
ABSTRACT

NIYONZIMA, YVONNE. Application of Mathematical Modeling in Toxicology and Human
Immunodeficiency Virus. (Under the direction of Hien Tran).

1. Nonalcoholic fatty liver disease (NAFLD) impacts 25-30% of the US population. Hep-

atic steatosis, an increase of more than 5% of lipid content in the liver, is a biological

manifestation of NAFLD. Hepatic steatosis can be initiated by lifestyle factors and

exposure to some environmental chemicals such as carbon tetrachloride (CCl4). Past

research has shown that CCl4 decreases the levels of hepatic very low-density lipopro-

tein (VLDL) while it increases the levels of sterol regulatory element binding protein

1c (SREBP-1c). The question that needs to be answered is the amount of CCl4 it takes

to induce hepatic steatosis.

The dose-response, of CCl4 vs. hepatic triglycerides, is performed by incorporate the

VLDL and SREBP-1c in a quantitative systems toxicology (QST) model describing

carbon tetrachloride. This process involves several key components. The first step is

the generation of a physiologically based pharmacokinetic (PBPK) model for CCl4,

to serves as a quantitative method to establish dose-response relationships for CCl4

toxicity regarding hepatic steatosis. The concentration of hepatic CCl4 is then fit into

an exponential and a logistic equations that describe the relationship between CCl4

and VLDL and srebp-1c, respectively. The values from the exponential and logistic

equations are substituted in the liver model. The last step is done to estimate the

amount of hepatic triglycerides.

2. To prevent (decrease) children who have tested positive for human immunodeficiency

virus (HIV) from dying, the world health organization recommends immediate ini-

tiation of antiretroviral therapy (ART). However, early initiation of ART in infants

(< 3 months) leads to lack persistent HIV-1 immunoglobulin G (IgG) antibodies. Our

project aims to answer if there is a difference in some pharmacokinetics (PK) metrics

and to establish a mechanistic model that could be used to predict the antibodies in

children who are on ART. We use longitudinal data of infant rhesus macaques that

were infected after birth but were initiated on ART at different ages .

We will use a non-compartmental analysis approach to analyse the PK metrics (maxi-

mum observed concentration, time of the maximum observed concentration, and



the area under the curve) of antibodies (gp41 and gp120). The terminal half-life is also

analyzed, but with a biphasic model. For the second part of this project, we devise

a mechanistic model, by relying on the biology of antibody production, to fit our

longitudinal data with both viral load and antibodies as output. The implications of

the mechanistic model can be in answering when children should be started on ART

while preserving the HIV-1 specific antibodies.
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CHAPTER

1

MODEL CALIBRATION AND PARAMETER

SELECTION

1.1 Model Fitting

Model fitting is an important part of all sciences that use quantitative measurements.

Scientists often explore the relationships between models and measurements (1). In certain

scenarios, there exists several model selection criteria, proposed over the years, that have

become common procedures (2). The downside is that these procedures were designed

for complete data, which is rare in actuality. Fitting the proposed model to data can lead

to problems of over-fitting or under-fitting. Overfitting is the use of models or procedures

that include more terms than are needed (1). Underfitting occurs when the model fails to

capture the patterns in the data (3). An example is that a straight line under-fits a third-order

polynomial. On the other hand, a polynomial over-fits a linear function. Occam’s Razor,

or the principle of parsimony, calls for using models and procedures that contain all that

is necessary for the modeling but nothing more. An example, if the relationship can be

captured by a linear function then using a quadratic violates the law parsimony (4).
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To decrease the chances of over-fitting or under-fitting, it is crucial to do a variable

selection of the proposed model as a means to select the "best" subset of predictor variables.

The term "best", here, refers to a balance between the number of explanatory variables

and goodness of fit (1). Various methods have been proposed to avoid model over-fitting

and find the "best" model. The majority of these methods comprise one of the following

strategies: 1) use validation data set(s) to evaluate the performance of the fitted model 2)

penalize models with more parameters (5).

1. Cross validation tests the effectiveness of models. It can also be used as a re-sampling

procedure to evaluate a model in case of a limited data. To perform cross validation,

a sample/portion of the data is set aside in order to be used later to test/validate the

model(6).

2. Penalizing additional parameters (predictors) can be achieved by either performing

the traditional model selection (based on different criteria) or applying penalized

regression models (7). Some criteria of traditional model selection:

(a) Selection based on: Adjusted R-squared, AIC and BIC

i. R-squared is the percentage of outcome variable variation explained by the

model, and describes how close the data are to the fitted regression.

ii. AIC is “Akaike’s Information Criterion”, and BIC is “Schwartz’ Bayesian Cri-

terion.” Both aim at achieving a compromise between model goodness of

fit and model complexity. The only difference between AIC and BIC is the

penalty term, where BIC is more stringent than AIC. The preferred models

are those with minimum AIC/BIC.

(b) Best subset / forward / backward / step-wise selection

i. In forward selection, the most significant variable (based on certain pre-set

confidence level) is added to the model one at a time, until no additional

variable meets the criterion.

ii. Backward selection starts with the full model that includes all the variables

of interest, and then drop non-significant variables one at a time, until all

the variables left are significant.

iii. Step-wise selection allows both adding and dropping variables to allow

dropped variables to be reconsidered (5).
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1.2 Sensitivity Analysis

The parameters in any model play a role in the output. However, the impact on the model’s

output differs among the parameters present. We are more interested in the parameters

whose impacts are substantial. To know which of our parameters will produce substantial

impact in the output, we perform sensitivity analysis.

Sensitivity analysis is the study of the relationship between the parameters and the

output of the model. We look at how small changes in a model’s parameter affect the model

output. Sensitivity analysis is used to validate results in different areas of mathematics as

well as the area where mathematics is applied (biology, physics, finance, etc). A parameter

is said to be sensitive when a small change in its value leads to a large change in the

output. This is crucial in understanding the relationship between parameters and output.

Sensitivity analysis is also useful when estimating parameters of a model. Parameters that

are less sensitive are normally fixed to values found in the literature, while those that are

sensitive are then estimated using an inverse problem formation. For this reason, sensitivity

analysis increases the confidence of the estimated parameters values. There are two types

of sensitivity analysis, local and global.

1.2.1 Sensitivity Methods

Consider a function y (q ). Its derivative d y
d q defined as

d y

d q

�

q̂
�

= l i m
h→0

y
�

q̂ +h
�

− y
�

q̂
�

h
, (1.1)

at a point
�

q̂
�

determines how much y changes as q changes near
�

q̂
�

. Large absolute values

for d y
d q

�

q̂
�

indicate large changes in y near
�

q̂
�

, whereas small values of d y
d q

�

q̂
�

indicate small

changes in y (8), as presented in Figure 1.1.

Direct Computation

We use a derivative-based approach for the sensitivity presented in this section. Consider

the following ODE and output equations:
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Figure 1.1: A function y (q ) and corresponding derivative d y
d q

�

q̂
�
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d x

d t
= f (t , x; q) (1.2a)

y = g (t , x; q), (1.2b)

where x and q are respectively vectors of the state variables and parameters in the model.

Since we are concerned about the sensitivities of our parameters with respect to the

output y , we compute the partial derivatives of y with respect to q,
�

∂ y
∂ q

�

. In reality, this

computation can be difficult especially when our output y does not have an analytical

solution. However, we can apply automatic differentiation (AD) that is able to compute the

desired derivatives directly by using elementary derivative rules. The partial derivative is

then computed by differentiating both sides of the output of Eq (1.2) with respect to q to

obtain:

∂ y

∂ q
=
∂ g

∂ t

∂ t

∂ q
+
∂ g

∂ x

∂ x

∂ q
+
∂ g

∂ q

∂ q

∂ q
(1.3a)

=
∂ g

∂ x

∂ x

∂ q
+
∂ g

∂ q
, (1.3b)

where ∂ t
∂ q = 0 and ∂ q

∂ q = 1. Given the functions f and g , the partial derivatives ∂ g
∂ x , ∂ g

∂ q , ∂ f
∂ x , and

∂ f
∂ q from g can be computed directly using elementary derivative formulas from calculus.

These calculations can be burdensome to calculate by hand. Automatic differentiation nu-

merically repeatedly implements the chain rule and basic arithmetic equations to compute

the total derivative of a function with accuracy to working machine precision (9) (10) (11)

(12).

Using automatic differentiation, the partial derivative ∂ x
∂ q is obtained:

∂

∂ q

�

d x

d t

�

=
d

d t

�

∂ x

∂ q

�

=
∂

∂ q
f (t , x; q ) =

∂ f

∂ x

∂ x

∂ q
+
∂ f

∂ q
. (1.4)

This is a differential equation for the sensitivity variable ∂ x
∂ q

with
∂ x

∂ q

�

�

�

�

t=0

=
∂ x0

∂ q
.

The disadvantage of AD is computational cost and CPU memory.

In addition to AD, we can compute the derivatives via Finite Difference (FD) method
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and a one-step complex method.

Finite Differences

Finite Difference (FD) method estimates d y
d qi

, where qi is the i t h parameter in the vector q,

the Taylor series,

f (x +h ) = f (x ) +h
d f

d x
+

h 2

2!

d 2 f

d x 2
+ . . .+

d n f

d x n
+ . . . . (1.5)

The derivative d f
d x can be approximated by the first two terms as follows:

d f

d x
=

f (x +h )− f (x )
h

+O (h ) (1.6)

where h is the step-size and O (h ) is the truncation error. Equation (1.6) is referred to as the

forward difference. We can also estimate the backward difference as

d f

d x
=

f (x )− f (x −h )
h

+O (h ) (1.7)

A combination of the forward and backward gives the central finite difference,

d f

d x
=

f (x +h )− f (x −h )
2h

+O (h 2) (1.8)

The step size, h , should be chosen in order to minimize the truncation error and sub-

tractive cancellation error due to finite precision arithmetic (10). The central difference

possesses the advantage of being accurate on an order of h 2, instead of the order h for the

forward and backward differences (8). A good option for the step size in the backwards

and forward differences is h =
p

macheps. qi and for central difference h = 3
p

macheps. qi

(13). These values are given in terms of macheps, the relative error in computing f(x). These

values minimize the round-off and machine error in the calculations.

Complex Step Method

The one-step complex method uses complex variables to estimate derivatives. The method

originated with the work of Lyness and Moler (14) and Lyness (15). It has been shown to

be extremely accurate, robust while maintaining a reasonable computational cost. The

potential of this technique has been recognized and used for sensitivity analysis in compu-

tational fluid dynamics. The method is also popular in aerodynamic optimization. Complex
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step method is known to be accurate and computationally inexpensive for small systems

(16). The method uses complex functions to calculate derivatives (17). It uses the fact that

complex functions are the extensions of their real counterparts (10).

Consider a complex function: f = u + i v of the complex variable z = x + i y where x is

the real part R e (z ) and y is the imaginary part I m (z )where

f (z ) = u (x + i y ) + i v (x + i y )

is an analytic complex functions with u and v being the real and imaginary parts of f ,

respectively.

Because f is analytic, the Cauchy-Riemann equations are satisfied. That is, the compo-

nents satisfy

∂ u

∂ x
=
∂ v

∂ y
,

∂ u

∂ y
=−

∂ v

∂ x
(1.9)

Using the forward difference approximation, we rewrite (1.9) as,

∂ u

∂ x
≈

v (x + i (y +h ))− v (x + i y )
h

, (1.10)

where h is the step size and a real number.

If we restrict the function to the real axis, then

y = 0 (1.11a)

u (x ) = f (x ) (1.11b)

v (x ) = 0 (1.11c)

This lead the previous Equation (1.9) to become

∂ f

∂ x
=
∂ u

∂ x
≈

v (x + i h )− v (x )
h

=
v (x + i h )

h
=

I m ( f (x + i h ))
h

The approximation of the first derivative of f at a given parameter x is therefore:

d f

d x
≈

I m ( f (x + i h ))
h

, (1.12)

where I m represent the imaginary part of the output and h is a small positive perturbation
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of x . d f
d x is called the complex step derivative approximation.

The complex step method’s error can be determined by utilizing the Taylor series expan-

sion with an imaginary step i h . Since the function f is analytic and real in real variables,

the Taylor series about a real point x is;

f (x + i h ) = f (x ) + i h
d f

d x
−

h 2

2!

d 2 f

d x 2
− i

h 3

3!

d 3 f

d x 3
+ . . .

Considering the imaginary parts of the left and right hand side of the previous equation

and dividing by the step side h , we get:

d f

d x
=

I m ( f (x + i h ))
h

+
h 2

3!

d 3 f

d x 3
.

Hence we have O (h 2) error. Because there is no subtractive cancellation, h can be

reduced to very small values to achieve higher accuracy in the derivative (10).

One of the advantages of the complex-step method is not having to face the dilemma of

taking small steps h (18). In this method, there is no subtraction operation that leads to

subtractive cancellation errors. The lack of cancellation error is an advantage over finite-

differences method. It also has an implementation advantage over automatic differentiation.

It is normally quicker and uses less memory because it does not have to evaluate multi-

ple functions. The method can be implemented in MATLAB by evaluating f (x + i h ) and

recovering the imaginary component of the output over h .

Comparison of Finite Difference and Complex Step Method

For our models, we use one-step complex method because it allows us to take h to be as

small as we want and still give accurate results. We consider a logistic model example to

motivate the reason we picked this method over the finite difference method. Consider the

Verhulst-Pearl logistic equation studied in (16)(19)

d p

d t
= a p (1−

p

k
), (1.13a)

p (0) = p0, (1.13b)
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where a is the intrinsic growth rate and k is the carrying capacity. The exact solution of the

differential equation (1.13) is given by

p (t ) =
k p0

p0+ (k −p0)e −a (t−t0)
(1.14)

The model’s parameters are r, k , p0 that can be fixed to desired values and to obtain the

solution to (1.13) as shown in Figure 1.2 .

Figure 1.2: A solution to (1.13) with k = 10, a = 1, p0 = 0.05

Using the analytical solution of the logistic model, we can compute the sensitivity

variables (pa =
d p
d a and pk =

d p
d k ) and compare them to the results of the approximated first

derivatives obtained via FD methods and one-step complex methods. In Figure 1.3, the
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magenta dash line represent the analytical solution, the solid blue line is for finite difference

and the dotted green line is from complex step method. The figures on top and bottom

are the sensitivity of p with respect to a and k , respectively. On the left side, the three

methods appear to be the same when using h = 10−5. However, when we make the step size

h smaller, h = 10−15, the finite difference method becomes inaccurate (Figure 1.3b, 1.3d).

With machine accuracy 1 ∗10−323, we can make h = 10−320 and the complex step method is

still going to be accurate (10).

(a) Plot of d p
d a with h = 10−5 for FD and h = 10−16

for one-step complex (b) Plot of d p
d a with h = 10−15 for both methods

(c) Plot of d p
d k with h = 10−5 for FD and h = 10−16

for one-step complex (d) Plot of d p
d k with h = 10−15 for both methods

Figure 1.3: Plot of derivatives of P with respect to a and k
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1.2.2 Sensitivity Rankings

After the calculation of the sensitivity coefficients, we compare the sensitivity with respect

to different parameters, to determine the most (or least) influential model’s parameters.

