
ABSTRACT

MERRITT, MICHAEL B. Multifidelity Global Sensitivity Analysis for Complex Problems.
(Under the direction of Pierre Gremaud and Alen Alexanderian.)

In mathematical modeling, global sensitivity analysis (GSA) has emerged as a powerful

tool for quantifying the importance of uncertain parameters in computationally-expensive,

high-dimensional models. A primary tool for GSA is the Sobol’ index, which defines parameter

importance in terms of their relative contribution to the model variance. Computing Sobol’

indices is a difficult task and there are a variety of methods available, each with their own

strengths and weaknesses. In this thesis, we show that the feasibility of performing GSA can

be extended in certain situations where the model in question belongs to a family of related

models. In such situations, GSA information from lower-fidelity and lower-cost models, can be

used to approximate the sensitivity of the high-fidelity and high-cost model. Accelerating the

GSA process can then enable further model analysis, dimension reduction, and the design of

future experiments. In this dissertation, we will examine several scenarios in which GSA poses

significant computational challenges and the use of multiple model fidelities can be shown to

overcome these challenges. In the context of chemical kinetics, we will show that the Sobol’ indices

of an expensive, stochastic model can be approximated by those of a cheaper, deterministic

model, with provable convergence properties. In the context of multilevel models, we will show

that polynomial surrogate models can be used to create a goal-oriented method for efficient

GSA, while providing probabilistic information about the accuracy of the computed Sobol’

indices. Finally, in the challenging context of computing rare event probabilities, we will show

that performing GSA with respect to model hyperparameters can be accelerated by combining

inexpensive estimations of the probability and sparse polynomial surrogate models.
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CHAPTER

1

INTRODUCTION

1.1 Motivation

Across the fields of science and engineering, mathematical modeling is the predominant tool

for describing phenomena quantitatively. These models take a variety of forms; they may be

algebraic, differential equations, probabilistic, and so forth. In each of these cases, it can be

helpful to conceptualize this general model as a relation between inputs and outputs. The

outputs can refer to the results of a physical or biological process, the probability of a given

system failure, or performance of a financial asset, for example. The set of inputs can refer to

physical quantities, experimental conditions, or other relevant data. The appropriate values for

these model inputs are not always known a priori. In the majority of applications, obtaining

values for these quantities often requires expensive and time-consuming experiments. Input

parameters are thus naturally described by random variables, leading to model uncertainty and

a probabilistic description of that uncertainty.

As a discipline, uncertainty quantification (UQ) is concerned with the analysis of mathematical

models and the effects of uncertainty upon them. Sensitivity analysis is a subfield of UQ, which

is concerned with identifying the input factors, or parameters, which are most important to

the output of a mathematical model. Information concerning parameter sensitivity can then

be used to reduce model complexity, to aid in the design of future experiments, or to enable

further analysis, such such as optimization or construction of surrogate models.

We consider the task of performing sensitivity analysis on a high-fidelity model, that is,

a model which accurately represents the “ground truth” behavior of the system it describes.

High-fidelity models tend to be costly to evaluate, and so performing sensitivity analysis on the
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high-fidelity model can become prohibitively expensive. Additional challenges to performing

sensitivity analysis include high-dimensionality, where the model has a large number of input

parameters, and corruption of model evaluations by noise due to random sampling or lack of

precision. In this thesis, we will examine the quite common case where the high-fidelity model

exists in a family of related models. These related, lower-fidelity, models can take a variety of

forms, including coarse-mesh approximations to the solution of a differential equation, simplified

physics models, multiscale models with respect to time and space, and surrogate models built

from function approximations. In fact, the notion of multiple model fidelities can encompass a

very broad range of model families. Equipped with a model family, we will use information from

the lower-fidelity models to make sensitivity analysis of the high-fidelity model more effective,

and in some cases, make sensitivity analysis tractable where it was originally intractable.

1.2 Contents of the thesis

Chapter 2 will introduce background material necessary for the discussion of sensitivity analysis

and the use of polynomial surrogate models. The following chapters will cover a variety of

contexts in which sensitivity analysis on a complex and expensive model can be made feasible

through the use of related, lower-cost models. Chapter 3 will focus on a problem from chemical

kinetics, where chemical reactions can be described with high-fidelity using stochastic models.

In the event that sensitivity analysis of the high-fidelity model in infeasible, a deterministic

analog of the chemical reaction model can be used to approximate the stochastic dynamics. The

author has made the following contributions in Chapter 3:

• A theorem is developed, which shows that the sensitivity indices of the expensive, stochastic

model converge to the those of the cheaper, deterministic model.

• A description is given of the conditions under which the convergence theorem applies to a

general chemical reaction system modeled by stochastic processes.

• Numerical experiments have been performed with results illustrating this convergence on

the well known Michaelis–Menten reaction system.

• Further numerical experiments demonstrate the implications of this theorem when applied

to the task of dimension reduction in a high-dimensional system.

In Chapter 4, we will focus on a class of model families, in which the component models can

be organized into a hierarchy in terms of cost and accuracy. In this context, multilevel Monte

Carlo methods will be combined with polynomial surrogates to make sensitivity analysis feasible,

especially for high-dimensional problems. The author has made the following contributions in

Chapter 4:

• Novel statistical estimators are derived, which allow one to assess the accuracy of their

sensitivity estimates without need for additional computational work.

2



• A hybrid method, combining Monte Carlo sampling with polynomial surrogates, is intro-

duced, with the expressed goal of sampling across fidelities in a manner that is optimal for

sensitivity analysis.

• Numerical results are presented, which demonstrate the accuracy of the novel estimators

and their ability to aid in sensitivity analysis.

Chapter 5 explores a series of practical issues related to the hybrid method introduced in

Chapter 4. We will also present a series of numerical experiments, comparing the hybrid method

with other competing approaches for sensitivity analysis. The author has made the following

contributions in Chapter 5:

• A formula for correcting the estimator bias is derived, which improves estimation accuracy

of the sensitivity indices.

• An algorithm implementation is presented, as well as a discussion of how to optimally

balance the accuracy in sensitivity analysis and the incurred computational cost.

• Numerical experiments are presented, which demonstrate the superiority of the hybrid

method over competing techniques, as well as the analysis of high-dimensional problem

from chemical kinetics.

Chapter 6 focuses on the problem of computing sensitivity indices for rare event probabilities,

with respect to the hyperparameters that define the distribution of the uncertain parameters.

In this context, the rare event probability cannot be evaluated exactly, and so sampling-based

methods can be used to estimate the probability with differing levels of fidelity. We will investigate

the efficiency of Markov Chain Monte Carlo methods and surrogate models to accelerate the

process of sensitivity analysis. The author has made the following contributions in Chapter 6:

• A novel method is proposed for effectively analyzing the sensitivity of the rare event

probability to its underlying hyperparameters, which enables sensitivity analysis in scenarios

where it has previously been considered infeasible.

• This method combines polynomial surrogates as well as Markov Chain Monte Carlo

sampling. An implementation for this method is discussed as well as techniques for

surrogate construction which are particularly suitable for the rare event context.

• Numerical experiments are presented, which quantify the sensitivity of the rare event

probability for an expensive, PDE-based application, as well an analytical test problem.

1.3 Overview of the author’s publications

The contents of this thesis derive from four articles which are in various stages of preparation,

review, or publication, at the time this thesis was composed. The published articles corresponding
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to Chapters 3 and 4 are respectively [1] and [2]. The article corresponding to Chapter 6 is available

in preprint form [3]. Finally, a journal article covering Chapters 4 and 5 is in preparation [4].

The author of this thesis is the primary author on each of these articles.
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CHAPTER

2

BACKGROUND MATERIAL

In this chapter, we review background materials on global sensitivity analysis and polynomial

chaos expansions.

2.1 Global sensitivity analysis

There are numerous notions of sensitivity, each of them employing different metrics for what

constitutes parameter importance. We distinguish first between local and global sensitivity

analysis. Local sensitivity analysis (LSA) seeks to characterize model sensitivity at a particular

point in the parameter space while global sensitivity analysis (GSA) seeks to characterize

sensitivity over a range or subset of the parameter space. The focus of this thesis will be on

GSA, which has emerged as a particularly valuable subfield of UQ, and has found numerous

applications [5]. We continue with a review of the essential mathematical foundations of GSA.

2.1.1 Variance-based GSA

When considering GSA, it is important first to define a metric by which one quantifies sensitivity.

We focus on variance-based GSA, where the variance of the model output is decomposed and

apportioned according to its respective components. We begin by defining the probability triple

(Ω,F ,P), where Ω is a sample space, F is a corresponding σ-algebra, and P is a probability

measure on Ω. We then define a random vector, θ = (θ1, θ2, . . . , θd), which maps from Ω to

Θ ⊆ Rd. Let B be the Borel σ-algebra on Θ and let µ denote the law of θ. The corresponding

probability density function (PDF) of θ will be denoted as π(θ). Our quantity of interest (QoI)
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will then be defined as a scalar-valued function, q(θ), which we require to be square-integrable.

We assume the components of θ are independent random variables, and thus there exists a

decomposition of q(θ), where each term depends on a unique subset of θ. This decomposition is

called the ANOVA decomposition (short for analysis of variance), and it has the following form:

q(θ) = q0 +

d∑

i=1

qi(θi) +
∑

i<j

qi,j(θi, θj) + · · ·+ q1,...,d(θ1, . . . , θd). (2.1)

Let E[q(θ)] denote the expectation of q and let E[q(θ)|θi] denote the conditional expectation of

q with respect to the set of values that θi takes. The component terms of (2.1) are defined as

q0 = E[q(θ)],

qi(θi) = E[q(θ)|θi]− q0,

qi,j(θi, θj) = E[q(θ)|θi, θj ]− qi − qj − q0,

and so forth. More generally, if we define a subset of the variables, θu, where u ⊆ {1, . . . , d},
then the component function, qu(θu), is defined as

qu(θu) = E[q(θ)|θu]−
∑

v⊂u
qv(θv). (2.2)

In the decomposition (2.1), the terms are pairwise-orthogonal, that is,

E[qu(θu) qv(θv)] = 0, ∀u 6= v, (2.3)

which follows directly from the statistical independence of each component of θ. Using the

orthogonality of the ANOVA terms, the variance of (2.1), denoted V[q(θ)], can be expressed as

V[q(θ)] =

d∑

i=1

V[qi] +
∑

i<j

V[qi,j ] + · · ·+ V[q1,...,d], (2.4)

where each component variance term will be denoted as Vu = V[qu], u ⊆ {1, . . . , d}. The

component terms in (2.4) are known as conditional or partial variances. Thus the decomposed

variance of q(θ) can be expressed compactly as

V[q(θ)] =
∑

u⊆{1,...,d}

Vu. (2.5)

We finally arrive at the formal definition of the Sobol’ index [6], named after Ilya M. Sobol’. For

a subset u, we define the Sobol’ index with respect to u as

Su(q) =
V[qu(θu)]

V[q(θ)]
(2.6)
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The Sobol’ index quantifies the relative contribution of θu to the variance of q(θ) and so can

be considered a metric for the sensitivity of q with respect to θu. For u where |u| = 1, the

index Su is called the first order Sobol’ index or the main effect index. One can consider higher

order sensitivity indices, where |u| > 1. In this context, Su denotes the contribution of θu to the

variance of q, excluding the contributions of all proper subsets of θu. One may also define the

total Sobol’ index,

Ti(q) =
∑

v3i
Sv(q). (2.7)

The total index, Ti, measures the relative importance of variable θi, as well as all interaction

terms that include θi. In practice, computing both main effect and total indices will be desirable,

from which one can obtain sensitivity information about individual variables and more general

information regarding higher order interactions. A few notable properties of Sobol’ indices

include:

1. 0 ≤ Su, Ti ≤ 1, ∀u ⊆ {1, . . . , d} and ∀i ∈ {1, . . . , d}

2.
∑

u⊆{1,...,d}

Su = 1

3.
d∑

i=1

Ti ≥ 1

The sum of total indices will equal one only if q is an additive function, meaning the ANOVA

decomposition of q contains only first order terms. If, by contrast, the sum of the total indices

is much larger than one, this indicates very strong higher order interactions, that is, Su is

significant, for |u| > 1. In practice, instead of requiring the accuracy of the Sobol’ index to reach

a given degree of precision, GSA results are often interpreted qualitatively, enabling one to rank

parameters in terms of their importance. For example, a large Sobol’ index for a particular

variable clearly indicates a high relative importance. Similarly, variables with a small Sobol’

index can be considered unimportant. However, the notion of what constitutes a “small” or

“large” Sobol’ index in practice is a matter of interpretation and pertains to specific applications.

Consequently, using GSA results to inform dimension reduction or design of experiments requires

some specialized knowledge of a particular application, and so GSA is often part of collaborative

efforts between UQ specialists and experts in other domains.

2.1.2 Estimation of Sobol’ indices

There are a variety of methods for computing Sobol’ indices, including sampling methods,

quadrature, and surrogate-based methods. We briefly cover the widely-used “Saltelli” sampling

method [7, 8, 9, 10], which estimates the variance and conditional variances using Monte Carlo

(MC) integration. In many GSA studies, the Saltelli method acts as a the baseline against which

other GSA methods can be compared [5].
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To give some intuition, we denote NMC as the number of MC samples required to estimate

a single conditional variance. We can express the conditional variance in the numerator of Si as

V[E[q(θ) | θi]] =

∫
E[q(θ) | θi]2 dθi −

(∫
E[q(θ) | θi] dθi

)2

. (2.8)

The final term in (2.8) is simply q2
0, which can be estimated by a sample mean. The first term

can be further decomposed in order to produce a sampling scheme. First let θ∼i denote all

components of θ, with the exception of θi. Then we have

E[q(θ) | θi]2 =

∫
q(θ1, . . . , θi, . . . , θd) q(θ

′
1, . . . , θi, . . . , θ

′
d) dθ∼i dθ

′
∼i,

where θ′ is used as an artificial variable to reinterpret the conditional expectation. Continuing,

∫
E[q(θ) | θi]2 dθi =

∫
q(θ1, . . . , θi, . . . , θd) q(θ

′
1, . . . , θi, . . . , θ

′
d) dθ dθ

′
∼i,

from which we can derive a sampling scheme where θ and θ′ denote different realizations of the

same random vector. Let A and B each denote independent NMC × d matrices of parameter

samples. Then if Ai
B denotes the matrix A, where the ith column has been interchanged with

the ith column of B, we obtain the following estimator,

V[E[q(θ) | θi]] ≈
1

NMC

NMC∑

j=1

q(A)j q(A
i
B)j − q2

0, (2.9)

where q2
0 can be estimated at no additional cost using evaluations of A and B. This general

approach to estimating Sobol’ indices has also come to be known as the “pick and freeze” method,

as it samples the QoI by varying one element of θ at a time. There is a large literature [7, 9,

11] of alternative estimators of a similar flavor, not only for main effect Sobol’ indices, but

higher order and total indices. In general, estimating the full set of first order and total Sobol’

indices of q requires NMC(d+ 2) function evaluations [7, 8]. The convergence of these estimators

follows from the Central Limit Theorem, with a convergence rate that is O(1/
√
NMC) [12].

These estimators have enjoyed widespread use due to their provable convergence properties

and simple-to-implement estimators. Nonetheless, they inherit a slow rate of convergence that

is characteristic of MC methods and the cost of estimation is likely to be intractable for

high-dimensional problems.

2.1.3 Alternative GSA methods

While Sobol’ indices have been the predominant tool for GSA within the UQ community,

there are a variety of other tools that have been developed. Derivative-based global sensitivity

measures (DGSMs) have been introduced as an alternative to Sobol’ indices, when the underlying
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QoI is differentiable. Relationships between Sobol’ indices and DGSMs have been proven [13]

and there have been efforts to make their computation feasible in practical scenarios [14, 15,

16]. The Morris screening method [17], one of the earliest GSA methods, relies on computing

difference approximations of the QoI, known as elementary effects. Although developments in

the elementary effects context have become less common in recent years, improved versions

have been proposed [18, 19]. The active subspace method [20], which aims to identify important

directions in the parameter space, has also gained popularity for its uses in GSA [21, 22, 16]. A

sensitivity metric, known as the activity score, with known relations to the Sobol’ index, can be

computed as a part of the active subspace workflow [21]. Various other GSA metrics have been

developed in recent years, such as moment-independent metrics [5], those for functions with

dependent variables [23, 24], function-valued Sobol’ indices [25, 15], and QoIs with multiple

sources of uncertainty [26, 1]. Lastly, we highlight the large body of work that has been done

in using surrogate models to perform GSA [27, 28, 29, 30], specifically the computation of

Sobol’ indices. Surrogates aim to approximate the underlying QoI, while being inexpensive

to evaluate, and so can accelerate GSA. The next section will be dedicated to a review of

polynomial surrogate methods for GSA.

2.2 Polynomial chaos expansions

In recent years, surrogate models have become a popular choice for performing GSA, as well as

uncertainty propagation, and other UQ goals. The concept of a surrogate model is fairly broad,

encompassing techniques from approximation theory to machine learning [31]. We limit our

focus to polynomial chaos expansions (PCE), which are a class of surrogate models that create

a spectral expansion of a random variable in terms of orthogonal polynomials [32]. Given the

scalar random variable q(θ) with finite second moment and statistically independent parameters,

we define the PCE of q as

q̃(θ) =

NPC∑

k=0

βkΨk(θ), (2.10)

where {βk}NPCk=0 are the set of scalar PCE coefficients, {Ψk}NPCk=0 is the orthogonal polynomial

basis, and NPC in the truncation level of the expansion. Creating such a surrogate model of the

QoI q(θ) relies on choosing the proper set of basis functions. In cases where the QoI is expensive,

the intent is to construct a surrogate model which is simpler and cheaper to evaluate than the

original model.

2.2.1 PCE basis construction

Creating the orthogonal polynomial basis for the PCE relies on information about the random

variable itself. The goal is to build a polynomial basis that guarantees orthogonality with respect

to the PDF of the input random variable. This property will be especially valuable when we

return to the issue of using polynomial surrogates for GSA.
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In the univariate case, if θ is a continuous random variable, with the PDF π(θ), then we are

able to define a corresponding family of basis polynomials, {ψ0(θ), ψ1(θ), . . . }, such that the

following holds: ∫

Θ
ψi(θ)ψj(θ) π(θ) dθ = 0, ∀i 6= j. (2.11)

For example, if the PDF of θ is described by the uniform distribution on the interval [a, b], then

the set of Legendre polynomials will satisfy (2.11). Similarly, the set of Hermite polynomials

guarantees orthogonality with respect to the PDF of the Normal distribution. For a more

detailed list of orthogonal polynomials and their corresponding probability distributions, see the

Weiner-Askey scheme in Chapter 2 of [32] or [33].

For a multivariate random variable, θ, taking values in Rd, we need to build a multivariate

orthogonal polynomial basis. We follow a tensorization approach to creating the basis, which

involves taking products of the univariate orthogonal polynomials. If we let {ψ0, ψ1, ψ2 . . . }
denote the set of univariate orthogonal polynomials, corresponding to a given probability

distribution, then the kth multivariate basis polynomial is defined as

Ψk(θ1, . . . , θd) =
d∏

i=1

ψmki
(θi), mk = (mk

1, . . . ,m
k
d), (2.12)

where mk is a multi-index, with mk
i denoting the degree of the ith 1D polynomial for the kth

multivariate polynomial. Thus, for a given set of univariate polynomials, the multivariate basis

can be completely determined by prescribing the multi-indices.

In practice, the polynomial basis must be truncated and there are a variety of approaches

to choosing the finite set of multi-indices, see [34, 35] for more details. For a total order basis

construction, we require that the PCE contain all polynomial terms up to a given total polynomial

order, r, or formally, the truncated polynomial basis, Ψ, is defined as

Ψ =

{
Ψk(θ) :

d∑

i=1

mk
i ≤ r

}
.

Using the orthogonality of the univariate polynomials, given by (2.11), the set of multivariate

polynomials Ψ, is also orthogonal. Under the total order basis construction scheme, the number

of included basis functions is given by the relation

NPC + 1 =
(d+ r)!

d!r!
. (2.13)

The factorial growth of PCE terms is one of the main challenges of this approach as it requires the

estimation of NPC + 1 scalar PCE coefficients. We address one particular method of estimating

PCE coefficients in the next section.
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2.2.2 Non-intrusive spectral projection

For a PCE defined as (2.10) with an associated polynomial basis, one is left with the challenge

of computing NPC + 1 scalar PCE coefficients. Under a non-intrusive framework [32], one only

has access to evaluations of the QoI and cannot modify the function itself. Projecting q onto Ψk,

the PCE coefficients are defined as

βk =
E[q(θ) Ψk(θ)]

E[Ψ2
k(θ)]

, k = 0, 1, . . . , NPC . (2.14)

In this thesis, we will let Ψ0 = 1 and β0 = E[q(θ)], as is the usual convention for the PCE [32].

In (2.14), the denominator is the L2-norm of the squared polynomial basis element. For most

standard families of orthogonal polynomials, the polynomial norms are known analytically [27],

and so the main challenge in building a PCE is in approximating the spectral projection in

the numerator of (2.14). A variety of methods exist for accomplishing this task including

full-tensor quadrature, sparse-grid quadrature, and sampling-based methods [29, 32]. While

many quadrature methods can be shown to converge quickly when evaluating low-dimensional

integrals of smooth functions, these methods become prohibitively expensive when dealing with

high-dimensional and noisy functions [36]. Sparse-quadrature approaches have been developed to

alleviate the computational drawbacks of full-tensor quadrature [37], although their performance

also degrades as the dimension increases. Despite their slow convergence rate, MC sampling

methods have proven to be attractive for evaluating high-dimensional integrals, due to the fact

that their convergence rate is independent of the integrand dimension [29]. A main portion

of this thesis (including Chapters 4, 5, and 6) will focus on augmenting the MC approach for

the purpose of estimating PCE coefficients and downstream GSA. Finally, regression methods

deserve mention for their efficiency in computing PCE coefficients, although they do so without

evaluating the spectral projection in (2.14). In Chapter 6, we will sketch out the regression

approach in more detail, where it will prove to be useful.

A standard MC estimator for βk would be expressed as

β̂k =
1

E[Ψ2
k] NMC

NMC∑

i=1

q(θ(i)) Ψk(θ
(i)), (2.15)

where we have NMC independent and identically distributed realizations of θ. Under this

approach, the same NMC evaluations of q can be used to estimate the full spectrum of PCE

coefficients, mitigating the effects of high-dimensionality. As with other MC approaches, the

estimator β̂k converges at a rate that is O(1/
√
NMC). Variants of MC have been proposed

to accelerate the convergence of (2.15), such as Latin hypercube sampling and, more broadly,

Quasi-Monte Carlo sampling [36, 32]. In Chapter 4, we will introduce the multilevel Monte Carlo

method [38], which aims to accelerate the convergence of MC by using information from multiple

models in a hierarchy. This multilevel framework has been generalized to the multi-fidelity
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setting [39], which allows for more flexibility in generating the model hierarchy and building the

MC estimators involved.

2.2.3 GSA via PCE

We return to the original task of performing GSA, now with the PCE as a tool. Given a PCE

surrogate, q̃, we will leverage the properties of orthogonal polynomials to derive expressions for

Sobol’ indices (2.6). We begin by using the orthogonality of the PCE basis to compute V[q̃],

V[q̃] = E[(q̃)2]− E[q̃]2 = E



(
NPC∑

k=0

βkΨk

)2

− E

[
NPC∑

k=0

βkΨk

]2

= E



NPC∑

k=0

β2
kΨ2

k + 2
∑

j<k

βjβkΨjΨk


− β2

0E[Ψ2
0]

=

NPC∑

k=0

β2
kE[Ψ2

k]− β2
0E[Ψ2

0] =

NPC∑

k=1

β2
kE[Ψ2

k].

(2.16)

Next, we compute the conditional variance in (2.6), using the ANOVA decomposition of q̃ into

components for each respective subset of θ. In order to determine which ANOVA terms are

present in the conditional expectation in (2.6), we define the following set for a variable subset,

u:

Ku = {k : mk
i > 0 ∀i ∈ u, and mk

i = 0 ∀i /∈ u}. (2.17)

For the subset, θu, the set Ku denotes all PCE terms which only depend on θu [27]. Similarly,

this denotes all terms of the PCE which correspond to the ANOVA term q̃u(θu). As a result,

the conditional variance can be computed as

V[q̃u(θu)] = E[(q̃u)2]− E[q̃u]2 = E




∑

k∈Ku

βkΨk




2
 =

∑

k∈Ku

β2
kE[Ψ2

k].

