
ABSTRACT

HOLLERING, BENJAMIN KEITH. Computational and Combinatorial Techniques for
Phylogenetic Algebraic Geometry. (Under the direction of Seth Sullivant).

Algebraic statistics uses tools from algebra, geometry, and combinatorics to study

problems in statistics. This is often done by studying algebraic varieties which arise as the

Zariski closure of a statistical model. In this thesis we mainly focus on statistical models

and probability distributions which comes from phylogenetics.

First we study the family of exchangeable and sampling consistent distributions on

rooted binary trees with labelled leaves, which we call phylogenetic trees. We begin

by introducing a notion of finite sampling consistency for phylogenetic trees and show

that the set of finitely sampling consistent and exchangeable distributions on n leaf

phylogenetic trees is a polytope. We then study the vertices of this polytope for trees with

4 and 5 leaves. We also introduce a new semialgebraic set of exchangeable and sampling

consistent models we call the multinomial model and use it to characterize the set of

exchangeable and sampling consistent distributions. Using this new model, we obtain a

finite de Finetti-type theorem for rooted binary trees.

Next, we discuss a new algorithm for proving that discrete parameters of parametric

algebraic statistical models are identifiable. Identifiability is a particularly important

property for statistical models to have since it ensures that the parameters can be reliably

recovered from data. Our method uses algebraic matroids which are naturally associated

to the model and by doing so avoids time consuming Gröbner basis calculations. We then

use this method to solve some previously open identifiability problems from phylogenetics.

Lastly, we study the vanishing ideal of the Cavendar-Farris-Neyman (CFN) model on

level-1 phylogenetic networks. We show that these ideals are multigraded and use this

multigrading to break up the ideal into homogeneous pieces called gloves. We then give

an explicit description of the quadratic polynomials in each glove which we conjecture

generate the entire ideal.
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CHAPTER

1

INTRODUCTION

In this chapter we provide background material that will be used throughout the thesis.

This includes a brief introduction to ideals, varieties, polytopes, and matroids. We also

discuss phylogenetic trees, networks, and Markov models which will be studied throughout

this thesis.

1.1 Ideals and Varieties

In this section we give the necessary background on algebraic geometry. The objects and

results discussed here will primarily be used in Chapters 3 and 4. For further information

on algebraic geometry we refer the reader to [25].

Let K be a field and denote the polynomial ring over K with n indeterminates by

K[p] = K[p1, . . . , pn]. We will primarily focus on the case when K is the field of complex

numbers C. For any a ∈ Nn we will use the shorthand pα = pα1
1 . . . pαn

n .

Definition 1.1.1. An ideal in the polynomial ring is a subset I ⊆ K[p] such that

• if f, g ∈ J then f + g ∈ J and
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• if f ∈ J and g ∈ K[p] then gf ∈ J .

Given a subset F ⊆ K[p] we let ⟨F ⟩ be the ideal generated by the polynomials in F

meaning

⟨F ⟩ := {g1f1 + . . .+ gkfk | fi ∈ F, gi ∈ K[p]}.

The Hilbert Basis Theorem guarantees that if J is an ideal of K[p], then there exists a

finite subset F = {f1, . . . , fk} ⊆ J such that J = ⟨F ⟩. Every set of polynomials F has

the following natural geometric counterpart.

Definition 1.1.2. Let F ⊂ K[p]. The affine variety defined by F is the set of points

V(F ) := {a ∈ Kn | f(a) = 0 for all f ∈ F}.

Note that it is also natural to associate a variety to an ideal J for the following reason.

Let F = {f1, . . . , fk} be the finite set of generators of J and note that if a ∈ V(F ) and

f ∈ J then f(a) =
∑

i gi(a)fi(a) =
∑

i gi(a) = 0. So to any ideal J we can associate the

variety

V(J) = {a ∈ Kn | f(a) = 0 for all f ∈ J}.

Example 1.1.3. Consider the polynomial ring R = C[p00, p01, p10, p11] and the ideal

J = ⟨p00p11 − p01p10⟩. If we consider the points a ∈ C4 as complex 2 × 2 matrices with

the standard indexing then the variety V(J) is the set of all 2 × 2 matrices with rank at

most 1.

Just as every set of polynomials or polynomial ideal defines a variety we also get an

ideal from any set of points in Kn. Given a subset S ⊆ Kn, the vanishing ideal of S is the

ideal

I(S) := {f ∈ K[p] | f(a) = 0 for all a ∈ S}.

For any set S ⊆ Kn, the Zariski closure of S is the smallest variety containing S and

is denoted by S. Note that this set is simply S = V(I(S)). We now turn to another

important property of ideals and varieties.

Definition 1.1.4. An ideal J is prime if whenever fg ∈ J then either f ∈ J or g ∈ J .

Primality also has the following geometric counterpart. A variety is irreducible if

whenever V = V1 ∪ V2 then either V2 ⊆ V1 = V or V1 ⊆ V2 = V . Otherwise V is called

reducible. The relationship between irreducibility and primality is captured by the following

proposition.
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Proposition 1.1.5. A variety V is irreducible if and only the vanishing ideal I(V ) is a

prime ideal.

These two concepts are illustrated in the following example.

Example 1.1.6. Consider the ideal J = ⟨p1p2⟩ ⊆ C[p1, p2] and the corresponding variety

V = V(J) ⊆ C2. Observe that J is not prime since p1, p2 /∈ J but of course the product

p1p2 ∈ J . On the other hand we can also see that V is reducible since V = V(p1) ∪ V(p2).

Now consider the ideal J ′ = ⟨p21 − p2⟩ ⊆ C[p1, p2] and its corresponding variety

V ′ = V(J ′) ⊆ C2. Note that since the polynomial p21 − p2 is irreducible, the ideal J ′ is

prime and hence the variety V ′ is also irreducible.

Many of the ideals we work with in this thesis are not only prime but also have a natural

grading. A polynomial ring K[p] is multigraded by a lattice A if it is equipped with with

a semigroup homomorphism deg : Nn → A which takes each monomial pα to its degree

deg(α). Observe that we can apply deg to a monomial pα by taking deg(pα) = deg(α).

Also note that since deg is a semigroup homomorphism, it suffices to define deg on the

set of variables {p1, . . . pn}. This is illustrated by Example 1.1.7.

A polynomial f =
∑

α cαp
α is homogeneous with respect to deg if there is some m ∈ A

such that for all α ∈ Nn such that cα ̸= 0, it holds that deg(pα) = m. An ideal J ⊆ K[p] is

homogeneous with respect to the grading deg if there exists a generating set {f1, . . . , fk}
for J such that each fi is homogeneous.

Example 1.1.7. Consider the grading on C[p00, p01, p10, p11] given by deg(pij) = (1, i, j).

This determines a multigrading on all of K[p] since deg is a semigroup homomorphism.

This means the ring C[p] is multigraded by the lattice generated by

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1) ∈ Z3.

Now we will examine the familiar polynomial f = p00p11 − p01p10. Note that f is

homogeneous with respect to this grading since

deg(p00p11) = (1, 0, 0) + (1, 1, 1) = (2, 1, 1) = (1, 0, 1) + (1, 1, 0) = deg(p01p10).

On the other hand, the polynomial g = p210p11−p00p01p11 is not homogeneous with respect

to this grading since

deg(p210p11) = (3, 3, 1) ̸= (3, 1, 2) = deg(p00p01p11).

3



If we say that a polynomial is homogeneous without respect to a pre-establish grading

then we mean it is homogeneous with respect to total degree which is the grading that

simply sets deg(pi) = 1 for all i. This grading is especially important since ideals that

are homogeneous with respect to total degree can be used to define varieties in projective

space.

Definition 1.1.8. Let K be a field. The projective space Pn−1 is the set of equivalence

classes of Kn \ {0} under the equivalence relation ∼ given by

a ∼ b ⇐⇒ there exists λ ∈ K∗ such that λa = b.

Definition 1.1.9. Let F ⊆ K[p] be a set of homogeneous polynomials. The projective

variety defined by F is the set

V(F) := {a ∈ Pn−1 | f(a) = 0 for all f ∈ F}.

Note that the previous definition is well-defined since if f is a homogeneous polynomial

and a is a representative of an equivalence class in Pn such that f(a) = 0 then for any

other equivalence class representative, λa we have that f(λa) = λdeg(f)f(a) = 0.

Example 1.1.10. Again consider the ideal J = ⟨p00p11 − p01p10⟩ in the polynomial ring

C[p]. Since J is generated by a single homogeneous polynomial, it is a homogeneous ideal

and thus defines a projective variety which consists of equivalence classes of matrices

a ∈ P3 such that rank(A) ≤ 1.

1.1.1 Gröbner Bases

In this subsection we develop some of the basic concepts related to Gröbner bases which

are utilized in many places throughout this thesis.

Definition 1.1.11. A term order < on K[p1, . . . pn] is a total order on the monomials

which satisfies:

1. If pα < pβ then pαpγ < pβpγ for all α, β, γ

2. Every nonempty set of monomials has a <-smallest element

Definition 1.1.12. Let f =
∑

α cαp
α be a nonzero polynomial and let < be a monomial

order. The initial monomial (or leading monomial) of f , denoted in<(f), is the largest

4



monomial pα such that cα ̸= 0. The initial term (or leading term) of f , denoted LT<(f),

is corresponding term cαp
α.

Example 1.1.13 (Lexicographic Order). Consider the term order where pα >lex p
β if the

left-most nonzero entry of (α1 − β1, . . . , αn − βn) is positive. For example,

p1p3 >lex p
2
2p3 >lex p

4
3

under the assumption that p1 > p2 > p3. Now consider the polynomial f = 2p31 + p1p2.

The initial monomial of f with respect to <lex is in<lex
(f) = p31 and the leading term is

LT<lex
(f) = 2p31.

Given a term order < and an ideal J the initial ideal of J is the ideal

in<(J) := ⟨in<(f) | f ∈ J⟩.

Definition 1.1.14. Let J ⊆ K[p] be an ideal and < be a term order on K[p]. Then a set

G of polynomials is a Gröbner basis for the ideal J if

in<(J) = ⟨in<(g) | g ∈ G⟩.

Gröbner bases are an incredibly useful tool for performing computations in algebraic

geometry. In particular, they can be used to test for ideal membership and solve impliciti-

zation problems. We now describe how to compute a Gröbner basis for an ideal from a

given generating set using Buchberger’s algorithm. The first tool we need to do this is the

following algorithm for polynomial division.

Algorithm 1: Multivariate Division Algorithm

Input : A finite set of polynomials G = {g1, . . . gk}, another polynomial f , and

a term order <.

Output : A representation f =
∑k

i=1 higi + r such that no term of r is divisible

by G.

1 Set hi = 0 for all i and r = f

2 while r has a term cαp
α divisible by a leading term of some gi do

3 hi = hi + cαpα

in<(gi)

4 r = r − cαpα

in<(gi)
gi

5 end

6 return hi and r for i = 1, . . . , n

5



Definition 1.1.15. The least common multiple of monomials pα and pβ is

LCM(pα, pβ) =
n∏

i=1

p
max{αi,βi}
i .

Let f1 and f2 be polynomials in K[p] and < be a term order.

Let pγ(1,2) = LCM(in<(f1), in<(f2)). Then the S-polynomial of f and g is

S(f, g) :=
pγ(1,2)

LT<(f1)
f1 −

pγ(1,2)

LT<(f2)
f2

Theorem 1.1.16 (Buchberger’s Criterion). Let < be a term order on K[p] and G =

{g1, . . . gk} be a set of polynomials. The following are equivalent:

1. G is a Gröbner basis for ⟨G⟩.

2. The remainder of each S-polynomial S(gi, gj) after division by G is zero.

This criterion can be used to easily formulate an algorithm for computing a Gröbner

basis for an ideal J from any generating set. This is summarized by the following algorithm.

Algorithm 2: Buchberger’s Algorithm

Input : A finite set of polynomials F = {g1, . . . gk} and a term order <.

Output : A Gröbner basis G for ⟨F⟩ with respect to <.

1 Set G = F
2 while G does not satisfy Buchberger’s criterion do

3 Find a pair f, g ∈ G such that remainder r obtained by dividing S(f, g) by G
is not zero

4 G = G ∪ {r}
5 end

6 return G

We end this section with an example that illustrates all of the ideas discussed above.

Example 1.1.17. Consider the ideal J = ⟨f1, f2⟩ where f1 = p1p2 + 1 and f2 = p21 − p2.

We will now use Buchberger’s algorithm to find a Gröbner basis G for J with respect

to the graded lexicographic term order <. We first set G = {f1, f2} and compute the

S-polynomial S(f1, f2).

Observe that in<(f1) = p1p2 and in<(f2) = p21. This means that pγ(1,2) = p21p2. So we

6



have that

S(f1, f2) =
p21p2
p1p2

(p1p2 + 1) − p21p2
p21

(p21 − p2) = p1(p1p2 + 1) − p2(p
2
1 − p2) = p22 + p1.

Note that both terms of S(f1, f2) are not divisible by either in<(f1) or in<(f2). So the

remainder of S(f1, f2) upon division by {f1, f2} is simply f3 = S(f1, f2). So we set

G = {f1, f2, f3}.
We now need to compute the S-polynomials S(f1, f3) and S(f2, f3).

Note that in<(f3) = p22. So we have that

S(f1, f3) =
p1p

2
2

p1p2
(p1p2 + 1) − p1p

2
2

p22
(p1 + p22) = −p21 + p2

S(f2, f3) =
p21p

2
2

p21
(p21 − p2) −

p21p
2
2

p22
(p1 + p22) = −p31 − p32

We now need to divide S(f1, f3) and S(f2, f3) by G. Observe that S(f1, f3) = −f2 so we

immediately have that the remainder upon division by G is zero.

Recall that to divide S(f2, f3) by G we want to find an expression S(f2, f3) = h1f1 +

h2f2 + h3f3 + r. We begin by setting r = S(f2, f3), hi = 0 and observe that the term −p31
in r is divisible by in<(f2) = p21. So we set

h2 = 0 +
−p31
p21

= −p1

r = −p31 − p32 −
−p31
p21

(p21 − p2) = −p32 − p1p2.

We now have the term −p32 in r which is divisible by in<(f3). This division step yields

h3 = 0 +
−p32
p22

= −p2

r = −p32 − p1p2 −
−p32
p22

(p22 + p1) = 0.

So the remainder of S(f2, f3) upon division by G is also zero thus by the Buchberger

criterion we have that G is a Gröbner basis for J .
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1.1.2 Parameterized Varieties

Varieties are often given as the image of a polynomial map. This is especially common in

algebraic statistics where we typically work with varieties which come from taking the

Zariski closure of a parametric statistical model.

Consider a map

ϕ : Km → Kn

θ 7→ (ϕ1(θ), . . . , ϕn(θ))

where the functions ϕi are all polynomials in θ = (θ1, . . . θm). The variety parameterized

by ϕ is the Zariski closure of the image of ϕ and denoted as V = im(ϕ). All of the

parameterized varieties in this thesis will be parameterized by polynomial maps however

the same tools may also be used to study rational parameterizations.

A map ϕ satisfying the above conditions is a morphism of affine spaces and thus it

has a pullback which is a K-algebra homomorphism. This pullback is the map

ϕ∗ : K[p] → K[θ]

pi 7→ ϕi(θ).

This means that the vanishing ideal I(V ) of the parameterized variety is actually the

kernel of the map ϕ∗. Note that this implies that I(V ) is a prime ideal which can be

computed using elimination theory.

Definition 1.1.18. A term order < on K[θ1, . . . θn, p1, . . . pm] is an elimination order for

θ1 . . . θn if each polynomial with initial monomial in K[p1 . . . pm] is actually contained in

K[p1, . . . pm].

Theorem 1.1.19. Let ϕ : Kn → Km be a morphism of varieties with coordinate functions

(ϕ1, . . . , ϕn). Let J ⊆ K[θ1, . . . θn, p1, . . . pm] be the ideal generated by the polynomials

pi − ϕi(θ). Let < be an elimination order for θ1, . . . , θn and G be a Gröbner basis for J

with respect to < then I(im(ϕ)) is generated by G ∩K[p1, . . . pm].

Since we have already seen how to compute Gröbner bases, the above theorem gives us

an immediate algorithm for computing the vanishing ideal of the image of a polynomial

map. Unfortunately, computing a Gröbner basis can be quite difficult. It is known that in

the worst-case, the time complexity of computing a Gröbner basis is doubly exponential
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in the number of variables, though it can often be much better in practice [5]. As the

number of variables grows it often becomes untenable to actually compute a Gröbner

basis and so a frequent goal of ours is to determine generating sets or other information

about ideals without using Gröbner bases.

We end this section with an example of how we can use algebraic geometry to study

parametric statistical models. The techniques utilized below will appear throughout this

thesis.

Example 1.1.20. Suppose X1 and X2 are two independent binary random variables

with state space {0, 1} and we are interested in studying the model M which consists of

all possible joint distributions of these random variables. Let the probability that the

random variable Xj = i for i = 0, 1 be P (Xj = i) = θ
(j)
i . In this example the θ

(j)
i are

the parameters of our model. Since (θ
(j)
0 , θ

(j)
1 ) is the probability distribution of a binary

random variable we have that θ
(j)
1 = 1 − θ

(j)
0 so this model actually only has 2 free

parameters.

Now since X1 and X2 are independent, their joint distribution is given by

pi1i2 = P (X1 = i1, X2 = i2) = P (X1 = i1)P (X2 = i2) = θ
(1)
i1
θ
(2)
i2
. (1.1)

We can view the above equation as a polynomial map which parameterizes the model M

in the following way. We will consider joint distributions as matrices of the form

p =

(
p00 p01

p10 p11

)
.

Let ∆n−1 = {p ∈ Rn :
∑n

i=1 pi = 1, pi ≥ 0 for all i} be the standard simplex. Then

the formula for the joint distribution shown in Equation 1.1 can then be viewed as the

following polynomial map

ϕ : ∆1 × ∆1 → ∆3

(θ
(1)
0 , θ

(1)
1 , θ

(2)
0 , θ

(2)
1 ) 7→

(
θ
(1)
0

θ
(1)
1

)(
θ
(2)
0 , θ

(2)
1

)
.

In this instance we are viewing ∆3 as a subset of R2×2. More precisely, it is the set

∆3 = {p ∈ R2×2 | pi1i2 ≥ 0,
∑

i1,i2
pi1i2 = 1}. The image of the polynomial map ϕ is

exactly the model M which is the set of all possible joint distributions of X1 and X2. In

9



this case it is not hard to see that

M = {p ∈ R2×2 | pi1i2 ≥ 0,
∑
i1,i2

pi1i2 = 1, p00p11 − p01p10}.

This is because every p ∈M is an outer product of two column vectors and thus has rank

at most 1.

We can also study M in a purely algebraic context. This means that we extend ϕ to a

complex polynomial map

ϕ : C× C → C2×2

(θ
(1)
0 , θ

(2)
0 ) 7→

(
θ
(1)
0

1 − θ
(1)
0

)(
θ
(2)
0 , 1 − θ

(2)
0

)
.

The vanishing ideal of the image of this map can be computed using elimination though

in this case it is clearly J = I(im(ϕ)) = ⟨p00 +p01 +p10 +p11− 1, p00p11−p01p10⟩. Observe

that this ideal retains much of the algebraic structure of the original model. In fact, if we

consider M as a subset of C2×2 then the Zariski closure of M is exactly V(J). So studying

the ideal J or its corresponding variety V(J) can still help us understand the underlying

statistical model M .

1.2 Polytopes

In this section we introduce some basic concepts related to polytopes. The background

discussed here will be used in Chapter 2. For additional information on polytopes we refer

the reader to [48].

Definition 1.2.1. A set S ⊆ Rn is convex if for all x, y ∈ S and all λ ∈ [0, 1] λx+(1−λ)y ∈
S.

Given an arbitrary set S ⊆ Rn, the smallest convex set containing S is called the

convex hull of S and can be formulated as

conv(S) := {λ1x(1) + . . . λkx
(k) | x(k) ∈ S, λi ≥ 0,

∑
i

λi = 1}.

Convex hulls will be the main objects of study in Chapter 2 of this thesis. In particular,

we will study the following types of convex sets.
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Definition 1.2.2. A polytope is the convex hull of finitely many points in Rn.

Example 1.2.3. Let e1, . . . , en be the standard basis vectors of Rn. Their convex hull is

the standard n− 1-dimensional simplex denoted ∆n−1 which is

∆n−1 = {x ∈ Rn | xi ≥ 0,
∑
i

xi = 1}

Definition 1.2.4. Let P ⊂ Rn be a polytope. A linear inequality c · x ≤ c0 is valid for P

if every point in P satisfies it. A face of P is a set F of the form

F = P ∩ {x ∈ Rn | c · x = c0}

where c · x ≤ c0 is a valid inequality for P .

Zero-dimensional faces are called vertices, one-dimensional faces are called edges, and

codimension one faces are called facets. We denote the set of vertices of P by vert(P ).

Proposition 1.2.5. Let P ⊆ Rn be a polytope. Then

1. Every polytope is the convex hull of its vertices.

2. If P can be written as P = conv(S) for some S then vert(P ) ⊆ S.

This proposition tells us that if we take a polytope P = conv(S), then we know the

vertices are contained in S but it may often be the case that S contains extra points

which are not vertices. It is then natural to ask if we can determine exactly which of the

points in S are vertices and which are not. The following example illustrates this.

Example 1.2.6. Let S = {(0, 0), (1, 0), (0, 1), (1
2
, 1
2
), (1

2
, 1
4
)} and let P = conv(S). Then

the vertices of this polytope are the points (0, 0), (1, 0), (0, 1). To see this we examine the

following valid inequalities.

First note that the inequality −x1 − x2 ≤ 0 for all points x ∈ P and furthermore,

P ∩ {x ∈ Rn | − x1 − x2 = 0} = (0, 0).

It is not hard to see that the inequalities x1 ≤ 1 and x2 ≤ 1 are also valid inequalities

for P and the intersection of the corresponding equalities with P yields (1, 0) and (0, 1)

respectively.
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v1

v3

v2

x

y

Figure 1.1: A polytope which is discussed in Example 1.2.6. The vertices of this polytope
are the points labelled v1, v2, v3. The other two points labelled x and y are not vertices.

On the other hand the points (1
2
, 1
2
) and (1

2
, 1
4
) are not vertices of P .

Denote (0, 0), (1, 0), (0, 1) with v1, v2, v3 and observe that(
1

2
,
1

2

)
=

1

2
v2 +

1

2
v3(

1

2
,
1

4

)
=

1

4
v1 +

1

2
v2 +

1

4
v3.