Because a model’s parameters are likely to be in different units, we non-dimensionalize the

parameters by multiplying by the parameter value,

q j

∂ yi

∂ qi
. (1.15)

We finally take the the L 2 norm of (1.15) to give the normalized sensitivity rankings,

Ci (q ) =

�

�

�

�

�

�

�

�

qi

∂ yi

∂ q j

�

�

�

�

�

�

�

�

=

√

√

√

∫ t

t0

�

�

�

�

qi

∂ yi

∂ qi

�

�

�

�

2

d t = qi

√

√

√

∫ t

t0

�

�

�

�

∂ yi

∂ qi

�

�

�

�

2

d t (1.16)

Upon computing the ranking values, we rank these parameter sensitivity values from

largest to smallest. For simplicity, it is considered that the larger the coefficients, then the

more sensible is the system output with respect to that parameter.

Parameters whose Ci (q ) are large are considered to be sensitive. When looking at several

parameters, determining which Ci (q ) is large becomes relative. Rather than arbitrary deter-

mining which Ci (q ) is large, we use k-means clustering in deciding sensitive parameters.

1.2.3 Global sensitivity

In biological problems such as system toxicology or human immunodeficiency virus, a

model’s parameter is likely to be different in different individuals. This is because the

parameters is determined by different factors such as: height, weight, race, comorbidities,

lifestyle, etc. Usually a specific parameter is presented with a mean and standard deviation

(or variance to represent the population). When doing the sensitivity analysis, we want

to take into account these difference and ensure that we are performing the calculations

across the population instead of a person. This is why it is good policy to carry out the

calculations of the global sensitivity.

The value Ci (q ) in equation (1.16) refers to the local sensitivity. We use the same tech-

niques to carry out global sensitivity. To perform the global sensitivity, the parameter is

assumed to follow some type of distribution F (q) on the population level. One can then

perform the expected value of the sensitivity by using the equation,
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EqCi =

∫

Q

Ci (q) d F (q). (1.17)

However due to the high dimensional space of Q , and the consequence of its inconve-

nient numerical integration, it is preferable to use Monte Carlo approximation. A sequence

of independent parameter values {q j }Mj=1 is generated from the distribution F (q) and the

expected value with a sample mean is approximated,

Ci =
1

M

M
∑

j=1

Ci .(q j ). (1.18)

Because each sample mean is a Monte Carlo estimate, the combination of Law of Large

numbers and central limit theorem indicate that for a sufficiently large M, these samples

are representatives of the entire population and convergence is asymptotically guaranteed

to behave as a normal distribution (20).

1.3 K-means Clustering

As mentioned, parameters with large coefficients Ci (q ) are considered to be sensitive.

However, it can be tricky to decide what is considered a large value in a reproducible manner.

One method that is utilized is drawing a line that represent the mean of all the values (black

line in Figure 1.4). The parameters above the lines are then considered sensitive whereas

the parameters below are non-sensitive. Figure 1.4 represent the local sensitivity rankings

of a human immunodeficiency virus (HIV) model presented later. At times, drawing the

line to determine sensitive values does not work. In this case we use clustering to divide

the parameters into sensitive and non-sensitive clusters. Clustering is useful when there

are two sensitivity values that appear to be almost equal, but one values is above the mean

line while the other is below.
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(a) gp120.

(b) gp41.

Figure 1.4: Plot of local sensitivity values.

To determine the clustering of the data, one can use the naive way of considering all

the possible clustering and select the one that is most sensible according to a criterion or

rationale (21). An example of a naive approach is to choose the clustering that optimizes a

pre-selected criterion, which quantifies the requirement for more “similar” vectors to be in

the same cluster and less “similar” vectors to be in different clusters. This naive technique

is problematic because the number of all possible clustering is huge, even for a moderate

number of patterns. A solution to this situation is the development of clustering algorithms

that consider only a small fraction of the possible clustering. The considered clustering

depend on the specific algorithmic procedure (21).

There are several developed clustering algorithms. We are interested in the k-means
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clustering. K-means clustering is the most known clustering algorithm of unsupervised

learning problem.

In k-means clustering, a vector of parameters θ j , also called cluster representatives,

correspond to points in the l -dimensional space. The aim is to determine the values of θ j in

order to characterize the clustering structure of the data set X . We assume that each cluster

representative uniquely belongs to a single cluster. k-means assumes that the number of

clusters, k , is known. Its objective is to position the points θ j , j = 1, . . . , k , into areas that

are dense in points of X (clusters). The k-means algorithm is of iterative nature. It starts

with some initial estimates θ1(0), . . . ,θk (0), for the parameter vectors θ1, . . . ,θk .

The k-means algorithm follows two steps:

1. the vectors xi that are close to eachφ j (t −1) are identified

2. the new (updated) value of θ j , θ j (t ), is computed as the mean of the data vectors that

lie closer to θ j (t −1)

3. The algorithm terminates when no changes occur in θ j ’s between two consecutive

iterations.

In reality, the algorithm seeks to minimize the following cost function J (θ ,U ) . Equation

(1.19) implies that k-means minimizes the sum of the squared Euclidean distances of each

data vector from its closest parameter vector (21).

J (θ ,U ) =
N
∑

i

k
∑

j

ui j∥xi −θ j∥2

θ = [θ T
1 , . . . ,θ T

k ]
T

ui j =







1 xi is closest to θ j

0 otherwise

(1.19)

Utilizing the sensitivity coefficients from Figure 1.4 of an HIV model, we can use K-

means clustering with three clusters (ultra-sensitive, sensitive, and non-sensitive). Figure

1.5 shows the clustering. In this case, any parameters corresponding to red dot values will

be considered non-sensitive.
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(a) gp120.

(b) gp41.

Figure 1.5: Plot of Identifiability clusters from local sensitivity.

1.4 Identifiability Analysis

After performing the sensitivity analysis, we proceed to parameter selection, which is

significant for the model calibration. The parameters that were found to be sensitive are

further evaluated to determine which ones can be uniquely identified. A model is considered

identifiable if and only if there is an unique input-output behavior for every parameter set.

For a model that has more parameters than what can be uniquely determined under ideal
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experimental conditions then it is unidentifiable (22). For an input-output map,

y = f (q ), q = [q1, . . . , qp ].

The parameter q is considered identifiable at q ∗ if for any q ∗ ∈Q, f (q ) = f (q ∗) implies

q = q ∗. When this condition holds for all q ∗ ∈ I (q ), we say that the parameter q is identifiable

in the space I (q ).

In certain case, it is obvious that parameters are not identifiable. This is the case of when

parameters form product or quotient. As an example, consider the following ODE,

d y

d t
= a b y (t ).

On the case of the ODE above, neither "a " nor "b " is identifiable because there are infinitely

many numbers that can yield to the same product. However in many cases, it is not apparent

whether or not the parameters are identifiable. In the latter instance, there are various

methods to perform the identifiabilty of parameters. The focus is given to the sensitivity-

based method for local identifiability analysis. It is important to note that, the structure of

the model and the data available can affect whether a parameter is identifiable.

To motivate this technique of sensitivity-based method for local identifiability analysis,

the first order Taylor expansion is considered (20). In the inverse least-squares formulation

for parameter estimation (Equation (1.20), yd represents the data, ym represent the model

output and q is the parameter.

J (q ) =
N
∑

i=1

�

yd (ti )− ym (ti , q )
�2

. (1.20)

We assume that J (q ∗) = 0 where q ∗ is the local optimized parameter. The assumption

that J (q ∗) = 0 implies that yd (ti )− ym (ti , q ∗) = 0.

We estimate ym (t , q ) using the first two terms of the Taylor series expansion around q = q ∗

gives:

ym (t , q )≈ ym (t , q ∗) +
∂ ym

∂ q
(t , q ∗)(q −q ∗)

Substituting this approximation for ym (t , q ) in equation (1.20) we obtain,

J (q ) =
N
∑

i=1

�

yd (ti )− ym (t , q ∗)−
∂ ym

∂ q
(t , q ∗)(q −q ∗)

�2

(1.21)
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since,

yd (ti )− ym (t , q ∗) = 0,

(1.21) becomes equation (1.22)

J (q ) =
N
∑

i=1

�

∂ ym

∂ q
(t , q ∗)(q −q ∗)

�2

(1.22)

Letting∆q = q −q ∗, Si j =
∂ ym
∂ q j
(ti , q ∗) and S be the n by m matrix of sensitivity coefficients

given by

S =













∂ y (t1)
∂ q1

∂ y (t1)
∂ q2

· · · ∂ y (t1)
∂ qm

∂ y (t2)
∂ q1

∂ y (t2)
∂ q2

. . . ∂ y (t2)
∂ qm

...
...

...
...

∂ y (tn )
∂ q1

∂ y (tn )
∂ q2

. . . ∂ y (tn )
∂ qm













then J (q ) can be written as

J (q ) = (S∆q )T (S∆q ) =∆q T S T S∆q (1.23)

Here, S T S is a square matrix known as the Fischer information matrix.

Suppose that∆q is an eigenvector of S T S , then: S T S∆q =λ∆q . Substituting S T S∆q =

λ∆q into (1.23), we obtain

J (q ) =∆q Tλ∆q =λ∆q T∆q =λ||∆q ||2. (1.24)

If we assume that λ= 0 then J (q ) = J (q ∗+∆q ) = 0 . In addition, if∆q is an eigenvector,

then for an arbitrary k , k∆q is also an eigenvector. Hence q ∗+k∆q is also a minimizer. We

say that q ∗ is a local minimizer and an non-identifiable parameter.

It is now clear that identifiability depends on the rank of the Fisher information matrix

S T S . In implementation, because S T S is often nearly singular, the smallest eigenvalues of

S T S pose problems for identifiability. To solve the problems of small eigenvalues (threshold

of < 10−4), the algorithm below, described in (23), is used in determining parameters that

are identifiable.
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Algorithm for identifiability

1. Form the matrix S T S where S is the matrix of sensitivity coefficient.

2. Compute eigenvalues of S T S and arrange them in ascending order of their absolute

values:

|λ1|< |λ2|< . . .< |λm |

.

3. If |λ1| is less than a threshold of 10−4, there is an unidentifiable parameter.

4. The largest component of the the eigenvector V1, eigenvector corresponding to λ1,

corresponds to the least identifiable parameter. Remove the corresponding column

from S .

5. Repeat step 1-4 until there are no longer eigenvalues that are smaller than the thresh-

old.

1.5 Non-Linear Mixed Effect Model

Mixed-effects modelling is the most used method for the analysis of population pharma-

cokinetic/pharmacodynamic (PK/PD) data (24). Nonlinear mixed effects models (NLMEM)

are statistical models used to analyze repeated longitudinal measured data. NLMEM for re-

peated measures can be thought of as a hierarchical model involving a modeling framework

of both fixed-effects associated with the population parameters and random-effects incor-

porating uncertainty associated with variability of the data for unexplained inter-individual

and intra-individual variability.

• The inter-individual variability accounts for factors that facilitate heterogeneity of

subjects within the population. It is the variation in dynamic parameters across the

population (25),

• The intra-individual describing the difference between the individual predicted values

and the observations. It also account for errors due to measurement collection, dosing,

and sampling, numerical approximation of the model equations, etc. (25)
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. The intra-individual (residual: first-stage model) variability describing the difference

between the individual predicted values and the observations is modelled as,

yi j = f (φi , xi j ) +εi j , εi j ∼N (0;σ2), i = 1 . . . N ; j = 1 . . . ni (1.25)

where yi j is the j t h response of the i t h individual, f (.) is a nonlinear observation function

of an individual-specific parameter vector φi , xi j is state dynamics , N is the number of

individuals, and ni is the total number of measurements for individual i. The residual error

terms εi j are assumed to be independently and identically distributed (iid) with mean zero

and varianceσ2.

The state dynamics x quantify the behavior of the system (25). State dynamics are most

commonly modeled using ordinary differential equations (ODEs) described below,

d xi

d t
= g (t , xi , ui ;φi ), xi 0 = xi (0,φi ), t ≥ t0 (1.26)

where x is an M-dimensional dependent variable vector, x0 is the initial conditions, g (.) is

the model, t is an independent variable, u is an exogenous input, andφi is the O- dimen-

sional parameter vector.

In the inter-individual (second-stage model) hierarchy, the model is associated with the

parameters of the different individuals. It is described as,

φi = Ai jβ +Bi j bi (1.27)

where Ai j and Bi j are respective matrices for the fixed-effects vector β and random-effects

vector bi . The inter-individual variability is modelled by the random-effects vector bi which

consists of k zero-mean variables assumed to be i.i.d. with variance-covariance matrixψ.

The residual error terms εi j and bi are assumed independent for all i and j . The parameters

in the mixed-effects model described by (1.25) and (1.27) are estimated either by maximum

likelihood (ML) or by restricted maximum likelihood (REML) based on the marginal density

of y (24).

We use MONOLiX ("MOdèles NOn LInéaires à effets miXtes" or Non-linear mixed-

effects models in English), a platform of reference for model based drug development (26).

MONOLIX is an easy, fast and powerful tool for parameter estimation in non-linear mixed

effect models, model diagnosis and assessment, and advanced graphical representation. It

uses maximum likelihood to estimate parameters.

With the assumption of the data being continuous, a scalar outcomes yi j ∈ R+ is as-
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sumed. In MONOLIX (27), this outcome is given by general model,

yi j = f (ti j ,Φi ) + g (ti j ,Φi ,ξ)εi j ,

i = 1. . . N and j = 1. . . n , Φi is the parameter vector of the model f for individual i . In

this case, f is the conditional mean and g is standard deviation of yi j . The residual errors

εi j ∼N (0,1). MONOLIX only considers the function g to be a function of the structural

model f, i.e. g (ti j ,Φi ,ξ) = g ( f (ti j ,Φi ),ξ) leading to,

yi j = f (ti j ,Φi ) + g ( f (ti j ,Φi ),ξ)εi j . (1.28)

There are several error models available in MONOLIX. We considered the combined1

in our work. The model defined as,

y = f + (a + b ∗ f c )ε (1.29)

The function g in (1.28) is g = (a + b ∗ f ), and the parameters ξ and c are ξ= (a , b ) c = 1.
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CHAPTER

2

A QUANTITATIVE SYSTEMS TOXICOLOGY

(QST) MODEL FOR HEPATIC STEATOSIS

INDUCTION BY CARBON

TETRACHLORIDE

2.1 Motivation

Fatty liver disease impacts close to 25-30% of the US population. There are two main types

of liver diseases: alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD).

ALD is the liver disease caused by consuming excess amount of alcohol. Ethanol’s toxins

perturb almost all aspects of hepatic lipid metabolism (28). NAFLD, on the other hand, is

the build-up of excess fats in liver cells when other causes have been ruled out (29).

Hepatic steatosis is a biological manifestation of NAFLD and is defined by an increase

of more than 5% of lipid content in the liver. Hepatic steatosis can lead to liver failure and

altered xenobiotic metabolism (30). If not reversed, it can progress to irreversible stages of

21



liver disease including fibrosis, cirrhosis, hepatocellular carcinoma, and death (31).

Considering the large percent of the population that suffers from fatty liver diseases,

it is paramount to the public health to identify the causes of fatty liver diseases. It had

been determined that a variety of exposures, such as high-calorie high-fat diets, inactivity,

therapeutic drugs, and environmental chemicals, can induce NAFLD (31). While some of

these causes may not be prevented (i.e. therapeutic drugs) (32), for the sake of public health,

it is crucial to prevent hepatotoxicity and liver disease progression that can be precipitated

by chemical exposure. Identification of such chemicals is important in order to minimize it

use (or ban them if possible) by the public.

