
ABSTRACT

DEYESO III, ROBERT LEONARD. Obstructing Exceptional Surgeries using Immersed
Curves. (Under the direction of Tye Lidman).

We study toroidal and reducible surgeries along knots in S3 using Heegaard Floer

homology via immersed curves techniques. Surgeries that contain a Klein bottle are often

examples of the former type, and are presentable as a gluing of the twisted I-bundle over

the Klein bottle to a knot manifold. We use a genus bound on the surgery slope due

to Ichihara and Teragaito to study such gluings with a knot complement of S3. Toward

reducible surgeries, the Cabling Conjecture of González-Acuña and Short holds that only

cable knots admit them. It is one of the largest open problems in low-dimensional topology,

and has been verified for many types of knots. We show that almost all thin knots satisfy

the conjecture, with possible exception coming from a (possibly non-existent) collection of

thin, hyperbolic, L-space knots. This also serves as a reproof that the Cabling Conjecture

is satisfied by alternating knots.
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section Floer homology is ĤF(S3
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Figure 5.1 The possibilities for the reference intersection as. (a) has τ(K) = 0,
(b) has τ(K) > 0 and |s| < τ(K), and (c) has τ(K) < 0 with two
curves representing s ≥ 0 in red and s < 0 in purple. The case when
τ(K) > 0 and |s| ≥ τ(K) is similar to (a). . . . . . . . . . . . . . 57

Figure 5.2 H̃s is the number of marked points enclosed in green regions, and Ṽs
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CHAPTER

1

INTRODUCTION

1.1 Background

Following the success of the h-cobordism theorem of Smale for large dimensions (≥ 5)

[Sma61] and classical results for small dimensions, current classification efforts in geometric

topology focus on 3- and 4-dimensional manifolds. This is the domain of low-dimensional

topology, and the strategy for studying 3-manifolds often involves decomposing them

along submanifolds into more understood pieces. They may be decomposed along 2-

spheres, annuli, and tori [JS79, Joh79], resulting in pieces with specific geometries due to

Thurston’s Geometrisation conjecture [Thu82], established by Perelman [KL08].

Such pieces often arise from a construction called Dehn surgery, which is a process of

constructing a 3-manifold using a knot as follows. Given K ⊂ S3, excise its solid torus

neighborhood from S3 to obtain its exterior S3 \ νK, and then glue a solid torus back in

along a map between their boundaries. The homology class of the attaching solid torus’s

meridian in ∂(S3 \ νK), represented as a slope r ∈ Q ∪
{

1
0

}
, determines the resulting

manifold. We denote the result of r-surgery along K by S3
r (K), and say that a manifold

is realizable as surgery if it may be obtained in this way.
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Lickorish and Wallace showed that all closed, connected, orientable 3-manifolds may

be obtained by integral Dehn surgery on a link in S3 [Lic62, Wal60]. It is then important

to understand surgery descriptions of 3-manifolds that arise as surgery on just a knot. A

3-manifold that contains an essential 2-sphere is called reducible, and the knots which

admit reducible surgeries are the subject of the Cabling Conjecture [GAnS86]. On the

other hand, Thurston’s hyperbolic Dehn surgery theorem shows that a hyperbolic knot

K, which is a knot whose exterior has hyperbolic geometry, admits surgeries S3
r (K) that

are hyperbolic for all but finitely many slopes r [Thu78]. Dubbed exceptional, these

non-hyperbolic surgeries of K are then rare enough to warrant classification. Surgeries

along a hyperbolic knot containing a Klein bottle are exceptional, and together with

reducible surgeries these are our two main focuses. In order to study these surgeries, we

use various invariants of knots and manifolds.

Denoted HF, Ozsváth’s and Szabó’s Heegaard Floer homology is a collection of various

“flavors” of graded homology theories that utilize Lagrangian Floer homology [OS04d].

These invariants have applications to knot theory [OS04a, OS04e, Ni07, Ghi08], contact

topology [OS05a], 4-manifold topology [OS04e], and Dehn surgery [OS08, OS11]. Knot

Floer homology, due to [OS04b, Ras03], is an invariant for knots similar to the hat-flavor

ĤF of Heegaard Floer homology. The Heegaard Floer homology of a given surgery is

determined by the knot Floer homology of the surgery knot [OS08], and this connection has

led to fruitful approaches in three big open problems in Dehn surgery; the Berge Conjecture

[OS05b, BGH08, Hed11], the Cosmetic Surgery Conjecture [Wan06, NW15, Han19], and

the Cabling Conjecture [HLZ15, Jab15]. We will involve this connection in an alternate

way, by using bordered Heegaard Floer homology.

Lipshitz, Ozsváth, and Thurston introduced bordered Heegaard Floer invariants for

manifolds with torus boundary in [LOT18b]. With M0 ∪h M1 denoting a gluing of two

manifolds along their torus boundaries, they prove a pairing theorem involving the two

bordered invariants that recovers the Heegaard Floer homology of the glued 3-manifold.

Hanselman, Rasmussen, and Watson reinterpreted these bordered invariants as collections

of immersed curves in the punctured torus, and proved an analogous pairing theorem

for these curve invariants. Their construction trades the difficulty of computing Floer

homology for that of determining the form of the curve invariant associated to the bordered

manifolds. For our purposes however, it will be straightforward to determine the requisite

curve invariants. These homology theories are presented in more detail later in Chapter 2.
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1.2 Main Results

Our objective is to use Heegaard Floer homology to study surgeries that contain either

a Klein bottle or an essential 2-sphere, primarily accomplished via immersed curves

techniques. We address the former type first before turning to the latter.

1.2.1 Klein Bottle Surgeries

Much is known about surgeries S3
r (K) containing Klein bottles. Gordon and Luecke

[GL95] showed that the surgery slope r is integral when K is hyperbolic, and Teragaito

[Ter01] extended this condition to K non-cabled and showed that r is divisible by four.

In [IT03], Ichihara and Teragaito gave bounds for |r| in terms of the knot genus g(K)

when K is non-cabled, and shortly after showed the same bound holds when K is cabled,

albeit allowing rational slopes [IT05]. Their combined results show that if S3
r (K) contains

a Klein bottle with K non-trivial then |r| ≤ 4g(K) + 4, with equality only occurring for

specific knots. If K is hyperbolic then S3
r (K) is exceptional, and the surgery slope satisfies

the tighter bound |r| ≤ 4g(K).

Looking at increasing knot genus, we see that the lens spaces containing a Klein bottle

are L(4n, 2n±1) [BW69], and Teragaito proved that a genus one knot admitting a surgery

containing a Klein bottle is either a trefoil or a Whitehead double [Ter01]. However less

is known when g(K) = 2. In this case the largest surgeries containing a Klein bottle are

S3
±12(K), for K = T (2,±5) or K = T (2,±3)#T (2,±3) due to [IT05, Theorem 1]. The

next largest slope to consider is then |r| = 8, which is where we specialize.

Suppose X is realizable as 8-surgery along a genus two knot K, and contains a Klein

bottle. There is a convenient torus along which to decompose X, that arises as the

boundary of the twisted I-bundle over the Klein bottle. Denoted N , this object is the

regular neighborhood of a Klein bottle in X. While X can then be decomposed as a

gluing of N to a knot manifold, or rational homology solid torus, we will focus on gluings

with S3 knot complements so that X = (S3 \ νJ)∪h N for some knot J ⊂ S3. The gluing

h and its effects on X are studied in Subsection 3.1. Through mostly bordered Heegaard

Floer methods, we prove

Theorem 1.2.1. Let X = S3
8(K) with g(K) = 2 contain a Klein bottle, and write

X = M ∪h N . If M = S3 \ νJ , then X is the Seifert fibered manifold (−1; 1
2
, 1
2
, 2
5
) with

base orbifold S2, J is the unknot, and K = T (2, 5).

The theorem is stated in terms of positive surgery, but the analogous result for negative
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surgery holds with K = T (2,−5). In order to obstruct the complements S3 \ νJ in gluing,

we use the large surgery theorem of Osváth-Szabó and Rasmussen [OS04b, Ras03] for

Heegaard Floer homology; bordered Heegaard Floer invariants due to Lipshitz, Osváth,

and Thurston [LOT18b]; and their immersed curves formulation developed by Hanselman,

Rasmussen, and Watson [HRW16, HRW18]. The versatility of the immersed curves package

lends itself toward studying Dehn surgery problems, and has already led to fruitful results

towards the cosmetic surgery conjecture (see [Han19]).

The results in Theorem 1.2.1 actually hold for complements of knots J in integer

homology sphere L-spaces Y . These are integer homology spheres Y with the simplest

Heegaard Floer homology, which is to say dim ĤF(Y ) = |H1(Y,Z)|. Figure 1.1 shows

the immersed curves machinery for (S3 \ νT (2, 3)) ∪h N , where the count of intersection

points corresponds to dim ĤF(X). This manifold (along with an integral family depending

on h) are toroidal L-spaces, and were known to Hanselman, Rasmussen, and Watson

in [HRW18]. Theorem 1.2.1 shows that these toroidal manifolds cannot be realized as

surgery along a knot.

Figure 1.1: The pairing of immersed curves for S3 \ νT (2, 3) in blue and N in red and

purple, that computes ĤF((S3 \ νT (2, 3)) ∪h N).

Ichihara and Teragaito remark that the 2-bridge knot 62 admits an 8-surgery containing

a Klein bottle [IT03, Example 5.6]. This knot is not an L-space knot, and so Theorem

1.2.1 then implies that S3
8(62) is obtained as Y \ νJ glued to N , with Y not an integer

homology sphere L-space. This example highlights that gluing along integer homology

sphere L-space complements is special. Additionally, there are many examples of genus
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two cabled knots in S3 admitting rational surgeries S3
8/q(K) that contain Klein bottles.

When K is a torus knot, the only example arises from the dihedral manifold obtained

by Dehn filling N stated in Theorem 1.2.1. Otherwise K is the (2, 1)-cable of a genus

one knot, and there are many rationally sloped fillings of the associated cable space for

S3 \ νK that yield Klein bottles [Gor83, Corollary 7.3].

1.2.2 Reducible Surgeries

If S3
r (K) is a reducible manifold, meaning it contains an essential 2-sphere, we will call r

a reducing slope. The primary example of a reducible surgery to keep in mind is when

K is the (p, q)-cable of some knot K ′ and r is given by the cabling annulus. In this case,

we have S3
pq(K) ∼= L(p, q)#S3

q
p
(K ′). The Cabling Conjecture asserts that this is the only

example of a reducible surgery.

Conjecture 1.2.2 (Cabling Conjecture, Gonzalez-Acuña – Short [GAnS86]). If K is a

knot in S3 which has a reducible surgery, then K is a cabled knot and the reducing slope

is given by the cabling annulus.

The Cabling Conjecture is satisfied by many classes of knots. Torus knots, as cables of

the unknot, were shown to satisfy the conjecture in [Mos71]. Additionally, satellite [Sch90]

and alternating knots [MT92] satisfy the conjecture as well. To establish this conjecture

in full, it remains to show that it is satisfied by hyperbolic knots. Our aim is shorter, as

we consider thin, hyperbolic knots.

We will present knot Floer homology in more detail in Section 2.2, but for now recall

that ĤFK(K) with coefficients in F2 is bigraded with Alexander and Maslov gradings,

respectively A and M . A knot K is Floer homologically thin if the generators of ĤFK(K)

all have the same δ = A−M grading. This family contains alternating knots [OS03b],

and the more generalized quasi-alternating knots [OS05c]. We say K is an L-space knot

if it admits a surgery to a (Heegaard Floer) L-space, which is a manifold with the

simplest Heegaard Floer homology. Using Heegaard Floer homology via immersed curves

techniques, we show that

Theorem 1.2.3. If a thin, hyperbolic knot K in S3 admits a reducible surgery, then K

is an L-space knot and the reducing slope must be r = 2g(K) − 1 after mirroring K if

necessary.

It is conjectured that the only thin, L-space knots are the torus knots T (2, n). Provided

this is true, there would not exist thin, hyperbolic, L-space knots and so Theorem

5



1.2.3 would show that all thin knots satisfy the Cabling Conjecture. While stated for

thin, hyperbolic knots, this theorem holds more generally for non-cabled knots. This is

because we use the Matignon-Sayari genus bound, stated blow, to only need to consider

r ≤ 2g(K)− 1. The case where r > 2g(K)− 1 can be handled using our proof strategy to

conclude that K = T (2, n), but perhaps more immediate is the result of Dey that cables

of non-trivial knots are not thin [Dey19]. The only alternating, L-space knots are the

T (2, n)’s [OS05b], and so Theorem 1.2.3 also provides an immersed curves reproof that

alternating knots satisfy the Cabling Conjecture.

Corollary 1.2.4. Alternating knots satisfy the Cabling Conjecture.

The next corollary follows because the only thin, slice, L-space knot is the unknot.

Corollary 1.2.5. Thin, slice knots satisfy the Cabling Conjecture.

Corollary 1.2.6. Thin knots cannot admit two reducible surgeries.

Part of the proof strategy for Theorem 1.2.3 involves obstructing an RP 3 connected

summand, and so we get the following corollary with identical proof to that of [HLZ15,

Corollary 1.5].

Corollary 1.2.7. If K is a thin, hyperbolic knot, then S3 \ νK does not contain properly

embedded punctured projective planes.

When K is a non-trivial knot in S3 with reducible surgery S3
r (K), the surgery decom-

poses as a connected sum and the reducing slope satisfies r ̸= 0 [Gab87]. We saw from

the cabled knot example that the reducing slope is an integer and one of the connected

summands is a lens space. The former and latter conditions occur for all reducible surgeries

due to [GL87] and [GL89], respectively. A reducible surgery can admit at most three

connected summands due to the combined efforts of [Say98, VS99, How02], in which case

two summands are lens spaces and the remaining summand is an integer homology sphere.

Since S3
r (K) must have a non-trivial lens space summand, the integral reducing slope r

satisifes r ≠ −1, 0, 1. In [MS03], Matignon and Sayari provide the following genus bound

if K is non-cabled:

1 < |r| ≤ 2g(K)− 1.

Heegaard Floer homology satisfies a Künneth formula for connected sums, and has

proved very useful for studying Dehn surgery. If surgery along K produces precisely a

connected sum of two lens spaces, then K must be a cabled knot due to [Gre15]. Further,
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[Gre15] together with [BZ98] shows that a hyperbolic knot in S3 cannot admit both a lens

space surgery and a reducible surgery. Hom, Lidman, and Zufelt showed that a hyperbolic,

L-space knot can admit at most one reducing slope, and the slope must be 2g(K) − 1

after mirroring the knot to make the slope positive [HLZ15]. To obtain this result they

established a periodicity structure to the Heegaard Floer homology of a reducible surgery,

which will be invaluable to the proof strategy of Theorem 1.2.3. Inspired by Hanselman’s

approach to the Cosmetic Surgery Conjecture using immersed curves techniques [Han19],

we will leverage this periodicity structure to severely constrain the types of permissible

curve invariants.

1.3 Organization

Unless stated otherwise, all manifolds are assumed to be compact, connected, and ori-

entable 3-manifolds and coefficients in Floer homology belong to F = F2. We denote

closed manifolds by X or Y , and manifolds with (typically torus) boundary by M . Also

knots J ⊂ Y bounding a disk are said to be trivial, and figures will have the immersed

curves invariant for knot complements in blue and the filling manifold in red. All surgeries

are assumed to be positively-sloped, achieved by mirroring the knot if necessary.

The thesis is organized as follows. Chapter 2 summarizes the relevant background from

Heegaard Floer, knot Floer, and bordered Heegaard Floer homology. Readers familiar

with these homology theories are encouraged to skip to Subsection 2.3.2 for the overview

of immersed curves invariants, their general properties and form, as well as their associated

pairing theorem and Maslov grading.

In Chapter 3 we approach Klein bottle surgeries by introducing the possible gluings h,

and establish two of the three lemmas on the way to proving Theorem 1.2.1. We handle

the case that J is trivial in Lemma 3.2.1, showing that X must be a dihedral manifold

that falls under Doig’s classification of finite, non-cyclic surgeries for p ≤ 9 in [Doi15].

We then consider gluings with J non-trivial in Lemma 3.3.1, showing that J must be

a trefoil in order to possibly have the right Floer homology for X. Chapter 4 provides

a brief overview of the refined grading on bordered invariants and their relation to the

relative Q-grading on ĤF under pairing. This extra structure is sufficient to establish the

final lemma needed to complete the proof of Theorem 1.2.1, showing that the toroidal

gluings involving trefoil complements are obstructed.

Chapter 5 changes pace to reducible surgeries along thin knots. It expands on the
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relative Maslov grading for immersed curves invariants of complements of thin knots,

and along the way we set up formulas for components of the grading difference formula

in terms of τ(K). The proof of Theorem 1.2.3 is divided into a collection of lemmas

depending on r in relation to τ(K) and g(K). In particular, the cases with |τ(K)| < g(K)

are handled here. Chapter 6 resolves the remaining cases, with some requiring absolute

grading information, before addressing the proof of Theorem 1.2.3.
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CHAPTER

2

HEEGAARD FLOER HOMOLOGY AND

IMMERSED CURVES

Our method of studying Dehn surgery involves generating obstructions using the simplest

flavor of Heegard Floer homology. This is primarily accomplished using immersed curves

techniques, which are related to bordered Heegaard Floer invariants. We will need the

curve invariant associated to a knot complement, which will require some knot Floer

homology to a small degree. We briefly introduce each of these homology theories to the

extent they are ultimately called upon.

2.1 Heegaard Floer Homology

Let Y be a closed, connected, orientable 3-manifold equipped with a spinc structure s.

Our immediate goal is to define our primary invariant: the “hat”-flavor of Heegaard Floer

homology ĤF(Y, s). This was introduced by Ozsváth and Szabó in [OS04d] among a

family of graded homology theories, and will be taken to be graded vector space over

F = F2. The “Heegaard” part of the invariant comes from a Heegaard splitting of Y and
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provides us with the generators of its chain complex, while the “Floer” part determines

the differential between them.

Definition 2.1.1. A genus g handlebody is a regular neighborhood of ∨gS
1 in R3. A

Heegaard splitting of a 3-manifold Y is a decomposition Y = H1 ∪f H2, where H1 and

H2 are handlebodies of equal genus and f is an orientation-reversing homeomorphism

from ∂H2 to ∂H1.

It is straightforward to show that any 3-manifold Y admits a Heegaard splitting. Since

Y is triangulable, we may consider H1 to be a regular neighborhood of its 1-skeleton,

which in turn gives H2 as the regular neighborhood of the dual 1-skeleton. We will

typically describe a Heegaard splitting via a Heegaard diagram, which is characterized by

a collection of curves in ∂H1 = ∂H2 = Σ that encode handle attachments to rebuild Y

from Σ× [0, 1].

Definition 2.1.2. A Heegaard diagram associated to a Heegaard splitting Y = H1 ∪f H2

is a triple H = (Σ, α, β) such that

1. Σ is a closed, oriented surface of genus g.

2. α = {α1, . . . , αg} is a collection of linearly-independent, pairwise disjoint attaching

circles that each bound a disk in H1.

3. β = {β1, . . . , βg} is a collection of linearly-independent, pairwise disjoint attaching

circles that each bound a disk in H2.

We will need to consider pointed Heegaard diagrams, which incorporate an extra

decoration in the form of a basepoint z in Σ− α − β. To a pointed Heegaard diagram

(Σ, α, β, z) of a 3-manifold Y , Ozsváth and Szabó associate a chain complex ĈF(H) as
follows. Consider the g-dimensional tori Tα = α1×· · ·×αg and Tβ = β1×· · ·×βg contained

in the g-fold symmetric product Symg(Σ). The chain complex ĈF(H) is freely generated

by the intersections between Tα and Tβ, and its differential ∂ : ĈF(H)→ ĈF(H) counts
pseudoholomorphic Whitney disks between them in Symg(Σ) that avoid {z}×Symg−1(Σ).

Definition 2.1.3. Let x,y ∈ Tα ∩ Tβ and D ⊂ C. A Whitney disk from x to y is a

continuous map ϕ : D→ Symg(Σ) satisfying

1. ϕ(−i) = x,

2. ϕ(i) = y,
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3. ϕ(Re(∂D) ≥ 0) ⊂ Tα,

4. ϕ(Re(∂D) ≤ 0) ⊂ Tβ.

The set of homotopy classes of Whitney disks from x to y will be denoted by π2(x,y).

A choice of complex structure on Σ induces a complex structure on Symg(Σ). For

ϕ ∈ π2(x,y), let M(ϕ) be the moduli space of holomorphic representatives of ϕ. This

space is shown to be generically smooth [OS04d], and the Maslov index µ(ϕ) denotes the

expected dimension ofM(ϕ). The automorphisms of D that preserve i and −i provide
an R-action onM(ϕ), and so M̂(ϕ) =M(ϕ)/R is a compact, zero-dimensional manifold

when µ(ϕ) = 1. Finally, by letting nz(ϕ) denote the algebraic intersection between ϕ(D)
and {z} × Symg−1(Σ), the differential ∂ : ĈF(H)→ ĈF(H) is given by

∂x =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y)
µ(ϕ)=1
nz(ϕ)=0

#M̂(ϕ)y.

z

Figure 2.1: A Whitney disk between generators associated to an atypical Heegaard
diagram for S3.