This implies that P = conv((0, 0), (1, 0), (0, 1)) and so the other points are not vertices.

This polytope is pictured in Figure 1.1.

1.3 Matroids

In this section we introduce some basic concepts from matroid theory and discuss algebraic

matroids in particular. The results collected here will be the main tools that we utilize to

prove identifiability results in Chapter 3. For further information on matroids we refer

the reader to [39].

Definition 1.3.1. A matroid M = (E,I) is a pair where E is a finite set and I ⊆ 2E

satisfies

1. ∅ ∈ I.

2. If I ′ ⊆ I ∈ I, then I ′ ∈ I.
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3. If I1, I2 ∈ I and |I2| > |I1|, then there exists e ∈ I2 \ I1 such that I1 ∪ {e} ∈ I.

The set E is called the ground set of M and the elements of I are the independent sets

of M. There are many equivalent formulations of the axioms of a matroid but Definition

1.3.1 will be sufficient for the purpose of this thesis. We will focus on two specific types of

matroids which are linear matroids and algebraic matroids.

Definition 1.3.2. Let A ∈ Kd×n be a matrix with entries in a field K and a1, . . . an be

the columns of A. Then letting E = [n] and taking I to be the subsets of E such that

the corresponding columns of A are linearly independent over K, defines a matroid. A

matroid defined in this way is called a linear matroid over the field K.

Example 1.3.3. Let

A =

 1 1 −1 −2

3 1 2 4

0 −1 1 2


and for any S ⊆ [4] let AS denote the submatrix of A obtained by taking only the columns

indexed by S. A set S is an independent set in the matroid M(A) defined by A if and

only if rank(AS) = |S|. In this case the independent sets of M(A) are

∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4}.

Linear matroids are one of the key examples of matroids, and the name matroid

itself is supposed to indicate that matroids form a generalization of this linear algebraic

independence structure arising from a matrix.

Definition 1.3.4. A set B ∈ I is called a basis of M if it is a maximal independent set

with respect to inclusion.

Proposition 1.3.5. Let B1 and B2 be bases of a matroid M. Then B1 and B2 have the

same cardinality which is called the rank of M.

Example 1.3.6. Consider again the linear matroid M(A) defined by the matrix

A =

 1 1 −1 −2

3 1 2 4

0 −1 1 2

 .
The bases of A are {1, 2, 3} and {1, 2, 4} and the rank of M(A) is equal to the rank of A

which is 3.
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There is also a way to naturally associate a matroid to an algebraic variety. All these

matroids are examples of algebraic matroids though for practical purposes it can be more

useful to think of the following geometric characterization.

Definition 1.3.7. Let V ⊂ Kn be an irreducible variety over the field K and for S ⊆ [n]

let πS : Kn → K|S| be the projection onto the coordinates in S. Let πS(V ) denote the

Zariski closure of the projection of V . Then the pair ([n], IV ) defines a matroid where

IV = {S ⊆ [n] : πS(V ) = K|S|}

which is called the coordinate projection matroid of V and denoted by M(V ).

The geometric perspective on algebraic matroids can also be phrased in an algebraic

language.

Proposition 1.3.8. Let V ⊂ Kn be an irreducible variety. Let P ⊆ K[p1, . . . , pn] be the

vanishing ideal of V . A set S is an independent set of the coordinate projection matroid

M(V ) if and only if

P ∩K[pi : i ∈ S] = ⟨0⟩.

Proof. This follows directly from the fact that P ∩K[pi : i ∈ S] is the vanishing ideal of

the coordinate projection πS(V ) and the fact that the vanishing ideal of a set is ⟨0⟩ if

and only if its Zariski closure is all of space.

Recall the more familiar definition of an algebraic matroid.

Definition 1.3.9. Let L/K be a field extension and let E = {α1, . . . , αn} ⊆ L. The

algebraic matroid (E, I) consists of all sets S ⊆ E that are algebraically independent over

K.

Note that Proposition 1.3.8 shows that the coordinate projection matroid is an algebraic

matroid where the field extension is Frac(K[p1, . . . , pn]/P )/K and E = {p1, . . . , pn}, the

images of the variables in the fraction field Frac(K[p1, . . . , pn]/P ).

When the variety V is parameterized we are able to construct the matroid M(V )

using the Jacobian matrix of the parameterization (see [40]).

Proposition 1.3.10. Suppose that ϕ(θ1, . . . , θd) = (ϕ1(θ), . . . , ϕn(θ)) parameterizes V

(that is, V = ϕ(Kd)). Let

J(ϕ) :=

(
∂ϕj

∂θi

)
, 1 ≤ i ≤ d, 1 ≤ j ≤ n (1.2)
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be the transpose of the Jacobian matrix of ϕ. Then the matroid defined by the matrix

J(ϕ) using linear independence over the fraction field Frac (K[θ]) = K(θ) gives the same

matroid as M(ϕ(Kd)).

Thus we have multiple different ways that we can view the same matroid which will

be convenient to use at different times. For any of the above constructions that produce

a matroid M, we use the notation I(M) to denote the set of independent sets of M.

We end this section with an example that illustrates these different versions of the same

matroid.

Example 1.3.11. Let M ⊂ P2 be the model for a binomial random variable with 2 trials

in projective space. This model is parameterized by the homogeneous map ϕ : P1 → P2

defined by ϕi(t, θ) = t
(
2
i

)
θi(1 − θ)2−i for i = 0, 1, 2. The variable t is used to homogenize

the map so that the resulting vanishing ideal is homogeneous. The transposed Jacobian is

J(ϕ) =

[
(1 − θ)2 2θ(1 − θ) θ2

−2t(1 − θ) 2t(1 − 2θ) 2tθ

]
.

Let Mϕ denote the corresponding matroid which has ground set {0, 1, 2} corresponding

to the columns of J(ϕ). The independent sets are sets S ⊆ {0, 1, 2} such that columns in

S are linearly independent over the fraction field C(t, θ). One can verify through direct

computation that the independent sets are exactly S ⊆ {0, 1, 2} such that #S < 3.

On the other hand, the homogeneous vanishing ideal of M is I(M) = ⟨4p0p2 − p21⟩.
Its corresponding matroid, which we denote by MI(M), also has ground set {0, 1, 2}
and a set S ⊆ {0, 1, 2} is an independent set in MI(M) if I(M) ∩ C[S] = ⟨0⟩ where

C[S] = C[pi : i ∈ S]. In this case it is straightforward to see that the independent sets are

again the sets S such that #S < 3 and so Mϕ = MI(M).

Note that, as we have done in Example 1.3.11, we will usually work with homogeneous

vanishing ideals of algebraic statistical models. This has the advantage of simplifying

some computations, but does not affect the underlying theory.

1.4 Trees, Networks, and Phylogenetic Models

In this section, we provide some background on phylogenetic trees, networks, and Markov

models on them. The models and results discussed here will be used in chapters 3 and 4.
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1.4.1 Phylogenetic Trees

In this section we review the basics of phylogenetic trees and define some structures that

will be used throughout the rest of this thesis. Our terminology is adapted from [45]. For

additional information on phylogenetic trees we refer the reader to [41].

Definition 1.4.1. A tree T = (V,E) is a connected graph with no cycles. A leaf of T is

a degree 1 vertex. T is rooted if it has a distinguished node, typically denoted ρ, called

the root. A tree is binary if every non-leaf vertex has degree 3. A rooted tree is binary if

every non-root, non-leaf vertex has degree 3, and the root has degree 2.

In phylogenetics we are typically concerned with reconstructing a tree that best

represents the evolutionary history of a group of extant species which are associated with

the leaves. This type of evolutionary history is typically represented by a binary tree

whose leaves are labelled but internal vertices are not labelled.

Definition 1.4.2. Let X be a set of labels, T = (V,E) be a (binary) tree, and ϕ : X → V

be an injective map whose image is exactly the set of leaves of T . Then the pair (T, ϕ) is

called a (binary) phylogenetic X-tree.

In this thesis we will always take the label set X to be [n] = {1, 2, . . . n} and focus on

binary phylogenetic [n]-trees which we will abbreviate as [n]-trees.

Definition 1.4.3. A split of [n] is a set partition A|B of the set [n]. A split A|B is valid

for an unrooted binary [n]-tree T if it can be obtained as the leaf sets of the two connected

components of T \ e for some edge e of T . The set of all valid splits of T is denoted by

Σ(T ). The trivial splits of T are those obtained by deleting the edges e which include a

leaf of T .

When describing a tree by its splits we often omit the trivial splits associated to the

leaves of T . We will also typically suppress the parentheses when writing splits so we

write 123|456 to represent the split {1, 2, 3}|{4, 5, 6}. The following example illustrates

how the splits of a tree are determined from the tree.

Example 1.4.4. Let T be the binary phylogenetic tree pictured in Figure 1.2. T has the

trivial splits i | [6] \ i for all i ∈ [6]. These trivial splits are obtained by deleting the edges

that contain the leaves. The nontrivial splits of T are 12|3456, 123|456, and 1234|56 which

are induced by deleting the edges a, b, and c respectively.
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Figure 1.2: A rooted binary phylogenetic tree with 6 leaves labelled by {1, 2, 3, 4, 5, 6}
is pictured on the left and an unrooted version of the same tree is pictured on the right.

Definition 1.4.5. A pair of splits A1|B1 and A2|B2 is compatible if at least one of the

intersections

A1 ∩ A2, A1 ∩B2, B1 ∩ A2, B1 ∩B2

is empty. A set of splits Σ is pairwise compatible if every pair of splits is compatible.

Proposition 1.4.6. If T is an [n]-tree then the set of splits Σ(T ) is pairwise compatible.

Example 1.4.7. Again let T be the tree pictured in Figure 1.2. Then we see that

• 12|3456 and 123|456 are compatible since 12 ∩ 456 = ∅,

• 12|3456 and 1234|56 are compatible since 12 ∩ 56 = ∅,

• 123|456 and 1234|56 are compatible since 123 ∩ 56 = ∅.

Since every pair of splits is compatible, the set of splits Σ(T ) is pairwise compatible.

Theorem 1.4.8 (Splits Equivalence Theorem). Let Σ be a pairwise compatible set of

splits of [n]. Then there exists a unique [n]-tree such that Σ = Σ(T ).

This theorem combined with Proposition 1.4.6 tells us that [n]-trees and pairwise

compatible sets of splits are equivalent so we will frequently move between these two ways

of representing a [n]-tree.

1.4.2 Phylogenetic Networks

In this section we review the basics of phylogenetic networks and define some network

structures that we will use throughout this thesis. Our notation and terminology is adapted

from [21, 22]. For additional information on the combinatorial properties of networks and

definitions associated to them we refer the reader to [22, 41].
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Definition 1.4.9. A phylogenetic network N on leaf set [n] = {1, 2, . . . n} is a rooted

acyclic digraph with no multiple edges which satisfies the following properties:

1. the root has out-degree two;

2. a vertex with out-degree zero has in-degree one, and the set of vertices with out-

degree zero is [n];

3. all other vertices have either in-degree one and out-degree two, or in-degree two and

out-degree one.

Vertices with in-degree one and out-degree two are called tree vertices while vertices

with in-degree two and out-degree one are called reticulation vertices. Edges directed

into a reticulation vertex are called reticulation edges and all other edges are called

tree edges. In this thesis we will focus on group-based phylogenetic models which are

time-reversible. This means that it is impossible to identify the location of the root under

these models so we are only interested in the underlying semi-directed network structure

of the phylogenetic network. The underlying semi-directed network of a phylogenetic

network is obtained by suppressing the root and undirecting all tree edges in the network.

The reticulation edges remain directed into the reticulation vertex though. Note that since

the reticulation edges are implicitly directed into the reticulation vertex, we typically

omit the arrows when drawing semi-directed networks. This is illustrated in Figure 1.3.

As the number of reticulation vertices in the network increases, the parameterization of

the model becomes increasingly complicated. A common restriction is to limit the number

of reticulation vertices in each biconnected component of the network. A network is called

level-k if there is a maximum of k reticulation vertices in each biconnected component

of the network. In this thesis we will focus on level-1 networks and a special subclass of

these networks called sunlet networks which were first studied in [21].

Definition 1.4.10. A n-sunlet network is a semi-directed network with one reticulation

vertex and whose underlying graph is obtained by adding a leaf to every vertex of a

n-cycle. We denote with Sn the n-sunlet network with reticulation vertex adjacent to the

leaf 1 and the other leaves labelled clockwise from 1 in increasing order.

Note that any level-1 network can be constructed by gluing sunlets of possibly different

sizes along trees. It was noted in [21] that this corresponds to a toric fiber product of

their ideals. We develop this further in Section 4.1. The following example corresponds to

the 4-sunlet, S4, which we will use throughout Chapter 4
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2 1 4 3 1 2

43

Figure 1.3: A four leaf, level-1 network pictured on the left with all edges directed away
from the root. On the right is the associated semidirected network obtained by suppressing
the root and undirecting all tree edges. The edges are implicitly assumed to be directed
into the vertex adjacent to the leaf 1.

Example 1.4.11. Consider the network pictured on the left in Figure 1.3. This is a 4

leaf, level-1 network. The reticulation edges are dashed and the reticulation vertex is the

vertex adjacent to the leaf labelled 1. Its underlying semi-directed network is pictured on

the right. This semi-directed network is a 4-sunlet with reticulation vertex 1. Observe

that deleting either of the reticulation edges in the sunlet network yields an unrooted

binary tree with 4 leaves but that these two trees are not the same.

Another type of network which are closely related to sunlet networks are cycle networks

which were first introduced in [21].

Definition 1.4.12. A cycle-network is a semi-directed network with one reticulation

vertex. A k-cycle network is a cycle-network with cycle size k. Every k-cycle network can

be built by attaching a binary tree with at least one leaf to every vertex of a k-cycle and

specifying a single vertex of the cycle as the reticulation vertex.

1.4.3 Preliminaries on Phylogenetic Models

A κ-state phylogenetic Markov model on a n-leaf, leaf-labelled rooted binary tree T

gives us a joint distribution on the states of the leaves of T . This joint distribution is

determined by associating a κ-state random variable Xv to each internal vertex v of

T and a κ × κ transition matrix M e to each directed edge e = (u, v) of T such that

M e
i,j = P (Xv = j|Xu = i). A root distribution π for the root ρ of T is also needed. The

transition matrices {M e}e∈E(T ) and the root distribution π are called the continuous

parameters of the model.

We let [κ] be the state space of these random variables and Int(T ) be the set of

internal vertices of T . Also let Xi be the random variable associated to the leaf labelled i
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Figure 1.4: A three leaf tree with a random variable associated to each node of the tree.
The matrices M i are the transition matrices encoding the probabilities of the random
variables changing states.

for i ∈ [n]. Then the probability of observing a configuration (x1, . . . xn) ∈ [κ]n of states

at the leaves is

P (X1 = x1, . . . , Xn = xn) =
∑

j∈[κ]Int(T )

πjρ
∏

(u,v)∈E(T )

M
(u,v)
ju,jv

.

Example 1.4.13. Let T be the three leaf tree pictured in Figure 1.4. The random

variables Y1 and Y2, which correspond to internal nodes, are hidden random variables

of the model whereas the random variables X1, X2, X3, which correspond to leaves, are

observed.

We let M i be transition matrices associated to each edge as pictured in Figure 1.4. The

transition matrix M i gives the probability of the random variables changing states along

the corresponding edge. For instance, if we let i, j ∈ [κ], then P (X1 = j|Y1 = i) = M1
i,j.

Lastly we choose a root distribution π to be the distribution of the random variable Y1.

Then the probability of observing (x1, x2, x3) ∈ [κ]3 at the leaves is

P (X1 = x1, X2 = x2, X3 = x3) =
∑

(y1,y2)∈[κ]2
πy1M

0
y1,y2

M1
y1,x1

M2
y2,x2

M3
y2,x3

.

The first coordinate of (y1, y2) ∈ [κ]2 corresponds to the root which has associated random

variable Y1. The second coordinate corresponds to the other internal vertex which has

associated random variable Y2.

We can see that the joint distribution of (X1, . . . Xn) is given by polynomials in the

entries of π and the M e. In other words, the model can be thought of as a polynomial
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map

ψT : ΘT → ∆κn−1

where ΘT is the stochastic parameter space of the model and ∆κn−1 is the probability

simplex. We can also consider the variety VT we get by taking the Zariski closure of the

image of ψT . Polynomials in the vanishing ideal I(VT ) are called phylogenetic invariants

and were first studied in [9, 30]. For more information on these models we refer the reader

to [41].

With such a model, the 2-tree mixture model for trees T1 and T2 leaf-labelled by [n] is

obtained by taking the image of the map

ψT1,T2 : ΘT1 × ΘT2 × [0, 1] → ∆κn−1

defined by

ψT1,T2(θ1, θ2, λ) = λψT1(θ1) + (1 − λ)ψT2(θ2).

The 2-tree mixture model is the image of the map ψT1,T2 but the main object of interest

in this thesis is the variety naturally obtained by taking the Zariski closure of the image.

Denote this variety by VT1 ∗ VT2 which is the join variety of the varieties VT1 and VT2 . For

additional information of join varieties we refer the reader to [24].

Phylogenetic Markov models can also be extended to networks in the following way. Let

N be a network with reticulation vertices v1, . . . vm and let e0i and e1i be the reticulation

edges adjacent to vi. Associate a transition matrix to each edge of N . Independently at

random we delete e0i with probability λi and otherwise delete e1i and record which edge is

deleted with a vector σ ∈ {0, 1}m where σi = 0 indicates that edge e0i was deleted. Each

σ corresponds to a different tree Tσ. Then the parameterization ψN is given by

ψN =
∑

σ∈{0,1}m

(
m∏
i=1

λ1−σi
i (1 − λi)

σi

)
ψTσ (1.3)

where ψTσ is the parameterization corresponding to the tree Tσ with transition matrices

inherited from the original network N . Note that this is similar to a mixture model but

with many additional relations among the parameters. The parameterization ψN is still a

polynomial map though which means we can still consider the Zariski closure of the image

ψN and the corresponding ideal of phylogenetic invariants, IN . As mentioned previously,

if the phylogenetic model is time-reversible then we get the same model by considering

the Markov process on the underlying semi-directed network. We end this section with
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Figure 1.5: A 4 leaf 4-cycle network N and the two trees T0 and T1 that are obtained by
deleting the reticulation edges e8 and e5 respectively.

our running example.

Example 1.4.14. Consider the 4-sunlet S4 pictured in Figure 1.5 with reticulation vertex

adjacent to the leaf 1 and reticulation edges e5 and e8. The trees T0 and T1 are obtained

by deleting edges e8 and e5 respectively. Since there is only one reticulation vertex in S4,

the sum in Equation 1.3 simplifies to

ψS4 = λψT0 + (1 − λ)ψT1 .

The transition matrices used in the parameterization maps ψTi
are inherited from the

original network. For instance the edge e6 in the original network has a transition matrix

M e6 associated to it and thus the edge e6 that appears in T0 and the edge e6 that appears

in T1 both use the same transition matrix M e6 .

1.4.4 Group-Based Phylogenetic Models in Fourier Coordinates

Group-based models are a family of phylogenetic Markov models where the random

variables associated to each vertex take values in a finite abelian group. This allows for a

linear change of coordinates in which the models are given by monomial maps.

Definition 1.4.15. Let G be a finite abelian group of order κ and T a rooted binary

tree. Then a group-based model on T is a phylogenetic Markov model on T such that for

each transition matrix M e, there exists a function fe : G→ R such that M e
g,h = f(g − h).

As mentioned above, we think of the random variables Xv as taking values in the group

G, and the transition matrices as being indexed by the elements of the group. We will

focus on the Cavendar-Farris-Neyman (CFN), Jukes-Cantor (JC), Kimura 2-Parameter
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β α
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CFN


α β γ δ
β α δ γ
γ δ α β
δ γ β α


K3P

Figure 1.6: Transition matrices in the CFN and K3P models have the above forms

(K2P), and Kimura 3-Parameter (K3P) models. The CFN model is associated to the

group Z2 while the other three models are associated to the group Z2 × Z2. The form of

the transition matrices for the CFN and K3P models are pictured in Figure 1.6.

Group-based models allow for a linear change of coordinates that makes ψT a monomial

map, thus the variety VT is a toric variety [42]. This change of coordinates is called the

discrete Fourier transform and was first applied to phylogenetic models in [16, 27]. The

new image coordinates, commonly called the Fourier coordinates, are denoted with qg1,...,gn

for g1, . . . , gn ∈ G. This map is defined even more simply in the case that G is Z2 or

Z2 × Z2 which we will restrict to. In this case, the map can be described in terms of the

splits of the tree which we briefly describe first.

Now for each split A|B ∈ Σ(T ) and each group element g ∈ G we have a parameter

a
A|B
g . The parameterization of the model ψT in the Fourier coordinates is given by

qg1,...gn =


∏

A|B∈Σ(T ) a
A|B∑

i∈A gi
if
∑

i∈[n] gi = 0

0 otherwise
(1.4)

In the JC and the K2P models, further conditions are imposed on the parameters a
A|B
g

but in the generic group based models, which are the CFN and K3P models, there are no

other restrictions on the parameters.

Example 1.4.16. Let T1 be the tree pictured in Figure 3.1. The nontrivial splits of T1

are {12|3456, 123|456, 1234|56}. Since each split is a set partition of [6] into two parts, we

can just use one of the parts of the set partition to denote the parameter corresponding

to that split. So the parameterization ψT1 in the Fourier coordinates will be

qg1,...g6 =

a1g1a2g2a3g3a4g4a5g5a6g6a12g1+g2
a123g1+g2+g3

a56g5+g6
if
∑

i∈[6] gi = 0

0 otherwise
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The linearity of the Fourier transform allows us to also apply this change of coordinates

to 2-tree mixture models and network models as well [2] which makes the map ψT1,T2 into

a binomial map. The following example illustrates this for network models.

Example 1.4.17. Let Sn be the 4-sunlet pictured in Figure 1.5. As we saw in the previous

example, the trees T0 and T1 that are also pictured in Figure 1.5 are obtained from Sn by

deleting the reticulation edges e8 and e5 respectively. We denote the Fourier parameter

corresponding to the edge ei and group element gj by aigj . The parameterization ψSn in

the Fourier coordinates is

qg1,g2,g3,g4 =

a1g1a2g2a3g3a4g4a5g1a6g1+g2
a7g4 + a1g1a

2
g2
a3g3a

4
g4
a6g3a

7
g1+g4

a8g1 if
∑

i∈[4] gi = 0

0 otherwise

The first term in the above parameterization comes from the parameterization ψT0 in the

Fourier coordinates and the second term comes from ψT1 .