Thus we have the expression for the Sobol’ index Su of q̃ as

Su(q̃) =

∑
k∈Ku β

2
k E[Ψ2

k]∑NPC
k=1 β2

k E[Ψ2
k]

(2.18)

For a more detailed derivation of Sobol’ indices via PCE, including total index calculations and

a discussion of alternative methods for PCE coefficient computation, see [27]. Throughout the

thesis, the PCE will be used as an efficient method for approximating Sobol’ indices, with an

emphasis on efficient methods for evaluating (2.14), particularly in high-dimensional cases.
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CHAPTER

3

MULTISCALE GLOBAL SENSITIVITY

ANALYSIS FOR STOCHASTIC

CHEMICAL SYSTEMS

3.1 Introduction

In this chapter, we address the task of performing GSA in the context of chemical reaction

networks, where the highest fidelity models exhibit parametric uncertainty and additional

internal stochasticity. In this context, GSA tends to be quite expensive and so we consider the

use of deterministic surrogates, derived from physical principles, to render GSA feasible. We

develop herein the notion of stochastic Sobol’ indices and, by examining their relationship to

the corresponding deterministic indices, prove a convergence result establishing the usefulness

of these surrogates for GSA. We then illustrate these theoretical insights through numerical

experiments and, by means of this GSA framework, we perform dimension reduction for a

high-dimensional application. The resulting article from this study, written in collaboration

with Alen Alexanderian and Pierre Gremaud, was published in the SIAM Journal for Multiscale

Modeling and Simulation [1].

The central motivation of this chapter is striking a balance between cost and accuracy.

A high fidelity, high cost model, q, is thus often replaced by a lower cost model, q̃, usually

of lower fidelity, to enable the analysis of the problem under study. The techniques used to

develop and construct surrogate models are many and range from approximation theory to
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simplified-physics [40]. The analysis of the original model, q, is then replaced by the analysis of

a surrogate, q̃, with the implicit assumption that

if q ≈ q̃ then I(q) ≈ I(q̃), (3.1)

where I represents some operation on q. The extent to which (3.1) is satisfied clearly depends

on I and on the relationship between q and q̃. Here, we consider the case where I stands for

the sensitivity of the model to its input parameters. We restrict our attention to an important

family of physically-based surrogates, corresponding to q̃ being obtained through a limiting

process of q and take chemical reaction networks as a motivating application. This approach

stands in contrast to the PCE approach of surrogate construction outlined in Section 2.2.

Consider the evolution of a system of chemically reacting molecules; molecular dynamics

simulation is the most faithful way of modeling such a system. There, each individual molecule

and corresponding species population are tracked and chemical reactions are modeled as distinct

events. Due to quantum effects, molecular populations are integer variables which evolve

stochastically [41]. In spite of this, chemical kinetics is often analyzed using real, as opposed

to integer variables, which evolve deterministically. In this context, such simplified, low-cost

models have proven to be very appealing. Stochastic chemical kinetics is, however, necessary to

the study of many cellular systems in biology where the relatively small molecular populations

may preclude the use of simplified models obtained through the thermodynamic limit (i.e. in

the limit of large volumes) and may require a stochastic rather than deterministic model.

Assume we have both a high cost stochastic model, q(k, ω), and a low cost deterministic

surrogate, q̃(k), such that q ≈ q̃, in some sense. In this context, ω corresponds to the intrinsic

stochasticity of the model, q, and k = (k1, . . . , kd) is a list of d uncertain parameters, shared by

both models. As shown in Section 3.2, the field of chemical kinetics falls under this framework.

A fundamental assumption made in this chapter is that the intrinsic model stochasticity is

independent of the randomness in the uncertain parameters. This assumption, which also appears

in related works [42, 43, 44], is a natural one from the point of view of modeling under uncertainty.

In the present setting, parametric uncertainty, sometimes referred to as epistemic uncertainty, is

due to lack of knowledge, whereas model stochasticity, sometimes called aleatoric uncertainty, is

inherent to the system and cannot be eliminated by a greater knowledge of the system.

We analyze whether global sensitivity analysis (GSA) can be performed on the surrogate, q̃,

rather than q and still yield valuable information about the original model, q. In other words,

we are asking whether the diagram in Figure 3.1 is commutative.

In Figure 3.1, I and Ĩ refer to importance indices from some GSA method; presumably, when

applied to stochastic models, the GSA approach yields indices which themselves are random

variables. This is the case for variance-based GSA, resulting in Sobol’ indices, as discussed in

Chapter 2. For a broader discussion of stochastic Sobol’ indices, see [45]. In the case of chemical

kinetics, the limiting process in the above diagram is the thermodynamic limit, which we will

cover in Section 3.2. The above diagram does not, in general, commute; see [45] for simple
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q(k, ω) {Ij(ω)}dj=1

q̃(k) {Ĩj}dj=1

GSA

limiting process limiting process

GSA

Figure 3.1 Schematic representation of the question under consideration: for what type of limiting
process is the diagram commutative? The model q is expensive-to-evaluate and stochastic while the
surrogate model q̃ is deterministic and cheap. The GSA process results in d sensitivity indices.

analytical examples of non-commutativity when the limiting process linking the stochastic model

to its surrogate is the expectation or some other ω-moment. Similarly, it has been shown that

simply taking the average of the stochastic chemical model, q(k, ω), does not result in the

associated deterministic model [46]. A main contribution of this chapter will be to state the

circumstances under which Figure 3.1 commutes and to show how this can be advantageous for

the GSA process.

3.2 Chemical kinetics models

There are a variety of paradigms for modeling chemical systems. Traditional molecular dynamics

requires a full characterization of the position and velocity of each chemical molecule in time. This

approach, while ideal for fine-grained simulation of reaction dynamics, is ultimately impractical

for a system with even a modest number of chemical components [46]. A common simplifying

assumption is to consider a well-mixed system, which is spatially homogeneous. One then models

the evolution of the chemical system in time only. In this context, the most accurate description

of the chemical reaction is provided by the Chemical Master Equations (CME), a system of

ODEs that treat the evolution of the chemical system probabilistically. Each ODE in the CME

describes the probability of the chemical system being in a particular state for any time t. This

implies that the CME may easily include hundreds, thousands, or even millions of equations,

depending on the number of molecules present. Thus, for most standard chemical systems, the

CME are too high dimensional to solve numerically. However, one is able to compute realizations

of the chemical system state that are consistent with the probabilistic description given by the

CME. In this context, models that produce realizations of the true statistics of the CME are

called exact [47, 48]. Exact simulation algorithms are the most common choice for reaction

modeling, resulting in an extensive literature on the subject [46, 41, 49, 50]. After starting from

the theoretical foundations of these algorithms, we will provide a brief overview of these various

approaches.
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3.2.1 The Random Time Change representation

We consider chemical systems with N reacting species. Let X(t) denote the state vector of the

chemical system with N components, where the ith component of X(t), Xi(t), corresponds to

the number of molecules of the ith species at time t. If we let M denote the number of possible

reactions, the evolution of the chemical system can be modeled by the following relation,

X(t) = X(0) + νR(t), (3.2)

where ν ∈ ZN×M is known as the stoichiometric matrix, whose jth column, νj , quantifies the

change in X due to reaction j. The vector, R(t) ∈ ZM , represents the number of times each

reaction takes place between time 0 and t. Traditionally, each component of R is modeled as a

stochastic process with the following form [51]

Rj(t) = Yj

(∫ t

0
aj(X(s)) ds

)
. (3.3)

The stochastic process, Yj , is a Poisson process, meaning that the number of occurrences or

events in a given time interval follows a Poisson distribution [52]. The rate at which each reaction

occurs is governed by its respective propensity function aj , j = 1, . . . ,M , where aj(X(t)) dt

represents the probability that the jth reaction occurs during the time interval [t, t+ dt) [46].

Each Poisson process is a function of an independent variable, which is called its index set [53,

Chapter 1]. This index set, often interpreted as time, may take either discrete or, in this case,

continuous values. Since the index set of Yj is governed by a propensity function, often called

the rate of the Poisson process, which varies in time, Yj is known as an inhomogeneous Poisson

process [52]. Naturally, the number of times a reaction fires, beginning from time t = 0, is

dependent upon the cumulative propensity up to the current time, and so the time-integrated

propensity is a suitable index set for each respective Poisson process.

The resulting evolution equation of the chemical system, often referred to as the random

time change representation (RTC) [54, 55, 56, 57], is then

X(t) = X(0) +

M∑

j=1

νjYj
(
τj(t)

)
, (3.4)

τj(t) =

∫ t

0
aj(X(s)) ds, j = 1, . . . ,M. (3.5)

We note that each Yj is an independent Poisson process. In (3.5), we follow [50] and define an

internal time, denoted τj , for each reaction. Each internal time acts as the index set for its

respective Poisson process, rather than the standard interpretation of the index set representing

time. This fact will be useful when developing an algorithm to simulate reaction dynamics. In

Section 3.3, we will need to distinguish between the internal time for each reaction and the

relationship to physical or “global” time. It is conceptually helpful to think of each reaction as
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having its own timer or clock, which is related to, but distinct from, the global time.

The Law of Mass Action [54] provides the intuition for creating the propensity functions for

each reaction. A natural interpretation of the propensity function is that they are proportional

to the number of possible ways a given reaction can occur. Therefore, they can be derived using

the appropriate combinatorial formula. Below, letting Sn and Sm denote two generic chemical

species, we provide the propensity functions for three of the most common types of reactions [46]:

Sm → something ⇒ aj(X(t)) = kjXm(t), (3.6)

Sm + Sn → something ⇒ aj(X(t)) = kjXm(t)Xn(t) if m 6= n, (3.7)

Sm + Sm → something ⇒ aj(X(t)) = kj
1

2
Xm(t)(Xm(t)− 1). (3.8)

The reactions (3.6), (3.7), and (3.8) are known as first order, second order, and dimerization

reactions, respectively. In order to obtain a general formula for the propensity function of any

reaction, we first partition each stoichiometric vector as follows:

νj = ν ′j − ν ′′j , j = 1, . . . ,M, (3.9)

where the entries of ν ′j and ν ′′j are the number of molecules of system species that are created

and consumed in the jth reaction, respectively. The general formula for obtaining the propensity

function is

aj(X(t)) = kj

(
N∏

i=1

(ν ′′ij)!

)(
Xi

ν ′′j

)
= kj

N∏

i=1

Xi!

(Xi − ν ′′ij)!
. (3.10)

A more detailed treatment of mass-action kinetics and propensity functions for other common

reaction types can be found, for example, in [49]. Notice that in (3.10), each reaction includes

a constant, kj , which is known as a reaction rate constant. These rate constants are often

determined experimentally and are therefore subject to epistemic uncertainty. This stands in

contrast to the irreducible or aleatoric uncertainty associated with each Poisson process. We also

note that it is not a requirement that a system with M reactions also have M rate constants.

A given propensity function can have multiple rate constants or a single rate constant can

be shared between multiple propensity functions. As a result, when we address the task of

performing GSA in Section 3.4.1, we must distinguish between the number of reactions, denoted

by M , and the number of uncertain parameters, d.

3.2.2 An example reaction system

Consider, as an example, the Michaelis–Menten reaction for enzymatic catalysis, a fundamental

reaction in the field of chemical kinetics [46, 54, 47], wherein, an enzyme, E binds to a substrate,

S, to form a complex, C. The complex can then either dissociate back into the enzyme and

substrate, or it can dissociate into the enzyme and a product, P . We have the following reaction
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diagram:

E + S
k1→ C

C
k2→ E + S

C
k3→ E + P

For clarity, we abuse notation, denoting the components of the state vector with the notation

of the chemical species in the reaction diagram, X =
(
E,S,C, P

)
. From the reaction diagram,

the entire RTC equation system can be derived, starting with the stoichiometric matrix and the

propensity functions:

ν =




−1 1 1

−1 1 0

1 −1 −1

0 0 1




a1(X(t)) = k1E(t)S(t)

a2(X(t)) = k2C(t)

a3(X(t)) = k3C(t)

Given the stoichiometric matrix and propensity functions, one has all the information

necessary to characterize the RTC as in (3.4):

X(t) = X(0)+




−1

−1

1

0



Y1

(∫ t

0
k1E(s)S(s) ds

)
+




1

1

−1

0



Y2

(∫ t

0
k2C(s) ds

)
+




1

0

−1

1



Y3

(∫ t

0
k3C(s) ds

)

Now that we have reviewed some of the basic theoretical aspects of chemical reaction

modeling, we will discuss the thermodynamic limiting process, which acts as the link between

the RTC and its deterministic analogue, known as the reaction rate equations.

3.2.3 The thermodynamic limit

We consider the limiting behavior of chemical systems as the system size approaches infinity. For

example, as the system size increases, the likelihood of a particular reaction occuring may change,

in the event that certain molecules must interact. To this end, we aim to update the propensity

functions by introducing a system size parameter, V = V ·nA, given by the product of the system

volume, V, and the Avogadro number, nA. We again begin by partitioning the stoichiometric

vectors according to (3.9). Following the notation of [58], we define the V -dependent propensity

functions as follows:

aVj (x) =
kj

V ‖ν
′′
j ‖−1

N∏

i=1

(
xi
ν ′′ij

)
, j = 1, . . . ,M,
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where the state vector is now denoted by the lowercase x, signifying the transition from discrete

state variables to continuous values. The V -dependent system trajectory is described by the

updated RTC representation,

XV (t) = V x0 +

M∑

j=1

νjYj

(∫ t

0
aVj (XV (s)) ds

)
. (3.11)

Here we have let XV (0) = V x0 where x0 ∈ RN≥0 is a fixed vector, independent of the system size.

In the following discussion, we will work with a sequence of V values such that V x0 is in ZN≥0.

Ensuring existence of such a sequence requires some assumptions on x0 and the nominal (initial)

system volume. Specifically, in our study of limiting behavior of systems, we may assume that

the system’s nominal volume, Vnom, and x0 are such that Vnomx0 = VnomnAx0 is a vector in

ZN≥0. We then consider a sequence of system sizes given by Vm = mVnom, m = 1, 2, . . .. Thus the

sequence of system sizes can be parameterized by m, which we will informally refer to as the

“system size parameter.”

Notice that the RTC formulation (3.11) is a restatement of (3.4), except with the dependence

on system size made precise. For instance, considering the system at its nominal volume, Vnom,

then X(0) in (3.4) is given by

X(0) = XVnom(0) = Vnomx0 = VnomnAx0.

Next, we consider the limit as the system size goes to infinity, also known as the thermody-

namic limit, in order to understand the behavior of chemical systems as the volume and number

of particles becomes arbitrarily large. We define the limiting propensity functions as in [58], as

āj(x) = lim
V→∞

aVj (V x)/V, j = 1, . . . ,M.

For example, if the jth reaction is as in (3.7),

aVj (x) =
kj
V
xmxn and āj(x) = kjxmxn.

On the other hand, if the jth reaction is of the form (3.8),

aVj (x) =
kj
2V

xm(xm − 1) and āj(x) =
1

2
kjx

2
m.

To describe the thermodynamic limit, we consider the concentration-based state vector ZV (t) =

XV (t)/V . Updating the RTC representation to model the concentration vector, ZV , following [58],

we have

ZV (t) = x0 +

M∑

j=1

νjV
−1Yj

(∫ t

0
aVj (V ZV (s))ds

)
. (3.12)
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In the limit as V →∞, the state vector ZV approaches, almost surely, to a deterministic

function, Z(t), that is obtained by solving a system of ODEs known as the system of reaction

rate equations (RREs). The corresponding system of RREs is described by

dZ

dt
= F (Z(t)) t ∈ [0, T ],

Z(0) = x0,

(3.13)

where F (z) =
∑M

j=1 νj āj(z) and [0, T ] is the maximal interval of existence of solution for (3.13).

The following convergence result, originally proven in [56, Chapter 11, Theorem 2.1], provides

the necessary foundation for the theoretical developments in Section 3.4.2. Although we state

Theorem 1 as it applies to the RTC representation, we note that it can be applied to a more

general class of Markov processes. We follow the form of this result as presented in [58]. We also

point the reader to [59, Chapter 2], for a more detailed proof of this result.

Theorem 1. Let ZV be a continuous-time Markov process described by the RTC representation

in (3.12). If for all compact K ⊂ RN , the following conditions hold:

M∑

j=1

‖νj‖ sup
z∈K

āj(z) <∞, and

F is Lipschitz on K,

(3.14)

then, in the limit as V →∞, ZV converges, almost surely, to the solution of the corresponding

RREs in (3.13). Or formally, we have

lim
V→∞

sup
s≤T
‖ZV (s)− Z(s)‖ = 0 a.s.− ω. (3.15)

Note that here ‖ · ‖ denotes the Euclidean norm. Therefore, we know that in the limit, as

V → ∞, the stochastic solutions obtained from the RTC model (3.12) will converge to the

solution of the ODE system (3.13), with that convergence holding on a set of full measure in Ω.

Note also that both of the conditions in (3.14) hold for the chemical systems under study, because

the limiting propensity functions, āj , j = 1, . . . ,M , are polynomials. Theorem 1 establishes the

theoretical connection between the stochastic RTC formulation and the RREs. This result is

foundational to the analysis in Section 3.4.2, related to the convergence of stochastic Sobol’

indices. Before we turn to the issue of stochastic Sobol’ indices, we briefly address algorithms

for simulating chemical systems modeled by the RTC.

3.3 The Next Reaction Method

While the simulation of a chemical system from the RREs is straightforward, efficiently simulating

the RTC dynamics has been a subject of a great amount of research in recent decades. Several

20



algorithms have been developed for simulating the dynamics of a stochastic chemical reaction

network; these include Gillespie’s stochastic simulation algorithm (SSA) [46, 41] as well as the

Next Reaction Method (NRM) of Gibson and Bruck [50] and its variants [60, 47, 42]. The

NRM approach has a number of advantages over the SSA, see [60, Section 1] and [61, Section

III.B], among others: (i) it is cheaper to simulate than the SSA in terms of random numbers

generated per iteration; and (ii) it has the ability to handle time-dependent propensity functions

and reactions that exhibit delays between initiation and completion. The variant of the NRM

that we use was developed by Anderson in [60], where it is referred to as the modified next

reaction method. An outline of the full NRM algorithm for a general reaction network is given in

Algorithm 1.

Algorithm 1 Modified Next Reaction Method [60].

Input: Initial state X0, final simulation time T , stoichiometric matrix ν, and propensity
functions, {aj(·)}Mj=1.

Output: A realization of X(t, ω).
1: % initialization %

2: for j = 1, . . . ,M do
3: Generate random number rj ∼ U(0, 1)
4: τj = 0, τ+

j = − ln(rj)
5: end for
6: t = 0, X(0) = X0

7: % simulation loop %

8: while t < T do
9: for j = 1, . . . ,M do

10: Evaluate aj(X(t)) and ∆tj =
τ+
j −τj

aj(X(t))

11: end for
12: Set l = argmin

j
{∆tj}Mj=1

13: X(t+ ∆tl)← X(t) + νl {Update state vector}
14: t← t+ ∆tl {Update global time}
15: for j = 1, . . . ,M do
16: τj ← τj + aj∆tl {Update internal times of each reaction}
17: end for
18: Generate random number rl ∼ U(0, 1)
19: τ+

l ← τ+
l − ln(rl) {Update next reaction time for reaction l}

20: end while

The NRM simulates RTC dynamics by treating each reaction as an independent stochastic

process: indeed, (3.4), (3.5) correspond to a linear combination of Poisson processes with different

internal times τj , j = 1, . . . ,M . The approach is then to track the firing of each reaction in

terms of these internal times. Given the “current” internal time τj , j = 1, . . . ,M , we denote by

τ+
j the internal time at which reaction j fires next. By definition, the interval between events
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in a Poisson process is distributed as an exponential random variable [52]. At each iteration,

the vectors
[
τ1 τ2 · · · τM

]>
and

[
τ+

1 τ+
2 · · · τ+

M

]>
store the current internal time and the

next internal time for each reaction. Given these two vectors, one can determine how much

physical or global time will elapse before reaction j fires again. If one denotes the global time

interval between subsequent firings of Yj as [t, t+ dt), then we consider the difference

τ+
j − τj =

∫ t+dt

0
aj(X(s)) ds−

∫ t

0
aj(X(s)) ds =

∫ t+dt

t
aj(X(s)) ds. (3.16)

We then assume that the interval [t, t+ dt] is small enough, such that aj is nearly constant over

this interval and (3.16) is well-approximated by the left-hand Riemann sum, aj(X(t)) dt. If this

assumption holds, then the global time between firings of Yj can be computed in practice as

∆tj ≡
τ+
j − τj

aj(X(t))
=

∫ t+dt
t aj(X(s)) ds

aj(X(t))
≈ aj(X(t)) dt

aj(X(t))
. (3.17)

Thus the global time between subsequent firings of any particular reaction can be computed using

only the internal time vectors and evaluations of the propensities. As the size of the system grows

and the time interval between reactions becomes smaller, the assumption that aj is constant in

[t, t+dt) will become better. Given any current global time t, one must determine which reaction

will be the next to occur. The index of the next reaction to fire is simply l = argmin(∆tj), from

which the system state and propensities may be updated and the global time incremented by ∆tl.

One then updates τ+
l using τ+

l = τ+
l + ξ, where ξ is exponentially distributed. In Algorithm 1,

we note that ξ = − ln(rl) is exponentially distributed, given rl is uniformly distributed in the

interval [0, 1]. After updating τl, each τj where j 6= l, corresponding to an internal time that

has not reached firing, is given the approximate update, τj = τj + aj∆tl, which makes use of

the Riemann sum approximation used in (3.17). This framework has the advantage that the

sequence of internal firing times for each reaction can be prescribed without any knowledge of

how the state will evolve. In this way, the randomness of each Poisson process can be decoupled

from the evolution of the state vector.

3.4 Global sensitivity analysis for stochastic models

In this section, we study the convergence of the sensitivity indices corresponding to stochastic

models to their deterministic counterparts. In Section 3.4.1, we describe the underlying proba-

bilistic setup, which is necessary for working with stochastic Sobol’ indices. In Section 3.4.2,

we present a generic result regarding convergence of the Sobol’ indices of a family of random

processes. Then, in Section 3.4.3, we show how the generic convergence result can be applied to

stochastic chemical systems.
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3.4.1 Theoretical setup

Stochastic models with uncertain parameters present two sources of uncertainties: intrinsic

uncertainty due to stochasticity of the system and uncertainty in model parameters. We

denote the probability space carrying intrinsic stochasticity of the system by (Ω,F , ν), where

Ω is the sample space equipped with a sigma-algebra, F , and a probability measure, ν. In

stochastic chemical systems, the uncertain model parameters of interest are the reaction rates

constants, k1, . . . , kd. We model these as independent, uniformly distributed random variables.

Following common practice, we parameterize the uncertainty in the ki’s using a random vector,

θ = [θ1, . . . , θM ]>, whose entries are independent random variables, distributed according to

U(−1, 1). For example, if ki ∼ U(ai, bi), then ki(θi) = 1
2(ai + bi) + 1

2(bi − ai)θi.
The uncertain parameter vector, θ, takes values in Θ = [−1, 1]d. It is convenient to work with

the probability space, (Θ, E , λ), for the uncertain parameters, where E is the Borel sigma-algebra

on Θ and λ is the law of θ, λ(dθ) = 2−ddθ. The present setup can be easily extended to cases

where the θi’s are independent random variables belonging to other suitably chosen distributions.

It is important also to note that while we have M distinct chemical reactions in our modeling

framework, the number of uncertain parameters will be denoted by d.

Recalling Section 2.1.1, we use Sobol’ indices to characterize the sensitivity of a quantity of

interest (QoI) to input parameter uncertainties. For example, let q(θ) be a scalar-valued QoI

defined in terms of the solution of the RREs corresponding to a chemical system. The first order

Sobol’ indices corresponding to q(θ) are

Sj(q) :=
V[E[q(θ) | θj ]]

V[q(θ)]
, j = 1, . . . , d. (3.18)

In the context of the RRE model for chemical systems, Sj quantifies the proportion of the QoI

variance due to the jth reaction rate constant. Higher order Sobol’ indices and total indices may

be defined as outlined in Section 2.1.1.

3.4.2 Convergence of stochastic Sobol’ indices

Motivated by the application to stochastic chemical systems, we consider a QoI that incorporates

both sources of uncertainty. Consider a family of stochastic processes {qV (θ, ω)}V >0 with

qV (θ, ω) : Θ× Ω→ R,

which, as discussed below, are assumed to admit a deterministic limit as V →∞. The first order

stochastic Sobol’ indices corresponding to qV (θ, ω) are

Sj(qV (·, ω)) :=
V[E[qV (θ, ω) | θj ]]

V[qV (θ, ω)]
, j = 1, . . . , d. (3.19)

The following result concerns the convergence of these indices in the limit as V →∞.
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Theorem 2. Assume the following conditions hold:

1. (Existence of the limiting function). There exists q ∈ L2(Θ, E , λ) such that, for almost all

ω ∈ Ω,

qV (θ, ω)→ q(θ), as V →∞, for all θ ∈ Θ. (3.20)

2. (Boundedness of the stochastic process). For almost all ω ∈ Ω, qV (θ, ·) is E-measurable

and there exists ϕω(θ) ∈ L2(Θ, E , λ) such that for all θ ∈ Θ,

|qV (θ, ω)| ≤ ϕω(θ), for all V > 0. (3.21)

Then the stochastic Sobol’ indices satisfy,

Sj(qV (·, ω))→ Sj(q), as V →∞, ν-almost surely.