We will think of Spinc(Y ) in terms of homology classes of vector fields on Y (see

[?]), which are in one-to-one correspondence with H2(Y ;Z). Ozsváth and Szabó show in

[OS04d] that the intersections Tα ∩ Tβ may be placed in equivalence classes in bijection

with Spinc(Y ) as follows. Let f be a self-indexing Morse function compatible with the

Heegaard diagram H, meaning f−1([0, 3
2
]) = H1, f

−1([3
2
, 3]) = H2, and f−1(3

2
) = Σ. An
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intersection x ∈ Tα ∩ Tβ connects the index one critical points to the index two critical

points along a g-tuple of gradient flow lines of f . The index zero and index three critical

points are connected by a flow line determined by the basepoint z, and deleting these

neighborhoods of these g + 1 flow lines yields a non-vanishing gradient vector field ∆f .

The flow lines connect critical points of opposite parities, so the vector field may be

extended as a non-vanishing vector field over Y .

The homology class of this vector field is the Spinc structure s(x), and two intersections

x and y describe the same spinc structures if s(y)− s(x) = 0 ∈ H2(Y,Z). This implies

that the Heegaard Floer chain complex decomposes over spinc structures as

ĈF(H) =
⊕

s∈Spinc(Y )

ĈF(H, s).

Ozsváth and Szabó prove that H∗(ĈF(H, s), ∂) is an invariant of (Y, s) by showing that it

is ultimately independent of the choice of Heegaard diagram H, basepoint z, and complex

structure on Σ [OS04d]. Accordingly, we will use ĤF(Y, s) to denote them going forward.

While we will primarily use ĤF, various other flavors of Heegaard Floer homology

are constructed by considering the larger chain complex CF∞(Y, s). It is freely-generated

by intersections Tα ∩ Tβ over F[U,U−1] instead of just F, where U is a formal variable

associated to nz(ϕ) and the differential ∂ is suitably modified. Denoted HF−, HF+, and

ĤF, these flavors arise as the homology of quotient complexes of CF∞(Y, s). They are all

equipped with a relative Z-grading given by

gr(x)− gr(y) = µ(ϕ)− 2nz(ϕ), gr(U) = −1

This relative grading, called the Maslov grading, will be crucial to the approach for both

Theorems 1.2.1 and 1.2.3.

If Y is a rational homology sphere, then dim ĤF(Y, s) ≥ 1 for each s. When we have

equality for all s, we say Y is a (Heegaard Floer) L-space, generalizing the behavior

exhibited by lens spaces. Further, the relative Z-grading on Y may be lifted to an absolute

Q-grading [OS03a]. For the “plus” flavor, we may write HF+(Y, s) ∼= T + ⊕ HFred(Y, s),

where T + ∼= F[U,U−1]/F[U ] denotes the tower submodule. The d-invariants d(Y, s),

sometimes called the Heegaard Floer correction terms, record the smallest absolutely graded

element of T + ⊆ HF+(Y, s) [OS03a]. These invariants satisfy a few symmetries, such as

spinc conjugation symmetry d(Y, s) = d(Y, s) and orientation-reversal d(−Y, s) = −d(Y, s),
as well as additivity for connected sums. It is normalized so that d(S3, s0) = 0, and is
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recursively determined for lens spaces in [OS03a, Proposition 4.8]. Presently, we only

make use of ĤF and lightly appeal to d(Y, s) when necessary. It is difficult to compute

ĤF(Y, s) using a Heegaard diagram in general, and so we will use an alternate method

later on that utilizes a complex related to knot Floer homology.

2.2 Knot Floer Homology

Let K be a knot in S3. Ozsváth and Szabó [OS04c], and independently Rasmussen [Ras03],

associate a bigraded, finitely-generated vector space over F that decomposes as

ĤFK(K) =
⊕
M,A

ĤFKM(K,A).

The integers M and A denote the Maslov (or homological) and Alexander gradings,

respectively. Knot Floer homology categorifies the Alexander polynomial [OS04b] via

∆K(t) =
∑
M,A

(−1)MdimĤFKM(K,A)tA.

The degree of ∆K(t) provides a lower bound for g(K) [Sei35], but knot Floer homology

strengthens this property. Due to [OS04b], knot Floer homology precisely detects knot

genus by

g(K) = max{A ≥ 0 | ĤFK(K,A) ̸= 0}.

Together with work of Ghiggini and Ni, knot Floer homology also detects precisely if a

knot is fibered [OS04e, Ghi08, Ni07] by

K ⊂ S3 fibered ⇔ ĤFK(K, g(K)) ∼= F.

Further, these detection results were used in [Ghi08] to show that knot Floer homology

precisely detects the figure-eight knot 41 and the right- and left-handed trefoils T (2,±3).
Similar to Heegaard Floer homology, the chain complex for knot Floer homology

consists of intersections between Tα and Tβ associated to a doubly-pointed Heegaard

diagram (Σ, α, β, z, w) for S3. The knot K is realized as the union of arcs connecting z and

w that avoid the attaching circles and are pushed slightly into the two handlebodies. The

differential looks for Whitney disks that avoid both basepoints, while the new Alexander

grading determined by nz(ϕ) and nw(ϕ). It ends up being more useful to track disks that
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cross either type of basepoint however, resulting in the full knot Floer complex CFK∞(K).

Following [OS04c], we can view CFK∞(K) as freely-generated over Z by triples [x, i, j],

where x ∈ Tα ∩ Tβ, i, j ∈ Z, and A(x) = j − i. Each generator U−ix corresponds to a

triple [x, i, j], and can be presented in the plane as a dot with coordinates (i, j). Suppose

ϕ ∈ π2(x,y) contributes to y ∈ ∂x. In CFK∞, the differential is given by an arrow between

these generators, where the change in horizontal and vertical components are −nw(ϕ) and

−nz(ϕ), respectively. Figure 2.2 provides an example of such a diagram for CFK∞(41).

Figure 2.2: A portion of the full knot Floer complex for the figure-eight knot 41.

A typical strategy for determining the Heegaard Floer homology of Dehn surgery

involves using the Mapping Cone Formula of [OS08]. We will not make full use of this

object, but will need its primary components in order to define integral invariants of K

useful later on. These components are the following subcomplexes and quotient complexes

of CFK∞:

A+
s = C {max {i, j − s} ≥ 0} ,

B+
s = C {i ≥ 0} .

By a careful look at the two constructions, we can see B+
s
∼= CF+(S3). Additionally,

there are chain maps v+s : A+
s → B+

s and h+s : A+
s → B+

s+r between these subcomplexes.

Take homology to obtain A+
s = H∗(A+

s ) and B+
s = H∗(B+

s )
∼= HF+(S3), and induced

maps v+s and h+
s . As before, T + denotes the tower submodule HF+(S3). Observe that
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UN(A+
s )
∼= T + for arbitrarily large N . By restricting both v+s and h+

s to this submodule,

we obtain the restrictions v+s and h
+

s . The integral invariants of K that we desire are due

to [OS08], and are defined by

Vs = rank(kerv+s ),

Hs = rank(kerh
+

s ).

These terms will play a large role when studying potential reducible surgeries when K

is thin. We will determine them using an alternative geometric method later in Section

5.1. By [HLZ15, Lemma 2.3] the maps v+s and h+
−s agree on homology after identifying

A+
s
∼= A+

−s (essentially reversing the roles of i and j above), so that Vs = H−s. They are

by definition non-negative, and also satisfy the following lemma.

Lemma 2.2.1 ([NW15, Lemma 2.4]). The Vs form a non-increasing sequence and the

Hs form a non-decreasing sequence, so that

Vs ≥ Vs+1 and Hs ≤ Hs+1 for all s ∈ Z.

2.2.1 Heegaard Floer Homology of Dehn Surgery

Equipped with these two Floer homology theories, we can establish a few preliminary

propositions and lemmas. We collect ones relevant for Klein bottle surgeries before doing

the same for reducible surgeries. Let us identify Spinc(S3
r (K)) with Z/rZ as in [OS08,

Subsection 2.4], and denote the correspondence using [s] ∈ Spinc(S3
r (K)) for [s] ∈ Z/rZ.

We will also choose equivalence classes for elements of Z/rZ as centered about 0, so that

for example Z/rZ =

{
−r − 1

2
, . . . , 0, . . . ,

r − 1

2

}
if r is odd. As an abuse of notation, we

will commonly use s for the representative of [s] that falls within this range.

The following theorem shows that ĤF(S3
r (K), [s]) and Âs are relatively-graded isomor-

phic if r is large relative to s.

Theorem 2.2.2 ([OS04b, Ras03]). For integral r ≫ 0 and any s ∈ Z with |s| ≤ r/2,

there is an isomorphism

ĤF(S3
r (K)), [s]) ∼= Âs.

Useful for obstructing Klein bottle surgeries in Chapter 3, we may apply this theorem

for all spinc structures of S3
8(K) with g(K) = 2.
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Proposition 2.2.3. Let K ⊂ S3 have g(K) = 2. Then dim ĤF(S3
8(K), [s]) = 1 for at

least five of the eight [s] ∈ Spinc(S3
8(K)).

Proof. We have that Â−s and Âs are isomorphic due to Lemma 2.3 of [HLW15], following

from the fact that CFK∞(K) is filtered chain homotopy equivalent to itself under reversing

the roles of i and j. Since ĤFK detects the knot genus, we have Âs = ĤF(S3) = F for

|s| ≥ g(K). The surgery slope is sufficiently large (> 2g(K)− 1), and so Theorem 2.2.2

implies ĤF(S3
8(K), [s]) ∼= F for s ∈ Z satisfying [s] ̸= 0,±1 ∈ Z/8Z.

This simple structure of ĤF(S3
8(K)) is the first major constraint toward proving

Theorem 1.2.1. If (S3 \ νJ) ∪h N is realizable as S3
8(K) with g(K) = 2, we will appeal

to the number of t ∈ Spinc(X) supporting dim ĤF(X, t) > 1 to constrain J . This large

surgery is also particularly special because of the following proposition.

Proposition 2.2.4. S3
8(K) is irreducible for any knot K with g(K) = 2.

Proof. To generate a contradiction, suppose that S3
8(K) is reducible. From [MS03], we

see that S3
r (K) reducible implies 1 < |r| ≤ 2g(K) − 1 for K non-cabled. So it must

be the case that K is the (p, q)-cable of some knot K ′, where p and q are coprime and

positive with p > 1. The cabling conjecture holds for cable knots, and so the slope r = pq

provided by the cabling annulus is the only reducing slope for S3
r (K). In this case we

have S3
pq(K) ∼= L(p, q)#S3

q
p
(K ′), and so H1(S

3
8(K)) cyclic forces

S3
8(K) ∼= L(8, 1)#S3

1
8
(K ′)

Let [si] ∈ Spinc(S3
8(K)) restrict to [s′j] × [s0], where [s′j] ∈ Spinc(L(8, 1)) and [s0] ∈

Spinc(S3
1
8

(K ′)). The Künneth formula for the hat-flavor of Heegaard Floer homology

[OS04c, Theorem 1.5] implies

ĤF(S3
8(K), [si]) = H∗(ĈF (L(8, 1), [s′j])⊗F ĈF (S3

1
8
(K ′), [s]))

= ĤF(S3
1
8
(K ′), [s]),

since L(8, 1) is a lens space. Theorem 2.2.2 forces dim ĤF(S3
8(K), [si]) = dim Âi, and

since dim Âs = 1 for |s| ≥ g(K), we see that S3
8(K) is an L-space and K ′ is an L-space

knot. From [OS11, Proposition 9.5], the ν invariant for K ′ must be trivial, which implies

K ′ is the unknot by [OS11, Proposition 9.6]. Therefore K is trivial as the (8, 1)-cable of

the unknot, and so S3
8(K) ∼= L(8, 1), yielding the desired contradiction.
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We also have the following immediate corollary, which is used in Section 3.2.

Corollary 2.2.5. Let M = Y \ νJ be a knot manifold. If X = M ∪h N is realizable as

S3
8(K) for g(K) = 2, then M is irreducible.

For reducible surgeries, we will make extensive use of the following lemma. It is a

simplified version of a more general Floer homology periodicity result for HF+ of a general

reducible 3-manifold from [HLZ15], and a special case of it was used in the proof strategy

for Proposition 2.2.4. Essentially, we should expect to see repeated behavior among the

spinc summands of ĤF(S3
r (K)) of a reducible surgery.

Lemma 2.2.6. Suppose S3
r (K) ∼= X#Y , where X is an L-space and |H2(Y )| = k <∞.

Then for any [s] ∈ Spinc(S3
r (K)) and α ∈ H2(S3

r (K)) ∼= Z/rZ, we have ĤF(S3
r (K), [s+

kα]) ∼= ĤF(S3
r (K), [s]) as relatively-graded F vector spaces.

Proof. Let [s] ∈ Spinc(S3
r (K)) restrict to [si] ∈ Spinc(X) and [sj] ∈ Spinc(Y ). We see

that ĤF(X, [si]) ∼= F since X is an L-space, and so the Künneth formula for ĤF [OS04c,

Theorem 1.5] implies

ĤF(S3
r (K), [s]) ∼= H∗(ĈF (X, [si])⊗F ĈF (Y, [sj]))

∼= ĤF(Y, [sj]).

For any α ∈ Z/rZ, we have that [s + kα] restricts to [sj] in Spinc(Y ). Then because

ĤF(S3
r (K), [s]) is independent of [si], we obtain

ĤF(S3
r (K), [s+ kα]) ∼= ĤF(Y, [sj]) ∼= ĤF(S3

r (K), [s])

as relatively-graded F vector spaces.

Toward both Klein bottle and reducible surgeries, we will need to appeal to d(S3
r (K), [s])

when relative grading information is insufficient. In [NW15], the d-invariants of rational

surgeries are related to those of d(L(p, q), [s]) and the H’s and V ’s. We state a special

case of the more general result for our purposes.

Proposition 2.2.7 ([NW15, Proposition 1.6]). Suppose r is integral and positive, and

fix 0 ≤ s < r − 1. Then

d(S3
r (K), [s]) = d(L(r, 1), [s])− 2max {Vs, Vr−s} .
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Among many of its applications, this result enables the following lemma.

Lemma 2.2.8 ([HLZ15, Lemma 2.5]). For all s ∈ Z, the integers Vs and Hs are related

by

Hs − Vs = s.

2.3 Bordered Heegaard Floer homology

Bordered Heegaard Floer homology, introduced by Lipshitz, Ozsváth, and Thurston,

provides a cut-and-paste style of computing ĤF for a 3-manifold. This is done by de-

composing along a surface, and then recovering Floer homology by a suitable means of

pairing the relative Floer invariants for the decomposed pieces [LOT18b]. While defined

for general manifolds with connected boundary, we will only be interested in applying the

theory to manifolds with torus boundary.

Let M be an orientable 3-manifold with torus boundary and choose α, β in ∂M with

β ·α = 1, so that (α, β) forms a parameterization of ∂M . A bordered 3-manifold is such a

triple (M,α, β). For a bordered 3-manifold M2, they associate a differential module called

a type D structure ĈFD(M2, α2, β2). For another bordered 3-manifold M1, they associate

a suitably dual object ĈFA(M1, α1, β1), and prove Theorem 2.3.1 below showing that

ĈF(M1 ∪h M2) is modeled by something called the box tensor product between these

modules (with corresponding parameterizations).

Theorem 2.3.1 ([LOT18b, Theorem 10.42]). Consider the pairing X = M1

⋃
h M2, where

the Mi are compact, oriented 3-manifolds with torus boundary and h : ∂M2 → ∂M1 is an

orientation reversing homeomorphism. Then

ĤF(X) ∼= H∗(ĈFA(M1, α1, β1)⊠ ĈFD(M2, h
−1(β1), h

−1(α1))),

where the isomorphism is one of relatively graded vector spaces that respects the Spinc

decomposition.

The type A and D structures decompose over spinc structures on the respective Mi’s,

and so this implies that⊕
t∈Spinc(X)
t|Mi

=si

ĤF(X, t) ∼= H∗(ĈFA(M1, α1, β1, s1)⊠ ĈFD(M2, h
−1(β1), h

−1(α1), s2))
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We will invoke the pairing theorem for all future computations of ĤF and its relative

Maslov grading, albeit in immersed curves form due to Hanselman, Rasmussen, and

Watson [HRW16, HRW18] (presented at the end of this section).

2.3.1 The Bordered Invariants

The type A and type D structures are types of modules over the differential graded

torus algebra A = A(T). This algebra is generated over F by the elements ρ1, ρ2, ρ3 and

idempotents ι0 and ι1, and multiplication in A is described by the quiver in Figure 2.3

and further satisfies the relations ρ2ρ1 = ρ3ρ2 = 0. We will concatenate the multiplication

using the common shorthand notation of ρ12 = ρ1ρ2, ρ23 = ρ2ρ3, and ρ123 = ρ1ρ2ρ3.

In this way, {ι0, ι1, ρ1, ρ2, ρ3, ρ12, ρ23, ρ123} is an F-basis for A. Finally, let I denote the

subring of idempotents.

ι0 ι1

ρ1

ρ2

ρ3

Figure 2.3: A quiver for A(T).

The module ĈFA(M) is a type A structure, which is a right-A∞ module over A. The
module structure comes with a family of maps

mk+1 : ĈFA(M)⊗I A⊗I · · · ⊗I A → ĈFA(M),

and we will use commas to separate the tensor factors of mk+1 in the future. A type D

structure over A is a left I-module V with a splitting over a left action of the idempotents

V ∼= ι0V ⊕ ι1V , equipped with an I-linear map δ1 : V → A⊗ V . The map δ1 satisfies

a compatibility condition that ensures ∂(a ⊗ x) = a · δ1x is a differential on A ⊗I V .

This gives A⊗I V a left differential module structure over A, and we will typically view

ĈFD(M) as this differential module. This type D structure also comes with a collection

of recursively defined maps δk : V → A⊗k ⊗ V with δ0 : V → V the identity and

δk = (idA⊗(k−1) ⊗ δ1) ◦ δ(k−1).

The chain complex ĈFA(M1, α1, β1)⊠ ĈFD(M2, h
−1(β1), h

−1(α1)) in Theorem 2.3.1

is obtained from ĈFA(M1, α1, β1)⊗I ĈFD(M2, h
−1(β1), h

−1(α1)), and has differential ∂⊠
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given by

∂⊠(x⊗ y) =
∞∑
k=0

(mk+1 ⊗ id)(x⊗ ∂k(y).

This sum is finite if the type D structure is bounded, which is to say δk vanishes for

sufficiently large k. We will refer to it as the box tensor product of the type A and D

structures involved. This is a computable model of the A∞ tensor product and enables a

proof of Theorem 2.3.1. Computations with the box tensor product are cumbersome, and

so we will use a geometric interpretation of these invariants as often as possible.

2.3.2 Bordered Invariants as Immersed Curves

In [HRW16, HRW18], Hanselman, Rasmussen, and Watson give a geometric construction

of ĈFD(M) as a collection of immersed curves, and prove an analogue of the pairing

theorem that uses these objects. Denoted ĤF(M), this invariant lives in the punctured

torus, which we now define.

Definition 2.3.2. Let the punctured torus TM be defined as (H1(∂M ;R)/H1(∂M ;Z)) \
{z}, where z = (1− ϵ, 1− ϵ) for ϵ small. We refer to z as the marked point, and orient

TM so that the y-axis projects to α and the x-axis projects to β, with α, β specifying the

handle decomposition of ∂M \ z.

The prototype immersed curves invariant is a type of train track in TM , a construction

we briefly introduce. Along the way, we will apply these concepts to ĈFD(N), for N the

twisted I-bundle over the Klein bottle. Given a type D structure ĈFD(M,α, β) we can

conveniently express it as a decorated graph, with vertex set generating V and edge set

describing δ1. Length k directed paths are associated to δk, and correspondingly the type

D structure is bounded if it admits no directed cycles. The vertices labeled • correspond
to ι0 generators, and those labeled ◦ correspond to ι1 generators. For the edges, a term

ρI ⊗ x2 ∈ δ1x1 gives a directed edge labeled {I} from x1 to x2.

The bordered invariant for N is computed in [BGW13] from a bordered Heegaard

diagram (we caution the reader that the opposite idempotent decomposition of the torus

algebra A(T) is used in this reference). Supporting two different Seifert structures, ∂N

is parameterized by the dual slopes ϕ0 and ϕ1 that correspond to the fiber slope of the

structure with base orbifold a Möbius band and D2(2, 2), respectively. The slope ϕ0 is

the rational longitude of N , or the unique slope in ∂N that includes in H1(N) with finite

order [Wat12]. The curve ϕ1 includes in H1(N) as twice the generator of the Z factor, and
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3

1

2

123 12 12

Figure 2.4: Left: ĈFD(N, ϕ1, ϕ0, s1). Right: ĈFD(N, ϕ1, ϕ0, s0).

for this reason N admits two torsion spinc structures s0 and s1. We will always assume

this (standard) parameterization is taken before acting on ∂N . The decorated graph for

ĈFD(N, ϕ1, ϕ0) is shown in Figure 2.4.