This new parameterization for network models is easier to work with than the previous

parameterization but we can see that the ideal of a sunlet network is still not a toric ideal

in the new coordinates. This means the techniques used to analyze the ideal IT can not

be directly used to analyze ISn .

1.5 Outline of the Thesis

We will now outline the remaining chapters of this thesis.

1.5.1 Exchangeable and Sampling Consistent Distributions on

Rooted Binary Trees

Chapter 2 focuses on characterizing the set of exchangeable and sampling consistent

probability distributions on phylogenetic [n]-trees. The contents of this chapter are joint

work with Seth Sullivant and come from a paper which was published in Journal of

Applied Probability [29].

Exchangeability and sampling consistency are two properties a distribution on trees

can satisfy and are desirable for biological reasons. In Chapter 1 we introduce a finite

notion of sampling consistency for distributions on [n]-trees and show that the set of such

distributions is a polytope. We then study the vertices of this polytope for small n.
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Next we introduce a new family of exchangeable and sampling consistent distributions

which come from doing a multinomial sample on the edges of a fixed tree. We then show

that any exchangeable and sampling consistent distribution on [n]-trees is either a convex

combinations of limits of multinomial distributions or a limit point of points in that set.

1.5.2 Identifiability in Phylogenetics using Algebraic Matroids

In Chapter 3 we develop a new method for proving that discrete parameters in parametric

algebraic statistical models are identifiable which uses algebraic matroids associated to

the models. The contents of this chapter are also joint work with Seth Sullivant and come

from a paper that was published in Journal of Symbolic Computation [28].

Identifiability is a crucial property for a statistical model since it ensures that distribu-

tions in the model uniquely determine the parameters that produce them. In phylogenetics,

the identifiability of the tree parameter is of particular interest since it means that phy-

logenetic models can be used to infer evolutionary histories from data. In this chapter

we introduce a new computational strategy for proving the identifiability of discrete pa-

rameters in algebraic statistical models that uses algebraic matroids naturally associated

to the models. The main idea of this algorithm is to compute independent sets in the

algebraic matroid defined by the vanishing ideal of the statistical model without actually

computing the ideal. This allows us to avoid time consuming Gröbner basis computations

and prove identifiability results that were computationally infeasible beforehand.

In particular, we use this algorithm to prove that the tree parameters are generically

identifiable for 2-tree CFN and K3P mixtures. We also show that the k-cycle phylogenetic

network parameter is identifiable under the K2P and K3P models.

While the results discussed in this chapter primarily focus on phylogenetic models and

are developed within the context of models for discrete random variables, our techniques

work in a broader setting. Our main algorithm can actually be applied to other continuous

models with finite dimensional natural parameter spaces.

1.5.3 Invariants for level-1 phylogenetic networks under the

Cavendar-Farris-Neyman Model

In Chapter 4 we study the vanishing ideals of CFN level-1 phylogenetic network models.

The contents of this chapter are joint work with Joseph Cummings and Chris Manon [12].

Phylogenetic networks can model more complicated evolutionary phenomena that
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trees fail to capture such as horizontal gene transfer and hybridization. The same Markov

models that are used to model evolution on trees can also be extended to networks and

similar questions, such as the identifiability of the network parameter or the invariants

of the model, can be asked. In this Chapter we focus on finding the invariants of the

Cavendar-Farris-Neyman (CFN) model on level-1 phylogenetic networks. We do this by

reducing the problem to finding invariants of sunlet networks, which are level-1 networks

consisting of a single cycle with leaves at each vertex. We then determine all quadratic

invariants in the sunlet network ideal which we conjecture generate the full ideal.

We determine the quadratic invariants by first showing that the ideal In associated

to the n-sunlet network Sn is homogeneous with respect to a particualr multigrading.

We then break up the ideal into graded pieces which we call gloves and give an explicit

description of the quadratics that are in each glove.
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CHAPTER

2

EXCHANGEABLE AND SAMPLING

CONSISTENT DISTRIBUTIONS ON

ROOTED BINARY TREES

2.1 Introduction

Leaf-labelled binary trees, which are commonly called phylogenetic trees, are frequently

used to represent the evolutionary relationships between species. In this section we will

restrict our attention to rooted binary trees and our label set for a tree with n leaves will

always be [n] = {1, 2, . . . n}. We call these trees [n]-trees and denote the set of [n]-trees

with RBL(n).

Processes for generating random [n]-trees play an important role in phylogenetics.

Two common examples are the uniform distribution (where a tree is chosen uniformly at

random from among all trees in RBL(n)) and the Yule-Harding distribution (a simple

Markov branching process). Some other examples of random tree models include Aldous’ β-

splitting model [1], the α-splitting model [17], and the coalescent process (which generates
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trees with edge lengths) [47]. Two features common to all these random tree processes and

desirable for any such tree process is that they are exchangeable and sampling consistent.

Let pn denote a probability distribution on RBL(n). Exchangeability refers to the fact

that relabeling the leaves of the tree does not change its probability. That is, for all

T ∈ RBL(n) and σ ∈ Sn, pn(T ) = pn(σT ). Exchangeability is a natural condition since

it does not allow the names of the species to play any special role in the probability

distribution. A family of distributions, {pn}∞n=2, on trees has sampling consistency if for

each n, the distribution pn, which is on [n]-trees, can be realized as the marginalization of

distributions pm, which is on [m]-trees, for m > n. That is the probability of a [n]-tree, T ,

under pn can be written as

πn(pm)(T ) = pmn (T ) =
∑

{S∈RBL(m)|T=S|[n]}

pm(S).

Sampling consistency is a natural condition for a random tree model because it means

that randomly missing species do not affect the underlying distribution on the species

that were observed.

Our motivation for this study is two-fold. First of all, there has been significant work on

understanding the set of exchangeable, sampling consistent distributions on other discrete

objects, including rooted trees. A classic result in this theory is de Finetti’s Theorem

for infinitely exchangeable sequences of binary random variables which shows that every

subsequence of the infinite sequence can be expressed as a mixture of independent and

identically distributed sequences. This does not hold for finitely exchangeable sequences

but Diaconis later developed a finite form of de Finetti’s theorem. He showed that if

a finite exchangeable sequence of binary random variables, {Xi}ni=1, can be extended

to an exchangeable sequence, {Xi}mi=1 where m > n, then the original sequence can be

approximated with a mixture of independent and identically distributed sequences with

error O( 1
m

) [14]. A substantial amount of work has been done on exchangeable arrays

(see [15] for example) as well, which has been used to prove de Finetti theorems for other

discrete objects. For instance, Lauritzen, Rinaldo, and Sadeghi recently developed a de

Finetti Theorem for exchangeable random networks [31].

There has also been considerable work characterizing exchangeable and sampling

consistent distributions on trees using weighted real trees as limit objects in [18, 19, 23].

In [23] a characterization of the exchangeable and sampling consistent Markov branching

models we discuss in Section 2.3.1 is obtained. A true de Finetti theorem for trees
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is conjectured in [19] and proven in Theorem 3 of [18]. The approach taken in these

papers is to characterize all infinitely sampling consistent distributions on trees using a

limiting object called a weighted real tree. In this paper, we instead take a geometric

and combinatorial approach to the study of exchangeable and finitely sampling consistent

distributions on binary trees and examine what happens as we take the limit.

A second motivation comes from the combinatorial phylogenetics problem of studying

properties of the distribution of the maximum agreement subtree of pairs of random

trees. Let T ∈ RBL(n) and S ⊆ [n]. The restriction tree T |S is the rooted binary tree

with leaf label set S obtained by removing all leaves of T not in S and suppressing all

vertices of degree 2 except the root. Two trees, T1, T2 ∈ RBL(n), agree on a set S ⊆ [n]

if T1|S = T2|S. A maximum agreement set is an agreement set of the largest size for T1

and T2. The size of a maximum agreement subtree of these two trees is the cardinality

of the largest subset S that T1 and T2 agree on and is denoted MAST(T1, T2). If S is an

agreement set with |S| = MAST(T1, T2) then the resulting tree T1|S = T2|S is a maximum

agreement subtree of T1 and T2.

Understanding the distribution of MAST(T1, T2) for random tree distributions would

help in conducting hypothesis tests that the similarity between the trees is no greater

than the similarity between random trees. For example, it was suggested in [13] that

MAST(T1, T2) could be used to test the hypothesis that no cospeciation occurred between

a family of host species and a family of parasite species that prey on them. The study

of the distribution of MAST(T1, T2) for random trees T1, T2 is primarily conducted with

the assumption that T1 and T2 are drawn from an exchangeable, sampling consistent

distribution on rooted binary trees. Bryant, Mackenzie, and Steel began the study of

the distribution of MAST(T1, T2) and obtained some first bounds on E(MAST(T1, T2))

for random trees T1 and T2 drawn from the Uniform or Yule-Harding distributions [7].

Later work on the distribution obtained an upper bound on the order of O(
√
n) for

E(MAST(T1, T2)) when T1 and T2 are drawn from any exchangeable, sampling consistent

distribution [6]. A lower bound on the order of Ω(
√
n) has been conjectured for all

exchangeable, sampling consistent distributions as well but this remains an open problem.

Our hope in pursuing this project is that developing a better understanding of the set of

all exchangeable sampling consistent distributions might shed light on this conjecture.

In this chapter we study the structure of exchangeable, sampling consistent distri-

butions on leaf labelled, rooted binary trees. We introduce a notion of a polytope of

exchangeable and finitely sampling consistent distributions. We use it to study the set of

exchangeable and sampling consistent distributions on trees and get some characterizations
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for trees with a small number of leaves. We show that set of all exchangeable and sampling

consistent distributions on four leaf trees come from the β-splitting model that was first

introduced by Aldous in [1]. We have not been able to find a similar characterization

for exchangeable and sampling consistent distributions on five leaf trees but we describe

some of the vertices of the polytope of exchangeable and finitely sampling consistent

distributions. Lastly, we introduce a new exchangeable and sampling consistent model

on trees, called the multinomial model, and show that every sampling consistent and

exchangeable distribution can be realized as a convex combination of limits of sequences

of multinomial distributions.

2.2 Exchangeability and Finite Sampling Consistency

In this section we describe how the set of exchangeable distributions relates to the set of

all distributions on leaf labelled, rooted binary trees. We then introduce a notion of finite

sampling consistency and discuss how it relates to traditional sampling consistency.

Recall that RBL(n) denotes the set of all leaf labelled, rooted binary trees with label

set [n], which we call [n]-trees, and that |RBL(n)| = (2n− 3)!!. The set of all distributions

on RBL(n) is the probability simplex ∆(2n−3)!!−1 ⊆ R(2n−3)!! where the coordinates are

indexed by [n]-trees. The symmetric group Sn denotes the group of permutations of [n].

For each σ ∈ Sn and T ∈ RBL(n) let σT denote the tree obtained by applying σ to the

leaf labels.

Definition 2.2.1. A distribution p on RBL(n) is exchangeable if for all permutations

σ ∈ Sn and [n]-trees T ∈ RBL(n), p(T ) = p(σT ). The set of all exchangeable distributions

on RBL(n) is denoted En.

As previously mentioned, exchangeability requires that the probability of a [n]-tree

under a particular distribution depend only on the shape of the tree. Thus we only need to

consider distributions on the set of tree shapes. Let RBU(n) denote the set of unlabelled

rooted binary trees, which we may also call trees or tree shapes. This idea is summarized

in the next lemma which is the [n]-tree analogue of Lemma 2 in [31].

Lemma 2.2.2. The set of exchangeable distributions on RBL(n), En, is a simplex of

dimension |RBU(n)| − 1 with coordinates indexed by tree shapes.

Proof. First we define a distribution pT ∈ En for each tree shape T ∈ RBU(n). To do

so, we let O(T ) be the set of trees T ′ ∈ RBL(n) such that shape(T ′) = T . For any tree
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S ∈ RBL(n) we set

pT (S) =

 1
|O(T )| shape(S) = T

0 shape(S) ̸= T.

Then pT ∈ En since it is a probability distribution on trees and all trees of the same shape

have the same probability. We claim that En = conv ({pT : T ∈ RBU(n)}), where conv(A)

denotes the convex hull of the set A. Since pT ∈ En for all T ∈ RBU(n), it is enough to

show that any distribution p ∈ En can be written as a convex combination of the pT . If

p ∈ En, then the probability of any tree T ′ ∈ RBL(n) depends only on the shape of T ′ not

the leaf labelling so we can write

p =
∑

T∈RBU(n)

p(T )pT

where p(T ) is |O(T )| times the probability of any [n]-tree in RBL(n) with shape T . Since

the original p is a probability distribution on all leaf labelled trees the weights in the

linear combination are nonnegative and sum to 1. Lastly we note that the vectors pT are

affinely independent since there is no overlap of coordinate indices where the entries in pT

are nonzero. So En = conv ({pT : T ∈ RBU(n)}) is a simplex and has coordinates indexed

by RBU(n).

Lemma 2.2.2 allows us to move from studying exchangeable distributions on leaf

labelled [n]-trees to all distributions on unlabelled trees. We will primarily focus on

understanding the set of sampling consistent distributions within En now. First recall that

for pm ∈ Em the marginalization or projection map πn gives a new distribution pmn on

RBL(n) for n < m, defined for all T ∈ RBL(n) by

πn(pm)(T ) =
∑

{S∈RBL(m)|T=S|[n]}

pm(S)

We will use this marginalization map to define a notion of finite sampling consistency.

Definition 2.2.3. A family of distributions {pk}mk=n is finitely sampling consistent or

m-sampling consistent, if for each n ≤ k < m, pk = πk(pm). We denote the set of all

distributions in En that are m-sampling consistent by

Em
n = πn(Em).
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It is immediate that if a distribution in En is m-sampling consistent, then for any k,

such that n < k < m, the distribution is also k-sampling consistent. This leads to the

following:

Lemma 2.2.4. For all m > k > n,

Em
n ⊆ Ek

n .

A distribution in En is sampling consistent if it is part of a m-sampling consistent

family of distributions for all m > n. In other words, a distribution is sampling consistent

if it is in Em
n for all m > n. Thus we can define the following notation for the set of

exchangeable distributions on RBL(n) that are sampling consistent:

E∞
n := ∩∞

m=nEm
n .

Lemma 2.2.5. Let pT ∈ Em be defined as it is in Lemma 2.2.2, then

Em
n = conv ({πn(pT ) : T ∈ RBU(m)}) .

Proof. Clearly it holds that conv({πn(pT ) : T ∈ RBU(m)}) ⊆ Em
n since πn(pT ) ∈ Em

n for

all T ∈ RBU(m). It is enough to show that if we have a distribution pmn ∈ Em
n , then it can

be written as a convex combination of the πn(pT ). If pmn ∈ Em
n , then there exists pm ∈ Em

such that πn(pm) = pmn . Since pm ∈ Em, we know from Lemma 2.2 that we can write

pm =
∑

T∈RBU(n) pm(T ) · pT . Then evaluating πn(pm) at a [n]-tree S ∈ RBL(n) gives

πn(pm)(S) =
∑

{Q∈RBL(m)|S=Q|[n]}

∑
T∈RBU(m)

pm(T )pT (Q)

Changing the order of summation we have

πn(pm)(S) =
∑

T∈RBU(m)

pm(T )
∑

{Q∈RBL(m)|S=Q|[n]}

pT (Q)

but
∑

{Q∈RBL(m)|S=Q|[n]} pT (Q) = πn(pT )(S) so we get that

πn(pm)(S) =
∑

T∈RBU(m)

pm(T )(πn(pT )(S))

which shows that pmn = πn(pm) can be written as a convex combination of the πn(pT ).
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Figure 2.1: The projection of E7
5 onto the first two coordinates of the simplex E5. The

gray points correspond to the points πn(pT ) for T ∈ RBU(7). The vertices of the simplex
are labelled with the corresponding unrooted tree. Note that the balanced tree is at the
origin since we’ve projected onto the coordinates corresponding to the other two trees.

Example 2.2.6. While it is the case that Em
n = conv({πn(pT ) : T ∈ RBU(m)}), not every

πn(pT ) will be a vertex of Em
n . Figure 2.1 illustrates this.

Lemma 2.2.5 implies that understanding how the marginalization map acts on the

vertices of Em will allow us to compute all of Em
n . The following lemma and corollary will

give us a method for calculating the vertices of Em
n by computing subtree densities.

Lemma 2.2.7. Let S ∈ RBL(n) and T ∈ RBU(m). Also let cT (S) = |{Q ∈ RBL(m)|S =

Q|[n], shape(Q) = T}|. Then πn(pT )(S) = cT (S)
|O(T )| .

Proof. By definition of the map πn

πn(pT )(S) =
∑

{Q∈RBL(m)|S=Q|[n]}

pT (Q)

but pT (Q) is nonzero if and only if shape(Q) = T , in which case it is 1
|O(T )| . So the above

sum becomes

πn(pT )(S) =
∑

{Q∈RBL(m)|S=Q|[n],shape(Q)=T}

1

|O(T )|
=

cT (S)

|O(T )|
.

Corollary 2.2.8. Let S ′ ∈ RBU(n) and T ∈ RBU(m). Then πn(pT )(S ′), which is used to

denote the sum of πn(pT )(S) over all S ∈ O(S ′), is the induced subtree density of S ′ in T .
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That is, for any fixed Q ∈ O(T )

πn(pT )(S ′) =
|{I ⊆ [m] : |I| = n and shape(Q|I) = S ′}|(

m
n

) .

Proof. From the previous lemma, we know that for any S ∈ O(S ′), πn(pT )(S) = cT (S)
|O(T )|

where cT (S) = |{Q ∈ RBL(m)|S = Q|[n], shape(Q) = T}|. Then we have

πn(pT )(S ′) =
∑

S∈O(S′)

cT (S)

|O(T )|

So for each labelling S of S ′, we are counting which fraction of labellings of T yield S

when restricted to [n]. As we sum over all labellings of S, this gives us the total fraction

of times that the shape S ′ appears as a restriction tree of the shape T when (n−m) of

its leaves are marginalized out which is exactly

|{I ⊆ [m] : |I| = n and shape(Q|I) = S ′}|(
m
n

) .

The following examples elucidates what is meant by induced subtree density and

shows how we can explicitly calculate this quantity.

Example 2.2.9. We show how to find the projection of one vertex of E5 down to E4. E5
4

is the convex hull of the projection of all of the vertices of E5. Begin with the tree shape

T pictured in Figure 2.2a. We label the leaves of T for the sake of the calculation but

it should be thought of as an unlabelled tree. We then find the shape of the restriction

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, gives the shape Bal4 and the restriction to the sets

{1, 3, 4, 5}, {2, 3, 4, 5} gives the shape Comb4, pictured in Figure 2.2b. We let the first

coordinate of E4 be the probability of obtaining Comb4 and the second be the probability

of obtaining Bal4. As mentioned above, these probabilities will simply be the number of

times each shape appears as a restriction tree over the total number of restriction trees.

Thus this vertex of E5 will give us the distribution (2/5, 3/5) in E4.

We have now seen how to compute the vertices of Em
n explicitly but not every dis-

tribution πn(pT ) is a vertex of Em
n . However, the comb tree always yields a vertex of

Em
n .
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Figure 2.2

Lemma 2.2.10. For all m ≥ n, let Combm ∈ RBU(m) be the m-leaf comb tree, then

πn(pCombm) is a vertex in Em
n .

Proof. The comb tree has only smaller comb trees as restriction trees, so the image of

the comb distribution on m leaves under the marginalization map will be the comb

distribution on n leaves. Since pCombn is a vertex of En and Em
n is a subset of En, then

pCombn is also a vertex of Em
n .

2.3 Examples of Exchangeable and Sampling Consis-

tent distributions

In this section we discuss some of the well-known exchangeable and sampling consistent

families of distributions particularly, the Markov branching models. We also introduce a

new family of exchangeable sampling consistent tree distributions, namely the multinomial

family.

2.3.1 Markov Branching Models

An important example of sampling consistent and exchangeable distributions are the

families of Markov branching models which can be constructed in the following way as

first introduced in [1] by Aldous.

Suppose that for every integer n ≥ 2, we have a probability distribution on

{1, 2, . . . , n− 1}, qn = (qn(i) : i = 1, 2, . . . n− 1) which satisfies qn(i) = qn(n− i). Using

this family of distributions we can define a probability distribution on RBU(n) by taking

the probability that i leaves fall on the left of the root-split and n− i leaves fall on the

right of the root-split to be qn(i) with each choice of i labels to fall on the left having
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the same probability. Repeating recursively in each branch will yield the probability of a

rooted binary tree. Aldous called these models Markov branching models.

Haas et al. classified the sampling consistent Markov branching models on rooted

binary trees in [23]. They show that every sampling consistent Markov branching model,

defined by the splitting rules qn, n ≥ 2, has an integral representation of the form

qn(i) = a−1
n

((
n

i

)∫ 1

0

xi(1 − x)n−iν(dx) + nc1i=1

)
(2.1)

where c ≥ 0, ν is a symmetric measure on (0, 1) such that
∫ 1

0
x(1 − x)ν(dx) < ∞, and

an is a normalization constant. c1i=1 accounts for the comb distribution. A subclass of

these models are those where the measure ν in equation (2.1) has the form ν(dx) =

f(x)dx for a probability density function f on (0, 1) that is symmetric on the interval

(i.e. f(x) = f(1 − x)) and where c = 0. These Markov branching models can be thought

of as uniformly choosing n points in the interval (0, 1) at random and then splitting the

interval with respect to the density f . Repeating the splitting process recursively in each

subinterval until each of the original n points is contained in its own subinterval gives a

tree shape. This process is pictured in Figure 6 in [1].

One particularly important family of Markov branching distributions is the beta-

splitting model. It is a Markov branching model that belongs to the subclass mentioned

above where the function f in the above description has the form

f(x) =
Γ(2β + 2)

Γ2(β + 1)
xβ(1 − x)β

for −1 < β <∞. For the beta-splitting model we can calculate the values qn(i) explicitly

in terms of β. By plugging in the beta-splitting density function f into (2.1) for qn(i) we

get the following formulas:

qn(i) = a−1
n

(
n

i

)
Γ(β + i+ 1)Γ(β + n− i+ 1)Γ(2β + 2)

Γ(2β + n+ 2)Γ2(β + 1)
(2.2)

for −1 < β <∞. Note that Equation (2.2) can be analytically continued on −2 < β ≤ −1

and so it is natural to extend the beta-splitting model to those values of β. As β approaches

−2 the beta-splitting model approaches the distribution which puts all probability on the

comb tree, so we also include β = −2 in the beta splitting model as the comb distribution.

