x1] = x5, [x1,x4] = x5

A124: [x1,x2] = x3, [x2,x1] =−x3 + x4, [x3,x1] = x5, [x2,x3] = x5 =−[x3,x2], [x1,x4] = x5
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A125: [x1,x2] = x3, [x2,x1] =−x3 + x4, [x2,x2] = x5, [x3,x1] = x5, [x2,x3] = x5 =−[x3,x2],

[x1,x4] = x5

A126 (α): [x1,x2] = x3, [x2,x1] =−x3+x4, [x2,x2] = x4, [x3,x1] = x5, [x2,x3] =αx5, [x3,x2] =

(1−α)x5, [x1,x4] = x5, α ∈ CC/{0}

A127: [x1,x1] = x4, [x1,x2] = x3 =−[x2,x1], [x2,x3] = x5 =−[x3,x2], [x1,x4] = x5

A128: [x1,x1] = x4, [x1,x2] = x3 =−[x2,x1], [x2,x2] = x5, [x2,x3] = x5 =−[x3,x2], [x1,x4] =

x5.

Remark. (1) If α1,α2 ∈ C such that α1 6= α2, then A120(α1) and A120(α2) are not isomor-

phic.

(2) If α1,α2 ∈ C such that α1 6= α2, then A121(α1) and A121(α2) are not isomorphic.

(3) If α1,α2 ∈C/{0} such that α1 6= α2, then A126(α1) and A126(α2) are not isomorphic.

Lemma 7.26. None of the algebras in Theorem (7.25) have P1.

Proof. A118 : Take maximal subalgebra M1 = span{x1,x3,x4,x5} and maximal subalgebra M2 =

span{x2,x3,x4,x5}. The nonzero multiplication in M1 is given by: [x1,x4] = x5. The nonzero

multiplications in M2 are given by: [x2,x3] = x5 = −[x3,x2]. We can see that the multiplications in

M2 are symmetric, while in M1 they are not, and so M1 and M2 are not isomorphic, and A118 does

not have P1.

A119: Take maximal subalgebra M1 = span{x1,x3,x4,x5} and maximal subalgebra M2 =

span{x1 + x2,x3,x4,x5}. The nonzero multiplication in M1 is given by [x1,x4] = x5. Note that

[ax1 +bx4,ax1 +bx4] = ab [x1,x4] = abx5, so dim([M1,M1]) = 1. The nonzero multiplications in

M2 are given by: [x1 + x2,x1 + x2] = x4+x5, [x1+x2,x3] = x5, [x3,x1+x2] =−x5, [x1+x2,x4] = x5.

From this dim([M2,M2]) = 2. Thus M1 and M2 are not isomorphic, and so A119 does not have P1.

A120 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5} and maximal subalgebra

M2 = span{x2,x3,x4,x5}. The nonzero multiplication in M1 given be [x1,x4] = x5. Note that

[ax1 +bx4,ax1 +bx4] = abx5, and so dim(Leib(M1)) = 1. The nonzero multiplications in M2, are
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given by: [x2,x2] = x4 and [x2,x3] =−αx5, [x3,x2] = (α−1)x5. Note that

[ax2 +bx3,ax2 +bx3] = a2x4−αabx5 +(α−1)abx5

= a2x4−αabx5 +αabx5−abx5

= a2x4−abx5.

From this, dim(Leib(M2)) = 2. Therefore M1 is not isomorphic to M2, and A120 (α) does

not have P1.

A121 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5} and take maximal subalge-

bra M2 = span{x2,x3,x4,x5}. In M1, we have nonzero multiplications given by [x1,x4] = x5. Note

that [ax1 +bx4,ax1 +bx4] = abx5. So dim(Leib(M1)) = 1. In M2, we have nonzero multiplications

given by [x2,x2] = x4 and [x2,x3] =−αx5, [x3,x2] = (α−1)x5. Now

[ax2 +bx3,ax2 +bx3] = a2x4−αabx5 +(α−1)abx5

= a2x4−αabx5 +αabx5−abx5

= a2x4−abx5.

From this, dim(Leib(M2)) = 2. Therefore M1 is not isomorphic to M2, and A121 (α) does

not have P1.

A122: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x5} and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

which is abelian. Hence A122 does not have P2, and so does not have P1.