Proof. By the assumptions of the theorem, there exists a set F ∈ F with ν(F ) = 1 such that

the conditions (3.20) and (3.21) hold for every ω ∈ F . By (3.21), we observe that qV (θ, ω) ∈
L2(Θ, E , λ), for every ω ∈ F and V > 0. Thus, we can define the stochastic Sobol’ indices (3.19)

for {qV (·, ω)}V >0, for every ω ∈ F .

To show that qV (θ, ω) → q(θ) in L2(Θ, E , λ), we note that for every ω ∈ F |qV (θ, ω) −
q(θ)|2 → 0 pointwise in Θ and

|qV (θ, ω)− q(θ)|2 ≤ 4ϕω(θ)2 ∈ L1(Θ, E , λ).

Therefore, invoking the Lebesgue Dominated Convergence Theorem, we have that for all ω ∈ F ,∫
Θ |qV (θ, ω)− q(θ)|2λ(dθ)→ 0 and thus for every ω ∈ F

lim
V→∞

∫

Θ
[qV (θ, ω)]rλ(dθ) =

∫

Θ
[q(θ)]rλ(dθ), r = 1, 2.

The convergence of the first and second moments of qV (·, ω) clearly implies

lim
V→∞

V[qV (·, ω)] = V[q(·)], for all ω ∈ F.

To finish the proof of the theorem, we need to show

lim
V→∞

V [E[qV (·, ω)|θj ]] = V [E[q(·)|θj ]] , for all ω ∈ F, j = 1, . . . , d.

Using the reverse triangle inequality and Jensen’s inequality we observe

∣∣‖E[qV (·, ω)|θj ]‖L2(Θ) − ‖E[q(·)|θj ]‖L2(Θ)

∣∣ ≤ ‖E[qV (·, ω)|θj ]− E[q(·)|θj ]‖L2(Θ)

= ‖E[qV (·, ω)− q(·)|θj ]‖L2(Θ)

≤ ‖qV (·, ω)− q(·)‖L2(Θ),
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and thus, for all ω ∈ F ,

lim
V→∞

‖E[qV (·, ω)|θj ]‖L2(Θ) = ‖E[q(·)|θj ]‖L2(Θ).

Since
V [E[qV (·, ω)|θj ]] = E

[
E[qV (·, ω)|θj ]2

]
− E [E[qV (·, ω)|θj ]]2

= ‖E[qV (·, ω)|θj ]‖2L2(Θ) − E [qV (·, ω)]2 ,

we have, for all ω ∈ F ,

lim
V→∞

V [E[qV (·, ω)|θj ]] = ‖E[q(·)|θj ]‖L2(Θ) − E[q(·)]2 = V [E[q(·)|θj ]] . (3.22)

This, along with the convergence of the (unconditional) variance implies

lim
V→∞

Sj(qV (·, ω)) = lim
V→∞

V [E[qV (θ, ω)|θj ]]
V [qV [θ, ω]]

=
V [E[q(θ)|θj ]]

V[q]
= Sj(q),

for all ω ∈ F , j = 1, . . . , d.

Remark 1. A slight modification of the proof of Theorem 2 leads to a more general result:

namely, we can obtain almost sure convergence of the indices,

Su(qV (·, ω)) :=
V[E[qV (θ, ω) | θu]]

V[qV (θ, ω)]
, (3.23)

where u = {j1, j2, . . . , js} ⊆ {1, 2, . . . , d} and θu =
[
θj1 θj2 · · · θjs

]>
, to Su(q(·)).

We recall the total Sobol’ indices from Section 2.1.1 are defined as

Tj(qV (·, ω)) :=
∑

u3j
Su(qV (·, ω)), j = 1, . . . , d. (3.24)

These indices quantify the relative contribution of θj by itself, and through its interactions with

the other coordinates of θ, to the variance of qV (·, ω). In view of Remark 1, under the conditions

of Theorem 2, the total indices show the same convergence properties,

lim
V→∞

Tj(qV (·, ω)) = Tj(q(·)), for almost all ω ∈ Ω, j = 1, . . . , d.

3.4.3 Application to stochastic chemical kinetics

Consider the (concentration-based) state vector, ZV (t,θ, ω), of a stochastic chemical system and

its deterministic counterpart, Z(t,θ), resulting from the thermodynamic limit. Recall that θ ∈ Θ

parameterizes the uncertainty in reaction rate constants. In order to perform GSA, we consider

a scalar, time-independent QoI, G(ZV (t,θ, ω)), and its deterministic counterpart, G(Z(t,θ)).
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Specifically, G takes a vector function, z(t), and returns a scalar QoI. Examples include

G(z(t)) = zi(t
∗), for fixed t∗ ∈ [0, T ] and i ∈ {1, . . . , N}, or (3.25a)

G(z(t)) =
1

T

∫ T

0
zi(t) dt for a fixed i ∈ {1, . . . , N}. (3.25b)

In general, we assume G : L∞([0, T ];RN ) → R to be a continuous function. Note that

L∞([0, T ];RN ) is equipped with norm ‖ · ‖∞ given by ‖z‖∞ = supt∈[0,T ] ‖z(t)‖, where, as

before, ‖ · ‖ denotes the Euclidean vector norm.

To adopt the notation of the previous subsection, we consider

qV (θ, ω) = G(ZV (t,θ, ω)), θ ∈ Θ, ω ∈ Ω,

and the corresponding limiting (deterministic) quantity, q(θ) = G(Z(t,θ)). Note that by (3.15),

for fixed θ ∈ Θ, as V →∞

‖ZV (·,θ, ω)− Z(·,θ)‖∞ → 0, for almost all ω ∈ Ω.

Therefore, by the Continuous Mapping Theorem (see e.g. [62]), for each θ ∈ Θ,

qV (θ, ω)→ q(θ), almost surely− ω, (3.26)

as V → ∞. We consider the convergence of the stochastic Sobol’ indices, Sj(qV (·, ω)), to

their deterministic counterparts, Sj(q(·)), j = 1, . . . , d, as V →∞ (i.e. in the thermodynamic

limit). Here we discuss the conditions necessary for applying Theorem 2 to stochastic chemical

systems, which would then imply almost sure convergence of the stochastic Sobol’ indices to

their deterministic counterparts.

Theorem 2 requires the existence of a set of full measure in Ω such that the convergence

in (3.26) holds. To ensure this, we consider a modification of qV (θ, ω) as follows. We know that

for each θ ∈ Θ, there exists a set of full measure Fθ ⊆ Ω for which the convergence (3.26) holds.

Define

q̃V (θ, ω) =




qV (θ, ω) if ω ∈ Fθ,
q(θ) otherwise.

Note that, we have ν ({ω ∈ Ω : q̃V (θ, ·) = qV (θ, ω)}) = 1, for every θ ∈ Θ. That is, q̃V (θ, ·) is

a modification of qV (θ, ·). Note that this modification satisfies the following: for every ω ∈ Ω,

q̃V (θ, ω)→ q(θ) for all θ ∈ Θ. With a slight abuse of notation, we will denote this modification

by qV (θ, ω) from this point on. To ensure that Theorem 2 applies, we need also the boundedness

assumption (3.21).

To discuss the boundedness assumption (3.21), we take a step back and first discuss conditions

ensuring boundedness of the stochastic system trajectory, {ZV (t,θ, ω)}V >0. Consider the state
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vector XV (t). Non-negativity of this state vector requires the propensity functions to be

proper [63]: for j = 1, . . . ,M , we assume for all x ∈ ZN+ , if x + νj /∈ ZN+ , then aVj (x) = 0.

Boundedness of components of XV (t) requires further (mild) assumptions, as formalized in [63,

Theorem 2.8 and 2.11]. Interestingly, the only requirements concern the stoichiometric matrix,

ν. Namely, assuming the existence of a vector α ∈ ZN≥0 such that α>ν ≤ 0 and αi > 0 is

necessary and sufficient for boundedness of XV
i (t). Specifically, if such α exists, α>XV (t) =

α>(XV (0) + νR(t)) ≤ α>XV (0). Therefore,

XV
i (t) ≤ 1

αi
α>XV (0) =

V

αi
α>x0.

Thus, in terms of concentrations,

ZVi (t) =
XV
i

V
≤ 1

αi
α>x0.

Therefore, we have that the ith component of ZV remains uniformly bounded by (1/αi)α
>x0.

Moreover, this bound is independent of the reaction rate constants (i.e. independent of θ). Thus,

if a vector, α, satisfying the aforementioned properties exists for all the components of the state

vector, then the concentration based state vector, ZV , remains uniformly bounded by a constant.

In fact, we only need to ensure boundedness of the components of ZV that appear in definition

of G. Given the function G, which defines the QoI, is sufficiently well-behaved, one may argue

that qV inherits the boundedness necessary to satisfy (3.21). For example, if G is defined as in

(3.25), then establishing boundedness of {ZVi (t,θ, ω)}V >0 is sufficient to satisfy (3.21) for the

QoI, qV .

To summarize, with an appropriately defined QoI (including those in (3.25)) and a stochastic

chemical system satisfying the aforementioned boundedness properties, the results of Theorem 2

follow, namely, the stochastic Sobol’ indices will converge to the corresponding deterministic

Sobol’ indices, and this convergence holds almost surely.

3.5 Numerical results

In light of the convergence properties exhibited by stochastic chemical reaction systems, we aim

to demonstrate numerically the results of Theorem 2. Convergence results will be presented

first for the Michaelis–Menten reaction system, followed by an application of Theorem 2 to the

task of dimension reduction, considering a higher-dimensional example arising from the study of

genetics. Attention will also be devoted to the computation of Sobol’ indices and the random

sampling necessary to compute the stochastic Sobol’ indices introduced in Section 3.4.
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3.5.1 Application to the Michaelis–Menten system

We return to the Michaelis–Menten reaction from Section 3.2.2:

S + E
k1−→ C

C
k2−→ S + E (3.27)

C
k3−→ P + E

Figure 3.2 depicts 25 realizations of the reaction dynamics using the NRM algorithm with a

final time of T = 50. The parameters, corresponding to the rate constants in the propensity

functions, are fixed to the nominal values k̄1 = 106, k̄2 = 10−4, and k̄3 = 0.1 provided in [64].

Figure 3.2 depicts concentrations of each species for a system size of Vnom = nAVnom, where the

nominal volume of the reaction system is Vnom = 10−15m3.

Figure 3.2 25 realizations of Michaelis–Menten trajectories computed via NRM with nominal param-
eters, varying ω.

In Figure 3.3 we illustrate convergence of the RTC trajectories to the RRE trajectories as

the system size increases. This plot illustrates the convergence behavior described by Theorem 1.

We hold the parameters fixed to their nominal values and plot 25 realizations of the product,

P V (t, ω) = ZV4 (t, ω), along with the corresponding RRE trajectory. As the system size increases,

the ensemble of RTC trajectories converge to the RRE trajectory. In Figure 3.3, the quantity m
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denotes the system size parameter introduced in Section 3.2.3. For the purpose of the simulation,

m is related to the system size by the relation V = mVnom = mnAVnom.

Figure 3.3 Convergence of the product PV (t, ω) the corresponding RRE solution at the nominal
parameter values plotted as system size grows.

3.5.1.1 The QoI

In order to perform GSA, we define the following the stochastic QoI,

qV (θ, ω) =
1

T

∫ T

0
ZV4 (t;θ, ω) dt,

where ZV is the solution of the RTC. The corresponding deterministic QoI is

q(θ) =
1

T

∫ T

0
Z4(t;θ) dt,

where Z is computed by solving the accompanying RRE. To get a sense of the statistical

properties of the QoI, we sample qV and q over the uncertain parameter domain, following a

uniform distribution on Θ = [−1, 1]3, and with the uncertain rate constants defined as

ki(θi) = k̄i + (0.1k̄i)θi, i = 1, 2, 3,
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where k̄i’s are the nominal reaction rate constants as defined in Section 3.5.1. Figure 3.4 shows

probability density functions (PDFs) of q sampled in Θ, qV sampled in Θ× Ω, and qV sampled

in Ω while using nominal parameters. All samples of qV used in Figure 3.4 use V = Vnom.

Figure 3.4 Estimated PDFs of qV sampled over Ω and Θ× Ω and q sampled over Θ, respectively.

3.5.1.2 Global sensitivity analysis

In this section, we turn to estimating Sobol’ indices in both the stochastic and deterministic

settings. We choose to focus specifically on illustrating the convergence of the total Sobol’ indices,

although the following results apply generally to the full set of Sobol’ indices.

Sobol’ indices measure the relative contribution of a subset of uncertain parameters to

the variance of some QoI. Consequently, it is natural to consider QoIs that are deterministic

functions of these uncertain parameters, without any additional variance contributed by a

secondary source. When modeling chemical systems using stochastic processes, such as the RTC,

the model parameters and internal stochasticity both provide sources of uncertainty, which

must be accounted for separately. We summarize the process of estimating Sobol’ indices in the

deterministic and stochastic cases in the Algorithm 2, where the number of uncertain parameters

is denoted d.

In the stochastic setting, fixing a particular ωi turns qV into a function of only the uncertain

parameters. From that point, the process of estimating Sobol’ indices is identical to the deter-

ministic case. In the following experiments, we estimate Sobol’ indices using the Saltelli sampling
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Algorithm 2 Sobol’ indices for a chemical system with fixed system size.

Input: Method of evaluating qV (θ, ω) and q(θ), NMC : number of parameter samples, set of
MMC random seeds {ξi}MMC

i=1 , system size V .

Output: Total Sobol’ indices: {T V1 (ωi), . . . , T
V
d (ωi)}MMC

i=1 and {T1, . . . , Td}.
1: Draw NMC(d+ 2) samples uniformly in Θ {see [8] for details}
2: % stochastic indices %

3: for i = 1, . . . ,MMC do
4: Seed random number generator with ξi, corresponding to realization ωi
5: for j = 1, . . . , NMC(d+ 2) do
6: Evaluate and store qV (θj , ωi) samples
7: end for
8: Using qV samples, estimate Sobol’ indices: {T V1 (ωi), . . . , T

V
d (ωi)}

9: end for
10: % deterministic indices %

11: for j = 1, . . . , NMC(d+ 2) do
12: Evaluate and store q(θj) samples
13: end for
14: Using q samples, estimate Sobol’ indices: {T1, . . . , Td}

approach described in Section 2.1.2 (see also [8, Section 4.6] for further details). In Algorithm 2,

the cost of estimating all first order and total indices, for each fixed ωi, is NMC(d+2) evaluations

of the QoI, where NMC is user-defined.

The realizations of the stochastic indices correspond to ωi ∈ Ω, i = 1, . . . ,MMC , where one

is able to control ω by specifying the random seed used in the NRM algorithm. We note that

the stochastic indices are functions of the system size and so we adopt the compact notation,

T Vi = Ti(qV ) and SVi = Si(qV ). The corresponding deterministic indices do not depend on V ,

as they result from the thermodynamic limit. In Figure 3.5, we compare the distribution of

each T Vi with its respective deterministic limit, Ti. In Figure 3.5, the system size corresponds to

the nominal V , where we have m = 1. The deterministic indices, estimated with NMC = 107

Figure 3.5 Histogram and PDF estimates for the total Sobol’ indices for k1, k2, and k3, respectively.
Black dashed lines indicate the deterministic value of the RRE total indices.
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samples, are T1 ≈ 1.5× 10−1, T2 ≈ 1.2× 10−7, and T3 ≈ 8.5× 10−1, indicating that the third

reaction, where the complex dissociates into the enzyme and the product, is the most important

and the second reaction, where complex dissociates into the enzyme and substrate, is the least

important, contributing almost no variance.

3.5.1.3 Convergence of Sobol’ indices

We are now in a position to demonstrate numerically the convergence of the stochastic Sobol’

indices predicted by Theorem 2. One may verify that the conditions on the QoI necessary for

Theorem 2 to hold are satisfied in the present case. After we have computed multiple realizations

of the stochastic indices at increasing, discrete values of V , we examine the evolution of their

distribution as V increases.

Figure 3.6 Convergence of the mean total Sobol’ index as a function of V for parameters k1, k2, and
k3, respectively. Note the vertical axes of each figure are not over the same range. The lower and
upper bounds of the error bars indicate the 5th and 95th percentiles, respectively.

Figure 3.6 demonstrates the convergence of E[T Vmi (ω)] for i = 1, 2, 3, for increasing values of

system size Vm = mVnom, m = 1, . . . , 200. The error bars represent the 5th and 95th percentiles

of the distribution of stochastic indices, at a particular system size, where MMC = 100 different

values of ω are sampled to construct the distribution for each discrete value of V . Figure 3.6

suggests the convergence of the PDF for each T Vi (ω) to a Dirac distribution centered at the

deterministic value of the Sobol’ index corresponding to the RRE. This sort of convergence may

also be demonstrated for lower order Sobol’ indices, as addressed in Remark 1.

Figure 3.7 gives a three-dimensional view of the convergence in Figure 3.6. We plot a series

of normalized histograms at specific values of m, converging to Dirac distributions centered at

the RRE total indices. These histograms, even for two orders of magnitude difference in V , show

a clear trend towards the limiting values given by the RRE.

Figures 3.6 and 3.7 can perhaps most naturally be understood as illustrating the convergence

in distribution of the RTC Sobol’ indices, an implication of the pointwise convergence of the

PDF. In this case, T Vi (ω) is the random variable that converges in distribution for each i = 1, 2, 3

as V approaches infinity.
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Figure 3.7 Histograms at discrete V values of the total Sobol’ indices for k1, k2, and k3, respectively.
The vertical axes represent the relative frequency of the indices due to normalized histograms.

We briefly touch on the rate of convergence achieved for the stochastic Sobol’ indices. Figure

3.8 displays the variance of the stochastic total Sobol’ indices for increasing values of m. As

Figures 3.6 and 3.7 indicate, the variance of the total indices approach zero as the system size

approaches infinity. Figure 3.8 indicates that this convergence occurs with a rate of O(1/V ).

Here the sample variance is estimated with 100 realizations of the stochastic total Sobol’ indices.

We hypothesize that the faster decay of the variance of T2(ω) is due to its small size in the

thermodynamic limit.

3.5.2 Application to the genetic oscillator system

Returning to the original question illustrated in Figure 3.1, we aim to use the sensitivity

information from a deterministic chemical model to infer the sensitivities of its stochastic

counterpart. The goal is to perform well-informed dimension reduction on the expensive stochastic

model, while only requiring samples from the cheaper deterministic model. To perform meaningful

dimension reduction, here we consider a higher dimensional model than previously considered.

We consider the genetic oscillator system presented in [65], which models the evolution of

activator and repressor proteins that govern the circadian clocks of a wide variety of organisms.
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Figure 3.8 Log-log plot of the rate of convergence of the second moment for each total index.

The system consists of nine species, including genes, mRNAs, and the two proteins. We have

M = 16 reactions and d = 16 uncertain parameters. Following the form of the chemical system

presented in [66], we provide the reaction diagrams, propensity functions, and nominal parameter

values in Table 3.1.

As with the Michaelis–Menten system, the RTC models the evolution of the stochastic

system and the RRE models the deterministic system, with the two models linked by the

thermodynamic limiting process. Figure 3.9 shows a sample trajectory of the stochastic system,

simulated via the NRM. In Figure 3.9, all parameters are set to nominal values and the only

nonzero initial states are Pa and Pr, with one molecule of each. We plot the activator protein,

A, the repressor protein, R, and the complex, C up to final time T = 50. We then will use the

sensitivity information gained from the cheaper, deterministic model (RRE) to make conclusions

about parameter importance in the more expensive, stochastic model (RTC).

We define the stochastic and deterministic QoIs, respectively, as

qV (θ, ω) =
1

T

∫ T

0
RV (t;θ, ω) dt and q(θ) =

1

T

∫ T

0
R(t;θ) dt,

where RV is the concentration of the repressor computed via the NRM, R is the concentration

of the repressor computed as the solution to the accompanying RRE, and θ is a random vector

that parameterizes the uncertainty in the reaction rate constants. As with the Michaelis–Menten

example in the previous section, the parameters will be uniformly distributed 10% about the

nominal parameters. Using the Saltelli sampling method, we then estimate the total Sobol’

indices for the deterministic model. Figure 3.10 shows the total Sobol’ indices, computed with

NMC = 105 samples for each total index (recall the cost depends on d for Saltelli sampling). We

note that computing a similar number of stochastic QoI samples (on the order of 106) would be
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Table 3.1 Genetic oscillator reactions, propensity functions, and nominal parameter values, see [66].

Reaction Propensity Function

Pa → Pa +mRNAa αAPa
Pa−A→ Pa−A+mRNAa αaαAPa−A

Pr → Pr +mRNAr αRPr
Pr−A→ Pr−A+mRNAr αrαRPr−A
mRNAa → mRNAa +A βAmRNAa
mRNAr → mRNAr +R βRmRNAr

A+R→ C γCAR
Pa +A→ Pa−A γAPaA
Pa−A→ Pa +A θAPa−A
Pr +A→ Pr−A γRPrA
Pr−A→ Pr +A θRPr−A

A→ ∅ δAA
R→ ∅ δRR

mRNAa → ∅ δMAmRNAa
mRNAr → ∅ δMRmRNAr

C → R δ′AC

Parameter Value

αA 50.0
αR 0.01
βA 50.0
βR 5.0
γC 20.0
γA 1.0
θA 50.0
γR 1.0
θR 1.0
δA 1.0
δR 0.2
δMA 10.0
δMR 0.5
δ′A 1.0
αa 10.0
αr 5000

Figure 3.9 Trajectories of the three dominant species at nominal parameters via the NRM.
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computationally infeasible for even a modest system size.

Figure 3.10 Estimated total Sobol’ indices for the genetic oscillator RRE, computed with NMC

samples.

It is clear that αA, βA, δMA, and αa are the four most important parameters, capturing over

50% of the variance of the deterministic QoI. We can determine unimportant inputs by putting

an importance threshold on the total Sobol’ indices; parameters whose Sobol’ index falls below

the threshold will be considered unimportant. For instance, using 0.02 as a threshold, we identify

γC , γA, θA, γR, θR, and δA as the six least important parameters, capturing less than 5% of the

variance of the deterministic QoI. We then propose a reduced-dimensional model, where the six

least important parameters are fixed at their nominal values, reducing the dimensionality from

sixteen to ten. To verify that this lower-dimensional model remains an accurate representation

of the full model, we sample the stochastic QoI and plot its PDF, while fixing and varying the

unimportant parameters; see Figure 3.11. The red dashed line, corresponding to the reduced

model with the six least important parameters fixed has a negligible difference with the PDF of

the full model. Increasing the threshold from 0.02 to 0.05 adds δR and δ′A to the unimportant

category. However, as seen in Figure 3.11, the PDF of the resulting reduced model (dashed green

line), obtained by fixing now eight parameters, shows a notable difference with the PDF of the

full model. This illustrates the balance one must strike between fixing unimportant parameters to

reduce parameter dimension and the loss of information that may result from removing sources

of uncertainty. Finally, we illustrate the impact of fixing the four most important parameters

(black dashed line in Figure 3.11). This approach fixes every parameter with a total Sobol’ index

greater than 0.15 (αA, βA, δMA, and αa). This results in a substantial underestimation of the

variance and a potential loss of valuable model information.

In this case, setting the threshold to 0.02 seems appropriate, resulting in a dimension

reduction from 16 to 10, with a negligible change in the QoI output.
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Figure 3.11 PDFs of the stochastic QoI, qV , sampled while fixing the following parameters: black
line (αA, βA, δMA, αa), green line (γC , γA, θA, γR, θR, δA, δR, δ

′
A), red line (γC , γA, θA, γR, θR, δA), black

line without fixed parameters. Total index thresholds are provided for each PDF.

3.6 Conclusion

This chapter has focused on the theoretical aspects of performing GSA in the context of two

families of related models with differing sources of uncertainty. GSA is often performed on

surrogate models with the assumption that (3.1) holds; i.e., that the results from the analysis

of a surrogate model will hold for the original model. We have presented here a partial result

in that direction, showing this assumption to be true for a specific specific class of problems

(chemical systems), a specific type of surrogate (obtained from the thermodynamic limit) and a

specific GSA approach (Sobol’ indices). This study not only shows and justifies, in an arguably

restricted framework, that GSA can sometimes be done on a reduced computational budget, we

argue that it reflects important properties of the GSA methods themselves.

