ABSTRACT

KARAM, AMANDA LOUISE. Developing and Validating Novel On-line Methods for
Quantifying Microalgal Growth in Photobioreactors. (Under the direction of Dr. Joel Ducoste &
Dr. Francis de los Reyes IlI).

Microalgae have long been recognized as a potential biofuel feedstock with interests for
this purpose exploding in recent decades alongside the rising concerns of global warming. Overall,
microalgal cultivation still lacks the volumetric productivity and efficiency necessary to make the
algae-to-biofuel production process economically attractive. Further investigation and validation
of on-line methods for quantifying microalgal growth in bench-scale experiments could lead to
more strategic and insightful experiments that will help optimize algal bioreactors. This research
describes the validation of two novel in-situ methods for quantifying microalgal growth using
custom constructed photobioreactor (PBR) equipped with on-line data acquisition and controls.

The first part of the dissertation describes the assembly and operation of this bench-scale
PBR that continuously monitors pH, light, and temperature. This system was constructed for
precise pH control using custom-programmable scripts that controlled CO> into the system based
on chemical equilibrium models.

The second part of this work describes an approach for estimating biomass using light
sensor measurements. This work first involved the characterization of light in microalgal
cultivation vessels, then rigorously evaluated which biocomponents (total biomass, cells, and chl
a etc.) served as the best predictors for light attenuation. Results showed that Beer-Lambert’s law
predicted photosynthetic light attenuation well when both biomass and chlorophyll a were
considered as distinct attenuating components, providing light and biomass estimates with around

6% and 12% average error, respectively, compared to those from experimentally measured data.



Finally, a novel on-line approach developed using continuous pH measurements within a
pH-controlled PBR provided relatively simple experimental assay for obtaining high-resolution
data on the microalgae’s organic carbon growth based on inorganic carbon flows. This approach
showed qualitative agreement to lab-based grab sample measurement assays for total organic
carbon and cell counts across various nitrogen (2.5 — 5.0 mM KNOg) and bicarbonate conditions
(5.0 to 40 HCOsmM). Furthermore, this carbon-tracking approach showed a strong linear
relationship (R?= 0.98) when compared to the lab-measured total organic carbon of the suspended
microalgae. More specifically, the TOC measured in suspended solids portion of algal culture was
consistently around 60% of the sensor-based estimates.

Advancing microalgal-based biofuels towards sustainability requires a delicate
understanding of the biological, physical, and chemical reaction mechanisms during cultivation.
These novel on-line methods give relatively simple, yet powerful, tools for better assessing
microalgal growth in real time in a custom-built photobioreactor, and they can aid researchers in

improving our understanding of algae mechanisms to optimize bioproducts.
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CHAPTER 1: MOTIVATION & BACKGROUND

1.1 Motivation

Microalgae have long been recognized as a potential biofuel feedstock, and interest in them for
this purpose has exploded in recent decades alongside the rising concerns of global warming®.
Unlike first-generation biofuels based on land plants (e.g., corn and soybeans), algae-based
biofuels divert fewer resources away from the food, land, and water supply since the algae can be
cultivated year-round on barren land using saltwater or wastewater as the liquid media®®.
Microalgae are also known for their high growth rates — surpassing the productivity of even the
fastest growing terrestrial crops — and their ability to accumulate high levels of neutral lipid energy
storage compounds*-°.

Overall, microalgal cultivation still lacks the volumetric productivity and efficiency necessary to
make the algae-to-biofuel production process economically attractive’. Thus, a major research
focus has been on optimizing this cultivation process, which requires collaborative efforts that
combine knowledge and modeling of microalgal growth and lipid production as well as
environmental process engineering and life cycle assessment. Accurately modeling microalgal
growth is crucial for developing economical full-scale operations and requires a fundamental
understanding of the relevant biological processes, and how these processes interact with the
culturing environment. Microalgae are incredibly adaptive and dynamic organisms that are able to
grow and thrive in constantly fluctuating environments®2, This fluctuating growth environment,
and the microalgae’s ability to quickly respond to such environment, makes both studying and
modeling microalgae challenging. As the research in this area has advanced, methods for
controlling algal cultures and modeling their growth have evolved; models have often become
more complex as researchers attempt to refine traditional modeling approaches to more accurately
capture microalgal growth 34, However, despite increased research efforts, a unifying approach
on best practices for modeling microalgal growth has yet to emerge. For example, a recent review
by Darvehei (2018) listed 27 different approaches for describing the impact of light on algal growth
and 17 different approaches for quantifying the impact of nutrients on algal growth**. While many
of these models share overarching themes, e.g., many using Monod-type Kinetic equations to
describe how specific growth rates vary with substrate concentration, there is still a noteworthy
lack of convergence between modeling approaches. Many challenges still faced with modeling
should warrant reflection and a call for further collaboration between engineers and scientists
to develop better methods for probing the underlying mechanisms that drive these primary
producers. Crucial details necessary to grasp how microalgae operate, both as individual cells and
as communities, could be overlooked due to the nature of the traditional approaches used when
studying these highly dynamic organisms, i.e., the large amount of time and volume needed for
quantifying biomass reduces sampling frequency. On-line growth quantification can lead to more
rapid and refined experimentations with less culture disturbances from sample collection and
system perturbations that may follow.

Further investigation and validation of on-line experimental methods for quantifying microalgal
growth in bench-scale setups could lead to novel strategic and illuminating experiments that help
us understand these organisms more thoroughly. This research dissertation highlights the
development and validation of two novel in-situ methods for quantifying microalgal growth
using a custom-built photobioreactor (PBR) equipped with live data acquisition and controls.
These methods are validated using the marine halotolerant microalga Dunaliella viridis.
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1.2 Relevant Background

Microalgae absorb light energy and consume inorganic carbon, e.g., CO», to synthesize glucose
during photosynthesis (Equation 1-1). This process, in which dissolved CO3 is removed from the
liquid media, drives the pH upwards (Equation 1-2 - 1-3).

6 CO, + 6H,0 + light —» CgHy,04 + 60, 1-1
pCOZ(g) A COZ(aq) « {H2C03}(aq) « {H}+ + {HCO;l}(aq) < {H+} + {Cog_}(aq) 1-2
pH = —log[{H*}] 1-3

The pH increase rate will depend on not only the health and concentration of the microalgae, but
also many abiotic factors including the composition of the water, specifically the carbonate
buffering capacity, the CO> in the solution, and the associated rate and kinetic parameters that
dictate the mass transport of carbon at the gas-liquid interface. Furthermore, microalgae
absorb/scatter light, which leads to light attenuation and spatial distributions that affect their
growth environment.

Light and carbon are two critical culture properties that change dynamically as microalgal grow to
the densities required for full-scale biofuel-based cultivation. Advances in sensor technology that
monitor and control these dynamic systems, along with an increase in sensor accessibility, have
opened new potential pathways to discovery for scientists researching these oxygenic
photosynthetic organisms.

1.2.1 Use of Oz, pH, COz sensors for studying microalgae

Plant and micro- biologists have long used oxygen sensors as a tool for assessing photosynthetic
and respiratory activity in algae. These types of measurements are often performed over relatively
short time periods using closed-chambered apparatuses that can measure oxygen exchange, light,
and absorbance in small sample volumes (< 5 mL)*®. Much of the data collected from these types
of experiments have formed the basis of many current photosynthetic models used in engineering
applications that attempt to model and optimize algal growth®*°. Many of these same measuring
principles can be applied to monitor microalgal growth over longer time scales in larger bench-
and pilot-scale applications.

Measuring gas production or consumption in microalgal cultures over longer time scales and larger
volumes as compared to the physiological studies described above, however, is complicated as the
mass transfer of O, and CO. between the gas and liquid phases must be considered more
rigorously, in addition to the chemical and biological processes that can potentially affect these
transfer rates. Even still, using oxygen production measurements as a means for studying
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microalgal growth has been used for decades. In fact, in open raceway pond experiments conducted
in the late 1980s, dissolved oxygen (DO) electrodes were relatively successful at estimating bulk
biomass within 15% on average by measuring the oxygen evolution rate?®. This method involved
periodically bubbling air into the algal ponds every few hours and monitoring the oxygen increase
rates thereafter. After accounting for gaseous exchange with the atmosphere, these oxygen
production rates were related to biomass production by assuming a constant conversion.?

More recently, oxygen probes have also been extensively used for growth modeling purposes in
ways that range from calibrating models with raw DO concentrations data®? to using these
measurements as a means of estimating biomass?. These on-line DO sensors also allow for
dynamic experiments and have been used in attempts to model the photosynthetic response of
Scenedesmus obtusiusculus after experiencing abrupt changes in light intensity?*. Headspace gas
analyzers, for both Oz and CO,, are also employed in creative ways to quantify photosynthetic
activity and growth in airtight culturing systems. For example, using a CO2/O, gas analyzer,
Kliphuis et al. (2010) estimated the photosynthetic quotient (PQ), i.e., the molar ratio between the
oxygen production rate (OPR) and carbon uptake rate (CUR) and assessed the overall’
photosynthetic productivity of Chlorella sorokiniana algae under different light intensities and
mixing regimes by measuring changes in the off-gas concentrations as compared to the
continuously bubbled input gas concentration (2% CO: enriched N2). Furthermore, in an attempt
to quantify ‘light’ respiration rates, Kliphuis et al. (2011) modified their setup with the ability to
remove small subsamples through a dark tube where an oxygen microsensor measured oxygen
uptake rates®®. This modification was needed since respiration rates will decline rapidly after algal
cultures are subjected to darkness (on the order of minutes), and their current setup did not allow
for this type of monitoring resolution. For example, D. tertiolecta ‘light’ respiration rates have
been shown to decrease down to steady-state ‘dark’ baseline rates within an hour after exposure to
darkness?®,

On-line gas measurements, both dissolved and gaseous, provide invaluable information for those
studying and modeling these photosynthetic microbes. Historically DO measurements have been
more commonly utilized in microalgal experiments as compared to gaseous O./CO. measurements
or dissolved CO». Estimating the OPR or CUR of cultures directly via gas sensors requires a
sophisticated airtight setup to allow for quick and reliable gas exchange measurements. Measuring
the dissolved CO> has only recently been feasible with newer membrane technology, and still
requires special consideration of the chemical reactions involved with carbonate species. While
more commonly implemented in experimental setups, DO probes still have limitations. DO
electrodes are still relatively expensive as compared to pH electrodes, which do not require special
membranes. In addition, certain types of electrodes consume oxygen as part of the measuring
process, limiting their measurement accuracy, response time, and applicability?’. Moreover, since
oxygen is a byproduct of photosynthesis, relating oxygen production to biomass production
requires further assumptions about the photosynthetic quotient if the carbon uptake rates are not
also measured. In experiments that have tracked both OPR and CUR, PQ is shown to vary between
1-1.5, and will depend on the nitrogen source and the oxidation state of the biomass produced (i.e.,
lipids are more reduced than proteins)?®°,



1.2.2 Use of pH electrodes in microalgal cultures

pH electrodes are arguably the most commonly used on-line sensor in bench-scale PBRs. These
inexpensive probes can be used to monitor and control the pH, which is often done with CO>
injection. And while dissolved oxygen electrodes are still more commonly used to estimate
photosynthetic activity and growth with microalgae, there has been an increase interest in
implementing pH data into growth models in ways to help define the carbon flows within an algal
culturing environment3%32,

To fully capture the state of the carbon within a system—including the total dissolved inorganic
carbon (DIC) and the distribution of carbon species—more than just the pH must be considered.
However, tracking the total carbon is possible using various approaches that combine lab-based
measurements with chemical equilibrium models. If the pH and the activity of the dissolved CO2,
i.e. {H2CO3}, are known, then the DIC concentration, mp,, can be theoretically calculated using
equilibrium constants for carbonic acid Kz, K2 and knowledge of the relevant activity coefficients
y. These relations are shown by Equations 1-4 through 1-7. Note, since carbonic acid is nearly
indistinguishable from dissolved CO: in solution, they are often lumped together and referred to
as H.CO3".

{H*}=10"PH 1-4
Mpjc = My,co; + Myco; + Mcoz- 1-5
{x} 1-6

my = —

Yx

1 Ht HH2
RG]
YH,c0;  YHCO3 Ycoz-

Ky K1K3 1-7
DIC = {H,C0%}

Filali et al. (2011) utilized this concept to experimentally measure DIC when performing growth
experiments in an air-lift PBR used for modeling Chlorella vulgaris. Since Chlorella is a
freshwater species, the largely salt-dependent activity coefficients are assumed to equal one, thus,
simplifying this approach for estimating DIC from dissolved CO, measurements. DIC is then
tracked as a state variable in this model (Equation 1-8), where it is dependent on 1) the microalgal
growth rate u, 2) microalgal biomass concentration X, 3) a carbon-to-biomass conversion
coefficient M,., and 4) the mass transfer rate of CO. into solution Ncoz, since CO> is continuously
bubbled into the PBR.

1-8




Using a similar concept as shown in Equation 1-8, Titica et al. (2014) formulates a dynamic pH
model for autotrophic growth of the microalgae marine Chlamydomonas reinhardtii®®. This
approach is different, however, in that an algal growth model is combined with a chemical and
thermodynamic model to estimate pH. In this salt-water system, since the dissolved CO> is not
measured, additional constraints involving the mass and charge balance of the chemical system
must be considered to fully define the DIC. As such, the activity coefficients also must be
estimated.

To our knowledge, pH has not been used in a method for assessing growth directly by relating this
property to the DIC outside a growth modeling context where microalgal growth parameters could
impact carbon flow estimates. While the concepts behind these approaches are similar, the direct
approach does not depend on any estimate of the microbial growth rate. This differentiation is key
because it allows for many of the built-in assumptions used in the previous work when relating pH
to DIC to be tested directly and rigorously validated. Thus overall, there is more of an emphasis
on directly modeling the inorganic-to-organic carbon flows, and less on modeling microalgal
growth with respect to light and nutrients, etc. as done in previous work as part of fitting growth
parameters that affect DIC estimates.

This research uses pH as a tool for tracking carbon flows within a PBR and estimating the total
carbon assimilated by microalgae by relating pH to the carbon removed from a marine microalgal
culturing system. The pH in such a system, and the rate at which the pH in this system changes
under various forcings, i.e., microalgal growth, diffusion of CO> between the liquid and gaseous
phases (Figure 1-1), will depend on many factors, such as salinity, buffering capacity, etc.
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Figure 1-1. Simplified overview of the governing relations that dictate the inorganic-to-organic
carbon flows within a typical bench scale microalgal photobioreactor with pH controlled via CO;
injection.

This research seeks to answers whether the following: 1) pH data can be used with a
thermochemical equilibrium to reliably estimate DIC within culturing mediums commonly used
to grow marine algae, and 2) can this pH-to-DIC data, if combined with a diffusion model, led to
accurate estimates of the inorganic-to-organic carbon flow within a bioreactor that is cultivating
microalgae.

1.3 Research overview

The overall goal of this research was to develop and validate on-line methods to estimate biomass
and carbon assimilation rates of the marine microalgae Dunaliella viridis during algae cultivation.
These methods rest on the following hypotheses:

Key Hypothesis 1 (KH1): Chlorophyll and non-chlorophyll biomass are key light-absorbing
biocomponents within an algal PBR, and concentrations of both are needed to accurately estimate
light attenuation in a flat-plate PBR.

Key Hypothesis 2 (KH2): Microalgal biomass concentrations can be estimated, given the light
attenuation absorption coefficients, and chlorophyll concentration.



Key Hypothesis 3 (KH3): pH combined with chemical equilibrium thermodynamic models are
sufficient to assess the total dissolved inorganic carbon concentrations within a batch ~3-L, well-
mixed and controlled microalgal PBR.

Key Hypothesis 4 (KH4): The combined pH measurement data and chemical equilibrium
thermodynamic model can serve as an on-line growth assessment tool within a pH-controlled
bioreactor.

These above hypotheses required the following task completions:

Task 1: Design and construct a bench-scale photobioreactor with pH control and live data
acquisition and monitoring [Chapter 2].

Task 2: Perform experimental tests to evaluate important pigment and non-pigmented components
in dynamic light characterization and biomass growth [Chapter 3].

Task 3A: Develop a model that includes both an equilibrium sub-model and carbon mass transfer
by diffusion relationship to relate the pH to total dissolved inorganic carbon during microalgal
cultivation. [Chapter 4]

Task 3B: Validate the proposed carbon estimation method by performing experiments over a
range of salt, pH, dissolved CO> concentrations, and microalgal concentrations. [Chapter 4]

This dissertation showcases two sensor-based approaches for estimating microalgal growth in real
time. On-line methods such as these could prove critical to unraveling some of the complex
behavior observed in microalgae that has made studying and modeling their growth so challenging.



CHAPTER 2: CONSTRUCTION AND SETUP OF A BENCH-SCALE ALGAL
PHOTOSYNTHETIC BIOREACTOR WITH TEMPERATURE, LIGHT, AND PH
MONITORING FOR KINETIC GROWTH TESTS.

See the attached paper published in The Journal of Visualized Experiments (JOVE) in 2017.
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The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental
and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can
help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal
growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately
determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol
outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth
experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a
PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data
acquisition software.

Video Link

The video component of this article can be found at https://www.jove.com/video/55545/

Introduction

Due to growing concerns about global climate change and finite fossil fuel resources, governments have been developing policies to reduce
fossil fuel consumption and to encourage the development of new, sustainable transportation fuels. The United States Environmental Protection
Agency has developed the Renewable Fuel Standard (RFS), which requires that 36 of the annual 140 billion gallons of U.S. transportation

fuel mix come from renewable fuel sources by 2022. Innovative and transformational technologies will be necessary to meet these and future
renewable energy standards .

