
ABSTRACT

SUNSERI, ISAAC PAUL. Design and Sensitivity Analysis of Inverse Problems Governed by

Partial Differential Equations (Under the direction of Dr. Alen Alexanderian).

Many applications and physical phenomena can be described by systems of partial differ-

ential equations (PDEs). These PDEs may be coupled together and include multiple state

variables of differing units and scales, as well as many physical model parameters. Inverse

problems arise when these physical model parameters are uncertain and we wish to estimate

them using a set of measurement data that typically corresponds to the PDE states. Using

the measurement data and the PDE model that describes the physical system being consid-

ered, an optimization problem is solved to estimate one or more unknown parameters, which

are called the inversion parameters. Other model parameters besides the inversion parameter

are referred to as auxiliary parameters, while parameters specifying the experimental con-

ditions, such as types of measurements or noise levels, are experimental parameters. In this

work, the author explores several methods to better understand PDE-constrained inverse

problems and design effective experiments for these problems while considering additional

uncertainties in the auxiliary and experimental parameters.

Optimal experimental design (OED) seeks to determine the arrangement of sensors, mea-

surement times, and other experimental conditions that optimize some desired design cri-

terion. Hyper-differential sensitivity analysis (HDSA) is a form of post-optimal sensitivity

analysis that quantifies the change in the solution of an optimization problem as auxiliary or

experimental parameters are perturbed. By combining these techniques in this dissertation,

the author develops a comprehensive method to study inverse problems and design effective

experiments for them. This dissertation addresses the following topics in the context of

PDE-constrained inverse problems: (i) OED that takes into account additional, reducible

model uncertainties (ii) HDSA of nonlinear deterministic inverse problems, (iii) HDSA of

nonlinear Bayesian inverse problems.
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CHAPTER

1

INTRODUCTION

Throughout scientific and engineering fields, partial differential equations are used to model

a wide variety of physical systems. These models are used to predict outcomes, design

experiments, and estimate unknown quantities. In practice, these models frequently con-

tain a number of uncertain parameters, some of which may need to be estimated. Using

data measurements of the PDE states, along with knowledge of the governing model, an

optimization problem can be solved to infer the unknown parameters of interest. This

type of problem is referred to as a PDE-constrained inverse problem and is widely stud-

ied [17, 24, 25, 50, 53, 81, 86]. Inverse problems have many challenges that must be carefully

considered including ill-posedness, uncertainty in the parameters, noisy-data, and experi-

mental designs. In addition to the unknown parameter(s) of interest that are inferred by

the inverse problem, there are often many other uncertain parameters that must be fixed

to fully specify the inverse problem. These additional uncertain parameters are of concern

because incorrectly estimating and fixing these parameters may adversely affect the quality

of the solution, or else lead experimenters to make incorrect conclusions if they are unaware

of these uncertainties.

This dissertation explores the design of PDE-constrained inverse problems through the

lens of optimal experimental design (OED) [5, 6, 8, 11, 13, 15, 37, 38, 46, 47, 55, 59, 60, 67, 84]

and sensitivity analysis [41, 42, 44, 48, 49, 71, 77] which take additional model uncertainties
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into account. Optimal experimental design seeks to determine a set of sensor locations,

measurement times, or other experimental conditions that optimize some measure of the

solution’s quality. Sensitivity analysis is a broad field of study and herein hyper-differential

sensitivity analysis (HDSA) of PDE-constrained inverse problems is considered. HDSA is a

form of derivative-based sensitivity analysis that quantifies the impact of perturbations in

the auxiliary and experimental parameters on the solution of the inverse problem. This is

useful as it allows for comparison of relative importance between various uncertain model

and experimental parameters which may be used to inform the design of inverse problems.

In particular, this information can be used to perform parameter subset selection, give phys-

ical insight, inform sensor calibration, and prioritize data collection and model parameter

estimation techniques.

1.1 Outline of the dissertation

This section provides an overview of the work discussed in each chapter of this dissertation.

Chapter 2: Optimal Experimental Design Under Uncertainty. Traditional OED

methods may not consider additional model uncertainties and this can lead to suboptimal

design choices. In this chapter we consider designs for linear inverse problems that mini-

mize the posterior uncertainty in the inversion parameters, while accounting for additional

reducible uncertainties. To accomplish this we develop efficient computational methods to

compute a marginalized A-optimality criterion. By considering optimal experimental design

under uncertainty, we show that this approach produces quantifiable improvements in the

resulting inverse problem solution.

Chapter 3: Hyper-Differential Sensitivity Analysis for Deterministic Inverse

Problems. There are many sources of uncertainty in inverse problems which include both

experimental conditions, such as sensor measurements, and model uncertainties that must be

estimated and fixed to fully specify the inverse problem. We wish to understand how sensitive

the inverse problem solution is to these uncertain parameters, as this can aid experimenters

in allocating resources to most accurately estimate and measure the quantities of greatest

importance. To this end, we use a local derivative-based sensitivity analysis approach to

evaluate the sensitivity of the solution with respect to uncertain parameters. We demonstrate

this methodology on a high-dimensional multi-physics problem involving estimation of log-

permeability in a porous medium flow problem.

Chapter 4: Hyper-Differential Sensitivity Analysis for Bayesian Inverse Prob-

lems. The work of this chapter extends that of chapter 3 to Bayesian inverse problems. This

is an important and necessary step to making HDSA a more widely used approach. The so-
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lution of a Bayesian inverse problem is a posterior distribution for the inversion parameterrs.

This immediately raises several computational and theoretical challenges such as “how does

one compute derivative-based sensitivities of a distribution?” We evaluate the sensitivity of

the posterior distribution through the MAP point and Bayes risk, and present a detailed

analysis of the computational cost and efficiency of this approach. While this approach is

specific to using Bayes risk as a measure of posterior uncertainty, it is foundational in pro-

viding a framework for evaluating the sensitivity of posterior distributions through other

measures of posterior uncertainty.

Chapter 5: Conclusion. Chapter 5 concludes the dissertation offering a high-level

synthesis of the methods detailed herein and proposes several possible areas of future work.

1.2 Contributions

The primary contributions of this dissertation are:

• We provide a formulation for OED under reducible model uncertainty for high-dimensional

Bayesian linear inverse problems that uses a marginalized A-optimality criterion to ap-

propriately account for these uncertainties; see chapter 2.

• We provide a mathematical and computationally efficient framework for HDSA of

deterministic nonlinear inverse problems governed by PDEs with respect to auxiliary

and experimental parameters; see chapter 3.

• We extend HDSA to Bayesian nonlinear inverse problems governed by PDEs by study-

ing the sensitivity of various measures of the posterior distribution including the MAP

point and the Bayes risk; see chapter 4.

• We demonstrate the effectiveness and interpretation of the methods explored in this

dissertation both through simple motivating examples and high dimensional inverse

model problems; see chapters 2-4.
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CHAPTER

2

OPTIMAL EXPERIMENTAL DESIGN

UNDER UNCERTAINTY

The work presented in this chapter is based upon a collaborative publication [7]. The authors

of this article are cited alphabetically. The author of this dissertation provided significant

contributions to the mathematical theory, computational results, and writing of the article.

2.1 Introduction

An inverse problem uses measurement data and a mathematical model to estimate a set

of uncertain model parameters. An experimental design specifies the strategy for collecting

measurement data. For example, in inverse problems where measurement data are collected

using sensors, an experimental design specifies the placement of the sensors. This is the

setting considered in this chapter. Optimal experimental design (OED) [11, 84] refers to

the task of determining an experimental setup such that the measurements are most in-

formative about the underlying parameters. This is particularly important in situations

where experiments are costly or time-consuming, and thus only a small number of measure-

ments can be collected. In addition to the parameters estimated by the inverse problem,

the governing mathematical models often involve simplifications, approximations, or mod-
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eling assumptions, resulting in additional uncertainty. These additional uncertainties must

be taken into account in the experimental design process; failing to do so could result in

suboptimal designs.

We distinguish between two types of uncertainties: reducible and irreducible [76]. Re-

ducible uncertainties, also referred to as epistemic uncertainties, are those that can be re-

duced through parameter inference. In contrast, irreducible uncertainties, also known as

aleatoric uncertainties, are inherent to the model and are impractical or impossible to reduce

through parameter inference. In this chapter, we aim at computing optimal experimental

designs in the presence of reducible model uncertainty.

In what follows, we consider the model

y = E(m, b) + η, (2.1)

where y is a vector of measurement data, (m, b) a pair of uncertain parameter vectors or

functions, E a model that maps (m, b) to measurements, and η a random vector that models

additive measurement errors. Herein, m is the parameter of primary interest, which we seek

to infer, and b represents additional uncertain parameters. We assume m and b are elements

of infinite-dimensional Hilbert spaces. Furthermore, we assume that the uncertainty in b is

reducible. Thus, we can formulate an inverse problem to estimate both m and b. However,

when designing experiments to solve the inverse problem, our main interest is reducing the

uncertainty in m. We achieve this by finding sensor placements that minimize the posterior

uncertainty in m, while taking into account the uncertainty in b. This results in an OED

problem in which we minimize the marginal posterior uncertainty in m.

In this chapter, we focus on the case of a model that is linear in m and b and is of the

form:

E(m, b) = Fm+ Gb. (2.2)

Here, F and G are bounded linear transformations from suitably defined Hilbert spaces to

the space of measurement data. This models, for example, a linear inverse problem with

uncertain volume or boundary terms. The mathematical foundations for Bayesian inversion

and design of experiments in this context are discussed in section 2.2.

Examples for secondary uncertainties are initial conditions, boundary conditions that are

introduced into a model due to the necessity to truncate a computational domain, or unknown

forcing or source terms in a real world system that are only incorporated approximately in

the mathematical model. When designing experiments, failure to properly account for these

secondary uncertainties may result in suboptimal experimental designs. For instance, not

taking into account secondary uncertainties in the mathematical model may result in sensors

5



being located close to uncertain sources, resulting in observations that can provide biased

information on the parameter of primary interest. On the other hand, if one aims at finding

designs that are optimal for both primary and secondary uncertain parameters, the design

is likely to be suboptimal for inference of the primary parameter.

Such designs would require optimizing design criteria for primary and secondary uncertain

parameters, which would be more expensive. Furthermore, such an approach might require

introducing a weight coefficient to balance the importance of the uncertainty in the primary

and secondary parameters, further complicating matters.

Related work. In many inverse problems, one has model uncertainties in addition to

the inversion parameters. A robust parameter inversion strategy must account for such

additional model uncertainties; see [10, 22, 52–54, 64, 65] for a small sample of the literature

addressing such issues. This work is about A-optimal experimental design for Bayesian linear

inverse problems governed by partial differential equations (PDEs) with model uncertainties.

For a review of the literature on optimal design of inverse problems governed by computa-

tionally intensive models, we refer to [3]. Here, we mainly review related work on optimal

design of linear inverse problems.

The articles [5, 37, 39] present methods for large-scale ill-posed linear inverse problems.

Specifically, the present chapter builds on [5], which focuses on A-optimal experimental

design of infinite-dimensional Bayesian linear inverse problems.

Recent work also considers A-optimal design of infinite-dimensional Bayesian linear in-

verse problems with model uncertainties [56]. The key difference to the current chapter is

that [56] considers OED for inverse problems governed by models with irreducible uncertain-

ties and formulates the OED problem as one of optimization under uncertainty. In contrast,

in this work we consider OED under reducible model uncertainties and propose a formula-

tion that aims at minimizing the marginal posterior variance of the primary parameters. By

combining primary and secondary uncertainties, the problem considered in this work can

formally be written as goal-oriented OED problem, as studied in [12]. However, taking a

model uncertainty perspective and considering infinite-dimensional primary and secondary

uncertain parameters require a tailored approach that distinguishes primary and secondary

uncertainties.

Other related efforts include [28, 45, 74]. In [28], the authors present an adaptive A-

optimal design strategy for linear dynamical systems. OED for linear inverse problems with

linear equality and inequality constraints is addressed in [74]. This results in OED with an

effectively nonlinear inverse problem for which the authors propose an approach based on

Bayes risk minimization. In [45], the authors present an approach for A-optimal design of

6



infinite-dimensional Bayesian linear inverse problems using ideas from randomized subspace

iteration and reweighted `1-minimization.

Contributions. This chapter makes the following contributions to the state-of-the-art in

OED for large-scale linear inverse problems. (i) We provide a mathematical formulation

of OED under reducible model uncertainty and show how the OED problem can be refor-

mulated to take advantage of the often low dimensionality of the measurement space (see

2.3); in particular, our formulation eliminates the need for trace estimation in the discretized

parameter space. (ii) We develop a scalable computational framework for solving the class

of OED problems under study (see section 2.4). Specifically, the computational complexity

of our methods, in terms of the number of PDE solves, does not grow with the dimension of

the discretized primary and secondary parameters. (iii) We present illustrative numerical re-

sults, in context of a contaminant transport inverse problem (see section 2.5 and section 2.6)

where we seek to estimate an unknown source term, but have additional uncertainty in the

initial state. Our numerical experiments examine different aspects of our proposed frame-

work, and elucidate the importance of incorporating additional model uncertainties in the

OED problem.

The latter avoids trace estimation in the infinite-dimensional parameter space, which

becomes high-dimensional upon discretization of the Bayesian inverse problem.

Chapter overview. We begin by presenting some preliminaries on Bayesian inverse prob-

lems with additional model uncertainties in section 2.2. In section 2.3, we present a mathe-

matical framework for marginalized A-optimal design of experiments. enable efficient com-

putation of marginalized A-optimal designs. Section 2.5 describes the model inverse problem

used to illustrate our framework. Specifically, we illustrate the efficacy of the proposed strat-

egy in the context of a contaminant transport problem. In that inverse problem, we seek to

infer an uncertain source term, but also have (reducible) uncertainty in the initial state. We

present our computational results in section 2.6. Finally, we present concluding remarks in

section 2.7.

2.2 Bayesian inverse problems governed by models with

reducible uncertainties

After introducing basic notation in section 2.2.1, we present preliminaries regarding Gaus-

sian measures on Hilbert spaces in section 2.2.2. Next, we outline the setup of Bayesian

linear inverse problems with additional reducible model uncertainties in infinite-dimensions
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(section 2.2.3) as well as in discretized form (section 2.2.4). We discuss basics on optimal

design of such inverse problems in section 2.2.5.

2.2.1 Notation

Herein we consider a probability space (Ω,A,P), where Ω is a sample space, A a sigma-

algebra on Ω, and P is a probability measure. Given a Hilbert space X , we denote by

B(X ) the Borel sigma-algebra on X . A Gaussian measure on (X ,B(X )), with mean

z̄ ∈ X and covariance operator C : X → X , is denoted by N (z̄, C). We also recall that

for a random variable Z : (Ω,A,P) → (X ,B(X )), its law is a Borel measure LZ on X ,

that satisfies LZ(A) = P(Z ∈ A) for every A ∈ B(X ) [88]. Also, for a linear transformation

T : X → Y , where Y is another Hilbert space, we denote the adjoint by T ∗.

2.2.2 Marginals of Gaussian measures

Here we discuss some preliminaries regarding Gaussian measures and Gaussian random vari-

ables taking values in Hilbert spaces. First we record the following known result about the

law of a linear transformation of a Hilbert space-valued Gaussian random variable, which we

prove for completeness.

Lemma 2.2.1. Let X and Y be infinite-dimensional Hilbert spaces. Suppose Z : Ω→X is

a Gaussian random variable with law µ = N (z̄, C). Consider the random variable Y = TZ,

where T : X → Y is a bounded linear transformation. Then, Y : (Ω,A,P) → (Y ,B(Y ))

is a Gaussian random variable with law ν = N (T z̄, TCT ∗).

Proof. Using [70, Proposition 1.18], we know that the law of the random variable T :

(X ,B(X ), µ) → (Y ,B(Y )) is given by µ ◦ T−1 = N (T z̄, TCT ∗) = ν. To complete the

proof we show LY = ν. Namely, for every A ∈ B(Y ),

LY (A) = P(Y ∈ A) = P(TZ ∈ A) = P(Z ∈ T−1(A)) = µ(T−1(A)) = ν(A).

Consider a Hilbert space V = V1 × V2, where V1 and V2 are real, separable, infinite-

dimensional Hilbert spaces with inner products 〈 ·, ·〉1 and 〈 ·, ·〉2, respectively. An element

z ∈ V is of the form z = (z1, z2) with z1 ∈ V1 and z2 ∈ V2, respectively. We assume that V

is equipped with the natural inner product

⟪x, y⟫ = 〈x1, y1〉1 + 〈x2, y2〉2, x, y ∈ V .
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Let Z : (Ω,F ,P)→ (V ,B(V ), µ) be a Gaussian random variable with law µ = N (z̄, C). The

marginal laws of Z can be defined analogously to the finite-dimensional setting, as shown

next. This shows that the familiar marginalization results for Gaussian random variables

remain meaningful in infinite dimensions.

We denote realizations of Z by z = (z1, z2) = (Π1z,Π2z) ∈ V , where Π1 and Π2 denote

linear projection operators onto V1 and V2, respectively. The following result concerns the

law of ΠiZ, i = 1, 2, i.e., marginal laws of Z.

Lemma 2.2.2. Zi = ΠiZ has a Gaussian law µi with mean z̄i = Πiz̄ and covariance operator

Cii, which satisfies

〈Ciiu, v〉i =

∫
Vi

〈s− z̄i, u〉i〈s− z̄i, v〉i µi(ds), i = 1, 2, for all u, v ∈ Vi. (2.3)

Proof. By lemma 2.2.1, ΠiZ has a Gaussian law µi = N (Πiz̄, Cii) with Cii = ΠiCΠ∗i . It

remains to show that Cii satisifes eq. (2.3). Without loss of generality, we assume z̄ ≡ 0

and show the result for i = 1. By definition of the covariance operator C of µ, we have

⟪Ca, b⟫ =
∫

V
⟪z, a⟫⟪z, b⟫µ(dz), for a, b ∈ V . Therefore, for arbitrary u, v ∈ V1, we have

〈C11u, v〉1 = ⟪CΠ∗1u,Π∗1v⟫ =

∫
V

⟪z, (u, 0)⟫⟪z, (v, 0)⟫µ(dz) =

∫
V1

〈s, u〉1〈s, v〉1µ1(ds).

In the present work, V1 = L2(T ) and V2 = L2(D) with T and D bounded open sets in

Rdi with di ∈ {1, 2, 3}, for i = 1, 2. In this case, realizations of Π1Z and Π2Z are square-

integrable functions on T and D, respectively. Thus, we can also view ΠiZ as a random

field. Consider, e.g., Z1 = Π1Z. This marginalized random field has mean z̄1(x) and the

following covariance function (kernel):

c11(x, y) :=

∫
Ω

(Z1(x, ω)− z̄1(x))(Z1(y, ω)− z̄1(y))P(dω).

As expected, the (marginal) covariance operator C11 can be written as an integral operator

with kernel c11. To show this, we use eq. (2.3) and again, for simplicity, assume z̄ ≡ 0. Note
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that

〈C11u, v〉1 =

∫
V1

〈s, u〉1〈s, v〉1µ1(ds) =

∫
Ω

〈Z1(ω), u〉1〈Z1(ω), v〉1 P(dω)

=

∫
Ω

∫
T

∫
T
Z1(x, ω)Z1(y, ω)u(x)v(y) dx dy P(dω)

=

∫
T

[∫
T

(∫
Ω

Z1(x, ω)Z1(y, ω)P(dω)

)
v(y) dy

]
u(x) dx

=

∫
T

[∫
T
c11(x, y)v(y) dy

]
u(x) dx,

where we used Fubini’s theorem to change the order of the integrals. From this, we deduce

[C11v](·) =

∫
T
c11(·, y)v(y) dy.