A123: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x5} and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x3,x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. As A123 does not have

P2, it does not have P1.

A124: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x5} and
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M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Since A124 does not have

P2, it does not have P1.

A125: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x5} and

M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. Hence A125 does not have

P2, it does not have P1.

A126 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x5}

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{x2,x3,x4,x5},

with Z (M2) = span{x4,x5} and M2 = Z2 (M2) = span{x2,x3,x4,x5}. As A126 (α) does not have

P2 for any value of α ∈ C\{0}, it does not have P1.

A127: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x3,x5},

Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalge-

bra M2 = span{x2,x3,x4,x5}, with Z (M2)= span{x4,x5} and M2 =Z2 (M2)= span{x2,x3,x4,x5}.

So A127 does not have P2, it does not have P1.

A128: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x3,x5},

Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalge-

bra M2 = span{x2,x3,x4,x5}, with Z (M2)= span{x4,x5} and M2 =Z2 (M2)= span{x2,x3,x4,x5}.

Hence A128 does not have P2, and so it does not have P1.

Theorem 7.27. ([1], Theorem 3.11) Let A be a 5−dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 3 = dim(Leib(A)) and dim(A3) = 1 = dim(Z(A)). Then A is isomorphic

to a Leibniz algebra spanned by {x1,x2,x3,x4,x5} with the nonzero products given by one of the

following:

A129 (α): [x1,x1] = x4, [x1,x2] = αx4, [x2,x1] = x3, [x2,x3] = x5, [x1,x4] = x5, α ∈ C

A130: [x1,x1] = x4, [x1,x2] =−x4, [x2,x1] =−x3, [x2,x2] = x3, [x2,x3] = x5, [x1,x4] = x5

A131 (α,β ): [x1,x1] = x4, [x1,x2] = αx4, [x2,x1] = βx3, [x2,x2] = x3, [x2,x3] = x5, [x1,x4] =

x5, α,β ∈ C, αβ 6= 1
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A132 (α): [x1,x2] = x3, [x2,x1] = αx3, [x2,x2] = x4, [x2,x3] = x5, [x1,x4] = x5,

α ∈ C/{−1,0}

A133 (α,β ): [x1,x1] = x4, [x1,x2] = x3 +αx4, [x2,x1] = βx3, [x2,x2] = x4, [x2,x3] = x5,

[x1,x4] = x5, α ∈ C, β ∈ C/{−1}.

A134 (α,β ,γ): [x1,x1] = αx4, [x1,x2] = x3 +βx4, [x2,x1] = γx3, [x2,x2] = x4, [x2,x3] = x5,

[x1,x4] = x5, α,β ,γ ∈ C

A135 (α,β ): [x1,x1] = x3 + αx4, [x1,x2] = x3 + βx4, [x2,x1] = −x3 + x4, [x2,x2] = x4,

[x2,x3] = x5, [x1,x4] = x5, α,β ∈ C.

Remark.(1) If α1,α2 ∈ C such that α1 6= α2, then A129(α1) and A129(α2) are isomorphic

if and only if α2 =−α1.

(2) If α1,α2 ∈C/{−1,0} such that α1 6= α2, then A132(α1) and A132(α2) are not isomor-

phic.

(3) Isomorphism conditions for the families A131(α,β ), A133(α,β ), A134(α,β ,γ) and

A135(α,β ) are hard to compute.

Lemma 7.28. None of the algebras in Theorem (7.27) have P1.

Proof. A129 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1)= span{x3,x5},

Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalge-

bra M2 = span{x2,x3,x4,x5}, with Z (M2)= span{x4,x5} and M2 =Z2 (M2)= span{x2,x3,x4,x5}.

Since A129 (α) does not have P2 for any value of α , it does not have P1.

A130: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x3,x5},

Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take maximal subalge-

bra M2 = span{x1 + x2,x3,x4,x5}, with Z (M2) = span{x5} and M2 = Z2 (M2) = span{x1+x2,x3,

x4,x5}. As A130 does not have P1, it does not have P2.

A131 (α,β ): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) =

span{x3,x5}, Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take max-

imal subalgebra M2 = span{x1 + x2,x3,x4,x5}. Note that [x1 + x2,x1 + x2] = x4 +αx4 +βx3 + x3.