The use of microalgae-based biofuels has the potential to help meet the national RFS while reducing greenhouse gas emissions?. Microalgae-
based biofuels have several advantages compared to first-generation biofuels based on terrestrial food crops, such as corn and soybeans.
Unlike first-generation biofuels, algae-based biofuels consume fewer land, water, and food-related resources, since algae can be cultivated year-
round and on barren land using saltwater or wastewater. Microalgae have high growth rates compared terrestrial crops and can accumulate high
levels of lipids, which can be readily converted to biodiesel®. Currently, no industrial-scale algae-to-biofuel plants exist due to the high costs of
the energy-intensive production processes, which consist of algal cultivation, lipid separation, and lipid refining into biodiesel. More research is
needed to make these processes more efficient and sustainable.

PBRs, which are optically clear, enclosed installations for the production of phototrophic microorganisms in an artificial environment, are
considered one of the most promising cultivation methods®. However, current deszgns still lack the volumetric productivity necessary to make
the algae-to-biofuel production process more efficient and economically attractive™. Powerful mathematical models that consider light irradiance
and attenuation, the transport of nutrients and CO,, and the growth of the microalgae can greatly facilitate the optimization of PBR design and
operation. Bench-scale growth experiments are required to determine species-specific growth parameters for these optimization models.

Kinetic tests require the careful monitoring and control of experimental setups to prevent unintended inhibitors of growth. Given the
photosynthetic nature of algae (i.e., their consumption of CO, and absorption of light), maintaining controlled conditions is especially difficult in
bench-scale PBRs. As depicted in Equation 1, the amount of dissolved CO, in the growth medium, commonly denoted as H,C03; (Equation 2), will
be, at minimum, a function of: 1) the CO, partial pressure and Henry's equilibrium constant, which dictates the amount of gas that will dissolve in
solution (Equation 3); 2) the initial chemical composition of the growth medium, which impacts the speciation and activity of the carbonate ions
and pH (Equations 4 and 5); and 3) the temperature, which impacts Equations 3-5°.
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PCO; ;& COyaq) > {HCO3}pq) & (HY + {HCO7"} (oq) © {H'}+ (€05 }(ay (Equation 1)

H,C03 = COjaqy+ {H,C03} gq (Equation 2)
Ky(T) = %CZOZ)} (Equation 3)
Koy (T) = % (Equation 4)
K(D) = % (Equation 5)

The various phases and the chemical speciation of carbon create a challenge for measuring and maintaining a consistent dissolved carbon
concentration within a PBR while holding other conditions constant (e.g., the pH increases as the algae consume CO,, and increasing the
dissolved CO; substrate can possibly lead to an acidic environment that inhibits growth)s.

An additional layer of complexity for controlling conditions during algal kinetic tests involves the light intensity within the PBR. The average

light intensity inside a PBR is a function of not only the incident light intensity, but also the design (e.g., material, shape, depth, and mixing),

the absorbance of algal biomass components (particularly chlorophyll), and the light-scattering properties of the algal cells. As the algae grow,
the average light intensity will decrease. This change in light intensity, whether caused by an increase in total cells and biomass, an increase

in chlorophyll content per cell, or both, can eventually induce a metabolic response, such as an increase in chlorophyll production per cell or
the use of carbohydrate and lipid storage products for energy7. Continuous monitoring of the light intensity from within the reactor provides
invaluable information. This data can help to ensure that conditions stay within a specified range and can be used to help estimate algal growth
and absorbance parameters if combined with other measurements (i.e., biomass, chlorophyll concentration, reactor depth, incident light, efc.).

Understanding how algae grow under a specified set of conditions requires that the pH, dissolved CO,, light intensity, and temperature be
monitored in bench-scale kinetic experiments. Many algal growth setups are not equipped to monitor conditions to the extent required for
calibrating kinetic models, making the modeling process extremely challenging”. Although many companies offer bench-scale PBRs with
automation and control, these bench-scale setups can be extremely expensive (~$20,000) and might not accommodate all experimental
considerations of a given research question.

The first step in setting up a control-feedback system for a batch experiment is live data acquisition. This paper aims to demonstrate how to
construct and set up a bench-scale PBR equipped with continuous light, pH, and temperature monitoring. This real-time monitoring setup can
help to ensure that the experimental conditions stay within desired ranges, at the researcher's discretion. While this protocol does not detail
specific control mechanisms, these step-by-step instructions provide a basic foundation for the data acquisition framework required before more
sophisticated control feedbacks can be implemented.

1. Construct the Bench-scale PBR Body and Lid

NOTE: For illustration purposes, Dunaliella sp., a ~10 pm halotolerant microalgae lacking a cell wall, was used as the model organism for the
construction of this PBR.

1. Determine the PBR volume required for the research needs.

1. Determine the experimental objectives for this PBR.

2. Decide which algal measurement assays, M, are necessary to characterize the growth of the algal species of interest, including the
volume required per assay, v, the number of technical replicates, n; the sampling frequency, f, and the duration of experiments, t.
NOTE: Project-specific research questions, algal species, and available equipment dictate the algal properties measured, the methods
used for these measurements, and how frequently these measurements are taken. Biomass; cell counts; and total chlorophyll pigment,
protein, lipid, carbohydrate, and external nitrate concentration measurements are common ways of assessing growth, and daily
sampling over 5 - 14 days is a common approach for growth tests®°.

3. Calculate the total culture volume, V;, required for sampling throughout one experiment using Equation 6.

Vo
v.
Ve=|[My My M_ Mplx vl snxfxt Equation 6
vm
4. Use Equation 7 to estimate a target PBR volume, V), using V; from step 1.1.3 and a maximum volume removal fraction, F.
V.
Ve = FS- Equation 7

NOTE: Removing less than a pre-specified fraction of the total culture volume (e.g., ~20%) can help to ensure that the conditions within
the PBR i.e., (mixing power, light distribution, efc.) do not drastically vary over the course of the experiment as the culture volume is
removed.
1. Assuming a 10-day experiment where biomass; cell counts; and total chlorophyll, protein, lipid, carbohydrate, and nitrate
concentrations are measured daily in triplicate, use a total sampling volume of ~600 mL. If aiming to remove no more than
18.75% of the total culture volume, use a total working reactor volume of at least 3.2 L.

2. Select sensors and accessories for the PBR experiments.
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Select pH, light, and temperature probes to use for continuous monitoring.

NOTE: Sensors should be compatible with the data acquisition unit and should withstand internal culture conditions (i.e., pH range,
light, heat, algal debris, salt, efc.). Stainless steel and salt-tolerant probes were selected here since Dunaliella sp. are marine
microalgae.

Select an impeller design and motor to satisfy the experimental mixing requirements.

NOTE: For example, a low-shear, axial impeller is a good choice for Dunaliella algae, as they lack a cell wall and can easily shear'".
These algae have flagellar locomotion and do not need intense mixing”. Low mixing speeds can be attained using a 12 V mini-gear
motor. The impeller and shaft can be 3D-printed (3D printing information can be found in the materials list).

3. Assemble the PBR body and lid.

1.

Determine the dimensions of the reactor, based on the volume calculations in step 1.1, keeping in mind the experimental objectives
and potential constraints (e.g., space).

NOTE: A PBR design with a lower surface-to-volume ratio is preferred, as this shape minimizes light attenuation throughout the PBR,
providing a more consistent light distribution throughout the experiment.

Cut five pieces of optically clear cast acrylic sheets (~0.25-0.5 in thick) using a table saw, according to the PBR design and size
established in step 1.3.1.

Make sure that the joint edges are smoothed, but not rounded, using 200 to 400 grit sandpaper.

Secure the edges of the acrylic pieces together with tape and/or clamps.

NOTE: Acrylic cement is not a glue. If the acrylic bonding surfaces are rough or the acrylic pieces are not evenly aligned, this bonding
cement will not be effective.

In a well-ventilated area, apply acrylic cement along the joints using a needle dispenser. The plastic surfaces will immediately adhere
together. Allow the pieces to sit for 24 h.

WARNING: A mask and gloves should be worn to avoid inhalation and skin exposure when using acrylic cement.

Apply viscous acrylic cement to the joints to ensure that the PBR is watertight. Leave the cement to dry for 24-48 h, according to the
cement instructions; drying times may vary.

Fill the reactor with water to check for visible leaks. If no leaks are apparent, place the reactor on paper towels and recheck for signs of
leakage after 24-36 h.

NOTE: Acrylic sheets no less than ~0.5 in thick should be used to assemble PBRs holding more than ~2 L; thinner sheets may bow
under water pressure and cause leaks. Gaskets and re-enforcing screws can be used as a more robust alternative to acrylic cement (
Figure 1). This type of assembly requires precision machinery and must be done extremely carefully, as acrylic can easily crack.

Use a machine shop to design the PBR lid, with ports to accommodate sensors and other PBR accessories and needs (i.e., impeller,
gas lines, sampling ports, efc.). Make sure that the internal components do not interfere with each other.

NOTE: The PBR and PBR lid configuration/design will depend upon reactor accessories and experimental objectives. See Figure 1 for
an example of a PBR reactor and lid design (further details can be found in the materials section). This PBR design will be referenced
for the remainder of the protocol.
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Figure 1: Image of the Customized Bench-scale PBR Setup with Sensors and a Mixer. This setup shows a mixer, an electrode secured to
the lid through a threaded port in the lid, and a light sensor attached to a specially designed lid. This lid design also includes the attachment of a
12 V DC mini-gear motor. Please click here to view a larger version of this figure.

2. Set up and Configure Sensors with the Data Acquisition and Control Unit

NOTE: Sensors translate changes in the physical world into a measurable analog signal, often voltage. Data acquisition units serve as an
interface between the digital and physical world and can be used to read these analog signals and convert them into discrete values, as
instructed by a computer. The data-acquiring unit described herein has an analog input resolution of 16 bits, can read up to 14 analog signals
(10 V), and can supply the power required by some sensors (up to 5 V). These instructions provide an overview on how to set up this data
acquisition and control unit to convert an analog signal into more meaningful values for light, pH, and temperature within a PBR. These
instructions do not detail important concepts (i.e., quantization, precision, response time, efc.) needed to fully interpret these measured values

and to quantify uncertainty.
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Figure 2: Sensor-to-data Acquisition and Control Unit Connection Diagram. This diagram shows how to set up pH, light, and temperature
sensors to the data acquisition and control unit used for this protocol. Signal processing components for the pH and light sensor are shown.
Please click here to view a larger version of this figure.

1. Set up and configure the light sensor with the data acquisition and control unit using a low-pass filter.
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2.

3.

NOTE: Please refer to Figure 2 for general reference diagrams. Manufacturer sensor specifications indicate the difference between the
signal, power, and ground wires based on color. A low pass-filter is a simple circuit that uses a resistor and capacitor to filter out unwanted
noise from electrical signals. This type of filter attenuates electrical signals with frequencies higher than the cutoff frequency as determined by
the resistance and capacitance. This filter helps to remove or smooth electrical noise from the sensor signal.
1. Using wire strippers, cut a ~2 inch piece of green connector wire; strip 0.25 in of insulation off one end and ~0.5 in from the other end
of both pieces.
2. Identify the analog signal output wire on the light sensor. Ensure that at least ~0.25-0.50 inches of metal wire are exposed past the wire
insulation.
3. Carefully wrap one leg of the 1,000 Q resistor around the ~0.5 inch stripped end of the connector wire. Wrap the other leg of the
resistor around the exposed section of the light sensor analog signal wire.
4. Use a soldering iron and lead-free solder to solder the resistor legs to the wire. Allow the solder to cool for 2-5 min.
WARNING: The solder and soldering irons get extremely hot and can be very dangerous if users are not properly trained. Instructional
videos can be found online. Safety glasses and other precautions are extremely important. Wires should not be connected to a power
supply or other devices during this process.
Slip a ~1.5 inch piece of heat-shrink tubing over one end of the connector wire and slide the piece until it covers the soldered wire and
resistor. Make sure that all metal pieces are fully covered.
Heat-shrink using a heat gun. Make sure the tubing wraps tightly around resistor and wires; no bare wire should be exposed.
Attach the ground wire of the light sensor to a free ground (GND) terminal on the data acquisition and control unit using a screwdriver.
Secure the free end of the signal connector wire to a free analog input (AIN) terminal using a screwdriver.
Secure the positive lead of the 1,000 pF capacitor (i.e., the longer leg) to the same AIN terminal as in step 2.1.8 and the negative
lead (i.e., the shorter leg) to the same GND terminal as in step 2.1.7. Make sure that both the capacitor leg and the wire are firmly
connected to the terminal.
10. Identify the power input wire for the light sensor and secure this wire to a voltage supply (VS) terminal on the data acquisition and
control unit.

a

©o~NO

Set up and configure the pH electrode with the data acquisition unit using a unity-gain amplifier and a low-pass filter.
NOTE: Due to the nature of pH measurements (i.e., high impedance and low voltage), a unity-gain amplifying buffer is often required between
the pH probe and the data acquiring device. A low-pass filter is also beneficial for measuring pH, to protect the signal from ambient electrical
noise.
1. Connect the unity-gain amplifier to the pH probe using the transmitter wire.
2. Connect the co-axial adapter, with positive and negative port terminals, to the other end of the unity-gain amplifier.
3. Cuttwo 6-in pieces of green and one ~12 inch piece of black connector wire using wire strippers. Strip ~0.25 inch of insulation off both
ends of the black connector wire.
4. Strip ~0.25 inch and ~0.5 inch of insulation off the ends of the green connector wires using wire strippers.
5. Carefully wrap one leg of the 1,000 Q resistor around the ~0.5 inch stripped section of one green connector wire. Wrap the other
resistor leg around the ~0.5 inch stripped section of the other green connector wire.
Use a soldering iron and lead-free solder to solder the resistor legs to the wire. Allow the solder to cool for 2-5 min.
Slip a ~1.5 inch piece of heat-shrink tubing over one end of the connector wire and slide the piece until it covers the soldered wire and
resistor. Make sure that all metal pieces are fully covered.
8. Heat-shrink using a heat gun. Make sure that the plastic wraps tightly around the resistor and wires; no bare wire should be exposed.
9. Secure one end of the black connector wire to the negative (black) terminal post on the co-axial adapter. Insert the other end of this
wire into a GND terminal of the data acquisition and control unit and secure using a screwdriver.
10. Secure one end of the green connector wire (with the resistor in series) to the positive (red) terminal post on the co-axial adapter. Insert
the other end of this connector wire into a free AIN terminal on the data acquisition and control unit.
11. Identify the positive lead of the 1,000 pF capacitor (i.e., the longer leg) and secure this lead to the same AIN terminal as in step 2.2.9;
make sure both the capacitor leg and the signal wire are firmly connected to the terminal.
12. Secure the negative lead of the 1,000 uF capacitor (i.e., the shorter leg) to the same GND terminal as in step 2.2.8.

o

Connect the temperature sensor to the data acquisition and control unit by connecting the signal, ground, and power wires of the probe to
free AIN, GND, and VS terminals.

3. Set up the Live Data Acquisition and Experimental File

NOTE: The data acquisition and control software described here communicate with the data acquisition and control unit to monitor and log
sensor data at user-specified time intervals. The instructions below explain how to set up a control file in this software to monitor and record pH,
temperature, and light. These instructions are specific to the software and data acquisition and control unit listed in the materials section. Further
instructions can be found in product user manuals.

i

Connect the data acquisition and control unit to a computer near the experimental setup using a USB cable and download all required drivers.

2. Download and open the data acquisition and control software.
3. Set up 'Conversions' for each sensor in the software.
NOTE: To convert the physical voltage signal into a meaningful value, some conversion factor, established by calibration, must be applied.
Many sensors come with factory calibration factors found within product-specific specification sheets. Conversion equations are specific to
the setup and the sensors. Many conversion equation parameters, especially those for electrodes, must be updated regularly via calibration.
The lifetime of a sensor and calibration frequency will depend upon product-specific specifications and the working environment.
NOTE: Users should read and understand these specifications in full. Table 1 shows conversions for sensors found in the materials list. An
example conversion for the temperature probe is shown below.
1. Navigate to "Conversions" in the software workspace, on the right side of the main homepage.
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2. Add a conversion name, such as, "volts_to_celsius" and type in the conversion equation: (55.56 x value) + 255.37 - 273.15.

Channel Name Conversion Name Equation Notes

Temperature volts_to_celsius (55.56 x value) + 255.37 - 273.15 |Manufacturer conversion equation
to convert volts to celsius.

Light volts_to_PPFD value x 500 Manufacturer conversion factor
to convert volts to photosynthetic
photon flux density (umol m'zs'1),
manufacturer LED-correction not
applied.

pH volts_to_pH (-17.05 x value) + 6.93 Calibration-dependent conversion
equation (Figure 4b) to convert pH
electrode voltage readings into pH
values. Only apply conversion to
pH channel after calibration.

Table 1: Channel Conversion Table for the Data Acquisition File. Examples of how to input channel and conversion information for the
sensors into the data acquisition software.

4. Set up appropriate Channels for each sensor within the software to acquire sensor data.
NOTE: Each sensor needs its own analog-to-digital channel in the software and a designated analog input terminal within the data acquisition
and control unit.
1. Navigate to the "Channel" page within the software.
2. Add a sensor channel name. No space characters are allowed.
3. Select the appropriate device to collect data for the corresponding channel; this device will correspond to the data-acquiring device.
4. Input the device number used to reference the data acquisition and control unit or other data-acquiring device; if only one unit is being
used, the default number is often zero.
5. Select analog-to-digital, “A to D,” for the input-output type (“I/O Type”) and input the channel number that corresponds to the AIN
terminal number on the data acquisition and control unit
6. Input the desired sampling “Timing” (s); this value indicates how often the sensor signal will be read. Input 1.0 to acquire a reading
every 1 s. To average data over 1-min intervals prior to logging, check the “Avg” box and specify 60 for the averaging length.
7. Select the appropriate conversion from the dropdown menu, if applicable (see step 3.3 to generate conversions); otherwise, all channel
data will be displayed/recorded as a voltage.