In finite dimensions, we recover the following well-known [82] result, which we prove here

for completeness:

Lemma 2.2.3. Consider a Gaussian random vector

Z =

[
Z1

Z2

]
∼ N (z̄,C) = N

([
z̄1

z̄2

]
,

[
C11 C12

C21 C22

])
,

where Z1 and Z2 denote subsets of entries of Z and the mean and covariance matrix are

partitioned consistent with partitioning of Z. Then, the marginals of Z are Gaussian, with

Z1 ∼ N (z̄1,C11) and Z2 ∼ N (z̄2,C22).

Proof. Note that Z1 = PZ with P =
[
I 0

]
, where I is the identity matrix of dimen-

sion equal to that of Z1 and 0 the zero matrix of the same size as Z2. Thus, Z1 ∼
N
(
Pz̄,PCPT

)
= N (z̄1,C11). Showing the statement about the law of Z2 is analogous.

Remark 2.2.1. For additional details on marginals of Gaussian random vectors see [14,27,

36, 78, 82].

2.2.3 Bayesian inverse problem setup

We consider a Bayesian linear inverse problem for θ = (m, b) ∈ V = V1 × V2 and where

the forward model is of the form eq. (2.2). We assume Gaussian priors for the primary and

secondary parameters, which we denote by m and b, respectively, and for simplicity of the

presentation assume no prior correlation between m and b.1 Thus, the prior law of (m, b)

1 The presented framework can be modified to allow for prior correlations between m and b.
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is the product measure µpr = µpr,m ⊗ µpr,b, with µpr,m and µpr,b each Gaussian measures on

V1 and V2, i.e., µpr,m = N (mpr,Γpr,m) and µpr,b = N (bpr,Γpr,b) . Note that µpr = N (θpr,Γpr)

with θpr = (mpr, bpr) and Γpr = Γpr,m × Γpr,b, where

(Γpr,m × Γpr,b)(u1, u2) = (Γpr,mu1,Γpr,bu2), (u1, u2) ∈ V .

The inverse problem under study considers inference of m and b using measurement data

y ∈ Rnd and the model

y = Fm+ Gb+ η. (2.4)

The measurement noise vector η is assumed to be independent of (m, b), and we assume

a Gaussian noise model, η ∼ N (0,Γnoise). Under these assumptions, the posterior is the

Gaussian measure µypost = N (θpost,Γpost) with [62]

Γ−1
post = E∗Γ−1

noiseE + Γ−1
pr , θpost = Γpost(E∗Γ−1

noisey + Γ−1
pr θpr). (2.5)

Note that E∗ denotes the adjoint of the linear transformation E . Specifically, E∗ satisfies

E∗y = (F∗y,G∗y) ∈ V , for y ∈ Rnd .

2.2.4 The discretized problem

Letm and b be discretized versions of m and b. Recall that we consider a parameter space V

of the form V = L2(T )×L2(D). The discretized parameter space is Vn = Rnm ×Rnb ∼= Rn,

where nm and nb are the dimensions of the discretized parameters m and b, respectively,

and n = nm + nb. An element u ∈ Vn, u = (u1,u2) with u1 ∈ Rnm and u2 ∈ Rnb , can be

represented as u = [uT
1 uT

2 ]T. The discretized parameter space is endowed with the inner

product

〈u,v〉M = uT
1M1v1 + uT

2M2v2 = uTMv, u,v ∈ Vn,

with M =
[

M1 0
0 M2

]
, and where the “weight” matrices M1 and M2 are defined based on

the method used to discretize the L2-inner products on L2(T ) and L2(D), respectively;

see section 2.6 for examples.

The discretized forward operator is defined by

Eθ =
[
F G

] [m
b

]
= Fm+ Gb,

where F and G are discretizations of F and G in eq. (2.4). The respective marginal pri-

ors are N (mpr,Γpr,m) and N (bpr,Γpr,b) , and the prior covariance is Γpr =
[

Γpr,m 0
0 Γpr,b

]
.
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Using eq. (2.5), the posterior covariance operator satisfies

Γ−1
post =

[
Γ−1

pr,m + F∗Γ−1
noiseF F∗Γ−1

noiseG

G∗Γ−1
noiseF Γ−1

pr,b + G∗Γ−1
noiseG

]
.

Computing the inverse of the block matrix on the right is facilitated by the well-known

formula for the inverse of a such matrices [61, Theorem 2.1(ii)]. Specifically, we can show

that the covariance operator of the marginal posterior law of m is given by

Γpost,m =
(
Γ−1

pr,m + F∗Γ−1
noiseF− F∗Γ−1

noiseG(Γ−1
pr,b + G∗Γ−1

noiseG)−1G∗Γ−1
noiseF

)−1
. (2.6)

Note also that for

F : (Rnm , 〈·, ·〉M1
)→ (Rnd , 〈·, ·〉Rnd ) and G : (Rnb , 〈·, ·〉M2

)→ (Rnd , 〈·, ·〉Rnd ),

where 〈·, ·〉Rnd denotes the Euclidean inner product on Rnd , the respective adjoint operators

are defined by (cf. e.g., [18])

F∗ = M−1
1 FT and G∗ = M−1

2 GT. (2.7)

The optimal design approach we follow consists of minimizing the average posterior vari-

ance in m by minimizing the trace of the marginal posterior covariance operator defined in

eq. (2.6). We call the resulting OED criterion the marginalized A-optimality criterion. In sec-

tion 2.3, we derive an alternative expression for the marginal posterior covariance operator,

which is useful in applications which only allow low or moderate dimensional measurements.

2.2.5 Optimal experimental design

We formulate the sensor placement problem using the approach in [5, 39]. We assume xi,

i = 1, . . . , nd, represent a fixed set of candidate sensor locations. The goal is to select an

optimal subset of these locations. We assign a non-negative weight wi ∈ R to each xi,

i = 1, . . . , nd. An experimental design is specified by the vector w = [w1, w2, . . . , wnd
]T.

As detailed in [5,39], binary weight vectors are desirable to decide whether or not to place

a sensor in each of the candidate locations. However, solving an OED problem with binary

weights is challenging due to its combinatorial complexity. Thus, as in [5], we relax the

problem by considering weights wi ∈ [0, 1], i = 1, . . . , nd. Binary weights are obtained using

sparsifying penalty functions, as discussed further in section 2.4.2. An alternative approach

to obtaining binary weights, which can be suitable for some problems, is a greedy strategy;
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see section 2.4.3.

The vector w is introduced into the Bayesian inverse problem through the data like-

lihood [5]. We assume uncorrelated measurements; i.e., the noise covariance is diagonal,

Γnoise = diag(σ2
1, σ

2
2, . . . , σ

2
nd

), with σ2
j the noise level at the jth sensor. For w ∈ Rnd , we

define the diagonal weight matrix W = diag(w1, w2, . . . , wnd
) and the matrix Wσ as follows:

Wσ := diag
(w1

σ2
1

,
w2

σ2
2

, . . . ,
wnd
σ2
nd

)
=

nd∑
j=1

wjσ
−2
j eje

>
j , (2.8)

where ej is the jth coordinate vector in Rnd . Thew-dependent MAP estimator and posterior

covariance operator are then given by [5]

θMAP(w) = Γpost(w)
(
E∗Wσy + Γ−1

pr θpr

)
and Γpost(w) = (E∗WσE + Γ−1

pr )−1. (2.9)

Optimal experimental design (OED) is the problem of finding a design that, within

constraints on the number of sensors allowed, minimizes the posterior uncertainty in the

estimated parameters. This is done by minimizing certain design criteria that quantify

the posterior uncertainty [20, 84]. In this chapter, we use the A-optimal design criterion

which is given by tr
[
Γpost(w)

]
; this criterion quantifies the average posterior variance of the

parameter θ. Using this approach for eq. (2.9), the OED objective is given by the sum of the

average posterior variance of the primary and secondary parameters. The primary parameter

being the main focus of parameter estimation, we seek sensor placements that minimize the

uncertainty in the primary parameter, while being aware of the uncertainty in the secondary

parameters. This is done by finding designs that minimize the average posterior variance of

the primary parameters, quantified according to the corresponding marginalized posterior

distribution. We call such designs marginalized A-optimal designs, which are the subject of

section 2.3.

Note that ignoring the uncertainty in the secondary parameter and fixing b to some

nominal value b0, results in the affine forward model E0m = Fm + Gb0. In this case, the

posterior law of m is N
(
m0

MAP,Γ
0
post

)
with

m0
MAP(w) = Γ0

post(w)
(
F∗Wσ(y −Gb0) + Γ−1

pr,mmpr

)
and

Γ0
post(w) = (F∗WσF + Γ−1

pr,m)−1,
(2.10)

and an A-optimal design w is one that minimizes the classical A-optimality criterion

ψ(w) := tr
[
(F∗WσF + Γ−1

pr,m)−1
]
. (2.11)
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Notice that the optimal design does not depend on the choice of b0. More importantly, such

an optimal design is completely unaware of the uncertainty in b.

2.3 Marginalized Bayesian A-optimality

In this section, we present our formulation of the marginalized A-optimality criterion. We

first derive a reformulation of the marginalized posterior covariance that facilitates an efficient

computational procedure for computing marginalized A-optimal designs; see section 2.3.1.

Then, we present the definition of the marginalized A-optimality criterion, in section 2.3.2,

and prove its convexity. Finally, the formulation of the optimization problem for finding

marginalized A-optimal designs is discussed in section 2.3.3.

2.3.1 Alternative form of the posterior

Computing optimal designs based on the marginalized posterior covariance operator eq. (2.6)

entails computing traces of operators defined on the discretized parameter spaces. The corre-

sponding expressions also include inverses of operators of dimensions nm and nb; see eq. (2.6).

The discretized parameter dimensions are typically large and depend on the computational

grids used for discretization. In many large scale inverse problems, the dimension nd of the

measurement vector y is considerably smaller than the dimension of the discretized uncertain

parameters. Also, in our approach, this measurement dimension is fixed a priori. Here we

derive an alternative expression for the posterior covariance operator eq. (2.9) that facilitates

exploiting this problem structure. In particular, this allows reformulating the marginalized

A-optimality criterion in terms of an operator defined on the measurement space, which

can then be computed directly (see section 2.4). This is in contrast to previous works such

as [5,28,37,39,45] that use randomized trace estimation (in the discretized parameter space)

to compute the OED objective.

Theorem 2.3.1. The following relation holds.

(E∗WσE + Γ−1
pr )−1 = Γpr − ΓprE

∗(I + WσEΓprE
∗)−1WσEΓpr. (2.12)

Proof. First, we need to show that I + WσEΓprE
∗ is invertible. To do this, we show that

WσEΓprE
∗ has non-negative eigenvalues. Note that Γpr = Γ∗pr = M−1ΓT

prM. Moreover,

we have that E∗ = M−1ET. Thus, we have (EΓprE
∗)T = (E∗)TΓT

prE
T = EM−1ΓT

prME∗ =

EΓprE
∗. That is, EΓprE

∗ is symmetric; it is also clearly positive semidefinite.

To show that WσEΓprE
∗ has non-negative eigenvalues, we recall a basic result from
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linear algebra: if A and B are two square matrices, AB and BA have the same eigenvalues;

see e.g., [66, page 249]. Applying this result with A = W
1/2
σ EΓprE

∗ and B = W
1/2
σ , we

have that W
1/2
σ EΓprE

∗W
1/2
σ and WσEΓprE

∗ have the same eigenvalues. Therefore, since

W
1/2
σ EΓprE

∗W
1/2
σ is symmetric positive semidefinite, it follows that WσEΓprE

∗ has non-

negative eigenvalues. This implies that I + WσEΓprE
∗ is invertible. The relation eq. (2.12)

is now seen as follows:

(E∗WσE + Γ−1
pr )(Γpr − ΓprE

∗(I + WσEΓprE
∗)−1WσEΓpr)

= E∗WσEΓpr − E∗WσEΓprE
∗(I + WσEΓprE

∗)−1WσEΓpr + I− E∗(I + WσEΓprE
∗)−1WσEΓpr

= I + E∗WσEΓpr − E∗(WσEΓprE
∗ + I)(I + WσEΓprE

∗)−1WσEΓpr

= I + E∗WσEΓpr − E∗WσEΓpr = I.

Notice that this result is well known in the case Wσ = Γ−1
noise. The challenge here is to

account for the possibility of a singular Wσ. Note that the expression in the left hand side of

eq. (2.12) involves the inverse of an n×n matrix, where n = nm +nb, whereas the expression

on the right hand side involves the inverse of an nd×nd matrix. It is also worth noting that

the proof of theorem 2.3.1 can be simplified by the use of the Sherman–Morrison–Woodbury

formula. Above, we chose to present a direct linear algebra argument instead, for clarity.

We introduce the following notations, which will be used in the remainder of this chapter.

Q(w) := (I + WσC)−1 Wσ, where C := FΓpr,mF∗ + GΓpr,bG
∗. (2.13)

Next, we present tractable representations for the posterior mean and covariance operator

in a (discretized) Bayesian linear inverse problem, as formulated in section 2.2.4. Recall that

the primary parameter is m and the secondary parameter is b.

Theorem 2.3.2. The posterior law of

[
m

b

]
is N

([
mMAP

bMAP

]
,

[
Γpost,m(w) Γpost,mb(w)

Γ∗post,mb(w) Γpost,b(w)

])
,

where

Γpost,m(w) = Γpr,m − Γpr,mF∗Q(w)FΓpr,m,

Γpost,b(w) = Γpr,b − Γpr,bG
∗Q(w)GΓpr,b,

Γpost,mb(w) = −Γpr,mF∗Q(w)GΓpr,b,

mMAP(w) = Γpost,m(w)(F∗Wσy + Γ−1
pr,mmpr) + Γpost,mb(w)(G∗Wσy + Γ−1

pr,bbpr),

bMAP(w) = Γpost,b(w)(G∗Wσy + Γ−1
pr,bbpr) + Γ∗post,mb(w)(F∗Wσy + Γ−1

pr,mmpr).

(2.14)
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Proof. Recall that the discretized forward operator E can be represented in a block matrix

form E =
[
F G

]
. Using this and the expression for Γpost given in theorem 2.3.1, we obtain

Γpost(w) = Γpr − Γpr

[
F∗

G∗

](
I + Wσ

[
F G

]
Γpr

[
F∗

G∗

])−1

Wσ

[
F G

]
Γpr

= Γpr − Γpr

[
F∗

G∗

]
(I + Wσ(FΓpr,mF∗ + GΓpr,bG

∗))−1 Wσ

[
F G

]
Γpr

=

[
Γpr,m 0

0 Γpr,b

]
−
[
Γpr,m 0

0 Γpr,b

][
F∗

G∗

]
Q(w)

[
F G

] [Γpr,m 0

0 Γpr,b

]

=

[
Γpr,m − Γpr,mF∗Q(w)FΓpr,m −Γpr,mF∗Q(w)GΓpr,b

−Γpr,bG
∗Q(w)FΓpr,m Γpr,b − Γpr,bG

∗Q(w)GΓpr,b

]
.

(2.15)

This establishes the representation of the posterior covariance operator. The expressions for

mMAP(w) and bMAP(w) can be obtained using eq. (2.9) and eq. (2.15).

Using lemma 2.2.3 in conjunction with theorem 2.3.2, the marginal posterior laws of

m and b are given by N (mMAP(w),Γpost,m(w)) and N (bMAP(w),Γpost,b(w)), respectively.

Since we target the primary parameter m, we focus on the corresponding marginal posterior

law N (mMAP(w),Γpost,m(w)). The marginal covariance operator Γpost,m(w) will be used to

define the marginalized A-optimality criterion (see below). Also, note that the expression

for mMAP in eq. (2.14) is the sum of two terms: the first is the familiar expression for the

posterior mean if b was fixed to b = 0; the second reflects the impact of the uncertainty in

b.

2.3.2 The marginalized A-optimality criterion

The marginalized A-optimal design (mOED) criterion is given by

Φ(w) := tr(Γpost,m(w)) = tr(Γpr,m)− tr(Γpr,mF∗Q(w)FΓpr,m). (2.16)

Next, we show the convexity of the mOED objective. Before proving this, we consider

a slightly more general result. Below, SM
++ denotes the cone of self-adjoint and positive

definite operators on Rn equipped with the weighted inner product 〈·, ·〉M.

Theorem 2.3.3. Let the function f : Rns
≥0 → R be given by

f(w) = tr(RΓpost(w)R∗),
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where R is an n × n matrix and R∗ denotes its adjoint with respect to 〈·, ·〉M. Then, the

function f is convex.

Proof. Let A(w) = Γpost(w)−1, and note that A(w) ∈ SM
++ for all w ∈ Rns

≥0. First we show

the function G(A) = tr(RA−1R∗) is convex on SM
++. Consider the restriction of G to a line,

S+ tB, where S ∈ SM
++ and B is self-adjoint; we consider values of t for which S+ tB ∈ SM

++.

Let UΛU∗ be the spectral decomposition of V = S−1/2BS−1/2; here Λ is a diagonal matrix

with the eigenvalues {λi}ni=1 of V on its diagonal and U is a matrix with the corresponding

eigenvectors {ui}ni=1 as its columns. Letting L = S−1/2R∗, we note

G(S + tB) = tr(RS−1/2(I + tS−1/2BS−1/2)−1S−1/2R∗)

= tr(LL∗(I + tV)−1) =
n∑
i=1

〈
LL∗(I + tV)−1ui,ui

〉
M

=
n∑
i=1

(1 + tλi)
−1 〈L∗ui,L∗ui〉M .

Thus, G(S + tB) is a linear combination of convex functions with non-negative coefficients,

〈L∗ui,L∗ui〉M ≥ 0, and is thus convex. This shows that G is convex on SM
++. It remains to

show that f(w) = G(A(w)) is convex. Recall that A(w) = Γ−1
pr + E∗WσE; thus A is affine

in w and therefore, for α ∈ [0, 1],

f(αw + (1− α)v) = G(A(αw + (1− α)v)) = G(αA(w) + (1− α)A(v))

≤ αG(A(w)) + (1− α)G(A(v)) = αf(w) + (1− α)f(v).

Corollary 2.3.1. The function Φ : Rnd
≥0 → R, defined in eq. (2.16), is convex.

Proof. Using eq. (2.15), we can write Φ(w) as

Φ(w) = tr(RΓpost(w)R∗) with R =

[
I 0

0 0

]
.

Thus, the convexity of Φ(w) can be concluded from Proposition 2.3.3.