This is equal to 0 if and only if α = −1 = β , which implies αβ = 1, a contradiction, and so
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[x1 + x2,x1 + x2] 6= 0, and [x1 + x2,x1 + x2] ∈ span{x3,x4}. So Z (M2) = span{x5}, Z2 (M2) =

span{x3,x4,x5}, and M2 = Z3 (M2) = span{x1 + x2,x3,x4,x5}. Therefore A131 (α,β ) does not

have P1 for any value of α,β , and so it does not have P2.

A132 (α): Take maximal subalgebra M1 = span{x1,x3,x4,x5} and maximal subalgebra

M2 = span{x2,x3,x4,x5}. The nonzero multiplication in M1 is given by: [x1,x4] = x5. Note that

[ax1 +bx4,ax1 +bx4] = abx5, and so dim(Leib(M1)) = 1. The nonzero multiplications in M2

are given by: [x2,x2] = x4, [x2,x3] = x5. Now [ax2 +bx3,ax2 +bx3] = a2x4 + abx5. From this,

dim(Leib(M2)) = 2. So M1 and M2 are not isomorphic, and A132 (α) does not have P1.

A133 (α,β ): Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) =

span{x3,x5}, Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now take

maximal subalgebra M2 = span{x2,x3,x4,x5}, with Z (M2) = span{x4,x5} and M2 = Z2 (M2) =

span{x2,x3,x4,x5}. As A130 does not have P2 for any values of α,β , it does not have P1.

A134 (α,β ,γ): Assume α 6= 0. Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with

Z (M1) = span{x3,x5}, Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now

take maximal subalgebra M2 = span{x2,x3,x4,x5}, with Z (M2) = span{x4,x5} and M2 =

Z2 (M2) = span{x2,x3,x4,x5}. In this case, A134 (α,β ,γ) does not have P2, and so does not have

P1. Now assume α = 0. Take maximal subalgebra M1 = span{x1,x3,x4,x5} and maximal subal-

gebra M2 = span{x2,x3,x4,x5}. The nonzero multiplication in M1 is given by: [x1,x4] = x5, and

note that [ax1 +bx4,ax1 +bx4] = abx5. So dim(Leib(M1)) = 1. The nonzero multiplications in

M2 are given by: [x2,x2] = x4, [x2,x3] = x5. Now [ax2 +bx3,ax2 +bx3] = a2x4 +abx5. We get that

dim(Leib(M2)) = 2. Hence, M1 is not isomorphic to M2 when α = 0. These results combined give

that A134 (α,β ,γ) does not have P1.

A135 (α,β ): Assume α 6= 0. Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with

Z (M1) = span{x3,x5}, Z2 (M1) = span{x3,x4,x5}, and M1 = Z3 (M1) = span{x1,x3,x4,x5}. Now

take maximal subalgebra M2 = span{x2,x3,x4,x5}, with Z (M2)= span{x4,x5} and M2 =Z2 (M2)=

span{x2,x3,x4,x5}. In this case, A135 (α,β ) does not have P2, and so does not have P1.

Now assume α = 0. Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) =

71



span{x3,x5} and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 =

span{x1+x2,x3,x4,x5}, with Z (M2)= span{x5}, Z2 (M2)= span{x3,x4,x5}, and M2 = Z3 (M2)=

span{x1 + x2,x3,x4,x5}. So A135 (α,β ) does not have P2, and so does not have P1, when α = 0.

Combining the above results, we get that A135 (α,β ) does not have P1.

Theorem 7.29. ([1], Theorem 3.12) Let A be a 5−dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 3, dim(A3) = 0 and dim(Leib(A)) = 2. Then A is isomorphic to a Leibniz

algebra spanned by {x1,x2,x3,x4,x5} with the nonzero products given by one of the following:

A136: [x1,x1] = x4, [x1,x2] = x3, [x2,x1] =−x3 + x4 + x5, [x2,x2] = x5

A137: [x1,x1] = x4, [x1,x2] = x3 =−[x2,x1], [x2,x2] = x5.

Lemma 7.30. From Theorem (7.29), the algebra A136 does not have P1, while A137 does have P1.