While this chapter focused on a specific type of modeling hierarchy, defined by varying

chemical system sizes, these ideas do fit into a broader context of using multiple related models

to inform the GSA process. In subsequent chapters of this thesis, we consider other notions of

model hierarchy, including those derived from different resolution levels of a numerical method

and from estimated probabilities with varying levels of fidelity.
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CHAPTER

4

A HYBRID MULTILEVEL MONTE

CARLO - POLYNOMIAL CHAOS

METHOD FOR SENSITIVITY ANALYSIS

4.1 Introduction

In this chapter, we develop a hybrid GSA framework, pairing the polynomial chaos expansion,

introduced in Chapter 2, with a sampling-based approach, known as multilevel Monte Carlo.

This method leverages the advantages of surrogate models for GSA and the robustness of MC

sampling, especially in the case of high-dimensional functions and functions lacking regularity. We

also seek to create a method that allows one to strategically allocate computational resources for

the purpose of Sobol’ index computation. This chapter is primarily concerned with the theoretical

foundations of the hybrid approach, although verification results will be presented to illustrate

key aspects of the method. Aside from these illustrative tests, we reserve a full discussion of

the practical aspects of this method, including implementation and detailed numerical tests, for

Chapter 5. The contents of this chapter were developed in collaboration with Gianluca Geraci,

Mike Eldred, and Teresa Portone of Sandia National Laboratories. The results of this work

include an article published as a contribution in the 2020 CSRI Summer Proceedings [2] as well

as a forthcoming journal article [4], which is currently in preparation.

Researchers in computational science continue to expand the state of the art in high-fidelity

modeling and simulation, including complex multiphysics and multiscale simulations. In the
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context of GSA, this often leads to the dual challenge of high computational expense and high

dimensionality, as driven by this increasing model complexity. As discussed in Chapter 2.1.1,

traditional techniques for GSA, specifically Saltelli sampling, rely on evaluating potentially high-

dimensional integrals through MC integration. These MC methods are simple to implement and

their asymptotic convergence properties are independent of the dimensionality of the problem.

However, the convergence rate of these MC methods remains slow, requiring a large number of

evaluations of the QoI to obtain reliable results [7, 9].

When faced with a model that is computationally expensive to simulate, it is often advanta-

geous to consider a hierarchy of related models with differing levels of fidelity and associated

computational cost. This approach has become popular, specifically through the use of multilevel

Monte Carlo (MLMC) [38], which aims to accelerate MC convergence by leveraging information

from multiple models across the hierarchy. These ML models are often found in the context of

using a hierarchy of mesh refinement levels when solving a differential equation [67], although

they encompass a broader class of models, such as financial models and risk management,

biochemical reaction networks, and groundwater flow applications [38]. The concept of leveraging

multiple model fidelities has been generalized to more heterogeneous model hierarchies than

those treated in the MLMC framework, giving rise to the notion of multi-fidelity UQ methods

such as multi-fidelity Monte Carlo (MFMC) and approximate control variate methods [39, 68].

The use of a hierarchy of models to accelerate Sobol’ index computation is an active area

of research, with previous efforts being made in both the MLMC context [69] and the more-

general MFMC context [70]. While these previous efforts have been successful in reducing the

estimation error well below that of single-fidelity MC, they use independent sets of QoI samples

for estimating each Sobol’ index. As a result, the cost of these methods scales with the parameter

dimension, limiting their utility in high-dimensional applications.

The polynomial chaos expansion (PCE), covered in Section 2.2, can be advantageous for

GSA in high-dimensional settings. Using a PCE allows one to link each term in the ANOVA

decomposition directly to the relevant PCE coefficients. In this case, although the number of

coefficients is expected to increase with input dimension, the model evaluations required to

estimate each PCE coefficient can be shared. The only factor that differentiates each respective

coefficient is that the polynomial basis differs, although for high-fidelity models, the compared

cost of evaluating the basis is typically negligible.

The focus of this chapter is the fusion of MLMC methods with the PCE, which will combine

the dimension-independent convergence properties of MC with the dimension-independent cost of

performing GSA via the PCE. In the resulting hybrid MLMC-PCE method, the model hierarchy

can be leveraged to improve the estimation of PCE coefficients, and by extension, Sobol’ indices.

Furthermore, the hybrid method proposed in this chapter will take into account how the MC

samples allocated to each level of the hierarchy affect the estimation of each PCE coefficient

and the downstream effect on the estimation of the Sobol’ indices. This analysis will allow for

goal-oriented computation of Sobol’ indices, where the ML sample allocation will be optimized

40



in order to balance the error in a chosen set of GSA targets and the associated computational

cost.

4.2 Review of GSA and PCE background

Building from the introduction to GSA and Sobol’ indices provided in Chapter 2, we define the

specific GSA features which will be relevant to our discussion. Given a model q(θ) : Θ→ R and

a set of uncertain parameters, θ = [θ1, . . . , θd]
> ∈ Θ ⊆ Rd, we provide the a slightly modified

form of the ANOVA decomposition of variance covered in Section 2.1.1,

V[q(θ)] =
∑

u⊆{1,2,...,d}

Su, (4.1)

where each conditional variance is defined as in (2.6).

Using the notation of (4.1), we then define the Sobol’ index, Su, as

Su =
Su
V[q]

. (4.2)

Distinguishing between the numerator and denominator in (4.2) will be necessary in the following

discussion, as each term requires different statistical estimators. The total Sobol’ index can be

defined in a similar manner as (4.2),

Ti =
Ti

V [q]
, where Ti =

∑

u⊆{1,...,d}
u3i

Su (4.3)

As covered in Chapter 2, Sobol’ indices are often computed either using MC sampling

methods to estimate the various conditional variance terms (i.e. Saltelli sampling) or by use of a

surrogate model, such as the PCE. We focus specifically on PCE-based Sobol’ index computation,

as introduced in Section 2.2. Recall, the PCE of q is defined as

q̃(θ) =

NPC∑

k=0

βk Ψk(θ), where βk =
E[q(θ) Ψk(θ)]

E[Ψ2
k(θ)]

. (4.4)

Again, {Ψk}NPCk=1 is a family of orthogonal polynomials and {βk}NPCk=0 is the corresponding set of

PCE coefficients. Computing the set of PCE coefficients tends to be expensive when the input

dimension of q is large, because the number of terms included in the expansion, denoted by NPC ,

grows factorially with the dimension (see (2.13)). As a result, methods for PCE construction

based on regression could require the solution of large linear systems with associated issues

related to memory requirements and numerical precision [27]. Quadrature-based methods will be

the method of choice for low-dimensional QoIs that have sufficient regularity [36]. However, for

high-dimensional QoIs, even sparse quadrature will become infeasibly expensive. For example,
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see [37, Section 6.4], where a level 5 sparse-grid approach in 10 dimensions requires over 77,000

function evaluations. For applications where the QoI is both high-dimensional and expensive,

requiring hours or even days for a single function evaluation, this approach infeasible. When

dealing with these computational challenges, which are commonplace in large-scale applications [5,

Section 3.3], Monte Carlo is often the only viable method for computing a large number of

high-dimensional integrals and thus performing GSA.

As previously shown in Chapter 2, given a PCE for q, one is able to compute Sobol’ indices

analytically as in (2.18). The question then remains whether the Sobol’ indices of the PCE

surrogate are an accurate representation of the Sobol’ indices of the underlying QoI. Suppose

Su represents the Sobol index of q with respect to u ⊆ {1, . . . , d} and S̃u represents the Sobol

index obtained from a PCE surrogate. The mean-squared error (MSE) can be decomposed as

E
[
(S̃u − Su)2

]
= E

[
(S̃u)2

]
− E

[
S̃u

]2

︸ ︷︷ ︸
variance of S̃u

+
(
Su − E[S̃u]

)2

︸ ︷︷ ︸
bias of S̃u

. (4.5)

The variance and bias are both properties of a statistical estimator, however, minimizing one of

these quantities does not necessarily minimize the other. We will seek to construct unbiased

estimators for each Sobol’ index (i.e. zero bias) and to derive sampling methods that achieve an

optimal level of variance reduction. We will next introduce the multilevel Monte Carlo method,

specifically for the purpose of variance reduction in GSA computations. We will return to the

problem of constructing unbiased estimators in Section 5.3.

4.2.1 Monte Carlo and multilevel Monte Carlo sampling

We begin with the idea of different fidelities or resolution levels for the QoI. Let qL denote an

approximation of q at the highest resolution level available. A natural context for this notation

is when q derives from the solution of a differential equation and the subscript L represents the

finest mesh one is able to use to solve said differential equation. If one wishes to estimate the

expectation E[qL(θ)] using MC sampling, they may use the sample average estimator,

q̂L =
1

NMC

NMC∑

i=1

qL(θ(i)), (4.6)

where NMC is the number of samples drawn from the joint probability distribution of θ. Let

θ(i), i = 1, . . . , NMC denote NMC realizations of θ, which are independent and identically

distributed.

Notice the estimator, q̂L, computed using a finite number of samples, is itself a random

variable with its own mean, variance, and higher moments. Furthermore, the finite resolution

associated with qL introduces an error with respect to the “true” QoI, q, and thus the MSE of
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the estimator, q̂L, accounts for this bias with the same decomposition as in (4.5),

E[(q̂L − E[q])2] = E[(q̂L)2]− E[q̂L]2︸ ︷︷ ︸
variance of q̂L

+ (E[q̂L − q])2

︸ ︷︷ ︸
bias of q̂L

.

Thus, to improve the quality of this particular MC estimate there are two terms to consider: the

variance and the bias. In the context of using an approximation, qL, the variance term measures

the error due to sampling, while the bias measures the error due to approximation of the QoI.

Due to the fact that the samples of θ are i.i.d., one is able to further decompose V[q̂L] as

V[q̂L] = V

[
1

NMC

NMC∑

i=1

qL(θ(i))

]
=

1

N2
MC

NMC∑

i=1

V
[
qL(θ(i))

]
=

V[qL]

NMC
. (4.7)

In this case, because (4.6) is an unbiased estimator, the MSE of the estimator is equal to the

variance, which decays at a rate of O(1/NMC). This slow rate of convergence is a common

shortcoming of standard MC methods. Several approaches have been proposed to reduce the

variance of q̂L; see for instance [38, 68, 39]. Among the various variance reduction strategies,

multilevel Monte Carlo (MLMC) represents the prototypical example. While the work presented

in this thesis will be primarily focused on MLMC, we emphasize that extensions to multi-fidelity

and control variate strategies have allowed one to generalize this approach [39, 68].

Let q0, q1, . . . , qL be a hierarchy of models indexed by `, where an increasing ` corresponds to

an increasing fidelity or accuracy. This model hierarchy is analogous to a quantity derived from

the solution of a differential equation, where an increasing ` corresponds to an increasing number

of mesh points. Here qL is the highest-fidelity model and the goal is to efficiently estimate E[qL]

by making use of the lower-level model evaluations. Typically, this approach is advantageous,

due to the fact that the cost of evaluating q`, denoted c`, follows the relation c0 ≤ c1 ≤ · · · ≤ cL.

Under these conditions, leveraging cheaper model evaluations can greatly reduce the cost of

estimating E[qL]. Using the linearity of the expectation operator, we observe

E[qL] = E[q0] + E[q1]− E[q0] + · · ·+ E[qL]− E[qL−1] =
L∑

`=0

E[q` − q`−1], (4.8)

where q−1 = 0, by convention. Thus, we are able to estimate the mean of the difference between

adjacent levels, and combine these to form an estimate of the mean at the highest level of

accuracy. We define Y` = q` − q`−1 and, by forming a MC estimate of each term in (4.8), we

obtain the expression for the MLMC estimator,

q̂ML
L =

L∑

`=0

Ŷ` =

L∑

`=0

1

N`

N∑̀

i=1

q
(i)
` − q

(i)
`−1. (4.9)

In the MLMC framework, one samples each level independently, meaning a newly generated
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set of inputs is used at each level. The result is zero covariance between the levels in (4.9) (i.e.

C[Y`, Y`′ ] = 0, `′ 6= `). Thus the variance of q̂ML
L can be expressed as

V[q̂ML
L ] =

L∑

`=0

V
[
Ŷ`

]
=

L∑

`=0

V[Y`]

N`
(4.10)

and by the linearity of the expectation, E[q̂ML
L ] = E[qL], thus (4.9) is an unbiased estimator of

E[qL].

The goal of this approach is to derive an estimator for E[qL] with lower variance than

the standard MC estimator in (4.6), without increasing the cost. In the standard convergence

analysis for MLMC, we require that V[Y`] decreases monotonically as `→ L (see [38, Theorem

1]). As a result, fewer samples can be allocated to each successive level of the model, which

become increasingly expensive to evaluate. We thus distribute the computational cost across the

model hierarchy, with an emphasis on leveraging the cheaper, lower-fidelity models.

The MSE of q̂ML
L can be decomposed, as before, in terms of the variance and bias

E
[
(q̂ML
L − E[q])2

]
= V[q̂ML

L ] + (E[qL − q])2. (4.11)

Notice that because (4.9) is an unbiased estimator of E[qL], the bias in (4.11) results from the

fact that qL is an approximation of q.

The optimal sample allocation is defined in order to minimize the total computational cost

across levels, while achieving a balance between the bias and variance in (4.11). Defined in this

manner, the optimal sample allocation can be derived in closed form [38]. We will elaborate

on the specifics of the optimal sample allocation in the following section, which concerns using

MLMC to estimate PCE coefficients.

4.2.2 MLMC estimation of PCE coefficients

We will now describe how MLMC can be used to estimate a particular PCE coefficient. Recall,

that in (4.4), the polynomial norm in the denominator is known analytically and so the main

cost is in estimating the spectral projection in the numerator. Thus, the MLMC estimator for

βk is

β̂k =
q̂LΨk

E[Ψ2
k]

=
1

E[Ψ2
k]

L∑

`=0

Ŷ`Ψk =
1

E[Ψ2
k]

L∑

`=0

1

N`

N∑̀

i=1

(q
(i)
` − q

(i)
`−1)Ψ

(i)
k . (4.12)

For notational simplicity, we will denote P`,k = (q` − q`−1)Ψk and bk = E[Ψ2
k]. We also let C`

denote the cost of evaluating the difference of q` and q`−1, instead of using c` + c`−1. In keeping

with the PCE literature, we assume that the cost of evaluating the orthogonal polynomials is

negligible and thus C` also denotes the cost of evaluating P`,k for any k. Therefore, the total
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cost of estimating βk as in (4.12) is given by

Ctot =

L∑

`=0

N`C`.

To formulate the optimization problem for sample allocation, we consider the variance of β̂k,

where again we enforce independent sampling on each level:

V[β̂k] = V

[
1

bk

L∑

`=0

1

N`

N∑̀

i=1

P
(i)
`,k

]
=

1

b2k

L∑

`=0

V[P`,k]

N`
.

The optimal sample allocation can be derived by solving the minimization problem

arg min
N0,...,NL

L∑

`=0

N`C` + λ2
(
V[β̂k]− ε2

)
, (4.13)

where λ2 is a Lagrange multiplier and ε2 is the desired accuracy of the estimator. The optimization

problem (4.13) is simply an application of the canonical MLMC optimization problem to the

task of estimating PCE coefficients. The solution of the canonical MLMC problem is derived in

the work of Giles [38]. For a target estimator variance of ε2, the optimal sampling conditions

can be expressed in closed form as

N` = λ

√
V[P`,k]

b2k C`
where λ = ε−2

L∑

`=0

√
V[P`,k] C`
bk

.

If the variance is minimized subject to an upper bound on the cost, the resulting optimal sample

profile has the same proportion of samples per level as in (4.13) (see [67]). From a practical

standpoint, it is worth noting that the statistics of P`,k, which are needed to compute the

optimal sample profile, are not known a priori. As a result, it is standard practice to proceed

iteratively, alternating between sampling the QoI and computing the optimal allocation until

the relevant statistics have converged [38].

While this example illustrates the foundational ideas of MLMC and optimal sample allocation,

we emphasize that our goal is to use MLMC for GSA. Therefore in the next section we extend the

optimal sample allocation problem to target an ensemble of PCE coefficients, and by extension,

the Sobol’ indices themselves.

4.3 Theoretical development

To extend the MLMC optimization to target Sobol’ indices, we first consider how the uncertainty

in the PCE propagates through to the Sobol’ indices. Just as with individual PCE coefficients,

the goal is to achieve a reduction in the variance of a particular target. In this case, we consider
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the variance of Ŝu, which denotes the PCE estimator for Su, rather than the traditional Sobol’

index, which is a ratio of variances. In general, there is no closed-form solution for the variance

of a ratio of random variables (see [71, Chapter 6]). Instead, we decompose the variance of

Ŝu, as obtained from the PCE. It is important to note that each estimated PCE coefficient,

β̂k, is a random variable and therefore the variance of the PCE surrogate can be considered a

random variable as well. We will first expand the PCE variance, V [q̃], in terms of its constituent

random variables. After this, we derive an estimator for the variance of V [q̃]. Decomposing the

variance of V [q̃] will allow one to quantify the uncertainty in each Sobol’ term, as it relates to

the uncertainty in the corresponding PCE terms. Finally, a sample allocation scheme will be

formulated in order to achieve a minimal variance estimate of the desired Sobol’ indices.

In the following discussion, let β̂2
k denote the square of the estimated kth PCE coefficient,

rather than an estimator for the squared coefficient itself. We begin with the PCE variance,

given in (2.16), as

V[q̃] =

NPC∑

k=1

β̂2
k bk. (4.14)

Since each β̂2
k is a random variable, (4.14) can be viewed as an estimator for the PCE variance,

having its own statistical properties. Thus we may decompose the variance of (4.14) as

V

[
NPC∑

k=1

β̂2
k bk

]
=

NPC∑

k=1

b2k V[β̂2
k] +

NPC∑

k=1

NPC∑

z=1
z 6=k

bkbz C
[
β̂2
k, β̂

2
z

]
. (4.15)

Equation (4.15) not only contains the variance of each squared PCE coefficient, it also incorpo-

rates the interaction terms between coefficients, expressed as covariances. Similar to the ANOVA

decomposition, it is now possible to decompose the variance of a PCE-computed Sobol index.

Recall that computing the Sobol’ indices from a PCE (see (2.18)) involves summing over a

particular set of PCE coefficients for each Su, denoted Ku (see (2.17)). Therefore, we are now

able to decompose the variance of Ŝu as

V[Ŝu] = V


∑

k∈Ku

β̂2
k bk


 =

∑

k∈Ku

b2k V[β̂2
k] +

∑

k∈Ku

∑

z∈Ku
z 6=k

bkbz C
[
β̂2
k, β̂

2
z

]
. (4.16)

Thus one is able to target the variance of a particular Sobol’ index and express that variance

in terms of its dependence on each PCE coefficient. However, more information is required to

accurately estimate the variances and covariances in (4.16). One must be able to characterize

(4.16) in terms of information available to the user, namely evaluations of the multilevel QoI

and evaluations of the polynomial bases. Thus the goal is to derive an alternate expression for

V[Ŝu] in terms of the statistics of the P`,k terms, from which a sample allocation scheme can be

derived, as in Section 4.2.2.
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4.3.1 Derivation of variance and covariance terms

We begin by deriving an expression for V[β̂2
k ] from (4.16) in terms of raw moments (i.e. moments

centered around zero) of q`, ` = 0, . . . , L and Ψk, k = 0, . . . , P . For notational convenience, we

will seek to use the raw moments of the product term, P`,k = (q` − q`−1)Ψk. We know from

the Central Limit Theorem that each β̂k, estimated via MLMC sampling, will be normally

distributed with mean given by βk [62] and variance given by

V[β̂k] =
1

b2k

L∑

`=0

V [P`,k]

N`
. (4.17)

For a generic, normally-distributed random variable, X ∼ N (µ, σ2), we have

V[X2] = E[X4]− E[X2]2 = (µ4 + 6µ2σ2 + 3σ4)− (µ2 + σ2)2 = 4µ2σ2 + 2σ4.

Using this fact, the variance of our estimator can be expressed as

V[β̂2
k] = 4E[β̂k]

2V[β̂k] + 2V[β̂k]
2

=
4β2

k

b2k




L∑

l=0

V[P`,k]

N`
+

2

b2k

(
L∑

l=0

V[P`,k]

N`

)2

 .

(4.18)

The above expression can be further expanded into raw moments of P`,k terms by using the

MLMC definition of βk. In order to evaluate (4.18), in practice, one will need to estimate the

necessary statistics using a set of available samples.

Deriving an expression for the covariance terms in (4.16) will require a different approach.

There are no analogous properties of normal random variables that can be used to easily obtain

a new estimator for C[β̂2
k, β̂

2
z ]. Instead, using the bilinearity of the covariance and matching

correlated samples of the QoI, one can derive the an estimator for the covariance directly. To

illustrate the results of this technique, we will start by considering a single-level estimator and

then move on to the multilevel case. We present the following proposition:

Proposition 1. Single-level covariance. Let q be a single-level QoI. The PCE coefficients β̂k

and β̂z are each computed via Monte Carlo with N samples. Then the covariance C
[
β̂2
k, β̂

2
z

]
is
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decomposed as

C
[
β̂2
k, β̂

2
z

]
= C



(

1

bkN

N∑

i=1

q(i)Ψ
(i)
k

)2

,

(
1

bzN

N∑

i=1

q(i)Ψ(i)
z

)2



=
1

b2kb
2
z

[
E[q4Ψ2

kΨ
2
z]− E[q2Ψ2

k]E[q2Ψ2
z]

N3

+
(2N − 2) (E[q3Ψ2

kΨz]E[qΨz]− E[q2Ψ2
k]E[qΨz]

2)

N3

+
(2N − 2)

(
E[q3Ψ2

zΨk]E[qΨk]− E[qΨk]
2E[q2Ψ2

z]
)

N3

+
(2N − 2)

(
E[q2ΨkΨz]

2
)

N3

+
4(N − 1)(N − 2) (E[q2ΨkΨz]E[qΨk]E[qΨz])

N3

− (4N2 − 10N + 6) (E[qΨk]
2E[qΨz]

2)

N3

]
.

(4.19)

Proof. See Appendix A.1 for a detailed proof of Proposition 1.

The multilevel estimator for the covariance with L levels is built upon the expression derived

for the single-level estimator. First we define

P̂`,k =
1

N`

N∑̀

i=1

P
(i)
`,k =

1

N`

N∑̀

i=1

(
q

(i)
` − q

(i)
`−1

)
Ψ

(i)
k (4.20)

as the multilevel estimator for E[P`,k] at level ` with respect to the PCE coefficient k.

Proposition 2. Multilevel covariance. Let q0, q1, . . . , qL be an L-level QoI. The PCE coefficients
β̂k and β̂z are each computed via MLMC sampling according to (4.12). Then the covariance
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C
[
β̂2
k, β̂

2
z

]
is decomposed as

C
[
β̂2
k, β̂

2
z

]
=

1

b2kb
2
z

L∑
`=0

[
E
[
P 2
`,kP

2
`,z

]
− E

[
P 2
`,k

]
E
[
P 2
`,z

]
N3
`

+
(2N` − 2) (E

[
P 2
`,kP`,z

]
E [P`,z] − E

[
P 2
`,k

]
E [P`,z]

2

N3
`

+
(2N` − 2) (E

[
P 2
`,zP`,k

]
E [P`,k] − E

[
P 2
`,z

]
E [P`,k]2

N3
`

+
(2N` − 2) E

[
P 2
`,kP`,z

]2
N3
`

+
4(N` − 1)(N` − 2) (E [P`,kP`,z]E [P`,k]E [P`,z])

N3
`

− (4N2
` − 10N` + 6) (E [P`,k]2 E [P`,z]

2

N3
`

+
2

N2
`

L∑
r=0
r 6=`

E
[
P 2
`,kP`,z

]
E [Pr,z] − E

[
P 2
`,k

]
E [P`,z]E [Pr,z] + 2 (N` − 1)

(
E [Pr,z]E [P`,zP`,k]E [P`,k] − E [Pr,z]E [P`,z]E [P`,k]2

)
+ E

[
P 2
`,zP`,k

]
E [Pr,k] − E

[
P 2
`,z

]
E [P`,k]E [Pr,k] + 2 (N` − 1)

(
E [Pr,k]E [P`,kP`,z]E [P`,z] − E [Pr,k]E [P`,k]E [P`,z]

2)
+

1

N`

L∑
r=`+1

4

Nr
(E [P`,kP`,z]E [Pr,kPr,z] − E [P`,k]E [P`,z]E [Pr,k]E [Pr,z]

+ (Nr − 1) (E [P`,kP`,z]E [Pr,k]E [Pr,z] − E [P`,k]E [P`,z]E [Pr,k]E [Pr,z])

+ (N` − 1) (E [P`,k]E [P`,z]E [Pr,kPr,z] − E [P`,k]E [Pr,k]E [Pr,z]E [P`,z]))

+

L∑
r=`+1

4

N`

L∑
q=0
q 6=`,r

(E [P`,kP`,z]E [Pr,k]E [Pq,z] − E [P`,k]E [P`,z]E [Pr,k]E [Pq,z])

+
4

Nr

L∑
q=0
q 6=`,r

(E [P`,kPr,z]E [Pr,k]E [Pq,z] − E [P`,k]E [Pr,z]E [Pr,k]E [Pq,z])

 .
(4.21)

Proof. See Appendix A.2 for a detailed proof of Proposition 2.