An important note here is that for the beta-splitting model each qn(i) is actually a
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rational function in β. Using properties of the gamma function one can see that the above

formula simplifies to

qn(i) =

(
n
i

)
(i+ β)i(n− i+ β)n−i

(n+ 2β + 1)n − 2(n+ β)n

Since each qn(i) is a rational function in β, we can see that the probability of obtaining a

certain tree shape is a rational function in β as well because the probability of obtaining

that tree shape under the beta-splitting model is simply the product of the probability of

all of the splits in the tree.

Example 2.3.1. Let Comb4 and Bal4 be the trees pictured in Figure 2.2b. Then the

probabilities of obtaining them under the beta-splitting model are

p(Comb4) = 2q4(1) =
12 + 4β

18 + 7β

p(Bal4) = q4(2) =
6 + 3β

18 + 7β

This model also has a nice characterization among all of the sampling consistent

Markov branching models. In [38], McCullagh, Pitman, and Winkel show that the beta-

splitting models are the only sampling consistent Markov branching models whose splitting

rules admit a particular factorization.

We are interested in examining how the sampling consistent Markov branching models

and in particular the beta-splitting model fits inside inside of En as a whole. These

distributions are infinitely sampling consistent and so lie in E∞
n as well. A priori, it might

seem that to determine the probability of a tree shape with n leaves under a Markov

branching model that one would need to have not only the distribution qn but also

distributions qk where 2 ≤ k ≤ n − 1. This is actually not the case for any sampling

consistent Markov branching model though. Ford showed in Proposition 41 of [17] that if

(qk|2 ≤ k ≤ n) are the splitting rules for a distribution in E∞
n , then in fact it must be that

qn−1(i) =
(n− i)qn(i) + (i+ 1)qn(i+ 1)

n− 2qn(1)
(2.3)

This implies that all that is needed to define a distribution in E∞
n is the first splitting rule

qn which gives the following corollary.

Corollary 2.3.2. The dimension of the set of all sampling consistent Markov branching

models in En is at most ⌈n−1
2
⌉ − 1
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Proof. As explained above, a Markov branching model is completely determined by the

distribution qn = (qn(i) : i = 1, 2, . . . n − 1) which determines all of the distributions

qk = (qk(i) : i = 1, 2, . . . k − 1) where 2 ≤ k ≤ n − 2. Since qn must be symmetric we

immediately get that the values qn(1), qn(2), . . . , qn(⌈n−1
2
⌉) determine all of qn. Also since

qn must be a distribution we lose one of these as a free parameter, thus the dimension of the

set of sampling consistent Markov branching models is bounded above by (⌈n−1
2
⌉− 1).

Note that when n = 4, the space of sampling consistent Markov branching models has

dimension 1. We will see in Section 2.4 that the set of beta-splitting models is equal to

the set of sampling consistent Markov branching models in this case.

2.3.2 Multinomial model

The multinomial model associates to each tree shape T ∈ RBU(m) for any m ≥ 2 a family

of probability distributions on RBL(n) for each n. We first add an extra leaf to the root of

T to obtain a new tree which we denote by T̃ . We then associate to every edge, e, in T̃ a

parameter te ≥ 0. This gives us a vector of parameters t = (te|e ∈ E(T̃ )) of length 2m− 1,

and we assume that
∑

e te = 1, so that these parameters give a probability distribution on

the edges of T̃ . We will now use this probability distribution to define a set of distributions

on RBU(n) for any n ≥ 2. Note that n and m do not have to be related to each other.

Using the distribution t, we draw a multiset A of edges from the tree T̃ , where edge e

occurs with probability te. There is a natural way to take the tree T̃ and a multiset A of

size n on the set of parameters and construct a new tree which we will call T̃A ∈ RBU(n).

Each time that an edge e appears in A, we add a new leaf to the edge e, which will give

us a new tree with m+ n leaves. We then simply take T̃A to be the induced subtree on

only the leaves that come from A. Hence, the multinomial model on the tree T gives a

way to produce random trees with an underlying skeleton that is the tree T . For large n,

the resulting random trees look like T with many extra leaves added.

The multinomial probability of observing a particular multiset of edges A is the

monomial

pA =

(
n

mA

)∏
e∈T̃

tmA(e)
e

where mA(e) denotes the number of times that e appears in the multiset A, and mA is

the resulting vector.

Letting M T̃
n be the set of all n element multisets of edges of T̃ , we can calculate the
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probability of observing any particular tree shape S by

pT̃ ,t(S) =
∑

A∈M T̃
n

T̃A=S

pA.

Example 2.3.3. Consider the tree T̃ from Figure 2.3b with edge parameters (t1, t2, t3).

To calculate the probability of the tree, Bal5, in Figure 2.3c we use the formula

pT̃ ,t(Bal5) =
∑

A∈M T̃
5

T̃A=Bal5

pA.

The only multisets that satisfy this condition are the sets A1 = {2, 2, 2, 3, 3} and A2 =

{2, 2, 3, 3, 3}. This is because if 1 appears in a multiset A any positive number of times,

the tree T̃A will have a single leaf on one side of the root and four leaves on the other

side, regardless of what other parameters appear in the set. So A1 and A2 are the only

elements of M T̃
5 that we sum over so

pT̃ ,t(Bal5) =

(
5

3, 2

)
t32t

2
3 +

(
5

2, 3

)
t22t

3
3

The multinomial model gives a family of distributions as we let the parameter vector

t range over the entire simplex. Equivalently, the model can be described as the image of

the simplex under the polynomial map

pT̃ : ∆|E(T̃ )|−1 → E∞
n

where the coordinate corresponding to S ∈ RBU(n) has value pT̃ ,t(S) for t ∈ ∆2m−2. Since

∆2m−2 is a semialgebraic set and pT̃ is a polynomial map, the multinomial model is also a
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Figure 2.4: This is a projection onto the first two coordinates of the simplex E5. The
beta-splitting model on RBU(5) is pictured in black and the multinomial model on the
two leaf tree is pictured in gray.

semialgebraic set.

It also holds that if we take any tree T ∈ RBU(m), and any subtree T ′ ∈ RBU(m′) of

T , then we have that Im(pT̃ ′) ⊆ Im(pT̃ ). This is because if the parameters corresponding

to edges that appear in T but not in T ′ are set to 0 in pT , the map will simply become

pT ′ . Setting these parameters to 0 just corresponds to restricting pT to a subset of the

simplex and thus we get the image containment.

A last interesting note is that this model is perhaps similar in spirit to the W -random

graphs when W is a graphon obtained from a finite graph G as described in [34]. The

construction begins with a finite graph G and uses it to define a distribution on graphs

with k vertices similarly to how we begin with a tree T and define a distribution on trees

with k leaves.

We end this section with Figure 2.4, which shows both the beta-splitting model and

the multinomial model inside E5. In the next section we will discuss the exchangeable and

sampling consistent distributions on four leaf trees and how they relate to the models

discussed in this section.

2.4 Distributions in E∞
4

In this section we classify all of the distributions in E∞
4 . In particular, we show that E∞

4

is equal to the beta-splitting model.

First we note that since there are only two distinct tree shapes with four leaves (see

Figure 2.2b), the set of exchangeable distributions is just a 1-dimensional simplex ∆1 in

R2. We take coordinates (p1, p2) on R2 and let the first coordinate correspond to Comb4
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and the second coordinate to Bal4. The subset of distributions that are also sampling

consistent must be some line segment within the simplex. We know from Lemma 2.2.10

that the comb distribution, which is (1, 0) in these coordinates, is a vertex in E∞
4 . If we

can bound the probability of obtaining Bal4 then we will have a complete characterization

of all distributions in E∞
4 . Theorem 2 in [11] will be the main tool to achieve this.

Theorem 2.4.1. [11, Thm 2] The most balanced tree in RBU(n) has the complete

symmetric tree on four leaves appear more frequently as a subtree than any other tree in

RBU(n).

By the most balanced tree in RBU(n), we mean the unique tree shape in RBU(n) that

has the property that for any internal vertex of the tree, the number of leaves on the left

and right subtrees below that differ by at most one.

Theorem 2.4.2. The four leaf beta-splitting model equals the set of all exchangeable and

sampling consistent distributions on RBU(4).

Proof. Note that En
4 only has two vertices since it is a line segment. The comb distribution

(1, 0) is always a vertex in En
4 , by Lemma 2.2.10. The other vertex will be the projection

of the vertex of En that places the most mass on Bal4. The projection of a vertex pT ∈ En,

is (p1, p2) = 1

(n
4)

(m1,m2) where m1 is the number of 4 element subsets S ⊂ [n] such that

T |S = Comb4 and m2 is the number of 4 element subsets S ⊂ [n] such that T |S = Bal4.

By Theorem 2.4.1 we can restrict to the most balanced tree in RBU(n). We will use m2,n

to denote this highest value of m2 that we get from the most balanced tree in RBU(n).

The beta-splitting model on RBU(4), on the other hand, is the line segment from (1, 0)

to (4
7
, 3
7
). Indeed, under the beta splitting model, the probability of Bal4 is just

q4(2) =

(
4
2

)
(β + 2)22

(2β + 5)4 − 2(β + 4)4

=
6β4 +O(β3)

14β4 +O(β3)
.

As β → ∞, this converges to 3
7
. So if we can show that limn→

m2,n

(n
4)

= 3
7

then we will be

done.

To prove that limn→
m2,n

(n
4)

= 3
7
, we can restrict to the subsequence of values n = 2k,

since Lemma 2.2.4 implies that m2,n

(n
4)

is a monotone decreasing sequence. This subsequence

is easier to deal with since m2,2n counts the number of 4-subsets, S ⊂ [2n] of the leaves of
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the complete symmetric tree T2n in RBU(2n) such that T2n|S = Bal4. Using the recursive

structure of T2n , we see that m2,2n = 2m2,2n−1 +
(
2n−1

2

)2
. The only ways we can choose a

subset S such that T2n|S = Bal4 are that the leaves in S fall either entirely within the

left or right subtrees or that S has two leaves from both the left and right subtrees. The

number of ways to choose a subset S that falls entirely on the left or right side is m2,2n−1

by definition. The number of ways to choose two leaves from each side is
(
2n−1

2

)2
. This

recurrence can be solved to find an explicit formula for m2,2n which is

m2,2n =
n−1∑
i=1

2n−i−1

(
2i

2

)2

Now we can simplify
m2,2n

(2n

4 )
to get

m2,2n(
2n

4

) =
3(2n) − 5

7(2n) − 21

which converges to 3
7

as n tends to infinity.

Note that Theorem 2.4.2 does not generalize to higher dimensions as the set of beta

splitting distributions is of strictly smaller dimension than the set of exchangeable sampling

consistent distributions. We explore the discrepancy between these sets in more detail in

the next sections.

2.5 Distributions on E∞
5

There are three distinct tree shapes with five leaves so E5 is a 2-dimensional simplex in

R3. For the rest of this section we will use Comb5, Gir5, and Bal5 to represent the trees

pictured in Figure 2.5. Specifically, let Comb5 denote the comb tree on five leaves, Bal5

denote the balanced tree on five leaves and Gir5 denote the giraffe tree on five leaves. We

take coordinates (p1, p2, p3) on R3 where p1, p2, p3 represent the probability of obtaining

Comb5, Gir5, and Bal5, respectively.

While we have not been able to give a complete description of the vertices of En
5 for

all n, we are able to define some tree structures in RBU(n) that do yield vertices of En
5 .

We have already seen that the comb tree Combm always yields a vertex of Em
n for all m

and n. Here we provide some other examples.

Definition 2.5.1. For a tree T ∈ RBU(m) let comb(T, n) be the tree that is obtained
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Comb5 Gir5 Bal5

Figure 2.5: Tree shapes on five leaves

by creating a comb tree with n leaves and replacing one of the two leaves at the deepest

level with the tree T .

Generally, if T ∈ RBU(m) then comb(T, n) has m + n − 1 vertices. For example,

Gir5 = comb(Bal4, 2). Note that does not matter which of the leaves is replaced with T

since our trees are unlabelled.

Proposition 2.5.2. Let Tn = comb(Gir5, n− 4). Then π5(pTn) is a vertex in En
5 .

Proof. First note that Tn and Combn are the only trees with n leaves that do not have

Bal5 as a subtree. This means Tn and Combn are the only tree shapes T ∈ RBU(n) such

that π5(pT ) fall on the line p3 = 0 so the segment [π5(pTn), π5(pCombn)] is a face of En
5 .

We now introduce another tree structure that will yield a vertex in En
5 .

Definition 2.5.3. For two positive integers m and n let bicomb(m,n) denote the tree

made by joining a comb tree of size m and a comb tree of size n together at a new root.

We call such trees bicomb trees.

For example, Bal5 = bicomb(2, 3).

Lemma 2.5.4. Let Tn = bicomb(⌊n
2
⌋, ⌈n

2
⌉). Then π5(pTn) is a vertex of En

5 .

Proof. First note that for n ≥ 5, the only trees in RBU(n) that never contain Gir5 as

a restriction tree are the comb tree and the bicomb trees. This means that in En
5 , they

are the only trees that fall on the edge p2 = 0. To show that π5(pTn) is a vertex of En
5

it remains to to show that π5(pTn) is extremal on this edge. We know that the comb

tree is one of the extremal points on this edge and so the other extremal point will

correspond to the bicomb tree with the highest density of Bal5 as a restriction tree. Let

T ′ = bicomb(i, n − i) be a bicomb tree for some 1 ≤ i ≤ n − 1. We let b5(T
′) denote
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Figure 2.6: The two trees from the Proof of Lemma 2.5.5. Note that T0 denotes all of
the part of the tree that lies above the vertex z.

the number of times that Bal5 occurs as a restriction tree of T ′. From the structure of a

bicomb tree we have

b5(T
′) =

(
i

2

)(
n− i

3

)
+

(
i

3

)(
n− i

2

)
.

This function is maximized when i = ⌊n
2
⌋.

Now we will show that the projection of the most balanced tree in RBU(n) is a vertex

of En
5 . To do this, we prove a few lemmas about the number of Comb5 trees that can

appear as subtrees of a tree. These results follow the basic outline of Lemma 9 in [11],

and are in some sense an extension of those results to 5 leaf trees.

For a tree T ∈ RBU(n) let c5(T ) count the number of 5-subsets, S, of the leaves of

T such that T |S = Comb5. Let c4(T ) and b4(T ) be defined similarly but for Comb4 and

Bal4 respectively.

Lemma 2.5.5. Let T be as it is pictured in Figure 2.6 and T ′ obtained from T by swapping

the positions of T2 and T4. For i = 0, 1, 2, 3, 4, let ni be the number of leaves of Ti so

n =
∑4

i=0 ni. Without loss of generality choose n1 ≥ n2 and n3 ≥ n4. If n1 > n3 and

n2 > n4 then c5(T ) ≥ c5(T
′). Furthermore, if n ≥ 7, then c5(T ) > c5(T

′).

Proof. Without loss of generality assume that n1 ≥ n2 and n3 ≥ n4 and let Σz denote

the set of leaves of T below the vertex z. Note that by construction, this is the same as

the set of leaves below the vertex z in T ′. If we take a 5-subset, S, of the leaves of T and

T ′ then it is only possible for T |S ̸= T ′|S if |S ∩ Σz| ≥ 4. It is straightforward to see that

if S ∩ Σz has zero, one, two, or three elements, T |S = T ′|S.
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This means

c5(T ) − c5(T
′) = (c5(Tz) − c5(T

′
z)) + n0(c4(Tz) − c4(T

′
z))

where Tz and T ′
z denote the subtrees of T and T ′ below z. Note that for any tree

S ∈ RBU(n), it holds that (
n

4

)
= c4(S) + b4(S)

which gives

n0(c4(Tz) − c4(T
′
z)) = n0(b4(T

′
z) − b4(Tz))

and (b4(T
′
z) − b4(Tz)) is guaranteed to be positive by Lemma 9 of [11] so the term

n0(b4(T
′
z)−b4(Tz)) is nonnegative. It remains to show that (c5(Tz)−c5(T ′

z)) is nonnegative.

We can explicitly enumerate these quantities in the following way:

c5(Tz) =
4∑

i=1

c5(Ti) +
4∑

i=1

c4(Ti)
4∑

j=1,j ̸=i

nj +

(
n1

3

)
n2(n3 + n4)

+

(
n2

3

)
n1(n3 + n4) +

(
n3

3

)
n4(n1 + n2) +

(
n4

3

)
n3(n1 + n2)

c5(T
′
z) =

4∑
i=1

c5(Ti) +
4∑

i=1

c4(Ti)
4∑

j=1,j ̸=i

ni +

(
n1

3

)
n4(n2 + n3)

+

(
n4

3

)
n1(n2 + n3) +

(
n2

3

)
n3(n1 + n4) +

(
n3

3

)
n2(n1 + n4)

We can simplify this to get that

c5(Tz) − c5(T
′
z) =

1

6
(n1 − n3)(n2 − n4)(n1n3(−3 + n1 + n3) + n2n4(−3 + n2 + n4)).

Note that this quantity is nonnegative since n1 > n3 and n2 > n4 by assumption and

ni ≥ 1 for i = 1, 2, 3, 4. Note that if n ≥ 7, then we either have that n0 ≥ 1, or
∑4

i=1 ni ≥ 7

which both guarantee that c5(T ) − c5(T
′) > 0.

This lemma essentially tells us that if the tree has an internal node that is unbalanced,

we can find a tree that has Comb5 appear less frequently as a restriction tree. We now

have another lemma following in the style of [11].
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Figure 2.7

Lemma 2.5.6. Let T be as it is pictured in Figure 2.7 and for i = 0, 1, 2, let ni be the

number of leaves of Ti and assume n1 ≥ n2. We also assume that n1 + n2 ≥ 3. Then

c5(T ) ≥ c5(T
′). Furthermore, if n ≥ 7, then c5(T ) > c5(T

′).

Proof. By the same reasoning as that given in the last lemma we know that

c5(T ) − c5(T
′) = c5(TZ) − c5(T

′
z) + n0(c4(Tz) − c4(T

′
z))

and the nonnegativity of the second term follows by Lemma 10 in [11]. Now we can easily

see that

c5(Tz) = c5(T1) + c5(T2) + (n2 + 1)c4(T1) + (n1 + 1)c4(T2) +

(
n1

3

)
n2 +

(
n2

3

)
n1

c5(T
′
z) = c5(T1) + c5(T2) + (n2 + 1)c4(T1) + (n1 + 1)c4(T2) +

(
n2

3

)
n1

and so

c5(TZ) − c5(T
′
z) =

(
n1

3

)
n2

It is clear that the right hand side is always nonnegative. Note that if n ≥ 7, then either

n0 ≥ 1 or n1 ≥ 3. In both cases this guarantees that c5(T ) − c5(T
′) > 0.

Combining these two lemmas together we get the following theorem. This theorem will

immediately allow us to show that the projection of the most balanced tree in RBU(n)

will always be a vertex in En
5 .
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Theorem 2.5.7. For n ≥ 7, the maximally balanced tree is the unique minimizer of c5(T )

among all trees T ∈ RBU(n).

Proof. This proof also follows the strategy of [11]. We assume that c5 obtains it minimum

value in RBU(n) at T but that T is not maximally balanced. We will try to find a

contradiction. We let z be a non-balanced internal node with balanced children a and

b. We let na and nb be the number of leaves of the trees rooted at a and b respectively.

Then since z is not balanced we have, without loss of generality, that na ≥ nb + 2. If b is

a leaf then by Lemma 2.5.6 we immediately have that c5(T ) is not minimum since n ≥ 7.

So we have that nb ≥ 2 and thus both a and b are balanced and must be internal nodes.

We now let v1, v2 be the children of a and v3, v4 be the children of b and take

ni = #L(Tvi) for i = 1, 2, 3, 4 and once again without loss of generality assume that

n1 ≥ n2 and n3 ≥ n4. Since both a and b are balanced it must be that n1 = n2 or

n1 = n2 + 1 and n3 = n4 or n3 = n4 + 1. Then the assumption that na ≥ nb + 2

immediately gives us that

n1 + n2 = na ≥ nb + 2 = n3 + n4 + 2

Then by previous assumptions we get that n1 > n3. Now since c5 is minimum at T and

n ≥ 7, we can apply Lemma 2.5.5 to get that n4 ≥ n2. Stringing together these inequalities

we get that

n1 > n3 ≥ n4 ≥ n2

But since n1 = n2 or n1 = n2 + 1, the only possibility we have is that

n1 − 1 = n2 = n3 = n4

But then we get that n1 + n2 = 2n1 − 1 and n3 + n4 = 2n1 − 2 which contradicts the

inequality n1 + n2 ≥ n3 + n4 + 2. This tells us that any tree with at least 7 leaves must

be maximally balanced around every internal node if it obtains the minimum value of

c5 on RBU(n). Since there is only one tree that is maximally balanced at every internal

node, there is a unique minimizer of c5(T ) in RBU(n) for n ≥ 7 which is the maximally

balanced tree.

Corollary 2.5.8. Let Tn be the maximally balanced tree in RBU(n). Then π5(pTn) is a

vertex of En
5 .

Proof. The Corollary can be verified computationally for n = 6. For n ≥ 7 Theorem 2.5.7
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shows that Tn is the unique tree that attains the minimum value of c5 among all trees in

RBU(n). So it holds that {(c5(Tn)/
(
n
5

)
, p2, p3) ∈ E5} ∩ En

5 = {π5(pTn)}, thus π5(pTn) is a

vertex of En
5 .

We have another Corollary that relates the exchangeable and sampling consistent

distributions to the β-splitting model.

Corollary 2.5.9. The projection of the most balanced tree in En
5 approaches the β = ∞

point on the beta-splitting model as n→ ∞.

Proof. It is enough to show that the complete symmetric tree T2n ∈ RBU(2n) satisfies this

property. We can just count the number of times that Gir5 and Bal5 occur as restriction

trees when we restrict to a 5-subset of the leaves. We use the structure of T2n to write

down a simple recurrence for g5(T2n) and b5(T2n) and then solve the recurrence. Since we

can choose our subset to be on the right side of the root of T2n , the left side of the root of

T2n , or to have 3 leaves from one side and 2 leaves from the other we have that

b5(T2n) = 2b5(T2n−1) + 2

(
2n−1

3

)(
2n−1

2

)
.

As for g5, we can once again choose our subset to be on either the right or left side of the

root of T2n or we can choose to have 1 leaf on a side of the tree and a 4 leaf symmetric

tree on the other. This can be done in just 2n−1m2,2n−1 ways which implies

g5(T2n) = 2g5(T2n−1) + 2(2n−1m2,2n−1) = 2g5(T2n−1) + 2nm2,2n−1 .