Proof. A136: Take maximal subalgebra M1 = span{x1,x3,x4,x5}, with Z (M1) = span{x3,x4,x5},

and M1 = Z2 (M1) = span{x1,x3,x4,x5}. Now take maximal subalgebra M2 = span{2x1−2x2,x3,

x4,x5}, which is abelian since

[2x1−2x2,2x1−2x2] = 4x4−4x3−4(−x3 + x4 + x5)+4x5

= 0.

Hence A136 does not have P2, and so does not have P1.

A137: Note that all maximal subalgebras must contain φ (A) = [A,A] = span{x3,x4,x5}=

Z (A). So all maximal subalgebras are of the form M = span{y,x3,x4,x5}, where y = ax1 +bx2 +

cx3 +dx4 + ex5, where at least one of a,b 6= 0, as otherwise M is not maximal. It must be the case

that Z (M)⊆ span{x3,x4,x5}. Now

[ax1 +bx2 + cx3 +dx4 + ex5,ax1 +bx2 + cx3 +dx4 + ex5] = a2x4 +b2x5 = 0

if and only if a = b = 0, in which case, M is not maximal, and so y2 6= 0. This implies A137 must

have P2.
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Consider two distinct maximal subalgebras M1 = span{a1x1 + b1x2 + c1x3 + d1x4 + e1x5,

x3,x4,x5} and M2 = span{a2x1 +b2x2 + c2x3 +d2x4 + e2x5,x3,x4,x5}. We need to define a homo-

morphism from M1 to M2. The homomorphism is dependent upon which values of a1, b1, a2, and

b2 are 0. However, since the homomorphism is a linear mapping, we do not need to be concerned

about ci, di or ei, for i = 1,2.

First consider the case where a1,b1,a2,b2 6= 0. Define φ : M1→M2 by

φ (a1x1 +b1x2) = a2x1 +b2x2

φ (x3) = x3

φ (x4) =
a2

2
a2

1
x4

φ (x5) =
b2

2
b2

1
x5

Note that x3, x4, and x5 are all elements of the center mapping to other center elements, so φ

will satisfy φ ([xi,x]) = [φ (xi) ,φ (x)], where i = 3,4,5, and x ∈ M1. We need to only check the

following map:

φ ([a1x1 +b1x2,a1x1 +b1x2]) = φ
(
a2

1x4 +b2
1x5
)

= a2
1φ (x4)+b2

1φ (x5)

= a2
1

(
a2

2
a2

1
x4

)
+b2

1

(
b2

2
b2

1
x5

)
= a2

2x4 +b2
2x5

and

[φ (a1x1 +b1x2) ,φ (a1x1 +b1x2)] = [a2x1 +b2x2,a2x1 +b2x2]

= a2
2x4 +b2

2x5.
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Hence, φ is a homomorphism. Since the mapping is clearly onto, and both maximal algebras have

the same dimension, we have that φ is an isomorphism.

Next, consider the case where one of a1,b1,a2,b2 6= 0. Without loss of generality, we can

consider a1,a2,b2 6= 0, and b1 = 0. This is because we can define the map from M1 to M2, or vice

versa, and a similar map can be defined if only a1 = 0. Same as before, since the homomorphism is

a linear mapping, we do not need to be concerned about ci, di or ei, for i= 1,2. Define φ : M1→M2

by

φ (a1x1) = a2x1 +b2x2

φ (x3) = x3

φ (x4) =
a2

2
a2

1
x4 +

b2
2

a2
1

x5

φ (x5) = x5

Just as before, since x3, x4, and x5 are in the center, we only need to be concerned with the following

calculations:

φ ([a1,x1,a1x1]) = φ
(
a2

1x4
)

= a2
1

(
a2

2
a2

1
x4 +

b2
2

a2
1

x5

)
= a2

2x4 +b2
2x5

and

[φ (a1x1) ,φ (a1x1)] = [a2x1 +b2x2,a2x1 +b2x2]

= a2
2x4 +b2

2x5.

Therefore, φ is a homomorphism. We can see that this map is onto since φ

(
a2

1
a2

2
x4−

b2
2

a1
1

x5

)
=
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a2
2

a2
1

(
a2

1
a2

2
x4

)
+

b2
2

a2
1

x5−
b2

2
a2

1
x5 = x4. Since M1 and M2 are of the same dimension, φ is also one-to-

one, and so isomorphic.