4.4 Optimal sample allocation

The variance and covariance expressions derived Section 4.3.1 can be used to evaluate (4.16)

and build an estimator for V[Ŝu], using the raw moments of P`,k, which are available to the user.

Additionally, (4.16) allows one to characterize the dependence of V[Ŝu] upon then multilevel

sample allocation, (N0, . . . , NL). Just as with the traditional MLMC approach, this variance

can then be used to derive an optimal sample allocation for the multilevel QoI.

The optimization problem for sample allocation may be formulated in a variety of ways.

We will present one option for formulating the optimization problem and discuss the relevant

distinguishing factors. In Chapter 5, we will present additional options for formulating the

optimization problem, which each correspond to various practical scenarios. The following

formulation minimizes the error in a particular Sobol’ index subject to a prescribed computational

budget:

arg min
N0,...,NL

V[Ŝu] subject to
L∑

`=0

N`C` ≤ C̄, 0 ≤ N0, . . . , NL, (4.22)

where C̄ is the upper limit on the total cost of the ML estimator. Equation (4.22) concisely
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expresses the goal of the hybrid MLMC-PCE method: to perform efficient GSA by using MLMC

and PCE where samples are optimally allocated across levels to improve GSA accuracy. The

problem (4.22) is equivalent to the standard optimization problem presented in the literature on

MLMC sample allocations [38, 67, 69].

In (4.22), notice a single conditional variance term is targeted and so, while all Sobol’ indices

can be obtained from the resulting sample profile, it will only be optimally targeting the accuracy

of Su. We briefly describe three additional options for GSA targets: 1) all first order Sobol’

indices, 2) all total Sobol’ indices, 3) an arbitrary set of Sobol’ indices. Defining the objective

function for each of the options must be done with some care so as to include only the relevant

terms for each set of GSA targets. To illustrate this point, we provide the following bivariate

example, where the variance of the PCE estimate of the variance (see (4.1)) is decomposed as

follows:

V[Ŝ1 + Ŝ2 + Ŝ1,2] = V[Ŝ1] + V[Ŝ2] + V[Ŝ1,2] + 2C[Ŝ1, Ŝ2] + 2C[Ŝ1, Ŝ1,2] + 2C[Ŝ2, Ŝ1,2]

Each of the above variances and covariances will be further decomposed in terms of the relevant

PCE coefficients according to (2.18). Given a set of GSA targets, several of the terms in (4.23)

will not directly influence the quality of the estimated Sobol’ indices and should be removed.

For example, if one wishes to target all d first order indices, one might be tempted to minimize

V[S1 + S2], the decomposition of which will include the covariance, C[S1,S2], which is not

relevant to the estimation of either first order index. Instead, only V[Ŝ1] and V[Ŝ2] should be

retained. Thus, for a d-dimensional QoI, one should solve the optimization problem,

arg min
N0,...,NL

d∑

i=1

V[Ŝi] subject to
L∑

`=0

N`C` ≤ C̄, 0 ≤ N0, . . . , NL. (4.23)

Similarly, if one wishes to target all d total Sobol’ indices (see (4.3)), instead of minimizing

V[T1 + T2], which would include several unnecessary terms, one would minimize V[T1] + V[T2].

For a d-dimensional QoI, one should solve the optimization problem,

arg min
N0,...,NL

d∑

i=1

V[T̂i] subject to
L∑

`=0

N`C` ≤ C̄, 0 ≤ N0, . . . , NL. (4.24)

If one were to target an arbitrary set of Sobol’ indices, {Su1 , . . .Sun} for ui ∈ {1, . . . , d}, i =

1, . . . , n, then the optimization problem would be formulated as

arg min
N0,...,NL

n∑

i=1

V[Ŝui ] subject to

L∑

`=0

N`C` ≤ C̄, 0 ≤ N0, . . . , NL. (4.25)

As we have discussed, the objective function for sample allocation may very well include

a large number of GSA terms (i.e. variances and covariances of ANOVA terms), especially
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for high-dimensional problems. Each of these GSA terms must then be decomposed according

to (4.16) into their relevant PCE components. For a PCE with many terms, each with their own

estimation error, this may result in an accumulation of uncertainty that dominates the objective

of the optimization problem. In order to reduce the estimation error entering the optimization

problem, one should consider strategies for truncating the PCE basis. The goal of truncating the

PCE basis would be to remove terms that contribute more noise than information to both the

optimization problem and the computation of Sobol’ indices. Given that the total order basis

truncation strategy was discussed in Section 2.2.1, we reserve a discussion of more-advanced

basis truncation strategies for the forthcoming journal article [4].

This section has served as a discussion of the theoretical aspects of defining the optimization

problem for sample allocation. Practical elements of solving the optimization problem, as well

as alternative formulations, will be discussed in Chapter 5.

4.5 Numerical verification

We next present a set of verification experiments illustrating the theoretical developments in

Section 4.3. The following results are obtained using the Ishigami function, a standard test

problem in the GSA literature [27, 29, 8], following the three level structure presented in [70].

4.5.1 Single-level results

We begin by considering the single-level Ishigami function,

q(θ) = sin(θ1) + a sin2(θ2) + bθ4
3 sin(θ1), (4.26)

where θ1, θ2, and θ3 are uncertain parameters following a uniform distribution on [−π, π], with

a and b being constants.

Using multivariate Legendre polynomials, we will compute a single-level PCE of (4.26) where

we let a = 5 and b = 0.1. We first consider the variability of the estimators for β̂k by computing

1000 realizations of the PCE spectrum, up to a total order of 6. We then plot the mean and two

standard deviations for each coefficient below.

Figure 4.1 shows the increasing variance of the PCE coefficients with the polynomial order. As

the order of the Legendre polynomial increases, the variance of the PCE terms will also increase.

Notice also that the Ishigami function has a sparse PCE, where the majority of the coefficients are

zero. This property of the Ishigami function makes it challenging for PCE surrogate construction

and so alternative basis constructions have been explored in this context [72]. In the following

discussion, we will use the total order construction, with the knowledge that the PCE basis

can be tailored as a post-processing step. In order to capture the appropriate number of PCE

terms, we will use a total polynomial order of 7 in the following experiments, resulting in 120

coefficients.
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Figure 4.1 Estimated PCE coefficients for Ishigami, up to a total polynomial order of 6. Dots denote
E[β̂k] and error bars denote 2 standard deviations, computed with 1000 realizations.

4.5.2 Multilevel results

Continuing to the multilevel form of the Ishigami function from [70], we define a three-level

model hierarchy, with associated costs, as follows:

q0(θ) = sin(θ1) + (0.6) a sin2(θ2) + (9)bθ2
3 sin(θ1), c0 = 0.001 (4.27)

q1(θ) = sin(θ1) + (0.95) a sin2(θ2)+bθ4
3 sin(θ1), c1 = 0.05 (4.28)

q2(θ) = sin(θ1)+ a sin2(θ2)+bθ4
3 sin(θ1), c2 = 1.0 (4.29)

The costs associated with the multilevel Ishigami function, given in [70], are assigned artificially

and are simply used for demonstration. The costs were intended to approximate the level-by-level

cost structure that is common in many practical applications of MLMC. Note that q0 is the

low fidelity and q2 is the high fidelity, in this case the original function. We also note the cost

difference is a factor 50 from q0 to q1 and a factor 20 from q1 to q2. The goal will be to perform

MLMC, entailing a majority of the samples be allocated to the lower-fidelity models.

A benefit of using the Ishigami function is the ability to compute all relevant quantities

analytically. In this case, the true variance of the high fidelity, is V[q2] = 1
2 + a2

8 + π4b
5 + π8b2

18 ≈
10.845. The mean of each function is: E[q0] = 1.5, E[q1] = 2.375, and E[q2] = 2.5. Finally, we

present the true first order and total Sobol’ indices for the high fidelity function:

We can then compute the MLMC estimate of the PCE coefficients, using the method

described in Section 4.2.2, from the estimator

β̂k =
1

bk

L∑

`=0

1

N`

N∑̀

i=1

P
(i)
`,k =

1

bk

L∑

`=0

1

N`

N∑̀

i=1

(q
(i)
` − q

(i)
`−1)Ψ

(i)
k . (4.30)
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Table 4.1 True first order and total Sobol’ indices for the high-fidelity QoI, q2, for a = 5 and b = 0.1.

i = 1 i = 2 i = 3

First order index, Si(q2) 0.401 0.288 0
Total index, Ti(q2) 0.712 0.288 0.311

After the set of PCE coefficients are computed, we want to show that our estimators for

V[β̂2
k ] and C[β̂2

k, β̂
2
z ] from Section 4.3.1 are consistent with empirical PCE data. We also compare

the variance estimators with the covariance diagonal to guarantee that they are consistent.

Figure 4.2 Estimated V[β̂2
k] from (4.18) and diagonals of C[β̂2

k, β̂
2
z ] from (4.21). Left: used 105 sam-

ples per level, ensuring convergence. Right: green dots indicate data from 1000 PCE realizations.

As we have shown in Section 4.3.1, we are able to propagate the uncertainty in the estimated

PCE coefficients through to the conditional variances in the ANOVA decomposition, resulting in

the estimate for V[Ŝu], for any u ⊆ {1, . . . , d}. To further illustrate the results of the derivation

in Section 4.3.1, we define a modest sample allocation, (N0, N1, N2) = (1000, 100, 10). We then

compute 1000 independent realizations of the set of PCE coefficients, followed by computing the

conditional variances corresponding to the first order and total indices, (S1,S2,S3, T1, T2, T3).

Using this set of realizations, we are able to form an empirical estimate of each V[Ŝi] and V[T̂i],
i = 1, 2, 3, from the PCE data. We then compare these empirical variance estimates with our

derived estimators for each V[Ŝi] and V[T̂i], obtained in Section 4.3.1. In order to mitigate

estimation noise in the statistics used in the derived estimators, we use 105 samples per level. In

Figure 4.3, we compare the empirical data for V[Ŝu] with our fully-converged novel estimators.

To demonstrate the power of these novel estimators for V[Ŝi] and V[T̂i], Figure 4.4 shows 1000

realizations of the first order and total indices, computed with the allocation: (N0, N1, N2) =

(1000, 100, 10). We compare this with the true values of the conditional variances (see Table 4.1)

and the confidence intervals obtained from our new estimators. We report errorbars showing 2

standard deviations about the mean, which encompasses approximately 95% of the replicates
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Figure 4.3 Blue bars indicate the variance of the conditional terms, obtained from the derived esti-
mators, with 105 samples at each level. Red bars indicate the variance over 1000 realizations of the
conditional terms, with sample allocation (1000, 100, 10).

sampled.

Figure 4.4 Blue bars indicate analytic Si and Ti values for i = 1, 2, 3. Red dots indicate the results of
1000 realizations of the conditional variances. Black errorbars indicate one converged estimate of each
V[Ŝi] and V[T̂i], reporting 2 standard deviations.

Figure 4.4 illustrates the practical applicability of the hybrid MLMC-PCE method. Not only

can the novel estimators derived in Section 4.3.1 quantify the accuracy of a particular set of

Sobol’ indices, but they express the relationship between each V[Ŝu] term and the underlying

the sample profile, (N`)
L
`=0. We have so far illustrated numerically that these estimators do

converge to the empirical variance of any desired conditional term in the ANOVA decomposition.

In the next chapter, we will incorporate the optimal sample allocation into the numerical results,

showing that this method can be competitive with other current multifidelity methods for GSA.

Further elaboration will also be given on a number of practical aspects of the hybrid method.
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4.6 Conclusion

In this chapter, we have explored a hybrid MLMC-PCE approach for GSA that leverages

the ANOVA decomposition traditionally used with the PCE, but for which the polynomial

coefficients are evaluated by means of MLMC. This hybrid approach improves the efficiency of

Sobol’ index computation by fusing information from multiple model fidelities. This chapter

focused primarily on developing the theoretical components of the MLMC-PCE framework

for GSA and presenting preliminary numerical results that demonstrate the potential of this

approach. In the next chapter, we address a series of practical issues related to implementation of

the algorithm, practical aspects the optimization problem, and we present a series of numerical

results which test the efficiency and accuracy of the hybrid method.

A natural application of this framework is presented in Chapter 3, that is, to use the hybrid

approach to accelerate GSA of chemical reaction networks. For instance, one may define multiple

fidelities for a chemical reaction model and then use the hybrid method to optimally apportion

the limited computational budget between model evaluations. In Chapter 5, we will present a

series of numerical results on this topic, as well as a comparison with other current multifidelity

GSA methods.
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CHAPTER

5

PRACTICAL ASPECTS OF THE

HYBRID MLMC-PCE METHOD

5.1 Introduction

In Chapter 4, the hybrid multilevel Monte Carlo Polynomial Chaos Expansion (MLMC-PCE)

method was introduced, which is intended for goal-oriented computation of Sobol’ indices. This

method aims to leverage the information from multiple model fidelities by distributing one’s

computational resources across the model hierarchy in a manner that is optimal for GSA. This

method also aims to be robust with respect to high-dimensionality by taking advantage of the

convergence properties of MC methods, which are not affected by dimension. Traditionally,

MLMC methods have been used to allocate samples for estimation of the mean or variance of a

QoI [38, 57, 67], although efforts have been made to extend this approach to the computation

of Sobol’ indices [69, 70]. To that end, we combine MLMC with the PCE, which allows one to

use a shared set of model evaluations for estimating each PCE term. From the PCE, Sobol’

indices can be computed essentially for free. In Chapter 4, novel estimators were derived, which

allow one to propagate the uncertainty incurred in MLMC sampling of the PCE coefficients

through the ANOVA decomposition. As a result, the accuracy of an estimated Sobol’ index can

be described as a function of the multilevel sample allocation and this sample allocation can be

optimized. One is thus able to characterize the uncertainty in each estimated ANOVA term and

obtain confidence intervals for each GSA target without requiring additional model evaluations.

In this chapter, with the foundational aspects of this hybrid MLMC-PCE method in place,

we address some challenges and practical considerations associated with the hybrid method,
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including construction of unbiased estimators, alternative formulations for optimal sample

allocation, and an algorithm implementation. We conclude with a series of numerical results.

First, using the Ishigami function as a test problem, we compare the accuracy of the hybrid

method with that of other popular approaches to computing Sobol’ indices. This is followed

by the application of the hybrid method to a problem from chemical kinetics. The contents of

this chapter, a direct continuation of Chapter 4, is the result of a collaboration of the author

with Gianluca Geraci, Mike Eldred, and Teresa Portone of Sandia National Laboratories. At the

time of writing this dissertation, a journal article on the material covered in this chapter is in

preparation [4].

5.2 Challenges of the hybrid method

We begin by summarizing some challenges associated with the hybrid method, all of which will

be addressed in this chapter:

1. While the MLMC estimators for the PCE coefficients are unbiased, the resulting estimators

for the squared coefficients incur a bias, which, in turn, results in a biased estimate of the

Sobol’ indices (see (2.18)). We derive a bias-correction formula in Section 5.3.

2. The optimization problem for sample allocation cannot be solved in closed form and

thus requires numerical strategies, which must be investigated. There are also alternative

formulations for the sample allocation problem, which are discussed in Section 5.4.

3. An implementation of the hybrid method involves multiple steps. If one takes an iterative

approach to QoI sampling and optimizing the sample profile, this can be advantageous.

We provide an algorithm implementation of the hybrid method in Section 5.5 and discuss

best practices for structuring the algorithm.

In addition to addressing these practical challenges, we present a comparison of the hybrid

method with other competing methods in Section 5.6.1. Finally, we apply the hybrid method to

a problem from chemical kinetics in Section 5.6.2.

5.3 Derivation of unbiased estimators

Recall, in Section 2.2.3, we denote q(θ) as the QoI, Ψk(θ) denotes the kth polynomial basis

function in the PCE, and, in Section 4.2.2, we let bk denote the associated basis norm. The

kth PCE coefficient, βk, is defined as in (4.4). The formula for computing Sobol’ indices via

the PCE (2.18) requires the squared PCE coefficients. While the MLMC estimator for βk is

unbiased, meaning that

E
[
β̂k

]
= E

[
1

bk

L∑

`=0

1

N`

N∑̀

i=1

P
(i)
`,k

]
=

1

bk

L∑

`=0

N`E [P`,k]

N`
= βk,
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it is not true, in general, that E[(β̂k)
2] = β2

k. Thus, we will present an unbiased version of the

estimator for β2
k, in the case of a multilevel QoI.

Proposition 3. Unbiased estimator of β2
k. The estimator,

β̂2
k = (β̂k)

2 − V[β̂k] = (β̂k)
2 − 1

b2k

L∑

`=0

V [P`,k]

N`
, (5.1)

is an unbiased estimator for β2
k, that is, E

[
β̂2
k

]
= β2

k.

Proof. Let the random variable qLΨk
bk

, whose expected value is βk, be denoted as X. Let X̂

denote the MLMC estimator for E[X]. The goal is to produce an unbiased estimator for β2
k.

First, for convenience, we define the mean-zero random variable, Z = X − βk. Just as βk can be

decomposed over levels as in (4.12), we will decompose Z over its levels as

Z = Z0 + Z1 + · · ·+ ZL,

where, for a fixed k, we define each Z` in the notation of Chapter 4,

Z` =
(q` − q`−1)Ψk

bk
− E[(q` − q`−1)Ψk]

bk
=
P`,k
bk
− E[P`,k]

bk
. (5.2)

Thus each Z` has mean zero. Then, to determine the bias in an estimate of β2
k we compute

(X̂)2 =
(
Ẑ + βk

)2

=

(
L∑

`=0

1

N`

N∑̀

i=1

Z
(i)
` + βk

)2

=

(
L∑

`=0

1

N`

N∑̀

i=1

Z
(i)
`

)2

+ 2βk

(
L∑

`=0

1

N`

N∑̀

i=1

Z
(i)
`

)
+ β2

k

=




L∑

`=0

1

N2
`

(
N∑̀

i=1

Z
(i)
`

)2

+
∑

`6=z

1

N`Nz

N∑̀

i=1

Z
(i)
`

Nz∑

j=1

Z(j)
z


+ 2βk

(
L∑

`=0

1

N`

N∑̀

i=1

Z
(i)
`

)
+ β2

k

Then taking the expectation of (X̂)2, we use the fact that E[Z`] = 0, ` = 0, . . . , L, and

58



E[Z`Zz] = 0, z 6= `, then we have

E
[
(X̂)2

]
= E
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+
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i 6=j
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(i)
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+ β2

k.

Then using the fact that the distinct samples of Z` are uncorrelated, we have

E
[
(X̂)2

]
=

L∑

`=0

1

N2
`

E

[
N∑̀

i=1

(
Z

(i)
`

)2
]

+ β2
k.

We further know that because each Z` has mean zero, we have V[Z`] = E[Z2
` ] and so

E
[
(X̂)2

]
=

L∑

`=0

1

N2
`

N∑̀

i=1

V
[
Z

(i)
`

]
+ β2

k =

L∑

`=0

N`

N2
`

V [Z`] + β2
k.

From this, we know that obtaining an unbiased estimate of β2
k requires one to subtract the

estimator variance from the biased estimator. Finally, by the definition of Z` (5.2), we know

V[Z`] = V[P`,k]/b
2
k. Thus we have the following formula for the unbiased estimator of β2

k,

β̂2
k = (β̂k)

2 −
L∑

`=0

V [Z`]

N`
= (β̂k)

2 − 1

b2k

L∑

`=0

V [P`,k]

N`
= (β̂k)

2 − V[β̂k]. (5.3)

With this bias correction, we can go about obtaining unbiased estimators for each of the

squared PCE coefficients and, by extension, for any conditional variance term in the ANOVA

decomposition. Although, we are able to correct the bias in the numerator and denominator

of the Sobol’ index formula (see (2.18)), there is no guarantee that the ratio of two unbiased

estimators will be unbiased. Since it is sufficient to use the conditional variance in the numerator

of (2.18) for our sample allocation scheme, we will not pursue this issue further.

5.4 Optimal sample allocation

A defining feature of the hybrid MLMC-PCE method is the ability to obtain a ML sample

allocation, which is optimized for GSA. Section 4.4 dealt with one possible strategy for the

optimization problem (4.22), where the variance of an estimated GSA target is minimized,
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constrained by an upper bound on the total computational cost, C̄. We then examined the case

where multiple GSA quantities are being targeted. While (4.22) is a viable option for sample

allocation, one may elect to choose a different optimization strategy based on their particular

goals. This is akin to the discussion in [69], in which multiple optimization strategies were

considered. We present two alternative formulations for the optimization problem:

arg min
N0,...,NL

Ctot =
L∑

`=0

N`C` subject to V[Ŝu] ≤ ε, 0 ≤ N0, . . . , NL (5.4)

arg min
N0,...,NL

Ctot =

L∑

`=0

N`C` subject to V[Ŝu] ≤ η(V[Ŝu])0, 0 ≤ N0, . . . , NL (5.5)

In (5.4), one minimizes the total cost of MLMC estimation, while requiring that the variance

of the Sobol’ estimator be below some absolute threshold, ε, chosen by the user. In (5.5), one

minimizes Ctot, while requiring V[Ŝu] to be some factor, η, below the pilot variance, denoted

(V[Ŝu])0, which is the variance computed with a baseline (or pilot) sample profile. This implies

an iterative implementation of the hybrid method, where an initial round of QoI sampling results

in an estimate of the pilot variance and a subsequent round of sampling is required to meet the

variance constraint in (5.5).

Recall that in Section 4.4 we considered a common scenario, where multiple GSA targets

are involved, for example, the first order Sobol’ indices or the total indices [7, 8, 5]. In each case,

a scalar objective function was discussed, with the intention of removing unnecessary variance

and covariance terms from the objective function. When considering multiple GSA targets in

either (5.4) or (5.5), the discussion is more straightforward because the variance estimator is now

involved in a constraint. In either (5.4) or (5.5), multiple variance constraints can be imposed,

whether they are absolute or relative to the pilot variance.

Now that we have defined the optimization problem for sample allocation and discussed

alternative formulations, we address how the optimization problem is solved in practice. As a

result of the complexity and number of terms present in each V[Ŝu] estimator (see discussion

in Section 4.3.1), solving the sample allocation problem in closed form is far more challenging

than for the canonical MLMC problem [38]. In practice, the optimal sample allocation will

be determined numerically. We use SciPy’s sequential least squares programming algorithm

(SLSQP), which is designed to perform constrained minimization of a scalar objective function

with any combination of equality, inequality, and bound constraints. For further details on this

optimization method, we refer to [73, 68], in which SLSQP is used in the context of multifidelity

MC.

5.5 Implementation of MLMC-PCE

We proceed to a discussion of the implementation of the hybrid MLMC-PCE method. While

this implementation will not cover all possible optimization strategies or GSA targets, it will
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demonstrate a particular instance of the hybrid method and be useful for introducing other

practical considerations.

For simplicity, we let Su denote a single GSA target. This algorithm can be extended to

multiple GSA targets, as covered in Section 4.4. We will use optimization strategy (5.5), which

aims to reduce V[Ŝu] a factor, η, below the pilot variance.