Consider the marginalized A-optimality criterion Φ(w) in eq. (2.16). Since the prior

covariance operator is independent of w, minimizing Φ(w) is equivalent to minimizing

Ψ(w) := −tr(FΓ2
pr,mF∗Q(w)). (2.17)

This is the objective function we use in finding a marginalized A-optimal design. Henceforth,

we refer to this objective function as the mOED objective or the mOED criterion.
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2.3.3 Computing optimal designs

Here we describe the optimization problem for computing mOEDs. The ultimate goal is

to find a binary optimal design vector that minimizes the mOED objective Ψ, defined

in eq. (2.17). That is, letting X = {0, 1}nd , we would like to solve

min
w∈X

Ψ(w), s.t.

nd∑
i=1

wi = N, (2.18)

where N is a desired number of sensors. However, as mentioned above, solving such a

binary optimization problem can be intractable due to its combinatorial complexity. One

possible way to find an approximate solution to (2.18) is via a greedy procedure, i.e., place

sensors one-by-one. This method does not require derivatives of the objective with respect to

weights. Generally, greedy approaches result in suboptimal solutions, which, in practice, are

often quite good. Computational details of this approach are discussed in section 2.4.3. We

also compare, in section 2.6.1, the performance of the greedy approach against the approach

described next.

As an alternative to the greedy approach, one can consider a relaxation of the problem

and allow for design weights in the interval [0, 1]. Binary weights are then obtained using

sparsifying penalty functions. Specifically, we consider an optimization problem of the form

min
w∈W

Ψ(w) + γP (w), (2.19)

where W = [0, 1]nd , Ψ(w) is the mOED objective, γ > 0 is a penalty parameter, and P (w)

is a penalty function. Minimization of (2.19) usually requires gradients of the objective.

Key computational aspects are discussed in the next section where we outline computational

methods for tackling the mOED problem.

2.4 Computational methods

In this section, we present a computational framework for computing mOEDs.

2.4.1 Efficient computation of mOED objective and its gradient

Consider the objective function Ψ(w) defined in eq. (2.17). We note that the argument of

the trace in eq. (2.17) is an operator defined on Rnd×nd , where nd is the number of candidate

sensor locations (i.e., the dimension of the measurement vector). This objective function can
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be computed as follows:

Ψ(w) = −
nd∑
i=1

ei
TDQ(w)ei = −

nd∑
i=1

eTi Dqi, where D = FΓ2
pr,mF∗, (2.20)

qi = Q(w)ei with Q(w) given in eq. (2.13), and ei is the ith standard basis vector in Rnd ,

i = 1, . . . , nd. Note that

qi = (I + WσC)−1Wσei = σ−2
i wi(I + WσC)−1ei. (2.21)

To derive the expression for the gradient of Ψ, we first need the following derivative:

∂

∂wj
Q(w) = −σ−2

j (I + WσC)−1 (eje
T
j )C (I + WσC)−1 Wσ + σ−2

j (I + WσC)−1 eje
T
j .

Thus,

∂Ψ

∂wj
= − ∂

∂wj
tr(Q(w)D)

= tr
[
σ−2
j (I + WσC)−1 eje

T
jC (I + WσC)−1 WσD

]
− tr

[
σ−2
j (I + WσC)−1 eje

T
jD
]

= σ−2
j e

T
jC(I + WσC)−1WσD(I + WσC)−1ej − σ−2

j e
T
jD(I + WσC)−1ej

=

nd∑
i=1

wiσ
−2
i σ−2

j e
T
jC(I + WσC)−1eie

T
i D(I + WσC)−1ej − σ−2

j e
T
jD(I + WσC)−1ej,

where we have used the cyclic property of the trace and the definition of Wσ in eq. (2.8).

Letting yi = (I + WσC)−1ei, i = 1, . . . , nd, and substituting in the above expression, leads

to
∂Ψ

∂wj
=

nd∑
i=1

wiσ
−2
i σ−2

j (eTjCyi)e
T
i Dyj − σ−2

j e
T
jDyj, j = 1, . . . , nd. (2.22)

Note that the vectors qi in eq. (2.21) and vectors yi in the definition of the gradient are

related according to qi = wiσ
−2
i yi, i = 1, . . . , nd.

The matrices C and D in eqs. (2.21) and (2.22) are of size nd × nd. As mentioned

previously, in many cases, the measurement dimension nd is considerably smaller than the

dimension of the discretized primary and secondary parameters. This case typically arises

in inverse problems governed by PDEs, where the dimension of the discretized parameters

grow upon grid refinements, while the measurement dimension nd is fixed a priori.

The matrices C and D can be built in a precomputation step, as outlined in algorithm 1.

The computational cost to build C and D is 3nd forward and 2nd adjoint PDE solves.

Once the matrices C and D are computed, the OED objective and gradient evaluation can
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Algorithm 1 Computing matrices C in eq. (2.13) and D in eq. (2.20) needed for mOED ob-
jective and gradient evaluation.

1: for i = 1 to nd do
2: Compute ai = Γpr,mF∗ei
3: Compute di = FΓpr,mai {columns of D = FΓ2

pr,mF∗}
4: Compute ci = Fai + GΓpr,bG

∗ei {columns of C = FΓpr,mF∗ + GΓpr,bG
∗}

5: end for
6: Build C = [c1 · · · cnd

] and D = [d1 · · · dnd
]

be performed without further PDE solves and require only linear algebra operations; see

algorithm 2. The cost of evaluating the objective function is dominated by the cost of steps

1–3, which amount to computing Y = (I + WσC)−1; this can be done in O(n3
d) arithmetic

operations, by precomputing an LU factorization of I+WσC and then performing triangular

solves to compute columns of Y. We also need the matrix-matrix product DY (see step

5 of algorithm 2), which requires an additional O(n3
d) operations. The additional effort in

computing the gradient is dominated by one matrix-matrix product, CY, amounting to

O(n3
d) arithmetic operations.

Algorithm 2 Computing Ψ(w) and its gradient ∇Ψ(w).

Input: Design vector w
Output: Ψ = Ψ(w) and ∇Ψ = ∇Ψ(w)

1: /* evaluation of the objective function */

2: for i = 1 to nd do
3: Solve the system (I + WσC)yi = ei
4: end for

5: Compute Ψ = −
nd∑
i=1

wiσ
−2
i e

T
i DYei {Y = [y1 y2 · · · ynd

]}

6: /* evaluation of the gradient */

7: for j = 1 to nd do

8: Compute
∂Ψ

∂wj
=

nd∑
i=1

wiσ
−2
i σ−2

j (eTjCYei)(e
T
i DYej)− σ−2

j e
T
jDYej

9: end for
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2.4.2 Sparsity control

Here we discuss several options for choosing the penalty function P (w) in eq. (2.19). A

straightforward choice for P (w) is the `1-norm of w; see e.g., [37, 39]. As is well-known,

the `1-penalty promotes sparsity, but not necessarily a binary structure, in the computed

design vectors. Another option is to solve a sequence of optimization problems where penalty

functions approximating `0-“norm” (the number of nonzero elements in a vector) are used.

An example is the so-called regularized `0-sparsification approach proposed in [5]; in this

approach, which we use in this chapter, a continuation approach is used, and a sequence

of optimization problems, with non-convex penalty functions approaching the `0-norm, are

solved. A related approach is the use of reweighted `1-minimization, as done in [45]. Solving

optimization problems with continuous weights, combined with a suitable penalty method,

enables the use of powerful gradient-based optimization algorithms to explore the set of ad-

missible designs. The effectiveness of such approaches in obtaining optimal sensor placements

has been demonstrated in a number of previous works; see e.g., [5, 37, 39,45].

2.4.3 Greedy sensor placement

An alternative approach for finding sparse mOEDs is to use a greedy strategy. Greedy

approaches have been used successfully in many sensor placement applications to obtain

designs that, while suboptimal, provide near optimal performance; see e.g., [21,51,57,75]. In a

greedy approach, we place sensors one at a time: in each step, we select a sensor that provides

the largest decrease in the design criterion. A greedy approach can be attractive due to its

simplicity and the fact that it does not require the gradient of the design criterion. However,

the computational complexity of greedy sensor placement, in terms of function evaluations,

scales with the number of candidate sensor locations and the number of the sensors in the

optimal design. Note that the computational cost, in terms of function evaluations, of finding

a greedy sensor placement (in its most basic form) with K sensors is

C(K,nd) = Knd − (K − 1)K/2. (2.23)

2.5 Model problem setup

To illustrate our approach for computing optimal designs under reducible uncertainty, we

consider a linear inverse problem governed by a time-dependent advection-diffusion equation

with two sources of uncertainty: the parameter of primary interest is a time-dependent

scalar-valued function m = m(t), which models the time amplitude of a source entering
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on the right hand side of the equation. The second uncertain parameter is the spatially

distributed initial condition b = b(x). Specifically, we consider:

ut − κ∆u+ v · ∇u = δ(x)m(t) in D × T , (2.24a)

u(·, 0) = b(x) in D, (2.24b)

κ∇u · n = 0 on ∂D × T . (2.24c)

Here, D is a bounded open set in R2, the time interval T = (0, T ), where T > 0 is a final time,

κ > 0 is the diffusion coefficient, and v is a given velocity field. Note that the solution u(x, t),

which can be interpreted as concentration, depends affinely on m and b. In our numerical

experiments, κ = 0.001 and D is a unit square with two cutouts as shown in fig. 2.1 (left). If

(2.24a) models the flow of a contaminant in a region, the cutouts could represent buildings,

for instance. The velocity field v (shown in fig. 2.1) is obtained by solving Navier-Stokes

equations with no-outflow boundary conditions and non-zero tangential boundary conditions

as in [5]. The function δ in the source term is given by a mollified delta-function:

δ(x) =

(
1

2πL
e−

1
2L2 ‖x−x0‖2

)
, (2.25)

where the “correlation length” L is 0.05 in our experiments, and x0 = (0.5, 0.35) as indicated

by the red dot in fig. 2.1 (left).

2.5.1 Parameter-to-observable map

The parameter-to-observable map maps the time evolution of the right hand side amplitude,

m ∈ L2(T ) and the initial condition b ∈ L2(D) to point measurements of the solution of the

advection-diffusion equation eq. (2.24). To write the parameter-to-observable map in the

form eq. (2.2), we define the continuous linear operators S1 and S2 as follows: S1 maps m

to the PDE solution u, with b = 0, and S2 maps b to the PDE solution u, with m = 0.

Then, the solution to the initial-boundary value problem eq. (2.24) can be written as

u = S1m+S2b; see [83, p.152]. Next, let B be a linear observation operator that extracts the

values of u(x, t) on a set of sensor locations {x1,x2, . . . ,xnd
} ∈ D, and takes an average of

u over the time interval [0.95, 0.99]. Then F = BS1 and G = BS2 map the primary inference

parameter m and the additional uncertain parameter b to measurement y ∈ Rnd :

F : m(t)
S17−→ u(x, t)

B7−→ y, G : b(x)
S27−→ u(x, t)

B7−→ y. (2.26)

The corresponding discrete parameter-to-observable maps F and G are obtained through
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Figure 2.1: Left: Sketch of domain D and velocity field v in (2.24). The red dot indicates
the location x0 = (0.5, 0.35) where the source term (2.25) is centered. Right: the “truth”
source term m and five samples from the prior distribution of m shown in cyan and various
shades of orange, respectively.

discretization using, for instance, finite elements.

Computations of derivatives of an objective that involves the parameter-to-observable

map requires the adjoint operators F∗ and G∗. These can be derived using the formal

Lagrangian method, resulting in the following adjoint equations [83]. Given a vector of

observations y ∈ Rnd , we first solve the adjoint equation (see [1, 5]) for the adjoint variable

p = p(x, t)

−pt −∇ · (pv)− κ∆p = −B∗y in D × T , (2.27a)

p(·, T ) = 0 in D, (2.27b)

(vp+ κ∇p) · n = 0 on ∂D × T , (2.27c)

and obtain the action of the adjoint operators as F∗y = −
∫
D f(x)p(x, ·)dx and G∗y =

−p(·, 0).

2.5.2 Prior laws of m and b

To complete the definition of the Bayesian inverse problem, we specify the prior laws for m

and b. We assume both to be Gaussian random fields, and thus it is sufficient to specify the

mean and covariance operator. For the primary parameter m, which is a function of time

only, we choose the mean to be the constant function mpr ≡ 65, and specify the covariance

23



operator Γpr,m according to

[Γpr,mz](t) =

∫
T
c(s, t)z(t) dt, z ∈ L2(T ),

where we chose the Matérn-3/2 covariance kernel

c(s, t) = σ2

(
1 +

√
3|s− t|
`

)
exp

(
−
√

3|s− t|
`

)
. (2.28)

This covariance function ensures that draws from the prior law of m are (almost surely)

continuously differentiable; see, e.g., [40, 58, 87]. In our numerical experiments, we use the

parameters σ = 80 and ` = 0.17 in (2.28). Samples from the resulting distribution are shown

in fig. 2.1 (right).

The realizations of the secondary parameter b are functions defined over the spatial

domain D. For the distribution of b we choose a Gaussian with mean bpr ≡ 50, and a

Laplacian-like covariance operator of the form (−ε∆ + αI)−2 [62], with ε = 4.5 × 10−3

and α = 2.2 × 10−1. We equip the Laplace operator with homogeneous Robin boundary

conditions with a constant coefficient. We do this to mitigate undesired boundary effects

that can arise when PDE operators are used to define covariance operators [23, 73].

2.5.3 Discretization

We discretize the forward problem using linear finite elements on triangular meshes in space

and use the implicit Euler method in time. This guides the discretization of the primary

and secondary uncertainties m and b. Specifically, the discretized uncertain source terms is

the vector m whose entries are the values of m at the time-steps used by the forward solver.

We discretize the L2(T ) inner product using quadrature. That is, for f, g ∈ L2(T ),

〈f, g〉1 =

∫
T
f(t)g(t) dt ≈

nm∑
j=1

νjf(tj)g(tj) = fTM1g =: 〈f , g〉M1
,

where {νj}nm
j=1 are quadrature weights, f and g are vectors (in Rnm) of function values at

the time-steps, and M1 = diag(ν1, ν2, . . . , νnm). In the present work, we use the composite

trapezoid rule to discretize the L2(T ) inner product.

The uncertain initial state b is discretized using finite element Lagrange nodal basis

functions, ϕ1(x), . . . , ϕnb
(x). This leads to the discretization b(x) ≈ bh(x) =

∑nb

j=1 biϕi(x).

The discretized initial state is given by the vector b of finite-element coefficients. This finite

element method is also used to discretize the PDE operator (−ε∆ +αI), which is the square

24



root of the covariance operator of the distribution of b. The covariance operator is thus

defined as the square of the finite element operator, corresponding to a mixed discretization

of the 4th-order covariance operator [18]. Also, note that the discretized L2(D)-inner product

is given by 〈u,v〉M2
= uTM2v, for u,v ∈ Rnb , where M2 is the finite-element mass matrix.

In the numerical experiments below, we use a discretization with nm = 257 time steps

and nb = 1,529 spatial degrees of freedom. The “truth” primary parameter m is shown

in fig. 2.1 (right), and the “truth” secondary parameter b is given by a random draw from

the prior law of b, depicted in fig. 2.2 (top left). For computing solutions for the inverse

problem, we synthesize data using “truth” parameters b and m, and add Gaussian noise

with standard deviation σnoise = 0.25 to each data point. That is, we assume Γnoise = σ2
noiseI,

with σnoise = 0.25. Notice that the sensor measurements obtained from the model range

approximately in the interval [51, 54]; see e.g., fig. 2.2 (top right). Thus, a noise standard

deviation of 0.25 is significant compared to the variations of model output at the sensors.

2.5.4 Illustrating the impact of the secondary uncertainty

To depict the impact of the secondary uncertainty on the solution of the forward problem,

in fig. 2.2 we show snapshots of the solution of the state equation. Here, we use two random

draws from the prior distribution of b, i.e., the secondary uncertainty, as initial conditions.

Recall that the initial condition used for the first row is also used as “truth” secondary

parameter. For the primary uncertainty, the time evolution of the right hand side source, the

“truth” parameter (see fig. 2.1 (right)) is used. Note that even at the final snapshot, around

which measurements are taken for inference, distinct differences caused by the different

initial conditions are visible. This indicates that the uncertainty in the initial state cannot

be ignored.
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Figure 2.2: Shown in each row are snapshots of the concentration at times t = 0, 0.4, 0.6, 1
(from left to right). For the primary parameter m entering on the right hand side of
eq. (2.24a), the “truth” parameter shown in fig. 2.1 (right) is used. For the secondary
parameter b, i.e., the initial condition, two different realizations from the distribution of b
are used. Note that a different colorbar is used for the initial conditions than for the other
snapshots.

2.6 Computational results

In this section, we present numerical results for the model problem described in section 2.5.

In section 2.6.1, we compare the performance of regularized `0-sparsification and greedy

approaches for computing mOEDs. Then, in sections 2.6.2 and 2.6.3, we demonstrate the

importance of taking the additional model uncertainty into account for computing sensor

placements.

2.6.1 Comparison of sparsification algorithms

Here, we compare the two different approaches to obtain binary mOEDs discussed in sec-

tion 2.4. As discussed in section 2.4.2, when using `0-sparsification we solve a sequence of

optimization problems with non-convex penalty functions using a gradient-based optimiza-

tion algorithm. Here, we use MATLAB’s interior point quasi-Newton solver provided by the

fmincon function, which we supply with routines implementing the mOED objective and its

gradient. In contrast, the greedy approach only requires the mOED objective. As can be
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seen in fig. 2.3 (left), the greedy and the `0-sparsified designs perform similary. While in this

figure the `0-sparsification finds slightly lower objective values, we have also observed tests

where the objective values are identical or the greedy approach is slightly better.

It is also important to consider the computational cost of these algorithms. We do

so by recording the number of mOED objective function evaluations required by the two

algorithms in fig. 2.3 (right). Note that the cost of greedy sensor placement scales with the

number of sensors in the optimal design, see also eq. (2.23). The cost of the `0-sparsification,

in terms of function evaluations, remains nearly constant. Of course, the regularized `0-

sparsification method requires gradients additionally to objective evaluations. However, as

discussed in section 2.4.1, the additional cost of computing the gradient is small compared to

the cost of mOED objective function evaluation. Therefore, the number of objective function

evaluations is a reasonable measure to compare the cost of the two algorithms.
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Figure 2.3: Left: mOED objective values (y-axis) plotted against number of sensors (x-axis)
for the greedy (red dots) and the `0-sparsification approaches (blue dots). Right: Number
of mOED objective evaluations required to converge for computing greedy (red) and `0-
sparsified (blue) designs.

In the remainder of this section, where we compare the performance of designs obtained

with and without marginalization, we use the greedy approach to find optimal designs.

This is motivated by the fact that the greedy approach facilitates computing (near) optimal

designs with a desired number of sensors, while the `0-sparsification approach only provides

indirect control on the number of sensors by changing the penalty parameter γ.
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2.6.2 Studying the posterior uncertainty

Next, we compare the performance of designs obtained by performing mOED against those

using OED with no marginalization in terms of the resulting marginal posterior uncertainty.

Note that designs obtained without marginalization, which we simply refer to as OED, mini-

mize the classical A-optimality criterion ψ in eq. (2.11) whereas designs with marginalization

minimize the mOED criterion in eq. (2.17).
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Figure 2.4: Shown are A-optimal designs with 20 sensors (filled squares) using mOED (left)
and OED without marginalization (center), i.e., the design obtained with OED neglecting
secondary uncertainties. Inactive sensors are shown as empty squares. On the right, the
marginal posterior standard deviation field (i.e., square root of the diagonal of Γpost,m(w)
in eq. (2.14)) is shown for the two designs.