Carbon tetrachloride, CCl4, is one of the chemicals that has been shown to lead to liver

cirrhosis and to liver cancer following prolonged exposure to it (33). Carbon tetrachloride

was the first of the five chlorinated solvents to come into general use. Production of com-

mercial quantities in Europe began in approximately 1900 or earlier, and in the United

States between 1905 and 1908. Due to the fact that acute unintentional or intentional in-

toxication by CCl4, while may rarely occur, are potentially life-threatening, it is used under

regulatory surveillance to ensure safety at the working place and to protect the workers’

health (34). This is because CCl4 is an efficient but highly toxic solvent, used in households

and commercially in the industry. Carbon tetrachloride was banned in consumer products

in 1970, in aerosol products in 1978, and in grain fumigation in 1985 (35).

In humans as well as in experimental animals, CCl4 is readily absorbed by all routes of

exposure (inhalation, oral and dermal). Post absorption, it is widely found in fat but also

in blood, muscle, liver, brain and other tissues and organs (36). CCl4 is a manufactured

chemical that does not occur naturally (37). Carbon tetrachloride is a clear liquid that

evaporates very easily. Most carbon tetrachloride that escapes to the environment is there-

fore found as a gas. Carbon tetrachloride does not easily burn. Carbon tetrachloride has a

sweet odor, and most people can begin to smell it in air when the concentration reaches

10 parts per million parts of air (ppm) (38) . The primary effects of carbon tetrachloride in

humans are on the liver, kidneys, and central nervous system (CNS). Human symptoms of

acute (short-term) inhalation and oral exposures to carbon tetrachloride include headache,

weakness, lethargy, nausea, and vomiting (39).

Our main goal for this project is to determine the amount of carbon tetrachloride it

takes to raise the levels of triglycerides in the liver to a point of hepatocytes. We accomplish

our goal by establishing a dose response of carbon tetrachloride (in the air or water) and the

amount of triglycerides in the liver. We carry out the dose-response task by incorporating

the presence of carbon tetrachloride in the human liver model from (29). Our other goal is
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to use sensitivity analysis to determine the parameters that play a significant role in the

production of hepatic triglycerides.

2.2 Mathematical Modeling

Traditional toxicity testing approaches are time and resource intensive. The objective of

dose-response between carbon tetrachloride and amount of triglycerides in the liver is

established via modeling and simulations. Modeling and simulations were used due to the

fact that they are highly valued in scientific discovery as they provide insights that are often

impractical or impossible to discover through real-world experimental and theoretical

analysis alone (40). This is on par with this work as it is unethical and inhuman to perform

experiments involving carbon tetrachloride, which has been established to be harmful, on

humans.

To reach the goal of estimating the amount of carbon tetrachloride it takes for humans

to develop hepatic steatosis, the model follows three steps:

1. Use of PBPK model to determine amount of carbon tetrachloride in the liver,

2. the impact that the presence of CCl4 in the liver have on biological parameters, and

3. the implementation of the biological parameters and their impact due to CCl4 on the

liver model.

2.2.1 Physiologically-based pharmacokinetic (PBPK)

Pharmacokinetics (PK) is defined as the movement of drugs through the body. Its properties,

such as, absorption, distribution, metabolism, and excretion (ADME), are studied (41).

These studies are due to the substantial impact ADME can have on achieving the desired

therapeutic concentration of a drug. While a particular substance’s behavior are usually

described for a general population using physiologically-based pharmacokinetic (PBPK)

models, the difference in individuals’ responses due the difference among humans (age,

gender, race, weight, comorbidities, etc) can also be taken into account (42).

PBPK is a mathematical modeling approach aimed to realistically describe the physi-

ology of a biological system. PBPK models are used to toxicologically predict the relevant
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internal doses (43). They also convey any non-linear relationship between internal and

external applied dose or exposure. Due to the models relevance to toxicological applica-

tions, the role of PBPK modeling have increased over the past forty years. Some of the

several applications of PBPK models include: the use of PBPK modeling to test hypothesis

regarding the effects of metabolic variation, the appropriate dose metric from mode of

action (MOA) information, and environmental exposure from sampling of parent and/or

metabolite(s) in tissue and biological fluids.

PBPK models are constructed with compartments corresponding to the different physio-

logical organs of the body. Each compartment describes a tissue volume and blood flow rate

that is specific to the species of interest (i.e: rats, humans, hamsters, etc,) tissue-partition

coefficient, and permeability. Each tissue is defined with assumptions of either perfusion-

rate-limited or permeability-rate-limited (44). Perfusion-rate-limited kinetics usually exists

in small lipophilic molecules where the blood flow to the tissue is the limiting process of the

absorption. Permeability-rate-limited kinetics takes place in more hydrophilic and larger

molecules, such that the permeability across the cell membrane becomes the limiting pro-

cess of absorption (44). If applicable, the chemical/drug is moved from one organ through

another via blood flow among organs.

The organism various parameters are used as direct input in the model. These param-

eters represent the knowledge available a priori on the anatomy and physiology (45). In

some cases such parameters can be measured in vivo or in vitro, but most often they are

estimated from the physio-chemical properties of the drug. The parameters come into two

properties, organism and drug properties.
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Figure 2.1: A schematic example of a PBPK model

Figure 2.2: A compartment of a PBPK model

A schematic of a six compartment PBPK model is shown in Figure 2.1. In the figure, the

change in the concentration for each compartment, X, is described as
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d X

d t
=Q ∗ (Ci n −Co u t ), (2.1)

where X is the amount in the compartment, Q is the blood flow through the compart-

ment, Ci n and Co u t are the concentration coming in and going out of the compartment,

respectively. Each compartment can be described using this equation. For example, the fat

compartment will be written as (2.2) to reflect Figure 2.2. Other details, to include ADME

principles, can be incorporated in the equation. The final mathematical description of a

PBPK model is a series of nonlinear coupled differential equations ((41)).

d X f a t

d t
=Q f a t ∗ (Ca r t −C ∗f a t ) (2.2)

The organisms’ parameters in PBPK modeling and relevant organs are included in the

model. There are two main methods of including the organs needed for the model. One

method is to start with as many organs as possible and the cutback as necessary. The other

method is to start with the simplest model, with organs lumped together, and proceed

to adding organs as necessary. Tissues lumped together are assumed to possess similar

anatomical properties (42). We used the latter method. We started with the model composed

of four compartments, fat, liver, slowly perfused and rapidly perfused. We, then, added

more compartments: lungs, muscles, brain, liver, lumen, gut and kidney (Figure 2.4). Each

of the organs in our model is represented by its anatomical and physiological properties; for

example, volume and perfusion blood flow rates. In Figure 2.4a model, the drug/chemical

is administered orally and transported along the lumen to the gut. The compounds can

also be administered via other routes, inhalation (Figure 2.4b), injection (Figure 2.12), skin

contact, etc. The administration route determines how a drug is distributed in the body.

The second type of input parameters into PBPK models is the drug properties. These

properties are compound-specific parameters. They include the physicochemical parame-

ters of the compound (e.g. lipophilicity, solubility, pKa (unique physicochemical property

that controls its ionization state when in solution (46)), etc.) that can usually be deter-

mined in vitro. Particularly relevant for oral administration, drug solubility determines the

availability for absorption of a compound in the GI tract. Figure 2.3, adapted from (45)

represents a breakdown of parameters that are input in the PBPK model.
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Figure 2.3: A Breakdown schematic of parameters input in the PBPK models

2.2.2 Ingestion and Inhalation Models

For humans,we used two types of PBPK: ingestion and inhalation. The schematic of the

model are displayed in Figure 2.4. Most compartments in both the ingestion and inhalation

models are represented by (2.3) where X i is the amount in compartment i , Qi is blood flow

trough compartment i , Ca is the incoming concentration from the arteries, Vi is the volume

of compartment i and Pi is the partition coefficient between the compartment and the

blood. As suggested by ingestion and inhalation, the main difference resides in the uptake

of CCl4. For the ingestion, the chemical is orally taken. It then goes to the lumen. From the

lumen, the chemical distributes throughout the body as seen in Figure 2.4a and described

in (2.4). For the inhalation method, on the other hand, the chemical is inhaled and goes

to the lungs before distributing throughout the body as described in Figure 2.4b. The full

equations of the PBPK models are found in Appendix (A.7), with corresponding acronyms

in Table A.1.

d X i

d t
=Qi ∗

�

Ca −
X i

Vi ∗Pi

�

(2.3)
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d XLg i ng

d t
=Q ∗ (Cv −C a ) (2.4a)

d XLg i nh

d t
=Q ∗ (Cv −C a )−

Qr e s p ∗Ca

Pa i r
+Qr e s p ∗Ca i r (2.4b)

d XGi ng

d t
=Qg ∗

�

Ca −
XGi ng

Vg Pg

�

+ka ∗XLm (2.4c)

d XGi nh

d t
=Qg ∗

�

Ca −
XGi nh

Vg Pg

�

(2.4d)

In (2.4), Q is the total blood flow from the veins (described in A.4). The first two equa-

tions, (2.4a) and (2.4b), are for the lungs, and the last two, (2.4c) and (2.4d), are for the gut

compartment. (2.4a) and (2.4b) are the amount of the chemical in the lungs when the chem-

ical is ingested and inhaled, respectively. The expression Q ∗ (Cv −C a ) is present in both

(2.4a) and (2.4b). In these equations, the amount is given by the product of the difference

in concentration of the arteries, Ca , and veins, Cv (incoming and outgoing concentration,

respectively) multiplied by the total blood flow, Q . (2.4b) has additional terms describing

the inhalation and exhalation of the chemical. Qr e s p is the inhalation/exhalation rate, Pa i r

is the partition coefficient between blood and air and Ca i r is the concentration in the air.

The expression Qg ∗
�

Ca −
XGi ng

Vg Pg

�

is in both (2.4c), ingestion, and (2.4d), inhalation, ex-

cept for the subscript in expression XGi nh
of (2.4d) to highlight the inhalation. In the said

expression, the amount is represented by product of the blood flow through the gut Qg

and the incoming concentration from the arteries minus the amount going to the veins

(represented by the amount in the gut, XGi ng
divided by the product of the gut’s volume, Vg

and the partition coefficient between the gut and the blood, Pg ). In (2.4c), since the chemical

is ingested, the amount coming from the lumen is added as well. The lumen’s incoming

amount is represented by the amount in the lumen, XLm multiplied by the absorption

constant of the chemical, Ka .

d XL v

d t
= (QL v −Qg ) ∗Ca +

Qg Xg

Vg Pg
−

QL v XL v

VL v PL v
−

metVma x XL v

VL v PL v

metk m +
XL v

VL v PL v

(2.5a)

d XK

d t
=Qk ∗

�

Ca −
Xk

Vk ∗Pk

�

−
Xk

Vk
∗KExt (2.5b)
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Equation (2.5a) is the description of the chemical amount present in the liver com-

partment. This equation like others as well is represented by the difference in the amount

coming in and going out. There is an additional expression
metVma x XL v

VL v PL v

metk m+
XL v

VL v PL v

that represent

the loss of the chemical due to the liver metabolism. This equation is derived from the

Michaelis-Menten kinetics and is described in (A.1.1).

Equation (2.5b) is the description of the chemical amount present in the kidney com-

partment. Like the liver compartment (2.5a) there is an addition expression Xk
Vk
∗KExt that

represent the loss of the chemical due to kidney’s metabolism.

(a) Schematic of oral PBPK model (b) Schematic of inhalation model

Figure 2.4: Schematic of PBPK model used in human.
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Estimation of some parameters in the PBPK model

For both of our PBPK models (Figure 2.4), almost all of the parameters (both in rats and

humans) were found in literature (Table A.2, Table A.3, Table A.4 and Table A.5). However,

the parameters for the absorption constant, ka , and the Michaelis-Menten metabolite Vma x

were estimated using the rats data found in (47) along with the PBPK model for ingestion

(Figure 2.4a). These two parameters were estimated, Table A.4, with the MATLAB (Version:

9.10.0.1602886 R2021a). The goal in the estimation is to find the unknown parameters that

minimize the least square equation (2.6), where t represents the time-points, yv is the

venous concentration data points and ye is the estimated venous output.

J (q ) =
T
∑

t=1

�

yv (t )− ye (t )
�2

. (2.6)

The simulation of CCl4 in the venous blood (using estimated parameters) was graphed

on the same plot with the rats data, Figure 2.5. The estimated value of the metabolites Vma x

in the liver was assumed to be the same in the inhalation model (Figure 2.4b) as well. The

estimated parameters, Table A.4, were also assumed to be similar to those in humans.

Based on the plot obtained by using the estimated parameters, Figure 2.5, the estimation

was deemed adequate and satisfactory to continue with the project. Using the PBPK models

(Figure 2.4) along with different initial CCl4 doses (as the PBPK models’ initial conditions)

in the lumen or air, the concentration of CCl4 in the liver were continuously estimated. The

estimated CCl4 amount is then used to determine how certain biological processes (very

low density lipoproteins and sterol-regulatory element binding protein 1C) are impacted.
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Figure 2.5: Data fit after estimating ka and me tVma x
.

2.2.3 Parameter Impacted by Carbon Tetrachloride

The existence of carbon tetrachloride in the body impacts biological processes. Certain

interrupted processes have an active role in the amount of triglycerides in the liver. Two

parameters that are known to change when CCl4 is present are very low density lipoproteins

and sterol regulatory element binding protein 1C.

Very Low Density Lipoproteins (VLDL)

Very low-density lipoprotein (VLDL) is a major carrier of lipids from liver to general blood

circulation. The effect of carbon tetrachloride on the liver and the VLDL had been exten-

sively researched. Changes of lipoprotein secretion and composition in response to CCl4

treatment have been established in monolayer cultures of rat primary hepatocytes (48).

CCl4 impacts the secretion of very low density lipoproteins (VLDL) (49). If the VLDL values
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is higher, then more triglycerides will be carried out of the liver. On the other hand, a small

value of VLDL result to little TGs being carried out of the liver. The inhibition of lysosomal

lipase activity and very low density lipoproteins (VLDL) secretion might be the reason for

the accumulation of triglyceride in liver (50).

Using data from (51), an exponential equation describing the relationship between

the concentration of CCl4 and the percentage of VLDL in the liver was determined, Figure

2.6. The exponential equation in (2.7) indicates that the value of the VLDL drops as the

concentration of CCl4, x , in the liver increases. The equation was used to estimate the con-

tinuous levels of VLDL based on the CCl4 concentrations found in the liver from the PBPK

models. To simplify things, the maximum concentration of C C l4 was used to determine the

corresponding VLDL value, and this value was the only one used later on the Liver model

(Figure 2.9). Before finding the V LD L , the C C l4 value in the liver was first converted to

µM according to (2.8) in order to match the data units.

V LD Lp e r c e n t = 79.79 e −0.09904 x +20.14 e −0.001841 x (2.7)

M =
Mass(mg) ∗10−3g

MW (g/moles) ∗1mg ∗ L
=

mo l e s

L
(2.8a)

µM =M ∗106 (2.8b)

In equations (2.8), the Mass(mg) is the mass found in the rats liver after administration

of CCl4 in one of the PBPK models. The mass is multiplied by 10−3 to convert to grams in

order to match the units of the molecular weight (MW) of CCl4. The results are moles per

volume, molarity ( equation 2.8a)). We then multiply the results of (2.8a) by 106 to obtain

(equation 2.8b)) which has units, micro-molarity (µM ), that match the data in Figure 2.6.