ρ1

z

ρ2

z

ρ3

z

ρ12

z

ρ23

z

ρ123

z

Figure 2.5: Train track segments in TM corresponding to the ρI⊗ terms appearing in δ1.

Given a decorated graph for ĈFD(M,α, β), we may construct a train track A(θM) in

TM as follows. First, embed the • vertices corresponding to V0 = ι0V generators along α

in the interval 0× [1
4
, 3
4
], and the ◦ vertices corresponding to V1 = ι1V generators along β

in the interval [1
4
, 3
4
] × 0. Next, the edges describing δ1 are embedded in TM according

to Figure 2.5. We refer to such an A(θM) as a type A realization of ĈFD(M,α, β). For

example, this process for ĈFD(N) is shown in Figure 2.6. For pairing, we will also need

the dual type D realization D(θM), which is generated by reflecting A(θM) across the

anti-diagonal in TM .

Now we describe the prototype geometric analogue of Theorem 2.3.1 for a gluing

M1 ∪h M2 from [HRW16]. Divide TM1 into four quadrants, and include A(θM1) in the first

quadrant and extend horizontally and vertically. Likewise, include D(θM2) into the third

quadrant and extend horizontally and vertically. This is shown on the left side of Figure

4.9. Let C(A(θM1), D(θM2)) be the vector space over F generated by intersections between

A(θM1) and D(θM2), and dθ a linear map counting bigons analogous to the Whitney disks
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Figure 2.6: The type A realizations for both components of ĈFD(N, ϕ1, ϕ0).

of Heegaard Floer homology. Hanselman, Rasmussen, and Watson show that under mild

hypotheses, C(A(θM1), D(θM2), d
θ) forms a chain complex that may be identified with

C(ĈFA(M1, α1, β1)⊠ ĈFD(M2, h
−1(β1), h

−1(α1)), ∂
⊠) [HRW16, Theorem 16].

2.3.3 Heegaard Floer Homology via Immersed Curves

In general, intersecting train tracks as previously described is not an invariant. This

happens for instance if the decorated graph for ĈFD(Mi, αi, βi) is not valence 2, so that

extended type D structures and local systems need to be employed. However in the

examples we encounter, ĤF(M) is given by A(θM ) and requires no extra decoration. This

is the case when M is loop type, a class of manifold first introduced by Hanselman and

Watson in [HW15]. In the course of studying Klein bottle surgeries, we will show that

the knot complement S3 \ νJ is loop type since it admits multiple L-space Dehn fillings

[HRW18, Proposition 15]. The twisted I-bundle over the Klein bottle N , as well as knot

complements S3 \ νK with K thin, have type D structures with the usual boundary

parameterization representable as a valence 2 decorated graph. Due to [HW15], this

ensures they are loop type as well.

Figure 2.7: Edges of a grading arrow either follow or oppose the orientations of the
attached curve components.
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If the invariant has multiple curve components, then they are connected by pairs

of edges which we denote with a grading arrow. These are presented in Figure 2.7,

and they carry an integral weight m useful for determining Maslov grading differences.

When considering M = S3 \ νK, we may lift ĤF(M) to the infinite cylindrical cover

π : TM → TM . This cover is realized as [−1
2
, 1
2
] × R with [−1

2
, t] and [1

2
, t] identified,

and where π−1(z) =
{
(0, 1

2
+ n) |n ∈ Z

}
. These lifted marked points reside within a

neighborhood of the lift of the meridian µ. One of the curves wraps around the cylinder,

and we will use γ to denote this component. Figure 2.8 shows a centered lift of the

invariant for the complement of a hypothetical example of a thin knot K with g(K) = 2

and τ(K) = 1.

γ

m1

m−1

Figure 2.8: An example of ĤF(M)
for g(K) = 2 and τ(K) = 1.

The lifts of the marked points will be taken to

lie at purely half-integral heights, so that curve com-

ponents cross at integral heights. With this at hand,

the lifted curve invariant also encodes a few numer-

ical and concordance invariants of K. For example,

the Seifert genus is given by the height of the tallest

curve component. Additionally, the height around

which γ wraps is precisely the Oszváth-Szabó invari-

ant τ(K). Hom’s ϵ invariant may also be determined

by observing what γ does next. It curve turns down-

wards, upwards, or continues straight corresponding

to ϵ(K) being 1, -1, and 0, respectively. Notice that

γ is horizontal if ϵ(K) = 0. These two invariants

determine the slope γ outside of a thin vertical strip surrounding the lifts of the marked

point, given by 2τ(K)− ϵ(K). Recall that ĤFK(K) detects g(K) due to [OS04a]. Looking

in TM , genus detection manifests itself in ĤF(M) by ensuring that some curve component

crosses at height g(K).

The curve invariant (as unlabelled curves) for a general manifold with torus bound-

ary M is invariant under the action by the elliptic involution, with z fixed, of ∂M

[HRW18, Theorem 7]. More concretely, Hanselman, Rasmussen, and Watson show that

ĈFD(M, c(s)) ∼= E⊠ ĈFD(M, s), meaning that Spinc conjugation on the level of bordered

invariants achieves the same resulting curve invariant as what would arise from the box

tensor product with a particular type DA structure associated with elliptic involution. In

the form we often use it, this means the curve invariant in TM is unchanged by rotation

by π about (0, 0).

23



Theorem 2.3.3 ([HRW18, Theorem 7]). The invariant ĤF(M) is symmetric under the

elliptic involution of ∂M . Here, the involution is chosen so that z is a fixed point.

If K admits either a horizontally or vertically simplified basis for CFK−(K), then the

procedure of [HRW18, Proposition 47] allows one to construct ĤF(M) from CFK−(K).

The special case when CFK−(K) is both horizontally and vertically simplified enables

us to quickly generate these curves. This condition holds if K is a thin knot, and in

particular we have that every arrow encoding the differential in CFK−(K) has length one.

These properties imply two features of ĤF(M), which are effectively the immersed curves

analog of [Pet13, Lemma 7]:

� The essential component γ winds between adjacent basepoints determined by τ(K),

before ultimately wrapping around the cylinder.

� Any other component is a simple figure-eight, enclosing vertically adjacent lifts of z.

Definition 2.3.4. We say a simple figure-eight component of ĤF(M) is at height i if it

encloses vertically adjacent lifts of z at heights (0, i± 1
2
), viewed in TM . Further, let ei

denote the number of simple figure-eight components at height i.

We have e−i = ei due to Theorem 2.3.3, and Figure 2.8 provides an example with

e0 = 0 and e−1 = e1 = 1. With individual properties of the curve invariants handled, we

turn to the main reason for their involvement.

Theorem 2.3.5 ([HRW18, Theorem 2]). Consider the gluing M1∪hM2, where the Mi are

compact, oriented 3-manifolds with torus boundary and h : ∂M2 → ∂M1 is an orientation

reversing homeomorphism for which h(z2) = z1. Then

ĤF(M1 ∪h M2) ∼= HF(ĤF(M1), h(ĤF(M2))),

where intersection Floer homology is computed in TM1 and the isomorphism is one of

relatively graded vector spaces that respects the Spinc decomposition.

More precisely, HF(ĤF(M1), h(ĤF(M2))) decomposes over spinc structures onM1∪hM2

and carries a relative Maslov grading on each spinc summand. Theorem 2.3.5 places these

in correspondence with the spinc decomposition on ĤF(M1 ∪h M2), and also ensures the

relative Maslov gradings agree. This is best seen when viewing Dehn surgery as such a
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gluing, continuing to use M for S3 \ νK. We have S3
r (K) = M ∪hr (D

2 × S1) with hr the

slope-r gluing map. Then Theorem 2.3.5 provides

ĤF(S3
r (K)) ∼= HF(ĤF(M), hr(ĤF(D

2 × S1)).

The spinc decomposition is recovered by using r vertically-adjacent lifts of hr(ĤF(D
2×

S1)), which is the precise number required to lift every intersection from TM to TM

without duplicates. This is motivated by the example in Figure 2.9, showing the pairing of

curves that recovers ĤF(S3
4(T (2, 5))). The invariant for the solid torus simply consists of a

horizontal essential curve, and so h4(ĤF(D
2×S1)) is a slope 4 curve in the punctured torus.

We have four lifts of h4(ĤF(D
2 × S1)), each generating intersections in correspondence

with the four spinc summands of ĤF(S3
4(K)). These lifts are selected at heights in

correspondence with the selected representatives of Z/rZ from Subsection 2.2.1. These

are −1, 0, 1, and 2 for the example in Figure 2.9, and motivate the following definition

when lifting further to the tiled-plane cover T̃ .

l24 l14

l04

l−1
4

lift to TM−−−−−−→

Figure 2.9: The pairing of ĤF(S3 \ νT (2, 5)) and h(ĤF(D2 × S1)), whose intersection

Floer homology is ĤF(S3
4(T (2, 5)).
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Definition 2.3.6. Let lsr = hr(ĤF(D
2 × S1)) denote the slope-r line in T̃ that crosses

the neighborhood of µ at height [s]. These are selected so that each lsr crosses at heights

congruent to [s] (mod r), with [s] taken to be the representative that falls between

− r
2
< [s] ≤ r

2
.

In this way, Theorem 2.3.5 implies

ĤF(S3
r (K), [s]) ∼= HF(ĤF(S3 \ νK), lsr).

After using regular homotopy of curves to remove any possible intersections that do not

contribute to homology, we can determine dim (ĤF(S3
r (K), [s]) as the intersection count

between ĤF(M) and lsr. This is easiest to achieve by pulling the components of ĤF(M)

tight to the lifts of z.

Definition 2.3.7. Fix a metric on the torus TM with ϵ > 0. We say ĤF(M) is in pegboard

form if the immersed curves are homotoped to have minimal length in TM , where the

curves remain outside an ϵ-ball of z. When M = S3 \ νK, let ni denote the number of

vertical segments of the pegboard representative of ĤF(M) that are parallel to µi, the lift

of µ at height i.

The result is a pegboard representative for ĤF(M), and we may lift these to both TM

and T̃ , where each lift of z has an ϵ-ball disjoint from the lift(s) of ĤF(M). Pegboard forms

are invaluable for pairing, since pulling curves tight homotopes away pseudo-holomorphic

disks that do not contribute to the intersection Floer homology of a pairing. This ensures

that the resulting Floer homology is minimal [HRW16, Lemma 47].

When M = S3 \ νK, the lift ĤF(M) consists of inessential curves, or curves that are

null-homotopic after allowing homotopies through the basepoints, and a single essential

curve γ that is homotopic to the homological longitude when allowing homotopies through

the basepoints [HRW18, Corollary 63]. The invariance of ĤF(M) under the action of the

hyperelliptic involution implies that n−i = ni for its pegboard representative. It will be

particularly useful to characterize those knots whose complements have curve invariants

with minimal ni for all i ∈ Z. Recall that a knot J is an L-space knot if it admits an

L-space surgery, and that it also satisfies g(J) = |τ(J)|. The following lemma is essentially

the immersed curves version of [OS05a, Corollary 1.3].

Lemma 2.3.8. Let M = S3 \ νJ with J non-trivial. Then J is an L-space knot if and

only if ĤF(M, s) pulls tight to a curve with ni = 1 for |i| < g(J) and ni = 0 otherwise.
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Figure 2.10: Pulling the immersed curve invariant ĤF(S3 \ (T (2, 3)#T (2, 3))) (without
grading arrows) tight to pegboard form. The figures from left to right show the stages of
homotoping the invariant to lie within a neighborhood of the lifts of the meridian µ.

Proof. When J is a genus g knot with an L-space surgery S3
p(J), by mirroring if necessary

we may take p to be positive. A surgery exact triangle argument shows that S3
p+1(J) is an

L-space, and likewise for S3
k(J) with integral k > p. For some k > 2g − 1, Theorem 2.2.2

then additionally provides that

ĤF(S3
k(J), [s])

∼= Âs

for all s ∈ Z. Then each Âs
∼= F since S3

k(J) is an L-space. We can view S3
k(J) as the

+k-sloped gluing of D2 × S1 to M , so that Theorem 2.3.5 guarantees

ĤF(S3
k(J))

∼= HF(ĤF(M), h(ĤF(D2 × S1))).

Analogous to the S3
4(T (2, 5)) example, precisely k lifts of the +k-sloped curve ĤF(D2×

S1) are required to lift all intersections in TM to TM , and each lift is in correspondence

to precisely one spinc structure of Spinc(S3
k(J)). These differ in height by one in TM , and

each lift must intersect the essential curve γ at least once. An inessential curve component

contributes an even number of vertical segments to some ni with |i| < g(J). If the pegboard

representative of ĤF(M) contains such a component, then dim ĤF(S3
k(J), [s]) > 1 for

some spinc structure [s] since k > 2g(J) − 1 (we are guaranteed that some lift of

h(ĤF(D2×S1) crosses µi). As S
3
k(J) is an L-space, we must have not have any inessential

curve components. Then γ is the only component of ĤF(S3 \ νJ), and so ni = 1 for

|i| < g(J) and ni = 0 otherwise.

If ĤF(M, s) has a pegboard representative satisfying ni = 1 for |i| < g(J) and ni = 0
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otherwise, then by mirroring if necessary we may suppose τ(J) > 0 since J is non-trivial.

The invariant ĤF(M, s) is just γ since no ni has room to admit an inessential component.

Further, γ has slope 2τ(J) − ϵ(J) = 2g(J) − 1 and pulls tight to vertical segments

parallel to µi for |i| < g(J). If h is a gluing with slope k > 2g(J) − 1, then each lift of

h(ĤF(D2 × S1)) intersects ĤF(M, s) at most once. Using Theorem 2.3.5, we have dim

ĤF(S3
k(J), [s]) = 1 for each spinc structure [s]. Therefore S3

k(J) is an L-space, and so J is

an L-space knot.

Remark. For an L-space knot J , we have |τ(J)| = g(J) and so the pegboard representative

of ĤF(M) takes on one of two mirrored forms depending on the sign of τ(J). These are

illustrated in Figure 2.11 for a genus two knot.

Figure 2.11: The two curve invariants for a genus two L-space knot, placed in pegboard
form. Left: τ(J) = g(J). Right: τ(J) = −g(J).

To incorporate the relative Maslov grading in pairng, we use a formula from [Han19].

Suppose x and y are two intersections belonging to the same [s] ∈ Spinc(S3
r (K)), arising

from intersections between ĤF(M) and lsr. Further, let P be the bigon from x to y whose

boundary consists of a (not necessarily smooth) path from x to y in ĤF(M), concatenated

with a path from y to x in lsr. Defined this way, the boundary of P is a closed path that

is smooth apart from right corners at x and y, and possibly one or more cusps. The

following formula follows from the conversion of bordered invariants into immersed curves,

keeping track of grading contributions from relevant Reeb chords [HRW18, Section 2.2].
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Proposition 2.3.9. Suppose x,y, and P are defined as above. Let Rot(P ) denote 1
2π

times the total counterclockwise rotation along the smooth sections of P , let Wind(P )

denote the net winding number of P around enclosed basepoints, and finally let Wght(P )

be the sum of weights (counted with sign) of all grading arrows traversed by P . Then

M(y)−M(x) = 2Wind(P ) + 2Wght(P )− 2Rot(P ).

If lsr intersects a simple figure-eight component at height n of ĤF(M), it does so in

two places. These are a right intersection yn and a left intersection xn, taken so that

M(xn)−M(yn) = 1. Figure 2.12 shows off the three types of bigons that will typically

appear. The first type has P connecting a right and left intersection of the same simple

figure-eight. The bigon encloses a single basepoint with positive winding number, total

counterclockwise rotation along smooth sections as π, and no contribution from traversed

grading arrows. These traits imply M(xn)−M(yn) = 1. The second and third types are

the more interesting ones, and have the same winding number of enclosed basepoints,

but the rotation and grading arrow contributions to M(yn)−M(as) initially appear to

be different. We will see in Chapter 5 that the 2Wght(P )− 2Rot(P ) component of the

grading difference is the same.

(a)

xn yn

(b)

as

yn

(c)

as

yn

Figure 2.12: Bigons used to determine the relative Maslov grading. Example (a) does
not involve a grading arrow, while (b) and (c) (with a cusp) do.
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CHAPTER

3

KLEIN BOTTLE SURGERIES

To obstruct integral Dehn surgeries from containing a Klein bottle, we will decompose

the surgery along the boundary of N , the twisted I-bundle over the Klein bottle, and

involve Heegaard Floer homology via immersed curves techniques. As alluded to in the

introduction, if a closed, orientable 3-manifold X contains a Klein bottle, then we may

view X as a gluing X = M ∪hN where M is a rational homology solid torus. Alternatively

we can view M = Y \ νJ as a knot manifold, which is the complement of a knot J in Y

some rational homology sphere. We specialize to gluings of N to S3 knot complements,

and use immersed curves machinery to determine which knot complements can glue with

N to have the Floer homology as that of S3
8(K) with g(K) = 2. The proof of Theorem

1.2.1 involves establishing three main lemmas implying the following:

� In Lemma 3.2.1, we will see that if J is the unknot, then X = S3
8(T (2, 5)).

� Afterward, Lemma 3.3.1 will be used to show that if J is non-trivial, then dim

ĤF(X) forces J = T (2, 3).

� Finally in the following chapter, we invoke Lemma 4.4.1 to see that if J = T (2, 3),

then X does not arise as S3
8(K) with g(K) = 2.
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The first lemma does not require immersed curves, but does use the Maslov grading

information for ĤF via the d-invariants. The second lemma is where immersed curves are

used to constrain J . Finally the third lemma, in Chapter 4, follows using the relative

Q-grading on the box tensor product of bordered invariants for S3 \ νT (2, 3) and N .

Afterward we will consider reducible surgeries on thin, hyperbolic knots in Chapters 5

and 6.

3.1 The Gluing Map h

Let us now pin down the possibilities for the gluing map h. Summands of homology will

typically be ordered with the summand generated by the rational longitude first, such as

in H1(∂N) ∼= Z[ϕ0] ⊕ Z[ϕ1].

Definition 3.1.1. Let X = (S3 \νJ) ∪hN be the gluing of N to the complement S3 \νJ ,
where the orientation-reversing gluing induces h∗ on homology given by

[h∗] =

(
q a

p b

)
.

We say h is a slope p/q gluing, corresponding to the slope of h∗(ϕ0).

Proposition 3.1.2. Let h be defined as above. Then |H1(X)| = 8 if only if |p| = 2.

Additionally, we have

H1(X) =

{
Z/2Z⊕ Z/4Z b ≡ 0 (mod 2)

Z/8Z b ̸≡ 0 (mod 2)

Proof. Recall the parameterization on ∂N by the rational longitude ϕ0 and our chosen

dual curve ϕ1, so that H1(∂N) ∼= Z[ϕ0]⊕Z[ϕ1]. As a slight abuse of notation, let ϕ0 and ϕ1

also denote the inclusion of these slopes in H1(N). The dual curve ϕ1 includes in H1(N)

as twice some primitive curve x since ϕ0 includes with order two [Wat12, Subsection 3.1],

and so H1(N) ∼= Z/2Z[ϕ0] ⊕ Z[x]. For the knot complement, H1(∂(S
3 \ νJ)) ∼= Z[λ] ⊕ Z[µ]

and H1(S
3 \ νJ) ∼= Z[µ], with the inclusions [µ] primitive and [λ] trivial. Then using the

Mayer-Vietoris sequence for homology, we obtain

H1(X) ∼= (H1(S
3 \ νJ)⊕H1(N))⧸f∗(H1(∂N)),
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where f∗ maps H1(∂N) into H1(N) by inclusion and into H1(S
3 \ νJ) through h∗ and

inclusion.

The quotient identifies ϕ0 ∼ qλ+ pµ and ϕ1 = 2x ∼ aλ+ bµ, and so H1(X) has the

following presentation:

H1(X) ∼= ⟨λ, µ, ϕ0, x | λ = 0, 2ϕ0 = 0, ϕ0 = qλ+ pµ, 2x = aλ+ bµ⟩
∼= ⟨µ, x | 2pµ = 0, 2x = bµ⟩.

From this we see that |H1(X)| = 8 if and only if |p| = 2, and that H1(X) is cyclic when

b ̸≡ 0 (mod 2).

A gluing h that satisfies the cyclic condition of Proposition 3.1.2 will be referred to as

a cyclic gluing. To narrow the amount of cyclic gluings to consider, we can appeal to a

form of Dehn twisting invariance enjoyed by ĤF(N).

