
ABSTRACT

BORTNER, CASHOUS WILLIAM. Identifiability Analysis of Two Families of ODE Models.
(Under the direction of Seth Sullivant).

Ordinary differential equations have been used to model natural phenomena in various

scientific disciplines for hundreds of years. A natural question stemming from these models

is whether we can recover unknown information from within the model using known

or measured information. From this question formed the study of identifiability of ODE

models. In this thesis, we focus on the identifiability of two families of ODE models, both of

which have a corresponding graphical structure.

The first family we consider is LCR circuit systems consisting of parallel and series

combinations of inductors, capacitors, and resistors. We first derive a method of construct-

ing the defining constitutive equation corresponding to an LCR circuit system. Using this

constitutive equation construction along with previous identifiability results on related

viscoelastic models, we completely classify identifiability of all two base element type LCR

circuit systems based on the structure of the corresponding graph. We also state several

results on general LCR circuit systems and their corresponding constitutive equations,

and construct a classification of LCR circuit systems we believe could be useful in future

identifiability study.

The second family of ODE models we consider is linear compartmental models which

have an underlying structure visualized by a directed graph. First, we consider models

which we know are unidentifiable, and consider a reparametrization based on the structure

of the corresponding directed graph. We classify models for which this reparametrization

results in an identifiable model as identifiable path-cycle models. We then explore the

relationship between identifiable path-cycle models and identifiable models. We also

consider the identifiability of another subclass of models called linear compartmental

tree models. In this study, we state a novel characterization of the defining input-output

equation of a linear compartmental model. We then use this characterization to completely

classify the identifiability of linear compartmental tree models solely on the structure of

the corresponding graph.
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CHAPTER

1

INTRODUCTION

In this chapter, we present background material related to the topics of this thesis. Section

1.1 is an introduction to the study of identifiability and some of the tools we will use in

this thesis. Section 1.2 is an introduction to the graph theoretic background needed in this

thesis. Section 1.3 is an introduction to the tools from algebraic geometry that we need in

this thesis, including ideals, varieties and projective geometry. Section 1.4 introduces LCR

circuit systems, which will be the main focus of Chapter 2. Section 1.5 introduces linear

compartmental models, the focus of Chapters 3 and 4. Finally, Section 1.6 gives a summary

of the main results from this thesis.

1.1 Identifiability

Modeling the physical world using ordinary differential equations (ODEs) has long been

of interests in several academic fields ranging from physics to biology and epidemiology

(Berman and Schoenfield 1956; Stefano 2014; Mulholland and Keener 1974; Wagner 1981).

These models consist of known input and output variables, and unknown parameters and

state variables. A natural question in the study of ODE models is whether or not we can

1



recover the unknown parameters from the known input and output variables. This question

is the basis for the study of identifiability.

The study of identifiability has been split into two subcategories called structural and

practical identifiability. Structural identifiability, the focus of this thesis, is the question

of recovering parameters of an ODE system a priori. In essence, analysis of the structural

identifiability of a model asks whether under perfect conditions with no noise or error

in measurements, we can recover the parameters of a model. This is a key first step in

evaluating, and perhaps even adjusting an ODE model.

On the other hand, the study of practical identifiability asks the same question with the

addition of noise, i.e. practical identifiability is the study of actually recovering parameters

from measured data. Structural and practical identifiability are intimately connected in that

structural identifiability is a prerequisite for practical identifiability. In practice, structural

identifiability is done in the preliminary stages of model analysis to determine the viability

of practical identifiability, and to potentially find reparametrizations of the model which

yields an identifiable model.

The ODE models that are considered in this thesis have the form

Σ=







ẋ = f(x, a, u)

y = g(x, a, u)

where x is a vector of state variables, u and y are vectors of the input and output vari-

ables respectively, and a is the vector of model parameters. Define an input-output equa-

tion corresponding to a model to be an ODE in the known input and output variables

and their derivatives, with coefficients in the unknown parameters. In this thesis we con-

sider the case where the input-output equation is a polynomial function F satisfying

F (y , ẏ , ÿ , . . . , u , u̇ , ü , . . . , a1, a2, . . .) = 0 and analyze identifiability of functions of parameters

via this input-output equation. There are several other methods for studying structural

identifiability, including the Taylor series approach, the generating series approach, identi-

fiability tableaus, and similarity transformation approach among others (Chis et al. 2011).

The input-output equation[s] corresponding to an ODE model is the minimal set of defining

ODEs of the model in the measurable variables, with coefficients consisting of functions of

parameters.

Example 1.1.1. Consider the model with known input u1, known output y2, and unknown

2



parameter a21, and state variables x1 and x2 defined by the following system of ODEs:

ẋ1 =−a21 x1+u1

ẋ2 = a21 x1

y2 = x2.

An input-output equation for this systems would be a differential equation consisting

of only y2 and u1 and their derivatives, along with a21. This can be quickly constructed via

substitution resulting in the input-output equation:

ÿ2+a21 ẏ2 = a21u1. (1.1)

As we assume ÿ2, ẏ2, and u1 are known, then we can solve for the unknown parameter

a21 via Equation 1.1 as

a21 =
ÿ2

u1− ẏ2
.

Note that several other assumptions must be made in order to actually recover a21, including

u1 ̸= ẏ2 and that y2 has nontrivial first and second derivatives.

The method for recovering the parameter in Example 1.1.1 of solving for the parameter

directly in terms of the input and output variables is not the standard method used in the

study of identifiability, particularly because it is not possible for more complex models.

In this thesis, we use the differential algebra approach and consider identifiability by the

input-output equation, and more specifically by the map from the parameter space to the

space of coefficients of the input-output equation.

Definition 1.1.2. Consider a model with parameters a, input variables u, output variables

y, and input-output equations

f1(u, y) = 0

f2(u, y) = 0

...

fk (u, y) = 0

Here, each fi is an ODE in u and y and their derivatives with coefficients consisting of

functions of parameters a. Define the coefficient map c: Θ→Rv to be the map from the

3



space of parameters to the space of coefficients. Similarly, we can define a coefficient map

for each fi (u, y) as ci : Θ→Rvi which maps from the parameter space to the coefficients of

fi (u, y).

Remark 1.1.3. In this thesis, we analyze structural identifiability of models by their input-

output equations, and specifically by considering the injectivity of the coefficient map. The

fact that we can study the identifiability of these models using the input-output equation is

not trivial, and in general not necessarily true. Specifically, it could be impossible to recover

the coefficients from a set of input-output equations.

In order to recover the coefficients from the input-output equations f1, . . . , fn , we need

to make assumptions about u and y and their relationship with their respective derivatives.

Namely, we need that each ci (a) is uniquely determined by the input-output variables.

Specifically, we assume that if

fi (u, y) = g i 1(u, y) +
vi
∑

j=2

ci j (a)g i j (u, y) = 0 (1.2)

where g i j (u, y) is the j th monomial term in fi (u, y), then there exists some N and t1, . . . , tN ∈
R such that the system of r N equations obtained by evaluating each of the r input-output

equations 1.2 at the t1, . . . , tN has a solution in the unknowns ci j (a).

In practice, the existence of N and t1, . . . , tN is not guaranteed, particularly in the case

when there is more than one output variable. Theorem 1 of Ovchinnikov et al. (2021a) states

that we are able to consider identifiability of a model by considering the injectivity of the

coefficient map, what they call input-output identifiability, in the case when there is exactly

one output. In this thesis, we restrict our study of identifiability to models with a single

output. We do make statements about input-output equations for models with multiple

outputs, particularly in Chapter 4, for the sake of future study in this area.

Our investigation of identifiability in this thesis is split into a two part problem. First, we

need to determine a method of generating the input-output equation of a model, and sec-

ond we determine the injectivity of the input-output equation. We place a heavy emphasis

on generating the input-output equations using combinatorial methods in the hope that

we can make deductions about the identifiability using only a surface study of the structure

of the model and input-output equations. Specifically, in Chapter 2 we use the number of

parameters as compared to the number of coefficients to completely classify identifiability

a subset of LCR models. In Chapter 4, we generate the coefficients of the input-output

4



equations via the graphical structure of the model, resulting in several identifiability results

based solely on the underlying graph structure of the model.

Example 1.1.4. Consider the model with parameters a1, a2, a3, a4 and input-output equa-

tion

a1 ÿ +
a1a2

a4
ẏ = ü +

�

a1

a3
+

a1

a4
+

a2

a4

�

u̇ +
a1a2

a3a4
u .

Then, the coefficient map corresponding to this model is

c: (a1, a2, a3, a4) 7→
�

a1,
a1a2

a4
,

a1

a3
+

a1

a4
+

a2

a4
,

a1a2

a3a4
.
�

Note that we omit the monic coefficient of ü from the coefficient map, as it will not have

an effect on the injectivity of the map c. Also, this map is only well defined when a2, a3 and

a4 are nonzero. In general, throughout this thesis we will assume we are away from regions

in the parameter space that make the coefficient map undefined.

Now we define structural identifiability more formally, and make distinctions between

different types of structural identifiability. Also, as we only discuss structural identifiability

from this point forward, we drop the “structural.”

Definition 1.1.5. Let c: Θ→Rn be the coefficient map of a model from a parameter space

Θ ⊆Rk . Then, we say the model is

• globally identifiable if c−1(c(a)) = a for all a ∈Θ;

• locally identifiable if |c−1(c(a))|<∞ for almost all a ∈Θ;

• unidentifiable if |c−1(c(a))|=∞ for almost all a ∈Θ.

We now introduce one of the main tools we use for identifiability analysis, which gives

insight as to why so many of the results in this thesis relate to local identifiability.

Definition 1.1.6. For a polynomial map

f : Rn →Rm

(a1, a2, . . . , an ) 7→
�

f1(a1, . . . , an ), . . . , fm (a1, . . . , an )
�

the Jacobian matrix associated to f , sometimes called the differential, is the m by n matrix

where each row corresponds to one of the fi , and each column is the partial derivative of

5



that fi with respect to one of the variables a j

J f (a1, a2, . . . , an ) =













∂ f1
∂ a1

∂ f1
∂ a2
· · · ∂ f1

∂ an
∂ f2
∂ a1

∂ f2
∂ a2
· · · ∂ f2

∂ an
...

...
...

...
∂ fm
∂ a1

∂ fm
∂ a2
· · · ∂ fm

∂ an













The Jacobian matrix is of interest because of its relationship with the local injectivity of

its corresponding function, as outlined in the Inverse Function Theorem (Chern et al. 2006,

Theorem 3.1).

Theorem 1.1.7 (Inverse Function Theorem). Suppose W is an open subset ofRn and f : W →
Rn is a smooth map. If at a point x0 ∈W the determinant of the Jacobian matrix is nonzero,

i.e. det(J f (x0)) ̸= 0, then there exists a neighborhood U ⊂W of x0 inRn such that V = f (U ) is

a neighborhood of f (x0) in Rn , and f has a smooth inverse on V .

The Inverse Function Theorem, and specifically the Jacobian matrix, will be one of our

main tools in the identifiability analysis of a coefficient map. As a result, many of the results

in this thesis are local identifiability results, since the Inverse Function Theorem only gives

us local information about injectivity.

Example 1.1.8. We saw that we could recover the single parameter a21 in the model in

Example 1.1.1 directly from the input and output variables. We can come to this conclusion

via the input-output equation, since in this case the input-output equation is c: (a21) 7→
(a21, a21). This map is certainly injective for all a21 ∈R, thus we find that this model is globally

identifiable.

Consider the model with input-output equation

ÿ +
b c +a d

c d
ẏ +

a b

c d
y =

a b (c +d )
c d

u̇ + (a + b )u

hence coefficient map

c: (a , b , c , d ) 7→
�

b c +a d

c d
︸ ︷︷ ︸

f1

,
a b

c d
︸︷︷︸

f2

,
a b (c +d )

c d
︸ ︷︷ ︸

f3

, a + b
︸ ︷︷ ︸

f4

�

.

6



Now a quick Jacobian calculation yields

Jc(a , b , c , d ) =











a b c d

f1
1
c

1
d

b
c d −

b c+a d
c 2d

a
c d −

b c+a d
c d 2

f2
b

c d
a

c d − a b
c 2d − a b

c d 2

f3
b (c+d )

c d
a (c+d )

c d
a b
c d −

a b (c+d )
c 2d

a b
c d −

a b (c+d )
c d 2

f4 1 1 0 0











.

The determinant of this Jacobian is

det(Jc(a , b , c , d )) =
−c 2a b 3+2a 2b 2c d −a 3b d 2

c 4d 4
.

Thus, for generic entries of (a , b , c , d ), this determinant is nonzero meaning c is locally

injective by the Inverse Function Theorem, hence the model is locally identifiable.

This model is not globally identifiable as the two points (a , b , c , d ) and (b , a , d , c ) have

the same image for all positive a , b , c , and d .

Finally, if we consider any model with fewer coefficients in the input-output equation

than parameters, for example a model with coefficient map

c: (a , b , c , d ) 7→ (a b c , a b +a c + b d , a + b + c +d ),

then the result is an unidentifiable model, as a map from a larger dimensional space to a

smaller dimensional space cannot possibly be injective.

Remark 1.1.9. When the coefficient map maps from a space of some dimension to a

space of smaller dimension, we immediately can determine that the map is not injective,

hence the model is unidentifiable. This fact will actually be the focus of many of our results

on unidentifiability, though to use it we must first determine the number of nontrivial

coefficients in the input-output equation of a model.

Much of this thesis will focus on local identifiability results, as one of the main tools

we use in identifiability analysis is the Jacobian matrix, with which we can only determine

local injectivity as outlined in the Inverse Function Theorem (Theorem 1.1.7).

Often we want to show that each individual parameter is identifiable. In cases when

we immediately know that each parameter cannot be identifiable, we are interested is

finding identifiable functions, also called identifiable combinations, of parameters for the

sake of possible reparametrization. Ovchinnikov et al. (2021a,b) note that this notion of

7



identifiability is not necessarily the same as the analytic definition of identifiability. In the

case of the models that we consider in this thesis, the analytic notion of identifiability does

align with the “input-output identifiability” that we have introduced via the three main

results from Ovchinnikov et al. (2021a).

In the case that a model is not identifiable, we are often interested in reparametrizing

the model into one which is identifiable. To do this, we first need to define an identifiable

function of parameters.

Definition 1.1.10. Let c be a function c : Θ ⊆ Rn → Rk . A function f : Rn → R is globally

identifiable from c if there exists a function Φ :Rk →R such that Φ ◦c= f . The function f is

locally identifiable if there is a finitely multi-valued function Φ :Rk →R such that Φ ◦ c= f .

Working with unidentifiable models to find identifiable reparametrizations is the focus

of Chapter 3. Consider the following example.

Example 1.1.11. Consider the functions

c: (a , b , c ) 7→ (a , a b + b c )

f : (a , b , c ) 7→ b + c .

The function f is globally identifiable from c since if we let

Φ: (c1, c2) 7→
c2

c1
,

then we have that Φ ◦ c= f .

In Chapter 3, we consider models which are immediately unidentifiable due to the

input-output equation having fewer coefficients than there are parameters, however we

reparametrize these models using graph structures to get identifiable models.

1.2 Graph Theory

In this section, we discuss graph theoretic concepts that are necessary for the rest of this

thesis. Standard references for this material can be found in Biggs (1993) and Diestel (2006).

Definition 1.2.1. A undirected graph G = (V , E ) is defined by the set of vertices V =

{v1, . . . , vn} and the set of edges E ⊆ {{i , j }: i , j ∈V }. We define directed graphs similarly as

H = (V , E ′), where the edges now consist of ordered pairs E ′ ⊆ {(i , j ): i , j ∈V }

8



1 2

3 4

1 2

3 4

Figure 1.1: Undirected and directed graphs G and H respectively described in Example
1.2.2.

Undirected graphs can be visualized with vertices corresponding to points in the plane

and edges corresponding to line segments between vertices. Directed graphs on the other

hand can be visualized with the same vertex points in the plane, but with directed arrows

between these points.

Example 1.2.2. Figure 1.1 gives visual representations of an undirected and directed graph

respectively both over the set of vertices V = {1,2,3,4}. The undirected graph G = (V , E )

has edge set E = {{1, 2},{1, 4},{2, 4},{3, 1}}, while the directed graph H = (V , E ′) has nearly

the same edge set, but with ordered pairs E ′ = {(1, 2), (1, 4), (2, 4), (3, 1)}. In this case, we say

that the undirected graph is the underlying undirected graph of the directed graph. These

graphs are examples of simple graphs meaning they have at most one edge between each

pair of vertices, and no self-loops, i.e. edges from a vertex to itself.

Define a subgraph of a graph G = (V , E ) as H = (W , F ) such that V ⊆W and F ⊆ {{i , j } ∈
E : i , j ∈W }. An induced subgraph of a graph G = (V , E ) is defined by some W ⊆V as

GW = (W ,{{i , j } ⊆ E : i , j ∈W }).

Example 1.2.3. The induced subgraph on the undirected graph defined in Example 1.2.2

by the set {1, 2, 3} is

G{1,2,3} = ({1, 2, 3}, {{1, 2},{3, 1}}).

A path is a non-empty graph Pk = (V , E ) of the form

V = {v0, v1, . . . , vk} and E = {{v0, v1},{v1, v2}, . . . ,{vk−1, vk}} (1.3)

where all vi are distinct. A directed path is defined accordingly with a directed edge set

as E = {(v0, v1), (v1, v2), . . . (vk−1, vk )}. We often consider paths found within other graphs,

9



that is paths which are subgraphs of other graphs. For example, we define the distance

between two vertices in a graph as the number of edges on the shortest path between the

two vertices. The distance between two vertices i and j is denoted dist(i, j). Similarly, for

directed graphs, we define dist(i, j) as the length of the shortest directed path from i to j .

We say an undirected graph is connected if there is a path from every vertex to every

other vertex within the graph. Similarly, we say a directed graph is strongly connected if

there is a directed path from every vertex to every other vertex. A directed graph is said to

be inductively strongly connected with respect to vertex 1 if there exists an ordering of the

vertices 1, 2, . . . , n such that the induced subgraphs G{1,...,i } are strongly connected for each

i ∈ {1, . . . , n}.
For an undirected path Pk = (V , E ) as defined in 1.3, define a cycle to be the graph

Ck = (V , E ∪{k , 1}), i.e. the path on k vertices with an additional edge connecting one end

of the path to the other. Similarly, we define a directed cycle as a directed path with the

addition of the directed edge from the last vertex in the path to the first vertex. Again, we

are often interested in finding cycles within other graphs, i.e. as subgraphs of other graphs.

A undirected graph is said to be a forest if there are no underlying cycles (subgraphs

which are cycles), and a tree if the graph is a connected forest. In fact, a defining property

of a tree is that there is exactly one path between any two vertices.

Example 1.2.4. Consider the graphs G and H in Figure 1.2. Note that both graphs are

strongly connected, as in both graphs there is a directed path from any vertex to any other

vertex. In fact, note that G is a subgraph of H , and is the directed cycle graph on four

vertices. Note that the graph G is not inductively strongly connected, as the removal of any

vertex yields a graph which is not strongly connected. The graph H on the other hand is

inductively strongly connected with respect to the vertex 1 and the ordering 1, 2, 3, 4, since

the induced subgraphs G{1},G{1,2}, and G{1,2,3} are all strongly connected, and as discussed

G =G{1,2,3,4} is strongly connected.

These graph structures are a main element of this thesis, as all of the models considered

in later chapters can be visualized with a graph. This is especially evident in Chapters 3 and

4, as linear compartmental models are defined partially by a directed graph. One of the

main goals of our study of identifiability, particularly with respect to linear compartmental

models, is to classify identifiability strictly by the structure of the corresponding directed

graph.

Definition 1.2.5. Define the Laplacian matrix L of a directed graph G = (V , E )with weights

10



1 2

4 3

G

1 2

4 3

H

Figure 1.2: Directed graphs G and H , with G strongly connected but not inductively
strongly connected, and H inductively strongly connected.

ai j for the edge j → i ∈ E is defined as

L i j =















∑

j→k∈E ak j if i = j

−ai j if j → i ∈ E

0 otherwise.

(1.4)

There is also a standard definition for the Laplacian matrix of undirected and un-

weighted graphs, though we will not need this definition in this thesis, so it is omitted

(Biggs 1993, Chapter 4).

Example 1.2.6. The Laplacian Matrix associated to the directed graph G in Figure 1.3 with

weights a j i for each edge j → i has the form:

L =











a21+a41 0 −a13 0

−a21 a42 0 0

0 0 a13 0

−a41 −a42 0 0











(1.5)

We now consider a specific type of graph called an incoming forest which will play a

key role in one of our main theorems relating to input-output equations in Chapter 4.

Definition 1.2.7. A directed graph is an incoming forest if no vertex has more than one

outgoing edge, and its underlying undirected graph is a forest.

We introduce the following notation for a directed graph H :
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1 2

3 4

a21

a42a13
a41

Figure 1.3: A weighted graph discussed in Example 1.2.6.

1 2

3 4 ,

1 2

3 4 ,

1 2

3 4 ,

1 2

3 4 ,

1 2

3 4 ,

1 2

3 4 ,

1 2

3 4

Figure 1.4: All seven incoming forest subgraphs of the directed graph from Example 1.2.2
containing more than one edge.

• F j (H ) is the set of all incoming forests of H with exactly j edges, and

• F k ,ℓ
j (H ) is the set of all incoming forests of H with exactly j edges, such that some

connected component (of the underlying undirected graph) contains both of the

vertices k and ℓ.

Example 1.2.8 (Continuation of Example 1.2.2). The directed graph G given in Example

1.2.2 is not an incoming forest, as the underlying undirected graph, also seen in Example

1.2.2 contains the cycle 1→ 2→ 4→ 1. With that being said, this graph does have several

subgraphs which are incoming forest, all of which can be seen in Figure 1.4. There are two

incoming forests in G containing three edges i.e. |F3(G )| = 2, and five incoming forests

in G containing two edges which are incoming forests i.e. |F2(G )| = 5. Also, note that by

definition, any subgraph contain one or zero edges is an incoming forest.

The following version of the well-known Matrix Tree Theorem connects the ideas of the

Laplacian matrix and its characteristic polynomial, with incoming forests found within the

corresponding graph. This will be a key element of the proof of one of the main theorems

12



of Chapter 4.

Proposition 1.2.9 (All Minors Matrix Tree Theorem, Buslov (2016)). Let

det(λI − L ) =
N
∑

k=0

ckλ
k (1.6)

be the characteristic polynomial of the weighted Laplacian of an N -vertex directed graph G

without loops and with edge weights a j i . Then

ck = (−1)N−k

 

∑

F ∈Fk (G )

πF

!

where πF =
∏

(i , j )∈EF

a j i .

For a weighted graph G , the πG defined in Proposition 1.2.9 is called the productivity of

G . Following the usual convention, we define πH = 1 for graphs H having no edges.

Example 1.2.10 (Continuation of Example 1.2.2). The characteristic polynomial of the

weighted Laplacian matrix from Example 1.2.6 associated to the directed graph in Example

1.2.2 is

det(λI − L ) = det











λ−a21−a41 0 a13 0

a21 λ−a42 0 0

0 0 λ−a13 0

a41 a42 0 λ











=λ4− (a13+a21+a41+a42)λ
3+ (a13a21+a13a41+a41a42+a13a42+a21a42)λ

2

− (a13a21a42+a13a41a42)λ (1.7)

If we label the coefficient of λi as ci , then each ci in Equation 1.7 corresponds exactly

to the sum of the productivities of the incoming forests of G containing i edges, as in

Proposition 1.2.9. The coefficient ofλ3 is of the sum of each of the edge weights in the graph,

as any single edge constitutes an incoming forest. The seven incoming forests corresponding

to the coefficients of λ and λ2 can be seen in Example 1.2.8.

Also note that the λ0 coefficient is zero. This is due to the constant in the characteristic

polynomial being the determinant of L , which in the case of the Laplacian is a singular

matrix. The singularity of the Laplacian matrix comes from the fact that by definition, the

sum of all of the rows of the Laplacian is the zero vector.

The Laplacian matrix is connected to the compartmental matrix of a linear compart-
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mental model. We use this fact coupled with the All Minors Matrix Tree Theorem to find

a combinatorial characterization of the input-output equation of linear compartmental

models in terms of incoming forests of graphs closely related to the model in Theorem

4.2.1.

1.3 Algebraic Geometry

In this section, we focus on the study of polynomials, and specifically their roots and

coefficients and the relationship between them. Standard introductory references for this

material can be found in Cox et al. (2005).

1.3.1 Ideals, Varieties, and Projective Geometry

IfK is a field, letK[x1, x2, . . . , xn ] be the set of polynomials in x1, x2, . . . , xn with coefficients

inK.

Definition 1.3.1. An ideal I ⊆K[x1, . . . , xn ] is a set of polynomials such that

• 0 ∈ I ,

• if f , g ∈ I then f + g ∈ I , and

• if f ∈ I and g ∈K[x1, . . . , xn ], then f g ∈ I .

We can now define ideals generated by the polynomials f1, . . . , fm as

〈 f1, . . . , fm 〉=

¨

m
∑

i=1

hi fi : h1, . . . hm ∈K[x1, . . . , xn ]

«

In this case, we say that f1, . . . , fm are the generating set for this ideal. A major result of

commutative algebra called the Hilbert Basis Theorem, states that every polynomial ideal

I ⊆K[x1, . . . , xn ] has a finite generating set, i.e. there exists some g1, . . . , gm ∈K[x1, . . . , xn ]

with m finite such that 〈g1, . . . , gm 〉= I .

We now define another set determined by a finite set of polynomials.

Definition 1.3.2. For a set of polynomials f1, . . . , fm ∈K[x1, . . . , xn ], let

V ( f1, . . . , fm ) = {(a1, . . . , an ) ∈Kn : fi (a1, . . . , an ) = 0 for all 1≤ i ≤m}.

We call this V ( f1, . . . fm ) the affine variety defined by f1, . . . , fm .
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Thus, an affine variety is the set of shared roots for all of the polynomials over which it

is defined.

Example 1.3.3. Consider the polynomials f = x 2+ y 2−1 and g = y − x −1 both inR[x , y ].

The affine variety defined by f alone is

V ( f ) = {(x , y ) ∈R2 : x 2+ y 2 = 1},

i.e. the unit circle in the plane.

The affine variety defined by f and g , i.e.

V ( f , g ) = {(x , y ) ∈R2 : x 2+ y 2 = 1 and y = x +1}.

Thus, V ( f , g ) = {(0, 1), (−1, 0)}, as these are the only two pairs of real numbers which satisfy

both equations.

Note that a natural relationship exists between an ideal generated by a set of polynomials,

and the affine variety determined by the same set of polynomials. Suppose a= (a1, . . . , an ) ∈
V ( f1, . . . , fm ) is an element of the affine variety determined by f1, . . . , fm . Note then that if

g ∈ 〈 f1, . . . , fm 〉 is an element of the ideal generated by f1, . . . , fm , then by definition g =

h1 f1+ · · ·+hm fm for some h1, . . . , hm ∈K[x1, . . . , xn ]. Also, since a ∈V ( f1, . . . , fm ), then f1(a) =

f2(a) = · · ·= fm (a) = 0, thus g (a) = 0. In fact, we can define an affine variety of a polynomial

ideal I ⊆K[x1, . . . , xn ] as

V (I ) =
�

(a1, . . . , an ) ∈Kn : f (a1, . . . , an ) = 0 for all f ∈ I
	

.

This relationship between ideals and varieties generated by a set of polynomials culmi-

nates in the following proposition thanks to the Hilbert Basis Theorem:

Proposition 1.3.4. If I = 〈 f1, . . . , fm 〉, then V (I ) =V ( f1 . . . , fm ).

We now define Projective n-space PKn to be the set of all lines in affine space containing

the origin, i.e. 0 ∈ ℓ⊆Kn+1. Note then that each of these lines takes the form

span(a0, a1, . . . , an) =λ(a0, a1, . . . , an)

for λ ∈K and (a0, a1, . . . , an ) ∈Kn+1−{0}.
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The projective space can be thought of as the following equivalence class

PKn = (Kn+1−{0})/∼

with the equivalence relation

(a ′0, . . . , a ′n )∼ (a0, . . . , an ) if (a ′0, . . . , a ′n ) =λ(a0, . . . , an )

for some λ ∈K−{0}.
The degree of a monomial x α1

1 x α2
2 · · · x αn

n is defined as the sum of the powers of each

variable in the monomial, i.e.

deg
�

x α1
1 x α2

2 · · · x
αn
n

�

=α1+α2+ · · ·+αn .

From this notion, we can define the degree of a polynomial as the maximal degree of each

monomial in the polynomial, i.e. if f is a polynomial consisting of a sum of m monomial

terms

f =
m
∑

k=1

x
α1,k

1 x
α2,k

2 · · · x
αn ,k
n

then

deg( f ) = max
k∈{1,...,m}

(α1,k +α2,k + · · ·+αn ,k ).

Now define a polynomial to be homogeneous of total degree k if every monomial term in

the sum generating the polynomial has the same degree, namely k . In the language above,

this means that

k = deg( f ) = max
k∈{1,...,m}

(α1,k +α2,k + · · ·+αn ,k )

=α1,1+α2,1+ · · ·+αn ,1

=α1,2+α2,2+ · · ·+αn ,2

...

=α1,m +α2,m + · · ·+αn ,m .

For a given polynomial f ∈K[x1, . . . , xn ], we can homogenize f in the polynomial ring

K[x0, x1, . . . , xn ] as follows: Let f ∈K[x1, . . . , xn ] with degree d and let f =
∑d

i=0 fi where fi
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consists of every monomial in f of degree i . Now define

f h =
d
∑

i=0

fi x d−i
0 .

Note that f h ∈K[x0, . . . , xn ] has degree d , and also that f h is now homogeneous in x0, . . . , xn ,

since deg( fi x d−i
0 ) = deg( fi ) +deg(x d−i

0 ) = i +d = d .

Using this homogenization, given an variety V ( f1, . . . , fm )⊆Kn , we can generate a pro-

jective variety V ( f h
1 , . . . , f h

m )⊆PK
n . We say that an ideal I ⊆K[x0, x1, . . . , xn ] is homogeneous

if it admits a collection of homogeneous generators, i.e. 〈 f1, . . . , fm 〉 = I with each fi ho-

mogeneous in the same degree. Homogeneous polynomials and homogeneous ideals are

of interest because of their natural relationship with projective varieties and the study of

projective geometry which provide us with unique tools not available in the affine point of

view.

1.3.2 Resultants

Definition 1.3.5. Consider the following two polynomials in one variable of positive degree:

f = an x m +an−1 x n−1+ · · ·+a0

g = bm x n + bm−1 x m−1+ · · ·+ b0.

The Sylvester matrix associated to f and g is the n+m by n+m matrix that has m columns

of the coefficients of f and n columns of the coefficients of b in the following way

Syl( f , g ) =





























an 0 · · · 0 bm 0 · · · 0
... an · · · 0

... bm · · · 0

a0
... · · ·

... b0
... · · ·

...

0 a0 · · · 0 0 b0 · · · 0
... 0 · · · an

... 0 · · · bm
...

... · · ·
...

...
... · · ·

...

0 0 · · · a0 0 0 · · · b0





























︸ ︷︷ ︸

m
︸ ︷︷ ︸

n

Silvester matrices are of interest because they can tell us when two polynomials share a

root, even if we do not know what the roots of the polynomial are.
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Theorem 1.3.6. Two nonconstant polynomials f , g ∈ k [x ] have a common factor if and only

if det(Syl(f, g)) = 0. This determinant is called the resultant of f and g .

Example 1.3.7. Consider the following three polynomials

f = (x −4)(x +2)2 = x 3−12x −16

g = (x −4)(x +3)(x −1) = x 3−2x 2−11x +12

h = (x +8)(x −6)(x −2) = x 3−52x +96

The Sylvester matrices for f and g and f and h are

Syl(f, g) =





















1 0 0 1 0 0

0 1 0 −2 1 0

−12 0 1 −11 −2 1

−16 −12 0 12 −11 −2

0 −16 −12 0 12 −11

0 0 −16 0 0 12





















,

Syl(f, h) =





















1 0 0 1 0 0

0 1 0 0 1 0

−12 0 1 −52 0 1

−16 −12 0 96 −52 0

0 −16 −12 0 96 −52

0 0 −16 0 0 96





















.

Note that det(Syl(f, g)) = 0, which we would expect by Theorem 1.3.6 since f and g share

a root at x = 4. On the other hand, det(Syl(f, h)) = −1769472, i.e. nonzero as expected by

Theorem 1.3.6 since f and h share no roots.

We will consider a Silvester matrix of two generic polynomials in the proof of one of the

main results of Chapter 2, using the following Corollary.

Corollary 1.3.8. The Sylvester matrix of two generic polynomials is invertible.

1.4 LCR Circuit Systems

LCR circuits, also referred to as LCR systems or models, are electrical circuits consisting of

networks of inductors, capacitors, and resistors, which we call base elements. These circuits
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have a wide array of applications, most notably in communications systems, such as filters

and tuners used in television and radio tuning (Wang 2010). Also of interest are the circuits

generated by two base element types, for example simple LR circuits can be made into

high-pass (or low-pass) filters which pass high frequencies through the circuit with minimal

dampening, while low frequencies are not able to pass as a result of strong dampening

(Felix 2014).

Each of the base elements in an LCR system has a defining parameter which are referred

to as the inductance (L), capacitance (C ), and resistance (R ) respectively. The system as

a whole also has measurable state variables called the voltage (V ) and the current (I ).

A natural question emerging from the study of LCR systems is whether or not we can

determine the parameter values of each of the base elements given the measurements of

the voltage and current over time over the whole system, and in particular if we can do so

uniquely.

The ideal resistor follows Ohm’s law which describes a relationship between the voltage

(V ) across the resistor, and the current (I ). In the case of the resistor, the voltage and current

are proportional with constant of proportionality R which is referred to as the resistance,

which we write as:

V =R I . (1.8)

Similarly, the ideal inductor exhibits the following relationship between the voltage and

the derivative with respect to time of the current:

V = L İ (1.9)

where L is called the inductance. The ideal capacitor is often considered the dual of the

inductor, where the relationship between the time derivative of the voltage and current is

described by

V̇ =C I (1.10)

where C is the inverse capacitance. Note that we use V̇ =C I instead of the more familiar

C V̇ = I for mathematical convenience. For this reason, C in this chapter is the inverse of

the capacitance. This change will not affect results of identifiability.