Figure 2.4 shows two designs with 20 sensors, one taking into account the secondary

uncertainty through marginalization, and one assuming that there is no secondary uncer-

tainty. On the right panel of fig. 2.4, the pointwise standard deviation of the marginalized

posterior distribution are shown for the two sensor placements. The following conclusions

can be drawn. First, note that mOED is superior, with respect to the marginalized posterior

variance, to the design computed without taking the secondary uncertainty into account. Of

course, this is by construction of mOEDs. However, the difference is significant and exists for

all times t ∈ T . Second, since measurements are taken around the final time, the uncertainty

is more reduced for later times. However, close to the final time T , the uncertainty increases

again as there is not enough time for the concentration field to propagate to and be picked

up by sensors.

28



2.6.3 Study of MAP points

Next, we compare MAP points computed with the mOED and OED designs shown in fig. 2.4.

Note that the MAP point for mOED does not depend on a realization of the secondary pa-

rameter (see eq. (2.14)), while it does for OED without marginalization (see eq. (2.10)). In

fig. 2.5, we show the MAP point for the mOED, which recovers features from the “truth”

parameter but resorts to the prior mean when little information can be gathered from ob-

servations.

As mentioned above, we need a realization of the secondary parameter b when computing

the MAP point using the classical OED. If we knew the “truth” b, the additional uncertainty

would vanish and the problem reduces to an inverse (and OED) problem with fully specified

model as, e.g., in [5]. The corresponding MAP point, shown in blue in fig. 2.5, slightly

improved compared to the MAP point from the mOED formulation. However, in general

the “truth” secondary parameter is unknown, and we only know its distribution. If random

draws from the secondary parameter distribution are used in the MAP computation, the

model error is underestimated and the corresponding MAP points may be poor. This can

be seen in fig. 2.5, where MAP points obtained with random draws from the distribution of

b are shown in red.
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Figure 2.5: Comparison of MAP estimates computed with mOED and OED without
marginalization. Shown are the MAP estimates computed using sensor placements obtained
via mOED (black solid line), OED with the secondary parameter b set to the “truth” (blue
solid line), and OED with b taken as realizations from corresponding prior distribution (red
dotted lines).

The above discussed difference between mOED and OED without marginalization is

summarized in fig. 2.6. On the left, we plot the relative L2(T )-error between the MAP point
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and the “truth” primary parameter versus the mOED objective. Using OED with random

draws for b result in MAP points that tend to be further from the “truth” parameter than

the mOED MAP point. If the “truth” secondary parameter is used in the computation of the

MAP point using OED, the reconstruction is slightly better than the result of mOED. It can

also be seen that the mOED objective is independent from draws of the secondary parameter,

as also discussed above. The results in fig. 2.6 (left) depend on the noise realizations in the

synthetic data. In fig. 2.6 (right), we show the probability density function of the error

between the MAP point and the “truth” primary parameter for random observation noise.

As can be seen, it is slightly more likely to obtain a better MAP point when using OED

with the “truth” parameter than with mOED. However, it can clearly be seen that mOED

MAP points significantly outperform OED MAP points with random realizations from the

prior distribution of b.
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Figure 2.6: Left: Relative error in the MAP estimate (x-axis) and reduction in the objective
(y-axis) for mOED (black dot), OED with the secondary parameter b set to the “truth” (blue
dot), and OED with b taken as different realizations of b (red dots). Right: The distribution
of the errors with various realizations of the noise in the data. Note that the x-axis is cut
at 2 due to the long tail of the error distribution corresponding to OED with b taken as
different realizations of b. In this study, we used 200 samples of the secondary parameter,
and 500 samples of measurement noise.

2.7 Conclusion

In this chapter, we have considered linear inverse problems with reducible model uncertainty

and presented a mathematical and computational framework for computing marginalized

A-optimal sensors placements. Our results show that it is important to take into account
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additional sources of model uncertainty for the optimal design and the inverse problem in

general. The designs computed by minimizing the marginalized A-optimality criterion are

superior compared to classical A-optimal designs, in terms of the quality of the estimated

primary parameters: the marginalized optimal designs result in optimal uncertainty reduc-

tion as well as more accurate MAP estimates. The overall conclusions support the claim

made in this chapter’s title, namely that in the context of design of inverse problems, it

is good to know what you don’t know. This information should be used when computing

optimal designs.

An important direction for future work is design of nonlinear inverse problems under

model uncertainty. A related direction is a sensitivity analysis framework for detecting

sources of model uncertainty that are most important to the solution of the inverse prob-

lem. This would enable incorporating only the most important sources of model uncertainty

in the OED problem, hence reducing the computational complexity of the problem. For

deterministic inverse problems, first steps in this direction are presented in chapter 3.
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CHAPTER

3

HYPER-DIFFERENTIAL SENSITIVITY

ANALYSIS FOR DETERMINISTIC

INVERSE PROBLEMS

The work presented in this chapter is based upon a collaborative publication [80]. The

author of this dissertation is listed as the first author of that paper and was responsible for

the majority of the writing and results therein.

3.1 Introduction

Rapid advances in numerical algorithms and computing infrastructure have made it feasible

to simulate complex multiphysics systems governed by systems of partial differential equa-

tions (PDEs) on high resolution computational grids. Inverse problems arise when some

model parameters cannot be determined directly, but rather are estimated using measure-

ments of the model state variables. The states may correspond to different physical quanti-

ties with varying data volumes and measurement fidelities, and measurements are typically

sparse and noisy due to budget and hardware limitations.

Inverse problems governed by systems with complex physics involve various sources of
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uncertainty. This includes the uncertainty in the parameters being estimated, uncertainty in

measurement data, and uncertainty in parameters in governing PDEs that are not the focus

of the parameter estimation, but are needed for a full model specification. For clarity, we refer

to the model parameters being estimated as inversion parameters and to the other model

parameters besides the inversion parameter as auxiliary parameters. Additionally, we refer

to the parameters specifying the experimental conditions, such as types of measurements

or measurement noise levels, as experimental parameters. The auxiliary parameters and the

experimental parameters are needed for the formulation of the inverse problem. We call the

combination of auxiliary and experimental parameters the complementary parameters. This

chapter is about understanding and quantifying the impact and relative importance of the

perturbations in complementary parameters to the solution of an inverse problem.

For illustration, let us consider a subsurface flow problem, in which we seek to invert for

the log-permeability field using a tracer test. The forward model we consider is given by the

mass conservation, constrained by Darcy’s law, resulting in a linear elliptic PDE governing

the pressure, and a time-dependent PDE governing diffusion and transport of the tracer.

The inversion parameter here is the log-permeability field. The auxiliary parameters include

the source terms (e.g., the tracer injection), boundary conditions, and coefficients (e.g., the

diffusion coefficient) in the governing PDE system. The measurements correspond to the

two states: pressure and concentration. The experimental parameters correspond to noise

in these measurements.

We propose a general framework to assess the relative importance of complementary

parameters in determining the solution of the inverse problem. To do so, we build upon

previous work in [43], and a series of related articles [16, 19, 29–34], that introduced hyper-

differential sensitivity analysis (HDSA) for PDE-constrained optimization. HDSA computes

the Fréchet derivative of the solution of the inverse problem with respect to complementary

parameters. We use this derivative to define hyper-differential sensitivities of the inverse

problem solution with respect to the complementary parameters. These sensitivities de-

scribe the change in the solution of the inverse problem with respect to perturbations of

a given parameter. We also define generalized sensitivity indices that determine maximum

(worst case) changes in the inverse problem solution with respect to perturbations in a set

of complementary parameters.

By providing sensitivity information on the experimental parameters, our framework

provides vital information for effective data collection. For instance, by discovering the

sensor measurements the inverse problem solution is most sensitive to, we can identify the

sensors where higher fidelity measurements are desired. This can be achieved by designing

sensors with improved error tolerances, or in problems where this is possible, repeating
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these sensor measurements to reduce the associated measurement noise. Furthermore, we

demonstrate that HDSA can be used to compare the relative importance of different types

of sensors. As such, this process complements experimental design which is used to design

optimal sensor placement for data measurements. By calibrating the measurement fidelities

in a given experimental design (e.g., a sensor network), one can make the most out of the

measurements for effective parameter estimation. Therefore, the proposed framework can be

combined with an optimal experimental design (OED) problem [11,67,84] to: (i) identify an

optimal set of experiments; and (ii) calibrate the fidelities of the experiments or further prune

the specified set of experiments, based on the sensitivity analysis results. HDSA provides a

systematic framework to distinguish between measurements obtained from different sensor

types and understand the relative importance of spatial and temporal sensor distributions.

While HDSA is not intended to replace OED, it augments it by providing unique insights

into the influence of various sensors in large-scale multiphysics applications.

Another important application of the proposed framework is guiding OED under uncer-

tainty. In practical applications, an OED problem must be found in such a way that it is

robust with respect to uncertainty in auxiliary model parameters; see e.g., [56]. Perform-

ing sensitivity analysis of the inverse problem solution with respect to auxiliary parameters

informs the sources of model uncertainty one needs to focus on when solving an OED un-

der uncertainty problem. By focusing on sources of model uncertainty the inverse problem

solution is most sensitive to, our framework can significantly reduce the complexity of an

OED under uncertainty problem. Furthermore, for applications in which multiple experi-

ments may be designed to target calibration of different auxiliary parameters, the proposed

sensitivities may identify where experimental efforts should be invested to calibrate the most

influential parameters through a sequence of different experiments.

Additionally, in complex physics systems, typically the influence of various sources of

model uncertainty on the solution behavior is not clear a priori. The proposed sensitivity

analysis framework provides important insight about the governing model.

In contrast to traditional sensitivity analysis, where one quantifies the contribution of

auxiliary parameters to variability in model output, our proposed framework provides a goal

oriented sensitivity analysis approach by quantifying the impact of perturbations in auxiliary

parameters on estimation of unknown model parameters. This enables determining which

auxiliary parameters need to be specified more accurately. In fact, it might be that some

auxiliary parameters should be estimated along with the inversion parameters, if possible.

Lastly, these sensitivities provide a computationally efficient low order approach to un-

certainty quantification for large-scale systems. For instance, if the solution of the inverse

problem must be determined in real time to inform critical decision making, coupling the
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estimated solution with a notion of uncertainty contributed by errors in the complementary

parameters provides real time uncertainty estimation which is critical for making informed

decisions.

This chapter considers local sensitivity analysis for deterministic variational inverse prob-

lems. We consider connections to statistical formulations and global sensitivity analysis in

Section 3.7. The contributions of this chapter are as follows:

• We define HDSA with respect to experimental parameters. This provides a systematic

approach to compare different sensor types and reveals information about the relative

importance of distributed (spatially and temporally) sensor measurements, neither of

which can be easily determined by traditional OED.

• Theoretical results are presented for linear inverse problems to provide intuition and

demonstrate properties of the sensitivities with respect to experimental parameters.

• We build upon previous work [43] to develop a more comprehensive mathematical

framework for HDSA of nonlinear multiphysics inverse problems. This is done, in

particular, by maturing the idea of generalized sensitivities as a tool for systematically

comparing the importance of auxiliary parameters (which may be of differing physical

characteristics and scales) alongside the novel development of HDSA for experimental

parameters.

• Comprehensive numerical results, in a large-scale subsurface flow application, demon-

strate the interpretation and use of HDSA for nonlinear multiphysics inverse problems.

The remainder of the chapter is organized as follows. Section 3.2 outlines the basic prin-

ciples of inverse problems and design of experiments. Section 3.3 provides the mathematical

formulation of hyper-differential sensitivities and their interpretation for inverse problems

constrained by multiphysics. The computational considerations, implementation, and cost

analysis of HDSA is detailed in Section 3.4. Section 3.5 presents a large scale, multiphysics

model problem, which is then used to construct sensitivity results that are detailed in Sec-

tion 3.6. Concluding remarks and notes on potential areas of future work are highlighted in

Section 3.7.

3.2 Preliminaries

In this section, we recall background material on inverse problems and design of experiments,

which are augmented by the proposed sensitivity analysis in subsequent sections.
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3.2.1 Inverse Problems

In this chapter, we are concerned with ill-posed inverse problems governed by PDEs. Specif-

ically, we seek to estimate a parameter m, henceforth called the inversion parameter, using

data y and a model of the form

F (m) + η = y.

Here F is the parameter-to-observable map and η represents measurement noise. Evaluating

F (m) requires solving the governing PDEs and extracting the solution at measurement

points.

Due to ill-posedness and availability of only sparse noisy measurements, we are led to vari-

ational formulations with suitable regularizations. Specifically, we consider an optimization

problem of the following form:

min
u,m

J(u,m, θe)

s.t. v(u,m, θa) = 0

u ∈ U,m ∈M.

(3.1)

Here, U is an infinite dimensional reflexive Banach space containing the state,M is a possibly

infinite dimensional Hilbert space, J is a regularized data misfit cost functional (we make this

precise below), and v represents the constraining PDE system. The experimental parameters,

θe, represent uncertainty in the data, while θa are the auxiliary parameters contained in the

system of PDEs. Generally, solving this optimization problem produces parameter estimates

that are consistent with measurement data and the model. For the remainder of the chapter,

we refer to (3.1) as the inverse problem.

We mention that an alternative approach to address ill-posed inverse problems is to

consider a Bayesian formulation [62]. In this approach, the inversion parameter m is modeled

as a random variable, and the goal is to find a distribution law for m that is consistent

with measurement data, the model, and a prior distribution of m that models our prior

knowledge/beliefs about m. In the current chapter, we restrict our attention to deterministic

formulation of inverse problems, as described above.

We assume that the PDE represented by v is uniquely solvable for any admissible m

and θa. This allows us to formulate (3.1) in reduced space [2]. Letting A(m, θa) denote

the solution operator for the PDE, i.e. v(A(m, θa),m, θa) = 0 for all m and θa, we define

the reduced objective function Ĵ(m, θe, θa) = J(A(m, θa),m, θe). In this chapter we focus on

objective functions defined as a linear combination of data misfit and regularization, yielding
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a general form for the inverse problem

min
m∈M

Ĵ(m, θe, θa) :=
1

2
‖QA(m, θa)− y(θe)‖2 + αR(m), (3.2)

where y(θe) is a vector of measured data (with uncertainty parameterized by θe), Q an

observation operator that maps the PDE solution to a set of observation locations, R is

a regularization operator, and α is a regularization parameter. Traditional approaches to

solving inverse problems fix θ = (θe, θa) to a best estimate and solve (3.2) by optimizing over

m. Analyzing the influence of θ on the solution of (3.2) is the focus of this chapter.

Besides ill-posedness, such inverse problems are difficult to solve for a number of other

reasons. These include having noisy observations, expensive forward PDE solves, tuning

multiple experimental and modeling parameters, and optimization in infinite (or large fi-

nite) dimensional spaces. Common optimization methods used to tackle such problems

include quasi-Newton, inexact Newton-CG, Gauss-Newton, and truncated CG trust region

solvers. These optimization problems often require efficient gradient and Hessian compu-

tation through adjoint state methods, and repeated large scale linear system solves with

Krylov iterative methods. We direct the interested reader to a number of classical inverse

problem references [17, 24,25,50,53,81,86].

3.2.2 Design of Experiments

An important aspect of solving an inverse problem is the collection of informative measure-

ment data, which is guided by design of experiments. In our target inversion, this generally

corresponds to specifying the locations of the sensors used to collect measurement data and

is known as an optimal experimental design (OED) problem [11, 67, 84]. OED for inverse

problems governed by differential equations has received significant attention in recent years;

see e.g., [5,6,8,13,15,37,38,46,47,55,59,60]. An OED problem is typically formulated with

a statistical formulation of the inverse problem in mind. An optimal design is one that

optimizes the statistical quality of the estimated parameters. Examples include maximizing

the expected information gain, leading to a D-optimal design problem, or minimization of

average posterior variance, leading to a Bayesian A-optimal design problem.

OED is a powerful tool that is used on a wide variety of problems. It is also a very chal-

lenging problem both from mathematical and computational point of view, especially when

it comes to nonlinear inverse problems governed by PDEs; see e.g., [6,46]. The developments

in this chapter are closely related to OED: while we do not directly solve an OED problem,

we address the following relevant questions: (i) which measurements is the solution of an

inverse problem most sensitive to? And (ii) which measurement types are most influential
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to the solution of the inverse problem? The latter is tied to important questions typically

not addressed in OED literature: how should multi-purpose sensors that can take different

types of measurements be deployed, and how should different sensor types be designed and

deployed in an existing experimental design?

3.3 Hyper-differential Sensitivity Analysis for Inverse

Problems

This section is devoted to our proposed framework for hyper-differential sensitivity analysis

(HDSA) of PDE-constrained inverse problems. In Subsection 3.3.1, we detail the mathe-

matical formulation of the operator mapping complementary parameters to solutions of the

PDE-constrained inverse problem, and its Fréchet derivative. In Subsection 3.3.2 the hyper-

differential sensitivities are defined, as well as the generalized sensitivity index which is used

to compare the importance of sets of complementary parameters with different physical char-

acteristics. Subsection 3.3.3 presents an analytical result for linear inverse problems which

connects the sensitivities to the trace of the covariance in the solution of the inverse problem.

3.3.1 Mathematical Formulation

HDSA differs from traditional sensitivity analysis in that it determines the sensitivity of

the solution of an optimization problem rather than simply a model (which is typically a

constraint in the optimization problem). We seek to perform HDSA on (3.2) to determine

the sensitivity of the optimal m to uncertainty in complementary (both experimental and

auxiliary) parameters θ which are fixed when solving (3.2).

HDSA uses the derivative of the solution of (3.2) with respect to θ. To formally define

HDSA, we assume that Ĵ is twice continuously differentiable with respect to (m, θ) and that

m? is a local minimum of (3.2) for specified complementary parameters θ = θ?. Assuming

that the Hessian of Ĵ with respect to m, evaluated at (m?, θ?), is positive definite [16, 43],

we can apply the implicit function theorem [9, p. 38] to Ĵm (the Fréchet derivative of Ĵ with

respect to m), to define a continuously differentiable mapping F from a neighborhood of θ?

to a neighborhood of m?,

F : N (θ?)→ N (m?)

such that

Ĵm(F(θ), θ) = 0, for all θ ∈ N (θ?),

i.e., F maps complementary parameters to stationary points of (3.2). The Fréchet derivative
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of F with respect to θ, evaluated at θ?, is given by

D := Fθ(θ?) = −H−1B, (3.3)

whereH is the Hessian of Ĵ with respect tom, evaluated atm? and θ?, i.e.,H := Ĵm,m(m?, θ?),

and B is the Fréchet derivative of Ĵm with respect to θ, evaluated at m? and θ?, i.e.,

B := Ĵm,θ(m
?, θ?).

An intuitive interpretation of (3.3) is that once (3.2) has been solved to optimality for

the specified θ?, we take a perturbation with respect to θ (B) and apply a Newton step

(−H−1) to update the solution of the inverse problem. We interpret Dθ as the sensitivity

of the solution of the inverse problem when the complementary parameters are perturbed in

the direction θ. Note that upon discretization, applying the inverse of H to a vector requires

a large-scale linear solve, which requires many PDE solves.

3.3.2 Sensitivity Indices

Given a sensitivity operator, we define scalar sensitivity indices that measure the magnitude

of the change in the inverse problem solution with respect to perturbations of the com-

plementary parameters. We first group related complementary parameters together into K

subsets. For example, we group data measurements corresponding to the same state variable

together; scalar auxiliary parameters form their own group (of size 1); and the parameters

defining the discretization of a function-valued auxiliary parameter may form another group.