Definition 3.1.3. A Heegaard Floer homology solid torus M is a rational homology solid

torus satisfying

ĈFD(M,µM , λM) ∼= ĈFD(M,µM + λM , λM),

with λM the rational longitude of M and µM any slope dual to λ.

The twisted I-bundle over the Klein bottle is shown to be a Heegaard Floer homology

solid torus in [BGW, Proposition 7], and this invariance for A(θN,s1) is shown in Figure

3.1. The new yellow edge recovering the ρ3 edge is the result of applying edge reduction

[Lev12, Section 2.6]. The case for the loose component A(θN,s0) is immediate. Equivalently,

inspection of ĤF(N) in Figure 2.6 reveals that the curve invariant can be homotoped

(without crossing the basepoint) to lie within a neighborhood of the rational longitude.

Dehn twisting n times along ϕ0, and then gluing is equivalent to pre-composing [h∗]

with

[Tn] =

(
1 n

0 1

)
, yielding [h∗ ◦ Tn] =

(
q a+ nq

p b+ np

)
.

Gluing by either map yields manifolds with equivalent ranks of ĤF(X, t) for each spinc

structure [HRW2, Corollary 27]. The mod p residue class of [b] is preserved for all n ∈ Z,
and so we have to consider an integral family of manifolds X obtained by varying n. This

will be more pertinent in Chapter 4 where we appeal to more than just dim ĤF(X), so

let us then restrict attention to the maps h with −2 < b ≤ 0. We are also interested in

cyclic gluings, which means b ≡ 1 (mod 2) due to Proposition 3.1.2. We will show that
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Figure 3.1: Left: The type A realization of ĈFD(N, ϕ1, ϕ0, s1). Right: Dehn twisting to

obtain the type A realization of ĈFD(N, ϕ1 + ϕ0, ϕ0, s1), and the edge reduction showing
homotopy equivalence.

the pairing slope ±2/q must be integral when J is non-trivial to provide the right dim

ĤF(X), so we will also take q = 1. The Dehn twisting invariance of ĈFD(N) allows us to

choose b = −1, and so the prototypical gluing h induces

[h∗] =

(
1 0

2 −1

)
.

3.2 Gluings with J Trivial

We now establish the first lemma handling the case when J is trivial, which is when

X is a Dehn filling of N . Continuing as before, let M will denote the knot complement

M = S3 \ νJ .

Lemma 3.2.1. Suppose X = (Y \ νJ) ∪h N contains a Klein bottle and is realized as

S3
8(K) with g(K) = 2. If J is trivial, then Y = S3, K = T (2, 5), and X = (−1; 1

2
, 1
2
, 2
5
) as

a Seifert fibered manifold.

Proof. We know from Corollary 2.2.5 that M is irreducible, and so Y = S3 and M =

D2 × S1. Such a gluing X is a Dehn filling N(α), where α is a slope on ∂N . The twisted

I-bundle over the Klein bottle N has a Seifert structure with base orbifold D2(2, 2)

[LW14], and we may parametrize ∂N using {ϕ0, ϕ1} as before, where ϕ0 = λN is the

rational longitude of N and ϕ1 is our preferred choice of curve dual to ϕ0. We have

N(ϕ1) = RP 3#RP 3 and b1(N(ϕ0)) > 0, and so we can consider α ≠ ϕ0, ϕ1. Since N is a

Heegaard Floer homology solid torus, X is an L-space for all α ̸= ϕ0 [HRW18, Theorem

26]. Then if X is realizable as 8-surgery along K with g(K) = 2, we must have that K is
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an L-space knot. This implies ĤFK(K) ∼= ĤFK(T (2, 5)). Any Dehn filling X = N(α) for

which α ̸= ϕ0, ϕ1 admits a pair of Seifert structures with base orbifolds RP 2(∆(α, ϕ0))

and S2(2, 2,∆(α, ϕ1)). Since ∂N compresses in S3 \ νJ , we see that π1(X) is finite. Thus,

X is either a lens space or has π1(X) non-cyclic.

We obstruct X ∼= L(8, q) using the d-invariants from [OS03a] using Proposition 2.2.7

from [NW15]. Since K has isomorphic knot Floer homology to that of T (2, 5), we must

have Vs(K) = Vs(T (2, 5)). With V0(K) = V1(K) = 1 and Vs(K) = 0 for s ≥ 2, one

computes

d(S3
8(K), [s]) =



−1/8 s ≡ 5 (mod 8)

1/4 s ≡ 6 (mod 8)

−9/8 s ≡ 7 (mod 8)

−1/4 s ≡ 0 (mod 8)

−9/8 s ≡ 1 (mod 8)

1/4 s ≡ 2 (mod 8)

−1/8 s ≡ 3 (mod 8)

−1/4 s ≡ 4 (mod 8)

We have d(L(8,±1), [t1]) = ±7/4 and d(L(8,±3), [t2]) = ±5/8 for some t1, t2 ∈ Z from

the recursion in [OS03a, Proposition 4.8], but both of these differ from any d(S3
8(K), [s]).

Therefore, X cannot be a lens space.

In [Doi15, Theorem 2], Doig classifies finite, non-cyclic surgeries S3
r (K) for |r| ≤ 9.

Among these, the manifolds with |H1(X)| = 8 are specific dihedral manifolds that

are small Seifert fibered with base orbifold S2. They are −S3
8(T (2, 3)) =

(
−1; 1

2
, 1
2
, 2
3

)
,

and S3
8(K) =

(
−1; 1

2
, 1
2
, 2
5

)
for ĤFK(K) ∼= ĤFK(T (2, 5)). However, since eight is a

characterizing slope for T (2, 5) due to [NZ18], we have
(
−1; 1

2
, 1
2
, 2
5

)
= S3

8(T (2, 5)). For

T (2, 3) we have V1(T (2, 3)) = 0, and so

d(−S3
8(T (2, 3), [1]) = −d(S3

8(T (2, 3)), [1]) = −7
8
.

This differs from any d(S3
8(K), [s]) above when K has the same knot Floer homology as

T (2, 5), establishing the lemma.
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3.3 Gluings with J Non-trivial

Now suppose that J is a non-trivial knot in S3. There is a convenient visual way to

track Floer homology associated to a given spinc structure of X, that we have already

encountered in both Figure 2.9 and in proving Lemma 2.3.8.

Figure 3.2: The 2/3-sloped curves
of N associated to s1 in TM .

By Theorem 2.3.5, we have ĤF(X, t) isomor-

phic to a summand of HF (ĤF(M, s), h(ĤF(N), sk))

when t ∈ π−1(s× sk). Intersections x,y in pairing

generate Floer homology in the same spinc struc-

ture if and only if there exist paths p0 from x to

y in ĤF(M, s) and p1 from x to y in h(ĤF(N, sk)),

such that the concatenation of p0 with −p1 lifts

to a closed, piecewise smooth path in T̃ [HRW18,

Section 2]. When h has slope ±2/q, a single lift

h(ĤF(N, sk)) of the component of h(ĤF(N)) cor-

responding to sk will fail to lift all intersections in

TM generated by this component; two lifts of the

component are required.

This is motivated by Figure 3.2 for h(ĤF(N, s1)) projected to TM , where h is a cyclic

gluing of slope 2/3. A single lift to TM cannot simultaneously lift all intersections by the

suggestively colored red and purple pieces of the projection of h(ĤF(N, s1)). A simpler

example of this is seen from Figure 2.9, where four lifts of h(ĤF(D2 × S1)) are needed.

Additionally, Figure 1.1 provides an example of the four required curves of h(ĤF(N, s1))

with h a cyclic gluing of slope 2. Notice that the lifted curves cannot generate intersections

with the same Spinc grading as there is no path between the curves in h(ĤF(N, sk)).

For this reason, we can associate the eight t ∈ Spinc(X) with these lifted curves of

h(ĤF(N, s1)) and h(ĤF(N, s0)).

Now that we can distinguish intersections generating Floer homology in different Spinc

structures, we establish the second lemma toward proving Theorem 1.2.1. This is the

extent to which ignoring the Maslov grading in the immersed curves package can push

the case where J is non-trivial. Since we are only interested in X with H1(X) ∼= Z/8Z
and constrained dim ĤF(X, t) from Proposition 2.2.3, we assume these traits.

Lemma 3.3.1. Let J be non-trivial and consider X = (S3 \ νJ) ∪h N , where h is any

slope 2/q cyclic gluing. If dim ĤF(X, t) = 1 for at least five t ∈ Spinc(X), then h has

slope ±2 and J = T (2,±3).
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Proof. Let M = S3 \ νJ , and pull ĤF(M) tight to pegboard form. From Theorem 2.3.5

we have

ĤF(X, t) ∼= HF (ĤF(M), h(ĤF(N), sk)),

where t ∈ π−1(s× sk).

Suppose for the sake of contradiction that |q| > 1, so that the slope of h satisfies

|2/q| < 1. Since J is non-trivial, ĤF(M) must have ni ̸= 0 for some i. It is then immediate

that all four lifts of the loose curves h(ĤF(N, s0)) intersect the vertical segment(s) at

height i of ĤF(M) more than once (such as in Figure 3.2). Since dim ĤF(X, t) = 1 for at

least five t ∈ Spinc(X), we must have ni = 0 for all |i| < g(J). However this condition is

satisfied only by the unknot, which is the desired contradiction. Then we may suppose

that h is a slope 2 cyclic gluing, mirroring K if necessary to make the slope positive.

Figure 3.3: Intersections between the lifts of h(ĤF(N, s1)) and potential vertical segments

of ĤF(M).

Notice that each potential vertical segment of ĤF(M) at height i intersects two

of the four lifted curves of h(ĤF(N, s1)), showcased in Figure 3.3. Similarly, the same

potential vertical segment intersects two of the four lifted curves of the loose component

h(ĤF(N, s0)). Then for all i ∈ Z, we have ni contributing to dim ĤF(X, t) in at least
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four different spinc structures. We are then forced to have ni ≤ 1 for all i ∈ Z, which is

equivalent to ĤF(M) not containing any inessential curve components. Therefore, J is

an L-space knot by Lemma 2.3.8. In the remark following that lemma, we see that the

pegboard representative of ĤF(M) = γ for an L-space knot complement is completely

determined by τ(J).

If g(J) > 1, four lifted components (two for each sk) of h(ĤF(N)) intersect γ more

than once. This is shown in Figure 3.4 when τ(J) = 2. Then we must have g(J) = 1

since J is non-trivial, and so J is either T (2, 3) or T (2,−3). Observe that gluing N to

S3\νT (2,−3) by a +2-sloped cyclic gluing yields a manifold with excessive Floer homology

since τ(T (2,−3)) < 0. Noting that the same argument would imply J = T (2,−3) if h
was a slope −2 cyclic gluing, we have established the lemma.

Figure 3.4: The pairing of h(ĤF(N)) with ĤF(M), where h is a slope 2 cyclic gluing and
J is an L-space knot with τ(J) = 2.
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CHAPTER

4

REFINED GRADINGS IN PAIRING

In this chapter, we obstruct (S3\νT (2, 3))∪hN from being realized as S3
8(K) for g(K) = 2

using the Maslov grading structure on ĤF(X). The argument style works identically for

J = T (2,−3) when h has slope −2, and so we will proceed only for the positive case. The

relative Z-grading on Heegaard Floer homology can be lifted to an absolute Q-grading,

and for an L-space surgery the grading of the generator of ĤF(S3
p(K), [s]) is given by

d(S3
p(K), [s]). In general these are easy to determine from CFK∞(K), which we did back

in Lemma 3.2.1 for 8-surgery along a knot K with ĤFK(K) ∼= ĤFK(T (2, 5)).

While the immersed curves framework has been invaluable for ruling out most suitable

knot complements S3 \ νJ , it is limited in its capacity to compare grading information

across spinc structures. We will compute the relative Q-grading on ĤF(X) using train

tracks and their associated prototype pairing theorem (Subsection 2.3.2), and then generate

the desired obstruction by comparing grading differences. This is possible through the

main result of [LOT18a], which we will give after a brief overview of the (refined) grading

on bordered invariants (for manifolds with torus boundary).

From [LOT18b, Section 11.1], the refined grading on the algebra A(T) takes values in
a non-commutative group G (arising as a Z-central extension of H1(T)). The group G is

generated by triples (j; p, q) with j, p, q ∈ 1
2
Z and p+ q ∈ Z, and has a central element
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λ = (1; 0, 0) (not to be confused with the homological longitude of S3 \ νJ). We will refer

to j as the Maslov component, and (p, q) as the Spinc component. The group law is given

by

(j1; p1, q1) · (j2; p2, q2) =

(
j1 + j2 +

∣∣∣∣∣p1 q1

p2 q2

∣∣∣∣∣ ; p1 + p2, q1 + q2

)
,

and the gradings of the algebra elements are generated from the non-zero products on

A(T) from:

gr(ρ1) = (−1
2
; 1
2
,−1

2
)

gr(ρ2) = (−1
2
; 1
2
, 1
2
)

gr(ρ3) = (−1
2
;−1

2
, 1
2
)

Let M1 be a bordered manifold with torus boundary. Given s1 ∈ Spinc(M1), fix a

base generator x0 ∈ ĈFA(M1, s1). The module ĈFA(M1, s1) is graded by the right G-set

GA(M1, s1) := P (x0)\G, with subgroup P (x0) defined in terms of periodic domains

B ∈ π2(x0,x0) in a bordered Heegaard diagram for M . While this construction depends

on the choice of base generator x0, different choices give isomorphic grading sets [LOT18b,

Section 10.3]. We have π2(x0,x0) ∼= H2(M1) ⊕ Z when M1 has torus boundary, and so

P (x0) is cyclic if M is a rational homology solid torus.

Since the bordered manifolds in this paper are rational homology solid tori, we

have ĈFA(M1, s1) graded by ⟨f⟩\G for some f ∈ G. Similarly for another bordered

manifold with torus boundary M2, we have that ĈFD(M2, s2) is graded by the left G-set

GD(M2, s) := G/⟨h⟩ for some h ∈ G. The box tensor product ĈFA(M1, s1)⊠ ĈFD(M2, s2)

is graded by GA(M1, s1) ×G GD(M2, s2), and the grading of x1 ⊗ x2 is gr(x1 ⊗ x2) =

(gr(x1), gr(x2)).

We can also work with rational periodic domains by extending G and its multiplication

over Q to obtain GQ. We also have quotients by the Q-span of ⟨f⟩ and ⟨h⟩, given as

GA,Q(M, s) := ⟨t · f⟩\GQ and GD,Q(M, s) := GQ/⟨t · h⟩ for t ∈ Q. The main results of

[LOT18a] are combined in Theorem 4.0.1 below (in the case of manifolds with torus

boundary). It states that the relative Q-grading by GA,Q(M1, s1)×GQGD,Q(M2, s2) recovers

the relative Q-grading on ĈF(M1 ∪h M2).
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Theorem 4.0.1 ([LOT18a, Theorem 1, Corollary 3.2, Remark 3.3]). Consider the

pairing X = M1 ∪h M2, where the Mi are compact, oriented 3-manifolds with torus

boundary and h is an orientation-reversing homeomorphism of boundaries. Suppose that

x,y ∈ ĈFA(M1, α1, β1, s1) ⊠ ĈFD(M2, h
−1(β1), h

−1(α1), s2) are such that s(x) and s(y)

are torsion and s(x)|Mi
= s(y)|Mi

=: si for i = 1, 2. Then grQ(x) and grQ(y) lie in

the same Q-orbit of GA,Q(M1, s1)×GQ GD,Q(M2, s2). In particular, the G-set grading grQ

determines the relative Q-grading on ĤF.

Since ĈFA(M) is an A∞-module graded by a right G-set, homogeneous elements

x ∈ ĈFD(M) and ρIn ∈ A satisfy

gr(mk+1(x, ρI1 , . . . , ρIk)) = λk−1gr(x)gr(ρI1) · · · gr(ρIk) if x⊗ ρI1 ⊗ · · · ⊗ ρIk ̸= 0.

Similarly, since ĈFD(M) is a left differentialA-module graded by a leftG-set, homogeneous

elements x ∈ ĈFD(M) and ρI ∈ A satisfy both

gr(ρI ⊗ x) = gr(ρI)gr(x) if ρI ⊗ x ̸= 0

gr(∂x) = λ−1x if ∂x ̸= 0.

We can now use these properties to compute the refined gradings on the relevant

bordered invariants, and use Theorem 4.0.1 to establish the final lemma to prove Theorem

1.2.1. For the rest of this chapter, let M = S3 \ νT (2, 3). For our prototypical gluing h,

we have

ĤF(X) = H∗(ĈFA(M,µ, λ)⊠ ĈFD(N, h−1(λ), h−1(µ)))

= H∗(ĈFA(M,µ, λ)⊠ ĈFD(N, 2ϕ1 + ϕ0,−ϕ1)).

We first need to determine the refined gradings for ĈFA(M,µ, λ), and both ĈFD(N, 2ϕ1+

ϕ0,−ϕ1, s1) and ĈFD(N, 2ϕ1 + ϕ0,−ϕ1, s0). We begin with the former, and work towards

the latter two structures on N .

4.1 Refined Gradings for ĈFA(M,µ, λ)

We will use the decorated graph representation of ĈFA(M,µ, λ) to determine the refined

gradings of its generators. To obtain this, let us reverse-engineer A(θM) from ĤF(M, s)

by projecting an appropriate representative onto TM (with z at (1− ϵ, 1− ϵ)). The form
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of ĤF(M, s) in T̃ is simple due to Lemma 2.3.8. Seen in TM , the curve invariant initially

wraps around a lift of z at height 1
2
, then around a lift of z at height −1

2
before wrapping

back around the cylinder since τ(T (2, 3)) = 1 and ϵ(T (2, 3)) = 1. The choice representative

in T̃ is shown in Figure 4.2, together with the projection onto TM yielding the desired

A(θM ). Recall that the decorated graph representing ĈFD(M,µ, λ) can be extracted from

A(θM) using the edge identifications from Figure 2.5. The result is shown in Figure 4.1.

x1

123

y1
1x3

3

y4

2

x2

1
y2

23
y3

3

Figure 4.1: The decorated graph representation of ĈFD(M,µ, λ)

Finally, an algorithm of Hedden and Levine may be followed to obtain the decorated

graph representation of ĈFA(M,µ, λ) [HL16]. The idempotent splitting according to vertex

labels remains the same, but the edge labels are interpreted differently. First, rewrite them

according to the bijection 1↔ 3. Given a directed path from x to y, construct a sequence

I = I1, . . . Ik and assign the multiplication mk+1(x⊗ρI1⊗· · ·⊗ρIk) = y. Reading the edge

labels of the directed path in order, form I by regrouping to find the minimum k so that

each Ij is an element of {1, 2, 3, 12, 13, 23, 123}. For example, the edge labeled {23} from
y3 to y2 in Figure 4.1 gives the sequence I = {2, 1} and the product m3(y3, ρ2, ρ1) = y2.

The resulting decorated graph is shown in Figure 4.3.

Reading the edge labels gives each generator’s contribution to the mk, and allows us

to determine their refined gradings taking values in ⟨f⟩\G, up to some indeterminacy f .

Set x1 to be the base generator. Since the decorated graph for ĈFA(M,µ, λ) is valence

2 and connected, we can traverse an oriented path from x1 to itself through the other

generators to simultaneously compute the refined gradings of the remaining generators

and the indeterminacy f .
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x1

x2

x3

y1y2y3y4

Figure 4.2: Right: A particular representative of ĤF(M, s) in T̃ . Left: The type A
realization A(θM)

x1

321

y1
3x3

1

y4

2

x2

3
y2

21
y3

1

Figure 4.3: The decorated graph representation of ĈFA(M,µ, λ)

The relevant contributions to the mk are the following:

1) m4(x1, ρ3, ρ2, ρ1) = y1 4) m3(y3, ρ2, ρ1) = y2

2) m2(x3, ρ3) = y1 5) m2(x1, ρ1) = y3

3) m2(x3, ρ123) = y2
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For the first term m4(x1, ρ3, ρ2, ρ1) = y1, we see that

gr(y1) = λ2gr(x1)gr(ρ3)gr(ρ2)gr(ρ1)

= gr(x1)λ
2gr(ρ3)

(
−1

2
; 1
2
, 1
2

) (
−1

2
; 1
2
,−1

2

)
= gr(x1)λ

2
(
−1

2
;−1

2
, 1
2

) (
−3

2
; 1, 0

)
= gr(x1) (2; 0, 0)

(
−5

2
; 1
2
, 1
2

)
= ⟨f⟩\

(
−1

2
; 1
2
, 1
2

)
Performing this for the remaining generators, we obtain their (undetermined) refined

gradings in ⟨f⟩\G:

gr(x1) = ⟨f⟩\ (0; 0, 0) gr(y1) = ⟨f⟩\
(
−1

2
; 1
2
, 1
2

)
gr(x2) = ⟨f⟩\ (−1; 2, 0) gr(y2) = ⟨f⟩\

(
−1

2
; 3
2
, 1
2

)
gr(x3) = ⟨f⟩\

(
−1

2
; 1, 0

)
gr(y3) = ⟨f⟩\

(
1
2
; 1
2
, 1
2

)
gr(y4) = ⟨f⟩\

(
−3

2
; 3
2
,−1

2

)
The final term m2(x1, ρ1) = y3 allows us to pin down f :

gr(x1)gr(ρ1) = gr(y3)

⇒ gr(x1) = gr(y3)gr(ρ1)
−1

= ⟨f⟩\
(
1
2
; 1
2
, 1
2

) (
1
2
;−1

2
, 1
2

)
= ⟨f⟩\

(
3
2
; 0, 1

)
.