Algorithm 3 Estimate Sobol’ indices via hybrid MLMC-PCE

Input: Multilevel model, {q`(θ)}L`=0, number of pilot samples, (Ṅ`)
L
`=0, GSA target index, u, total

polynomial order, r, variance reduction factor, η, max iterations

Output: Sobol index, Su, error in index, V[Su], optimal sample allocation, (N∗` )L`=0, estimated PCE

coefficients, {β̂k}NPC

k=0

1: Initialize PCE variables: truncation level, multi-indices, polynomial norms

2: Draw (Ṅ`)
L
`=0 pilot samples: (θ̇`)

L
`=0 {Distribution included with the model}

3: Evaluate polynomials, (Ψk)NPC

k=0 and multilevel QoI, q` − q`−1 for ` = 0, . . . , L at (θ̇`)
L
`=0

4: Evaluate raw moments: E[P`,k], E[P`,kP`,z], E[P 2
`,kP`,z], E[P 2

`,kP
2
`,z], ` = 0, . . . , L, and k, z =

0, . . . , NPC
5: Evaluate V[β̂2

k] and C[β̂2
k, β̂

2
z ] expressions for k, z = 0, . . . , NPC {see (4.18) and (4.21)}

6: Evaluate necessary terms for pilot variance: (V[Su])0 {see (4.16)}
7: Set iteration = 0

8: while V[Su] > η · (V[Su])0 and iteration < max iterations do

9: Obtain optimal sample allocation: (N0, . . . , NL) {see Section 5.4}
10: Determine the number of additional samples to be taken per level: (N+

0 , . . . , N
+
L )

11: Draw (N+
` )L`=0 additional samples: (θ`)

L
`=0

12: Evaluate polynomials, (Ψk)NPC

k=0 and multilevel QoI, q` − q`−1 for ` = 0, . . . , L at (θ`)
L
`=0

13: Evaluate raw moments: E[P`,k], E[P`,kP`,z], E[P 2
`,kP`,z], E[P 2

`,kP
2
`,z], ` = 0, . . . , L and k, z =

0, . . . , NPC
14: Evaluate V[β̂2

k] and C[β̂2
k, β̂

2
z ] expressions for k, z = 0, . . . , NPC {see (4.18) and (4.21)}

15: Evaluate updated V[Su] at optimal sample profile, (N`)
L
`=0 {see (4.16)}

16: iteration = iteration + 1

17: end while

18: Compute MLMC estimate of PCE coefficients: β̂0, . . . , β̂NPC
{see (4.12)}

19: Compute relevant Sobol’ indices: Su {see (2.18)}
20: Obtain final sample allocation: (N∗0 , . . . , N

∗
L) {see Section 5.4}

Algorithm 3 presents an iterative sample allocation strategy, where, on the basis of the

pilot samples, a new sample profile will be obtained and additional samples computed. The

algorithm will iterate between QoI sampling and optimizing the sample profile until convergence

is reached or the maximum number of iterations is exceeded. Alternative iterative approaches

will be discussed as well. In practice, if the pilot sample profile is small, then the initial estimate

the statistics and target variance may be far from their converged values. This may result in a

sample profile that is much larger than the optimal profile with the statistics fully converged,

and thus over-sampling of the QoI. To avoid this, we suggest either an optimization strategy
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that enforces an upper bound on the computational budget (as in Section 4.4) or using a relaxed

sample allocation strategy. The relaxed strategy entails taking a subset of the recommended QoI

samples at each iteration, after which one reruns the optimization and continues sampling the

QoI, converging to the optimal sample profile from below. In situations where a costly, high-

fidelity QoI is considered, the additional calls to the optimization routine will add a negligible

computational cost to the algorithm.

As mentioned briefly in Chapter 4, truncating the PCE basis is a useful strategy for reducing

the number of sources of uncertainty and can improve the performance of the optimization

routine. While a total order basis truncation scheme is discussed in Chapter 2, other basis

truncation schemes have been examined for the hybrid MLMC-PCE method. We reserve a

discussion of these basis truncation strategies for the forthcoming journal article [4].

5.6 Numerical results

We present the following numerical results for two applications. The first being a comparison

of the hybrid MLMC-PCE method with other current methods for variance-based GSA in

the literature. The test problem for this experiment will be the multilevel Ishigami function,

as defined in Section 4.5.2. The second set of results will apply the hybrid method to the

16-dimensional genetic oscillator system discussed in Chapter 3.

5.6.1 Comparison with competing methods for the Ishigami example

We return to the three-level Ishigami function [70], covered in Section 4.5.2. This test problem

will allow us to compare the hybrid method with three other common GSA methods. We include

the standard Saltelli sampling method, which is covered briefly in Chapter 2 and used to perform

GSA on chemical reaction networks in Chapter 3. This is a single-fidelity method whose cost

scales linearly with the dimension of the problem. We next include the multifidelity GSA method

developed by Qian and Willcox in [70]. This method is a multifidelity generalization of the

Saltelli method, which takes a multifidelity model hierarchy and combines samples across levels

to augment the Saltelli framework. Again, this method has a cost that scales linearly with the

problem dimension. Finally, we present the single-fidelity PCE method, which computes PCE

coefficients via MC sampling. This method is rarely used in practical GSA scenarios and will

act solely as a baseline for comparison. We choose to include the results of the single-fidelity

PCE, in order to show the significant computational advantages of using a multifidelity versus a

single-fidelity PCE approach to GSA, as we have described with our hybrid method.

The three-level Ishigami function, with associated costs, is defined in [70] as

q0(θ) = sin(θ1) + (0.6) a sin2(θ2) + (9)bθ2
3 sin(θ1), c0 = 0.001 (5.6)

q1(θ) = sin(θ1) + (0.95) a sin2(θ2)+bθ4
3 sin(θ1), c1 = 0.05 (5.7)

q2(θ) = sin(θ1)+ a sin2(θ2)+bθ4
3 sin(θ1), c2 = 1.0 (5.8)
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The costs assigned with the three-level Ishigami function are artificial, chosen in [70] to

emulate the cost separation between levels in a practical scenario. The Ishigami function has

three variables and so we will provide results for the 3 first order indices and the 3 total indices,

for each GSA method. We will also compare these methods with the analytical values for the

Sobol’ indices (see Table 4.1). The hybrid method will have a sample profile that is either

optimized to target all first order indices (4.23) or all total indices (4.24). The multifidelity

GSA method [70] will target the variance of the estimated QoI variance. Figure 5.1 provides

distributions for the computed Sobol’ indices, using an equivalent computational cost of 2000

for each method. The reference values for the true Sobol’ indices are plotted with vertical lines.

We also present in Table 5.1 results for the mean, variance, and mean squared error (MSE)

of each GSA method.

Table 5.1 GSA method comparison using the Ishigami function and analytical Sobol’ values from [70].
For each method, the mean, variance, and MSE are reported over 1000 realizations. Each method uses
a total cost of 2000 and computes all first order and total Sobol’ indices.

S1 S2 S3

Mean Variance MSE Mean Variance MSE Mean Variance MSE

SF-Saltelli .4017 | 2.00× 10−3 | 2.0× 10−3 .2894 | 2.5× 10−3 | 2.50× 10−3 −.0010 | 5.8× 10−3 | 5.8× 10−3

SF-PCE .3683 | 4.66× 10−4 | 1.5× 10−3 .2611 | 6.4× 10−4 | 1.36× 10−3 0.0081 | 2.5× 10−5 | 9.1× 10−5

MF-GSA .3997 | 7.76× 10−5 | 7.9× 10−5 .2883 | 7.7× 10−5 | 7.71× 10−5 .00014 | 1.5× 10−4 | 1.5× 10−4

MLMC-PCE .4025 | 1.50× 10−5 | 1.7× 10−5 .2839 | 1.2× 10−5 | 3.18× 10−5 .00013 | 5.6× 10−9 | 2.3× 10−8

True 0.401 0.288 0

T1 T2 T3

Mean Variance MSE Mean Variance MSE Mean Variance MSE

SF-Saltelli .7196 | 1.4× 10−2 | 1.41× 10−2 .2904 | 9.4× 10−4 | 9.46× 10−4 .3143 | 1.5× 10−3 | 1.51× 10−3

SF-PCE .7092 | 6.5× 10−4 | 6.58× 10−4 .3234 | 7.2× 10−4 | 1.97× 10−3 .3597 | 1.0× 10−3 | 3.37× 10−3

MF-GSA .7087 | 3.8× 10−4 | 3.91× 10−4 .2885 | 6.1× 10−5 | 7.89× 10−3 .3101 | 4.9× 10−5 | 4.98× 10−5

MLMC-PCE .7156 | 1.2× 10−5 | 2.50× 10−5 .2849 | 1.2× 10−5 | 2.15× 10−5 .3132 | 1.2× 10−5 | 1.65× 10−5

True 0.712 0.288 0.311

As Table 5.1 indicates, the hybrid MLMC-PCE method incurs the lowest MSE for every

Sobol’ index reported. The MF-GSA method, although it too allows for the use of multiple

fidelities to estimate Sobol’ indices, has a dimension-dependent cost. In this case, the total cost

of the MF-GSA method is divided into separate budgets for estimating each conditional variance.

This is also true for the Saltelli method in which the total cost is divided by d + 2, for each

conditional term. An advantage of the MLMC-PCE method is the ability to use the full set of

QoI samples for each PCE term and therefore each Sobol’ index. We can see that the hybrid

method outperforms the dimension-dependent methods even for this low-dimensional problem.

It should also be noted that the PCE based methods perform quite well when estimating

small Sobol’ indices. This is, in part, due to the fact that Sobol’ indices computed from a PCE

(as in (2.18)) are guaranteed to be non-negative, unlike the results of the Saltelli or MF-GSA

approaches. The hybrid method, although it is shown to be competitive in this application, has
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Figure 5.1 PDFs for multiple Sobol’ index realizations from various methods, in this order: single-
fidelity Saltelli sampling (Chapter 2), multifidelity GSA results from [70], single-fidelity PCE, and
normalized histograms from the hybrid MLMC-PCE method. The black dashed line indicates the
analytical value of each index.

additional advantages when applied to higher-dimensional problems.
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5.6.2 Application to chemical reaction network results

We return to the genetic oscillator application from the field of chemical kinetics [66, 65], which

was covered in both the stochastic and deterministic modeling contexts in Chapter 3. Here, we

are interested in using a deterministic model described by the reaction rates equations (RREs),

a system of ODEs which model the time evolving concentration of each chemical species. The

genetic oscillator system consists of 9 chemical species and 16 reactions, with each reaction

including one uncertain reaction rate parameter. Table 3.1 lists the chemical reactions, propensity

functions, and nominal reaction rate parameters for the genetic oscillator problem.

We will derive a multilevel model hierarchy with three levels of fidelity and use the hybrid

method to obtain Sobol’ index estimates for the full set of 16 first order indices and 16 total

indices. As in Chapter 3, the QoI will be the time-integrated value of the repressor protein,

q(θ) =

∫ T

0
R(t;θ) dt. (5.9)

Often, when MLMC is applied to a differential equation system, each level of fidelity is defined

by adjusting the mesh used to solve the differential equation [38, 67, 74]. Due to the stiff nature

of the RREs for the genetic oscillator, a nested mesh refinement scheme in time will not be

possible for defining multiple fidelities. Instead, we define different model fidelities by controlling

the final time and the required convergence tolerance for the stiff ODE solver. We use SciPy’s

stiff ODE solver tools, which acts as a wrapper for the LSODA method [75]. One can specify

the tolerance for the ODE solver, which for this experiment will be the same for the relative

and absolute. Our three-level model hierarchy is defined in Table 5.2.

Table 5.2 Levels based on ODE tolerance and final time, T , where ρHF gives the correlation with the
highest-fidelity QoI. The cost is represented by the runtime required to evaluate 1000 QoI samples.

tol. 1× 10−1 1× 10−4 1× 10−9

T 15 47.5 50

ρHF 0.884 0.954 1.0

time 9.8 s 51.5 s 375.5 s

Using the data in Table 5.2, we are able to define a three-level model hierarchy. After the

genetic oscillator RREs are solved, the QoI defined by (5.9) is evaluated using the composite

trapezoid rule. We next provide a scaled version of the cost. If, as with the Ishigami example,

we let the highest-fidelity have a cost of one, then we have the following level-by-level cost,

(c0, c1, c2) = (0.026, 0.137, 1). The costs are proportional to the required runtime in Table 5.2.

The correlation between each level and the highest-fidelity is also an important factor in designing

a model hierarchy; this fact is discussed in [38]. The correlation structure presented in Table 5.2
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is meant to resemble the structure of the Ishigami example found in [70].

In the following experiments, we distribute the uncertain parameters, denoted by θ, uniformly

±10% about the nominal parameters, which is consistent with the distributions used for the

genetic oscillator system in Section 3.5.2. We use Legendre polynomials to build the PCE and

we use a total polynomial order of 3. For a 16-dimensional function, this results in 969 total

PCE terms. In this situation, truncating the PCE basis as a post-processing step could improve

the performance of the hybrid method.

As a benchmark, we plot an estimate of the PCE coefficients for the genetic oscillator,

computed using MLMC with a sample profile of (105, 104, 103):
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Figure 5.2 Estimated PCE coefficients for the genetic oscillator up to a total polynomial order of 3,
where (N0, N1, N2) = (105, 104, 103). The mean, β0, has been omitted as it is nearly 25000.

Figure 5.2 indicates some structure in the low-order PCE coefficients, with an increasing level

of estimation noise as the order of the PCE basis increases. This is consistent with the variance

information provided in Figure 4.1, where the higher-order PCE modes have an increased

estimator variance. In this case, a total order truncation of order 1 or 2 is recommended.

In the results that follow, we compute estimates of the conditional variances corresponding

to the first order indices and the total indices, which are respectively, Ŝi and T̂i, for i = 1, . . . , 16.

Using our novel estimators for the variances, V[Ŝi],V[T̂i], for i = 1, . . . , 16, we can then place

confidence intervals around the estimated ANOVA terms. The confidence intervals are then

compared with reference values for the ANOVA terms. We use a total order 2 truncation.

Figure 5.3 illustrates the value of the hybrid method for generating confidence intervals

around the Sobol’ index results. For the majority of the estimated GSA terms in Figure 5.3, they

are within two standard deviations of the reference values. In practice, if the confidence interval
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Figure 5.3 Top: first order ANOVA terms, Ŝi, bottom: total order ANOVA terms, T̂i, i = 1, . . . , 16,
both in red. Errorbars represent 1 standard deviation, estimated via (4.16). Reference values in blue.

indicates that a certain Sobol’ index is unlikely to exceed a certain threshold, it can be considered

unimportant, and it can be removed from the optimization target. This sort of iterative scheme,

where the confidence intervals inform the targets entering the optimization problem is now made

straightforward, given the alternative formulations we have suggested in Sections 4.4 and 5.4.

The reference values reported in Figure 5.3 were computed using an adaptive PCE built in the

Sandia National Laboratories UQ tool, Dakota, by using an anisotropic expansion refinement

and the generalized sparse-grid algorithm [76].

We conclude this section of numerical experiments by comparing the hybrid method with

the MF-GSA method of Qian and Willcox [70]. We fix a the computational budget at C̄ = 2000,

which is equivalent to 2000 evaluations of the highest-fidelity model. We then compute optimal

sample profiles for each method and compare their results. For the hybrid method, if one targets

the accuracy of all first order indices with a budget constraint of C̄ = 2000 (see (4.23)), then the

67



optimal sample profile is (C0, C1, C2) = (13279, 7508, 378). Similarly, if one targets the accuracy

of all total indices with a budget constraint of C̄ = 2000 (see (4.24)), then the optimal sample

profile is (C0, C1, C2) = (13306, 7531, 375). Similarly, the MF-GSA method does come with the

ability to optimize the sample profile, however it is only able to target the mean or the variance

of the QoI as an optimization target. The optimal sample profile, targeting the variance of

the mean estimator is (C0, C1, C2) = (974, 172, 50) for each conditional term. Recall that the

MF-GSA method has a cost which is dimension-dependent and so the total computational

budget of 2000 must be divided among each of the Sobol’ indices that are being estimated.

We reiterate that as the dimension increases, the hybrid method will become increasing more

accurate and cost effective, due in part to the fact that its cost does not depend on the problem

dimension. We plot in Figures 5.4 and 5.5 a comparison of the Sobol’ results over multiple

realizations of each method. We also include the single-fidelity PCE as a baseline for comparison.
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Figure 5.4 First order Sobol’ index results, comparing the single-fidelity PCE (blue PDF), the MF-
GSA method (orange histogram), and the optimally-sampled hybrid MLMC-PCE method (green
histogram). A representative sample of indices are shown, 6 out of 16. Reference values given by black
lines.

Figure 5.4 illustrates that for all first order Sobol’ indices, the hybrid method has a lower

variance than the MF-GSA method, while both have an equivalent cost. The MF-GSA method

shows improved performance when estimating the total Sobol’ indices, as shown in Figure 5.5,

in some cases resulting in a lower variance than the hybrid method. In reality, the hybrid

method maintains a lower for variance for the majority of the total Sobol’ indices, especially

T5 through T10, which are nearly zero. The ability to truncate the hybrid method basis, as a

post-process, makes it very flexible as a GSA tool. In Figures 5.4 and 5.5, a total order of 1 was

used. Additionally, the MF-GSA method is prone to estimate negative Sobol’ index values, while
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Figure 5.5 Total Sobol’ index results, comparing the single-fidelity PCE (blue PDF), the MF-GSA
method (orange histogram), and the optimally-sampled hybrid MLMC-PCE method (green his-
togram). Again, 6 out of 16 Sobol’ indices are shown. Reference values given by black lines.

the hybrid method maintains the non-negativity property of all Sobol’ indices. The single-fidelity

PCE, while it maintains non-negativity, does not perform as well as the hybrid method, showing

skewed Sobol’ index results, likely due to poor resolution of the PCE coefficients.

Figures 5.4 and 5.5 demonstrate the strong performance of the hybrid method for Sobol’

index computations, as well as its adaptability to the structure of a particular problem. As

the dimension increases, the advantages of the hybrid method over other methods, whose cost

depends on the problem dimension, will be even more apparent. We also reiterate the unique

ability of the hybrid method to compute an optimal sample profile for any desired GSA target

and that this optimization can be carried out without need for additional QoI evaluations.

5.7 Conclusions and future work

In this chapter, we have considered practical issues related to the hybrid MLMC-PCE method,

introduced in Chapter 4. These included theoretical improvements through the derivation of

unbiased estimators for the purposes of GSA, a discussion of the complexities involved with

multiple GSA targets, and a discussion of alternative optimization strategies for sample allocation.

Further considerations of the hybrid algorithm included an implementation of one possible

instance of the hybrid method as well as a discussion of other implementation options. A series

of numerical results were presented on the Ishigami function and, as a high-dimensional test

case, the genetic oscillator system.

We reiterate the strengths of this method for GSA computations, namely that it uses

information from models with multiple fidelities to compute Sobol’ indices using a goal-oriented
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approach. This hybrid method is especially useful for high-dimensional QoIs, where other

methods for computing Sobol’ indices perform poorly, due to their dimension-dependent cost.

In contrast, the PCE allows one to use all model evaluations for each of the relevant coefficients.

Furthermore, the hybrid method deals with the major pitfalls of quadrature and sparse-grid

methods (i.e. the curse of dimensionality). In these scenarios, high-dimensionality and the

number of PCE basis terms can cause performance issues that the hybrid method avoids.

In the future, generalizations of this hybrid framework to the multifidelity MC [39, 70] and

approximate control variate setting [68] would be valuable. In this setting, a more diverse range

of model forms could be incorporated, including those from machine learning, data assimilation,

and simplified-physics models. It is also of interest to the author to explore the limits of this

method, turning to even higher-dimensional problems from a variety of domains.
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CHAPTER

6

GLOBAL SENSITIVITY ANALYSIS OF

RARE EVENT PROBABILITIES

6.1 Introduction

In this chapter, we investigate the challenges of performing GSA for an especially expensive QoI,

rare event probabilities. Unlike the previous chapters, the QoI in this section is a moment-based

quantity and must be approximated through multiple evaluations of an underlying QoI. The

fidelity with which the rare event probability is estimated is thus able to vary and so this notion

of multiple estimation fidelities will be applied to the task of GSA.

Rare or extreme events are commonly associated with system failures or anomalies which

pose a significant risk. Take, for example, the structural failure of a bridge with unknown material

quantities, the damage caused by a tsunami where the ocean floor topography is unknown, or

the collateral damage caused by a missile with unknown aerial position and velocity [74, 77, 78,

79]. In such scenarios, it is imperative that rare event probabilities be computed reliably. As we

have mentioned in previous chapters, the nominal distributional parameters used in GSA are

often assumed and are themselves subject to uncertainty. Thus, in this chapter, we undertake

the task of determining the sensitivity of the rare event probability to these distributional

hyperparameters. At the time this chapter was written, the resulting article from this study was

under review. A preprint of the manuscript, written in collaboration with Alen Alexanderian

and Pierre Gremaud, is available online [3].

Let q(θ) to be a scalar-valued QoI whose inputs are drawn from the sample space, Θ ⊆ Rd,
with associated sigma algebra, F , and probability measure, P. For a given threshold value, τ̄ ,
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the corresponding rare event probability is defined as

Pτ̄ = P (q(θ) > τ̄) , (6.1)

where θ ∈ Θ is a random vector whose entries represent uncertain model parameters. Rare event

probabilities (or failure probabilities) are notoriously challenging to compute [78, 80]; indeed,

Monte Carlo simulations of (6.1) are extremely expensive for the simple reason that few samples

actually hit the rare event domain. Several methods have been proposed to compute Pτ̄ more

efficiently [78, 80], ranging from importance sampling and Taylor series approximations to subset

simulation, the latter of which we explore more in this chapter (see Section 6.3).

The evaluation of the rare event probability (6.1) requires knowledge of the distribution law

governing the model parameters, θ. In practice, such a law is typically assumed or determined

experimentally at a high cost. In either scenario, the uncertainty involved with these distributions

propagates through to q. Additionally, Pτ̄ depends on these assumptions; should they be

misguided, the resulting rare event probability is likely be misleading. Our goal is to understand

the sensitivity of Pτ̄ with respect to distributional assumptions which underly it. To that end,

we develop an efficient method to quantify, through GSA, the robustness of Pτ̄ to the choice of

hyperparameters characterizing the distribution law of the model parameters.

We let ξ denote a set of hyperparameters characterizing the distribution law of θ. To account

for the uncertainty in ξ, we model the corresponding hyperparameters as random variables. The

rare event probability takes the form

Pτ̄ (ξ) = P ({q(θ) > τ̄} | ξ) . (6.2)

A number of recent studies have considered how to assess the sensitivity of rare event estimation

procedures to uncertain inputs and/or to the distributions of these inputs. There is a general

consensus that the double-loop approach — whereby for each realization of ξ, multiple samples

of θ are used to estimate Pτ̄ — is computationally infeasible but for the simplest of problems.

An early work [79] combines rare event estimation techniques with the traditional Monte Carlo

approach for GSA of the hyperparameters (see Section 2.1.2 for details on Saltelli sampling).

Several studies introduce new sensitivity measures [81, 82, 83, 84] which are tailored to make

the rare event SA process more tractable. Others perform sensitivity analysis in the joint

space of both input parameters and hyperparameters [81, 84, 85, 86]. These methods increase

computational efficiency through use of local SA methods [81], surrogate models [84], kernel

density estimates [85], and Kriging [86]. A thorough overview of current methods at the

intersection of SA and rare event simulation can be found in [87].

The main contribution of this chapter is to show that a double-loop approach can in fact be

not only feasible, but computationally efficient in order to perform GSA of Pτ̄ (ξ) with respect to

ξ. This may seem counterintuitive since, while informative, this type of second-level sensitivity

analysis is expensive. However, our approach is structurally simpler than most of the previously
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cited work and achieves computational efficiency through a combination of fast methods for

rare event simulation together with the use of surrogate models. Specifically, we rely on subset

simulation [78] to estimate rare event probabilities and approximate Pτ̄ (ξ) using a polynomial

chaos expansion (PCE); see respectively in Section 6.3 and Section 6.4. The Sobol’ indices

for appropriate approximations to Pτ̄ (ξ) can then be obtained analytically from the PCE. To

demonstrate the efficiency gains of the proposed method, we present an illustrative example

in Section 6.2 and deploy our approach on it in Section 6.6.1. In Section 6.6.2, we apply the

method to a Darcy flow problem, requiring multiple estimates of the rare event probability,

to show feasibility in a more computationally demanding framework. We discuss additional

challenges, perspectives, and future work in Section 6.7.

6.2 A motivating example

We consider the following illustrative example [88, 78, 89] throughout the chapter,

q(θ) = − 1√
d

d∑

i=1

θi, (6.3)

where q is the QoI in (6.1) and θ =
[
θ1 · · · θd

]>
with independent normally distributed entries,

θi ∼ N (µi, σ
2
i ), i = 1, . . . , d. It is elementary to show that, for any values of the hyperparameters

ξ =
[
µ1 . . . µd σ2

1 . . . σ2
d

]>

q ∼ N (µ̄, σ̄2) with

{
µ̄ = − 1√

d

∑d
i=1 µi

σ̄2 = 1
d

∑d
i=1 σ

2
i .

(6.4)

For a given ξ, the rare event probability is simply

Pτ̄ (ξ) =
1

2
− 1

2
erf

(
τ̄ − µ̄√

2σ̄

)
. (6.5)

We model the uncertainty in the hyperparameters by considering them as independent uni-

formly distributed random variables with a 10 percent perturbation around their respective nom-

inal values. Figure 6.1 illustrates the case d = 5 with ξnom =
[
1 2 3 4 5 10 8 6 4 2

]>

as the nominal value for ξ. In particular, Figure 6.1, right, shows how the uncertainty in Pτ̄

changes as τ̄ varies. As τ̄ increases, i.e., as the event becomes rarer, the uncertainty in Pτ̄ ,

measured through its coefficient of variation, increases. We contend that this latter behavior is

generic for rare event simulations, illustrting the need for methods allowing the quantification of

the effects of hyperparameter choices on the uncertainty in Pτ̄ .