Finally the VLDL amount depending on PBPK liver concentration (µM ) was estimated

(2.7).
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Figure 2.6: Instantaneous effect of CCl4 on VLDL

Sterol-Regulatory Element Binding Protein 1C (SREBP-1c)

Lipogenesis enclose the processes of fatty acid synthesis and subsequent triglyceride syn-

thesis (52). The literature (29) shows that simulating insulin resistance (IR) leads to higher

levels of hepatocytes TG. An additional simulation of lipogenesis, by increasing the sterol-

regulatory element binding protein 1c (SREBP-1c) which has been shown to be increased

by carbon tetrachloride in the body (53), leads to even higher levels of hepatocytes TG.

Using the euclidean norm of the CCl4 amount in the liver from the PBPK model and the

data from (53), we can determine the value of srebp-1c. In (53), there is only three data

points, which are not enough to establish a strong relationship. However, seeing that the

last two data points, Figure 2.7, are close to each other, we devise that the CCl4 and srebp-1c

relationship follows some type of logistic model. In (2.9), we use a logistic model to estab-

lish the representation of CCl4 vs srebp-1c. In the logistic equation (2.9), x represent the

euclidean norm value of CCl4.

srebp-1c=
7.416

1+ e −0.0836 (x−182.4)
+4 (2.9)
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Figure 2.7: Logistic approximation of srebp-1c.

2.2.4 Liver model

The liver is the central organ that controls lipid homeostasis (32). The liver model used to

simulate the levels of fat and triglycerides in the body is divided in two main compartments:

the liver and the body. The liver compartment is further divided into eight compartments,

Figure 2.8 adapted from (29). In the model, the blood flows from the periportal blood (first

compartment) to the subsequent compartments of the liver until its pericentral compart-

ment (eight and last compartment of the liver). From the distal pericentral compartment,

the blood goes into the rest of the body where it will interacts with other organs such as

pancreas.

The liver for this computational model is divided to include zonation. The model is

therefore able to represent changes in concentrations of metabolites and hormones as

blood passes through the sinusoid, as well as the variation in sinusoidal hepatic enzyme

expression. The position along the axis determines the blood and surrounding hepatocytes
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in the sinusoid (proximal periportal > distal pericentral). This model does not include

the blood flow, blood oxygenation and hormonal changes occurring during exercise, it

simulates an individual at rest.

Figure 2.8: A schematic of the liver model. The porto-central axis of the sinusoid is consid-
ered to be the repeating unit of the liver.

A simplified representation of blood flow was utilized because it is compartmental-

ized with average concentrations of variables in each compartment. In each time step,

a proportion of the blood in each compartment moves to the succeeding compartment

and is replaced by blood from the previous compartment. The plasma concentration of

each metabolite or hormone in each compartment changes according to the following

equations:

d Mi=1:n

d t
= b f ∗Mi−1− b f ∗Mi = b f ∗ (Mi−1−Mi ) (2.10a)

d M0

d t
=

b f ∗ (Mn −M0)
s

. (2.10b)

In equation (2.10), n is equal to eight, the total number of liver compartments. Equation

(2.10a) represent the liver compartments, while equation (2.10b) is for the rest of the body.
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In various plasma and hepatic metabolites in the model, the concentrations are cal-

culated in units of µM (µMoles/L). The concentrations of hormones are calculated in pM

(pMoles/L). Triglycerides are esters derived from three fatty acids as well as a glycerol

groups. Triglycerides do not have a unique molecular formula, hence there is not fixed

molecular mass. This poses problems in calculating molarity. To resolve this issue, an av-

erage molecular mass of 807.339g

moles was used for triglyceride (this amount is equal to that of

tripalmitin, derived from the fatty acid palmitic acid.)

Each liver compartment is expanded to include other biological mechanisms. The stor-

age of glucose as glycogen, the cycling between glucose and lactate, adenosine triphosphate

(ATP) production, fatty acids (FA) production and the storage of free fatty acidds (FFAs) as

triglycerides are the main focuses of the model. The schematic of some of the variables and

processes included in each hepatic compartment of the model is displayed in Figure 2.9,

adapted from (29) .

More details including a reduced description of the representation of metabolism in

each hepatic compartment in the model is provided in Tables 1 and 2 of (29). Table 1

contains the differential equations for each hepatic variable in terms of the metabolic

processes. Table 2 defines the metabolic processes included in the model, it also references

the sections of the supplementary material in which the full equations can be found. A

detailed description of all equations in the model, along with the values of each constant

and references used to set them is provided in S1 Text of (29).
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Figure 2.9: Some variables and conversions included in each hepatic compartment.

2.2.5 Complete model

The simulation of carbon tetrachloride and hepatocytes triglycerides dose response will

follow the outline displayed in Figure 2.10. The model starts with a PBPK model (either oral

or inhalation). The amount of CCl4 in the liver is taken to determine the value of VLDL, Eq

(2.7), and srepb-1c, Eq (2.9). These two estimated values are plugged in the liver model. The
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VLDL parameter is between Triglycerides and Plasma triglycerides (in Figure 2.9) because

it caries triglycerides from the hepatocyte to the plasma. srebp-1c is between Acetyl-CoA

and Fatty Acids.

Figure 2.10: CCl4 v Triglycerides Outline of Simulation.

2.3 Model Validation in rats

The plan is to use the liver model and estimate the amount of C C l4 it takes for someone

to develop hepatic steatosis. As outlined in 2.2.5, to accomplish the task, we will use the

combination of a PBPK and liver model to estimate this amount. We will assume that

C C l4 is either ingested or inhaled. However, in order to have confidence in the model and

simulation, the results need to be validated. Since, we do not have experimental data in

humans, we first needed to validate the outlined plan of dose response between CCl4 and

hepatocyte triglycerides in rats by using existing rats data.

To validate, we changed the parameters of the models in the outline plan from humans

to rats. We then used the model to simulate the results described in (53).
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2.3.1 Liver model in rats

The liver model that we have is for humans. We wanted to make it compatible for rats first

to proceed with our simulations. We kept the same model, but changed the parameters.

The parameters were divided into two, parameters included in the script and parameter

in the function (MATLAB was used). All the parameters in the script corresponded to the

initial conditions of the molecules. These parameters were changed one at a time to ensure

catching any parameters whose change in initial conditions led to big change in the output.

Most parameters had negligible influence in the output. All parameters with low/lack of in-

fluence were changed immediately to either values found in the literature or by using (2.11),

for those whose values we were unable to find in the literature. Glucose and triglycerides

were among the initial conditions whose values were not found in the literature. However,

changing the initial conditions of either one using (2.11) led to substantial change in the

liver triglycerides. Because changing the initial conditions of glucose or/and triglycerides

led to substantial change in hepatic triglycerides outputs, these initial conditions were esti-

mated using least squares. (2.11) is referred to as allometric scaling, an empirical approach

of changing biological parameters from one species to another (54) (55).

R =Human parameter value

 

Rat weight

Human weight

!2/3

=Human parameter value

 

0.250

70

!2/3

,(2.11)

where "R" represent the parameter values in rats while "H" represents the parameter values

for humans.

Most of the parameters in the function remained unchanged with the exception of

few of them: the diet, feeding cycles, rate of blood flow and rest of body to hepatic com-

partment ratio)]. The mentioned parameters along with the initial conditions of glucose

and triglycerides were estimated by utilizing fmincon in MATLAB. The fmincon function

minimizes function subject to the linear equalities Ae q ∗ x = b e q while defining a set of

lower and upper bounds on the design variables in x, so that the solution is always in the

range lb≤ x ≤ ub.

In order to use the fmincon function, there need to be an existing known data of hepa-

tocytes triglycerides to match the output of our model. We did not find known data whose

units match that of the mechanistic model, µM (micro moles
L ). However (56) has data

with different units, mg
g . This posed a problem because there are different structures of
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triglycerides, and they all have different molecular masses. We elected to use the same

molecular weight proposed by (29). The proposed molecular weight was 807.339g

moles . We used

this molecular mass to convert mg
g to µM by using the following conversion formulas:

807.339g = 1mole, (2.12a)

1g =
1mole ∗1g

807.339g
, (2.12b)

mg of TG

g of liver
=

1mole ∗10−3g ∗103g

807.339g ∗g of liver ∗1L
=

mo l e s

807.339L
, (2.12c)

µM =
106µmoles

807.339L
. (2.12d)

The parameters estimated as well as those changed by using the literature or (2.11)

are displayed in Table A.6 and Table A.7. The simulation using estimated parameters is

displayed in Figure 2.11. The results are not an ideal fit to the corresponding data. If we fit a

trend line through the simulated dynamics, the slope seems more shallow than suggested

by data. This is due to the estimated initial conditions of the hepatic triglycerides in rats as

well as the parameter representing rest of body to hepatic compartment ratio. Regardless,

the hepatocytes triglycerides output seemed to follow the pattern seen in humans. We

decided this was satisfactory as long as the value from the data fit was within two to five fold

of the data points. This is because the data was not consistent. It was the average, without

the lower and upper bounds values. The average also was not of equal number. At one time

point, a datum could be from only one animal, while at another time point it could be an

average of more than 5 rats. Satisfied with the results from the parameters’ estimation, we

then proceeded to pairing the model with the PBPK model for injection in rats.
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Figure 2.11: Parameter estimation for rats

2.3.2 Results in Rats

In (53), rats were given injections that contained C C l4. We, therefore, simulate a PBPK

model of injection. The model differ from the ingestion and inhalation in the route of

administration. In this model,the C C l4 is injected in the venous blood as shown in Figure

2.12. The differential equations of the PBPK model for injection are similar to those of

the inhalation and ingestion (A.7). Its lungs and gut equations are represented by (2.4a)

and (2.4d), respectively. The difference lies on the concentration of the chemical in the

venous blood. In the injection model, the venous compartment is defined as in (2.13),

where Vv e no u s is the total volume of the venous blood (57).
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+
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�

−
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(2.13a)

Vv e no u s =
2

3

�

VB +VF +VK +VL v +Vr p +Vs p +VM +VG +Vl ung s

�

(2.13b)

Figure 2.12: Schematic of injection PBPK model used to validate rats results.

To simulate the results in (53), we considered three scenarios as well (control, rat on high
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fat (HF) diet with C C l4 for three weeks and rats on HF diet with C C l4 for five weeks). The

PBPK with injection was run and the amounts of C C l4 in the liver were determined. The

carbon-tetrachloride concentration was then converted to determine the percent VLDL

amount, that would be later used in the liver model, using (2.8) obtained from the data in

(51). In (53), we notice that high fat diet with C C l4 leads to high levels of SREBP-1c as well.

The concept of high fat diet resulting in hepatocyte triglycerides increase had already been

established (31).

Following the change in VLDL and SREBP-1c, we proceeded to change the diet to make

it high fat. In (53), they did not mention by how they increase. We decided to increase it

by 11% and looked at the results. During five and three weeks, the TGs levels respectively

increased 2.78 and 2.31 folds. This is compared to the data increase of 2.52 and 2.5 in (53).

We were satisfied with our results in rats to proceed to the humans. Figure 2.13 shows a plot

of our results (blue part) and the reference (orange part). The vertical lines in the orange

part of the reference represents the deviation from the mean.
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Figure 2.13: Plot of the number concentrations of hepatocytes triglycerides in rats in the
presence of CCl4 and high fat diet.
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CHAPTER

3

QST RESULTS

3.1 Simulation in the absence of carbon tetrachloride

In this section, we simulate the liver model in human under normal circumstances (no

C C l4 chemical present in the body). We look at the impacts of diet, carbohydrates, fat and

their combinations (Figure 3.1). In the absence of food, the simulation stops at approx-

imately nine hours. This is probably due to the fact that the body needs sustenance to

keep functioning. The absence of either carbohydrates or fatty acids leads to decreased

levels of hepatocyte triglycerides. However, the decrease is sizeable in the absence of fatty

acids (green line in Figure 3.1), implying that fatty acids contributes more to hepatocyte

triglycerides. This could be due to the fact that 1g of carbohydrates correspond to 4 calories

while 1 g of fat is 9 calories (58).
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Figure 3.1: simulation of TGs under normal circumstances with or without food in humans.

3.2 Ingestion or Inhalation of carbon tetrachloride and the

hepatocytes impact

Having validated the proposed outline for dose response (Figure 2.10), we proceeded to

doing simulations in humans.
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3.2.1 Carbon tetrachloride v. hepatic triglyceride in the absence of high

fat diet

We start with the absence of high fat diet (Figure 3.2). In the model, it takes about 70 ppm

of CCl4 in water for someone to develop hepatic steatosis over a period of 30 days. However,

during the same period of 30 days, it takes about twenty times less for someone to develop

hepatic steatosis when the chemical is inhaled. This is because with inhalation, people are

constantly breathing in the chemical that even small amounts add up quickly. We note that

the value inhaled dose 2.95394 ppm is less than the amount that can be smelled in the air,

at least 10 ppm. This can be a problem because people could be unaware.

For the ingestion, we assumed that a person drink two liters of water per day. If someone

were to drink water by following the recommendation of 2.7 liters per day for women and

3.7 liters per day for man (59), it will then take a smaller value of CCl4 ppm. We did not take

into account that the chemical is digested via other means such as: drinks (coffee or tea,

etc.) and food (prepared using the contaminated water).

(a) Ingestion simulation (b) Inhalation model

Figure 3.2: CCl4 vs. Hepatic triglycerides simulation

3.2.2 Carbon tetrachloride v. hepatic triglyceride in the presence of high

fat diet

We also looked at the dose-response of carbon tetrachloride and hepatic triglyceride when

someone is consuming a diet that is high in fat (11 % more). The results are in Figure
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3.3. In the results, we see that over a period of 30 days with 0 ppm of CCl4, the euclidean

norm amount of hepatic triglycerides already exceed the normal one by 60%. This correctly

support the literature that a high fat diet will lead to hepatic steatosis.

In the presence of carbon tetrachloride, the values of triglycerides get even higher. We

note that these triglycerides values will eventually level off to a horizontal asymptotes.

(a) Ingestion (b) Inhalation

Figure 3.3: CCl4 and high fat diet vs. Hepatic triglycerides simulation

3.2.3 More carbon tetrachloride v. hepatic triglyceride results

From previous analysis and results, we know that a combination of VLDL decrease and

srebp-1c increase lead to an increase in hepatic triglycerides. We mentioned along Figure

2.10 that the srebp-1c impacts takes place between acetyl-CoA and free fatty acids in

the hepatocytes. This is due to the suggestion that FFA induce lipid accumulation by up-

regulating SREBP-1c expression through the suppression of PPARα (60).

It is known that the elevation of exogenous free fatty acid level leads to insulin resistance

(IR) in liver (61). The inhibition of SREBP-1c can be effective in improving IR (62). This

appearance of indirect relation of srebp-1c and IR intimate the possibility of CCl4 causing

insulin resistance. We simulated a decrease in VLDL, increase in srebp-1c, IR and their

combination vs hepatic triglycerides, Figure 3.4.
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(a) Rats (b) Humans

Figure 3.4: Plot of the concentrations of hepatocytes triglycerides in rats and humans.

Simulations shown in Figure 3.4 indicate that changing some parameters VLDL as

well IR and SREBP-1c do indeed lead to a rise in the values of hepatocyte triglycerides. In

both rats and humans, the largest deviation from normal hepatic triglycerides is during a

combination of low VLDL value, IR and increase in srebp-1c.