Both of these recurrences can be solved explicitly using a computer algebra system. We

get that

b5(T2n) =
1

315
2n−2(2n − 4)(2n − 2)(2n − 1)(7 · 2n − 11)

g5(T2n) =
1

105
2n−3(2n − 4)(2n − 3)(2n − 2)(2n − 1)

We can then find the probabilities p2 and p3 of Gir5 and Bal5 by simply dividing out by(
2n

5

)
. This yields

p3 =
b5(T2n)(

2n

5

) =
2

3
+

20

21(2n − 3)

p2 =
g5(T2n)(

2n

5

) =
1

7
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Figure 2.8: The multinomial model on the two leaf tree is in grey and the β-splitting
model is the thick black curve. The thinner black lines are the boundary of En

5 for
n=5,6,9,12.

Clearly as n→ ∞ we have p3 → 2
3

and p2 → 1
7
.

On the other hand, we recall that the probability of obtaining a tree under the

beta-splitting model is just a rational function in β that can be explicitly calculated. We

can then find the limit of these rational functions to get that the beta-splitting curve

approaches the point

(p1, p2, p3) = (
4

21
,
1

7
,
2

3
)

as β → ∞ as well and so the projection of T2n in E2n

5 is approaching the β = ∞ point on

the curve.

These are all of the tree structures in RBU(n) we have been able to find that always

appear as vertices in En
5 . We end this section with Figure 2.8, which pictures all of the

families of exchangeable and sampling consistent distributions that we have discussed and

the vertices of Em
n for some small values of m.
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2.6 Distributions on E∞
n

While we are not able to get a description of the vertices of Em
n for general m and n, it is

possible to to describe E∞
n using the multinomial model that was introduced in Section

2.3.2. In particular, this shows that multinomial models converge as an inner limit to E∞
n .

Theorem 2.6.1. Let {Tm}∞m=n be a sequence of tree shapes and p(m) = πn(Tm) be the

corresponding sequence of distributions. If p(m) converges to some p ∈ E∞
n as m goes to

infinity, then there exists a sequence of multinomial distributions {d(m)}∞m=n that also

converges to p as m goes to infinity.

Proof. Define d(m) to be the multinomial distribution on the tree Tm with the edge

parameter vector (te|e ∈ E(Tm)) such that te = 1
m

if one of the vertices in e is one of the

original m leaves of Tm and te = 0 otherwise. Note that these nonzero edge parameters

are bijectively associated to the leaves of Tm and we may call the set of nonzero edge

parameters L(Tm) meaning the leaf set of Tm. To show that d(m) also converges to p, it is

enough to show that for every tree T ∈ RBU(n), limm→∞ d(m)(T ) = limm→∞ p(m)(T ). Fix

a labelling of Tm and let cTm(T ) be the number of sets S ⊆ [m] such that shape(Tm|S) = T .

By Corollary 2.2.8, p(m)(T ) is the induced subtree density of T in Tm, so p(m)(T ) =
cTm (T )

(m
n)

.

So

lim
m→∞

p(m)(T ) = lim
m→∞

cTm(T )(
m
n

) = lim
m→∞

n!

mn
cTm(T )

On the other hand, let M (m) = {A ∈MTm
n |(Tm)A = T, pA ̸= 0}, then

d(m)(T ) =
∑

A∈M(m)

pA

by definition and we note by requiring that multisets A ∈M (m) have that pA ̸= 0, M (m)

only includes multisets whose support is contained in L(Tm). Also note that pA is either 0

or
(

n
mA(te1 ),mA(te2 ),...mA(te2m−1 )

)
1

mn since all the edge parameters are 0 or 1
m

. So to understand

the quantity d(m)(T ) it is enough to know the coefficient of 1
mn . Note that any multiset A

has a naturally associated integer partition of n to it, formed by taking the multiplicities

of each unique element that appears in it. Call this integer partition the weight of A,

denoted wt(A), and let M
(m)
λ be the set of multisets in M (m) with weight λ. Now observe

that for A,B ∈ M
(m)
λ , pA = pB since the value of the multinomial coefficient is totally

determined by the weight and the product of the edge parameters is always 1
mn . If we

let
(
n
λ

)
be the value of the multinomial coefficient then the formula for d(m)(T ) can be
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rewritten as

d(m)(T ) =
1

mn

∑
λ⊢n

(
n

λ

)
|M (m)

λ |

but we can bound the quantity |M (m)
λ |. We note that the quantity |M (m)

λ |, is at most

l(λ)!
(

m
l(λ)

)
where l(λ) is the length of the partition λ. This is because there are

(
m
l(λ)

)
choices for which elements to use in the multiset and at most l(λ)! unique multisets for

each choice of elements. Recall that there are only
(

m
l(λ)

)
choices to use in a multiset since

any A ∈M
(m)
λ must have pA ≠ 0 which means A must be a multiset on the leaves of Tm.

Since l(λ)!
(

m
l(λ)

)
is a polynomial in m of degree l(λ) though, we have that

lim
m→∞

1

mn

∑
λ⊢n

(
n

λ

)
|M (m)

λ | = lim
m→∞

n!

mn
|M (m)

(1,1,...,1)|

since the partition λ = (1, 1, . . . 1) is the only partition where |M (m)
(1,1,...,1)| is of the order

mn, and so is the only term that contributes to the limit. Now we note that the multisets

A ∈ M
(m)
(1,1,...,1) correspond exactly to choosing subsets of the leaves of Tm that yield T

upon restriction since the only edges that can be in A are those corresponding to leaves,

every leaf can be chosen at most once, and shape((Tm)A) = T . So |M (m)
(1,1,...,1)| = cTm(T ),

and so

lim
m→∞

d(m) = lim
m→∞

n!

mn
cTm(T ) = lim

m→∞
p(m)

and since p(m) converges, to p, it must be that d(m) also does.

Theorem 2.6.2. For all n ≥ 1, there exists a constant C > 0 such that for all m > n

and p ∈ Em
n there exists d ∈ E∞

n such that

max
S∈RBU(n)

|p(S) − d(S)| ≤ C

m
.

Proof. Note that if p ∈ Em
n , then we have for every S ∈ RBU(n),

p(S) =
∑

T∈RBU(m)

λTπn(pT )(S)

where the above combination is convex by Lemma 2.2.5. Then let dT be defined as the

multinomial distribution dT on T just as d(m) is defined for Tm in the previous theorem.
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Then recall from the proof of the previous theorem that

dT (S) =
1

mn

∑
λ⊢n

(
n

λ

)
|MT

λ |

where MT
λ = {A ∈ MT

n |TA = S, pA ̸= 0, wt(A) = λ}. Also recall from the proof of the

previous theorem that |MT
(1,1,...,1)| = cT (S). Combining these facts with the definition of

πn(pT ) and the triangle inequality gives

|πn(pT )(S) − dT (S)| ≤
∣∣∣∣cT (S)(

m
n

) − n!cT (S)

mn

∣∣∣∣+

∣∣∣∣ 1

mn

∑
λ⊢n

λ ̸=(1,1,...,1)

(
n

λ

)
|MT

λ |
∣∣∣∣ (2.4)

and we now bound each term on the right hand side of this inequality.

To bound the first term in equation (2.4), note that cT (S) is a nonnegative quantity

and is bounded above by
(
m
n

)
. This gives the inequality

∣∣∣∣cT (S)(
m
n

) − n!cT (S)

mn

∣∣∣∣ ≤ ∣∣∣∣1 −
m!

(m−n)!

mn

∣∣∣∣ ≤ ∣∣∣∣mn − (m− n)n

mn

∣∣∣∣ ≤ n2

m
. (2.5)

Note that this bound does not depend on the trees T and S.

To bound the second term we again recall from the proof of the previous theorem that

|MT
λ | ≤ l(λ)!

(
m
l(λ)

)
for each partition λ of n. Then we have that

∣∣∣∣ 1

mn

∑
λ⊢n

λ ̸=(1,1,...,1)

(
n

λ

)
|MT

λ |
∣∣∣∣ ≤ ∑

λ⊢n
λ ̸=(1,1,...,1)

(
n

λ

)
l(λ)!

(
m
l(λ)

)
mn

(2.6)

but since λ ̸= (1, 1, . . . , 1), it must be that l(λ) ≤ n− 1 so l(λ)!
(

m
l(λ)

)
≤ mn−1 for all the

remaining partitions λ. Applying this fact to the right hand side of equation (2.6) gives

the bound ∣∣∣∣ 1

mn

∑
λ⊢n

λ ̸=(1,1,...,1)

(
n

λ

)
|MT

λ |
∣∣∣∣ ≤ 1

m

∑
λ⊢n

λ ̸=(1,1,...,1)

(
n

λ

)
≤ C̃

m
(2.7)

where C̃ ∈ R is a constant that also does not depend on the trees T and S but only on n.

Applying the bounds for each term to equation (2.4) and setting C = C̃ + n2 gives

|πn(pT )(S) − dT (S)| ≤ C

m
(2.8)
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and again we note that this bound is independent of the trees T and S. We are now ready

to construct a distribution d ∈ E∞
n that gives the desired result. From the discussion of

the multinomial model, we have that each distribution dT ∈ E∞
n and so from the convexity

of E∞
n we get

d =
∑

T∈RBU(m)

λTd
T ∈ E∞

n .

We can now use the expression for p we began with and the bound obtained in equation

(2.8) to get that

|p(S) − d(S)| ≤
∑

T∈RBU(m)

λT |πn(pT )(S) − dT (S)| ≤ C

m
.

Theorem 2.6.1 gives that the limit of any convergent sequence (vm)m≥1 where vm ∈
V (Em

n ) can also be realized as the limit of points coming from multinomial models.

Theorem 2.6.2 shows that if we have a distribution in En that can be extended to part

of a finitely sampling consistent family, then it can be approximated with an infinitely

sampling consistent distribution. With Theorem 2.6.1 and the following proposition, we

will show that E∞
n is actually the convex hull of all limits of convergent sequences of

vertices, and thus the convex hull of limits of distributions drawn from the multinomial

model. To do this we need a basic proposition from convex analysis which the proof of is

included for completeness.

Proposition 2.6.3. Let (Pm)m≥1 be a sequence of polytopes in Rn such that for all m ≥ 1,

Pm+1 ⊆ Pm. Let

P = conv({ lim
m→∞

v
(m)
im

|v(m)
im

∈ V (Pm) and (v
(m)
im

)m≥1 converges })

where the bar denotes the closure in the Euclidean topology. Then P = ∩∞
m=1Pm.

Proof. It is straightforward to see that P ⊆ ∩∞
m=1Pm. To show that the sets are equal

suppose that there is p ∈ (∩∞
m=1Pm) \ P . Then the Basic Separation Theorem of convex

analysis implies there must exist an affine functional ℓ with ℓ(p) ≤ 0 and ℓ(w) > 0 for all

w ∈ P . We also have that since p ∈ ∩∞
m=1Pm, for each m ≥ 1, p can be written as

p =
km∑
j=1

λjv
(m)
j
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where the v
(m)
j are the vertices of Pm. Then because ℓ(p) ≤ 0 it must be that for each m,

there exists at least one vertex v
(m)
im

of Pm such that ℓ(v
(m)
im

) ≤ 0. Since all the points v
(m)
j

lie in P1 which is a compact set, there exists a convergent subsequence (v
(mk)
imk

)k≥1 with

limit v ∈ P , thus ℓ(v) > 0. But it also holds that

ℓ(v) = lim
k→∞

ℓ(v
(mk)
imk

) ≤ 0

which is a contradiction.

Corollary 2.6.4. Let d
(m)
Tm

denote the specific multinomial model construction on the tree

Tm ∈ RBU(m) described in Theorem 2.6.1. Then

E∞
n = conv({ lim

m→∞
d
(m)
Tm

|πn(Tm) ∈ V (Em
n ) and (d

(m)
Tm

)m≥n converges }).

Proof. Recall that E∞
n = ∩∞

m=nEm
n , thus by Proposition 2.6.3,

E∞
n = conv({ lim

m→∞
πn(pTm)|Tm ∈ RBU(m) and (πn(pTm))m≥1 converges })

since the vertices of Em
n correspond to a subset of the points πn(Tm). Applying Theorem

2.6.1 to the sequence (πn(Tm))m≥1 gives the result.

Corollary 2.6.4 shows that every exchangeable and infinitely sampling consistent

distribution is either a convex combinations of limits of multinomial distributions or a

limit point of points in that set. Understanding the structure of the multinomial models

may shed greater light on the structure of E∞
n as a whole. We view Theorem 2.6.2 and

Corollary 2.6.4 as the rooted binary tree analogue to Theorems 3 and 4 in [14], in essence

they are finite forms of a de Finetti-type theorem for rooted binary trees. As previously

mentioned, the work done in [19] and [18] establishes a more typical de Finetti theorem in

the sense that it shows every infinitely sampling consistent sequence of distributions can

be obtained by sampling from a limit object using techniques from Probability theory.

We also note that the requirement that the induced subtree densities converge is quite

similar to the idea of graph convergence that appears in [34] and that many of the ideas

in the theory of graph limits may also be applied to trees. The very well developed theory

of graph limits contains many equivalent versions of the limiting object (see Theorem

11.52 in [34]). The work done in [19] and [18] makes the connection between the limiting

object, a random real tree, and an infinitely sampling consistent model. It is still unknown

if this can be connected to ideas such as tree parameters (the induced subtree density for
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instance) and to metrics on finite trees as has been done in the theory of graph limits. It

seems that many of these equivalences hold but differences in techniques will be required.
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CHAPTER

3

IDENTIFIABILITY IN PHYLOGENETICS

USING ALGEBRAIC MATROIDS

3.1 Introduction

A statistical model is identifiable if the map parameterizing the model is injective. This

means that the parameters producing a probability distribution in the model can be

uniquely determined from the distribution itself which is a critical property for meaningful

data analysis. In phylogenetic models, the identifiability of the tree parameter is especially

important since this allows for evolutionary histories to be inferred from observed genetic

data.

The identifiability of the tree parameter in basic models has already been established

[10] and a natural next step is to investigate the identifiability of the tree parameters in

phylogenetic mixture models. Mixture models can be used to represent more complicated

evolutionary events such as horizontal gene transfer. [37] showed that the tree parameters

are not identifiable for 2-tree mixtures on four leaf trees under the Cavendar-Farris-

Neyman (CFN) model. On the other hand, positive results for the identifiability of tree
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parameters in other group-based models were obtained in both [2] and [32]. In [2], the

authors constructed linear invariants for 2-tree Jukes-Cantor (JC) and Kimura 2-Parameter

(K2P) mixtures to show that the tree parameters were identifiable and [32] used direct

computation to construct invariants for 3-tree JC mixtures to obtain identifiability results.

These computations often involve time consuming Gröbner basis computations, which

are not possible to do for larger models. Similar calculations were also done in [21] to

establish the identifiability of the network parameters in Jukes-Cantor network models.

Our goal in this chapter is to introduce a new algorithm that can be used to show that

parameters of an algebraic statistical model are identifiable by computing independent

sets in a naturally associated algebraic matroid. This allows us to avoid dealing with the

vanishing ideals that are typically used and thus avoid Gröbner basis calculations. We

begin with a short background on generic identifiability and algebraic matroids in Section

3.2. We then introduce the main algorithm we employ to prove identifiability results in

Section 3.3. We provide both an exact verification based on symbolic computation and a

randomized algorithm with probabilistic guarantees based on the Schwartz-Zippel Lemma.

In Section 3.4 we use the algorithm and the Six-To-Infinity Theorem [36] to show that

the tree parameters are generically identifiable in 2-tree CFN and K3P mixture models.

We end by showing how our algorithm can be used to extend the results in [21] for JC

phylogenetic networks to K2P and K3P networks.

3.2 Preliminaries

In this section we provide some background on identifiability and describe some common

tools used to prove identifiability results.

Our main objects of focus in this chapter will be parametric algebraic statistical

models for discrete random variables. This means we have a rational map

ϕ : Θ → ∆n−1 =

{
p ∈ Rn :

n∑
i=1

pi = 1, pi ≥ 0 for all i

}

whose image, which we denote by M , is the model of interest. This is a broad setting that

includes many classic statistical models such as distributions of discrete random variables

and the phylogenetic models that we will discuss in the later sections. The definitions and

techniques presented in this chapter could also be adapted for Gaussian random variable

and other continuous models with finite dimensional natural parameter spaces.
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If we have a family of these models {Ms}ks=1 that all sit inside ∆n−1 and are indexed by

a discrete parameter s, then we say that the discrete parameter s is globally identifiable if

Ms1 ∩Ms2 = ∅ for every distinct pair {s1, s2} of values of s. Most models are not globally

identifiable but may still satisfy a slightly weaker notion of identifiability instead.

Definition 3.2.1. Let {Ms}ks=1 be a collection of algebraic models that sit inside the

probability simplex ∆n−1, then the parameter s is generically identifiable if for each

2-subset {s1, s2} ⊂ [k],

dim(Ms1 ∩Ms2) < min(dim(Ms1), dim(Ms2))

Another way to think about generic identifiability is that the overlap of any two

models in the family is a Lebesgue measure zero subset of both of the overlapping models.

A typical tool for proving generic identifiability of algebraic models is the following

proposition that uses the vanishing ideal I(M) = {f ∈ C[p] : f(p) = 0 for all p ∈M}
of the model M .

Proposition 3.2.2. [45, Proposition 16.1.12] Let M1 and M2 be two algebraic models

which sit inside the probability simplex ∆n−1 and have irreducible Zariski closures. If there

exists polynomials f1 and f2 such that

f1 ∈ I(M1) \ I(M2) and f2 ∈ I(M2) \ I(M1)

then dim(M1 ∩M2) < min(dim(M1), dim(M2)).

If the models M1 and M2 have the same dimension, then to ensure their intersection

is lower dimensional, it suffices to show that I(M1) ̸= I(M2). This means it is enough to

find either f ∈ I(M1) \ I(M2) or f ∈ I(M2) \ I(M1).

We note here that the vanishing ideal of M also completely defines the Zariski closure

of the model which is the algebraic variety M = {p ∈ Cn : f(p) = 0 for all f ∈
I(M)}. Essentially, I(M) gives part of the implicit description of the model M . A

full implicit description of M also requires finding polynomial inequalities that define

M as a semialgebraic set. Computing the ideal I(M) typically requires Gröbner basis

computations which can be difficult, especially as the number of variables involved

increases.
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3.3 Certifying Generic Identifiability With Algebraic

Matroids

In this section we make a few basic observations that will lead to a new algorithm

for certifying the generic identifiability of a family of models using their associated

algebraic matroids. Our starting point for proving identifiability using algebraic methods

is Proposition 3.2.2. However, it often difficult to find the polynomials required by

Proposition 3.2.2 to certify identifiability. The following proposition is the driver of our

algebraic matroid based procedure for verifying identifiability.

Proposition 3.3.1. LetM1 andM2 be two algebraic models which sit inside the probability

simplex ∆n−1 and have irreducible Zariski closures. Without loss of generality assume

dim(M1) ≥ dim(M2). If there exists a subset S of the coordinates such that

S ∈ I(M(M2)) \ I(M(M1)) (3.1)

then dim(M1 ∩M2) < min(dim(M1), dim(M2)).

Note that we abuse notation and write M(M) to denote the matroid M(M).

Proof. Since M1 and M2 have irreducible Zariski closures their vanishing ideals I(M1) and

I(M2) are prime and so define the same matroid as M1 and M2 respectively. First suppose

that dim(M1) > dim(M2). This dimension inequality implies that there is a polynomial

f2 ∈ I(M2)\I(M1). Then since S ∈ I(M(M2))\I(M(M1)), it holds that I(M1)∩k[S] ̸=
⟨0⟩ but I(M2) ∩ k[S] = ⟨0⟩ which implies that there exists f1 ∈ I(M1) \ I(M2) and so

the result follows by Proposition 3.2.2.

Now suppose that dim(M1) = dim(M2). The existence of S ∈ I(M(M2)) \ I(M(M1))

implies that I(M1) ̸= I(M2). Since these ideals are prime and of the same dimension

we must have the mutual noncontainments I(M1) ̸⊆ I(M2) and I(M2) ̸⊆ I(M1). This

immediately implies the existence of f1 ∈ I(M1) \ I(M2) and f2 ∈ I(M2) \ I(M1) and so

again the result follows by Proposition 3.2.2.

In essence, Proposition 3.3.1 can certify the existence of the desired polynomials for

applying Proposition 3.2.2, without necessarily finding them, only proving they exist.

Note that Proposition 3.3.1 is weaker then Proposition 3.2.2. This is because there can be

models with different ideals but that have the same matroid. This is due to the fact that

the matroid only keeps track of which sets of coordinates have polynomial relations in
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the ideals of the models but not the nature of the polynomial relations themselves. This

is illustrated in Example 3.5.8.

Proposition 3.3.2. [40, Proposition 2.5] Let K be a field of characteristic zero and

V ⊂ Kn be a variety parameterized by ϕ with Jacobian J(ϕ) defined as in Equation (1.2).

Then the matrix obtained by plugging in generic parameter values into J(ϕ) gives a linear

matroid over K which is the same as that defined by J(ϕ) with symbolic parameters over

K(θ) and thus the same as M(V ).

We use M(J(ϕ),K) to denote the linear matroid we get by plugging in random

parameter values for θ and M(J(ϕ),K(θ)) to denote the symbolic matroid. With these two

propositions we are ready to define the main algorithm that we use to prove identifiability

results.

Algorithm 3: matroidSeparate

Input :Two maps ϕ1, ϕ2 parameterizing models M1 and M2 in Kn with
dim(M1) ≥ dim(M2), a number of trials t.

Output :A certificate S satisfying Equation (3.1) in Proposition 3.3.1
1 for i = 0 to t do
2 Randomly select T ⊆ [n] such that |T | ≤ dim(M2);
3 if T ∈ I(M(J(ϕ2),K)) \ I(M(J(ϕ1),K)) then
4 if T ∈ I(M(J(ϕ2),K(θ))) \ I(M(J(ϕ1),K(θ))) then
5 S = T;
6 Break;

7 return S or report that no certificate was found.

In summary, the algorithm works by randomly plugging in a numerical value for θ

and testing random subsets until it finds an example of a set S where the submatrices of

the Jacobians have different rank. Random rational numbers are used so that the rank

computations are exactly calculated symbolically (rather than using a numerical rank

test with floating point numbers). Once a candidate set is found, then an exact symbolic

computation over K(θ) is performed to verify the result exactly.

In cases where it is too time consuming to compute over K(θ) we can use the Schwartz-

Zippel Lemma from polynomial identity testing to produce a certificate that satisfies

equation (3.1) with probability 1 − ϵ.