To provide qualitative insight, we present a rough estimate for the decrease in the coefficient

of variation of Pτ̄ , as the event becomes less rare. We consider a generic Pτ̄ (ξ) as defined in (6.2)

and assume Pτ̄ is a random variable. Let µ = E[Pτ̄ ] and σ2 = V[Pτ̄ ] be the mean and variance
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Figure 6.1 Left: probability density function (PDF) of q from (6.3) with the rare event threshold
τ̄ = 3 indicated by a vertical line; middle: PDF of P3(ξ), note that from (6.5), P3(ξnom) ≈ 3.69× 10−5;
right: coefficient of variation of Pτ̄ (ξ) (ratio of standard deviation to mean) as τ̄ varies.

of Pτ̄ . Recall that the coefficient of variation of Pτ̄ is given by δ(Pτ̄ ) = σ/µ. Note that for every

ξ, we have 0 ≤ Pτ̄ (ξ) ≤ 1; thus, Pτ̄ (ξ) ≥ Pτ̄ (ξ)2 and

σ2 = E[P 2
τ̄ ]− µ2 ≤ µ− µ2 = µ(1− µ). (6.6)

Therefore, δ2(Pτ̄ ) = σ2/µ2 ≤ µ(1 − µ)/µ2 = (1 − µ)/µ. Note that as the event becomes less

rare, µ will grow, resulting in the diminishing of the bound on the coefficient of variation. We

point out that the inequality (6.6) can be obtained directly from the more general Bhatia–

Davis inequality [90]. Practically, this means that as the event becomes more rare, its relative

uncertainty, measured by the coefficient of variation, will increase.

6.3 Rare event simulation

Monte Carlo simulation is a straightforward way of approximating the rare event probability Pτ̄

defined in (6.1). Observe that

Pτ̄ = E[χτ̄ ] =

∫

Θ

χτ̄ (θ)π(θ) dθ, (6.7)

where χτ̄ denotes the indicator function of the set {θ ∈ Θ : q(θ) > τ̄} and π(θ) is the PDF of θ.

This leads to the following Monte Carlo (MC) estimator,

P̂MC
τ̄ =

1

NMC

NMC∑

i=1

χτ̄ (θ(i)), (6.8)

where θ(i), i = 1, . . . , NMC , are independent and identically distributed realizations of θ.

In the case of rare events (i.e., of small probabilities, Pτ̄ ) the basic MC estimator (6.8)

becomes computationally inefficient. Indeed, consider the coefficient of variation δ(P̂MC
τ̄ ) of the

74



above estimator and observe

δ2
(
P̂MC
τ̄

)
=

V
[
P̂MC
τ̄

]

E
[
P̂MC
τ̄

]2 =
1− Pτ̄
NPτ̄

≈ 1

NPτ̄
if 0 < Pτ̄ � 1. (6.9)

In other words, ensuring a given accuracy requires NMC ≈ 1
Pτ̄ δ2 . For increasingly rare events,

with decreasing Pτ̄ , the error in (6.8) will increase accordingly. Standard MC methods are

thus poor candidates for rare event estimation due to their slow convergence rate, which is

compounded by the challenge of estimating a very small quantity.

6.3.1 The subset simulation method

We rely on the subset simulation (SS) method [91, 80] to accelerate rare event computation.

This approach decomposes the rare event estimation problem into a series of “frequent event”

estimation problems that are more tractable; it has been observed that this may reduce the

coefficient of variation by more than an order of magnitude over standard MC [91, 78, 80]. This

corresponds to a substantially lower computational burden for estimating rare event probabilities.

Consider the rare event domain, F = {θ ∈ Θ | q(θ) > τ̄}, and a sequence of nested subsets

of F ,

F = FL ⊂ · · · ⊂ F2 ⊂ F1,

where Fi = {θ ∈ Θ | q(θ) > τi}, i = 1, . . . , L with τ1 < τ2 < · · · < τL = τ̄ . The rare event

probability Pτ̄ can thus be decomposed into a product of conditional probabilities,

Pτ̄ = P(F ) = P

(
L⋂

i=1

Fi

)
=

L∏

i=1

P(Fi | Fi−1), (6.10)

with, by convention, F0 = Θ. Computing Pτ̄ according to (6.10) requires an efficient and

accurate method for estimating the L conditional probabilities. We use a modification of the

Metropolis-Hastings algorithm to accomplish this [91], which we describe more in Section 6.3.2.

Choosing a proper sequence of thresholds, {τi}Li=1, is a major challenge of the SS method.

Since one has little prior knowledge of the PDF of q(θ), it is often not feasible to prescribe the

sequence of thresholds a priori. Instead, one may require that P(Fi | Fi−1) = p0, i = 1, . . . , L− 1,

for some chosen quantile probability, p0 [91]. We can then iteratively estimate the proper

threshold at each “level” of the algorithm. The SS estimator of (6.10) then takes the form

Pτ̄ ≈ P̂SSτ̄ = pL−1
0 P(FL | FL−1), (6.11)

where the final conditional probability P(FL | FL−1) may be estimated using the modified

Metropolis procedure. Although p0 = 0.1 is a standard choice in engineering applications [74],

there has been significant work done to determine optimal values for p0 [92]; this, in general,
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depends on the QoI under consideration. It has been shown that, for practical purposes, the

optimal p0 lies in the interval [0.1, 0.3] and that, within this interval, the efficiency of SS is

insensitive to the particular choice of p0 [92]. With the approach for computing the sequence of

thresholds in (6.10), each τi is a random variable, estimated via a finite number of conditional

samples. Consequently the number of levels, or iterations necessary to terminate SS, is also

random. For a sufficiently large number of samples, the number of levels is given in [88] as

L− 1 =

⌊
logPτ̄
log p0

⌋
. (6.12)

Before we present a full algorithm outline for SS, we briefly discuss the modified Metropolis-

Hastings algorithm for drawing conditional samples.

6.3.2 The modified Metropolis-Hastings algorithm

The goal of Markov Chain Monte Carlo (MCMC) sampling is to create a Markov Chain whose

stationary distribution is that of the targeted quantity. MCMC has proven to be useful for

efficiently sampling from distributions with an unknown PDF. In the context of SS, given a

set of samples, {θ(1),θ(2), . . . } ∈ Fi−1, which are elements of a given rare event domain, we

want to draw conditional samples allowing for the computation of the conditional probability,

P(Fi | Fi−1). The Metropolis-Hastings algorithm is perhaps the best-known method for MCMC

sampling; several variants of Metropolis-Hastings are covered in the SS literature [74, 92, 88,

91]. We choose to employ the modified Metropolis algorithm (MMA) described in [74, 89] for

generating the conditional samples required for SS.

We begin by assuming that the input parameters of q are statistically independent and

normally distributed, although we will discuss the extension to non-Gaussian inputs later. If one

begins with a set of parameters which belong to some rare event domain, Fi, one seeks to draw

samples with the following conditional PDF,

π(θ | Fi) =
π(θ) χFi(θ)

P(Fi)
, (6.13)

where χFi is an indicator function for the set Fi. The MMA allows one to construct a Markov

Chain where (6.13) is its stationary distribution [52]. Given an initial seed belonging to Fi, we

have the following algorithm for constructing the Markov Chain:
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Algorithm 4 Modified Metropolis algorithm for conditional sampling [74]

Input: Markov Chain seed, θ(1) ∈ Fi, correlation parameter, γ ∈ [0, 1], length of chain, nc

Output: Markov Chain, θ(1), . . . ,θ(nc), with stationary distribution given by (6.13)

1: for i = 1, . . . , nc − 1 do

2: for j = 1, . . . , d do

3: θ′j = γθ
(i)
j +

√
1− γ2Z, Z ∼ N (0, 1)

4: end for

5: Accept or reject θ′ according to

θ(i+1) =




θ′, if θ′ ∈ Fi
θ(i), if θ′ /∈ Fi

6: end for

In Algorithm 4, a correlation parameter, γ, must be chosen by the user. It is reasonable to

expect that if a sample belongs to a rare event domain Fi, then samples for the next domain

should be in its near vicinity. Thus the user is tasked with balancing how closely to draw

conditional samples in the Markov Chain. We will use 0.8 as the default value for γ, just as

in [74]. Notice, for a seed, θ(1), that follows a standard normal distribution, each generated

candidate, θ′, will have mean zero and variance controlled directly by the correlation parameter

and so normality is preserved. We refer the interested reader to [78], which provides a high level

discussion of MMA as well as other variants of SS. A thorough analysis of MMA and other

MCMC algorithms for SS can be found in [89].

Given a set of samples generated by the Markov Chain, one is able to estimate P(Fi | Fi−1) by

evaluating (6.8) with the MCMC-generated samples. In this case, the samples are not statistically

independent and the estimator will be biased. As we have stated before, although conditional

samples will be drawn using the MMA, instead of evaluating the conditional probability directly,

we will use the p0 quantile to estimate τi at each level. Next, we discuss the full implementation

of SS, as we have described it, and issues related to its computational complexity.

6.3.3 Implementation of subset simulation

We provide an algorithm outline for the SS method in Algorithm 5. As stated before, although we

assume Gaussian inputs in the examples considered in this chapter, the SS method can however

be applied to non-Gaussian input distributions, see [93, Appendix B] for details. Additional

information on the implementation of the SS algorithm, including several variants and their

convergence analysis, is available in [91, 88, 74, 89]. As this MMA implementation reuses the

input parameters from each previous level to estimate the threshold for the next level, this

method does not require any burn-in samples to draw from the conditional distribution; it begins

by sampling from the previous rare event domain [74]. This is an attractive feature of the method

and which is not standard among MCMC methods. On the theoretical side, the SS algorithm is
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asymptotically unbiased and P̂SSτ̄ converges almost surely to the true rare event probability, Pτ̄ .

For a detailed convergence analysis of SS and derivation of its statistical properties, see [91].

Algorithm 5 Subset Simulation

Input: Rare event threshold, τ̄ , MCMC samples per level, NSS , quantile probability, p0, routine that

evaluates QoI, q(θ)

Output: Estimate of rare event probability: P̂SSτ̄
1: i = 1 {i indicates the current level}
2: Draw NSS samples of θ from the appropriate distribution

3: Evaluate NSS samples of q(θ) and compute τ1 as the p0 quantile

4: Save the bNSS · p0c inputs such that q(θ) > τ1 as seeds for the next level

5: while τi < τ̄ do

6: i = i+ 1

7: Sample θ by creating bNSS · p0c Markov Chains, each with length bp−1
0 c {See Algorithm 4}

8: Using MCMC samples of θ, evaluate q(θ) and compute τi as the p0 quantile

9: Save the bNSS · p0c inputs such that q(θ) > τi as seeds for the next level

10: end while

11: L = i+ 1

12: Using θ samples from FL−1, sample q(θ) and estimate P(FL | FL−1) using MC

13: Evaluate P̂SSτ̄ = pL0 P(FL | FL−1)

Before discussing practical issues related to the computational complexity of running SS,

we illustrate the results of Algorithm 5, specifically the MMA, using a two variable example.

Consider the motivating example from Section 6.2, where the dimension is d = 2. Let both

[θ1, θ2] ∼ N (0, I) and τ̄ = 4. We then illustrate the iterative nature of the sampling algorithm

outlined in Algorithm 4.

In Figure 6.2, the plot on the left shows the input samples in the (θ1, θ2)-space for each

level of the SS algorithm. The plot on the right shows the corresponding output of the QoI for

each level. In each plot, the dashed lines indicate the rare event threshold for each level of the

iteration. The SS algorithm can be considered a search algorithm, as it iteratively explores the

input space and uses conditional sampling to approach the rare event domain, F . By updating

the definition of a rare event at each level, one can guarantee that more samples will hit your

specified rare event domain, and thus your estimation will be more efficient.

6.3.4 Computational cost of subset simulation

We turn now to the computational cost of estimating Pτ̄ using SS. The computational cost

is measured in terms of the number of QoI evaluations required to run the algorithm. As the

number of levels, L, is random, so is the computational cost associated with SS. For simplicity,

we assume for our cost analysis that a sufficient number of samples has been used so that L
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Figure 6.2 Example (6.3) with d = 2. Left: samples in input space generated by MMA sampling with
thresholds for each level. Right: QoI output for each level with respective thresholds.

is deterministic. The total number of QoI evaluations required by SS is L ·NSS , where NSS is

a user-defined parameter that determines the number of samples per intermediate level of the

iteration. As one can see in Algorithm 5, the bNSS · p0c Markov Chain samples from one level

will acts as the seeds for the next level of Markov Chains, each with length bp−1
0 c.

It is important to emphasize the computational advantages of this method over standard

MC. Say, for example, the true rare event probability is 10−6 and we wish to estimate Pτ̄

with a coefficient of variation within δ = 0.1. For standard MC sampling, we would need

NMC ≥ 1/(δ2 ·Pτ̄ ) = 108 evaluations of the QoI. Take the SS method with a quantile probability

of p0 = 0.1. Then, according to (6.12), we would expect to have L = 7, corresponding to

7 iterations of conditional sampling. The coefficient of variation for each of the conditional

probabilities is more difficult to quantify, however, as in the case of the standard MC estimator,

they are inversely proportional to the probability itself [91], in this case, p0. Roughly speaking, for

7 iterations of SS, with each iteration of conditional sampling requiring NMC ≥ 1/(δ2 · p0) = 103

samples, one would expect to achieve the desired accuracy with approximately 105 evaluations

of the QoI. This significant reduction in the cost of estimating Pτ̄ with SS makes it a powerful

method for rare event estimation.

We lastly emphasize the advanatges of SS for estimating rare event probabilities in the context

of QoIs with high-dimensional inputs. Not only does SS improve upon the slow convergence

rates of standard MC by a wide margin, it also inherits the property of having a convergence

rate which is independent of the input dimension [91, 78].

6.4 Surrogates for GSA of rare event probabilities

We seek to apply variance-based GSA to Pτ̄ (ξ), defined in (6.2), with respect to components

of ξ. To mitigate the computational expense of performing such analysis, we combine the SS
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algorithm and surrogate models, in the form of polynomial chaos expansions (PCEs). We assume

ξ to be an d-dimensional vector with independent entries. Notice that d need not be smaller

or larger than the size of θ; we will cover a case later where the number of hyperparameters is

far smaller than the number of parameters. The procedure, which amounts to a double-loop

sampling approach, is outlined below:

• Generate hyperparameter samples: {ξ(j)}Nsamp
j=1

• For each j ∈ {1, . . . ,Nsamp}, estimate Pτ̄ (ξ(j)) using SS; denote these estimates by

P̂
(j)
τ̄ = SS(Pτ̄ (ξ(j)))

• Use the (noisy) function evaluations {P̂ (j)
τ̄ }Nsamp

j=1 to compute a surrogate model:

P̃τ̄ (ξ) ≈ Pτ̄ (ξ)

• Compute the Sobol’ indices of P̃τ̄ (ξ)

Instead of using SS for computing Pτ̄ (ξ
(j)), one may be tempted to apply a surrogate

further “upstream” by computing a surrogate model q̃ξ(j)(θ) for q(θ) from samples {q(θ(k))}nk=1

drawn from law of θ as determined by ξ(j). This surrogate model of q can then be used for

fast approximation of the rare event probability, Pτ̄ (ξ
(j)). This procedure, however, has two

major pitfalls: (i) an expensive surrogate modeling procedure must be carried out for each

j ∈ {1, . . . ,Nsamp} and, more importantly, (ii) surrogate models are typically poorly suited to the

task of rare event estimation. Indeed, surrogates typically fail to capture the tail behavior of the

distribution of the QoI q, making them unsuitable for rare event simulations. This shortcoming

is well-documented in the uncertainty quantification literature [94, 95] although efforts are being

made to tailor the surrogate model construction process for the efficient estimation of rare event

probabilities [96, 95].

6.5 PCE surrogate for rare event probability

Our approach leverages the properties of PCE surrogates for fast estimation of Sobol’ indices,

see Chapter 2 or [32, 29] for further information. This approach takes advantage of the regu-

larity of the mapping ξ 7→ Pτ̄ (ξ). Specifically, assuming the PDF of ξ satisfies certain (mild)

differentiability and integrability conditions, one can show that Pτ̄ (ξ) is a differentiable function

of ξ; see [97, Proposition 3.5].

Now applying the definition of the PCE (2.10) to the rare event probability, we define the

PCE of Pτ̄ as

P̃τ̄ (ξ) =

NPC∑

k=0

βkΨk(ξ), (6.14)

where {Ψk}NPC
k=0 belong to a family of orthogonal polynomials and {βk}NPC

k=0 are the (scalar) PCE

coefficients. In this chapter, we use a total order truncation scheme for the PCE. As mentioned
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in Chapter 2, for a total polynomial order of r, the truncation level, NPC, satisfies

NPC + 1 =
(d+ r)!

d!r!
,

and so one will need to carefully construct the polynomial basis, in order to build an accurate

surrogate of Pτ̄ with a minimal set of basis elements.

The PCE coefficients can be computed in a number of ways, including non-intrusive spectral

projection or regression [32, 28, 29]. A regression-based approach is preferred in this context

because the evaluations of Pτ̄ are noisy due to sampling errors incurred in the SS procedure. The

noise is balanced in recovering the PCE coefficients by using a regularization term to promote

sparsity. We refer the interested reader to [35] for a more general description of regression for PCE

and so-called compressive sampling techniques. We estimate the vector β = [β0, β1, · · · , βNPC
]

from function evaluations P̂
(j)
τ̄ = SS(Pτ̄ (ξ

(j))), j = 1, . . . ,Nsamp, by solving the penalized least

squares problem,

min
β

Nsamp∑

j=1

[
P̂

(j)
τ̄ −

NPC∑

k=0

βkΨk(ξ
(j))
]2

s.t. ||β||1 ≤ α. (6.15)

This particular formulation of the regularized least squares problem is known as LASSO, although

other formulations have been used in the literature [35]. In (6.15), the penalty parameter, α, acts

as a sparsity control on the recovered PCE coefficients. We generate the realizations {ξ(j)}Nsamp
j=1

of the hyperparameter vector through Latin hypercube sampling of ξ(j) [98]. Latin hypercube

is a popular choice for PCE due to its space-filling properties, although Quasi-Monte Carlo or

other sampling approaches may be useful. For further details on the implementation of sparse

regression for PCE, see [99, 35]. The numerical results in Section 6.6 are obtained using the

SPGL1 solver [100]. Finally, since the main cost in this process is using SS to estimate the rare

event probabilities, the post-processing work needed to choose the appropriate PCE basis and

tune α can be done at a negligible cost. This freedom is an additional benefit of choosing the

sparse regression approach over quadrature-based techniques.

6.5.1 GSA of Pτ̄ using the PCE surrogate

As covered in Chapter 2, the Sobol’ indices of a PCE surrogate can be computed analytically.

For example, the first order Sobol’ indices, Si(Pτ̄ ), i = 1, . . . , d, of Pτ̄ can be approximated as

follows:

Si(Pτ̄ ) ≈ Si(P̃τ̄ ) =

∑
k∈Ki β

2
k E[Ψ2

k]∑NPC
k=1 β

2
k E[Ψ2

k]
, (6.16)

where Ki denotes the set of all PCE terms that depend only on ξi (see (2.17)). Sobol’ indices

for arbitrary subsets of variables, as well as total indices, can be computed in an analogous

manner [27]. In practice, PCE surrogates with modest accuracy are often sufficient to obtain

reliable estimates of Sobol’ indices, a point which will be revisited in the next section.

While the above approach for GSA of Pτ̄ does require repeated simulations of the QoI, q,
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during the calls to the SS algorithm, it can provide a dramatic computational speedup over

the standard Saltelli method (see Section 2.1.2) for computing the Sobol’ indices of Pτ̄ [7].

Indeed, a fixed sample {ξ(j)}Nsamp
j=1 with modest Nsamp is sufficient to compute the PCE surrogate

from which the Sobol’ indices can be computed at a negligible computational cost. Moreover,

the sparse regression approach for estimating PCE coefficients is forgiving of noisy function

evaluations. Therefore, large sample sizes are not needed in the calls to the SS algorithm. We

demonstrate the merits of the proposed approach for GSA of rare events in Section 6.6.

6.6 Numerical results

We summarize, in Section 6.6.1, the computational results for the motivating example from

Section 6.2. A more computationally demanding model problem, involving flow through porous

media, is considered in Section 6.6.2.

6.6.1 Results for the analytic test problem

We consider the example from Section 6.2, where the hyperparameter dimension is 10, and

study Pτ̄ where τ̄ = 3. To establish a baseline for the values of the Sobol’ indices of Pτ̄ (ξ), we

compute the total order Sobol’ indices directly from (6.5) using Saltelli sampling. The reference

Sobol’ indices are computed with 106 samples for each of the conditional terms; convergence

was numerically verified. We plot the reference total indices in Figure 6.3 for comparison. We

now compare the reference indices with those obtained through the PCE surrogate when Pτ̄ (ξ)

is computed analytically using (6.5). We allocate 103 samples of Pτ̄ (ξ) each for the Saltelli

sampling method and sparse regression PCE method. The Saltelli method requires NMC(d+ 1)

QoI evaluations to estimate the total indices, and so we divide the budget of 103 evaluations

equally among each of the conditional terms. Each PCE coefficient can be estimated using the

full set of 103 samples. For a fair comparison, we use Latin hypercube sampling to generate the

ξ samples for both the PCE and Saltelli method. We also use a total PCE order of 3 and the

penalty parameter α = 5×10−2. Given that the set of total indices is computed, in each method,

using a finite number of samples, each index is a random variable with an associated distribution.

We compare two standard deviations of each total index for the two GSA methods. In each

case, we compute 103 realizations of the full set of total indices and compare their respective

standard deviations in Figure 6.3. Figure 6.3 illustrates the higher accuracy, or lower variance,

of PCE with sparse regression over Saltelli sampling: the standard deviation of the largest Sobol’

index is roughly 3 times smaller with sparse regression than it is with Saltelli sampling. This

gap in accuracy appears to diminish for smaller indices, although the methods do not show

comparable accuracy until the indices are below 0.1. As Pτ̄ can be expressed analytically, there

will be additional benefits of the sparse regression method to be seen when one performs GSA

on a rare event probability with noisy estimations due to sampling. We note that the total

order of the PCE basis and the penalty parameter, α, which are user-defined parameters, can

82



1 2 3 4 5 1

2

2

2

3

2

4

2

5

2
0

0.1

0.2

0.3

0.4 Total Sobol indices (reference)

2 , Saltelli sampling method

2 , Sparse regression method

Figure 6.3 Total Sobol’ indices of Pτ̄ , with τ̄ = 3, from (6.5); the error bars illustrate the variability
of the two sampling methods (Saltelli sampling and sparse regression PCE) around the reference
values (blue bars).

be changed without the need for additional runs of SS. These parameters can be cross validated

as a post-processing step after the rare event simulation step, providing flexibility in the PCE

approach without adding any significant computational burden.

When combining PCE-based GSA with SS for estimating Pτ̄ (ξ), there is a tradeoff between

the inner loop cost of estimating Pτ̄ via SS and the outer loop of aggregating Pτ̄ samples to

build the PCE. In Figure 6.4, we separately vary NSS and NSAMP and examine the resulting

distribution of the total Sobol’ indices, computed via sparse regression PCE. For a fixed NSAMP,

we compute multiple realizations of the total indices for several values of NSS. Figure 6.4 (top)

displays the expected value of the total indices for NSAMP = 100. Regardless of how accurately

we estimate Pτ̄ , the indices do not approach their true values because the PCE is built using an

inadequate number of samples, resulting in a poor surrogate. By contrast, Figure 6.4 (middle)

shows that for NSAMP = 103, we only need a modest NSS to approximate the Sobol’ indices.

Indeed, for NSS = 500, we are able to resolve the total indices very well. We also examine the

case of NSAMP = 104 in Figure 6.4 (bottom). Again, we are able to resolve the total indices well

using only NSS = 500 and are able to achieve the correct ordering for as little as NSS = 100.

These results indicate that (i) a modest number of samples allocated to SS is enough to get

a rough estimate of Pτ̄ and (ii) a moderate number of evaluations of Pτ̄ (ξ) is then sufficient for

accurate GSA. In other words, given inexpensive, low-fidelity estimations of Pτ̄ , we are still able

to extract accurate GSA results, due to the fact that the sparse regression technique is robust

to noisy QoI evaluations.
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Figure 6.4 Mean Total Sobol’ indices over 1000 realizations, varying the computational cost of SS
and the PCE construction. Each plot varies NSAMP and each colored bar varies NSS , with the final
bar of each index corresponding to the analytic Pτ̄ .