Thus, f =
(
3
2
; 0, 1

)
since it is primitive. The refined gradings for generators of

ĈFA(M,µ, λ) are the following:

gr(x1) = ⟨(32 ; 0, 1)⟩\ (0; 0, 0) gr(y1) = ⟨(32 ; 0, 1)⟩\
(
−1

2
; 1
2
, 1
2

)
gr(x2) = ⟨(32 ; 0, 1)⟩\ (−1; 2, 0) gr(y2) = ⟨(32 ; 0, 1)⟩\

(
−1

2
; 3
2
, 1
2

)
gr(x3) = ⟨(32 ; 0, 1)⟩\

(
−1

2
; 1, 0

)
gr(y3) = ⟨(32 ; 0, 1)⟩\

(
1
2
; 1
2
, 1
2

)
gr(y4) = ⟨(32 ; 0, 1)⟩\

(
−3

2
; 3
2
,−1

2

)
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4.2 Refined Gradings for ĈFD(N, 2ϕ1 + ϕ0,−ϕ1, s0)

In order to obtain the desired decorated graph representation, we can reverse-engineer

its form from A(θh(N,s0)) (shown on the right side of Figure 2.6 back in Subsection 2.3.2).

This involves performing a series of Dehn twists and reflections on TN for the type A

realization of ĈFD(N, ϕ1, ϕ0, s0), illustrated in Figure 4.4. First, we use the reflection

r(y = 1
2
) to obtain ĈFD(−N,−ϕ1, ϕ0, s0). Second, Dehn twisting -2 times along −ϕ1

yields ĈFD(−N,−ϕ1, 2ϕ1 + ϕ0, s0). Finally we use the reflection r(y = x), giving the

bottom-right collection of curves A(θh(N,s0)) with the proper orientation on ∂N .

Figure 4.4: The series of Dehn twists and reflections required to obtain the type A

realization of ĈFD(N, 2ϕ1 + ϕ0,−ϕ1, s0).

The corresponding decorated graph representation of ĈFD(N, 2ϕ1 + ϕ0,−ϕ1, s0) is

shown in Figure 4.5. Label the ι0 generators by ai and the ι1 generaters by bi. Reading

the edge labels gives each generator’s contribution to δ1, and allows us to determine their

refined gradings in G/⟨h0⟩ up to some indeterminacy h. Set a1 to be the base generator.

Since the decorated graph at hand is valence 2 and connected, we can traverse an oriented

path from a1 to itself through the other generators to simultaneously compute the refined

gradings of the remaining generators and the indeterminacy h0. This is performed below

using the properties of the refined grading.
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a1

ρ12

a3
ρ1b1

ρ3

a2

ρ12

a4 ρ1 b2

ρ3

Figure 4.5: The decorated graph representation of ĈFD(N, ϕ0 + 2ϕ1,−ϕ1, s0)

The relevant contributions to δ1 are

1) ρ12 ⊗ a3 ∈ δ1a1 4) ρ12 ⊗ a4 ∈ δ1a2

2) ρ1 ⊗ b1 ∈ δ1a3 5) ρ1 ⊗ b2 ∈ δ1a4

3) ρ3 ⊗ b1 ∈ δ1a2 6) ρ3 ⊗ b2 ∈ δ1a1

For the first term ρ12 ⊗ a3 ∈ δ1a1, we see that

λ−1gr(a1) = gr(ρ12)gr(a3)

λ−1gr(a1) = gr(ρ1)gr(ρ2)gr(a3)

⇒ gr(a3) = gr(ρ2)
−1gr(ρ1)

−1λ−1gr(a1)

=
(
1
2
;−1

2
,−1

2

) (
1
2
;−1

2
, 1
2

)
λ−1gr(a1)

=
(
1
2
;−1, 0

)
(−1; 0, 0) gr(a1)

=
(
−1

2
;−1, 0

)
/⟨h0⟩.

Performing this for the remaining generators, we obtain their (undetermined) refined

gradings in G/⟨h0⟩.

gr(a1) = (0; 0, 0) /⟨h0⟩ gr(a4) = (−1;−3, 1) /⟨h0⟩

gr(a2) =
(
1
2
;−2, 1

)
/⟨h0⟩ gr(b1) =

(
−1

2
;−3

2
, 1
2

)
/⟨h0⟩

gr(a3) =
(
−1

2
;−1, 0

)
/⟨h0⟩ gr(b2) =

(
−1

2
;−7

2
, 3
2

)
/⟨h0⟩
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The final term ρ3 ⊗ b2 ∈ δ1a1 allows us to pin down h0:

λ−1gr(a1) = gr(ρ3)gr(b2)

⇒ gr(a1) = λgr(ρ3)gr(b2)

= (1; 0, 0)
(
−1

2
;−1

2
, 1
2

)
gr(b2)

=
(
1
2
;−1

2
, 1
2

) (
−1

2
;−7

2
, 3
2

)
gr(a1)

= (1;−4, 2) /⟨h0⟩.

Then h0 divides (−1; 4,−2), and so the two possibilities for h0 are (−1
2
; 2,−1) or

(−1; 4,−2). Supposing the former to generate a contradiction, we would have gr(a2) =

gr(a1) in G/⟨h0⟩, which in turn forces s(x1 ⊠ a1) = s(x1 ⊠ a2). This contradicts the

discussion in Subsection 3.3, where these generators correspond to separate spinc structures

because no closed, piecewise smooth path in T̃ exists to connect them. Then with

h0 = (−1; 4,−2), the refined gradings for generators of ĈFD(N, 2ϕ1 + ϕ0,−ϕ1, s1) are the

following:

gr(a1) = (0; 0, 0) /⟨(−1; 4,−2)⟩ gr(a4) = (−1;−3, 1) /⟨(−1; 4,−2)⟩

gr(a2) =
(
1
2
;−2, 1

)
/⟨(−1; 4,−2)⟩ gr(b1) =

(
−1

2
;−3

2
, 1
2

)
/⟨(−1; 4,−2)⟩

gr(a3) =
(
−1

2
;−1, 0

)
/⟨(−1; 4,−2)⟩ gr(b2) =

(
−1

2
;−7

2
, 3
2

)
/⟨(−1; 4,−2)⟩

It is interesting to note that

grQ(a2) =
(
1
2
;−2, 1

)
/⟨(−1; 4,−2)⟩

=
(
1
2
;−2, 1

) (
−1

2
; 2,−1

)
/⟨(−1; 4,−2)⟩

= (0; 0, 0) /⟨(−1; 4,−2)⟩

= grQ(a1),

by acting over Q. The same holds true for the other generators, with grQ(a4) = grQ(a3) and

grQ(b1) = grQ(b2). Generators of HF (ĤF(S3\νJ), h(ĤF(N, s0))) come in pairs exhibiting

this feature, which suggests that they are associated to conjugate spinc structures on X.

That this behavior does not depend on J is enough to show this, but we will not need it

for our purposes.

Finally, we will need the corresponding type D realization D(θh(N,s0)) for pairing in

Subsection 4.4, presented now in Figure 4.6.
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a1

a2

a3

a4

b1b2

a1 a2 a3 a4

b1

b2

Figure 4.6: Left: A(θh(N,s0)). Right: Obtaining D(θh(N,s0)) via r(y = −x).

4.3 Refined Gradings for ĈFD(N, 2ϕ1 + ϕ0,−ϕ1, s1)

Recall from Subsection 2.3.2 that the decorated graph on the left side of Figure 2.4 gives

rise to A(θN,s1) shown in Figure 2.6. The same series of Dehn twists and reflections as

those in the previous subsection can be applied to obtain A(θh(N,s1)) and D(θh(N,s1)). The

end results are depicted in Figure 4.7.

z1

z2

z3

z4

y1y2

z1 z2 z3 z4

y1

y2

Figure 4.7: Left: A(θh(N,s1)). Right: Obtaining D(θh(N,s1)) via r(y = −x).

Label the ι0 generators by zi and the ι1 generators by wi. The decorated graph for

ĈFD(N, 2ϕ1 + ϕ0,−ϕ1, s0) is then given by Figure 4.8.
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z1

ρ12

z3
ρ12z4

ρ1

w1

ρ3

z2 ρ1 w2

ρ3

Figure 4.8: The decorated graph representation of ĈFD(N, ϕ0 + 2ϕ1,−ϕ1, s0)

Using similar computations to those in the previous subsection, we have that the

refined gradings for generators of ĈFD(N, 2ϕ1 + ϕ0,−ϕ1, s1) lie in G/⟨(−3; 4,−2)⟩ and
are the following:

gr(z1) = (0; 0, 0) /⟨(−3; 4,−2)⟩ gr(z4) = (−1;−2, 0) /⟨(−3; 4,−2)⟩

gr(z2) = (1;−3, 1) /⟨(−3; 4,−2)⟩ gr(w1) =
(
−1

2
;−5

2
, 1
2

)
/⟨(−3; 4,−2)⟩

gr(z3) =
(
−1

2
;−1, 0

)
/⟨(−3; 4,−2)⟩ gr(w2) =

(
3
2
;−7

2
, 3
2

)
/⟨(−3; 4,−2)⟩

4.4 Refined Gradings for Generators in Pairing

With A(θM ) from Subsection 4.1, and both D(θh(N,s0)) from Subsection 4.2 and D(θh(N,s1))

from Subsection 4.3, we can now compute the relative Maslov grading differences for the

generators of ĤF(X). We do this first in detail for those t ∈ π−1(s× s0), and then briefly

perform the same methods for those t ∈ π−1(s× s1) for completeness.

Include A(θM) into the first quadrant of TM and D(θh(N,s1)) into the third quadrant

of TM , extending both horizontally and vertically. This results in the configuration shown

on the left of Figure 4.9. According to the train track version of the pairing theorem, the

summands ĤF(X, t) for which t ∈ π−1(s× s0) are given by H∗(C(A(θM), D(θh(N,s0)), d
θ)).

It is significantly more convenient to lift to T̃ , such as on the right of Figure 4.9, to see

which generators are annihilated under Floer homology.

This is done in stages throughout Figures 4.9 and 4.10 to illustrate the homotopy

performed to remove most bigons that do not cover a basepoint. Ultimately, the four

generators are in correspondence with the four surviving intersections in Figure 4.11. They

are x1 ⊠ a1, x1 ⊠ a2, y1 ⊠ b1, and y1 ⊠ b2. Their refined gradings lie in GA,Q(M, s)×GQ
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Figure 4.9: Including A(θM) and D(θh(N,s0)) in TM , and lifting intersections to T̃ .

Figure 4.10: Left: Bigons between lifted intersections of A(θM) and D(θh(N,s0)) to T̃ .
Right: Homotoped A(θM), removing most generators annihilated in intersection Floer
homology and leaving lifts of four generators that survive.

GD,Q(h(N, s0)), which may be determined using the information from Subsections 4.1

and 4.3 together with Theorem 4.0.1.
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x1

x2

x3

a1 a2 a3 a4

b2

b1

y4 y3 y2 y1

Figure 4.11: The four generators of H∗(ĈFA(M,µ, λ)⊠ ĈFD(N, 2ϕ1 + ϕ0,−ϕ1, s0)).

The gradings take values in ⟨
(
3
2
; 0, 1

)
⟩\G/⟨(−1; 4,−2)⟩, and are given by the following:

gr(x1 ⊠ a1) = gr(x1)gr(a1)

= ⟨
(
3
2
; 0, 1

)
⟩\ (0; 0, 0) /⟨(−1; 4,−2)⟩

gr(x1 ⊠ a2) = gr(x1)gr(a2)

= ⟨
(
3
2
; 0, 1

)
⟩\
(
1
2
;−2, 1

)
/⟨(−1; 4,−2)⟩

gr(y1 ⊠ b1) = gr(y1)gr(b1)

= ⟨
(
3
2
; 0, 1

)
⟩\
(
−1

2
; 1
2
, 1
2

) (
−1

2
;−3

2
, 1
2

)
/⟨(−1; 4,−2)⟩

= ⟨
(
3
2
; 0, 1

)
⟩\ (0;−1, 1) /⟨(−1; 4,−2)⟩

gr(y1 ⊠ b2) = gr(y1)gr(b2)

= ⟨
(
3
2
; 0, 1

)
⟩\
(
−1

2
; 1
2
, 1
2

) (
−1

2
;−7

2
, 3
2

)
/⟨(−1; 4,−2)⟩

= ⟨
(
3
2
; 0, 1

)
⟩\
(
3
2
;−3, 2

)
/⟨(−1; 4,−2)⟩
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Acting over Q to make each Spinc component equal to (0, 0) yields the following:

grQ(x1 ⊠ a1) = ⟨(32 ; 0, 1)⟩\(0; 0, 0)/⟨(−1; 4,−2)⟩

grQ(x1 ⊠ a2) = ⟨(32 ; 0, 1)⟩\(
1
2
;−2, 1)/⟨(−1; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(1

2
;−2, 1)(−1

2
; 2,−1)/⟨(−1; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(0; 0, 0)/⟨(−1; 4,−2)⟩

grQ(y1 ⊠ b1) = ⟨(32 ; 0, 1)⟩\(0;−1, 1)/⟨(−1; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(−3

4
; 0,−1

2
)(0;−1, 1)(−1

4
; 1,−1

2
)/⟨(−1; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(−5

4
;−1, 1

2
)(−1

4
; 1,−1

2
)/⟨(−1; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(−3

2
; 0, 0)/⟨(−1; 4,−2)⟩

grQ(y1 ⊠ b2) = ⟨(32 ; 0, 1)⟩\(
3
2
;−3, 2)/⟨(−1; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(−3

4
; 0,−1

2
)(3

2
;−3, 2)(−3

4
; 3,−3

2
)/⟨(−1; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(−3

4
;−3, 3

2
)(−3

4
; 3,−3

2
)/⟨(−1; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(−3

2
; 0, 0)/⟨(−1; 4,−2)⟩

While not necessary to generate the desired surgery obstruction, the grading differences

for the other four generators may be of independent interest. Performing the same methods

for the pairing of A(θM ) and D(θh(N,s1)) yields the configuration in Figure 4.12. The four

surviving generators are x1⊠z1, y1⊠w1, x1⊠z3, and y1⊠w2. Knowing these generators,

we now compute their refined gradings in GA,Q(M, s) ×GQ GD,Q(h(N, s1)) using the

information from Subsections 4.1 and 4.2.
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x1

x2

x3

z1 z2 z3 z4

w2

w1

y4y3y2y1

Figure 4.12: The four generators of H∗(ĈFA(M,µ, λ)⊠ ĈFD(N, 2ϕ1 + ϕ0,−ϕ1, s1)).

The gradings take values in ⟨
(
3
2
; 0, 1

)
⟩\G/⟨(−3; 4,−2)⟩, and are given by the following:

gr(x1 ⊠ z1) = gr(x1)gr(z1)

= ⟨(3
2
; 0, 1)⟩\(0; 0, 0)/⟨(−3; 4,−2)⟩

gr(y1 ⊠w1) = gr(y1)gr(w1)

= ⟨(3
2
; 0, 1)⟩\(−1

2
; 1
2
, 1
2
)(−1

2
;−5

2
, 1
2
)/⟨(−3; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(1

2
;−2, 1)/⟨(−3; 4,−2)⟩

gr(x1 ⊠ z3) = gr(x1)gr(z3)

= ⟨(3
2
; 0, 1)⟩\(−1

2
;−1, 0)/⟨(−3; 4,−2)⟩

gr(y1 ⊠w2) = gr(y1)gr(w2)

= ⟨(3
2
; 0, 1)⟩\(−1

2
; 1
2
, 1
2
)(3

2
;−7

2
, 3
2
)/⟨(−3; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(7

2
;−3, 2)/⟨(−3; 4,−2)⟩
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Acting over Q to make each Spinc component equal to (0, 0) yields the following:

grQ(x1 ⊠ z1) = ⟨(32 ; 0, 1)⟩\(0; 0, 0)/⟨(−3; 4,−2)⟩

grQ(y1 ⊠w1) = ⟨(32 ; 0, 1)⟩\(
1
2
;−2, 1)/⟨(−3; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(1

2
;−2, 1)(−3

2
; 2,−1)/⟨(−3; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(−1; 0, 0)/⟨(−3; 4,−2)⟩

grQ(x1 ⊠ z3) = ⟨(32 ; 0, 1)⟩\(−
1
2
;−1, 0)/⟨(−3; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(3

4
; 0, 1

2
)(−1

2
;−1, 0)(−3

4
; 1,−1

2
)/⟨(−3; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(3

4
;−1, 1

2
)(−3

4
; 1,−1

2
)/⟨(−3; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(0; 0, 0)/⟨(−3; 4,−2)⟩

grQ(y1 ⊠w2) = ⟨(32 ; 0, 1)⟩\(
7
2
;−3, 2)/⟨(−3; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(−3

4
; 0,−1

2
)(7

2
;−3, 2)(−9

4
; 3,−3

2
)/⟨(−3; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(5

4
;−3, 3

2
)(−9

4
; 3,−3

2
)/⟨(−3; 4,−2)⟩

= ⟨(3
2
; 0, 1)⟩\(−1; 0, 0)/⟨(−3; 4,−2)⟩

With the desired grading differences at hand, we now establish the third lemma.

Lemma 4.4.1. Let X = (S3 \ νT (2, 3)) ∪h N , where h is any slope 2 cyclic gluing. Then

there exist generators x,y of ĤF(X) such that s(x), s(y) ∈ π−1(s × s0) and grQ(x) −
grQ(y) =

3
2
.

Proof. Recall that any slope 2 gluing satisfying the cyclic condition of Proposition 3.1.2

induces

[(hn)∗] =

(
1 n

2 2n− 1

)
.

on homology for some n ∈ Z. We saw from Section 3.1 that it is obtained from the base

slope 2 gluing h by the pre-composition

[(hn)∗] = [h∗ ◦ T n] =

(
1 0

2 −1

)(
1 n

0 1

)
.

For Xn = M ∪hn N , the pairing theorem implies
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ĤF(Xn, t) ∼= H∗(ĈFA(M,µ, λ) ⊠ ĈFD(N, (hn)−1
∗ (λ), (hn)−1

∗ (µ), s0)) for t ∈ π−1(s × s0).

The required type D structure for pairing is ĈFD(N, 2ϕ1 + (1 − 2n)ϕ0,−ϕ1 + nϕ0, s0),

whose type A realization can be obtained from that of ĈFD(N, ϕ1 − nϕ0, ϕ0, s0) by

using precisely the same series of Dehn twists and reflections from Subsection 4.2. Since

ĈFD(N, ϕ1 − nϕ0, ϕ0, s0) ∼= ĈFD(N, ϕ1, ϕ0, s0) because N is a Heegaard Floer homology

solid torus, we have that the type A realizations of ĈFD(N, 2ϕ1+(1−2n)ϕ0,−ϕ1+nϕ0, s0)

and ĈFD(N, 2ϕ1 + ϕ0,−ϕ1, s0) agree. Further, the decorated graph representations and

refined gradings from Subsection 4.2, as well as the relative Q-grading differences (between

generators belonging to the same pre-image π−1(s× si)) from Subsection 4.4 all hold for

each gluing hn, regardless of n ∈ Z.
These grading differences were computed using the prototype pairing theorem for train

tracks, whose use is currently unjustified. They will correspond to grading differences

of ĤF(X) if the bordered invariants in pairing satisfy the mild hypotheses of [HRW16,

Theorem 16]. Specifically, we require that A(θM ) is reduced and that D(θh(N,s0)) is special

bounded. The realization A(θM ) is reduced since it is generated from a decorated graph for

which no edges are labeled with ∅. A train track is special bounded if it is bounded and

almost reduced, meaning that its underlying decorated graph does not contain an oriented

cycle and any edges labeled with ∅ occur in specific configurations. The underlying

decorated graph for D(θh(N,s0)) does not have any edges labeled with ∅, and also does

not contain an oriented cycle (even though D(θN,s0) does).

With equal spinc components, we can recover the Q-grading difference between x1⊠a1

and y1⊠b1 as the difference between their Maslov components: grQ(x1⊠a1)−grQ(y1⊠b1) =
3
2
. Together with the Dehn twisting invariance of ĈFD(N, ϕ1, ϕ0, s0), this establishes the

lemma.