The results are theoretical (because the parameters were changed without logical reason

pertaining to the biochemistry of the body due to the lack of IR data when CCl4 is in the

body). These simulations were done to confirm that adding IR to the model does indeed

results in the rise of the hepatocyte triglycerides in the output.

The trend seen across the liver triglycerides in Figure 3.4 can also be seen across each of

the eight liver compartments, Figure A.1.

3.3 Liver Model in the presence of Ethanol

As mentioned, steatosis can be caused by alcohol consumption as well. Alcohol is highly

prevalent in most societies and more than 50% of Americans consume alcohol at least once

a month, and medical treatment related to alcohol cost more than $166 billions annually

(28). With this knowledge, we wanted to see whether the alteration of the liver model,

we used, exhibit what is known. Like CCl4, ethanol (the chemical in alcohol) is known to

decrease VLDL while increasing srebp-1c (28) (63) (64) (65).

Using the data in Figure 2 of (66), we used MATLAB optimization to increase srebp-1c

while decreasing VLDL (the results are in Figure 3.5a). Using the results from the optimiza-
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tion, we simulated how triglycerides in the liver will behave, Figure 3.5. We observe an

increase of hepatic triglycerides over ten hours of alcohol consumption. The results are not

surprising, but further validate our results of the carbon tetrachloride quantitative systems

toxicology.

(a) Triglycerides in Plasma (b) Triglycerides in Liver

Figure 3.5: Triglycerides in. body as a response to ethanol consumption..

3.4 Sensitivity analysis of some parameters

Angrish et al. (31) provide a review of the biological process involved in hepatic lipid main-

tenance. The complex biological mechanisms that disrupt lipid homeostasis in hepatocytes

is described by four apical key events central to hepatic lipid retention: hepatic fatty acid

(FA) uptake, de novo FA and lipid synthesis, FA oxidation, and lipid efflux. We are interested

in which process play a significant role. The global sensitivity analysis was performed for

parameters that are linked to these four atypical events, Table 3.1 has the results.

1. Lipogenesis: Lipogenesis enclose the processes of fatty acid synthesis and subsequent

triglyceride synthesis (52). It takes place in the adipose tissue, but also in the liver,

muscle, heart and pancreas (67). In this work, we refer to lipogenesis as srebp-1c,

because SREBP-1c has been implied to be a major factor in up-regulating lipogenic

genes in response to carbohydrate feeding (68).
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2. VLDL: As mentioned in 3.2.1, VLDL carries lipids from liver to general blood circula-

tion. In the model there are two types of VLDL. One, we named it hepatic VLDL, that

carries triglycerides from liver to plasma. The other VLDL, we named it plasma VLDL,

is for carrying triglycerides from the plasma to the liver (see Figure 2.9).

3. β -oxidation: Beta-oxidation is a significant source of metabolic energy in the periods

between meals or during high energy demand states, such as exercise (69). Fatty acid

β-oxidation is the breakdown of fatty acids molecules to form acetyl-CoA.

4. Fatty Acids Transport: This is the uptake/output of hepatic fatty acids and free fatty

acids. Fatty acids (FA) act as intermediates in lipid metabolism and as fuel for cells

(70). Fatty acid transporters play a function in insulin resistance (71) (IR can lead to

increased hepatic triglycerides Figure 3.4a)

5. Triglycerides Synthesis: In the model triglycerides are synthesized from 3 fatty acids.

During the synthesis, glyceraldehyde-3-phosphate also contribute to the accumu-

lation of TGs ((29) (Figure 2.9). The fatty acids present in TGs are mainly saturated

(72).

6. Lipolysis: Lipolysis is the biochemical pathway responsible for the breakdown of

complex triglycerides molecules stored in cellular lipid droplets (73). Lipolysis rates

are regulated through hormonal and biochemical signals (74). Adipose tissue lipolysis

is the process leading to the breakdown of triglycerides stored in fat cells and release

of fatty acids and glycerol (75)

7. Insulin resistance: Insulin is a peptide hormone secreted by the β cells of the pancre-

atic islets (76). It maintains normal blood glucose levels by facilitating cellular glucose

uptake, regulating carbohydrate, lipid and protein metabolism . Insulin resistance

is an impaired biologic response to insulin stimulation of target tissues such as: the

liver, muscle, and adipose tissue (77).

In the reference paper (29), sensitivity analysis was performed on the rate constants

to identify the hepatic processes most likely to account for differences in susceptibility to

steatosis. They performed the sensitivity by changing the baseline parameter constants, vb .

These parameters were either increased or decreased by 10% of their reference values. The

changes in the outputs (Cellular Fatty Acid (µM ), cellular Triglyceride (µM ), plasma FFA

(µM ), plasma Triglyceride (µM )) were recorded. The difference between the analysis they
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did and ours is in the method and the manner that we changed the parameters. In our case

we use complex step method and performed global sensitivity. The complex step method

slightly perturbs the parameters. In the global sensitivity, we changed each parameter more

than once, 1000 different values to be exact. We assumed that the parameters values in

the reference were means from normal distribution with standard deviations which were

assumed to be a tenth of their respective means (σ = 0.1µ). The use of global sensitivity

ensures that the sampling of the parameters reflect that of the population, as the parameters

are likely to vary due to diversity in the population.

Figure 3.6: Plot of global sensitivity of some liver parameters

In Figure 3.6, the black line is the mean of all the values of the global sensitivity. The

parameters above the black line are considered to be more sensitive, while the ones below

the line are less sensitive. In this case, we consider these parameters: lipogenesis, beta

oxidation, VLDL in the liver and insulin resistance contribute more to the production of

triglycerides in liver.
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Table 3.1: Global Sensitivity values

Parameters Minimum Average Maximum

FA transport 7.6313 E 4 1.2151 E 5 1.7321 E 5

Insulin Resistance 1.2875 E 5 1.2151 E 5 1.9735 E 5

Lipogenesis 4.1540 E 4 5.6449 E 4 7.1485 E 4

TG Synthesis 8.4274 E 4 8.5395 E 4 8.6921 E 4

Beta Oxidation 1.6060 E 5 1.8870 E 5 2.2139 E 5

VLDL Plasma 9.0023 E 4 1.0561 E 5 1.1430 E 5

VLDL liver 1.2676 E 5 1.7926 E 5 2.2716 E 5

Lipolysis 2.4374 E 4 3.9003 E 4 4.9367 E 4

Adipose Lipolysis 1.7660 E 5 1.9E 9 E 5 2.0224 E 5

3.5 Our contributions

We had one main novel contribution to our quantitative systems toxicology (QST) model for

hepatic steatosis induction by carbon tetrachloride. Our novel contribution was in linking

a PBPK model to the liver model via VLDL and srebp-1c, Figure 2.10. This approach can be

used for other chemicals as well.

We had two other contributions. The first one was the observation that fatty acids

contribute more than carbohydrates to the hepatic triglycerides, Figure 3.1, via simulation.

The other contribution was in determining the sensitive parameters in the production of
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triglycerides: Adipose Lipolysis, beta oxidation, VLDL in the liver and insulin resistance are

the more sensitive processes.

Along with our collaborators, We are preparing two manuscripts, one to accompany

these sensitivity analysis results, and the other on the QST model for hepatic steatosis

induction by carbon tetrachloride.
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CHAPTER

4

ANALYSIS OF IMMUNOGLOBULIN G

PHARMACOKINETICS AND

PHARMACODYNAMICS (PK/PD) IN

INFANT RHESUS MACAQUES

Acquired immune deficiency syndrome (AIDS) was identified as a disease in 1981, and

human immunodeficiency virus (HIV) was isolated as the cause of the disease (78). Since

the discovery, the HIV pandemic has become part of the contemporary global landscape

(79). It affects more than 1 million individuals in the United States (80) and almost 40 million

HIV-infected individuals worldwide (81). In 2015, the World Health Organization estimated

that 2.1 million new HIV infections were acquired (82).

The progression of HIV infection in untreated patients varies widely (83). The conse-

quence of the disease contains three stages: an initial acute infection, a long asymptomatic

period, and a final increase in viral load with simultaneous collapse in healthy CD4+T cell

counts (84). HIV is chronic, but it can be treated with active combination antiretroviral
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therapy (ART) with protease inhibitors, nucleoside-analogue and non-nucleoside reverse

transcriptase (RT) inhibitors (85). Successes of antiretroviral therapy have reduced HIV to a

chronic condition and made the progression to AIDS rare. Potent ART drug combinations

allows a marked and sustained control of viral replication (86) (87). Studies have found that

3-drug regimen has led to a 60% to 80% decline in rates of AIDs, hospitalization, and death

(88). In spite of the effort made by the scientific community, current treatments are unable

to eradicate HIV from infected individuals, therapy must be lifelong, with the possibility of

known and unknown side effects for short and long-term (89). Prolonged ART treatment

has been associated with drug-induced toxicity, emergence of drug-resistant viral strains,

etc. (90). To help manage the toxic effects of therapy and treatment failure, interruptions of

ART treatment are being used (91). This is in spite of the fact treatment interruption may

lead to a significant decline in CD4 T lymphocytes count and a rapid rebound in plasma

viraemia (92). Treatment interruption has also been associated with the reemergence and

predominance of a more sensitive viral population in patients with multi-drug resistant

HIV.

These issues make it crucial for a need of a functional HIV cure, aiming at virological con-

trol, instead of the ART treatment for life. Passive immunization with broadly neutralizing

antibodies of HIV-1 early in infection was found recently to lead to long- term control in a

majority of Simian-Human Immunodeficiency Virus (SHIV) infected macaques, suggesting

that HIV-1 remission may be more widely achievable (93).

Despite significant improvements, HIV/AIDS is a leading cause of infant mortality

in sub-Saharan Africa where over one hundred thousands infants are infected with HIV

annually (94). ART options are scarce and fewer for infants due to the formulation and

pharmacokinetic limitations and the risk of resistance after exposure to drugs used to pre-

vent mother-to-child transmission (95). One critical issue that the medical community was

facing was the importance of the timely initiation of ART in HIV-infected infants. The World

Health Organization (WHO) pediatric ART guidelines recommended that ART initiation in

HIV-infected infants had to be deferred until specified clinical or immunologic criteria were

met (96). This decision was because the majority of children who achieve durable suppres-

sion of HIV-1 replication early (before three months) lack persistent HIV-1 immunoglobulin

G (IgG) antibodies (97). Early ART rapidly removes the antigenic stimulation needed to

develop and sustain an HIV-1-specific antibody response (98).

This decision was however unsatisfactory to the Children with HIV Early Antiretroviral

(CHER) since more than a third of infected and untreated infants die during infancy and

about 50% by 2 years of age (95). Furthermore, infants who started ART at 6–12 weeks of
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age, before meeting the WHO criteria, had a 76% lower mortality rate compared to those

whom ART was deferred (96). In 2006, WHO guidelines recommended immediate initiation

of ART in all infants who are identified to be HIV+ (96). The issue of balancing the quality

of life and maintenance of immunology in children is of importance given that globally

there are over 2 million children who are infected with HIV (99).

Our project has two goals:

1. Compare the pharmacokinetics of the antibodies in data obtained by starting the

administration of ART at different times,

2. Devise a model that predicts how antibodies responses develop, especially in infants

rhesus macaques given a SHIV infection.

Our objectives will be accomplished by using three sets of longitudinal data, whose

observations are viral load and antibodies. The data consists of SHIV-infected infants rhesus

macaques, that were orally transmitted using breast milk . Each data set has 10 different

subjects. The difference in the data groups is the time of antiretroviral therapy initiation.

The first group, referred to as early ART, consists of ten animals that were initiated on ART

four days post-infection. The second group, referred to as intermediate ART, consists of

animals that were initiated on therapy two weeks post-infection. And the last group, or

late ART, is of animals whose ART initiation was eight weeks post-infection. Each of these

rhesus macaques were given a triple daily ART regiment of tenofovir
�

20
mg
kg

�

, emtricitabine
�

30
mg
kg

�

, and dolutegravir
�

2.5
mg
kg

�

. The subjects were treated with a ART until they were

60 weeks old before interruption. They were kept for 24 more weeks post ART interruption,

to analyse viral load rebound, before necropsy.
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CHAPTER

5

PHARMACOKINETIC (PK) ANALYSIS OF

GP41 AND GP120 ANTIBODIES

We are interested in comparing the pharmacokinetics of the antibodies in data obtained

by starting the administration of ART at different times. Our goal is to draw conclusion on

whether certain PK metrics are similar or different.

5.1 Non-Compartment Analysis

Non-compartmental analysis (NCA) is a commonly used technique of pharmacokinetic

data analysis (100). The NCA method has few underlying assumptions compared to the

model-based approaches, and it can be readily be automated (101). The method practically

relies on algebraic equations to estimate PK parameters (102). NCA normally applies to first

order (linear) models. It, however, is often utilized in assessment of pharmacokinetics’ drug,

which are nonlinear, when multiple doses levels are administered. The NCA can determine

pharmacokinetics parameters such as Tmax, Cmax last, area under the curve (AUC), half-life

λz , etc.
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The PK metrics that are of interest to our project are: Cmax, Tmax, AUC, and the terminal

half-life.

• Cmax is the maximum observed concentration. Cmax is usually utilized to glean

insight into absorption rate of a drug (103). In case of HIV, the maximum observed

concentration coupled with the time of ART initiation can inform us whether or not

the initiation time is prudent.

• Tmax is the time of the observed maximum concentration. This time, given what we

know about immortality in children not given treatment, is crucial in determining

whether or not waiting for ART initiation could be harmful to children who are HIV+.

• Terminal half-life is the time required to divide the plasma concentration by two after

reaching pseudo-equilibrium. Understanding the concept of half-life is useful for the

steady-state concentrations for any specific drug (104), or antibodies in our case.

• AUC last refers to the area under the concentration curve from the beginning of the

interval to the last concentration observed. By analyzing AUC over time rather than

individual concentration measurements, a more accurate estimate of the overall

antibodies is obtained (105).

5.1.1 Area under the curve

The area under the curve (AUC) is a measure of exposure in toxicological studies. NCA has

no need of assumption of a specific compartment model for a drug or a metabolite. It uses

the trapezoidal rule or the log-linear trapezoidal rule to measure the plasma concentration

curve (101).

The trapezoidal rule uses the formula learned from calculus for estimating the area

under the curve,

AU C tl a s t
0 =

∆t

2

n
∑

i=1

(Ci +Ci+1). (5.1)

The magnitude of the errors depends on the size of the width of the trapezoid,∆t. It

also depends on the curvatures of the profile as well. The trapezoidal method tends to over-

estimate the area during the descending phase under the assumption of the elimination

being first-order. When the size of∆ t is large in relation to the half-life, the errors associated

with the over/underestimation are even more pronounced. To avoid the over-estimation
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of the linear-trapezoidal method, the log-linear trapezoidal method is sometimes used.

The log-linear trapezoidal method rely on the exponential decline of the concentrations as

detailed below,

Ci+1 =Ci e −K (ti+1−ti ) =Ci .e −K∆t , (5.2a)

K =
ln(Ci/Ci+1)
∆t

, (5.2b)

AU C i+1
i =

Ci −Ci+1

ln(Ci/Ci+1)
∆t , (5.2c)

AU C tn
0 =

n
∑

i=1

Ci −Ci+1

ln(Ci/Ci+1)
∆t .