In general, the complementary parameters θ = (θe, θa) ∈ Θ take values in a possibly

infinite dimensional space Θ = Θ1 ×Θ2 × ...×ΘK , which is a product of K Hilbert spaces.

The first ` parameter spaces contain the experimental parameters θe ∈ Θ1 × ...× Θ`, while

the remainder contain the auxiliary parameters θa ∈ Θ`+1 × ...×ΘK . The product space Θ

is equipped with the inner product

〈θ, φ〉Θ = 〈θ1, φ1〉Θ1 + · · ·+ 〈θK , φK〉ΘK , for θ, φ ∈ Θ.

We are particularly interested in cases where the uncertain parameters have varying physical

characteristics, such as different units or differences in their spatial or temporal dependence.

To better understand spatial and temporal patterns of importance for a particular pa-

rameter or data source, we define pointwise sensitivity indices in space and time, and later

define generalized sensitivities which remove these units. From here on, we use Θ and Θk to

denote the discretizations of the possibly infinite dimensional spaces Θ and Θk. To respect

spatiotemporal structure in discrete data, we use weighted norms corresponding to spatial
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and/or temporal discretizations. For instance, if θk models perturbations of spatiotemporal

data measurements then

‖θk‖Θk
=

√√√√ 1

ntns

ntns∑
i=1

(θik)
2

where θik denotes the ith component of the vector θk ∈ Rntns , ns and nt denote the number

of spatial and temporal points, respectively.

Upon discretization of (3.1), we let {b1
k, b

2
k, . . . , b

nk
k } denote a basis for each parameter

space Θk, where nk is the dimension of Θk. We define a basis for Θ as {eik} for k = 1, . . . , K

and i = 1, . . . , nk where

eik =
(
01 . . . 0k−1 bik 0k+1 . . . 0K

)>
.

We define the pointwise sensitivity indices for k = 1, . . . , K and i = 1, . . . , nk as,

Sik =
‖Deik‖M
‖eik‖Θ

, (3.4)

where D is the discretized sensitivity operator (3.3), and ‖ · ‖M is the norm discretized con-

sistently with respect to the norm in M. The pointwise sensitivities measure the change in

the solution of the inverse problem with respect to a perturbation of the kth parameter in

direction bik. Thus, high sensitivity indicates that errors in the parameter will cause a signifi-

cant change in the reconstructed solution. This leads to an interpretation of the sensitivities

as quantifying the importance of accurately measuring or modeling the parameter.

We would also like to determine the importance of the K parameter subgroups relative

to one another. To do so, we define generalized sensitivity indices which provide a single

measure of sensitivity for each parameter subgroup. Let Tk : Θ→ Θ be a selection operator

that zeros out components of θ not in Θk. We define the generalized sensitivity of the kth

subgroup of complementary parameters as

Sk = max
θ∈Θ

‖DTkθ‖M
‖θ‖Θ

. (3.5)

The generalized sensitivities measure the maximum change that can be observed in the

solution to a norm-1 perturbation of the kth parameter subgroup. We can interpret this as

a “worst case scenario” sensitivity because it measures the maximum change in the solution.

More importantly, the generalized sensitivities provide a single measure of sensitivity for

each parameter subgroup which can be used to compare their relative importance, despite

their potentially diverse range of physical characteristics. Note that the parameter groupings
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should be specified by the user and are problem dependent. In the model problem considered

in Section 3.5 we allow scalar auxiliary parameters to each consist of their own subgroup

while the experimental parameters, corresponding to noise in the data measurements, are

grouped together. It is important to note that if a subgroup consists of a single scalar

parameter, its pointwise and generalized sensitivities will be identical. This is because (3.4)

and (3.5) are both equivalent to the largest singular value of M1/2DTk when nk = 1.

3.3.3 Interpretation of Experimental Parameter HDSA for Linear

Inverse Problems

Sensitivity of auxiliary parameters, θa in the notation of this chapter, is a natural concept

with a clear physical interpretation. The sensitivity of the solution of the inverse problem

to experimental parameters is less intuitive, so we present an analytic result in Proposi-

tion 3.3.1 to provide intuition. For conciseness and clarity in this subsection, we consider

only uncertainty in the experimental parameters.

Assume that ỹ = (ỹ1, ỹ2, . . . , ỹn)> is a vector of noisy data which may be modeled by

a linear parameter-to-observable map QA acting on an unknown parameter m. Estimating

this unknown m gives rise to a linear inverse problem. To apply HDSA with respect to

experimental parameters, we model the data as

yi = ỹi(1 + θie) i = 1, 2, . . . , n,

where (θ1
e , θ

2
e , . . . , θ

n
e )> = θe ∼ N(0,Σ) is a perturbation of the nominal value ỹi, i.e.

a noise model. Assuming uncorrelated observations, the noise covariance matrix is Σ =

diag(σ2
1, . . . , σ

2
n). An estimate of the inversion parameter can be obtained by solving

min
m

Ĵ(m) :=
1

2
‖QAm− y‖2

Σ−1 +
α

2
‖m‖2

R (3.6)

with θe = 0, i.e. solving a linear least squares problem with the data ỹ. The norm in the

regularization term is weighted by regularization operator R :M→M which we assume is

a self-adjoint, strictly positive linear operator on M [86].

The estimator m? obtained from solving (3.6) is a random variable, due to the ran-

dom noise in the data. HDSA provides the sensitivity of its solution with respect to

θe = (θ1
e , θ

2
e , . . . , θ

n
e ). This may be interpreted as the sensitivity of the least squares estimate

with respect to the data, a metric to assess the relative importance of the observations. Such

sensitivity information can be used to inform sensor designs and measurement tolerances.

Proposition 3.3.1 relates the variance of m? (with respect to randomness in θe) to the point-
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wise sensitivities with respect to data measurements Si as defined in equation (3.4). Here,

we omit the subscript (K = 1) on the pointwise sensitivities, as we only consider one type

of parameter in this section.

Proposition 3.3.1. tr(Cov(m?)) =
∑n

i=1(Si)2, where tr denotes the trace of a linear operator

and Si is defined as in (3.4) when Θ = Rn is equipped with the Σ−1 weighted norm.

Proof. Computing the Fréchet derivative of the objective Ĵ in (3.6), setting it equal to zero,

and solving for m yields the solution of the inverse problem,

m? = (A∗WA+ αR)−1A∗Wy = (A∗WA+ αR)−1A∗W(ỹ + Ỹθe),

where A∗ denotes the adjoint of the linear operator A and Ỹ = diag
(
ỹ1, ỹ2, . . . , ỹn

)
. Com-

puting the Fréchet derivative of m? with respect to θe (which coincides with (3.3)) yields

D = (A∗WA+ αR)−1A∗WỸ.

The covariance of the estimator m? (with respect to randomness in θe) is

Cov(m?) = Cov(Dθe) = DΣD∗.

Therefore,

tr(Cov(m?)) = tr(DΣD∗) = tr(D∗DΣ) =
n∑
i=1

〈ei,D∗DΣei〉

=
n∑
i=1

(σi‖Dei‖M)2 =
n∑
i=1

(σi‖ei‖Σ−1Si)2 =
n∑
i=1

(Si)2,

where ei is the ith canonical unit vector in Rn.

This result provides useful intuition into the sensitivity indices and indicates that the

variance of the inverse problem solution is scaled by the magnitude of the sensitivities with

respect to data.

Remark 3.3.1. Notice that Proposition 3.3.1 generalizes naturally to Bayesian linear inverse

problems. With a Gaussian prior and likelihood, the solution of the Bayesian linear inverse

problem is a Gaussian posterior. With the assumption θe ∼ N(0,Σ) on the measurement

noise, and an appropriately chosen prior covariance, the maximum a posteriori (MAP) point

is equivalent to the solution m? of the deterministic linear inverse problem. Taking the

trace of the MAP point’s covariance we again conclude Proposition 3.3.1. Note that in the
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Bayesian setting, we consider the average variance of the MAP estimator as a measure of

robustness of this point estimator for the inversion parameter. This is different than the

average posterior uncertainty in the parameter given by the trace of the posterior covariance

operator.

3.4 Computational Considerations

We begin our discussion with a simple illustrative example. To highlight the dimensions of

the discretized operators and gain insight into the computational complexity of HDSA, we

consider a discretized inverse problem with only auxiliary parameters:

min
m

Ĵ(m) =
1

2
‖Qu− y‖2

W +
α

2
‖m‖2

R

where L(m)u = Vθ.
(3.7)

where Q ∈ Rd×n is an observation operator, u ∈ Rn the state vector, y ∈ Rd is the vector

of experimental observations, W ∈ Rd×d a symmetric weight matrix, α > 0 a regularization

coefficient, m ∈ Rp the discretized inversion parameter, R ∈ Rp×p a symmetric positive

definite regularization operator, L(m) ∈ Rn×n a discretized differential operator, θ ∈ Rk

the vector of auxiliary parameters, and V ∈ Rn×k. Note that the discretized state dimension

n corresponds to the number of degrees of freedom in the mesh (typically large), and for

problems with distributed parameters, p will also have a comparable dimension to n (fre-

quently equal). The dimension of the auxiliary parameters, k, can also be large, potentially

larger than n when there are multiple distributed auxiliary parameters.

In practice, we compute the action of the gradient and Hessian of Ĵ using a formal

Lagrangian approach where each application of the Hessian requires two linear PDE solves

(inverting the matrix L(m)). To compute the action of D (the discretization of (3.3)) on

a vector, we require 2 linear solves to apply the matrix B to a vector, and then 2I linear

solves to apply H−1 to the resulting vector, where I is the number of iterations needed by

an iterative linear solver. We direct the reader to 3.8, where we demonstrate the adjoint

method used to compute the gradient and Hessian of the reduced objective function Ĵ , as

well as the operator B.

In general, the sensitivity indices (3.4) and generalized sensitivity indices (3.5) may be

computed in a variety of ways. The efficiency of different approaches depends upon (i) the

dimension of the parameter space, (ii) the computational cost of the PDE solves, (iii) the

structure of the Fréchet derivative D, and (iv) the available computational resources.

The computational bottleneck when computing (3.4) and (3.5) is repeatedly inverting H
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(a large linear system solve). In general, we are interested in systems of nonlinear PDEs.

For such systems, each application of H−1 requires 2I linearized PDE solves, where I is the

number of iterations required by the linear solver (such as conjugate gradient). Because

HDSA is post-optimality analysis, we do not require solving nonlinear systems repeatedly as

in the inverse problem, but rather solving PDEs which are linearized about the solution of

the inverse problem.

As introduced in [43], a randomized generalized eigenvalue problem may be formulated

to estimate the truncated generalized singular value decomposition (GSVD) of D. When

the parameter dimension is large and Fréchet derivative D is low rank, both (3.4) and (3.5)

may be efficiently estimated by using the truncated GSVD and leveraging the parallelism of

randomized methods. We refer the reader to [43] for additional details.

If D is not low rank but the parameter dimension and cost per PDE solve is mild, we

may compute (3.4) and (3.5) directly by applying D to each basis function in Θ. This does

not exploit structure as in the GSVD approach, but it is embarrassingly parallel making it

feasible for moderate parameter dimensions.

If D is not low rank and the parameter dimension or cost per PDE solver prohibits com-

puting (3.4) and (3.5) directly, we may still compute (3.5) using a GSVD. Each generalized

sensitivity index corresponds to the leading singular value of D acting on a projection opera-

tor. Since the number of generalized sensitivities are typically small, they may be estimated

by using randomized solvers to compute the leading singular value. By exploiting paral-

lelism, this may be done with a modest number of linearized PDE solvers regardless of the

spectral decay in D.

3.5 Model Problem

In this section, we present a multiphysics model problem which is then used in Section 3.6

to compute hyper-differential sensitivities and demonstrate the usefulness and flexibility of

HDSA. As a motivating example, we consider the problem of identifying the permeability

field of a porous subsurface region with a tracer substance flowing through the domain. We

consider a unit square domain Ω with boundary Γ = ∪3
i=0Γi, where Γ0, Γ1, Γ2, and Γ3 denote

the bottom, right, top, and left edges of Ω, respectively.

We model subsurface flow of a fluid through a porous medium with Darcy’s Law and

consider transport of the tracer through the medium governed by the advection diffusion
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equation:

−∇ · (em∇p) = 0 in Ω (3.8a)

ct −∇ ·
(
ε∇c

)
+∇ ·

(
vc
)

= g in [0, T ]× Ω (3.8b)

p = p1 on Γ1 (3.8c)

p = p2 on Γ3 (3.8d)

∇p · n = 0 on Γ0 ∪ Γ2 (3.8e)

∇c · n = 0 on [0, T ]× {Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3} (3.8f)

c(0, ·) = 0 in Ω (3.8g)

Here p denotes the pressure field, m the log-permeability field of the medium, v = −em∇p
the Darcy velocity, c(t, x) the tracer concentration, ε the diffusivity constant, and g the source

term of the injected tracer. In the present example, we used ε = 0.025. For simplicity of

notation, the constant fluid viscosity and constant porosity of the medium have been removed

from the model. The Dirichlet pressure boundary conditions (on left and right boundaries)

are described by non-zero fuctions p1 and p2. We let p1 be greater in magnitude than p2, as

this pressure difference will drive fluid flow from right to left through the domain,

p1(y) = 15 + cos(2πy) +
1

2
cos(4πy),

p2(y) = 10 + 2 cos(2πy).

The tracer source is described by

g(x, y) =
16∑
k=1

10e−100((x−vk)2+(y−wk)2)

where the source injection locations (vk, wk) are arranged in a 4× 4 grid as depicted by the

diamonds in Figure 3.1.
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Figure 3.1: Concentration sensor, pressure sensor, and source locations.

We seek to solve an inverse problem to reconstruct the log-permeability field m, us-

ing pressure and concentration measurements. Let Q denote the observation operator and

y ∈ Rn be a vector of np pressure measurements and nc concentration measurements at nt

measurement times, giving a total of n = np + ncnt data points,

y =
[
p1 p2 . . . pnp c1 c2 . . . cncnt

]
.

The observation (sensor) locations are depicted in Figure 3.1.

We consider the inverse problem

min
m

Ĵ(m) :=
1

2
‖QA(m)− y‖2

W +
α

2

∫
Ω

‖∇m‖2
2 dx

where A is the solution operator for (3.8),

W =

(
1

p2σ2 Inp 0

0 1
c2σ2 Incnt

)

is a data misfit weight matrix and α is the regularization coefficient. We used α = 3 ×
10−2 in our numerical experiments; this was chosen based on numerical experimentations

seeking a regularization coefficient that is large enough to mitigate ill-posedness and at

the same time produces a reasonable parameter reconstruction. The weight matrix divides

each measurement by the measurement noise σ and the average of its data type (p and c
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respectively) to ensure the two data types, which are on different scales, have equivalent

importance in the data misfit term.

We synthesize data for this problem with additive Gaussian noise that perturbs the data

with a standard deviation of 3% of the true value, i.e. θie ∼ N (0, σ), with σ = 0.03. Note

that we assume pressure and concentration sensors have the same proportional measurement

error, σp = σc = 0.03.

The inverse problem is solved on a 55×55 finite element spacial discretization with 48

time steps, while the data is generated from a forward PDE solve with a 109×109 finite

element spacial discretization and 98 time steps. We use a completely uninformed, constant

0 initial guess, with 49 concentration sensors and 35 pressure sensors arrayed throughout the

domain as depicted in Figure 3.1 to solve the inverse problem.

3.6 Computational Results

Using the model presented in Section 3.5, we solve the inverse problem and compute sensi-

tivity indices to determine which parameters and data sources are most important. Figure

3.2 depicts the true log permeability field we seek to reconstruct through the inverse prob-

lem, and the reconstructed solution found by solving the inverse problem with a truncated

CG trust region solver. Note that since the optimization problem is non-convex we are only

guaranteed to find a local minimizer.

Figure 3.2: Left: True Permeability Right: Reconstructed Solution.

In Subsection 3.6.1 we display and interpret generalized sensitivity indices for the pres-

sure data, concentration data, tracer source term, diffusion coefficient, and the left and right

pressure Dirichlet boundary conditions. In Subsection 3.6.2 we analyze the pointwise sen-

sitivities with respect to the experimental parameters (pressure and concentration data),
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and in Subsection 3.6.3 we analyze the pointwise sensitivities with respect to auxiliary pa-

rameters (source term, pressure Dirichlet boundary conditions, and diffusion coefficient).

General discussion of the importance and interpretation of the sensitivities is presented in

Subsection 3.6.4.

We model uncertain parameters as a nominal value times a parameterized perturbation.

When our parameters of interest are constants, such as data measurements or modeling

coefficients, we can model uncertain parameters as

d = d̃(1 + aθ),

where d is the parameter of interest, d̃ is the nominal value, a is a scaling coefficient, and

θ ∈ [−1, 1] the parameterization of the perturbation. In practice, we compute the sensitivity

with θ = 0, which corresponds to computing the sensitivity at the nominal parameter value

d̃. Extensions to global sensitivity analysis may consider sampling θ in [−1, 1]. The scaling

coefficient a is problem dependent, and should be set based on prior knowledge of the level

of uncertainty in the parameter of interest. When the parameter is a spatially and/or

temporally distributed, we model uncertainty in the function using a linear combination of

basis functions

f(x) = f̃(x)
(

1 + a
L∑
i=1

θiφi(x)
)

where f̃ its nominal estimate, L the dimension of the discretized basis, and {φi} are basis

functions. The results in this chapter take φi as linear finite element basis functions defined

on a coarser mesh than the PDE is solved on (to enforce smoothness in perturbations). For

this model problem we let a = 0.05 for the experimental parameters and a = 0.2 for the

auxiliary parameters which indicates 5% uncertainty in the data (experimental parameters)

and 20% uncertainty in the auxiliary parameters.

3.6.1 Generalized Sensitivity Results

We calculate the generalized sensitivities for each parameter type, which allows for compar-

ison between their relative importance. These are plotted in Figure 3.3.
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Figure 3.3: Bar graph of generalized parameter sensitivities.

From Figure 3.3, we can see that for this specific model problem it is most important to

accurately measure the left and right boundary conditions. This makes sense intuitively, as

the boundary conditions drive the fluid flow and the problem is advection dominated. We

can also tell that in terms of data collection, it is more important to accurately measure

concentration than pressure and that measuring the diffusion coefficient with a high degree

of accuracy is relatively unimportant.

We consider the left boundary condition as an example and illustrate the interpretation

of its generalized sensitivity index. Such principles of interpretation may be extended to

any other generalized sensitivity indices but are omitted for conciseness. Figure 3.4 displays

the true left boundary condition and the perturbation of the left boundary condition cor-

responding to the generalized sensitivity index (the argument of the maximization in (3.5).

The perturbation plotted in Figure 3.4 is the unit norm perturbation that results in the

maximum change in the inverse problem’s solution. Thus, the generalized sensitivity index

S5 = 2.12 indicates that this unit norm perturbation will result in a change of about 2.12 in

the norm of the solution of the inverse problem. Scaling by the norm of the solution of the

inverse problem gives an interpretation that the unit norm perturbation shown in Figure 3.4

results in approximately a 14% change in the solution of the inverse problem. With this

interpretation, a user may associate a level of uncertainty in the boundary condition and

the resulting change in the estimated permeability field to determine if further calibration

is needed.
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Figure 3.4: Perturbation of the left pressure Dirichlet boundary condition.

3.6.2 HDSA with Respect to Experimental Parameters

In this section, we turn to the pointwise hyper-differential sensitivities (3.4) to study the spa-

tial and temporal dependence within the experimental parameters. Using the reconstructed

log-permeability field, we compute the sensitivities of the solution with respect to both pres-

sure and contaminant measurements at each sensor location, and for concentration, each

time step. Figure 3.5 shows the spatial distribution of contaminant sensitivities (depicted by

colored points using the right colorbar scale) at informative time snapshots, overlaid atop the

tracer concentration field (depicted by a greyscale concentration map using the left colorbar

scale). By overlaying these plots, we are able to study how the sensitivities relate to the

tracer advection.
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Figure 3.5: Concentration sensitivities at times 0.01, 0.04, 0.07, 0.10, 0.13, and 0.1567.
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Note that both the sensitivity and concentration colorbar scales change in each plot,

which is to allow the reader to visualize the results more clearly. We make the following

observations about the concentration sensitivities. (1) As a general trend, the sensitivity of

concentration increases in time. This is because the continuous source injection increases the

amount of tracer in the domain as time progresses, making concentration sensors increasingly

important. (2) We also see that as the mass of high tracer concentration (depicted by bright

white in the color map) moves, sensors that observe this change in mass have increased

importance while the mass moves toward or away from the sensor and then decrease in

importance after the mass has moved passed. This phenomenon is particularly noticeable

from the sensors in the high permeability channel at y = 0.5. As the tracer mass moves

from right to left at y = 0.5 the sensor’s importance increases following the back edge of the

mass, and then decreases after the mass moves past. (3) We also notice that the sensor on

the left boundary at y = .5 is highly important early in time and the sensors at (0.2, 0.33)

and (0.2, 0.66) are more important later in time. This is because the majority of the tracer

is getting advected toward those sensors which are therefore observing a large amount of

tracer flow.

To further study the concentration sensitivities, Figure 3.6 depicts the time evolution of

each concentration sensitivity in an array of plots. Each plot describes the time evolution of

a single contaminant sensitivity and they are spatially arranged to correspond to the sensor

locations they depict (compare with Figure 3.1 for their spatial association).
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Figure 3.6: A spatial distribution of the time evolution of contaminant sensitivities. Each
subplot has the same horizontal axis range depicting time from 0 to .16. Each vertical axis
subplot has the same range depicting sensitivity from 0 to .2832

From Figure 3.6 we can see that some of the sensitivities decrease in importance over

time, or have a range of time during which they decrease before they begin to increase

again. Sensors for which the tracer permanently moves away experience a long-term decrease

in importance. The decrease in sensitivity at a sensor location, followed by a subsequent

increase is likely caused by the movement of tracer through the high permeability region at

y = 0.5. As the tracer empties out of this central region, the concentration changes from

being a single mass to being two distinct masses, one in the upper portion and the other in

the lower portion of the domain. This splitting of the concentration mass, when observed

by a nearby sensor, likely causes a minor disturbance in the general trend of the sensitivity.

Because this problem is advection dominated, the movement of the tracer through the

domain has a large impact on the interpretation of the pressure sensitivities as well. Figure

3.7 shows the spatial distribution of pressure sensitivities (depicted by colored points using

the right colorbar scale) overlaid atop the pressure field (depicted by a greyscale pressure

map using the left colorbar scale).
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Figure 3.7: Pressure sensitivities

First, notice that the pressure sensitivities are larger than the concentration sensitivities

at early time steps, but are eventually surpassed by the steadily increasing concentration

sensitivities over time. Also observe that the sensors with highest pressure sensitivity, are in

the upper right and lower right corners of the domain. Because the tracer moves from right

to left, the majority of information about the tracer advection is found on the left side of

the domain. The right side of the domain, and particularly the low permeability regions at

the top and bottom, have a lack of tracer flow information. Thus, the inverse problem relies

heavily on the pressure measurements in these regions to reconstruct the permeability field,

which corresponds to the higher pressure sensitivities in this region.

3.6.3 HDSA with Respect to Auxiliary Parameters

In this section, we study the pointwise hyper-differential sensitivities with respect to auxiliary

parameters: the source term and pressure Dirichlet boundary conditions. The diffusion

coefficient is also an auxiliary parameter, however according to the generalized sensitivities

it is relatively unimportant so we will not investigate it further.

We begin by analyzing the sensitivities with respect to the source term. Figure 3.8 depicts

the sensitivities of the source at each injection well, next to a plot of the Darcy velocity field.

The source uncertainty is discretized by taking a 3× 3 mesh locally around each well. This

models our uncertainty in the rate and distribution of the injected tracer at each well due

to hardware limitations, while the location of the injected tracer is known.
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Figure 3.8: Left: Source sensitivities, Right: Darcy Velocity Field

From Figure 3.8 we can see that the areas of high source sensitivity generally occur in

regions with low Darcy velocity. This is likely because in these regions, the problem is

diffusion dominated and the tracer is not advected away from the injection site very quickly.

Thus, if the source injection is perturbed, the tracer will stay in that region and slowly

diffuse, affecting concentration measurements in that area for may time steps. If a source

injection is perturbed in a region of high Darcy velocity, the tracer will be pulled away and

mix with the rest of the tracer moving through the domain. Thus for this problem, the

source injections have highest sensitivity in regions that are diffusion dominated.

According to the generalized sensitivities, the boundary conditions have the largest rela-

tive impact of any uncertain parameter on the solution. To further understand the influence

of the boundary conditions on the physical systems in the model, we consider the hyper-

differential sensitivities of the boundary conditions. Figure 3.9 depicts the sensitivities of

the solution with respect to the pressure Dirichlet boundary conditions, discretized by 21

equally spaced nodes on each boundary.
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Figure 3.9: Pressure Dirichlet boundary condition sensitivities

From the boundary condition sensitivities in Figure 3.9 we can see that on both the

left and right boundary, there is a heightened sensitivity around y = 0.3 and y = 0.7.

This corresponds to the area between the high permeability region through the middle of

the domain, and the low permeability regions above and below it. A perturbation of the

boundary conditions near the low permeability region is going to have minimal effect because

the low permeability region is going to keep the Darcy velocity small relative to the rest of

the domain regardless. Similarly, a perturbation of the boundary conditions in the high

permeability region is going to have little effect because the high permeability is going

to keep the Darcy velocity relatively high in that area. A perturbation in the pressure

boundary conditions will have maximal impact in the thin region between the high and low

permeability regions. This perturbation can cause the region of moderate Darcy velocity

to become a region of either high or low Darcy velocity relative to the other regions of the

domain, significantly impacting the advection flow.

3.6.4 Discussion

It is evident from our analysis that the hyper-differential sensitivities can provide a wealth

of information about how the solution of the inverse problem depends on the interactions

within the governing physics systems. These observations are not readily apparent without

the sensitivities, which emphasizes their usefulness in understanding the inverse problem. In

particular, the sensitivities with respect to experimental parameters can be used to determine

where and when to place expensive, high fidelity sensors in an experimental design, and where

less accurate and more cost effective sensors can be uesd.
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In addition to providing information about the underlying physics in a model, these ob-

servations allow experimenters to determine how to design experiments, by prioritizing the

measurement and estimation of all complementary parameters considered. For this prob-

lem, the generalized sensitivities inform us that tracer concentration is more important to

measure accurately than pressure, which informs the design of sensors and data collection

techniques. We also learn that accurately estimating the pressure Dirichlet boundary con-

ditions is highly important, while the diffusivity coefficient is relatively unimportant. This

information informs the model specification and how these parameters should be estimated

and considered in the model.

3.7 Conclusion

In this chapter, we have presented a mathematical framework for hyper-differential sensi-

tivity analysis in the context of inverse problems constrained by multiphysics systems of

partial differential equations. The mathematical formulation involves derivative based local

sensitivity analysis of the solution of an inverse problem with respect to perturbations of

parameters. This framework is general and can be applied to a wide variety of inverse prob-

lems. The usefulness of HDSA is most apparent in the context of complicated multiphysics

systems with many uncertain parameters. By introducing sensitivity analysis with respect to

experimental parameters and maturing the generalized hyper-differential sensitivity indices,

we have enabled analysis of the relative importance of both auxiliary model parameters

and experimental parameters, such as data sources. Studying hyper-differential sensitivities

provides new insights into both understanding the underlying physical systems of a model,

and designing experiments to solve inverse problems. In particular, comparing the relative

importance of spatially and temporally distributed measurements with various sensor types

provides unique insights that are difficult to attain using traditional experimental design

methodologies. HDSA compliments experimental design by providing a systematic way to

compare multiphysics parameters and data sources.

HDSA is an emerging technology and as such there are several important considerations to

be studied in future work. One questions is “how robust are the sensitivities of experimental

parameters to perturbations of design?” In practice, one may not be able to place a sensor

exactly where a design indicates it should be. If a sensor’s location is perturbed within a

local area, how will this affect the magnitude of the sensitivity, and that of its neighboring

sensors? Ideally, perturbing the location of a sensor slightly will have a minimal impact

on the sensitivity at that sensor and its neighbors, indicating that the hyper-differential

sensitivities are robust to perturbations of the design, but this has yet to be rigorously
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verified.

Moreover, HDSA of inverse problems requires availability of measurement data. For the

computational results in this chapter, we assumed that we had some set of experimental

data, but in many applications we would like to compute sensitivities a priori, before data

is collected. In such cases, one could generate training data by applying the forward model

to a sample of the inversion parameters drawn from a prior distribution, giving rise to a

distribution of the sensitivities.

3.8 Appendix: Details for the model inverse problem (3.7)

First, we illustrate the computation of gradient and Hessian of Ĵ . To facilitate this, we

introduce the Lagrangian

L(u,m,λ,θ) = Ĵ(m) + λ>(L(m)u−Vθ),

where λ is a Lagrange multiplier (vector). To compute the gradient of Ĵ , using the so called

formal Lagrange approach, we consider the variations of L with respect to λ, u and m.

Note that

Lλ(u,m,λ,θ) = L(m)u−Vθ and Lu(u,m,λ,θ) =
∂Ĵ

∂u
+ λ>L(m).

Setting these variations equal to 0 results in the state and the adjoint equations:

L(m)u = Vθ and L(m)>λ = −Q>W(Qu− y).

Then, the gradient g(m) of Ĵ satisfies, g(m)T = Lm(u,m,λ,θ) = ∂Ĵ
∂m

+λ> ∂A
∂m
u; therefore,

g(m) = αRm+ C>λ with C =
∂

∂m

(
L(m)u

)
.

To compute the action of the Hessian H(m) of Ĵ (at m) on a vector m̂, we differentiate

through the directional derivative 〈g(m), m̂〉. This is faciliated by introducing the “meta-

Lagrangian”:

LH(u,m,λ,θ, û, λ̂; m̂) = m̂
>[C>λ+ αRm

]
+ λ̂

>[
L(m)u−Vθ

]
+

û>
[
L(m)>λ+ Q>W(Qu− y)

]
.
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The Lagrange multipliers û and λ̂ are refered to as the incremental state and adjoint vari-

ables; see e.g., [69]. Letting the variations of LH with respect to λ̂ and û vanish gives

L(m)û = −Cm̂, (incremental state equation) (3.9)

L(m)>λ̂ = −Lumm̂− Luuû. (incremental adjoint equation) (3.10)

The Hessian apply is then given by, [H(m)m̂]> = LHmm̂, resulting in

H(m)m̂ = Lmmm̂+ Lmuû+ C>λ̂. (3.11)

Note that in the above equations

Luu = Q>WQ, Lmm = αR +
∂

∂m
(CTλ), and Lmu = L>um =

∂

∂m
(L(m)Tλ)

We summarize the compuation of H(m)m̂ in Algorithm 3. Note that the cost associates

Algorithm 3 Computation of H(m)m̂ for a given m̂.

solve the incremental state equation (3.9) for û

Solve the incremental adjoint equation (3.10) for λ̂
Evaluate H(m)m̂ accordng to (3.11).

with Algorithm 3 is two (linear) PDE solves. Also, by replacing the expressions for the

incremental state and adjoint variables in the expression for the Hessian apply, we can write

the (reduced) Hessian as:

H = C>L(m)−>LuuL(m)−1C + Lmm − LmuL(m)−1C−C>L(m)−>Lum.

Letting B be the (discretized) Fréchet derivative of the gradient with respect to θ,

B = gθ(m) = −C>L(m)−>Q>WQL(m)−1V + LmuL(m)−1V.

This is the discretized version of the operator B in (3.3).
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CHAPTER

4

HYPER-DIFFERENTIAL SENSITIVITY

ANALYSIS FOR BAYESIAN INVERSE

PROBLEMS

The work presented in this chapter is based upon the collaborative publication [79]. The

author of this dissertation is listed as the first author of that paper and was responsible for

the majority of the writing and results therein.

4.1 Introduction

Many natural phenomena can be described by systems of partial differential equations

(PDEs). The governing PDEs, however, often include parameters that are unknown and

challenging to measure directly. This gives rise to inverse problems, in which one uses the

PDE model and measurement data to estimate the unknown model parameters. In this chap-

ter we consider Bayesian inverse problems [62,81], whose solution is a posterior distribution

that is informed by both our prior knowledge and the data measurements. Specifically, we

focus on Bayesian inverse problems governed by PDEs with infinite-dimensional parameters.

In addition to the parameters being estimated, the governing PDEs typically contain
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parameters that are uncertain but needed for a full model specification. For clarity, we refer

to the parameters being estimated by the inverse problem as inversion parameters and call

the additional model parameters the auxiliary parameters. Another source of uncertainty in

the inverse problem arises from the parameters specifying the experimental conditions, such

as the location of measurement devices or their accuracy. We call these the experimental

parameters. Throughout the chapter we will refer to the union of auxiliary and experimental

parameters as complementary parameters. Our goal in this chapter is to develop methods

for assessing the sensitivity of the solution of a Bayesian inverse problems with respect to

perturbations of complementary parameters; see Section 4.2 for a simple illustrative example.

Understanding the sensitivity of an inverse problem to complementary parameters is

important. These parameters may differ from their measured or estimated values, which in

turn will result in a solution different from the one we would obtain if we had access to perfect

measurements and true auxiliary parameters. Determining the sensitivity of the solution to

perturbations in these parameters can inform our modeling assumptions and experimental

design practices. Specifically, this can guide a goal oriented prioritization of resources and

focus efforts on obtaining accurate values for the important auxiliary parameters. Moreover,

if one has data that is informative to the important auxiliary parameters, the inverse problem

may be redesigned to include these parameters in the set of inversion parameters.

The present chapter builds on the work in chapter 2 and other efforts in hyper-differential

sensitivity analysis (HDSA) [16, 19, 29–34, 43, 80]. Traditional HDSA uses the derivative of

the solution of an optimization problem with respect to complementary parameters to define

sensitivity indices. These indices measure how much the solution of the optimization prob-

lem changes when the complementary parameters are perturbed. Specifically, in chapter 3

we define two types of sensitivity indices: pointwise sensitivities, and generalized sensitiv-

ities. Pointwise indices measure the sensitivity of the solution to perturbation in specific

complementary parameters. Generalized indices measure the maximum possible change in

the solution with respect to any unit perturbation of groups of complementary parameters.

These indices provide a framework to study the sensitivity of the inverse problem solution;

see chapter 3 for more details.

In the present chapter, we extend HDSA to the class of Bayesian inverse problems, which

allows us to study the change in the posterior distribution with respect to perturbations of

the complementary parameters. We focus on HDSA of Bayesian inverse problems governed

by PDEs with infinite-dimensional parameters. Section 4.3 provides a brief overview of the

inverse problems under study. HDSA of a Bayesian inverse problem is difficult, because

the solution of such problems is a statistical distribution. In general, the posterior distri-

bution is difficult to approximate; this makes assessing the sensitivity of the posterior to
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complementary parameters challenging. A tractable approach is to instead focus on certain

key aspects of the posterior distribution. Namely, we consider specific quantities of interest

(QoIs) derived from the posterior distribution to perform HDSA on; we call such quantities

the HDSA QoIs.

A first possibility, which we consider in this chapter, is to assess the sensitivity of the

maximum a posteriori probability (MAP) point to the complementary parameters. This

builds directly on the developments in chapter 3. Of greater difficulty is obtaining sensitivities

of a measure of the posterior uncertainty. A natural setting for defining such measures is

provided by the theory of optimal experimental design (OED) [3, 11, 20, 67, 72, 84]. Recall

that in OED, one seeks experiments that minimize posterior uncertainty or, more generally,

optimize the statistical quality of the estimated parameters. This is done by optimizing

certain design criteria. Examples include the A-optimality criterion, which quantifies the

average posterior variance, or the Bayesian D-optimality criterion, measuring the expected

information gain; see e.g., [20]. In the present chapter, we consider the Bayes risk, which

has been used previously in OED for PDE-constrained inverse problems [37, 38, 46]. Our

motivations for using the Bayes risk as an HDSA QoI are two-fold. First, the Bayes risk

is defined as an average error of the MAP estimator; see Section 4.4.1. Thus, HDSA of

the Bayes risk builds further on methods for HDSA of the MAP point. Moreover, it is

well-known [4, 20] that the Bayes risk, with respect to the L2 loss function, reduces to the

A-optimality criterion, in the case of Gaussian linear Bayesian inverse problem. Hence, up

to a linearization, the Bayes risk may be considered as a proxy for the average posterior

variance. Bayes risk is also a common utility function in decision theory.

The contributions of this chapter are as follows:

• We develop a mathematical framework to assess the sensitivity of the Bayes risk and

the MAP point in nonlinear Bayesian inverse problems with respect to complementary

parameters; see Section 4.4.

• We present a scalable computational framework for computing the HDSA indices for

the MAP point and the Bayes risk; see Section 4.5. In that section, we also detail the

computational cost of the various components of the proposed approach.

• We present comprehensive numerical results for a model problem of heat flow across

a conductive surface that examine the effectiveness and efficiency of the proposed

approach; see Section 4.6 for the description of the model under study and Section 4.7

for our computational results.
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4.2 An Illustrative Example

We consider a simple example to motivate the problem considered in this chapter, which is

to conduct sensitivity analysis on the solution of Bayesian inverse problems. Consider the

heat equation,

∂y(x, t)

∂t
= exp(m)

∂2y(x, t)

∂x2
, x ∈ (0, π), t ∈ (0, 1) (4.1a)

y(0, t) = y(π, t) = 0, t ∈ (0, 1) (4.1b)

y(x, 0) = sin(x) + exp(θ) sin(2x), x ∈ (0, π). (4.1c)

In this problem, m is the inversion parameter and θ is an uncertain auxiliary parameter.

For simplicity we let m and θ be scalars here. Following a Bayesian framework, we endow

m with a Gaussian prior m ∼ N (1.3, .1). The problem (4.1) can be solved analytically and

the solution is given by,

y(x, t) = exp(− exp(m)t) sin(x) + exp(−4θ exp(m)t) sin(2x).

We have collected data measurements with additive Gaussian noise at the final time t = 1 at

six evenly spaced points between x = 0 and x = π depicted in Figure 4.1. The Gaussian noise

is unbiased with a standard deviation of 26 in this example. By Bayes rule, the posterior

probability density function (pdf) is proportional to the product of the likelihood and prior

pdfs. Because the auxiliary parameter is uncertain, we want to understand how the posterior

distribution changes as the auxiliary parameter is perturbed. We view the posterior pdf of

m solved at the nominal value of θ = −.29 and a perturbed value of θ = −.28 in Figure 4.1,

using data generated from the true parameter value of θ = −.3.
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Figure 4.1: Left: the solution of the PDE at the final time with noisy data measurements,
Right: the prior pdf of m and its posterior pdf for both a nominal and perturbed value of
the auxiliary parameter θ.

We notice two primary changes in the posterior pdf as the auxiliary parameter is per-

turbed. First, there is a shift in the location of the distribution’s peak, which equates to a

change in the MAP point. Second, there is a change in the spread or variance of the distribu-

tion which equates to a changing of the posterior uncertainty. We can see that perturbations

of auxiliary parameters can have significant impact upon both of these posterior quantities.

4.3 Bayesian inverse problems and complementary pa-

rameters

We let θa and θe denote the auxiliary and experimental parameters, and call the augmented

parameter vector θ =

[
θa

θe

]
the complementary parameters. Note that it is possible to have

some auxiliary parameters that are functions (see chapter 3) but to keep the presentation

simple, we consider finite-dimensional complementary parameters. The precise definition of

the experimental parameters is, in general, application dependent, but in what follows we

consider a particular case. Our goal is to provide a comprehensive framework for analyzing

the sensitivity of the solution of the inverse problems under study to perturbations in θ.

We assume that the governing PDE (the state equation), represented abstractly by

v(u,m,θa) = 0, (4.2)

has a unique solution u for a given m and fixed auxiliary parameters θa. The inversion
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parameter m belongs to an infinite-dimensional Hilbert space M that is equipped with an

inner product 〈·, ·〉M and the induced norm ‖·‖M. The state variable u belongs to an infinite

dimensional reflexive Banach space U . In the present chapter, M = L2(Ω) where Ω is a

suitable physical domain and 〈·, ·〉M is the standard L2 inner product.

To infer m, we solve a Bayesian inverse problem that uses observed measurements along

with information known about the governing system of PDEs. We assume that (noisy)

measurement data is related to m according to the following model:

y = F (m,θa) + η(θe), (4.3)

where y is a vector of ny experimental measurements, F the parameter-to-observable map

that takes in the inversion parameter m and maps it to a vector of measurements, and η

a vector that models additive Gaussian noise, η ∼ N (0,Γnoise(θe)). Evaluating F (m,θa)

requires solving the state equation (4.2) followed by application of an observation operator

O which evaluates the state u at the ny sensor locations. In the present chapter we let θe

parameterize the noise levels of the sensors. This can correspond to situations where the

experimental error at various sensors can be controlled either by repeated measurements or

by choice of the measurement device, or possibly recalibration of existing devices. Our model

for the experimental parameters is detailed in Section 4.6.

The Bayesian inverse problem setup. To solve an inverse problem with the data

model (4.3) we define the data likelihood pdf πlike(y|m;θ), which describes the distribution

of data measurements y, given a particular inversion parameter m. Given our assumption

of an additive Gaussian noise model, we have y|m ∼ N (F (m),Γnoise), and thus,

πlike(y|m;θ) ∝ exp

(
−1

2
(F (m,θa)− y(θe))

>Γ−1
noise(θe)(F (m,θa)− y(θe))

)
. (4.4)

Note that in (4.4) the auxiliary parameters appear in the parameter-to-observable map F

while we assume the experimental parameters for our problem appear only in the data

measurements themselves and the noise covariance matrix.

In a Bayesian paradigm, we model our uncertainty regarding the inversion parameter

by modeling m as a random variable. Accordingly, we endow the inversion parameter m

with a prior distribution that reflects our knowledge of m a priori. In the present chapter,

we let the prior distribution law be a Gaussian µpr = N (mpr, Cpr), with mean mpr and

covariance operator Cpr. We let Cpr = A−2 where A is a Laplace-like differential operator; see,

e.g., [3,18,62]. The Gaussian prior measure is meaningful since A−2 is a trace class operator

which guarantees bounded variance and almost surely pointwise well-defined samples. The
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prior measure induces the Cameron-Martin space E = range(C1/2
pr ), which is endowed with

the following inner product,

〈x, y〉E = 〈Ax,Ay〉.

We assume mpr ∈ E .

The definition of the prior measure and the data likelihood completes the description of

the Bayesian inverse problem. The solution of this inverse problem is called the posterior

measure µypost, which describes the probability law of m conditioned on experimental mea-

surements y. We will often denote the posterior measure as µpost for notational simplicity

when no confusion arises from doing so. The Bayes formula takes the following form in the

infinite-dimensional Hilbert space setting [62]

dµpost

dµpr

∝ πlike(y|m;θ).

Also, for a fixed θ, the maximum a posteriori probability (MAP) estimator of m is found by

solving

m∗(θ) := argmin
m∈E

J(m,θ), (4.5)

where

J(m,θ) :=
1

2

(
F (m,θa)−y(θe)

)>
Γ−1

noise(θe)
(
F (m,θa)−y(θe)

)
+

1

2
〈m−mpr,m−mpr〉E . (4.6)

Discretization. In the present chapter, we follow a continuous Galerkin finite element

discretization and let m and u be the discretizations of their continuous counterparts m and

u. We let nm be the the dimension of the discretized parameter. The discretized space is

Rnm equipped with the inner product

〈a, b〉M = a>Mb, a, b ∈ Rnm ,

where M is the finite element mass matrix, and the norm ‖ · ‖M induced by this inner

product. Note that when working with linear operators on (Rnm , ‖ · ‖M) or linear transfor-

mations between (Rn, ‖ · ‖M) and (Rn, ‖ · ‖), where ‖ · ‖ is the Euclidean inner product, the

adjoint operators need to be defined appropriately; see [18] for this and further details on

discretization of different components of infinite-dimensional Bayesian inverse problems. In

the remainder of this chapter, we present the proposed methods in the discretized setting.
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4.4 HDSA for Nonlinear Bayesian Inverse Problems

In this section, we outline a framework for HDSA of nonlinear Bayesian inverse problems.

4.4.1 The HDSA QoIs

As discussed in the introduction, we consider two HDSA QoIs for a Bayesian inverse problem:

(i) the MAP point, which is obtained by minimizing (4.6) and (ii) the Bayes risk. The Bayes

risk, for a fixed vector θ of complementary parameters, is defined by

Ψrisk(θ) =

∫
M

∫
Rd
‖m∗(θ)−m‖2

Mπlike(y|m;θ)dyµnmpr (dm). (4.7)

Note that here we expressed the Bayes risk for the discretized version of the Bayesian inverse

problem, and m∗ is the discretized MAP point. The discretized prior measure, which we

denote by µnmpr should be defined appropriately, as described in [18].

In practice, Bayes Risk is approximated via sample averaging. Namely, we draw ns

samples {m1, . . . ,mns} from the prior distribution to compute data samples {y1, . . . ,yns}
with the forward data model,

yi = F (mi,θa) + ηi(θe), i = 1, . . . , ns,

where ηi are sample draws from noise distribution N (0,Γnoise(θe)). We can then rewrite the

approximate Bayes Risk as

Ψ̂risk(θ) =
1

ns

ns∑
i=1

‖m∗(yi,θ)−mi‖2
M. (4.8)

4.4.2 Sensitivity operator of Bayes risk

To compute the sensitivity operator of the approximate Bayes risk estimator, we first dis-

cretize (4.8) and denote its discretization by Ψ̂risk(θ). We assess the sensitivity of Bayes risk

by differentiating Ψ̂risk(θ) with respect to θj, the jth component of θ, and evaluate at a set

of nominal complementary parameter values θ̄:

DR
j :=

∂

∂θj
Ψ̂risk(θ̄) =

2

ns

ns∑
i=1

∂

∂θj
(m∗(yi, θ̄))>Mm∗(yi, θ̄)− ∂

∂θj
(m∗(yi, θ̄))>Mmi.
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We define the discretized sensitivity operator of the approximate Bayes risk as

DR =
[
DR

1 DR
2 . . . DR

nθ

]
, (4.9)

where nθ denotes the dimension of the complementary parameter vector. Note that DRθ̃ can

be interpreted as the sensitivity of the approximate Bayes risk with respect to a perturbation

of the complementary parameters in the direction θ̃.

To compute the derivative of the approximate Bayes risk, we need ∂m∗

∂θ
(yi, θ̄), i =

1, . . . , ns, which measures the sensitivity of the MAP points (for each data sample yi) to the

complementary parameters 1. For clarity, we denote the discretized cost functional by J . As

discussed in chapter 3,

DM =
∂m∗

∂θ
= −

(
∂2J

∂m2

)−1
∂2J

∂m∂θ
= −H−1B, (4.10)

where H and B are evaluated at the solution m∗ with fixed nominal parameters θ̄. By aver-

aging these computed sensitivities over the number of data samples ns, we can simultaneously

measure both the average MAP point and Bayes risk sensitivities.

It is important to note the significance of this process. In a deterministic formulation [80],

the sensitivities of the inverse problem solution m∗ require data measurements to compute.

That is, some experimental measurements would be needed before conducting sensitivity

analysis. In contrast, the method proposed here does not require experimental measurements

and can be computed a priori by using the information encoded in the Bayesian inverse

problem to generate likely data realizations. This makes the methodology applicable to a

broad range of problems where data is not available at the time of performing HDSA.

4.4.3 Sensitivity Indices

As detailed in section 3.3.2, we define sensitivity indices to provide a scalar which measures

the magnitude of the change in the solution with respect to a particular perturbation of the

complementary parameters. In section 3.3.2 we defined pointwise and generalized sensitivi-

ties for the MAP point, which work exactly the same in the context of this chapter. Herein

we also define the pointwise sensitivity of the approximate Bayes risk as

1As discussed further in the Section 4.5, we only need to compute the action of this sensitivity operator
on vectors

68



Sjk =
|DRejk|
‖ejk‖Θ

(4.11)

These pointwise sensitivities measure the change in the Bayes risk to a perturbation of the

kth parameter in the jth direction bjk. We also define the generalized sensitivity of the kth

subgroup of complementary parameters with respect to the approximate Bayes risk as,

Sk = max
θ∈Θ

|DRTkθ|
‖θ‖Θ

. (4.12)

This formulation uses the selection operator Tk defined in 3.3.2. The generalized sensi-

tivities measure the maximum change that can be observed in the Bayes risk with respect

to a norm-1 perturbation of the kth parameter subgroup.

To compare the MAP point and Bayes risk sensitivities it is important to note that each

sensitivity is endowed with specific units. If we were only concerned with a single HDSA QoI,

this would not matter because we would be primarily concerned with the relative differences

between sensitivities of that measure. When comparing the sensitivities of the MAP point to

Bayes risk however, we must normalize with respect to the QoI to compare the sensitivities

to each other in a reasonable fashion. To do so, we divide the sensitivities with respect to the

MAP point by the average norm of the computed MAP points, 1
ns

∑ns
i=1 ‖m∗(yi, θ̄)‖M, and

the sensitivities with respect to Bayes risk by the computed value of Bayes risk, Ψ̂risk(θ̄).

4.5 Computational Methods

In this section, we present computational methods to implement the framework proposed in

Section 4.4.

4.5.1 Computing the sensitivity indices

With the discretization of m and its prior, we can write the sensitivity operator of the

approximate Bayes risk with respect to the complementary parameters (4.9) as,

DR =
2

ns

ns∑
i=1

(DMi)>M
(
m∗(yi, θ̄)−mi

)
=

2

ns

ns∑
i=1

−B>i H−>i M
(
m∗(yi, θ̄)−mi

)
. (4.13)

We let the subscript i on the operators DMi ∈ Rnm×nθ , Bi ∈ Rnm×nθ , and Hi ∈ Rnm×nm

indicate the dependence on the ith data sample.

To compute matrix-free actions of H and B to vectors, we use a discretized formal
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Lagrangian approach. We note that this method is utilized to both compute sensitivity

indices as well as solve for the MAP point. We begin by defining the discrete Lagrangian as

L(u,m,p;θ) = J(m,θ)− 〈p,v(u,m,θa)〉M (4.14)

where v(u,m,θa) is the discretized form of the PDE v, and p is the adjoint variable. Next,

we use variational derivatives to compute the action of the discretized gradient of the cost

function. We let Lp[p̂] denote the variational derivative of (4.14) with respect to p, acting

on p̂, with the input arguments suppressed for brevity. A similar notation is used for the

variational derivatives with respect to u and m. We can also compute the action of the

Hessian by constructing a meta-Lagrangian,

LH(u,m,p, û, m̂, p̂;θ) = Lp[p̂] + Lu[û] + Lm[m̂]. (4.15)

By computing variational derivatives of the meta-Lagrangian, we can evaluate the action of

the discretized Hessian to vectors. The basic steps of this solution process are outlined in

Algorithm 4, and we direct the reader to [35,85] for additional details.

Algorithm 4 Compute the gradient g(m) and action of the Hessian H in the direction m̂

1: Solve the state equation Lp = 0 for the state variable u
2: Solve the adjoint equation Lu = 0 for the adjoint variable p
3: Evaluate g(m)> = Lm
4: Solve the incremental state equation LHp = 0 for the incremental state variable û
5: Solve the incremental adjoint equation LHu = 0 for the incremental adjoint variable p̂
6: Evaluate the Hessian apply H(m)[m̂] = LHm

Next, we discuss computing the action of the mixed derivative operator B>. We follow a

similar approach as one used to compute the action of the Hessian using the meta-Lagrangian

LH . Namely, we differentiate the mata-Lagrangian with respect to θ to obtain

LHθ (u,m,p, û, m̂, p̂;θ)[θ̃] = θ̃
>
B>m̂,

where û and p̂ satisfy the incremenal state and and adjoint equations, respectively.

Note that we can also compute the action of B by reversing the order of differentiation,

deriving through the Lagrangian by θ and the meta-Lagrangian by m, which will result in

modified incremental equations. These adjoint based methods provide a computationally
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efficient method to evaluate the sensitivity operators DM and DR.

To compute the discretized sensitivity operator DR, we must first generate data samples

yi for i = 1, . . . , ns and then evaluate (4.13) which requires non-trivial computational cost.

We also compute sensitivities of the MAP point, efficiently reusing PDE solves whenever ap-

plicable. This process is summarized in Algorithm 5. Note that for clarity, we have separated

the processes of data generation and sensitivity operator computation in the algorithm. Fur-

thermore, in Algorithm 5 the second subscript in sensitivity indices Sk,i denotes dependence

of the index upon the ith data sample.

Algorithm 5 Compute the sensitivity indices

1: % Data sample generation

2: for i = 1 to ns do
3: Draw prior sample mi

4: Solve the forward equation v(ui,mi, θ̄a) = 0 for ui
5: Synthesize data samples yi = Oui +ηi(θ̄e) {O observes u at measurement locations}
6: end for

7: % Computation of the Bayes risk sensitivities

8: for i = 1 to ns do
9: Solve the discretized inverse problem for m∗i (di, θ̄)

10: Solve −Hizi = M(m∗i −mi) for zi
11: Compute ri = B>i zi
12: end for
13: DR = 2

ns

∑ns
i=1 ri

14: Compute Sk and Sjk for all k = 1, . . . , K and j = 1, . . . , nθ, see (4.11)

15: % Computation of the average MAP point sensitivities

16: for i = 1 to ns do
17: Compute Sk,i for k = 1, . . . , K
18: for j = 1 to nθ do
19: Compute Sjk,i for k = 1, . . . , K
20: end for
21: end for
22: Compute averaged generalized sensitivities Sk ≈ S̄k = 1

ns

∑ns
i=1 Sk,i, see (4.12)

23: Compute averaged pointwise sensitivities Sjk ≈ S̄jk = 1
ns

∑ns
i=1 S

j
k,i, see (4.12)
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4.5.2 Computational Costs

Here we discuss the areas of high computational cost in Algorithm 5. To gain computational

efficiency, we rely on some key tools from PDE-constrained optimization: inexact Newton-

CG for MAP estimation, adjoint methods gradient and Hessian computation, and low-rank

approximations for efficient computation of inverse Hessian applies [18,26,63,68]. In partic-

ular, by combining methods that make maximum use of the problem structure, we ensure

that the computational complexity of our approach, in the terms of the number of PDEs

solves, does not scale with the dimension of the discretized inversion parameter.

Generate data samples. We solve the forward problem ns times and use the resulting

solutions to generate data.

MAP point solves. We solve the inverse problem ns times (line 9) using an inexact

Newton conjugate gradient line search algorithm with Armijo backtracking. Each Newton

step requires 2 PDE solves to compute the gradient and an additional 2I PDE solves to

compute the Hessian apply where I is the number of iterations required by the CG solver

to find an appropriate search direction. Thus the total cost is 2L + 2LI PDE solves where

L is the number of Newton steps taken. This cost in PDE solves multiplied by the number

of samples ns becomes quite significant. However, since the samples drawn from the prior

are independent of each other, these computations can be performed in parallel. We also

note that we initialize the MAP point solves with the prior samples used to generate data

samples.

Evaluating inverse Hessian applies. We now address the problem of repeated ap-

plication of the inverse Hessian, which is required to compute both Bayes risk and MAP

point sensitivities in lines 10, 17, and 19. We note that if one only wishes to compute Bayes

risk sensitivities, this will not require repeated use of the same Hessian inverse, and line 10

can be evaluated with PCG. Assuming that MAP point sensitivities are also desired, we can

offset this cost by computing a low-rank approximation with the Lancoz method to apply

the Hessian inverse efficiently, as detailed in [18]. After computing this low-rank approxi-

mation, application of the Hessian inverse can be approximated by matrix-vector products.

The computational cost of the Lanczos method is 2r + 2 PDE solves, where r is the rank of

the desired approximation.

Computing Bayes risk sensitivities. The sensitivity operator of Bayes risk is a

vector, so we built this operator directly before computing indices. We begin this discussion

by noting that we can solve the state and adjoint equations around the MAP point once for

each data sample, and reuse these solves for each Hessian Hi and mixed derivative operator

Bi or B>i apply. Each Hessian apply requires 2 additional PDE solves (in addition to the

forward and adjoint solves) for the incremental state and incremental adjoint equations.
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These incremental equation solves can be reused to compute the application of B>i , while

Bi apply requires 2 more PDE solves for the modified incremental equations.

Computing MAP point sensitivities. The greatest computational cost in estimating

the MAP point sensitivities comes in the repeated application of DM to standard basis vectors

ei (line 19) to compute nθ pointwise sensitivity indices for all ns data samples. As mentioned

previously, this cost is significantly reduced by pre-computing a low-rank approximation that

allows for fast Hessian inverse applications. It is also important to note that we reuse the

inverse problem solves from computing the Bayes risk sensitivities in computing the MAP

point sensitivities and we do not require any additional inverse problem solves here. Due to

these various computational savings, we can estimate the MAP point sensitivities through

sample averaging at a significantly reduced cost.

Table 4.1: Computational costs summary

Computation Significant Cost per Sample (ns)

Data Generation 1 PDE solve
Inverse Problem Solves 2L+ 2LI PDE solves for L Newton steps

and I PCG iterations
Hessian Inverse Approximation 2r + 2 PDE solves where r is the rank of

the desired approximation
Bayes risk sensitivities 2 PDE solves
MAP point sensitivities 2nθ PDE solves

The discussed computational costs are summarized in Table 4.1 for clarity. We remark that

for the problem considered in the current chapter nθ is not very large. For problems with a

large number of complementary parameters, computing a suitable low-rank approximation

of B may be helpful to reduce the cost of computing many MAP point sensitivities. We plan

to investigate this in our future work.

4.6 Model Problem

In this section, we present a model inverse problem, involving heat flow across a conductive

surface, that will be used to study our HDSA framework. We begin by describing the

forward problem in Section 4.6.1 followed by the setup of the Bayesian inverse problem in

Section 4.6.2.
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4.6.1 Forward Model

Consider the problem of infering the log-conductivity field of a medium from measurements of

temperature. Focusing on a cross section, we consider the problem in two space dimensions.

The forward problem is governed by the following elliptic PDE, modeling steady state heat

conduction on a unit square domain Ω with boundary ∂Ω = ∪4
i=1Γi, where Γ1, Γ2, Γ3, and

Γ4 denote the bottom, right, top, and left edges of Ω respectively,

−∇ · (em∇u) = f in Ω, (4.16a)

em∇u · n = 0 on Γ1 ∪ Γ3, (4.16b)

em∇u · n = β(Tamb − u) on Γ2, (4.16c)

em∇u · n = s on Γ4. (4.16d)

In this model, the inversion parameter m(x) is a function representing the log of the heat

conductivity of the non-homogeneous two-dimensional surface. We let u(x) denote the tem-

perature, f(x) the heat source in the domain, β the heat transfer coefficient of the medium,

Tamb the ambient temperature of the medium, and s(x2) a boundary heat source function

representing heat entering the domain from the left boundary. In this model problem, the

equations in (4.16) are dimensionless and we let Tamb = 22 and consider the heat transfer

coefficient β to be an uncertain auxiliary parameter with a nominal value of β = 1.

The boundary heat source s(x2) is modeled as follows,

s(x2) = s1 exp

(
−
(
x2 − s3

s2

)2
)

with auxiliary parameters s1, s2, and s3 fixed at nominal values s1 = 30, s2 = .1, and s3 = .65.

The auxiliary parameters consist of the amplitude, spread, and location of the boundary heat

source respectively. The heat source in the domain f(x) is modeled as,

f(x) = f1 exp

[
−1

2
(x−w)>C1(x−w)

]
+ f2 exp

[
−1

2
(x− z)>C2(x− z)

]
, with

C1 =

 cos2(γ1)
σ2
x1

+ sin2(γ1)
σ2
x2

sin(2γ1)
2σ2
x2

− sin(2γ1)
2σ2
x1

sin(2γ1)
2σ2
x2

− sin(2γ1)
2σ2
x1

sin2(γ1)
σ2
x1

+ cos2(γ1)
σ2
x2

 and C2 =

 cos2(γ2)
σ2
x1

+ sin2(γ2)
σ2
x2

sin(2γ2)
2σ2
x2

− sin(2γ2)
2σ2
x1

sin(2γ2)
2σ2
x2

− sin(2γ2)
2σ2
x1

sin2(γ2)
σ2
x1

+ cos2(γ2)
σ2
x2

 .
In this formulation, f1 and f2 control the amplitude of the heat sources, w and z control

the centers of the two sources, γ1 and γ2 their respective tilt angles, and σx1 and σx2 the

spread of the heat sources in the x1 and x2 directions respectively. For this problem we fix

74



these parameters at the following nominal values: f1 = 100, f2 = 105,w = (.8, .25), z =

(.5, .8), γ1 = −π/4, γ2 = .15, σx1 = .8, σx2 = .1. We consider the amplitude, center point, and

angle of each bar to be uncertain and thus let f1, f5, w1, w2, z1, z2, γ1, and γ2 be the auxiliary

parameters for the right hand side heat source f(x). Figure 4.2 depicts this heat source in

the domain.

Figure 4.2: The heat source function f(x)

We note that this model problem has been kept intentionally simple to aid in the in-

terpretation and understanding of the complicated algorithmic methodology. Even so, this

example is motivated by many uncertainties surrounding additive manufacturing processes

(such as powered bed laser fusion) that cause high residual stresses and even defects in fi-

nal parts. Variability in the powder material, boundary conditions, rasterization patterns,

and laser power result in uneven heat distribution with problematic micro-crystallographic

structures and inhomogeneous material properties. Although the underlying physics for ad-

ditive manufacturing is more complicated, our model problem conceptually demonstrates

the ability of our approach to provide insight into a complicated application area.

4.6.2 Prior Measure and State Solution

In many inverse problems a “true solution” is chosen to synthesize data and evaluate the

accuracy of the proposed methodology. Note that we do not have any such “true solution”

here and instead we compute data from samples of the prior distribution. We specify the

Bayesian prior on m as a Gaussian random field on Ω with mean mpr and covariance operator
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Cpr. We model the prior mean as a sinusoidal function:

mpr(x) = 1.5 sin(2πx1) cos(2πx2) + 2.

We let the covariance operator Cpr be the inverse of a squared elliptic differential operator

A, where m = A−1s satisfies

α

∫
Ω

(Φ∇m) · ∇q +mq dx =

∫
Ω

sq dx

for all q ∈ H1(Ω), with α = 5, and Φ = .01. This formulation of the prior covariance ensures

that Cpr is trace class and provides a computationally convenient formulation. For more

details see [18].

Measurements are collected on an evenly spaced 5×5 grid of observation locations de-

picted in Figure 4.3. We consider the standard deviation of the noise in each data mea-

surement to be our uncertain experimental parameters. Additive Gaussian noise models

“error” in our data and we assume the measurements are uncorrelated, with nominal stan-

dard deviations of σ = .1, thus Γnoise = σ2I. Although we allow the measurement standard

deviations to take the same nominal value, we consider each standard deviation individually

when computing sensitivities of the solution. Perturbing the noise standard deviation will

also result in a perturbation of the noise realization ηi ∼ N (0,Γnoise), directly proportional

to the multiplicative perturbation of σi. Therefore the experimental parameters θe enter

the inverse problem through the cost function (4.6), both in the noise covariance matrix

Γnoise(θe) and the data measurements y(θe) which depend on the noise realizations.

The solution of the governing PDE system detailed in (4.16) at the nominal parameter

values with m fixed at the prior mean is depicted in Figure 4.3.
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Figure 4.3: The state solution of the governing system of partial differential equations with
the experimental sensor locations indicated by filled black circles.

4.7 Results

Using the model of heat flow across a conductive surface from Section 4.6, we solve an

inverse problem to estimate the posterior distribution. Following Algorithm 5 to evaluate

our Bayesian hyper-differential sensitivities, we take samples from the prior distribution on

m and push them through the forward mapping to generate noisy data. Each data sample

is then used to solve (4.5), giving a unique MAP point reconstruction for each sample. To

illustrate this process, we present three prior samples and their corresponding MAP point

reconstructions in Figure 4.4.

77



Figure 4.4: Top: three samples from the log-conductivity prior. Bottom: inverse problem
MAP point estimates solved using data generated by the above prior sample.

Each MAP point is attempting to estimate the above prior sample from noisy data. This

example is illustrative in that it gives us some insight into Bayes risk, which measures the

average difference in norm between the prior samples (top) and the inferred MAP points

(bottom).

In Section 4.7.1 we detail how perturbations of the complementary parameters are mod-

eled. Following this we present and discuss the significance of the generalized sensitivities

of the complementary parameters as well as the pointwise sensitivities of the experimental

parameters with respect to Bayes risk (Section 4.7.2) and the MAP point (Section 4.7.3).

We note that the pointwise sensitivities of the auxiliary parameters are identical to their

generalized sensitivities as each auxiliary parameter is scalar valued in this model problem.

4.7.1 Modeling Parameter Perturbations

Suppose ρ is an uncertain scalar parameter. We model our uncertainty in ρ as,

ρ = ρ̃(1 + aθ) (4.17)

where ρ̃ is the nominal value, a is a scaling coefficient quantifying our degree of uncertainty,

and θ ∈ [−1, 1] defines a perturbation of ρ̃. Perturbations of vector valued complementary
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parameters, such as data measurements, are modeled as componentwise scalar perturbations

as in (4.17).

In this particular model problem we use a perturbation scaling coefficient of a = .05

for each auxiliary parameter, which represents our uncertainty in that parameter’s estimate

being 5% of the parameter’s nominal value. For the experimental parameters we instead use

a scaling coefficient of a = 1 to represent that our uncertainty in the standard deviation of

the data noise is the full quantity of the standard deviation.

4.7.2 Sensitivities of Bayes Risk

The approximate Bayes risk is computed as a sample average as detailed in (4.8). We present

the generalized sensitivities of each complementary parameter with respect to Bayes risk in

Figure 4.5. We study the effect of the sample size on the computed sensitivities by comparing

generalized sensitivities for Bayes risk computed from ten groups of 20 samples, ten groups

of 100 samples, and ten groups of 500 samples, each taken randomly from a group of 3000

pre-computed samples.
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Figure 4.5: Generalized sensitivities of Bayes Risk to complementary parameters computed
with sample sizes of 20, 100, and 500.

First let us discuss the spread of the samples. We can see that while the groups of 100

samples can sometimes vary significantly, such as in the case of γ2, they generally capture
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the rankings of the parameters relative to one another correctly. Thus, if we are primarily

concerned with determining the relative importance of the parameters compared to each

other we may conclude that 100 samples provides sensitivity estimates that suit our needs.

Next, we note that Bayes risk is most sensitive to the tilt angle of the second domain

heat source γ2. We observe that as the tilt angles γ1 and γ2 are changed, they can overlap in

the domain interior, causing a large increase in heat where the overlap occurs and will result

a significant change in f . One possible reason γ2 is so important is that even a relatively

small perturbation will result in increased or decreased overlap of these bars in the domain.

Of secondary importance are the heat amplitude (f5) and center in the x1 direction (z1) of

the second domain heat source, heat transfer coefficient (β), and the standard deviations

of data noise (σ). This sensitivity information can then be used by an experimenter to

inform their experimental design choices for this problem. To accurately estimate the Bayes

risk for this problem as a measure of posterior uncertainty, it is more important to invest

resources in ensuring that the parameters γ2, f5, z1, β, and σ are accurately estimated than

the other complementary parameters. Specifically, we can interpret these sensitivities as

“a 5% perturbation in the scalar auxiliary parameters or a norm-1 perturbation in the

experimental parameters (σ) will result in a perturbation of Bayes risk proportional to the

sensitivity.”

While these sensitivities appear to be very small, we note that the problem is highly

diffusive and steady state. Both of these factors are likely making the problem highly insen-

sitive to perturbations of complementary parameters. This in of itself showcases the benefits

of using HDSA. For such an insensitive problem, it would be extremely difficult to gather

any kind of intuition or conclusion as to the relative importance of various parameters a

priori. With our framework however, we can rigorously determine the relative importance of

uncertain parameters before any physical experimentation is done, even for highly insensitive

problems, which is valuable to experimenters who seek to efficiently allocate experimental

resources.

Next we study the pointwise sensitivities of Bayes risk to the experimental parameters,

the standard deviation of noise in the data measurements, presented in Figure 4.6. By

perturbing the noise, we model perturbations of each collected data measurement in a way

that we can experimentally control through sensor accuracy.
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Figure 4.6: Point-wise sensitivities of Bayes Risk to experimental parameters computed
from 1000 samples. Each bar represents the sensitivity of perturbing the standard deviation
of the data noise at that particular sensor location.

We first note the scale of sensitivities presented in Figure 4.6. Although these sensitivities

are very small (on the order of 10−5 or 10−6), this is not entirely unexpected given the scale of

the generalized sensitivities presented in Figure 4.5. Indeed, we would expect that perturbing

a single data measurement’s noise would not result in a very large change in Bayes risk. We

can see that the sensors grouped around small values of x1 and large values of x2 are most

important with respect to Bayes risk. Thus, we can conclude that the data measured at

these sensors is the most important to collect accurately for the purposes of estimating our

measure of posterior uncertainty. We observe that these sensors are located in the region

that the state solution depicted in Figure 4.3 is largest. This is also the region near the

boundary source term s. We also note that the sensors at (.9,.1) and (.9,.9) are relatively

important, which are located in the areas where the state solution is smallest. These results

provide information that may not be obvious a priori and helps practitioners understand

what parameters and sensor measurements the solution is most sensitive to.

4.7.3 Sensitivities of the MAP Point

We now study the averaged generalized sensitivities of the MAP point. As was done previ-

ously, we study the effect of the sample size on the generalized sensitivities. This is done by

computing generalized MAP point sensitivities for 3000 data samples. We then randomly
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select and average ten groups of 20 sensitivities, ten groups of 100 sensitivities, and ten

groups of 500 sensitivities, which are plotted in Figure 4.7.
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Figure 4.7: Averaged generalized sensitivities of the MAP point to complementary param-
eters computed with sample sizes of 20, 100, and 500.

In this case we can see that even groups of 20 sensitivities produce little variation in the

averaged sensitivity measure. Thus, we can conclude that for this application, using a sample

average of just 20 sensitivities provides sufficient accuracy for our purposes. Furthermore,

we notice that the generalized sensitivities of the MAP point are significantly greater in

magnitude than those computed for Bayes risk. For this problem, it appears that the MAP

point is more sensitive to perturbations in the complementary parameters than the posterior

uncertainty is. We see that the MAP point has greatest sensitivity to γ2, β, z1, and f5. It is

interesting to note that for Bayes risk, σ and β had the second and fifth greatest sensitivity,

respectively. In contrast, the sensitivity rankings of these two parameters have switched

places with respect to the MAP point.

Finally, we examine the pointwise sensitivities of the MAP point to the experimental

parameters depicted in Figure 4.8. Each pointwise sensitivity is computed as an average

of 20 sensitivities computed from different data samples. We compared these pointwise

sensitivities with those computed from an average of 1000 sensitivities, and as our study on

sample size in Figure 4.7 would indicate, there was minimal difference.
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Figure 4.8: Point-wise sensitivities of the MAP point to experimental parameters computed
as an average of 20 sample sensitivities.

We can again see that the sensors grouped around small values of x1 and large values of

x2 are most important with respect to the MAP point. We observe that for this problem

the sensors with greatest importance to the MAP point coincide closely with those sensors

that are important for Bayes risk.

4.8 Conclusion

In this chapter we take foundational steps in applying hyper-differential sensitivity analysis

(HDSA) to large-scale nonlinear Bayesian inverse problems. In particular, we focus on HDSA

of the MAP point and Bayes risk to the auxiliary and experimental parameters and present

efficient methods for computing the corresponding HDSA indices. Performing HDSA is

important as it reveals the auxiliary parameters the inverse problem is most sensitive to.

Moreover, HDSA with respect to measurement data helps identify the measurements that

are important to the solution of the inverse problem, and can guide design of experiments

by investing resources to obtain good quality data from important measurement points.

It is also important to note that the Bayesian formulation allows for the computation of

HDSA indices prior to conducting experiments. Namely, we use the information encoded in

the Bayesian inverse problem to obtain likely realizations of measurement data, which are
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used to compute the Bayes risk sensitivities and average MAP point sensitivities. This is

a key factor that makes this approach attractive for HDSA of Bayesian inverse problems,

while minimizing experimental costs.

While the steady state heat conduction model presented in Section 4.6 is an academic

model problem, it has many features that are seen in real applications. We found that the

tilt angle, heat amplitude, and center in the horizontal direction of volume heat source as

well as the heat transfer coefficient and data noise were the parameters that both the Bayes

risk and the MAP point were most sensitive to. We also determined which sensors provide

the most informative data and found that for this problem the Bayes risk is generally less

sensitive to perturbations of the complementary parameters than the MAP point is. Such

observations can be instrumental in areas such as additive manufacturing. By applying the

proposed methods to additive manufacturing problems, one can determine a priori which

experimental factors the inverse problem solution will be most sensitive to and thereby

guide the calibration of equipment tolerances with this information.

The MAP point is a key point estimator for the inversion parameters and performing

HDSA on this quantity provides valuable insight regarding the sensitivity of the inverse

problem to complementary parameters. On the other hand, Bayes risk provides a measure

of the statistical quality of the estimated parameters, and is a common utility function in

decision theory. Additionally, up to a linearization, Bayes risk can be considered as a proxy

for posterior uncertainty. These considerations, coupled with the fact that the methods for

HDSA of Bayes risk build on methods for HDSA of MAP point, made Bayes risk a suitable

HDSA QoI in first steps towards HDSA of Bayesian inverse problems.

In our future work, we plan to investigate HDSA of different quantities such as average

posterior variance or expected information gain. Suitable approximations of the posterior,

such as a Laplace approximation, can be considered, to mitigate the high cost of HDSA

of such quantities in large-scale nonlinear inverse problems. Another interesting line of

inquiry is to use HDSA within the context of optimal experimental design (OED) under

uncertainty [7, 56]. HDSA can reveal model uncertainties that the OED criterion is most

sensitive to and thus must be accounted for in the optimal design process. On the other hand,

model uncertainties the design criterion is less sensitive to may be fixed at some nominal

values, hence reducing the complexity of OED under uncertainty problem.
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CHAPTER

5

CONCLUSION

The goal of the work provided herein is to introduce new methods that augment traditional

approaches to understand and design PDE-constrained inverse problems. In particular,

the work in chapters 2-4 seeks to understand how to account for and quantify the effect of

uncertain model and experimental parameters, which are abundant in practical applications.

Chapter 2 studies optimal experimental designs of linear inverse problems and takes into

account reducible model uncertainties by optimizing over a marginalized A-optimality cri-

terion. Our experiments indicate that minimizing the marginalized A-optimality criterion

offers a significant increase in the quality of the inferred inversion parameters, both in param-

eter estimation and uncertainty reduction. Chapter 3 examines inverse problems through the

lens of post-optimal sensitivity analysis. The hyper-differential sensitivity analysis frame-

work (HDSA) proposed therein offers a robust method of understanding the sensitivity of the

solution to a large variety of uncertain parameters including those present in the governing

model itself as well as the experimental conditions. While the work in chapter 3 pertains

to deterministic inverse problems, chapter 4 extends this work to Bayesian inverse problems

which presents many new mathematical and computational challenges. This work measures

posterior uncertainty through Bayes risk which is equivalent to the average posterior variance

in linear inverse problems and is used as a measure of solution quality for nonlinear inverse

problems. Each of these works shows that additional uncertainties present in the model and
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experimental conditions can have significant effects upon the inverse problem solution and

should be taken into account when solving these problems.

There are are various lines of future investigation stemming from this work. While chap-

ter 2 presents optimal experimental design under uncertainty (OEDUU) for linear inverse

problems, this work should be extended to nonlinear inverse problems as well. Chapters 2

and 4 are very synergistic and can be utilized together to efficiently explore high-dimensional

OEDUU problems. OEDUU problems with a large number of uncertain auxiliary parameters

become very computationally expensive. In this case, we can leverage the Bayesian HDSA

methodology to determine which uncertain parameters the inverse problem is most sensi-

tive to. One can then consider only these important parameters as uncertain for the OED

computation, fixing the remaining parameters at nominal values and drastically reducing

the computational expense of the OEDUU problem. While this outlines a clear framework

for utilizing HDSA and OEDUU together, it may be possible to connect the two methods

in other ways. Two additional interesting directions of investigation include studying how

experimental sensitivities can be used to inform the OED problem and examining how the

sensor placement problem itself, rather than the solution of the inverse problem, is sensitive

to perturbations of the complementary parameters. The work in chapter 4 is a founda-

tional work in the direction of HDSA for Bayesian inverse problems. While this dissertation

presents a computationally efficient method for computing sensitivities of Bayes risk, there

are many other measures of posterior uncertainty, such as the various OED criteria, which

HDSA can be extended to.
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