We call these equations relating the voltage and current of LCR systems constitutive

equations. We can relate these to general input-output equations described in Section 1.1

by thinking of the voltage as the input, and the measured current as the output. In this

case, the individual resistances of resistors, inductance of inductors, and capacitance of
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L R

Figure 1.5: Series combination of a resistor and an inductor.

capacitors within the model are the unknown parameters we wish to identify. In general,

we can use Kirchhoff’s Current and Voltage Laws to generate a single constitutive equation

of circuits consisting of parallel and series combinations of these three base elements.

Theorem 1.4.1 (Kirchhoff’s Current Law). The algebraic sum of the currents entering any

node is zero, i.e. the net current flowing into and out of any node must be zero.

Theorem 1.4.2 (Kirchhoff’s Voltage Law). The algebraic sum of the voltages around any loop

is zero.

Remark 1.4.3. When drawn, we generally assume that the left and right-hand sides of the

circuit are connected. For example, in Figure 1.5 we assume that the right side of the resister

element is connected to the left side of the inductor element. We visualize this with dashed

lines in Figures 1.7 and 1.8, but omit this dashed line for the other figures of LCR circuits in

this thesis.

Example 1.4.4. Consider the series combination of a resistor and an inductor shown in

Figure 1.5. By Kirchhoff’s Voltage Law, we get that the voltage over the whole system V must

be the sum of the voltages over each element in the system, i.e.

V =VL +VR = L İL +R IR .

Also, by Kirchhoff’s Current Law, we know that the net current of the system must be equal to

the current of each element, i.e. IL = IR = I . Therefore, we get that the constitutive equation

describing this circuit is

V = L İ +R I .

Example 1.4.5. Now consider a parallel combination of a resistor and an inductor shown

in Figure 1.6. By Kirchhoff’s voltage law, the sum of the voltage around the parallel loop

must be zero, hence VL =VR =V . Also, by Kirchhoff’s current law, the current of the system

is the sum of each of the currents, i.e. I = IR + IL .
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L

R

Figure 1.6: Parallel combination of a resistor and an inductor.

Taking the time based derivative of this current sum, along with the time based derivative

of the resistor constitutive equation, we get

İ = İR + İL =
1

R
V̇R +

1

L
VL .

Thus, the constitutive equation the system is

İ =
1

R
V̇ +

1

L
V .

A natural question to ask is how we can generate these constitutive equations for more

complex systems. Suppose S1 and S2 represent two circuits with respective constitutive

equations f1V1 = f2I1 and f3V2 = f4I2 where fi are all linear differential operators with

constant coefficients. We can write these differential operators as

f1 = an1

d n1

d t n1
+ · · ·+am1

d m1

d t m1

f2 = bn2

d n2

d t n2
+ · · ·+ bm2

d m2

d t m2
(1.11)

f3 = cn3

d n3

d t n3
+ · · ·+ cm3

d m3

d t m3

f4 = dn4

d n4

d t n4
+ · · ·+dm4

d m4

d t m4

Now we will consider parallel and series combination of the systems S1 and S2, and

derive the resulting constitutive equation from those of S1 and S2.

Proposition 1.4.6 (Series Combination). The series combination of two LCR systems S1 and
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S1 S2

P

Figure 1.7: Series combination of system S1 and S2 with node P between the systems.

S2 with respective constitutive equations f1V1 = f2I1 and f3V2 = f4I2 has constitutive equation

f1 f3V = ( f1 f4+ f2 f3)I .

Proof. Let T be the series combination of two LCR systems S1 and S2 seen in Figure 1.7 with

respective constitutive equations f1V1 = f2I1 and f3V2 = f4I2.

Note that by Kirchhoff’s Current Law, the node P between the two systems must have

a net zero incoming current. Therefore, the current of either system must be the same

and this current will also be the current of the new system T , i.e. I1 = I2 = I . Similarly, by

Kirchhoff’s Voltage Law, the voltage on the loop, which in this case is the whole system,

must sum to the voltage of the system, i.e. V =V1+V2. If f1 and f3 are relatively prime, then

we get

V =V1+V2

V =
f2

f1
I1+

f4

f3
I2

( f1 f3)V = ( f1 f4+ f2 f3)I (1.12)

Thus, the series combination of the two systems S1 and S2 has constitutive equation of the

form in Equation 1.12.

Proposition 1.4.7 (Parallel Combination). The parallel combination of two LCR systems

S1 and S2 with respective constitutive equations f1V1 = f2I1 and f3V2 = f4I2 has constitutive

equation

( f1 f4+ f2 f3)V = f2 f4I

Proof. Let T be the parallel combination of two LCR systems S1 and S2 seen in Figure 1.8

with respective constitutive equations f1V1 = f2I1 and f3V2 = f4I2.

22



S1

S2

P

Figure 1.8: Parallel combination of systems S1 and S2 with node P between the systems.

L R
C

Figure 1.9: Series combination of an inductor, resistor, and capacitor.

Again, by Kirchhoff’s Voltage Law, we get that the total voltage around the parallel

combination loop must be net zero, i.e. V1 − V2 = 0. Also the voltage around the entire

system must be net zero, thus V =V1 =V2. Kirchhoff’s Current Law states that the node P

must have a net zero incoming current, i.e. I − I1− I2 = 0, hence I = I1+ I2. Thus, we get

that the parallel combination of two systems S1 and S2 has constitutive equation

( f1 f4+ f2 f3)V = ( f2 f4)I . (1.13)

Example 1.4.8. Consider the series combination of each of the three base elements of an

LCR system as seen in Figure 1.9. Let the resistor have resistance R , the capacitor have

inverse capacitance C , and the inductor have inductance L .

The constitutive equation for this model is

V̇ = L Ï +R İ +C I . (1.14)

Note that the coefficient map of this constitutive equation is

c: (L , R , C ) 7→ (L , R , C ).

This map is injective, hence the model consisting of a series combination of an inductor,
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resistor, and capacitor is globally identifiable.

Remark 1.4.9. The special structure of series-parallel networks means that it is possible

to use notation purely in equations to represent a series-parallel LCR circuit, rather than

necessarily using a figure. Specifically, we can use the notation M ∨N to denote the parallel

combination of networks M and N , and M ∧N to denote the series combination. The base

elements can be written using the symbols for their respective parameters. For example,

the network in Example 1.4.8 can be represented as

L ∧R ∧C .

Note that the∧ and∨ operations are commutative and associative in terms of their relations

for producing new networks, but they do not satisfy a distributive law.

1.5 Linear Compartmental Models

Compartmental models are commonly used in fields such as pharmocokinetics, ecology,

and epidemiology to understand interacting groups, or compartments (Godfrey 1983).

In pharmocokinetics, the compartments may represent tissue or tissue groups (DiPiro

2010; Hedaya 2012; Tozer 1981; Wagner 1981); in ecology, the compartments may represent

habitat zones or role in a population (e.g., forager bee and nurse bee) (Gydesen 1984; Khoury

et al. 2011; Knisley et al. 2011; Mulholland and Keener 1974); while in epidemiology, the

compartments may represent groups of infected, susceptible, and recovered individuals

(Blackwood and Childs 2018; Tang et al. 2020). Interactions, exchanges, or flows between

compartments are represented by edges between compartments, resulting in a directed

graph, with distinguished nodes representing inputs, outputs, and leaks from the system.

Linear compartmental models, which are the topic of this section as well as Chapters 3 and

4, are commonly used compartmental models described by a parameterized system of

linear ordinary differential equations.

A linear compartmental modelM = (G , I n , O u t , L e a k ) consists of a directed graph

G = (VG , EG )without multi-edges and sets I n , O u t , L e a k ⊆VG , which are called the input,

output, and leak compartments, respectively. An edge j → i ∈ EG is labeled by the parameter

ai j . We always assume that O u t is nonempty, because models with no outputs are not

identifiable. Finally, a modelM = (G , I n , O u t , L e a k ) is strongly connected if G is strongly

connected.
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a12

a31

a13

a32 a23

in

a02

Figure 1.10: A linear compartmental model.

A linear compartmental model is depicted by its graph G , plus leaks indicated by outgo-

ing edges, input compartments labeled by “in,” and output compartments marked by this

symbol: .

For a linear compartmental modelM = (G , I n , O u t , L e a k )with n compartments (so,

n = |VG |), the compartmental matrix A is the n ×n matrix defined by:

Ai , j =



























−a0i −
∑

k : i→k∈EG
ak i i = j , i ∈ L e a k ,

−
∑

k : i→k∈EG
ak i i = j , i ̸∈ L e a k ,

ai j i ̸= j , ( j , i ) ∈ EG ,

0 i ̸= j , ( j , i ) /∈ EG .

(1.15)

Note that this definition is similar to that of the Laplacian matrix of a weighted directed

graph described in Section 1.2, with the addition of the leak parameters a0i in the diagonal

entries corresponding to nodes in the L e a k set from the model.

Next, the modelM defines the following ODE system (1.16), where ui (t ) and yi (t )

denote the concentrations of input and output compartments, respectively, at time t , and

x (t ) = (x1(t ), x2(t ), . . . , xn (t )) is the vector of concentrations of all compartments:

d x

d t
= Ax (t ) +u (t ), (1.16)

yi (t ) = xi (t ) for all i ∈O u t ,

where ui (t )≡ 0 for i /∈ I n .

Example 1.5.1. Consider the 3-compartment modelM = (G , I n , O u t , L e a k ) shown in
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Figure 1.10, I n =O u t = {1}, and L e a k = {2}. The defining ODEs of this model are

ẋ1 = (−a21−a31)x1+a12 x2+a13 x3+u1

ẋ2 = a21 x1+ (−a02−a12−a32)x2+a23 x3

ẋ3 = a31 x1+a32 x2+ (−a13−a23)x3

y1 = x1.

As in Equation 1.16, we can characterize this system of ODEs utilizing the compartmental

matrix






ẋ1

ẋ2

ẋ3






=







−a21−a31 a12 a13

a21 −a02−a12−a32 a23

a31 a32 −a13−a23













x1

x2

x3






+







u1

0

0






.

This matrix characterization of the defining ODEs will be instrumental in constructing

the input-output equation for linear compartmental models in both Chapters 3 and 4.

1.6 Summary of Results

The contents of Chapter 2 of this thesis was published in the Journal of Symbolic Compu-

tation (Bortner and Sullivant 2022). In Chapter 2, we consider series-parallel LCR circuit

systems, their constitutive equations, and the identifiability of these systems from their

constitutive equations. In the cases where there is a series-parallel LCR network that only

involves two types of components (i.e., inductor-resistor systems, capacitor-resistor sys-

tems, or inductor-capacitor systems) we give a complete characterization of when these

models are identifiable. In particular, we have the following theorem.

Theorem (Corollaries 2.3.2 and 2.3.3 and Theorem 2.4.12). LetN be a series-parallel LCR

network that involves only two types of components. Then the network is locally identifiable

if and only if the constitutive equation of the model has as many non-monic coefficients as

there are parameters.

We also give explicit combinatorial conditions on the series-parallel constructions that

guarantee local identifiability in two component type LCR models, which are summarized

in certain “multiplication tables”.

We close Chapter 2 by beginning the study of general series-parallel LCR circuits. These

turn out to be much more complicated because there are LCR systems where the number
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of non-monic coefficients is larger than the number of parameters. As a result, in addition

to the identifiability problem, there are also interesting questions about the constraints on

the coefficients that arise. Our analysis of the structure of the constitutive equations shows

that for general series-parallel LCR systems, there are 22 different types of constitutive

equations.

The contents of Chapter 3 has been accepted for publication in the Bulletin of Math-

ematical Biology (Bortner and Meshkat 2022). In Chapter 3, we discuss a class of linear

compartmental models which are known to be unidentifiable, namely path-cycle mod-

els. Though it is not possible to recover each individual parameter from these models,

it is possible to recover combinations of parameters, information potentially useful in

reparametrizing an unidentifiable model. Specifically, we consider identifiable path-cycle

models with every independent path and cycle identifiable. Our first main result describes

sufficient conditions for a model to be an identifiable path/cycle model based solely on the

corresponding graph structure.

Theorem (Theorem 3.2.27). For a linear compartmental modelM = (G , I n , O u t , L e a k )

with a single input, single output, which is strongly input-output connected with |E | =
2|V |− (dist(i, j)+2), then ifM becomes strongly connected with the addition of an edge from

the output to the input,M is an identifiable path cycle model.

We also derive several results relating identifiable path/cycle models with identifiable

linear compartmental models, specifically by constructing the identifiable models by re-

moving leaks from the identifiable path/cycle models.

In Chapter 4, we discuss linear compartmental models, and specifically linear compart-

mental tree models. The main tool we use in understanding the input-output equation of

linear compartmental models comes in the form of a novel combinatorial generation of

the input-output equation of a general linear compartmental model dependent only on

the graph of the model.

Using this characterization of the input-output equation coefficients of linear com-

partmental models, we are able to state necessary and sufficient conditions for linear

compartmental models to be identifiable. On top of this, we completely classify the identi-

fiability of a large class of linear compartmental models called tree models.

Theorem (Theorem 4.4.2). A tree model with one input and one output is generically locally

identifiable if and only if the distance between the input and output is at most one and the

model has either no leaks or a single leak.
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CHAPTER

2

STRUCTURAL IDENTIFIABILITY OF

SERIES-PARALLEL LCR SYSTEMS

In this chapter, we study the structural identifiability of LCR circuits where the underlying

network of components is a series-parallel graph.

The organization of this chapter is as follows: Section 2.1 gives a quick background

on the motivation behind this study. Section 2.2 discusses the perspective of projective

geometry for studying circuit models, and uses this to prove a duality result. Section 2.3

describes results of the two-element systems containing only resistors and inductors, as

well as the two-element systems containing only resistors and capacitors. Finally, Section

2.4 presents results for the two-element systems containing only inductors and capacitors.

Section 2.5 describes results of the general LCR systems. Section 2.6 introduces the problem

of studying the equations that define the vanishing ideal of an LCR circuit model.
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2.1 Preliminaries

Part of our motivation for pursuing this project comes from past work of Mahdi et al.

(2014), which characterized the identifiability of series-parallel viscoelastic systems whose

elements consists of springs and dashpots. The electromechanical analogy, sometimes

called the impedance analogy, allows us to extend identifiability results of spring-dashpot

systems to RL systems, and due to certain duality results, RC systems. We then considered

the final two base element type subsystems of LCR systems, namely the LC systems where

we lose the ability to apply the electromechanical analogy directly to the spring-dashpot

systems, and must derive a similar identifiability condition from scratch.

2.2 Projective Geometry and Circuit Duality

In this section, we introduce a perspective based on projective geometry. This provides us a

useful framework for discussing identifiability that avoids the use of non-monic coefficients.

It also allows for a straightforward duality results about the interchange of capacitors and

inductors.

In this chapter, we consider linear differential equations. To this end, the set of all

differential equations with a given shape is naturally considered as a projective space.

Indeed, if L1V = L2I is a differential equation coming from a particular LCR circuit, and λ

is any nonzero constant, then λL1V =λL2V describes the same dynamics. In particular,

it is only possible to recover the underlying constitutive equation up to a constant. The

typical way that this is dealt with is to talk about non-monic coefficients in the constitutive

equation– essentially, picking one term to be the leading term and dividing through so the

coefficient of that term is equal to one. This is a satisfactory approach in most situations.

We find the perspective from projective geometry can also be useful.

To start with, we consider the constitutive equations of the three basic elements:

V =R I , V = L İ , V̇ =C I .

Thinking about these projectively, we would have the basic constitutive equations:

R0V =R1I , L0V = L1 İ , C0V̇ =C1I . (2.1)

So in projective geometry language, our parameter space for an LCR model, goes from an
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Rk (in the case that there are k basic elements), to a (PR1)k .

Example 2.2.1. Consider the LCR circuit system from Example 1.4.8, which has three com-

ponents. Using the projective version of the parameters from (2.1) we get the constitutive

equation

R0L0C0V̇ =R0L1C0 Ï +R1L0C0 İ +R0L0C1I .

This shows that the coefficient map is a map from (P1)3 into P3, defined by

([R0 : R1], [L0 : L1], [C0 : C1]) 7→ (R0L0C0 : R0L1C0 : R1L0C0 : R0L0C1).

We arrive at the usual constitutive equation by dehomogenizing this one: specifically by

the substitution

R0 = 1, R1 =R , L0 = 1, L1 = L , C0 = 1, C1 =C .

One useful application of the projective perspective is that it makes it possible to derive

a duality result for identifiability of LCR systems. The idea of duality of these systems

and those like it date back to the work of Alexander Russell in 1904 with inspiration from

reciprocals found in geometry, and the goal of finding “convenient methods of making

measurements or even suggest novel instruments or machines of value in electro-technics”

(Russell 1904).

Definition 2.2.2. Let M be a series-parallel LCR circuit model, expressed as a formula in

terms of resistors R1, R2, . . ., capacitors C1, C2, . . ., and inductors L1, L2, . . ., using the series

and parallel operations ∧ and ∨. Define the dual system M , to be expressed as a formula in

terms of R 1, R 2, . . ., C 1, C 2, . . ., and L 1, L 2, . . . by the following rules:

1. Swap each ∧with a ∨ and vice versa

2. Each Ri is replaced with a R i

3. Each Ci is replaced with a L i , and

4. Each L i is replaced with a C i .

Example 2.2.3. Consider the series-parallel network model M = (R1 ∧C1)∨ (R2 ∧ L1). The

dual network is M = (R 1 ∨ L 1)∧ (R 2 ∨C 1). The example is illustrated in Figure 2.1.

There is no formal difference between components of the original system M and the

dual system M , e.g. a resistor R1 and R 1 are the same from a modeling standpoint. However,
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Figure 2.1: A series-parallel LCR network and its dual network.

when we want to talk about the identifiability of these systems, it is useful to distinguish

between the components of the original system and that of the dual system.

Theorem 2.2.4. Suppose that M is a series-parallel LCR system and let M be the dual LCR

system. Then M is (generically, locally) identifiable if and only if M is.

To prove this, we make direct use of the projective representation of the network. To

each basic component, denoted Ri , L i , Ci , we associated a projective constitutive equation

R0,i V =Ri I , L0,i V = L i İ , C0,i V̇ =Ci I .

Then on the projective representation, the duality has the effect of swapping V and I and

L and C . So the dual basic constitutive equation in the projective representation becomes

Ri V =R0,i I , Ci V =C0,i İ , L i V̇ = L0,i I .

Note that affinely this corresponds to R i = 1/Ri , L i = 1/Ci and C i = 1/L i .

Proposition 2.2.5. Suppose that M is a series-parallel LCR system with corresponding

projective parameters R = (R1, . . . , Rr , R0,1, . . . , R0,r ), L = (L1, . . . , L s , L0,1, . . . , L0,s ), and C =

(C1, . . . , Ct , C0,1, . . . , C0,t ). Let M be the dual LCR system with corresponding dual projective

parameters R= (R0,1, . . . , R0,r , R1, . . . , Rr ), L= (L0,1, . . . , L0,s , L1, . . . , L s ), and

C= (C0,1, . . . , C0,t , C1, . . . , Ct ). Let

f1(R, C, L, d
d t )V = f2(R, C, L, d

d t )I

be the constitutive equation of M . Then

f2(R, L, C, d
d t )V = f1(R, L, C, d

d t )I
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is the constitutive equation of M .

Proof. The proof is by induction on the number of components. The statement is clearly

true if there is only one component by the definition of the duality operations.

Suppose that M has more than one component. That means it can be broken up as

either a series or parallel combination of two other components. We handle the case of a

series combination, the case of a parallel combination being analogous. So suppose that

M =M1 ∧M2. The corresponding dual LCR system is M =M 1 ∨M 2. Let

f1(R, C, L, d
d t )V1 = f2(R, C, L, d

d t )I1

f3(R, C, L, d
d t )V2 = f4(R, C, L, d

d t )I2

be the constitutive equations of M1 and M2 respectively. Thus the constitutive equation of

M is

( f1 f3)(R, C, L, d
d t )V = ( f1 f4+ f2 f3)(R, C, L, d

d t )I

By induction, the constitutive equations of M 1 and M2 are

f2(R, L, C, d
d t )V1 = f1(R, L, C, d

d t )I1

f4(R, L, C, d
d t )V2 = f3(R, L, C, d

d t )I2

Since M is a parallel combination of M 1 and M 2 its constitutive equation is

( f1 f4+ f2 f3)(R, L, C, d
d t )V = ( f1 f3)(R, L, C, d

d t )I .

This is clearly the desired correct form. This proves the result for series combinations, and

the proof for a parallel combination is similar.

Proof of Theorem 2.2.4. By Proposition 2.2.5 the coefficient map for M and M is the same

except for relabeling parameters and swapping the order of some of the coefficients. The

coefficient maps clearly have the same behavior in both cases in terms of being one-to-one,

generically one-to-one, finite-to-one, etc.
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2.3 RL/RC System Analysis

In this section, we consider the identifiability of series-parallel circuits consisting of only

two types of base elements: either resistor-inductor (RL) networks or resistor-capacitor (RC)

networks. The electromechanical analogy establishes a bijection between identifiability

problems for RL-networks and identifiability problems for viscoelastic mechanical systems

consisting of springs and dashpots. The results of (Mahdi et al. 2014) will be used to deduce

the main identifiability result for RL series-parallel networks. Then we use Theorem 2.2.4

to deduce the analogous identifiability result for RC series-parallel networks.

First, consider the case of the two-element system generated by parallel and series

combinations of inductors and resistors. The electromechanical analogy, specifically the

Maxwell or impedance analogy, yields that a system comprised of series and parallel com-

binations of resistors and inductors is analogous to a mechanical system consisting of

series and parallel combinations of springs and dashpots (Stephens and Bate 1966). The

spring-dashpot system is commonly referred to as the viscoelastic model, and has many

applications, including modeling various biological systems. The problem of identifiability

of the spring-dashpot system is well studied, with the problem of determining local identi-

fiability reduced down to counting the number of elements in the system, i.e. parameters,

and comparing that to the number of coefficients (Mahdi et al. 2014).

Recall that in determining identifiability, an immediate indication that a model is

unidentifiable by the constitutive equation is to see that there are fewer coefficients than

parameters, meaning a necessary condition for identifiability is that there are at least as

many coefficients as parameters. In the case of the viscoelastic system, it was shown by

Mahdi et al. (2014) that the number of coefficients is bounded above by the number of

parameters, thus the previous necessary condition for identifiability becomes that there

must be exactly the same number of parameters as coefficients. It is then shown that this

equality of the number of coefficients and parameters is in fact a sufficient condition for

local identifiability via the following theorem.

Theorem 2.3.1 (Theorem 2, Mahdi et al. (2014)). A viscoelastic model represented by a

spring-dashpot network is locally identifiable if and only if the number of non-monic, non-

trivial coefficients of the corresponding constitutive equation equals the total number of its

parameters.

Due to the electromechanical analogy, we can deduce the following equivalent state-

ment in terms of RL systems:
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Corollary 2.3.2. An RL system is locally identifiable if and only if the number of non-monic,

nontrivial coefficients of the corresponding constitutive equation equals the total number of

its parameters.

Via the duality of Theorem 2.2.4, we also get the following corollary.

Corollary 2.3.3. An RC system is locally identifiable if and only if the number of non-monic,

nontrivial coefficients of the corresponding constitutive equation equals the total number of

its parameters.

Proof. The duality operation turns an RL system into an RC system and vice versa. Theorem

2.2.4, shows that the RL system is identifiable if and only if the dual RC system is identifiable.

Since the duality preserves the number of coefficients, this follows from Corollary 2.3.2.

In general, the problem of identifiability of a model is much more difficult to answer

than it is for the RC and RL systems. We will see in Section 2.5 that in the case of LCR systems,

we no longer have a bound on the coefficients by the number of parameters, making finding

identifiability criterion considerably more difficult.

In addition to these results on identifiability and relation to the number of coefficients

in the RC/RL models, it is also possible to import from Mahdi et al. (2014) precise rules for

identifiability of series and parallel combinations of identifiable models. These are encap-

sulated in the identifiability multiplications for the types of combinations of constitutive

equations of different shapes. We do not reproduce the identifiability multiplication tables

from Mahdi et al. (2014) here, but we will see analogous results for LC systems in the next

section.

2.4 LC System Analysis

Now we consider the two-element systems which contain parallel and series combinations

of inductors and capacitors, i.e. LC systems. To analyze the identifiability of these LC systems

we first will classify these systems into four types dependent upon the structure of their

constitutive equations. Since the LC systems are specific cases of LCR systems, we can state

several general propositions about the structure of their constitutive equations, which we

prove in the next section. First, we recognize an upper bound on the number of coefficients

on either side of the constitutive equation of an LCR, and thus an LC system.

Proposition 2.5.1. The maximum order of either side of the constitutive equation of an LCR

system is bounded above by the number of parameters, i.e. base elements, in the model.
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Note that the previous proposition yields that the maximum number of non-monic,

nonzero coefficients in the constitutive equation of an LCR system is 2n + 1, where n is

the number of parameters. We can also make a statement relating the lowest and highest

orders of the left-hand and right-hand sides of the constitutive equation of an LCR system.

Proposition 2.5.2. In an LCR system, the largest orders on either side of the constitutive

equation must be within one of each other. Similarly, the smallest orders on either side of the

constitutive equation must be within one of each other.

In the case of LC systems, we can actually make a slightly stronger statement.

Corollary 2.4.1. In an LC system, the absolute difference of the largest order of either side

of the constitutive equation is exactly one. Similarly, the absolute difference of the smallest

order of either side of the constitutive equation of an LC system is exactly one.

Proof. This is true by the exact same argument in the proof of Proposition 2.5.2, where the

base cases are only the single inductor and single capacitor systems, and replacing any

“less than or equal to” statements with “equal to” statements.

Now we make a statement about how many of the coefficients on either side of a consti-

tutive equation of an LC system must be zero. We also introduce the idea of a constitutive

equation alternating, that is, every coefficient of even or odd order in the equation having

a value of zero.

Definition 2.4.2. We say that a polynomial alternates if all odd degree or all even degree

coefficients are zero. We say a polynomial is saturated if every coefficient between the

smallest and largest degree is nonzero.

Remark 2.4.3. Note the difference between describing a polynomial as “not alternating”

and “saturated.” In the case of a polynomial not alternating, we could possibly still have

coefficients of zero between the largest and smallest degree, we just do not have that every

other coefficient is zero.

Note that the product of two polynomials, both of which have this alternation property,

also must alternate. With this in mind, if both sides of two LC systems’ constitutive equations

alternate, we must have that one side of their series or parallel combination also alternates,

namely the side with a single product of two previous differential operators by Propositions

1.4.6 and 1.4.7. With that being said, it is not immediately clear that the side which consists

of a sum of two products of the previous differential operators also alternates. This is
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because although each of the products in the sum must alternate, it is possible that the

powers in either alternating product have different parity, so when summed together the

result does not alternate. In the case of LC systems, we show that this parity mismatch

cannot occur.

Proposition 2.4.4. An LC system must have both sides of its constitutive equation alternate.

Proof. We proceed by induction. Note that by our definition of alternating, the base ele-

ments inductor and capacitor are inherently alternating, since one side of either constitutive

equation has a single odd power, and the other has a single even power in either case.

Suppose two LC systems N1 and N2 have the alternating property on either side of their

constitutive equations f1V1 = f2I1 and f3V2 = f4I2 respectively. From Corollary 2.4.1, we

know that f1 and f2 have difference of highest order of one, hence have different parity,

and similarly f3 and f4 have different parity. Note that because of the remark before the

statement of this proposition, to show that both sides of the constitutive equation of a

combination of two LC systems alternate, we need only show that f1 f4 and f2 f3 do not have

different parity. However, we know that f1 and f2 have different parity and f3 and f4 have

different parity. Then f1 f2 f3 f4 has to have even parity, so f1 f4 and f2 f3 must have the same

parity. Thus, by induction, both sides of the constitutive equation corresponding to an LC

system, must alternate.

Now we can place an upper bound on the number of nonzero coefficients in an LC

system, similar to the bound in the RC and RL systems.

Theorem 2.4.5. The number of non-monic, nontrivial coefficients of an LC system constitu-

tive equation is bounded above by the number of base elements.

Proof. First, note that by Proposition 2.5.1, the maximum order of either side of the con-

stitutive equation of an LC system with n base elements is n . Also, by Corollary 2.4.1, the

maximum order of the other side of constitutive equation of an LC system is n − 1. By

Proposition 2.4.4, we know that every other coefficient on either side of the constitutive

equation of an LC system must be zero, i.e. if the maximum order on one side is n , then

at most ⌈n+1
2 ⌉ coefficients must be nonzero. Thus, if both sides of a constitutive equation

have their maximal orders n and n −1, then the total number of nonzero coefficients is

bounded above by
¡

n +1

2

¤

+
ln

2

m

= n +1.

Thus, after normalizing, there are at most n non-monic, nontrivial coefficients in the

constitutive equation of an LC system.
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Remark 2.4.6. Note that to recover all n parameters from an LC system with n base ele-

ments, we need the constitutive equation defining the system to have at least n nontrivial

coefficients. This, coupled with Theorem 2.4.5 implies that, as in the case of RL and RC

systems, a necessary condition for identifiability of an LC system with n parameters is that

the constitutive equation has n non-monic, nontrivial coefficients. We spend the rest of

this section showing that, in fact, this is also a sufficient condition.

Now we can classify identifiable LC systems into four different “types” depending on the

difference in the largest orders and smallest orders of the left and right-hand sides of their

constitutive equations. We will define the type of the LC system with constitutive equation

f1V = f2I where

f1 = an1
d n1/d t n1 + · · ·+am1

d m1/d t m1

f2 = bn2
d n2/d t n2 + · · ·+ bm2

d m2/d t m2

by the ordered pair (m1−m2, n1−n2). Note that by Corollary 2.4.1, we know that there are

only four possible such pairs, which we define as the following types:

A := (−1,−1), B := (−1, 1), C := (1,−1), D := (1, 1).

We now consider how to build identifiable LC systems from identifiable LC systems. We

do this by considering the shape of each of the differential operators of an identifiable LC

system which we define as the ordered pair [a , b ] representing the smallest and largest order

respectively of the differential operator. Note that depending on the parity of the number of

parameters n of an LC system, certain types cannot be identifiable. For example, consider

an LC system of type A, then for the constitutive equation to have enough coefficients to

potentially be identifiable, the shape in V must be [0, n − 1] and the shape in I must be

[1, n ], so we know that n must be odd by Proposition 2.4.4. Similarly, LC systems of type D

must have an odd number of parameters to potentially be identifiable, while LC systems of

types B and C must have an even number of parameters to potentially be identifiable.

Tables 2.1 and 2.2 give the identifiability results of the series and parallel combinations of

all of the identifiable LC system types, with a count of the number of non-monic, nontrivial

coefficients, as well as the resulting type. Note that in the column labeled “Identifiable?", if

there is a “no" we already can see that this model is unidentifiable, as there are not enough

coefficients as compared to the number of parameters. On the other hand, we still need to
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Table 2.1: All identifiable series combinations of the four types of LC systems, with resulting
shapes, number of coefficients, identifiability, and type.

Type Shape in V Shape in I Non-monic coeff. Identifiable? Type
(A, A) [0, n1+n2−2] [1, n1+n2−1] n1+n2−1 No A
(A, B ) [0, n1+n2−1] [1, n1+n2] n1+n2 Yes A
(A, C ) [1, n1+n2−2] [0, n1+n2−1] n1+n2−1 No C
(A, D ) [1, n1+n2−1] [0, n1+n2] n1+n2 Yes C
(B , B ) [0, n1+n2] [1, n1+n2−1] n1+n2 Yes B
(B , C ) [1, n1+n2−1] [0, n1+n2] n1+n2 Yes C
(B , D ) [1, n1+n2] [0, n1+n2−1] n1+n2 Yes D
(C , C ) [2, n1+n2−2] [1, n1+n2−1] n1+n2−2 No C
(C , D ) [2, n1+n2−1] [1, n1+n2] n1+n2−1 No C
(D , D ) [2, n1+n2] [1, n1+n2−1] n1+n2−1 No D

prove that the “yes” entries are actually identifiable. Proving that this is the case will occupy

the rest of the section and complete the proof of Theorem 2.4.12, which is the main result

of this section.

Remark 2.4.7. Checking for identifiability of a parallel or series combination of LC systems

can be done in polynomial time via Tables 2.1 and 2.2. Similarly, checking for identifiability

of a series or parallel combination of RL, and thus RC, systems can be done in polynomial

time via tables found in Mahdi et al. (2014).

2.4.1 The Alternating Shape Factorization Problem

We now define the alternating shape factorization problem, which is analogous to the shape

factorization problem as defined in Mahdi et al. (2014), though this time for alternating

polynomials.

Definition 2.4.8. The alternating shape factorization problem for a quadruple of shapes

Q = ([m1, n1], [m2, n2], [m3, n3], [m4, n4])

is defined as follows: for a generic pair of alternating polynomials ( f , g )with f monic such

that shape( f ) = [m1+m3, n1+n3] and shape(g ) = [min(m1+m4, m2+m3), max(n1+n4, n2+

n3)], do there exist finitely many quadruples of alternating polynomials ( f1, f2, f3, f4)with

shape fi = [mi , ni ] and f1, f3 monic, such that f = f1 f3 and g = f1 f4+ f2 f3? A quadruple of
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Table 2.2: All identifiable parallel combinations of the four types of LC systems, with
resulting shapes, number of coefficients, identifiability, and type.

Type Shape in V Shape in I Non-monic coeff. Identifiable? Type
(A, A) [0, n1+n2−1] [2, n1+n2] n1+n2−1 No A
(A, B ) [1, n1+n2] [2, n1+n2−1] n1+n2−1 No B
(A, C ) [0, n1+n2−1] [1, n1+n2] n1+n2 Yes A
(A, D ) [0, n1+n2] [1, n1+n2−1] n1+n2 Yes B
(B , B ) [1, n1+n2−1] [2, n1+n2−2] n1+n2−2 No B
(B , C ) [0, n1+n2] [1, n1+n2−1] n1+n2 Yes B
(B , D ) [0, n1+n2−1] [1, n1+n2−2] n1+n2−1 No B
(C , C ) [1, n1+n2−1] [0, n1+n2] n1+n2 Yes C
(C , D ) [1, n1+n2] [0, n1+n2−1] n1+n2 Yes D
(D , D ) [1, n1+n2−1] [0, n1+n2−2] n1+n2−2 No D

shapes Q is said to be alternating good if the alternating shape factorization problem for

that quadruple has a positive solution.

Proposition 2.4.9. Let M be the series combination of two LC systems N1 and N2 with

respective constitutive equation f1V1 = f2I1 and f3V2 = f4I2 and let fi have shape [mi , ni ].

Then the LC system M is locally identifiable if and only if

(i) N1 and N2 are locally identifiable, and

(ii) ([m1, n1], [m2, n2], [m3, n3], [m4, n4]) is an alternating good quadruple.