(5.2d)

In equation (5.2),∆t is the time step, K is the elimination rate and AU C i+1
i is the AUC

within a time interval given by the difference between the concentrations divided by the

slope K . In practice, a mixture of both linear and log-linear trapezoidal methods is used. The

linear trapezoidal is used in the ascending or constant concentrations while the log-linear

trapezoidal is used when concentrations are ascending.
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Table 5.1: Area under the curve for intermediate and Late data

Late Data Intermediate Data

Animal ID gp41 gp120 Animal ID gp41 gp120

RIm19 1.62 E 5 3.03 E 5 RFz19 1.040 E 3 1.09 E 3

RJm20 1.20 E 5 9.52 E 5 RKa20 3.42 E 4 4.38 E 3

RKg19 1.17 E 6 1.87 E 6 ROz19 6.43 E 3 3.41 E 3

RLg19 2.22 E 5 2.26 E 6 RQz19 1.96 E 4 5, 13 E 4

RQc19 1.28 E 5 2.02 E 6 RZm20 8.49 E 4 2.00 E 5

RRm19 4.02 E 5 2.16 E 6 RGg20 2.47 E 4 3.22 E 4

RTp19 9.14 E 5 2.76 E 6 RYy19 1.79 E 3

RVh19 5.41 E 5 2.19 E 6 RCa20 5.88 E 4 4.46 E 4

RVr19 3.10 E 5 2.21 E 6 RJa20 2.47 E 4 4.84 E 4

RWc19 3.45 E 5 1.00 E 6 RUy19 8.02 E 3

NCA was performed to estimate the AUC of the gp41 and gp120 antibodies in both the

late ART and intermediate ART, Table 5.1. The AUC values appear larger in the late ART

compared to intermediate. We observe that in the intermediate ART, the AUC for subjects

RYy19 and RUy19 are empty. This is because all the data corresponding to these subjects are

censored, the antibodies never developed to the level that is detected by the instrument.
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5.1.2 Maximum Concentration

We are also interested in the maximum concentration of the antibodies. This is the maxi-

mum concentration reached by each animal in the longitudinal data, Table 5.2. The results

for subjects RYy19 and RUy19 in the intermediate data are again empty, because all data

points are censored.

Table 5.2: Maximum concentration for Intermediate and Late data

Late Data Intermediate Data

Animal ID gp41 gp120 Animal ID gp41 gp120

RIm19 8.50 E 3 3.48 E 4 RFz19 1.60 E 2 2.62 E 2

RJm20 1.40 E 4 3.08 E 5 RKa20 4.71 E 3 4.07 E 2

RKg19 1.31 E 5 1.61 E 5 ROz19 3.69 E 2 3.03 E 2

RLg19 1.42 E 4 2.07 E 5 RQz19 1.05 E 3 7.25 E 2

RQc19 6.71 E 4 1.84 E 5 RZm20 1.45 E 3 6.16 E 3

RRm19 6.87 E 4 3.08 E 5 RGg20 1.51 E 3 2.59 E 3

RTp19 4.09 E 4 5.74 E 5 RYy19 2.53 E 2

RVh19 7.02 E 4 1.85 E 5 RCa20 4.910 E 3 1.61 E 3

RVr19 1.44 E 4 2.47 E 5 RJa20 2.31 E 3 2.25 E 3

RWc19 3.13 E 4 1.42 E 5 RUy19 6.36 E 2
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5.1.3 Time to reach maximum concentration

The time to reach the maximum concentration is displayed in Table 5.3. This is the time

corresponding to the values in Table 5.2, time of maximum concentration. Once again the

subjects RYy19 and RUy19 are empty because their antibodies were always below the limit

of detection.

Table 5.3: Time to reach maximum Concentration for intermediate and Late data

Late Data Intermediate Data

Animal ID gp41 gp120 Animal ID gp41 gp120

RIm19 8 10 RFz19 4 2

RJm20 6 8 RKa20 4 4

RKg19 8 9 ROz19 4 8

RLg19 9 9 RQz19 8 8

RQc19 10 10 RZm20 28 8

RRm19 8 8 RGg20 8 8

RTp19 8 8 RYy19 8

RVh19 6 6 RCa20 4 16

RVr19 6 10 RJa20 8 4

RWc19 8 10 RUy19 4
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The values of AUC, Cmax, and Tmax were determined by using PkAnalix, an application

of MonolixSuite.

5.1.4 Terminal Half-life

Terminal half-life is the time required to divide the plasma concentration by two after

reaching pseudo-equilibrium. To determine the half-life, the terminal slope of the curve

known as λz is first calculated. To ideally determine λz , 3-4 half-lives should have elapsed.

Normally, this is not usually possible, then a minimum of 3-4 observations is required (101).

λz is related to steady state toward the end of data. The half-life is then given by,

t1/2 =
ln(2)
λz

, (5.3)

The first thing that we did in determining the terminal half-life was to mimic the results

by another group that used the late data. The half-life of more than 60% of the data was

similar to the results obtained by the other group, which used a different programming

platform. Looking at the plots generated by Pkanalix, we decided to change the number of

points, chosen by PkAnalix by default, by adding or reducing to the points used to generate

the half-life. After changing the points needed for the terminal slope, the results matched

those of the other groups. However, changing the points to get the results we wanted is a

bad strategy as it hinders reproducibility.

Regardless, we tried the NCA method with the data obtained from the macaques that

were started on ART after two weeks (intermediate group). However, the results generated

did not make sense to the experts. The assays were redone, but still the results were still

unsatisfactory.

Upon reflection, we realized that NCA was not the right technique to be used for this

problem for several reasons. The problem is that we thought NCA could be used to estimate

the terminal half-life since it works in the study of drugs. It is reasonable that it works in

drugs because once the drugs are halted, they eventually clear out of the body after a certain

period of time. This, however, is not the case with antibodies. They do not completely clear

out, but the concentration goes towards a horizontal asymptote. There were other issues as

well when it comes to using NCA to determine the terminal half-life of the antibodies. This

is because this was not a typical Pk study: antibodies are developed differently in different

individuals. The antibody response is dynamic, and the plasma concentration may depend

on factors other than clearance.
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5.2 Biphasic Model

Accompanying the realisation that the non-compartmental analysis was a wrong method

to determine the terminal half-life, we looked into using the biphasic (106) (107), because

the decay of antibodies in the data appears to have two different phase. A biphasic model

is expressed with two exponential decay rates as follows,

A(t ) = B e −δt +C e −γt (5.4a)

A(t ) = A0 r e −δt +A0 (1− r )e −γt (5.4b)

In the equation above, the parameters are defined as t : age of the macaques, δ: the

fast decay rate of antibodies, γ: the slow decay rate of antibodies, A0: the initial antibody

concentration, and A0 = A(t = 0) = B +C , and r = B
(B+C ) . In (5.4), it is assumed that the initial

time corresponds to the time of the maximum concentration, and that the concentration

keeps decline. But, this is not true with antibodies. Patients do not develop antibodies until

post-infection. As time passes by, the concentration of antibodies increases, but it generally

starts declining when subjects are put on ART. In the model, the post peak half-life and

the terminal half-life can respectively be calculated using: (t1/2 =
ln 2
δ ) and (t1/2 =

ln 2
γ ). In

accordance with (106), we made the following assumptions about the distribution of the

parameters, A0,δ,γ: log-normal and r : logit-normal.

5.2.1 Late Antiretroviral Therapy Initiation

We start with the results from the late ART initiation. In this group we make the assumption

that the peak concentration occurs at week 8, since we expect to see a decline after ART

initiation. Using this logic, initial antibody concentration A0 is defined as the concentration

at week 8. The plots generated from the estimated parameters are displayed in Figure 5.1.

The biphasic fits in Figure 5.1 are reasonable and satisfactory. In Figure 5.2 and Figure

5.3, we do a side by side comparison of the biphasic fit against the plots obtained from

the NCA estimation of the terminal half-life. For gp41, subject RVr19 used all the points in

NCA determination of terminal half-life. There is an obvious problem with the estimation

because the antibodies start increasing after week 40, which NCA cannot handle as the

technique expect concentration to keep decreasing. For the gp120, we see that subjects
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RJm19 and RKg19 used only the last three points to estimate the terminal slope (and the

terminal half-life). In both subjects, there is a concentration decline after the peak followed

by a slight increase (47 weeks for RJm19 and week 44 for RKg19) before the concentration

starts decreasing again. The increase should not have affected the results because it is one

data point for both subjects, and the increase was not dramatic.

(a) gp41 biphasic result (b) gp120 biphasic results

Figure 5.1: Fit of antibodies using Biphasic equation
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(a) gp41: biphasic (b) gp41: NCS

Figure 5.2: (a) biphasic vs. (b) NCA gp41 for Late initiation ART data.

(a) gp120: biphasic (b) gp120: NCA

Figure 5.3: (a) biphasic vs. (b) NCA gp120 for Late initiation ART data.

The terminal half-life resulting from the biphasic fit are in Table 5.4 and Table 5.5. In
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both gp41 and gp120 antibodies, the results are not surprising. We expected the post-peak

half-life to be shorter, because the concentration is decaying at a higher rate, than the

terminal half-life.

Using the estimated parameters, we can calculate B and C and use them to find the

phase transition time (the time that switches from short-lived to death rates to long-lived

death rates of the antibodies). The phase transition time is defined by the equation below,

Tt =
log(Bδ)− log(C γ)

δ−γ
. (5.5)

The phase transition times should be more than the the post-peak half life and less than

the terminal half-life. And our calculations were on par with the expectation, Table 5.6 and

Table 5.7
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Table 5.4: Half-life gp120 Late Data

Animal ID delta gamma Post peak half-life Terminal half-life

RIm19 0.503 0.0412 1.378 16.843

RJm19 0.663 0.0727 1.046 9.532

RKg19 0.540 0.0426 1.285 16.262

RLg19 0.552 0.0541 1.257 12.817

RQc19 0.537 0.0157 1.290 44.017

RRm19 0.481 0.0286 1.442 24.259

RTp19 0.451 0.0387 1.536 17.899

RVh19 0.582 0.0207 1.192 33.502

RVr19 0.437 0.0276 1.585 25.115

RWc19 0.459 0.0285 1.509 24.357
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Table 5.5: tab: Half-life gp41 Late Data

Animal ID delta gamma Post peak half-life Terminal half-life

RIm19 0.559 0.0284 1.240 24.425

RJm19 0.551 0.0417 1.258 16.607

RKg19 0.573 0.0325 1.209 21.296

RLg19 0.568 0.0253 1.221 27.354

RQc19 0.549 0.0236 1.264 29.358

RRm19 0.557 0.0307 1.243 22.553

RTp19 0.570 0.0162 1.216 42.840

RVh19 0.539 0.0333 1.287 20.800

RVr19 0.554 0.0214 1.251 32.436

RWc19 0.547 0.0378 1.267 18.347
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Table 5.6: The remaining parameters from the biphasic model for gp120: Late Data

Animal ID r B C A0 Tt

RIm19 0.846 5.45 E 4 4.61 E 4 8.36 E 3 3.96

RJm19 0.896 1.790 E 5 1.61 E 5 1.86 E 4 3.21

RKg19 0.782 2.09 E 5 1.64 E 5 4.55 E 4 3.34

RLg19 0.778 2.65 E 5 2.06 E 5 5.88 E 4 3.12

RQc19 0.834 2.26 E 5 1.88 E 5 3.76 E 4 4.28

RRm19 0.865 2.72 E 5 2.35 E 5 3.67 E 4 4.50

RTp19 0.891 4.03 E 5 3.59 E 5 4.37 E 4 4.80

RVh19 0.785 1.70 E 5 1.33 E 5 3.65 E 4 3.58

RVr19 0.855 2.84 E 5 2.43 E 5 4.12 E 4 4.81

RWc19 0.924 1.80 E 5 1.66 E 5 1.37 E 4 5.32
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Table 5.7: The remaining parameters from the biphasic model for gp41: Late Data

Animal ID r B C A0 Tt

RIm19 0.655 1.18 E 4 7.76 E 3 4.08 E 3 2.97

RJm19 0.912 1.73 E 4 1.58 E 4 1.52 E 3 4.20

RKg19 0.920 1.32 E 5 1.21 E 5 1.05 E 4 4.26

RLg19 0.799 1.53 E 4 1.22 E 4 3.07 E 3 3.60

RQc19 0.741 8.48 E 4 6.28 E 4 2.19 E 4 3.47

RRm19 0.919 6.25 E 4 5.75 E 4 5.04 E 3 4.40

RTp19 0.613 3.98 E 4 2.44 E 4 1.54 E 4 3.16

RVh19 0.916 6.36 E 4 5.82 E 4 5.34 E 3 4.44

RVr19 0.752 2.00 E 4 1.50 E 4 4.96 E 3 3.56

RWc19 0.838 4.48 E 4 3.76 E 4 7.25 E 3 3.68

5.2.2 Intermediate Antiretroviral Therapy Initiation

In this section, we redo the same calculations done in the previous section. We, however,

use the data from the macaques that were started on ART at two weeks post-infection. We

fit the data, Figure 5.4 and Figure 5.5, and estimated the terminal half-life, Table 5.8 and

Table 5.9.
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Figure 5.4: Fit of gp41 antibodies using Biphasic equation for intermediate data

In Figure 5.4, the fit of subject RCa20 appears strange and not at all exponential in

the way that one would expect. That appearance is because the estimation of parameters

is influenced by the last data point. We looked at the Table 5.8 to analyze whether its

half-life estimate are abnormal, compared to other subjects. The terminal half-life value,

159.82 weeks, is neither the highest not the lowest. However, the post-peak half-life is more

than twice the amount of 7 out of 9 other subjects. Looking at the remaining estimated
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parameters r , r 1= 1.00944, we realized that there was an issue because the value is assumed

to be exclusively less than 1, 0< r < 1. Treating the last data point of RCa19 as an outlier

yielded better fit, but we kept the datum as there was nothing wrong with the assay that

we were aware of. The parameters for the other parameters are in Table 5.11. In the case of

subject RCa20, the values are left intentionally blank due to the last data point.

Table 5.8: tab: Half-life gp41 Intermediate Data

Animal ID delta gamma Post peak half-life Terminal half-life

RFz19 0.253 0.00410 2.739625548 168.927

RKa20 0.237 0.00267 2.929059057 259.781

ROz19 0.147 0.00260 4.716634552 266.176

RQz19 0.177 0.00268 3.921358553 258.533

RZm20 0.428 0.00298 1.621192131 232.797

RGg20 0.240 0.00275 2.892512281 251.614

RYy19 0.226 0.00801 3.073796155 86.565

RCa20 0.075 0.00434 9.209263383 159.820

RJa20 0.145 0.00775 4.794079432 89.390

RUy19 0.158 0.00640 4.390731257 108.302
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(a) gp120 biphasic result (b) gp120 biphasic results

Figure 5.5: Fit of gp120 antibodies using Biphasic equation for intermediate data

The biphasic model for the fitting of gp120 on intermediate ART data, Figure 5.5, was

done twice. The first time it was done on with the output being on the log10 scale, Figure

5.5a. The biphasic model data fits appear to be linear with the exception of subjects RFz19

and ROz19, whose data points are dominated by the censored intervals. The fits are still

biphasic, with two exponential decay, Table 5.9. In Figure 5.5b, the same data is fit (the

y-axis is no longer on the log10 scale), we then see the appearance of two exponential decay.