Lemma 3.3.3. (Schwartz-Zippel) Let f ∈ K[p1, . . . pd] be a non-zero polynomial of total
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degree α. Let E be a finite subset of k and r1, . . . rd be selected at random independently

and uniformly from E. Then

P (f(r1, . . . , rd) = 0) ≤ α

|E|
.

Determining if S ∈ I(M(J(ϕ2),K(θ)))\I(M(J(ϕ1),K(θ))) can be done by evaluating

minors of the submatrices of the Jacobian matrices corresponding to S. Since minors

are polynomials in the entries of the matrices, we can use the this lemma to bound the

probability that S ∈ I(M(J(ϕ2),K(θ))) \ I(M(J(ϕ1),K(θ))) without ever computing

over K(θ).

Corollary 3.3.4. Let S ∈ I(M(J(ϕ),K(θ))) and let E ⊆ K be a finite set such that

|E| > α where α is the degree of an |S| × |S| minor of J(ϕ)S that is not identically

zero. Let r1, . . . rd be selected independently and uniformly at random from E and let

M(J(ϕ),K) be the linear matroid obtained by plugging in r1, . . . rd for the parameters.

Then

P (S /∈ I(M(J(ϕ),K))) ≤ α

|E|
.

Proof. First note that the |S|× |S| minors of the matrix J(ϕ)S are polynomials in θ which

we denote by fi(θ) ∈ K[θ] for 1 ≤ i ≤
(

d
|S|

)
. Since S ∈ I(M(J(ϕ),K(θ))) there exists at

least one fj that is not identically zero. On the other hand, S /∈ I(M(J(ϕ),K)) if and

only if fi(r) = 0 for all 1 ≤ i ≤
(

d
|S|

)
so

P (S /∈ I(M(J(ϕ),K))) = P

(
fi(r) = 0, 1 ≤ i ≤

(
d

|S|

))
≤ P (fj(r) = 0)

Letting deg(fj) = α and applying the Schwartz-Zippel Lemma gives

P (fj(r) = 0) ≤ α

|E|

which gives us the desired result.

Corollary 3.3.4 suggests a new strategy for deciding if S ∈ I(M(J(ϕ),K(θ))) without

performing any symbolic computation. We let E be as described in Corollary 3.3.4 and

repeatedly sample r1, . . . rd independently and uniformly at random, plug these values into

J(ϕ), and calculate the rank of J(ϕ)S. If rank(J(ϕ)S) = |S|, then we immediately know

S ∈ I(M(J(ϕ),K(θ))). If after l trials, we find for each trial that rank(J(ϕ)S) < |S|, then
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we say that S /∈ I(M(J(ϕ),K(θ))). Corollary 3.3.4 and our amplification by independent

trials guarantee that the probability that we made an error is less than
(

α
|E|

)l
. This

procedure is utilized in Algorithm 4 to avoid symbolic computation completely.

Algorithm 4: matroidSeparateSZ

Input :Two maps ϕ1, ϕ2 parameterizing models M1 and M2 in Kn with
dim(M1) ≥ dim(M2), a number of trials t, a tolerance ϵ.

Output :A certificate S satisfying Equation (3.1) in Proposition 3.3.1 with
probability at least 1 − ϵ.

1 Choose a finite subset |E| ⊆ K such that |E| > α where α is the maximum degree
of any dim(M2) × dim(M2) minor of J(ϕ1);

2 for i = 0 to t do
3 Randomly select T ⊆ [n] such that |T | ≤ dim(M2);
4 Sample points r1, . . . rd independently and uniformly at random from E and

plug in to each J(ϕi);
5 if T ∈ I(M(J(ϕ2),K)) \ I(M(J(ϕ1),K)) then

6 Choose l such that
(

α
|E|

)l
≤ ϵ;

7 for j = 0 to l do
8 Sample points r′1, . . . r

′
d independently and uniformly at random from E

and plug in to J(ϕ1);
9 if T ∈ I(M(J(ϕ1),K)) then

10 Break and return to line 3;

11 S = T;
12 Break;

13 return S or report that no certificate was found.

Both Algorithm 3 and Algorithm 4 can be modified in the case that dim(M1) =

dim(M2). In that case, we can also accept T as a certificate if it is an independent set

for M1 but not M2 in both the numerical step and the symbolic step. This is because we

just need to certify that the models are not equal in the case where they are the same

dimension. This is a very general version of the algorithm and it can be fine tuned in

many ways depending on the specifics of the models. One such modification in the case

that the models are the same dimension would be to only check for sets T such that

|T | = dim(M2). This is equivalent to searching for a basis for the matroid of one model

that is not a basis for the other. If the matroids are not the same, then such a basis

must exist since a matroid is uniquely determined by its bases. However, from a practical
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standpoint, it is faster to perform the symbolic rank calculations on smaller matrices,

so hunting for small sized sets that verify that the matroids are different can speed up

computations.

Using Algorithm 3 and Proposition 3.3.1 to certify identifiability has several advantages

over approaches that rely on Proposition 3.2.2. Algorithm 3 does not require an implicit

description of the models M1 and M2 so time-consuming elimination computations are

avoided. Symbolic computation is also only done to verify that a test set T is in fact a

certificate but not to find the candidate set. Proposition 3.3.2 guarantees that if there

is a certificate S that can be found symbolically, then it can be found numerically with

probability 1 so we can minimize the amount of symbolic computation necessary. Lastly,

we are frequently able to find certificates by just randomly searching for them which

avoids the combinatorial complexity of computing the whole matroid. The downside of

this is that the failure of the algorithm does not imply that the matroids are the same or

that a discrete parameter is not identifiable. This type of failure is illustrated by Example

3.5.8.

3.4 Identifiability of 2-tree Mixtures for Generic Group-

Based Models

In this section we demonstrate how Algorithm 3 can be used to certify the identifiability

of the tree parameters in group-based phylogenetic models. In Section 3.5 we apply the

method to the identifiability of phylogenetic network models.

Many of our proofs in the following sections use supplementary files. We will reference

relevant supplementary files or methods as needed. All of these files are located at the

website:

https://github.com/bkholler/MatroidIdentifiability

Since 2-tree mixture models are a family of algebraic models indexed by 2-multisets of

n-leaf trees we have the following definition of generic identifiability for this family.

Definition 3.4.1. The tree parameters of a 2-tree mixture model are generically identifi-

able if for every pair of distinct multisets of n-leaf trees {T1, T2} and {S1, S2},

dim((VT1 ∗ VT2) ∩ (VS1 ∗ VS2)) < min(dim(VT1 ∗ VT2), dim(VS1 ∗ VS2)).
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We now discuss how Algorithm 3 can be specialized for separating 2-tree CFN mixtures

of 6-leaf trees and show how it can be used to prove generic identifiability of the tree

parameters CFN model when combined with the following theorem of Matsen, Mossel, and

Steel [36]. All of the computations involved are available in the supplementary materials.

Theorem 3.4.2. (Six-To-Infinity Theorem) [36, Theorem 23] Suppose that the tree

parameters T1, T2 are identifiable for a 2-tree mixture model for trees with six leaves. Then

the tree parameters are identifiable for trees with n leaves for all n ≥ 6.

Theorem 3.4.3. The tree parameters of the 2-tree CFN mixture model are generically

identifiable for trees with at least 6 leaves.

Proof. If we can show that the tree parameters are identifiable for 2-tree CFN mixtures

of six leaf trees then we are done by the Six-To-Infinity Theorem. Our proof of this is

computational and simply an application of Algorithm 3 with some simplifications.

First, we note that instead of comparing every possible pair of 2-multisets of six leaf

trees of which there 15, 481, 830 it is enough to check up to the symmetry induced by the

permutation action of S6 on leaf labels. Consideration of symmetry reduces the problem

to checking only 22, 773 distinct cases.

Next we note that 2-tree CFN mixtures of six leaf trees have the expected dimension

[3, Proposition 5.5]. This means that for every pair of six leaf trees {T1, T2}, the variety

VT1 ∗ VT2 satisfies

dim(VT1 ∗ VT2) = dim(VT1) + dim(VT2) + 1 = 19

which implies that join varieties of this form have the same dimension regardless of the

tree parameters. This means we can use the specialized version of the algorithm for models

of the same dimension. Furthermore, as a result of the Fourier transform, the parameters

that correspond to the identity element in Z2 are actually identically 1. By removing

them we are able to greatly reduce the number of variables which significantly speeds

up the symbolic computation step required for verification of certificates. Our algorithm

is able to produce a certificate for all but one of the 22,773 cases. These certificates are

stored in the file certsCFN and code to verify that they are certificates can be found in

the Mathematica file CFN 6Leaf Mixtures.nb. The certificates were originally found using

the function matroidSeparate in the Mathematica package PhylogeneticMatroids.m which

is our implementation of Algorithm 3.
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Figure 3.1: The two pairs of trees described by Equation (3.2) which have the same sets
of splits when combined.

The case that the algorithm fails to find a certificate has tree parameters {T1, T2} and

{S1, S2} of the following form up to symmetry

T1 = {12|3456, 123|456, 1234|56}

T2 = {23|1456, 123|456, 1236|45}

S1 = {12|3456, 123|456, 1236|45}

S2 = {23|1456, 123|456, 1234|56}.

(3.2)

In this case, we were able to find invariants that separate the join varieties by computing

a degree-bounded Gröbner basis for the varieties VT1 ∗ VT2 and VS1 ∗ VS2 up to degree 4.

These computations can be found in CFN last pair.m2. This separates all pairs up to

symmetry and so the tree parameters are identifiable for six leaf trees.

A natural question to ask is why the more typical Gröbner basis algorithm that was

employed to deal with the last case could not simply be used to deal with every case.

This is because even the degree bounded Gröbner basis calculation can take a significant

amount of time compared to our algorithm. For instance if we take

T1 = {12|3456, 125|346, 1256|34}

T2 = {13|2456, 134|256, 1346|25}

S1 = {12|3456, 126|345, 1246|35}

S2 = {15|2346, 156|234, 1356|24}.

then computing a Gröbner basis up to degree four took slightly over eight minutes whereas

65



our algorithm took slightly under four minutes in this case. This computational difference

is quite significant given the large number of cases that need to be dealt with.

For the main computation we ran Algorithm 3 on each case in batches of about 1000

cases over a month. We do not have a precise time estimate for how long this computation

took but in the 22,772 cases where the algorithm worked, it seems to find potential

certificates quickly and most of the computation time came from computing matrix rank

over the fraction field k(θ). On the other hand, using Algorithm 4 with tolerance ϵ = 10−10,

we can find a list of certificates in slightly over 19 minutes running the algorithm in

parallel on a laptop with four processors.

The identifiability of the tree parameters for 2-tree K3P mixtures actually follows

almost immediately from the CFN case but we are also able to use our method along

with some results from [2] to get identifiability results for smaller trees in the K3P case.

Theorem 3.4.4. The tree parameters of the 2-tree K3P mixture model are generically

identifiable for trees with at least four leaves.

Proof. The generic identifiability of the tree parameters of 2-tree K3P mixtures for trees

with at least six leaves follows immediately from Theorem 3.4.3. This is because the CFN

model can be obtained from the K3P model via a coordinate projection. More explicitly, let

{T1, T2} and {S1, S2} be two distinct multisets of six leaf trees and suppose V K3P
T1

∗ V K3P
T2

and V K3P
S1

∗ V K3P
S2

are the join varieties associated to the K3P model. Theorem 3.4.3

guarantees that the same varieties associated the CFN model satisfy

V CFN
T1

∗ V CFN
T2

̸= V CFN
S1

∗ V CFN
S2

.

Let G be a subgroup of Z2 × Z2 isomorphic to Z2, and π : C4n → C2n be the linear map

obtained by projecting onto the coordinates of C4n indexed only by the elements of G.

Then for any tree T , π(V K3P
T ) = V CFN

T . For example, let G = ⟨(1, 0)⟩ ⊆ Z2 × Z2 and let

π(V K3P
T ) be the projection onto these coordinates. Then π(V K3P

T ) ⊆ C2n is parameterized

by the map

qg1,...gn =


∏

A|B∈Σ(T ) a
A|B∑

i∈A gi
, if

∑
i∈[n] gi = 0

0 , otherwise

where the gi are in G. Since G ∼= Z2 we could simply replace every occurrence of

(1, 0) ∈ Z2 × Z2 in this map with 1 ∈ Z2 without changing the map at all. The resulting

parameterization would be exactly the parameterization of V CFN
T and so we see that the

two varieties are parameterized by the same map. Since linear maps commute with taking
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joins of varieties, it holds that

π
(
V K3P
T1

∗ V K3P
T2

)
= V CFN

T1
∗ V CFN

T2
.

This together with the inequality of the 2-tree CFN join varieties implies the inequality

of the 2-tree K3P join varieties and so the generic identifiability of the tree parameters

for trees with at least six leaves follows.

For trees with four leaves we once again apply Algorithm 3 to all distinct 2-multisets

of four leaf trees up to symmetry. In all four cases the algorithm quickly finds a certificate

numerically but in the last case it seems to only find certificates that are very large. When

the potential certificate sets are large, the verification step can still be time consuming so

in this case we instead constructed a smaller certificate that we verified symbolically. The

five leaf case then follows from Proposition 7 of [2] which guarantees that if {T1, T2} and

{S1, S2} are distinct multisets of five leaf trees, then there exists a 4-subset K ⊆ [5] of

the leaves such that restricting each tree to K gives two distinct multisets of four leaf

trees or in symbols {T1|K , T2|K} ≠ {S1|K , S2|K}. The result then follows from Lemma 3

of [2] which shows that if VT1|K ∗ VT2|K ̸⊆ VS1|K ∗ VS2|K then VT1 ∗ VT2 ̸⊆ VS1 ∗ VS2 .

In the proof of Theorem 3.4.3, there was a single pair of trees up to symmetry that

our matroid-based algorithm failed to find a certificate for. We also attempted to run

the algorithm for the same pair of trees under the K3P model and also did not find a

certificate but in both cases we know the corresponding ideals of phylogenetic invariants

are not equal. As mentioned in section 3.3, it is possible for two different ideals to define

the same matroid. We conjecture this to be the case in this instance.

Conjecture 3.4.5. Let {T1, T2} and {S1, S2} be the pairs of trees defined in Equation

(3.2) and let VT1 ∗ VT2 and VS1 ∗ VS2 be the associated CFN join varieties. Then

M(VT1 ∗ VT2) = M(VS1 ∗ VS2).

3.5 Identifiability for Phylogenetic Networks

Recently phylogenetic network models have emerged as a tool to account for events in the

evolutionary history of organisms that trees cannot represent. Non-treelike evolutionary

processes include horizontal gene transfer and hybridization [35, 46]. Similar to the case of

trees, an important question to address is the identifiability of the network parameter in
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network-based phylogenetic models. [21] showed that the network parameter is identifiable

in large-cycle JC network models by explicitly computing the associated ideals. We will

show how Algorithm 3 can be used to extend their results to large-cycle K2P and K3P

network models.

Definition 3.5.1. The set of large-cycle networks is the collection of all k-cycle networks

with k ≥ 4.

Definition 3.5.2. The large-cycle network parameter of a phylogenetic network model is

generically identifiable if for every pair of n-leaf large-cycle networks N1 and N2,

dim(VN1 ∩ VN2) < min(dim(VN1), dim(VN2))

We now describe the proof strategy that Gross and Long used to prove the generic

identifiability of the network parameter for large-cycle JC networks. As they remarked

in [21], the combinatorial arguments they make to prove the final result still apply but

the necessary computational results are more difficult since K2P and K3P are higher

dimensional models with more parameters.

Let M be a phylogenetic model for which the tree parameter is generically identifiable.

Gross and Long showed in [21, Section 4.2] that if Lemma 3.5.3, Lemma 3.5.4, and Lemma

3.5.5 also hold for M , then the large-cycle network parameter is identifiable for M . They

prove this by finding subsets of the leaves of the networks that when restricted to, yield a

situation that can be addressed with one of the lemmas or the generic identifiability of the

tree parameter. In [21], they proved that the three following lemmas hold when M is the

JC model by computing a degree-bounded Gröbner basis for IN and then verifying that

the degree-bounded basis generates a prime ideal of the correct dimension, thus it must be

a Gröbner basis for the prime ideal IN . This computation becomes more difficult though

as the number of parameters in the model increases. We instead use Algorithm 3 to prove

these three lemmas also hold for the K2P and K3P models as well. For the remainder of

this chapter we let M be either K2P or K3P and denote the variety associated to the

network N under the model M with V M
N .

Lemma 3.5.3. Let N1 be a k1-cycle network and N2 be a k2 cycle network. If 2 ≤ k1 <

k2 ≤ 4, then V M
N2

̸⊆ V M
N1

.

Proof. We prove this by explicitly computing dimensions of the associated varieties. If V M
N ,

is a network variety parameterized by ψM
N , then the dimension of V M

N can be computed
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Figure 3.2: The two possibilities for N1 in Lemma 3.5.5.

by calculating the rank of the Jacobian of ψM
N over the fraction field k(θ). In each case,

we find that dim(VN2) > dim(VN1) which implies V M
N2

̸⊆ V M
N1

. These computations can be

found in the Mathematica files K2P Networks.nb and K3P Networks.nb.

Lemma 3.5.4. Let N1 and N2 be distinct 4-leaf 4-cycle networks. Then V M
N2

̸⊆ V M
N1

and

V M
N1

̸⊆ V M
N2

.

Proof. In this case VN1 and VN2 both have the same dimension so we can run the specialized

version of Algorithm 3. For both models we ran matroidSeparate and were once again able

to find a certificate separating each pair of 4-leaf 4-cycle networks. These computations

can also be found in the Mathematica files K2P Networks.nb and K3P Networks.nb.

Lemma 3.5.5. Let N1 be either of the two 5-leaf 4-cycle networks pictured in Figure

3.2 and let N2 be the 5-leaf 5-cycle network with reticulation edges directed toward the

leaf-labelled by 1. Then VN1 ̸⊆ VN2.

Proof. VN1 and VN2 once again have the same dimension in this case so we can again

run the specialized version of Algorithm 3 to show VN1 ̸⊆ VN2 for both possible choices

of N1. As before, we ran matroidSeparate to find certificates that show VN1 ̸⊆ VN2 .

These computations can also be found in the Mathematica files K2P Networks.nb and

K3P Networks.nb.

Corollary 3.5.6. The semi-directed network parameter of large-cycle K2P and K3P

network models is generically identifiable.

Proof. Since Lemmas 3.5.3, 3.5.4, 3.5.5 hold for K2P and K3P cycle-networks, Lemmas

4.11, 4.12, and 4.13 of [21] hold for K2P and K3P networks as well. This means for any
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Figure 3.3: 4-cycle networks with four leaves. Under the CFN model these two networks
have different ideals but the same matroid.

two large-cycle networks N1 and N2, VN1 ̸⊆ VN2 and VN2 ̸⊆ VN1 . Since these varieties are

irreducible, this mutual non-containment implies

dim(V M
N1

∩ V M
N2

) < min(dim(V M
N1

), dim(V M
N2

))

and so the semi-directed network parameter of large-cycle K2P and K3P network models

is generically identifiable.

Remark 3.5.7. In our original computations we were also able to separate the 3-cycle

networks from the 4-cycle networks for both the K2P and K3P models. It may be possible to

extend these identifiability results to cycle networks with cycle size at least 3. As previously

mentioned though, it will always be impossible for trees to be generically identifiable from

cycle networks.

This serves as another example of how Algorithm 3 can be used to obtain identifia-

bility results for discrete parameters in algebraic models. While this algorithm has nice

computational advantages over computing vanishing ideals, there can be times when it

fails to separate varieties whose intersection is actually lower dimensional. It is important

to remember that when this algorithm fails to separate two models, it does not imply

that the discrete parameter is not identifiable. The example below shows that even if we

compute the entire matroid of both models, we still may not be able to separate models

whose intersection is actually lower dimensional.

Example 3.5.8. Let N1 and N2 be the networks pictured on the left and right in Figure

3.3 respectively. We can directly compute the vanishing ideals IN1 and IN2 of the CFN
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network models on N1 and N2 via elimination and get

IN1 = ⟨q0110q1001 − q0101q1010 + q0011q1100 − q0000q1111⟩

IN2 = ⟨−q0110q1001 + q0101q1010 + q0011q1100 − q0000q1111⟩.

These ideals are of the same dimension and not equal so the intersection of their corre-

sponding varieties is lower dimensional. Despite that, we can compute their entire matroid

explicitly and see that they are equal. This stems from the fact that the polynomials that

generate IN1 and IN2 involve the same variables.
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CHAPTER

4

INVARIANTS FOR LEVEL-1

PHYLOGENETIC NETWORKS UNDER

THE CAVENDAR-FARRIS-NEYMAN

MODEL

In this Chapter we focus on finding the invariants of the Cavendar-Farris-Neyman (CFN)

model on level-1 phylogenetic networks. This means that we are trying to determine

a generating set for the vanishing ideal IN of the CFN network model on the level-1

phylogenetic network N . Recall that the discrete Fourier transform, which is used to

simplify the parameterization of group-based models, such as the CFN model, can also be

applied to network models as well [21]. After applying this transform, CFN tree models

become toric varieties but the same is not true for CFN network models which makes

analyzing their algebraic structure more difficult.

As observed in [21], the toric fiber product of [44] can still be applied to group-based

network models. Our approach leverages this toric fiber product structure to reduce the
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problem to that of finding the invariants for sunlet networks which consist of only a single

cycle. While sunlet network varieties are still not toric, they do have a lower-dimensional

torus action on them meaning they are T-varieties [26]. We use this torus action to break

up the ideal of invariants of a n-leaf sunlet network into homogeneous graded pieces we

call gloves.

We then explicitly produce all quadratic generators of the sunlet network ideal that

lie in a given graded piece which gives a complete set of quadratic generators of the

sunlet network ideal under the CFN model. We conjecture that the sunlet network ideal

is generated by quadratics which would imply our set of quadratic generators actually

generate the entire ideal. An implementation of our algorithm to find quadratic generators

and computational evidence for our conjectures can be found at:

https://github.com/bkholler/CFN Networks.

This Chapter is organized as follows. In Section 2 we utilize the toric fiber product

to reduce the problem of finding a generating set for IN to the problem of finding a

generating set for ISn where Sn is the n-leaf sunlet network. In Section 3, we give a

complete description of the quadratic invariants for any sunlet network. In Section 4, we

discuss some open problems and conjectures concerning network ideals and give some

possible directions for approaching them. In particular, we conjecture that the CFN sunlet

network ideal is generated by quadratics and is dimension 2n when the network has n

leaves.