We now work toward necessary and sufficient conditions for the series combination of

two LCR models to yield a good alternating quadruple, inspired by the work done following

Proposition 10 in Mahdi et al. (2014) for the viscoelastic case.

Let h and g be two alternating polynomials, and note that for fixed shapes [m1, n1]

and [m3, n3], there are at most finitely many factorization h = f1 f3, with alternating f1

and f3 having shapes [m1, n1] and [m3, n3] respectively. Thus, in fixing one of these finitely

many choices of f1 and f3, the equation g = f1 f4+ f3 f2 is a linear system in the unknown

coefficients of alternating f2 and f4.

For a particular polynomial f = jn x n + · · ·+ jm x m with shape [m , n ], we can denote the

coefficients of f in an n −m +1 dimensional vector as

[ f ] :=







jn
...

jm






.
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Again, if the fi have respective shape [mi , ni ], then the vector of coefficients of f1 f4 and

f2 f3 can be written as the following matrix products:

[ f1 f4] =





























an1
0 · · · 0

... an1
· · · 0

am1

... · · ·
...

0 am1
· · · 0

... 0 · · · an1

...
... · · ·

...

0 0 · · · am1



































dn4

...

dm4






, [ f3 f2] =





























cn3
0 · · · 0

... cn3
· · · 0

cm3

... · · ·
...

0 cm3
· · · 0

... 0 · · · cn3

...
... · · ·

...

0 0 · · · cm3



































bn2

...

bm2






.

We refer to the matrix containing the coefficients of f1 as G ′′ and the matrix containing

the coefficients of f3 as H ′′, hence the above matrix products can be represented by G ′′[ f4]

and H ′′[ f2] respectively. Note that this matrix G ′′ has dimension n1+n4−m1−m4+1 by

n4−m4+1, while H ′′ has dimension n2+n3−m2−m3+1 by n2−m2+1.

We can nearly represent the coefficients of g by adding these two products, however

there could be a difference in the dimension of the largest and smallest orders of f1 f4

and f2 f3. Note however that this difference is well understood, as by Corollary 2.4.1, the

difference in the largest and smallest orders of f1 and f2 must be at exactly one, and likewise

for f3 and f4. Thus, either the largest order of f1 f4 is the same as the largest order of f2 f3, or

it is exactly two larger or smaller. The same is also true for the smallest orders of f1 f4 and

f2 f3.

Thus, we will let G ′ and H ′ represent the matrices G ′′ and H ′′ where either has an

additional two rows of zeros added to the top or bottom of their respective matrix, if

necessary. Therefore, we can now represent the coefficients of g as

[g ] = [ f1 f4+ f2 f3] =G ′[ f4] +H ′[ f2] = (G
′ H ′)

�

[ f4]

[ f2]

�

Note then that this matrix (G ′ H ′) has dimension

max{n1+n4, n2+n3}−min{m1+m4, m2+m3}+1 by n2−m2+n4−m4+2.

Now, note that since both f2 and f4 alternate, many of the entries of

�

[ f4]

[ f2]

�

are zero. In

fact, every other entry of [ f2] and [ f4] are zero, hence we can eliminate both these (n2−m2+
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n4−m4)/2 rows in the vector and the corresponding columns in the matrix (G ′ H ′), yielding

the same information. The resulting matrix which we now call (G H ) has dimension

max{n1+n4, n2+n3}−min{m1+m4, m2+m3}+1 by
n2−m2+n4−m4

2
+2.

Note that every other row of the (G H ) matrix will consist of only zeros, since the

alternation property of the polynomials f1 and f3 yield every other diagonal of (G ′ H ′)

consists of only zeros. Thus, we can eliminate (max{n1+n4, n2+n3}−min{m1+m4, m2+

m3})/2 rows of (G H ) and retain the same information. We define this final reduced matrix

to be (G H ), and note that it has dimension:

max{n1+n4, n2+n3}−min{m1+m4, m2+m3}
2

+1 by
n2−m2+n4−m4

2
+2. (2.2)

We now determine when the alternating shape factorization problem has finitely many

solutions.

Proposition 2.4.10. The quadruple ([m1, n1], [m2, n2], [m3, n3], [m4, n4]) for the four alternat-

ing polynomials is alternating good if and only the matrix (G H ) is invertible.

Proof. We can write the shape factorization problem of ([m1, n1], [m2, n2], [m3, n3], [m4, n4])

in the matrix factored form G ′[ f4]+H ′[ f2] = [g ], where every other coefficient will be zero.

Thus, we can actually reduce this factored form to G [ f4] +H [ f2] = [g ] where [ f ] is the

coefficient vector of the alternating function f with the zeros removed, that is

(G H )

�

[ f4]

[ f2]

�

= [g ].

This system has a unique solution if and only if (G H ) is invertible for a generic choice

of parameter values, i.e. generically invertible.

Note that for the matrix (G H ) to be generically invertible, it needs to be square and

have full rank. Recall from Theorem 1.3.6 that the determinant of the Sylvester matrix of

two polynomials is zero if and only if the two polynomials have a common root. Thus for

generic polynomials f and g , the Sylvester matrix is invertible.

Note that in the case of (G H ), this matrix is nearly the Sylvester matrix of two polyno-

mials, though not exactly f1 and f3, but it possibly contains extra rows and columns.

The following proposition and proof mirror that of Proposition 13 of (Mahdi et al. 2014).
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Proposition 2.4.11. If the matrix (G H ) is square, then it is generically invertible.

Proof. Suppose (G H ) is square. We claim that the columns of (G H ) can be ordered in such

a way that the block form of the matrix is







S ′ 0 0

X S Y

0 0 S ′′







where S is the Sylvester matrix of f̂1 and f̂3 where f̂ for an alternating polynomial f is the

polynomial with lowest degree zero and coefficient vector [ f ]. That is, f̂ is a polynomial

which does not alternate, with the same coefficients as f (associated to different powers).

We will show that either (G H ) is exactly the Sylvester matrix of generic polynomials f̂1

and f̂3, hence has full rank, or that one or both of S ′ and S ′′ are 1 by 1 matrices with nonzero

entry, and S is the same Sylvester matrix, meaning that (G H ) continues to have full rank.

Note that the Sylvester matrix S of these two polynomials f̂1 and f̂3 will have dimension

(n1−m1+n3−m3)/2 by (n1−m1+n3−m3)/2. Recall from Equation 2.2 that (G H ) is a matrix

of dimension

max{n1+n4, n2+n3}−min{m1+m4, m2+m3}
2

+1 by
n2−m2+n4−m4

2
+2. (2.3)

Without loss of generality, we assume that max{n1+n4, n2+n3}= n1+n4. This occurs

in one of three ways by Corollary 2.4.1:

(i) n1 = n2+1 and n4 = n3−1, (in which case the two sums are equivalent)

(ii) n1 = n2−1 and n4 = n3+1, (in which case the two sums are equivalent) or

(iii) n1 = n2+1 and n4 = n3+1.

In the first two cases, we do not add any zero rows above either G ′′ or H ′′ (described above)

in making the matrices G ′ and H ′. In either of these cases, we remove the row and column

involving S ′ from the block matrix.

In the last case, we add exactly two rows of zeros above the H ′′matrix to make the matrix

H ′, and add no rows of zeros above G ′′ to make G ′, hence we will have that S ′ will be a 1 by

1 matrix with nonzero entry an1
, and X is the remaining coefficients of f̂1 followed by zeros.

Now we consider the two possible cases of min{m1+m4, m2+m3}.
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First, suppose min{m1+m4, m2+m3}=m1+m4. This implies that the dimension of the

(G H )matrix is (n1+n4−m1−m4)/2+1 by (n2+n4−m2−m4)/2+2.

This can occur one of three ways by Corollary 2.4.1:

(a) m1 =m2+1 and m4 =m3−1, (in which case the two sums are equivalent)

(b) m1 =m2−1 and m4 =m3+1, (in which case the two sums are equivalent) or

(c) m1 =m2−1 and m4 =m3−1.

In the first two cases, we do not add any zero rows below either G ′′ or H ′′ in making the

matrices G ′ and H ′. In either of these cases, we remove the row and column involving S ′′

from the block matrix above.

In the last case, we add exactly two rows of zeros below the H ′′matrix to make the matrix

H ′, and add no rows of zeros below G ′′ to make G ′. Thus, we will have that S ′′ will be a 1 by

1 matrix with nonzero entry am1
, and Y will continue with the other coefficients of f̂1 with

zeros above.

Similarly, consider the case when min{m1+m4, m2+m3}=m2+m3. Here, we have that

the dimension of (G H ) is (n1+n4−m2−m3)/2+1 by (n2+n4−m2−m4)/2+2. This can

occur one of three ways by Corollary 2.4.1:

(A) m1 =m2+1 and m4 =m3−1, (in which case the two sums are equivalent)

(B) m1 =m2−1 and m4 =m3+1, (in which case the two sums are equivalent) or

(C) m1 =m2+1 and m4 =m3+1.

In the first two cases, we do not add any zero rows below either G ′′ or H ′′ in making the

matrices G ′ and H ′. In either of these cases, we remove the row and column involving S ′′

from the block matrix above.

In the last case, we add exactly two rows of zeros below the G ′′matrix to make the matrix

G ′, and add no rows of zeros below H ′′ to make H ′. Thus, we will have that S ′′ will be a 1 by

1 matrix with nonzero entry cm3
, and Y will continue with the other coefficients of f̂3 with

zeros above.

In any case, we have that S is the Sylvester matrix of two polynomials with generic

coefficients, namely f̂1 and f̂3, hence has full rank, and if S ′ or S ′′ are in the block matrix,

then they are 1 by 1 matrices with nonzero entries, hence have full rank. Thus the matrix

(G H ) has generic full rank, i.e. is generically invertible.
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Theorem 2.4.12. An LC system is locally identifiable if and only if the number of non-monic,

nontrivial coefficients in the constitutive equation is equal to the number of parameters.

Proof. Here, we show that if the number of parameters equals the number of non-monic,

nontrivial coefficients, then the (G H )matrix is square, hence by Propositions 2.4.9, 2.4.10,

and 2.4.11 the model is locally identifiable.

SupposeM is an LC system which consists of a series combination of two smaller LC

systems N1 and N2 with respective constitutive equations f1V1 = f2I1 and f3V2 = f4I2 where

f1 and f3 are monic. Also, suppose fi has shape [mi , ni ]. By induction, we suppose that the

number of parameters equals the number of nontrivial, non-monic coefficients in both

systems N1 and N2. This implies that N1 has (n1+n2−m1−m2)/2+1 parameters, and N2

has (n3+n4−m3−m4)/2+1 parameters.

Assume the number of parameters equals the number of coefficients in the whole

system, i.e.

n1+n2+n3+n4−m1−m2−m3−m4

2
+2

=
max{n1+n4, n2+n3}−min{m1+m4, m2+m3}+n1+n3−m1−m3

2
+1

Subtracting (n1+n3−m1−m3)/2 from both sides, we get

n2+n4−m2−m4

2
+2=

max{n1+n4, n2+n3}−min{m1+m4, m2+m3}
2

+1

This occurs exactly when the matrix (G H ) is square via Equation 2.2. The argument for

a parallel combination is identical, and omitted.

2.5 LCR System Analysis

Now we consider the systems containing series and parallel combinations of all three

base elements, that is LCR systems. We are not able to derive a complete classification of

identifiability of these models, and there already seem to be some significant challenges to

generalizing the results for two element systems to arbitrary LCR. For example, there are

general series-parallel LCR systems where there are more coefficients than the number of

parameters. Thus, there can be nontrivial relations between the coefficients in a general

series-parallel LCR system. We will explore those equations in Section 2.6. In this section,

we look at basic properties of the general LCR systems, including the number of types of
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systems in terms of the structure of the constitutive equation. We will show that there are

22 different types.

To begin our study of general LCR systems, we first consider several bounds on the

orders of the constitutive equation.

Proposition 2.5.1. The maximum order of either side of the constitutive equation of an LCR

system is bounded above by the number of parameters, i.e. base elements, in the model.

Proof. We will prove this statement inductively. As the base case, note that the statement is

true for each of our one element systems containing either a resistor, capacitor, or inductor.

Suppose that for LCR systems with less than k base elements, the resulting constitutive

equation has largest power less than or equal to the number of base elements.

Now consider some LCR systemM with k base elements, which is a series combination

of two smaller (in number of base elements) models which have m and n parameters

respectively where m+n = k . By the inductive hypothesis, we know that the largest order of

either side of the constitutive equations of the two smaller models are m and n respectively,

i.e. if f1V1 = f2I1 and f3V2 = f4I2 are the constitutive equations of the two models respectively,

then deg( f1), deg( f2)≤ n and deg( f3), deg( f4)≤m .

Recall by Proposition 1.4.6 that the series combination of two systems with constitutive

equations f1V1 = f2I1 and f3V2 = f4I2 yields constitutive equation:

f1 f3V = ( f1 f4+ f2 f3)I .

Therefore, the largest power of either side of the constitutive equation is n +m = k . By

duality, we also have the result whenM is a parallel combination.

Proposition 2.5.2. In an LCR system, the largest orders on either side of the constitutive

equation must be within one of each other. Similarly, the smallest orders on either side of the

constitutive equation must be within one of each other.

Proof. We prove the proposition using induction on the number of base elements in the

system. As the base case, note that in both the inductor, and the capacitor base element,

the difference in the largest power between the two sides of the constitutive equation is

one. Similarly, since the smallest power is the largest power, that difference is also one. In

the case of a single resistor, both sides have a single element of order zero.

Suppose then that the statement of the proposition is true for LCR systems with less

than k base elements. Then suppose that M is an LCR system with k elements which is
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generated by, without loss of generality, a series combination of two strictly smaller (in terms

of number of base elements) systems N1 and N2. Suppose that N1 and N2 have respective

constitutive equations f1V1 = f2I1 and f3V2 = f4I2 where each fi is defined just as in Equation

1.11.

By the inductive hypothesis, since N1 andN2 have less than k base elements, then we

know that |n1−n2| ≤ 1, |m1−m2| ≤ 1, |n3−n4| ≤ 1, and |m3−m4| ≤ 1. Note that by Equation

1.12, the constitutive equation of the system M generated by combining N1 and N2 in series

is

f1 f3V = ( f1 f4+ f2 f3)I . (2.4)

Thus, we have that the maximal order of the left-hand side of the Equation 2.4 is n1+n3,

while the maximal order of the right-hand side is max{n1 + n4, n2 + n3}. Therefore, the

difference in the largest order of either side of the constitutive equation of M is

|n1+n3−max{n1+n4, n2+n3}|= |min{n1+n3−n1−n4, n1+n3−n2−n3}|

= |min{n3−n4, n1−n2}|

Note that in either case, we have that |n1−n2| ≤ 1 and |n3−n4| ≤ 1, thus the difference of

the maximal order of either side of the constitutive equation of M is at most one.

The bound for the minimal order is similar (with maximums and minimums swapped)

and is omitted. The bounds also follow for parallel combinations by circuit duality.

Thus, by induction, LCR systems have the difference of the largest order of either side of

their constitutive equations at most one, and the difference of the smallest order of either

side of their constitutive equations at most one.

Remark 2.5.3. The main difference between all of the two base element systems and

the general three base element system is that we no longer have a bound on the number

of coefficients of the constitutive equation by the number of parameters. In fact, by the

previous two propositions, we can have up to 2n +1 nonzero, non-monic coefficients in

the constitutive equation of an LCR system with n base elements. As a result of this lack

of a bound, we could have systems with more coefficients than base elements which are

locally identifiable. This is not entirely surprising, however the existence of systems with

more base elements than coefficients which are not locally identifiable leads us to believe

that to find a sufficient condition for the identifiability of an LCR system, we need to look

beyond comparing the number of coefficients to the number of parameters.

Example 2.5.4. Consider the LCR system depicted in Figure 2.2. This system has constitutive
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L1

R

C1

C2

L2

Figure 2.2: An LCR system L1 ∨ (R ∧ (C1 ∨ (L2 ∨C2)))).

equation:

(C1L1L2+C2L1L2)V
(3)+ (C1L2R +C2L2R )V̈ + (C1C2L1+C1C2L2)V̇ +C1C2RV

= (C1L1L2R +C2L1L2R )I (3)+C1C2L1L2 Ï +C1C2L1R İ .

Note that this LCR system has five parameters and after normalization has six non-

monic, nonzero coefficients in its constitutive equation. If we consider the Jacobian matrix

of the map from the space of parameters to the space of coefficients of the constitutive equa-

tion corresponding to this example, we see that the rank of the Jacobian is non-maximal,

meaning the system is not identifiable. This example first shows that the number of co-

efficients in a constitutive equation of an LCR system is not bounded by the number of

parameters, and moreover having at least as many coefficients as parameters in an LCR

system is not a sufficient condition for local identifiability.

We now introduce a similar notion of types as in the LC systems to more general LCR

systems.

Definition 2.5.5. LetM be an LCR system with constitutive equation f1V = f2I where

f1 = an1
x n1+ · · ·+am1

x m1 and f2 = bn2
x n2+ · · ·+bm2

x m2 . Then we define the type ofM as the

quadruple (m1−m2, n1−n2, c , d )where c , d = 1 if f1 and f2 have the alternating property

respectively, and are 0 otherwise.
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Example 2.5.6. The three base elements can be characterized by type, where because there

is only a single nonzero coefficient on either side of the constitutive equation, each side of

all three constitutive equations are defined as alternating. More explicitly, by Equations

1.8, 1.9, and 1.10, we have that the resistor, inductor, and capacitor have respective types

(0, 0, 1, 1), (−1,−1, 1, 1) and (1, 1, 1, 1).

Remark 2.5.7. The four types, A, B , C , D of LC systems described in Section 2.4 can be

generalized as A = (−1,−1,1,1), B = (−1,1,1,1), C = (1,−1,1,1) and D = (1,1,1,1) as LCR

types.

Note that there are certain restrictions on what this type quadruple can look like. For

example we know that because of Proposition 2.5.2, the first two entries of the type must

both be in the set {−1, 0, 1}. We have not yet shown that for an LCR system that the left and

right-hand sides of the constitutive equation must strictly have the alternating property or

the saturated property. More precisely, it is not obvious that a differential operator in the

constitutive equation of an LCR system cannot skip an order without having the alternating

property, i.e. have an order with zero coefficient, but not have the remaining even or odd

orders also have zero coefficients. We now prove that this is in fact the case, and conclude

that all LCR systems fall into one of these types. To do this, we first need the following

Lemma.

Lemma 2.5.8. No LCR system can have constitutive equation of type (∗,−1, 0, 1) for any entry

of ∗.

Proof. SupposeM is an n base element LCR system with type of the form (∗,−1, 0, 1), and

constitutive equation f1V = f2I . Note that f2 must alternate since the fourth entry of the

type quadruple is 1, and also f2 must have largest order one larger than f1 since the second

entry of the type quadruple is −1. Similarly, f1 must not alternate since the third entry of

the quadruple is 0.

Recall that the three base elements, the resistor, inductor, and capacitor, have respective

types (0,0,1,1), (−1,−1,1,1) and (1,1,1,1), henceM cannot be a base element, i.e. n ≥ 1.

Therefore,M must be made of some series or parallel combination of two systems with

strictly fewer elements, say A1 and A2. Let A1 and A2 have constitutive equations g1V1 = g2I1

and g3V2 = g4I2 respectively.

First, if we supposeM is a series combination of A1 and A2, then we have that f1 = g1g3

and f2 = g1g4 + g2g3. Note that since f2 must alternate, then all four of g1, g2, g3 and g4

must alternate (and have some parity conditions), however f1 must not alternate meaning
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that at least one of g1 or g3 cannot alternate, a contradiction. Thus, an LCR system of type

(∗,−1,0,1) cannot be constructed via a series combination of other systems with fewer

elements.

Now supposeM is a parallel combination of A1 and A2. In this case, we have that

f1 = g1g4+ g2g3 and f2 = g2g4. Since f2 must have one higher largest order than f1, we must

have that deg(g1)< deg(g2) and deg(g3)< deg(g4). Thus, by Proposition 2.5.2, we have that

deg(g2) = deg(g1) + 1 and deg(g4) = deg(g3) + 1, meaning that A1 and A2 have respective

types with second entry both being −1.

Given that f2 is alternating, we must have that both g2 and g4 are alternating, i.e. both

A1 and A2 have a 1 in the last entry of their types. Similarly, given that f1 is not alternating,

we must have either g1 or g3 not alternating, or that g1g4 and g2g3 have opposite parity.

Note though that g1g4 and g2g3 must have the same parity, since the pairs g1, g2 and g3, g4

must have different parity (because their maximal orders have a difference of exactly one

from above), meaning g1g4 has even (odd) parity if and only if g2g3 has even (odd) parity.

Thus, A1 and A2 must have types of the form (∗,−1, r1, 1) and (∗,−1, r2, 1)where at least one

of r1 or r2 is equal to 0.

Therefore, the only way to generate a system of type (∗,−1, 0, 1) is by a parallel combina-

tion of two systems, one of which has type (∗,−1, 0, 1), but since none of the base elements

have this type, then this type must not exist.

Proposition 2.5.9 (Skipping but not alternating). Let M be a series-parallel LCR system.

Then each side of the constitutive equation must either be alternating or saturated.

Proof. We prove this statement by induction on the number of base elements in the system.

As the base case, note that in each of the one-element systems, the statement is certainly

true, as each side only has a single nonzero coefficient.

Now, suppose the statement is true for LCR systems with less than k base elements,

that is, either side of the constitutive equation for LCR systems with less than k base

elements cannot skip an order without having that side alternate. Also, supposeM is

an LCR system with k base elements, which is generated by a series combination of two

smaller systems N1 and N2 with strictly less than k base elements. Let N1 and N2 have

constitutive equations f1V1 = f2I1 and f3V2 = f4I2 respectively, and note by the inductive

hypothesis, f1, f2, f3 and f4 cannot skip a coefficient without alternating. Therefore, each

of N1 and N2 can be characterized by a type as described in Definition 2.5.5. Let us define

each polynomial f1, f2, f3 and f4 as in Equation 1.11.
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By Proposition 2.5.2, we know that the first two entries of each Ni system’s type is either

−1, 0 or 1.

Also, we have that the constitutive equation ofM is f1 f3V = ( f1 f4 + f2 f3)I . Note that

for each of the three products of two fi , if both polynomials in the product alternate, then

the resulting product alternates. Also, if at least one of the polynomials in the product is

saturated, then by Lemma 2.5.10, we know that the resulting product is saturated. Thus,

we immediately have that the left-hand side of the constitutive equation, i.e. the product

f1 f3, cannot skip without alternating. We also know that each element of the sum of the

right-hand side cannot skip without alternating, hence to finish the proof we need only

show that their sum cannot skip without alternating.

Note that by Proposition 2.5.2, we know that the absolute difference in the largest orders,

and the absolute difference of the smallest orders of f1 f4 and f2 f3 are both at most two.

Thus, the only way that the right-hand side of the constitutive equation forM could

skip an order without alternating is if one of the elements of the sum had maximal (or

minimal) order two larger (smaller) than the other, and the one with larger maximal order

alternates while the other is saturated. This would result in skipping the second largest

(smallest) order of the sum, but the rest of the sum having nonzero coefficients.

Suppose without loss of generality that f1 f4 has largest order two larger than f2 f3 and

suppose f1 and f4 alternate, while at least one of f2 and f3 is saturated. Thus, the third entry

of the type of N1 and the fourth entry of the type of N2 must be 1. Also, either the fourth

entry of the type of N1 or the third entry of the type of N2 must be zero. Without loss of

generality we suppose that it is f3 that is saturated. Note that for f1 f4 to have largest order

two larger than f2 f3, we must have that n1 = n2+1 and n4 = n3+1, i.e. f1 and f4 have largest

order one larger than f2 and f3 respectively by Proposition 2.5.2. Thus, the second entry in

the type of N1 must be a 1, while the second entry in the type of N2 must be a −1. Therefore,

N1 must have type (∗,1,1,∗) and N2 must have type (∗,−1,0,1)where the ∗ represents any

possible entry.

Since the only way to have a constitutive equation which skips but does not alternate

is to have an element of type (∗,−1,0,1)which does not exist by Lemma 2.5.8, then there

cannot be a constitutive equation which skips but does not alternate with k base elements.

Thus, by induction, no LCR system can skip but not alternate.

The case of a parallel combination follows from circuit duality.

Lemma 2.5.10. If f and g are polynomials with non-negative coefficients such that f is

saturated and g is alternating, then the product f g is saturated.
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Proof. Suppose f is saturated, and g is alternating, such that they have form

f = an x n +an−1 x n−1+ · · ·+am+1 x m+1+am x m

g = bv x v + bv−2 x v−2+ · · ·+ bu+2 x u+2+ bu x u

Note that the product of f and g has form

f g =
n+v
∑

k=m+u

 

∑

i+ j=k

ai b j

!

x k .

Thus, to show the statement of the Lemma is true, we need only show that for each

k , there is some nonzero combination of coefficients from g and f with corresponding

degree adding to k . Given that g alternates and f is saturated, and all coefficients are non-

negative, this problem equates to the following: Given the sets of non-negative integers

F = {n , n −1, . . . , m +1, m} and G = {v, v −2, . . . , u +2, u}, for every integer k with m +u ≤
k ≤ n + v , can we find a sum of an element i ∈F and an element j ∈G such that i + j = k ?

The answer to this question is yes, as we can generate every natural number from m +u to

n + v as

m+u , (m+1)+u , m+(u+2), (m+1)+(u+2), . . . , (n−1)+(v −2), n+(v −2), (n−1)+v, n+v.

Thus, for each k there is some ai and b j such that ai b j ̸= 0 and i + j = k , hence f g is

saturated, as desired.

Corollary 2.5.11. Every LCR system has one of the types as defined in Definition 2.5.5.

Proof. The only way that we could not classify an LCR system with a type would be if it had

a constitutive equation which did not alternate, but also was not saturated by our definition,

i.e. that skipped without alternating. By Proposition 2.5.9, this cannot happen. Thus, every

LCR system can be characterized by a type.

We can now make several more statements about the type characterization we propose

for LCR systems.

Proposition 2.5.12. We can characterize the type of a series combination of two LCR systems

of types (a , b , c , d ) and (e , f , g , h ) respectively as

(a , b , c , d )⊙ (e , f , g , h ) =
�

max{a , e }, min{b , f }, c g , c d g h (1− ||a | − |e ||)
�

. (2.5)
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Proof. SupposeM is generated by a series combination of two smaller LCR systems N1

and N2 with respective constitutive equations f1V1 = f2I1 and f3V2 = f4I2. Note then that the

constitutive equation ofM is f1 f3V = ( f1 f4+ f2 f3)I .

Let us define each polynomial f1, f2, f3, and f4 just as in Equation 1.11.

Note that the first entry in the type ofM is the difference in the smallest orders of both

sides of its constitutive equation, i.e.

(m1+m3)−min{m1+m4, m2+m3}=max{m1+m3−m1−m4, m1+m3−m2−m3}

=max{m3−m4, m1−m2}

=max{e , a }.

Similarly, the second entry in the type ofM is the difference in the largest orders of

both sides of its constitutive equation, i.e.

(n1+n3)−max{n1+n4, n2+n3}=min{n1+n3−n1−n4, n1+n3−n2−n3}

=min{n3−n4, n1−n2}

=min{ f , b }.

Also, f1 f3 alternates if and only if f1 and f3 both alternate, i.e. the third entry of the type

ofM is 1 if and only if both third entries of the types of N1 and N2 are 1. This is true exactly

when c = g = 1, equivalently if and only if c g = 1.

Finally, the right hand side of the constitutive equation ofM alternates if and only if all

four of the fi alternate, and f1 f4 has the same parity as f2 f3. Note that these two products

have the same parity if and only if either all fi have the same parity, or if f1 and f2 have

different parity and f3 and f4 have different parity. More explicitly, we can consider the

smallest order of all of the alternating fi and note that these two products have the same

parity if and only if either each of a = e = 0, or |a |= |e |= 1. Thus, the fourth entry of the type

ofM is 1 if and only if all of the third and fourth entries of N1 and N2 are 1 and ||a |− |e ||= 0,

i.e. 1− ||a | − |e ||= 1.

By circuit duality, we also get a similar formula for parallel combinations.

Proposition 2.5.13. We can characterize the type of a parallel combination of two LCR

systems of types (a , b , c , d ) and (e , f , g , h ) respectively as

(a , b , c , d )⊕ (e , f , g , h ) =
�

min{a , e }, max{b , f }, c d g h (1− ||a | − |e ||), d h
�

. (2.6)
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Given our type characterization and the restrictions imposed on the type by Propositions

2.5.2 and 2.5.9, there are 36 possible types of the form ({−1, 0, 1}, {−1, 0, 1}, {0, 1}, {0, 1}).
Note however that not all 36 of these quadruples correspond to types of LCR systems

which are generated by series and parallel combinations of the three base elements, as

evident by Lemma 2.5.8. We can generate all possible types by implementing a recur-

sive algorithm starting with a generating set consisting of the three base element types

(0, 0, 1, 1), (−1,−1, 1, 1), and (1, 1, 1, 1), generating every possible combination of these types,

and adding these combinations to the generating set. Repeating this process until no new

quadruples are added to the generating set, we then have all possible types.

Proposition 2.5.14. The following 22 quadruples are the only possible LCR types:

(1, 0, 0, 0), (−1, 0, 0, 0), (0, 0, 1, 1), (1,−1, 1, 0), (0, 1, 0, 1), (0,−1, 0, 0),

(1, 1, 0, 0), (−1, 1, 1, 1), (1, 1, 1, 1), (0, 0, 0, 1), (0, 0, 1, 0), (−1,−1, 0, 0),

(1,−1, 0, 0), (0, 1, 0, 0), (−1, 1, 0, 1), (0,−1, 1, 0), (0, 0, 0, 0), (−1,−1, 1, 1),

(1,−1, 1, 1), (1, 0, 1, 0), (−1, 0, 0, 1), (−1, 1, 0, 0).

Remark 2.5.15. One could also prove Proposition 2.5.14 algebraically showing that each of

the 14 non-possible types cannot be generated via series and parallel combinations of the

base elements, similar to the argument done for Lemma 2.5.8.

To conclude this section, we give an example that shows that type analysis, as was

performed to analyze the two component systems, is not sufficient to characterize the

identifiability of general series-parallel LCR systems.

Example 2.5.16. Consider the model M = (R1 ∨C )∧ (R2 ∨ L ). This model has constitutive

equation

R1LV̈ + (C L +R1R2)V̇ +C R2V = LR1R2 Ï + (LC R1+ LC R2)İ +C R1R2I .

This model is saturated on both sides, and the shapes of the differential operators are [0, 2]

and [0,2]. Since the constitutive equation has the same highest and lowest order on both

sides, this model has type (0, 0, 0, 0).

Now consider the model N =M ∧R3 obtained by joining M in series to a new resistor

R3. The model of a single resistor has type (0,0,1,1), so the model N will also have type

(0,0,0,0)⊙ (0,0,1,1) = (0,0,0,0), and the differential operators also have shapes [0,2] and

[0,2]. In this case there are five parameters and five non-monic coefficients, and a direct

calculation shows that the model is locally identifiable.
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Finally, consider the new model N ′ =N ∧R4 obtained by joining N in series to a new

resistor R4. Again this model N ′ will have type (0,0,0,0)⊙ (0,0,1,1) = (0,0,0,0) and the

differential operators also have shapes [0, 2] and [0, 2]. But now the model cannot be iden-

tifiable because there are six parameters and there continue to be only five non-monic

coefficients. This shows that the combinations of types (0, 0, 0, 0)⊙ (0, 0, 1, 1)may or may not

be identifiable depending on the structure of the underlying model.

2.6 Equations Defining LCR Models

General LCR models can have more non-monic coefficients than the number of parameters.

Hence, the set of constitutive equations consistent with a particular model M will be a

subset of all possible differential equations of a given type. Understanding the algebra and

geometry of these sets of constitutive equations is an interesting problem, and might be

useful for addressing identifiability questions for general LCR circuit systems.

Example 2.6.1. Consider the LCR system M = (R ∨C )∧L . The constitutive equation in this

case is

R V̇ +V =R L Ï + L İ +R C I .

Note that there are three parameters and four non-monic coefficients. Hence, not every

constitutive equation of shape

c1V̇ + c0V = d2 Ï +d1 İ +d0I

with positive coefficients can arise from some choice of R , C , L . To describe the relations

that arise, we find it useful to work in the projective representation, as this will produce

homogeneous equations. In this case, the projective version of the constitutive equation is

L0C0R1V̇ + L0C0R0V = L1C0R1 Ï + L1C0R0 İ + L0C1R1I .

Note that these coefficients satisfy the relation: c1d1 = c0d2.

Example 2.6.2. Consider the four element model M = (R1 ∧C )∨ (R2 ∧ L ). The constitutive

equation is

R1LV̈ + (C L +R1R2)V̇ +C R2V =R1R2L Ï + (C R2L +C R1L )İ +R1R2C I .
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There are six coefficients and four parameters. In the projective version, we expect a single

homogeneous equation that defines the relations on the coefficients. It is

c 2
0 d 2

2 − c1c0d2d1+ c2c0d 2
1 +2c2c0d2d0− c2c1d1d0+ c 2

2 d 2
0 = 0.

This polynomial is remarkably similar looking to the resultant of the two quadratic polyno-

mials c2 x 2+c1 x +c0 and d2 x 2+d1 x +d0. However, the sign of the underlined term is wrong.

It is unclear if this polynomial can be expressed as the resultant of related polynomials. We

also do not know if every 6-tuple (c2, c1, c0, d2, d1, d0) of positive numbers that satisfies this

equation can come from some choice of positive values for C , L , R1, and R2.

Examples 2.6.1 and 2.6.2 just give a small taste of the types of equations that can arise.

We do not have a general theory of what those equations should look like, but we can try to

derive properties of the ideals in the hopes of understanding their structure.

In general, associated to any series-parallel model M is a homogeneous ideal

IM ⊆R[c, d] =R[c0, c1, . . . , cm , d0, d1, . . . , dm ].

For example, in Example 2.6.1, we get that IM = 〈c1d1− c0d2〉. In fact, beyond being just an

ordinary homogeneous ideal, IM satisfies some other homogeneities as well.

Call a polynomial p (c , d ) ∈R[c, d] bihomogeneous, if it is homogeneous in each set of

variables, that is p (λc ,δd ) =λmδn p (c , d ) for some m and n . The pair (m , n ) is called the

bidegree of p . An ideal I ∈R[c, d] is bihomogeneous if it has a generating set consisting of

bihomogeneous polynomials. The notion of bihomogeneity of ideals also can be interpreted

naturally in terms of the corresponding variety, at least when I is radical. Let V =V (I )⊆
R2n+2 be the corresponding variety of pairs (c, d) coming from the model. Bihomogeneity of

the radical ideal I ⊆R[c, d] is equivalent to the following condition on the variety V =V (I ):

for any pair (c, d) ∈V and any nonzero λ,δ ∈C, (λc,δd) is also in V .

Proposition 2.6.3. For any series-parallel circuit network M , the vanishing ideal IM is

bihomogeneous in c and d.

Proof. We proceed by induction on the number of components in the network. The state-

ment is clearly true if the networks have just one component, since the vanishing ideal is

the zero ideal in that case.

By symmetry, we can suppose that the model is a series combination M =M1 ∧M2. By

induction, we can suppose that M1 and M2 satisfy the bihomogeneity assumption. For two
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sequences c= (c0, c1, c2, . . .) and d= (d0, d1, d2, . . .) let c ∗d denote the convolution

c ∗d= (c0d0, c1d0+ c0d1, c2d0+ c1d1+ c0d2, . . .).

Then, with this operation defined, we have that

M = {(c ∗ c′, c ∗d′+ c′ ∗d) : (c, d) ∈M1, (c′, d′) ∈M2}.

So, we need to show that if (c∗c′, c∗d′+c′∗d) ∈M and ifλ,δ ∈C∗ then (λ(c∗c′),δ(c∗d′+c′∗d)) ∈
M . But by the inductive hypothesis, we know that if (c, d) ∈M1, (c′, d′) ∈M2, and λ,δ,λ′,δ′

are nonzero then

(λλ′c ∗ c′,λδ′c ∗d′+λ′δc′ ∗d) ∈M .

Taking λ=λ, λ′ = 1, δ=δ and δ′ =δ/λ gives the desired result.

A second type of homogeneity also holds for the vanishing ideals of circuit models. We

introduce a grading on the polynomial ring R[c, d] by setting deg(ci ) = deg(di ) = i . The

degree of a monomial deg(c αd β ) is the sum of the degrees of all variables in the monomial,

counted with multiplicity. So, for example,

deg(c 2
1 c3d0d4) = 1+1+3+0+4= 9.

A polynomial in R[c, d] in the degree grading is called homogeneous if every monomial

appearing has the same degree. An ideal IM is degree homogeneous if it has a generating

set consisting of degree homogeneous polynomials. The notion of degree homogeneity

can also be interpreted in terms of the corresponding variety, at least when the ideal is

radical. Degree homogeneity of the radical ideal I ⊆ R[c, d] is equivalent to the follow-

ing condition on the variety V = V (I ): for any pair (c, d) ∈ V and any nonzero λ ∈ C,

(λ0c0,λ1c1,λ2c2, . . . ,λ0d0,λ1d1,λ2d2, ) is also in V . Denote the operation of applying λ to

(c, d) in this way by λ · (c, d) = (λ · c,λ ·d).

Proposition 2.6.4. For any series-parallel circuit network M , the vanishing ideal IM is degree

homogeneous in c and d.

Proof. We proceed by induction on the number of components in the network. The state-

ment is clearly true if the networks have just one component, since the vanishing ideal is

the zero ideal in that case.
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By symmetry, we can suppose that the model is a series combination M =M1 ∧M2. By

induction, we can suppose that M1 and M2 satisfy the degree homogeneity assumption. As

in the proof of Proposition 2.6.3, we need to show that if (c ∗ c′, c ∗d′+ c′ ∗d) ∈M and λ ∈C∗

then (λ · (c ∗ c′),λ · (c ∗d′+ c′ ∗d) ∈M . Note that · and ∗ interact in the following way:

(λ · c) ∗ (λ · c′) =λ · (c ∗ c′)

with similar expressions holding for other combinations of c, d, c′, d′. Since λ · (c, d) = (λ ·
c,λ ·d) ∈M1 and λ · (c′, d′) = (λ · c′,λ ·d′) ∈M2 we get that

((λ · c) ∗ (λ · c′), (λ · c) ∗ (λ ·d′) + (λ · c′) ∗ (λ ·d)) = (λ · (c ∗ c′),λ · (c ∗d′+ c′ ∗d) ∈M

which is the desired result.
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CHAPTER

3

IDENTIFIABLE PATHS AND CYCLES IN

LINEAR COMPARTMENTAL MODELS

In this chapter, we expand upon the results in Meshkat and Sullivant (2014) and Meshkat

et al. (2015) in the following ways. First, we consider the case of inputs and outputs not

necessarily in the same compartment and define the analogous identifiable path/cycle

model (Definition 3.2.4), which is a model where all the monomial functions associated to

the directed cycles and paths from input to output are identifiable. Just as in Meshkat and

Sullivant (2014), this occurs when the model has a coefficient map whose image has maxi-

mal dimension (Theorem 3.2.16). We then take these identifiable path/cycle models and

remove leaks from all compartments except input/output compartments to achieve identi-

fiable models (Theorem 3.2.23). A similar result was demonstrated in Meshkat et al. (2015),

but in that version, the intersection of input and output compartments was nonempty,

whereas in the present work the input and output compartments need not coincide. We

then show that these identifiable path/cycle models yield the only identifiable models with

certain conditions on their graph structure (Theorem 3.3.1). We thus provide necessary

and sufficient conditions for identifiable models with certain graph properties (Corollary

3.3.4). We also give a sufficient condition for a model to be an identifiable path/cycle model
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which can be tested simply by examining the graph itself (Theorem 3.2.27). In addition,

we weaken the conditions on the graph structure to obtain some necessary and sufficient

conditions for identifiability (Corollary 3.4.11). We also give some necessary conditions for

identifiability in terms of the structure of the graph (Theorems 3.5.1, 3.5.3, 3.5.4). Finally, we

give a construction of identifiable models using results from Baaijens and Draisma (2016)

(Algorithm 3.8.4).

Our results apply to a large class of linear compartmental models which arise in many

real-world applications. Path models of the form in Proposition 3.2.34 arise in physiological

models involving metabolism, biliary, or excretory pathways (DiStefano 2015) and models of

neuronal dendritic trees (Bressloff and Taylor 1993). Path models also arise when modeling

the delayed response to input and are called time-delay models (DiStefano 2015). One such

example is Example 4.13 from DiStefano (2015) on oral dosing losses and delays in the

gastrointestinal tract. Some other path models are considered in Section 3.6. More generally,

we consider models that are strongly input-output connected. Mammillary and catenary

models (DiStefano 2015) fall into this category, as well as a variation of mammillary and

catenary models where input and output are in distinct neighboring compartments but

the edge from output to input is missing (see Figure 3.1). More generally, our results apply

to models that can be thought of as path models combined with catenary models and are

considered in Section 3.6. Such a model could, for example, represent a time-delay model

coupled with a catenary model.

The organization of the chapter is as follows. Section 3.1 gives the necessary background.

Section 3.2 gives the definition of an identifiable path/cycle model and how to obtain one.

Section 3.3 gives a classification of all identifiable models with certain graph properties.

Section 3.4 examines weaker conditions on the graph structure for necessary and sufficient

conditions for identifiability. Section 3.5 gives necessary conditions for identifiability in

terms of the graph structure of the model. Section 3.6 demonstrates our results on some

real-world examples. Section 3.7 gives computations on the number of models with maxi-

mal dimension with a certain number of inputs and outputs. Finally, Section 3.8 gives a

construction of identifiable models.

3.1 Preliminaries

First, we consider an example.
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Table 3.1: Summary of main results of Chapter 3.

Result Explanation
Corollary 3.3.4 Gives necessary and sufficient conditions for a

strongly input-output connected model to be
an identifiable path/cycle model

Theorem 3.2.27 Gives a sufficient condition to be an
identifiable path/cycle model based on graph structure

Corollary 3.4.11 Gives necessary and sufficient conditions for an
output connectable model to be
an identifiable path/cycle model

1 2 3 4
a21 a32

a23

a43

a34

in

a01 a02 a03 a04

M

Figure 3.1: Graph for Example 3.1.1.

Example 3.1.1. The modelM = (G ,{1},{2}, V )with G given in Figure 3.1 is a linear com-

partmental model with equations given by:











x ′1
x ′2
x ′3
x ′4











=











−a01−a21 0 0 0

a21 −a02−a32 a23 0

0 a32 −a03−a23−a43 a34

0 0 a43 −a04−a34





















x1

x2

x3

x4











+











u1

0

0

0











, (3.1)

with output equation y2 = x2.

For a model (G , I n , O u t , L e a k )where there is a leak in every compartment (i.e. L e a k =

V ), it can greatly simplify the representation to use the fact that the diagonal entries of A

are the only places where the parameters a0i appear. Since these are algebraically indepen-

dent parameters, we can introduce a new algebraically independent parameter ai i for the

diagonal entries (i.e. we make the substitution ai i =−a0i −
∑

k :i→k∈E ak i ) to get generic pa-

rameter values along the diagonal. Identifiability questions in such a model are equivalent
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Table 3.2: Summary of which new results in this chapter generalize the prior results from
Meshkat and Sullivant (2014) and Meshkat et al. (2015).

Prior Result New Result Explanation
Theorem 1.2 from Theorem 3.2.16 Generalizes conditions for

Meshkat and Sullivant (2014) identifiable cycle model to
identifiable path/cycle model

Theorem 5 from Theorem 3.2.23 Generalizes removing leaks
Meshkat et al. (2015) to obtain identifiability
Theorem 5.13 from Theorem 3.2.27 Generalizes inductively strongly

Meshkat and Sullivant (2014) connected to almost inductively
strongly connected

Proposition 5.4 from Proposition 3.2.34 Generalizes identifiable cycle
Meshkat and Sullivant (2014) to identifiable path

Proposition 5.5 from Proposition 3.2.35 Generalizes adding a new vertex
Meshkat and Sullivant (2014)

Proposition 5.3 from Theorem 3.5.3 Generalizes necessary condition
Meshkat and Sullivant (2014) Theorem 3.5.4 of having an exchange

to having a path

to identifiability questions in the model with this reparametrized matrix.

We now define the path/cycle map for a modelM = (G , I n , O u t , V ):

Definition 3.1.2. LetP =P (G ) be the set of all directed cycles and paths from input to

output vertices in the graph G . Define the path/cycle map by:

π :R|E |+|V |→R|P |,A 7→ (a C )C ∈P (3.2)

Example 3.1.3 (Continuation of Example 3.1.1). Consider the modelM = (G ,{1},{2}, V )

as described in Example 3.1.1. The path/cycle map for this model is

π: R9→R7

(a11, a22, a33, a44, a21, a23, a32, a34, a43) 7→ (a21, a11, a22, a33, a44, a23a32, a34a43)

Now we give some definitions from Gross et al. (2019) regarding an important subgraph

to this work:

Definition 3.1.4. For a linear compartmental modelM = (G , I n , O u t , L e a k ), let i ∈O u t .

The output-reachable subgraph to i (or to yi ) is the induced subgraph of G containing all

vertices j for which there is a directed path in G from j to i . A linear compartmental model
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is output connectable if every compartment has a directed path leading from it to an output

compartment.

We add the following definition:

Definition 3.1.5. A linear compartmental modelM = (G , I n , O u t , L e a k ) is output con-

nectable to every output if every compartment has a directed path leading from it to every

output compartment.

We now state Theorem 3.8 from Gross et al. (2019) with input i and output j , which

gives the input-output equation in yj in terms of the output-reachable subgraph to yj .

Theorem 3.1.6. LetM = (G , I n , O u t , L e a k ) be a linear compartmental model with at

least one input. Let j ∈O u t , and assume that there exists a directed path from some input

compartment to compartment- j . Let H denote the output-reachable subgraph to yj , let AH

denote the compartmental matrix for the restrictionMH , and let ∂ I be the the product of

the differential operator d /d t and the |VG | × |VG | identity matrix. Then the following is an

input-output equation forM involving yj :

det(∂ I −AH )yj =
∑

i∈I n∩VH

(−1)i+ j det (∂ I −AH )i j ui , (3.3)

where (∂ I −AH )i j denotes the matrix obtained from (∂ I −AH ) by removing the row corre-

sponding to compartment-i and the column corresponding to compartment- j . Thus, this

input-output equation (3.3) involves only the output-reachable subgraph to yj .

Example 3.1.7 (Continuation of Example 3.1.1). The modelM = (G ,{1},{2}, V ) with G

given by the graph { 1→ 2,2→ 3,3→ 2,3→ 4,4→ 3 } has leaks from every compartment,

thus writing the diagonal elements as ai i , we have the following input-output equation:

y (4)2 + (−a11−a22−a33−a44)y
(3)

2

+ (a11a22−a23a32+a11a33+a22a33−a34a43+a11a44+a22a44+a33a44)y
′′

2

+ (a11a23a32−a11a22a33+a11a34a43+a22a34a43−a11a22a44+a23a32a44−a11a33a44−a22a33a44)y
′

2

+ (−a11a22a34a43−a11a23a32a44+a11a22a33a44)y2

= (a21)u
′′
1

+ (−a21a33−a21a44)u
′
1

+ (a21a33a44−a21a34a43)u1 .
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3.1.1 Strongly input-output connected

In order to consider identifiable path/cycle models, we will be considering graphs G that

have the special property of being connected and every edge is contained in a cycle or path

from input to output. We call this strongly input-output connected:

Definition 3.1.8. We say a graph G is strongly input-output connected if it is connected and

every edge is contained in a cycle or path from input to output.

We first show that, in the case of a single output, being strongly input-output connected

implies being output connectable, so if we assume the former we get output connectable

and can use Theorem 3.1.6 with the whole matrix A. Likewise, for the case of multiple

outputs, we show that being strongly connected implies being output connectable to every

output.

Proposition 3.1.9. (1) Consider a modelM = (G , I n ,{ j }, L e a k ). Assume G is strongly

input-output connected. Then G is output connectable. (2) Now consider a modelM =

(G , I n , O u t , L e a k ). Assume G is strongly connected. Then G is output connectable to every

output.

Proof. LetM = (G , I n ,{ j }, L e a k ). Assume G is strongly input-output connected, i.e. it is

connected and every edge is contained in a cycle or path from input to output. Since every

edge contained in a path from input to output is connected to the output, we need only

consider the edges in cycles. If a vertex in a cycle coincides with a vertex on a path from

input to output, then we are done. Thus, assume that there exists a cycle whose vertices do

not intersect with the vertices on paths from input to output. Since the graph is connected,

the cycle must be attached via a directed edge from either the cycle to a path from input to

output or vice versa. But the attaching edge must also be on a path from input to output.

Thus for any edge from the path to the cycle, there must be a corresponding edge from the

cycle to the path. Thus the graph is output connectable.

IfM = (G , I n , O u t , L e a k ) and G is strongly connected, then since there is a path from

each vertex to every other vertex, then G is output connectable to every output.

Remark 3.1.10. Note that in Proposition 3.1.9, G must be strongly connected as opposed

to strongly input-output connected whenM = (G ,{i }, O u t , L e a k ), or else not every vertex

may connect to every output.

Remark 3.1.11. A model that is strongly input-output connected in the case of a single

output or strongly connected in the case of multiple outputs is always structurally observable
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(Godfrey and Chapman 1990), as it is output connectable to every output by Proposition

3.1.9.

We now show that the property of being strongly input-output connected is almost

strongly connected, in the sense that the graph becomes strongly connected once an edge

is added (if not already there) from the output to every input ifM = (G , I n ,{ j }, L e a k ) or

an edge is added from every output to the input ifM = (G ,{i }, O u t , L e a k ).

Proposition 3.1.12. (1) Consider a modelM = (G , I n ,{ j }, L e a k ). The modelM is strongly

connected if an edge is added from output j to every input if and only if it is strongly input-

output connected. (2) Now consider a modelM = (G ,{i }, O u t , L e a k ). The modelM is

strongly connected if an edge is added from every output to input i if and only if it is strongly

input-output connected. Strongly connected implies strongly input-output connected.

Proof. A modelM = (G , I n ,{ j }, L e a k ) is strongly connected if and only if it is connected

and every edge is contained in a cycle. Thus a modelM = (G , I n ,{ j }, L e a k ) is strongly

connected if a path from output j to every input is added if and only if it is connected and

every edge is contained in a cycle or path from input to output, i.e. strongly input-output

connected. Likewise, a modelM = (G ,{i }, O u t , L e a k ) is strongly connected if a path from

every output to input i is added if and only if it is connected and every edge is contained in

a cycle or path from input to output, i.e. strongly input-output connected. Additionally, if a

model is strongly connected, then it is strongly input-output connected, as every edge is

contained in a cycle.

We can also examine the minimum number of edges in order to be either strongly

connected or strongly input-output connected:

Proposition 3.1.13. If G is strongly connected, the minimum number of edges is |V |. If G is

strongly input-output connected for input i and output j , the minimum number of edges is

|V | −1.

Proof. For G to be strongly connected, each vertex must have at least one incoming and

one outgoing edge. Thus the minimum number of edges is |V |. If a graph is strongly input-

output connected for input i and output j , then this means it becomes strongly connected

if an edge is added from output j to input i (if not already there). This means the minimum

number of edges is |V | −1.
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3.1.2 Expected number of coefficients

We first give a result from Meshkat et al. (2015), which we have reworded to agree with the

new terminology in this work and have split into two parts: Proposition 3.1.14 shows that

the coefficient map factors through, i.e. can be written purely in terms of, cycles, self-cycles

and paths, and Lemma 3.1.18 gives the degree of the highest-order term on the right hand

side of the input-output equation.

Proposition 3.1.14 (Proposition 5 from Meshkat et al. (2015)). LetM = (G , I n ,{ j }, V )

represent a linear compartmental model that is output connectable. The coefficient map c

factors through cycles, self-cycles, and paths from input to output.

Proof. LetC (G ) be the set of all cycles in G , corresponding to a matrix A. Recall that the

coefficients of the characteristic polynomial of A can be written as

ci = (−1)i
∑

C1,...,Ck∈C (G )

k
∏

j=1

sign(C j )a
C j ,

where the sum is over all collections of vertex disjoint cycles involving exactly i edges of

G , and sign(C ) = 1 if C is odd length and sign(C ) =−1 if C is even length. This means for

every i , all cycles of length i appear as monomial terms in ci , and for j > i , these cycles of

length i appear as monomial products with other cycles in c j .

By Theorem 3.1.6 and the fact that G is output connectable, meaning that the output-

reachable subgraph of G is all of G , the input-output equation for yj is given by:

det(∂ I −A)yj =
∑

i∈I n

(−1)i+ j det(∂ I −A)i j ui . (3.4)

This means the coefficients on the left hand side factor through the cycles in G .

Let us now examine these coefficients of the ui terms in Equation (3.4). For i = j , the

term det(∂ I − A)i i gives the coefficients of the characteristic polynomial for the matrix

Ai i with row i and column i removed, thus these coefficients factor through cycles of the

induced subgraph removing vertex i .

Now assume i ̸= j . The characteristic polynomial of A can be determined by expanding

det(∂ I −A) along the i t h row. Let Ã be the matrix A with the entry ai j nonzero. Then for

i ̸= j , taking the partial derivative of the characteristic polynomial of Ã with respect to

ai j precisely gives the polynomial det(∂ I −A)i j , up to a minus sign. Since the coefficients

of the characteristic polynomial of Ã factor through the cycles, then taking the derivative
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of these coefficients with respect to ai j has the effect of removing all monomial terms

not involving ai j and setting ai j to one in the monomial terms that do involve ai j . This

effectively transforms all cycles involving ai j to paths from the i t h vertex to the j t h vertex.

Thus, each of the monomial terms are products of paths from the i t h vertex to the j t h

vertex, cycles, and self-cycles. In other words, coefficients are of the form:

cm = (−1)m
∑

P1,...,Pn∈P (G )

n
∏

l=1

sign(Pl )a
Pl ,

where the sum is over all collections of vertex disjoint cycles and paths from i to j involving

exactly m edges of G , and sign(P ) = 1 if P is odd length and sign(P ) =−1 if P is even length.

Thus the coefficients can be factored over cycles, self-cycles, and paths from input to

output. In other words, there is a polynomial map

ψ :R|P |→Rk

which we will refer to as the path/cycle to coefficient map where k is the number of

coefficients, such that c =ψ ◦πwhere π is the path/cycle map from Equation 3.2.

Definition 3.1.15. Let the polynomial mapψ from the path/cycle space R|P | of an output

connectable modelM to its corresponding input-output equation coefficient space Rk be

defined as the path/cycle to coefficient map.

Example 3.1.16 (Continuation of Example 3.1.1). Consider the modelM = (G ,{1},{2}, V )

as described in Example 3.1.1. The path/cycle to coefficient map for this model is

ψ: R7→R7

(p1, p2, p3, p4, p5, p6, p7) 7→

























−p2−p3−p4−p5

p2p3−p6+p2p4+p3p4−p7+p2p5+p3p5+p4p5

p2p6−p2p3p4+p2p7+p3p7−p2p3p5+p5p6−p2p4p5−p3p4p5

−p2p3p7−p2p5p6+p2p3p4p5

p1

−p1p4−p1p5

p1p4p5−p1p7

























⊺

Note that the composition of the path/cycle map π in Example 3.1.3 and the path/cycle

to coefficient mapψ in Example 3.1.16 yields the coefficients of the input-output equation

forM as shown in Example 3.1.7.
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We will be writing the number of coefficients in terms of the minimal distance between

an input and output compartment. We define this now:

Definition 3.1.17. Let i be an input compartment and let j be an output compartment,

i ̸= j . LetP (i , j ) be the set of all paths from vertex i to vertex j . Let l (P ) denote the length

of a path P ∈P . Then we can define the minimum length of all paths from vertex i to vertex

j as dist(i, j) =minP∈P (i,j) l (P ).

Lemma 3.1.18 (Proposition 5 from Meshkat et al. (2015)). LetM = (G , I n ,{ j }, V ) represent

a linear compartmental model withM output connectable. The highest-order term in ui

where i ∈ I n on the right hand side of the input-output equation, Equation (3.4), is of degree

|V | −1−dist(i, j).

Proof. Let Ã be the matrix A with the entry ai j nonzero. LetC (G̃ ) be the set of all cycles in

G̃ , corresponding to a matrix Ã. To determine the coefficient of the highest-order term in

ui , recall that the coefficients of the characteristic polynomial of Ã can be written as

cm = (−1)m
∑

C1,...,Ck∈C (G̃ )

k
∏

l=1

sign(Cl )a
Cl ,

where the sum is over all collections of vertex disjoint cycles involving exactly i edges of G̃ ,

and sign(C ) = 1 if C is odd length and sign(C ) =−1 if C is even length. This means for every

m , all cycles of length m appear as monomial terms in cm , and for l >m , these cycles of

length m appear as monomial products with other cycles in cl .

We now determine the highest-order term in ui . Since det(∂ I −A)i j is just the partial

derivative of the characteristic polynomial of Ã with respect to ai j , up to a minus sign, then

the right-hand side of the input-output equation for output yj is of the form, where n = |V |:

∑

i∈I n

(−1)i+ j

�

∂ c1

∂ ai j
u (n−1)

i +
∂ c2

∂ ai j
u (n−2)

i +
∂ c3

∂ ai j
u (n−3)

i + · · ·+
∂ cn

∂ ai j
ui

�

We note that not all of these coefficients ∂ ck
∂ ai j

for k = 1, ..., n are nonzero and thus we

must determine the first nonzero coefficient.

Recall Definition 3.1.17 for the minimal distance between i and j . Let the length of

the shortest cycle involving ai j be of length dist(i, j)+1, so that the length of the shortest

path from i to j is of length dist(i, j). Then the coefficient of the highest-order term in ui is

∂ cdist(i,j)+1/∂ ai j , which is a sum of the shortest paths (of length dist(i, j)) from i to j . Thus it
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is of the form
∑

P∈P (i , j ):l (P )=dist(i,j)a
P . This means the highest-order term in ui is of degree

|V | − (dist(i, j) +1) = |V| −1−dist(i, j).

We now give a formula for the number of coefficients of the input-output equation in

the case of either single input or single output.

Theorem 3.1.19 (Number of nonzero coefficients). LetM = (G ,{i1, i2, ..., i|I n |},{ j }, L ) rep-

resent a linear compartmental model with G output connectable with at least |I n ∪O u t |
leaks with I n ∪O u t ⊆ L. There are |V |+n |V |−

∑

k dist(ik, j)+m(|V|−1) nonzero coefficients

where n = |I n −O u t | and m = |I n ∩O u t |. Now letM = (G ,{i },{ j1, j2, ..., j|O u t |}, L ) repre-

sent a linear compartmental model with G output connectable to every output with at least

|I n ∪O u t | leaks with I n ∪O u t ⊆ L. There are |V |+n |V |−
∑

k dist(i, jk))+m(|V|−1) nonzero

coefficients where n = |O u t − I n | and m = |I n ∩O u t |.

Proof. AssumeM = (G ,{i1, i2, ..., i|I n |},{ j }, L ) is a linear compartmental model with G out-

put connectable with at least |I n ∪O u t | leaks with I n ∪O u t ⊆ L . By Equation (3.4), the

highest degree term is |V | on the left hand side. For the right hand side, |I n ∩O u t | is either

1 or 0. If |I n ∩O u t |= 1, then the highest-order term in u j is of degree |V | −1 on the right

hand side. The highest-order term in u j is monic, so there are |V |−1 coefficients of terms in

u j . For each i ∈ I n −O u t , the highest degree term in ui is of order |V | −1−dist(i, j) on the

right hand side by Lemma 3.1.18. In this case, the highest-order term in ui is not monic, so

there are |V |−1−dist(i, j)+1= |V|−dist(i, j) coefficients of terms in ui when i ̸= j . Altogether,

there are |V |+n |V | −
∑

k dist(ik, j))+m(|V| −1) nonzero coefficients where n = |I n −O u t |
and m = |I n ∩O u t |.

For the case with multiple outputs, letM = (G ,{i },{ j1, j2, ..., j|O u t |}, L ) represent a linear

compartmental model with G output connectable to every output with at least |I n ∪O u t |
leaks with I n ∪O u t ⊆ L . By applying the formula for the case of single output above for

each input-output equation, we obtain that there are |V |+n |V | −
∑

k dist(i, jk)) +m(|V| −1)

nonzero coefficients where n = |O u t − I n | and m = |I n ∩O u t |.
We need only show that the coefficients are nonzero (for a generic choice of parameters).

If there are leaks from every compartment, Proposition 3.1.14 shows that the coefficients

factor through cycles, self-cycles, and paths from input to output.

Now consider the case of removing leaks. We will be substituting ai i as the negative sum

of all outgoing edges when i /∈ L , but if i ∈ L then ai i stays the same. Since I n∪O u t ⊆ L , we

have that every compartment has an outgoing edge or leak, as every vertex has an outgoing

edge except for possibly the output vertex by the output connectable assumption. This
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means the substitution ai i as the negative sum of all outgoing edges and leaks retains the

(i , i ) entry of A to be nonzero.

Recall by Proposition 3.1.14, these coefficients can be factored over cycles, self-cycles,

and paths when L =V . Each coefficient, except for the highest order coefficient in uik
when

ik ̸= j (which is a sum of paths from ik to j ), must have a term involving a self-cycle. If the

self-cycles in every coefficient are only from leak compartments, we are done. Otherwise,

consider a coefficient that has terms involving self-cycles from non-leak compartments

which we must substitute into for the case L ⊂V . We want to show that the substitution

of the non-leak diagonal terms as the negative sum of all outgoing edges does not cancel

every term in that coefficient, so that the coefficients remain nonzero after substitution.

We claim that the substitution of ak k as the negative sum of all outgoing edges for k /∈ L

cannot create only terms that are products of cycles and paths from input to output. Since

the graph must be output connectable, any cycle formed from the non-leak vertices must

connect to the output. In other words, for a chain of vertices in a cycle k1, k2, ..., kl , one of

these vertices must connect to the output via a path from that vertex to the output. Without

loss of generality, assume it is vertex k1. Thus the substitution of the non-leaks ak1k1
, ak2k2

,

...,akl kl
cannot create a single monomial term of the form ±ak1k2

ak2k3
· · ·akl k1

, but must also

create a monomial ±ak1k2
ak2k3
· · ·ar k1

where we have substituted ak1k1
as −akl k1

− ar k1
for

some vertex r that connects via a path to the output.

This monomial ak1k2
ak2k3
· · ·ar k1

cannot itself be a path from input to output, as the

input and output vertices have leaks and thus the corresponding diagonal terms do not get

substituted. Thus, it is not a path from input to output, and thus cannot cancel with any

other terms in that coefficient.

Remark 3.1.20. We note that the assumption of at least |I n ∪O u t | leaks with I n ∪O u t ⊆ L

and G to be output connectable is to prevent the situation where there are no outgoing

edges or leaks from a non-leak vertex and thus upon substitution of the diagonal element

ai i as the negative sum of all outgoing edges and leaks, it becomes zero.

Definition 3.1.21 (Expected number of coefficients). We say a modelM =
(G ,{i1, i2, ..., i|I n |},{ j }, L )with I n ∪O u t ⊆ L has the expected number of coefficients if there

are |V |+n |V |−
∑

k dist(ik, j)+m(|V|−1) nonzero coefficients in the input-output equations

(3.3) where n = |I n−O u t | and m = |I n∩O u t |. We sayM = (G ,{i },{ j1, j2, ..., j|O u t |}, L )with

I n ∪O u t ⊆ L has the expected number of coefficients if there are |V |+n |V | −
∑

k dist(i, jk) +

m(|V| −1) nonzero coefficients in the input-output equations (3.3) where n = |O u t − I n |
and m = |I n ∩O u t |.
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3.2 Identifiable path/cycle models

Definition 3.2.1. We say a modelM = (G , I n , O u t , V ) has a coefficient map with expected

dimension if the dimension of the image of the coefficient map is maximal.

We will be examining a special class of models we call identifiable path/cycle models.

This class of models is a generalization of identifiable cycle models as defined in Meshkat

et al. (2015):

Definition 3.2.2 (Identifiable Cycle Models). We say a modelM = (G ,{i },{i }, V ) with G

strongly connected is an identifiable cycle model if all of the independent monomial cycles

in the model are locally identifiable.

Example 3.2.3. The models (G ,{1},{1}, V ) and (H ,{1},{1}, V ) where G corresponds to a

chain of exchanges 1↔ 2,2↔ 3, etc, and H correspond to a central compartment given

by compartment 1 and exchanges 1↔ 2,1↔ 3, etc, are identifiable cycle models due

to Theorem 5.13 of Meshkat and Sullivant (2014). The first model is commonly called a

catenary model and the second model is called a mammillary model (DiStefano 2015).

It was shown in Meshkat and Sullivant (2014) that a sufficient condition for a model to

be an identifiable cycle model is that the dimension of the image of the coefficient map is

|E |+1. We now define the main object of interest in this chapter, identifiable path/cycle

models and spend the rest of this section forming analogous sufficient conditions on the

dimension of the image of the coefficient map.

Definition 3.2.4 (Identifiable Path/Cycle Models). We say a modelM = (G , I n , O u t , V ) is

an identifiable path/cycle model if all of the independent monomial cycles and monomial

paths from input to output in the model are locally identifiable and each parameter is

contained in such a cycle or path.

Remark 3.2.5. As identifiable path/cycle models require all of the cycles and paths from

input to output in the model to be identifiable, it only makes sense to consider models

that are connected and every edge is contained in a cycle or path from input to output, i.e.

strongly input-output connected. Otherwise, an edge that is not contained in a cycle or

path from input to output will not appear in the coefficient map.

Example 3.2.6 (Continuation of Example 3.1.1). The modelM = (G ,{1},{2}, V ) with G

given by the graph { 1→ 2,2→ 3,3→ 2,3→ 4,4→ 3 } is an identifiable path/cycle model,

with identifiable paths and cycles given by a11, a22, a33, a44, a21, a23a32, a34a43. This can be
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demonstrated by writing each path and cycle as a function of the coefficients ci , e.g. using

Groebner Bases. Further justification will come from Theorem 3.2.16.

For models with leaks from every compartment, the dimension of the image of the

coefficient map is bounded above by the number of independent paths and cycles in the

graph from Proposition 3.1.14. We now determine what this number is. We first show that

when G is output connectable for the case of single output, there are |E |+ |I n ∪O u t |
independent directed paths and undirected cycles. We then examine the case where G is

strongly input-output connected so that the indicator vectors for the independent directed

paths and directed cycles in the graph correspond to 0/1 vectors. We show that this number

of independent paths and cycles is equal to |E |+ |I n ∪O u t |.
We define the |V | by |E | incidence matrix E (G ) as:

E (G )i ,( j ,k ) =











1 if i = j

−1 if i = k

0 otherwise.

(3.5)

In other words, E (G ) has column vectors corresponding to the edges j → k ∈ E with a 1

in the j t h row, −1 in the k t h row, and 0 otherwise. We define the indicator vector of a

directed cycle C as the vector (xs )s∈E such that xs = 1 if s ∈ EC and xs = 0 if s /∈ EC , where

EC is the set of edges associated to the directed cycle C .

We can also define the indicator vector of an undirected cycle C ′with associated directed

cycle C (reversing arrows to all point in the same direction) as the vector (xs )s∈E such that

xs = 1 if s ∈ EC , xs = −1 if −s ∈ EC , and xs = 0 if s /∈ EC , where EC is the set of edges

associated to the directed cycle C and −s corresponds to an edge s going in the opposite

direction. In other words, if s corresponds to i → j , then −s corresponds to j → i .

The rank of the directed incidence matrix is well-known:

Proposition 3.2.7 (Proposition 4.3 of Biggs (1993)). Let G be a graph with |V | vertices, |E |
edges, and l connected components. Then the rank of E (G ) is |V | − l . Thus, the dimension of

the kernel of E (G ) is |E | − |V |+ l .

We state one final result from Meshkat et al. (2015), which shows that the kernel of E (G )

can be written in terms of |E | − |V |+1 directed cycles when G is strongly connected, thus

the indicator vectors are 0/1 vectors:

Proposition 3.2.8. [Proposition 4 of Meshkat et al. (2015)] Let G be a strongly connected

graph. Then a set of |E | − |V |+ 1 linearly independent indicator vectors of directed cycles

form a basis for the kernel of E (G ).
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In other words, this proposition shows that the space of all undirected cycles can be

generated by the space of all directed cycles when G is strongly connected. We now prove a

similar result in terms of cycles and paths from input to output when G is strongly input-

output connected.

Proposition 3.2.9. LetM = (G , I n , O u t , V ) represent a linear compartmental model with

G strongly input-output connected. Then the space of all directed paths and undirected cycles

can be generated by the space of all directed paths and directed cycles and vice versa.

Proof. Let B have as its columns the indicator vectors of all directed paths and undirected

cycles. We show that, for every undirected cycle, we can add a positive integer multiple of a

directed path vector or directed cycle vector to obtain either a directed cycle or directed

path from input to output. Since G is strongly input-output connected, every edge is in

either a cycle or path from input to output. For every edge with a negative entry in the

indicator vector of an undirected cycle, that edge either belongs to a cycle or path from

input to output. If it belongs to a path from input to output, one can add a positive multiple

of the path to the undirected cycle to achieve only non-negative entries corresponding to a

closed path or path from input to output. If it does not belong to a path from input to output,

then it belongs to a directed cycle. Thus one can add a positive multiple of the directed

cycle to the undirected cycle to achieve only non-negative entries corresponding to a closed

path or path from input to output. In either case, this corresponds to a multigraph with

the property that the indegree of each vertex equals the outdegree of each vertex except

possibly at input and output vertices. Cycles can be removed so that the result is a cycle or

a path from input to output.

Lemma 3.2.10. LetM = (G , I n , O u t , V ) represent a linear compartmental model with

G output connectable if |O u t |= 1 or G strongly input-output connected otherwise. Then

the number of independent undirected cycles and directed paths from input to output is

|E |+ |I n ∪O u t |.

Proof. Let the matrix B have as columns the indicator vectors of the undirected cycles and

directed paths from input to output vertices. Since G is either output connectable in the

single output case or strongly input-output connected, then G is certainly connected, and

thus there are |E | − |V |+1 undirected cycles that form a basis for the kernel of E (G ) and

there must be at least one path from input to output, so B is certainly not the zero matrix.

Form the product E (G )B . If column k of B corresponds to a cycle, then column k of E (G )B
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will be zero, and if column k of B corresponds to a path from input in i and output in j ,

then column k of E (G )B will have a 1 in row i and a −1 in row j .

Remove the zero columns and duplicate columns (which occur when there is more

than one path from an input to an output) and zero rows from this matrix E (G )B and

call the resulting matrix M . We claim M is the incidence matrix of the graph where there

are |I n ∪O u t | vertices corresponding to each input/output compartment and there is a

directed edge from an input compartment to an output compartment if and only if there

is a path from the corresponding input to the corresponding output in the graph G . Call

this graph GM . Note that there are only |I n ∪O u t | vertices in GM because we deleted zero

rows from the matrix E (G )B to obtain the matrix M , thus deleting vertices that do not

correspond to inputs or outputs. This graph GM must be connected because we assumed

G is output connectable in the single output case and strongly input-output connected

otherwise. Since the rank of the incidence matrix for a connected graph is the number of

vertices minus one, this means the rank of E (G )B is |I n ∪O u t | −1.

Since the rank of E (G )B is equal to the rank of B minus the dimension of the column

space of B intersected with the kernel of E (G ), which is exactly |E | − |V |+1 because B is

generated by paths and undirected cycles and a basis for the kernel of E (G ) is given by

undirected cycles, then this means the rank of B is exactly |E | − |V |+1+ |I n ∪O u t | −1=

|E | − |V | + |I n ∪O u t |. Adding the |V | self-cycles, we obtain that the dimension of the

path/cycle map is |V |+ |E | − |V |+ |I n ∪O u t |= |E |+ |I n ∪O u t |.

Corollary 3.2.11. LetM = (G , I n , O u t , V ) represent a linear compartmental model with

G strongly input-output connected. Then the number of independent directed cycles and

directed paths from input to output is |E |+ |I n ∪O u t |.

Proof. If |O u t | = 1, strongly input-output connected implies output connectable and if

|O u t |> 1, we have strongly input-output connected. The statement follows from Lemma

3.2.10 and Proposition 3.2.9 to achieve a set of |E |+ |I n ∪O u t | independent directed cycles

and directed paths from input to output.

We now show that the dimension of the image of the coefficient map is bounded above

by the number of independent paths and cycles. We will add the important assumption of

either |I n |= 1 or |O u t |= 1 so that the number of distinct input-output pairs equals |I n ∪
O u t | −1, described in the Remark below. For |O u t |= 1 we can assume G is strongly input-

output connected as stated in Corollary 3.2.11, but for the case of |I n |= 1 we will assume

G is strongly connected in order to ensure the input-output equations are irreducible as
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Figure 3.2: The modelsM andM ′ from Example 3.2.14.

shown in Section 2. For the special case where |I n |= |O u t |= 1 and I n =O u t , we note that

strongly input-output connected reduces to strongly connected. For the special case where

|I n |= |O u t |= 1 and I n ̸=O u t , then strongly input-output connected is sufficient in what

follows, i.e. we can take the weaker of the two conditions strongly input-output connected

and strongly connected.

Lemma 3.2.12. LetM = (G , I n , O u t , V ) represent a linear compartmental model. Assume

that either G is strongly input-output connected and |O u t |= 1 or G is strongly connected

and |I n |= 1. The dimension of the image of the coefficient map is bounded above by |E |+
|I n ∪O u t |.

Proof. The coefficient map factors through the cycles, self-cycles, and paths from input

to output from Proposition 3.1.14. By Corollary 3.2.11, the number of independent paths

and cycles is |E |+ |I n ∪O u t |. Thus the dimension of the image of the coefficient map is

bounded above by |E |+ |I n ∪O u t |.

Remark 3.2.13. We require |I n |= 1 or |O u t |= 1 so that there are either |O u t |− |I n ∩O u t |
or |I n | − |I n ∩O u t | distinct input-output pairs, respectively, which equals |I n ∪O u t | −1,

the rank of E (G )B in the proof of Lemma 3.2.10. Example 3.2.14 demonstrates this.

Example 3.2.14. The modelM = (G ,{1,2},{3,4}, V ) seen in Figure 3.2. Note thatM has

|E |+ |I n ∪O u t |= 10 independent paths and cycles but the coefficient map factors over 11

paths and cycles given by a12a21, a23a32, a24a42, a32, a42, a21a32, a21a42, a11, a22, a33, a44. The

problem here is that there are only 10 parameters, but we are attempting to factor over 11

paths and cycles. This is why we require |I n |= 1 or |O u t |= 1. However, this is a sufficient
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condition but not a necessary condition, as the modelM ′ = (G ′,{1,2},{3,4}, V ) seen in

Figure 3.2 has |E |+ |I n ∪O u t |= 12 independent paths and cycles given by a31, a41, a32, a42,

a13a31, a14a41, a23a32, a24a42, a11, a22, a33, a44 and the coefficient map factors over these as

well.

Remark 3.2.15. Notice that in Lemma 3.2.12, we assume that G is either strongly input-

output connected or strongly connected. We have just shown that the expected dimension

in this case is |E |+ |I n∪O u t |. But a natural question that arises is, what if we do not assume

this connectedness condition on G ? Clearly, we still have that the coefficient map factors

through cycles and paths. In this case there will be at most |E |+ |I n ∪O u t | independent

cycles and paths that appear in the coefficient map, i.e. the coefficient map may factor over

fewer than |E |+ |I n ∪O u t | independent paths and cycles. See Section 3.4.

This gives us the following theorem:

Theorem 3.2.16. LetM = (G , I n , O u t , V ) represent a linear compartmental model with

either G strongly input-output connected and |O u t |= 1 or G strongly connected and |I n |= 1.

If the image of the coefficient map has dimension |E |+ |I n ∪O u t |, then the model is an

identifiable path/cycle model.

Proof. By Lemma 3.2.12, the dimension of the image of the coefficient map is bounded

above by |E |+ |I n ∪O u t |, which is also the number of independent paths and cycles.

Recall a function f is locally identifiable if there is a finitely multivalued function φ :

R|E |+|I n∪O u t |→R such that φ ◦ c = f . Let π :R|E |+|V |→R|E |+|I n∪O u t | be the path/cycle map

from Equation 3.2. Since c :R|E |+|V |→R|E |+|I n∪O u t | factors over paths and cycles, then there

exists a functionψ :R|E |+|I n∪O u t |→ R|E |+|I n∪O u t | as defined in Definition 3.1.15 such that

c =ψ ◦π. If the dimension of the image of the coefficient map is precisely |E |+ |I n ∪O u t |,
then this functionψ is locally invertible withψ−1 =φ and thus π=φ ◦ c . Thus the paths

and cycles are identifiable.

Example 3.2.17 (Continuation of Example 3.1.1). The modelM = (G ,{1},{2}, V ) from

Example 3.1.1 can be shown to have dimension of the image of the coefficient map equal

to |E |+ |I n ∪O u t |= 5+2= 7. Thus there are 7 identifiable paths and cycles given by the

monomials a11, a22, a33, a44, a21, a23a32, a34a43.

3.2.1 Necessary condition for number of edges and the edge inequality

Proposition 3.2.18. LetM = (G , I n , O u t , V ) represent a linear compartmental model

with either G strongly input-output connected and |O u t |= 1 or G strongly connected and
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|I n |= 1. IfM = (G , I n , O u t , V ) is an identifiable path/cycle model, then |E |+ |I n ∪O u t | ≤
the expected number of coefficients.

Proof. We have that the dimension of the image of the coefficient map is bounded above by

the expected number of coefficients, as it cannot exceed the number of coefficients. Thus

|E |+ |I n ∪O u t | ≤ the expected number of coefficients.

Definition 3.2.19 (Edge inequality). We say that a model has a number of edges given by the

edge inequality if the number of edges |E | satisfies |E |+ |I n ∪O u t | ≤ the expected number

of coefficients.

We can also show that the property of being strongly input-output connected is a

necessary condition for having expected dimension in the case of maximal number of

edges.

Proposition 3.2.20. LetM = (G , I n , O u t , V ) with G output connectable and |O u t | =
1 represent a linear compartmental model for which the edge inequality is an equality

with expected dimension |E |+ |I n ∪O u t |. Then the graph must be strongly input-output

connected.

Proof. Assume the coefficient map has expected dimension |E | + |I n ∪O u t | with the

maximal number of edges. This means the expected dimension is the number of coefficients.

If the graph is not connected with every edge in a cycle or path from input to output, then

there are parameters that do not appear in the coefficient map, and thus the coefficient map

factors over fewer than |E |+ |I n ∪O u t | independent paths and cycles. But this contradicts

having expected dimension |E |+ |I n ∪O u t |.

Remark 3.2.21. If there are fewer edges, we can still achieve expected dimension without

this condition of strongly input-output connected. In other words, being strongly input-

output connected is a sufficient but not necessary condition to achieve |E |+ |I n ∪O u t |
independent cycles and paths in the coefficient map. See Section 3.4.

3.2.2 Obtaining identifiability by removing leaks

In this section, we show that removing all leaks except leaks from input/output compart-

ments results in identifiability, much like the results in Meshkat et al. (2015). We will follow

the same proof. Recall that for an identifiable path/cycle model, we have the coefficient

map c :R|V |+|E |→Rk . Let π :R|V |+|E |→R|E |+|I n∪O u t | be the path/cycle map from Equation

76



3.2, that is π(A(G )) = (a P : P is a cycle or path from input to output of G ). Then Proposition

3.1.14 tells us that c factors through πwithout loss of dimension. Thus c =ψ◦πwhereψ is

defined as in Definition 3.1.15 and the dimension of the image of c equals the dimension

of the image of π.

Passing from a model (G , I n , O u t , V ) to a model (G , I n , O u t , L e a k ) such that |L e a k |=
|I n ∪O u t | amounts to restricting the parameter space R|V |+|E | to a linear subspace Λ ⊆
R|V |+|E | of dimension |E |+ |L e a k | and we would like the image of Λ under the coefficient

map c to have dimension |E |+ |L e a k |. Since c factors through the path/cycle map π it

suffices to prove that the image of Λ under π has dimension |E |+ |L e a k |.

Lemma 3.2.22. Let G = (V , E ) be a directed graph with corresponding identifiable path/cycle

model (G , I n , O u t , V ). Assume that either G is strongly input-output connected and |O u t |=
1 or G is strongly connected and |I n |= 1. Consider a model (G , I n , O u t , L )where I n∪O u t ⊆
L. Letπ :R|V |+|E |→R|E |+|I n∪O u t | denote the path/cycle map. LetΛ⊆R|V |+|E | be the linear space

satisfying

Λ= {A ∈R|V |+|E | : ai i =−
∑

j , j ̸=i

a j i for all i /∈ L}.

Then the dimension of the image of Λ under the map π is |E |+ |I n ∪O u t |.

Proof. SinceΛ is a linear space, we just consider the natural map fromR|E |+|L |→R|E |+|I n∪O u t |

which maps to the path/cycle space. To show that the dimension of the image of this map

is correct, we consider the Jacobian of this map and show that it has full rank.

Note that the rows corresponding to the |L | self-cycles are linearly independent so we

focus on the |E |+ |I n∪O u t |−|L | by |E | submatrix ignoring those rows and columns, which

we will call J . Arrange the matrix so that the first |E | − |V |+ |I n ∪O u t | rows correspond to

the paths and cycles of G and the last |V | − |L | rows correspond to the non-leak diagonal

elements. Let the first |E | − |V |+ |I n ∪O u t | rows be called A and the last |V | − |L | rows

be called B . Clearly the rows of A are linearly independent by Lemma 3.2.12. The rows of

B are linearly independent since they are in triangular form since each involves distinct

parameters. To show that the full set of |E |+ |I n ∪O u t |− |L | rows are linearly independent,

we need only show that the row space of A and the row space of B intersect only in the

origin.

To prove that J generically has maximal possible rank, it is enough to show that there

is some point where the evaluation of J at said point yields the maximal rank. We choose

the point where we set all the edge parameters ai j = 1 for all j → i ∈ E . This specialization

yields that the row space of A is exactly the path/cycle space of the graph G , i.e. all of the
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weightings on the edges of the graph where the indegree equals the outdegree of every

vertex in a cycle and every vertex except the first and last in a path from input to output.

Also, we have that the matrix B which has dimension (|V | − |L |)× (|E |), which consists of

the rows corresponding to the vertices in V \ L , and the (negated) row corresponding to

vertex i has a one for an edge i ′→ j ′ if and only if i = i ′, with all other entries zero.

Since A spans the path/cycle space of G , each element in the row space of A corresponds

to a weighting on the edges of G where the total weight of all incoming edges at a vertex i

equals the total weight of all outgoing edges at vertex i except at input or output vertices

I n ∪O u t . On the other hand, we claim that the only vector in the row span of B with the

same property is the zero vector. To show this, let bi be the row vector associated to some

vertex i . Note that a vector in the row span of B will have zero weight on any of the outgoing

edges of vertices in I n ∪O u t .

In order for the indegree to equal the outdegree, we would need to include a b j with

an edge pointing toward vertex i . Continuing in this way, we can only stop when we have

included an input or output vertex since the indegree need not equal the outdegree for

those vertices. However, this contradicts the fact that a vector in the row span of B will have

zero weight on any of the outgoing edges of vertices in I n ∪O u t .

Theorem 3.2.23 (Removing Leaks). LetM = (G , I n , O u t , V ) represent a linear compart-

mental model. Assume that either G is strongly input-output connected and |O u t |= 1 or G

is strongly connected and |I n |= 1. Assume it is an identifiable path/cycle model. Then, the

corresponding model ÝM = (G , I n , O u t , L )where I n ∪O u t ⊆ L for any such L has expected

dimension. In particular, if L = I n ∪O u t , then ÝM is locally identifiable.

Proof. By Lemma 3.2.22 and the comments preceding it we know that the image of the re-

stricted parameter space under the path/cycle mapπhas dimension |E |+|I n∪O u t |, which

is equal to the dimension of the image of the full parameter space under the path/cycle map.

Since, for an identifiable path/cycle model, the dimension of the image of the coefficient

map c is |E |+ |I n ∪O u t |, this must be the same for the restricted model. In particular,

if |L | = |I n ∪O u t |, then the model has |E |+ |I n ∪O u t | parameters, hence it is locally

identifiable.

Example 3.2.24 (Continuation of Example 3.1.1). The model ÝM = (G ,{1},{2},{1, 2}) seen

in Figure 3.3 obtained from the model in Example 3.1.1 by removing two leaks and leaving

the leaks in the input and output compartments is locally identifiable.
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Figure 3.3: Graph for model corresponding to ÝM in Example 3.2.24.
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Figure 3.4: On the left is the graph corresponding toM with leak set L = {2, 4}, and on the
right is the graph corresponding toM ′ with leak set L = {3, 4} from Example 3.2.26.

Remark 3.2.25. We note that, while L = I n ∪O u t is sufficient in Theorem 3.2.23, it is

certainly not necessary, as there are other possible configurations of |L |= |I n ∪O u t | leaks

that also result in identifiability. The next example demonstrates this.

Example 3.2.26. Consider the modelM = (G ,{1},{2}, L ) see in Figure 3.4 where |L | =
|I n ∪O u t | = 2 and G is given by the edges { 1 → 2,1 → 3,3 → 1,1 → 4,4 → 1 }. The

identifiable models are the ones where L = {2, 4},{2, 3},{1, 2} and the unidentifiable models

have L = {3, 4},{1, 4},{1, 3}.
We note that while 2 ∈ L appears to be sufficient for identifiability in this model, we

can consider another model given byM ′ = (G ′,{1},{2}, L ) also seen in Figure 3.4 where

|L | = |I n ∪O u t | = 2 and G ′ is given by the edges { 1→ 2,3→ 1,4→ 1,1→ 3,2→ 4 }. The

identifiable models are the ones where L = {3, 4},{2, 3},{1, 4},{1, 2} and the unidentifiable

models have L = {2, 4},{1, 3}. This shows the pattern of identifiability depends on the graph

structure itself and not just the placement of inputs and outputs.
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3.2.3 Sufficient condition for identifiable path/cycle model

We now give a sufficient condition for a model to be an identifiable path/cycle model with

1 input and 1 output. This sufficient condition is analogous to the sufficient condition

from Meshkat and Sullivant (2014) of inductively strongly connected for models with input

and output in the same compartment. In fact, Theorem 3.2.27 reduces to Theorem 5.13 of

Meshkat and Sullivant (2014) if the input and output compartments are the same.

Theorem 3.2.27. LetM = (G ,{i },{ j }, V ) represent a linear compartmental model with G

strongly input-output connected and |E |= 2|V | − (dist(i, j) +2). IfM = (G ,{i },{ j }, V ) has no

path from compartment j to compartment i but becomes inductively strongly connected if an

edge from compartment j to compartment i is added, thenM is an identifiable path/cycle

model.

Before we prove Theorem 3.2.27, we define a graph structure which will be useful in the

proof.

Definition 3.2.28 (Definition 5.6 from Meshkat and Sullivant (2014)). A chain of cycles is a

graph H which consists of a sequence of directed cycles that are attached to each other in

a chain by joining at the vertices.

Theorem 3.2.29. SupposeM ′ = (G ′,{i },{ j }, V ) represents a linear compartmental model

with G ′ strongly input-output connected and |E |= 2|V | − (dist(i, j) +2). Suppose too thatM ′

has expected dimension and also thatM ′ has no path from j to i and becomes inductively

strongly connected if the edge from j to i is added. Then, if G is a new graph obtained from

G ′ by adding a vertex n and two edges k → n and n → l such that G has a chain of cycles

containing either i and n or j and n, then the modelM = (G ,{i },{ j }, V ∪{n}) has expected

dimension.

Recall that we can induce a weight order on a polynomial ring K[x1, . . . , xn ] for some

weight vectorω ∈Qn where the weight of a monomial x α1
1 · · · x αn

n isω·αwhereα= (α1, . . . ,αn ).

We can then define the initial forms of a polynomial f as inω(f) to be the sum of all terms of

f whose monomial has the highest weight with respect to saidω.

Now, if we define the coefficient map associated to the graph G asφG : R|V |+|E |→Rk , then

we can also consider the pull-back of said map defined asφ∗G :K[c , d ]→K[a ]where c , d

correspond to the coefficients of the left and right-hand side of the input-output equation

respectively, and a corresponds to the parameters found in compartmental matrix A. Now

defineφG ,ω to be the initial parameterization defined as the parameterization with pullback

φ∗G ,ω whereφ∗G ,ω( f ) = inω(f) for a given weightω.
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Lemma 3.2.30 (Corollary 5.9, Meshkat and Sullivant (2014)). Let φ∗ : K[x ] → K[y ] be a

K-algebra homomorphism andω ∈Qm a weight vector, then

dim(imφω)≤ dim(imφ).

We will use Lemma 3.2.30 in the following way. We want to compute the dimension of

the image of a polynomial parametrizationφ. We know for other reasons an upper bound

d on this dimension. We have a weight vectorωwhere we can compute the dimension of

the image of the polynomial parametrization φω, and we show it is equal to d . Then, by

Lemma 3.2.30, we know that the dimension of the image ofφ must be d .

Proof of Theorem 3.2.29. SupposeM ′ = (G ′,{i },{ j }, V ) is a linear compartmental model

with expected dimension such that G ′ is strongly input-output connected, |E | = 2|V | −
(dist(i, j) + 2). Also suppose that if we add the edge from j to i , the new graph becomes

inductively strongly connected. Note that by Theorem 3.1.19, the input-output equation

of the modelM ′ has 2|V | −dist(i, j) nonzero, non-monic coefficients. Let |V |= n −1 and

m = |E |.
Define φG : R|V |+|E |→R2|V |−dist(i,j), to be the coefficient map associated to a graph G as

above with corresponding pull-backφ∗G . Choose weightω as follows:

ωu v =















0 if (u , v ) = (n , n )
1
2 if (u , v ) = (n , k ) or (l , n )

1 otherwise.

Recall that for each coefficient, the corresponding polynomial function is homogeneous

in terms of the parameters. Also, recall that the left-hand side coefficients are generated by

cycles of the corresponding graph, while the right-hand side coefficients are generated by

products of cycles of the corresponding graph along with paths from the input to output.

Applying this weight to the polynomial coefficients has the effect of removing any

monomial containing a cycle which is incident to compartment n , in all coefficients except

for the lowest order terms in both c and d . Note that in the case of cn and dn−1, each of the

monomials in the sum will have a cycle incident to n , meaning that each of them has the

same weight.
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More explicitly, in terms of the pull-back maps we have in all cases that

φ∗G ,ω(ci ) =φ
∗
G ′(ci ) i = 1, . . . , n −1

φ∗G ,ω(di ) =φ
∗
G ′(di ) i = dist(i, j), . . . , n−2

φ∗G ,ω(cn ) =φ
∗
G (cn )

φ∗G ,ω(dn−1) =φ
∗
G (dn−1).

Thus,φG ,ω agrees withφG ′ everywhere except for the highest order coefficients on either

side of the input-output equation, in which caseφG ,ω matchesφG . This implies that the

Jacobian matrix corresponding toφG ,ω defined as J (φG ,ω) (whose generic rank yields the

dimension of the image of the map), has the form

J (φG ,ω) =

�

J (φG ′) 0

∗ C

�

where J (φG ′) is the (2n − (dist(i, j) +2))× (n+m−3) Jacobian matrix ofφG ′ and C is the

2×3 matrix

C =

�

∂ cn
∂ ann

∂ cn
∂ al n

∂ cn
∂ ank

∂ dn−1
∂ ann

∂ dn−1
∂ al n

∂ dn−1
∂ ank

�

where l and k are the nodes to which the added node n has an edge to and from respectively.

Note that we assume that the model corresponding to G ′ has expected dimension,

hence J (φG ′) has rank 2(n −1)−dist(i, j). Since J (φG ) is lower block triangular, to show that

it has rank 2n −dist(i, j), we need only show that C has generic rank 2.

Let H be a chain of cycles in G defined as s2, . . . , st in order such that s2 is a cycle

containing either the input or the output and st is the cycle containing the node n . Also,

define s1 to be one of the shortest paths from i to j .

Now we will choose entries for the matrix A such that the matrix C has rank 2. First, let

all diagonal elements of A be 1, i.e. ak k = 1 for all k = 1, . . . , n . Also, let au v = 0 for all edges

v → u ̸∈H . For all edges in H , for each cycle si , choose the edge weights so that the product

of edges’ weights is equal to (−1)ℓ(si )−1, that is so that the product of the edges in the cycle is

equivalent to the sign of the cycle. For s1, choose edge weights so that the product of the

edges’ weights is also equal to (−1)ℓ(si )−1.

First, consider the entry ∂ cn
∂ ann

. The only nonzero monomials appearing here will arise

from taking products of the cycles s2, . . . , st−1, since the cycle st cannot be involved, as we

only consider the elements of the sum of cn with ann as a factor. Also, s1 is not a cycle, hence
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cannot be part of any of the ci . Since each cycle touches its two neighboring cycles, and no

other cycles, and in the expansion we expand over all products of nontouching cycles that

cover all n vertices, we get that the number of monomials will equal the number of subsets

of {2, . . . , t −1}with no adjacent elements. By Lemma 3.2.31, this is exactly Ft .

Now consider the entry ∂ dn−1
∂ ann

, which will arise from taking products of s1, s3, . . . , st−1,

since we must have s1, hence cannot have s2, and by similar reasoning above cannot have

st . Thus, we get that the number of monomials are the number of nonadjacent subsets of

{s3, . . . , st−1}, hence we get the Fibonacci number Ft−1.

In the case of the entry ∂ cn
∂ al n

or equivalently ∂ cn
∂ ank

, we must use the cycle st prohibiting us

from using st−1, and again must not use s1. This yields that the number of monomials is the

number of nonadjacent subsets of s2, . . . , st−2, i.e. the Fibonacci number Ft−1.

Finally, when considering entry ∂ dn−1
∂ al n

or equivalently ∂ dn−1
∂ ank

, we must use s1 and cycles st ,

hence cannot use cycles s2 or st−1. This means that the number of monomials will be the

number of nonadjacent subsets of s3, . . . , st−2, i.e. the Fibonacci number Ft−2.

Thus, the submatrix C will have the form

C =

�

Ft Ft−1 Ft−1

Ft−1 Ft−2 Ft−2

�

.

The classical identity of Fibonacci number Ft Ft−2− F 2
t−1 = (−1)t−1 yields that this matrix

has full rank. hence, the Jacobian ofφ∗G ,ω has full rank.

Note that the upper bound for the number of coefficients of the input-output equation,

i.e. the upper bound on the dimension of the image of the coefficient map is 2n −dist(i, j)

via Theorem 3.1.19. Thus, because dim(im(φ∗G,ω)) ≤ dim(im(φ∗G)) by Lemma 3.2.30, and

dim(im(φ∗G)) is bounded above by 2n −dist(i, j), we have that dim(im(φ∗G)) = 2n−dist(i, j) as

desired.

Lemma 3.2.31. The number of subsets S of {1,2, . . . , n} such that S contains no pair of

adjacent numbers is the n+2-nd Fibonacci number, Fn+2 which satisfies the recurrence F0 = 0,

F1 = 1, and Fn+1 = Fn + Fn−1.

We can now prove Theorem 3.2.27.

Proof of Theorem 3.2.27. By Theorem 3.2.29 and the inductive nature of inductively strongly

connected graphs, it suffices to show that every inductively strongly connected graph

beginning with a cycle between i and j has a chain of cycles containing the vertices i and

n (or, analogously, a chain of cycles containing the vertices j and n).
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Figure 3.5: The modelM corresponds to the above graph with all four leaks, while the
graphM ′ has the same graph with only the black leaks, that is leaks in compartments 1
and 2, all from Example 3.2.33.

We prove this by induction on n . Since G is inductively strongly connected if the edge

from j to i is added, there is a nontrivial cycle c that passes through the vertex n . If c

contains i , we are done. Otherwise, let q be the smallest vertex appearing in c , and let G ′

be the induced subgraph on {i , j , . . . , q }. By induction, G ′ has a chain of cycles containing i

and q . Attaching c to H gives a chain of cycles in G containing i and n . A similar argument

can be applied to give a chain of cycles in G containing j and n .

Theorem 3.2.27 is not only useful as a sufficient condition for an identifiable path/cycle

model, but it is also useful as a means to start with an identifiable path/cycle model and

then remove leaks to obtain identifiability:

Corollary 3.2.32. LetM = (G ,{i },{ j }, V ) represent a linear compartmental model with G

strongly input-output connected and |E |= 2|V | − (dist(i, j) +2). IfM = (G ,{i },{ j }, V ) has no

path from compartment j to compartment i but becomes inductively strongly connected

if the edge from compartment j to compartment i is added, thenM ′ = (G ,{i },{ j },{i , j }) is

locally identifiable, i.e. removing all but two leaks in the input/output compartments.

Proof. This follows from Theorem 3.2.27 and Theorem 3.2.23.

Example 3.2.33. The modelM = (G ,{1},{2}, V ) seen in Figure 3.5 with G given by the

edges {1→ 2,2→ 3,3→ 4,4→ 2,3→ 2} is an identifiable path/cycle model by Theorem

3.2.27. Thus, the modelM ′ = (G ,{1},{2},{1, 2})where we remove all but two leaks from the

input/output compartments is locally identifiable.
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We also note that, as cycles with input/output in the same compartment were shown to

have expected dimension in Meshkat and Sullivant (2014) (see Proposition 5.4), paths from

input to output can be shown to have expected dimension as well.

Proposition 3.2.34. LetM = (G ,{1},{|V |}, V ) be a linear compartmental model with G

given by a path from input 1 to output |V | with |V | − 1 edges. ThenM is an identifiable

path/cycle model and the model ÝM = (G ,{1},{|V |},{1, |V |}) is locally identifiable.

Proof. Let n = |V |. AssumeM = (G ,{1},{n}, V ) is a linear compartmental model with G

given by a path from input 1 to output n with n − 1 edges. Recall the coefficients on the

left hand side of the input-output equation are given by the characteristic polynomial of A,

which is:

(λ−a11)(λ−a22) · · · (λ−ann )

Since the roots of a polynomial can be determined from its coeffiicents, then all of

a11, a22, . . . , ann are locally identifiable. Since the degree of the highest-order term on the

right hand side of the input-output equation is n−1−dist(1, n)by Lemma 3.1.18, this reduces

to zero so the right hand side is an ,n−1 · · ·a32a21un . Thus the monomial path an ,n−1 · · ·a32a21

is identifiable. This means the dimension of the image of the coefficient map is |E |+ |I n ∪
O u t | = n − 1+ 2 = n + 1 which is the number of paths and cycles, thus the model is an

identifiable path/cycle model. By Theorem 3.2.23, the model ÝM = (G ,{1},{n},{1, n}) is

locally identifiable.

In Meshkat and Sullivant (2014), it was shown in Proposition 5.5 that if a modelM =
(G ,{1},{1}, V ) has expected dimension, then the modelM = (G ′,{1′},{1′}, V ) also has

expected dimension, where G ′ is the new graph obtained from G by adding a new vertex

1′ and an exchange 1→ 1′,1′→ 1 and making 1′ the new input-output node. We show an

analogous result now:

Proposition 3.2.35. LetM = (G ,{1},{ j }, V ) be a linear compartmental model that has

expected dimension where |V | = n and j ̸= 1. Let G ′ be a new graph obtained from G by

adding a set of new vertices n + 1, n + 2, . . . , n + k and a set of edges n + 1 → 1, n + 2 →
n +1, . . . , n +k → n + (k −1) and making n +k the new input node. Then the model ÝM =
(G ′,{n +k},{ j }, V ∪{n +1, n +2, . . . , n +k}) also has expected dimension.

Proof. Let A be the full matrix associated to the graph G ′ where the first k rows and k

columns correspond to the added path from compartment n +k to compartment 1, Ak
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be the matrix where the first k rows and first k columns have been deleted (and, hence

associated to the graph G ), and let EG be the edges of the graph G . We assume that the

dimension of the image of the map c associated to the modelM = (G ,{1},{ j }, V ) is |EG |+
|I n ∪O u t | = |EG |+ 2, and we want to show that for the model ÝM = (G ′,{n + k},{ j }, V ∪
{n +1, n +2, . . . , n +k})we get |EG ′ |+2= |EG |+k +2, as we are adding k new edges.

The input-output equation for the model ÝM = (G ′,{n+k},{ j }, V ∪{n+1, n+2, . . . , n+k})
is:

det(∂ I −A)yj = det(∂ I −A)1, j+k un+k

where det(∂ I − A) = (∂ − an+1,n+1) · · · (∂ − an+k ,n+k )det(∂ I − Ak ) and det(∂ I − A)1, j+k =

a1,n+1an+2,n+1 · · ·an+k ,n+k−1 det(∂ I − Ak )1 j . The input-output equation for the modelM =

(G ,{1},{ j }, V ) is:

det(∂ I −Ak )yj = det(∂ I −Ak )1 j u1

For notational ease, we write ∂ as λ, |V | = n , p = (an+1,n+1, . . . , an+k ,n+k ), and q =

a1,n+1an+2,n+1 · · ·an+k ,n+k−1. Note that p is the vector of new self-cycles and q can be in-

terpreted as the added monomial path from compartment n +k to compartment 1. We

can write det(λI −Ak ) as:

λn + c1λ
n−1+ . . .+ cn−1λ+ cn

and we can write det(λI −Ak )1 j as

d1λ
n−1+d2λ

n−2+ . . .+dn−1λ+dn .

Thus det(λI −A) = (λ−an+1,n+1) · · · (λ−an+k ,n+k )det(λI −Ak ) can be written as (up to a minus

sign):

λn+k +(c1−S1(p ))λ
n+k−1+(c2−c1S1(p )+S2(p ))λ

n+k−2+(c3−c2S1(p )+c1S2(p )−S3(p ))λ
n+k−3

+ . . .+ (ck − ck−1S1(p ) + ck−2S2(p )− . . .−Sk (p ))λ
n

+ . . .+ (cn − cn−1S1(p ) + cn−2S2(p )− . . .− cn−k Sk (p ))λ
k

+ (−cnS1(p ) + . . .+ cn−k+2Sk−1(p )− cn−k+1Sk (p ))λ
k−1

+ . . .+ (−cnSk−2(p ) + cn−1Sk−1(p )− cn−2Sk (p ))λ
2+ (cnSk−1(p )− cn−1Sk (p ))λ− cnSk (p ) (3.6)

where S1(p ), . . . ,Sk (p ) are the k elementary symmetric polynomials in the parameter vector
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p . Here we assumed n > k , but an analogous formula follows for the case of n ≤ k .

We will refer to the non-constant coefficients of det(λI −A) as C1, . . . , Cn+k . Note that

these are by assumption identifiable. Likewise,

det(λI −A)1, j+k = q d1λ
n−1+q d2λ

n−2+ . . .+q dn−1λ+q dn . (3.7)

We will refer to the coefficients of det(λI −A)1, j+k as D1, . . . , Dn . Note that these are by as-

sumption identifiable. We must now show that if the mapping given by (c1, . . . , cn , d1, . . . , dn )

has expected dimension, then the new mapping (C1, . . . , Cn+k , D1, . . . , Dn ) also has expected

dimension. Since the parameters in p are roots of the polynomial det(λI − A), then this

means these parameters can be written in terms of the coefficients (C1, . . . , Cn+k ), which

are identifiable, and thus the parameters in p are identifiable. This means each of the

elementary symmetric polynomials S1(p ), . . . ,Sk (p ) are identifiable. Since C1 and S1(p ) are

identifiable from Equation 3.6, then c1 can be recovered from the first coefficient from Equa-

tion 3.6. Likewise, since C2, c1, S1(p ), and S2(p ) are identifiable, then c2 can be recovered from

the second coefficient of Equation 3.6. Continuing in this fashion, we can recover c1, . . . , cn ,

i.e. c1, . . . , cn are identifiable. This means the dimension of the image of (C1, . . . , Cn+k ) is k

more than the dimension of the image of (c1, . . . , cn ). Since the coefficients of Equation 3.7

are just the coefficients d1, . . . , dn scaled by q , which contains disjoint parameters from

the parameters in the coefficients c1, . . . , cn , d1, . . . , dn , then the dimension of the image

of (D1, . . . , Dn ) is the same as the dimension of the image of (d1, . . . , dn ). The parameters

in p do not appear in (D1, . . . , Dn ), thus combining the maps (C1, . . . , Cn+k ) and (D1, . . . , Dn )

we have that the dimension of the image of the new map (C1, . . . , Cn+k , D1, . . . , Dn )must be

k more than the dimension of the image of (c1, . . . , cn , d1, . . . , dn ) due to the identifiability

of the parameters in p . Thus the model ÝM = (G ′,{n +k},{ j }, V ∪{n +1, n +2, . . . , n +k})
has dimension of the image of the coefficient map equal to |EG |+k +2, i.e. k more than

M = (G ,{1},{ j }, V ).
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3.3 Classification of all identifiable models that are strongly

input-output connected with 1 output or strongly con-

nected with 1 input and leaks in input/output compart-

ments

The following Theorem 3.3.1 gives necessary conditions for strongly input-output con-

nected models with 1 output or strongly connected models with 1 input with leaks in

input/output compartments to be identifiable, namely that they must be identifiable

path/cycle models when all the leaks are added to the model.

3.3.1 Necessary conditions for identifiability

Theorem 3.3.1 (Adding Leaks). LetM = (G , I n , O u t , L ) represent a linear compartmental

model with |L |= |I n ∪O u t | and either G strongly input-output connected and |O u t |= 1 or

G strongly connected and |I n |= 1 which we assume has expected dimension, i.e. has dimen-

sion of the image of the coefficient map equal to |E |+ |I n ∪O u t |. Then, the corresponding

model with an additional leak ÝM = (G , I n , O u t , L ∪{k}) also has expected dimension. Thus

the model ÝM = (G , I n , O u t , L e a k ) where L ⊆ L e a k and |L e a k | ≤ |V | also has expected

dimension.

Proof. SupposeM = (G , I n , O u t , L ) is a linear compartmental model with either G strongly

input-output connected and |O u t | = 1 or G strongly conencted and |I n | = 1 and |L | =
|I n ∪O u t |which we assume has expected dimension, i.e. has dimension of the image of

the coefficient map equal to |E |+ |I n ∪O u t |.
Note that because we assume thatM has expected dimension and |L | leaks, this implies

that the Jacobian of the coefficient map has the expected number of coefficients as the

number of rows and (|E |+ |I n ∪O u t |) columns with full rank |E |+ |I n ∪O u t |. Note too

that the addition of the |V | − |L | parameters from the leaks being added to the modelM
will not increase the number of coefficients in the resulting input-output equation, as the

number of coefficients is the maximal amount by Theorem 3.1.19.

Therefore, the Jacobian of the coefficient map of the model ÝM = (G , I n , O u t , V ) gener-

ated by forcing every compartment inM to have a leak, has the same number of rows but

now (|E |+ |V |) columns. The dimension of the image of the coefficient map is bounded

above by the number of cycles and paths when there are |V | leaks, which is |E |+ |I n ∪O u t |.

88



Thus adding |V | − |L | leaks to a |L |-leak model cannot increase the dimension of the image

of the coefficient map above |E |+ |I n ∪O u t | if it has already achieved that dimension with

|L | leaks.

Note then that if we consider the specialization generated by substituting zero for

every added leak, and consider the submatrix of said Jacobian with expected number

of coefficients as the number of rows and (|E |+ |I n ∪O u t |) columns generated by the

(|E |+ |I n ∪O u t |) columns corresponding to the edges and leaks in L , we have exactly the

Jacobian of the coefficient map ofM , which we know is full rank. Therefore, we have that

the Jacobian of the coefficient map of ÝM is also full rank, implying that the model has

expected dimension.

The same argument applies for adding any number of leaks up to |V | total leaks.

Remark 3.3.2. We note that while Theorem 3.2.23 and Theorem 3.3.1 assume opposite

operations of adding or subtracting leaks, we have the condition in Theorem 3.2.23 that

I n ∪O u t ⊆ L e a k , while in Theorem 3.3.1 only |L e a k |= |I n ∪O u t | is assumed, i.e. only

the number and not the placement of leaks matters.

3.3.2 Necessary and sufficient conditions for identifiability

Combining Theorem 3.3.1 with Theorem 3.2.23, we now come to the main result of this

section and obtain the following necessary and sufficient conditions for identifiable models:

Corollary 3.3.3. LetM = (G ,{i },{i },{k}) represent a linear compartmental model with G

strongly connected and let ÝM = (G ,{i },{i }, V ) be the corresponding model with a leak in

every compartment.M is locally identifiable if and only if ÝM is an identifiable cycle model.

Proof. This follows from combining Theorem 3.3.1 and Theorem 1 of Meshkat et al. (2015)

(also written as Theorem 3.8.3).

Corollary 3.3.4. LetM = (G , I n , O u t , L ) represent a linear compartmental model with and

L = I n ∪O u t and assume that either G is strongly input-output connected and |O u t |= 1 or

G is strongly connected and |I n |= 1. Let ÝM = (G , I n , O u t , V ) be the corresponding model

with a leak in every compartment.M is locally identifiable if and only if ÝM is an identifiable

path/cycle model.

Proof. This follow from combining Theorem 3.3.1 and Theorem 3.2.23.
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Remark 3.3.5. Corollary 3.3.4 gives us a complete classification of all identifiable models

that are strongly input-output connected with 1 output or strongly connected with 1 input

and leaks in input/output compartments. We note that this class of models has the very

special property of being dimension-preserving when leaks are added or subtracted from

non-input/output compartments, up to a point. To demonstrate that this special dimension-

preserving property when removing leaks is not always the case, we revisit Example 3.2.26.

Example 3.3.6. Recall Example 3.2.26 where we had the modelM = (G ,{1},{2}, L )where

|L | = |I n ∪O u t | = 2 and G is given by the edges {1→ 2,1→ 3,3→ 1,1→ 4,4→ 1}. The

identifiable models are the ones where L = {2, 4},{2, 3},{1, 2} and the unidentifiable models

have L = {3, 4},{1, 4},{1, 3}, so removing leaks from output compartments is not dimension-

preserving for this example.

In the next section, we give a conjecture about removing leaks from non-input/output

compartments in the general output connectable case for models with one output.

3.4 Other expected dimension results

We first show that there are at most |E |+|I n∪O u t | independent paths and cycles appearing

in the coefficient map c if we relax the condition of strongly input-output connected to

output connectable instead:

Proposition 3.4.1. LetM = (G , I n , O u t , V ) represent a linear compartmental model with

G output connectable. Assume that |O u t | = 1. Then there are at most |E |+ |I n ∪O u t |
independent paths and cycles in the coefficient map c .

Proof. If G is strongly input-output connected (or strongly connected) then we have al-

ready shown in Lemma 3.2.12 that the coefficient map factors through |E |+ |I n ∪O u t |
independent paths and cycles. If G is output connectable but not strongly input-output

connected, then there may be fewer than |E |+ |I n ∪O u t | independent directed paths and

directed cycles because there are |E | − |V |+ |I n ∪O u t | independent directed paths and

undirected cycles by Lemma 3.2.10. Since the coefficient map factors over the directed

paths and directed cycles, then there are at most |E |+ |I n ∪O u t | independent paths and

cycles in the coefficient map c .

This means the expected dimension is now the number of independent directed paths

and directed cycles, which may be less than |E |+ |I n ∪O u t |.
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Figure 3.6: The graph corresponding to modelM from Example 3.4.3.

We can relax the connectedness conditions in Theorem 3.3.1 to output connectable

instead and still obtain statements about expected dimension, although now the models

with a full set of leaks are not identifiable path/cycle models.

Theorem 3.4.2. LetM = (G , I n , O u t , L ) represent a linear compartmental model with G

output connectable and |L |= |I n ∪O u t | and |O u t |= 1 which we assume has dimension of

the image of the coefficient map equal to |E |+ |I n ∪O u t |. Then, the corresponding model

with a leak in every compartment ÝM = (G , I n , O u t , V ) also has dimension of the image of

the coefficient map equal to |E |+ |I n ∪O u t |.

Proof. The proofs mirrors the one in Theorem 3.3.1.

Example 3.4.3. The modelM = (G ,{1},{2},{1, 2}) seen in Figure 3.6 where G is the graph

given by {1 → 2,3 → 2} is output connectable and has dimension of the image of the

coefficient map equal to |E |+ 2 = 4, thus it is locally identifiable. By Theorem 3.4.2, the

model ÝM = (G ,{1},{2}, V ) also has dimension of the image of the coefficient map equal

to |E |+ 2 = 4. Thus the identifiable functions are a11, a22, a33, a21. Note that it is not an

identifiable path/cycle model because the parameter a23 does not appear in the coefficient

map (as it is not strongly input-output connected).

This result shows that if a model has its dimension of the image of the coefficient map is

equal to |E |+ |I n ∪O u t |, then adding leaks alone maintains the dimension of the image of

the coefficient map. This result is perhaps more useful for its contrapositive, i.e. if a model

with leaks from every compartment does not have dimension |E |+ |I n∪O u t | for c , then no

amount of removing leaks up to a certain point (|L |= |I n ∪O u t |) can attain identifiability.

Corollary 3.4.4. Let ÝM = (G , I n , O u t , V ) represent a linear compartmental model with G

output connectable and |O u t |= 1 which does not have the dimension of the image of the

coefficient map equal to |E |+|I n∪O u t |. Then, the corresponding modelM = (G , I n , O u t , L )

with |L |= |I n ∪O u t | is not locally identifiable.
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Figure 3.7: The graph corresponding to modelM from Example 3.4.5.

Example 3.4.5. The modelM = (G ,{1},{2}, V ) seen in Figure 3.7 where G is the graph

given by {1→ 2, 3→ 2, 3→ 1} is output connectable and has dimension of the image of the

coefficient map not equal to |E |+2= 5, but equal to 4 instead. By Corollary 3.4.4, the model
ÝM = (G ,{1},{2}, L )where |L |= 2 is thus not locally identifiable.

These results also give us insight into models that have dimension of the image of the

coefficient map equal to |E |+ |I n ∪O u t | but are not strongly input-output connected. We

can show that the self-cycles are always identifiable:

Theorem 3.4.6. LetM = (G , I n , O u t , V ) represent a linear compartmental model with G

output connectable and |O u t |= 1. IfM has dimension of the image of the coefficient map

equal to |E |+ |I n ∪O u t |, then the self-cycles a11, ..., ann are locally identifiable.

Proof. Since the coefficient map always factors over a11, ..., ann , this means the self-cycles

are locally identifiable.

Finally, we give a conjecture on removing leaks from non-input/output compartments

for output connectable models and prove this conjecture in a special case:

Conjecture 3.4.7. LetM = (G , I n , O u t , V ) represent a linear compartmental model. As-

sume that G is output connectable and |O u t | = 1. Assume the dimension of the image

of the coefficient map is k . Then, the corresponding model ÝM = (G , I n , O u t , L ) where

I n ∪O u t ⊆ L also has dimension of the image of its coefficient map as k .

In other words, we conjecture that this property of being dimension-preserving applies

to all output connectable models. However, if the dimension to begin with is not maximal,

the dimension-preserving property will not lead to identifiability. We give a proof of this
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conjecture in the special case where the dimension of the image of the coefficient map is

|E |+ |I n ∪O u t |:

Theorem 3.4.8. LetM = (G , I n , O u t , V ) represent a linear compartmental model with G

output connectable and |O u t |= 1. IfM has dimension of the image of the coefficient map

equal to |E |+ |I n ∪O u t |, then the the corresponding model ÝM = (G , I n , O u t , L ) where

I n ∪O u t ⊆ L also has dimension of the image of its coefficient map as |E |+ |I n ∪O u t |. In

particular, if L = I n ∪O u t , then ÝM is locally identifiable.

To prove Theorem 3.4.8, we give a variation of Lemma 3.2.22 and then a variation of the

proof of Theorem 3.2.23.

Lemma 3.4.9. Let G = (V , E ) be a directed graph with corresponding model (G , I n , O u t , V ).

Assume that G is output connectable and |O u t |= 1. Consider a model (G , I n , O u t , L )where

I n ∪O u t ⊆ L. Let π :R|V |+|E |→R|E |+|I n∪O u t | denote the path/cycle map. Let Λ ⊆R|V |+|E | be

the linear space satisfying

Λ= {A ∈R|V |+|E | : ai i =−
∑

j , j ̸=i

a j i for all i /∈ L}.

If the dimension of the image of π is |E |+ |I n ∪O u t |, then the dimension of the image of Λ

under the map π is |E |+ |I n ∪O u t |.

Proof. Removing the assumption of strongly input-output connected from Lemma 3.2.22

means that we cannot guarantee there are |E |+ |I n ∪O u t | independent directed paths and

directed cycles. However, if we assume the dimension of the image of π is |E |+ |I n ∪O u t |,
then the rest of the proof follows that of Lemma 3.2.22.

Proof of Theorem 3.4.8. By Lemma 3.4.9 we know that the image of the restricted parameter

space under the path/cycle map π has dimension |E |+ |I n ∪O u t |, which is equal to the

dimension of the image of the full parameter space under the path/cycle map. Since the

dimension of the image of the coefficient map c is |E |+ |I n ∪O u t |, this must be the same

for the restricted model. In particular, if |L |= |I n∪O u t |, then the model has |E |+|I n∪O u t |
parameters, hence it is locally identifiable.

Example 3.4.10 (Example 3.4.3 revisited). The model ÝM = (G ,{1},{2}, V )where G is the

graph given by {1→ 2,3→ 2} is output connectable and has dimension of the image of

the coefficient map equal to |E |+2= 4, thus the model given byM = (G ,{1},{2},{1,2}) is

locally identifiable.
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Combining Theorem 3.4.2 and Theorem 3.4.8, we get the following necessary and

sufficient conditions:

Corollary 3.4.11. LetM = (G , I n , O u t , L ) represent a linear compartmental model with

and L = I n ∪O u t and assume that G is output connectable and |O u t | = 1. Let ÝM =

(G , I n , O u t , V ) be the corresponding model with a leak in every compartment.M is locally

identifiable if and only if ÝM has dimension of the image of the coeffiicent map as |E |+ |I n ∪
O u t |.

Remark 3.4.12. Corollary 3.4.11 shows that this dimension-preserving property when

adding or removing leaks from non-input/output compartments also holds in the output

connectable case when the dimension of the image of the coefficient map is |E |+|I n∪O u t |.

3.5 Necessary conditions for identifiable models based on

model structure

Outside of checking the conditions in Theorem 3.2.27, i.e. if a model is an inductively

strongly connected model if edges from output to input are added, checking if a model

is an identifiable path/cycle model amounts to checking the dimension of the image of

the coefficient map, and thus cannot be ascertained by simply examining the graph of the

model. However, it is possible to provide necessary conditions for identifiable models and

identifiable path/cycle models based on the graph itself, and thus can be used to rule out

identifiability.

Theorem 3.5.1. LetM = (G , I n , O u t , L ) represent a linear compartmental model with either

G strongly input-output connected and |O u t |= 1 or G strongly connected and |I n |= 1. If

|L |> |I n ∪O u t |, thenM is unidentifiable.

Proof. If the number of parameters |E |+ |L |> |E |+ |I n ∪O u t |, where |E |+ |I n ∪O u t | is
the maximal dimension by Lemma 3.2.12, then the model is unidentifiable. This reduces to

|L |> |I n ∪O u t |.

We can now make some statements about necessary conditions in the case of the

maximal amount of edges.

Theorem 3.5.2. LetM = (G ,{i },{i },{k}) represent a linear compartmental model with G

strongly connected and 2|V | − 2 edges. IfM is locally identifiable (or equivalently, ÝM =

(G ,{i },{i }, V ) is an identifiable cycle model), it must have an exchange.
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Proof. From Proposition 5.3 of Meshkat and Sullivant (2014), we know that G must have an

exchange in order for ÝM = (G ,{i },{i }, V ) to be an identifiable cycle model. Thus, if G does

not have an exchange, ÝM is not an identifiable cycle model and thusM = (G ,{i },{i },{k})
is not an identifiable model.

Theorem 3.5.3. LetM = (G ,{i },{ j }, L ) represent a linear compartmental model with G

strongly input-output connected, dist(i, j) = 1, and 2|V | − (dist(i, j)+2) edges and |L |= |I n ∪
O u t |. IfM is locally identifiable (or equivalently, ÝM = (G ,{i },{ j }, V ) is an identifiable

path/cycle model), it must have an edge from i to j (i.e. a path of length dist(i, j)).

Proof. If there is no path from i to j , then the coefficient of the highest-order term on the

right hand side of the input-output equation is zero and there would be fewer than 2|V | −
dist(i, j) coefficients. But there are 2|V | − (dist(i, j)+2) edges, so ifM is locally identifiable,

then it has expected dimension |E |+ 2 = 2|V | −dist(i, j), which is impossible if there are

fewer than 2|V | −dist(i, j) coefficients.

We can also have an analogous necessary condition in the case of fewer than 2|V | −
(dist(i, j) +2) edges.

Theorem 3.5.4. LetM = (G ,{i },{ j }, L )with i ̸= j represent a linear compartmental model

with G strongly input-output connected and 2|V | − (k + 2) edges where k ≥ 1 and |L | =
|I n ∪O u t |. IfM is locally identifiable (or equivalently, ÝM = (G ,{i },{ j }, V ) is an identifiable

path/cycle model), it must have a path from i to j of length at most k .

Proof. The coefficient of the highest-order term on the right hand side of the input-output

equation is a sum of shortest paths from input to output of length dist(i, j) and this must

be nonzero forM to have expected dimension. Since there are 2|V | − dist(i, j) nonzero

coefficients and expected dimension is |E |+ 2, this means k is at least dist(i, j). So there

must be a path from i to j of length at most k .

3.6 Examples

We now provide some real world examples that fall into the categories of models considered

in this chapter. In particular, we obtain identifiability or unidentifiability results in Example

3.6.1 and Example 3.6.2 without any symbolic computation, i.e. purely based on the graph

structure alone.
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Figure 3.8: Example 13.6 from DiStefano (2015) on HIV vaccine development (Part 1).
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Figure 3.9: Example 13.16 from DiStefano (2015) on HIV vaccine development (Part 3).
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Example 3.6.1. Consider Example 13.6 from DiStefano (2015) on HIV vaccine development

(Part 1). Three models are considered that fall into the category of path models with leaks

from every compartment as in Proposition 3.2.34, shown in Figure 3.8. The top model

corresponds to Experiment 1, the middle model corresponds to Experiment 2, and the

bottom model corresponds to Experiment 3. It is clear that the Experiment 1 model is

identifiable. Using Proposition 3.2.34, we can easily obtain that the Experiment 2 model is

identifiable. By Proposition 3.2.34, the Experiment 3 model has expected dimension and is

thus unidentifiable with identifiable functions given by the paths and cycles (where the

“self-cycles” have been expanded out): k23k ′12, −k03−k23, −k ′02−k ′12, −k ′′01.

Example 3.6.2. Consider Example 13.16 from DiStefano (2015) on HIV vaccine development

(Part 3). The models from Example 3.6.1 are amended by adding on exchanges to the output

compartments, shown in Figure 3.9, and the numbering scheme has changed to agree

with DiStefano (2015). The Experiment 1 model is identifiable by Theorem 3.2.23 as it

is an identifiable cycle model (it is inductively strongly connected) with a single leak in

the input/output compartment. The Experiment 2 model is almost inductively strongly

connected and thus is identifiable by Corollary 3.2.32. A variation on the Experiment 3

model with leaks from all compartments can be shown to be an identifiable path/cycle

model by a direct calculation, thus removing the leak from compartment 9 retains the

dimension by Theorem 3.2.23, which means the model in Experiment 3 is unidentifiable.

Alternatively, one can apply Proposition 3.2.35 to a variation on the model in Experiment 2

with leaks from every compartment (which has expected dimension) and thus obtain that

the variation on the model in Experiment 3 with leaks from every compartment also has

expected dimension. Now removing the leak from compartment 9 retains the dimension

by Theorem 3.2.23, and thus the model in Experiment 3 is unidentifiable. The identifiable

functions are given by the paths and cycles (where the “self-cycles” have been expanded

out): k53k65, k69k96, −k03−k53, −k05−k65, −k06−k96, −k69, .

3.7 Computations

In Table 3.3 we outline the number of graphs with n vertices and m edges that have the

expected dimension with input in i and output in j , assuming leaks from every compart-

ment.

The number of strongly connected graphs and the number of strongly input-output

connected graphs with different input/output configurations is noted.
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Table 3.3: The number of graphs with n vertices and m edges that have the expected
dimension with input in i and output in j , assuming leaks from every compartment.

(n , m ) Total Strongly
Con-
nected

i = 1,
j = 1

i = 1,
j =
2, 3

Strongly
input-
output
con-
nected
i = 1,
j = 2

i = 1,
j = 2

Strongly
input-
output
con-
nected
i = 1, 3,
j = 2

i =
1, 3,
j = 2

(3,2) 15 NA NA NA 1 1 3 3
(3,3) 20 2 2 2 7 4 10 8
(3,4) 15 9 7 3 11 NA 12 4
(4,3) 220 NA NA NA 2 2 7 7
(4,4) 495 6 6 6 37 25 72 59
(4,5) 792 84 54 62 193 70 267 167
(4,6) 924 316 166 118 445 NA 518 184
(4,7) 792 492 NA 86 565 NA 603 96
(5,4) 4845 NA NA NA 6 6 24 24
(5,5) 15,504 24 24 24 222 162 518 432
(5,6) 38,760 720 576 600 2470 1288 4130 1110
(5,7) 77,520 6440 4052 4030 13,004 3154 17,708 1552
(5,8) 125,970 26,875 9565 10,336 40,126 NA 48,277 17,113
(5,9) 167,960 65,280 NA 15,984 82,159 NA 91,658 20,272
(5,10) 184,756 105,566 NA 9841 120,202 NA 128,003 10,689

98



We then computed the number of models with expected dimension for 4 notable cases:

the case of identical single input and single output with a strongly connected graph G

(as in Meshkat and Sullivant (2014)), the case of single input but multiple outputs with

a strongly connected graph G , the case of distinct single input and single output with a

strongly input-output connected graph G , and the case of single output but multiple inputs

with a strongly input-output connected graph G . Due to restrictions on the number of

edges, not all cases are possible, and those are labeled “NA”.

3.8 Construction of Identifiable Models

In this section, we consider the special case of single input and single output in the same

compartment with G strongly connected and L e a k =V , as in Meshkat and Sullivant (2014),

i.e.M = (G ,{i },{i }, V ) with G strongly connected. Since L e a k is assumed to be V and

input/output are assumed to be the same vertex, we can just discuss the graph G in what

follows.

In Meshkat and Sullivant (2014), Theorem 5.7 gives a way of constructing a new model

with expected dimension from a smaller model with expected dimension by adding an

incoming and outgoing edge to a chain of cycles (See Definition 3.2.28):

Theorem 3.8.1 (Theorem 5.7 of Meshkat and Sullivant (2014)). Let G ′ be a graph that has

the expected dimension with n−1 vertices. Let G be a new graph obtained from G ′ by adding

a new vertex and two edges k → n and n→ l and such that G has a chain of cycles containing

both 1 and n. Then G has the expected dimension.

In Baaijens and Draisma (2016), the authors strengthened this result to allow for adding

loops of any length, not just length two:

Proposition 3.8.2. [Proposition 4.14 of Baaijens and Draisma (2016)] Let G = (V , E ) on n −1

vertices be a graph with the expected dimension. Construct G ′ from G by adding new vertices

n1, ..., ns and edges k → n1, ns → l , and ni → ni+1 for i = 1, ..., s −1 where k , l ∈V are vertices

of G . Then G ′ has the expected dimension.

We will use Proposition 4.14 from Baaijens and Draisma (2016) combined with Theorem

1 of Meshkat et al. (2015) to form identifiable models. In other words, we will use Proposition

4.14 to construct identifiable cycle models and then use Theorem 1 to eliminate all but one

leak to form an identifiable model. We state Theorem 1 here:
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Theorem 3.8.3 (Theorem 1 from Meshkat et al. (2015)). Let M be an identifiable cycle

model. If the model is changed to have exactly one leak, then the resulting model is locally

identifiable.

Algorithm 3.8.4 (Construction of identifiable models with I n =O u t = {1} and one leak

|L |= 1).

1. Begin with (G ,{1},{1},{1})where V = {1} and E = ;.

2. Construct G ′ from G by adding new vertices n1, ..., ns and edges 1→ n1, ns → 1, and

ni → ni+1 for i = 1, ..., s − 1 where k , l ∈ V are vertices of G and adding leaks from

every new vertex.

3. Repeat Step 2 by starting a some vertex ni and ending at some vertex n j for ni , n j ∈
{1, n1, ..., ns } and adding leaks from every new vertex.

4. Continue adding edges, vertices, and leaks as described in Steps 2 and 3.

5. Remove all leaks except one leak.

Theorem 3.8.5. LetM = (G ,{1},{1},{k}) be a model constructed from Algorithm 3.8.4. The

modelM is identifiable.

Proof. By Proposition 3.8.2 the modelM is an identifiable cycle model and by Theorem

3.8.3 the model with only one leak is identifiable.

Example 3.8.6. The modelM = (G ,{1},{1}, V ) seen in Figure 3.10 where G is given by the

edges {1→ 2, 2→ 3, 3→ 1, 2→ 4, 4→ 5, 5→ 3} is an identifiable cycle model by Proposition

3.8.2. Thus we can remove all leaks except one, e.g. ÝM = (G ,{1},{1},{5}) and the result-

ing model is identifiable. We note that this model is not inductively strongly connected,

thus Proposition 3.8.2 does expand upon the results in Meshkat et al. (2015) to construct

identifiable models.

Note that the authors in Baaijens and Draisma (2016) only considered identifiable

cycle models. We suspect there may be a similar result to Proposition 3.8.2 for the case of

identifiable path/cycle models.
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Figure 3.10: The graph corresponding toM from Example 3.8.6.
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CHAPTER

4

IDENTIFIABILITY OF LINEAR

COMPARTMENTAL TREE MODELS

In this chapter, we study the input-output equations and structural identifiability of linear

compartmental models, with an emphasis on tree models.

The organization of this chapter is as follows. Section 4.1 discusses relevant tree model

background and preliminary results. Our formula for the coefficients of input-output equa-

tions is proven in Section 4.2. Section 4.3 contains our results on operations that preserve

identifiability. In Section 4.4, we classify identifiable tree models.

4.1 Preliminaries

4.1.1 Graphs associated to linear compartmental models

We define several auxiliary graphs arising from a linear compartmental model

M = (G , I n , O u t , L e a k ).
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• Recall that the leak-augmented graph (Gross et al. 2017), denoted by eG , is obtained

from G by adding (1) a new node, labeled by 0 and referred to as the leak node, and

(2) for every j ∈ L e a k , an edge j → 0 with label a0 j .

• We introduce the graph eG ∗i (where i is some compartment), which is obtained from eG

by removing all outgoing edges from node i . We also define a related matrix, denoted

by A∗i , which is obtained from the compartmental matrix A of G by replacing the

column corresponding to compartment-i with zeros.

• The graph eGi is obtained from eG ∗i by (1) replacing every edge j → i (labeled by ai j )

by the edge j → 0 labeled ai j , and then (2) deleting node i .

Remark 4.1.1. Among the graphs defined above, only the graph eGi may have multi-edges

(more than one edge with the same source and target). Specifically, such edges may appear

from a compartment to the leak node (for instance, see the graph eG1 in Figure 4.1).

Remark 4.1.2. Our definition of eGi differs slightly from that in Gross et al. (2017). Here,

we use multi-edges (e.g., a02 and a12 in eG1 in Figure 4.1), while the corresponding graph

in (Gross et al. 2017) uses a single edge with the sum of the labels (e.g., a02+a12). Using

multi-edges here is more convenient. Moreover, in the result from (Gross et al. 2017) that we

use and improve (Proposition 4.1.6 below), it is straightforward to check that our definition

of eGi yields the same sum of productivities. Thus, both Proposition 4.1.6 and the result

in (Gross et al. 2017) are correct, even with our updated definition of eGi .

Example 4.1.3. For the model in Figure 1.10, the corresponding graphs G , eG , eG1, and eG ∗1
are shown in Figure 4.1. The corresponding matrices are as follows:

A =







−(a21+a31) a12 a13

a21 −(a02+a12+a32) a23

a31 a32 −(a13+a23)






, A∗1 =







0 a12 a13

0 −(a02+a12+a32) a23

0 a32 −(a13+a23)







The ODE system (1.16) for this model is as follows:







ẋ1

ẋ2

ẋ3






= A







x1

x2

x3






+







u1

0

0






=







−(a21+a31)x1+a12 x2+a13 x3+u1

a21 x1+−(a02+a12+a32)x2+a23 x3

a31 x1+a32 x2+−(a13+a23)x3






,

with y1 = x1.
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Figure 4.1: Graphs arising from the linear compartmental model in Figure 1.10.

4.1.2 Input-output equations

In what follows, we use the following notation. For a matrix B , we let B i , j denote the matrix

obtained from B by removing row i and column j . Similarly, B {i , j },{k ,ℓ} denotes the matrix

obtained from B by removing rows i and j and columns k and ℓ.

For a linear compartmental model, an input-output equation is an equation that holds

along all solutions of the ODEs (1.16), and involves only the parameters ai j , input variables

ui , output variables yi , and their derivatives. One way to obtain such equations is given in

the following result, which is due to Meshkat, Sullivant, and Eisenberg (Meshkat et al. 2015,

Theorem 2) (see also (Gross et al. 2019, Proposition 2.3 and Remark 2.7)):

Proposition 4.1.4 (Input-output equations). LetM = (G , I n , O u t , L e a k ) be a linear com-

partmental model with n compartments and at least one input. Define ∂ I to be the n ×n

matrix in which every diagonal entry is the differential operator d /d t and every off-diagonal

entry is 0. Let A be the compartmental matrix. Then, the following equations are input-output
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equations ofM :

det(∂ I −A)yi =
∑

j∈I n

(−1)i+ j det (∂ I −A) j ,i u j for i ∈O u t . (4.1)

Example 4.1.5 (Example 4.1.3, continued). Returning to the model in Figure 1.10, the

input-output equation (4.1) is as follows:

y (3)1 + (a02+a12+a13+a21+a23+a31+a32) ÿ1+ (a02a13+a12a13+a02a21+a13a21+a02a23+a12a23

+a21a23+a02a31+a12a31+a23a31+a13a32+a21a32+a31a32) ẏ1+ (a02a13a21+a02a21a23+a02a23a31)y1

= ü1+ (a02+a12+a13+a23+a32)u̇1+ (a02a13+a12a13+a02a23+a12a23+a13a32)u1.

The following result is Theorem 4.5 of Gross et al. (2017).

Proposition 4.1.6 (Coefficients when input equals output). Consider a linear compart-

mental modelM = (G , I n , O u t , L e a k )with I n =O u t = {1}. Let n denote the number of

compartments, and let A be the compartmental matrix. Write the input-output equation (4.1)

as:

y (n )1 + cn−1 y (n−1)
1 + · · ·+ c1 y ′1 + c0 y1 = u (n−1)

1 +dn−2u (n−2)
1 + · · ·+d1u ′1+d0u1 . (4.2)

Then the coefficients of this input-output equation are as follows:

ci =
∑

F ∈Fn−i ( eG )

πF for i = 0, 1, . . . , n −1 , and

di =
∑

F ∈Fn−i−1( eG1)

πF for i = 0, 1, . . . , n −2 .

One of the aims of Chapter 4 is to generalize Proposition 4.1.6 to allow for the input and

output to be in distinct compartments and for more inputs and outputs (see Theorem 4.2.1).

Next, we introduce the coefficient maps arising from input-output equations. We begin

by regarding the input-output equations (4.1) as polynomials in the yj ’s and ui ’s and their

derivatives. Thus, each coefficient of the equation is a polynomial in the parameters (aℓm
for edges m→ ℓ, and a0p for leaks p ∈ L e a k ).

Definition 4.1.7. LetM = (G , I n , O u t , L e a k ) be a linear compartmental model.

(i) The coefficient map c :R|EG |+|L e a k |→Rm sends the vector of parameters to the vector

of all non-constant coefficients of all input-output equations of the form (4.1). Here,
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m denotes the number of such coefficients.

(ii) M has expected dimension if the dimension of the image of its coefficient map

c :R|EG |+|L e a k |→Rm equals the minimum of |EG |+ |L e a k | and m .

Remark 4.1.8. Having expected dimension is useful for proving a model has an identifiable

reparameterization (Meshkat and Sullivant 2014). For example, a strongly connected model

with at most 2|VG | −2 edges, input and output in the same compartment, and leaks from

every compartment has an identifiable scaling reparameterization if and only if the model

has expected dimension, which in this case is the number of independent cycles of the

graph (Meshkat and Sullivant 2014, Theorem 1.2).

Definition 4.1.9. A tree model or bidirectional tree model is a linear compartmental model

with underlying directed graph a bidirectional tree.

Tree models appear often in applications. Indeed, (Meshkat et al. 2015, Example 7)

discusses the importance of tree models in applications, using diffusion models along

rivers and streams (Gydesen 1984) and models of neuronal dendritic trees (Bressloff and

Taylor 1993) as motivating applications. As another example, (Meshkat et al. 2015, Example

6) considers a 11-compartment tree model, obtained by modifying a compartmental model

of manganese pharmacokinetics in rats (Douglas et al. 2010).

Two families of tree models appearing often in applications are catenary and mammil-

lary models. For catenary (respectively, mammillary) models, the underlying directed graph

is a path (respectively, a star). As corollaries to the main theorem, we give a full classification

of when catenary and mammillary models are generically locally identifiable in the case of

a single input and output (Corollaries 4.4.3 and 4.4.4) .

Combinatorial conditions for identifiability that can be visually verified, as in the main

theorem, are desired because compartmental models are described using a graphical

structure and are often used in settings with few compartments. Prior results in this direction

were given by Cobelli et al. (1979), who showed that mammillary and catenary models are

identifiable when the models have a single input and output in the same compartment

(specific to the respective models) and have at most one leak. Another known result asserts

that models with inductively strongly connected graphs, a single input and output in a

certain compartment, and at most one leak are identifiable (Gross et al. 2019; Meshkat

and Sullivant 2014; Meshkat et al. 2015). Other related results are due to Boukhobza et al.

(2014), who gave graph-theoretic criterion for identifiability, Chau (1985a,b), who explored

properties of catenary and mammillary models, Delforge (1984) and Delforge et al. (1985),
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who described necessary conditions for identifiability and posed conjectures on global

identifiability, and Vajda (1984), who gave a condition for global identifiability based on

the submodels obtained by deleting one edge at a time.

Establishing structural identifiability of a model can be achieved by using differential al-

gebra techniques to translate the problem to a linear algebra question (Ljung and Glad 1994;

Meshkat et al. 2015). In particular, the question of whether a given linear compartmental

model is generically locally identifiable is equivalent to asking whether the Jacobian matrix

of a certain coefficient map (arising from certain input-output equations) is generically full

rank. Our second significant result, Theorem 4.2.1, gives a general formula for the coeffi-

cients of these equations in terms of the combinatorics of the underlying directed graph

associated to the model. Previous formulas appear in Gross et al. (2017) and Meshkat and

Sullivant (2014), but only apply to models that satisfy certain conditions. For example, the

results in Gross et al. (2017) requires the input and output to be in the same compartment.

In comparison, the only condition of Theorem 4.2.1 is the existence of at least one input.

A general formula for coefficients allows us then to explore the effect of adding edges and

moving inputs and outputs as we work towards an understanding of tree models. Indeed,

Theorem 4.2.1 implies that if the input and output are too far apart then the model is

unidentifiable (Corollary 4.2.5). This result places immediate constraints on how inputs and

outputs can be moved if identifiability is to be preserved, which we can glimpse in the main

theorem, Theorem 4.4.2, stated above. Our third set of results, which we summarize in Table

4.1, concern operations involving moving inputs and outputs and adding leaf edges, and

establish situations where such operations preserve identifiability. These results therefore

contribute to a recent body of work aimed at understanding the effect on identifiability of

adding, deleting, or moving an input, output, leak, or edge (Chan et al. 2021; Gerberding

et al. 2020; Gross et al. 2019).

Table 4.1: Summary of results on operations preserving identifiability. For an identifiable,
strongly connected, linear compartmental modelM with one input, one output, and no
leaks, ifM ′ is obtained fromM by the specified operation, thenM ′ is identifiable.

Model Operation Result
Any Add leaf edge Theorem 4.3.2
Model with Add leaf edge at i , and move input Theorem 4.3.3

I n =O u t = {i } or output to the new compartment
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The following three results, which pertain to spanning incoming forests, will be used to

prove the main result in Section 4.2.

Lemma 4.1.10. Every connected component of a spanning incoming forest contains exactly

one sink node, i.e., exactly one node with no outgoing edges.

Proof. Let C be a connected component of a spanning incoming forest H of a (finite)

graph G . To see that a sink node exists in C , we start from some node in C and follow

outgoing arrows; eventually (as H is finite and cycle-free) we must reach a sink node.

Now assume for contradiction that C has two sink nodes v and v ′. The underlying

undirected graph of C is a tree, so it contains a unique undirected path P from v to v ′. In

the directed version of this path, each edge points in the direction of either v or v ′. Both v

and v ′ have only incoming edges, so some node on the path P has two outgoing edges – one

pointing toward v and one toward v ′. This contradicts the fact that nodes in an incoming

forest have no more than one outgoing edge.

Lemma 4.1.11. Let (G , I n , O u t , L e a k ) be a linear compartmental model. Let k and ℓ be

distinct compartments, and let j be a positive integer. Then every forest F ∈F k ,ℓ
j ( eG

∗
ℓ ) contains

a directed path from k to ℓ.

Proof. Let F ∈F k ,ℓ
j ( eG

∗
ℓ ). By definition, some connected component C of F contains k and

ℓ. By construction, the node ℓ has no outgoing edges in eG ∗ℓ . So, by Lemma 4.1.10 and its

proof, ℓ is the unique sink node of C , and there is a directed path in F from k to ℓ.

The following lemma views spanning forests with a path from k to ℓ as a union, over

edges of the form k → i , of forests with paths from i to ℓ.

Lemma 4.1.12. Let H = (VH , EH ) be a (directed) graph. Consider vertices k ,ℓ ∈VH with k ̸= ℓ,
and let j be a positive integer. Assume that H has no edges outgoing from ℓ. Let K be the

graph obtained from H by removing all edges outgoing from k . Then the following equality

holds:

F k ,ℓ
j (H ) =

⋃

i :(k→i )∈EH

¦

(VH , EF ∪{k → i }) | F ∈F i ,ℓ
j−1(K )

©

.

Proof. We first prove “⊆”. Let F ∗ ∈ F k ,ℓ
j (H ). Then, k and ℓ are in the same connected

component C of F ∗. Also, by assumption, ℓ has no outgoing edges and so, by Lemma 4.1.10,

ℓ is the unique sink node of C . Thus, k is a non-sink node, and so there is an edge k → i in

F ∗. Moreover, this is the unique such edge (as F ∗ is a spanning incoming forest).
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It follows that F := (VH , EF ∗∖{k → i }) is a ( j−1)-edge, spanning subgraph of K . Moreover,

F has no cycles and each node has at most 1 outgoing edge (because F ∗ has the same

properties). Finally, i and ℓ are in the same connected component of F because (as we saw

in the proof of Lemma 4.1.10) by following edges in F ∗ we must eventually reach ℓ, and

the edge k → i is not encountered here, because otherwise F ∗ would contain a cycle. We

conclude that F ∗ = (VH , EF ∪{k → i }), with F ∈F i ,ℓ
j−1(K ), as desired.

We prove “⊇.” Assume that k → i is an edge of H , and let F ∈F i ,ℓ
j−1(K ). We must show

that after adding the edge k → i , the new graph F ∗ := (VH , EF ∪{k → i }) is inF k ,ℓ
j (H ). By

construction, F ∗ is a j -edge spanning subgraph of H . Also, each node of F ∗ has at most 1

outgoing edge (this property was true for F , and F – as a subgraph of K – had no outgoing

edges from k ). Next, k and ℓ are in the same connected component of F ∗, due to the edge

k → i and the fact that i and ℓ are in the same component of F .

Finally, we must show that F ∗ has no cycles. In K (and thus also in F ), both k and ℓ have

no outgoing edges and hence are sink nodes. Thus, by Lemma 4.1.10, k and ℓ are in distinct

connected components of F . Adding the edge k → i therefore joins these two components,

but does not introduce any cycles. This completes the proof.

4.1.3 Previous Identifiability Results

Next, we recall the following useful criteria for identifiability Meshkat et al. (2015) and

expected dimension from Chapter 3.

Proposition 4.1.13. A linear compartmental modelM = (G , I n , O u t , L e a k ) is generically

locally identifiable (respectively, has expected dimension) if and only if the rank of the Jaco-

bian matrix of its coefficient map, c :R|EG |+|L e a k |→Rm , when evaluated at a generic point,

equals |EG |+ |L e a k | (respectively, equals the minimum of |EG |+ |L e a k | and m).

Next, we recall from Meshkat and Sullivant (2014) and Meshkat et al. (2015) a class of

identifiable modelsM = (G , I n , O u t , L e a k ) for which the graph G is inductively strongly

connected.

The following result combines results from Gross et al. (2019) and Meshkat et al. (2015).

Proposition 4.1.14 (Inductively strongly connected models). LetM = (G , I n , O u t , L e a k )

be a linear compartmental model such that I n =O u t = {1}, |L e a k | ≤ 1, and G is inductively

strongly connected with respect to vertex 1. ThenM is generically locally identifiable.

Proof. The modelM with |L e a k |= 1 is generically locally identifiable due to (Meshkat et al.

2015, Theorem 1) and (Meshkat et al. 2015, Remark 1), and the modelM with |L e a k |= 0 is
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still generically locally identifiable by (Gross et al. 2019, Proposition 4.6) (or by definition if

G has no edges).

Finally, we recall two additional results on adding or removing leaks (Gross et al. 2019,

Proposition 4.6 and Theorem 4.3), which we summarize in the following proposition.

Proposition 4.1.15 (Add or remove leak). LetM be a linear compartmental model that is

strongly connected and has at least one input. Assume that one of the following holds:

1. M has no leaks, and ÝM is a model obtained fromM by adding one leak; or

2. M has an input, an output, and a leak in a single compartment (and no other inputs,

outputs, or leaks), and ÝM is obtained fromM by removing the leak.

IfM is generically locally identifiable, then so is ÝM .

4.2 Results on coefficients of input-output equations

The main result of this section is a combinatorial formula for the coefficients of input-

output equations (Theorem 4.2.1). This result generalizes Proposition 4.1.6, which was the

case of input and output in the same compartment.

4.2.1 Main results

This subsection features our formula for the coefficients of input-output equations (The-

orem 4.2.1), which we use to evaluate the number of non-constant coefficients of the

input-output equation for strongly connected models with one input and one output

(Corollary 4.2.4). As a consequence, we obtain a criterion for unidentifiability which arises

when a model has more parameters than coefficients (Corollary 4.2.5).

Theorem 4.2.1 (Coefficients of input-output equations). Consider a linear compartmen-

tal modelM = (G , I n , O u t , L e a k ) with at least one input. Let n denote the number of

compartments. Write the input-output equation (4.1) (for some i ∈O u t ) as follows:

y (n )i + cn−1 y (n−1)
i + · · ·+ c1 y ′i + c0 yi =

∑

j∈I n

(−1)i+ j
�

d j ,n−1u (n−1)
j + · · ·+d j 1u ′j +d j 0u j

�

. (4.3)
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Then the coefficients of the input-output equation (4.3) are as follows:

ck =
∑

F ∈Fn−k ( eG )

πF for k = 0, 1, . . . , n −1 , and

d j ,k =
∑

F ∈F j i
n−k−1( eG

∗
i )

πF for j ∈ I n and k = 0, 1, . . . , n −1 .

The proof of Theorem 4.2.1 is given in Section 4.2.2.

From Theorem 4.2.1, we can determine the non-constant coefficients in the input-

output equations. We state this result in the case of strongly connected models with one

input and one output, as follows.

Corollary 4.2.2 (Non-constant coefficients). Consider a strongly connected linear compart-

mental modelM = (G , I n , O u t , L e a k )with I n = { j } and O u t = {i }. Let n be the number

of compartments. Write the input-output equation (4.1) as follows:

y (n )i + cn−1 y (n−1)
i + · · ·+ c1 y ′i + c0 yi = (−1)i+ j

�

dn−1u (n−1)
j + · · ·+d1u ′j +d0u j

�

. (4.4)

The coefficients on the left-hand side of (4.4) that are non-constant are as follows:







c0, c1, . . . , cn−1 if L e a k ̸= ;

c1, c2, . . . , cn−1 if L e a k = ; .

The coefficients on the right-hand side of (4.4) that are non-constant are as follows:







d0, d1, . . . , dn−2 if I n =O u t

d0, d1, . . . , dn−L−1 if I n ̸=O u t ,

where L is the length of the shortest (directed) path from the input j to the output i .

Proof. We first analyze the left-hand side of (4.4). By equation (4.1), the coefficient c0 equals,

up to sign, det A. This determinant is 0 if L e a k = ; (as A in this case is the negative Laplacian

of a strongly connected graph). If, on the other hand, L e a k ̸= ;, then det A is a nonzero

polynomial (Meshkat et al. 2015, Proposition 1) of degree n in the akℓ’s.

Thus, it suffices to show that c1, c2, . . . , cn−1 are nonzero (they are non-constant, as their

degrees are n −1, n −2, . . . ,1). As G is strongly connected, there exists a spanning tree T

of G that is directed toward compartment i (which necessarily has (n − 1) edges and no
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vertex with more than one outgoing edge). Let eT be the corresponding subtree (with the

same edges) of eG . Then, π
eT is a summand of c1 by Theorem 4.2.1. Similarly, a summand of

c2 (respectively, c3, c4, . . . , cn−1) is obtained by removing 1 edge (respectively, 2,3, . . . , n −2

edges) from eT . This completes the analysis of the left-hand side.

For the right-hand side of (4.4), we consider two cases. Consider first the case when

I n =O u t (i.e., i = j ). By Theorem 4.2.1, the summands of (respectively) dn−1, dn−2, . . . , d0

correspond to the spanning incoming forests of eG ∗i that have (respectively) 0,1, . . . , n −1

edges. There is a unique such forest with no edges, so dn−1 = 1. Next, by construction,

the tree T from earlier in the proof has no edges outgoing from i , so we can consider

the corresponding subtree (with the same edges) eT ∗i of eG ∗i . So, by removing (respectively)

0, 1, . . . , n−2 edges from eT ∗i , we obtain a forest corresponding to a summand of (respectively)

d0, d1, . . . , dn−2. Hence, d0, d1, . . . , dn−2 are nonzero polynomials of degree (respectively) n −
1, n −2, . . . , 1.

We now consider the remaining case, when I n ̸=O u t (i.e., i ̸= j ). First, we claim that

dn−1 = dn−2 = · · · = dn−L = 0. Indeed, by Theorem 4.2.1 and Lemma 4.1.11, these dk ’s are

sums over certain subgraphs of G , with 0, 1, . . . , L −1 (respectively) edges, containing a path

from the input compartment j to output i ; but no such subgraphs exist (by definition of

L). On the other hand, spanning incoming forests of eG ∗i having L , L + 1, . . . , n − 1 edges

and a directed path from the input j to output i do exist. We construct such forests as

follows. Start with a spanning incoming forest F of eG ∗i with n −1 edges (so the underlying

undirected graph is a tree) such that F contains a directed path P of length L from input to

output (it is straightforward to show that such a forest exists, using the fact that G is strongly

connected). Next, to obtain an appropriate forest with (respectively) L , L+1, . . . , n−1 edges,

remove (respectively) n − L −1, n − L −2, . . . ,0 non-P edges from F . Thus, as desired, the

coefficients dn−L−1, dn−L−2, . . . , d0 are non-constant.

Remark 4.2.3 (Constant coefficients). From the proof of Corollary 4.2.2, we know the values

of the constant coefficients in the input-output equation (4.4):















c0 = 0 if L e a k = ;

dn−1 = 1 if I n =O u t

dn−L = dn−L+1 = · · ·= dn−1 = 0 if I n ̸=O u t .

In particular, in the right-hand side of (4.4), the highest derivative u (d )j (with nonzero coef-

ficient) in that sum is when d = n −1− L , where L is the length of the shortest (directed)
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path from the unique input to the unique output.

Corollary 4.2.2 immediately yields the next result, which answers the question posed

in (Gerberding et al. 2020, §2.2) of how read off the number of coefficients directly from a

model. That is, we give a formula for the number D where cR|E |+|L e a k |→RD is the coefficient

map.

Corollary 4.2.4 (Number of coefficients). Consider a strongly connected linear compart-

mental modelM = (G , I n , O u t , L e a k ) with |I n | = |O u t | = 1. Let n be the number of

compartments and L the length of the shortest (directed) path in G from the (unique) input

compartment to the (unique) output. Then the numbers of non-constant coefficients on the

left-hand and right-hand sides of (4.4) are as follows:

# on LHS=







n if L e a k ̸= ;

n −1 if L e a k = ;
and # on RHS=







n −1 if I n =O u t

n − L if I n ̸=O u t .

In the next section, we use Corollary 4.2.4 to prove that identifiability is preserved when

a linear compartmental model is enlarged in certain ways (see Theorems 4.3.2 and 4.3.3).

In Chan et al. (2021), Corollary 4.2.4 is used to partially resolve some conjectures on identi-

fiability.

Finally, we obtain an easy-to-check condition that guarantees that a model is unidenti-

fiable due to having more parameters than coefficients.

Corollary 4.2.5 (Criterion for unidentifiability). Consider a strongly connected linear com-

partmental modelM = (G , I n , O u t , L e a k ), where G = (V , E ). Assume |I n |= |O u t |= 1. Let

n be the number of compartments, and let L be the length of the shortest (directed) path

in G from the (unique) input compartment to the (unique) output. If one of the following

conditions holds:

1. L e a k ̸= ;, I n =O u t , and |E |+ |L e a k |> 2n −1,

2. L e a k ̸= ;, I n ̸=O u t , and |E |+ |L e a k |> 2n − L,

3. L e a k = ;, I n =O u t , and |E |> 2n −2, or

4. L e a k = ;, I n ̸=O u t , and |E |> 2n − L −1,

thenM is unidentifiable.
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Proof. First consider the case of no parameters (i.e., |E |+ |L e a k |= 0). Then, |E |= 0≤ 2n−2

and (if I n ̸=O u t ) |E |= 0≤ 2n − L −1, so none of the four conditions hold.

Now assume that |E |+ |L e a k | ≥ 1. Let cR|E |+|L e a k | → RD denote the coefficient map

arising from the input-output equation (4.1). Corollary 4.2.4 implies that |E |+ |L e a k |>D ,

and so, c is infinite-to-one. Hence,M is unidentifiable.

Remark 4.2.6. Corollary 4.2.5 is complementary to Theorem 3.5.1, a special case of which

asserts that a strongly connected linear compartmental model with |I n |= |O u t |= 1 and

|L e a k |> |I n ∪O u t |, is unidentifiable.

Example 4.2.7 (Example 4.1.5, continued). For the model in Figure 1.10, the input-output

equation was shown in Example 4.1.5. The resulting coefficient map cR7→R5 is:

(a02, a12, a13, a21, a23, a31, a32) 7→

(a02+a12+a13+a21+a23+a31+a32, . . . , a02a13+a12a13+a02a23+a12a23+a13a32) .

There are more parameters than coefficients, so c is generically infinite-to-one, hence

unidentifiable.

Also, note that this model has n = 3 compartments, L e a k = ;, I n = O u t = {1}, and

|E |+ |L e a k |= 6+17> 2n −1= 5. So, Corollary 4.2.4 confirms what we just found, i.e. the

model is unidentifiable.

Example 4.2.8 (Bidirectional cycle models). Let n ≥ 3. Let Gn be the bidirectional cycle

graph with n vertices (so the edges are 1⇆ 2⇆ · · ·⇆ n⇆ 1). This graph has 2n edges, so

Corollary 4.2.5 implies that every linear compartmental modelM = (Gn , I n , O u t , L e a k )

with |I n |= |O u t |= 1 – such as the model in Figure 1.10 – is unidentifiable.

The next example shows that, in general, the converse of Corollary 4.2.5 does not hold.

Example 4.2.9. The model displayed in Figure 4.2 has n = 3 compartments, I n = O u t ,

L e a k = ;, and |E | = 4 = 2n − 2. Thus, Corollary 4.2.5 does not apply. Nevertheless, it is

straightforward to check that the model is unidentifiable.

4.2.2 Proof of Theorem 4.2.1

To prove Theorem 4.2.1, we need several preliminary results.
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Figure 4.2: A linear compartmental model described in Example 4.2.9

Lemma 4.2.10. Consider a linear compartmental modelM = (G , I n , O u t , L e a k ) with

compartmental matrix A. Let i and j be distinct compartments with i ̸= 1 and j ̸= 1. Then:

det
�

(λI −A){1,i },{1, j }� = λ−1 det
�

(λI −A∗1)
i , j
�

.

Proof. Recall that A∗1 is obtained from A by replacing the first column by a column of 0’s.

Thus, the first column of (λI −A∗1)
i , j is (λ, 0, . . . , 0)T (we are also using 1 ̸= i , j here), and so

Laplace expansion along that column yields the following equality:

det
�

(λI −A∗1)
i , j
�

= λdet
�

(λI −A∗1)
{1,i },{1, j }� (4.5)

= λdet
�

(λI −A){1,i },{1, j }� ,

and the second equality comes from the fact that, after removing column-1, the matrices

A and A∗1 (and thus also λI −A and λI −A∗1) are equal. The equalities (4.5) now imply the

desired equality.

Lemma 4.2.11. Consider a linear compartmental modelM = {G , I n , O u t , L e a k} with

I n =O u t = {1}. Then, for every positive integer j , the following equality holds:

∑

F ∗∈F 1,1
j ( eG ∗1 )

πF ∗ =
∑

F ∈F j ( eG1)
πF .

Proof. First, for any graph H , note thatF i ,i
j (H ), i.e., the j -edge, spanning, incoming forests

of H containing a path from i to i , is the same asF j (H ), i.e., the j -edge, spanning, incoming

forests of H . Hence, to complete the proof, it suffices to find a bijection of the following
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form that preserves productivity (that is, πφ(F ∗) =πF ∗):

φ : F j ( eG
∗

1 )→F j ( eG1) . (4.6)

We first explain informally what this map φ will be. Recall that eG1 is obtained from
eG ∗1 by “flipping” all edges pointing toward compartment-1 (e.g., 2→ 1 and 3→ 1 in the

lower-right of Figure 4.1) so that they point toward compartment-0 (e.g., 2→ 0 and 3→ 0 in

the lower-left of Figure 4.1), while keeping the same edge labels. Accordingly, we will define

φ to do the same edge-flipping in spanning forests F ∗ of eG ∗1 in order to obtain (as we will

show) spanning forests of eG1.

We defineφ precisely, as follows. LetL denote the set of edge labels of eG1 (which is also

the set of edge labels of eG ∗1 ). A spanning subgraph (of any graph) is uniquely determined by

its set of edges, so every size- j subset of labels S ⊆L defines (i) a unique j -edge subgraph

of eG1, which we denote by FS , and also (ii) a unique j -edge subgraph of eG ∗1 , which we denote

by F ∗S . By construction, FS and F ∗S have the same productivity (for any S ⊆L ). Hence, we

define φ by φ : F ∗S 7→ FS , and then to show that this map gives the desired bijection (4.6),

we need only prove the following two claims:

Claim 1: If F ∗S ∈F j ( eG ∗1 ), then each node of FS has at most 1 outgoing edge and there is no

cycle in the underlying undirected graph of FS .

Claim 2: If FS ∈F j ( eG1), then each node of F ∗S has at most 1 outgoing edge and there is no

cycle in the underlying undirected graph of F ∗S .

The condition on the outgoing edges in Claims 1 and 2 is easy to verify. Indeed, the

edge-flip procedure preserves the source node of each edge and so the number of outgoing

edges of each node is the same in FS and F ∗S (or, in the case of node 1, there are no outgoing

edges in F ∗S while the node simply does not exist in FS ).

We prove the rest of Claims 1 and 2 by contrapositive, as follows. Assume that FS is a

subgraph of eG1 such that (i) each node has at most 1 outgoing edge and (ii) the underlying

undirected graph contains a cycle. It follows that this cycle must in fact form a directed

cycle, and so must not involve node-0. Hence, the edges of the cycle are not affected by

edge-flipping, and so F ∗S contains the same cycle. Similarly, if F ∗S is a subgraph of eG ∗1 with

each node having at most 1 outgoing edge and containing a cycle, then this must be a

directed cycle which therefore avoids nodes 0 and 1, and so is present in FS .

Hence, Claims 1 and 2 hold, and so we have the required bijectionφ as in (4.6).

Proposition 4.2.12. LetM = (G , I n , O u t , L e a k ) be a linear compartmental model with n

compartments and compartmental matrix A. Let q and r be compartments. Then, in the
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following equation:

det ((λI −A)r,q ) = cn−1λ
n−1+ cn−2λ

n−2+ · · ·+ c0 , (4.7)

the coefficients are given by

ck = (−1)q+r
∑

F ∈F r,q
n−k−1( eG

∗
q )

πF for k = 0, 1, . . . , n −1. (4.8)

Proof. For convenience, we rename o u t := q . Next, we claim that it suffices to consider the

case of r = 1. Indeed, if r ̸= 1, then switching (relabeling) compartments 1 and r (without

relabeling edges) yields a model for which the compartmental matrix, which we denote by

B , is obtained from A by switching rows 1 and r and columns 1 and r , and so (λI −A)r,o u t

and (λI −B )1,o u t have the same determinant. Thus, the r ̸= 1 case reduces to the r = 1 case,

and so we assume r = 1 for the rest of the proof.

We first analyze the case when o u t = 1. Then, by Proposition 4.1.6, the coefficients ck

in (4.7) (for k = 0, 1, . . . , n −1) are given by the first equality here:

ck = (−1)1+1
∑

F ∈Fn−k−1( eG1)
πF =

∑

F ∈F 1,1
n−k−1( eG ∗1 )

πF ,

and the second equality comes from Lemma 4.2.11. This completes the case of o u t = 1.

Now suppose that o u t ̸= 1. We proceed by strong induction on the number of edges of

G . For the base case, suppose that G has no edges. Then the only edges of eG ∗o u t (if any) are

leak edges (ℓ→ 0 for ℓ ∈ L e a k ). Thus, there are no spanning incoming forests on eG ∗o u t in

which o u t and 1 are in the same connected component (recall that 1 ̸= o u t ). The formula

in equation (4.8) therefore yields c0 = c1 = · · ·= cn−1 = 0.

Thus, it suffices (for the base case) to show that det(λI − A)1,o u t = 0. To see this, note

that the only nonzero entries of A (if any) are leak terms on the diagonal. Therefore (λI −A)

is also a diagonal matrix. Hence, in the matrix (λI −A)1,o u t , the column corresponding to 1

(which exists because 1 ̸= o u t ) consists of 0’s, and so the determinant of (λI −A)1,o u t is 0.

This completes the base case.

Now suppose that the theorem holds for all modelsN = (H , I nN , O u tN , L e a kN )with

|EH | ≤ p −1 (for some p ≥ 1). Consider a modelM = (G , I n , O u t , L e a k )with |EG |= p .

We first consider the special case when G has no edges of the form 1 → i , that is,

outgoing from compartment-1. Essentially the same argument we made in the earlier base
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case applies, as follows. In the compartmental matrix A, the first column consists of 0’s,

and so det
�

(λI −A)1,o u t
�

= 0. Also, there are no spanning incoming forests on eG ∗o u t in which

o u t and 1 are in the same connected component (recall Lemma 4.1.11 and our assumption

that 1 ̸= o u t ). So, equation (4.8) yields c0 = c1 = · · ·= cn−1 = 0. The theorem therefore holds

in the case when G has no edges outgoing from 1.

Assume now that G has at least one edge of the form 1→ i . Our first step in evaluating

det
�

(λI −A)1,o u t
�

is to perform a Laplacian expansion along the first column. In this column,

the nonzero entries are precisely the −ai ,1’s, for those 2≤ i ≤ n for which 1→ i is an edge

(because row-1 of the matrix (λI −A)was deleted). Laplace expansion along this column

therefore yields the first equality here:

det
�

(λI −A)1,o u t
�

=
∑

i : (1→i )∈EG

(−1)i (−ai 1)det
�

(λI −A){1,i },{1,o u t }�

=
∑

i : (1→i )∈EG

(−1)i+1ai 1λ
−1 det

�

(λI −A∗1)
i ,o u t

�

, (4.9)

and the second equality follows from Lemma 4.2.10 (and simplifying).

Our next step is to evaluate the determinant that appears in the right-hand side of

equation (4.9). Accordingly, we claim that the following equality holds:

det
�

(λI −A∗1)
i ,o u t

�

= (−1)i+o u t
n−1
∑

j=0





∑

F ∈F i ,o u t
n− j−1(eG∗o u t )

πF



λ j , (4.10)

where G is the graph obtained from G by removing all edges outgoing from compartment 1.

We will prove the claimed equality (4.10) by interpreting the matrix A∗1 as the compart-

mental matrix of a model having fewer edges thanM , and so the inductive hypothesis will

apply. To this end, notice that A∗1 is the compartmental matrix of the following model:

M ∗1 := (G, I n , O u t , L e a k ∖ I n ) .

We consider two subcases, based on whether i = o u t . The subcase when i = o u t was

proven already at the beginning of the proof (applied to the modelM ∗1 ):

det
�

(λI −A∗1)
o u t ,o u t

�

=
n−1
∑

j=0





∑

F ∈F o u t ,o u t
n− j−1 (eG∗o u t )

πF



λ j .
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Now consider the remaining subcase, when i ̸= o u t . By construction and our assump-

tion that G has an edge of the form 1→ i , the graphGhas fewer edges than G . The inductive

hypothesis therefore holds forM ∗1 and yields precisely the equality (4.10), and so our claim

is proven.

Next, we substitute the expression in (4.10) into the right-hand side of equation (4.9),

simplify, rearrange the order of summation, apply Lemma 4.1.12 (where H = eG ∗o u t , K = eG∗o u t ,

k = 1, and ℓ= o u t ), and then apply the change of variables k = j −1:

det
�

(λI −A)1,o u t
�

=
∑

i : (1→i )∈EG

(−1)i+1ai 1λ
−1(−1)i+o u t

n−1
∑

j=0





∑

F ∈F i ,o u t
n− j−1(eG∗o u t )

πF



λ j

= (−1)o u t+1
n−1
∑

j=0





∑

i : (1→i )∈EG

∑

F ∈F i ,o u t
n− j−1(eG∗o u t )

ai 1πF



λ j−1

= (−1)o u t+1
n−1
∑

j=0





∑

F ∗∈F 1,o u t
n− j ( eG ∗o u t )

πF ∗



λ j−1

= (−1)o u t+1
n−2
∑

k=−1





∑

F ∈F 1,o u t
n−k−1( eG ∗o u t )

πF



λk .

Comparing the above expression with the desired coefficients in (4.7) and (4.8), it suffices

to show that, when k =−1 or k = n −1, the following coefficient is 0:

ck =
∑

F ∈F 1,o u t
n−k−1( eG ∗o u t )

πF .

We first consider k =−1. The graph eG ∗o u t has n +1 nodes, and both o u t and 0 (the leak

compartment) have no outgoing edges. Therefore, every incoming spanning forest of eG ∗o u t

has at least two sink nodes and so (by Lemma 4.1.10) at least two connected components.

Such a forest therefore has no more than n − 1 edges. We conclude that F 1,o u t
n−k−1( eG

∗
o u t ) =

F 1,o u t
n ( eG ∗o u t ) = ;, and so c−1 = 0, as desired.

Similarly, for k = n−1, we haveF 1,o u t
n−k−1( eG

∗
o u t ) =F

1,o u t
0 ( eG ∗o u t ) = ;, because the graph with

no edges lacks a path from 1 to o u t (recall that we have assumed 1 ̸= o u t ). So, cn−1 = 0.

This completes the case of 1 ̸= o u t , and thus our proof is complete.

We can now prove Theorem 4.2.1.
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Proof of Theorem 4.2.1. The left-hand side of the input-output equation (4.1) is det(∂ I −
A)yi , and the formula for the coefficients of this expression was previously shown in Propo-

sition 4.1.6. As for the right-hand side, the formula for these coefficients follows easily from

Propositions 4.1.4 and 4.2.12.

4.3 Results on adding an edge

In this section, we introduce a new operation on linear compartmental models: we add a

bidirected edge from an existing compartment to a new compartment (Definition 4.3.1).

For instance, in Figure 4.3, the bidirected edge 1⇆ 4 is added toM to obtain the models

M ′ andM ′′ (inM ′, the output is also moved). We prove that identifiability is preserved

when the original model has input and output in a single compartment, the new edge

involves that compartment, and the input or output is moved to the new compartment

(Theorem 4.3.3). Similarly, we prove that identifiability is preserved when the input and

output, which may be in distinct compartments, are not moved (Theorem 4.3.2).

Definition 4.3.1. Let G = (VG , EG ) be a graph with vertex set VG = {1, 2, . . . , n −1} (for some

n ≥ 2). Let i ∈ VG . The graph obtained from G by adding a leaf edge at i is the graph

H = (VH , EH )with vertex set VH := {1, 2, . . . , n} and edge set EH := EG ∪{i↔ n}.

Theorem 4.3.2 (Add leaf edge). Assume n ≥ 3. Consider a strongly connected linear com-

partmental model with n − 1 compartments, one input, one output, and no leaks,M =

(G ,{i n},{o u t },;). Let H be the graph obtained from G by adding a leaf edge at compart-

ment n −1, and consider the linear compartmental modelM ′ = (H ,{i n},{o u t },;). IfM
has expected dimension (or, respectively, is generically locally identifiable), thenM ′ also has

expected dimension (respectively, is generically locally identifiable).

We prove Theorem 4.3.2 in Section 4.3.1.

Theorem 4.3.3 (Add leaf edge and move input or output). Assume n ≥ 3. LetM = (G , I n , O u t , L e a k )

be a strongly connected linear compartmental model with n −1 compartments such that

I n =O u t = {1} and L e a k = ;. Let H be the graph obtained from G by adding a leaf edge

at compartment 1. Consider a linear compartmental modelM ′ = (H , I n ′, O u t ′, L e a k ′)

with L e a k ′ = ; and either (I n ′, O u t ′) = ({1},{n}) or (I n ′, O u t ′) = ({n},{1}). ThenM has

expected dimension (or, respectively, is generically locally identifiable) if and only ifM ′ has

expected dimension (respectively, is generically locally identifiable).
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Figure 4.3: Depicted are three models,M = (G ,{1},{1},;),M ′ = {G ′,{1},{4},;}, andM ′′ =
{G ′,{1},{1},;}, where G ′ is the graph obtained from G by adding a leaf edge at compartment
1 (to a new compartment 4). See Example 4.3.9.
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a32
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Figure 4.4: Two (catenary) models,M = (G ,{1},{1},{1}) andM ′ = (G ′,{4},{1},{1}), where
the graph G ′ is obtained from G by adding a leaf edge at compartment 1.
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We prove Theorem 4.3.3 in Section 4.3.4. An immediate corollary, which comes from

applying Proposition 4.1.15(1), pertains to models with one leak, as follows.

Corollary 4.3.4. Assume n ≥ 3. LetM = (G , I n , O u t , L e a k ) be a strongly connected linear

compartmental model with n−1 compartments such that I n =O u t = {1} and L e a k = ;. Let

H be the graph obtained from G by adding a leaf edge at compartment 1. Consider a linear

compartmental modelM ′ = (H , I n ′, O u t ′, L e a k ′)with |L e a k ′|= 1 and either (I n ′, O u t ′) =

({1},{n}) or (I n ′, O u t ′) = ({n},{1}). IfM is identifiable, thenM ′ is also identifiable.

Next, we reveal a new class of identifiable models, namely, inductively strongly con-

nected models in which the input and output compartments form a leaf edge, as follows.

Corollary 4.3.5 (Add a leaf and move input/output in inductively strongly connected mod-

els). Assume n ≥ 3. LetM = (G , I n , O u t , L e a k ) be a linear compartmental model with

n − 1 compartments such that I n = O u t = {1}, L e a k = ;, and G is inductively strongly

connected with respect to vertex 1. Let H be the graph obtained from G by adding a leaf

edge at compartment 1. Consider a modelM ′ = (H , I n ′, O u t ′, L e a k ′) with |L e a k ′| ≤ 1

and either (I n ′, O u t ′) = ({1},{n}) or (I n ′, O u t ′) = ({n},{1}). ThenM ′ is generically locally

identifiable.

Proof. This result follows from Proposition 4.1.14, Theorem 4.3.3, and Corollary 4.3.4.

Remark 4.3.6. The assumption of n ≥ 3 in Theorems 4.3.2 and 4.3.3 and other results in

this section is simply to avoid cases of models we are not interested in, namely, those with

no compartments or no parameters.

Remark 4.3.7. The effect of moving the input or output without adding new compartments

or edges was considered for cycle models in Gerberding et al. (2020).

Remark 4.3.8. Baaijens and Draisma considered operations that preserve expected dimen-

sion in models with input and output in the same compartment and leaks in all compart-

ments (Baaijens and Draisma 2016).

Example 4.3.9. Consider the models shown in Figure 4.3. The modelM is identifiable

by Proposition 4.1.14. So, by Theorems 4.3.2 and 4.3.3,M ′′ andM ′ are also identifiable.

Another way to see thatM ′ is identifiable, is by applying Corollary 4.3.5 toM .

Example 4.3.10. Consider the models in Figure 4.4. The modelM is identifiable, by Propo-

sition 4.1.14. Thus, the model obtained fromM by removing the leak, which we denote by

M0, is also identifiable, by Proposition 4.1.15(2). Applying Corollary 4.3.4 to the modelM0,

we obtain thatM ′ is also identifiable.
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Theorems 4.3.2 and 4.3.3 are both used in the next section to classify identifiable models

in which the underlying graph is a bidirected tree. In particular, for catenary models (that

is, when the graph is a path), we saw in Example 4.3.10 that a corollary of Theorem 4.3.3

applies to some models with an input or output in a leaf compartment (e.g., compartments

1 and 3 of the modelM in Figure 4.4), but we will need Theorem 4.3.2 to handle models in

which both the input and output are in non-leaf compartments.

The rest of this section is dedicated to proving Theorems 4.3.2 and 4.3.3. We first prove

Theorem 4.3.2 (Section 4.3.1). Next, we analyze moving the output (Section 4.3.2) and the

input (Section 4.3.3), and then combine those results to prove Theorem 4.3.3 (Section 4.3.4).

4.3.1 Proof of Theorem 4.3.2

To prove Theorem 4.3.2, we need a result from Meshkat and Sullivant (2014). To state that

result, we must first recall how a weight vector ω defines initial forms of polynomials.

Consider a polynomial g ∈K[x1, x2, . . . , xr ], whereK is a field. Letω ∈Qr . Thenω defines a

weight of a monomial x α (where α ∈Zr
≥0), namely, 〈ω,α〉. Now the initial-form polynomial

(with respect toω) of g , denoted by gω, is the sum of all terms of g for which the monomial

has highest weight. We can now state the following lemma, which is (Meshkat and Sullivant

2014, Corollary 5.9).

Lemma 4.3.11. LetKbe a field. Consider a mapφ :Kr →Ks given by polynomials f1, f2, . . . , fs ∈
K[x1, x2, . . . , xr ]. Letω ∈Qr . Defineφω :Kr →Ks to be the map given by the inital-form poly-

nomials ( f1)ω, ( f2)ω, . . . , ( fs )ω. Then

dim(imageφω) ≤ dim(imageφ) .

The following proof closely follows that of (Meshkat and Sullivant 2014, Theorem 5.7).

Proof of Theorem 4.3.2. If i n = o u t , we define D := 1. If i n ̸= o u t , we define D to be the

length of the shortest (directed) path in G from i n to o u t . By construction, if i n ̸= o u t ,

then D is also the length of the shortest (directed) path from i n to o u t in H .

Let φM and φM ′ denote, respectively, the coefficient maps forM andM ′. By Corol-

lary 4.2.4, the number of coefficients ofφM is (n−2)+(n−1−D ) = 2n−3−D . Similarly, the

number of coefficients ofφM ′ is 2n −1−D . Also, by construction,M has |EG | parameters;

andM ′ has |EG |+2 parameters. Therefore, the assumption thatM has expected dimension
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is the following equality:

dim(imageφM ) = min{|EG |, 2n −3−D } , (4.11)

in which case our goal is to prove the following equality:

dim(imageφM ′) = min{|EG |+2, 2n −1−D } . (4.12)

Similarly, the assumption thatM is identifiable is the following equality:

dim(imageφM ) = |EG | , (4.13)

in which case our goal is to prove the following equality:

dim(imageφM ′) = |EG |+2 . (4.14)

The inequalities “≤” in (4.12) and (4.14) always hold, so we need only prove “≥”. Moreover,

in light of the equalities (4.11) and (4.13), it suffices (for either case) to prove that

dim(imageφM ′) ≥ 2+dim(imageφM ) . (4.15)

With an eye toward applying Lemma 4.3.11, define the weight vectorω : {ai j | ( j , i ) ∈
EH }→R as follows:

ω(ai j ) :=







0 if (i , j ) ∈ {(n −1, n ), (n , n −1)}

1 otherwise.

We will analyze the pullback mapsφ∗M :Q[c1, c2, . . . , cn−2, d0, d1, . . . , dn−2−D ]→Q[ai j | ( j , i ) ∈
EG ] and φ∗M ′ : Q[c1, c2, . . . , cn−1, d0, d1, . . . , dn−1−D ] → Q[ai j | ( j , i ) ∈ EH ]. Recall that φ∗M
(respectively,φ∗M ′) sends each ck or dk to the corresponding polynomial in the ai j ’s for the

modelM (respectively,M ′), as given in Theorem 4.2.1.

By Theorem 4.2.1, all the polynomialsφ∗M (ci ),φ∗M (di ),φ∗M ′(ci ), andφ∗M ′(di ) are homoge-

neous in the parameters a j ℓ. Hence, the corresponding initial-form polynomialsφ∗M ,ω(ci ),

φ∗M ,ω(di ),φ∗M ′,ω(ci ), andφ∗M ′,ω(di ) are obtained by removing all terms involving an−1,n or

an ,n−1 – as long as there exist other terms in the polynomial. These other terms, by The-

orem 4.2.1, correspond to spanning incoming forests of H that do not involve the edges
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(n −1)⇆ n (there are no leaks, so we need not leak-augment the graph), or, equivalently,

spanning incoming forests of G . In particular, there exist such forests of G with 1, 2, . . . , n−2

edges, and so we obtain:

φ∗M ′,ω(ci ) = φ
∗
M (ci−1) for i = 2, 3, . . . , n −1 . (4.16)

(The shift in the index, from i to i −1, comes from the fact that H has n compartments,

while G has n −1.) Similarly, there are spanning incoming forests of G with i n and o u t in

the same component and D , D +1, . . . , n −2 edges. Thus, we have:

φ∗M ′,ω(di ) = φ
∗
M (di−1) for i = 1, 2, . . . , n −1−D . (4.17)

There are two more coefficients ofM ′ to consider: c1 and d0. By Theorem 4.2.1, c1 and d0

(or, more precisely,φ∗M ′,ω(c1) andφ∗M ′,ω(d0)) are both sums of productivities of (n −1)-edge

spanning incoming forests on H (which has n vertices). Hence, each such forest must

use exactly one edge from the edges (n −1)⇆ n . We conclude that each term inφ∗M ′,ω(c1)

(respectively, in φ∗M ′,ω(d0)) contains exactly one of an−1,n or an ,n−1. This implies that the

respective initial-form polynomials agree with the two original polynomials:

ec1 := φ∗M ′,ω(c1) = φ
∗
M ′(c1) and ed0 := φ∗M ′,ω(d0) = φ

∗
M ′(d0) . (4.18)

We can say more about the polynomials ec1 and ed0 in (4.18). First, ed0 does not involve

the parameter an ,n−1, as ed0 is a sum over (n −1)-edge spanning incoming forests of H in

which o u t is the only sink (by Theorem 4.2.1 and Lemma 4.1.10) and such forests do not

contain the edge (n −1)→ n (as this would make compartment-n a sink). Moreover, it is

straightforward to check that these forests are exactly those obtained by adding the edge

n→ (n −1) to an (n −2)-edge spanning incoming forest of G in which o u t is the only sink.

Similarly, the (n −1)-edge spanning incoming forests of H (with no condition on the

location of the sink) that involve the edge n→ (n −1) are obtained by attaching that edge to

an (n−2)-edge spanning incoming forest of G . We summarize the above analysis as follows:

ec1 = an−1,nφ
∗
M (c1) + (terms involving an ,n−1 but not an−1,n ) , (4.19)

ed0 = an−1,nφ
∗
M (d0) .

Let JM and JM ′,ω (respectively) denote the Jacobian matrices ofφM andφM ′,ω, where

the last two rows of JM ′,ω correspond to ec1 and ed0, and the last two columns correspond to
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the parameters an−1,n and an ,n−1. We use equations (4.16–4.19) to relate the two Jacobian

matrices as follows:

JM ′,ω =

















0 0

JM
...

...

0 0

∗ . . . ∗ ∂ ec1
∂ an−1,n

∂ ec1
∂ an ,n−1

∗ . . . ∗ ∂ ed0
∂ an−1,n

∂ ed0
∂ an ,n−1

















=

















0 0

JM
...

...

0 0

∗ . . . ∗ ∗ φ∗M (c1)

∗ . . . ∗ φ∗M (d0) 0

















. (4.20)

Both φ∗M (c1) and φ∗M (d0) are nonzero (by Corollary 4.2.2), so equation (4.20) implies

that rank(JM ′,ω) = 2+ rank(JM ). Hence, we obtain the equality below (and the inequality

comes from Lemma 4.3.11):

dim(imageφM ′) ≥ dim(imageφM ′,ω) = 2+dim(imageφM ) .

Thus, our desired inequality (4.15) holds, and this completes the proof.

Remark 4.3.12 (Add leak). LetM be a strongly connected model with one input, one

output, and no leaks. Theorem 4.3.2 shows that expected dimension is preserved when a

leaf edge is added toM . The same is true when, instead of a leaf edge, a leak is added to

M . This result can be proven in an analogous way to the proof of Theorem 4.3.2, using a

weight vectorω that is 0 on the new leak parameter, and 1 on all other parameters. Another

approach to proving this result is given in the proof of (Gross et al. 2019, Theorem 4.3).

4.3.2 Moving the output

In this subsection, we examine what happens to a model when a leaf edge is added and the

output is moved to the new compartment (see Proposition 4.3.14). The key lemma we need

is as follows.

Lemma 4.3.13. Assume n ≥ 3. LetM = (G , I n , O u t , L e a k ) be a linear compartmental

model with n−1 compartments such that I n =O u t = {1} and L e a k = ;. Let H be the graph

obtained from G by adding a leaf edge at compartment 1, and letM ′ = (H , I n ′, O u t ′, L e a k ′)

be a linear compartmental model with L e a k ′ = ;. Let A and A∗ (respectively) denote the

compartmental matrices ofM andM ′. Then:

1. det(λI −A∗) = λdet(λI −A) +a1n det(λI −A) +an1λdet
�

(λI −A)1,1
�

,
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2. det
�

(λI −A∗)1,n
�

= (−1)n−1an1 det
�

(λI −A)1,1
�

, and

3. det
�

(λI −A∗)n ,1
�

= (−1)n−1a1n det
�

(λI −A)1,1
�

.

Proof. Letting B denote the matrix obtained by removing the first row from λI −A, we have

the following:

λI −A =













λ+
∑

(1→ j )∈EG

a j 1 −a12 −a13 · · · −a1(n−1)

B













, and

λI −A∗ =



















λ+an1+
∑

(1→ j )∈EG

a j 1 −a12 −a13 · · · −a1(n−1) −a1n

0

B
...

0

−an1 0 0 · · · 0 λ+a1n



















, (4.21)

where, for non-edges k → 1, we define a1k := 0. Next, letting B ;,1 denote the matrix obtained

by removing the first column of B , we have B ;,1 = (λI −A)1,1. We will use this equality several

times in the rest of the proof.

Applying a Laplace expansion along the last row of the matrix (λI −A∗)1,n (see (4.21)),

we obtain Lemma 4.3.13(2):

det
�

(λI −A∗)1,n
�

= (−1)n−2(−an1)det(B ;,1) = (−1)n−1an1 det
�

(λI −A)1,1
�

.

Similarly, a Laplacian expansion along the last column yields Lemma 4.3.13(3):

det
�

(λI −A∗)n ,1
�

= (−1)n−2(−a1n )det(B ;,1) = (−1)n−1a1n det
�

(λI −A)1,1
�

.

Finally, we prove Lemma 4.3.13(1) by expanding along the last column in (4.21) and
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using the linearity of the determinant:

det(λI −A∗) = (−1)n−1(−a1n )(−1)n−2(−an1)det(B ;,1)

+ (λ+a1n )











det(λI −A) +det











an1 0 · · · 0

B





















= −a1n an1 det(B ;,1) + (λ+a1n )(det(λI −A) +an1 det(B ;,1))

= λdet(λI −A) +a1n det(λI −A) +an1λdet
�

(λI −A)1,1
�

.

Proposition 4.3.14 (Move output). Assume n ≥ 3. LetM = (G , I n , O u t , L e a k ) be a strongly

connected linear compartmental model with n −1 compartments such that I n =O u t = {1}
and L e a k = ;. Let H be the graph obtained from G by adding a leaf edge at compartment 1,

and letM ′ = (H , I n ′, O u t ′, L e a k ′) be the linear compartmental model with I n ′ = {1},
O u t ′ = {n}, and L e a k ′ = ;. Write the input-output equation (4.1) forM as:

y (n−1)
1 + cn−2 y (n−2)

1 + · · ·+ c1 y ′1 + c0 y1 = u (n−2)
1 +dn−3u (n−3)

1 + · · ·+d1u ′1+d0u1 ,

and define cn−1 := 1 and dn−2 := 1. Similarly, write the input-output equation forM ∗ as:

y (n )1 + c ∗n−1 y (n−1)
1 + · · ·+ c ∗1 y ′1 + c ∗0 y1 = d ∗n−2u (n−2)

1 + · · ·+d ∗1 u ′1+d ∗0 u1 .

Then:

1. the coefficients ofM andM ∗ are related as follows:

(i) d ∗i = (−1)n−1an1di for i ∈ {0, 1, . . . , n −2},
(ii) c ∗i = ci−1+a1n ci +an1di−1 for i ∈ {1, 2, . . . , n −1},
(iii) c ∗0 = c0 = 0 .

2. letting cM and cM ∗ (respectively) denote the coefficient maps ofM andM ∗, the ranks

of the resulting Jacobian matrices are related by:

rank (Jac(cM ∗)) = rank (Jac(cM ))+2 .
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Proof. The input-output equations (4.1) forM andM ∗ are, respectively, as follows:

det(λI −A)y1 = det
�

(λI −A)1,1
�

u1 , and det(λI −A∗)yn = det
�

(λI −A∗)1,n
�

u1 .

Now Proposition 4.3.14(1)(i–ii) follows easily from Lemma 4.3.13(1–2). Also, Proposition 4.3.14(1)(iii)

comes from the fact that the modelsM andM ∗ have no leaks (cf. (Gerberding et al. 2020,

Remark 2.10)).

Now we prove part (2) of the proposition. Using part (1) of the proposition, plus cn−1 := 1

and dn−2 := 1, we obtain the following the Jacobian matrix of the coefficient map ofM ∗,
which we denote by J ∗:

J ∗ =











































an1 a1n Parameters ak j for all ( j , k ) ∈ EG

d ∗n−2 (−1)n−1 0 0 · · · 0

c ∗1 d0 c1

�

a1n
∂ c1
∂ ak j
+an1

∂ d0
∂ ak j

�

( j ,k )∈EG

c ∗2 d1 c2

�

∂ c1
∂ ak j
+a1n

∂ c2
∂ ak j
+an1

∂ d1
∂ ak j

�

( j ,k )∈EG
...

...
...

...

c ∗n−2 dn−3 cn−2

�

∂ cn−3
∂ ak j

+a1n
∂ cn−2
∂ ak j

+an1
∂ dn−3
∂ ak j

�

( j ,k )∈EG

c ∗n−1 1 1
�

∂ cn−2
∂ ak j

�

( j ,k )∈EG

d ∗0 (−1)n−1d0 0
�

(−1)n−1an1
∂ d0
∂ ak j

�

( j ,k )∈EG
...

...
...

...

d ∗n−3 (−1)n−1dn−3 0
�

(−1)n−1an1
∂ dn−3
∂ ak j

�

( j ,k )∈EG











































.

Next, we perform the following row operations to J ∗, where Rk denotes the row of J ∗

corresponding to the coefficient k :

• for all i ∈ {0, 2, . . . n −2}, replace row Rd ∗i
by (−1)n−1Rd ∗i

,

• for all i ∈ {1, 2, . . . n −2}, replace row Rc ∗i
by (Rc ∗i

−Rd ∗i−1
),

• iteratively from i = n −2 down to i = 1, replace row Rc ∗i
by (Rc ∗i

−a1n Rc ∗i+1
),

• for all i ∈ {0, 1, . . . n −3}. replace row Rd ∗i
by 1

an1
Rd ∗i

.

The resulting matrix, which has the same rank as J ∗, has the following form:
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

































an1 a1n

d ∗n−2 1 0 0 · · ·0
c ∗1 0 χ 0 · · ·0
c ∗2 0 ∗

�

∂ c1
∂ ak j

�

( j ,k )∈EG
...

...
...

...

c ∗n−1 0 ∗
�

∂ cn−2
∂ ak j

�

( j ,k )∈EG

d ∗0
1

an1
d0 0

�

∂ d0
∂ ak j

�

( j ,k )∈EG
...

...
...

...

d ∗n−3
1

an1
dn−3 0

�

∂ dn−3
∂ ak j

�

( j ,k )∈EG



































=

































an1 a1n

d ∗n−2 1 0 0 · · ·0
c ∗1 0 χ 0 · · ·0
c ∗2 0 ∗

...
...

...

c ∗n−1 0 ∗ J

d ∗0
1

an1
d0 0

...
...

...

d ∗n−3
1

an1
dn−3 0

































, (4.22)

where

χ = c1−a1n (c2−a1n (· · · −a1n (cn−2−a1n ))) = (−1)n (a1n )
n−2+

n−2
∑

i=1

(−a1n )
i−1ci .

By construction, each ci only involves parameters ak j for edges ( j , k ) in G , and so:

χ |ak j=0 for all ( j ,k )∈EG
= (−1)n (a1n )

n−2.

We conclude that χ is a nonzero polynomial.

The fact thatχ is nonzero, together with the lower block diagonal structure of the matrix

on the right-hand side of (4.22), imply that rank(J ∗) = 2+ rank(J ), as desired.

4.3.3 Moving the input

In the previous subsection, we analyzed moving the output when a leaf edge is added;

now we consider moving the input. The following result is the analogous result to Proposi-

tion 4.3.14, and their proofs are very similar.

Proposition 4.3.15 (Move input). Assume n ≥ 3. LetM = (G , I n , O u t , L e a k ) be a strongly

connected linear compartmental model with n −1 compartments such that I n =O u t = {1}
and L e a k = ;. Let H be the graph obtained from G by adding a leaf edge at compartment 1,

and letM ′ = (H , I n ′, O u t ′, L e a k ′) be the linear compartmental model with I n ′ = {1},
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O u t ′ = {n}, and L e a k ′ = ;. Write the input-output equation (4.1) forM as:

y (n−1)
1 + cn−2 y (n−2)

1 + · · ·+ c1 y ′1 + c0 y1 = u (n−2)
1 +dn−3u (n−3)

1 + · · ·+d1u ′1+d0u1 ,

and define cn−1 := 1 and dn−2 := 1. Similarly, write the input-output equation forM ∗ as:

y (n )1 + c ∗n−1 y (n−1)
1 + · · ·+ c ∗1 y ′1 + c ∗0 y1 = d ∗n−2u (n−2)

1 + · · ·+d ∗1 u ′1+d ∗0 u1 .

Then:

1. the coefficients ofM andM ∗ are related as follows:

(i) d ∗i = (−1)n−1a1n di for i ∈ {0, . . . , n −2}
(ii) c ∗i = ci−1+a1n ci +an1di−1 for i ∈ {1, . . . , n −1}
(iii) c ∗0 = c0 = 0 .

2. letting cM and cM ∗ (respectively) denote the coefficient maps ofM andM ∗, the ranks

of the resulting Jacobian matrices are related by:

rank (Jac(cM ∗)) = 2+ rank (Jac(cM )) .

Proof. The input-output equations (4.1) forM andM ∗ are, respectively, as follows:

det(λI −A)y1 = det
�

(λI −A)1,1
�

u1 , and det(λI −A∗)y1 = det
�

(λI −A∗)n ,1
�

un .

Now Proposition 4.3.15(1) follows easily from Lemma 4.3.13(1) and Lemma 4.3.13(3) (and,

as in the proof of Proposition 4.3.14, the fact that the modelsM andM ∗ have no leaks).

We use part (1) of the proposition, plus cn−1 := 1 and dn−2 := 1, to obtain the Jacobian
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matrix of the coefficient map ofM ∗, denoted by J ∗:

J ∗ =











































a1n an1 Parameters ak j for all ( j , k ) ∈ EG

d ∗n−2 (−1)n−1 0 0 · · · 0

c ∗1 c1 d0

�

(−1)n−1a1n
∂ c1
∂ ak j
+an1

∂ d0
∂ ak j

�

( j ,k )∈EG

c ∗2 c2 d1

�

∂ c1
∂ ak j
+a1n

∂ c2
∂ ak j
+an1

∂ d1
∂ ak j

�

( j ,k )∈EG
...

...
...

...

c ∗n−2 cn−2 dn−3

�

∂ cn−3
∂ ak j

+a1n
∂ cn−2
∂ ak j

+an1
∂ dn−3
∂ ak j

�

( j ,k )∈EG

c ∗n−1 1 1
�

∂ cn−2
∂ ak j

�

( j ,k )∈EG

d ∗0 (−1)n−1d0 0
�

(−1)n−1a1n
∂ d0
∂ ak j

�

( j ,k )∈EG
...

...
...

...

d ∗n−3 (−1)n−1dn−3 0
�

(−1)n−1a1n
∂ dn−3
∂ ak j

�

( j ,k )∈EG











































.

We perform row operations on J ∗, where Rk denotes the row of J ∗ corresponding to the

coefficient k :

• for all i ∈ {0, 2, . . . n −2}, replace row Rd ∗i
by (−1)n−1Rd ∗i

,

• for all i ∈ {1, 2, . . . n −2}, replace row Rc ∗i
by (Rc ∗i

− (an1/a1n )Rd ∗i−1
),

• iteratively from i = n −2 down to i = 1, replace row Rc ∗i
by (Rc ∗i

−a1n Rc ∗i+1
),

• for all i ∈ {0, 1, . . . n −3}, replace row Rd ∗i
by 1

an1
Rd ∗i

.

The resulting matrix, which has the same rank as J ∗, has the following form:



































a1n an1

d ∗n−2 1 0 0 · · ·0
c ∗1 ∗ x 0 · · ·0
c ∗2 ∗ ∗

�

∂ c1
∂ ak j

�

( j ,k )∈EG
...

...
...

...

c ∗n−1 ∗ ∗
�

∂ cn−2
∂ ak j

�

( j ,k )∈EG

d ∗0
1

a1n
d0 0

�

∂ d0
∂ ak j

�

( j ,k )∈EG
...

...
...

...

d ∗n−3
1

a1n
dn−3 0

�

∂ dn−3
∂ ak j

�

( j ,k )∈EG



































=

































a1n an1

d ∗n−2 1 0 0 · · ·0
c ∗1 ∗ x 0 · · ·0
c ∗2 ∗ ∗

...
...

...

c ∗n−1 ∗ ∗ J

d ∗0
1

a1n
d0 0

...
...

...

d ∗n−3
1

a1n
dn−3 0

































, (4.23)

132



where

χ = d0−a1n (d2−a1n (· · · −a1n (dn−3−a1n ))) = (−1)n (a1n )
n−2+

n−2
∑

i=1

(−a1n )
i−1di .

For the same reason as in the proof of Proposition 4.3.14, χ is a nonzero polynomial. Thus,

from the lower block diagonal structure of the matrix on the right-hand side of (4.23), we

obtain the desired equality: rank(J ∗) = 2+ rank(J ).

4.3.4 Proof of Theorem 4.3.3

We now apply Propositions 4.3.14 and 4.3.15 to prove our result on adding a leaf edge and

moving the input or output.

Proof of Theorem 4.3.3. For modelsM andM ∗, let J and J ∗ denote the Jacobian matrices

of the respective coefficient maps. We first examine identifiability. By definition,M is iden-

tifiable if and only if rank(J ) = |EG | (recall thatM has no leaks). Similarly,M ∗ is identifiable

if and only if rank(J ∗) = |EH |. Now the identifiability result follows from Propositions 4.3.14–

4.3.15 and the fact that (by construction) |EH |= 2+ |EG |.
As for expected dimension, we first compute the number of non-constant coefficients

in the coefficient map ofM (respectively,M ∗), which we denote by NM (respectively, NM ∗ .

These numbers, by a straightforward application of Corollary 4.2.4 (in particular, we use

the fact that there is an edge inM ∗ from input to output, and so the length of the shortest

path from input to output is 1), are as follows:

NM = 2n −4 and NM ∗ = 2n −2 . (4.24)

Next, by Proposition 4.1.13,M has expected dimension if and only if rank(J ) =min{|EG |, NM }.
Similarly,M ∗ has expected dimension if and only if rank(J ∗) =min{|EH |, NM ∗}. Now, the

desired result follows from Propositions 4.3.14–4.3.15 and the equalities (4.24).

4.4 Tree Models

In this section, we introduce bidirectional tree models, and completely characterize which

of these models with one input and one output are identifiable (Theorem 4.4.2). As a

consequence, we determine which catenary and mammillary models with one input and
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Figure 4.5: Two bidirected graphs with n compartments (cf. (Gross et al. 2017, Figures 1–2)).
Left: Catenary (path), denoted by Catn . Right: Mammillary (star), denoted by Mamn .

one output are identifiable (Corollary 4.4.3 and 4.4.4). Our results therefore extend those

of Cobelli et al. (1979), which concerned the case when the input and output are in the

same compartment.

Definition 4.4.1. A bidirectional tree graph is a graph G that is obtained from an undirected

tree graph by making every edge bidirected (that is, (i → j ) ∈ EG implies that (i ⇆ j ) ∈ EG ).

A linear compartmental modelM = (G , I n , O u t , L e a k ) is a bidirectional tree model (or, to

be succinct, a tree model) if the graph G is a bidirectional tree graph.

In the following theorem, which is the main result of the section, we use the notation

distG(i, j) to denote the length of shortest (directed) path in G from vertex i to vertex j .

Theorem 4.4.2 (Classification of identifiable tree models). A tree model with exactly one

input and one outputM = (G ,{i n},{o u t }, L e a k ) is generically locally identifiable if and

only if distG(in, out)≤ 1 and |L e a k | ≤ 1.

The proof of Theorem 4.4.2 appears in Section 4.4.1.

As an easy consequence of Theorem 4.4.2, we obtain results on catenary and mammillary

models (that is, models in which the underlying graph is, respectively, a path or a star graph,

as in Figure 4.5). These results form a substantial improvement over prior results, which

largely concerned the case when input and output are equal (see Lemma 4.4.5).

Corollary 4.4.3 (Classification of identifiable catenary models). Let n ≥ 2, and let Catn de-

note the n-compartment catenary graph depicted in Figure 4.5. Then a model (Catn , I n , O u t , L e a k )
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with |I n |= |O u t |= 1 is generically locally identifiable if and only if |L e a k | ≤ 1 and either

(1) I n =O u t or (2) the input and output compartments are adjacent.

Corollary 4.4.4 (Classification of identifiable mammillary models). Let n ≥ 2, and let

Mamn denote the n-compartment mammillary graph depicted in Figure 4.5. Then a model

(Mamn , I n , O u t , L e a k )with |I n |= |O u t |= 1 is generically locally identifiable if and only

if |L e a k | ≤ 1 and (at least) one of the following hold: (1) I n = O u t , (2) I n = {1}, or (3)

O u t = {1}.

4.4.1 Proof of Theorem 4.4.2

To prove Theorem 4.4.2, we need two lemmas. The first pertains to tree models whose

identifiability is known from prior results.

Lemma 4.4.5. IfM = (G , I n , O u t , L e a k ) is a tree model with |L e a k | ≤ 1 and input and

output in a single compartment (I n =O u t = {i }), thenM is generically locally identifiable.

Proof. Let n be the number of compartments. Since I n =O u t = {i }, |L e a k | ≤ 1, and G is

inductively strongly connected with respect to i , the lemma follows from Proposition 4.1.14.

The next result, which follows easily from a result in a prior section, pertains to when

tree models are unidentifiable due to having more parameters than coefficients.

Lemma 4.4.6 (Unidentifiable tree models). Let n ≥ 1. Consider a tree model with n com-

partments, one input, and one output,M = (G ,{i n},{o u t }, L e a k ). If distG(in, out)≥ 2 or

|L e a k | ≥ 2, thenM is unidentifiable.

Proof. As G is a bidirectional tree with n vertices, it has |EG |= 2n −2 edges. We consider

first the case when |L e a k | ≥ 2. Then |EG |+ |L e a k | ≥ (2n − 2) + 2 = 2n > 2n − 1. So, by

Corollary 4.2.5,M is unidentifiable.

In the other case, we have L := distG(in, out)≥ 2. There are two subcases. If L e a k ̸= ;,
then |EG |+|L e a k | ≥ (2n−2)+1> 2n−2≥ 2n−L . If L e a k = ;, then |EG |= 2n−2> 2n−2−1≥
2n − L −1. In either subcase, by Corollary 4.2.5,M is unidentifiable.

We now prove Theorem 4.4.2, which we recall states that the implication in Lemma 4.4.6

is in fact an equivalence.
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Proof of Theorem 4.4.2. The forward direction (⇒) is Lemma 4.4.6.

To prove the backward direction (⇐), we first consider the case when |L e a k | = 0. If

distG(in, out) = 0, then Lemma 4.4.5 implies thatM is identifiable.

Now assume that distG(in, out) = 1 (i.e., i n ⇆ o u t are edges in G ). We will build the

bidirectional tree graph G by starting with a subtree G ′ and then successively adding leaf

edges. The subtree G ′ comes from removing the edges i n ⇆ o u t , which disconnects G ,

and taking the component containing i n . More precisely, G ′ is the subgraph induced by all

i ∈ VG such that distG(in, i) < distG(out, i). It follows that i n ∈ VG ′ and G ′ is a bidirectional

tree. So, by Lemma 4.4.5, the modelM ′ = (G ′,{i n},{i n},;) is identifiable.

Next, let G ′′ be obtained from G ′ by adding a leaf edge at the input compartment and

labeling the new compartment by o u t (so the new pair of edges is i n ⇆ o u t ). By con-

struction, G ′′ is a bidirectional tree and an induced subgraph of G . Now Proposition 4.3.14

implies that the modelM ′′ = (G ′′,{i n},{o u t },;) is identifiable (becauseM ′ is). If G ′′ =G ,

we are done. If not, we finish building G from G ′′ by adding one leaf edge at a time. At each

step, the graph is a bidirectional tree and an induced subgraph of G ; and also (by Theo-

rem 4.3.2) the resulting model with I n = {i n}, O u t = {o u t }, and L e a k = ; is identifiable.

So, as desired,M = (G ,{i n},{o u t },;) is identifiable.

Finally, consider the case when |L e a k | = 1. We already showed that models with

distG(in, out)≤ 1 and |L e a k |= 0 are identifiable, and now Proposition 4.1.15 implies that

adding a leak to such models preserves identifiability. This completes the proof.

4.4.2 Expected dimension of tree models

Tree models with more than one leak are unidentifiable by Lemma 4.4.6, but they have

expected dimension for any number of leaks, as long as the input and output are equal or

adjacent.

Proposition 4.4.7. Consider a tree model with exactly one input and one output,M =

(G ,{i n},{o u t }, L e a k ). If distG(in, out)≤ 1, thenM has expected dimension.

Proof. Let n be the number of compartments. First assume |L e a k | ≤ 1. By Theorem 4.4.2,

M is generically locally identifiable and so has expected dimension (by Proposition 4.1.13).

In particular, for the modelM := (G ,{i n},{o u t },{i }), the coefficient map, which has the

form c̄ : R|EG |+1 = R2n−1 → R2n−1 by Corollary 4.2.4, has image with dimension equal to

2n −1.
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Figure 4.6: Figure described in Example 4.4.9

Now assume |L e a k | ≥ 2. By Corollary 4.2.4, the coefficient map ofM has the form

c :R|E |+|L e a k |→R2n−1 and (by Theorem 4.2.1) is an extension of c̄ when i ∈ L e a k . Thus, the

image of c has dimension equal to 2n −1, and soM has expected dimension.

4.4.3 Beyond tree models

Recall that Theorem 4.4.2 states that a tree modelM = (G ,{i n},{o u t }, L e a k ) is identifiable

if and only if distG(in, out)≤ 1 and |L e a k | ≤ 1. It is natural to ask whether any part of this

theorem generalizes to strongly connected models. Unfortunately, this is not the case, as

the following examples show.

Example 4.4.8 (Unidentifiable, but distG(in, out) = 0 and |L e a k | = 0). Recall that in the

model from Example 4.2.9, the input and output are equal, and there are no leaks. Nonethe-

less, the model is unidentifiable.

Example 4.4.9 (Identifiable, but distG(in, out) = 2). In the model depicted in Figure 4.6,

the distance of the shortest path from input to output is 2, and (Gerberding et al. 2020,

Theorem 3.5) implies that the model is generically locally identifiable.

Example 4.4.10 (Identifiable, but |L e a k |= 2). In the model depicted in Figure 4.7, there

are 2 leaks and Corollary 3.2.32 implies that the model is generically locally identifiable.

In spite of the above examples, we recall from Remark 4.2.6 that strongly connected

models (with one input and one output) with |L e a k | ≥ 3 (or, if input equals output, |L e a k | ≥
2) are unidentifiable.
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