Finally, without loss of generality, we consider the case where a1,b2 6= 0. This is sufficient

since the map can defined from M1 to M2, or vice versa. Again, since the homomorphism is a

linear mapping, we do not need to be concerned about ci, di or ei, for i = 1,2. Define the map

φ : M1→M2 by

φ (a1x1) = b2x2

φ (x3) = x3

φ (x4) =
b2

2
a2

1
x5

φ (x5) = x4.

Just as before, since x3, x4, and x5 are in the center, we only need to be concerned with the following

calculations:

φ ([a1x1,a1x1]) = φ
(
a2

1x4
)

= a2
1

(
b2

2
a2

1
x5

)
= b2

2x5

and

[φ (a1x1) ,φ (a1x1)] = [b2x2,b2x2]

= b2
2x5.

As above, we get this map is an isomorphism. Combining all of the above results, we get that M1

and M2 are isomorphic.
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Theorem 7.31. ([1], Theorem 3.13). Let A be a 5−dimensional non-split non-Lie nilpotent Leibniz

algebra with dim(A2) = 3, dim(A3) = 0 and dim(Leib(A)) = 3. Then A is isomorphic to a Leibniz

algebra spanned by {x1,x2,x3,x4,x5} with the nonzero products given by one of the following:

A138 (α): [x1,x1] = x4, [x1,x2] = αx4 + x5, [x2,x1] = x3, [x2,x2] = x5, α ∈ C

A139: [x1,x1] = x4, [x1,x2] = x3, [x2,x1] = x3, [x2,x2] = x5

Remark. If α1,α2 ∈C such that α1 6= α2, then A138(α1) and A138(α2) are not isomorphic.

Lemma 7.32. The algebras in Theorem (7.31) have P1.

Proof. A138 (α): Since φ (A) is contained in all maximal subalgebras, and [A,A] = φ (A), we know

all maximal subalgebras must contain φ (A) = span{x3,x4,x5}. Take M1 = span{x1,x3,x4,x5} and

a generic maximal subalgebra M = span{ax1 +bx2,x3,x4,x5}. Consider the following multiplica-

tion tables:

Table 17: M1 Multiplication Table

M1 multiplication table
[·, ·] x1 x3 x4 x5
x1 x4 0 0 0
x3 0 0 0 0
x4 0 0 0 0
x5 0 0 0 0

Table 18: M Multiplication Table

M multiplication table
[·, ·] ax1 +bx2 x3 x4 x5

ax1 +bx2 a2x4 +αabx4 +abx5 +abx3 +b2x5 0 0 0
x3 0 0 0 0
x4 0 0 0 0
x5 0 0 0 0

If we consider a linear mapping ψ : M1 → M, we would map ψ (x1) = ax1 + bx2 and ψ (x4) =

a2x4 +αabx4 + abx5 + abx3 + b2x5, ψ (x3) = x3, and ψ (x5) = x5. Upon evaluating ψ ([·, ·]) =
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[ψ (·) ,ψ (·)], it can be seen that the tables are the same, and M1 is isomorphic to M. Therefore,

A138 (α) has P1.

A139: Since φ (A) is contained in all maximal subalgebras, and [A,A] = φ (A), we know all

maximal subalgebras must contain φ (A) = span{x3,x4,x5}. Take M1 = span{x1,x3,x4,x5} and a

generic maximal subalgebra M = span{ax1 +bx2,x3,x4,x5}. Consider the following multiplica-

tion tables:

Table 19: M1 Multiplication Table

M1 mult table
[·, ·] x1 x3 x4 x5
x1 x4 0 0 0
x3 0 0 0 0
x4 0 0 0 0
x5 0 0 0 0

Table 20: M Multiplication Table

M mult table
[·, ·] ax1 +bx2 x3 x4 x5

ax1 +bx2 a2x4 +2abx3 +b2x5 0 0 0
x3 0 0 0 0
x4 0 0 0 0
x5 0 0 0 0

If we consider a linear mapping ψ : M1→M, which maps ψ (x1) = ax1+bx2 and ψ (x4) = a2x4+

2abx3+b2x5, ψ (x3) = x3, and ψ (x5) = x5. Upon evaluating ψ ([·, ·]) = [ψ (·) ,ψ (·)], it can be seen

that the tables are the same, and M1 is isomorphic to M. Therefore, A139 has P1.
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