5. Set up the "Logging Set” to log the experimental data.
1. Navigate to the “Logging Panel” within the software workspace, add a new logging set, and name the set accordingly. Select the output
file type and location; the ASCII file type will provide a comma-separated value file if the extension ‘.csv’ is specified in output file name.
2. Add all desired channels to log to this set.
3. Start and stop logging as desired by right-clicking on the logging sequence in the workspace and selecting the appropriate option.
NOTE: Do not attempt to access the file when actively logging data. This action can disrupt the logging process. The file location for
continuously logged files should not be saved/written within a cloud directory.

6. Set up the "Page” to display the data and graphs.
1. Navigate to the "Pages" display within the software workspace. Click on one of the default blank pages.
2. To display a sensor output reading numerically on page, add a "Variable Value" display to the page.
1. Right-click anywhere within blank page, select "Displays," and click the "Variable Value" option; a small box will appear on the
screen.
2. Right-click on this newly-created box and select "Properties." Type in the display caption (e.g., "Temperature in Reactor"), the
channel reference (e.g., "Temperature[0]"), and the associated units (e.g., "Celsius"). Click "OK" and return to the display page.

3. To display the sensor data graphically and in real time, add a 2D graph to the display page.
1. Right-click anywhere within blank page and select "Graphs" and then "2-D graphs;" a small plot will appear on the screen.
2. Right-click the newly-created graph and select "Properties." Within the "Traces" tab, type in the desired sensor channel name
(e.g., "Temperature") in the box for "Y Expression:" and make sure that "Time" is written in the box for "X Expression:." Click "OK"
and return to the display page.

4. Calibrate the pH Probe

NOTE: pH calibration should be done before every experiment, at the intended temperature of experiment, and the pH channel conversions
should be updated accordingly. pH electrode readings can drift during experiments; to determine the extent of this drift, repeat the calibration
process after running the experimental setup and compare the readings. pH electrodes should be properly stored in the appropriate storage
solution before and after experimentation, as directed by the manufacturer.

1. Connect the pH and temperature sensors, as described in step 2.
2. Insert both the pH electrode and the temperature probe into pH calibration buffer 7.
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3. Check the graphical display to ensure the temperature reading of the probe is at the desired temperature for running experiments (step
3.6.2.2).

4. Allow the pH electrode voltage output to stabilize (i.e., the voltage readings no longer change in one direction). Use a graphical display to
confirm stabilization.

5. Log both the temperature and pH electrical data to a file (step 3.5) for 30-60 s. During this process, the pH channel should not have any
conversions applied or include any averaging.
Note: Since pH electrodes are sensitive to electrical noise, a lower acquisition timing (i.e. faster sampling) for the pH channel might be
preferable (e.g. ‘Timing’ = 0.1 s). Keep in mind, a lower timing will require more computational resources.

6. Repeat the calibration for buffers 4 and 10. Confirm that the response of the sensor is between -57 and -59 mV/pH (Figure 3a).

7. Generate a conversion equation by plotting the pH buffer value versus voltage and fitting a line (Figure 3b). Update the conversion equation
as described in step 3.3 .

8. Apply this conversion to the pH channel and update channel settings to include averaging as desired for logging.

5. Set up the PBR for the Algal Experiment

NOTE: The steps below are specific to Dunaliella and the custom-made PBR shown in Figure 1. Moreover, these setup instructions are not in
accordance with sterile protocols, as this system was not designed in such a way.

1. Prepare the algae inoculum and growth medium, as needed for the experiment and experimental objectives.
2. Connect the pH and temperature wires to the data acquisition and control unit, as described in steps 2.2-2.3.
3. Calibrate and update the conversion equation for the pH channel, as described in steps 3.3 and 4.

Key
A Reactor lid

A1 PG-135 threaded port for pH sensor

P A2 | Motor mounted tobd

* A3 | Light sensor port with rubber stopper

* (A4 Lid extension for mounting light sensor

+ A5 | Temperature probe port with rubber stopper
* [A8 | Sampling port with rubber stopper

B. pH sensor

C. Mixer impeller and shaft

D. Light sensor

:  E Temperature sensor

F. Grow lamp

G. Temperature-controlled incubator

“dhagram not drawn 10 scale

Figure 4: Wiring Diagram for the Mixer. This diagram shows how to set up a mixing device for a PBR using a mini-gear motor, a power supply,
and a 3D-printed impeller and shaft. Please click here to view a larger version of this figure.

4. Set up the PBR inside a temperature-controlled incubator with accessories and sensors. Refer to Figure 4 for visualization.

1. Set up the light sensor within the PBR by threading the light sensor wire through the lid port and then mounting the sensor head onto
the lid extension mount using the provided screw. Use a rubber stopper or grommet to keep this port closed to the atmosphere.

2. Attach and secure the mixer impeller onto the PBR lid by placing the impeller shaft over the DC mini-gear motor shaft inside the PBR
lid; secure the shaft with a set screw and an Allen wrench.

3. Add algae-specific growth medium, place the lid, and secure the lid with screws. Place the PBR inside the incubator (set at 25 °C or the
desired temperature).

4. Insert the temperature probe into its designated port and secure it into the port using a rubber stopper.

5. Secure the pH probe into the reactor lid port using a PG-13.5 threaded mount.

6. Connect the light sensor wires to the data acquisition unit , as described in step 2.1.

5. Power the mixer impeller to the desired speed.

1. Set up the variable DC power supply adjacent to the setup. Turn on the power supply and adjust the voltage knob until the voltage
value reads 0 volts. Turn off the power supply.

2. Connect the impeller motor power lines to the positive and negative output terminals of the variable power supply (Figure 5).
WARNING: Never connect or touch live wires or circuits. Make sure that all power supplies are turned off before connecting any wires.
Always read manufacturer instructions/specifications to ensure compatibility between the motor, power supply, and wires.

3. Turn on the power supply and slowly increase the voltage by turning the voltage knob until the desired mixing speed is reached;
calculate the mixing speed by measuring the rotations per min.
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1

1

:

: A1 | Positive terminal with connector wire
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1

1

1
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Figure 5: Reactor Experimental Setup Diagram. Visualization of a PBR experimental setup within a temperature-controlled incubator. This
setup includes a grow lamp and a PBR, with sensors and a mixer secured within the PBR lid. Please click here to view a larger version of this
figure.

6. Set up the grow lamp to illuminate the PBR.
NOTE: A high-powered, LED grow lamp that emits in the blue and red spectrum was chosen to achieve the photosynthetic light intensity
levels required for this Dunaliella-specific research. The size and shape of the light fixture should be selected such that the light evenly
illuminates the incident surface of the PBR. Verify that the incubator can handle an internal heat source. Not doing so could shorten the
incubator lifetime and/or could cause damage or excessive heating within the incubator.
1. Center the grow lamp along the front face of the PBR. Make sure that the light path is directly oriented towards the light sensor
mounted on the back of the reactor.
2. Turn on the light and adjust the light intensity as needed by moving the grow lamp directly toward or away from the reactor. Check the
sensor variable display for light readings.

7. Monitor and log the sensor data for 6 - 24 h to ensure that the light, temperature, and pH readings within the PBR are stable and within the
desired range. Adjust as needed.
NOTE: Electrical noise can often be observed by bouncing, unsteady readings, and/or abrupt shifts in values, without apparent changes in
the PBR environment.
8. Remove the rubber stopper on the sampling port to add algae inoculum via transfer pipette.
9. Remove the samples and monitor the conditions to ensure that they stay within the range desired for the experiment.
1. Remove the cultures for analysis as needed from the sampling port using a pipette.
NOTE: The sample volume, frequency, and duration of experiment will depend upon step 1.1.2.

2. Monitor the water temperature within the PBR by checking the data display in the software and manually adjusting the incubator air
temperature set point to keep the water temperature constant.

NOTE: This adjustment will depend upon the incubator manufacturer instructions.

3. Monitor and adjust the pH within the PBR, as desired, to ensure that the pH stays within the expected range for the experiments.
NOTE: Here, the pH was controlled with a 12 V solenoid valve (normally-closed) in line with a compressed CO2 tank (99.99%). The
valve was opened as required using the control functionality of the data acquisition and control unit and software. This setup required
an accessory relay board and DC modules and was implemented using custom computer programming tailored to specific research
goals.

Representative Results

Data from this real-time monitoring system show the dynamic culturing environment for algae within a bench-scale PBR and highlight the

need for monitoring and controlling the system. The logged temperature data (Figure 6) demonstrates how light illumination, incubator air
temperature, and energy dissipation associated with algal growth can change the temperature within the PBR and how the real-time data can be
used to adjust incubator temperature controls, as needed.

The measured light over the course of the experiment further emphasizes the dynamic nature of this 9rowing environment. As observed in
Figure 7, the light sensor reading, measured as photosynthetic photon flux density (PPFD; pE-m'zs' ), was ~100 PPFD before algae was added
and dropped immediately to 85 PPFD after inoculating the reactor with the algal culture. The light continued to drop to less than 5 PPFD on day
7. This decrease in light intensity is due to increasing biomass and cell counts, and/or to increasing absorption by increased chlorophyll content,

showing that algae are active through day 7, despite low light levels. Additional biological measurements are required to make further inferences.

Copyright © 2017 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported June 2017 | 124 | e55545 | Page 8 of 11
License
16



L]
lee Journal of Visualized Experiments www.jove.com

The continuously logged pH data show that, overall, the pH was adequately controlled during this experiment with the implemented pH control
algorithm (Figure 8). This data, showing both minute-by-minute readings and hour-long averages, demonstrate a few key points about culturing
algae and monitoring pH in real time. First, the pH increased above the desired set point of 7.6 immediately after inoculating the PBR with algae.
This change was expected, as the culture seed that was added to the PBR had a pH value higher than the set point, since the flask used to
grow the inoculum was not pH-controlled. Secondly, this live data highlights how sensitive pH electrodes are to external electrical noise. This
sensitivity is noted by a drastic jump in the electrode values between day 1 and day 2. These sudden changes in pH values were likely created
by electrical noise from a solenoid valve from an adjacent experimental setup. This electrical disturbance prematurely triggered the pH control
algorithm to inject CO; into the PBR. Consequently, the pH dropped below the desired set point. The sensitivity of the pH electrodes can lead to
extreme outliers and can potentially disrupt control systems.

A. 02 Y =a+tbX ¥ =a+bX
0.15 a=-5864 +0.01 10 a=-17.0534 +0.0040

o~ : = 133:" 1010 o b= 69339 £ 0.0005

o 01 R* =100 =2 8 Fp

5 o g R =100

e 2

Z 0 5 é

©-0.05 5 10 15 g

>

2 01 = =

-

-0.15 a
0.2 -0.2 0.2

-0.1 0 0.1
pH Buffer Value Voltage (V) at 25°C

Figure 3: pH Response and Calibration Example Graphs. (a) Example response graph of the pH sensor (b) Example calibration graph of the
pH sensor, with an equation to use for the conversion. Regression analysis shows a 95% confidence interval. Error bars are not visible (standard

error less than 0.03%). These graphs show that the pH sensors was connected properly and that its signal was very steady. Please click here to
view a larger version of this figure.
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Figure 6: Temperature Measurements Within the PBR During a 7 day Experiment. Dark blue points represent 1-h averages of sensor

data, and light blue points represent sensor readings acquired over 1 min (acquisition timing of 1 s, average length of 60) and converted to
temperature using manufacturer-supplied conversion factors. Black arrows show when the incubator temperature setting was adjusted to
maintain the culture temperature around 25 °C (this desired set point is designated with a red, dotted line). Fluctuations in temperature are due to
algal growth and changes in incubator temperature. Please click here to view a larger version of this figure.
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Figure 7: Light Measurements Within the PBR During a 7 day Experiment. Dark blue points represent 1 h averages of sensor data, and
light blue points represent sensor readings acquired over 1 min (acquisition timing of 1 s, average length of 60) and converted into PPFD using
default light-sensor factory calibration values. Please click here to view a larger version of this figure.

7.9
7.8 |:
7.7 -

7.3 9

0 1 2 3 4 5 6 7
Time (days)

Figure 8: pH Measurements Within the PBR During a 7 day Experiment. Dark blue points represent 1-h averages of sensor data, and
light blue points represent sensor readings logged every 1 min (acquisition timing of 0.1 s, average length of 600) and converted into pH using
conversion equation established via calibration. The pH was maintained between 7.6 and 7.5 using a 99% CO,, gas injection. The red, dotted
lines indicate the desired pH range. Please click here to view a larger version of this figure.

This PBR system offers the ability to monitor and control bench-scale algal kinetic growth experiments, allowing for more repeatable results from
experimental assays used to quantify growth. However, an understanding of the limitations and uncertainties of sensor measurements is critical
to ensure that the sensor readings accurately reflect reactor conditions. This understanding includes basic knowledge of the measurement
principles involved with sensors, the process and frequency of calibration, the measurement uncertainty, and what the sensor can and cannot
measure. For example, the electrical response for the light sensor described here is not equally distributed across the visible spectrum range,
and certain correction factors may need to be applied to the sensor output, depending upon how this sensor data will be analyzed.

Temperature levels and variations are also extremely important, as changes in temperature can drastically influence the sensor response.
Understanding potential interferences that can impact the sensor readings is also critically important; this interference can be ambient electrical
noise from the building or could stem from the measurement environment (e.g., sodium ions can drastically impact pH readings at pH values
over 10)12. Moreover, submerging multiple probes into a solution, especially a highly ionic and conductive salt solution, is also a potential
source of interference. Electrodes that measure pH (or ionic strength, dissolved oxygen, dissolved CO,, etc.) are especially sensitive to ambient
electrical noise and can be easily perturbed. Signal conditioning used for protecting the electrode signal cannot guarantee that other factors

will not interfere with the probe readings. As part of quality control, other laboratory equipment, such as a hand-held pH probe, a hand-held
spectrometer, and a thermometer, should be used to verify the sensor readings and to ensure that the system is set up and running properly.
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Another limitation that must be addressed is the possible impact of the algae and/or culturing environment on the sensors. For example, if algal
debris or bubbles cover the photodiode receptor of the light sensor, the readings will be affected. Similarly, pH electrodes are extremely sensitive
and require extra care to ensure accurate readings. These electrodes work by measuring a voltage difference across an internal junction due to
the buildup of H" ions; a hydrated buffer layer within the probe is required to maintain accurate measurements'2. Depending upon the conditions
within the reactor, this layer will wear off, and the response of the sensor may change over the course of the experiment while the probe is
submerged. In preliminary tests, the pH voltage output did not drift by more than ~0.2 pH units over the course of a 20-day experiment, but
further assessments should be performed to characterize this change in sensor response and to establish maximum experimental run times,
especially if fine pH adjustments/quantifications are needed.

Many current bench-scale PBR systems built to analyze algal growth do not monitor and control the internal culture environment as tightly as
needed to discern how different factors impact algal growth, since setting up systems in this way can be challenging. This protocol can help
facilitate more controlled experiments by giving step-by-step instructions for constructing a PBR with real-time monitoring. Moreover, this live
data can be used not only to better control experimental conditions, but it can potentially be utilized to estimate growth kinetics (e.g., optical
density readings as reference for general growth rates).

Controlled experimental systems can help to make algal research more reproducible. Bench-scale PBR setups that are monitored and controlled

can increase experimental efficiency by minimizing unintended artifacts in experimental design and can help to advance efforts to make algal
biofuels a sustainable, alternative fuel source.
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ARTICLE INFO ABSTRACT

Keywords: Characterizing light in microalgal cultivation vessels is needed for modeling and optimizing microalgal growth
h_sht . for large-scale cultivation. Dynamic changes in light intensity over space due to geometry, refraction/reflection,
Light attenuation and the interactive impacts of algal growth and their biocomponents with light make this characterization

?&ftrit:lt?z; challenging. Understanding which biocomponents within microalgal cultures are key variables in accurately
Modeling estimating light attenuation is fundamentally important, yet, inconsistent and wide-ranging applications of the

Beer-Lambert law are often used to estimate light attenuation.

This research rigorously evaluated which biocomponents (total biomass, cell count, and chl a, chl b, and total
photosynthesizing pigments), or biocomponent combinations, serve as best predictors for light attenuation when
modeling with the Beer-Lambert law. Calibration and validation experiments were performed using salt-water
species Dunaliella viridis microalgal cultures grown in 3-L flat-plate PBRs with continuous light monitoring.
Results at the various light and nitrogen levels tested showed Beer-Lambert’s law predicted photosynthetic light
attenuation well when both biomass and chlorophyll a were considered as distinct attenuating components,
providing light estimates with less than 6% error on average over validation experiments. If the model included
only one component as a predictor for attenuation, pigments were best, with a 20% error in estimating light, as
compared to ~70%, 60%, 40% for models that used solely biomass, cells, or chlorophyll a as an attenuating
component., respectively. These results suggest that when using the Beer-Lambert’s law to estimate photosyn-
thetic light attenuation in microalgal cultures, both a chlorophyll a and biomass component should be consis-
tently included.

Dunaliella viridis

1. Introduction estimating light within a microalgal culture, many of which are
dependent on the cultivation setup (PBR geometry, size, lighting,
bubbling, among others). These approaches vary from complex models

that use radiative transfer and computational fluid dynamics (CFD) to

1.1. Background and motivation

Light energy fuels the growth of microalgae and their valuable
products [1-4]. A proper quantitative understanding of light, both in
terms of transmission and biological utilization, is therefore critical to
develop accurate growth models needed for designing full-scale culti-
vation facilities. While both aspects of light integration into these
growth models are important, the ability to derive the mathematical
relations between light and biological growth requires a proper char-
acterization of this variable within microalgal photobioreactors (PBRs).

The complex nature of light (i.e., how it is diffusive, and can be
absorbed, scattered, and reflected—the degree of which is dependent on
wavelength and medium) has led to a wide variety of approaches for

simple 1D models that consider only the attenuation-driven (i.e., for-
ward scatter and absorbance) change in light across depth of the me-
dium [5-8]. Light models that are developed to also capture the impacts
of reflection, refraction, bubble scattering, etc. on the light distributions
within PBRs will aid in designing unique cultivation chambers that
optimize the growth of microalgae. However, when developing the
microalgal growth models needed prior to the aforementioned optimi-
zation, the primary objective is typically modeling growth mechanisms,
not light. Thus, to minimize potential error within a larger growth
modeling framework that could be associated with complex light
models, many bench-scale experimental setups used for growth model
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Table 1
Various approaches used when quantifying light within algal cultures using the Beer-Lambert law. (VSS — Volatile suspended solids.)
Attenuating component(s) Algal species Attenuation coefficient, ¢, info. Reported coefficient Reference
values
Chlorophyll a only Pseudochlorococcum p. Determined with model calibration. 4.82 m*(g chl a) * Packer, 2010 [12]

Note: light data not used in calibration

Dunaliella tertiolecta

Experimentally measured at steady-state growth under

9.345 m*(g chl a) *, High  Sukenik 1986

high and low light conditions. Light [13]

Note: cultures were grown opticall y thin to prevent self-

shading

Biomass only Scenedesmus obliquus

Experimentally determined and held constant

Experimentally determined and held constant

3.827 m*(g chl a) *, Low
Light

0.182 m?(g biomass) * Castrillo, 2018
[14]

0.049 m*(g VsS) * Guest, 2013 [15]
0.0325 to 0.08163 m(g
biomass) *

Molina Grima,
1994 [9]

Note: equation determined empitically w. Isochrysis

Chlamydomonas
reinhardti
Biomass and total pigments Isochrysis galbana € =0.0199 + 1.7356 X,
(chl orophylls, carotenoids) Xp: total pigment content
galbana
Biomass, chlorophylls, & carotenoids Haematococcus pluvialis e =0.086 + 0.0065 X,y — 0.016X; zromencids

X chlorophylls dry weight %

~0.086 to 0.109 m*(g dry
weight) a

Garcia, 2006 [16]

X wrotencids: carotenoid dry weight %
Note: equation based on Molina Grima, 1994

calibration are constructed such that a simpler 1D light modeling
approach can be used, e.g., a flat-plate PBR with a uniform, one-
directional light source incident to the surface. This type of configura-
tion minimizes reflection/refraction (as compared to PBRs with curva-
ture and light source(s) that are not incident to the surface) and permits
more justification for a simple 1D approach to estimating the primarily
attenuation-driven light variation throughout the depth of the PBR.

In these simpler engineered cultivation systems, the Beer-Lambert
equation, as generalized in Eq. (1), is often used to estimate light at a
depth 2, assuming n independent attenuating species in a well-mixed
solution,

I(t) :Igexp(—zzn: & C,(t)) [@D)]

where I(¢) is the cumulative light irradiance at time ¢, and depth z; Iy is
the irradiance at time ¢t = 0, and depth % ¢ is the attenuation or
absorbance coefficient, of species i (often averaged over the irradiance
spectrum); and C; is the concentration of species i at time t. This
approach can be used to estimate the attenuation driven by both
absorbent and forward-scattering properties from the microalgae.
However, the implementation of this Beer-Lambert approach varies
widely, especially in how the attenuating components and their

Table 2

Relevant mathematical symbols, descriptions, and units for the variable and
parameters considered in the models considered. (PPFD — Photosynthetic photon
flux density).

Symbol  Description Units
(6] Light intensity at the PAR sensor at time t PPFD, ymol/
m?-s
Iy Initial light intensity at PAR sensor PPFD, ymol/
m’-s
z Depth of PAR sensot m
Alt) Concentration of chlorophyll a at time ¢ gm’
B(t) Concentration of chlorophyll b at time ¢ g/m’
P(t) Concentration of total pigments at time ¢t gm’
S(t) Concentration of the non-pigmented suspended biomass gm’
component at time ¢
ct) Concentration of cell number at time ¢ #/mt (x
1012)
£q Avg. attenuation coefficient parameter for chlorophyll a m/g
€ Avg. attenuation coefficient parameter for chlorophyll b m/g
& Avg. attenuation coefficient parameter for total pigments  m’/g
& Avg. attenuation coefficient parameter for non- m/g
pigmented suspended biomass component
€ Avg. attenuation coefficient of cells m?/cell

associated absorption/attenuation coefficients are defined (Table 1). For
example, many light models only consider a singular attenuating
component, such as suspended biomass, despite knowledge that changes
in the relative concentrations of cellular bioproducts, particularly
photosynthetic pigments, will impact the overall attenuation coefficient
of the biomass [9,10]. Some models correct for this impact—not by
considering biomass and chlorophylls/pigments as distinct attenuating
components—but rather by adjusting the bulk biomass attenuation co-
efficient using an empirically-derived formula based on pigment or
chlorophyll content [9,11]. This approach as shown in Table 1, Row 5 is
mathematically equivalent to considering biomass and pigments as two
unique attenuating components with unique coefficients (ie. ¢ =
0.0190 m2(g biomass) ! and ey = 1.7356 m2(g pigment) Ly, However,
when framing Beer-Lambert in such a way where the overall attenuation
coefficient varies (instead of considering distinct components), the
physical meaning of this equation, i.e., that different biocomponent
components have distinet attenuation characteristics, is lost. For
example, the negative parameter value in the empirical equation in
Table 1, Row 6 could represent a unique attenuation coefficient for ca-
rotenoids, but a negative value here is physically meaningless. The use
of these empirical relationships presents challenges for researchers to
compare the relative attenuation of bioproducts across components and
different microalgae in the literature.

1.2. Goals and objectives

A deeper understanding of how microalgae attenuate light is neces-
sary to understand how light impacts microalgal growth, particularly
under wide-ranging conditions, including stress conditions that may
cause significant changes in specific bioproducts. The Beer-Lambert 1D
light modeling strategy is widely used in microalgal growth models.
However, relatively little work has rigorously assessed the validity of
incorporating selected bioproducts as described above. Some important
questions include: Can the Beer-Lambert law be used to reliably predict
the light in a microalgal culture under transient conditions? What
microalgal culture properties (e.g., culture density, pigments) are suf-
ficient to capture light attenuation in a PBR using Beer-Lambert’s Law?

Critical assessment is needed to answer these questions and help
validate the Beer-Lambert law in modeling microalgal growth. Thus, the
overall goal of this research was to rigorously examine the relationship
between various microalgal culture properties/biocomponents and
light attenuation in microalgal cultures using Beer-Lambert’s law. The
specific objectives of the research were to: (1) use an in-situ method to
quantify light attenuation in a PBR grown with marine Dunaliella viridis
under different transient light and nitrogen conditions; (2) evaluate
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Table 3
Model equations and reference numbers for the 11 model variations tested.
Model Model equation Attenuation
reference components included
1-parameter #1-A () =1y exp (—z [, A Cchl. A
models 1)
#1-P It)=I exp (—z [, P Total Pigments (Chl. A
1) & B, Carotenoids)
#1-8 =l exp(-zle S Suspended Biomass
®1)
#1-C ()=Iyexp(—z[e C Cells
@)
2-parameter #2-A/B () =Iyexp (—z [, A chl. A,
models (t) + e B()] ) chl B
#2-A/S ) =1Iyexp (-2 [e, A  Chl. A,
)+ 8(01) ‘Non-Chl. A’ Suspended
Biomass
#2-P/S =1 exp(~z[e P Total Pigments,
) +e:801) ‘Non-Pigmented’
Suspended Biomass
#2-A/C ) =1I,exp (—z[e, A  Chl A,
) + e C(0] ) Cells
#2-P/C ) =1 exp (~z [, P Total Pigments,
) +e.CA]) Cells
3-parameter #3-A/B/S () =1Iexp (—z [, A Chl. A,
models ) +eBt)+¢S8(t)]) Chl. B,
‘Non-Chl. A, B/
Suspended Biomass
#3-A/B/C ) =1I,exp (—x[e, A Chl A,

() +epBlt)+e.C(1)]) Chl. B,
Cells

alternative microalgal attenuating variables that best estimate the
photosynthetic light attenuation by calibrating attenuation coefficients
for multiple Beer-Lambert model variants and comparing with experi-
mental light data; and (3) evaluate an inverted version of the Beer-
Lambert approach to estimate the concentration of the attenuating
species given calibrated attenuation coefficients, variables, and in-situ
light measurement. Experimentally, eleven Beer-Lambert model vari-
ants were calibrated for estimating light under different transient light
and nitrogen conditions. These models were then validated by exam-
ining their ability to predict light and, when applicable, culture density
properties using the inverted form of the equation.

2. Methods
2.1. 1D light modeling

2.1.1. Beer-Lambert model variants

1D light model variants (Tables 2 and 3) based on Beer-Lambert
attenuation was used as the base model to estimate the light irradi-
ance within the PBR. A total of eleven models that describe alternative
Beer-Lambert’s Law relationships were analyzed (Table 3). Four of these
models included only one attenuating component; thus, one fitting
parameter. Five models included two attenuating components, two pa-
rameters, and the remaining two incorporated three attenuating com-
ponents and three fitted parameters.

The light models and their associated parameters (Table 3) assume
that the absorption coefficient parameters (i.e., g, €p, € €5 &) TEpresent
the average value for each material over a range of wavelengths that are
photosynthetically relevant since the LED lamp used in this study only
has outputs in the blue and red spectrum (see Section 2.2.2 for more
detail). Interest was focused on photosynthetic light since quantifying an
average attenuation of white light provides less information about the
attenuation of useful light in microalgal cultures, which will impact
growth.

2.1.2. Optimization procedure and model evaluation
The optimization was implemented in Python 3.5.1 using the
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‘Minimize’ function (within the Non-Linear Least-Square Minimization
and Curve-Fitting package) and the built-in, restrictive-step minimiza-
tion method ‘trust-exact’. The lower limits for the model parameters
were set to 0 m?/g, corresponding to a case where the component would
absorb no light. The upper parameter limit for pigment-based parame-
ters (i.e., eq, €b, €p) Was set to 30 mz/g, reflecting a value higher than the
upper limit reported in the literature for ¢g, the most commonly esti-
mated pigment absorption coefficient. Likewise, the upper limit for
4 was set to 1 m?/g as most researchers have reported bulk biomass
absorption coefficients to be in the range of 0.01 to 0.2 (Table 1). A
Latin-hypercube sampling matrix was used to randomize 5000 param-
eter set estimates for initial values to search for the global solution for
each model.

2.1.3. Objective function and model fitness criteria

The objective function minimized in this optimization problem (Eq.
(2)) was the sum of the normalized squared error (SNSE) between
measured and predicted light values,

2 (Lightmaasurets — Lightueaices)”
SNSE = - (2)
120: Lightyeasured;

where n is the total number of data points across all calibration sets.
The light error was normalized to the measured light to prevent higher
light experiments from carrying more weight during optimization. The
Bayesian information criteria (BIC), a criterion that considers both
model fitness and the number of parameters [17], k, was also used, as
shown in Eq. (3), as a metric for model complexity evaluation,

BIC = pin(SSNE/n) +k In () (3)
where n is the number of data points used for evaluating the model.

2.1.4. Model calibration and validation experiments

Four different initial light conditions (100, 300, 400, and 600 pmol/
m?s (PPFD) as measured at the sensor location) and two different initial
nitrogen levels (~5 mM nitrate for ‘high’ condition, ~0.5 mM for low’
condition) were used for calibrating parameters and validating the most
promising model implementations. The model calibration sets include:
600 PPFD, high nitrogen; 100 PPFD, high nitrogen; 400 PPFD, low ni-
togen; and 300 PPFD, low nitrogen. The data collected on Day 1 after
seeding the PBR was not used for model parameterization due to a high
coefficient of variation for many of the culture properties since the
cultures were often very diluted.

Three experiments (400 PPFD, high nitrogen; 300 PPFD high nitro-
gen; and a 600 PPFD, low nittogen conditions) were used as the vali-
dation set to assess the accuracy of the model predictions. In addition to
validating the prediction of the light models, the inversion of the Beer-
Lambert relationship was used to predict the biomass concentration
and cell count, given the fitted light attenuation coefficients, light
measurements, and relevant pigment concentration as inputs. When
applicable, these estimates were compared to measured values. Eqs. (4)
and (5) provide the biomass and cell count output equation prediction
based on model #3-A/B/S and #3-A/B/C.

S() =——— a:(ﬂ —b B0 +A(?) +B(t) )
o) =— —a :4(1) —b'B(f) )

4
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Fig. 1. Overview of measured microalgal culture properties used when calibrating and validating light models. Error bars represent standard deviation forn 3

measurements,

2.2, Experimental procedure and set-up

2.2.1. Microalgae and experimental PBR setup

Dunaliella viridis, a marine microalga, was used as the model organ-
ism for these experiments. Stock cultures, obtained from North Carolina
State University’s Center for Applied Aquatic Ecology, were maintained
in 1 M NaCl artificial media (5 mM nitrate) under continuous light (cool
fluorescent light, ambient 1350 1x) and 25 °C. All experiments were
performed in a 3.2 L (~21 x 9 x 21-cm) flat-plate photobioreactor
(PBR) inside a temperature-controlled incubator. The PBR body and lid
were fitted with sensors for real-time light, temperature, and pH moni-
toring, as well as tubing and diffusers for 99.99% CO, gas injection (to
maintain pH between 7.5 and 7.6) and an axial impeller for gentle
mixing (~60-70 RPM). The temperature was maintained around 25 °C
+ 1.5 °C. A more detailed description of the reactor and its setup is

provided in Karam et al. [18]

Experiments were initiated by inoculating ~200 mL of stock culture
into the PBR with 3-L of appropriate growth media, to achieve a desired
starting concentration of ~3 to 5 x 10° cells-mL 1. Run times for both
calibration and validation sets varied from 5 to 7 days. Triplicate sam-
ples were taken daily from the PBR for pigment, nitrogen, and density
measurements. Since the stock cultures were maintained under cool
fluorescent lighting, samples taken before Day 2 were not used for cal-
ibrating the model to ensure adequate adaptation of microalgal cells to
the new growth environment.

2.2.2. Light source and light sensor measurements

A high-power LED growth light (SOL1, HydroGrow, Deerfield Beach,
FL, 2014) that outputs only photosynthetically relevantlight was used as
the continuous light source. Red wavelengths (i.e, 600-700 nm)
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Table 4

Algal Research 55 (2021) 102283

Overview of the results from model calibration including the sum of the normalized squared errors (SNSE), percent error, and the Bayesian information criteria (BIC) in
terms of rank for each model, along with how the models comparatively rank with respective to each. The fitted attenuation coefficients for each model variants are
shown as ¢, e, €, €, and ; for chlorophyll a, chlorophyll b, cells, total pigments, and suspended biomass, respectively.

Model reference Performance metrics

Attenuation coefficient (m?/g, m*/cell’)

SNSE (PPFD) (Rank) BIC % Error €q & & € €
(Rank) (Rank)

1-parameter #1-A 205 (10) —5.4(10) 29% (9) 15.21 n/a n/a n/a n/a
#1-P 86 (7) —27.1(7) 15% (7) n/a n/a n/a 7.56 n/a
#1-8 234 (11) ~1.8(11) 38% (11) n/a n/a n/a n/a 0.11
#1-C 144 (8) —14.3(8) 34% (10) n/a n/a 4.87 n/a n/a

2-parameter #2-A/B 162 (9) -8.1(9) 25% (8) 7.92 32.0 n/a na n/a
#2-A/8 10.1(2) —77.3(1) 4.3% (2) 6.19 n/a n/a na 0.054
#2-A/C 39 (6) —43.7 (6) 12% (6) 4.85 n/a 3.00 n/a n/a
#2P/S 17 (3) —64.7 (3) 6.6% (3) n/a n/a n/a 4.49 0.04
#2-P/C 35(5) —46.1 (5) 12% (5) n/a n/a 2.20 3.92 n/a

3-parameter #3-A/B/S 9.9 (1) —74.7 (2) 3.7% (1) 5.78 283 n/a n/a 0.053
#3-A/B/C 26 (4) —50.2 (4) 9.3% (4) 1.64 17.8 2.83 n/a n/a

account for approximately 62% of this light’s total spectral power and
blue (i.e., 400-500 nm) accounts for ~36%. The spectral output of this
light can be found in the Supplemental Information (SI) (Fig. S1). APAR
sensor (SQ-225, Apogee Instruments, Logan, UT) was used to quantify
the light inside the PBR (at the approximate center) over the duration of
experiments as photosynthetic photon flux density (PPFD), measured in
pmol photonm 25 1),

Light data was recorded continuously at one-minute intervals
throughout the duration of experiments. For model calibration purposes,
light data across a ~60-minute span at the time of daily sampling was
averaged. Any data recorded during the intermittent bubbling from CO,
injection was removed prior to this analysis.

2.2.3. Chlorophyll a, b and carotenoid quantification

An ethanol-based extraction method was used to measure chloro-
phyll content. Microalgal samples (1 mL) were centrifuged (16,100 xgat
4 °C) for 10 mins. After decanting the supernatant, 1 mL pure ethanol
was added and samples were vortexed until all visible pigments had
dissolved into solution, i.e., the microalgal pellet appeared white. The
samples were then re-centrifuged, and the supernatant was analyzed in
an Eppendorf Spectrometer to quantify absorbance across the visible
spectrum in a 1 mL cuvette. Chlorophyll a, chlorophyll b, and total ca-
rotenoids were calculated according to Egs. (6) to (8) [19], respectively.

ChiA [%} = 13.36 (Absorbancess ) — 5.19 (Absorbancess ) ()
gy _

ChlB == 27.43 (Absorbancegs ) — 8.12 (Absorbancese um) )
m.

1000 (Absorbancess we) — 2.13 ChlA — 97.63 ChlB
- 209

Carotepoids [%]
(®

2.2.4. Cell counts and biomass determination as ash-free dry weight

An automated cell counter (Bio-Rad TC 20, Hercules, CA) was used to
estimate cell density using a 10 pL microalgal suspension.

An ash-free dry weight method, adapted from Zhu and Lee (1997),
was used to quantify biomass. Ten mL of the microalgal suspension were
filtered through pre-combusted (550 °C for 1 h) glass-fiber filters
(Whatman GF/F, 47 mm, pore size 0.7 um). The filtered algal cells were
then gently rinsed with 20 mL of 0.5 M ammonium formate to wash the
inorganic salts, as described by Zhu et al. 1997 [20] and then baked at
100 °C for 24 h and weighed on a microbalance before baking for
another 1 h at 550 °C and reweighing to determine the ash-free dry
weight. Non-pigmented biomass was calculated daily by subtracting the
relevant pigment concentrations from the ash-free dry weight; these
calculations were performed using the averaged component concentra-
tions across replicates.

2.2.5. External nitrogen concentration

mL culture samples were filtered through 25 mm polypropylene
syringe filters with a 0.45 ym nylon membrane to remove microalgal.
extracellular inorganic nirogen concentration in the media was quan-
tified using a total inorganic nitrogen test tube kit (Hach method 10021
[21D).

3. Results
3.1. Biocomponent data for calibration and validation experiments

Biomass and pigment concentrations that were used for model cali-
bration and model validation (Fig. 1) show variations in initially
recorded biomass and pigments concentration for both the high and low
nitrogen conditions. These were likely caused by slight differences in
inoculum culture (e.g., concentration, growth phase) and/or subsequent
transitional shock. For the low nirogen conditions, most cultures had
halted biomass growth by Day 3 due to the depletion of nitrogen.

3.2, Light modeling

3.2.1. Model calibration and assessment

The calibration results of the eleven light models show that the two
models that consider both biomass and chlorophyli(s), i.e. #2-A/S and
#3-A/B/S, were the best performing models on the three metrics
considered (Table 4). While the three-parameter model #3-A/B/S per-
formed slightly better in terms of percent error, the BIC ranks model #2-
A/S, the chlorophyll a and suspended biomass model, as the most su-
perior of the models tested since the additional chlorophyll b parameter
did not significantly improve the model performance. For both these
models, the estimated attenuation coefficient for the non-chlorophyll
biomass portion remained consistent at around ~0.054 m%/g. The
attenuation coefficient for chlorophyll a decreased slightly from 6.26
m?/g in model #2-A/S to 5.90 m?/g when chlorophyll b is added in
model #3-A/B/S.

If only one component is considered for estimating light attenuation
in a PBR, the total pigments (#1-P) gave best estimates with 15% error
across calibration data sets as compared to 29, 34, and 38% error when
cells, chlorophyll a, or suspended biomass are used as sole predictor. For
the #1-C, #1-A, and #1-S models, respectively. Model #2-A/B, which
includes chlorophyll b in addition to chlorophyll a reduces the SNSE
from model #1-A by 20%. However, this value was still almost twice as
high as the error observed for #1-P, which included a variable as the
sum of chlorophyll q, b, and carotenoids. The results clearly show that
the model performance significantly increases from the 1-parameter
models that include either chlorophyll a (#1-A), biomass (#1-S), or
cells (#1-C) to a model that includes both chlorophyll a and a culture
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Calibration Experimental Condition
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Fig. 2. Calibration results overview comparing measured light data to fitted light model. Rows represent selective Beer-Lambert model variants that consider
different absorbing components, i.e. #1-S (Biomass), #1-C (Cells), #1-A (Chl a.), #2-A/C (Chl. a and cells), and #2-A/S (Chl. a and biomass). Columns represent
different experimental conditions. Sub-plots show the base models (rows) for different experimental datasets (columns) and how those results compare to experi-
mentally measured PAR values (grey and black circles). (PPFD — Photosynthetic photon flux density).

density metric like biomass or cell count (#2-A/S, #2-A/C). Fig. 2
highlights this improvement of performance by illustrating the light
predictions as compared to the in-situ measured light values for these
five models across the four calibration experiments.

3.2.2. Vdlidation results agree with calibration

The top six models selected based on BIC were further evaluated for
performance with validation experiment. Light estimates and culture
density estimates (when applicable) as compared to measured values
were used to validate the various Beer-Lambert model relationships for
these models.

This evaluation was performed by computing the overall average

percent error between the predicted and measured values for three
additional experimental runs where light and nitrogen conditions var-
ied. The highest-ranking model, #2-A/S, also gave the smallest % error
when predicting both light and culture density as biomass: 6% and 12%
error, respectively. The next best performing model, both in terms of
light and culture density estimates, was #3-A/B/S, which also aligned
with the BIC index established during calibration.

After model #2-A/S and #3-A/B/S, model #2-A/C performed best at
estimating both light and biomass, despite having a lower BIC index
than #2-P/S, #3-A/B/C, and #2-P/C. The light and culture density es-
timates for model #2-A/S and #2-A/C, as compared to measured values,
are shown in Figs. 3 and 4, respectively, along with uncertainty ranges
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Validation Experimental Condition
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Fig. 3. Validation light model predictions as compared to measured light data for models that include both chlorophyll a and either cells (#2-A/C, TOP) or biomass
(#2-A/S, BOTTOM). Columns reflect distinct experimental conditions with specified light and nitrogen condition. Sub-plots show the models predictions (TRI-
ANGLES) for the specified condition and how these results compare to experimentally measured light values (CIRCLES). (PPFD — Photosynthetic photon flux density).

associated with these values.
4, Discussion

The general estimates for the attenuation coefficients in all evaluated
models, even for the poor performing models, is consistent with past
work (Table 1, Table 4). More specifically, the attenuation coefficients
fitted here for chlorophyll a are well within the range of reported values
when chlorophyll a is the only absorbing species considered (3.8 to 17
mz/g). Moreover, the fitted biomass attenuation coefficients in all the
tested models ranged from 0.04-0.11 m?/g, aligning with the range
reported in literature (0.03-0.20 m2/g) (Table 1).

Overall, models that considered a separate attenuation factor for
both biomass/cells and photosynthesizing pigments produced better
estimates for light across the range of calibration and validation con-
ditions tested versus those that only used a combined value for these
components. This increase in performance is especially noteworthy
under more stressed conditions (i.e., low nitrogen, low light). The error
patterns that arise for models that did not consider these two factors can
be explained when considering that the relative chlorophyll content of
the algal cells is forced to their minimum or maximum cell quota when
nitrogen is depleted or when light levels are low, respectively. For
example, when compared to the fitted coefficient for biomass in #2-A/S,
&; doubles in magnitude for #1-S model to compensate for the photo-
synthesizing pigments, which have much higher absorption coefficients,
albeit very low relative abundance in the cell. This misallocation of
attenuation capability for the biomass leads to the overestimation of the
light attenuation for conditions where cells lack adequate chlorophyll
content due to nitrogen starvation and underestimation of the attenua-
tion in low light levels. This is because cells will increase chlorophyll

content well past normal levels, as was observed for the biomass only
model (Fig. 2, #1-S).

In a similar fashion, when the light attenuation is estimated based on
chlorophylls without biomass, the coefficient for the chlorophyll species
is again forced upwards to compensate for the attenuation and/or
scatter caused by a higher quantity of biomass. Thus, a similar yet
opposite pattern emerges for the error in light predictions with these
models for the low nitrogen conditions, as the measured light irradiance
is overestimated (Fig. 2, #1-A). If a single culture property is to be
considered to estimate light attenuation in a microalgal PBR, total pig-
ments (#1-P) appeared to provide the best estimates of light across the
wide-ranging conditions across both calibration and validation experi-
mental sets (Tables 4,5; S, Fig. S2, $3). The addition of the carotenoid
into the lumped pigment term appears to play an important role in this
model’s performance as this model offers better light estimates at the
sensor than the model that includes both chlorophyll a, b (#2-A/B).
Carotenoids contain little to no nitrogen and were also found to be
correlated with biomass in a similar fashion across the light and nitrogen
conditions tested (S, Fig. S4). Thus, this improvement in predictability
could be due to the total pigments capturing some of the attenuation that
should be attributed to non-pigmented biomass.

4.1. Significance

The results show that models with both a photosynthesizing pigment
component and culture density indicator (i.e., cells or dry weight) per-
formed better than models that included only one of these components.
These results are not surprising; researchers have reported absorption/
attenuation non-linearities with respect to culture density since cells will
vary in their chlorophyll content, biomass, and cell characteristics
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Validation Experimental Condition
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Table 5

Light and culture density estimates (biomass and cell) average % error from
measured values for validation experiments for the various models tested. Model
rank in terms of Bayesian information criteria (BIC) is also listed and the rank in
term of percent error in shown for each validation effort when comparing
models against each other.

Avg % error across validation experiments

Model BIC rank based on Light estimate Culture density
reference calibration (rank) estimate (rank)
#2-A/8 1 6.3% (1) 12% (1)
#3-A/B/S 2 6.6% (2) 15% (2)
#2-P/S 3 14% (4) 28% (4)
#3-A/B/C 4 14% (5) 29% (5)
#2-p/C 5 15% (6) 34% (6)
#2-A/C 6 13% (3) 23% (3)

depending on culture conditions and resources. These changes in the
distribution of non-pigment and pigment related bioproducts will
impact the overall absorption coefficient for the microalgae if only one
analyte or species is considered. Furthermore, changes in cell size and
shape have been documented to impact scatter and absorbing properties
[22,23], and these cell variations could explain why models that
considered biomass and chlorophyll a, and not just cells and chlorophyll
a, performed better. Even under more ideal conditions (high light and
high nitrogen), the models that included chlorophyll and a biomass
component proved best at estimating light across calibration and vali-
dation data sets and also performed best at estimating biomass from
chlorophyll data. These results suggest that these two factors are key in
quantifying the relationship between light attenuation and culture

properties and are sufficient to produce reliable results across this range
of operating conditions for this microalga. Furthermore, while this
method focused on the green microalgae D. viridis, it has the potential for
characterizing cyanobacteria and red algal species. However, experi-
mental validation using this model would be required with any other
microalgal species to confirm its accuracy over the range of experi-
mental conditions tested.

Another useful outcome from modeling the in-situ light profile with
the Beer-Lambert law using appropriate attenuating species (both
biomass and chlorophyll pigments) is highlighted by the biomass pre-
dictions in Fig. 4. Even though the parameters used to make these es-
timates were calibrated to minimize the error associated with the light
data, these fitted values within the chlorophyll and biomass models
produced relatively good estimates for biomass when the light absorp-
tion over time is known. This validation test further suggests that these
model equations are providing an accurate mathematical interpretation
of the physical light absorbance/attenuation process. Furthermore,
estimating cells or biomass from the Beer-Lambert law in this manner
can prove important from an experimental standpoint as quantifying
these properties, especially biomass as ash-free dry weight, can be very
tedious. Experimentalists or engineers monitoring full-scale systems
could use a calibration process that includes light sensor measurements
and pigment concentrations to determine their associated attenuation
coefficients and estimate biomass when a continuous light sensor device
is setup within the PBR.

4.2. Limitations

While this study highlights key culture properties that impact light
attenuation in a microalgal PBR, there are some important limitations to
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consider. First, these experiments were performed under aseptic con-
ditions using a single halotolerant microalgal species where contami-
nation was assumed to be minimal. Other microalgal species could have
differing attenuation properties making this Beer-Lambert relation less
applicable. For example. D. viridis does not have a cell wall like many
microalga, and, thus, the impact of scattering could be more pronounced
for other species with cell walls [24], which could lead to more error
since Beer-Lambert’s law does not account for anisotropic scattering.
Furthermore, contamination from other light-attenuating microor-
ganism could skew light predictions if their biomass and pigment
properties are different from those calibrated with microalgae or not
accounted for due to measurement methods (i.e., filtered out and not
accounted for in biomass). Other dissolved organics or byproducts from
either microalgae or contamination could also muddle accurate light
estimates and should be considered. Furthermore, the calibrated atten-
uation coefficients as determined here are specific to this experimental
setup, i.e., light source and light sensor, as they give an overall average
attenuation of the light across the spectral output of this grow lamp. A
different spectral lamp output, even if still only in blue and red wave-
lengths, could lead to different coefficients as the chlorophyll/pigments
and biomass could attenuate specific wavelengths more or less effec-
tively. An in-situ light sensor that measures spectral irradiance, versus a
cumulative, would allow using more wavelength-specific attenuation
coefficients, but these are very expensive. Another important consider-
ation is that this method was not tested under highly dense biomass
cultures, or with exceptionally low initial light levels. The highest
biomass density recorded as part of this research was only 600 g/m°. As
cultures become increasingly dense, the impacts of light scattering or
other physiological changes to the cells could limit this Beer-Lambert
approach. Additional experimental tests would be needed to confirm
the applicability of the approach to these operational or dense culture
conditions.

Nonetheless, these results also show that researchers should be able
to generally describe light attenuation of relevant photosynthesizing
pigments under the experimental conditions tested in this 1-D system
with chlorophyll a and biomass.

5. Conclusions

The results from this investigation into 1-D modeling strategies show
that the Beer-Lambert law can be used to reliably estimate photosyn-
thetic light attenuation in a flat-plate PBR when both chlorophyll and
biomass attenuating species are considered with unique attenuation
coefficients. This evidence is based on wide-ranging light and nitrogen
conditions that were used for both calibration and validation. Under-
standing this attenuation relationship from a simple 1-D modeling
approach is critical as this information can also help improve the ac-
curacy of more sophisticated light models that include more complex
reactor geometries and more light distribution mechanisms.

Although these results are specific to D. viridis and are limited to
attenuation coefficients over a range of wavelengths that are most
photosynthetically relevant (i.e.,, 400-500 nm, 600-700 nm), the gen-
eral conclusions from this work, as discussed above, highlight possible
implications, present an overview, and provide experimental validation
for many of the common modeling approaches used to estimate light in
algal research. The results from this research could lead to more
consensus across modeling approaches for quantifying light, and
potentially alternative methods to estimate biomass and better capture
the photosynthetic efficiency of algal growth.
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CHAPTER 4: CONTINUOUS pH CONTROL AND MONITORING AS AN ON-LINE
TOOL FOR ASSESSING MARINE MICROALGA DUNALIELLA VIRIDIS
CULTIVIATION GROWTH AND CARBON ASSIMILATION.

4.1 Introduction and Overview
4.1.1 Background

As microalgae absorb light for energy, they produce oxygen gas (O2) and consume carbon dioxide
(CO2). Plant and micro- biologists have long used oxygen sensors as a tool for assessing
photosynthetic and respiratory activity in algae. These types of measurements are often performed
over relatively short time periods using close-chambered apparatuses that can measure oxygen
exchange, light, and absorbance of small sample volumes®®. Much of the data collected from these
types of experiments have formed the basis of many current photosynthetic models used in
engineering applications that attempt to model and optimize algal growth'®-1°, Many of these same
measurement principles can be applied to monitor microalgal growth over longer time scales in
larger bench- and pilot-scale applications.

Measuring gas production or consumption in microalgal cultures over longer time scales and larger
volumes, however, is complicated as the mass transfer of O, and CO; between the gas and liquid
phase must be considered, in addition to the chemical and biological processes that can potentially
impact these transfer rates. Nonetheless, on-line gas measurements, both dissolved and gaseous,
provide invaluable information for those studying and modeling these photosynthetic microbes.
Historically, DO measurements have been more commonly utilized in microalgal experiments as
compared to gaseous O./CO2 measurements or dissolved CO>. Estimating the oxygen production
rate (OPR) and carbon uptake rate (CUR) of cultures directly via gas sensors requires a
sophisticated airtight setup to allow for quick and reliable gas exchange measurements. Measuring
the dissolved CO> has only recently been feasible with newer membrane technology, and still
requires special consideration of the chemical reactions involved with carbonate species. While
more commonly implemented in experimental setups, DO probes still have limitations. DO
electrodes are relatively expensive as compared to pH electrodes, which do not require special
membranes. In addition, certain types of electrodes consume oxygen as part of the measuring
process, limiting their measurement accuracy, response time, and applicability?’,28:2°,

pH electrodes are arguably the most commonly used on-line sensor in bench-scale PBRs. These
inexpensive probes are used to monitor and control the pH, which is often done with CO; injection.
While dissolved oxygen electrodes are still more commonly used to estimate photosynthetic
activity and growth with microalgae, there has been an increase interest in implementing pH data
into growth models in ways to help define the carbon flows within an algal culturing
environment®03?,

As also described in Chapter 1, to fully capture the state of the carbon within a system—including
the total dissolved inorganic carbon (DIC) and the distribution of carbon species—more than just
the pH must be considered. However, tracking the total carbon is possible using various
approaches that combine lab-based measurements with chemical equilibrium models. If the pH
and the activity of the dissolved CO, i.e. {H2COs3"}, are known, then the DIC concentration, mp,
can be theoretically calculated using equilibrium constants for carbonic acid K1, K> and knowledge
of the relevant activity coefficients y. These relations are shown by Equations 4-1 through 4-4

31



where carbonic acid is referred to as H.COs" since it is difficult to distinguish dissolved CO; in
solution and are lumped together.

{H*} = 10~PH 41
Mpic = My,co; T Mucoy T Mcoz- 4-2
m, = @ 4-3

Vx

1 H+ HH2
PRUG I U
YH,co;  YHcoz Ycoz-

4-4

pIC = {Hzcog}l ‘

Filali et al. (2011) utilized this concept to experimentally measure DIC when performing growth
experiments in an air-lift PBR used for modeling Chlorella vulgaris. Since Chlorella is a
freshwater species, the largely salt-dependent activity coefficients are assumed to equal one, thus,
simplifying this approach for estimating DIC from dissolved CO, measurements. DIC is then
tracked as a state variable in this model (Equation 4-5), where it is dependent on 1) the microalgal
growth rate u, 2) microalgal biomass concentration X, 3) a carbon-to-biomass conversion
coefficient M,., and 4) the mass transfer rate of CO- into solution Ncoz, since CO> is continuously
bubbled into the PBR.

4-5

d[DIc] X
a Y (_) + Neo,

M,

Using a similar concept as shown in Equation 4-5, Titica et al. (2014) formulates a dynamic pH
model for autotrophic growth of the microalgae marine Chlamydomonas reinhardtii®®. This
approach is different, however, in that an algal growth model is combined with a chemical and
thermodynamic model to estimate pH. In this salt-water system, the dissolved CO- is not measured,
requiring additional constraints involving the mass and charge balance of the chemical system to
fully define the DIC.

To our knowledge, pH has not been used in a method for assessing growth directly by relating this
property to DIC outside a growth-modeling context, where microalgal growth parameters could
affect carbon flow estimates. While the concepts behind these approaches are similar, the
direct approach does not depend on any estimate of the microbial growth rate._This
differentiation is key because this new approach allows for many of the built-in assumptions
in the previous work when relating pH to DIC to be tested directly and rigorously validated.
Therefore, the new approach places a greater emphasis on directly modeling the inorganic-to-
organic carbon flows, and less on modeling microalgal growth with respect to light and nutrients,
as has been performed in previous work as part of fitting growth parameters that affect DIC
estimates.

32



4.1.2 Research framework overview

The PBR used herein is equipped with pH control where the increase in pH can be related to the
DIC removal rate when combined with a thermochemical equilibrium model. This approach,
which assumes a quasi-equilibrium pH state between CO- injections, provides a piece-wise carbon
estimation approach to determine the DIC removal rate from the culture liquid. Given this
information and the background loss of carbon into the headspace, and subsequent environment—
which can be quantified experimentally and described by a diffusion transport model—the carbon
uptake rate of the microalgae can be calculated (Equation 4-6). This biological carbon uptake rate
is subsequently used to estimate the total organic carbon within the system. Figure 4-1 displays a
workflow diagram the tested methodology.

dDIC _ dDIC L apic 4-6

dt dt microalgae dt dif fusion
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Figure 4-1. Simplified workflow diagram for proposed method for estimating microalgal carbon
uptake rates and total inorganic carbon assimilation from continuous pH measurements in a pH-
controlled PBR.

This research tests a novel approach for using pH as a tool for tracking carbon flows within a PBR
and estimating the total carbon assimilated by microalgae by relating pH to the carbon removed
from a marine microalgal culturing system. This method involves developing a model that
included both a chemical equilibrium sub-model and a carbon mass transfer by diffusion
relationship to relate the pH to total dissolved inorganic carbon during microalgal cultivation
within a pH-controlled PBR. This method was validated by performing cultivation experiments
with D. viridis microalgae over a range of conditions, as described in Table 4-1, and comparing
carbon estimates made using this pH-sensor approach with the lab-based carbon estimates and cell
counts.
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Table 4-1. Overview of experimental conditions under which this pH-to-carbon method was

tested using the marine microalgae D. viridis.

Set Name pH Init. NaHCO3 (mM) Init. DIC (mM) Init. KNO3 (mM) Init. Light (PPF)
A-R1 7.5 134 134 5 175*
A-R2 7.5 10 10 5 175*
B-R1 7.5 5.0 5.0 2.5 200
B-R2 7.5 10 10 2.5 200
C-R2 8.13 38 35 35 55*
D-R2 8.13 38 35 5 145

*These experiments had brief cycles where the light was turned off throughout the experiment.
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4.2 Results & Discussion
4.2.1 pH sensor-based TOC estimates agree with other microalgal growth metrics

In Figure 4-2, the pH sensor-based carbon estimates for the assimilated carbon evaluated over the
cultivation period show the same overall qualitative growth patterns as seen with the cell counts
and the measured TOC of the spun cell portions of the microalgae as shown in Figure 4-2. Cell
counts were over 1.0 x 107 four to five days after cells had reached an initial cell concentration of
0.20 x10° cells/mL, regardless of the nitrogen or bicarbonate concentrations, although a slower cell
growth rate for was observed for the lower light condition tested (Figure 4-2, Column C, C-R2).
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Figure 4-2. Comparison of different growth measurements properties using sensor-based approach for
estimating TOC (A), lab-based TOC measurements (B), and cell counts (C) over experimental duration
relative to the sampling start time. Units for the y-axis are noted at the top of each column. Rows represent
the four bicarbonate concentrations tested, i.e., 1.) 5.0 mM NaHCOs; 11.) 10.0 mM NaHCOs; 11l.) 13.4
mM NaHCOs; IV.) 38 mM NaHCOs. Colors represent different experimental sets, with conditions as
specified in legend. *The initial light condition for Set C-R2 was ~30% of the initial irradiance as
compared to other sets, i.e., 55 PPFD as compared to 150-200 PPFD

A comparison of the lab and sensor-based approach for estimating growth rates show similar trends
(Figure 4-3). The carbon uptake rates as shown in Figure 4-3 show ‘light on’ estimates for carbon
uptake rate. While the growth rates are estimated over longer time scales for the lab TOC and cell
data (given that these measurements were taken once a day, at most) similar trends are observed
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between the lab measurements and sensor-based growth estimates for carbon across the four
bicarbonate conditions tested (Figure 4-3).
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Figure 4-3. Growth rate estimates using the pH-to-carbon sensor approach (A), lab-based TOC carbon
measurements (B), and cell counts (C) over the experimental duration. Units for the y-axis are noted at
the top of each column. Rows represent the four bicarbonate concentrations tested, i.e., 1.) 5.0 mM
NaHCOs;; 11.) 10.0 mM NaHCOg; 111.) 13.4 mM NaHCOsg; 1V.) 38 mM NaHCOs. *The initial light
condition for Set C-R2 was ~30% of the initial irradiance as compared to other sets, i.e., 55 PPFD as
compared to 150-200 PPFD. Note, carbon uptake rates for sensor estimates show only light ON conditions.
‘n/m’ indicates not measured. Error bars for lab-based measurements represent standard error.



Comparison of the specific growth rates (Figure 4-4) across these three metrics displays both
qualitative agreement in trends and quantitative agreement with respect to specific growth rates
between the sensor-based estimates and the lab data.
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Figure 4-4. Specific growth rate estimates using the pH-to-carbon sensor approach (A), lab-based carbon
measurements TOC (B), and cell counts (C) over the experimental duration (time relative to cell cultures
reaching specified cell density). Units for the y-axis are noted at the top of each column. Rows represent
the four bicarbonate concentrations tested, i.e., 1.) 5.0 mM NaHCOs3; 11.) 10.0 mM NaHCOs; 111.) 13.4 mM
NaHCOs; 1V.) 38 mM NaHCOs3, *The initial light condition for Set C-R2 was ~30% of the initial irradiance
as compared to others. ‘n/m’ indicates not measured. Error bars for lab-based measurements represent the
propagation of uncertainty based on standard error.
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This sensor-based carbon-estimation approach not only shows strong qualitative agreement
when comparing trends of this metric to the other two lab-based metrics (Figure 4-2 through
Figure 4-4), but also show agreement in magnitude and trends amongst across the
experimental sets, despite the wide-ranging conditions under which these experiments were
performed. More specifically, the algal carbon uptake rates start and increase at similar rates
up until the organic carbon in the system reaches a concentration around 150-200 mg/L, at
which point the algal carbon uptake rates begin to decline, at rates which appear dependent
on culture conditions (

Figure 4-5).
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Figure 4-5. Sensor-based carbon uptake rates for all experiments relative to the total organic carbon
(TOC) concentration as estimated with sensor. Colors represent experimental set.

The higher resolution of sensor measurement also provides insights into how perturbances, such
as sampling, might impact the organisms differently under stressful conditions. For example, the
act of mixing the PBR after day five for the two 2.5 mM KNO3 experimental sets (when nitrogen
is depleted) leads to a sudden increase in carbon uptake rates; this phenomenon is not observed for
the higher nitrogen sets (Figure 4-3, Column A, Set B vs A). This immediate increase in carbon
uptake rate after mixing suggests that these nitrogen-deplete cells can still photosynthesize. Thus,
the faster rate of decline in carbon uptake rates, as compared to nitrogen-replete conditions is likely
due to cell settling. While these sensors do not provide insight into whether this settling is a willful
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behavioral response to stress (i.e., retreating into a palmelloid vegetative state), or due to a loss of
flagellar locomotion due to nutrient deprivation, or both, this observed change does give quick
insights into the state of the culture under different growth conditions.

4.2.2 Sensor-based TOC estimates show reasonable quantitative agreement with lab-based
estimates based on the suspended solid portion of algal cultures

Figure 4-2 through Figure 4-4 highlight how well this method matches qualitatively with other
growth assays, they do not provide a complete mass balance-based quantitative assessment of the
method’s accuracy when tracking inorganic-to-organic carbon. This step is very important,
especially if this method is used in combination with growth modeling efforts.

Figure 4-6 shows an overview of the raw results from these validation experiments by comparing
the freshly assimilated carbon between sampling points for the two methods. In all experiments,
for the first two to three days, the relative difference between the two sets is ~60%. Thereafter this
relative difference diverges for each set, becoming more sporadic. Figure 4-6 graphically
illustrates how the sensor and lab-based results compare along how the daily difference changes
over the course of the experiment, with no markedly different trends observed across different
bicarbonate or nitrate conditions. In summary, these two methods show an overall strong linear
relationship across sampling time, even when considering the increase in noise in this relationship
that occurs at later phases of growth (Figure 4-7).
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carbon between two sequential sampling points (B). Error bars show propagated error based on the
standard error of lab-based TOC measurements.
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Figure 4-7. Lab-based TOC of spun microalgae biomass versus TOC estimated using the sensor
method with cursory regression analysis. Error bars show standard error based for lab TOC estimates
only.
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4.2.3 Lab-based TOC measurements may underestimate TOC

Dunaliella spp. are known for excreting dissolved organics, such as glycerol, into their
surrounding media®?=34, but due to the interferences from salt and high inorganic carbon content,
the TOC within the media was not analyzed within the scope of this work. Sets A, B showed an
increase in UV2ssnm absorbance in this range, suggesting an increasing presence of dissolved
organic material (Figure 4-8). Interestingly, the 5.0 mM nitrogen conditions show a greater
increase rate in UV2s4nm absorbance relative to 2.5 mM conditions after day three; this divergence
in UV2s4nm roughly corresponds with the decline in carbon uptake rates (Figure 4-3).

0.3

0.25

UV,;, Absorbance
o
'_\
(6)]

0.1
0.05
0
0 1 2 3 4 5 6 7
Time (days)
—#&—13.4 mmol HCO3-, High N (A-R1) —#— 10 mmol HCO3-, High N (A-R2)
©—5 mmol HCO3-, Med. N (B-R1) —@— 10 mmol HCO3-, Med. N (B-R2)

Figure 4-8. UV2sanm absorbance of culture media after cell and biomass separation with centrifugation.
Time is relative to the start of sampling, which corresponds to around 0.20 x 108 cells/mL. High N
refers to an initial KNO3 concentration of 5.0 mM. Med. N refers to 2.50 MM KNO3. UV2s4nm
absorbance measurements were not taken for other data sets.

Furthermore, a large portion of the lab-measured TOC from D. viridis was easily and quickly
purged from the diluted samples within 2-3 minutes. This purgeable fraction, as estimated from
analyzing both TOC and non-purgeable organic carbon (NPOC) on the analyzer, also appears to
vary with time (Figure 4-9). Given the observed volatility of the organic contents within these
cells, lab-based TOC estimates could lead to an overall underestimate of the true carbon produced
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by these organisms, especially if these osmotically-sensitive cells are diluted and not quickly
placed on the TOC analyzer machine for analysis.

Purgable Fraction of TOC

0.5

04 1 A

0.6

TOC

0.4

TOC—-NPOC

0 2 4 6 8

Time (days)
B-R1 (5.0 MM NaHCO;, 2.5 NO;)  mmmm A-RI (13.4 mM NaHCO,, 5.0 NOy)
memmm B-R2 (10.0 MM NaHCO;, 25 NOy)  mmmmm A-R2 (10.0 mM NaHCO;, 5.0 NOy)

Figure 4-9. Purgeable organic carbon (POC) fraction of TOC as estimated based on measurements from
TOC analyzer for validation experiments. Error bars represent propagated uncertainty based on standard
error in TOC and NPOC measurements used to estimate the POC fraction. NPOC was measured after
purging samples for 3-5 minutes with high purity air after 5% acidification with 2 M HCI.

4.2.4 Sensibility checks

When performing any in-depth analysis and modeling with large datasets and processing,
reviewing raw and partially processed data is important for both verifying assumptions and
verifying that code used in processing data is performing its intended function. For example,
comparing the regression analysis for the raw pH sensor data against the estimated algal carbon
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uptake rates provides a simple verification to check that the model outputs seem reasonable. Figure
4-10 (B vs C) shows this comparison for all the processed sensor data used to estimate algal TOC,
including the two days prior to inoculating the PBRs with algae, and the short periods of when the
light was turned off for select experiments. These short ‘light off” periods lead to negative carbon
uptake rate since photosynthesis has halted as respiration continues with stored cell products
(Figure 4-10, Column C gray area).
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Figure 4-10. Sensibility checks for model verification. A) sensor TOC estimates in PBR including two
days prior to inoculation, B) pH increase rate, C) net carbon uptake rate due to microalgae under light
and dark conditions, D) Light in PBR in photosynthetic photon flux density, pmol/s-m?. Time reflects
time since inoculation and not time since the start of sampling and is represented by a SOLID GRAY
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The lack of organic carbon accumulation in the PBRs before inoculation suggest that the K.
coefficient combined with the diffusion model accurately estimated the carbon flows before
microalgal addition (Figure 4-10, Column A, C). Furthermore, overall, the pH increase rates follow
the same trends as the algal carbon uptake rates, with slight perturbations noted around sampling
times for both the raw pH rate data and model-based carbon uptake rates (Figure 4-10, B, C).

Aside from helping to verify that the model is performing reasonably, Figure 4-10, highlights how
the buffering capacity (i.e., NaHCOs3 concentration) of the different media conditions impact the
model’s pH-to-DIC sensitivity. More specifically, the peak rate of pH increase is around five
times higher for the 5.0 mM NaHCO3 system as compared to the 38 mM experiments (~15 pH/day
as compared to 3 pH/day, respectively), despite the relatively similar maximum algal carbon
uptake rate between these two conditions (~120 mg/L/d to ~150 mg/L/d, respectively). This pH-
to-DIC relationship is important when considering this model’s sensitivity to pH measurement
error.

The raw data output showing the pH, temperature, CO> headspace readings, and light conditions
in the PBRs over the course of experiments and for four days prior to inoculation can also be found
in the SI, Figure 6-1.

4.2.5 Model sensitivity to pH depends on media and operating conditions

A cursory sensitivity analysis for this method showed that the model sensitivity to £0.05 pH error
increases at higher bicarbonate conditions (Figure 4-11). This result is not unexpected, as the
media solutions with different buffering capacity may have different pH-to-carbon relationships.
While this simple analysis assumes that constant offset, i.e., the magnitude of pH error does not
change with time, using the K. parameters calibrated from the base-case during this sensitivity
analysis indicates the potential error in pH measurements that may occur after calibration. Overall,
this cursory analysis shows that this method, when used in a neutral pH and low bicarbonate
conditions, produces reliable estimates with at most 5% error if the pH shifts by 0.05 units; this
low error is important for applicability since pH electrodes are known to drift over time.
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Figure 4-11. Cursory sensitivity analysis showing the percent difference in carbon assimilation
estimates when pH is shifted up and down before processing reactor data in model as compared to the
base-case (i.e., pH measurement used for primary analysis). These comparisons were done for each
sampling time and averaged across time points and replicates. Note, this sensitivity analysis uses the
calibrated K parameters from the base case (no pH shift) across all sets.

4.2.6 The apparent mass transfer coefficient, K., varies logarithmically with DIC concentration.

Analyzing the background rate carbon loss in the PBRs due to diffusion under various media
conditions and PBR setups showed that, for this modeling approach, the K varies with respect to
DIC concentration (Figure 4-12). Note, the large variation seen for each DIC condition, especially
in less buffered systems, is likely due to the inherent sensor noise combined with the decision to
estimate rates in a piecewise fashion across CO: injection intervals rather than performing a
regression across each CO-injection interval. This decision was made to as a tradeoff for reducing
error that could emerge from non-linear changes in pH/carbon between CO: injection points, and
because the observed variability should be similar between diffusion and algal rates since are
estimated from the pH sensor.
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5, 10, and 35 mM DIC conditions. Conditions for background tests can be found in the SI, Table 6-2.
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4.3 Methods and Modeling Approach

4.3.1 Modeling framework for using pH to estimate carbon uptake rates and total organic
carbon

4.3.1.1 A Pitzer thermo-chemical equilibrium model will relate the pH to total dissolved inorganic
carbon.

A Pitzer approach for estimating activity was used to solve the chemical equilibrium states for this
system. This approach, along with the specific ion interaction theory (SIT) are both commonly
utilized methods for determining the chemical equilibrium of solutions with high ionic strengths.
The Pitzer model involves a rigorous thermodynamic derivation based on the virial expansion of
excess Gibbs free energy and considers all potential ion-ion interactions while the SIT model
assumes that only that only chemical species with opposing signs interact with each other®. Due
to the high ionic strength of the media used with D. viridis, the Pitzer approached was selected to
estimate the chemical state of the system with respect to the most prominent chemical species in
the marine media.

Furthermore, if nitrate (NO3") is used as a nitrogen source, protons are consumed during the
assimilation process, impacting the overall pH-to-carbon relation. Thus, the inputs to the chemical
equilibrium model should include this proton loss by nitrogen assimilation. This incorporation by
adjusting the chemical inputs based on the Redfield ratio® (Equation 4-7).

€O, + H,0 + 0.15 NO3 + 0.15 H* — CHy,0(NHy)o 15 + 1.22 0, 4-7

This approach for relating ‘pH-increase rates’ to ‘carbon-removal rates involved first solving
multiple chemical equilibrium conditions across the range of chemical states of the PBR system
throughout the duration of an experiment using chemical equilibrium software. The
implementation of this chemical equilibrium model into the larger modeling framework is
described in more depth in subsequent sections.

4.3.1.2 Diffusion model

Without microalgae present, the change in the total dissolved inorganic carbon within a culture
media, assuming no solid formation or biological activity is entirely due to the transfer of CO.
between the air and water interphase. This transfer assumption is valid if the DIC concentration in
the liquid solution is not at the equilibrium concentration. DIC*, for a given CO. partial pressure.
Due to the complex nature of the carbonate system, and the multiple interacting concentration
gradients that drive this system, an additional assumption is made to track the CO- loss from the
PBR. Specifically, the mass transfer rate of the DIC out of a solution with a given pH and
bicarbonate concentration is driven by the gradient between the total DIC in the solution at those
conditions and the DIC concentration of the solution at a pH that has equilibrated with the
headspace CO: partial pressure, i.e., DIC.
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Without algae present, this relationship is defined in Equation 4-8:

dDIC—K 4 DIC* DIC = K, ! DIC* DIC 4-8
T Lm[ ®) -DICc(®)] = Lm[ (t) = DIC(D)]

where K. is an apparent mass transfer coefficient for the overall DIC; Ais a constant that
represents the area of the surface of the liquid in the PBR exposed to the headspace concentration
in square meters; V is the volume of the reactor in cubic meters and D is the depth. V and D are
both a step-wise function of time based on sample removal during experimental process. DIC*
refers to the DIC in the system at equilibrium with the ambient CO; partial pressure.

After relating pH data to DIC using the chemical equilibrium model, the K coefficient is estimated
using the on-line data and Equation 4-8. More specifically, the K. apparent mass transfer
coefficient is estimated by using Equation 4-9.

dDIC 4-9

K =picro=pico

Background tests in the PBR were conducted over the range of test conditions under which
validation tests will be performed to establish K. estimates. Furthermore, due to the multiple
reactions involved with the carbonate chemical species, the K. was estimated over a range of DIC
conditions to account for differences in this CO2 mass transfer velocity that might arise due to
differences in the chemical state of the system.
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4.3.2 Experimental setup & procedure

4.3.2.1 Photobioreactor (PBR)

A 3-L photobioreactor (PBR) was constructed and fitted with sensors for pH, temperature, and
light monitoring as described in Karam et al.*”. The PBR setup was further modified to include pH
control via COz> injection as well as headspace monitoring of the CO> concentration. Figure 4-13
displays a schematic overview of the setup.
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Figure 4-13 Schematic overview of experimental setup showing overview.

A few key differences between this setup and the setup as explained in Chapter 2 and previously
published work®’:

e A LumiGrow Pro 325 (LumiGrow, USA, 2016) grow lamp, adjusted to output
approximately 40% blue and 60% red light was used as the light source.

e The photosynthetic active radiation (PAR) light sensor (SQ-212, Apogee Instruments,
USA, 2016,) was located on the back side of the PBR and not within the highly ionic salt-
water media since there was suspected voltage leakage from this aging sensor that
disrupted pH readings. Light measurements were estimated in terms of photosynthetically
active photon flux density (PPFD).

e pH electrodes were differentially connected to the analog inputs of the LabJack U6
microcontroller (LabJack, USA, 2014) using a 5-volt amplifier (2.2 V gain) to increase
the signal and ensure that the electrodes worked properly despite the high impedance of
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the microcontroller. This signal processing device had an inherent 1.2 V offset and was
powered with a DC power supply connected to power on a circuit line without any other
devices. Instead of a low-pass filter, the pH electrodes were isolated using a 10 K-Ohm
resistor between one of the differential analog connectors and ground terminal.

Two dual setups, as shown in Figure 4-14 (A, B), were constructed for these validation tests, which
were constructed within a temperature-controlled incubator. However, given the multiple heat
sources within the incubator from the grow lamps, and the large fluctuations in temperature
observed when opening the door to sample, the incubator temperature control was not used.
Instead, the temperature within PBR’s were maintained by balancing the heat from light sources
with the ambient room temperature air using a fan and black curtain (Figure 4-14 B, C).
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Figure 4-14. Dual experimental setup showing two reactors setup inside incubator. Reactor #1 refers
to the reactor configuration on the upper shelf, and Reactor #2 is on the lower shelf.

The nature of this setup was such that certain components could not be easily randomized
throughout experiments (i.e., 1.0-liter per minute (Ipm) air circulation pump, mixing power supply,
solenoids/gas lines, etc.). Thus, ‘Reactor #1° refers to the upper most setup configuration and
‘Reactor#2’ refers to the lower configuration. Temperature, light, pH, and the CO> headspace
concentrations were measured continuously for all experiments. Further details on sensors and
logging can be found in the Supplemental Information (SI) (Table 6-1,Table 6-2).
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4.3.2.2 pH control

pH control was implemented in the setup above using DAQFactory data acquisition and control
software (DQ, Lite Release 5.91) along with a relay board, a 12-V normally closed solenoid valve
(McMaster, Part#5077T134, 2014, USA), a mass flow meter (TopTrex® 822/824, Sierra
Instruments, USA, 2014), and 99.99% CO: gas, injected into the PBR with a nylon diffuser.

The pH control software algorithm implemented within DQ was a custom script that worked by
setting an upper and lower pH setpoint limits. Once the pH probe measured past the specified high
setpoint for a given time, the solenoid valve opens until a pre-specified setpoint CO> flows into
the reactor, as specified by the mass flow meter to drop the pH to the lower setpoint. This initial
pre-specific CO> input estimate is based on a simple thermochemical model which relates pH to
DIC. Thereafter, by comparing the amount of CO> that was injected into the PBR with the
theoretical amount of CO2 needed to obtain the pH reduction observed after giving the reactor time
to mix (e.g., ~two minutes after an injection), a correctional ‘mass transfer injection efficiency
factor’ is estimated. This efficiency factor, which was observed to depend on the gas flow rate,
bubble size of diffuser, and the working liquid volume, was used as feedback to adjust the CO>
input setpoint amount and help ensure that the pH was consistently maintained between the pre-
set range. Note, to minimize oscillations in CO> injection setpoints, the newly projected CO; input
setpoint value was averaged with the previous three estimated setpoints.

4.3.2.3 Experimental procedure

Dunaliella viridis strain dumsii microalgae were grown from sterile 1M NaCl agar plates. PBRs
were thoroughly bleached and set up with clean diffusers and tubing prior to each experiment. pH
probes were soaked overnight in 3M KCI solutions between experiments to hydrate them. The
probes were calibrated before and/or after experiments at close to 25°C. Calibration data can be
found in the SI. For each experiment, the mixing impeller mixed at a speed of ~80-100 rotations
per minute (RPM). This relatively low rate was selected to prevent shear and was found to provide
adequate mixing in this PBR system with respect to pH control, having a characteristic bulk mixing
time of approximately two minutes. Before algal inoculation, filter-sterilized culture media was
added to the reactors and pH control was started. Data was logged for multiple days to obtain
background data and ensure system stability.

After inoculation with microalgae, samples were removed daily once the microalgae cell
concentration reached ~0.2 to 0.5 x 10® #/mL. Approximately 12 to 20 mL of culture volume was
removed from the PBR after opening the vessel and thoroughly mixing with a handheld stirrer
since the gentle mixing from impeller did not prevent algae from settling to the bottom under
stressful conditions. Samples were taken for an additional 5 to 7 days after cells reached sampling
concentration levels.

Cells concentrations were measured using an automated cell counter (TC20™, BioRad, USA,
2016) immediately after sampling. This cell data, in combination with past work by Lai et al.,
2018% | provided estimates for nitrogen removal from the media. For the experiments that included
lab-based TOC analysis, samples were processed and stored as explained below.
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4.3.2.4 Experimental conditions

Table 4-2 shows an overview of the experimental conditions for this validation tests, followed by
a brief description and justification for the tested conditions.

Table 4-2. Overview of experimental conditions under which this pH-to-carbon method was tested.

Experiments highlighted indicate primary validation (i.e., validation with TOC-based lab measurements).
Experimental set letter values reflect temporal association.

Set Reactor NaCl pH Init. NaHCOs Init. DIC Init. KNOs3 Init. Light
Name # (M) setpoints (mM) (mM) (mM) (PPF)
A-R1 1 0.75 7.45-7.55 134 134 5 175*A
A-R2 2 0.75 7.45-7.55 10 10 5 175*A
B-R1 1 0.75 7.40-7.50 5.0 5.0 2.5 2008
B-R2 2 0.75 7.40-7.50 10 10 2.5 2008
C-R2 2 0.75 8.10-8.15 38 35 3.5 55*A
D-R2 2 0.75 8.10-8.15 38 35 5 145*C

*Three different light schemes were used during these experiments. See note in section below.

Salt concentration (0.75M) - D. viridis and other Dunaliella spp. are known for their wide-
ranging salt tolerance. This salt concentration was selected as it is within an ideal range for this
species and because many of the empirically determined Pitzer model parameters that gauge ion-
ion interactions were calibrated within this range.

pH and Sodium bicarbonate (NaHCO3) Concentration— NaHCOs and pH both determine the
overall DIC and CO. within a system. These conditions shown in Table 4-2 reflect different pH-
bicarbonate combinations that result in a system with comparable H>COs* concentrations (Figure
4-15). Furthermore, these DIC/pH levels represents conditions that should not cause carbon
limitation3%4° and could be realistic NaHCO3 concentration for scale-up (i.e., closer to that of
seawater).
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Figure 4-15. Graphical illustration showing the chemical state for the different media conditions tested
as estimated by the Pitzer equilibrium model.

Light: The light intensities selected for the primary validation experiments reflect intensities that,
based on prior work, should not be limiting nor inhibitory. Furthermore, to test that this method
can be used over wide-ranging light conditions, three different light schemes were used as part of
this validation approach, two of which had brief periods of turning the light off using a custom
script in DAQ Factory, voice-recordings, and Alexa Echo (Amazon.com Inc., 2019). The light-off
cycles were meant to 1) reduce light shock and stress to cultures immediately after inoculation,
and 2) ensure rigorous validation conditions since algal cultivation systems may not have
continuous lighting. Furthermore, by turning off the light for short time increments, a ‘light’
respiration rate can be estimated. This technique is discussed and presented briefly in Chapter 5
since the scope of Chapter 4 is focused on validation and not method applications.

Light scheme A - For this light scheme, in order to reduce shock between inoculation and
the start of sampling, the light was switched off for 15-30 minute during each injection
interval, resulting in the light being off for approximately 40-50% of the time before the
algal reached sampling conditions (i.e., cell counts of 0.2x10°® #/mL). Thereafter, the light
was switched off for ~5 minutes in the middle of every 3-4 injection intervals. This scheme
resulted in ‘light off” conditions for approximately 5% of the total experimental duration.
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Light scheme B - For this light scheme, in order to reduce shock between inoculation and
the start of sampling, the light was switched off for 10-20 minute every other injection
interval, resulting in the light being off for approximately 15% of the time before the algal
reached sampling conditions (i.e., cell counts of 0.2x10° #/mL). Thereafter, the light was
continuously kept on until sampling day 6, at which point the light was again cycled on
and off. This scheme was done to compare the ‘dark’ respiration rate at the beginning and
end of cultivation cycle.

Light scheme C-> The light was continuously on from inoculation until the end of the
experiment.

4.3.25 TOC analysis for primary validation

After samples were removed from the PBR during ongoing experiments, algal cells were separated
from their media via centrifugal separation by adding 3.5 mL of culture into 15 mL centrifuge
tubes and spinning for 30 minutes at 2500 relative centrifugal force and 4°C. The algal pellet was
frozen at -20°C. These algal pellets were thawed immediately prior to TOC analysis, re-suspended
in 3.5 mL ultrapure deionized water. This suspension was further diluted (1:40 to 1:80) before
placing on the TOC analyzer. To minimize fluctuations caused by settling/separation, all samples
were analyzed within one to three hours after placement on the analyzer’s automatic sampler in
40-mL amber vials. These vials were cleaned thoroughly before baking at 400°C for four hours
and acid washed with 1% hydrochloric acid, rinsed with DI water, and dried prior to preparing
samples.

Total organic carbon was measured using a TOC analyzer (TOC-Vcsn, Shimadzu Scientific).
Preliminary method analysis with D. viridis showed that a large part of the TOC in the spun-and-
then-diluted microalgae was purged out within 2-3 minutes, and thus estimating TOC via non-
purgeable organic carbon (NPOC) would not suffice for providing reasonable estimates for the
TOC. Therefore, TOC was estimated by analyzing the total carbon (TC) and subtracting the
inorganic carbon (IC) content, which was estimated with either DI water controls (Set A) or using
the I1C analyzer on the TOC-Vcsn instrument (Set B). The spun algal biomass samples were
analyzed both for total carbon TOC and non-purgeable organic carbon (NPOC) after 5%
acidification with 2 M hydrochloric acid and 3-5 minutes of purging with high purity air to remove
all inorganic carbon.

Potassium hydrogen phthalate (KHP) was used to generate three calibration curves across the
range of expected concentrations (1-10 mg/L after dilution). Glucose was used as a secondary
standard and 1,4 Benzoquinone was used as a tertiary standard to ensure that even difficult-to-
combust carbon was combusted. Quality control samples were performed throughout experiments
using KHP and glucose.
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4.3.3 Model implementation and diffusion model calibration

4.3.3.1 Chemical equilibrium model integration

Since this Pitzer based approach considers multiple interactions, only the most prominent chemical
species in the media are tracked (Table 4-3). Furthermore, since computationally solving the state
of equilibrium for each pH data point is not computationally efficient, equilibrium equations were
solved over a range of pH and NOs- conditions using the chemical equilibrium software package
PyEqulon (2021) in Python (v3.8) with the Pitzer-based activity estimation approach. Nitrogen
assimilation estimates were added to each sensor-based data points based on cell counts and
previously established relationships between cells and nitrogen. The DIC concentration for each
data point was then estimated with a two-phase interpolation based on pH and NOgz™ assimilation.

Table 4-3. Media recipe for cultivating D. viridis for experiments. Bolded and highlighted chemical
species were those considered when solving for equilibrium.

Chemical

Species Media Conc. | H* OH- Na* Cl COz* K* POs% NOsz
NaCl 0.75M 0 0 1 1 0 0 0 0
NaHCO3 10" mM 1 0 1 0 1 0 0 0
KNO3 5/ mM 0 0 0 0 0 1 0 1
KH2PO4 0.12 mM 2 0 0 0 0 1 1 0
MgSO4 5mM - - - - - - -
CaClz 0.12mM - - - - - -
EDTA 6 UM - - - - - -
FeCls 2 uM - - - - - -
MnClz 7 uM - - - - - -
ZnSOu. 1 uM - - - - - -
Co(NOs)a. 1 uM - - - - - -
CuSOsa. 1 uM - - - - - -
(NH4)sM0702a. 1 M -- - - -- -- --

* In addition to 5 mM, 10, and 13.4 mM NaHCO3 conditions were also tested.
# In addition to 2.5 mM, 5.0 mM KNO3 conditions were also tested

4.3.3.2 TheDIC transfer rate inthe PBR, rp,c,,,..,,» IS €stimated from pH-data with a stepwise regression
approach

Before estimating any rates, the raw sensor data was processed to remove known experimental
perturbations and to ensure the system was in a quasi-equilibrium state after a CO> injection into
the system. The post-processing script implemented in Python (v3.8) removes data based on three
constraints: 1) known noise (e.g., sampling time, light switching on/off, etc.), 2) system stability
based on the time since last COz injection and the pH value relative to the setpoint, and 3)
interpolation range; any reactor data that fell outside the range of interpolation was removed from
the dataset before analysis.

The remaining data was analyzed for DIC removal rate, r,,.. Each injection interval (i.e., data in
between CO; injections) was analyzed with a piecewise approach to estimate mass transfer rates.
Since electrode data is known for its electrical noise, directly extracting differential rates can be
challenging. While there are numerical differentiation approaches for noisy and non-smooth data
that are suitable for continuous electrode data*!, adopting such an approach is not appropriate here
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given the frequency of the perturbation of pH in the system due to the continuous pH injection.
Thus, the DIC removal rate in the PBR, ,c,,,..,,, Was estimated from the processed data using a
piecewise linear regression analysis for the x,, discrete pH measurement over the course of an
injection interval. This regression analysis was done for k=4 sampling points [x;: x;,,] from i =
0toi=n—k. This piecewise approach was intended to balance noise within the data with
instantaneous rate estimates.

For the sensor logging frequency—which corresponded to two measurements per minute for most
experiments (SI, Table 6-2)—this analysis interval equates a time span of approximately two
minutes under ideal circumstances. Note, due to prior data processing and removal of certain data
points associated with known noise as described above, a maximum °‘interval time span’ is
specified for the rate data to ‘pass’ quality control and move along to the next phase of the analysis.
This step is performed to ensure that the regression analysis does not occur over data points that
are adjacent in the data frame space, but not in time due to the previous removal of noisy points
during the data processing phase of analysis.

4.3.3.3 Diffusion model calibration

Table 4-4 provides an overview of the background conditions tested that were used for estimating
Kv. Previous work using this experimental setup warranted that a K. estimate should be performed
with each reactor.

Table 4-4. Overview of the background conditions tested for evaluating the K. coefficient over a
range of experimental conditions.

Reactor Setup pH NaHCO3 (mM) H2COs'(mM) ~DIC (mM) Volumes (L)
Reactor 1 7.45 5 0.13 5 2.85,2.55,2.7
Reactor 1 7.50 10 0.24 10 2.80, 2.70
Reactor 1 8.125 38 0.20 35 2.9,2.85
Reactor 2 7.50 5 0.12 5 2.80,2.70
Reactor 2 7.45 10 0.27 10 2.85,255,2.7
Reactor 2 8.125 38 0.20 35 29,285

Due to difficulty in maintaining reliable CO> headspace measurements over the course of all
experiments, DIC* was assumed to be the DIC concentration in the media if media was at
equilibrium with baseline CO. concentration in the headspace, which was found to be ~750 ppm
during background tests.
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4.3.3.4 Estimating algal carbon uptake and net carbon assimilation in PBR.

After establishing the relationship for the bulk DIC mass transfer coefficient, K., under the
experimental conditions, this coefficient was estimated at every point along the sensor dataset
based on the relevant system conditions (i.e., volume, DIC). The diffusion model was then applied
to estimate the background diffusion rate and provide a net carbon assimilation rate for the
microalgae, r44qe, (Equation 4-10). The impact of nitrogen assimilation on DIC was also
considered at this time.

1 ) 4-10
ralgae = rDlCoverall - kL <m) [DIC - DIC(t)] - rDICN03 assim

To estimate the total organic carbon in the PBR, the computed algal carbon uptake rates, 4., Were
integrated over time using Python SciPy Integration Method using the composite trapezoidal rule.
An overview of the implementation of this modeling approach is shown in Figure 4-16.
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Figure 4-16. Overview of pH sensor model implemented to estimate algal carbon update and net
organic carbon accumulation.

4.3.4 Model assessment & assumptions

There were two different approaches used to assess how well the adopted method captures growth.
The first compared general trends, growth rates and specific growth rates between sensor-based
carbon growth as compared to cellular growth and carbon growth measured with TOC analysis for
suspended solids. These comparisons were performed to determine if this pH-sensor method for
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estimating carbon satisfies the following: 1) captures similar growth trends and 2) provide similar
carbon concentration estimates as compared to those made with a TOC analyzer.

Growth rates for lab-based cell counts and TOC measurements for sample measurement i were
estimated by Equation 4-11.

(A_x) X X 4-11
At);  ti—tiq

The specific growth rates the microalgae at sampling time, t; were estimated with Equation 4-12:

(%) v

p=——oti
b+ xi-1)/2

The second approach for assessing model predictability quantified the relative error between the
carbon assimilation estimates from model as compared to those measured with the TOC analyzer.
The relative error was calculated by Equation 4-13,

Xi —Yi 4-13

d.(x.’ ) =2
XYY = 2

where x;, y; are the newly assimilated carbon values between sampling points as defined in Table
4-5.

Table 4-5. Overview of the how the error measurements for each experiment will be obtained.

Sample Sensor Carbon Newly Added Carbon Newly Added Carbon Relative
Point, n (Model) (Model), x (Lab),y Error, d;
0 MC, LC, n/a n/a n/a
1 MC,; LC, x, =MC; — MC, y, =LC, — LC, d,
n MC, LC, X, =MC, —MC,_4 ys =LC, — LC,_4 d,
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4.3.4.1 Sensitivity analysis & key modeling assumptions

Since this model is driven almost entirely by pH measurements, a sensitivity analysis was done to
gauge the model output given possible error in pH measurements. This assessment was performed
by shifting raw pH data by + 0.05 and re-running the model. The total carbon assimilation was
compared with the base case, and the percent difference is compared for all experiments across the
different pH and bicarbonate conditions at points corresponding to sampling times. This sensitivity
analysis was performed after calibrating the DIC diffusion model for the base case (i.e., no pH

shift).

Furthermore, Table 4-6 outlines an overview of key assumptions made for each stage of this
method, along with method decisions associated with these assumptions.

Table 4-6. Overview of key modeling assumptions.

Data Collection &
Processing:

Chemical Model &
Diffusion Model

The pH sensor probe does not drift over the course of the experiments and if it does, the magnitude of
drift has negligible impacts on the overall model outcome.

The CO2 in headspace does not accumulate in the PBR over time. The CO2 headspace concentration will

increase and fall close to a baseline value after CO2 injection. The data before the CO2 reaches this
baseline will not be analyzed to ensure appropriate background rate estimates.

The main components, as highlighted in Table 4-3, are most important to consider for estimating the
DIC in the system.

Solid formation does not occur.

The temperature is assumed to be maintained around 25°C.

Evaporation does not occur at a scale to impact chemical compositions.

The error associated with the pH-to-DIC interpolation is negligible.

Organics or other biological components released into the media will not alter the pH over time.

The baseline CO: headspace value will sufficiently capture the DIC*, such that the gradient in DIC is
accurately applied to diffusion model.

KL does not change with the change in mixing intensity within PBR due to the volume removal over
course of experiment.

Biofilm formation or other biological material on the air-liquid interface of the culture does not impact
the mass transfer over time.

The main components, as highlighted in Table 4-3, are most important to consider for estimating the
DIC in the system.

Bacterial contamination or growth will minimal and captured with this method, i.e., contamination will
be indirectly accounted for by a reduction of the net carbon uptake rate via respiration.
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4.4 Conclusions, future work, & limitations

Overall, these pH-sensor based measurements gave qualitatively comparable growth trends as
compared to both the TOC analyzer estimates and cell counts (Figure 4-2 - Figure 4-4).
Furthermore, this sensor-based TOC estimates were consistently around 1.5x higher than TOC
analyzer estimates based on the suspended portions of the four algal cultures grown at pH ~7.5
and 5-14 mM HCOs". The strong linear relationship that persisted throughout cultivation process
(Figure 4-7)—despite the metabolic differences in the cultures that likely arose due to different
initial nitrogen concentrations (2.5 vs 5.0 mM NOs)—suggests that even with the complex
biological and chemical reactions involved during microalgal growth, pH electrodes can be used
as powerful tool for advancing our understanding of microalgae.

The direction of future work for this method is largely based on the scope of the intended
applications. For example, if attempting to estimate the TOC contained in the algal biomass, the
linearity between the two methods (Figure 4-7) shows that this sensor approach could be calibrated
with the analyzer-based TOC measurements to estimate the carbon content of the suspended
microalgae. However, this lab-to-sensor calibration approach will underestimate the true carbon
assimilated during photosynthesis if the dissolved organic carbon of the media is not included.
Additionally, since this particular microalga showed high volatility of its assimilated carbon
products (Figure 4-9), investigations into the volatility of the excreted dissolved products would
allow for better comparisons between these measurements. Using a TOC analyzer capable of
analyzing highly ionic samples would improve the accuracy of lab-based method since the bulk
samples (i.e., cells and media) could be analyzed together. This approach would 1) account for
dissolved organics in the media and 2) potentially reduce the loss of internal volatile components
that are released from the cells during the centrifugation and/or freshwater dilution processes.

Furthermore, continued validation of this method at higher pH and bicarbonate concentrations
would allow for more impactful studies when attempting to understand the impact of inorganic
carbon concentrations on growth. While the results from the experiments here showed relatively
similar TOC rates and concentrations estimates for the two experiments conducted at higher pH,
HCOg3 concentrations as compared to the other four (Figure 4-2, Figure 4-5), the changes in
chemical equilibrium associated with higher pH and bicarbonate concentrations (e.g., an increased
potential for carbonate solid formation) merit more validation with the lab-based TOC analyzer
approach.

A more thorough sensitivity assessment of this approach involving the chemical equilibrium and
diffusion equations—as well as the numerical implementation of these equations—would give
strategic insights into the implementation of this method and a better understanding into which
application its suitable. For example, under ideal conditions, microalgae should primarily drive
changes in DIC within the system; if the rate of CO loss from diffusion is high relative to the
impacts of the microalgae, the error in TOC estimates could become high, especially if the
uncertainty around the diffusion rates is also high or not well defined. This type of analysis,
combined with knowledge of other system parameters, can inform whether the implementation of
this approach outside the described PBR conditions is feasible, e.g., an open raceway pond or other
full-scale cultivation systems. Real-time knowledge of the health of the cultures would help inform
cultivation and harvesting decisions, such as nutrient addition or harvesting frequency, and
improve efficiencies involved with full-scale production.
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Regardless of future improvements, the results from this pH-sensor approach warrant excitement
for future applications. This approach provides more resolution and flexibility than lab-based
metrics, which can elucidate potential shifts in metabolic behavior, and allows for more targeted
experiments. Through these rigorous validation efforts, this research suggests that—despite the
multiple physical and chemical relationships that govern the relationships between pH and carbon
flows—pH measurements in a continuously pH-controlled system provide a relatively inexpensive
tool to gain high-resolution insight into the carbon flows within an algal culturing environment.
This tool, when used appropriately, can be used to both study and manipulate microalgal growth
for full-scale biorefinery applications.
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CHAPTER 5: CLOSING REMARKS & A COMMENT ON SIGNIFICANCE

To our knowledge, this research is the first to use pH data as a means for directly estimating
microalgal growth based on carbon-induced changes to pH. On-line methods such as these could
prove critical to unraveling some of the complex behavior observed in microalgae that has made
studying and modeling their growth so challenging. This approach has wide range applications,
from a new tool for studying, understanding, and modeling algal growth at the bench scale to
integration into cultivation monitoring systems at larger scales. Below briefly showcases how this
approach can be combined with light system controls and monitoring to better understand the
photosynthetic and metabolic activity of a microalgal culture.

5.1 An overview of potential future applications

The design of this approach also offers unique advantages. The algal carbon uptake rate that is
estimated in an illuminated PBR reflects the net carbon uptake rate, r4;yqe nee, Since the microalgal

cells respire and will release a portion of the carbon fixed during photosynthesis as CO> (Equation
5-1).

Talgaenet = Tphoto — Tresp 5-1

By turning the light off for brief periods of time in between CO; injections, the respiration rates of
the culture, r,.s,, can be estimated since the photosynthetic uptake rate, r,u., , halts under dark
conditions, i.e., myner, = 0. Combining carbon uptake rates in a light-illuminated PBR (i.e., 7454¢ net)
with rates estimated from a dark PBR (i.e., 7.,) provides an opportunity to estimate r,,., using
Equation 5-1.

Figure 5-1 below gives an illustrative example of how this approach can be used to estimate
respiration rates and photosynthetic rates by analyzing inorganic carbon flows in the PBR under
different illumination conditions as described in Chapter 4.

66



Iv.

Figure 5-1. lllustrative example highlighting the various carbon flows that can be estimated with this pH sensor
method, i.e., net algal carbon uptake estimated under PBR illumination (A), algal respiration rates estimated
from brief periods of darkness (B), and gross photosynthetic rates estimated by combining net and dark
measurements (C). Rows represent bicarbonate concentrations, i.e., I.) 5.0 mM NaHCOs; 11.) 10.0 mM NaHCOs;
111.) 13.4 mM NaHCOg; IV.) 38 mM NaHCOs. Colors represent different experimental sets. *The initial light
condition for Set C-R2 was ~30% of the initial irradiance as compared to other sets. Black column headers
represent estimates made under either light on OR light off conditions. Purple column header represents an
estimate made using both these data sets from around same experimental time. Data gaps for B-R1, B-R2
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coincides with a constantly-illuminated PBR (i.e., times with no ‘light off’ cycling).

67



These sensor-based estimates for photosynthesis and respiration can be used to study more in-
depth carbon flows within the cells. Simplified growth models that only track certain cell
properties, such as simple sugars, lipids, and functional biomass (e.g., proteins, DNA/RNA), can
vastly benefit from tracking two of the arguably most important properties within an algal culture:
carbon and light. A simple visual model as shown Figure 5-2 intends to highlight how multiple
internal reaction will ultimately dictate the net carbon flows as microalgae grow.

Nutrients

Figure 5-2. Simple graphical illustration showing the multiple processes within a cell that influence
carbon flows, and how these processes are interconnected.

While there are multiple sub-processes that will lead to a release of CO2 from the cell via
respiration, photosynthesis is the primary driving force behind inorganic-to-carbon fixation.
Understanding how efficiently microalgae are able to capture and utilize light to produce carbon
is a critical step in understanding the maximum potential of these microorganisms. Furthermore,
quantifying the total fraction of fixed carbon being utilized for respiration can aid in developing
and calibrating models that consider multiple subprocesses. Figure 5-3 (Column B) shows the
carbon flows allocated to respiration relative to photosynthetic activity.
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Figure 5-3. Illlustrative example highlighting metabolic relations that can be estimated using this on-line
approach, i.e., gross photosynthetic carbon assimilation rate (A), respiration relative to gross photosynthetic
rate (B), and gross photosynthetic carbon uptake rate per absorbance (C). Rows represent bicarbonate
concentrations, i.e., 1.) 5.0 mM NaHCOg; I1.) 10.0 mM NaHCOQOsg; 111.) 13.4 mM NaHCQOg; 1V.) 38 mM
NaHCO3. Colors represent different experimental sets. *The initial light condition for Set C-R2 was ~30%
of the initial irradiance as compared to other sets. Purple column header represents an estimate made using
both these data sets from around same experimental time. Pink column header represents estimates made
using a combination of sensor data under light and dark conditions AND online light data under illumination
conditions. Data gaps for B-R1, B-R2 coincides with a constantly-illuminated PBR (i.e., times with no
‘light off* cycling).
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By combining light absorption as described in Chapter 3 with this pH-to-carbon approach,
researchers can gain more insight into how light interacts with the carbon fixation process during
photosynthesis (Figure 5-3, Column C). Combining absorbance data with photosynthetic carbon
uptake rates in a more rigorous fashion can allow for the parameterization of key photosynthetic
parameters and delicate light studies.

5.2 Conclusions and closing remarks

On-line technology for monitoring algal growth in cultivation systems should be encouraged, as
should research that focuses on properly validating and the appropriate use of these methods.
Better techniques for monitoring algal growth provides the opportunity for more creative and
intricately designed experiments that can quickly identify points of interest where further lab-based
techniques, including proteomic and genetic analysis, can be applied to gain deeper insights into
the metabolic processes that drive these truly incredible microorganisms

New sensor-based technology brings a new level of excitement and responsibility to researchers
utilizing their applications. Theoretical principles and equations in biology and chemistry are
relatively easy to apply, but real-world systems rarely behave ideally. Thorough validation and
the characterization of novel methods such as those developed in this research should be
celebrated as much as the discoveries they may bring.
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Table 6-1. List of PBR sensors and components used in experimental setup.

Name

SUPPLMENTAL INFORMATION

Source (with weblinks)

Data Acquisition Unit
Control Switch Board
Data Acquisition
Software

pH sensor

CO; Mass Flow Meter
NDIR Sensor 10%*

Temperature probe
Stainless Steel Solenoid
Valve for CO; input

1-lpm air pump

Relay Board

DC Switching Modules
pH sensor signal
conditioning

CO, Bone Dry 200 CGA
320

LabJack U6 (2014)
LabJack Terminal Board

DAQFactory & GasLab

Hamilton EasyFerm120 pH Electrode
TopTrak® 822/824 CO2 Mass Flow Meters
CO2meter.com

LabJack 1034-temperature-probe (2014, 2016)

McMaster

Ebay
http://labjack.com/support/rb12/datasheet

Digi-Key (DC GH3040-ND 5VDC)

http://www.omega.com/pptst/PHTX21.html

AirGas
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http://labjack.com/u6
http://labjack.com/catalog/cb37-terminal-board-rev-21
http://www.vernier.com/products/sensors/ph-sensors/ph-bta/
http://www.sierrainstruments.com/products/822.html
http://www.co2meter.com/collections/co2-sensors/products/k-30-3-co2-sensor
http://labjack.com/catalog/ei1034-temperature-probe
http://www.mcmaster.com/
http://www.ebay.com/itm/NEW-KNF-NEUBERGER-5V-DC-MICRO-DIAPHRAGM-GAS-SAMPLING-PUMP-NMP015-6-09-Rev-7-/221577728007?pt=BI_Pumps&hash=item33970fd007
http://www.omega.com/pptst/PHTX21.html

Table 6-2. pH calibration information and logging frequency for experiments. For A, B, C, D
experiments, more heavily buffered seed cultures were added to PBR media that resulted in shifts in
overall NaHCO3 concentrations.

Exp.
Logging
Experiment  pH Probes HCOs  Frequency
Name Calibration Phase (mmol) (#/min) Notes
A-R1 Post Background 10 1
Algae 134 2
A-R2 Post Background 5 1
Algae 10 2
B-R1 Pre/Post Background 5 2
Algae 2
B-R2 Pre/Post Background 10 2
Algae 10 2
C-R1 Pre/Post Background 37.55 1
Algae 38.55 1 Set not included in analysis due to light failure
C-R2 Pre/Post Background 37.55 1
Algae 38.55 1
D-R1 Pre/Post Background 37.55 1 Set not included in analysis due to contamination
Algae 38.55 1
D-R2 Pre/Post Background 37.55 1
Algae 38.55 1
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Experiment Reference
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Figure 6-1. Raw sensor output from the four primary validation experiments (Sets A, B). The time on
these axes represent time since inoculation and NOT the time since sampling as reflected in earlier
graphs. The white arrows represent point of inoculation and black is start of sampling. Columns show the
four different experimental sets and rows shows the light, pH, CO; in headspace, and temperature within
the PBRs throughout experiments. Darker shade represents higher frequency of samples fell within that x-
y coordinate range. Note, the darker green shades noted near zero for the light data indicate then the light
was turned off based on the light schemes described in section 2.2.3.



€02 injections: 331 CO2 injections: 79 pH increase rate: 6.2839 pH/days
Flow A from Last Injection: 0.083 |
Reactor i1 Time: 06/03/21 17:35:53 pH setpoint high: 7.600 o Avetage from tast Tnjection: A5 pm
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Figure 6-2. Example of the DAQFactory software page built for monitoring experiments.
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calibration over various time periods, showing stability of pH probes
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