Remark. We caution the reader that the techniques used to prove this lemma do not

show that the Dehn twisting invariance of ĈFD(N, ϕ1, ϕ0) in pairing provides an integral

family of manifolds with relatively-graded, isomorphic ĤF. All that we show is that

the relative Q-grading differences between generators x,y with s(x), s(y) ∈ π−1(s× si)

are independent of Dehn twisting N along ϕ0. We should expect to see the relative

Q-grading differences grow between generators providing Floer homology supported in

spinc structures belonging to different spinc pre-images of π.
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4.5 Proof of Theorem 1.2.1

Proof. Suppose X = (S3 \ νJ) ∪h N is realized as 8-surgery along K with g(K) = 2. If J

is the unknot, then Lemma 3.2.1 using Doig’s classification together with [NZ18, Theorem

1.6] implies that X = S3
8(T (2, 5)). This manifold is an L-space, and is the Seifert fibered

manifold (−1; 1
2
, 1
2
, 2
5
) with base orbifold S2.

Suppose for the sake of contradiction that some non-trivial J ⊂ S3 gives rise to X.

Then Lemma 3.3.1 implies J = T (2, 3), and so X is an L-space as large surgery along an

L-space knot. As an L-space, the relative Q-grading differences for generators of ĤF(X)

are given by differences of the d-invariants. Since K is a genus two L-space knot, we have

ĤFK(K) = ĤFK(T (2, 5)) and so the d-invariants of surgery are

d(S3
8(K), [s]) =



−1/8 s ≡ 5 (mod 8)

1/4 s ≡ 6 (mod 8)

−9/8 s ≡ 7 (mod 8)

−1/4 s ≡ 0 (mod 8)

−9/8 s ≡ 1 (mod 8)

1/4 s ≡ 2 (mod 8)

−1/8 s ≡ 3 (mod 8)

−1/4 s ≡ 4 (mod 8)

Lemma 4.4.1 shows that there must be generators x,y for ĤF(X) such that grQ(x) −
grQ(y) =

3
2
. This is impossible given d(S3

8(K), [s]) above, which is the contradiction we

sought.
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CHAPTER

5

REDUCIBLE SURGERIES AND THIN

KNOTS

For both this chapter and the next, let K be a thin, hyperbolic knot and let M denote

S3 \ νK. We aim to show K can admit a reducible surgery only if it is an L-space knot. It

is unknown whether such a knot K exists. Recall that a reducing slope for K is integral,

and satisfies the Matignon-Sayari genus bound 1 < |r| ≤ 2g(K)− 1. As mentioned in the

introduction, we will only consider positive reducing slopes by mirroring K if necessary.

5.1 Gradings via Immersed Curves

We saw toward the end of the previous chapter that involving Maslov grading differences

in tandem with dim ĤF leads to strong restrictions on the surgery knot. Our approach will

use this idea together with the periodicity enjoyed by the Floer homology of a reducible

manifold with an L-space summand (Lemma 2.2.6). The analysis will involve a few cases,

each with their own subcases, depending on τ(K) relative to r and g(K). Most of these

are addressed in this chapter, with the remaining ones relegated to Chapter 6 where we

56



appeal to the d invariants once more.

To enable swift grading comparisons later on, let us designate a reference intersection

associated to [s] ∈ Spinc(S3
r (K)), recalling our conventions for the range that [s] falls

in. Notice that the essential curve γ has vertical segments if τ(K) ̸= 0. We will define a

vertical intersection to be an intersection between lsr and a vertical segment of γ within

a neighborhood of µ. If [s] satisfies 0 ≤ |[s]| < |τ(K)|, then such an intersection occurs

and we will denote it using as. Alternatively, if |[s]| ≥ τ(K) ≥ 0 then any intersection

between lsr and γ is outside any neighborhood of the lifts of the marked point in TM . In

this case lsr intersects γ once if τ(K) ≥ 0, and so as will denote this lone intersection.

When τ(K) < 0 and [s] ≥ 0, we let as denote the intersection between lsr and γ to the left

of µ. Analogously when τ(K) < 0 and [s] < 0, we will have as be the intersection between

lsr and γ to the right of µ. It is likely helpful to reference Figure 5.1 for these different

possibilities. While cumbersome, this scheme allows us to label the interesction that often

corresponds via the Pairing theorem to a generator with the least Maslov grading.

(a) (b) (c)

Figure 5.1: The possibilities for the reference intersection as. (a) has τ(K) = 0, (b) has
τ(K) > 0 and |s| < τ(K), and (c) has τ(K) < 0 with two curves representing s ≥ 0 in
red and s < 0 in purple. The case when τ(K) > 0 and |s| ≥ τ(K) is similar to (a).

It will also be particularly useful to know the winding number of enclosed lifts of the

marked point of specific regions. Consider the neighborhood of µ in TM that contains the

lifts of the marked points, which is also wide enough to enclose the vertical segments of γ.

Intersect γ with a horizontal line ls0 slightly longer than this neighborhood at height s, so

that these segments together bound regions enclosing basepoints. We will define H̃s to be

the number of enclosed lifts of the marked point in the region bounded above by ls, on the
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side(s) by the neighborhood of µ, and elsewhere by γ. If the region is empty, then H̃s = 0.

This number coincides with the invariant Hs from the mapping cone formula, but we will

use this alternate notation to make the geometric distinction clear. Analogously, there is

often a region where ls bounds from below and the number of enclosed lifts of the marked

point of such a region will be denoted by Ṽs. These are depicted in Figure 5.2. Due to

Theorem 2.3.3, we recover both H̃−s = Ṽs and H̃s − Ṽs = H̃s − H̃−s =
1
2
(s− (−s)) = s.

(a) (b) (c) (d)

Figure 5.2: H̃s is the number of marked points enclosed in green regions, and Ṽs is
the number of marked points enclosed in pink regions. (a) shows τ(K) = 0, (b) shows

τ(K) > 0, (c) shows τ(K) < 0, and (d) shows H̃s − Ṽs = s.

From the discussion in the previous section, we know that the form of ĤF(M) is

very restricted. Our goal is to leverage this to constrain gradings on ĤF(S3
r (K), [s]) ∼=

HF(ĤF(M), lsr) to obstruct reducible surgeries. We use multisets, which are sets with

repitition allowed, to collect these relative Maslov gradings.

Definition 5.1.1. Let [s] ∈ Spinc(S3
r (K)) be arbitrary with reference intersection as. For

any intersection y of HF(ĤF(M), lsr), let Mrel(y) denote the grading difference M(y)−
M(as). We define the desired multiset by

MR[s] :=
{
Mrel(y) | y ∈ ĤF(M) ⋔ lsr

}
.
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Further, let Width(MR[s]) denote the difference between the largest and smallest elements

of this multiset.

As defined, MR[s] is only an invariant up to translation, which means its width is

an invariant. We can now look at computing grading differences between intersections,

using Proposition 2.3.9. For a bigon P , we will first determine the contribution due to

2Wght(P )− 2Rot(P ) using the knot Floer homology of K. This is performed using an

analogous bigon PK for ĤFK, and then we show that the same properties hold for the

bigon P for ĤF. If lsr intersects a simple figure-eight of ĤF(M) at height n, it does so in

two places xn and yn. We will label them as left (xn) and right (yn) intersections,

Lemma 5.1.2. Let yn be a right intersection belonging to a simple figure-eight at height

n of ĤF(M), let a be an intersection of ĤF(M) ⋔ lsr, and suppose P is a bigon between

them. If K is thin, then 2Wght(P )− 2Rot(P ) = −1− τ(K)− |n|.

Proof. In the infinite cylinder TM , we can represent µ, the lift of the meridian of TM ,

as the vertical line that pierces each lift of the marked point in TM . Let a−τ(K) be the

last intersection that γ makes with µ before wrapping around TM . Because ĤF(M) is

invariant under the action by the hyperelliptic involution, the weights of the grading

arrows connecting γ to the simple figure-eights at heights n and −n are equivalent. From

this we can assume that n is non-negative, and use |n| in future formulas otherwise.

Lift ĤF(M) to T for convenience, and intersect it with µ. If we place z and w

basepoints to the left and right, respectively, of every lift of the marked point, then

ĤFK(K) ∼= HF(ĤF(M), µ) due to [HRW18, Theorem 51]. This pairing is depicted in

Figure 5.3. The formula in Proposition 2.3.9 still holds with the adjustment that Wind is

modified to count the net winding number of enclosed w basepoints, denoted Windw.

Since ĤF(M) has a simple figure-eight component at height n, there must be a

generator η of ĤFK(K) with A(η) = n+ 1. Let PK be the bigon from a−τ(K) to η that

traverses the grading arrow connecting the relevant components of ĤF(M), visible in

Figure 5.3 with τ(K) ≥ 0 and τ(K) < 0, respectively. To determine Wght(PK) directly

would require care for the orientations of the grading arrow. However since we are after a

different term, we can abuse notation by having every grading arrow connect to the right

side of a simple figure-eight, regardless of its orientation. Essentially, any change that

Wght(PK) experiences between the two ways of attaching the grading arrow is inverted

and absorbed by Rot(P ), so that 2Wght(PK)− 2Rot(PK) remains unchanged.
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(a) (b) (c)

η

a−τ(K)

η

a−τ(K)

η

a−τ(K)

Figure 5.3: The bigon PK between a−τ(K) and η, formed from path components in ĤF(M)
and µ̃. (a) shows this for τ(K) ≥ 0 and (b) shows this for A(η) > −τ(K) > 0. However
for (c) with A(η) ≥ −τ(K) > 0, the bigon PK runs from η to a−τ(K).

If τ(K) ≥ 0 so that A(a−τ(K)) < n, we have

M(η)−M(a−τ(K)) = 2Windw(PK) + 2Wght(PK)− 2Rot(PK).

However since K is thin, it follows that

M(η)−M(a−τ(K)) = A(η)− A(a−τ(K)) = A(η) + τ(K).

Then 2Wght(PK)− 2Rot(PK) = A(η)− 2Wind(PK) + τ(K). Since Wind(PK) = A(η) +

τ(K), we have 2Wght(PK)− 2Rot(PK) = −A(η)− τ(K) = −1− τ(K)− n.

If τ(K) < 0, the above computation follows through for A(η) > −τ(K), but the case

for A(η) ≤ −τ(K) differs slightly. In this situation PK is a bigon from η to a−τ(K) that also

traverses the grading arrow in reverse, visible in Figure 5.3. Traveling the grading arrow in

reverse means that we have M(a−τ(K))−M(η) = 2Windw(PK)−2Wght(PK)−2Rot(PK),
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and so

−2Wght(PK)− 2Rot(PK) = M(a−τ(K))−M(aη)− 2Windw(P )

= −τ(K)− (n+ 1)− 2(−τ(K)− (n+ 1))

= 1 + τ(K) + n.

Due to the shape of PK , the bigon has a cusp near the grading arrow regardless of how it

connects these components, and so Rot(PK) = 0. Then we have 2Wght(PK)−2Rot(PK) =

2Wght(PK) + 2Rot(PK) = −1− τ(K)− n, as claimed.

With the formula established for PK , we will now show that it is satisfied for a

bigon between generators of HF(ĤF(M), lsr) with similar attributes. Let yn be a right

intersection from the simple figure-eight at height n and let a be an intersection from

a vertical segment of γ and lsr. With P denoting the bigon from a to yn, we see that P

must traverse the same grading arrow that PK traversed, and so Wght(P ) = Wght(PK).

Additionally, it is straightforward to see that Rot(P ) = Rot(PK) after tilting the bigons

as well, with visual given in Figure 5.4. This completes the proof.

(a) (b)

η

a−τ(K)

yn

a

Figure 5.4: Tilting bigons to show they have equivalent net clockwise rotation along
their boundaries. (a) The bigon PK from a−τ(K) to η. (b) The bigon P from a to yn.

The following proposition considers left and right intersections of a simple figure-eight

whose height n is less than |τ(K)|. There is then a nearby vertical intersection an, and

we will see that these three intersections have little difference in grading.
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Proposition 5.1.3. Let K be thin and have M denote S3 \νK. Further, let xn and yn be

left and right intersections belonging to a simple figure-eight of ĤF(M) with height 0 ≤
n < |τ(K)|, and let an be the nearby vertical generator. Then −1 ≤M(yn)−M(an) ≤ 0

and 0 ≤M(xn)−M(an) ≤ 1.

Proof. If P is the bigon between an and yn, we have 2Wght(P )−2Rot(P ) = −1−τ(K)−|n|
due to Lemma 5.1.2. Due to the hyperelliptic involution invariance of ĤF(M), we can

take 0 ≤ n < |τ(K)|. We have Wind(P ) is H̃n if τ(K) ≥ 0 or Ṽn if τ(K) < 0, the values

of which depend on the parity of n and τ(K) when K is thin. The simple structure of γ

for a thin knot together with a counting argument for τ(K) > 0 yields

H̃n =


n+ τ(K)

2
parity(n) = parity(τ(K))

n+ τ(K) + 1

2
parity(n) ̸= parity(τ(K)).

Then for τ(K) > 0 we haveM(yn)−M(an) = 2H̃n−1−τ(K)−n impliesM(yn)−M(an)

is either -1 or 0. Since M(xn)−M(yn) = 1, we see that M(xn)−M(an) is either 0 or 1,

handling the τ(K) > 0 case.

When τ(K) < 0, the bigon P runs from yn to an, encloses Ṽn lifts of the marked

points, traverses the grading arrow in reverse, and has Rot(P ) = 0. Figure 5.2 shows

that Ṽn with τ(K) < 0 is the same as Ṽn = H̃−n with τ(K) ≥ 0, except using −τ(K) or

−τ(K)− 1 in the formula above. Using Lemma 5.1.2 and the −τ(K) modified formula

for H̃−n, we have M(an)−M(yn) = 2H̃−n + 1 + τ(K) + n. This is either 1 or 0, and so

M(yn)−M(an) is either −1 or 0 and analogously M(xn)−M(an) is either 0 or 1.

Because M(xn)−M(yn) = 1, these possibilities happen in pairs. A simple figure-eight

at height n < |τ(K)| contributes either {Mrel(a
n),Mrel(a

n)− 1,Mrel(a
n)} ⊆MR[s] or

{Mrel(a
n),Mrel(a

n),Mrel(a
n) + 1} ⊆MR[s]. An example of this to keep in mind is when

looking at large surgery on the figure-eight knot 41. In this situation we have {0,−1, 0} =
MR[0], and the right intersection contributing −1 to MR[0] actually has the smallest

relative Maslov grading. This proposition then allows us to determine which intersection

associated to [s] ∈ Spinc(S3
r (K)) has the smallest relative Maslov grading depending on

parity(τ(K)):

� If τ(K) ≥ 0, parity(s) = parity(τ(K)), and there is a right intersection ys, then

Mrel(y
s) = −1 is the smallest relative grading of MR[s].
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� If τ(K) ≥ 0, parity(s) = parity(τ(K)), and there is no simple figure-eight at height

s, then Mrel(a
s) = 0 is the smallest relative grading of MR[s].

� If τ(K) ≥ 0 and parity(s) ̸= parity(τ(K)), then Mrel(a
s) = 0 is the smallest relative

grading of MR[s].

� If τ(K) < 0, then Mrel(a
s) = 0 is the smallest relative grading of MR[s].

The last component of the grading difference formula to handle is Wind(P ). Lift both

ĤF(M) and each lsr to the tiled plane T̃ , and let the 0th column be the neighborhood of

the lift µ̃ for which each lsr intersects µ̃ at height [s]. For [s] ∈ Z/rZ define ws =
n− [s]

r
,

with n the largest natural number satisfying 0 ≤ n ≤ g(K) − 1 and n ≡ [s] (mod r).

This number represents the number of columns of marked points in T̃ between as and a

potential furthest right intersection yn. Further, because the slopes we consider satisfy

r ≤ 2g(K)− 1, we have ws ≥ 0. While it is certainly possible that a simple figure-eight

component may not exist at this height, it is still sufficient for the following strategy to

suppose otherwise.

Proposition 5.1.4. For a given [s] ∈ Z/rZ, let as be the chosen reference intersection

and yn be a right intersection of a furthest possible figure-eight component. If τ(K) ≥ 0,

then

Wind(P ) = H̃s +
ws∑
i=1

(s+ ir).

If τ(K) < 0, then

Wind(P ) =


ws∑
i=0

(s+ ir) [s] ≥ 0

ws∑
i=1

(s+ ir) [s] < 0,

where all sums are taken to be zero if empty.

When τ(K) ≥ 0, the contribution to Wind(P ) from the 0th column of T̃ is H̃s. The

contribution from the ith column is H̃s+ir − Ṽs+ir = s + ir, and is shown in Figure

5.5. When τ(K) < 0, we have the different choices for as depending on s influencing
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whether the contribution from the 0th column is non-trivial. However in every column,

the contribution to Wind(P ) is H̃s+ir − Ṽs+ir = s + ir. Since these terms are always

non-negative, it follows that the smallest relative grading belongs to an intersection in

the 0th column.

as

yn

as

yn

(a) (b)

Figure 5.5: Example bigons P between as and yn, showing the contributions from each
column to Wind(P ) for (a) τ(K) ≥ 0 and (b) τ(K) < 0 with s ≥ 0.

5.2 Cases with |τ (K)| < g(K)

Our objective is to build a collection of lemmas required to prove the main theorem.

These vary depending on r in relation to g(K), and on τ(K) and its parity. The primary

technique involves comparing the various Width(MR[s]) to obstruct periodicity, typically

done by showing that Width(MR[s′]) is maximal if [s′] is the spinc structure associated

to the line that crosses height g(K) − 1. At other times the widths will agree up to

translation, but the multiplicity of specific elements of the grading multisets will not.

Use Theorem 2.3.5 to identify ĤF(S3
r (K), [s]) ∼= HF(ĤF(M), lsr). In order to halve the

64



E ⟳

Figure 5.6: The correspondence between intersections of ĤF(M) and lsr in negative

columns of T̃ and intersections of ĤF(M) and l−s
r in positive columns.

amount of comparisons to make, we leverage the fact that ĤF(S3
r (K), [s]) ∼= ĤF(S3

r (K), [−s])
[OS04c]. In immersed curves form, Theorem 2.3.3 implies that intersections between

ĤF(M) and lsr in negative columns of T̃ are in correspondence with intersections of

ĤF(M) and l−s
r that belong to positive columns of T̃ (see Figure 5.6). Also, the self-

conjugate spinc structure(s) [0] (and possibly [r/2]) are symmetric in this way by default.

Recall that the smallest element of MR[s] is the relative grading of an intersection

belonging to the 0th column of T̃ , which is either the reference intersection as or a nearby

right/left intersection. This means that we can capture Width(MR[s]) by considering

non-negative intersections associated to both [s] and [−s]. Note that since parity(s) =

parity(−s), the need to translate a multiset by 1 is consistent if it arises.

Definition 5.2.1. The multiset MR
[s]
+ consists of the relative gradings of intersections

between ĤF(M) and lsr that belong to non-negative columns of T̃ . We define MR
[s]
−

analogously, and notice that Width(MR[s]) = max
{
Width(MR

[s]
+ ),Width(MR

[s]
− )
}
.

Due to how genus detection is expressed by ĤF(M), either γ achieves height g(K)

(equivalent to |τ(K)| = g(K)), or only a simple figure-eight at height g(K)− 1 achieves

this desired height (equivalent to |τ(K)| < g(K)). We will divide the problem among

these two cases, starting with the latter.
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Case A: |τ(K)| < g(K). Since |τ(K)| < g(K), there exists a simple figure-eight compo-

nent at height g(K)− 1. Let [s′] be the spinc structure for which ls
′

r intersects this simple

figure-eight, which means ws′ =
g(K)−1−s′

r
. Our potential reducing slopes divide this case

into two subcases. We see that [s′] = g(K) − 1 when r ≥ 2(g(K) − 1), which implies

ws′ = 0. Otherwise ws′ > 0, which is the easier starting point.

Case A1: ws′ > 0. In this situation, we will show that Width(MR[s′]) is maximal.

Lemma 5.2.2. Suppose K is thin, |τ(K)| < g(K), and 1 < r < 2(g(K)− 1). Then there

exists an [s′] ∈ Spinc(S3
r (K)) for which every [s] ̸= [±s′] satisfies MR[s] ̸∼= MR[s′] up to

translation.

Proof. For some [s] ̸= [±s′], the largest possible relative grading that MR
[s]
+ can achieve

is associated to an intersection of some hypothetical simple figure-eight at largest height.

Looking at the terms in the grading difference formula for a bigon from as to such a

generator, we see that the 2Wind(P ) term satisifes 2Wind(P ) ≥ 2n while the other term

is −1−τ(K)−n. For this reason, we will suppose that ĤF(M) has a simple figure-eight at

height n, taken to be the largest integer satisfying both n < g(K)− 1 and n ≡ s (mod r).

Let P ′ be the bigon between as
′
and yg−1, and P the bigon between as and yn. Because

the choice of as
′
depends on τ(K), we will handle the τ(K) ≥ 0 subcase first before

handling the τ(K) < 0 subcase.