4.1 Reduction to Sunlet Networks

In this section, we show that gluing level-1 networks together along a leaf corresponds

to a toric fiber product of their corresponding ideals. This was pointed out in [21] but

the authors do not prove it. We include a more detailed discussion and the proof here for

completeness. This means that the ideal of invariants for any network can be constructed

by taking toric fiber products of sunlet networks and trees.

Let N be a level-1 network and observe that we can either find an edge e such that

when e is cut, N is split into two new networks N− and N+ where N− and N+ are level-1

networks with fewer leaves or that no such e exists in which case N is a sunlet network or

3-leaf tree. We can of course recover the network N by gluing N− and N+ along the edge

e which is a leaf of both new networks. We denote the operation of gluing these networks

along a leaf edge as N = N− ∗N+. This operation is pictured in Figure 4.1.
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We now assume N does admit a decomposition N = N− ∗N+ and denote the ambient

polynomial rings of these networks with C[q], C[q]−, C[q]+. Note that their corresponding

ideals IN , IN− , IN+ are all homogeneous in the grading determined by deg(qg) = ege where

ege is the corresponding standard basis vector.

Example 4.1.1. Let N− be the corresponding network pictured in Figure 4.1 then

C[q]− = C[qg | g = (g1, g2, g3, ge) ∈ Z2 and g1 + g2 + g3 + ge = 0]

and one can compute explicitly that

IN− = ⟨q0000q1111 − q0011q1100 + q0101q1010 − q0110q1001⟩ ⊆ C[q]−.

We can clearly see that this polynomial is homogeneous of degree e0 + e1 =

(
1

1

)
by

simply examining the last entry of the label sequence of each monomial.

Proposition 4.1.2. Assume N is not a sunlet network or 3-leaf tree and let N = N− ∗N+

be a decomposition of N into two smaller level-1 networks. Let each variable qg in C[q],

C[q]−, C[q]+ have degree ege. Then IN is the toric fiber product:

IN = IN− ×A IN+

with A = {e0, e1} linearly independent.

Proof. We prove this by slightly modifying the parameterization ψN and then factoring

it which is a standard technique introduced in [44]. Recall that for a tree T , IT can be

thought of as the kernel of the map

ψT : C[q] → C[aig | g ∈ Z2, i ∈ E(N)]

given by Equation 1.4 and IN is then the kernel of the map

ψN =
∑

σ∈{0,1}m

(
m∏
i=1

λ1−σi
i (1 − λi)

σi

)
ψTσ .

Note that squaring the variables associated to the edge e, which are aege , everywhere they

appear does not change the parameterization. Furthermore, the edge e which we have
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glued along is an edge in every tree Tσ and so we can also split each Tσ along this edge to

get two new trees T+
σ and T−

σ . Then we have from [44, Theorem 3.10] that

ψTσ(qg) = ψT−
σ

(qg)ψT+
σ

(qg). (4.1)

That is the parameterization for the tree Tσ factors as a product of the parameterizations

for the trees T+
σ and T−

σ .

Without loss of generality let v1, . . . , vℓ be the reticulation vertices of N that lie in

N− and vl+1, . . . , vm be those that lie in N+. Then we can substitute Equation 4.1 into

ψN and regroup to get

ψN(qg) =
∑

σ∈{0,1}m

[(
ℓ∏

i=1

λ1−σi
i (1 − λi)

σi

)
ψT−

σ
(qg)

][(
m∏

i=ℓ+1

λ1−σi
i (1 − λi)

σi

)
ψT+

σ
(qg)

]
= ∑

σ∈{0,1}ℓ

(
ℓ∏

i=1

λ1−σi
i (1 − λi)

σi

)
ψT−

σ
(qg)

 ∑
σ∈{0,1}m−ℓ

(
m∏

i=ℓ+1

λ1−σi
i (1 − λi)

σi

)
ψT+

σ
(qg)


= ψN−(qg)ψN+(qg)

since trees T−
σ and T+

σ are exactly the trees that appear in the parameterization of

ψN− and ψN+ respectively.

This implies that ψN factors through the map

ϕ : C[q] → C[q]− ⊗ C[q]+

qg 7→ qg− ⊗ qg+

and thus IN is the desired toric fiber product.

Remark 4.1.3. The exact same proof can be used to extend the above proposition to all

group-based models on level-1 phylogenetic networks. We present it in terms of the CFN

model here since that is the main focus of this chapter.

The above proposition gives an immediate algorithm for constructing the ideal IN

if the ideals for all sunlet networks and trees are known. The original network N is

recursively decomposed into sunlet networks and trees. One then builds the ideal back

up by taking toric fiber products of the sunlet network ideals and tree ideals. Since the

ideals corresponding to trees are completely known, the problem of finding the ideal IN

now amounts to understanding the sunlet network ideals ISn . This is our main focus for
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Figure 4.1: We can glue two four leaf networks along identified leaves to get a six leaf
network. This corresponds to taking a toric fiber product of the corresponding ideals.

the remainder of this chapter.

4.2 Quadratic Invariants of Sunlet Networks

The goal of this section is to describe the quadratic phylogenetic invariants for sunlet

networks. This is done by leveraging a Zn+1-grading on their corresponding phylogenetic

ideals. Throughout this section, we will consider the n-sunlet network Sn whose edges

are labelled as follows: the leaves are labelled e1, . . . , en going clockwise starting with the

leaf adjacent to the reticulation vertex; all cycle edges are labelled en+1, . . . , e2n oriented

clockwise starting and ending at the reticulation vertex. The phylogenetic variety VSn is

the variety associated to the kernel of the ring homomorphism ψn : Rn → Sn where

Rn = C[qg1,...,gn | (g1, . . . , gn) ∈ Zn
2 and

n∑
i=1

gi = 0],

Sn = C[aig | g ∈ Z2 and 1 ≤ i ≤ 2n],

and ψn is defined by qg1,...,gn 7→
∏n

j=1 a
j
gj

(∏n−1
j=1 a

n+j∑j
ℓ=1 gℓ

+
∏n

j=2 a
n+j∑j

ℓ=2 gℓ

)
. The kernel of

ψn will be denoted by In throughout the rest of the Chapter.

Proposition 4.2.1. The homomorphism ψn is graded by Zn+1.

Proof. Rn is graded by Zn+1 as follows: deg(qg1...gn = (1, g1, . . . , gn) where the gi are

76



considered as elements of Z. Sn can also be given a Zn+1-grading as follows:

deg(ajgj) =


0 if j > n

(1, g1, 0, . . . , 0) if j = 1

(0, 0, . . . , gj, . . . , 0) if 2 ≤ j ≤ n

where again the gi’s are considered as elements of Z instead of Z2. One checks that the

deg(qg) = deg(ψn(qg)), and the claim follows.

Remark 4.2.2. We have shown that the coordinate ring of the n-sunlet variety is graded

by Zn+1. In particular, this makes the variety into a T -variety: there is a T ∼= (C×)n+1-

action on the variety. We note that Sn does not yield a toric variety since in general

dim(T ) < dimSn.

4.2.1 Quadratic phylogenetic invariants for sunlet networks

In this subsection, we will leverage the grading from Proposition 4.2.1 to find all quadratic

invariants of Sn. While this approach differs from the standard description of phylogenetic

invariants of trees in terms of splits, we shall see that our approach not only produces

quadratic invariants for n-sunlets, but can also be used to describe the invariants for trees

as well (Section 4.2.2).

Throughout this section, let ψn : Rn → Sn be the parameterization of the network

variety Sn as defined in Section 4.2.1, and let In = kerψn. We begin with a definition.

Definition 4.2.3. Fix F ⊆ [n] and a ∈ ZF
2 . The glove, G(n,F , a), is the C-vector space

spanned by all quadratic monomials qgqh in Rn so that g|F = h|F = a and g|Fc +h|Fc = 1

where 1 is the all ones vector in ZFc

2 . If F = ∅, then we simply write G(n, ∅).

Remark 4.2.4. It is not efficient to consider all possible gloves since for some choices of F
and a, the corresponding glove intersects In trivially. In fact, given a glove, G(n,F , a) ⊆ Rn,

if G(n,F ,a) ∩ In ̸= {0}, then |[n] \ F| ≥ 4 and is even. In order to prove the claim,

we first show that if |[n] \ F| is odd, then G(n,F ,a) = {0}. Indeed, if one considers a

monomial qgqh ∈ G(n,F ,a), then it is not possible for
∑n

i=1 gi and
∑n

i=1 hi to both be

0; hence, no such monomial exists. Now, suppose that |[n] \ F| = 0 or 2. In either case,

dimC(G(n,F , a)) = 1. Then as ψn(qg) ̸= 0 for any g and as Sn is an integral domain, all

non-trivial polynomials from G(n,F , a) lie outside the kernel of ψn.
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Remark 4.2.5. Note that when n ≥ 4 and is even, dimC(G(n, ∅)) = 2n−2. One way to

see this is to note that the indices {g,h} that appear in the chosen basis for G(n, ∅) are

exactly the cosets of ⟨1⟩ ≤ {g ∈ Zn
2 |

∑n
i=1 gi = 0}.

With respect to the Zn+1 grading from Section 4.2.1, each glove G(n,F ,a) is (Rn)c

where c1 = 2 and ci+1 = 1 if i /∈ F and ci+1 = 2ai when i ∈ F . Moreover, this encompasses

all graded components whose total degree is 2. Therefore, in order to describe all quadratic

phylogenetic invariants of Sn, it is enough to find a basis for G(n,F , a)∩ In for each choice

of F and a where |[n] \ F| = 2k for all k in {1, . . . , ⌊n
2
⌋}.

In order to state the main result of this section, we need to define two linear maps

obtained out of a glove G(n,F , a). Consider two following subsets of [n]:

E(n,F) = {i | |[i] \ F| is even and 2 ≤ i ≤ n− 1}

O(n,F) = {i | |[i] \ F| is odd and 2 ≤ i ≤ n− 1}.

When n and F are clear from context, we will just write E and O, respectively. Using

these subsets of {2, . . . , n− 1}, we color the monomials lying in G(n,F , a) in two ways. If

we have a monomial lying in G(n,F , a), and we know that one of the factors is qg, then

the other factor is determined by g. Thus, it is convenient for us to only record “half” of

each term, so we set

L(n,F , a) = {g | qgqh ∈ G(n,F , a) and g <lex h}.

If qgqh ∈ G(n,F , a) and g ∈ L(n,F , a), we define our two colorings as follows.

cE(qgqh) =

(
j∑

i=1

gi

)
j∈E

∈ ZE
2

cO(qgqh) =

(
j∑

i=1

gi

)
j∈O

∈ ZO
2

Now we can define our two maps Mn,F ,a
E : G(n,F , a) → CZE

2 and Mn,F ,a
O : G(n,F , a) →

CZO
2 . With respect to the bases {qgqh | g ∈ L(n,F , a}, {ec | c ∈ ZE

2}, and {ec | c ∈ ZO
2 },

these maps have the following matrix representations.

(Mn,F ,a
E )(c,qgqh) =

1 if c = cE(qgqh)

0 otherwise
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and

(Mn,F ,a
O )(c,qgqh) =

1 if c = cO(qgqh)

0 otherwise
.

At this point, we are fully equipped to state the main theorem of this section; however,

we will delay the proof until Section 4.2.3.

Theorem 4.2.6. Let G(n,F , a) be a glove so that either 1 is not in F or 1 is in F but

a1 = 1. Then

In ∩ G(n,F , a) = kerMn,F ,a
E ∩ kerMn,F ,a

O .

On the other hand, if 1 is in F and a1 = 0, then

In ∩ G(n,F , a) = kerMn,F ,a
E .

Remark 4.2.7. As we shall see in Section 4.2.2, Theorem 4.2.6 can be reformulated as

follows: f ∈ In ∩G(n,F , a) if and only if f is a phylogenetic invariant for both underlying

trees. If we let IT0 and IT1 be the defining ideals for the two underlying trees, then it is

always true that In is contained in the intersection of IT0 and IT1; however, in general, In

is not the intersection of these two toric ideals as can be seen even when n = 4. Indeed,

the ideals for the two underlying trees are given by

IT0 = ⟨q0011q1100 − q0000q1111, q0110q1001 − q0101q1010⟩

IT1 = ⟨q0101q1010 − q0011q1100, q0110q1001 − q0000q1111⟩.

However, IT0 ∩ IT1 is generated by one quadratic and one quartic, while J4 is generated by

just the quadratic.

Proposition 4.2.8. If n is at least 4 and is even, then dimC(In∩G(n, ∅)) = (2n/2−1− 1)2.

Moreover, as long as 1 /∈ F or 1 ∈ F but a1 = 1, In ∩ G(n,F , a) ∼= Jn−|F| ∩ G(n, ∅).

Proof. For the first claim, note that n must be even; otherwise, G(n, ∅) is trivial. By

Theorem 4.2.6, In ∩ G(n, ∅) is the intersection of kerMn,∅
E and kerMn,∅

O . Let Mn,∅ be the

map Mn,∅
E ⊕Mn,∅

O : G(n, ∅) → CZE
2 ⊕ CZO

2 , so In ∩ G(n, ∅) = kerMn,∅.

We will demonstrate that dimC(In ∩ G(n, ∅)) = (2n/2−1 − 1)2 by showing that the

rank of Mn,∅ is 2n/2 − 1. Then, as dimC(G(n, ∅)) = 2n−2, we will see by rank-nullity that

dimC(In ∩ G(n, ∅)) = 2n−2 − 2n/2 + 1 = (2n/2−1 − 1)2.
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Note that |E| = |O| = n
2
− 1. If we think of Mn,∅ as a matrix, its columns are indexed

by monomials qgqh ∈ G(n, ∅), and its first 2n/2−1 rows are indexed by the elements of ZE
2

and the last 2n/2−1 rows are indexed by ZO
2 . We claim that the matrix for Mn,∅ takes the

following form: (1) every column is of the form ec1 + ec2 where c1 ∈ ZE
2 and c2 ∈ ZO

2 , (2)

each column is distinct, and (3) every possible combination of ec1 + ec2 occurs.

The first point is clear by the definition of the maps Mn,∅
E and Mn,∅

O . For the second

and third points, we will show that for any c1 ∈ ZE
2 and c2 ∈ ZO

2 there is a unique

qgqh ∈ G(n, ∅) so that cE(qgqh) = c1 and cO(qgqh) = c2. Note that uniqueness will follow

immediately since if there were two monomials whose colors are c1 and c2, then they must

be the same since c1 and c2 record all the partial sums of each of their corresponding

group elements. We will build up g ∈ L(n,F ,a) whose partial sums are given by c1

and c2. Let c ∈ Z{2,...,n−1}
2 be the unique vector with c|E = c1 and c|O = c2. If we let

c̃ = (0, c, 0) ∈ Zn
2 , then we set gi = c̃i + c̃i−1 for i ≥ 2 and g1 = 0. One can see that∑j

i=1 gj = cj for any 2 ≤ j ≤ n− 1. In order to get a monomial in the glove, we consider

qgq1+g ∈ G(n, ∅). By construction, cE(qgq1+g) = c1 and cO(qgq1+g) = c2.

Now, we can show that the row rank of Mn,∅ is one less than the number of rows. Up

to scaling there is only one linear relation among the rows which is given by adding up

the first 2n/2−1 rows and subtracting off the last 2n/2−1 rows. Points (2) and (3) above

guarantee that this is the only relation among the rows. Since the rank of Mn,∅ is 2n/2 − 1

and dimC G(n, ∅) = 2n−2, we have that dimC(In ∩ G(n, ∅)) = (2n/2−1 − 1)2.

For the second statement fix a glove G(n,F , a). First, suppose that
∑

i∈F ai = 0. Then

for any g ∈ Zn−|F|
2 , define g(F ,a) ∈ Zn

2 as g(F ,a)|F = a and g(F ,a)|Fc = g. Then

define a linear map T : G(n, ∅) → G(n,F ,a) defined by T (qgqh) = qg(F ,a)q1+g(F ,a). T is

an isomorphism, and it is not hard to see that there is a map which makes the diagram

commute and is an isomorphism when restricted to the images of the horizontal maps.

G(n− |F|, ∅) CE(n−|F|,∅) ⊕ CO(n−|F|,∅)

G(n,F , a) CE(n,F) ⊕ CO(n,F)

Mn−|F|,∅

T

Mn,F,a

It then follows that In ∩ G(n,F ,a) ∼= Jn−|F| ∩ G(n, ∅) in this case. The other case,

when
∑

i∈F ai = 1, is exactly the same except g(F ,a) is defined as g(F ,a)|F = a and

g(F , a)|Fc = g + en−|F|.

By the propsoition, in order to find a basis for In ∩ G(n,F , a) when 1 is not in F or 1

is in F but a1 = 1, it is enough to find a basis for Jn−|F| ∩ G(n− |F|, ∅) and then apply
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the map T . In the next proposition, we provide an explicit basis for In ∩ G(n, ∅) for any

even n greater than or equal to 4.

Theorem 4.2.9. Fix an even integer n ∈ Z≥4, and a group element c ∈ Z{2,...,n−1}
2 so

that c|E(n,∅) ̸= 0 and c|O(n,∅) ̸= 0. Then we define the polynomial

fc = qg(0,0)qh(0,0) − qg(c|E,0)qh(c|E,0) + qg(c|E,c|O)qh(c|E,c|O) − qg(0,c|O)qh(0,c|O)

in In ∩ G(n, ∅). Here g(c′, c′′) is defined by setting g1 = 0 and for i ≥ 2 we have

that gi = ci−1 + ci where c ∈ Zn
2 has c1 = cn = 0 and c|E = c′ and c|O = c′′, and

h(c1, c2) = 1 + g(c1, c2). Then

Bn = {fc | c ∈ Z{2,...,n−1}
2 and c|E ̸= 0, c|O ̸= 0}

is a basis for In ∩ G(n, ∅).

Proof. Note that by definition fc ∈ G(n,F , a). To see that fc ∈ In, note that

Mn,∅(fc) = e0|E + e0|O − ec|E − e0|O + ec|E + ec|O − e0|E − ec|O = 0.

By Theorem 4.2.6, fc ∈ In.

Since |Bn| is (2n/2−1 − 1)2, it is enough show that Bn is independent. Consider any

linear combination of the elements of Bn

0 =
∑
c

acfc.

Projecting
∑

c acfc onto spanC{qg(c|E,c|O)qh(c|E,c|O)}, yields acqg(c|E,c|O)qh(c|E,c|O) from which

it follows that ac = 0 for all such c.

Remark 4.2.10. Let Jn be the ideal generated by all quadratics in In. Then Propositions

4.2.8 and 4.2.9 give a recipe for obtaining generators of In∩G(n,F , a) where either 1 /∈ F

or 1 ∈ F but a1 = 0. The case when 1 ∈ F and a1 = 0 is easily taken care of using

previously known techniques. In this case, the parameterization restricts to a monomial

map. These phylogenetic invariants are obtained from the underlying tree T in Sn where

all the edges containing the reticulation vertex are deleted. Of course, this tree only has

n− 1 leaves, so we lift these phylogenetic invariants to the network via the map defined by

qg 7→ q(0,g). These facts along with Propositions 4.7 and 4.8 allow us to find all quadratic
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generators of the sunlet network ideal very quickly. Our implementation of this can be

found in the Macaulay2 file sunletQuadGens.m2.

In [8], the authors produce a combinatorial interpretation of the phylogenetic invariants

of a tree T in terms of systems of paths on T . In a similar vein, each variable qg can be

thought of as a system of paths on the network. The paths connecting the vertices ℓ such

that gℓ = 1 though are not necessarily unique. Indeed, there is a unique system of paths

connecting all such vertices for each tree. For a monomial, qg, we consider all the edges in

the network which are supported in either of these two path systems. Now, we fix a glove

G(n,F ,a) so that 1 /∈ F . For any monomial qgqh ∈ G(n,F ,a), we take the symmetric

difference of the collection of edges obtained from each monomial. Below is an example

with q001100q100010 ∈ G({2, 6}, (0, 0)) ⊂ R6.

× =

Note that in this example, the leaves which are omitted correspond to F = {2, 6}. Note

E = {3, 5}, O = {2, 4}, cE(q001100q100010) = (1, 0) ∈ Z{3,5}
2 , and cO(q001100q100010) = (0, 0) ∈

Z{2,4}
2 . Putting these two colorings together gives us (0, 1, 0, 0) ∈ Z{2,3,4,5}

2 . We see that the

1 in the coloring indicates that e6+3 should be removed while the zeros in positions 2, 4,

and 5 indicate that the edges e6+2, e6+4, and e6+5 should remain in the resulting diagram.

In fact, these observations hold true as long as 1 /∈ F . Therefore, we define the diagram

for qgqh ∈ G(n,F ,a) (for any F) by omitting any leaves which are in F and any edge

en+k when the coloring of the monomial in position k is 1. These diagrams gives us a

visual interpretation of the colorings cE and cO.

Example 4.2.11. These diagrams give us an easy way to tell if an element f ∈ G(n,F , a)

is in an invariant. For example, take f = q101111q111000 − q101011q111100 + q101101q111010 −
q101110q111001 ∈ G({1, 3}, (1, 1)) ⊂ R6. Here E = {4} and O = {2, 3, 5}. Then cE and cO on

each monomial is as follows.

cE(q101000q111111) = 0 cO(q101000q111111) = (1, 0, 0)

cE(q101011q111100) = 0 cO(q101011q111100) = (1, 0, 1)

cE(q101101q111010) = 1 cO(q101101q111010) = (1, 0, 1)

cE(q101110q111001) = 1 cO(q101110q111001) = (1, 0, 0)
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Pictorially, this is as follows.

ψ6(q101111q111000 + q101101q111010) = ψ6(q101011q111100 + q101110q111001)

+ = +

We can tell that f ∈ J6 ∩ G({1, 3}, (1, 1)) by noting that the odd colors, (1, 0, 0) and

(1, 0, 1), and the even colors, 0 and 1, appear once on each side of the equation, i.e.

M
{1,3},(1,1)
E (f) and M

{1,3},(1,1)
O (f) are both 0.

On the other hand, one can also see that J6 ∩ G({1, 3}, (1, 1)) contains no binomials

of the form

z1qg1qh1 − z2qg2qh2

for any suitable group elements and complex numbers zi ∈ C \ {0}. The reason being that

if this were to vanish under ψ6 that would mean that z1 = z2 and the colorings of each

qgi
qhi

would need to be identical, but this would imply that g1 = g2 and h1 = h2.

Example 4.2.12. Let n = 6 and F = ∅. In this case, G(6, ∅) is spanned by the following

16 monomials.

q000000q111111, q000011q111100, q000101q111010, q000110q111001,

q001001q110110, q001010q110101, q001100q110011, q001111q110000,

q010001q101110, q010010q101101, q010100q101011, q010111q101000,

q011000q100111, q011011q100100, q011101q100010, q011110q100001

We have the following matrices where the columns are indexed by the monomials

above and the rows are indexed by elements of Z2
2 lexicographically.

M6,∅
E =


1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1


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M6,∅
O =


1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1

0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0


Then J6 ∩ G(6, ∅) is a 9 dimensional C-vector space spanned by the following polyno-

mials.

q000000q111111 − q000110q111001 + q000101q111010 − q000011q111100

q000000q111111 − q000110q111001 + q001010q110101 − q001100q110011

q000000q111111 − q000110q111001 + q001001q110110 − q001111q110000

q000000q111111 − q011000q100111 + q011011q100100 − q000011q111100

q000000q111111 − q011000q100111 + q010100q101011 − q001100q110011

q000000q111111 − q011000q100111 + q010111q101000 − q001111q110000

q000000q111111 − q011110q100001 + q011101q100010 − q000011q111100

q000000q111111 − q011110q100001 + q010010q101101 − q001100q110011

q000000q111111 − q011110q100001 + q010001q101110 − q001111q110000

Let us consider the colorings of the monomials in the last polynomial. Note E = {2, 4}
and O = {3, 5}

cE(q000000q111111) = (0, 0) cO(q000000q111111) = (0, 0)

cE(q011110q100001) = (1, 1) cO(q011110q100001) = (0, 0)

cE(q010001q101110) = (1, 1) cO(q010001q101110) = (1, 1)

cE(q001111q110000) = (0, 0) cO(q001111q110000) = (1, 1)

This relation can be viewed pictorially as

ψ6(q000000q111111 + q010001q101110) = ψ6(q011110q100001 + q001111q110000)

+ = +
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We also note that the dimension of S6 is 12, its codimension is 20, and J6 is minimally

generated by 79 polynomials; thus, contrary to say the 4-leaf case, S6 is not a complete

intersection even set-theoretically.

4.2.2 Quadratic phylogenetic invariants of trees

Let T be a binary tree with leaf set [n], and let IT be the defining ideal for the corresponding

variety under the CFN model. It was shown in [43] that the phylogenetic invariants for

this model are given purely in terms of 2 × 2 minors of certain matrices. In this section,

we give a separate description for the generating set which is in line with the approach

from Section 4.2.1. Using the same reasoning as in Section 4.2.1, we can see that IT is

also graded by Zn+1; hence, the quadratic generators can be described by the C-vector

spaces IT ∩ G(n,F , a) where we can again restrict to when [n] \ F is even has cardinality

at least 4. Recall that for any edge e ∈ Σ(T ), the edge induces a split of the tree Ae|Be.

In this section, given a glove G(n,F , a), we define

ET (F) = {e ∈ E(T ) | |Ae \ F| is even}.

When it is clear from context, we will simply write ET . Similarly, we let the linear map

MF ,a
ET

: G(n,F , a) → CZET
2 be defined by the following matrix as in the previous subsection.

(Mn,F ,a
ET

)c,qgqh =

1 if for all e ∈ ET , ce =
∑

i∈Ae
gi

0 otherwise

where g <lex h. Then we have the following theorem which is analogous to Theorem 4.2.6,

but for trees.

Theorem 4.2.13. Given a glove G(n,F , a) and a phylogenetic tree T , the Zn+1-graded

piece IT ∩ G(n,F , a) is the kernel of Mn,F ,a
ET

.

Proof. Let ST = C[aeg | g ∈ Z2 and e ∈ E(T )]. Recall that IT is the kernel of ψT : Rn → ST

defined by

qg 7→
∏

Ae|Be∈Σ(T )

ae∑
i∈Ae

gi

Now, fix a glove G(n,F , a), and note that if qgqh ∈ G(n,F , a), then
∑

i∈Ae
gi =

∑
i∈Ae

hi

if and only if e ∈ ET . Consider any polynomial f =
∑

g∈L(n,F ,a) cgqgqh ∈ G(n,F , a). If we
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apply ψT , we get the following.

ψT (f) =
∑

g∈L(n,F ,a)

cg

 ∏
e∈E(T )

ae∑
i∈Ae

gi

 ∏
e∈E(T )

ae∑
i∈Ae

hi


=

∑
g∈L(n,F ,a)

cg

(∏
e/∈E

ae0a
e
1

)(∏
e∈ET

(ae∑
i∈Ae

gi
)2

)

=

∏
e/∈ET

ae0a
e
1

 ∑
g∈L(n,F ,a)

cg

(∏
e∈E

(ae∑
i∈Ae

gi
)2

)

The monomials,
∏

e∈ET
(ae∑

i∈Ae
gi

)2, can be identified as standard basis vectors in CZET
2 .

After making this identification, it becomes evident that ψT (f) = 0 if and only if

MF ,a
ET

(f) = 0.

Consider Sn and its two underlying trees T0 and T1, and fix any glove G(n,F , a) where

either 1 is not in F or 1 is in F but a1 = 1. Recall that T0 is obtained by deleting the

reticulation edge that lies between the leaves e1 and e2, and T1 is obtained by deleting

the reticulation edge that lies between the leaves e1 and en. The defining ideals for T0

and T1 are generated by quadratic binomials. Here we will show that the polynomials fc

from Proposition 4.2.9 are either sums or differences of binomials coming from IT0 and

IT1 . In the following proposition, we only consider the case when n is even, at least 4, and

F = ∅ since any other glove of the form stated can be obtained from this case.

Proposition 4.2.14. Let n ∈ Z≥4 be even, and consider a polynomial of the following

form

fc = qg(0,0)qh(0,0) − qg(c|E,0)qh(c|E,0) + qg(c|E,c|O)qh(c|E,c|O) − qg(0,c|O)qh(0,c|O)

in In ∩ G(n, ∅) from Proposition 4.2.9. Then the binomials

qg(c|E,0)qh(c|E,0) − qg(c|E,c|O)qh(c|E,c|O) and qg(0,0)qh(0,0) − qg(0c|O)qh(0,c|O) are elements of IT0,

and the binomials qg(0,0)qh(0,0)−qg(c|E,0)qh(c|E,0) and qg(c|E,c|O)qh(c|E,c|O)−qg(0,c|O)qh(0,c|O) are
elements of IT1.

Proof. Note that E = ET0 and O = ET1 . Then the claim follows by Theorem 4.2.13.

4.2.3 Proof of Theorem 4.2.6

The goal of this section is to prove Theorem 4.2.6. This is done in three cases:
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1. when 1 ∈ F and a1 = 0.

2. when 1 ∈ F and a1 = 1,

3. and when 1 /∈ F .

Case (1) follows from Theorem 4.2.13. Indeed, consider a monomial qg so that g1 = 0. Let

ψT be the parameterization for the tree obtained from Sn by deleting all edges adjacent

to the reticulation vertex. Then the parameterization is as follows.

ψn(qg) =
n∏

i=1

aigi

(
n−1∏
i=1

an+i∑i
ℓ=1 gi

+
n∏

i=2

an+i∑i
ℓ=2 gi

)

= a10(a
n+1
0 + a2n0 )

n∏
i=2

aigi

n−1∏
i=2

an+i∑i
ℓ=2 gi

= a10(a
n+1
0 + a2n0 )ψT (qg)

Note that the term, a10(a
n+1
0 + a2n0 ), does not affect the kernel, so any glove where 1 ∈ F

and a1 = 0 has the desired form.

Consider the second case when 1 ∈ F and a1 = 1. For each monomial, qgqh in

G(n,F , a), both g1 and h1 are 1. We will always assume that g <lex h, so g ∈ L(n,F , a).

As h is completely determined by g, n,F , and a, any polynomial f in G(n,F ,a) can

be written as follows: f =
∑

g∈L(n,F ,a) cgqgqh ∈ G(n,F , a). Computing ψn(f) yields that

ψn(f) =
∑

g∈L(n,F ,a) cgψn(qgqh) =

∑
g∈L(n,F ,a)

cg

(
n∏

j=1

ajgj

)(
n−1∏
j=1

an+j∑j
ℓ=1 gℓ

+
n∏

j=2

an+j∑j
ℓ=2 gℓ

)

×

(
n∏

j=1

ajhj

)(
n−1∏
j=1

an+j∑j
ℓ=1 hℓ

+
n∏

j=2

an+j∑j
ℓ=2 hℓ

)

Which we can rewrite as

∑
g∈L(n,F ,a)

cg

(∏
j∈F

(ajgj)
2

)∏
j /∈F

aj0a
j
1

(n−1∏
j=1

an+j∑j
ℓ=1 gℓ

+
n∏

j=2

an+j∑j
ℓ=2 gℓ

)

×

(
n−1∏
j=1

an+j∑j
ℓ=1 hℓ

+
n∏

j=2

an+j∑j
ℓ=2 hℓ

)
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The monomial
(∏

j∈F(ajgj)
2
)(∏

j /∈F a
j
0a

j
1

)
depends only on F and a, so it can be

factored out of the sum, and it will be denoted as mF ,a. So we get

ψn(f) = mF ,a

∑
g∈L(n,F ,a)

cg

(
n−1∏
j=1

an+j∑j
ℓ=1 gℓ

+
n∏

j=2

an+j∑j
ℓ=2 gℓ

)(
n−1∏
j=1

an+j∑j
ℓ=1 hℓ

+
n∏

j=2

an+j∑j
ℓ=2 hℓ

)
.

Which can be rewritten as

mF ,a

∑
g∈L(n,F ,a)

cg

(
an+1
g1

n−1∏
j=2

an+j∑j
ℓ=1 gℓ

+ a2ng1

n−1∏
j=2

an+j∑j
ℓ=2 gℓ

)

×

(
an+1
h1

n−1∏
j=2

an+j∑j
ℓ=1 hℓ

+ a2nh1

n−1∏
j=2

an+j∑j
ℓ=2 hℓ

)
.

This then gives us that

mF ,a

∑
g∈L(n,F ,a)

cg

(
an+1
1

n−1∏
j=2

an+j∑j
ℓ=1 gℓ

+ a2n1

n−1∏
j=2

an+j∑j
ℓ=2 gℓ

)

×

(
an+1
1

n−1∏
j=2

an+j∑j
ℓ=1 hℓ

+ a2n1

n−1∏
j=2

an+j∑j
ℓ=2 hℓ

)
.

We proceed by expanding and regrouping terms using the following observations about

the various sums in the subscripts.

–
∑j

ℓ=1 gℓ = 1 +
∑j

ℓ=2 gℓ since g1 = 1

–
∑j

ℓ=1 gℓ =
∑j

ℓ=1 hℓ ⇐⇒ [j] \ F has even cardinality.

–
∑j

ℓ=2 gℓ =
∑j

ℓ=2 hℓ ⇐⇒ [j] \ F has even cardinality.

–
∑j

ℓ=1 gℓ =
∑j

ℓ=2 hℓ ⇐⇒ [j] \ F has odd cardinality.

–
∑j

ℓ=2 gℓ =
∑j

ℓ=1 hℓ ⇐⇒ [j] \ F has odd cardinality.

Using the observations above, all subscripts in ψn(f) can be written in terms of g ∈
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L(n,F , a).

ψn(f) = mF ,a

∑
g∈L(n,F ,a)

cg

(
an+1
1 an+1

1

∏
j∈E

(an+j∑j
ℓ=1 gℓ

)2
∏
j∈O

an+j
0 an+j

1

+ an+1
1 a2n1

∏
j∈E

an+j
0 an+j

1

∏
j∈O

(an+j∑j
ℓ=1 gℓ

)2

+ an+1
1 a2n1

∏
j∈E

an+j
0 an+j

1

∏
j∈O

(an+j∑j
ℓ=2 gℓ

)2

+a2n1 a
2n
1

∏
j∈E

(an+j∑j
ℓ=2 gℓ

)2
∏
j∈O

an+j
0 an+j

1

)

The products,
∏

j∈E a
n+j
0 an+j

1 and
∏

j∈O a
n+j
0 an+j

1 , depend only on F , and will be denoted

mF ,E and mF ,O, respectively.

ψn(f) = mF ,a

∑
g∈L(n,F ,a)

cg

(
an+1
1 an+1

1 mF ,O
∏
j∈E

(an+j∑j
ℓ=1 gℓ

)2

+ an+1
1 a2n1 mF ,E

∏
j∈O

(an+j∑j
ℓ=1 gℓ

)2 + an+1
1 a2n1 mF ,E

∏
j∈O

(an+j∑j
ℓ=2 gℓ

)2

+a2n1 a
2n
1 mF ,O

∏
j∈E

(an+j∑j
ℓ=2 gℓ

)2

)
= mF ,amF ,O(an+1

1 )2
∑

g∈L(n,F ,a)

cg
∏
j∈E

(an+j∑j
ℓ=1 gℓ

)2

+mF ,amF ,O(a2n1 )2
∑

g∈L(n,F ,a)

cg
∏
j∈E

(an+j∑j
ℓ=2 gℓ

)2

+mF ,amF ,Ea
n+1
1 a2n1

∑
g∈L(n,F ,a)

cg
∏
j∈O

(an+j∑j
ℓ=1 gℓ

)2

+mF ,amF ,Ea
n+1
1 a2n1

∑
g∈L(n,F ,a)

cg
∏
j∈O

(an+j∑j
ℓ=2 gℓ

)2

In the final expression of the equation above, there are four sums. The superscripts

appearing in the first two sums are identical, and similarly, the superscripts appearing

in the last two sums are the same. Moreover, they are completely disjoint, so there is

no cancellation between the first two sums and the second two sums. It follows that
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ψn(f) = 0 if and only if the following equations hold.

0 = (an+1
1 )2

∑
g∈L(n,F ,a)

cg
∏
j∈E

(an+j∑j
ℓ=1 gℓ

)2 + (a2n1 )2
∑

g∈L(n,F ,a)

cg
∏
j∈E

(an+j∑j
ℓ=2 gℓ

)2 (4.2)

0 =
∑

g∈L(n,F ,a)

cg
∏
j∈O

(an+j∑j
ℓ=1 gℓ

)2 +
∑

g∈L(n,F ,a)

cg
∏
j∈O

(an+j∑j
ℓ=2 gℓ

)2 (4.3)

In equation (5), there can be no cancellation among these two sums because of the

coefficients (an+1
1 )2 and (a2n1 )2 in front. The subscripts in each of these sums are all off by

exactly 1; therefore, the first term is 0 if and only if the second term is 0. In equation (6),

the subscripts in each sum are also again off by exactly 1. In order to show there is no

cancellation among these sums, we argue that the set of monomials appearing in each

sum are disjoint.

Lemma 4.2.15. There are no distinct g,g′ ∈ L(n,F ,a) so that
∑j

ℓ=1 gℓ =
∑j

ℓ=2 g
′
ℓ for

all 2 ≤ j ≤ n − 1 such that [j] \ F has odd cardinality. In other words, in (5), the two

sets of monomials appearing in the two sums are disjoint.

Proof. Let {i1, . . . , im} = [n−1]\F . Suppose g, g′ ∈ L(n,F , a) and
∑j

ℓ=1 gℓ =
∑j

ℓ=2 g
′
ℓ for

all j ∈ {i1, . . . , im}. Since g′1 = 1, we have
∑j

ℓ=1 gℓ = 1 +
∑j

ℓ=1 g
′
ℓ for all j ∈ {i1, . . . , im}.

Since g|a = g′|a, we see that gi1 = 1 + g′i1 . However, this contradicts that g′ ∈ L(n,F , a).

Since L(n,F , a) = {g | qgqh ∈ G(n,F , a) and g <lex h}, there is some h′ so that qg′qh′ ∈
G(n,F , a), and since i1 /∈ F , h′i1 = 0 which implies h′ <lex g

′ and g′ /∈ L(n,F , a).

From the arguments above, we see that equations (5) and (6) reduce to (7) and (8)

below. It then follows that ψn(f) = 0 if and only if (7) and (8) hold.

0 =
∑

g∈L(n,F ,a)

cg
∏
j∈E

(an+j∑j
ℓ=1 gℓ

)2 (4.4)

0 =
∑

g∈L(n,F ,a)

cg
∏
j∈O

(an+j∑j
ℓ=1 gℓ

)2 (4.5)

Equations (7) and (8) imply that f lies in kerMn,F ,a
E and kerMn,F ,a

O , respectively; thus,

f ∈ In ∩ G(n,F , a) if and only if it lies in the intersection of kerMn,F ,a
E and kerMn,F ,a

O .

Finally, we can consider the third case, when 1 /∈ F . Here we will omit the proof, since

it is nearly identical to the proof of the second case.
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4.3 Open Problems

In this section, we discuss some conjectures for which we have computational evidence

and suggest some possible techniques for solving them. We also provide some interesting

open problems surrounding sunlet network ideals.

One of the main drawbacks to the techniques used in Section 4.2 is that it only yields

quadratic generators for In. For n-sunlet networks with 4 ≤ n ≤ 7, we have verified that

their ideals are quadratically generated. This was done in Macaulay2 by showing that

over Q, kerψn = Jn for n = 4, 5, 6, and 7. Since we had equality over Q, the ideals must

still be equal after extending to the complex numbers. While we have verified that In is

generated by quadratics for 4 ≤ n ≤ 7, it remains open as to whether these generate In

for n ≥ 8. For the CFN model, the ideals for trees are always generated by quadratics,

and as we have seen the quadratic invariants obtained for the sunlet ideals are built from

invariants from the underlying trees; hence, we suspect that In is always quadratically

generated.

Conjecture 4.3.1. Let Jn be the ideal generated by all quadratic invariants in In. Then

Jn = In for all n ≥ 4.

In order to prove Conjecture 4.3.1, it would be enough to show that Jn is prime and

of the correct dimension. To this end, we have the following conjecture which would prove

Conjecture 4.3.1.

Conjecture 4.3.2. For n ≥ 5, dim In = 2n = dim Jn and Jn is prime.

A possible approach to proving that Jn is prime is that taken in [33]. The main

workhorse of their technique is the following lemma which was originally stated in [20,

Proposition 23].

Lemma 4.3.3. [33, Lemma 2.5] Let k be a field and J ⊂ k[x1, . . . xn] be an ideal containing

a polynomial f = gx1 + h with g, h not involving x1 and g a non-zero divisor modulo J .

Let J1 = J ∩ k[x2, . . . xn] be the elimination ideal. Then J is prime if and only if J1 is

prime.

This lemma can be used to create a descending chain of ideals each one involving one

less variable. As long as a polynomial f of the required form can be found, then one can

prove that the original ideal is prime by verifying that the last ideal in the chain is prime.

For 4 ≤ n ≤ 7 we have done this with Jn by repeatedly eliminating variables in reverse
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lexicographic order until we are left with an ideal in only the variables qg such that g1 = 0.

That is we build a chain

Jn ⊃ J (1)
n ⊃ · · · ⊃ J (2n−2)

n

where J
(j)
n is obtained by eliminating the jth variable in reverse lexicographic order from

J
(j−1)
n and at each step we ensure that a polynomial f of the form described in Lemma

4.3.3 exists. Typically one would then need to verify that J
(2n−2)
n is prime but the following

lemma shows there is no need for this. Our implementation of this can be found in the

macaulay2 file primeDescent.m2.

Lemma 4.3.4. Let J
(2n−2)
n = Jn ∩ C[qg : g1 = 0]. Then J

(2n−2)
n

∼= IT where T is the tree

obtained by deleting the reticulation vertex of Sn and all adjacent edges.

This lemma implies that if one can always find a polynomial f of the desired form in

each of the intermediate elimination ideal J
(j)
n then Jn is prime since the last ideal J

(2n−2)
n

is isomorphic to a tree ideal; thus, it must be prime.

For the question of the dimension of In, we have the following bound.

Proposition 4.3.5. For n ≥ 4 it holds that 2n− 1 ≤ dim(In) ≤ 2n+ 1.

Proof. First we note that In is properly contained in the ideals IT0 and IT1 for the trees

T0 and T1 that are obtained from Sn by deleting reticulation edges. It is well known that

each of these ideals has dim(ITi
) = 2n− 2 (see for example [4]). Since we have that In is a

prime ideal properly contained in these two prime ideals which are not equal, we get the

lower bound 2n− 1 ≤ dim(In). For the other bound recall that VSn can also be thought

of as a projective variety the map ψSn parameterizing In can be thought of as a map

ψSn :
∏

e∈E(Sn)

P1 → P2n−1−1

where each copy of P1 in the domain corresponds to an edge of Sn. This immediately

implies that the projective variety corresponding to Sn has dimension at most #E(Sn) =

2n and so dim(In) ≤ 2n+ 1.

We also have that dim In ≤ dim Jn as Jn ⊆ In. Moreover, using the rank of Jacobian

of ψSn , we have shown for 5 ≤ n ≤ 8 that the dimension of In is 2n. We’ve also computed

the rank of the Jacobian with random values substituted in for the parameters for n up to

17. In each case we’ve found that the rank is also 2n which means that dim(In) = 2n with

probability 1 for 9 ≤ n ≤ 17. These computations can be found in the file sunletDim.m2.
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Through computational experiments we have found very well-behaved toric degener-

ations of the ideals corresponding to S4 and S5. In the case when n = 5, there are 116

cones in the tropical variety which yield normal toric varieties; however, most of them

are somewhat less well-behaved. For example, we were able to find a weight vector w

such that the quadratic invariants produced in Section 4.2 actually form a Gröbner basis

with respect to w but this does not happen for most of the weights in the tropical variety.

Moreover, the initial forms of these quadratic invariants are always invariants for at least

one of the underlying trees T0 or T1. To this end, we ask the following.

Question 4.3.6. For n ≥ 5, is there a weight vector w on Rn for which inw(In) is a

prime binomial ideal? If so, can it be shown that there is a combinatorial rule for finding

such a w where a Gröbner basis of In with respect to w can be deduced combinatorially?
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gröbner basis algorithm. Journal of Symbolic Computation, 70:49–70, 2015.

[6] Daniel Irving Bernstein, Lam Si Tung Ho, Colby Long, Mike Steel, Katherine St. John,
and Seth Sullivant. Bounds on the expected size of the maximum agreement subtree.
SIAM J. Discrete Math., 29(4):2065–2074, 2015.

[7] David Bryant, Andy McKenzie, and Mike Steel. The size of a maximum agreement
subtree for random binary trees. In Bioconsensus (Piscataway, NJ, 2000/2001),
volume 61 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 55–65.
Amer. Math. Soc., Providence, RI, 2003.
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