The estimated parameters, in both situations, were practically the same. Table 5.10 has

the estimated parameter, r , as well as the remaining parameters that were algebraically

calculated from the estimated parameters.
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Table 5.9: Half-life gp120 Intermediate Data

Animal ID delta gamma Post peak half-life Terminal half-life

RFz19 0.774 0.000120 0.895 5777.333

RKa20 0.100 0.000123 6.898 5614.755

ROz19 0.186 0.000183 3.728 3782.151

RQz19 0.0395 0.000210 17.529 3300.842

RZm20 0.0137 0.000142 50.476 4888.720

RGg20 0.0694 0.000101 9.983 6873.528

RYy19

RCa20 0.0343 0.000119 20.218 5848.850

RJa20 0.0622 0.000143 11.149 4854.244

RUy19

Overall the values of the terminal half-life are higher in the intermediate data compared

to the late data. This is because the concentration of antibodies in intermediate ART is

smaller that after rapid antibodies decline the values appear to be leveled up. When values

that give rise to the second exponential decay appear almost horizontal (as if not changing),

the slow decay rate of antibodies, γ, is close to zero which yields to higher values of the

half-life.
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Table 5.10: tab: The remaining parameters from the biphasic model for gp120: Intermedi-
ate Data.

Animal ID r B C A0 Tt

RFz19 0.9982 1750 3.1394 1757 8.4709

RKa20 0.9982 639 1.1772 640 56.2458

ROz19 0.9982 2000 3.6904 2006 30.9062

RQz19 0.9982 2450 4.5278 2457 127.3428

RZm20 0.9982 5501 10.0799 5511 347.5295

RGg20 0.9981 2960 5.5395 2964 80.276

RYy19

RCa20 0.9981 1670 3.0573 1673 152.1698

RJa20 0.9981 3010 5.6187 3019 86.5445

RUy19
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Table 5.11: tab: The remaining parameters from the biphasic model for gp41: Intermediate
Data.

Animal ID r B C A0 Tt

RFz19 0.9856 414 6.0518. 420.118 14.5646

RKa20 0.9874 2279 29.0467 2308.41 16.4230

ROz19 0.9725 606 17.1164 622.731 22.8627

RQz19 0.9766 4418 105.678 4523.71 19.7628

RZm20 0.9666 25870 893.172 26760.9 8.5237

RGg20 0.9719 6463 187.161 6650.59 14.6813

RYy19 0.9923 1090 8.4253 1098.62 16.3755

RCa20 1.00944

RJa20 0.9780 4938 111.317 5048.86 21.3223

RUy19 0.9862 1239 17.3824 1256.59 21.4248
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5.3 Comparison of the the three stages of ART administra-

tion

5.3.1 Statistical Test

One-way analysis of variance (ANOVA)

One-way analysis of variance (ANOVA) is a statistical test designed to test whether the

mean in more than two independent groups differ. The ANOVA seeks to test if the null

hypothesis (the means among the groups being evaluated are equal). In the absence of the

null hypothesis, the ANOVA test implies that at least one mean differs from the rest of the

group.

ANOVA is based on assumptions that the errors have equal variance as well as indepen-

dent and normally distributed. In violation of these assumptions, the test is not reliable.

The information gleaned from ANOVA is the presence of evidence that at least one of the

group is significantly from the others. In case of more than two groups, it is desirable to

simultaneously compare all the pairs. When doing multiple comparisons in ANOVA, there

are several follow-up tests that can inform exactly which condition/group differs from each

other (108).

Kruskal–Wallis Test

The Kruskal-Wallis H test (sometimes also called the "one-way ANOVA on ranks") is con-

sidered the alternative to the one-way ANOVA. This is because the Kruskal–Wallis Test

is a rank-based non-parametric test that, like ANOVA, can be used to determine if there

are statistically significant differences between two or more groups of an independent

variable on a continuous or ordinal dependent variable (109). The non-parametric part

of the Kruskal–Wallis Test means that there is no assumption that the data possesses a

particular distribution. To avoid making wrong assumptions regarding our data, we use the

Kruskal–Wallis Test.
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5.3.2 Comparison Results

Glycoprotein 41

In this section, we compare results from the NCA: AUC, Cmax and Tmax for gp41 as well as

the terminal half-life (obtained from the biphasic model) for the intermediate and late ART

initiation. We start by displaying the box plot. A boxplot displays a standardized distribution

of data based on a five number five quartiles (“minimum”, first quartile (Q1), 25 percentile

(Q2), median (Q3), 75 percentile (Q4), and maximum (Q5)). Box plots can also divulge

information if the data is symmetrical or how tightly it is grouped. By scanning Figure 5.6,

we see there is a possibility that median as well as the overall distribution for the AUC, Cmax

and half-life for the late and intermediate stages appear different.

(a) Boxplot of AUC (b) Boxplot of Cmax

(c) Boxplot of half-life (d) Boxplot of Tmax

Figure 5.6: Box plots of gp41 for the AUC, Cmax, half-life and Tmax.

The examination of Figure 5.6 is not enough to conjecture about the similarities or
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differences between the two datasets. We need a formal way to say with certainty whether

or not our intuition is correct. We use the Kruskal–Wallis Test to draw statistical conclusion,

Table 5.12. From the results table, the null hypothesis is rejected for Cmax, AUC and half-

life. This means that the means of the PK parameters of gp41 for the animals who were

introduced to ART after 8 weeks and 2 weeks are significantly different, except for the the

time it takes to reach the maximum concentration.

Table 5.12: Kruskal-Wallis Test for gp41

Df χ2 p-value

AUC 1 14.286 0.0001571

Cmax 1 14.286 0.0001571

Half-life 1 14.286 0.0001571

Tmax 1 2.0762 0.1496

Glycoprotein 120

In this section we redo the analysis done with Glycoprotein 41 . By looking at Figure 5.7, we

notice that the medians and distributions appear different for the Late and Intermediate

in all categories: AUC, Cmax, half-life and Tmax. We perform the Kruskal-Wallis test to

confirm the results of the box-plots, Table 5.12. The results rejects the null hypothesis and

state that the means of the two groups are statistically different.
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Table 5.13: Kruskal-Wallis Test for gp120

Df χ2 p-value

AUC 1 6.6269 0.01004

Cmax 1 12.645 .0003766

Half-life 1 14.286 0.0001571

Tmax 1 6.626 0.01004
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(a) Boxplot of AUC (b) Boxplot of Cmax

(c) Boxplot of half-life (d) Boxplot of Tmax

Figure 5.7: Box plots of gp120 for the AUC, Cmax, half-life and Tmax.
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CHAPTER

6

MODELING VIRAL LOAD AND

ANTIBODIES

The purpose of this chapter is to develop a mathematical model that can predict how

antibodies responses develop in infants rhesus macaques subject to a SHIV infection, in

the late ART treatment group.

6.1 Parameter Estimation

The parameters for the HIV model were estimated using a non-linear mixed effect model.

We opt to use the NLMEM because we are interested in doing the analysis of repeated

longitudinal measured data of ten rhesus macaques. We use MONOLIX to estimate the

parameters. The output of each parameter estimation will have it respective standard

deviation. Our output of interests, log10 of the viral load and log10 of antibodies, will also have

associated residual errors. The parameters were estimated using the following five steps:

model selection, sensitivity analysis, K-means clustering, identifiability and parameter

fitting of the sensitive identifiable parameters.
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6.1.1 Model Selection

There are several models in the literature that describe infected diseases. We, first, intro-

duce a simple model (6.1) (110). This model describes three variables: uninfected cells T ,

infectious cells I , and viral load V . In the model, T , uninfected cells, proliferate at a rate λ,

die at rate d and are converted to infectious cells at a rate βV . Infected cells die at a rate δ.

The death of infected leads to the production of viral particles at a rate πI . The free virus

particles decay at a rate c (111).

d T

d t
=λ−d T −βV T (6.1a)

d I

d t
=βV T −δI (6.1b)

d V

d t
=πI − c V (6.1c)

In the equations above, there is no antiretroviral therapy, ART, to slow down the virus. In

the presence of ART, (6.1a & 6.1b) are modified to incorporate the presence of the disease

therapy by multiplying the conversion rate βV T , from uninfected cells to infected cells,

to (1−ε). The parameter ε describes the drug efficiency and has range 0≤ ε≤ 1. We also

consider the presence of the immune response Z (110). The immune response decreases

the viral load and proliferates with respect to antigens at a rate r I Z . The decay rate of the

immune response is given by the rate µ (6.2).

d T

d t
=λ−d T −β (1−ε)V T (6.2a)

d I

d t
=β (1−ε)V T −δI − s I Z (6.2b)

d V

d t
=πI − c V (6.2c)

d Z

d t
= r I Z −µZ (6.2d)

We assume that antibodies are the immune response in (6.2). The antibodies in the

model are of an adaptive (acquired) immune response, which are highly specific for a par-

ticular pathogen (112). We modified the model to properly include a simplified mechanism
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of antibodies to remove the virus. The body’s immune system is capable of producing

an immune response via B-cells. The virus prompts the B-cell to divide and mature into

antibody secreting cells called plasma cells. The plasma cells are fundamental in secret-

ing antibodies at a much faster rate. However, large B-lymphocytes also secrete antibody,

though at a lower rate. The antibodies flow in the blood to bind to the original antigen.

Incorporating this mechanism in the model, the model is as described in Figure 6.1 and (6.3)

for its mathematical interpretation. The meaning of the parameters and their respective

units are in Table 6.1

d T

d t
=λT

�

1−
T + I

Tm

�

−β (1−η)V T (6.3a)

d I

d t
=β (1−η)V T −δI − s ∗ I ∗A (6.3b)

d VI

d t
=πI − c VI −kp ∗A ∗VI (6.3c)

d VN I

d t
= kp ∗A ∗VI − cni VN I (6.3d)

d B

d t
= pi ∗B ∗VI +pni ∗B ∗VN I +γ1 ∗u ∗B ∗ (1−

B

B m
)−γ2 ∗ (1−u ) ∗B −µ1B (6.3e)

d P

d t
= γ2 ∗ (1−u ) ∗B −µ2 ∗P (6.3f)

d A

d t
= r1 ∗B + r2 ∗P −µ3A−kp ∗A ∗VI (6.3g)

η is drug efficiency: η=







1 With ART

0 No ART

u (0≤ u ≤ 1) is the fraction of B-cells

(1−u ) is the fraction that differentiate into the plasma cells

In equation (6.3), we assume that ART is 100 % effective. The parameters pi and pni are

the rate that induces the formations B-cells from the infectious and non-infectious viral

load. The B-cells proliferate with constant birth rate γ1 and differentiate into plasma cells at

a constant rateγ2. The proliferation of B-cells are multiplied by the logistic equation because

memory B-cells never wanes and also cannot be sustainably boosted. The death rate of

the large B-cells and the plasma cells are respectively µ1 and µ2. There is an assumption of

γ1 >µ1 as an insurance of a net growth in the large B-cells population. Due to the clinical
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knowledge that both the B-cells and the plasma cells produce antibodies with plasma cells

secreting them at a much faster rate than the B-cells, it is assumed that r1 < r2 (113). µ3 is

the death rate of antibodies.

Figure 6.1: Schematic of antibodies and viral load model
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Table 6.1: Parameters definition and units of the HIV model

Parameter Definition units

λ T-cells proliferation rate week−1

Tm T-cells proliferation rate cells mL−1

β infectivity rate constant mL week−1

δ infected cell killing rate week−1

s rate of Infected cells removed by antibodies cells−1 mL week−1

π virus production rate week−1

c virus clearance rate week−1

kp antibody binding rate mL week−1

cni Non-infected virus clearance rate week−1

pI B-cells production from infectious virus week−1

pN I B-cells production from non-infectious virus week−1

γ1 maximum proliferation of B-cells week−1

Bm B-cells carrying capacity cells mL−1

γ2 rate of change from B-cells to plasma cells week−1

µ1 death rate of B-cells weeks−1

µ2 death rate of B-cells week−1

r1 rate Antibodies production from B-cells week−1

r2 rate Antibodies production from plasma cells week−1

µ3 Plasma cells decay rate week−1

6.1.2 Sensitivity Analysis

Subsequent to selecting a model and estimating all the parameters, the sensitivity analysis

was performed. We use the complex step method because we wanted to take a small step

size, h = 10−16 and avoid cancellation error. We assumed the parameters estimated to be

true, and proceeded to performing the global sensitivity analysis, Figure 6.2, assuming the

mean and standard deviation are the population parameters and the standard deviation

obtained from MONOLIX NLMEM. For the sake of simplicity, we ignored the viral load,

whose parameters change depending on whether they are simultaneously being estimated
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with gp41 or gp120. We only looked at the sensitivity of gp120 and gp41.

6.1.3 K-means clustering

There are cases where the sensitivity values obtained from (1.16) are nicely spread out,

Figure 1.4. If so, we can use k-means clustering, with k = 3 for three clusters, to classify

the sensitivity coefficients as ultra sensitive, sensitive, and non-sensitive, Figure 1.5. In

such cases, we consider the sensitive parameters to be those that are ultra-sensitive and

sensitive.

gp120

Our goal was to classify the sensitivity coefficients into three clusters: non-sensitive, sensi-

tive, and ultra-sensitive. However, the values are not nicely dispersed. We, nonetheless, tried

to use k-means with three clusters, only two parameters values were considered sensitive,

Figure 6.3a. Two parameters values being sensitive is not necessarily an issue. However,

from our global sensitivity plot, Figure 6.2a, we have three values that are above the mean

line (which is another technique that has been used to differentiate between sensitive and

non-sensitive parameters). We alternatively used the k-means clustering where k = 4 to

see if it will differentiate between the third and fourth point, which are both close to the

mean line. In Figure 6.3b, we notice that the third and fourth point are then separated.

We, therefore, decided to keep the k-means with four clusters, where three parameters are

sensitive (because it can also be justified by taking the parameters above the mean line).

gp41

For gp41, we use k-means clustering to divide the sensitivity values into three clusters,

Figure 6.4a. Cluster 1 and cluster 3 appear peculiar because by visually inspecting the figure,

they seem to be of equal values. This is because the first sensitivity value in Figure 6.4a,

corresponding to the parameter r1, is considerably larger compared to the rest of them

(that when graphed all the other sensitivity values appear to be equal). We plot the rest of

the parameters values without r1, Figure 6.4b, we notice that the three points (that are in

cluster 3 in Figure 6.4a) are a bit removed from the rest of them (those in cluster 1 in Figure

6.4a). Hence, we conclude that there are four sensitive parameters, those in cluster 2 and

cluster 3.
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(a) gp120.

(b) gp41.

Figure 6.2: Plot of sensitivity values.
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(a) gp120.

(b) gp120.

Figure 6.3: Plot of sensitivity clusters: gp120.

91



(a) Plot of sensitivity clusters: gp41

(b) sensitivity plot by removing the parameter r1

Figure 6.4: Plot of sensitivity clusters: gp41.

6.1.4 Identifiability

Knowing the sensitive parameters in gp41 and gp120, we carry out the identifiability analy-

sis.
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gp120

In Figure 6.3b, the first three parameters in the sensitivity plot(Vi 0,δ, andπ), are either

ultra-sensitive or sensitive. We create a sensitivity matrix of these parameters using their

respective vectors obtained from the local sensitivity analysis. While performing the identi-

fiability, we discover that all three parameters are identifiable.