Subcase A1a: τ(K) ≥ 0. Due to Lemma 5.1.2, Proposition 5.1.3, and Proposition 5.1.4,

Width(MR
[s]
+ ) is nearly determined by Mrel(y

n). We have Mrel(y
n) ≤ Width(MR

[s]
+ ) ≤

Mrel(y
n) + 1, with either equality depending on whether as is the smallest relatively

graded intersection. To compare widths, we compute

Mrel(y
g−1) = 2

(
H̃s′ +

ws′∑
i=1

(s′ + ir)

)
− 1− (s′ + ws′r),

and likewise

Mrel(y
n) = 2

(
H̃s +

ws∑
i=1

(s+ ir)

)
− 1− (s+ wsr).
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Their difference is then

Mrel(y
g−1)−Mrel(y

n) = 2

(
H̃s′ +

ws′∑
i=1

(s′ + ir)−

(
H̃s +

ws∑
i=1

(s+ ir)

))
− (s′ + ws′r − (s+ wsr))

= 2

(
(H̃s′ − H̃s) +

ws′∑
i=1

(s′ + ir)−
ws∑
i=1

(s+ ir)

)
− (s′ − s)− r(ws′ − ws).

If s < s′ so that ws = ws′ , then

Mrel(y
g−1)−Mrel(y

n) = 2((H̃s′ − H̃s) + ws′(s
′ − s))− (s′ − s)

= 2(H̃s′ − H̃s) + (2ws′ − 1)(s′ − s)

≥ 1,

since ws′ > 0 and s′ > s implies that H̃s′ ≥ H̃s.

If s > s′ so that ws = ws′ − 1, then shifting P one column to the right in T̃ (see Figure

5.7) provides

Mrel(y
g−1)−Mrel(y

n) = 2

(
(H̃s′ − H̃s) +

ws′∑
i=1

(s′ + ir)−
ws∑
i=1

(s+ ir)

)
− (s′ − s)− r(ws′ − ws)

(column shift) = 2

(
(H̃s′ − H̃s) +

ws′∑
i=1

(s′ + ir)−
ws′∑
i=2

(s+ (i− 1)r)

)
− (s′ + r − s)

= 2

(H̃s′ − H̃s) + (s′ + r) +

w′
s∑

i=2

(s′ + ir)−
ws′∑
i=2

(s+ (i− 1)r)


− (s′ + r − s)

= 2
(
(H̃s′ + s− H̃s) + (s′ + r − s) + (ws′ − 1)(s′ + r − s)

)
− (s′ + r − s)
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= 2(H̃s′ + (s− H̃s)) + (2ws′ − 1)(s′ + r − s)

= 2(H̃s′ − Ṽs) + (2ws′ − 1)(s′ + r − s)

= 2(H̃s′ − H̃−s) + (2ws′ − 1)(s′ + r − s).

Notice that s′ + s − 1 ≤ 2(H̃s′ − H̃−s) ≤ s′ + s depending on the parities of s and s′

together with s > s′. Then we have

Mrel(y
g−1)−Mrel(y

n) = 2(H̃s′ − H̃−s) + (2ws′ − 1)(s′ + r − s)

≥ s′ + s− 1 + (2ws′ − 1)(s′ + r − s)

≥ s′ + s− 1 + s′ + r − s

= 2s′ − 1 + r

> 1,

since ws′ > 0 and s′ < r−1
2

if there exists an s > s′.

(a) (b)

a1 a0

y5

y4

a1 a0

y5

y4

Figure 5.7: Example bigons P ′ (split-shaded green and pink) and P (shaded pink) when
ws′ = 1. (a) has s < s′, while (b) has s > s′ together with the single column shift to the
right.
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In both situations, we see that Mrel(y
g−1)−Mrel(y

n) ≥ 1. If this difference is greater

than one, then

Width(MR[s′]) ≥Width(MR
[s′]
+ ) ≥Mrel(y

g−1) > Mrel(y
n) + 1 ≥Width(MR

[s]
+ ).

This already handles the possibility where we need to translate MR
[s]
+ by 1, so suppose

Mrel(y
g−1)−Mrel(y

n) = 1. This is possible only if H̃s = H̃s′ , ws′ = 1, and s = s′−1, which

altogether imply that s = τ(K). However, the widths only match if Width(MR
[s]
+ ) =

Mrel(y
n) + 1. This condition is equivalent to having parity(s) ̸= parity(τ(K)), which is a

contradiction. Therefore Width(MR[s′]) > Width(MR
[s]
± ), which completes the τ(K) ≥ 0

subcase.

Subcase A1b: τ(K) < 0. Recall that the reference intersection as has no nearby left/right

intersections belonging to a simple figure-eight. This means that as has the smallest relative

grading of MR[s], and so Width(MR
[s]
+ ) = Mrel(y

n) + 1. From Proposition 5.1.4 we see

Wind(P ) =


s+

ws∑
i=1

(s+ ir) s ≥ 0,

ws∑
i=1

(s+ ir) s < 0.

If 0 ≤ s < s′, then proceeding as before we have

Mrel(y
g−1)−Mrel(y

n) = 2

(
s′ +

ws′∑
i=1

(s′ + ir)−

(
s+

ws∑
i=1

(s+ ir)

))
− (s′ − s)− r(ws′ − ws)

= 2(s′ − s+ ws′(s
′ − s))− (s′ − s)

= (2ws′ + 1)(s′ − s)

≥ 3.

If s < s′ ≤ 0, then

Mrel(y
g−1)−Mrel(y

n) = (2ws′ − 1)(s′ − s)

≥ 1.
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If s > s′, then as before we have ws = ws′ − 1. If s > s′ ≥ 0, then

Mrel(y
g−1)−Mrel(y

n) = 2

(
(s′ − s) +

ws′∑
i=1

(s′ + ir)−
ws∑
i=1

(s+ ir)

)
− (s′ − s)− r(ws′ − ws)

(column shift) = 2

(
(s′ − s) +

ws′∑
i=1

(s′ + ir)−
ws′∑
i=2

(s+ (i− 1)r)

)
− (s′ + r − s)

= 2(s′ + (s′ + r − s) + (ws′ − 1)(s′ + r − s))− (s′ + r − s)

= 2s′ + (2ws′ − 1)(s′ + r − s)

≥ 1.

In the event that 0 ≥ s > s′, we get

Mrel(y
g−1)−Mrel(y

n) = 2

(
ws′∑
i=1

(s′ + ir)−
ws∑
i=1

(s+ ir)

)
− (s′ − s)− r(ws′ − ws)

(column shift) = 2

(
ws′∑
i=1

(s′ + ir)−
ws′∑
i=2

(s+ (i− 1)r)

)
− (s′ + r − s)

= 2(s′ + r + (ws′ − 1)(s′ + r − s))− (s′ + r − s)

= 2(s+ ws′(s
′ + r − s))− (s′ + r − s)

= 2s+ (2ws′ − 1)(s′ + r − s)

≥ 2s+ s′ + r − s

≥ (s′ + s) + r

≥ 1.

In every inequality we have Mrel(y
g−1) > Mrel(y

n). Then

Width(MR[s′]) ≥Width(MR
[s′]
+ ) = Mrel(y

g−1) + 1 > Mrel(y
n) + 1 = Width(MR

[s]
+ ),

for each [s] ∈ Spinc(S3
r (K)). This completes the τ(K) < 0 subcase, and the proof.

Case A2: ws′ = 0. Recall that in this case we have r ≥ 2(g(K)− 1), so let us consider

r = 2g(K) − 1 first. When τ(K) ≥ 0, the surgery slope is large enough so that every

intersection lies in the 0th column of T̃ . Width alone as an invariant won’t be enough, so

we will also need to appeal to the multiplicities of the elements of the relative grading
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multisets. They will be used to show that only spinc structures with the same parity are

unobstructed. When we assume that S3
r (K) is reducible later on, the fact that r is odd

will provide a contradiction with periodicity. When τ(K) < 0, we need far less sublety.

Lemma 5.2.3. Suppose K is thin, 0 ≤ τ(K) < g(K), and r = 2g(K) − 1. Then

there exists an [s′] ∈ Spinc(S3
r (K)) for which [s] ̸= [±s′] satisfies MR[s] ∼= MR[s′] up to

translation only if parity([s]) = parity([s′]).

Proof. The spinc structure [s′] we want to consider has [s′] = g(K)− 1. Suppose for the

sake of contradiction that some [s] ̸= [±s′] satisfies MR[s] ∼= MR[s′] up to translation

and parity(s) ̸= parity(s′). We know that r > 1 forces g(K) > 1, and also that each

lsr intersects ĤF(M) exactly once due to this large surgery slope. Because the choice

of reference generator as
′
depends on τ(K), let us split into two cases: τ(K) ≥ 0 and

τ(K) < 0.

Assume τ(K) ≥ 0. Because all intersections lie within the 0th column of T̃ , we will

instead use the hyperelliptic involution invariance of ĤF(M) to only consider s ≥ 0. If

ĤF(M) has no simple figure-eight at height s, then Width(MR[s]) = 0 immediately does

not match Width(MR[s′]) ≥ 1, so we may as well assume that there is a simple figure-eight

at height s. We have Mrel(y
s′) = 2H̃s′ − 1− τ(K)− s′ = s′ − 1− τ(K) by Lemma 5.1.2

and Proposition 5.1.4, since H̃s′ = s′ when τ(K) ≤ g(K)− 1 = s′. Further,

Mrel(y
s′)−Mrel(y

s) = 2H̃s′ − 1− τ(K)− s′ − (2H̃s − 1− τ(K)− s)

= 2(H̃s′ − H̃s)− (s′ − s).

If s > τ(K), then H̃s = s implies that Mrel(y
s′)−Mrel(y

s) = s′ − s ≥ 1. But then

Width(MR[s′] = Mrel(y
s′) + 1 > Mrel(y

s) + 1 ≥Width(MR[s]),

so we must have s ≤ τ(K) together with Width(MR[s]) = 1. Notice that Width(MR[s′]) =

Mrel(y
s′) + 1 = s′ − τ(K) > 1 if τ(K) < s′ − 1, and so we are also forced to have either

τ(K) = s′ − 1 or τ(K) = s′. In both cases we have Width(MR[s′]) = 1. Since using width

as an invariant has been exhausted, let us count multiplicities of elements of the MR[s]’s

next.

Recall that en denotes the number of simple figure-eights at height n of ĤF(M).

Further, we need es = es′ in order to have |MR[s]| = |MR[s′]|. We have assumed that

parity([s]) ̸= parity([s′]), so one of these two multisets contains −1 and must be translated
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by 1 to make 0 the smallest element. This translated multiset will then contain 0 with

multiplicity es′ , while the other multiset will contain 0 with multiplicity es′ + 1. This is

the desired contradiction.

When r = 2(g(K)− 1), we will end up having Width(MR[s]) = 1 for every [s] if τ(K)

is large enough. This means relative grading information alone will not be enough, and so

we will return to such cases in Chapter 6.

Lemma 5.2.4. Suppose K is thin, 0 ≤ τ(K) < g(K)− 2, and r = 2(g(K)− 1). Then

there exists an [s′] ∈ Spinc(S3
r (K)) for which every [s] ̸= [±s′] satisfies MR[s] ̸∼= MR[s′]

up to translation.

Proof. We again use s′ = g(K)− 1, and notice that when τ(K) < g(K)− 2, we have

Mrel(y
s′) = 2(g(K)− 1)− 1− τ(K)− (g(K)− 1) = g(K)− 2− τ(K) > 0.

This shows that Width(MR[s′]) = Mrel(y
s′) + 1 > 1. Any [s] ̸= [±s′] with |s| ≤ τ(K) has

Width(MR[s]) = 1 due to Proposition 5.1.3, so suppose τ(K) < |s| < s′. In this case,

Width(MR[s]) ≤Mrel(y
s) + 1, but we also have Mrel(y

s′)−Mrel(y
s) = s′ − |s| > 0. Then

Width(MR[s]) < Width(MR[s′]), which completes the proof.

When τ(K) < 0, the fact that the reference intersection as lies outside of the neigh-

borhood of µ̃0 is very convenient. This is an example of a non-vertical intersection, which

is an intersection between lsr and γ that lies outside of a neighborhood of a lift µ̃.

Lemma 5.2.5. Suppose K is thin, −g(K) < τ(K) < 0, and r ≥ 2(g(K)− 1). Then there

exists an [s′] ∈ Spinc(S3
r (K)) for which every [s] ̸= [±s′] satisfies MR[s] ̸∼= MR[s′] up to

translation.

Proof. Since ws′ = 0, we again have [s′] = g(K)− 1. Notice that each lsr gives rise to only

two non-vertical intersections around the 0th column and intersections at height s when

[s] ̸= [±s′]. We have s′ maximal when ws′ = 0, so use hyperelliptic involution invariance

to assume 0 ≤ s < s′. Recall that Width(MR[s]) = Mrel(y
s) + 1 under the assumptions

that τ(K) < 0. The formula for Wind(P ) does not depend on τ(K), which means

Mrel(y
s′)−Mrel(y

s) = 2s′ − 1− τ(K)− s′ − (2s− 1− τ(K)− s)

= s′ − s.
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Then Width(MR[s′]) = Mrel(y
s′) + 1 > Mrel(y

s) + 1 = Width(MR[s]), which implies

MR[s] ̸∼= MR[s′].

In the following chapter we address the remaining cases involving |τ(K)| = g(K), as

well as the few unresolved cases of this chapter. In particular, the cases with g(K)− 2 ≤
τ(K) < g(K) and r = 2(g(K)− 1) are handled in Lemma 6.2.2.
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CHAPTER

6

REMAINING CASES AND ABSOLUTE

GRADINGS

With the case analysis for |τ(K)| < g(K) out of the way, we turn to the more difficult

part.

6.1 Cases with |τ (K)| = g(K)

Case B: |τ(K)| = g(K). When |τ(K)| is at its largest, the essential curve γ suffices

to indicate g(K) and we are not guaranteed a simple figure-eight at height g(K) − 1.

For these cases we still choose [s′] so that g − 1 ≡ s′ (mod r) and continue to use ws,

except now modifying it to just be the largest multiple of r so that s+ wsr < g(K). The

τ(K) = −g(K) case is easier, so we start there.

Case B1: τ(K) = −g(K).

Lemma 6.1.1. Suppose K is thin with τ(K) = −g(K), and let 1 < r ≤ 2g(K)− 1. Then

there exists an [s′] ∈ Spinc(S3
r (K)) for which every [s] ̸= [±s′] satisfies MR[s] ̸∼= MR[s′]
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up to translation.

Proof. Recall the labeling scheme from Figure 5.1. The reference intersection as is imme-

diately to the left of the 0th column if s ≥ 0, and is similarly immediately to the right of

the 0th column if s > 0. In general we will label these generators xl
s and xr

s, respectively.

Let us dispense with the ws′ = 0 case first.

Notice that each MR[s] contains two elements whose difference is precisely 2|s|. These
arise from Mrel(x

r
s)−Mrel(x

l
s) = 2H̃s− 1− (2Ṽs− 1) = 2(H̃s− Ṽs) = 2s. We also see that

2H̃s − 1 ≤ Width(MR[s]) ≤ 2H̃s if s ≤ 0 and 2Ṽs − 1 ≤ Width(MR[s]) ≤ 2Ṽs if s > 0,

with the even equalities achieved if an appropriate generator from a simple figure-eight

exists at height s. So if some [s] ̸= [±s′] is to achieve MR[s] ∼= MR[s′] up to translation,

we should see that the widths of these multisets agree and that there exist pairs with

grading differences 2|s| and 2|s′|. These are only possibly simultaneously true if Ṽs = H̃s′

and H̃s = Ṽs′ , which forces s = −s′ with K thin. Thus, ws′ > 0.

If ws′ > 0, we can appeal to MR[s′] achieving maximal width once again. Due to the

formula for Wind(P ) when τ(K) < 0, the grading difference between consecutive vertical

intersections between γ and lsr around the ith column is 2(s+ ir). As before this happens

as 2H̃s+ir− 1− (2Ṽs+ir− 1) = 2(H̃s+ir− Ṽs+ir) = 2(s+ ir), and is positive. For this reason

it is often the case that the vertical intersection on the left side of the wsth column, which

we now denote by bs, has the largest relative grading in MR[s]. As before, by appealing

to the hyperelliptic involution invariance of ĤF(M) we see that Width(MR[s]) is either

Mrel(b
s) or Mrel(b

−s) when ws > 0. We will obtain our desired contradiction by comparing

Mrel(b
s′) to every Mrel(b

s) with s ̸= ±s′, just as in the lemmas of the previous chapter.

Chaining the grading differences of vertical intersection pairs from bs back to as, we

see that

Mrel(b
s) =


2

(
ws−1∑
i=0

(s+ ir) + H̃s+wsr

)
− 1 if s ≥ 0

2

(
ws−1∑
i=1

(s+ ir) + H̃s+wsr

)
− 1 if s ≤ 0,

with empty sums taken to be zero as before. Since it can be hectic determining when such

a sum is empty, we break into more cases.

When s < s′ we have ws = ws′ , and it is straightforward to check that

Mrel(b
s′)−Mrel(b

s) ≥ 2(H̃s′+ws′r
− H̃s+ws′r

) > 0.
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This follows because the various multiples of (s′ − s) are positive if they appear, and

because H̃s′+ws′r
> H̃s+ws′r

when s < s′.

Let us begin the s′ < s cases with ws′ = 1. For 0 ≤ s′ < s we can once again use a

column shift to see

Mrel(b
s′)−Mrel(b

s) = 2(s′ +Hs′+r −Hs) > 0,

since s′ ≥ 0 and Hs′+r > Hs. The same inequality holds if s′ ≤ 0 < s, together with

dropping the s′ term. For s′ < s ≤ 0 with ws = 0, we are forced to have Width(MR[s]) =

2H̃s− 1 if s ≥ 0 and Width(MR[s]) = 2Ṽs− 1 if s ≤ 0, since Width(MR[s′]) is guaranteed

to be odd. For the former we get

Mrel(b
s′)−Mrel(b

s) = 2(H̃s′+r − H̃s) > 0,

since s < s′ + r. The latter yields

Mrel(b
s′)−Mrel(b

s) = 2(H̃s′+r − Ṽs) > 0,

since s > s′.

Finally we are left with ws′ > 1 with s′ < s. If we have 0 ≤ s′ < s, then the fact that

H̃s′+ws′r
is maximal ensures

Mrel(b
s′)−Mrel(b

s) = 2

(
ws′−1∑
i=0

(s′ + ir)−
ws−1∑
i=0

(s+ ir)

)
+ 2(H̃s+ws′r

− H̃s+(ws′−1)r)

(column shift) = 2

(
s′ +

ws′−1∑
i=1

(s′ + ir)−
ws′−1∑
i=1

(s+ (i− 1)r)

)
+ 2(H̃s+ws′r

− H̃s+(ws′−1)r)

= 2s′ + 2(ws′ − 1)(s′ + r − s) + 2(H̃s+ws′r
− H̃s+(ws′−1)r)

> 0,

Analogously, the same inequality holds true if s′ ≤ 0 < s by dropping the 2s′ term. For

s′ < s ≤ 0 a single (s′+r−s) term disappears, but the inequality holds since s′+r−s > 0

and H̃s+ws′r
− H̃s+(ws′−1)r > 0.

Then since Mrel(b
s′) > Mrel(b

s) for every configuration of s relative to s′ for ws′ > 0,

we have Width(MR[s′]) > Width(MR[s]). Together with the argument for ws′ = 0, this
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completes the proof.

Case B2: τ(K) = g(K). Let us consider 1 < r < 2(g(K) − 1) first, delaying the

penultimate slope to Lemma 6.2.2 and the maximal slope to Lemma 6.1.3. If r <

2(g(K)−1), then ls
′

r intersects γ more than once for s′ ≡ g(K)−1 (mod r). Our approach

involves different arguments depending on whether ls
′

r makes vertical intersections on

both sides of the 0th column.

Lemma 6.1.2. Suppose K is thin with τ(K) = g(K), the surgery slope satisfies 1 < r <

2(g(K)− 1), and that there exists a k properly dividing r so that every [s] ∈ Spinc(S3
r (K))

satisfies MR[s] ∼= MR[s+k] up to translation.

� If r < g(K)− 1, then MR[s] ∼= MR[s′] up to translation only if [s] = [−s′].

� If r ≥ g(K)− 1, then τ(K) = g(K) = r = 3.

Proof. If r < g(K) − 1, then the slope of ls
′

r is small enough so that intersecting it

with γ produces vertical intersections in at least 3 columns of T̃ . We know ws′ > 0

since r < 2(g(K) − 1), so suppose ws′ = 1. We have vertical intersections with γ to

the left and right of this column, which we can label cs
′
and bs

′
, respectively. Then

Mrel(c
s′) = 2Ṽs′ − 1 and Mrel(b

s′) = 2H̃s′ − 1, and so 2H̃s′ − 1 ≤Width(MR[s′]) ≤ 2H̃s′

since s′ > 0 yields H̃s′ > Ṽs′ . If some [s] ̸= [±s′] satisfies MR[s] ∼= MR[s′] up to translation

then the parities of their widths must agree. Under the same labeling convention for

intersections associated to [s], we see that 2Ṽs − 1 ≤Width(MR[s]) ≤ 2Ṽs if s ≤ 0 and

2H̃s − 1 ≤Width(MR[s]) ≤ 2H̃s if s ≥ 0.

For 0 < s′ < s, we compute for either parity of width that

Width(MR[s′])−Width(MR[s]) = 2(H̃s′ − Ṽs).

This implies that Ṽs = H̃s′ , which is impossible when s′ > 0. Similarly, if s < −s′ then
the analogous statement holds true using H̃s.

When −s′ < s < s′, something interesting occurs. In addition to ls
′

r , we see that lsr

successfully makes two non-vertical intersections on both sides of the 0th column. Also

since K is thin, it follows that Ṽs ≤ H̃s′ and H̃s ≤ H̃s′ , with equality only possible when

s = −s′ + 1 or s = s′ − 1, respectively. However, this results in the configuration shown

for the latter situation in Figure 6.1. We see that while the widths of MR[s] and MR[s′]

can agree if H̃s = H̃s′ , this necessarily results in Ṽs ̸= Ṽs′ since K is thin. This is true vice
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versa as well, and so the multisets cannot both contain the same relative gradings for

their respective vertical intersection pairs. Thus we must consider ws′ > 1, and we will do

so following similar computations to those in Lemma 6.1.1.

Ṽs−Ṽs′−−−−→
H̃s′−H̃s←−−−−−

Figure 6.1: If H̃s = H̃s′ and s = s′ − 1, then Ṽs − Ṽs′ = 1 when K is thin.

When ws′ > 1 the intersection with largest relative grading in MR[s] comes from the

furthest non-vertical intersection, which is bs when s ≥ 0 or cs if s ≤ 0. Since we can use

the hyperelliptic involution invariance of ĤF(M) to treat such a cs as b−s, let us only

compare Mrel(b
s′) to the various Mrel(b

s). Chaining grading differences between adjacent

non-vertical intersections from bs back to as, we have

Mrel(b
s) = 2

(
H̃s +

ws−1∑
i=1

(s+ ir)

)
− 1.
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If s < s′ then ws = ws′ , and we compute

Mrel(b
s′)−Mrel(b

s) = 2

(
H̃s′ − H̃s +

ws−1∑
i=1

(s+ ir)−
ws−1∑
i=1

(s+ ir)

)
= 2(H̃s′ − H̃s + (ws′ − 1)(s′ − s))

≥ 1.

We have equality only if H̃s′ = H̃s, s = s′ − 1, and ws′ = 2. In this case, we have

parity(s′ + 2r) = parity(s′) regardless of r. However parity(s′ + 2r) ̸= parity(τ(K)), and

so parity(s) = parity(τ(K)). This implies Width(MR[s]) ≤ Mrel(b
s), which means we

cannot have s < s′.

If s > s′, then with ws = ws′ − 1 we obtain

Mrel(b
s′)−Mrel(b

s) = 2

(
H̃s′ − H̃s +

ws−1∑
i=1

(s+ ir)−
ws−1∑
i=1

(s+ ir)

)

(column shift) = 2

(
s′ + r + H̃s′ − H̃s +

ws−1∑
i=2

(s+ ir)−
ws′−1∑
i=2

(s+ ir)

)
= 2(s′ + r)− 2(H̃s − H̃s′) + 2(ws′ − 2)(s′ + r − s).

Now s− s′ ≤ 2(H̃s − H̃s′) ≤ s− s′ + 1 when K is thin by careful inspection of these

regions. This implies

Mrel(b
s′)−Mrel(b

s) = 2(s′ + r) + 2(H̃s′ − H̃s) + 2(ws′ − 2)(s′ + r − s)

≥ 2(s′ + r)− (s− s′ + 1) + 2(ws′ − 2)(s′ + r − s)

= 2s′ + r − 1 + (2ws′ − 3)(s′ + r − s)

> 1.

Altogether, these grading comparisons are enough to see that MR[s] ̸∼= MR[s′] up to

translation when r < g(K)− 1. Next we look at the cases with larger surgery slopes.

If r = g(K)−1, then ws′ = 1 and s′ = 0. Due to hyperelliptic involution invariance, we

can assume s ̸= s′ satisfies s < 0. Notice that MR[s′] contains 2H̃s′−1 with multiplicity at

least two since ls
′

r generates non-vertical intersections on both sides of the 0th column and

Ṽs′ = H̃s′ . The only way that MR[s] could contain this grading with multiplicity greater
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than one is if a simple figure-eight component in the 1st column has an intersection with

lsr. The nearby vertical intersection as+r has Mrel(a
s+r) = 2H̃s′ − 2, and so we would

require parity(s+ r) ̸= parity(τ(K)) in order for an intersection with a simple figure-eight

to have the desired grading. However s + r = τ(K) − 2, and so MR[s] cannot contain

2H̃s′ − 1 more than once. Thus, no [s] ̸= [s′] satisfies MR[s] ∼= MR[s′] up to translation

when r = g(K)− 1.

We still have ws′ = 1 if r > g(K) − 1, but now s′ < 0. The crux of the argument

in the previous case relied on H̃s′ > 1. This holds more generally when r < 2g(K)− 3,

except now MR[s′] need only contain 2H̃s′ − 1 once. Since Width(MR[s′]) ≥ 3, the above

argument still applies to show that MR[s] ∼= MR[s′] up to translation only if [s] = [s′ ± 1].

This forces k = 1, which in turn forces r ≤ 3 so that there cannot exist [s′ + αk] with

Width(MR[s′+αk]) = 1. The possibility r = 2 is handled exactly as in the r = g(K)− 1

argument, and so we must have r = 3. This means s′ = −1, and so τ(K) = g(K) = r = 3.

If r = 2g(K)− 3, then only l±s′
r generates non-vertical intersections between columns

of T̃ . All other lsr intersect ĤF(M) only in the 0th column, which means that every

Width(MR[s]) = 1. Since parity(s′) = parity(τ(K)) when r = 2g(K)− 3, we must have

es′ = 0. This is because a simple figure-eight component at this height would contribute an

intersection with relative grading −1 to MR[s′], which would yield Width(MR[s′]) = 2 and

prevent periodicity. We have dim ĤF(S3
r (K), [s′]) = 3+2es′+r, and so some [s′+k] satisfying

MR[s′+k] ∼= MR[s′] up to translation forces 1 + 2es′+k = 3 + 2es′+r, or es′+k = es′+r + 1. If

necessary, translate MR[s′+k] so that 0 is the smallest element. The only way that the

multiplicities of 0 and 1 agree is if MR[s] contains more 0’s than 1’s, which happens only

when parity(s′ + k) = parity(τ(K)). But parity(s′) = parity(τ(K)) as well, which is a

contradiction since k is odd when r odd.

We return to the two unhandled cases of τ(K) = g(K) = r = 3 and r = 2(g(K)− 1)

shortly in Section 6.2, and for now are left with the case where r = 2g(K)− 1. Because

τ(K) = g(K), there is no guaranteed simple figure-eight at height g(K)− 1. This small

difference is enough of an issue if K is an L-space knot, since each MR[s] = {0} means ĤF

cannot provide an obstruction. With existing techniques, we can only show the following:

Lemma 6.1.3. Suppose K is thin with τ(K) = g(K), and let r = 2g(K) − 1. If there

exists a k properly dividing r such that every [s] ∈ Spinc(S3
r (K)) satisfies ĤF(S3

r (K), [s]) ∼=
ĤF(S3

r (K), [s+ k]), then K is an L-space knot.

Proof. Suppose for the sake of contradiction that K is not an L-space knot, meaning that

dim ĤF(S3
r (K), [s]) > 1 for some [s] ∈ Spinc(S3

r (K)). Each lsr intersects γ precisely once
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since r ≥ 2g(K)− 1. In order to have dim ĤF(S3
p(K), [s]) > 1 for some [s], we need for

ĤF(M) to have a simple figure-eight component at height s due to Lemma 2.3.8. Let

t be the height of the lowest simple figure-eight component. We have et many simple

figure-eights at height t, and so we must also have et+k = et many simple figure-eight

components at height t+ k to satisfy

dim ĤF(S3
r (K), [t]) = dim ĤF(S3

r (K), [t+ k]).

If parity([t]) ̸= parity([t+ k]), then one of MR[t] or MR[t+k] contains −1 and would

need to be translated by 1 to make 0 the smallest element by Proposition 5.1.3. However,

this results in both multisets having unequal multiplicities of 0’s and 1’s. This would lead

to MR[t] ̸∼= MR[t+k] up to translation, and so we must have parity([t+ k]) = parity([t]).

However this condition implies that k is even, which contradicts r = 2g(K)− 1 being odd.

Therefore, K must be an L-space knot.

6.2 Obstructions from Absolute Gradings

Until now, we have primarily appealed to information carried by ĤF(S3
r (K)) as this is

currently the only flavor of Heegaard Floer homology computable by immersed curves

techniques. When considering S3
r (K) = Y#Z with |H2(Y )| = k < ∞, we will use

properties of the d-invariants mentioned in Subsection 2.2.1 in order to obtain a relationship

between r, k, and the V ’s associated to K. We initially settle the curious τ(K) = g(K) =

r = 3 case, and afterwards assemble the proof of Theorem 1.2.3.

Lemma 6.2.1. Let K be a thin knot with τ(K) = g(K) = 3. Then S3
3(K) is irreducible.

Proof. If S3
3(K) is reducible, it must admit an integer homology sphere connected sum-

mand Y since r = 3 is prime. Using the additivity of the d-invariants, we have

d(S3
3(K), [s]) = d(L(3,±1), [s]) + d(Y ).

Proposition 2.2.7 then implies d(Y ) = −2V0(K) = −2V1(K), which in turn forces

V0(K) = V1(K). However this is true only for thin knots with even τ(K), which can

be seen using the formula in Proposition 5.1.3 together with Vs = H−s. This forms the

desired contradiction.
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Lemma 6.2.2. Let K be a thin knot with τ(K) ≥ g(K)− 2. Then S3
r (K) is irreducible

when r = 2(g(K)− 1).

Proof. Let τ(K) ≥ g(K) − 2, and suppose for the sake of contradiction that S3
r (K) is

reducible for r = 2(g(K)− 1). Then S3
r (K) admits connected summands Y a lens space

and Z with |H2(Z)| = k <∞. Since H1(S
3
r (K)) is cyclic and r is even, one of |H1(Y )| = r

k

or k is even. We will show the latter must be true.

Using the immersed curves techniques of the previous section, we see that Width(MR[s])

= 1 for all [s] when K is thin and τ(K) ≥ g(K)− 2. Using s′ ≡ g(K)− 1( mod r) again,

we are guaranteed to have dim ĤF(S3
r (K), [s′]) > 1 since ls

′
r either intersects a simple

figure-eight at height g(K)− 1 when τ(K) < g(K) or intersects γ multiple times when

τ(K) = g(K). In order for some [s′ − k] to satisfy MR[s′−k] ∼= MR[s′] up to translation,

we also require parity(s′ − k) = parity(s′) so that the multiplicities of 0 and 1 agree. This

implies k is even.

Let πY ([s]) and πZ([s]) denote the restrictions of [s] to Spinc(Y ) and Spinc(Z), respec-

tively. Since Spinc(S3
r (K)) ∼= Z/rZ is Z/rZ-equivariant [OS08], we have both

πY ([s+
r
k
)]) = πY ([s]) and πZ([s+ k]) = πZ([s]).

The two self-conjugate spinc structures of S3
r (K) must project onto the lone self-conjugate

structure of L( r
k
, q), and so

πY ([0]) = πY ([
r
2
]) ∈ Spinc(L( r

k
, q)).

Their respective restrictions on Z are distinct, and so let πZ([0]) = ue and πZ([
r
k
]) = uo.

Due to the additivity of d-invariants, we have

d(S3
r (K), [s]) = d(L( r

k
, q), πY ([s])) + d(Z, πZ([s])).

Since k is even, we may apply this to the self-conjugate structures to see

d(S3
r (K), [0])− d(S3

r (K), [ r
2
]) = (d(L( r

k
, q), [0]) + d(Z, ue))− (d(L( r

k
, q), [0]) + d(Z, uo))

= d(Z, ue)− d(Z, uo).

Observe that πZ([
k
2
]) = u0, and so πZ([

r+k
2
]) = ue. We likewise have πY ([

k
2
]) = πY ([

r+k
2
]),
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and so

d(S3
r (K), [k

2
])− d(S3

r (K), [ r+k
2
]) = d(Z, uo)− d(Z, ue).

Using the inductive formula for d(L(p, q)) [OS03a, Proposition 4.8], it follows that

d(L(r, 1), [s]) = s2

r
− s + r−1

4
. Summing the prior two equations and using Proposition

2.2.7 (with V r−k
2

= max{V r+k
2
, Vr− r+k

2
}) yields

2
(
V0 − V r

2
+ V k

2
− V r−k

2

)
= d(L(r, 1), [0])− d(L(r, 1), [ r

2
]) + d(L(r, 1), [k

2
])

− d(L(r, 1), [ r+k
2
])

= −
(
r2

4r
− r

2

)
+

(
k2

4r
− k

2

)
−
(
(r + k)2

4r
− r + k

2

)
=

r − k

2
,

Therefore, we have the following relationship between r, k, and the V ’s associated to K:

r − k

4
= (V0 − V r

2
) + (V k

2
− V r−k

2
). (6.1)

Notice that when K is thin and τ(K) ≥ 0, we have that

V0 =


τ(K) + 1

2
if parity(τ(K)) = 1

τ(K)

2
if parity(τ(K)) = 0

We will use this to generate contradictions, and break into cases since the values of

V r
2
and V r−k

2
depend on τ(K). It will also be useful to use the fact that k ≤ r

3
.

Case C1: τ(K) = g(K). Here we have V r
2
= 1 and V r−k

2
> 0. We see that V k

2
− V r−k

2
is

given by half the distance between r−k
2
− k

2
since K is thin. Thus,

V k
2
− V r−k

2
=

r

4
− k

2
.

This together with Equation 6.1 above then yields

V0 =
k

4
+ 1.
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If parity(τ(K)) = 1, then we have

τ(K) + 1

2
=

k

4
+ 1

⇔ τ(K)− 1

2
=

k

4

⇔ τ(K)− 1

2
≤ r

12

⇔ 6(τ(K)− 1) ≤ 2(g(K)− 1)

⇔ 6(τ(K)− 1) ≤ 2(τ(K)− 1)

⇒ 4τ(K) ≤ 4.

However this would imply g(K) = τ(K) = 1 ⇒ r = 0, a clear contradiction. If

parity(τ(K)) = 0, then similar reasoning yields τ(K) ≤ 2, which forces r = τ(K) =

g(K) = 2. We return to immersed curves techniques to rule out this case by comparing the

multiplicity of elements of MR[0] and MR[1]. Since parity(τ(K)) = 0, we must translate

MR[0] by one so that 0 is its smallest element. The multiplicity of 0 in the translated MR[0]

is e0, and the multiplicity of 0 in MR[1] is 2e1 + 2. However if S3
2(K) is reducible then

Lemma 2.2.6 forces e0 = 2e1 + 1 in order for dim ĤF(S3
2(K), [1]) = dim ĤF(S3

2(K), [0]),

generating the desired contradiction.

Case C2: τ(K) = g(K)− 1. Once again V r−k
2

> 0, and in this case we obtain V0 = k
4

since V r
2
= 0. Together with r = 2τ(K), the argument of the previous case yields the

contradiction 4τ(K) ≤ −4 when parity(τ(K)) = 1 or 4τ(K) ≤ 2 when parity(τ(K)) = 0.

Case C3: τ(K) = g(K)− 2. We still have V r
2
= 0, and things are more interesting here

since it is possible for V r−k
2

= 0. This happens only if k = 2, in which case Equation 6.1

becomes
r − 2

4
= V0 + V1.

Curiously enough τ(K) = V0 + V1 for a thin knot, and so this would force τ(K) =
r−2
4

= 2(τ(K)+1)−2
4

⇔ 4τ(K) = 2τ(K) ⇒ τ(K) = 0. However this forces r = k, a

contradiction. Then we cannot have k = 2, and so V r−k
2

> 0 and we once again have

V0 =
k
4
. As with the previous cases, having r = 2(τ(K)+1) would yield the contradictions

6(τ(K) + 1) ≤ 2(τ(K) + 1) if parity(τ(K)) = 1 or 4τ(K) ≤ 2 if parity(τ(K)) = 0. This

completes the proof.
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6.3 Proof of Theorem 1.2.3

Proof. Suppose S3
r (K) is reducible for K thin and hyperbolic. The Matignon-Sayari bound

implies that 1 < r ≤ 2g(K)− 1, after mirroring the knot if necessary to make the surgery

slope positive. Reducibility also gives S3
r (K) ∼= Y#Z for some lens space Y and some Z

with |H2(Z)| = k <∞. By Lemma 2.2.6, we have ĤF(S3
r (K), [s+ αk]) ∼= ĤF(S3

r (K), [s])

for arbitrary [s], α ∈ Z/rZ. When r < 2(g(K) − 1), Lemmas 5.2.2, 6.1.1, and 6.1.2

apply to show that there exists an [s′] ∈ Spinc(S3
r (K)) such that either ĤF(S3

r (K), [s′])

is relatively-graded isomorphic only to ĤF(S3
r (K), [−s′]), or τ(K) = g(K) = r = 3. The

latter is prevented by Lemma 6.2.1, so we proceed with the former. Since Y ̸∼= S3, we

see that [s′] cannot be self-conjugate and also that |H1(Y )| = 2. This implies Y = RP 3,

as well as k = |[s′]− [−s′]| = 2|[s′]|. However, together this means 4 divides r, which is

impossible when S3
r (K) admits an RP 3 summand with H1(S

3
r (K)) cyclic.

Therefore, we must have r ≥ 2(g(K) − 1). Lemmas 5.2.4 and 5.2.5 cover −g(K) <

τ(K) < g(K) − 2 and Lemma 6.2.2 covers τ(K) ≥ g(K) − 2 for the possibility that

r = 2(g(K)− 1), and so we must have r = 2g(K)− 1. In this situation k is odd since r is

odd, which means periodicity will cycle through spinc structures with different parities.

Then Lemmas 5.2.3, 5.2.5, and 6.1.1 apply to fully obstruct reducibility via the above

argument if τ(K) ̸= g(K). If τ(K) = g(K), our techniques have been exhausted and leave

just the conclusion of Lemma 6.1.3, showing that K must be an L-space knot.
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four. Ann. of Math. (2), 74:391–406, 1961.

[Ter01] Masakazu Teragaito. Creating Klein bottles by surgery on knots. volume 10,
pages 781–794. 2001. Knots in Hellas ’98, Vol. 3 (Delphi).

[Thu78] William P. Thurston. The geometry and topology of three-manifolds. Available
at http://msri.org/publications/books/gt3m/, 1978.

[Thu82] William P. Thurston. Three-dimensional manifolds, Kleinian groups and
hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.), 6(3):357–381, 1982.

[VS99] Luis Gerardo Valdez Sánchez. Dehn fillings of 3-manifolds and non-persistent
tori. volume 98, pages 355–370. 1999. II Iberoamerican Conference on Topology
and its Applications (Morelia, 1997).

89



[Wal60] Andrew H. Wallace. Modifications and cobounding manifolds. Canadian J.
Math., 12:503–528, 1960.

[Wan06] Jiajun Wang. Cosmetic surgeries on genus one knots. Algebr. Geom. Topol.,
6:1491–1517, 2006.

[Wat12] Liam Watson. Surgery obstructions from Khovanov homology. Selecta Math.
(N.S.), 18(2):417–472, 2012.

90


	List of Figures
	Introduction
	Background
	Main Results
	Klein Bottle Surgeries
	Reducible Surgeries

	Organization

	Heegaard Floer Homology and Immersed Curves
	Heegaard Floer Homology
	Knot Floer Homology
	Heegaard Floer Homology of Dehn Surgery

	Bordered Heegaard Floer homology
	The Bordered Invariants
	Bordered Invariants as Immersed Curves
	Heegaard Floer Homology via Immersed Curves


	Klein Bottle Surgeries
	The Gluing Map h
	Gluings with J Trivial
	Gluings with J Non-trivial

	Refined Gradings in Pairing
	Refined Gradings for CFA"0362CFA(M, , )
	Refined Gradings for CFD"0362CFD(N, 21+0, -1, s0)
	Refined Gradings for CFD"0362CFD(N, 21+0, -1, s1)
	Refined Gradings for Generators in Pairing
	Proof of Theorem 1.2.1

	Reducible Surgeries and Thin Knots
	Gradings via Immersed Curves
	Cases with |(K)| < g(K)

	Remaining Cases and Absolute Gradings
	Cases with |(K)|=g(K)
	Obstructions from Absolute Gradings
	Proof of Theorem 1.2.3

	References