6.6.2 Subsurface flow application

We next consider a problem from porous media flow. This problem has been used previously in

the context of rare event estimation in [74] as it pertains to the long-term reliability of nuclear

waste repositories. We consider the equations for single-phase, steady state flow in a square
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domain, D = [0, 1]2:

−∇·
(
κ

µ
∇p
)

= 0 in D,

p = 1 on Γ1,

p = 0 on Γ2,

∇p·n = 0 on Γ3,

(6.17)

where κ is the permeability of the medium, µ is the viscosity, and p is the pressure. The boundaries

Γ1,Γ2, and Γ3 indicate the left boundary, the right boundary, and the top/bottom boundaries,

respectively. The Darcy velocity is defined as v = −κ
µ∇p. In this chapter, we let µ = 1. In

practical scenarios, the permeability of the medium would be determined experimentally using

a finite number of measurements. Thus it is appropriate to consider the permeability field as an

uncertain quantity, which we model as a random field. We then consider the flow of particles

through the medium and focus on determining the probability that said particles do not reach

the outflow boundary in a given amount of time. Our goal is to perform GSA with respect to

the hyperparameters that define the distribution law of the permeability field.

6.6.3 The statistical model for the permeability field

Following standard practice [74, 15], we model the permeability field as a log-Gaussian random

field,

log κ(x, ω) = a(x, ω) = ā(x) + σaz(x, ω), (6.18)

where x ∈ D and ω belongs to sample space that carries the random process. Here, ā is the

mean of the random field, σa is a scalar which controls the pointwise variance of the field, and z

is a centered (zero-mean) random process. We then specify a statistical description of z, which

encapsulates a number of hyperparameters. We define the covariance function of z to be given

by

cz(x, y) = exp

(
−|x1 − y1|

`x
− |x2 − y2|

`y

)
, x, y ∈ D, (6.19)

where `x and `y denote the correlation lengths in the horizontal and vertical directions. The

random field is represented via a truncated Karhunan-Loève expansion (KLE) [32, 74],

a(x, ω) ≈ ā(x) +

NKL∑

k=1

√
λk θk(ω) ek(x). (6.20)

In this representation, θ1, . . . , θNKL
are independent, standard normal random variables and

(λk, ek), k = 1, . . . ,NKL are the leading eigenpairs of the covariance operator of the stochastic

process [32]. Our setup for the uncertain log-permeability field follows the one in [15]: we use

permeability data from the Society for Petroleum Engineers [101] to define the mean of the

random field, ā. After a generalized eigenvalue problem is solved [16], the KLE is truncated

according to the chosen metric. Following [15], we monitor the fraction of the average variance
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as measured by the eigenvalue ratio,

ri =

∑i
k=1 λk∑∞
k=1 λk

. (6.21)

Once an acceptable ratio has been met, the truncation level, denoted NKL, is prescribed.

The resulting random vector, θ = [θ1 θ2 · · · θNKL
]> fully describes the uncertainty in the

log-permeability field.

In our numerical experiments, we truncate the KLE so that at least 90% of the average

variance of the field is maintained (i.e. ri ≥ 0.9 in (6.21)). Since the eigenvalue decay is slowest

for small correlation lengths, we choose the largest NKL necessary and fix the number of KL

modes for all realizations of ξ. For `x = `y = 0.4, which are the smallest correlation lengths

considered in this chapter, we require at least NKL = 126. The number of retained KL modes

then determines the dimensionality of the rare event estimation problem, and is henceforth fixed

at 126. In this regime, the high-dimensional capabilities of the SS algorithm are useful.

For illustration, we plot two realizations of the random field, with the corresponding pressure

and velocity fields obtained by solving the governing PDE (6.17), in Figure 6.5. In our com-

putations, we solve the PDE using piecewise linear finite elements in Matlab’s finite element

toolbox with 50 mesh points in each direction.

6.6.4 Defintion of the QoI and rare event problem

The solution of the PDE model (6.17) allows for the computation of the Darcy velocity,

v = −κ
µ∇p. The position x of a particle moving with the flow through the medium is then

determined by the following ODE,
dx

dt
= v,

x(0) = x0,

(6.22)

where x0 is the initial position of the particle. In our case, we focus on particles beginning from

the initial position x0 = [0 0.5]>. The solution of (6.22) depends not only on time but also

on the uncertainty in the permeability field, described by θ, due to dependence of κ on θ (i.e.,

x = x(t,θ)). We then define the scalar QoI, q, as the hitting time, that is, the time it takes a

particle to travel through the medium from left to right:

q(θ) = min{t : x1(t,θ) = 1}.

We aim to determine the rare event probability, Pτ̄ = P(q > τ̄). The parameters `x, `y, and σa

parametrize the uncertainty in the permeability field; we consider them as hyperparameters and

set ξ = [`x `y σa]
>. We set the nominal values of the hyperparameters ξnom = [0.4 0.4 0.8]>.

We simulate realizations of the permeability field at these nominal hyperparameters and plot

the distribution of q. Each of these realizations requires one PDE solve and one ODE solve. As
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Figure 6.5 Left: plots showing two realizations of the log permeability field. Right: the corresponding
pressure solution and arrows indicating the resulting Darcy velocity field.

Figure 6.6 Left: Histogram of q for nominal hyperparameters. Vertical line indicates rare event
threshold of τ̄ = 4.5. Right: histogram of the rare event probability, estimated via SS with uniformly
distributed hyperparameters.

illustrated in Figure 6.6, the distribution for q corresponds to a heavy-tailed distribution. We

select as the threshold τ̄ = 4.5 and consider quantifying the sensitivity of Pτ̄ (ξ) with respect to
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the hyperparameters defining the KLE. Note, in this case, the dimension of ξ is much smaller

than that of θ, meaning that the PCE surrogate will be relatively low-dimensional, while the

rare event estimation will be high-dimensional.

6.6.5 Rare event probabilities and GSA

In our first set of experiments, we use SS with NSS = 103 samples per intermediate level; each of

these samples corresponds to one solution of the full subsurface flow problem, including a PDE

and ODE solve. For each evaluation of SS, approximately 5 intermediate levels are used, resulting

in approximately 5× 103 function evaluations per estimation of Pτ̄ . Our hyperparameters are

drawn from a uniform distributed centered at ξnom with a spread of plus or minus 10% of ξnom.

We use these SS estimations of Pτ̄ (ξ) in order to build the corresponding PCE surrogate, where

the polynomial basis is truncated at a total polynomial order of 5. Note the decision of where to

truncate the PCE basis does not need to be made prior to estimating the set of P̂τ̄ (ξ) samples.

The samples for the hyperparameters are drawn using a Latin hypercube sampling scheme.

We use 103 estimations of Pτ̄ (ξ) to construct the PCE surrogate. Again, we use sparse regression

to recover the PCE coefficients, while promoting sparsity in the set of PCE coefficients, and so

mitigating the effects of noise induced by SS. In Figure 6.7, we use two different values of α

 = 1.0

 = 5  10
-2

Figure 6.7 Left: total Sobol’ indices for Pτ̄ (ξ) computed from recovered PCE coefficients; results are
reported with regularization constant α = 1 and α = 5× 10−2. Right: PDF of PCE surrogate compared
with Pτ̄ evaluation histogram. Used Nsamp = 104 for better resolution of distributions.

when promoting sparsity in order to illustrate the effect of α on the results. When α is made

smaller, the PCE coefficients decrease in magnitude, promoting a sparser PCE spectrum. For

either choice of α in Figure 6.7, the ordering of the total Sobol’ indices remains consistent,

and thus, conclusions with respect to parameter sensitivity are unaffected. For this experiment,

we therefore conclude that choosing α by trial and error is sufficient. Should one encounter a

scenario where the GSA results are more sensitive to α, more systematic approaches are possible,
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such as an L-curve test, cross validation approaches, etc. [28, 35].

Figure 6.8 Distributions of Pτ̄ for NSS = 500 and varying values of Nsamp. For each Nsamp, we build
the PCE surrogate and approximate its PDF with 105 samples. The sets of Pτ̄ samples used for differ-
ing Nsamp are nested within sets of larger samples. Corresponding total indices are included, computed
directly from the PCE surrogates.

We lastly return to the key point made in Section 6.6.1, that the proposed method is capable

of producing reliable GSA results, while using a modest number of inner and outer loop samples

(NSS and Nsamp, respectively). Put another way, one can obtain high-fidelity GSA results by

combining low-fidelity estimations of the rare event probability with sparse PCE surrogates. In

Figure 6.8, we report results corresponding to NSS = 500. In the left panel of the Figure we

study the effect of Nsamp on the PDF of the PCE surrogate. In the right panel, we plot the Sobol’

indices corresponding to each of the computed surrogates. The results in Figure 6.8 should also

be compared with those in Figure 6.7, where larger values of NSS and Nsamp were used. This

experiment indicates that Pτ̄ and the Sobol’ indices themselves can be well-approximated with

a modest number of samples in both the inner and outer loops. In this case, using both NSS

and Nsamp on the order of 102 is sufficient for obtaining accurate GSA results. The combined

cost of this method is thus reduced by a significant margin compared with the similar results in

Figure 6.7. The efficiency gains of this method indicate the potential for deployment on problems

which would otherwise be intractable.

6.7 Conclusion

We have shown that the feasibility of the double-loop approach for GSA of rare event probabilities

can be significantly extended beyond simple applications. This requires appropriate acceleration

methods; in our case, this is achieved through subset simulation and the choice of a polynomial

surrogate model allowing for the analytical calculation of Sobol’ indices. This approach is
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conceptually simple and does not require the development of new, ad hoc sensitivity concepts.

While we have extended the range of applicability of the double-loop approach, we acknowledge

that more research is needed to deal with computationally expensive, high-dimensional problems.

Specifically, in the event that both the inner and outer loop parameters are high-dimensional,

surrogate construction methods will need to be employed that are effective in high dimensions.

Here, we note the applicability the hybrid MLMC-PCE approach developed in Chapter 4, where

one may define multiple fidelities according to the estimation quality of the rare event probability.

We also note that multifidelity methods have been successfully used for the acceleration of subset

simulation [74], indicating further potential for this work.

The efficiency of our method crucially depends on working with surrogate models for

which sensitivity measures — here, Sobol’ indices — can be computed cheaply. This clearly

limits the type of GSA which can be carried out by our approach. More generally, if q is the

original QoI and if q̃ is the resulting QoI for a given surrogate model, more work is needed to

understand the relationship between the approximation error, q− q̃, and the resulting GSA error,

I(q)− I(q̃), where I(·) is some sensitivity measure. More explicitly, there may be room for the

development of “cheap” surrogate models with moderate approximation errors and small GSA

errors. Additionally, both our sensitivity analysis method as well as surrogate modeling approach

rely on the assumption that the hyperparameters are independent. In some cases one might be

interested in GSA of rare event probabilities to both hyperparameters and additional parameters

in a model that might be uncertain and possibly correlated. Therefore, another interesting line of

inquiry is to consider GSA of rare event probabilities with respect to correlated parameters [24].

Further study may also include extensions of our approach to other moment-based QoIs (e.g.

CDF approximation, skewness, kurtosis) and the use of perturbation-based methods for GSA [82]

as opposed to considering a discrete set of hyperparameters.
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CHAPTER

7

SUMMARY OF CONTRIBUTIONS

This chapter summarizes the contributions of this dissertation and also points to future work in

the areas investigated.

The main theme of this dissertation is leveraging multiple model fidelities to improve the

efficiency and accuracy of GSA and, in some situations, to enable GSA where it has previously

been considered infeasible. In Chapter 3, a framework was discussed, by which the Sobol’ indices

of stochastic chemical models can be approximated by the Sobol’ index results of a related

system of deterministic models. This type of surrogate GSA, when done appropriately, can

result in approximate Sobol’ index results for the stochastic model without any need to evaluate

the stochastic model itself. In Chapters 4 and 5, we examined a novel hybrid method for GSA,

built from the combination of multilevel Monte Carlo and polynomial chaos expansions. We

have shown that the hybrid method can distribute the computational effort across the model

hierarchy in a manner than is optimally-tailored for the computation of Sobol’ indices. Practical

aspects of the hybrid method were discussed and the method was compared with other state of

the art sampling-based GSA methods. Finally, Chapter 6 examines the challenge of performing

GSA for a moment-based quantity of interest, namely a rare event probability. In this scenario,

the fidelity with which one approximates the rare event probability is determined by amount of

sampling performed. In this case, accurate GSA of the rare event probability is accomplished

by combining sparse polynomial surrogates with subset simulation, which obtains low-cost

approximations of the rare event probability.

A critical challenge that is covered in Chapter 3 is the issue of multiple sources of uncertainty,

which may not be uniform across a given model hierarchy. Some work has been done in the

area of multilevel methods for stochastic chemical systems [57, 38]. Future work should examine
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the challenges of performing GSA in the presence of multiple sources of uncertainty, as well as

developing a general framework for using models with multiple fidelities, each with their own

sources of uncertainty.

Another area of future work is the generalization of the hybrid MLMC-PCE method from

Chapter 4 to the multifidelity and approximate control variate settings. Such an approach would

allow one to perform goal-oriented GSA using multiple fidelities, but with the increased flexibility

that is offered by multifidelity and approximate control variate methods [70, 68].

Finally, we touch on the material from Chapter 6, where the QoI is a moment-based quantity

of interest which, in most cases, cannot be evaluated directly. There has been some work done in

this area in recent years [39]. Future work should address the relationship between model fidelity

and the accuracy of the resulting sensitivity analysis. This ties into a larger open question about

surrogates and the analysis of mathematical models: how accurate must a surrogate be to enable

useful analysis of the original model? While this question is pertinent to the study of polynomial

surrogates and GSA, it stands out as one of the fundamental questions facing practitioners

across all fields of science and engineering.
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[34] Blatman, Géraud & Sudret, Bruno. “Adaptive sparse polynomial chaos expansion based
on least angle regression”. Journal of computational Physics 230.6 (2011), pp. 2345–2367.

[35] Hampton, Jerrad & Doostan, Alireza. “Compressive sampling methods for sparse polyno-
mial chaos expansions”. Handbook of uncertainty quantification. Springer International
Publishing, 2017, pp. 827–855.

[36] Dick, Josef, Kuo, Frances Y & Sloan, Ian H. “High-dimensional integration: the quasi-
Monte Carlo way”. Acta Numerica 22 (2013), pp. 133–288.

[37] Gerstner, Thomas & Griebel, Michael. “Numerical integration using sparse grids”. Nu-
merical algorithms 18.3 (1998), pp. 209–232.

[38] Giles, Michael B. “Multilevel Monte Carlo methods”. Acta Numerica 24 (2015), p. 259.

[39] Peherstorfer, Benjamin, Willcox, Karen & Gunzburger, Max. “Survey of multifidelity
methods in uncertainty propagation, inference, and optimization”. Siam Review 60.3
(2018), pp. 550–591.

[40] Koziel, S., Ciaurri, D.E. & Leifsson, L. “Surrogate based methods”. Computational
Optimization, Methods and Algorithms. Ed. by Koziel, S. & Yang, X.S. Vol. 356. Studies
in Computational Intelligence. Springer, 2011, pp. 33–59.

95



[41] Gillespie, D.T. “Stochastic simulation of chemical kinetics”. Annu. Rev. Phys. Chem. 58
(2007), pp. 35–55.
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APPENDIX

A

DERIVATION OF ESTIMATORS

A.1 Single level covariance C
[(
β̂k

)2

,
(
β̂z

)2
]

Proof. Letting P
(i)
k = q(i)Ψ

(i)
k and bk = E

[
Ψ2
k

]
, we have

C
[(
β̂k

)2

,
(
β̂z

)2
]

=
1

N4b2kb
2
z

C



(

N∑

i=1

P
(i)
k

)2

,

(
N∑

i=1

P (i)
z

)2



=
1

N4b2kb
2
z

C



N∑

i=1

P
2,(i)
k +

N∑

i=1

P
(i)
k

N∑

j=1
j 6=i

P
(j)
k ,

N∑

i=1

P 2,(i)
z +

N∑

i=1

P (i)
z

N∑

j=1
j 6=i

P (j)
z




=
1

N4b2kb
2
z


C

[
N∑

i=1

P
2,(i)
k ,

N∑

i=1

P 2,(i)
z

]
+ C



N∑

i=1

P
2,(i)
k ,

N∑

i=1

P (i)
z

N∑

j=1
j 6=i

P (j)
z




+ C



N∑

i=1

P
(i)
k

N∑

j=1
j 6=i

P
(j)
k ,

N∑

i=1

P 2,(i)
z


+ C



N∑

i=1

P
(i)
k

N∑

j=1
j 6=i

P
(j)
k ,

N∑

i=1

P (i)
z

N∑

j=1
j 6=i

P (j)
z





 .

(A.1)

We will now consider all the covariance contributions separately. The first term is
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C

[
N∑

i=1

P
2,(i)
k ,

N∑

i=1

P 2,(i)
z

]
= NC

[
P 2
k , P

2
z

]
= N

(
E
[
q4Ψ2

kΨ
2
z

]
− E

[
q2Ψ2

k

]
E
[
q2Ψ2

z

])
(A.2)

The second contribution we consider is C
[∑N

i=1 P
2,(i)
k ,

∑N
i=1 P

(i)
z
∑N

j=1
j 6=i

P
(j)
z

]
:

C




N∑

i=1

P
2,(i)
k ,

N∑

i=1

P (i)
z

N∑

j=1
j 6=i

P (j)
z


 = C




N∑

i=1

P
2,(i)
k , P (i)

z

N∑

j=1
j 6=i

P (j)
z +

N∑

q=1
q 6=i

P (q)
z

N∑

j=1
j 6=q

P (j)
z




= C




N∑

i=1

P
2,(i)
k , P (i)

z

N∑

j=1
j 6=i

P (j)
z + P (i)

z

N∑

q=1
q 6=i

P (q)
z +

N∑

q=1
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P (q)
z

N∑

j=1
j 6=q,i

P (j)
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= C




N∑

i=1

P
2,(i)
k , 2P (i)

z

N∑

j=1
j 6=i

P (j)
z +

N∑

q=1
q 6=i

P (q)
z

N∑

j=1
j 6=q,i

P (j)
z




= 2N(N − 1)C
[
P 2
k , PzP

′
z

]

= 2N(N − 1)
(
E
[
q3Ψ2

kΨz

]
E [qΨz]− E

[
q2Ψ2

k

]
E [qΨz]

2
)
,

(A.3)

where Pz and P ′z indicate i.i.d. realizations of Pz.

For symmetry, the third term is simply

C




N∑

i=1

P 2,(i)
z ,

N∑

i=1

P
(i)
k

N∑

j=1
j 6=i

P
(j)
k


 = 2N(N − 1)

(
E
[
q3Ψ2

zΨk

]
E [qΨk]− E

[
q2Ψ2

z

]
E [qΨk]

2
)
.

(A.4)
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The last contribution is obtained as
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 N∑
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P
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k
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 N∑
i=1

N∑
j>1

P
(i)
k P

(j)
k , P (i)

z

P (j)
z +

N∑
q=1
q 6=i,j

P (q)
z

+

N∑
q=1
q 6=i

P (q)
z

N∑
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 N∑
i=1

N∑
j>1

P
(i)
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z
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z
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N∑
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P (r)
z
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z

P (i)
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k P
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z P (j)
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P (q)
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2
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′
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′
z

]
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N(N − 1)(N − 2)

2
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[
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′
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= 2N(N − 1)

(
E
[
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]2 − E [qΨk]2 E [qΨz]
2
)
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(
E
[
q2ΨkΨz

]
E [qΨk]E [qΨz] − E [qΨk]2 E [qΨz]

2)
= 2N(N − 1)E

[
q2ΨkΨz

]2
+ 4N(N − 1)(N − 2)E

[
q2ΨkΨz

]
E [qΨk]E [qΨz]

− 2N(N − 1)(1 + 2(N − 2))E [qΨk]2 E [qΨz]
2

(A.5)

A.2 Multilevel MC covariance C
[(
β̂k

)2

,
(
β̂z

)2
]

In this section, the derivation of the multilevel covariance term:
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(
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 ,

(A.6)

is presented.
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Proof. The multilevel MC covariance term can be written as
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]
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1

bk

L∑

`=0

P̂`,k

)2

,

(
1

bz

L∑

`=0

P̂`,z

)2



=
1

b2kb
2
z

C



(

L∑

`=0

P̂`,k

)2

,

(
L∑

`=0

P̂`,z

)2



=
1

b2kb
2
z

C




L∑

`=0

(
P̂`,k

)2
+

L∑

`=0

∑

r 6=`
P̂`,kP̂r,k,

L∑

`=0

(
P̂`,z

)2
+

L∑

`=0

∑

r 6=`
P̂`,zP̂r,z




=
1

b2kb
2
z


C

[
L∑

`=0

(
P̂`,k

)2
,
L∑

`=0

(
P̂`,z

)2
]

+ C




L∑

`=0

(
P̂`,k

)2
,
L∑

`=0

∑

r 6=`
P̂`,zP̂r,z




+ C




L∑

`=0

(
P̂`,z

)2
,

L∑

`=0

∑

r 6=`
P̂`,kP̂r,k


+ C




L∑

`=0

∑

r 6=`
P̂`,kP̂r,k,

L∑

`=0

∑
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 ,

(A.7)

where each single level estimator P̂`,k is defined as

P̂`,k =
1

N`

N∑̀

i=1

(
q

(i)
` − q

(i)
`−1

)
Ψ
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Y
(i)
` Ψ

(i)
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1

N`

N∑̀
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P
(i)
`,k . (A.8)

There are 4 terms that need to be computed, however, due to symmetry, only 3 of them

need to be derived explicitly.
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The first term can be written as

C
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P̂`,k
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(A.9)

For this term the derivation of each single-level estimator is identical to the single-level covariance

term derived in the previous section.

The second (and third term, due to symmetry) term can be written as
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(A.10)

The term C
[(
P̂`,k

)2
, P̂`,z

∑L
r=0
r 6=`

P̂r,z

]
can be evaluated in term of moments of the QoI, q`,
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by further manipulating the terms:
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(A.11)

The first term of the previous expression, Eq. A.11, can be written as

C
[
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(A.12)
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The second term of Eq. A.11 can be manipulated as it follows:
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(A.13)

Finally, the last term of Eq. A.7 is written as
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(A.14)

by using the single-level derivation.
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The first term of the previous expression can be simplified as
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+ (Nr − 1)E [P`,kP`,z]E [Pr,k]E [Pr,z]− (Nr − 1)E [P`,k]E [P`,z]E [Pr,k]E [Pr,z]

+ (N` − 1)E [P`,k]E [P`,z]E [Pr,kPr,z]− (N` − 1)E [P`,k]E [Pr,k]E [Pr,z]E [P`,z])

(A.15)

The last two terms of Eq. A.14 are similar and can be obtained as demonstrated below for
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the first of them

C




L∑

`=0

L∑

r=`+1

P̂`,kP̂r,k, P̂`,z

L∑

q=0
q 6=`,r

P̂q,z




=
L∑

`=0

L∑

r=`+1

C


P̂`,kP̂r,k, P̂`,z

L∑

q=0
q 6=`,r

P̂q,z




=
L∑

`=0

L∑

r=`+1

C




1

N`

1

Nr

(
N∑̀

i=1

P
(i)
`,k

)


Nr∑

j=1

P
(j)
r,k


 ,

1

N`

1

Nq

N∑̀

i=1

P
(i)
`,z

L∑

q=0
q 6=`,r




Nq∑

s=1

P (s)
q,z







=
L∑

`=0

L∑

r=`+1

1

N2
`Nr

C



N∑̀

i=1

Nr∑

j=1

P
(i)
`,kP

(j)
r,k ,

N∑̀

i=1

P
(i)
`,z

L∑

q=0
q 6=`,r

1

Nq




Nq∑

s=1

P (s)
q,z







=

L∑

`=0

L∑

r=`+1

1

N2
`Nr

C


P

(i)
`,k

Nr∑

j=1

P
(j)
r,k +

N∑̀

q=1
q 6=i

Nr∑

j=1

P
(q)
`,k P

(j)
r,k ,

N∑̀

i=1

P
(i)
`,z

L∑

q=0
q 6=`,r

1

Nq




Nq∑

s=1

P (s)
q,z







=

L∑

`=0

L∑

r=`+1

1

N`Nr
C


P`,k

Nr∑

j=1

P
(j)
r,k , P`,z

L∑

q=0
q 6=`,r

1

Nq




Nq∑

s=1

P (s)
q,z







=
L∑

`=0

1

N`

L∑

r=`+1

L∑

q=0
q 6=`,r

(E [P`,kP`,z]E [Pr,k]E [Pq,z]− E [P`,k]E [P`,z]E [Pr,k]E [Pq,z])

(A.16)
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