On the other hand, looking at Figure 6.4a, we see that the first four parameters (r1, ζ2, c1, and u

) are considered sensitive. We once again create a sensitivity matrix of these parameters

using their respective vectors obtained from local sensitivity analysis. While performing

the identifiability, all the eigenvalues in the sensitivity matrix were greater than 10−4, which

was taken to be our threshold.

In both case, we proceeded into running the model into MONOLIX once again. This

time around, we fixed all parameters considered non-sensitive or non-identifiable, Table

6.2. Given that the parameter r2 > r1 and γ1 >µ1 in(6.3), we set: r2 = r1+ζ2 and γ1 =µ1+ζ1.
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Table 6.2: Parameters that are non-sensitive or non-identifiable. NA refer to sensitive and
identifiable parameters

Parameter gp120 gp41

T0 3.54646 E 7 1.646432 E 8

λ 5.78368 E −8 1.54731 E −8

T m 6.57571 E 9 1.55652 E 8

β 2.44363 E −4 1.09338 E −3

δ NA NA

s 2.86421 E −3 3.94034 E −3

π NA 9.56078 E −3

ci 1.30526 NA

k p 5.78368 E −6 1.19002 E −5

cni 6.81887 E −3 6.46100 E −3

pi 8.76884 E −1 5.317143 E 1

pni 4.21905 E −1 8.14621 E 1

γ2 6.50842 E −1 4.74917 E −1

µ1 5.78367 E −8 1.87742

µ2 3.41962 E −1 9.690769 E −2

µ3 1.526737 E −1 1.53916

ζ1 7.69272 4.32718 E −5

r1 4.27837 E −1 NA

ζ2 1.87496 E −1 NA

V i0 NA 2.796057
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6.1.5 Parameter fitting of sensitive and identifiable parameters

(a) Viral Load (b) Antibodies: gp120

Figure 6.5: Model fit of viral Load and gp120 Antibodies.

Table 6.3: Sensitive and Identifiable parameters, gp120

Parameter Value Standard deviation

V i0 3.18394 E −2 5.0335441

π 1.8254394 E −2 3.169787 E −1

δ 2.2657 1.02179 E −1
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(a) Viral Load (b) Antibodies: gp41

Figure 6.6: Model fit of viral Load and gp41 Antibodies.

Table 6.4: Sensitive and Identifiable parameters, gp41

Parameter Value Standard deviation

r1 1.614665 E −8 2.64705

ζ2 2.64525 E −3 9.280496 E −2

u 4.81734 E −1 6.17128 E −2

ci 1.422235 1.27450 E −1
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We used the combined1 residual errors in MONOLIX. The observation models are then

given by:

log10(V ) = log10(V ) +
�

a1+ b1 log10(V )
�

∗ε1 (6.4a)

log10(A) = log10(A) +
�

a2+ b2 log10(A)
�

∗ε1 (6.4b)

where the parameters a1, b1, a2 and b2 are given in Table 6.5.

Table 6.5: Model’s residual errors

Parameter gp41 gp120

a1 0.12555 0.11619

b1 0.19882 0.251797

a2 0.67285 0.58853

b2 2.22045 E −16 2.22045 E −16

The results of the individual fit (Figure 6.5 & 6.6) look acceptable by visual inspection.

However, fitting these results is not enough to invoke confidence. Next, we validated the

model by looking at the confidence interval.

6.2 Model Validation

To validate the model, we look at the interval to check whether the observed data are com-

patible with the population prediction, taking into account the inter-individual variability

(114). For each individual a prediction interval is computed based on multiple simulations

with the population parameters and the design structure of the individual. In Figure 6.7
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and Figure 6.8, the confidence intervals, 90%, of the populations are displayed alongside

the data from the ten rhesus macaques. Both figures show the confidence intervals of the

viral load as well as antibodies. On the two figures, both gp41 and gp120 antibodies fall

within the 90% confidence intervals. The same cannot be said for the viral load. However,

for the data that are not in the interval, they are on the border. There is an exception for the

subjects RKg19 and RQc19.

For RKg19, at 24 weeks time, there is a data point that is completely outside the interval.

We can, confidently, say that the point is an anomaly because we expect the viral load to be

suppressed at this point. For RQc19, the consecutive data points at weeks 8, 12 and 14 are

outside the 90% margin. These points are compatible with the poor individual fit for the

subject in Figure 6.5a. While this poor fit is not very concerning when taking into account

the rest of the animals and the antibodies fit, we, nevertheless, expanded the interval to

95% (Figure 6.9). All RQc19 data points are either included (Figure 6.9a) or on the border

,Figure (6.9b) of the interval of the 95% confidence interval. We can therefore conclude that

the overall population can be described by our model.

(a) Viral Load: gp120 (b) Antibodies: gp120

Figure 6.7: Model fit of viral Load and gp41 Antibodies on 90% distribution.
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(a) Viral Load: gp41 (b) Antibodies: gp41

Figure 6.8: Model fit of viral Load and Antibodies on 90 % distribution.

We note that the main difference in Figure 6.9 is that Figure 6.9a is from the gp41 anti-

bodies while Figure 6.9b is obtained using the parameters estimated on gp120 antibodies

.

99



(a) Viral Load: gp41 (b) Viral Load: gp120

Figure 6.9: Model fit of viral Load and Antibodies on 95 % distribution.

6.3 Our contributions

Using the rhesus macaques data, we showed that PK metrics (AUC, Cmax, Tmax, and terminal

half-life) are statistically different. While the goal was also to compare both the intermediate

ART and late ART to the early ART group, we deemed unnecessary to do it. It is because it is

obvious from the data of early ART that the PK metrics are going to be significantly different

from the other two groups. For gp120, five of ten rhesus monkeys did not develop any

detectable antibodies. Of the five animals that developed gp120 antibodies, four of them had

only one detectable data point. Essentially, only one subject developed gp120 antibodies

when it was started on ART 4 days post-infection. In case of gp41, seven subjects had

detectable antibodies, and five of them had four or more data points. There still was no need

of performing a PK analysis as the values are visibly small, compared to the intermediate

and late ART groups.

We developed a detailed HIV model that can simultaneously predict both the viral load

and the natural antibodies (Figure 6.1, the blue part of the model is our contribution). The

same model can be used for animals that started ART before 8 weeks, but the parameters

will have to be re-estimated. For subjects that start ART after 8 weeks, our parameters
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can be used as there is no much difference on antibodies concentration eight weeks-post

infection. Our model could be modified (by introducing delayed differential equations)

into a time-sensitive model where one could predict antibody responses regardless of the

ART start time, that is the parameters remain with the exception of one parameter used by

timing of ART.

The model was conceived with the desire if possible to be validated on human sam-

ples. The goal would be to predict how antibodies responses are developed in response to

HIV infection in human babies. This is important because it will inform us when to give

treatment to human infants for it to have the best beneficial effect in reducing the disease

without crippling the immune response.

Along with our collaborators, we have finished writing the manuscript we intend to

publish on the Pharmacokinetic (PK) Analysis of gp41 and gp120 antibodies. We are also

working on writing another manuscript to accompany our results of Modeling Viral Load

and Antibodies.
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APPENDIX

A

QUANTITATIVE SYSTEM TOXICOLOGY

A.1 Physiological based pharmacokinetic (PBPK)

A.1.1 Michaelis-Menten Kinetics

For all the PBPK models, we use enzyme kinetics to describe the metabolism process in the

liver. In the Michaelis-Menten Kinetics, free enzyme (E) reversibly binds with the substrate

(S) to form the complex (ES), and the complex irreversibly dissociates into the product (P)

and the free enzyme (E) (115). The reactions are represented by Equation

S +E
k1⇋

k−1

E S
k2→ P +E , (A.1)

where k1 is the rate in which the enzyme and substrate react to form the complex E S , k−1 is

the rate in which the complex disassociate to convert back to the initial substrate (S ) and

enzyme (E ), and k2 is the rate of the complex formation into the product P .

In 1913, scientists Leonor Michaelis and Maud Menten (116) (117) published their work

on a mechanism for the catalysis of chemical reactions in biological systems. Michaelis and

Menten described the mechanism of enzyme-catalyzed reactions and gave a relationship
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between the reaction rates and the concentrations of enzyme and substrate (22). The model

relates the enzymatic reactions rate, V to the concentration of a substrate S , as

v (S ) =
Vma x S

Km +S
, (A.2)

where Vma x is the maximum production rate of P and Km is Michaelis-Menten constant,

the affinity of the enzyme for the substrate, defined as

Km =
k−1+k2

k1
. (A.3)

(A.2) is used for the liver metabolite rate of the PBPK models . In the expression
metVma x XL v

VL v PL v

metk m+
XL v

VL v PL v

in (2.5a), metVma x
is the maximum production, Vma x in A.2, metk m is the affinity of the en-

zyme for the substrate Km , and finally the substrate S is presented by the concentration
XL v

VL v PL v
.

A.1.2 Non-compartment PBPK equations

The equation for the total blow flow (venous blood flow) is

Q =QB +QF +Qk +QL v +Qr p +Qs p +QM , (A.4)

where the Qi ’s are the blood flow through the compartment of Figure 2.4 that go into the

the veins.

The Arterial blood concentration Ca is given by

Ca =
XLg

VLg PLg
(A.5)

The venous concentration Cv is given by

Cv =
1

Q

�

QB XB

VB PB
+

QF XF

VF PF
+

QK XK

VK PK
+

QL v XL v

VL v PL v
+

Qr p X r p

Vr p Pr p
+

Qs p X s p

Vs p Ps p
+

QM XM

VM PM

�

, (A.6)
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where Q is given by A.4.

A.1.3 Common Compartments PBPK equations

Ḃ =QB ∗
�

Ca −
XB

VB ∗PB

�

(A.7a)

Ḟ =QF ∗
�

Ca −
XF

VF ∗PF

�

(A.7b)

K̇ =QK ∗
�

Ca −
XK

Vk ∗PK

�

−
XK

VK
∗KExt (A.7c)

L̇ v = (QL v −QG ) ∗Ca +
QG XG

VG PG
−

QL v XL v

VL v PL v
−

metVma x XL v
VL v PL v

met-km+XL v
VL v PL v

(A.7d)

Ṁ =Qb ∗
�

Ca −
Xm

Vm ∗Pm

�

(A.7e)

Ṙ P =Qr p ∗
�

Ca −
X r p

Vr p ∗Pr p

�

(A.7f)

ṠP =Qs p ∗
�

Ca −
X s p

Vs p ∗Ps p

�

(A.7g)

Ṁ e t =
metVma x XL v

VL v PL v

met-km+XL v
VL v PL v

(A.7h)

Ė x t =
Xk

Vk
∗KExt (A.7i)

L̇m =−ka ∗XLm (A.7j)
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A.1.4 PBPK Equations acronyms

Table A.1: Equations acronyms

Abbreviation Meaning

Lg Lungs

B Brain

F Fat

K Kidney

L v Liver

M Muscles

R P Rapidly Perfused

SP Slowly Perfused

G Gut

Lm Lumen

M e t Liver Metabolite

E x t Kidney Metabolite

Q Total Blood flow

Ca Arterial Concentration
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A.1.5 PBPK parameters

Table A.2: Percent of the organs’ volume (in L)

Organ Rats Human

Lungs 0.0050b 0076b

Brain 0.0057b 0.02000b

Fat 0.0080a 0.1000a

Kidney 0.0073b 0.0044b

Liver 0.0366b 0.0400a

Muscles 0.4043 b 0.4000b

Rapidly perfused 0.050a 0.050a

Slowly perfused 0.3584 0.3609

Gut 0.0270b 0.0171b

a Parameters from (47)
b Parameters from (118)

Slowly perfused is obtained by subtracting the sum of all organs from 1.
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Table A.3: Percent of rate flow to the organs (in L/hr)

Organ Rats Human

Lungs 1.0000 1.000

Brain 0.0200b 0.114b

Fat 0.0400a 0.060a

Kidney 0.0141b 0.175b

Liver 0.183b 0.277b

Muscles 0.278b 0.191b

Rapidly perfused 0.0080 0.0280

Slowly perfused 0.1900a 0.0800a

Gut 0.1400b 0.125b

a Parameters from (47)
b Parameters from (118)

Rapidly perfused is obtained by subtracting the sum of all organs from 1.
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Table A.4: Parameters used in the PBPK model for Carbon tetrachloride in both rats and
humans

Parameter Rats Human

Cardiac Output (L/hr) 5.4a 348a

Body weight (L) 0.250a 70a

Urine extraction (L/hr) 0.8850 0.0.0208

Absorption constant 0.4871d 0.4871d

metabolites-vmax

(mg/hr)

1.4632d 1.4632d

metabolites-km (mg/L) 0.275b 0.275b

a Parameters from (47)
b Parameters values chosen to be close (119)

d Parameters were estimated via fmincon in MATLAB
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Table A.5: Partition coefficient tissue:air

Organ Rats Human

Blood 4.5200 3.16

Brain 20.09 8.73

Fat 359 177

Kidney 37.5 5.04

Liver 14.2 11.5

Muscles 4.57 6.43

Rapidly perfused 14.2 11.5

Slowly perfused 4.57 6.43

Gut 14.2 11.5

All the parameters are from (120).

The partition coefficient of the gut and rapidly perfused tissues were assumed to be the

same as the liver, while that of the slowly perfused organs was assumed to be equal to the

muscles.
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A.2 Liver Model

A.2.1 Tables of Parameters that were changed

Table A.6: Parameters used in the liver model and their corresponding values

Parameters Parameter definition Human Val-

ues

Rats Values Source

bf Rate of blood flow 1.2 (sec−1) 1.169 (sec−1) fmincon

s Rest of body to hepatic compartment

ratio

40 26.003 fmincon

timeref Spiked diet inputs period 28800 6.87 ∗104 sec fmincon

driveG glucose diet 19.275 19.266 µM
s e c fmincon

driveF fat diet 3.5 3.719 µM
s e c fmincon
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Table A.7: Parameters used as initial conditions in the liver model and their corresponding
values

Parameter Compartment

number

Human val-

ues

Rats values

(µM )

Source for rats

values(µM )

FFA 1-9 5.00 ∗E 2 1.50 ∗E 2 (121)

gCB 1-9 5.000 ∗E 3 6.88 ∗E 2 (122)

Lac 1-9 1.000 ∗E 3 1 (123)

Glucose 1-8 2.0000 ∗E 4 1.80 ∗E 5 parameter estimation

Triglycerides 1 1.6243 ∗E 4 1.1622 ∗E 4 parameter estimation

Triglycerides 2 1.6261 ∗E 4 1.1831 ∗E 4 parameter estimation

Triglycerides 3 1.6537 ∗E 4 1.3215 ∗E 4 parameter estimation

Triglycerides 4 1.7251 ∗E 4 1.3450 ∗E 4 parameter estimation

Triglycerides 5 1.8303 ∗E 4 1.2118 ∗E 4 parameter estimation

Triglycerides 6 1.9505 ∗E 4 1.4792 ∗E 4 parameter estimation

Triglycerides 7 2.0716 ∗E 4 1.4263 ∗E 4 parameter estimation

Triglycerides 8 2.1835 ∗E 4 1.5478 ∗E 4 parameter estimation

G6P 1-8 2.3832 body weight scaling
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A.2.2 Plots of Liver compartments

(a) Rats (b) Humans

Figure A.1: Plot of the concentrations of hepatocytes triglycerides in rats and humans.
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