
ABSTRACT

MAINELLIS, ERIK KARSTEN. Factor Systems and Schur Multipliers for the Algebras of
Loday. (Under the Direction of Ernest Stitzinger).

The dissertation concerns extension theory and second cohomology for several classes of

Loday algebras (diassociative, Leibniz, dendriform, and Zinbiel algebras). Using group and

Lie theory as a guide, we first develop a theory of factor systems, or nonabelian 2-cocycles,

for the algebras under consideration. Factor systems give rise to a characterization of the

second cohomology group by extensions. We apply our theory of factor systems to prove a

criterion for the nilpotence of certain related extensions. Notably, we obtain its associative

analogue as a special case of diassociative algebras. We then narrow our focus to the case

of central extensions and their corresponding central factor systems, or 2-cocycles. We

investigate analogues of the group-theoretic Schur multiplier and the related notion of

covers in the contexts of Leibniz and diassociative algebras. We start with the Leibniz

setting and construct a Hochschild-Serre type cohomological sequence of low dimension.

We then use this sequence to characterize the multiplier by the second cohomology group

with coefficients in the field. Finally, we develop criteria for when the center of a cover

maps onto the center of a Leibniz algebra. Along the way, we obtain a brief theory of

unicentral algebras and stem extensions. We focus on diassociative algebras for the rest

of the dissertation. Our first efforts here are to prove the uniqueness of the cover, as well

as to obtain a characterization of the multiplier in terms of a free presentation. These

results, which were already known in the Leibniz case, are used to develop diassociative

analogues of our Leibniz investigation of multipliers and covers. We carry our diassociative

theory further, focusing on the multipliers and covers of perfect algebras. Here, we examine

universal central extensions and their relation with perfect algebras. We prove that the

cover of a perfect diassociative algebra is itself perfect and has trivial multiplier. Finally, we

consider the multipliers of nilpotent diassociative algebras. We first prove an alternative

method for extending our Hochschild-Serre sequence. This result is applied to obtain

another extension as well as a series of dimension bounds on the multiplier of a nilpotent

diassociative algebra. We briefly explore the associative specialization of these results, and

conclude with an example that demonstrates some of the dimension bounds. In particular,

we consider an associative algebra and compute its multiplier as an associative algebra and

as a diassociative algebra.
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CHAPTER

1

INTRODUCTION

The objective of the research contained in this dissertation is to advance extension theory

in the context of several classes of Loday algebras. In particular, the results herein concern

noncentral factor systems, extensions of nilpotent algebras, multipliers and covers, stem

extensions, unicentral and perfect algebras, and exact sequences involving the second co-

homology group. In this introduction, we discuss several areas of context and preliminaries.

Along the way, we establish an overview of the dissertation.

1.1 The Algebras of Loday

Let F be a field. Throughout this paper, all algebras will be F-vector spaces equipped with

bilinear multiplications that satisfy certain identities. We first recall that a Lie algebra L

has multiplication that is alternating and satisfies the Jacobi identity. Respectively, this

means that x x = 0 and that (x y )z +(y z )x +(z x )y = 0 for all x , y , z ∈ L . Lie algebras are the

most famous example of nonassociative algebras, and have been studied since the 1800s.

In the early 1990s, Jean-Louis Loday generated interest in another class of nonassociative

algebras, Leibniz algebras, as a generalization of Lie algebras [10]. We define a (left) Leibniz

algebra L to be equipped with a multiplication that satisfies the (left) Leibniz identity

x (y z ) = (x y )z + y (x z ) for all x , y , z ∈ L . Leibniz algebras are famously seen as the non-
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anticommutative generalization of Lie algebras, since the Leibniz identity can be rearranged

to form the Jacobi identity under skew-symmetry. Loday also defined dual Leibniz algebras

[11], which later took the name Zinbiel algebras based on Loday’s pen name, G. W. Zinbiel,

or “Leibniz" backwards. He wrote under this name in [24], an “encyclopedia" that lists

various algebras and some of their properties from an operadic point of view. The operad

that encodes Zinbiel algebras is dual to that of Leibniz algebras under the notion of Koszul

duality, that was formulated for operads in the celebrated and highly-referenced work of

Ginzburg and Kapranov [5]. For the present paper, we define a Zinbiel algebra Z as having

multiplication that satisfies what we will call the Zinbiel identity (x y )z = x (y z ) + x (z y ) for

all x , y , z ∈ Z . Finally, Loday introduced the notions of diassociative algebras (or associative

dialgebras) and dendriform algebras in the context of algebraic K -theory [12]. The operads

that encode these algebras are also Koszul dual. Diassociative and dendriform algebras are

classes of dialgebras, or algebras having two multiplications. In particular, a diassociative

algebra D is a vector space equipped with two associative bilinear products ⊣ and ⊢ that

satisfy

x ⊣ (y ⊣ z ) = x ⊣ (y ⊢ z ) D1

(x ⊢ y ) ⊣ z = x ⊢ (y ⊣ z ) D2

(x ⊣ y ) ⊢ z = (x ⊢ y ) ⊢ z D3

for all x , y , z ∈ D . A dendriform algebra E is a vector space equipped with two bilinear

products, that we will denote as < and >, that satisfy

(x < y )< z = x < (y < z ) + x < (y > z ) E1

(x > y )< z = x > (y < z ) E2

(x < y )> z + (x > y )> z = x > (y > z ) E3

for all x , y , z ∈ E .

These algebras of Loday fit nicely into a butterfly diagram (Figure 1.1) of inclusion

functors between the categories of Zinbiel, dendriform, commutative, associative, diasso-

ciative, Lie, and Leibniz algebras. Said diagram depicts the symmetry of their corresponding

operads under Koszul duality, reflected across a vertical line through As.

One powerful aspect of this diagram is that any northeast movement along its arrows

corresponds to a generalization of algebra type. This fact can be reasoned by seeing each

algebra as a special case of its northeast-adjacent category. Besides the aforementioned Lie

to Leibniz comparison, any Zinbiel algebra can be seen as a dendriform algebra in which

2



Dend Dias

Zinb As Leib

Com Lie

Figure 1.1 Butterfly diagram.

x < y = y > x . Next, any commutative algebra is simply an associative algebra in which

x y = y x . Finally, any associative algebra can be seen as a diassociative algebra in which

x ⊣ y = x ⊢ y . Thus, any result that holds for the Leibniz, diassociative, and dendriform

cases must necessarily hold for all seven algebras.

We use the following notation throughout this dissertation. Given subsets A and B of

a diassociative algebra D , denote by A◊B the ideal A ⊣ B +A ⊢ B in D . In the dendriform

context, we allow for the natural variant A◊B = A < B + A > B . For any algebra L , we

denote by L ′ the derived subalgebra generated by all products in L . In the cases of Leibniz,

associative, and Zinbiel algebras, this takes the form L ′ = L L . In the dialgebraic cases, we

require L ′ = L◊L to account for both products.

1.2 Extension Theory

Consider a pair ofP algebras A and B . Here,P can be thought to range over the seven

classes of algebras in the above butterfly diagram. An extension of A by B is a short exact

sequence 0−→ A
σ−→ L

π−→ B −→ 0 of homomorphisms for which L is aP algebra. A section of

the extension is a linear map µ : B −→ L such that πµ= idB . The extension is called central if

σ(A) is contained in the center Z (L ) of L . The extension problem concerns the classification,

or, more broadly, the investigation, of all L such that 0−→ A −→ L −→ B −→ 0 is an extension.

A formal approach to extension theory can be traced back to Otto Schreier’s 1926 paper [18],

as discussed in the introduction of [2]. In the former, Schreier developed factor systems, also

known as nonabelian 2-cocycles, as a tool for working on the extension problem of groups.

Beyond groups, they have since appeared in other algebraic contexts. Given our algebras A

and B , factor systems are, loosely, a tuple of maps that allow B to interact with A, and that

satisfy some identities unique to each class of algebra. They are naturally in one-to-one

correspondence with extensions, and give rise to the second cohomology groupH 2(B , A).

In Chapter 2 of this dissertation, we establish an explicit theory of factor systems for the

algebras under consideration. This forms a foundation for the rest of the thesis. We take

3



our methodology from a chapter in W. R. Scott’s Group Theory [20], in which the author

investigates the correspondence between factor systems and extensions of groups. It should

be noted that the research contained in this dissertation began as an effort to develop a

Leibniz analogue of said chapter in order to work on extensions of nilpotent algebras. We

later discovered that Leibniz factor systems had already been obtained in a 2018 paper

[9]. We then turned to the diassociative, dendriform, and Zinbiel cases. We have decided,

however, to review the Leibniz case in explicit detail. The purpose is to provide a systematic

approach to this theory as well as a self-contained paper with consistent notation. After the

Leibniz case, we derive the diassociative analogue. We note that the dendriform case follows

by a similar process, replacing ⊣with < and ⊢with >, although the identities that appear

are uniquely determined by the different algebra structures. We provide the definitions

of all seven factor systems for the sake of structural comparison. These appear in the

same sections as their generalizations. Unlike many results, factor systems are a case in

which generalizing algebra type gives rise to considerably more complicated structures. For

example, a Leibniz factor system consists of three maps and seven defining identities, while

a Lie factor system has only two maps and three identities. Chapter 2 concludes with a brief

discussion of cohomology and howH 2(B , A) arises from extension theory. We include a

list of 2-cocycles and their defining identities.

The applications of factor systems are numerous and well-known. For example, their

identities appear frequently in Lie theory. One appearance is in Nathan Jacobson’s Lie

Algebras [7], in its section on the theorems of Levi and Malcev-Harish-Chandra. For more

appearances of Lie factor systems, see [21], and the references therein. More generally,

applications of factor systems have primarily involved the special case of central extensions

and their corresponding central factor systems. In [4], for instance, the author classifies

nilpotent associative algebras of low dimension using central factor systems. Furthermore,

in the present thesis, we use central factor systems to work with the multipliers of algebras

as well as with their second cohomology in general.

There are also strong applications of the more general noncentral factor systems. In

particular, let A and B beP algebras. An extension 0−→ A −→ L −→ B −→ 0 is called nilpotent

if L is nilpotent as an algebra. Generally, supposing A and B are nilpotent, an extension

0−→ A −→ L −→ B −→ 0 is not necessarily nilpotent. However, it has been shown in [22] that,

if A and B are Lie algebras, and if L1 and L2 are extensions that correspond to lifts of a

map Φ : B −→Out(A), then L1 is nilpotent if and only if L2 is nilpotent. This criterion was

based on the group analogue from [17], and its proof relies on noncentral factor systems of

Lie algebras. In Chapter 3 of this dissertation, we prove analogous criteria for the algebras

of Loday via the work of Chapter 2. As an important consequence, we thereby obtain its

4



associative analogue as a special case of diassociative algebras. We detail several examples

that highlight important intricacies in the results.

We now note that, given a pair ofP algebras A and B , and an extension 0−→ A
σ−→ L

π−→
B −→ 0 of A by B , one may assume thatσ is the identity map. We make this assumption in

Section 2.4, as well as in all chapters following Chapter 3, and think of A as being contained

in L . Consequently, the extension is central if A ⊆ Z (L ).

1.3 The Schur Multiplier

In 1904, Schur introduced his multiplier in the study of group representations [19]. “Schur

multipliers,” along with the related notion of covers, have been of interest ever since. A great

reference source is Karpilovsky’s The Schur Multiplier [8]. Analogous notions have since

been studied for Lie algebras, where there are major differences from the group case. Unlike

the latter case, each algebra has a unique cover [1] and nilpotent algebras have nontrivial

multiplier [15]. The uniqueness of covers has also been shown for Leibniz algebras [16].

For aP algebra L , multipliers and covers are defined as follows. A definining pair (K , M )

of L is itself a pair ofP algebras that satisfies K /M ∼= L and M ⊆ Z (K )∩K ′. Such a pair is

called a maximal defining pair if the dimension of K is maximal. In this case, we say that K

is a cover of L and that M is the multiplier of L , denoted by M (L ). The multiplier is abelian

and thus unique via dimension.

In Chapter 4 of this dissertation, we generalize a series of Lie-algebraic results from

Chapters 3 and 4 in [1]. For a Leibniz algebra L , we begin by constructing a cohomological

Hochschild-Serre type spectral sequence of low dimension

0−→Hom(L/Z , A)
Inf1−→Hom(L , A)

Res−→Hom(Z , A)
Tra−→H 2(L/Z , A)

Inf2−→H 2(L , A)

where Z is a central ideal of L and A is a central L-module. Specializing to A = F, the

sequence is used to characterize the multiplier in terms of the second cohomology group

with coefficients in the field, and we obtain M (L )∼=H 2(L ,F)when L is finite-dimensional.

The sequence is then extended by a map

δ :H 2(L ,F)−→ L/L ′⊗Z ⊕Z ⊗ L/L ′

and an analogue of the Ganea sequence is constructed for Leibniz algebras. The maps

involved with these exact sequences, as well as a characterization of the multiplier, are used

to establish criteria for when a central ideal Z is contained in the set Z ∗(L ), denoting the

intersection of all imagesω(Z (E )) such that 0−→ kerω−→ E
ω−→ L −→ 0 is a central extension
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of L . While it is easy to see that Z ∗(L )⊆ Z (L ), we say that a Leibniz algebra L is unicentral

if Z (L ) = Z ∗(L ). The aforementioned criteria are specialized to the case Z = Z (L ), and we

obtain conditions for when the center of a cover maps onto the center of the algebra. In

particular, our criterion Z ⊆ Z ∗(L ) becomes Z (L )⊆ Z ∗(L ), or when the algebra is unicentral.

We then turn to the diassociative setting. In Chapter 5, we establish a similar extension-

theoretic crossroads between multipliers and covers, cohomology, and unicentral algebras.

We first prove that covers of diassociative algebras are unique and obtain a characterization

of the multiplier in terms of a free presentation via the methodology of [1]. In particular, it

is shown that

M (L )∼=
F ′ ∩R

F ◊R +R◊F

where 0 −→ R −→ F −→ L −→ 0 is a free presentation of a diassociative algebra L . We then

develop a diassociative analogue of the results from Chapter 4. In the diassociative context,

our Hochschild-Serre sequence is extended by

δ :H 2(L ,F)−→ (L/L ′⊗Z ⊕Z ⊗ L/L ′)2

because diassociative 2-cocycles are more complicated than Leibniz ones. It is remarkable

that the diassociative analogue of Chapter 4 holds in its entirety, despite the significant

structural differences between (di)associative algebras and Lie (or Leibniz) algebras. The

same can be said for the final two chapters of this dissertation, which also take place in the

diassociative setting. Notably, since diassociative algebras generalize associative algebras,

we automatically obtain associative analogues of these three chapters.

In Chapter 6, we focus on the subclass of perfect diassociative algebras, i.e. algebras

that are equal to their derived subalgebra. It is known that the multipliers, covers, and

universal central extensions related to perfect Lie algebras have exceptional properties [1].

Some were generalized to Hom-Leibniz algebras in [3]. The objective of Chapter 6 in this

dissertation is to obtain similar properties for diassociative algebras. Using Chapter 6 of [1]

as a guide, we first establish a series of lemmas that relate universal central extensions to

perfect algebras. For any universal central extension 0−→ A −→H −→ L −→ 0 of diassociative

algebras, it is shown that both L and H are perfect. Given a perfect diassociative algebra L ,

we also prove that the extension 0−→ 0−→ L −→ L −→ 0 is universal if and only if every central

extension of L splits. We then turn to the multipliers and covers of finite-dimensional

perfect diassociative algebras. Given such an L , and using the characterization of M (L )

in terms of a free presentation 0 −→ R −→ F −→ L −→ 0 of L (from Chapter 5), we prove

that F ′/(F ◊R +R◊F ) is a cover of L . It is then shown that the cover is perfect and that the
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extension

0−→M (L )∼=
F ′ ∩R

F ◊R +R◊F
−→

F ′

F ◊R +R◊F
−→ L −→ 0

is universal. Next, given a universal central extension 0 −→ A −→ L ∗ −→ L −→ 0 of a perfect

algebra L , we obtain A ∼=M (L ), and prove that L ∗ is a cover of L . We also consider what

happens when L has trivial multiplier. Finally, we use our extended Hochschild-Serre type

spectral sequence, as established in Chapter 5, to prove that C =C ′ and M (C ) = 0 for any

cover C of a finite-dimensional perfect diassociative algebra L .

In Chapter 7, we investigate the multipliers of nilpotent diassociative algebras. Following

(primarily) a similar methodology to [23], we begin by extending our Hochschild-Serre se-

quence under alternative conditions. This automatically yields a new proof for the previous

extension in the nilpotent case. As further applications, we obtain a handful of dimension

bounds on the multiplier of a nilpotent diassociative algebra as well as another extension of

our sequence. It is particularly interesting to consider an associative algebra and compare

its multiplier as an associative algebra to its multiplier as a diassociative algebra. Such

a phenomenon has been explored in the context of Lie and Leibniz multipliers [16]. We

compute an example that highlights the associative to diassociative comparison as well as

a couple of our dimension bounds.
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CHAPTER

2

FACTOR SYSTEMS

Before studying factor systems, we first need to review some basic extension theory. Con-

sider a pair ofP algebras A and B . Two extensions 0 −→ A
σ1−→ L1

π1−→ B −→ 0 and 0 −→ A
σ2−→

L2
π2−→ B −→ 0 of A by B are called equivalent if there exists an isomorphism τ : L1 −→ L2 such

that the diagram

0 A L1 B 0

0 A L2 B 0

σ1

idA τ

π1

idB

σ2 π2

Figure 2.1 Equivalence of extensions.

commutes, i.e. such that τσ1 =σ2 and π2τ=π1. An extension 0−→ A
σ−→ L

π−→ B −→ 0 of A

by B is said to split if there exists a homomorphism µ : B −→ L that is also a section. An

extension is called abelian if L is abelian. It is readily verified that equivalence of extensions

is an equivalence relation. Furthermore, let 0−→ A
σ1−→ L1

π1−→ B −→ 0 be a split extension that

is equivalent to another extension 0 −→ A
σ2−→ L2

π2−→ B −→ 0 via the isomorphism τ. Then
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there is a homomorphism µ1 : B −→ L1 such that π1µ1 = idB , which implies that µ2 = τµ1

defines a homomorphism from B into L2 satisfying π2µ2 = π2τµ1 = π1µ1 = idB . Thus, if

an extension splits, then so does every equivalent extension. Since an equivalence is an

isomorphism, it is straightforward to verify that extensions equivalent to abelian extensions

are abelian, and that extensions equivalent to central extensions are central.

2.1 Factor Systems of Leibniz Algebras

Recall that adl and adr denote the left and right multiplication operators respectively; adl

is simply called ad in the Lie case since adr =−ad.

Definition 1. Let A and B be Leibniz algebras. A factor system of A by B is a tuple of maps

(ϕ,ϕ′, f )where

ϕ : B −→Der(A) is linear,

ϕ′ : B −→L (A) is linear,

f : B ×B −→ A is bilinear

such that

1. m (ϕ(i )n ) = (ϕ′(i )m )n +ϕ(i )(mn )

2. m (ϕ′(i )n ) =ϕ′(i )(mn ) +n (ϕ′(i )m )

3. adr
f (i , j )+ϕ

′(i j ) =ϕ′( j )ϕ′(i ) +ϕ(i )ϕ′( j )

4. ϕ(i )(mn ) = (ϕ(i )m )n +m (ϕ(i )n )

5. ϕ(i )ϕ( j ) =ϕ(i j ) +ϕ( j )ϕ(i ) +adl
f (i , j )

6. ϕ(i )ϕ′( j ) =ϕ′( j )ϕ(i ) +ϕ′(i j ) +adr
f (i , j )

7. f (i , j k ) +ϕ(i ) f ( j , k ) = f (i j , k ) +ϕ′(k ) f (i , j ) + f ( j , i k ) +ϕ( j ) f (i , k )

are satisfied for all m , n ∈ A and i , j , k ∈ B . Note that the fourth identity allows for ϕ : B −→
Der(A).

Definition 2. Let A and B be Lie algebras and Der(A) be the Lie algebra under the commu-

tator bracket. A factor system of A by B is a pair (ϕ, f ) of functions

ϕ : B −→Der(A) linear,
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f : B ×B −→ A bilinear

such that

1. f (i , i ) = 0

2. ϕ(i j ) = [ϕ(i ),ϕ( j )]−ad f (i , j )

3. ϕ(k ) f (i , j ) +ϕ(i ) f ( j , k ) +ϕ( j ) f (k , i ) = f (i j , k ) + f ( j k , i ) + f (k i , j )

for all i , j , k ∈ B .

2.1.1 Belonging

Our first aim is to construct a correspondence between factor systems and extensions.

Consider an extension 0−→ A
σ−→ L

π−→ B → 0 of A by B and a section µ : B −→ L . Consider

also the linear maps

ρ : L −→Der(σ(A)),

ρ′ : L −→L (σ(A))

defined by ρ(x ) = adl
x |σ(A) and ρ′(x ) = adr

x |σ(A) respectively for x ∈ L . Put simply, these

maps denote the left and right multiplication operators that act on the image ofσ in L . We

next use ρ and ρ′ to define the maps

P : L −→Der(A),

P ′ : L −→L (A)

by P (x ) =σ−1ρ(x )σ and P ′(x ) =σ−1ρ′(x )σ respectively, effectively formalizing a way for L

to act on A. To work explicitly with these maps, one computes P (x )m =σ−1ρ(x )σ(m ) =

σ−1(xσ(m )) and P ′(x )m =σ−1ρ′(x )σ(m ) =σ−1(σ(m )x ) for any m ∈ A. The maps ϕ and ϕ′

of a factor system are ways for B to act on A. It is thus natural to compose P and P ′ with

µ, as well as to define f in terms of µ, which leads to Definition 3. The subsequent pair of

converse results form the framework for our correspondence.

Definition 3. A factor system (ϕ,ϕ′, f ) of A by B belongs to the extension 0−→ A
σ−→ L

π−→
B → 0 and µ if ϕ = Pµ, ϕ′ = P ′µ, andσ( f (i , j )) =µ(i )µ( j )−µ(i j ) for all i , j ∈ B .

Theorem 2.1.1. Given an extension 0−→ A
σ−→ L

π−→ B → 0 of A by B and section µ : B −→ L,

there exists a unique factor system (ϕ,ϕ′, f ) of A by B belonging to the extension and µ.
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Proof. Let ϕ = Pµ and ϕ′ = P ′µ. To define f , one notes that µ(i )µ( j )−µ(i j ) ∈ kerπ for any

i , j ∈ B . By exactness, there exists an element ci , j ∈ A such that σ(ci , j ) = µ(i )µ( j )−µ(i j ).

Let f be defined by f (i , j ) = ci , j . One may verify that f : B ×B −→ A is bilinear by applying

σ to perform the computation and then applyingσ−1. It remains to verify that (ϕ,ϕ′, f ) is a

factor system. The seven axioms follow by direct computation via the Leibniz identity.

Theorem 2.1.2. (Converse to Theorem 2.1.1) Let (ϕ,ϕ′, f ) be a factor system of A by B and

let L denote the vector space A⊕B with multiplication (m , i )(n , j ) = (mn +ϕ(i )n +ϕ′( j )m +

f (i , j ) , i j ) for m , n ∈ A and i , j ∈ B . Letσ : A −→ L byσ(m ) = (m , 0),π : L −→ B byπ(m , i ) = i ,

and µ : B −→ L by µ(i ) = (0, i ). Then

1. L is a Leibniz algebra,

2. 0−→ A
σ−→ L

π−→ B −→ 0 is an extension,

3. πµ= idB ,

4. the factor system (ϕ,ϕ′, f ) belongs to the extension and µ.

Proof. For part 1, the multiplication defined on L is clearly linear, and so it suffices to

show that the Leibniz identity holds. One computes (m , i )
�

(n , j )(p , k )
�

= ((m , i )(n , j ))(p , k )+

(n , j )((m , i )(p , k )) via the Leibniz identities on A and B and the axioms of the given factor

system. Hence L is a Leibniz algebra.

For part 2, we first computeσ(mn ) = (mn , 0) = (m , 0)(n , 0) =σ(m )σ(n ) and

π((m , i )(n , j )) =π(mn +ϕ(i )n +ϕ′( j )m + f (i , j ) , i j )

= i j

=π(m , i )π(n , j )

which implies thatσ andπ are homomorphisms. Moreover, the exactness of 0−→ A
σ−→ L

π−→
B −→ 0 is trivial. Part 3 is also immediate. For part 4, let m ∈ A and i , j ∈ B . Then

Pµ(i )m =σ−1((0, i )(m , 0))

=σ−1(ϕ(i )m + f (i , 0) , 0)

=ϕ(i )m

implies that Pµ=ϕ. The equality P ′µ=ϕ′ holds by similar computation. Finally,σ( f (i , j )) =

( f (i , j ),0) = (0, i )(0, j )− (0, i j ) = µ(i )µ( j )−µ(i j ). Hence our factor system belongs to the

extension and µ.
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2.1.2 Equivalence

We now define a relation between factor systems under which a change in section (to an

equivalent extension) corresponds to a change in factor system to an equivalent one. Such

a notion establishes equivalence classes of factor systems that correspond to equivalence

classes of extensions. Thus, Theorem 2.1.3 strengthens the correspondence of the first two

theorems.

Definition 4. Factor systems (ϕ,ϕ′, f ) and (ψ,ψ′, g ) of A by B are called equivalent if there

exists a linear transformation ϵ : B −→ A such that

1. ψ(i ) =ϕ(i ) +adl
ϵ(i ),

2. ψ′(i ) =ϕ′(i ) +adr
ϵ(i ),

3. g (i , j ) = f (i , j ) +ϕ′( j )ϵ(i ) +ϕ(i )ϵ( j ) + ϵ(i )ϵ( j )− ϵ(i j )

for all i , j ∈ B . The function ϵ is called an equivalence.

Theorem 2.1.3. If the factor system (ϕ1,ϕ′1, f1) belongs to the extension 0−→ A
σ1−→ L1

π1−→ B → 0

and µ1 and the factor system (ϕ2,ϕ′2, f2) belongs to the extension 0−→ A
σ2−→ L2

π2−→ B → 0 and

µ2, then the factor systems are equivalent if and only if the extensions are equivalent.

Proof. (=⇒ ) Assume the factor systems are equivalent and let ϵ be the corresponding equiv-

alence. Recall that an equivalence of extensions requires an isomorphism τ : L1 −→ L2 such

that τσ1 =σ2 andπ2τ=π1. We know that any element in L1 has a unique representation of

the form µ1(i ) +σ1(m ) for i ∈ B and m ∈ A. Define τ(µ1(i ) +σ1(m )) =µ2(i ) +σ2(−ϵ(i ) +m ).

Clearly τ is linear. To show that τ preserves multiplication, consider elements a , b ∈ L1

with unique representations a =µ1(i ) +σ1(m ) and b =µ1( j ) +σ1(n ). We first compute

τ(a b ) =τ
�

µ1(i )µ1( j ) +σ1(m )µ1( j ) +µ1(i )σ1(n ) +σ1(m )σ1(n )
�

=τ
�

T1(i j ) +σ1

�

f1(i , j ) +ϕ′1( j )m +ϕ1(i )n +mn
�

�

belonging

= T2(i j ) +σ2

�

− ϵ(i j ) + f1(i , j ) +ϕ′1( j )m +ϕ1(i )n +mn
�

.
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On the other hand, one computes

τ(a )τ(b ) =µ2(i )µ2( j ) +µ2(i )σ2(−ϵ( j )) +µ2(i )σ2(n ) +σ2(−ϵ(i ))µ2( j )

+σ2(m )µ2( j ) +σ2(−ϵ(i ))σ2(−ϵ( j ))+σ2(m )σ2(−ϵ( j ))

+σ2(−ϵ(i ))σ2(n ) +σ2(m )σ2(n )

=µ2(i j ) +σ2

�

f2(i , j )−ϕ2(i )ϵ( j ) +ϕ2(i )n −ϕ′2( j )ϵ(i ) belonging

+ϕ′2( j )m + ϵ(i )ϵ( j )−mϵ( j )− ϵ(i )n +mn
�

=µ2(i j ) +σ2(p )

where p ∈ A is the expression in the argument of σ2. Since µ2(i j ) is the only µ2 term on

both sides, it remains to check theσ2 parts. Compute

p = f1(i , j ) +ϕ′1( j )ϵ(i ) +ϕ1(i )ϵ( j ) + ϵ(i )ϵ( j )− ϵ(i j ) equivalence axiom 3

−ϕ1(i )ϵ( j )− ϵ(i )ϵ( j ) +ϕ1(i )n + ϵ(i )n equivalence axiom 1

−ϕ′1( j )ϵ(i )− ϵ(i )ϵ( j ) +ϕ
′
1( j )m +mϵ( j ) equivalence axiom 2

+ ϵ(i )ϵ( j )−mϵ( j )− ϵ(i )n +mn

= f1(i , j )− ϵ(i j ) +ϕ1(i )n +ϕ
′
1( j )m +mn .

Thus τ preserves multiplication. The computation

π(µ1(i ) +σ1(m )) = i

=π2(µ2(i ) +σ2(−ϵ(i ) +m ))

=π2τ(µ1(i ) +σ1(m ))

implies that π1 =π2τ. Finally, τσ1(m ) =σ2(m ) for all m ∈ A by the definition of τ. Hence

τσ1 =σ2 and the extensions are equivalent.

( ⇐= ) Conversely, assume that the extensions are equivalent. Then there exists an

isomorphism τ : L1 −→ L2 such that τσ1 = σ2 and π2τ = π1. The equality π1τ
−1µ2(i ) =

π2µ2(i ) = π1µ1(i ) holds for any i ∈ B , yielding an element τ−1µ2(i ) − µ1(i ) ∈ kerπ1. By

exactness, kerπ1 = Imσ1, and so there exists an element ni ∈ A such that τ−1µ2(i ) =µ1(i ) +

σ1(ni ). Define ϵ : B −→ A by ϵ(i ) = ni . By direct computation, ϵ is an equivalence. Thus the

factor systems are equivalent.

Two results follow easily from Theorem 2.1.3. The proofs are stated as one because they

are so short.
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Corollary 2.1.4. Given an extension 0−→ A
σ−→ L

π−→ B −→ 0, let µ1 : B −→ L and µ2 : B −→ L be

linear maps such that πµ1 = idB =πµ2. Suppose also that (ϕ,ϕ′, f ) is a factor system of A by

B which belongs to the extension and µ1, and (ψ,ψ′, g ) is a factor system of A by B which

belongs to the extension and µ2. Then (ϕ,ϕ′, f ) is equivalent to (ψ,ψ′, g ).

Corollary 2.1.5. Equivalence of factor systems is an equivalence relation.

Proof. For Corollary 2.1.4, note first that any extension of A by B is equivalent to itself. By

Theorem 2.1.3, factor systems belonging to this extension (and differing µi ) are equivalent.

Corollary 2.1.5 follows from Theorem 2.1.3 and the fact that equivalence of extensions is an

equivalence relation.

We now look to ϵ. Given equivalent factor systems, there may be multiple equivalences

between them. On the other hand, any linear transformation ϵ : B −→ A defines an equiva-

lence of factor systems, as demonstrated by Theorem 2.1.6.

Theorem 2.1.6. If (ϕ,ϕ′, f ) is a factor system of A by B and ϵ is a linear transformation from

B to A, then there exists a factor system (ψ,ψ′, g ) such that ϵ is an equivalence of (ϕ,ϕ′, f )

with (ψ,ψ′, g ). Furthermore, if ϵ is an equivalence, then (ψ,ψ′, g ) is unique.

Proof. Let (ψ,ψ′, g ) be defined by

i. ψ(i ) =ϕ(i ) +adl
ϵ(i ),

ii. ψ′( j ) =ϕ′( j ) +adr
ϵ( j ),

iii. g (i , j ) = f (i , j ) +ϕ′( j )ϵ(i ) +ϕ(i )ϵ( j ) + ϵ(i )ϵ( j )− ϵ(i j )

for i , j ∈ B . It is straightforward to check thatψ,ψ′ : B −→L (A) are linear transformations

and that g : B × B −→ A is a bilinear form. By direct computation, (ψ,ψ′, g ) is a factor

system. By construction, the two factor systems are equivalent with ϵ as their corresponding

equivalence. It is straightforward to verify the uniqueness of (ψ,ψ′, g ).

2.1.3 Split Extensions

We now discuss conditions under which ϕ : B −→Der(A) is a homomorphism. Let (ϕ,ϕ′, f )

be a factor system of A by B . By axiom 5 of factor systems, we have

ϕ(i )ϕ( j ) =ϕ(i j ) +ϕ( j )ϕ(i ) +adl
f (i , j )

for all i , j ∈ B . Regarding multiplication on Der(A) as the usual commutator bracket, the

equality ϕ(i j ) = [ϕ(i ),ϕ( j )] holds if and only if f (i , j ) ∈ Z l (A) for all i , j ∈ B . Hence ϕ is
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a homomorphism if and only if f : B ×B −→ Z l (A). Furthermore, if Z l (A) = 0, then ϕ is a

homomorphism if and only if f = 0. Finally, if A is abelian, this ensures that adl
m = 0 for all

m ∈ A. Hence axiom 5 of factor systems again implies that ϕ is a homomorphism.

Next, recall that if an extension splits, then so does every equivalent extension. We say

that a factor system splits if and only if its corresponding extension splits. Therefore, if

a factor system splits, then so does every equivalent factor system. Now consider a split

extension 0−→ A
σ−→ L

π−→ B −→ 0 of A by B with associated homomorphismµ : B −→ L and let

(ϕ,ϕ′, f )be a factor system belonging to this extension. Thenσ( f (i , j )) =µ(i )µ( j )−µ(i j ) = 0

for all i , j ∈ B , which implies that f = 0 sinceσ is injective. Axiom 5 of factor systems then

implies that ϕ is a homomorphism.

The following theorem will be quite useful for later proofs.

Theorem 2.1.7. Let (ϕ,ϕ′, f ) be a factor system of A by B . The following are equivalent:

a. (ϕ,ϕ′, f ) splits,

b. (ϕ,ϕ′, f ) is equivalent to some factor system (ψ,ψ′, g ) such that g = 0,

c. there exists a linear transformation ϵ : B −→ A such that f (i , j ) =−ϕ′( j )ϵ(i )−ϕ(i )ϵ( j )−
ϵ(i )ϵ( j ) + ϵ(i j ) for all i , j ∈ B .

Proof. (a.=⇒ b.) We know (ϕ,ϕ′, f ) belongs to a split extension 0−→ A
σ−→ L

π−→ B −→ 0. By

definition, there is an associated homomorphism µ : B −→ L such that πµ = idB . Hence

there exists a factor system (ψ,ψ′, g ) belonging to 0 −→ A
σ−→ L

π−→ B −→ 0 and µ which is

equivalent to (ϕ,ϕ′, f ) by Corollary 2.1.4. Since µ is a homomorphism, we have g = 0.

(b.=⇒ c.) Let ϵ : B −→ A be an equivalence of (ϕ,ϕ′, f )with (ψ,ψ′, g )where g = 0. The

third axiom of equivalence gives 0= g (i , j ) = f (i , j )+ϕ′( j )ϵ(i )+ϕ(i )ϵ( j )+ ϵ(i )ϵ( j )− ϵ(i j )

for all i , j ∈ B , which implies the desired equality.

(c.=⇒ a.) Let ϵ be as in c. By Theorem 2.1.6, ϵ is an equivalence of (ϕ,ϕ′, f )with another

factor system (ψ,ψ′, g )which belongs to an extension 0−→ A
σ−→ L

π−→ B −→ 0 and µ : B −→ L .

One has g (i , j ) = f (i , j )+ϕ′( j )ϵ(i )+ϕ(i )ϵ( j )+ϵ(i )ϵ( j )−ϵ(i j ) = 0 by assumption. Then, since

σ(g (i , j )) = 0 for all i , j ∈ B , the third axiom of belonging implies thatµ is a homomorphism.

Also, µ is injective since πµ= idB . Hence the extension splits and, therefore, so does the

original factor system.

It is clear that every semidirect sum yields a split extension. The converse is also true

in that every split extension of A by B is equivalent to a semidirect sum. Indeed, let 0−→
A −→ L −→ B −→ 0 be a split extension of A by B . By Theorem 2.1.7, there is an equivalent

extension 0−→ A −→ L2 −→ B −→ 0 with associated linear mapµ2 : B −→ L2 and a factor system
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(ψ,ψ′, g ) belonging to this extension and µ2 such that g (i , j ) = 0 for all i , j ∈ B . Thusψ is a

homomorphism. The Leibniz algebra construct in Theorem 2.1.2 is then a semidirect sum

of A by B with factor system (ψ,ψ′, g ). By Theorem 2.1.3, the extension built in Theorem

2.1.2 is equivalent to 0−→ A −→ L2 −→ B −→ 0 and hence to 0−→ A −→ L −→ B −→ 0.

2.1.4 Abelian A

Let A be an abelian Leibniz algebra and (ϕ,ϕ′, f ) be a factor system of A by B . Then ϕ is

a homomorphism. Moreover, suppose a factor system (ψ,ψ′, g ) of A by B is equivalent to

(ϕ,ϕ′, f ) via equivalence ϵ. Then

ϕ(i ) =ψ(i ) +adl
ϵ(i ) =ψ(i ),

ϕ′(i ) =ψ′(i ) +adr
ϵ(i ) =ψ

′(i )

for all i ∈ B , which implies that ϕ =ψ and ϕ′ =ψ′. We thus fix ϕ and ϕ′ and define the

following constructs.

Let Fact(B , A,ϕ,ϕ′) be the set of bilinear maps f : B × B −→ A such that (ϕ,ϕ′, f ) is a

factor system and let T (B , A,ϕ,ϕ′) be the set of bilinear maps f : B × B −→ A such that

(ϕ,ϕ′, f ) is a split factor system. We denote by Ext(B , A,ϕ,ϕ′) the set of equivalence classes

Fact(B , A,ϕ,ϕ′)/T (B , A,ϕ,ϕ′)

with fixed ϕ and ϕ′.

Theorem 2.1.8. If A is abelian, then

1. Fact(B , A,ϕ,ϕ′) is an abelian Leibniz algebra,

2. T (B , A,ϕ,ϕ′) is an ideal in Fact(B , A,ϕ,ϕ′),

3. factor systems (ϕ,ϕ′, f ) and (ϕ,ϕ′, g ) are equivalent if and only if f and g are in the

same coset of Fact(B , A,ϕ,ϕ′) relative to T (B , A,ϕ,ϕ′),

4. the quotient Leibniz algebra Ext(B , A,ϕ,ϕ′) is in one-to-one correspondence with the

set of equivalence classes of extensions to which ϕ and ϕ′ belong.

Proof. Let f , g ∈ Fact(B , A,ϕ,ϕ′) and c be a scalar. We know f − c g : B ×B −→ A and want

to show that (ϕ,ϕ′, f − c g ) is a factor system. Axioms 1, 2, and 4 are trivial since they do

not involve f or g . Axioms 3, 5, and 6 hold since adl
( f −c g )(i , j ) = 0 and adr

( f −c g )(i , j ) = 0 for any
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i , j ∈ B . Finally, axiom 7 holds by the following computation:

( f − c g )(i , j k ) +ϕ(i )( f − c g )( j , k ) = f (i , j k ) +ϕ(i ) f ( j , k )− c (g (i , j k ) +ϕ(i )g ( j , k ))

= f (i j , k ) +ϕ′(k ) f (i , j ) + f ( j , i k ) +ϕ( j ) f (i , k )

− c (g (i j , k ) +ϕ′(k )g (i , j ) + g ( j , i k ) +ϕ( j )g (i , k ))

= ( f − c g )(i j , k ) +ϕ′(k )( f − c g )(i , j ) + ( f − c g )( j , i k )

+ϕ( j )( f − c g )(i , k ).

Hence Fact(B , A,ϕ,ϕ′) is a vector space. One easily checks that (ϕ,ϕ′, f g ) is a factor sys-

tem (here juxtaposition denotes f (i , j )g (i , j )); indeed, f g = 0 since A is abelian. Thus

Fact(B , A,ϕ,ϕ′) is a Leibniz algebra with trivial multiplication.

To show that T (B , A,ϕ,ϕ′) is an ideal, it suffices to verify that it is a subspace. Let

f , g ∈T (B , A,ϕ,ϕ′). We want to show that (ϕ,ϕ′, f − c g ) is a split factor system for scalar c .

By Theorem 2.1.7, since (ϕ,ϕ′, f ) and (ϕ,ϕ′, g ) split, there exist linear maps ϵ1,ϵ2 : B −→ A

such that

f (i , j ) =−ϕ( j )ϵ1(i )−ϕ(i )ϵ1( j )− ϵ1(i )ϵ1( j ) + ϵ1(i j ),

g (i , j ) =−ϕ( j )ϵ2(i )−ϕ(i )ϵ2( j )− ϵ2(i )ϵ2( j ) + ϵ2(i j )

for any i , j ∈ B . Define ϵ : B −→ A by ϵ = ϵ1− c ϵ2. Then

( f − c g )(i , j ) =−ϕ( j )ϵ(i ) +ϕ′(i )ϵ( j )− ϵ(i )ϵ( j ) + ϵ(i j )

and so (ϕ,ϕ′, f − c g ) splits by Theorem 2.1.7.

Suppose factor systems (ϕ,ϕ′, f ) and (ϕ,ϕ′, g ) are equivalent via ϵ : B −→ A. Then

g (i , j ) = f (i , j ) +ϕ′( j )ϵ(i ) +ϕ(i )ϵ( j ) + ϵ(i )ϵ( j )− ϵ(i j ) implies that

( f − g )(i , j ) =−ϕ′( j )ϵ(i )−ϕ(i )ϵ( j )− ϵ(i )ϵ( j ) + ϵ(i j ).

By Theorem 2.1.7, factor system (ϕ,ϕ′, f − g ) splits, and so

f +T (B , A,ϕ,ϕ′) = g +T (B , A,ϕ,ϕ′).

Conversely, if (ϕ,ϕ′, f − g ) is a split factor system, then there exists a linear map ϵ : B −→ A

such that ( f − g )(i , j ) = −ϕ′( j )ϵ(i )−ϕ(i )ϵ( j )− ϵ(i )ϵ( j ) + ϵ(i j ) for all i , j ∈ B (by Theorem

2.1.7). Thus ϵ satisfies the third axiom of equivalence between factor systems (ϕ,ϕ′, f ) and

(ϕ,ϕ′, g ). The first two axioms of equivalence hold trivially with ϕ =ϕ and ϕ′ =ϕ′ since
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adl
m = 0 and adr

m = 0 for all m ∈ A.

The final statement follows from Theorem 2.1.3 and part 3 above. Indeed, part 3 says

that two elements of Ext(B , A,ϕ,ϕ′) are equal if and only if their factor systems with fixed

ϕ, ϕ′ are equivalent, and Theorem 2.1.3 guarantees that the latter statement is true if and

only if the two extensions are equivalent.

2.1.5 Central Extensions

Recall that an extension which is equivalent to a central extension is itself central. One

may thus refer to equivalence classes of central extensions and to central factor systems, i.e.

factor systems that belong to central extensions. Once again, let A be an abelian Leibniz

algebra and (ϕ,ϕ′, f ) be a factor system of A by B .

Theorem 2.1.9. (ϕ,ϕ′, f ) is central if and only if ϕ = 0 and ϕ′ = 0.

Proof. By Theorem 2.1.2, (ϕ,ϕ′, f ) belongs to an extension 0−→ A −→ L −→ B −→ 0 where L =

A⊕B with multiplication (m , i )(n , j ) = (mn +ϕ(i )n +ϕ′( j )m + f (i , j ) , i j ). The extension is

central if and only if (m , i )(n , 0) = (mn +ϕ(i )n , 0) = (0, 0) and (n , 0)(m , i ) = (nm +ϕ′(i )n , 0) =

(0, 0) for all m , n ∈ A and i ∈ B . This happens if and only if ϕ and ϕ′ are zero.

Theorem 2.1.10. The classes of central extensions of A by B form a Leibniz algebra, denoted

Cext(B , A).

Proof. By Theorem 2.1.8 and Theorem 2.1.9; we set Cext(B , A) := Ext(B , A, 0, 0).

Theorem 2.1.11. Let A and B be abelian Leibniz algebras and let (ϕ,ϕ′, f ) be a central factor

system of A by B . Then (ϕ,ϕ′, f ) belongs to an abelian extension if and only if f = 0.

Proof. Since (ϕ,ϕ′, f ) is central, we know ϕ =ϕ′ = 0. In the forward direction, the factor

system belongs to an extension 0−→ A −→ L −→ B −→ 0 and section µ. Since L and B are both

abelian, one has σ( f (i , j )) = µ(i )µ( j )−µ(i j ) = 0 for all i , j ∈ B . Conversely, if f = 0, then

the construction of L in Theorem 2.1.2 has multiplication (m , i )(n , j ) = (0, 0) for all m , n ∈ A

and i , j ∈ B .

2.2 Factor Systems of Diassociative Algebras

This section mimics the structure of the Leibniz case. We begin by stating the definition of

factor systems for diassociative algebras as well as for the special cases of associative and

commutative algebras. We proceed to construct diassociative analogues of the results from

[20].
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Definition 5. Let A and B be diassociative algebras. A factor system of A by B is a tuple

(ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) of maps such that

ϕ⊣,ϕ⊢,ϕ
′
⊣,ϕ
′
⊢ : B −→L (A) are linear,

f⊣, f⊢ : B ×B −→ A are bilinear,

and the following five sets of identities are satisfied for all m , n , p ∈ A and i , j , k ∈ B :

1. Those resembling D1:

(a) m ⊣ (ϕ⊣( j )p ) =m ⊣ (ϕ⊢( j )p )

(b) m ⊣ (ϕ′⊣(k )n ) =m ⊣ (ϕ′⊢(k )n )

(c) m ⊣ f⊣( j , k ) +ϕ′⊣( j ⊣ k )m =m ⊣ f⊢( j , k ) +ϕ′⊣( j ⊢ k )m

(d) ϕ⊣(i )(n ⊣ p ) =ϕ⊣(i )(n ⊢ p )

(e) ϕ⊣(i )(ϕ⊣( j )p ) =ϕ⊣(i )(ϕ⊢( j )p )

(f) ϕ⊣(i )(ϕ′⊣(k )n ) =ϕ⊣(i )(ϕ
′
⊢(k )n )

(g) ϕ⊣(i ) f⊣( j , k ) + f⊣(i , j ⊣ k ) =ϕ⊣(i ) f⊢( j , k ) + f⊣(i , j ⊢ k )

2. Those resembling D2:

(a) (ϕ⊢(i )n ) ⊣ p =ϕ⊢(i )(n ⊣ p )

(b) (ϕ′⊢( j )m ) ⊣ p =m ⊢ (ϕ⊣( j )p )

(c) f⊢(i , j ) ⊣ p +ϕ⊣(i ⊢ j )p =ϕ⊢(i )(ϕ⊣( j )p )

(d) ϕ′⊣(k )(m ⊢ n ) =m ⊢ (ϕ′⊣(k )n )

(e) ϕ′⊣(k )(ϕ⊢(i )n ) =ϕ⊢(i )(ϕ
′
⊣(k )n )

(f) ϕ′⊣(k )(ϕ
′
⊢( j )m ) =ϕ

′
⊢( j ⊣ k )m

(g) ϕ′⊣(k ) f⊢(i , j ) + f⊣(i ⊢ j , k ) =ϕ⊢(i ) f⊣( j , k ) + f⊢(i , j ⊣ k )

3. Those resembling D3:

(a) (ϕ⊣(i )n ) ⊢ p = (ϕ⊢(i )n ) ⊢ p

(b) (ϕ′⊣( j )m ) ⊢ p = (ϕ′⊢( j )m ) ⊢ p

(c) f⊣(i , j ) ⊢ p +ϕ⊢(i ⊣ j )p = f⊢(i , j ) ⊢ p +ϕ⊢(i ⊢ j )p

(d) ϕ′⊢(k )(m ⊣ n ) =ϕ′⊢(k )(m ⊢ n )

(e) ϕ′⊢(k )(ϕ⊣(i )n ) =ϕ
′
⊢(k )(ϕ⊢(i )n )
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(f) ϕ′⊢(k )(ϕ
′
⊣( j )m ) =ϕ

′
⊢(k )(ϕ

′
⊢( j )m )

(g) ϕ′⊢(k ) f⊣(i , j ) + f⊢(i ⊣ j , k ) =ϕ′⊢(k ) f⊢(i , j ) + f⊢(i ⊢ j , k )

4. Those resembling the associativity of ⊣:

(a) m ⊣ (ϕ⊣( j )p ) = (ϕ′⊣( j )m ) ⊣ p

(b) m ⊣ (ϕ′⊣(k )n ) =ϕ
′
⊣(k )(m ⊣ n )

(c) m ⊣ f⊣( j , k ) +ϕ′⊣( j ⊣ k )m =ϕ′⊣(k )(ϕ
′
⊣( j )m )

(d) ϕ⊣(i )(n ⊣ p ) = (ϕ⊣(i )n ) ⊣ p

(e) ϕ⊣(i )(ϕ⊣( j )p ) =ϕ⊣(i ⊣ j )p + f⊣(i , j ) ⊣ p

(f) ϕ⊣(i )(ϕ′⊣(k )n ) =ϕ
′
⊣(k )(ϕ⊣(i )n )

(g) ϕ⊣(i ) f⊣( j , k ) + f⊣(i , j ⊣ k ) =ϕ′⊣(k ) f⊣(i , j ) + f⊣(i ⊣ j , k )

5. Those resembling the associativity of ⊢:

(a) m ⊢ (ϕ⊢( j )p ) = (ϕ′⊢( j )m ) ⊢ p

(b) m ⊢ (ϕ′⊢(k )n ) =ϕ
′
⊢(k )(m ⊢ n )

(c) m ⊢ f⊢( j , k ) +ϕ′⊢( j ⊢ k )m =ϕ′⊢(k )(ϕ
′
⊢( j )m )

(d) ϕ⊢(i )(n ⊢ p ) = (ϕ⊢(i )n ) ⊢ p

(e) ϕ⊢(i )(ϕ⊢( j )p ) =ϕ⊢(i ⊢ j )p + f⊢(i , j ) ⊢ p

(f) ϕ⊢(i )(ϕ′⊢(k )n ) =ϕ
′
⊢(k )(ϕ⊢(i )n )

(g) ϕ⊢(i ) f⊢( j , k ) + f⊢(i , j ⊢ k ) =ϕ′⊢(k ) f⊢(i , j ) + f⊢(i ⊢ j , k )

Definition 6. Let A and B be associative algebras. A factor system of A by B is a tuple of

maps (ϕ,ϕ′, f )where

ϕ,ϕ′ : B −→L (A) are linear,

f : B ×B −→ A is bilinear

such that

1. ϕ(i )ϕ( j ) =ϕ(i j ) +adl
f (i , j )

2. ϕ′(i )ϕ′( j ) =ϕ′( j i ) +adr
f (i , j )

3. ϕ(i )ϕ′( j ) =ϕ′( j )ϕ(i )
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4. ϕ′(i )(mn ) =m (ϕ′(i )n )

5. ϕ(i )(mn ) = (ϕ(i )m )n

6. (ϕ′(i )m )n =m (ϕ(i )n )

7. ϕ(i ) f ( j , k ) + f (i , j k ) =ϕ′(k ) f (i , j ) + f (i j , k )

are satisfied for all m , n ∈ A and i , j , k ∈ B .

Definition 7. Let A and B be commutative algebras. A factor system of A by B is a tuple of

maps (ϕ, f )where

ϕ : B −→L (A) is linear,

f : B ×B −→ A is bilinear

such that

1. f (i , j ) = f ( j , i )

2. ϕ(i )ϕ( j ) =ϕ(i j ) +ad f (i , j )

3. ϕ(i )(mn ) =m (ϕ(i )n ) = (ϕ(i )m )n

4. ϕ(i ) f ( j , k ) + f (i , j k ) =ϕ(k ) f (i , j ) + f (i j , k )

are satisfied for all m , n ∈ A and i , j , k ∈ B .

Definition 8. Let A and B be diassociative algebras. A factor system (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) of

A by B belongs to an extension 0−→ A
σ−→ L

π−→ B −→ 0 and section µ if

ϕ⊣ = P⊣µ,

ϕ′⊣ = P ′⊣µ,

σ( f⊣(i , j )) =µ(i ) ⊣µ( j )−µ(i ⊣ j ),

ϕ⊢ = P⊢µ,

ϕ′⊢ = P ′⊢µ,

σ( f⊢(i , j )) =µ(i ) ⊢µ( j )−µ(i ⊢ j )

for all i , j ∈ B , where

P⊣(x )m =σ−1(x ⊣σ(m )),

P ′⊣ (x )m =σ
−1(σ(m ) ⊣ x ),

P⊢(x )m =σ−1(x ⊢σ(m )),

P ′⊢ (x )m =σ
−1(σ(m ) ⊢ x )

for any x ∈ L , m ∈ A.
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Theorem 2.2.1. Let A and B be diassociative algebras. Given an extension 0−→ A −→ L
π−→

B −→ 0 of A by B and sectionµ : B −→ L, there exists a unique factor system (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢)

of A by B belonging to the extension and µ.

Proof. Set ϕ⊣ = P⊣µ, ϕ⊢ = P⊢µ, ϕ′⊣ = P ′⊣µ, and ϕ′⊢ = P ′⊢µ. Next, it is easily checked that

µ(i ) ⊣µ( j )−µ(i ⊣ j ) and µ(i ) ⊢µ( j )−µ(i ⊢ j ) are in the kernel of π for all i , j ∈ B . We define

f⊣ and f⊢ byσ( f⊣(i , j )) =µ(i ) ⊣µ( j )−µ(i ⊣ j ) andσ( f⊢(i , j )) =µ(i ) ⊢µ( j )−µ(i ⊢ j )which are

clearly bilinear maps B ×B −→ A. It is straightforward to verify that (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) is a

factor system.

Theorem 2.2.2. Let (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) be a factor system of A by B and let L denote the

vector space A⊕B with multiplications

(m , i ) ⊢ (n , j ) = (m ⊢ n +ϕ⊢(i )n +ϕ
′
⊢( j )m + f⊢(i , j ) , i ⊢ j ),

(m , i ) ⊣ (n , j ) = (m ⊣ n +ϕ⊣(i )n +ϕ
′
⊣( j )m + f⊣(i , j ) , i ⊣ j )

for m , n ∈ A and i , j ∈ B . Let σ : A −→ L by σ(m ) = (m ,0), π : L −→ B by π(m , i ) = i , and

µ : B −→ L by µ(i ) = (0, i ). Then

1. L is a diassociative algebra,

2. 0−→ A
σ−→ L

π−→ B −→ 0 is an extension,

3. πµ= idB ,

4. the factor system (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) belongs to the extension and µ.

Proof. It takes five direct computations to verify that the vector space L = A⊕B , with mul-

tiplications defined in the statement of the theorem, is a diassociative algebra. In particular,

one must check D1, D2, D3, and the associativity of both ⊣ and ⊢. Said computations follow

via the axioms of factor systems and the diassociative structures on A and B .

We now define a notion of equivalence for factor systems so that equivalence classes of

factor systems will correspond to those of extensions. The subsequent corollaries hold by

the same logic as their Leibniz analogues.

Definition 9. Two factor systems (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) and (ψ⊣,ψ⊢,ψ′⊣,ψ

′
⊢, g⊣, g⊢) of A by B

are equivalent if there exists a linear transformation ϵ : B −→ A such that

1. ψ⊣(i ) =ϕ⊣(i ) +adl
⊣(ϵ(i )),

2. ψ′⊣(i ) =ϕ
′
⊣(i ) +adr

⊣(ϵ(i )),
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3. ψ⊢(i ) =ϕ⊢(i ) +adl
⊢(ϵ(i )),

4. ψ′⊢(i ) =ϕ
′
⊢(i ) +adr

⊢(ϵ(i )),

5. g⊣(i , j ) = f⊣(i , j ) +ϕ′⊣( j )ϵ(i ) +ϕ⊣(i )ϵ( j ) + ϵ(i ) ⊣ ϵ( j )− ϵ(i ⊣ j ),

6. g⊢(i , j ) = f⊢(i , j ) +ϕ′⊢( j )ϵ(i ) +ϕ⊢(i )ϵ( j ) + ϵ(i ) ⊢ ϵ( j )− ϵ(i ⊢ j )

for all i , j ∈ B where adl
⊣(ϵ(i ))m = ϵ(i ) ⊣m , adl

⊢(ϵ(i ))m = ϵ(i ) ⊢m , adr
⊣(ϵ(i ))m =m ⊣ ϵ(i ),

and adr
⊢(ϵ(i ))m =m ⊢ ϵ(i ) for all m ∈ A.

Theorem 2.2.3. If the factor system (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) belongs to the extension 0−→ A

σ1−→
L1

π1−→ B → 0 and µ1 and the factor system (ψ⊣,ψ⊢,ψ′⊣,ψ
′
⊢, g⊣, g⊢) belongs to the extension

0 −→ A
σ2−→ L2

π2−→ B → 0 and µ2, then the factor systems are equivalent if and only if the

extensions are equivalent.

Proof. In the forward direction, one defines τ in the same way as the Leibniz case and

computes τ(a ⊣ b ) =τ(a ) ⊣τ(b ) and τ(a ⊢ b ) =τ(a ) ⊢τ(b ) via the axioms of equivalence

for diassociative factor systems. In the other direction, define ϵ(i ) = ni where τ−1µ2(i ) =

µ1(i )+σ1(ni ). There are six axioms to check when verifying that ϵ is an equivalence of factor

systems. Otherwise, the theorem follows by similar logic.

Corollary 2.2.4. Given an extension 0 −→ A
σ−→ L

π−→ B −→ 0, let µ1 : B −→ L and µ2 : B −→ L

be linear maps such that πµ1 = idB =πµ2. Suppose also that (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) is a factor

system of A by B which belongs to the extension and µ1, and (ψ⊣,ψ⊢,ψ′⊣,ψ
′
⊢, g⊣, g⊢) is a

factor system of A by B which belongs to the extension and µ2. Then (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) is

equivalent to (ψ⊣,ψ⊢,ψ′⊣,ψ
′
⊢, g⊣, g⊢).

Corollary 2.2.5. Equivalence of factor systems is an equivalence relation.

Theorem 2.2.6. If (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) is a factor system of A by B and ϵ is a linear transfor-

mation from B to A, then there exists a factor system (ψ⊣,ψ⊢,ψ′⊣,ψ
′
⊢, g⊣, g⊢) such that ϵ is an

equivalence between them. Furthermore, if ϵ is an equivalence, then (ψ⊣,ψ⊢,ψ′⊣,ψ
′
⊢, g⊣, g⊢)

is unique.

Proof. Define

i. ψ⊣(i ) =ϕ⊣(i ) +adl
⊣(ϵ(i )),

ii. ψ⊢(i ) =ϕ⊢(i ) +adl
⊢(ϵ(i )),

iii. ψ′⊣(i ) =ϕ
′
⊣(i ) +adr

⊣(ϵ(i )),
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iv. ψ′⊢(i ) =ϕ
′
⊢(i ) +adr

⊢(ϵ(i )),

v. g⊣(i , j ) = f⊣(i , j ) +ϕ′⊣( j )ϵ(i ) +ϕ⊣(i )ϵ( j ) + ϵ(i ) ⊣ ϵ( j )− ϵ(i ⊣ j ),

vi. g⊢(i , j ) = f⊢(i , j ) +ϕ′⊢( j )ϵ(i ) +ϕ⊢(i )ϵ( j ) + ϵ(i ) ⊢ ϵ( j )− ϵ(i ⊢ j )

for all i , j ∈ B . It is straightforward to verify that ψ⊣, ψ⊢, ψ
′
⊣, and ψ′⊢ are linear transfor-

mations and that g⊣ and g⊢ are bilinear forms. One checks that (ψ⊣,ψ⊢,ψ′⊣,ψ
′
⊢, g⊣, g⊢) is a

factor system via the identities of (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) and the axioms of diassociative alge-

bras. By construction, the two factor systems are equivalent with ϵ as their corresponding

equivalence. It is straightforward to verify uniqueness.

Theorem 2.2.7. Let (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) be a factor system of A by B . The following are

equivalent:

a. (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) splits,

b. (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) is equivalent to some factor system (ψ⊣,ψ⊢,ψ′⊣,ψ

′
⊢, g⊣, g⊢) such

that g⊣ = 0 and g⊢ = 0,

c. there exists a linear transformation ϵ : B −→ A such that

f⊣(i , j ) =−ϕ′⊣( j )ϵ(i )−ϕ⊣(i )ϵ( j )− ϵ(i ) ⊣ ϵ( j ) + ϵ(i ⊣ j ),

f⊢(i , j ) =−ϕ′⊢( j )ϵ(i )−ϕ⊢(i )ϵ( j )− ϵ(i ) ⊢ ϵ( j ) + ϵ(i ⊢ j ).

Proof. (a.=⇒ b.) We know (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) belongs to a split extension 0−→ A

σ−→ L
π−→

B −→ 0. By definition, there is an associated homomorphism µ : B −→ L such that πµ= idB .

Hence there exists a factor system (ψ⊣,ψ⊢,ψ′⊣,ψ
′
⊢, g⊣, g⊢) belonging to the extension and µ

which is equivalent to (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) by Corollary 2.2.4. Since µ is a homomorphism,

we have g⊣ = g⊢ = 0.

(b. =⇒ c.) Let ϵ : B −→ A be an equivalence of factor systems (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) and

(ψ⊣,ψ⊢,ψ′⊣,ψ
′
⊢, g⊣, g⊢)where g⊣ = g⊢ = 0. Then 0= g⊣(i , j ) = f⊣(i , j )+ϕ′⊣( j )ϵ(i )+ϕ⊣(i )ϵ( j )+

ϵ(i ) ⊣ ϵ( j )− ϵ(i ⊣ j ) and 0= g⊢(i , j ) = f⊢(i , j )+ϕ′⊢( j )ϵ(i )+ϕ⊢(i )ϵ( j )+ ϵ(i ) ⊢ ϵ( j )− ϵ(i ⊢ j ) for

all i , j ∈ B by the axioms of equivalence, which implies the desired equalities.

(c.=⇒ a.) Let ϵ be as in c. By Theorem 2.2.6, ϵ is an equivalence of (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢)

with another factor system (ψ⊣,ψ⊢,ψ′⊣,ψ
′
⊢, g⊣, g⊢)which belongs to an extension 0−→ A

σ−→
L

π−→ B −→ 0 andµ : B −→ L . One has g⊣(i , j ) = f⊣(i , j )+ϕ′⊣( j )ϵ(i )+ϕ⊣(i )ϵ( j )+ϵ(i ) ⊣ ϵ( j )−ϵ(i ⊣
j ) = 0 and g⊢(i , j ) = f⊢(i , j )+ϕ′⊢( j )ϵ(i )+ϕ⊢(i )ϵ( j )+ ϵ(i ) ⊢ ϵ( j )− ϵ(i ⊢ j ) = 0 by assumption.
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Then, since σ(g (i , j )) = 0 for all i , j ∈ B , the axioms of belonging imply that µ is a homo-

morphism. Also, µ is injective since πµ= idB . Hence the extension splits and, therefore, so

does the original factor system.

Let A be an abelian diassociative algebra and let (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) be a factor system

of A by B which is equivalent to another factor system (ψ⊣,ψ⊢,ψ′⊣,ψ
′
⊢, g⊣, g⊢). Since A is

abelian, all adjoint operators on A are equal to zero. Thus, by the axioms of equivalence for

factor systems, ϕ⊣ =ψ⊣, ϕ⊢ =ψ⊢, ϕ′⊣ =ψ
′
⊣, and ϕ′⊢ =ψ

′
⊢. We now fix the first four maps of

factor systems and narrow our focus to pairs of bilinear forms. Let Fact(B , A,ϕ⊣,ϕ⊢,ϕ
′
⊣,ϕ
′
⊢)

denote the set of all pairs ( f⊣, f⊢) such that (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) is a factor system and let

T (B , A,ϕ⊣,ϕ⊢,ϕ
′
⊣,ϕ
′
⊢) denote the set of all pairs ( f⊣, f⊢) such that (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ

′
⊢, f⊣, f⊢) is a

split factor system. For ease of notation, let ϕ denote the fixed tuple (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢) and let

(ϕ, f⊣, f⊢) denote the factor system (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢). We abbreviate the previous sets by

Factϕ and Tϕ respectively and denote by

Ext(B , A,ϕ⊣,ϕ⊢,ϕ
′
⊣,ϕ
′
⊢)

the set of equivalence classes Factϕ /Tϕ. For the rest of this subsection, A is abelian.

Theorem 2.2.8. If A is abelian, then

1. Fact(B , A,ϕ⊣,ϕ⊢,ϕ
′
⊣,ϕ
′
⊢) is an abelian diassociative algebra,

2. T (B , A,ϕ⊣,ϕ⊢,ϕ
′
⊣,ϕ
′
⊢) is an ideal in Fact(B , A,ϕ⊣,ϕ⊢,ϕ

′
⊣,ϕ
′
⊢),

3. factor systems (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) and (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ

′
⊢, g⊣, g⊢) are equivalent if and only

if ( f⊣, f⊢) and (g⊣, g⊢) are in the same coset of Factϕ relative to Tϕ,

4. the quotient diassociative algebra Ext(B , A,ϕ⊣,ϕ⊢,ϕ
′
⊣,ϕ
′
⊢) is in one-to-one correspon-

dence with the set of equivalence classes of extensions to which ϕ⊣, ϕ⊢, ϕ
′
⊣, and ϕ′⊢

belong.

Proof. For ( f⊣, f⊢) and (g⊣, g⊢) in Factϕ, one verifies ( f⊣− c g⊣, f⊢− c g⊢) ∈ Factϕ via the axioms

of the factor systems (ϕ, f⊣, f⊢) and (ϕ, g⊣, g⊢) and the fact that multiplication in A is trivial.

For the second statement, it suffices to verify that Tϕ is a subspace. Consider elements

( f⊣, f⊢) and (g⊣, g⊢) inTϕ, which form split factor systems (ϕ, f⊣, f⊢) and (ϕ, g⊣, g⊢) respectively.

By Theorem 2.2.7, there exist linear transformations ϵ f ,ϵg : B −→ A such that

f⊣(i , j ) =−ϕ′⊣( j )ϵ f (i )−ϕ⊣(i )ϵ f ( j )− ϵ f (i ) ⊣ ϵ f ( j ) + ϵ f (i ⊣ j ),

f⊢(i , j ) =−ϕ′⊢( j )ϵ f (i )−ϕ⊢(i )ϵ f ( j )− ϵ f (i ) ⊢ ϵ f ( j ) + ϵ f (i ⊢ j )
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and

g⊣(i , j ) =−ϕ′⊣( j )ϵg (i )−ϕ⊣(i )ϵg ( j )− ϵg (i ) ⊣ ϵg ( j ) + ϵg (i ⊣ j ),

g⊢(i , j ) =−ϕ′⊢( j )ϵg (i )−ϕ⊢(i )ϵg ( j )− ϵg (i ) ⊢ ϵg ( j ) + ϵg (i ⊢ j ).

Letting ϵ = ϵ f − c ϵg , one has

( f⊣− c g⊣)(i , j ) =−ϕ′⊣( j )ϵ(i )−ϕ⊣(i )ϵ( j )− ϵ(i ) ⊣ ϵ( j ) + ϵ(i ⊣ j )

( f⊢− c g⊢)(i , j ) =−ϕ′⊢( j )ϵ(i )−ϕ⊢(i )ϵ( j )− ϵ(i ) ⊢ ϵ( j ) + ϵ(i ⊢ j )

which implies that (ϕ, f⊣− c g⊣, f⊢− c g⊢) splits. For the third statement, one observes that

the last two axioms of equivalence for factor systems hold if and only if the third condition

of Theorem 2.2.7 holds for the factor system (ϕ, f⊣− g⊣, f⊢− g⊢). Since A is abelian, adjoint

operators on A are trivial. The final statement holds as in the Leibniz analogue.

Theorem 2.2.9. (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢, f⊣, f⊢) is central if and only if ϕ⊣,ϕ⊢,ϕ

′
⊣,ϕ
′
⊢ = 0.

Proof. By Theorem 2.2.2, the factor system belongs to an extension 0−→ A −→ L −→ B −→ 0

that is central if and only if (m , i ) ⊣ (n ,0) = (n ,0) ⊣ (m , i ) = (m , i ) ⊢ (n ,0) = (n ,0) ⊢ (m , i ) =

(0, 0) for all m , n ∈ A and i ∈ B . But this happens if and only if ϕ⊣,ϕ⊢,ϕ
′
⊣,ϕ
′
⊢ = 0.

Theorem 2.2.10. The classes of central extensions of A by B form a diassociative algebra,

denoted Cext(B , A).

Proof. By Theorem 2.2.8 and Theorem 2.2.9; we set Cext(B , A) := Ext(B , A, 0, 0, 0, 0).

Theorem 2.2.11. Let A and B be abelian diassociative algebras and let (ϕ, f⊣, f⊢) be a central

factor system of A by B . Then (ϕ, f⊣, f⊢) belongs to an abelian extension if and only if f⊣ = 0

and f⊢ = 0.

Proof. Since (ϕ, f⊣, f⊢) is central, we know all ϕ maps are zero. In the forward direction,

(ϕ, f⊣, f⊢) belongs to an abelian extension 0−→ A −→ L −→ B −→ 0 and section µ. Since L and

B are both abelian, one has σ( f⊣(i , j )) = µ(i ) ⊣ µ( j )−µ(i ⊣ j ) = 0 and σ( f⊢(i , j )) = µ(i ) ⊢
µ( j )−µ(i ⊢ j ) = 0 for all i , j ∈ B . Conversely, if f⊣ and f⊢ are trivial, then the construction of

L in Theorem 2.2.2 has trivial multiplications.

2.3 Factor Systems of Dendriform Algebras

The dendriform versions of these results follow by the same logic as the diassociative case

with the substitutions of < and > for multiplications ⊣ and ⊢ respectively.
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Definition 10. Let A and B be dendriform algebras. A factor system of A by B is a tuple

(ϕ<,ϕ>,ϕ′<,ϕ′>, f<, f>) of maps such that

ϕ<,ϕ>,ϕ′<,ϕ′> : B −→L (A) are linear,

f<, f> : B ×B −→ A are bilinear,

and the following three sets of identities are satisfied for all m , n , p ∈ A and i , j , k ∈ B :

1. Those resembling E1:

(a) (ϕ<(i )n )< p =ϕ<(i )(n < p ) +ϕ<(i )(n > p )

(b) (ϕ′<( j )m )< p =m < (ϕ<( j )p ) +m < (ϕ>( j )p )

(c) f<(i , j )< p +ϕ<(i < j )p =ϕ<(i )(ϕ<( j )p ) +ϕ<(i )(ϕ>( j )p )

(d) ϕ′<(k )(m < n ) =m < (ϕ′<(k )n ) +m < (ϕ′>(k )n )

(e) ϕ′<(k )(ϕ<(i )n ) =ϕ<(i )(ϕ
′
<(k )n ) +ϕ<(i )(ϕ

′
>(k )n )

(f) ϕ′<(k )(ϕ
′
<( j )m ) =m < f<( j , k ) +ϕ′<( j < k )m +m < f>( j , k ) +ϕ′<( j > k )m

(g) ϕ′<(k ) f<(i , j )+ f<(i < j , k ) =ϕ<(i ) f<( j , k )+ f<(i , j < k )+ϕ<(i ) f>( j , k )+ f<(i , j > k )

2. Those resembling E2:

(a) (ϕ>(i )n )< p =ϕ>(i )(n < p )

(b) (ϕ′>( j )m )< p =m > (ϕ<( j )p )

(c) f>(i , j )< p +ϕ<(i > j )p =ϕ>(i )(ϕ<( j )p )

(d) ϕ′<(k )(m > n ) =m > (ϕ′<(k )n )

(e) ϕ′<(k )(ϕ>(i )n ) =ϕ>(i )(ϕ
′
<(k )n )

(f) ϕ′<(k )(ϕ
′
>( j )m ) =ϕ

′
>( j < k )m +m > f<( j , k )

(g) ϕ′<(k ) f>(i , j ) + f<(i > j , k ) =ϕ>(i ) f<( j , k ) + f>(i , j < k )

3. Those resembling E3:

(a) (ϕ<(i )n )> p + (ϕ>(i )n )> p =ϕ>(i )(n > p )

(b) (ϕ′<( j )m )> p + (ϕ′>( j )m )> p =m > (ϕ>( j )p )

(c) f<(i , j )> p +ϕ>(i < j )p + f>(i , j )> p +ϕ>(i > j )p =ϕ>(i )(ϕ>( j )p )

(d) ϕ′>(k )(m < n ) +ϕ′>(k )(m > n ) =m > (ϕ′>(k )n )

(e) ϕ′>(k )(ϕ<(i )n ) +ϕ
′
>(k )(ϕ>(i )n ) =ϕ>(i )(ϕ

′
>(k )n )
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(f) ϕ′>(k )(ϕ
′
<( j )m ) +ϕ

′
>(k )(ϕ

′
>( j )m ) =m > f>( j , k ) +ϕ′>( j > k )m

(g) ϕ′>(k ) f<(i , j )+ f>(i < j , k )+ϕ′>(k ) f>(i , j )+ f>(i > j , k ) =ϕ>(i ) f>( j , k )+ f>(i , j > k )

Definition 11. Let A and B be Zinbiel algebras. A factor system of A by B is a tuple of maps

(ϕ,ϕ′, f )where

ϕ,ϕ′ : B −→L (A) are linear,

f : B ×B −→ A is bilinear

such that

1. (ϕ(i )n )p =ϕ(i )(np ) +ϕ(i )(p n )

2. (ϕ′( j )m )p =m (ϕ( j )p ) +m (ϕ′( j )p )

3. ϕ′(k )(mn ) =m (ϕ(k )n ) +m (ϕ′(k )n )

4. f (i , j )p +ϕ(i j )p =ϕ(i )(ϕ( j )p ))+ϕ(i )(ϕ′( j )p )

5. ϕ′(k )(ϕ(i )n ) =ϕ(i )(ϕ(k )n ) +ϕ(i )(ϕ′(k )n )

6. ϕ′(k )(ϕ′( j )m ) =m f ( j , k ) +m f (k , j ) +ϕ′( j k )m +ϕ′(k j )m

7. ϕ′(k ) f (i , j ) + f (i j , k ) =ϕ(i ) f ( j , k ) +ϕ(i ) f (k , j ) + f (i , j k ) + f (i , k j )

are satisfied for all m , n , p ∈ A and i , j , k ∈ B .

2.4 Cohomology

We now discuss how second cohomology characterizes extensions, using the Leibniz case

as a model example. Given a central extension 0−→ A −→ L −→ B −→ 0 of Leibniz algebras A

by B , the general construction of cohomology begins with the setC n (B , A) of n-linear maps

f : B × · · · ×B −→ A. Elements of C n (B , A) =Mult(B × · · · ×B , A) ∼=HomF(B⊗n , A) are called

n-cochains. The usual Leibniz coboundary map d n :C n (B , A)−→C n+1(B , A) is defined by

(d n f )(x1, . . . , xn+1) =
∑

1≤i< j≤n+1

(−1)i f (x1, . . . , x̂i , . . . , x j−1, xi x j , x j+1, . . . , xn+1)

for f ∈ C n (B , A). Note specifically that (d 2 f )(i , j , k ) = − f (i j , k ) + f (i , j k )− f ( j , i k ). We

denote by Z n (B , A) the set of all f ∈ C n (B , A) such that d n f = 0 and byBn (B , A) the set

of all f ∈C n (B , A) such that d n−1ϵ = f for some ϵ ∈C n−1(B , A). Elements ofZ n (B , A) are

called n-cocycles, while elements ofBn (B , A) are called n-coboundaries. It is well known that
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d n d n−1 = 0 and thusBn (B , A)⊆Z n (B , A). ThereforeH n (B , A) =Z n (B , A)/Bn (B , A) is the

nth cohomology group. We refer the reader to Loday’s [12] for constructions of (co)homology

in the diassociative and dendriform settings.

Continuing with our Leibniz discussion, we narrow our focus to second cohomology

and recall the construction Fact(B , A, 0, 0) from Theorem 2.1.8. Given our central extension

0−→ A −→ L −→ B −→ 0, the axioms of its corresponding factor systems become trivial except

for the seventh one, which reduces to f (i , j k ) = f (i j , k ) + f ( j , i k ). Thus Fact(B , A,0,0) is

the set of all bilinear f : B ×B −→ A such that d 2 f = 0. Moreover, T (B , A,0,0) is the set of

all bilinear f : B ×B −→ A such that f (i , j ) =−ϵ(i j ) for some linear transformation ϵ : B −→
A. These sets are thus precisely the 2-cocycles and 2-coboundaries of our cohomology

respectively, withZ 2(B , A) = Fact(B , A, 0, 0) andB2(B , A) =T (B , A, 0, 0), making Cext(B , A)

the second cohomology groupH 2(B , A). For any sectionµ, we can thereby define a bilinear

form f : B ×B −→ A by f (i , j ) =µ(i )µ( j )−µ(i j ) that is automatically a 2-cocycle of Leibniz

algebras. Furthermore, any f and g in Z 2(B , A) belong to equivalent extensions if and

only if they differ by a 2-coboundary. Therefore, extensions of A by B are equivalent if

and only if they give rise to the same element ofH 2(B , A). Finally, the work of the current

chapter also guarantees that each element f ∈H 2(B , A) gives rise to a central extension

0−→ A −→ L −→ B −→ 0 and section µ such that f (i , j ) =µ(i )µ( j )−µ(i j ).

Similarly, 2-cocycle identities for other classes of algebras are the central simplifica-

tions of their specific factor system identities. The following table lists these identities for

each P algebra, as well as the total numbers ϖ(P ) of noncentral factor system identi-

ties. By construction, each set of cocycle identities resembles the defining identities of the

correspondingP structure.
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Table 2.1 2-cocycles.

P ϖ(P ) 2-cocycle form 2-cocycle Identities
Associative 7 f f (i j , k ) = f (i , j k )

Leibniz 7 f f (i , j k ) = f (i j , k ) + f ( j , i k )

Zinbiel 7 f f (i j , k ) = f (i , j k ) + f (i , k j )

Diassociative 35 ( f⊣, f⊢) f⊣(i , j ⊣ k ) = f⊣(i , j ⊢ k )
f⊣(i ⊢ j , k ) = f⊢(i , j ⊣ k )
f⊢(i ⊣ j , k ) = f⊢(i ⊢ j , k )
f⊣(i , j ⊣ k ) = f⊣(i ⊣ j , k )
f⊢(i , j ⊢ k ) = f⊢(i ⊢ j , k )

Dendriform 21 ( f<, f>) f<(i < j , k ) = f<(i , j < k ) + f<(i , j > k )
f<(i > j , k ) = f>(i , j < k )

f>(i < j , k ) + f>(i > j , k ) = f>(i , j > k )

Lie 3 f f (i , i ) = 0
f (i j , k ) + f ( j k , i ) + f (k i , j ) = 0

Commutative 4 f f (i , j ) = f ( j , i )
f (i j , k ) = f (i , j k )
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CHAPTER

3

EXTENSIONS OF NILPOTENT ALGEBRAS

Recall that an extension 0−→ A −→ L −→ B −→ 0 ofP algebras is nilpotent if L is nilpotent

as aP algebra. In [22], the author proved a criterion for the nilpotency of certain related

extensions of Lie algebras. The objective of the present chapter is to develop analogues of

this criterion for the algebras of Loday, and thus for all seven algebras under consideration.

To this end, it suffices to prove the Leibniz and diassociative cases. In particular, the dendri-

form case of these results follows similarly to the diassociative case after replacing ⊣ and ⊢
by< and> respectively, as well as replacing Lemma 3.1.2 by the analogous Lemma 3.1.3. As

mentioned in the introduction, the main result of the current chapter is a direct application

of noncentral factor systems, and thus relies on Chapter 2. We begin by discussing notions

of nilpotency.

3.1 Nilpotency

There is a well-known sequence of ideals called the lower central series that is defined

recursively, for a Leibniz algebra L , by L 0 = L and L k+1 = L L k for k ≥ 0. We note that the

product algebras L L k are usually denoted by bracket algebras [L , L k ] in the Lie case. A

Leibniz algebra is called nilpotent of class u , denoted nil L = u , if L u = 0 and L u−1 ≠ 0 for

some u ≥ 0. The following lemma holds via induction and repeated application of the
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Leibniz identity.

Lemma 3.1.1. Let L be a Leibniz algebra. Then L n L ⊆ L L n for all n.

For dialgebras, the definition of nilpotency is more involved. The following concepts

and notations concerning the nilpotency of diassociative algebras are taken from [14]. Let

A and B be subsets of a diassociative algebra D and recall the ideal A◊B = A ⊣ B +A ⊢ B

in D . There are notions of left, right, and general nilpotency for D that are based on the ◊
operator. We define three sequences of ideals in D :

i. D {0} =D , D {k+1} =D◊D {k},

ii. D <0> =D , D <k+1> =D <k>◊D ,

iii. D 0 =D , D k+1 =D 0◊D k +D 1◊D k−1+ · · ·+D k◊D 0.

A diassociative algebra D is called

i. left nilpotent if D {u} = 0,

ii. right nilpotent if D <u> = 0,

iii. nilpotent if D u = 0

for some u ≥ 0. We say D is nilpotent of class u if D u = 0 and D u−1 ≠ 0. The following lemma

from [14] is crucial for the diassociative case in this section.

Lemma 3.1.2. Let D be a diassociative algebra. For all k ∈N, D {k} =D <k> =D k .

The same definitions can be stated for dendriform algebras with the simple substitutions

of < and > for ⊣ and ⊢ respectively. Let A and B be subsets of a dendriform algebra E . The

dendriform analogue of Lemma 3.1.2 was shown in [13], where the same three sequences

E {k}, E <k>, and E k of ideals in E are defined based on A◊B = A < B +A > B .

Lemma 3.1.3. Let E be a dendriform algebra. For all k ∈N, E {k} = E <k> = E k .

3.2 Leibniz Case

Consider a pair of nilpotent Leibniz algebras A and B and let 0−→ A
σ−→ L

π−→ B −→ 0 be an

extension of A by B with section µ : B −→ L . We first define two ways for B to act on A. Let
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ϕ : B −→Der(A) by ϕ(i )m =σ−1(µ(i )σ(m )) and ϕ′ : B −→L (A) by ϕ′(i )m =σ−1(σ(m )µ(i ))

for i ∈ B , m ∈ A. Next, let

q : Der(A)−→Der(A)/adl (A),

q ′ :L (A)−→L (A)/adr (A)

denote the natural projections and define a pair of maps (Φ,Φ′) = (qϕ, q ′ϕ′). We say that

the pair (ϕ,ϕ′) is a lift of (Φ,Φ′). Any two lifts (ϕ,ϕ′) and (ψ,ψ′) of (Φ,Φ′) are thus related by

ϕ(i ) =ψ(i ) +adl
mi

,

ϕ′(i ) =ψ′(i ) +adr
m ′i

for i ∈ B , and some elements mi , m ′i ∈ A that depend on i . Our first proposition develops

a criterion for when L is nilpotent that is based on the following recursive construction.

Define A0 = A and Ak+1 =σ−1(σ(Ak )L + Lσ(Ak )) for k ≥ 0.

Proposition 3.2.1. Let B be a nilpotent Leibniz algebra of class s . Then L k+s ⊆σ(Ak )⊆ L k

for all k ≥ 0. Hence L is nilpotent if and only if Ak = 0 for some k .

Proof. Since π : L −→ B is a homomorphism, one computes π(L s ) = B s = 0, which implies

that L s ⊆ kerπ=σ(A) =σ(A0). Also,σ(A0) =σ(A)⊆ L = L 0. We therefore have a base case

L s ⊆σ(A0)⊆ L 0 for k = 0. Now suppose L n+s ⊆σ(An )⊆ L n for some n ≥ 0. Then

L n+1+s = L L n+s

⊆ Lσ(An ) by induction

⊆σ(An )L + Lσ(An )

⊆ L n L + L L n by induction
∗= L L n

= L n+1

whereσ(An )L + Lσ(An ) =σ(An+1) and the equality ∗ follows by Lemma 3.1.1. Thus L s+k ⊆
σ(Ak ) ⊆ L k for all k ≥ 0 via induction. For the second statement, we first note that if L

is nilpotent, then σ(Ak ) ⊆ L k = 0 for some k ≥ 0. This means Ak = 0 since σ is injective.

Conversely, if Ak = 0 for some k ≥ 0, thenσ(Ak ) = 0 and thus L k+s = 0. Hence L is nilpotent.

Again, let (ϕ,ϕ′) be a lift of (Φ,Φ′).
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Definition 12. An ideal N of A is (ϕ,ϕ′)-invariant if ϕ(i )n ,ϕ′(i )n ∈ N for all i ∈ B and

n ∈N .

Lemma 3.2.2. Let (ϕ,ϕ′) and (ψ,ψ′) be lifts of (Φ,Φ′). Then N is (ϕ,ϕ′)-invariant if and only

if N is (ψ,ψ′)-invariant.

Proof. Let i ∈ B . Since we have two lifts of the same pair, they are related by

ψ(i ) =ϕ(i ) +adl
mi

,

ψ′(i ) =ϕ′(i ) +adr
m ′i

for some mi , m ′i ∈ A. In one direction, assume N is (ϕ,ϕ′)-invariant. Thenϕ(i )n ,ϕ′(i )n ∈N

for all n ∈ N by definition. Also, mi n , nm ′i ∈ N for all n ∈ N since N is an ideal. Thus

ψ(i )n ,ψ′(i )n ∈N and so N is (ψ,ψ′)-invariant. The other direction is similar.

Definition 13. An ideal N of A is B -invariant if N is (ϕ,ϕ′)-invariant for some, and hence

all, lifts of (Φ,Φ′).

In particular, A itself is B -invariant since ϕ(i ),ϕ′(i ) ∈ L (A) for all i ∈ B . Consider a

B -invariant ideal N of A and let (ϕ,ϕ′) be a lift of (Φ,Φ′). We define Γ (N ,ϕ,ϕ′) to be the

B -invariant ideal of A generated by AN , N A, and {ϕ(i )n ,ϕ′(i )n | i ∈ B , n ∈ N }. Then

Γ (N ,ϕ,ϕ′)⊆N and we reach the following lemma.

Lemma 3.2.3. If (ϕ,ϕ′) and (ψ,ψ′) are lifts of (Φ,Φ′), then Γ (N ,ϕ,ϕ′) = Γ (N ,ψ,ψ′).

Proof. It again suffices to show one direction. First note that AN and N A are contained in

both sides of the equality by definition. For i ∈ B and n ∈N , we know

ψ(i )n =ϕ(i )n +mi n ,

ψ′(i )n =ϕ′(i )n +nm ′i

for some mi , m ′i ∈ A. These expressions clearly fall in Γ (N ,ϕ,ϕ′) and therefore Γ (N ,ψ,ψ′)

is contained in Γ (N ,ϕ,ϕ′).

We now fix a lift (ϕ,ϕ′) of (Φ,Φ′) and denote ΓN = Γ (N ,ϕ,ϕ′). Given B and A, as well as

maps

Φ : B −→Der(A)/adl (A),

Φ′ : B −→L (A)/adr (A),

34



and a B -invariant ideal N of A, define a descending sequence of B -invariant ideals Γ B
k N of

N by Γ B
0 N =N and Γ B

k+1N = Γ (Γ B
k N ) for k ≥ 0.

Theorem 3.2.4. Consider the extension 0−→ A
σ−→ L −→ B −→ 0 and our pair of maps (Φ,Φ′). If

A0 = A and Ak+1 =σ−1(σ(Ak )L + Lσ(Ak )), then Ak = Γ B
k A for all k ≥ 0.

Proof. By Theorem 2.1.1, there exists a unique factor system (ϕ,ϕ′, f ) belonging to the

extension 0 −→ A
σ−→ L −→ B −→ 0 and section µ. By construction, ϕ and ϕ′ are the maps

of our lift (ϕ,ϕ′). By Theorem 2.1.2, there exists another extension 0−→ A
ι−→ L2 −→ B −→ 0

of A by B to which (ϕ,ϕ′, f ) belongs. Here, L2 is the vector space A ⊕ B equipped with

multiplication (m , i )(n , j ) = (mn +ϕ(i )n +ϕ′( j )m + f (i , j ), i j ), where f : B × B −→ A is a

bilinear form. Also ι(m ) = (m ,0). Since (ϕ,ϕ′, f ) is equivalent to itself, the extensions are

equivalent, and thus there exists an isomorphism τ : L −→ L2 such that τσ= ι.

We will now prove the statement via induction, first noting that the base case A0 =

A = Γ B
0 A holds trivially. Assume that An = Γ B

n A for some n ≥ 0. By definition, it suffices

to show the inclusion of generating elements for each side of the equality. Generating

elements of An+1 have the formsσ−1(σ(m )x ) andσ−1(xσ(m )) for x ∈ L and m ∈ Ak . Denote

τ(x ) = (mx , ix ) ∈ L2. We compute

σ−1(σ(m )x ) =σ−1τ−1(τσ(m )τ(x ))

= ι−1((m , 0)(mx , ix ))

= ι−1(mmx +ϕ
′(ix )m , 0)

=mmx +ϕ
′(ix )m

and

σ−1(xσ(m )) =σ−1τ−1(τ(x )τσ(m ))

= ι−1((mx , ix )(m , 0))

= ι−1(mx m +ϕ(ix )m , 0)

=mx m +ϕ(ix )m .

Since An = Γ B
n A, one has mx m ∈ A(Γ B

n A) and mmx ∈ (Γ B
n A)A, which are both included in

Γ B
n+1A since Γ B

n+1A is the B -invariant ideal generated by (Γ B
n A)A, A(Γ B

n A), and

{ϕ(i )m ,ϕ′(i )m |m ∈ Γ B
n A, i ∈ B }.
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Thus ϕ′(ix )m ,ϕ(ix )m ∈ Γ B
n+1A as well, and so An+1 ⊆ Γ B

n+1A. Conversely, one computes

(Γ B
n A)A =σ−1(σ(Γ B

n A)σ(A))⊆σ−1(σ(An )L )⊆ An+1,

A(Γ B
n A) =σ−1(σ(A)σ(Γ B

n A))⊆σ−1(Lσ(An ))⊆ An+1.

Also, let i ∈ B and m ∈ Γ B
n A = An . Then ϕ(i )m = σ−1(µ(i )σ(m )) ∈ An+1 and ϕ′(i )m =

σ−1(σ(m )µ(i )) ∈ An+1 since µ(i ) ∈ L . Therefore Γ B
n+1A ⊆ An+1.

Given B , A, Φ : B −→Der(A)/adl (A), and Φ′ : B −→L (A)/adr (A), we define a new notion

of nilpotency for A.

Definition 14. A is B -nilpotent of class u , written nilB A = u , if Γ B
u A = 0 and Γ B

u−1A ̸= 0 for

some u ≥ 0.

The following two corollaries hold similarly to the Lie case. For their proofs, simply

replace Proposition 2.1 and Theorem 3.1 of [22] by the analogous Proposition 3.2.1 and

Theorem 3.2.4 of the present work. The subsequent theorem is the main result, which

follows from these corollaries and the same logic as the Lie proof.

Corollary 3.2.5. L is nilpotent if and only if B is nilpotent and Γ B
u A = 0 for some u ≥ 1.

Corollary 3.2.6. max(nilB A, nil B )≤ nil L ≤ nilB A+nil B .

Theorem 3.2.7. Let (ϕ,ϕ′) and (ψ,ψ′) be lifts of (Φ,Φ′) corresponding to extensions 0−→ A −→
L (ϕ,ϕ′) −→ B −→ 0 and 0−→ A −→ L (ψ,ψ′) −→ B −→ 0 respectively. Then L (ϕ,ϕ′) is nilpotent if and

only if L (ψ,ψ′) is nilpotent.

3.3 Diassociative Case

Consider a pair of nilpotent diassociative algebras A and B and an extension 0 −→ A
σ−→

L
π−→ B −→ 0 of A by B with section µ : B −→ L . Throughout this subsection, we let ∗ range

over ⊣ and ⊢ for the sake of brevity. We consider four natural ways for B to act on A. Define

ϕ⊣,ϕ⊢,ϕ
′
⊣,ϕ
′
⊢ : B −→L (A) by ϕ∗(i )m = σ−1(µ(i ) ∗σ(m )) and ϕ′∗(i )m = σ

−1(σ(m ) ∗µ(i )) for

i ∈ B , m ∈ A. Let

q∗ :L (A)−→L (A)/adl
∗(A),

q ′∗ :L (A)−→L (A)/adr
∗ (A)

be the natural projections and define a tuple of maps Φ= (Φ⊣,Φ⊢,Φ′⊣,Φ
′
⊢) by Φ∗ = q∗ϕ∗ and

Φ′∗ = q ′∗ϕ
′
∗. We say that the tuple ϕ = (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ

′
⊢) is a lift of Φ. Two lifts ϕ = (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ

′
⊢)
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andψ= (ψ⊣,ψ⊢,ψ′⊣,ψ
′
⊢) of Φ are related by

ψ∗(i ) =ϕ∗(i ) +adl
∗(m∗,i ),

ψ′∗(i ) =ϕ
′
∗(i ) +adr

∗ (m
′
∗,i )

for i ∈ B , and some m∗,i , m ′∗,i ∈ A that depend on i . Finally, let A0 = A and define Ak+1 =

σ−1(σ(Ak )◊L + L◊σ(Ak )) for k ≥ 0.

Proposition 3.3.1. Let B be a nilpotent diassociative algebra of class s . Then L k+s ⊆σ(Ak )⊆
L k for all k ≥ 0. Hence L is nilpotent if and only if Ak = 0 for some k .

Proof. As with the Leibniz case, the base case k = 0 follows by our definitions and the

properties of extensions. Suppose L n+s ⊆σ(An ) ⊆ L n for some n ≥ 0. We recall that L n =

L<n> = L {n} by Lemma 3.1.2, and thereby compute

L n+1+s = L<n+1+s>

= L n+s◊L

⊆σ(An )◊L by induction

⊆σ(An )◊L + L◊σ(An )

⊆ L<n>◊L + L◊L {n} by induction

= L n+1

whereσ(An )◊L + L◊σ(An ) =σ(An+1). Thus L s+k ⊆σ(Ak )⊆ L k for k ≥ 0 via induction. The

second statement follows by the same logic as the Leibniz case.

Once more, let ϕ = (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢) be a lift of Φ.

Definition 15. An ideal N of A is ϕ-invariant if ϕ∗(i )n ,ϕ′∗(i )n ∈N for all i ∈ B , n ∈N .

Lemma 3.3.2. Letϕ andψ be lifts ofΦ. Then N isϕ-invariant if and only if N isψ-invariant.

Proof. Let i ∈ B . Since ϕ = (ϕ⊣,ϕ⊢,ϕ′⊣,ϕ
′
⊢) and ψ = (ψ⊣,ψ⊢,ψ′⊣,ψ

′
⊢) are lifts of the same

tuple, they are related by

ψ∗(i ) =ϕ∗(i ) +adl
∗(m∗,i ),

ψ′∗(i ) =ϕ
′
∗(i ) +adr

∗ (m
′
∗,i )

for some m∗,i , m ′∗,i ∈ A. In one direction, suppose N isϕ-invariant. Thenψ∗(i )n ,ψ′∗(i )n ∈N

for all n ∈N since N is a ϕ-invariant ideal in A. Therefore N isψ-invariant. The converse

is similar.
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Definition 16. An ideal N of A is B -invariant if N is ϕ-invariant for some, and hence all,

lifts of Φ.

In particular, A is B -invariant since ϕ∗(i ),ϕ′∗(i ) ∈L (A) for all i ∈ B . Now let N be a B -

invariant ideal in A andϕ be a lift ofΦ. We denote by Γ (N ,ϕ) the B -invariant ideal generated

by N ⊣ A, N ⊢ A, A ⊣ N , A ⊢ N , and the set {ϕ∗(i )n ,ϕ′∗(i )n | i ∈ B , n ∈ N }. We thus have

Γ (N ,ϕ)⊆N as well as the following lemma.

Lemma 3.3.3. If ϕ andψ are lifts of Φ, then Γ (N ,ϕ) = Γ (N ,ψ).

Proof. It suffices to show that Γ (N ,ψ) ⊆ Γ (N ,ϕ). We first note that N ⊣ A, N ⊢ A, A ⊣ N ,

and A ⊢ N are contained in both sides by definition. Similarly to the Leibniz case, the

expressions forψ∗(i )n andψ′∗(i )n are clearly contained in Γ (N ,ϕ) for all i ∈ B and n ∈N .

The converse holds without loss of generality.

Fix a lift ϕ of Φ and denote ΓN = Γ (N ,ϕ). Given B , A, Φ, and a B -invariant ideal N

of A, define a descending sequence of B -invariant ideals Γ B
k N of N by Γ B

0 N := N and

Γ B
k+1N := Γ (Γ B

k N ) for k ≥ 0.

Theorem 3.3.4. Consider 0−→ A
σ−→ L −→ B −→ 0 and let Φ be defined as above. If A0 = A and

Ak+1 =σ−1(σ(Ak )◊L + L◊σ(Ak )), then Ak = Γ B
k A for all k ≥ 0.

Proof. As in the Leibniz case, our work with factor systems in Chapter 2 yields an equivalent

extension 0−→ A
ι−→ L2 −→ B −→ 0. Let τ : L −→ L2 be the equivalence. Here, L2 is the vector

space A⊕B equipped with multiplications (m , i )∗(n , j ) = (m∗n+ϕ∗(i )n+ϕ′∗( j )m+ f∗(i , j ), i ∗
j ), and ι(m ) = (m , 0). Moreover, ϕ∗ and ϕ′∗ are the same maps as in our lift ϕ while f⊣ and f⊢
are the bilinear forms in some factor system of diassociative algebras.

The base case of this result is trivial since A0 = A = Γ B
0 A by definition. Now assume

An = Γ B
n A for some n ≥ 0. Also by definition, it suffices to show the inclusion of generat-

ing elements for each side of the equality. Generating elements in An+1 have the forms

σ−1(σ(m ) ∗ x ) and σ−1(x ∗σ(m )) for m ∈ An and x ∈ L . Denote τ(x ) = (mx , ix ) ∈ L2. We

compute

σ−1(σ(m ) ∗ x ) =σ−1τ−1(τσ(m ) ∗τ(x ))

= ι−1((m , 0) ∗ (mx , ix ))

=m ∗mx +ϕ
′
∗(ix )m
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and

σ−1(x ∗σ(m )) =σ−1τ−1(τ(x ) ∗τσ(m ))

= ι−1((mx , ix ) ∗ (m , 0))

=mx ∗m +ϕ∗(ix )m .

Since An = Γ B
n A, one has mx ∗m ∈ A ∗ (Γ B

n A) and m ∗mx ∈ (Γ B
n A) ∗A, which are included in

Γ B
n+1A since Γ B

n+1A is the B -invariant ideal generated by (Γ B
n A) ∗A, A ∗ (Γ B

n A), and

{ϕ∗(i )m ,ϕ′∗(i )m |m ∈ Γ
B

n A, i ∈ B }.

Thus ϕ′∗(ix )m ,ϕ∗(ix )m ∈ Γ B
n+1A as well. Therefore An+1 ⊆ Γ B

n+1A. Conversely, one computes

(Γ B
n A) ∗A =σ−1(σ(Γ B

n A) ∗σ(A))⊆σ−1(σ(An ) ∗ L )⊆ An+1,

A ∗ (Γ B
n A) =σ−1(σ(A) ∗σ(Γ B

n A))⊆σ−1(L ∗σ(An ))⊆ An+1.

Also, let i ∈ B and m ∈ Γ B
n A = An . Then ϕ∗(i )m = σ−1(µ(i ) ∗σ(m )) ∈ An+1 and ϕ′∗(i )m =

σ−1(σ(m ) ∗µ(i )) ∈ An+1 since µ(i ) ∈ L . Therefore Γ B
n+1A ⊆ An+1.

Definition 17. Given B , A, and the tuple Φ, we say that A is B -nilpotent of class u , written

nilB A = u , if Γ B
u A = 0 but Γ B

u−1A ̸= 0.

The following results hold similarly to the Lie and Leibniz cases. Here, nil L is used to

denote the nilpotency class of a diassociative algebra L .

Corollary 3.3.5. L is nilpotent if and only if B is nilpotent and Γ B
u A = 0 for some u ≥ 1.

Corollary 3.3.6. max(nilB A, nil B )≤ nil L ≤ nilB A+nil B .

Theorem 3.3.7. Let ϕ andψ be lifts of (Φ⊣,Φ⊢,Φ′⊣,Φ
′
⊢) corresponding to extensions 0−→ A −→

Lϕ −→ B −→ 0 and 0−→ A −→ Lψ −→ B −→ 0 respectively. Then Lϕ is nilpotent if and only if Lψ
is nilpotent.

We now state the associative case as a corollary. Let A and B be associative algebras and

consider a pair of maps (Φ,Φ′) such that Φ : B −→L (A)/adl (A) and Φ′ : B −→L (A)/adr (A).

Let lifts (ϕ,ϕ′) and (ψ,ψ′) of (Φ,Φ′) be defined similarly to the Leibniz case and consider

their corresponding extensions 0 −→ A −→ L (ϕ,ϕ′) −→ B −→ 0 and 0 −→ A −→ L (ψ,ψ′) −→ B −→ 0

respectively.

Corollary 3.3.8. L (ϕ,ϕ′) is nilpotent if and only if L (ψ,ψ′) is nilpotent.
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3.4 Examples

The first two examples demonstrate that extensions corresponding to lifts of the same tuple

need not have the same nilpotency class. We provide an example for the non-Lie Leibniz

case as well as for the diassociative case.

Example 3.4.1. Let A = 〈x , y , z 〉 and B = 〈w 〉 be abelian Leibniz algebras and consider two

extensions L1 and L2 of A by B . Let L1 = 〈x , y , z , w 〉 have nonzero multiplications given

by w 2 = x , w x = y , and w y = z . Then L 2
1 = 〈x , y , z 〉, L 3

1 = 〈y , z 〉, L 4
1 = 〈z 〉, and L 5

1 = 0,

making L1 nilpotent of class 5. Now let L2 = 〈x , y , z , w 〉 have nonzero multiplications given

by w x = y and w y = z . Then L 2
2 = 〈y , z 〉, L 3

2 = 〈z 〉, and L 4
2 = 0, making L2 nilpotent of class

4. Observe that L1 and L2 correspond to lifts of the same tuple, yet have different nilpotency

classes. Indeed, A is abelian, and hence adl (M ) and adr (M ) are zero, making (Φ,Φ′) = (ϕ,ϕ′)

for any lift of (Φ,Φ′). In this case, Φ(w )x =ϕ(w )x = y and Φ(w )y =ϕ(w )y = z for both. Also

Φ′(w ) = 0.

We would also like to compute Ak and Γ B
k A. Note that, since A2 = 0, one needs only

consider the actions of ϕ and ϕ′ on A when computing Γ B
k A. As predicted, Ak = Γ B

k A for all

k . One has

A0 = A = Γ B
0 A,

A1 = 〈y , z 〉= Γ B
1 A,

A2 = 〈z 〉= Γ B
2 A,

A3 = 0= Γ B
3 A,

and Ak = 0= Γ B
k A otherwise.

Example 3.4.2. Now for a diassociative example. Let A = 〈x , y 〉 and B = 〈u , v 〉 be abelian

algebras and Lϕ be an extension of A by B having nonzero multiplications u ⊣ u = x ,

u ⊢ u = x + y , v ⊣ v = y , v ⊢ v = x + y , and v ⊢ u = x + y = u ⊢ v . This diassociative algebra

is a special case of the isomorphism type D i a s 1
4 in Theorem 4.2 of [14]. One computes

L 2
ϕ = 〈x , y 〉 and L 3

ϕ = 0; hence Lϕ is nilpotent of class 3. We also note that the action of B

on A is entirely zero, i.e. ϕ⊣ =ϕ⊢ =ϕ′⊣ =ϕ
′
⊢ = 0. Moreover, A is again abelian, and hence all

lifts of the natural Φ tuple are equal. To finish the point, the abelian extension Lab of A by B

corresponds to the same zero-lift, but has nilpotency class 2.

We conclude with an example in which A is nonabelian and hence the lifts are allowed

to vary by adjoint operators. In this example, however, our nilpotency classes turn out to be

the same. We note that the algebras in this case are both associative and Leibniz.
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Example 3.4.3. Let A = 〈x , y , z 〉 and B = 〈w 〉 be the associative algebras with only nonzero

multiplications x 2 = y 2 = z . Consider two extensions L (ϕ,ϕ′) and L (ψ,ψ′) of A by B . Let L (ϕ,ϕ′)

have nonzero multiplications given by x 2 = y 2 = x w = z , w x = −z and let L (ψ,ψ′) have

nonzero multiplications given by x 2 = y 2 = z . These algebras are clearly nilpotent of class 3

since both have center 〈z 〉 equal to their derived subalgebras. One computes ϕ(w )x =−z ,

ϕ′(w )x = z , and ϕ(w )y = ϕ′(w )y = ϕ(w )z = ϕ′(w )z = 0. Also ψ(w ) = ψ′(w ) = 0. Thus

ϕ(w ) =ψ(w )− adl (x ) and ϕ′(w ) =ψ′(w ) + adr (x ), and so we have lifts (ϕ,ϕ′) and (ψ,ψ′)

that vary by adjoint operators.
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CHAPTER

4

MULTIPLIERS AND COVERS OF LEIBNIZ

ALGEBRAS

Given a finite-dimensional Leibniz algebra L , the overarching objectives of this chapter

are to characterize M (L ) byH 2(L ,F) and then to obtain criteria for when the center of a

cover maps onto the center of the algebra. We take our methodology from Chapters 3 and 4

of [1], in which the author developed the Lie case of these results. The work of the current

chapter relies1 on the Leibniz version of the culminating result from the first chapter of [1],

as proven in [16]. This result guarantees the uniqueness of the cover, as well as characterizes

the multiplier in terms of a free presentation. We state it here as Theorem 4.0.1. As in the

Lie case, C (L ) is used to denote the set of all pairs (J ,λ) such that λ : J −→ L is a surjective

homomorphism and kerλ⊆ J ′∩Z (J ). An element (T ,τ) ∈C (L ) is called a universal element

in C (L ) if, for any (J ,λ) ∈C (L ), there exists a homomorphism β : T −→ J such that λβ =τ.

Theorem 4.0.1. Let L be a finite-dimensional Leibniz algebra and let 0−→R −→ F −→ L −→ 0

be a free presentation of L. Let

B =
R

F R +R F
C =

F

F R +R F
D =

F ′ ∩R

F R +R F
1The work of the present chapter also relies on the theory of factor systems. Specifically, the reader will

recall Section 2.4 on cohomology and its relation with extensions.
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Then

1. all covers of L are isomorphic and have the form C /E where E is the complement to D

in B ,

2. the multiplier M (L ) of L is D ∼= B/E ,

3. the universal elements in C (L ) are the elements (K ,λ)where K is a cover of L.

4.1 Hochschild-Serre Spectral Sequence

Our first effort is to construct a five-term cohomological sequence that we refer to as the

Hochschild-Serre spectral sequence of low dimension. The sequence is pivotal to this

chapter. Let H be a central ideal of a Leibniz algebra L and

0−→H −→ L
β
−→ L/H −→ 0

be the natural central extension with section µ of β . Let A be a central L-module.

Theorem 4.1.1. The sequence

0−→Hom(L/H , A)
Inf1−→Hom(L , A)

Res−→Hom(H , A)
Tra−→H 2(L/H , A)

Inf2−→H 2(L , A)

is exact.

Before proving exactness, we need to define the maps of this sequence and check

that they make sense. The first inflation map Inf1 : Hom(L/H , A)−→Hom(L , A) is defined

by Inf1(χ) = χβ for any homomorphism χ : L/H −→ A. Next, the restriction mapping

Res : Hom(L , A) −→Hom(H , A) is defined by Res(π) = πι where ι : H −→ L is the inclusion

map. It is readily verified that Inf1 and Res are well-defined and linear.

Third is the transgression map Tra : Hom(H , A) −→H 2(L/H , A). Let f : L/H × L/H −→
H be defined by f (x , y ) = µ(x )µ(y ) − µ(x y ) and consider χ ∈ Hom(H , A). Then χ f ∈
Z 2(L/H , A) since χ f (x , y z )−χ f (x y , z )−χ f (y , x z ) = χ(0) = 0 for all x , y , z ∈ L . If ν is

another section of β , let g (x , y ) = ν(x )ν(y )−ν(x y ). Then f and g are cohomologous in

H 2(L/H , H ), which implies that there exists a linear transformation ϵ : L/H −→ H such

that f (x , y )− g (x , y ) =−ϵ(x y ). Clearly χϵ : L/H −→ A is also a linear transformation, and

therefore χ f and χg are cohomologous inH 2(L/H , A). Letting

Tra(χ) =χ f ,
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we have shown that Tra is well-defined. It is straightforward to verify that Tra is linear.

Finally, let Inf2 : H 2(L/H , A) −→ H 2(L , A) be defined by Inf2( f +B2(L/H , A)) = f ′ +

B2(L , A), where f ′(x , y ) = f (β (x ),β (y )) for x , y ∈ L and f ∈ Z 2(L/H , A). It is straightfor-

ward to verify that Inf2 is linear. To check that Inf2 maps cocycles to cocycles, one computes

0= f (β (x ),β (y )β (z ))− f (β (x )β (y ),β (z ))− f (β (y ),β (x )β (z ))

= f ′(x , y z )− f ′(x y , z )− f ′(y , x z )

for all x , y , z ∈ L since f is a 2-cocycle. Hence f ′ ∈ Z 2(L , A). To check that Inf2 maps

coboundaries to coboundaries, suppose f ∈B2(L/H , A). Then there exists a linear trans-

formation ϵ : L/H −→ A such that f (x , y ) =−ϵ(x y ) for x , y ∈ L . Note that β (x ) = x +H = x

for any x ∈ L . Therefore f ′(x , y ) = f (β (x ),β (y )) =−ϵβ (x y ), yielding f ′ ∈B2(L , A).

Proof. Once again, we are concerned with the central extension 0−→H −→ L
β
−→ L/H −→ 0, a

section µ of β , and a central L-module A. One has f ∈Z 2(L/H , H ) for f (x , y ) =µ(x )µ(y )−
µ(x y ). To show exactness at Hom(L/H , A), it suffices to show that Inf1 is injective. Suppose

Inf1(χ) = 0 forχ ∈Hom(L/H , A). Thenχβ (x ) = 0 for all x ∈ L , which means thatχ = 0 since

β is surjective.

To prove exactness at Hom(L , A), first consider an element χ ∈ Hom(L/H , A). One

computes Res(Inf1(χ)) =Res(χβ ) =χβι = 0 since ι includes H into L and β sends elements

of H to zero in L/H . Thus Im(Inf1)⊆ ker(Res). Conversely, consider an elementχ ∈ ker(Res).

Thenχι = 0 implies that H ⊆ ker(χ). By the fundamental theorem of homomorphisms, there

exists χ̂ ∈Hom(L/H , A) such that χ̂β =χ . But Inf1(χ̂) = χ̂β =χ . Hence ker(Res)⊆ Im(Inf1).

To show exactness at Hom(H , A), first consider a map χ ∈Hom(L , A). Then

χ f (x , y ) =χµ(x )χµ(y )−χµ(x y )

=−χµ(x y )

by centrality, which implies that χ f ∈B2(L/H , A). Thus

Tra(Res(χ)) = Tra(χι) =χι f = 0

and so Im(Res)⊆ ker(Tra). Conversely, let θ ∈Hom(H , A) be such that Tra(θ ) = θ f = 0. Then

θ f ∈B2(L/H , A)which implies that there exists a linear transformation ϵ : L/H −→ A such

that θ f (x , y ) = −ϵ(x y ). Let x = µ(x ) + hx and y = µ(y ) + hy . Then x y = µ(x y ) + hx y =
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µ(x )µ(y ) implies that

θ (hx y ) = θ (µ(x )µ(y )−µ(x y )) = θ f (x , y ) =−ϵ(x y ). (4.1)

Now let σ(x ) = θ (hx ) + ϵ(x ). Since Imσ ⊆ A, σ(x )σ(y ) = 0 by centrality. By (4.1), σ(x y ) =

θ (hx y ) + ϵ(x y ) = 0. Hence σ ∈Hom(L , A) and σ(h ) = θ (h ) + ϵ(h +H ) = θ (h ) for all h ∈H ,

which means that Res(σ) = θ and thus ker(Tra)⊆ Im(Res).

To show exactness atH 2(L/H , A), first consider a map χ ∈Hom(H , A). Then Tra(χ) =

χ f where, as before, f (x , y ) =µ(x )µ(y )−µ(x y ) and χ f ∈Z 2(L/H , A). By definition of Inf2,

Inf2(χ f ) = (χ f )′

where (χ f )′(x , y ) =χ f (x , y ). We want to show that (χ f )′ is a coboundary inH 2(L , A). To

this end, we once again consider x = µ(x ) + hx and y = µ(y ) + hy with product x y =

µ(x )µ(y ) = µ(x y ) − hx y . Then χ f (x , y ) = χ(µ(x )µ(y ) − µ(x y )) = χ(hx y ). Define ϵ(x ) =

−χ(hx ). Then ϵ : L −→ A and is linear. One computes ϵ(x y ) = −χ(hx y ) = −χ f (x , y ) =

−(χ f )′(x , y )which implies that (χ f )′ ∈B2(L , A). Therefore

(χ f )′ = 0

and we have Im(Tra)⊆ ker(Inf2). Conversely, suppose g ∈Z 2(L/H , A) such that g ∈ ker(Inf2).

Then g (x , y ) = g ′(x , y ) =−ϵ(x y ) for some linear ϵ : L −→ A. Since ϵ is linear, ϵ f ∈Z 2(L/H , A).

As before, let x =µ(x )+hx ∈ L with x y =µ(x )µ(y ) the product of two such elements. Then

g ′(x , y ) = g (x , y )

=−ϵ(µ(x )µ(y ))

=−ϵ f (x , y )− ϵµ(x y )

where ϵµ : L/H −→ A. Thus g =−ϵ f =−Tra(ϵ)which implies that ker(Inf2)⊆ Im(Tra).

4.2 Relation of Multipliers and Cohomology

The objective of this section is to prove that the multiplier M (L ) of a finite-dimensional

Leibniz algebra L is isomorphic to the second cohomology groupH 2(L ,F), where F is

considered as a central L-module.

Theorem 4.2.1. Let Z be a central ideal in L. Then L ′ ∩ Z is isomorphic to the image of

Hom(Z ,F) under the transgression map. In particular, if Tra is surjective, then L ′ ∩ Z ∼=
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H 2(L/Z ,F).

Proof. Let 0−→ Z −→ L −→ L/Z −→ 0 be the natural exact sequence for a central ideal Z in L .

Then the sequence

Hom(L ,F) Res−→Hom(Z ,F) Tra−→H 2(L/Z ,F)

is exact by Theorem 4.1.1. Let J denote the set of all homomorphismsχ : Z −→F such thatχ

can be extended to an element of Hom(L ,F). Then J is precisely the image of the restriction

map in Hom(Z ,F), which is equal to the kernel of the transgression map by exactness. This

means that Hom(Z ,F)/J ∼= Im(Tra) and thus it suffices to show that Hom(Z ,F)/J ∼= L ′ ∩Z .

Consider the natural restriction homomorphism

Hom(Z ,F)
Res2−−→Hom(L ′ ∩Z ,F).

Since Z and L ′ ∩Z are both abelian, Res2 is surjective and Hom(L ′ ∩Z ,F) is the dual space

of L ′ ∩Z . Therefore
Hom(Z ,F)
ker(Res2)

∼=Hom(L ′ ∩Z ,F)∼= L ′ ∩Z

and it remains to show that J ∼= ker(Res2). For one direction, consider an elementχ ∈ J with

extension χ̂ ∈Hom(L ,F). Then L ′ ⊆ ker χ̂ since F is abelian, which implies that L ′ ∩Z ⊆
kerχ . Thus χ ∈ ker(Res2) and we have J ⊆ ker(Res2). Conversely, let χ ∈ ker(Res2). Then

χ ∈Hom(Z ,F) is such that L ′ ∩Z ⊆ kerχ , which implies that χ induces a homomorphism

χ ′ :
Z

L ′ ∩Z
−→F

defined by χ ′(z + (L ′ ∩Z )) =χ(z ). Since

Z

L ′ ∩Z
∼=

Z + L ′

L ′
,

there exists a homomorphism

χ ′′ :
Z + L ′

L ′
−→F

defined by χ ′′(z + L ′) = χ ′(z + (L ′ ∩ Z )). But χ ′′ can be extended to a homomorphism

χ ′′′ : L/L ′ −→F that is defined by χ ′′′(x + L ′) =χ ′′(x + L ′) for all x ∈ Z . Since L/L ′ is abelian,

χ ′′′ can be extended to a homomorphism χ̂ : L −→ F that is defined by χ̂(x ) = χ ′′′(x + L ′).

Therefore χ ∈ J and the first statement holds. The second statement holds since Tra maps

Hom(Z ,F) toH 2(L/Z ,F).

Let L be a Leibniz algebra with free presentation 0 −→ R −→ F
ω−→ L −→ 0. The induced
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sequence

0−→
R

F R +R F
−→

F

F R +R F
−→ L −→ 0

is a central extension since R F and F R are both contained in F R +R F . It is not unique,

but has the following property.

Lemma 4.2.2. Let 0 −→ A −→ B
φ
−→ C −→ 0 be a central extension and α : L −→ C be a

homomorphism. Then there exists a homomorphism β : F /(F R +R F )−→ B such that the

diagram

0 R
F R+R F

F
F R+R F L 0

0 A B C 0

γ β α

Figure 4.1 Showing β .

is commutative, where γ is the restriction of β to R/(F R +R F ).

Proof. Since F is free, there exists a homomorphismσ : F −→ B such that

F L

B C

ω

σ α

φ

Figure 4.2 Showingφσ=αω.

is commutative. Let r ∈R ⊆ F . Thenω(r ) = 0 since kerω=R . Therefore 0=αω(r ) =φσ(r )

and so σ(R ) ⊆ kerφ. We want to show that F R + R F ⊆ kerσ. If x ∈ F and r ∈ R , then

σ(x r ) = σ(x )σ(r ) = 0 and σ(r x ) = σ(r )σ(x ) = 0 since σ(r ) ∈ kerφ = A ⊆ Z (B ). Now σ

induces a homomorphism β : F /(F R +R F ) −→ B . The left diagram commutes since we

may take A −→ B to be the inclusion map.

Lemma 4.2.3. Let 0 −→ R −→ F −→ L −→ 0 be a free presentation of L and let A be a central

L-module. Then the transgression map Tra : Hom(R/(F R +R F ), A)−→H 2(L , A) associated
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with

0−→
R

F R +R F
−→

F

F R +R F

φ
−→ L −→ 0

is surjective.

Proof. Consider g ∈ H 2(L , A) and let 0 −→ A −→ E
ϕ
−→ L −→ 0 be an associated central

extension. By Lemma 4.2.2, there exists a homomorphism θ such that

0 R
F R+R F

F
F R+R F L 0

0 A E L 0

γ

φ

θ id

ϕ

Figure 4.3 Invoking Lemma 4.2.2.

is commutative and γ= θ |R/(F R+R F ). Let µ be a section ofφ. Then ϕθµ=φµ= idL and so

θµ is a section of ϕ. Let λ= θµ and define β (x , y ) =λ(x )λ(y )−λ(x y ). Then β ∈Z 2(L , A)

and β is cohomologous with g since they are associated with the same extension. One

computes

β (x , y ) = θ (µ(x ))θ (µ(y ))−θ (µ(x y ))

= θ (µ(x )µ(y )−µ(x y ))

= γ(µ(x )µ(y )−µ(x y ))

= γ( f (x , y ))

where f (x , y ) =µ(x )µ(y )−µ(x y ) and since γ= θ |R/(F R+R F ). Thus Tra(γ) = γ f =β = g .

Lemma 4.2.4. If C ⊆ A and C ⊆ B , then A/C ∩B/C = (A ∩B )/C .

Proof. Clearly (A ∩ B )/C ⊆ A/C ∩ B/C . Let x ∈ A/C ∩ B/C . Then x = a + c1 = b + c2 for

a ∈ A, b ∈ B , and c1, c2 ∈C . Since C ⊆ B , a = b + c2− c1 ∈ B , which implies that a ∈ A ∩B .

Then x = a + c ∈ (A ∩B )/C and so A/C ∩B/C ⊆ (A ∩B )/C .

Theorem 4.2.5. Let L be a Leibniz algebra over a field F and 0−→R −→ F −→ L −→ 0 be a free

presentation of L. Then

H 2(L ,F)∼=
F ′ ∩R

F R +R F
.

In particular, if L is finite-dimensional, then M (L )∼=H 2(L ,F).
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Proof. Denote

R =
R

F R +R F
F =

F

F R +R F

Then 0 −→ R −→ F −→ L −→ 0 is a central extension. By Lemma 4.2.3, Tra : Hom(R ,F) −→
H 2(L ,F) is surjective. By Theorem 4.2.1,

F
′ ∩R ∼=H 2(F /R ,F)∼=H 2(L ,F).

By Lemma 4.2.4,

F
′ ∩R ∼=

F ′

F R +R F
∩

R

F R +R F
=

F ′ ∩R

F R ∩R F
.

Therefore, when L is finite-dimensional,

M (L ) =
F ′ ∩R

F R +R F
∼=H 2(L ,F)

by the characterization of M (L ) from Theorem 4.0.1.

We conclude this section with the Leibniz analogue of a corollary that appears at the

end of Chapter 3 in [1].

Corollary 4.2.6. For any cover E of L and any subalgebra A of E satisfying

1. A ⊆ Z (E )∩E ′,

2. A ∼=M (L ),

3. L ∼= E /A,

the associated transgression map Tra : Hom(A,F)−→M (L ) is bijective.

Proof. First note that 0 −→ A −→ E −→ L −→ 0 is a central extension of L . Invoking the

Hochschild-Serre spectral sequence yields

0−→Hom(L ,F)
Inf1−→Hom(E ,F) Res−→Hom(A,F) Tra−→H 2(L ,F)

Inf2−→H 2(E ,F)

with Im(Res) = ker(Tra). Furthermore, any θ ∈Hom(E ,F) yields Res(θ ) ∈Hom(A,F). Now let

a ∈ A ⊆ E ′. Then a = e1e2 for some e1, e2 ∈ E which implies that Res(θ (a )) =Res(θ (e1)θ (e2)) =

Res(0) = 0. Thus Im(Res) = 0, making ker(Tra) = 0, and so Tra injective. Since Hom(A,F)∼=
A ∼=M (L ), Tra is bijective.
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4.3 Unicentral Leibniz Algebras

Let Z be a central ideal of a finite-dimensional Leibniz algebra L and let Z ∗(L ) denote the

intesection of allω(Z (E )) such that 0−→ kerω−→ E
ω−→ L −→ 0 is a central extension of L . We

recall that a Leibniz algebra L is unicentral if Z (L ) = Z ∗(L ).

The objective of this section is to determine a set of equivalent conditions for when the

center of the cover maps onto the center of L . This result follows from a four-part theorem

that gives equivalent statements to Z ⊆ Z ∗(L ). The first of these statements involves a new

map

δ :H 2(L ,F)−→ L/L ′⊗Z ⊕Z ⊗ L/L ′

that extends our Hochschild-Serre spectral sequence. The second involves another map

β : M (L )−→M (L/Z ), called the natural map, that appears in the Ganea sequence.2 In this

section, we will construct these sequences and then prove the equivalence of the following

statements:

1. δ is the trivial map,

2. β is injective,

3. M (L )∼= M (L/Z )
L ′∩Z ,

4. Z ⊆ Z ∗(L ).

4.3.1 More Sequences

To extend our Hochschild-Serre sequence, consider the natural central extension 0−→ Z −→
L −→ L/Z −→ 0. To define ourδmap, consider a cocycle f ′ ∈Z 2(L ,F) and define two bilinear

forms f ′′1 : L/L ′×Z −→F and f ′′2 : Z × L/L ′ −→F by

f ′′1 (x + L ′, z ) = f ′(x , z ),

f ′′2 (z , x + L ′) = f ′(z , x )

for x ∈ L and z ∈ Z . To check that they are well-defined, one computes

f ′′1 (x y + L ′, z ) = f ′(x y , z )

= f ′(x , y z )− f ′(y , x z )

= 0

2The sequence was constructed for groups by Ganea in 1968 and for Lie algebras by Batten in 1993 [1].

50



and

f ′′2 (z , x y + L ′) = f ′(z , x y )

= f ′(x , z y )− f (x z , y )

= 0

since z ∈ Z (L ). Hence ( f ′′1 , f ′′2 ) ∈Bil(L/L ′×Z ,F)⊕Bil(Z ×L/L ′,F)∼= L/L ′⊗Z ⊕Z ⊗L/L ′. Now

consider a coboundary f ′ ∈B2(L ,F). By definition, there exists a linear map ϵ : L −→F such

that f ′(x , y ) =−ϵ(x y ). One computes

f ′′1 (x + L ′, z ) = f ′(x , z ) =−ϵ(x z ) = 0,

f ′′2 (z , x + L ′) = f ′(z , x ) =−ϵ(z x ) = 0

since z ∈ Z (L ). Hence, a map δ : f ′+B2(L ,F) 7→ ( f ′′1 , f ′′2 ) is induced which is clearly linear

since f ′, f ′′1 , and f ′′2 are all in vector spaces of bilinear forms and the latter two are defined

by f ′.

Theorem 4.3.1. Let Z be a central ideal of a Leibniz algebra L. The sequence

H 2(L/Z ,F) Inf−→H 2(L ,F) δ−→ L/L ′⊗Z ⊕Z ⊗ L/L ′

is exact.

Proof. Let f ∈Z 2(L/Z ,F). Then Inf( f +B2(L/Z ,F)) = f ′+B2(L ,F)where f ′ is the cocycle

defined by f ′(x , y ) = f (x +Z , y +Z ). We also have δ( f ′+B2(L ,F)) = ( f ′′1 , f ′′2 )where, for all

x ∈ L and z ∈ Z ,

f ′′1 (x + L ′, z ) = f ′(x , z ) = f (x +Z , z +Z ) = 0,

f ′′2 (z , x + L ′) = f ′(z , x ) = f (z +Z , x +Z ) = 0,

which implies that δ(Inf( f +B2(L/Z ,F))) = ( f ′′1 , f ′′2 ) = (0, 0). Therefore Im(Inf)⊆ kerδ.

Conversely, suppose f ′ ∈Z 2(L ,F) is such that δ( f ′+B2(L ,F)) = ( f ′′1 , f ′′2 ) = (0,0). Then,

for all x ∈ L and z ∈ Z , one has

0= f ′′1 (x + L ′, z ) = f ′(x , z ),

0= f ′′2 (z , x + L ′) = f ′(z , x ).
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Hence, for all z , z ′ ∈ Z and x , y ∈ L , one computes

f ′(x + z , y + z ′) = f ′(x , y ) + f ′′1 (x + L ′, z ′) + f ′′2 (z , y + L ′) + f ′′1 (z + L ′, z ′)

= f ′(x , y ),

which yields a bilinear form g : L/Z ×L/Z −→F, defined by g (x +Z , y +Z ) = f ′(x , y ), that is

well-defined. Furthermore, g ∈Z 2(L/Z ,F) since f ′ is a cocycle. Thus Inf(g +B2(L/Z ,F)) =
f ′+B2(L ,F) and so kerδ⊆ Im(Inf).

Theorem 4.3.2. (Ganea Sequence) Let Z be a central ideal in a finite-dimensional Leibniz

algebra L. Then the sequence

L/L ′⊗Z ⊕Z ⊗ L/L ′ −→M (L )−→M (L/Z )−→ L ′ ∩Z −→ 0

is exact.

Proof. Let F be a free Leibniz algebra such that L = F /R and Z = T /R for some ideals T

and R of F . Since Z ⊆ Z (L ), one has T /R ⊆ Z (F /R ) and F T +T F ⊆ R . Inclusion maps

β̂ : R ∩ F ′ −→ T ∩ F ′ and γ̂ : T ∩ F ′ −→ T ∩ (F ′+R ) induce homomorphisms

R ∩ F ′

F R +R F

β
−→

T ∩ F ′

F T +T F

γ
−→

T ∩ (F ′+R )
R

−→ 0.

Since R ⊆ T , one has

T ∩ (F ′+R )
R

=
(T +R )∩ (F ′+R )

R
∼=
(T ∩ F ′) +R

R

which implies that γ is surjective. By Theorem 4.0.1,

M (L )∼=
R ∩ F ′

F R +R F
and M (L/Z )∼=

T ∩ F ′

F T +T F
.

Also

L ′ ∩Z ∼= (F /R )′ ∩ (T /R )∼=
F ′+R

R
∩

T

R
∼=
(F ′+R )∩T

R
.

Therefore, the sequence M (L/Z )
γ
−→ L ′ ∩Z −→ 0 is exact. Since

kerγ=
(T ∩ F ′)∩R

F T +T F
=

R ∩ F ′

F T +T F
= Imβ ,

the sequence M (L )
β
−→M (L/Z )

γ
−→ L ′ ∩Z is exact.
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It remains to show that L/L ′⊗Z ⊕Z ⊗ L/L ′ −→M (L )
β
−→M (L/Z ) is exact. Define a pair

of maps

θ1 :
F

R + F ′
×

T

R
−→

R ∩ F ′

F R +R F
θ2 :

T

R
×

F

R + F ′
−→

R ∩ F ′

F R +R F

by θ1( f +(R +F ′), t +R ) = f t +(F R +R F ) and θ2(t +R , f +(R +F ′)) = t f +(F R +R F ). Both

are bilinear because multiplication is bilinear. To check that θ1 and θ2 are well-defined,

suppose ( f +(R +F ′), t +R ) = ( f ′+(R +F ′), t ′+R ) for t , t ′ ∈ T and f , f ′ ∈ F . Then t − t ′ ∈R

and f − f ′ ∈R +F ′ which implies that t = t ′+ r for r ∈R and f = f ′+ x for x ∈R +F ′. One

computes

t f − t ′ f ′ = (t ′+ r )( f ′+ x )− t ′ f ′

= t ′x + r f ′+ r x

and

f t − f ′t ′ = ( f ′+ x )(t ′+ r )− f ′t ′

= x t ′+ f ′r + x r

which both fall in F R +R F by the Leibniz identity and the fact that F T +T F ⊆R . Thus θ1

and θ2 are well-defined, and so induce linear maps

θ1 :
F

R + F ′
⊗

T

R
−→

R ∩ F ′

F R +R F
θ2 :

T

R
⊗

F

R + F ′
−→

R ∩ F ′

F R +R F

These, in turn, yield a linear transformation

θ :
F

R + F ′
⊗

T

R
⊕

T

R
⊗

F

R + F ′
−→

R ∩ F ′

F R +R F

defined by θ (a , b ) = θ1(a ) +θ2(b ). The image of θ is

F T +T F

F R +R F

which is precisely equal to {x + (F R +R F ) | x ∈ R ∩ F ′, x ∈ F T +T F } = kerβ . Thus the

sequence

F

R + F ′
⊗

T

R
⊕

T

R
⊗

F

R + F ′
∼= L/L ′⊗Z ⊕Z ⊗L/L ′ −→

R ∩ F ′

F R +R F
∼=M (L )−→

F ′ ∩T

F T +T F
∼=M (L/Z )

is exact.
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Corollary 4.3.3. (Stallings Sequence) Let Z be a central ideal of a Leibniz algebra L. Then

the sequence

M (L )−→M (L/Z )−→ Z −→ L/L ′ −→
L

Z + L ′
−→ 0

is exact.

Proof. Let F be a free Leibniz algebra such that L = F /R and Z = T /R for ideals T and R of

F . Then F T +T F ⊆R since Z ⊆ Z (L ). The inclusion maps R ∩F ′ −→ T ∩F ′ −→ T −→ F −→ F

induce the following sequence of homomorphisms:

R ∩ F ′

F R +R F

β
−→

T ∩ F ′

F T +T F
θ−→

T

R
α−→

F

R + F ′
ω−→

F

T + F ′
γ
−→ 0

To prove exactness for our desired sequence, we make use of the following facts:

1. M (L )∼= R∩F ′

F R+R F ,

2. M (L/Z )∼= T ∩F ′

F T+T F ,

3. Z ∼= T /R ,

4. F
R+F ′
∼= L/L ′,

5. F
T+F ′ =

F
T+F ′+R

∼= (F /R )/(T+F ′+R )
R

∼= F /R
T /R+(F ′+R )/R

∼= L
Z+L ′ .

Thus do the following equalities suffice for this proof:

i. kerθ = {x + (F T +T F ) | x ∈ T ∩ F ′, x ∈R }= T ∩F ′∩R
F T+T F =

R∩F ′

F T+T F = Imβ ,

ii. kerα= {x +R | x ∈ T , x ∈ (R + F ′)}= T ∩(R+F ′)
R = R+(T ∩F ′)

R = Imθ ,

iii. kerω= {x + (R + F ′) | x ∈ F, x ∈ (T + F ′)}= F ∩(T+F ′)
R+F ′ =

T+F ′

R+F ′ = Imα,

iv. kerγ= F
T+F ′ = Imω.

4.3.2 The Main Result

The following pair of lemmas shows that our first three conditions are equivalent.

Lemma 4.3.4. Let Z be a central ideal of a finite-dimensional Leibniz algebra L and consider

the map

δ : M (L )−→ L/L ′⊗Z ⊕Z ⊗ L/L ′
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from Theorem 4.3.1. Then

M (L )∼=
M (L/Z )

L ′ ∩Z

if and only if δ is the trivial map. Here, we have identitfied L ′ ∩Z with its image in M (L/Z ).

Proof. We invoke Theorems 4.1.1 and 4.3.1, yielding an exact sequence

Hom(L/Z ,F)
Inf1−→Hom(L ,F) Res−→Hom(Z ,F) Tra−→M (L/Z )

Inf2−→M (L )
δ−→ L/L ′⊗Z ⊕Z ⊗ L/L ′.

In one direction, suppose δ is the zero map. Then M (L )∼= kerδ∼= Im(Inf2). Since

Im(Inf2)∼=
M (L/Z )
ker(Inf2)

and ker(Inf2) = Im(Tra)∼= L ′ ∩Z by Theorem 4.2.1, we have

M (L )∼=
M (L/Z )

L ′ ∩Z
.

Conversely, the isomorphism

M (L )∼=
M (L/Z )

L ′ ∩Z
∼=

M (L/Z )
ker(Inf2)

∼= Im(Inf2)∼= kerδ

implies that δ is trivial.

Lemma 4.3.5. Let Z be a central ideal of a finite-dimensional Leibniz algebra L and consider

the natural map β : M (L )−→M (L/Z ) from Theorem 4.3.2. Then

M (L )∼=
M (L/Z )

L ′ ∩Z

if and only if β is injective.

Proof. By Theorem 4.3.2, the sequence M (L )
β
−→M (L/Z )

α−→ L ′ ∩Z
ω−→ 0 is exact. Suppose β

is injective. Then kerβ = 0, which implies that

M (L )∼= Imβ ∼= kerα∼=
M (L/Z )

Imα
=

M (L/Z )
kerω

∼=
M (L/Z )

L ′ ∩Z
.

Conversely, the isomorphism

M (L )∼=
M (L/Z )

L ′ ∩Z
∼= Imβ

implies that β is injective.

55



Once more, our objective is to find conditions for whenω(Z (E )) = Z (L ), where E is the

cover of L and 0−→ kerω−→ E
ω−→ L −→ 0 is a central extension. Such an extension is called

a stem extension, i.e. a central extension 0−→ A −→ B −→C −→ 0 in which A ⊆ B ′. To this end,

we will show that the preceding three conditions are equivalent to Z ⊆ Z ∗(L ) for a general

central ideal Z in L . The special case of Z = Z (L )will lead to our main result.

Consider the free presentation 0−→R −→ F
π−→ L −→ 0 of L and let X denote the quotient

algebra X
F R+R F for any X such that F R +R F ⊆ X ⊆ F . Since R = kerπ and F R +R F ⊆R , π

induces a homomorphism π : F −→ L such that the diagram

F L

F

π

π

Figure 4.4 Induced π.

commutes. Since R ⊆ Z (F ), there exists a complement S
F R+R F to R∩F ′

F R+R F in R
F R+R F yielding

the diagram

R
F R+R F

S
F R+R F

R∩F ′

F R+R F

0

Figure 4.5 Complement S in R .

Here, S ⊆R ⊆ kerπ and S ⊆R ⊆ kerπ, and thus π induces a homomorphism πS : F /S −→ L

such that the extension 0−→R/S −→ F /S
πS−→ L −→ 0 is central. This extension is stem since

R/S ∼= R∩F ′

F R+R F = kerπS implies that F /S is a cover of L .

Lemma 4.3.6. For every free presentation 0 −→ R −→ F
π−→ L −→ 0 of L and every central

extension 0−→ kerω−→ E
ω−→ L −→ 0, one has π(Z (F ))⊆ω(Z (E )).
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Proof. Since the identity map id : L −→ L is a homomorphism, we can invoke Lemma 4.2.2,

yielding a homomorphism β : F −→ E such that the diagram

0 R
F R+R F

F
F R+R F L 0

0 kerω E L 0

γ

π

β id

ω

Figure 4.6 Invoking Lemma 4.2.2 again.

is commutative (where γ is the restriction of β to R ).

Let A = kerω. Our first claim is that E = A+β (F ). Indeed, let e ∈ E . Thenω(e ) =π( f ) for

some f ∈ F , and soω(e ) =ωβ ( f ) by diagram commutativity. This implies that e −β ( f ) ∈
kerω= A, meaning e −β ( f ) = a for some a ∈ A. Thus e = a +β ( f ).

Our second claim is that β (Z (F )) centralizes both A and β (F ). To see this, one first

computes β (Z (F ))β (F ) = β (Z (F )F ) = β (0) = 0 and β (F )β (Z (F )) = β (F Z (F )) = β (0) = 0.

Next, we know that AE and E A are both zero, and so Aβ (Z (F )) and β (Z (F ))A are zero as

well. But this implies that β (Z (F )) centralizes E by the first claim. Hence β (Z (F ))⊆ Z (E )

andωβ (Z (F ))⊆ω(Z (E )), which yields π(Z (F ))⊆ω(Z (E )).

Theorem 4.3.7. For every free presentation 0 −→ R −→ F
π−→ L −→ 0 of L and every stem

extension 0−→ kerω−→ E
ω−→ L −→ 0, one has Z ∗(L ) =π(Z (F )) =ω(Z (E )).

Proof. By Lemma 4.3.6, π(Z (F )) is contained inω′(Z (E ′)) for every central extension

0−→ kerω′ −→ E ′
ω′−→ L −→ 0

of L . Thus π(Z (F )) ⊆ ω(Z (E )) for our stem extension. We also know that Z ∗(L ) is the in-

tersection of all imagesω′(Z (E ′)), and that π(Z (F )) is one of these images since 0−→R −→
F

π−→ L −→ 0 is central. Therefore π(Z (F )) = Z ∗(L ). Since this equality holds for all F , we

can assume that 0 −→ R/S −→ F /S
πS−→ L −→ 0 is a stem extension where S is defined as

above. Since the cover F /S is unique up to isomorphism, it now suffices to show that

πS (Z (F /S )) =π(Z (F )).

Let T be the inverse image of Z (F /S ) in F and consider the commutative diagram
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F F /S

F

π3

π1
π2

Figure 4.7 Showing π3 =π2π1.

where all mappings are the natural ones. Then T =π1(T ) by definition and

π2(T ) =π2π1(T ) =π3(T ) = Z (F /S ),

yielding the diagram

T Z (F /S )

T

π3

π1
π2

Figure 4.8 Restrictions of π3 =π2π1.

where all maps denote their restrictions. Now let x ∈ Z (F ). Then π2(x ) ∈ Z (F /S ), which

implies that there exists y ∈ T such that π3(y ) = π2(x ). The resulting equality π2π1(y ) =

π2(x ) yields an element π1(y )− x ∈ kerπ2 = S ⊆ T , where S ⊆ T since S ⊆ T . Therefore

x ∈ T and Z (F ) ⊆ T . For the reverse inclusion, we first note that T /S = Z (F /S ), and so

F T +T F ⊆ S . Thus F T +T F ⊆ S . Also F T +T F ⊆ R since S ⊆ R and F T +T F ⊆ F
′

by

definition. Hence F T +T F ⊆ S∩(R∩F
′
) = 0 which implies that T ⊆ Z (F ) and thus T = Z (F ).

Hence, the commutative diagram
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F L

F

F /S

π

π

πS

Figure 4.9 Showing π, π, and πS .

yields the equality π(Z (F )) =π(T ) =πS (T /S ) =πS (Z (F /S )) by the definition of T .

Lemma 4.3.8. Let Z be a central ideal of a finite-dimensional Leibniz algebra L and consider

the mapβ : M (L )−→M (L/Z ) from Theorem 4.3.2. Then Z ⊆ Z ∗(L ) if and only ifβ is injective.

Proof. In the proof of the Ganea sequence, we saw that kerβ can be interpreted as F T +T F .

If β is injective, then F T +T F = 0, which implies that T ⊆ Z (F ). By the proof of Theorem

4.3.7, Z ⊆ Z ∗(L ). Conversely, if Z ⊆ Z ∗(L ), then T ⊆ Z (F ), which implies that F T +T F = 0.

Thus kerβ = 0 and β is injective.

Theorem 4.3.9. Let Z be a central ideal of a finite-dimensional Leibniz algebra L and

δ : M (L )−→ L/L ′⊗Z ⊕Z ⊗ L/L ′

be as in Theorem 4.3.1. Then the following are equivalent:

1. δ is the trivial map,

2. the natural map β is injective,

3. M (L )∼= M (L/Z )
L ′∩Z ,

4. Z ⊆ Z ∗(L ).

We conclude this chapter by narrowing our focus to when the conditions of Theorem

4.3.9 hold for Z = Z (L ). Under this assumption, we show that the center of the cover maps

onto the center of the algebra, which happens when L is unicentral.

Theorem 4.3.10. Let L be a Leibniz algebra and Z (L ) be the center of L. If Z (L )⊆ Z ∗(L ), then

ω(Z (E )) = Z (L ) for every stem extension 0−→ kerω−→ E
ω−→ L −→ 0.

Proof. By definition, Z ∗(L ) ⊆ ω(Z (E )) ⊆ Z (L ) for any stem extension 0 −→ kerω −→ E
ω−→

L −→ 0. By hypothesis, Z (L )⊆ Z ∗(L ). Therefore Z ∗(L ) =ω(Z (E )) = Z (L ).
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CHAPTER

5

MULTIPLIERS AND COVERS OF

DIASSOCIATIVE ALGEBRAS

Let L be a finite-dimensional diassociative algebra. In this chapter, we first prove the

uniqueness of the cover and obtain a characterization of the multiplier M (L ) in terms

of a free presentation. We then characterize the multiplier by the second cohomology

groupH 2(L ,F). Finally, we establish a diassociative analogue of the four-part equivalence

theorem from Chapter 4, and obtain conditions for when the center of the cover maps onto

the center of L . Some of the results hold by the same logic as their Lie or Leibniz versions,

and so we will sometimes refer to those proofs rather than rewriting them. As before, we

use A◊B to denote the algebra A ⊣ B +A ⊢ B .

5.1 Existence of Universal Elements and Unique Covers

This section follows the methodology of Chapter 1 in [1], that was generalized to Leibniz

algebras in [16]. Our initial dimension bounds are notably different from the Lie and Leibniz

cases, as there are simply more possible multiplications for which to account.

Lemma 5.1.1. For any diassociative algebra K , if dim(K /Z (K )) = n, then dim(K ′)≤ 2n 2.
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Proof. Let {x1, x2, . . . , xn} be a basis for K /Z (K ). Then {xi ⊣ x j , xi ⊢ x j | 1 ≤ i , j ≤ n} is a

generating set for K ′. Thus dim(K ′)≤ 2n 2.

Lemma 5.1.2. Let L be a finite-dimensional diassociative algebra with dim L = n and let K

be the first term in a defining pair for L. Then dim K ≤ n (2n +1).

Proof. We know that dim(K /Z (K )) ≤ dim(K /M ) = dim L = n since M ⊆ Z (K ). Therefore,

dim M ≤ dim(K ′) ≤ 2n 2 via Lemma 5.1.1 since M ⊆ K ′. We thus have dim K = dim L +

dim M ≤ n +2n 2 = n (2n +1).

These facts ensure that the members of any defining pair for a finite-dimensional

diassociative algebra L have bounded dimension. Example 5.1.3 illustrates that the highest

possible dimension bounds of Lemmas 5.1.1 and 5.1.2 can always be obtained.

Example 5.1.3. Let L be the n-dimensional abelian diassociative algebra with basis

{xi }i=1,...,n and let M be the 2n 2-dimensional abelian diassociative algebra with basis

{mi j , si j }i , j=1,...n . Let K denote the vector space M ⊕ L with only nonzero multiplications

given by xi ⊣ x j =mi j and xi ⊢ x j = si j for i , j = 1, . . . , n . Then K is a diassociative algebra of

dimension n+2n 2 and M = Z (K ) = K ′. Clearly K is a cover of L and M is the multiplier since

we have maximal possible dimension. Noting that L = K /Z (K ), we also obtain dim K ′ = 2n 2.

Let C (L ) denote the set of all pairs (J ,λ) such that λ : J −→ L is a surjective homomor-

phism and kerλ⊆ J ′ ∩Z (J ). An element (T ,τ) ∈C (L ) is called a universal element in C (L )

if, for any (J ,λ) ∈C (L ), there exists a homomorphism β : T −→ J such that the diagram

T L

J

τ

β
λ

Figure 5.1 Showing λβ =τ.

commutes, i.e. such that λβ =τ.

Defining pairs for L correspond to elements of C (L ) in a natural way. Indeed, any

(K ,λ) ∈ C (L ) gives rise to a defining pair (K , kerλ). Conversely, any defining pair (K , M )

yields a surjective homomorphism λ : K −→ L such that kerλ=M ⊆ Z (K )∩K ′, and thus

(K ,λ) ∈C (L ). We will show that a pair (T ,τ) ∈C (L ) is a universal element if and only if T is

a cover.
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Lemma 5.1.4. Let K be a finite dimensional diassociative algebra. Then Z (K )∩K ′ is con-

tained in every maximal subalgebra of K .

Proof. Let M be a maximal subalgebra of K and let A = Z (K ) ∩ K ′. Then A +M is also

subalgebra of K , which implies that A+M = K or M . Suppose A+M = K . Then

K ′ = K ⊣ K +K ⊢ K

= A◊A+A◊M +M◊A+M◊M

=M ⊣M +M ⊢M

=M ′ ⊆M .

Therefore Z (K )∩K ′ ⊆M , a contradiction.

Lemma 5.1.5. Let (J ,λ) ∈C (L ) andµ : K −→ L be a surjective homomorphism. Suppose there

is a homomorphism β : K −→ J such that the diagram

K L

J

µ

β
λ

Figure 5.2 Showing λβ =µ.

commutes, i.e. such that λβ =µ. Then β is surjective.

Proof. Let j ∈ J and λ( j ) = µ(k ) for some k ∈ K . Then the equality µ(k ) = λβ (k ) = λ( j )

yields an element β (k )− j ∈ kerλ and so J = kerλ+ Imβ . By assumption, kerλ⊆ Z (J )∩ J ′,

where Z (J )∩ J ′ is contained in every maximal subalgebra of J by Lemma 5.1.4. Suppose

that Imβ ̸= J . Then Imβ is contained in some maximal subalgebra M of J that is not equal

to J , and so Imβ + (Z (J ) ∩ J ′) ⊆ M . But this implies that M = J , a contradiction. Thus

Imβ = J .

Suppose there is an element (K ,η) ∈ C (L ) such that, for all (J ,λ) ∈ C (L ), there exists

a homomorphism ρ : K −→ J that satisfies λρ = η. Then Lemma 5.1.5 implies that ρ is

surjective, and so dim J ≤ dim K . Hence K is a cover of L since its dimension is maximal.

Moreover, any other cover of L has the same dimension as K and is the homomorphic

image of K , and so must be isomorphic to K . We have thus shown the following statement.

62



Lemma 5.1.6. If there exists a universal element (K ,η) ∈ C (L ), then all covers of L are

isomorphic.

It remains to show that universal elements exist in the diassociative setting. We begin

by fixing a free presentation 0−→R −→ F
π−→ L −→ 0 of L and assigning

B =
R

F ◊R +R◊F
C =

F

F ◊R +R◊F
D =

F ′ ∩R

F ◊R +R◊F

for ease of notation. Then C◊B +B◊C = 0 and D is a central ideal in C . Thus π induces a

homomorphism π : C −→ L with kernel B . We will show that there is a central ideal

E =
S

F ◊R +R◊F

of C , complementary to D in B , such that (C /E ,πS ) ∈C (L ) is a universal element, whereπS

is induced by π. Consider (J ,λ) ∈C (L ). By the universal property of our free diassociative

algebra F , there exists a homomorphismσ : F −→ J such that the diagram

F L

J

π

σ
λ

Figure 5.3 Showing π=λσ.

commutes, i.e. such that π=λσ, as seen in the Lie and Leibniz cases. The following lemma

yields a commutative diagram

C L

J

π

σ
λ

Figure 5.4 Showing π=λσ.

whereσ is induced byσ.
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Lemma 5.1.7. Let x ∈ F . Then x ∈ R if and only if σ(x ) ∈ kerλ. Also, F ◊R +R◊F ⊆ kerσ,

and thusσ induces a homomorphismσ : C −→ J which is surjective and satisfies λσ=π.

Proof. Let x ∈ F . If x ∈ R , then x ∈ kerπ, which implies that 0= π(x ) = λσ(x ). Therefore

σ(x ) ∈ kerλ. Conversely, ifσ(x ) ∈ kerλ, then 0=λσ(x ) =π(x ), which implies that x is an

element of kerπ= R . Now consider r ⊣ f ∈ F ◊R +R◊F . Then σ(r ⊣ f ) =σ(r ) ⊣σ( f ) = 0

sinceσ(r ) ∈ kerλ⊆ Z (J )∩ J ′ andσ( f ) ∈ J . The cases of r ⊢ f , f ⊣ r , and f ⊢ r are similar,

and so we have our homomorphismσ : C −→ J , induced byσ, which is surjective sinceσ

is surjective. One computes

λσ( f + (F ◊R +R◊F )) =λσ( f )

=π( f )

=π( f + (F ◊R +R◊F ))

and thus λσ=π.

Lemma 5.1.8. σ(B ) = kerλ=σ(D ), from which it follows B =D +kerσ.

Proof. This lemma combines the results of Lemmas 1.7, 1.8, and 1.9 in [1], which follow

similarly to the Lie case.

Lemma 5.1.9. (C /E , B/E ) is a defining pair for L, where E is a central ideal in C that is

complementary to D in B .

Proof. We first compute
C /E

B/E
∼=C /B ∼= F /R ∼= L

and thus the first axiom of defining pairs is satisfied. Next, we know that B ⊆ Z (C ), and so

B/E ⊆ Z (C /E ).

Finally,

D =
F ′ ∩R

F ◊R +R◊F
⊆

F ′

F ◊R +R◊F
∼=
� F

F ◊R +R◊F

�′
=C ′

implies that

B/E ∼=
D ⊕E

E
⊆

C ′+E

E
∼= (C /E )′.

Therefore B/E ⊆ Z (C /E )∩ (C /E )′.

Lemma 5.1.8 allows us to choose a subspace E , complementary to D in B , which is

contaied in kerσ. Thus, given an element (J ,λ) ∈C (L ), ourσ induces a homomorphism

σS : C /E −→ J such that the diagram
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C /E L

J

πS

σS
λ

Figure 5.5 Showing λσS =πS .

commutes, i.e. such that λσS =πS . Furthermore, by Lemma 5.1.9, (C /E , B/E ) is a defin-

ing pair for L . Specializing this discussion to when J is a cover of L , we now prove that

C /E is a cover and thereby obtain a characterization of the multiplier in terms of the free

presentation.

Lemma 5.1.10. Given a cover K of L, the corresponding C /E is also a cover of L and the

multiplier of L is

M (L ) =
F ′ ∩R

F ◊R +R◊F
.

Proof. If K is a cover of L , then dim K ≥ dim(C /E ) since C /E is the first member of a

defining pair for L . Since K is the homomorphic image of C /E , we also have dim K ≤
dim(C /E ) and thus dim K = dim(C /E ). This means C /E is a cover of L . Finally, since

C /B ∼= L and

B/E ∼=
F ′ ∩R

F ◊R +R◊F
,

we have the desired expression for M (L ).

Since E ⊆ kerσ, E necessarily depends onσ and thus on J . As in [16] and [1], we will

show that there is a single C /E which works for all (J ,λ) ∈ C (L ), i.e. a universal element

of the form (C /E ,πS ) ∈C (L ). It suffices to show that all C /E ’s are isomorphic. To this end,

we first state the following cancellation lemma, which holds by the same logic as its Lie

analogue. We will then specialize F so that said lemma can be applied.

Lemma 5.1.11. Let L = B ⊕D = B1⊕D1. If B ∼= B1 and B is finite-dimensional, then D ∼=D1.

Denote n = dim L . Noting that L is the homomorphic image of F , let F be generated by

n elements. Then

E ∼= B/D ∼=
R

F ′ ∩R
∼=

F ′+R

F ′
⊆ F /F ′

where F /F ′ is abelian and generated by n elements, and thus E is finite dimensional. Next,

consider (J ,λ) ∈C (L ). As above, one obtains a central ideal E1 in C , complementary to D

in B , and a homomorphismσ : C −→ J such that E1 ⊆ kerσ and λσ=π. Since E ∩C ′ and
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E1 ∩C ′ are both zero, we may extend D in two different ways. First, extend D to a space G

such that C = E ⊕G . Second, extend D to a space G1 such that C = E1⊕G1. Since both E

and E1 have the same finite dimension and are abelian, we know E ∼= E1. By Lemma 5.1.11,

G ∼=G1. Thus C /E ∼=C /E1.

In conclusion, we have shown that, given a free presentation 0 −→ R −→ F
π−→ L −→ 0

and any (J ,λ) ∈ C (L ), one can choose a subspace E in C and induce a homomorphism

σS : C /E −→ J such that λσS = πS . By Lemma 5.1.5, σS is surjective. Thus (C /E ,πS ) is a

universal element of C (L ) and C /E is a cover of L . Furthermore, each cover K of L is the

homomorphic image of C /E and has the same dimension, and so every cover is isomorphic

to C /E . Finally, for any (J ,λ) ∈ C (L ) and a cover K of L , there exists a homomorphism

β : K −→ J such that λβ =τ, where (K ,τ) ∈C (L ). Thus, K is a cover of L if and only if (K ,τ)

is a universal element in C (L ).

Theorem 5.1.12. Let L be a finite-dimensional diassociative algebra and let 0−→R −→ F −→
L −→ 0 be a free presentation of L. Let

B =
R

F ◊R +R◊F
C =

F

F ◊R +R◊F
D =

F ′ ∩R

F ◊R +R◊F

Then

1. all covers of L are isomorphic and have the form C /E where E is the complement to D

in B ,

2. the multiplier M (L ) of L is D ∼= B/E ,

3. the universal elements in C (L ) are the elements (K ,λ)where K is a cover of L.

5.2 Diassociative Cohomology

Given a pair of diassociative algebras A and B , consider a central extension 0 −→ A −→
L −→ B −→ 0 of A by B and section µ : B −→ L . Define a pair of bilinear forms ( f⊣, f⊢) by

f⊣(i , j ) =µ(i ) ⊣µ( j )−µ(i ⊣ j ) and f⊢(i , j ) =µ(i ) ⊢µ( j )−µ(i ⊢ j ) for i , j ∈ B . By our work on

factor systems, ( f⊣, f⊢) is a 2-cocycle of diassociative algebras, meaning that these maps
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satisfy the 2-cocycle identities

f⊣(i , j ⊣ k ) = f⊣(i , j ⊢ k ) C1

f⊣(i ⊢ j , k ) = f⊢(i , j ⊣ k ) C2

f⊢(i ⊣ j , k ) = f⊢(i ⊢ j , k ) C3

f⊣(i , j ⊣ k ) = f⊣(i ⊣ j , k ) C4

f⊢(i , j ⊢ k ) = f⊢(i ⊢ j , k ) C5

for all i , j , k ∈ B . We note that a 2-cocycle ( f⊣, f⊢) is a 2-coboundary if there exists a linear

transformation ϵ : B −→ A such that f⊣(i , j ) =−ϵ(i ⊣ j ) and f⊢(i , j ) =−ϵ(i ⊢ j ). Furthermore,

any elements ( f⊣, f⊢) and (g⊣, g⊢) in Z 2(B , A) belong to equivalent extensions if and only

if their corresponding bilinear forms differ by a coboundary, i.e. if there is a linear map

ϵ : B −→ A such that f⊣(i , j )− g⊣(i , j ) = −ϵ(i ⊣ j ) and f⊢(i , j )− g⊢(i , j ) = −ϵ(i ⊢ j ) for all

i , j ∈ B . Therefore, extensions of A by B are equivalent if and only if they give rise to the

same element ofH 2(B , A). The work of Chapter 2 guarantees that each element

( f⊣, f⊢) ∈H 2(B , A)

gives rise to a central extension 0 −→ A −→ L −→ B −→ 0 with section µ such that f⊣(i , j ) =

µ(i ) ⊣µ( j )−µ(i ⊣ j ) and f⊢(i , j ) =µ(i ) ⊢µ( j )−µ(i ⊢ j ).

5.3 Hochschild-Serre Spectral Sequence

The remainder of this chapter relies on the exactness of the following Hochschild-Serre

type spectral sequence of low dimension. Let H be a central ideal of a diassociative algebra

L and consider the natural central extension

0−→H −→ L
β
−→ L/H −→ 0

with section µ of β . Let A be a central L-module.

Theorem 5.3.1. The sequence

0−→Hom(L/H , A)
Inf1−→Hom(L , A)

Res−→Hom(H , A)
Tra−→H 2(L/H , A)

Inf2−→H 2(L , A)

is exact.

We first define the maps in the sequence and verify that they make sense. For any

homomorphism χ : L/H −→ A, define Inf1 : Hom(L/H , A) −→ Hom(L , A) by Inf1(χ) = χβ .

67



Next, forπ ∈Hom(L , A), define Res : Hom(L , A)−→Hom(H , A) by Res(π) =πι, where ι : H −→
L is the inclusion map. It is readily verified that Inf1 and Res are well-defined and linear. To

define the transgression map, let f⊣ : L/H ×L/H −→H and f⊢ : L/H ×L/H −→H be defined

by f⊣(x , y ) =µ(x ) ⊣µ(y )−µ(x ⊣ y ) and f⊢(x , y ) =µ(x ) ⊢µ(y )−µ(x ⊢ y ) for x , y ∈ L . Consider

χ ∈Hom(H , A). Then (χ f⊣,χ f⊢) ∈Z 2(L/H , A) since χ is a homomorphism. Given another

section ν of β , define a pair (g⊣, g⊢) of bilinear forms by g⊣(x , y ) = ν(x ) ⊣ ν(y )−ν(x ⊣ y ) and

g⊢(x , y ) = ν(x ) ⊢ ν(y )−ν(x ⊢ y ) for x , y ∈ L . Then ( f⊣, f⊢) and (g⊣, g⊢) are cohomologous in

H 2(L/H , H ), which implies that there exists a linear transformation ϵ : L/H −→H such that

f⊣(x , y )− g⊣(x , y ) =−ϵ(x ⊣ y ) and f⊢(x , y )− g⊢(x , y ) =−ϵ(x ⊢ y ). Therefore, χϵ : L/H −→ A

is a linear map by which (χ f⊣,χ f⊢) and (χg⊣,χg⊢) differ. In other words, (χ f⊣,χ f⊢) and

(χg⊣,χg⊢) are cohomologous inH 2(L/H , A), and so we define

Tra(χ) = (χ f⊣,χ f⊢).

It is straightforward to verify that Tra is linear.

Finally, we define the second inflation map Inf2 :H 2(L/H , A)−→H 2(L , A) by

Inf2(( f⊣, f⊢) +B2(L/H , A)) = ( f ′⊣ , f ′⊢ ) +B
2(L , A)

where f ′⊣ (x , y ) = f⊣(β (x ),β (y )) and f ′⊢ (x , y ) = f⊢(β (x ),β (y )) for ( f⊣, f⊢) ∈ Z 2(L/H , A) and

x , y ∈ L . It is straightforward to verify that Inf2 is linear. To check that Inf2 maps cocycles to

cocycles, we first compute

f ′⊣ (x , y ⊣ z ) = f⊣(β (x ),β (y ⊣ z ))

= f⊣(β (x ),β (y ) ⊣β (z ))

= f⊣(β (x ),β (y ) ⊢β (z ))

= f⊣(β (x ),β (y ⊢ z ))

= f ′⊣ (x , y ⊢ z )

for all x , y , z ∈ L , which holds since ( f⊣, f⊢) is a 2-cocycle. Thus, ( f ′⊣ , f ′⊢ ) satisfies the first axiom

of 2-cocycles. The other axioms hold by similar computations, and hence ( f ′⊣ , f ′⊢ ) ∈Z
2(L , A).

To check that Inf2 maps coboundaries to coboundaries, suppose ( f⊣, f⊢) ∈ B2(L/H , A).

Then there is a linear transformation ϵ : L/H −→ A such that f⊣(x , y ) = −ϵ(x ⊣ y ) and
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f⊢(x , y ) =−ϵ(x ⊢ y ) for all x , y ∈ L . Here, β (x ) = x +H = x for any x ∈ L . One has

f ′⊣ (x , y ) = f⊣(β (x ),β (y ))

=−ϵ(β (x ) ⊣β (y ))

=−ϵβ (x ⊣ y )

and, similarly, f ′⊢ (x , y ) =−ϵβ (x ⊢ y ). Therefore ( f ′⊣ , f ′⊢ ) ∈B
2(L , A).

Proof. Given our section µ of 0 −→ H −→ L
β
−→ L/H −→ 0, let ( f⊣, f⊢) ∈ Z 2(L/H , H ) be the

cocycle defined by f⊣(x , y ) = µ(x ) ⊣ µ(y )−µ(x ⊣ y ) and f⊢(x , y ) = µ(x ) ⊢ µ(y )−µ(x ⊢ y )

for x , y ∈ L . We first note that Inf1 is injective by the same logic as the Leibniz case. Thus

the sequence is exact at Hom(L/H , A). Exactness at Hom(L , A) also follows similarly to the

Leibniz case.

For exactness at Hom(H , A), first consider a homomorphism χ ∈Hom(L , A). Then

χ f⊣(x , y ) =χµ(x ) ⊣χµ(y )−χµ(x ⊣ y )

=−χµ(x ⊣ y )

and, similarly, χ f⊢(x , y ) =−χµ(x ⊢ y ). This implies that (χ f⊣,χ f⊢) ∈B2(L/H , A). Thus

Tra(Res(χ)) = Tra(χι) = (χι f⊣,χι f⊢) = 0

and so Im(Res)⊆ ker(Tra). Conversely, suppose there exists a homomorphism θ : H −→ A

such that

Tra(θ ) = (θ f⊣,θ f⊢) = 0,

i.e. such that (θ f⊣,θ f⊢) ∈B2(L/H , A). Then there exists a linear transformation ϵ : L/H −→ A

such that θ f⊣(x , y ) =−ϵ(x ⊣ y ) and θ f⊢(x , y ) =−ϵ(x ⊢ y ). For any x , y ∈ L , we know that

x =µ(x ) +hx and y =µ(y ) +hy for some hx , hy ∈H . Thus, x ⊣ y =µ(x ⊣ y ) +hx⊣y =µ(x ) ⊣
µ(y ) and x ⊢ y =µ(x ⊢ y ) +hx⊢y =µ(x ) ⊢µ(y ), which implies that

θ (hx⊣y ) = θ (µ(x ) ⊣µ(y )−µ(x ⊣ y )) = θ f⊣(x , y ) =−ϵ(x ⊣ y ),

θ (hx⊢y ) = θ (µ(x ) ⊢µ(y )−µ(x ⊢ y )) = θ f⊢(x , y ) =−ϵ(x ⊢ y ).
(5.1)

Define a linear map σ : L −→ A by σ(x ) = θ (hx ) + ϵ(x ). Then σ(x ) ⊣ σ(y ) = 0 and σ(x ) ⊢
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σ(y ) = 0 since Imσ⊆ A. By (5.1),

σ(x ⊣ y ) = θ (hx⊣y ) + ϵ(x ⊣ y ) = 0,

σ(x ⊢ y ) = θ (hx⊢y ) + ϵ(x ⊢ y ) = 0.

Thus, σ is a homomorphism. Moreover, σ(h ) = θ (h ) + ϵ(h ) = θ (h ) for all h ∈ H , which

implies that Res(σ) = θ . Hence, ker(Tra)⊆ Im(Res) and ker(Tra) = Im(Res).

For exactness atH 2(L/H , A), first consider a map χ ∈Hom(H , A). Then

Tra(χ) = (χ f⊣,χ f⊢) +B2(L/H , A)

where (χ f⊣,χ f⊢) ∈Z 2(L/H , A). One computes

Inf2((χ f⊣,χ f⊢) +B2(L/H , A)) = ((χ f⊣)
′, (χ f⊢)

′) +B2(L , A)

where

(χ f⊣)
′(x , y ) =χ f⊣(x , y ),

(χ f⊢)
′(x , y ) =χ f⊢(x , y )

for x , y ∈ L . To show that Im(Tra) ⊆ ker(Inf2), we need to find a linear transformation

ϵ : L −→ A such that (χ f⊣)′(x , y ) =−ϵ(x ⊣ y ) and (χ f⊢)′(x , y ) =−ϵ(x ⊢ y ). Let x = µ(x ) +hx

and y =µ(y ) +hy . Again, the equalities x ⊣ y =µ(x ⊣ y ) +hx⊣y =µ(x ) ⊣µ(y ) and x ⊢ y =

µ(x ⊢ y ) +hx⊢y =µ(x ) ⊢µ(y ) yield

χ f⊣(x , y ) =χ(µ(x ⊣ y −µ(x ⊣ y )) =χ(hx⊣y ),

χ f⊢(x , y ) =χ(µ(x ⊢ y −µ(x ⊢ y )) =χ(hx⊢y ).

Define ϵ(x ) =−χ(hx ). Then ϵ is linear and

ϵ(x ⊣ y ) =−χ(hx⊣y ) =−χ f⊣(x , y ) =−(χ f⊣)
′(x , y ),

ϵ(x ⊢ y ) =−χ(hx⊢y ) =−χ f⊢(x , y ) =−(χ f⊢)
′(x , y ).

This implies that ((χ f⊣)′, (χ f⊢)′) ∈B2(L , A), and hence Im(Tra)⊆ ker(Inf2).

Conversely, suppose (g⊣, g⊢) ∈Z 2(L/H , A) is such that

(g⊣, g⊢) ∈ ker(Inf2).
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Then there exists a linear transformation ϵ : L −→ A such that g⊣(x , y ) = g ′⊣(x , y ) =−ϵ(x ⊣ y )

and g⊢(x , y ) = g ′⊢(x , y ) =−ϵ(x ⊢ y ) for all x , y ∈ L . Since ϵ is linear, (ϵ f⊣,ϵ f⊢) ∈Z 2(L/H , A).

As before, x =µ(x )+hx and y =µ(y )+hy for some hx , hy ∈H . Therefore x ⊣ y =µ(x ) ⊣µ(y )
and x ⊢ y =µ(x ) ⊢µ(y ). Now

g ′⊣(x , y ) = g⊣(x , y )

=−ϵ(x ⊣ y )

=−ϵ(x ⊣ y )

=−ϵ f⊣(x , y )− ϵµ(x ⊣ y )

where ϵµ : L/H −→ A. Similarly, g ′⊢(x , y ) =−ϵ f⊢(x , y )− ϵµ(x ⊢ y ). Therefore

(g⊣, g⊢) = (−ϵ f⊣,−ϵ f⊢) =−Tra(ϵ)

which implies that ker(Inf2)⊆ Im(Tra).

5.4 Relation of Multipliers and Cohomology

Let L be a diassociative algebra and letF be considered as a central L-module. The following

theorem holds similarly to its Leibniz analogue.

Theorem 5.4.1. Let Z be a central ideal in L. Then L ′ ∩ Z is isomorphic to the image of

Hom(Z ,F) under the transgression map. In particular, if Tra is surjective, then L ′ ∩ Z ∼=
H 2(L/Z ,F).

Now consider a free presentation 0−→R −→ F
ω−→ L −→ 0 of L . The sequence

0−→
R

F ◊R +R◊F
−→

F

F ◊R +R◊F
−→ L −→ 0

is a central extension since all of R ⊣ F , R ⊢ F , F ⊣R , and F ⊢R are contained in F ◊R+R◊F .

Lemma 5.4.2. Let 0 −→ A −→ B
φ
−→ C −→ 0 be a central extension and α : L −→ C be a

homomorphism. Then there exists a homomorphism β : F /(F ◊R +R◊F )−→ B such that
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0 R
F ◊R+R◊F

F
F ◊R+R◊F L 0

0 A B C 0

γ β α

Figure 5.6 Existence of β .

is commutative, where γ is the restriction of β to R/(F ◊R +R◊F ).

Proof. Since F is free, there exists a homomorphismσ : F −→ B such that

F L

B C

ω

σ α

φ

Figure 5.7 Showingφσ=αω.

is commutative. Let r ∈R ⊆ F . Thenω(r ) = 0 since kerω=R . Therefore 0=αω(r ) =φσ(r )

and soσ(R )⊆ kerφ. We want to show that F ◊R +R◊F ⊆ kerσ. If x ∈ F and r ∈R , then

σ(x ⊣ r ) =σ(x ) ⊣σ(r ) = 0, σ(x ⊢ r ) =σ(x ) ⊢σ(r ) = 0,

σ(r ⊣ x ) =σ(r ) ⊣σ(x ) = 0, σ(r ⊢ x ) =σ(r ) ⊢σ(x ) = 0

sinceσ(r ) ∈ kerφ = A ⊆ Z (B ). Nowσ induces a homomorphism β : F /(F ◊R +R◊F )−→ B .

The left diagram commutes since we may take A −→ B to be the inclusion map.

Lemma 5.4.3. Let 0 −→ R −→ F −→ L −→ 0 be a free presentation of L. Let A be a central L-

module. Then the transgression map Tra : Hom(R/(F ◊R +R◊F ), A)−→H 2(L , A) associated

with

0−→
R

F ◊R +R◊F
−→

F

F ◊R +R◊F

φ
−→ L −→ 0

is surjective.

Proof. Consider (g⊣, g⊢) ∈ H 2(L , A) and let 0 −→ A −→ E
ϕ
−→ L −→ 0 be a central extension

associated with (g⊣, g⊢). By the previous lemma, there exists a homomorphism θ such that
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0 R
F ◊R+R◊F

F
F ◊R+R◊F L 0

0 A E L 0

γ

φ

θ id

ϕ

Figure 5.8 Invoking Lemma 5.4.2.

is commutative and γ= θ |R/(F ◊R+R◊F ). Let µ be a section ofφ. Then ϕθµ=φµ= idL , and

so θµ is a section of ϕ. Let λ= θµ and define

h⊣(x , y ) =λ(x ) ⊣λ(y )−λ(x ⊣ y ),

h⊢(x , y ) =λ(x ) ⊢λ(y )−λ(x ⊢ y ).

Then (h⊣, h⊢) ∈Z 2(L , A) and (h⊣, h⊢) is cohomologous with (g⊣, g⊢) since they are associated

with the same extension. One computes

h⊣(x , y ) = θ (µ(x )) ⊣ θ (µ(y ))−θ (µ(x ⊣ y ))

= θ (µ(x ) ⊣µ(y )−µ(x ⊣ y ))

= γ(µ(x ) ⊣µ(y )−µ(x ⊣ y ))

= γ( f⊣(x , y ))

where f⊣(x , y ) =µ(x ) ⊣µ(y )−µ(x ⊣ y ), and since γ= θ |R/(F ◊R+R◊F ). Similarly, one computes

h⊢(x , y ) = γ( f⊢(x , y )) for f⊢(x , y ) =µ(x ) ⊢µ(y )−µ(x ⊢ y ). Thus

Tra(γ) = (γ f⊣,γ f⊢) = (h⊣, h⊢) = (g⊣, g⊢)

and Tra is surjective.

Lemma 5.4.4. If C ⊆ A and C ⊆ B , then A/C ∩B/C = (A ∩B )/C .

Proof. Follows by the same logic as Lemma 4.2.4.

Theorem 5.4.5. Let L be a diassociative algebra over a field F and 0−→R −→ F −→ L −→ 0 be

a free presentation of L. Then

H 2(L ,F)∼=
F ′ ∩R

F ◊R +R◊F
.

In particular, if L is finite-dimensional, then M (L )∼=H 2(L ,F).
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Proof. Let

R =
R

F ◊R +R◊F
F =

F

F ◊R +R◊F

Then 0 −→ R −→ F −→ L −→ 0 is a central extension. By Lemma 5.4.3, Tra : Hom(R ,F) −→
H 2(L ,F) is surjective. By Theorem 5.4.1,

F
′ ∩R ∼=H 2(F /R ,F)∼=H 2(L ,F).

By Lemma 5.4.4,

F
′ ∩R ∼=

F ′

F ◊R +R◊F
∩

R

F ◊R +R◊F
=

F ′ ∩R

F ◊R +R◊F
.

Therefore, when L is finite-dimensional,

M (L ) =
F ′ ∩R

F ◊R +R◊F
∼=H 2(L ,F)

by the characterization of M (L ) from Theorem 5.1.12.

5.5 Unicentral Diassociative Algebras

For a diassociative algebra L , let Z ∗(L ) denote the intersection of all imagesω(Z (E )) such

that 0−→ kerω−→ E
ω−→ L −→ 0 is a central extension of L . It is easy to see that Z ∗(L )⊆ Z (L ).

We say that a diassociative algebra L is unicentral if Z (L ) = Z ∗(L ).

5.5.1 More Sequences

Given a central ideal Z in L , consider the natural extension 0−→ Z −→ L −→ L/Z −→ 0. We

now extend our Hochschild-Serre sequence by a term

δ :H 2(L ,F)−→ (L/L ′⊗Z ⊕Z ⊗ L/L ′)2.

To define this δmap, consider a 2-cocycle ( f ′⊣ , f ′⊢ ) ∈Z
2(L ,F) and define four bilinear forms

f ′′⊣ : L/L ′×Z −→F, f ′′⊢ : L/L ′×Z −→F,

g ′′⊣ : Z × L/L ′ −→F, g ′′⊢ : Z × L/L ′ −→F
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by

f ′′⊣ (x + L ′, z ) = f ′⊣ (x , z ), f ′′⊢ (x + L ′, z ) = f ′⊢ (x , z ),

g ′′⊣ (z , x + L ′) = f ′⊣ (z , x ), g ′′⊢ (z , x + L ′) = f ′⊢ (z , x )

for x ∈ L , z ∈ Z . To check that these four maps are well-defined, one computes

f ′′⊣ (x ⊣ y + L ′, z ) = f ′⊣ (x ⊣ y , z ) C4= f ′⊣ (x , y ⊣ z ) = 0,

f ′′⊣ (x ⊢ y + L ′, z ) = f ′⊣ (x ⊢ y , z ) C2= f ′⊢ (x , y ⊣ z ) = 0,

g ′′⊣ (z , x ⊣ y + L ′) = f ′⊣ (z , x ⊣ y ) C4= f ′⊣ (z ⊣ x , y ) = 0,

g ′′⊣ (z , x ⊢ y + L ′) = f ′⊣ (z , x ⊢ y ) C1= f ′⊣ (z , x ⊣ y ) C4= f ′⊣ (z ⊣ x , y ) = 0,

f ′′⊢ (x ⊣ y + L ′, z ) = f ′⊢ (x ⊣ y , z ) C3= f ′⊢ (x ⊢ y , z ) C5= f ′⊢ (x , y ⊢ z ) = 0,

f ′′⊢ (x ⊢ y + L ′, z ) = f ′⊢ (x ⊢ y , z ) C5= f ′⊢ (x , y ⊢ z ) = 0,

g ′′⊢ (z , x ⊣ y + L ′) = f ′⊢ (z , x ⊣ y ) C2= f ′⊣ (z ⊢ x , y ) = 0,

g ′′⊢ (z , x ⊢ y + L ′) = f ′⊢ (z , x ⊢ y ) C5= f ′⊢ (z ⊢ x , y ) = 0

since z ∈ Z (L ). Hence

( f ′′⊣ , g ′′⊣ , f ′′⊢ , g ′′⊢ ) ∈ (Bil(L/L ′×Z ,F)⊕Bil(Z × L/L ′,F))2

∼= (L/L ′⊗Z ⊕Z ⊗ L/L ′)2.

Now let ( f ′⊣ , f ′⊢ ) ∈B
2(L ,F). Then there exists a linear transformation ϵ : L −→ F such that

f ′⊣ (x , y ) =−ϵ(x ⊣ y ) and f ′⊢ (x , y ) =−ϵ(x ⊢ y ) for all x , y ∈ L . One computes

f ′′⊣ (x + L ′, z ) = f ′⊣ (x , z ) =−ϵ(x ⊣ z ) = 0, f ′′⊢ (x + L ′, z ) = f ′⊢ (x , z ) =−ϵ(x ⊢ z ) = 0,

g ′′⊣ (z , x + L ′) = f ′⊣ (z , x ) =−ϵ(z ⊣ x ) = 0, g ′′⊢ (z , x + L ′) = f ′⊢ (z , x ) =−ϵ(z ⊢ x ) = 0

since z ∈ Z (L ). Hence, a mapδ : ( f ′⊣ , f ′⊢ )+B
2(L ,F) 7→ ( f ′′⊣ , g ′′⊣ , f ′′⊢ , g ′′⊢ ) is induced that is clearly

linear since f ′⊣ , f ′⊢ , f ′′⊣ , g ′′⊣ , f ′′⊢ , and g ′′⊢ are all in vector spaces of bilinear forms and the latter

four are defined by the first two.
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Theorem 5.5.1. Let Z be a central ideal of a diassociative algebra L. The sequence

H 2(L/Z ,F) Inf−→H 2(L ,F) δ−→ (L/L ′⊗Z ⊕Z ⊗ L/L ′)2

is exact.

Proof. