
 

 

ABSTRACT 

 

 

KARAM, AMANDA LOUISE. Developing and Validating Novel On-line Methods for 

Quantifying Microalgal Growth in Photobioreactors. (Under the direction of Dr. Joel Ducoste & 

Dr. Francis de los Reyes III). 

 

 

 Microalgae have long been recognized as a potential biofuel feedstock with interests for 

this purpose exploding in recent decades alongside the rising concerns of global warming. Overall, 

microalgal cultivation still lacks the volumetric productivity and efficiency necessary to make the 

algae-to-biofuel production process economically attractive. Further investigation and validation 

of on-line methods for quantifying microalgal growth in bench-scale experiments could lead to 

more strategic and insightful experiments that will help optimize algal bioreactors. This research 

describes the validation of two novel in-situ methods for quantifying microalgal growth using 

custom constructed photobioreactor (PBR) equipped with on-line data acquisition and controls.  

The first part of the dissertation describes the assembly and operation of this bench-scale 

PBR that continuously monitors pH, light, and temperature. This system was constructed for 

precise pH control using custom-programmable scripts that controlled CO2 into the system based 

on chemical equilibrium models.  

The second part of this work describes an approach for estimating biomass using light 

sensor measurements. This work first involved the characterization of light in microalgal 

cultivation vessels, then rigorously evaluated which biocomponents (total biomass, cells, and chl 

a etc.) served as the best predictors for light attenuation. Results showed that Beer-Lambert’s law 

predicted photosynthetic light attenuation well when both biomass and chlorophyll a were 

considered as distinct attenuating components, providing light and biomass estimates with around 

6% and 12% average error, respectively, compared to those from experimentally measured data.  



 

 

Finally, a novel on-line approach developed using continuous pH measurements within a 

pH-controlled PBR provided relatively simple experimental assay for obtaining high-resolution 

data on the microalgae’s organic carbon growth based on inorganic carbon flows. This approach 

showed qualitative agreement to lab-based grab sample measurement assays for total organic 

carbon and cell counts across various nitrogen (2.5 – 5.0 mM KNO3) and bicarbonate conditions 

(5.0 to 40 HCO3
-mM).  Furthermore, this carbon-tracking approach showed a strong linear 

relationship (R2= 0.98) when compared to the lab-measured total organic carbon of the suspended 

microalgae. More specifically, the TOC measured in suspended solids portion of algal culture was 

consistently around 60% of the sensor-based estimates.  

Advancing microalgal-based biofuels towards sustainability requires a delicate 

understanding of the biological, physical, and chemical reaction mechanisms during cultivation. 

These novel on-line methods give relatively simple, yet powerful, tools for better assessing 

microalgal growth in real time in a custom-built photobioreactor, and they can aid researchers in 

improving our understanding of algae mechanisms to optimize bioproducts.  
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1 CHAPTER 1: MOTIVATION & BACKGROUND 

1.1 Motivation  

Microalgae have long been recognized as a potential biofuel feedstock, and interest in them for 

this purpose has exploded in recent decades alongside the rising concerns of global warming1. 

Unlike first-generation biofuels based on land plants (e.g., corn and soybeans), algae-based 

biofuels divert fewer resources away from the food, land, and water supply since the algae can be 

cultivated year-round on barren land using saltwater or wastewater as the liquid media2,3. 

Microalgae are also known for their high growth rates – surpassing the productivity of even the 

fastest growing terrestrial crops – and their ability to accumulate high levels of neutral lipid energy 

storage compounds4–6. 

Overall, microalgal cultivation still lacks the volumetric productivity and efficiency necessary to 

make the algae-to-biofuel production process economically attractive7. Thus, a major research 

focus has been on optimizing this cultivation process, which requires collaborative efforts that 

combine knowledge and modeling of microalgal growth and lipid production as well as 

environmental process engineering and life cycle assessment. Accurately modeling microalgal 

growth is crucial for developing economical full-scale operations and requires a fundamental 

understanding of the relevant biological processes, and how these processes interact with the 

culturing environment. Microalgae are incredibly adaptive and dynamic organisms that are able to 

grow and thrive in constantly fluctuating environments8–12. This fluctuating growth environment, 

and the microalgae’s ability to quickly respond to such environment, makes both studying and 

modeling microalgae challenging. As the research in this area has advanced, methods for 

controlling algal cultures and modeling their growth have evolved; models have often become 

more complex as researchers attempt to refine traditional modeling approaches to more accurately 

capture microalgal growth 13,14. However, despite increased research efforts, a unifying approach 

on best practices for modeling microalgal growth has yet to emerge. For example, a recent review 

by Darvehei (2018) listed 27 different approaches for describing the impact of light on algal growth 

and 17 different approaches for quantifying the impact of nutrients on algal growth14. While many 

of these models share overarching themes, e.g., many using Monod-type kinetic equations to 

describe how specific growth rates vary with substrate concentration, there is still a noteworthy 

lack of convergence between modeling approaches. Many challenges still faced with modeling 

should warrant reflection and a call for further collaboration between engineers and scientists 

to develop better methods for probing the underlying mechanisms that drive these primary 

producers. Crucial details necessary to grasp how microalgae operate, both as individual cells and 

as communities, could be overlooked due to the nature of the traditional approaches used when 

studying these highly dynamic organisms, i.e., the large amount of time and volume needed for 

quantifying biomass reduces sampling frequency. On-line growth quantification can lead to more 

rapid and refined experimentations with less culture disturbances from sample collection and 

system perturbations that may follow.  

Further investigation and validation of on-line experimental methods for quantifying microalgal 

growth in bench-scale setups could lead to novel strategic and illuminating experiments that help 

us understand these organisms more thoroughly. This research dissertation highlights the 

development and validation of two novel in-situ methods for quantifying microalgal growth 

using a custom-built photobioreactor (PBR) equipped with live data acquisition and controls. 

These methods are validated using the marine halotolerant microalga Dunaliella viridis.  
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1.2 Relevant Background  

Microalgae absorb light energy and consume inorganic carbon, e.g., CO2, to synthesize glucose 

during photosynthesis (Equation 1-1). This process, in which dissolved CO2 is removed from the 

liquid media, drives the pH upwards (Equation 1-2 - 1-3).   

 

 6 𝐶𝑂2 + 6𝐻2𝑂 + 𝑙𝑖𝑔ℎ𝑡 → 𝐶6𝐻12𝑂6 + 6𝑂2 1-1 

 

 𝑝𝐶𝑂2(𝑔) ↔  𝐶𝑂2(𝑎𝑞) ↔ {H2CO3}(aq) ↔ {𝐻}+ + {𝐻𝐶𝑂3
−1}(𝑎𝑞) ↔ {𝐻+} + {𝐶𝑂3

2−}(𝑎𝑞)  1-2 

 

 𝑝𝐻 =  − log[{H+}] 1-3 

 

The pH increase rate will depend on not only the health and concentration of the microalgae, but 

also many abiotic factors including the composition of the water, specifically the carbonate 

buffering capacity, the CO2 in the solution, and the associated rate and kinetic parameters that 

dictate the mass transport of carbon at the gas-liquid interface. Furthermore, microalgae 

absorb/scatter light, which leads to light attenuation and spatial distributions that affect their 

growth environment.   

Light and carbon are two critical culture properties that change dynamically as microalgal grow to 

the densities required for full-scale biofuel-based cultivation. Advances in sensor technology that 

monitor and control these dynamic systems, along with an increase in sensor accessibility, have 

opened new potential pathways to discovery for scientists researching these oxygenic 

photosynthetic organisms. 

 

1.2.1 Use of O2, pH, CO2 sensors for studying microalgae  

Plant and micro- biologists have long used oxygen sensors as a tool for assessing photosynthetic 

and respiratory activity in algae.  These types of measurements are often performed over relatively 

short time periods using closed-chambered apparatuses that can measure oxygen exchange, light, 

and absorbance in small sample volumes (< 5 mL)15. Much of the data collected from these types 

of experiments have formed the basis of many current photosynthetic models used in engineering 

applications that attempt to model and optimize algal growth16–19.  Many of these same measuring 

principles can be applied to monitor microalgal growth over longer time scales in larger bench- 

and pilot-scale applications.  

Measuring gas production or consumption in microalgal cultures over longer time scales and larger 

volumes as compared to the physiological studies described above, however, is complicated as the 

mass transfer of O2 and CO2 between the gas and liquid phases must be considered more 

rigorously, in addition to the chemical and biological processes that can potentially affect these 

transfer rates. Even still, using oxygen production measurements as a means for studying 
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microalgal growth has been used for decades. In fact, in open raceway pond experiments conducted 

in the late 1980s, dissolved oxygen (DO) electrodes were relatively successful at estimating bulk 

biomass within 15% on average by measuring the oxygen evolution rate20. This method involved 

periodically bubbling air into the algal ponds every few hours and monitoring the oxygen increase 

rates thereafter. After accounting for gaseous exchange with the atmosphere, these oxygen 

production rates were related to biomass production by assuming a constant conversion.21  

More recently, oxygen probes have also been extensively used for growth modeling purposes in 

ways that range from calibrating models with raw DO concentrations data22 to using these 

measurements as a means of estimating biomass23. These on-line DO sensors also allow for 

dynamic experiments and have been used in attempts to model the photosynthetic response of 

Scenedesmus obtusiusculus after experiencing abrupt changes in light intensity24. Headspace gas 

analyzers, for both O2 and CO2, are also employed in creative ways to quantify photosynthetic 

activity and growth in airtight culturing systems. For example, using a CO2/O2 gas analyzer, 

Kliphuis et al. (2010) estimated the photosynthetic quotient (PQ), i.e., the molar ratio between the 

oxygen production rate (OPR) and carbon uptake rate (CUR) and assessed the overall' 

photosynthetic productivity of Chlorella sorokiniana algae under different light intensities and 

mixing regimes by measuring changes in the off-gas concentrations as compared to the 

continuously bubbled input gas concentration (2% CO2 enriched N2). Furthermore, in an attempt 

to quantify ‘light’ respiration rates, Kliphuis et al. (2011) modified their setup with the ability to 

remove small subsamples through a dark tube where an oxygen microsensor measured oxygen 

uptake rates25. This modification was needed since respiration rates will decline rapidly after algal 

cultures are subjected to darkness (on the order of minutes), and their current setup did not allow 

for this type of monitoring resolution.  For example, D. tertiolecta ‘light’ respiration rates have 

been shown to decrease down to steady-state ‘dark’ baseline rates within an hour after exposure to 

darkness26.  

On-line gas measurements, both dissolved and gaseous, provide invaluable information for those 

studying and modeling these photosynthetic microbes. Historically DO measurements have been 

more commonly utilized in microalgal experiments as compared to gaseous O2/CO2 measurements 

or dissolved CO2. Estimating the OPR or CUR of cultures directly via gas sensors requires a 

sophisticated airtight setup to allow for quick and reliable gas exchange measurements. Measuring 

the dissolved CO2 has only recently been feasible with newer membrane technology, and still 

requires special consideration of the chemical reactions involved with carbonate species. While 

more commonly implemented in experimental setups, DO probes still have limitations. DO 

electrodes are still relatively expensive as compared to pH electrodes, which do not require special 

membranes. In addition, certain types of electrodes consume oxygen as part of the measuring 

process, limiting their measurement accuracy, response time, and applicability27. Moreover, since 

oxygen is a byproduct of photosynthesis, relating oxygen production to biomass production 

requires further assumptions about the photosynthetic quotient if the carbon uptake rates are not 

also measured. In experiments that have tracked both OPR and CUR, PQ is shown to vary between 

1-1.5, and will depend on the nitrogen source and the oxidation state of the biomass produced (i.e., 

lipids are more reduced than proteins)28,29.  
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1.2.2 Use of pH electrodes in microalgal cultures 

pH electrodes are arguably the most commonly used on-line sensor in bench-scale PBRs. These 

inexpensive probes can be used to monitor and control the pH, which is often done with CO2 

injection. And while dissolved oxygen electrodes are still more commonly used to estimate 

photosynthetic activity and growth with microalgae, there has been an increase interest in 

implementing pH data into growth models in ways to help define the carbon flows within an algal 

culturing environment30,31.  

To fully capture the state of the carbon within a system—including the total dissolved inorganic 

carbon (DIC) and the distribution of carbon species—more than just the pH must be considered. 

However, tracking the total carbon is possible using various approaches that combine lab-based 

measurements with chemical equilibrium models. If the pH and the activity of the dissolved CO2, 

i.e. {H2CO3
*}, are known, then the DIC concentration, 𝑚𝐷𝐼𝐶, can be theoretically calculated using 

equilibrium constants for carbonic acid K1, K2 and knowledge of the relevant activity coefficients 

𝛾. These relations are shown by Equations 1-4 through 1-7.  Note, since carbonic acid is nearly 

indistinguishable from dissolved CO2 in solution, they are often lumped together and referred to 

as H2CO3
*. 

 

 {H+} = 10−pH  1-4 

 

 mDIC = mH2CO3
∗ + mHCO3

− + mCO3
2− 1-5 

 

 
mx =

{x}

γx
  

1-6 

 

 

DIC = {H2CO3
∗ } [

1

γH2CO3
∗

+

K1
{H+}

γHCO3
−

+ 

K1K2

{H+}2

γCO3
2−

] 
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Filali et al. (2011) utilized this concept to experimentally measure DIC when performing growth 

experiments in an air-lift PBR used for modeling Chlorella vulgaris. Since Chlorella is a 

freshwater species, the largely salt-dependent activity coefficients are assumed to equal one, thus, 

simplifying this approach for estimating DIC from dissolved CO2 measurements. DIC is then 

tracked as a state variable in this model (Equation 1-8), where it is dependent on 1) the microalgal 

growth rate 𝜇, 2) microalgal biomass concentration X, 3) a carbon-to-biomass conversion 

coefficient 𝑀𝑥, and 4) the mass transfer rate of CO2 into solution NCO2, since CO2 is continuously 

bubbled into the PBR.  

 

 𝑑[𝐷𝐼𝐶]

𝑑𝑡
= −𝜇 (

𝑋

𝑀𝑥
) + 𝑁𝐶𝑂2

 
1-8 
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Using a similar concept as shown in Equation 1-8, Titica et al. (2014) formulates a dynamic pH 

model for autotrophic growth of the microalgae marine Chlamydomonas reinhardtii30. This 

approach is different, however, in that an algal growth model is combined with a chemical and 

thermodynamic model to estimate pH. In this salt-water system, since the dissolved CO2 is not 

measured, additional constraints involving the mass and charge balance of the chemical system 

must be considered to fully define the DIC. As such, the activity coefficients also must be 

estimated. 

To our knowledge, pH has not been used in a method for assessing growth directly by relating this 

property to the DIC outside a growth modeling context where microalgal growth parameters could 

impact carbon flow estimates. While the concepts behind these approaches are similar, the direct 

approach does not depend on any estimate of the microbial growth rate. This differentiation is key 

because it allows for many of the built-in assumptions used in the previous work when relating pH 

to DIC to be tested directly and rigorously validated. Thus overall, there is more of an emphasis 

on directly modeling the inorganic-to-organic carbon flows, and less on modeling microalgal 

growth with respect to light and nutrients, etc. as done in previous work as part of fitting growth 

parameters that affect DIC estimates. 

This research uses pH as a tool for tracking carbon flows within a PBR and estimating the total 

carbon assimilated by microalgae by relating pH to the carbon removed from a marine microalgal 

culturing system. The pH in such a system, and the rate at which the pH in this system changes 

under various forcings, i.e., microalgal growth, diffusion of CO2 between the liquid and gaseous 

phases (Figure 1-1), will depend on many factors, such as salinity, buffering capacity, etc.   
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Figure 1-1. Simplified overview of the governing relations that dictate the inorganic-to-organic 

carbon flows within a typical bench scale microalgal photobioreactor with pH controlled via CO2 

injection. 

 

This research seeks to answers whether the following: 1) pH data can be used with a 

thermochemical equilibrium to reliably estimate DIC within culturing mediums commonly used 

to grow marine algae, and 2) can this pH-to-DIC data, if combined with a diffusion model, led to 

accurate estimates of the inorganic-to-organic carbon flow within a bioreactor that is cultivating 

microalgae.  

 

1.3 Research overview  

The overall goal of this research was to develop and validate on-line methods to estimate biomass 

and carbon assimilation rates of the marine microalgae Dunaliella viridis during algae cultivation. 

These methods rest on the following hypotheses:  

Key Hypothesis 1 (KH1): Chlorophyll and non-chlorophyll biomass are key light-absorbing 

biocomponents within an algal PBR, and concentrations of both are needed to accurately estimate 

light attenuation in a flat-plate PBR.  

Key Hypothesis 2 (KH2): Microalgal biomass concentrations can be estimated, given the light 

attenuation absorption coefficients, and chlorophyll concentration.  
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Key Hypothesis 3 (KH3): pH combined with chemical equilibrium thermodynamic models are 

sufficient to assess the total dissolved inorganic carbon concentrations within a batch ~3-L, well-

mixed and controlled microalgal PBR.  

Key Hypothesis 4 (KH4): The combined pH measurement data and chemical equilibrium 

thermodynamic model can serve as an on-line growth assessment tool within a pH-controlled 

bioreactor.  

These above hypotheses required the following task completions: 

Task 1: Design and construct a bench-scale photobioreactor with pH control and live data 

acquisition and monitoring [Chapter 2]. 

Task 2: Perform experimental tests to evaluate important pigment and non-pigmented components 

in dynamic light characterization and biomass growth [Chapter 3]. 

Task 3A: Develop a model that includes both an equilibrium sub-model and carbon mass transfer 

by diffusion relationship to relate the pH to total dissolved inorganic carbon during microalgal 

cultivation. [Chapter 4] 

Task 3B: Validate the proposed carbon estimation method by performing experiments over a 

range of salt, pH, dissolved CO2 concentrations, and microalgal concentrations.  [Chapter 4] 

 

This dissertation showcases two sensor-based approaches for estimating microalgal growth in real 

time. On-line methods such as these could prove critical to unraveling some of the complex 

behavior observed in microalgae that has made studying and modeling their growth so challenging.  
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2 CHAPTER 2: CONSTRUCTION AND SETUP OF A BENCH-SCALE ALGAL 

PHOTOSYNTHETIC BIOREACTOR WITH TEMPERATURE, LIGHT, AND PH 

MONITORING FOR KINETIC GROWTH TESTS. 

 

See the attached paper published in The Journal of Visualized Experiments (JoVE) in 2017.  
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3 CHAPTER 3: CHLOROPHYLL A AND NON-PIGMENTED BIOMASS ARE 

SUFFICIENT PREDICTORS FOR ESTIMATING LIGHT ATTENUATION DURING 

CULTIVATION OF DUNALIELLA VIRIDIS. 

 

See the following attached paper published in journal Algal Research in 2021.  
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4 CHAPTER 4: CONTINUOUS pH CONTROL AND MONITORING AS AN ON-LINE 

TOOL FOR ASSESSING MARINE MICROALGA DUNALIELLA VIRIDIS 

CULTIVIATION GROWTH AND CARBON ASSIMILATION. 

4.1 Introduction and Overview  

4.1.1 Background 

As microalgae absorb light for energy, they produce oxygen gas (O2) and consume carbon dioxide 

(CO2). Plant and micro- biologists have long used oxygen sensors as a tool for assessing 

photosynthetic and respiratory activity in algae. These types of measurements are often performed 

over relatively short time periods using close-chambered apparatuses that can measure oxygen 

exchange, light, and absorbance of small sample volumes15. Much of the data collected from these 

types of experiments have formed the basis of many current photosynthetic models used in 

engineering applications that attempt to model and optimize algal growth16–19.  Many of these same 

measurement principles can be applied to monitor microalgal growth over longer time scales in 

larger bench- and pilot-scale applications.  

Measuring gas production or consumption in microalgal cultures over longer time scales and larger 

volumes, however, is complicated as the mass transfer of O2 and CO2 between the gas and liquid 

phase must be considered, in addition to the chemical and biological processes that can potentially 

impact these transfer rates. Nonetheless, on-line gas measurements, both dissolved and gaseous, 

provide invaluable information for those studying and modeling these photosynthetic microbes. 

Historically, DO measurements have been more commonly utilized in microalgal experiments as 

compared to gaseous O2/CO2 measurements or dissolved CO2. Estimating the oxygen production 

rate (OPR) and carbon uptake rate (CUR) of cultures directly via gas sensors requires a 

sophisticated airtight setup to allow for quick and reliable gas exchange measurements. Measuring 

the dissolved CO2 has only recently been feasible with newer membrane technology, and still 

requires special consideration of the chemical reactions involved with carbonate species. While 

more commonly implemented in experimental setups, DO probes still have limitations. DO 

electrodes are relatively expensive as compared to pH electrodes, which do not require special 

membranes. In addition, certain types of electrodes consume oxygen as part of the measuring 

process, limiting their measurement accuracy, response time, and applicability27,28,29.  

pH electrodes are arguably the most commonly used on-line sensor in bench-scale PBRs. These 

inexpensive probes are used to monitor and control the pH, which is often done with CO2 injection. 

While dissolved oxygen electrodes are still more commonly used to estimate photosynthetic 

activity and growth with microalgae, there has been an increase interest in implementing pH data 

into growth models in ways to help define the carbon flows within an algal culturing 

environment30,31.  

As also described in Chapter 1, to fully capture the state of the carbon within a system—including 

the total dissolved inorganic carbon (DIC) and the distribution of carbon species—more than just 

the pH must be considered. However, tracking the total carbon is possible using various 

approaches that combine lab-based measurements with chemical equilibrium models. If the pH 

and the activity of the dissolved CO2, i.e. {H2CO3
*}, are known, then the DIC concentration, 𝑚𝐷𝐼𝐶, 

can be theoretically calculated using equilibrium constants for carbonic acid K1, K2 and knowledge 

of the relevant activity coefficients 𝛾. These relations are shown by Equations 4-1 through 4-4  
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where carbonic acid is referred to as H2CO3
* since it is difficult to distinguish dissolved CO2 in 

solution and are lumped together.  

 

 {𝐻+} = 10−𝑝𝐻 4-1 

 

 𝑚𝐷𝐼𝐶 = 𝑚𝐻2𝐶𝑂3
∗ + 𝑚𝐻𝐶𝑂3

− + 𝑚𝐶𝑂3
2−  4-2 

 

 
𝑚𝑥 =

{𝑥}

𝛾x
 4-3 

 

 
𝐷𝐼𝐶 = {𝐻2𝐶𝑂3

∗} [
1

𝛾𝐻2𝐶𝑂3
∗

+

𝐾1
{𝐻+}

𝛾𝐻𝐶𝑂3
−

+ 

𝐾1𝐾2

{𝐻+}2

𝛾𝐶𝑂3
2−

] 4-4 

 

Filali et al. (2011) utilized this concept to experimentally measure DIC when performing growth 

experiments in an air-lift PBR used for modeling Chlorella vulgaris. Since Chlorella is a 

freshwater species, the largely salt-dependent activity coefficients are assumed to equal one, thus, 

simplifying this approach for estimating DIC from dissolved CO2 measurements. DIC is then 

tracked as a state variable in this model (Equation 4-5), where it is dependent on 1) the microalgal 

growth rate 𝜇, 2) microalgal biomass concentration X, 3) a carbon-to-biomass conversion 

coefficient 𝑀𝑥, and 4) the mass transfer rate of CO2 into solution NCO2, since CO2 is continuously 

bubbled into the PBR.  

 𝑑[𝐷𝐼𝐶]

𝑑𝑡
= −𝜇 (

𝑋

𝑀𝑥
) + 𝑁𝐶𝑂2
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Using a similar concept as shown in Equation 4-5, Titica et al. (2014) formulates a dynamic pH 

model for autotrophic growth of the microalgae marine Chlamydomonas reinhardtii30. This 

approach is different, however, in that an algal growth model is combined with a chemical and 

thermodynamic model to estimate pH. In this salt-water system, the dissolved CO2 is not measured, 

requiring additional constraints involving the mass and charge balance of the chemical system to 

fully define the DIC.  

To our knowledge, pH has not been used in a method for assessing growth directly by relating this 

property to DIC outside a growth-modeling context, where microalgal growth parameters could 

affect carbon flow estimates. While the concepts behind these approaches are similar, the 

direct approach does not depend on any estimate of the microbial growth rate. This 

differentiation is key because this new approach allows for many of the built-in assumptions 

in the previous work when relating pH to DIC to be tested directly and rigorously validated. 

Therefore, the new approach places a greater emphasis on directly modeling the inorganic-to-

organic carbon flows, and less on modeling microalgal growth with respect to light and nutrients, 

as has been performed in previous work as part of fitting growth parameters that affect DIC 

estimates. 
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4.1.2 Research framework overview  

The PBR used herein is equipped with pH control where the increase in pH can be related to the 

DIC removal rate when combined with a thermochemical equilibrium model. This approach, 

which assumes a quasi-equilibrium pH state between CO2 injections, provides a piece-wise carbon 

estimation approach to determine the DIC removal rate from the culture liquid. Given this 

information and the background loss of carbon into the headspace, and subsequent environment—

which can be quantified experimentally and described by a diffusion transport model—the carbon 

uptake rate of the microalgae can be calculated (Equation 4-6). This biological carbon uptake rate 

is subsequently used to estimate the total organic carbon within the system. Figure 4-1 displays a 

workflow diagram the tested methodology.  

 𝑑𝐷𝐼𝐶

𝑑𝑡
=

𝑑𝐷𝐼𝐶

𝑑𝑡 𝑚𝑖𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑒
+   

𝑑𝐷𝐼𝐶

𝑑𝑡 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
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Figure 4-1. Simplified workflow diagram for proposed method for estimating microalgal carbon 

uptake rates and total inorganic carbon assimilation from continuous pH measurements in a pH-

controlled PBR. 

 

This research tests a novel approach for using pH as a tool for tracking carbon flows within a PBR 

and estimating the total carbon assimilated by microalgae by relating pH to the carbon removed 

from a marine microalgal culturing system. This method involves developing a model that 

included both a chemical equilibrium sub-model and a carbon mass transfer by diffusion 

relationship to relate the pH to total dissolved inorganic carbon during microalgal cultivation 

within a pH-controlled PBR. This method was validated by performing cultivation experiments 

with D. viridis microalgae over a range of conditions, as described in Table 4-1, and comparing 

carbon estimates made using this pH-sensor approach with the lab-based carbon estimates and cell 

counts.  
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Table 4-1. Overview of experimental conditions under which this pH-to-carbon method was 

tested using the marine microalgae D. viridis.   
Set Name pH  Init. NaHCO3 (mM) Init. DIC (mM) Init. KNO3 (mM) Init. Light (PPF) 

A-R1 7.5 13.4 13.4 5 175* 

A-R2 7.5 10 10 5 175* 

B-R1 7.5 5.0 5.0 2.5 200 

B-R2 7.5 10 10 2.5 200 

C-R2 8.13 38 35 3.5 55* 

D-R2 8.13 38 35 5 145 

*These experiments had brief cycles where the light was turned off throughout the experiment.  
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4.2 Results & Discussion 

4.2.1 pH sensor-based TOC estimates agree with other microalgal growth metrics 

In Figure 4-2, the pH sensor-based carbon estimates for the assimilated carbon evaluated over the 

cultivation period show the same overall qualitative growth patterns as seen with the cell counts 

and the measured TOC of the spun cell portions of the microalgae as shown in Figure 4-2. Cell 

counts were over 1.0 x 107 four to five days after cells had reached an initial cell concentration of 

0.20 x106 cells/mL, regardless of the nitrogen or bicarbonate concentrations, although a slower cell 

growth rate for was observed for the lower light condition tested (Figure 4-2, Column C, C-R2).  
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Figure 4-2. Comparison of different growth measurements properties using sensor-based approach for 

estimating TOC (A), lab-based TOC measurements (B), and cell counts (C) over experimental duration 

relative to the sampling start time. Units for the y-axis are noted at the top of each column. Rows represent 

the four bicarbonate concentrations tested, i.e., I.) 5.0 mM NaHCO3; II.) 10.0 mM NaHCO3; III.) 13.4 

mM NaHCO3; IV.) 38 mM NaHCO3. Colors represent different experimental sets, with conditions as 

specified in legend. *The initial light condition for Set C-R2 was ~30% of the initial irradiance as 

compared to other sets, i.e., 55 PPFD as compared to 150-200 PPFD 

 

A comparison of the lab and sensor-based approach for estimating growth rates show similar trends 

(Figure 4-3). The carbon uptake rates as shown in Figure 4-3 show ‘light on’ estimates for carbon 

uptake rate.  While the growth rates are estimated over longer time scales for the lab TOC and cell 

data (given that these measurements were taken once a day, at most) similar trends are observed 
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between the lab measurements and sensor-based growth estimates for carbon across the four 

bicarbonate conditions tested (Figure 4-3). 

 

Figure 4-3. Growth rate estimates using the pH-to-carbon sensor approach (A), lab-based TOC carbon 

measurements (B), and cell counts (C) over the experimental duration. Units for the y-axis are noted at 

the top of each column. Rows represent the four bicarbonate concentrations tested, i.e., I.) 5.0 mM 

NaHCO3; II.) 10.0 mM NaHCO3; III.) 13.4 mM NaHCO3; IV.) 38 mM NaHCO3. *The initial light 

condition for Set C-R2 was ~30% of the initial irradiance as compared to other sets, i.e., 55 PPFD as 

compared to 150-200 PPFD. Note, carbon uptake rates for sensor estimates show only light ON conditions. 

‘n/m’ indicates not measured. Error bars for lab-based measurements represent standard error. 
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Comparison of the specific growth rates (Figure 4-4) across these three metrics displays both 

qualitative agreement in trends and quantitative agreement with respect to specific growth rates 

between the sensor-based estimates and the lab data.  

 

Figure 4-4. Specific growth rate estimates using the pH-to-carbon sensor approach (A), lab-based carbon 

measurements TOC (B), and cell counts (C) over the experimental duration (time relative to cell cultures 

reaching specified cell density). Units for the y-axis are noted at the top of each column. Rows represent 

the four bicarbonate concentrations tested, i.e., I.) 5.0 mM NaHCO3; II.) 10.0 mM NaHCO3; III.) 13.4 mM 

NaHCO3; IV.) 38 mM NaHCO3. *The initial light condition for Set C-R2 was ~30% of the initial irradiance 

as compared to others. ‘n/m’ indicates not measured. Error bars for lab-based measurements represent the 

propagation of uncertainty based on standard error.  
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This sensor-based carbon-estimation approach not only shows strong qualitative agreement 

when comparing trends of this metric to the other two lab-based metrics (Figure 4-2 through 

Figure 4-4), but also show agreement in magnitude and trends amongst across the 

experimental sets, despite the wide-ranging conditions under which these experiments were 

performed. More specifically, the algal carbon uptake rates start and increase at similar rates 

up until the organic carbon in the system reaches a concentration around 150-200 mg/L, at 

which point the algal carbon uptake rates begin to decline, at rates which appear dependent 

on culture conditions ( 

Figure 4-5).  

 

 
 

Figure 4-5.  Sensor-based carbon uptake rates for all experiments relative to the total organic carbon 

(TOC) concentration as estimated with sensor. Colors represent experimental set.  

 

 

The higher resolution of sensor measurement also provides insights into how perturbances, such 

as sampling, might impact the organisms differently under stressful conditions. For example, the 

act of mixing the PBR after day five for the two 2.5 mM KNO3 experimental sets (when nitrogen 

is depleted) leads to a sudden increase in carbon uptake rates; this phenomenon is not observed for 

the higher nitrogen sets (Figure 4-3, Column A, Set B vs A). This immediate increase in carbon 

uptake rate after mixing suggests that these nitrogen-deplete cells can still photosynthesize. Thus, 

the faster rate of decline in carbon uptake rates, as compared to nitrogen-replete conditions is likely 

due to cell settling. While these sensors do not provide insight into whether this settling is a willful 
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behavioral response to stress (i.e., retreating into a palmelloid vegetative state), or due to a loss of 

flagellar locomotion due to nutrient deprivation, or both, this observed change does give quick 

insights into the state of the culture under different growth conditions.  

 

4.2.2 Sensor-based TOC estimates show reasonable quantitative agreement with lab-based 

estimates based on the suspended solid portion of algal cultures 

Figure 4-2 through Figure 4-4 highlight how well this method matches qualitatively with other 

growth assays, they do not provide a complete mass balance-based quantitative assessment of the 

method’s accuracy when tracking inorganic-to-organic carbon. This step is very important, 

especially if this method is used in combination with growth modeling efforts.  

Figure 4-6 shows an overview of the raw results from these validation experiments by comparing 

the freshly assimilated carbon between sampling points for the two methods. In all experiments, 

for the first two to three days, the relative difference between the two sets is ~60%. Thereafter this 

relative difference diverges for each set, becoming more sporadic. Figure 4-6 graphically 

illustrates how the sensor and lab-based results compare along how the daily difference changes 

over the course of the experiment, with no markedly different trends observed across different 

bicarbonate or nitrate conditions. In summary, these two methods show an overall strong linear 

relationship across sampling time, even when considering the increase in noise in this relationship 

that occurs at later phases of growth (Figure 4-7).  
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Figure 4-6. Comparison of carbon estimates using pH-sensor approach as compared the lab-based TOC 

analyzer (A) and the relative different between the two methods when considering the newly assimilated 

carbon between two sequential sampling points (B). Error bars show propagated error based on the 

standard error of lab-based TOC measurements.  
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Figure 4-7. Lab-based TOC of spun microalgae biomass versus TOC estimated using the sensor 

method with cursory regression analysis. Error bars show standard error based for lab TOC estimates 

only.   
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4.2.3 Lab-based TOC measurements may underestimate TOC 

Dunaliella spp. are known for excreting dissolved organics, such as glycerol, into their 

surrounding media32–34, but due to the interferences from salt and high inorganic carbon content, 

the TOC within the media was not analyzed within the scope of this work. Sets A, B showed an 

increase in UV254nm absorbance in this range, suggesting an increasing presence of dissolved 

organic material (Figure 4-8). Interestingly, the 5.0 mM nitrogen conditions show a greater 

increase rate in UV254nm absorbance relative to 2.5 mM conditions after day three; this divergence 

in UV254nm roughly corresponds with the decline in carbon uptake rates (Figure 4-3).   

 

 

Figure 4-8.  UV254nm absorbance of culture media after cell and biomass separation with centrifugation. 

Time is relative to the start of sampling, which corresponds to around 0.20 x 106 cells/mL. High N 

refers to an initial KNO3 concentration of 5.0 mM. Med. N refers to 2.50 mM KNO3. UV254nm 

absorbance measurements were not taken for other data sets.  

 

Furthermore, a large portion of the lab-measured TOC from D. viridis was easily and quickly 

purged from the diluted samples within 2-3 minutes. This purgeable fraction, as estimated from 

analyzing both TOC and non-purgeable organic carbon (NPOC) on the analyzer, also appears to 

vary with time (Figure 4-9). Given the observed volatility of the organic contents within these 

cells, lab-based TOC estimates could lead to an overall underestimate of the true carbon produced 
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by these organisms, especially if these osmotically-sensitive cells are diluted and not quickly 

placed on the TOC analyzer machine for analysis.  

 

 

Figure 4-9. Purgeable organic carbon (POC) fraction of TOC as estimated based on measurements from 

TOC analyzer for validation experiments. Error bars represent propagated uncertainty based on standard 

error in TOC and NPOC measurements used to estimate the POC fraction. NPOC was measured after 

purging samples for 3-5 minutes with high purity air after 5% acidification with 2 M HCl.  

 

 

4.2.4 Sensibility checks  

When performing any in-depth analysis and modeling with large datasets and processing, 

reviewing raw and partially processed data is important for both verifying assumptions and 

verifying that code used in processing data is performing its intended function.  For example, 

comparing the regression analysis for the raw pH sensor data against the estimated algal carbon 
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uptake rates provides a simple verification to check that the model outputs seem reasonable. Figure 

4-10 (B vs C) shows this comparison for all the processed sensor data used to estimate algal TOC, 

including the two days prior to inoculating the PBRs with algae, and the short periods of when the 

light was turned off for select experiments. These short ‘light off’ periods lead to negative carbon 

uptake rate since photosynthesis has halted as respiration continues with stored cell products 

(Figure 4-10, Column C gray area).  

 

Figure 4-10. Sensibility checks for model verification. A) sensor TOC estimates in PBR including two 

days prior to inoculation, B) pH increase rate, C) net carbon uptake rate due to microalgae under light 

and dark conditions, D) Light in PBR in photosynthetic photon flux density, µmol/s-m2. Time reflects 
time since inoculation and not time since the start of sampling and is represented by a SOLID GRAY 

LINE. This figure shows all data used to estimate carbon assimilation, including two days prior to 

inoculation and the brief cycles of time when the light was temporarily turned off. GRAY AREA for 

subplot C shows a negative rate value for algal carbon uptake that occurred when the light was briefly 

turned OFF.  
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The lack of organic carbon accumulation in the PBRs before inoculation suggest that the KL 

coefficient combined with the diffusion model accurately estimated the carbon flows before 

microalgal addition (Figure 4-10, Column A, C). Furthermore, overall, the pH increase rates follow 

the same trends as the algal carbon uptake rates, with slight perturbations noted around sampling 

times for both the raw pH rate data and model-based carbon uptake rates (Figure 4-10, B, C). 

Aside from helping to verify that the model is performing reasonably, Figure 4-10, highlights how 

the buffering capacity (i.e., NaHCO3 concentration) of the different media conditions impact the 

model’s pH-to-DIC sensitivity.  More specifically, the peak rate of pH increase is around five 

times higher for the 5.0 mM NaHCO3 system as compared to the 38 mM experiments (~15 pH/day 

as compared to 3 pH/day, respectively), despite the relatively similar maximum algal carbon 

uptake rate between these two conditions (~120 mg/L/d to ~150 mg/L/d, respectively). This pH-

to-DIC relationship is important when considering this model’s sensitivity to pH measurement 

error.   

The raw data output showing the pH, temperature, CO2 headspace readings, and light conditions 

in the PBRs over the course of experiments and for four days prior to inoculation can also be found 

in the SI, Figure 6-1.  

 

4.2.5 Model sensitivity to pH depends on media and operating conditions 

A cursory sensitivity analysis for this method showed that the model sensitivity to ±0.05 pH error 

increases at higher bicarbonate conditions (Figure 4-11).  This result is not unexpected, as the 

media solutions with different buffering capacity may have different pH-to-carbon relationships. 

While this simple analysis assumes that constant offset, i.e., the magnitude of pH error does not 

change with time, using the KL parameters calibrated from the base-case during this sensitivity 

analysis indicates the potential error in pH measurements that may occur after calibration. Overall, 

this cursory analysis shows that this method, when used in a neutral pH and low bicarbonate 

conditions, produces reliable estimates with at most 5% error if the pH shifts by 0.05 units; this 

low error is important for applicability since pH electrodes are known to drift over time.  
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Figure 4-11. Cursory sensitivity analysis showing the percent difference in carbon assimilation 

estimates when pH is shifted up and down before processing reactor data in model as compared to the 

base-case (i.e., pH measurement used for primary analysis). These comparisons were done for each 

sampling time and averaged across time points and replicates. Note, this sensitivity analysis uses the 

calibrated KL parameters from the base case (no pH shift) across all sets. 

 

 

4.2.6 The apparent mass transfer coefficient, KL, varies logarithmically with DIC concentration. 

Analyzing the background rate carbon loss in the PBRs due to diffusion under various media 

conditions and PBR setups showed that, for this modeling approach, the KL varies with respect to 

DIC concentration (Figure 4-12). Note, the large variation seen for each DIC condition, especially 

in less buffered systems, is likely due to the inherent sensor noise combined with the decision to 

estimate rates in a piecewise fashion across CO2 injection intervals rather than performing a 

regression across each CO2-injection interval. This decision was made to as a tradeoff for reducing 

error that could emerge from non-linear changes in pH/carbon between CO2 injection points, and 

because the observed variability should be similar between diffusion and algal rates since are 

estimated from the pH sensor.  
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Figure 4-12. The apparent mass transfer KL coefficient estimate for Reactor #1 (A) and #2 (B) across 

5, 10, and 35 mM DIC conditions. Conditions for background tests can be found in the SI, Table 6-2.  
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4.3 Methods and Modeling Approach  

4.3.1 Modeling framework for using pH to estimate carbon uptake rates and total organic 

carbon  

4.3.1.1 A Pitzer thermo-chemical equilibrium model will relate the pH to total dissolved inorganic 

carbon.  

A Pitzer approach for estimating activity was used to solve the chemical equilibrium states for this 

system. This approach, along with the specific ion interaction theory (SIT) are both commonly 

utilized methods for determining the chemical equilibrium of solutions with high ionic strengths. 

The Pitzer model involves a rigorous thermodynamic derivation based on the virial expansion of 

excess Gibbs free energy and considers all potential ion-ion interactions while the SIT model 

assumes that only that only chemical species with opposing signs interact with each other35. Due 

to the high ionic strength of the media used with D. viridis, the Pitzer approached was selected to 

estimate the chemical state of the system with respect to the most prominent chemical species in 

the marine media.  

Furthermore, if nitrate (NO3
−) is used as a nitrogen source, protons are consumed during the 

assimilation process, impacting the overall pH-to-carbon relation. Thus, the inputs to the chemical 

equilibrium model should include this proton loss by nitrogen assimilation. This incorporation by 

adjusting the chemical inputs based on the Redfield ratio36 (Equation 4-7).   

 

 𝐶𝑂2 + 𝐻2𝑂 + 0.15 𝑁𝑂3
− + 0.15 𝐻+ → 𝐶𝐻2𝑂(𝑁𝐻3)0.15 + 1.22 𝑂2 

 

4-7 

 

This approach for relating ‘pH-increase rates’ to ‘carbon-removal rates involved first solving 

multiple chemical equilibrium conditions across the range of chemical states of the PBR system 

throughout the duration of an experiment using chemical equilibrium software. The 

implementation of this chemical equilibrium model into the larger modeling framework is 

described in more depth in subsequent sections. 

 

4.3.1.2 Diffusion model  

Without microalgae present, the change in the total dissolved inorganic carbon within a culture 

media, assuming no solid formation or biological activity is entirely due to the transfer of CO2 

between the air and water interphase. This transfer assumption is valid if the DIC concentration in 

the liquid solution is not at the equilibrium concentration. DIC∗, for a given CO2 partial pressure. 

Due to the complex nature of the carbonate system, and the multiple interacting concentration 

gradients that drive this system, an additional assumption is made to track the CO2 loss from the 

PBR. Specifically, the mass transfer rate of the DIC out of a solution with a given pH and 

bicarbonate concentration is driven by the gradient between the total DIC in the solution at those 

conditions and the DIC concentration of the solution at a pH that has equilibrated with the 

headspace CO2 partial pressure, i.e., DIC.  
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Without algae present, this relationship is defined in Equation 4-8: 

 

𝑑𝐷𝐼𝐶

𝑑𝑡
= 𝐾𝐿

𝐴

𝑉(𝑡)
[𝐷𝐼𝐶∗(𝑡) − 𝐷𝐼𝐶(𝑡)] =  𝐾𝐿

1

𝐷(𝑡)
[𝐷𝐼𝐶∗(𝑡) − 𝐷𝐼𝐶(𝑡)] 4-8 

 

where KL is an apparent mass transfer coefficient for the overall DIC;   𝑨 is a constant that 

represents the area of the surface of the liquid in the PBR exposed to the headspace concentration 

in square meters; V is the volume of the reactor in cubic meters and D is the depth. V and D are 

both a step-wise function of time based on sample removal during experimental process. DIC* 

refers to the DIC in the system at equilibrium with the ambient CO2 partial pressure.  

After relating pH data to DIC using the chemical equilibrium model, the KL coefficient is estimated 

using the on-line data and Equation 4-8. More specifically, the KL apparent mass transfer 

coefficient is estimated by using Equation 4-9. 

 

𝐾𝐿 =

𝑑𝐷𝐼𝐶
𝑑𝑡

𝐷(𝑡)

𝐷𝐼𝐶∗(𝑡) − 𝐷𝐼𝐶(𝑡)
 

4-9 

 

Background tests in the PBR were conducted over the range of test conditions under which 

validation tests will be performed to establish KL estimates.  Furthermore, due to the multiple 

reactions involved with the carbonate chemical species, the KL was estimated over a range of DIC 

conditions to account for differences in this CO2 mass transfer velocity that might arise due to 

differences in the chemical state of the system.  
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4.3.2 Experimental setup & procedure 

4.3.2.1 Photobioreactor (PBR)  

A 3-L photobioreactor (PBR) was constructed and fitted  with sensors for pH, temperature, and 

light monitoring as described in Karam et al.37. The PBR setup was further modified to include pH 

control via CO2 injection as well as headspace monitoring of the CO2 concentration. Figure 4-13 

displays a schematic overview of the setup. 

 

 

Figure 4-13 Schematic overview of experimental setup showing overview.  

 

A few key differences between this setup and the setup as explained in Chapter 2 and previously 

published work37: 

• A LumiGrow Pro 325 (LumiGrow, USA, 2016) grow lamp, adjusted to output 

approximately 40% blue and 60% red light was used as the light source. 

 

• The photosynthetic active radiation (PAR) light sensor (SQ-212, Apogee Instruments, 

USA, 2016,) was located on the back side of the PBR and not within the highly ionic salt-

water media since there was suspected voltage leakage from this aging sensor that 

disrupted pH readings. Light measurements were estimated in terms of photosynthetically 

active photon flux density (PPFD).  

 

• pH electrodes were differentially connected to the analog inputs of the LabJack U6 

microcontroller (LabJack, USA, 2014) using a 5-volt amplifier (2.2 V gain) to increase 

the signal and ensure that the electrodes worked properly despite the high impedance of 
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the microcontroller. This signal processing device had an inherent 1.2 V offset and was 

powered with a DC power supply connected to power on a circuit line without any other 

devices. Instead of a low-pass filter, the pH electrodes were isolated using a 10 K-Ohm 

resistor between one of the differential analog connectors and ground terminal.   

 

Two dual setups, as shown in Figure 4-14 (A, B), were constructed for these validation tests, which 

were constructed within a temperature-controlled incubator. However, given the multiple heat 

sources within the incubator from the grow lamps, and the large fluctuations in temperature 

observed when opening the door to sample, the incubator temperature control was not used. 

Instead, the temperature within PBR’s were maintained by balancing the heat from light sources 

with the ambient room temperature air using a fan and black curtain (Figure 4-14 B, C). 

 

 

Figure 4-14. Dual experimental setup showing two reactors setup inside incubator. Reactor #1 refers 

to the reactor configuration on the upper shelf, and Reactor #2 is on the lower shelf.   

 

The nature of this setup was such that certain components could not be easily randomized 

throughout experiments (i.e., 1.0-liter per minute (lpm) air circulation pump, mixing power supply, 

solenoids/gas lines, etc.). Thus, ‘Reactor #1’ refers to the upper most setup configuration and 

‘Reactor#2’ refers to the lower configuration. Temperature, light, pH, and the CO2 headspace 

concentrations were measured continuously for all experiments. Further details on sensors and 

logging can be found in the Supplemental Information (SI) (Table 6-1,Table 6-2).  
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4.3.2.2 pH control  

pH control was implemented in the setup above using DAQFactory data acquisition and control 

software (DQ, Lite Release 5.91) along with a relay board, a 12-V normally closed solenoid valve 

(McMaster, Part#5077T134, 2014, USA), a mass flow meter (TopTrex® 822/824, Sierra 

Instruments, USA, 2014), and 99.99% CO2 gas, injected into the PBR with a nylon diffuser.   

The pH control software algorithm implemented within DQ was a custom script that worked by 

setting an upper and lower pH setpoint limits. Once the pH probe measured past the specified high 

setpoint for a given time, the solenoid valve opens until a pre-specified setpoint CO2 flows into 

the reactor, as specified by the mass flow meter to drop the pH to the lower setpoint. This initial 

pre-specific CO2 input estimate is based on a simple thermochemical model which relates pH to 

DIC.   Thereafter, by comparing the amount of CO2 that was injected into the PBR with the 

theoretical amount of CO2 needed to obtain the pH reduction observed after giving the reactor time 

to mix (e.g., ~two minutes after an injection), a correctional ‘mass transfer injection efficiency 

factor’ is estimated. This efficiency factor, which was observed to depend on the gas flow rate, 

bubble size of diffuser, and the working liquid volume, was used as feedback to adjust the CO2 

input setpoint amount and help ensure that the pH was consistently maintained between the pre-

set range. Note, to minimize oscillations in CO2 injection setpoints, the newly projected CO2 input 

setpoint value was averaged with the previous three estimated setpoints.   
  

4.3.2.3 Experimental procedure  

Dunaliella viridis strain dumsii microalgae were grown from sterile 1M NaCl agar plates.  PBRs 

were thoroughly bleached and set up with clean diffusers and tubing prior to each experiment. pH 

probes were soaked overnight in 3M KCl solutions between experiments to hydrate them. The 

probes were calibrated before and/or after experiments at close to 25ºC. Calibration data can be 

found in the SI. For each experiment, the mixing impeller mixed at a speed of ~80-100 rotations 

per minute (RPM). This relatively low rate was selected to prevent shear and was found to provide 

adequate mixing in this PBR system with respect to pH control, having a characteristic bulk mixing 

time of approximately two minutes. Before algal inoculation, filter-sterilized culture media was 

added to the reactors and pH control was started. Data was logged for multiple days to obtain 

background data and ensure system stability.  

After inoculation with microalgae, samples were removed daily once the microalgae cell 

concentration reached ~0.2 to 0.5 x 106 #/mL. Approximately 12 to 20 mL of culture volume was 

removed from the PBR after opening the vessel and thoroughly mixing with a handheld stirrer 

since the gentle mixing from impeller did not prevent algae from settling to the bottom under 

stressful conditions. Samples were taken for an additional 5 to 7 days after cells reached sampling 

concentration levels.  

Cells concentrations were measured using an automated cell counter (TC20TM, BioRad, USA, 

2016) immediately after sampling. This cell data, in combination with past work by Lai et al., 

201838 , provided estimates for nitrogen removal from the media. For the experiments that included 

lab-based TOC analysis, samples were processed and stored as explained below.  
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4.3.2.4 Experimental conditions 

Table 4-2 shows an overview of the experimental conditions for this validation tests, followed by 

a brief description and justification for the tested conditions.  

 

Table 4-2. Overview of experimental conditions under which this pH-to-carbon method was tested. 

Experiments highlighted indicate primary validation (i.e., validation with TOC-based lab measurements). 

Experimental set letter values reflect temporal association.  
Set 

Name 

Reactor 

# 

NaCl 

(M) 

pH 

setpoints  

Init. NaHCO3 

(mM) 

Init. DIC 

(mM) 

Init. KNO3 

(mM) 

Init. Light 

(PPF) 

A-R1 1 0.75 7.45-7.55 13.4 13.4 5 175*A 

A-R2 2 0.75 7.45-7.55 10 10 5 175*A 

B-R1 1 0.75 7.40-7.50 5.0 5.0 2.5 200*B 

B-R2 2 0.75 7.40-7.50 10 10 2.5 200*B 

C-R2 2 0.75 8.10-8.15 38 35 3.5 55*A 

D-R2 2 0.75 8.10-8.15 38 35 5 145*C 

*Three different light schemes were used during these experiments. See note in section below.  

 

Salt concentration (0.75M) - D. viridis and other Dunaliella spp. are known for their wide-

ranging salt tolerance. This salt concentration was selected as it is within an ideal range for this 

species and because many of the empirically determined Pitzer model parameters that gauge ion-

ion interactions were calibrated within this range.   

pH and Sodium bicarbonate (NaHCO3) Concentration– NaHCO3 and pH both determine the 

overall DIC and CO2 within a system. These conditions shown in  Table 4-2 reflect different pH-

bicarbonate combinations that result in a system with comparable H2CO3* concentrations (Figure 

4-15). Furthermore, these DIC/pH levels represents conditions that should not cause carbon 

limitation39,40 and could be realistic NaHCO3 concentration for scale-up (i.e., closer to that of 

seawater). 
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Figure 4-15. Graphical illustration showing the chemical state for the different media conditions tested 

as estimated by the Pitzer equilibrium model.  

 

Light: The light intensities selected for the primary validation experiments reflect intensities that, 

based on prior work, should not be limiting nor inhibitory. Furthermore, to test that this method 

can be used over wide-ranging light conditions, three different light schemes were used as part of 

this validation approach, two of which had brief periods of turning the light off using a custom 

script in DAQ Factory, voice-recordings, and Alexa Echo (Amazon.com Inc., 2019). The light-off 

cycles were meant to 1) reduce light shock and stress to cultures immediately after inoculation, 

and 2) ensure rigorous validation conditions since algal cultivation systems may not have 

continuous lighting. Furthermore, by turning off the light for short time increments, a ‘light’ 

respiration rate can be estimated. This technique is discussed and presented briefly in Chapter 5 

since the scope of Chapter 4 is focused on validation and not method applications. 

Light scheme A → For this light scheme, in order to reduce shock between inoculation and 

the start of sampling, the light was switched off for 15-30 minute during each injection 

interval, resulting in the light being off for approximately 40-50% of the time before the 

algal reached sampling conditions (i.e., cell counts of 0.2x106 #/mL). Thereafter, the light 

was switched off for ~5 minutes in the middle of every 3-4 injection intervals. This scheme 

resulted in ‘light off’ conditions for approximately 5% of the total experimental duration.  
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Light scheme B→ For this light scheme, in order to reduce shock between inoculation and 

the start of sampling, the light was switched off for 10-20 minute every other injection 

interval, resulting in the light being off for approximately 15% of the time before the algal 

reached sampling conditions (i.e., cell counts of 0.2x106 #/mL). Thereafter, the light was 

continuously kept on until sampling day 6, at which point the light was again cycled on 

and off. This scheme was done to compare the ‘dark’ respiration rate at the beginning and 

end of cultivation cycle.  

Light scheme C→ The light was continuously on from inoculation until the end of the 

experiment.  

 

4.3.2.5 TOC analysis for primary validation 

After samples were removed from the PBR during ongoing experiments, algal cells were separated 

from their media via centrifugal separation by adding 3.5 mL of culture into 15 mL centrifuge 

tubes and spinning for 30 minutes at 2500 relative centrifugal force and 4ºC. The algal pellet was 

frozen at -20ºC. These algal pellets were thawed immediately prior to TOC analysis, re-suspended 

in 3.5 mL ultrapure deionized water. This suspension was further diluted (1:40 to 1:80) before 

placing on the TOC analyzer. To minimize fluctuations caused by settling/separation, all samples 

were analyzed within one to three hours after placement on the analyzer’s automatic sampler in 

40-mL amber vials.  These vials were cleaned thoroughly before baking at 400ºC for four hours 

and acid washed with 1% hydrochloric acid, rinsed with DI water, and dried prior to preparing 

samples.  

Total organic carbon was measured using a TOC analyzer (TOC-VCSN, Shimadzu Scientific).  

Preliminary method analysis with D. viridis showed that a large part of the TOC in the spun-and-

then-diluted microalgae was purged out within 2-3 minutes, and thus estimating TOC via non-

purgeable organic carbon (NPOC) would not suffice for providing reasonable estimates for the 

TOC. Therefore, TOC was estimated by analyzing the total carbon (TC) and subtracting the 

inorganic carbon (IC) content, which was estimated with either DI water controls (Set A) or using 

the IC analyzer on the TOC-VCSN instrument (Set B). The spun algal biomass samples were 

analyzed both for total carbon TOC and non-purgeable organic carbon (NPOC) after 5% 

acidification with 2 M hydrochloric acid and 3-5 minutes of purging with high purity air to remove 

all inorganic carbon.  

Potassium hydrogen phthalate (KHP) was used to generate three calibration curves across the 

range of expected concentrations (1-10 mg/L after dilution). Glucose was used as a secondary 

standard and 1,4 Benzoquinone was used as a tertiary standard to ensure that even difficult-to-

combust carbon was combusted. Quality control samples were performed throughout experiments 

using KHP and glucose.  
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4.3.3 Model implementation and diffusion model calibration  

4.3.3.1 Chemical equilibrium model integration  

Since this Pitzer based approach considers multiple interactions, only the most prominent chemical 

species in the media are tracked (Table 4-3). Furthermore, since computationally solving the state 

of equilibrium for each pH data point is not computationally efficient, equilibrium equations were 

solved over a range of pH and NO3- conditions using the chemical equilibrium software package 

PyEquIon (2021) in Python (v3.8) with the Pitzer-based activity estimation approach. Nitrogen 

assimilation estimates were added to each sensor-based data points based on cell counts and 

previously established relationships between cells and nitrogen. The DIC concentration for each 

data point was then estimated with a two-phase interpolation based on pH and NO3
- assimilation.  

 

Table 4-3. Media recipe for cultivating D. viridis for experiments. Bolded and highlighted chemical 

species were those considered when solving for equilibrium.  
Chemical 

Species Media Conc.  H+ OH- Na+ Cl CO3
2- K+ PO4 

3- NO3
-
 

NaCl 0.75 M 0 0 1 1 0 0 0 0 

NaHCO3 10* mM 1 0 1 0 1 0 0 0 

KNO3 5# mM 0 0 0 0 0 1 0 1 

KH2PO4 0.12 mM 2 0 0 0 0 1 1 0 

MgSO4 5 mM -- -- -- -- -- -- -- -- 

CaCl2 0.12 mM -- -- -- -- -- -- -- -- 

EDTA 6 μM -- -- -- -- -- -- -- -- 

FeCl3 2 μM -- -- -- -- -- -- -- -- 

MnCl2 7 μM -- -- -- -- -- -- -- -- 

ZnSO4. 1 μM -- -- -- -- -- -- -- -- 

Co(NO3)2. 1 μM -- -- -- -- -- -- -- -- 

CuSO4. 1 μM -- -- -- -- -- -- -- -- 

(NH4)6Mo7O24. 1 μM -- -- -- -- -- -- -- -- 
* In addition to 5 mM, 10, and 13.4 mM NaHCO3 conditions were also tested. 

# In addition to 2.5 mM, 5.0 mM KNO3 conditions were also tested 

 

 

4.3.3.2  The DIC transfer rate in the PBR, 𝒓𝑫𝑰𝑪𝒐𝒗𝒆𝒓𝒂𝒍𝒍
, is estimated from pH-data with a stepwise regression 

approach 

Before estimating any rates, the raw sensor data was processed to remove known experimental 

perturbations and to ensure the system was in a quasi-equilibrium state after a CO2 injection into 

the system. The post-processing script implemented in Python (v3.8) removes data based on three 

constraints: 1) known noise (e.g., sampling time, light switching on/off, etc.), 2) system stability 

based on the time since last CO2 injection and the pH value relative to the setpoint, and 3) 

interpolation range; any reactor data that fell outside the range of interpolation was removed from 

the dataset before analysis. 

The remaining data was analyzed for DIC removal rate, 𝑟𝐷𝐼𝐶. Each injection interval (i.e., data in 

between CO2 injections) was analyzed with a piecewise approach to estimate mass transfer rates. 

Since electrode data is known for its electrical noise, directly extracting differential rates can be 

challenging. While there are numerical differentiation approaches for noisy and non-smooth data 

that are suitable for continuous electrode data41, adopting such an approach is not appropriate here 
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given the frequency of the perturbation of pH in the system due to the continuous pH injection.  

Thus, the DIC removal rate in the PBR, 𝑟𝐷𝐼𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙
, was estimated from the processed data using a 

piecewise linear regression analysis for the 𝑥𝑛 discrete pH measurement over the course of an 

injection interval. This regression analysis was done for k=4 sampling points [𝑥𝑖: 𝑥𝑖+𝑘] from 𝑖 =

0 𝑡𝑜 𝑖 = 𝑛 − 𝑘. This piecewise approach was intended to balance noise within the data with 

instantaneous rate estimates. 

For the sensor logging frequency—which corresponded to two measurements per minute for most 

experiments (SI, Table 6-2)—this analysis interval equates a time span of approximately two 

minutes under ideal circumstances. Note, due to prior data processing and removal of certain data 

points associated with known noise as described above, a maximum ‘interval time span’ is 

specified for the rate data to ‘pass’ quality control and move along to the next phase of the analysis. 

This step is performed to ensure that the regression analysis does not occur over data points that 

are adjacent in the data frame space, but not in time due to the previous removal of noisy points 

during the data processing phase of analysis. 

 

4.3.3.3 Diffusion model calibration  

Table 4-4 provides an overview of the background conditions tested that were used for estimating 

KL. Previous work using this experimental setup warranted that a KL estimate should be performed 

with each reactor. 

 

Table 4-4. Overview of the background conditions tested for evaluating the KL coefficient over a 

range of experimental conditions.  
Reactor Setup pH NaHCO3 (mM) H2CO3

*(mM) ~DIC (mM) Volumes (L) 

Reactor 1 7.45 5 0.13 5 2.85, 2.55, 2.7 

Reactor 1 7.50 10 0.24 10 2.80, 2.70 

Reactor 1 8.125 38 0.20 35 2.9, 2.85 

Reactor 2 7.50 5 0.12 5 2.80, 2.70 

Reactor 2 7.45 10 0.27 10 2.85, 2.55, 2.7 

Reactor 2 8.125 38 0.20 35 2.9, 2.85 

 

Due to difficulty in maintaining reliable CO2 headspace measurements over the course of all 

experiments, DIC* was assumed to be the DIC concentration in the media if media was at 

equilibrium with baseline CO2 concentration in the headspace, which was found to be ~750 ppm 

during background tests.  
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4.3.3.4 Estimating algal carbon uptake and net carbon assimilation in PBR.  

After establishing the relationship for the bulk DIC mass transfer coefficient, KL, under the 

experimental conditions, this coefficient was estimated at every point along the sensor dataset 

based on the relevant system conditions (i.e., volume, DIC). The diffusion model was then applied 

to estimate the background diffusion rate and provide a net carbon assimilation rate for the 

microalgae, 𝒓𝒂𝒍𝒈𝒂𝒆, (Equation 4-10). The impact of nitrogen assimilation on DIC was also 

considered at this time.  

 

 𝑟𝑎𝑙𝑔𝑎𝑒 = 𝑟𝐷𝐼𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙
− 𝑘𝐿 (

1

𝐷(𝑡)
) [𝐷𝐼𝐶∗ − 𝐷𝐼𝐶(𝑡)] − 𝑟𝐷𝐼𝐶𝑁𝑂3 𝑎𝑠𝑠𝑖𝑚

 
4-10 

 

To estimate the total organic carbon in the PBR, the computed algal carbon uptake rates, 𝑟𝑎𝑙𝑔𝑎𝑒 , were 

integrated over time using Python SciPy Integration Method using the composite trapezoidal rule. 

An overview of the implementation of this modeling approach is shown in Figure 4-16.  
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Figure 4-16. Overview of pH sensor model implemented to estimate algal carbon update and net 

organic carbon accumulation. 

 

4.3.4 Model assessment & assumptions 

There were two different approaches used to assess how well the adopted method captures growth.   

The first compared general trends, growth rates and specific growth rates between sensor-based 

carbon growth as compared to cellular growth and carbon growth measured with TOC analysis for 

suspended solids. These comparisons were performed to determine if this pH-sensor method for 
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estimating carbon satisfies the following: 1) captures similar growth trends and 2) provide similar 

carbon concentration estimates as compared to those made with a TOC analyzer.   

Growth rates for lab-based cell counts and TOC measurements for sample measurement 𝑖 were 

estimated by Equation 4-11.  

 

(
Δ𝑥

Δ𝑡
)

𝑖
=

𝑥𝑖 − 𝑥𝑖−1

𝑡𝑖 − 𝑡𝑖−1
 

4-11 

 

The specific growth rates the microalgae at sampling time, 𝑡𝑖 were estimated with Equation 4-12: 

 

𝜇𝑖 =
(

Δ𝑥
Δ𝑡

)
𝑖

(𝑥𝑖 + 𝑥𝑖−1)/2  
 

4-12 

 

The second approach for assessing model predictability quantified the relative error between the 

carbon assimilation estimates from model as compared to those measured with the TOC analyzer. 

The relative error was calculated by Equation 4-13,  

 

𝒅𝒊(𝒙𝒊, 𝒚𝒊) = 𝟐
𝒙𝒊 − 𝒚𝒊

|𝒙𝒊| + |𝒚𝒊|
 

4-13 

 

where xi, yi are the newly assimilated carbon values between sampling points as defined in Table 

4-5. 

 

Table 4-5. Overview of the how the error measurements for each experiment will be obtained.  

Sample 

Point, n 

 

Sensor Carbon 

(Model) 

Carbon 

(Lab) 

Newly Added Carbon 

(Model), x 

Newly Added Carbon 

(Lab), y 

Relative 

Error, 𝑑𝑖 

0  𝑀𝐶0 𝐿𝐶0 n/a n/a n/a 

1  𝑀𝐶1 𝐿𝐶1 𝑥1 = 𝑀𝐶1 − 𝑀𝐶0 𝑦1 = 𝐿𝐶1 − 𝐿𝐶0 𝑑1 

…  … … … … … 

n  𝑀𝐶𝑛 𝐿𝐶𝑛 𝑥𝑛 = 𝑀𝐶𝑛 − 𝑀𝐶𝑛−1 𝑦5 = 𝐿𝐶𝑛 − 𝐿𝐶𝑛−1 𝑑𝑛 
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4.3.4.1 Sensitivity analysis & key modeling assumptions  

Since this model is driven almost entirely by pH measurements, a sensitivity analysis was done to 

gauge the model output given possible error in pH measurements. This assessment was performed 

by shifting raw pH data by ± 0.05 and re-running the model. The total carbon assimilation was 

compared with the base case, and the percent difference is compared for all experiments across the 

different pH and bicarbonate conditions at points corresponding to sampling times. This sensitivity 

analysis was performed after calibrating the DIC diffusion model for the base case (i.e., no pH 

shift).  

Furthermore, Table 4-6 outlines an overview of key assumptions made for each stage of this 

method, along with method decisions associated with these assumptions.  

 

Table 4-6. Overview of key modeling assumptions.  

Data Collection & 

Processing: 

The pH sensor probe does not drift over the course of the experiments and if it does, the magnitude of 

drift has negligible impacts on the overall model outcome.  

 The CO2 in headspace does not accumulate in the PBR over time. The CO2 headspace concentration will 

increase and fall close to a baseline value after CO2 injection. The data before the CO2 reaches this 

baseline will not be analyzed to ensure appropriate background rate estimates.  

  

Chemical Model & 

Diffusion Model 

The main components, as highlighted in Table 4-3, are most important to consider for estimating the 

DIC in the system. 

 Solid formation does not occur. 

 The temperature is assumed to be maintained around 25ºC. 

 Evaporation does not occur at a scale to impact chemical compositions. 

 The error associated with the pH-to-DIC interpolation is negligible. 

 Organics or other biological components released into the media will not alter the pH over time. 

 The baseline CO2 headspace value will sufficiently capture the DIC*, such that the gradient in DIC is 

accurately applied to diffusion model. 

 KL does not change with the change in mixing intensity within PBR due to the volume removal over 

course of experiment. 

 Biofilm formation or other biological material on the air-liquid interface of the culture does not impact 

the mass transfer over time. 

 The main components, as highlighted in Table 4-3, are most important to consider for estimating the 

DIC in the system. 

 Bacterial contamination or growth will minimal and captured with this method, i.e., contamination will 

be indirectly accounted for by a reduction of the net carbon uptake rate via respiration.  
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4.4 Conclusions, future work, & limitations  

Overall, these pH-sensor based measurements gave qualitatively comparable growth trends as 

compared to both the TOC analyzer estimates and cell counts (Figure 4-2 - Figure 4-4). 

Furthermore, this sensor-based TOC estimates were consistently around 1.5x higher than TOC 

analyzer estimates based on the suspended portions of the four algal cultures grown at pH ~7.5 

and 5-14 mM HCO3
-. The strong linear relationship that persisted throughout cultivation process 

(Figure 4-7)—despite the metabolic differences in the cultures that likely arose due to different 

initial nitrogen concentrations (2.5 vs 5.0 mM NO3
-)—suggests that even with the complex 

biological and chemical reactions involved during microalgal growth, pH electrodes can be used 

as powerful tool for advancing our understanding of microalgae.  

The direction of future work for this method is largely based on the scope of the intended 

applications. For example, if attempting to estimate the TOC contained in the algal biomass, the 

linearity between the two methods (Figure 4-7) shows that this sensor approach could be calibrated 

with the analyzer-based TOC measurements to estimate the carbon content of the suspended 

microalgae. However, this lab-to-sensor calibration approach will underestimate the true carbon 

assimilated during photosynthesis if the dissolved organic carbon of the media is not included. 

Additionally, since this particular microalga showed high volatility of its assimilated carbon 

products (Figure 4-9), investigations into the volatility of the excreted dissolved products would 

allow for better comparisons between these measurements. Using a TOC analyzer capable of 

analyzing highly ionic samples would improve the accuracy of lab-based method since the bulk 

samples (i.e., cells and media) could be analyzed together. This approach would 1) account for 

dissolved organics in the media and 2) potentially reduce the loss of internal volatile components 

that are released from the cells during the centrifugation and/or freshwater dilution processes.  

Furthermore, continued validation of this method at higher pH and bicarbonate concentrations 

would allow for more impactful studies when attempting to understand the impact of inorganic 

carbon concentrations on growth. While the results from the experiments here showed relatively 

similar TOC rates and concentrations estimates for the two experiments conducted at higher pH, 

HCO3
- concentrations as compared to the other four (Figure 4-2, Figure 4-5), the changes in 

chemical equilibrium associated with higher pH and bicarbonate concentrations (e.g., an increased 

potential for carbonate solid formation) merit more validation with the lab-based TOC analyzer 

approach.   

A more thorough sensitivity assessment of this approach involving the chemical equilibrium and 

diffusion equations—as well as the numerical implementation of these equations—would give 

strategic insights into the implementation of this method and a better understanding into which 

application its suitable. For example, under ideal conditions, microalgae should primarily drive 

changes in DIC within the system; if the rate of CO2 loss from diffusion is high relative to the 

impacts of the microalgae, the error in TOC estimates could become high, especially if the 

uncertainty around the diffusion rates is also high or not well defined. This type of analysis, 

combined with knowledge of other system parameters, can inform whether the implementation of 

this approach outside the described PBR conditions is feasible, e.g., an open raceway pond or other 

full-scale cultivation systems. Real-time knowledge of the health of the cultures would help inform 

cultivation and harvesting decisions, such as nutrient addition or harvesting frequency, and 

improve efficiencies involved with full-scale production.   
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Regardless of future improvements, the results from this pH-sensor approach warrant excitement 

for future applications. This approach provides more resolution and flexibility than lab-based 

metrics, which can elucidate potential shifts in metabolic behavior, and allows for more targeted 

experiments. Through these rigorous validation efforts, this research suggests that—despite the 

multiple physical and chemical relationships that govern the relationships between pH and carbon 

flows—pH measurements in a continuously pH-controlled system provide a relatively inexpensive 

tool to gain high-resolution insight into the carbon flows within an algal culturing environment. 

This tool, when used appropriately, can be used to both study and manipulate microalgal growth 

for full-scale biorefinery applications.   
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5 CHAPTER 5: CLOSING REMARKS & A COMMENT ON SIGNIFICANCE  

To our knowledge, this research is the first to use pH data as a means for directly estimating 

microalgal growth based on carbon-induced changes to pH.  On-line methods such as these could 

prove critical to unraveling some of the complex behavior observed in microalgae that has made 

studying and modeling their growth so challenging. This approach has wide range applications, 

from a new tool for studying, understanding, and modeling algal growth at the bench scale to 

integration into cultivation monitoring systems at larger scales. Below briefly showcases how this 

approach can be combined with light system controls and monitoring to better understand the 

photosynthetic and metabolic activity of a microalgal culture.  

 

5.1 An overview of potential future applications 

The design of this approach also offers unique advantages. The algal carbon uptake rate that is 

estimated in an illuminated PBR reflects the net carbon uptake rate, 𝒓𝒂𝒍𝒈𝒂𝒆,𝒏𝒆𝒕, since the microalgal 

cells respire and will release a portion of the carbon fixed during photosynthesis as CO2 (Equation 

5-1).  

 𝑟𝑎𝑙𝑔𝑎𝑒,𝑛𝑒𝑡 =  𝑟𝑝ℎ𝑜𝑡𝑜 −  𝑟𝑟𝑒𝑠𝑝 5-1 

 

By turning the light off for brief periods of time in between CO2 injections, the respiration rates of 

the culture, 𝒓𝒓𝒆𝒔𝒑, can be estimated since the photosynthetic uptake rate, 𝒓𝒑𝒉𝒐𝒕𝒐 , halts under dark 

conditions, i.e., 𝑟𝑝ℎ𝑜𝑡𝑜 = 0. Combining carbon uptake rates in a light-illuminated PBR (i.e., 𝑟𝑎𝑙𝑔𝑎𝑒,𝑛𝑒𝑡) 

with rates estimated from a dark PBR (i.e., 𝑟𝑟𝑒𝑠𝑝) provides an opportunity to estimate 𝑟𝑝ℎ𝑜𝑡𝑜 using 

Equation 5-1. 

Figure 5-1 below gives an illustrative example of how this approach can be used to estimate 

respiration rates and photosynthetic rates by analyzing inorganic carbon flows in the PBR under 

different illumination conditions as described in Chapter 4.  
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Figure 5-1. Illustrative example highlighting the various carbon flows that can be estimated with this pH sensor 

method, i.e., net algal carbon uptake estimated under PBR illumination (A), algal respiration rates estimated 

from brief periods of darkness (B), and gross photosynthetic rates estimated by combining net and dark 

measurements (C). Rows represent bicarbonate concentrations, i.e., I.) 5.0 mM NaHCO3; II.) 10.0 mM NaHCO3; 

III.) 13.4 mM NaHCO3; IV.) 38 mM NaHCO3. Colors represent different experimental sets. *The initial light 

condition for Set C-R2 was ~30% of the initial irradiance as compared to other sets. Black column headers 

represent estimates made under either light on OR light off conditions. Purple column header represents an 

estimate made using both these data sets from around same experimental time. Data gaps for B-R1, B-R2 

coincides with a constantly-illuminated PBR (i.e., times with no ‘light off’ cycling).  
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These sensor-based estimates for photosynthesis and respiration can be used to study more in-

depth carbon flows within the cells.  Simplified growth models that only track certain cell 

properties, such as simple sugars, lipids, and functional biomass (e.g., proteins, DNA/RNA), can 

vastly benefit from tracking two of the arguably most important properties within an algal culture: 

carbon and light.  A simple visual model as shown Figure 5-2 intends to highlight how multiple 

internal reaction will ultimately dictate the net carbon flows as microalgae grow.  

 

 

 

Figure 5-2. Simple graphical illustration showing the multiple processes within a cell that influence 

carbon flows, and how these processes are interconnected.  

 

While there are multiple sub-processes that will lead to a release of CO2 from the cell via 

respiration, photosynthesis is the primary driving force behind inorganic-to-carbon fixation. 

Understanding how efficiently microalgae are able to capture and utilize light to produce carbon 

is a critical step in understanding the maximum potential of these microorganisms. Furthermore, 

quantifying the total fraction of fixed carbon being utilized for respiration can aid in developing 

and calibrating models that consider multiple subprocesses. Figure 5-3 (Column B) shows the 

carbon flows allocated to respiration relative to photosynthetic activity. 
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Figure 5-3. Illustrative example highlighting metabolic relations that can be estimated using this on-line 

approach, i.e., gross photosynthetic carbon assimilation rate (A), respiration relative to gross photosynthetic 

rate (B), and gross photosynthetic carbon uptake rate per absorbance (C). Rows represent bicarbonate 

concentrations, i.e., I.) 5.0 mM NaHCO3; II.) 10.0 mM NaHCO3; III.) 13.4 mM NaHCO3; IV.) 38 mM 

NaHCO3. Colors represent different experimental sets. *The initial light condition for Set C-R2 was ~30% 

of the initial irradiance as compared to other sets. Purple column header represents an estimate made using 

both these data sets from around same experimental time. Pink column header represents estimates made 

using a combination of sensor data under light and dark conditions AND online light data under illumination 

conditions.  Data gaps for B-R1, B-R2 coincides with a constantly-illuminated PBR (i.e., times with no 

‘light off’ cycling). 
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By combining light absorption as described in Chapter 3 with this pH-to-carbon approach, 

researchers can gain more insight into how light interacts with the carbon fixation process during 

photosynthesis (Figure 5-3, Column C). Combining absorbance data with photosynthetic carbon 

uptake rates in a more rigorous fashion can allow for the parameterization of key photosynthetic 

parameters and delicate light studies.   

 

5.2 Conclusions and closing remarks 

On-line technology for monitoring algal growth in cultivation systems should be encouraged, as 

should research that focuses on properly validating and the appropriate use of these methods.  

Better techniques for monitoring algal growth provides the opportunity for more creative and 

intricately designed experiments that can quickly identify points of interest where further lab-based 

techniques, including proteomic and genetic analysis, can be applied to gain deeper insights into 

the metabolic processes that drive these truly incredible microorganisms 

New sensor-based technology brings a new level of excitement and responsibility to researchers 

utilizing their applications. Theoretical principles and equations in biology and chemistry are 

relatively easy to apply, but real-world systems rarely behave ideally. Thorough validation and 

the characterization of novel methods such as those developed in this research should be 

celebrated as much as the discoveries they may bring.  
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6 SUPPLMENTAL INFORMATION 

Table 6-1. List of PBR sensors and components used in experimental setup.   

Name Source (with weblinks) 

Data Acquisition Unit  LabJack U6 (2014) 

Control Switch Board LabJack Terminal Board  

Data Acquisition 

Software  DAQFactory & GasLab  

pH sensor Hamilton EasyFerm120 pH Electrode  

CO2 Mass Flow Meter TopTrak® 822/824 CO2 Mass Flow Meters  

NDIR Sensor 10%* CO2meter.com 

Temperature probe LabJack 1034-temperature-probe (2014, 2016) 

Stainless Steel Solenoid 

Valve for CO2 input McMaster  

1-lpm air pump Ebay 

Relay Board http://labjack.com/support/rb12/datasheet 

DC Switching Modules Digi-Key (DC GH3040-ND 5VDC) 

pH sensor signal 

conditioning http://www.omega.com/pptst/PHTX21.html  

CO2 Bone Dry 200 CGA 

320 AirGas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://labjack.com/u6
http://labjack.com/catalog/cb37-terminal-board-rev-21
http://www.vernier.com/products/sensors/ph-sensors/ph-bta/
http://www.sierrainstruments.com/products/822.html
http://www.co2meter.com/collections/co2-sensors/products/k-30-3-co2-sensor
http://labjack.com/catalog/ei1034-temperature-probe
http://www.mcmaster.com/
http://www.ebay.com/itm/NEW-KNF-NEUBERGER-5V-DC-MICRO-DIAPHRAGM-GAS-SAMPLING-PUMP-NMP015-6-09-Rev-7-/221577728007?pt=BI_Pumps&hash=item33970fd007
http://www.omega.com/pptst/PHTX21.html
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Table 6-2. pH calibration information and logging frequency for experiments. For A, B, C, D 

experiments, more heavily buffered seed cultures were added to PBR media that resulted in shifts in 

overall NaHCO3 concentrations.   

Experiment 

Name 

pH Probes 

Calibration Phase 

HCO3
- 

(mmol) 

Exp. 

Logging 

Frequency 

(#/min) Notes 

A-R1 Post Background 10 1 
 

   Algae 13.4 2 
 

       
 

A-R2 Post Background 5 1 
 

   Algae 10 2 
 

          
 

B-R1 Pre/Post Background 5 2 
 

   Algae 5 2 
 

       
 

B-R2 Pre/Post Background 10 2 
 

   Algae 10 2 
 

          
 

C-R1 Pre/Post Background 37.55 1 
 

   Algae 38.55 1 
Set not included in analysis due to light failure 

       
 

C-R2 Pre/Post Background 37.55 1 
 

   Algae 38.55 1 
 

          
 

D-R1 Pre/Post Background 37.55 1 
Set not included in analysis due to contamination  

   Algae 38.55 1 
 

       
 

D-R2 Pre/Post Background 37.55 1 
 

    Algae 38.55 1 
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Figure 6-1. Raw sensor output from the four primary validation experiments (Sets A, B). The time on 

these axes represent time since inoculation and NOT the time since sampling as reflected in earlier 

graphs. The white arrows represent point of inoculation and black is start of sampling. Columns show the 

four different experimental sets and rows shows the light, pH, CO2 in headspace, and temperature within 

the PBRs throughout experiments. Darker shade represents higher frequency of samples fell within that x-

y coordinate range. Note, the darker green shades noted near zero for the light data indicate then the light 

was turned off based on the light schemes described in section 2.2.3.  
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Figure 6-2. Example of the DAQFactory software page built for monitoring experiments.  

 

 

 

Figure 6-3. Example of pH calibration over various time periods, showing stability of pH probes 

over course of experiments. 
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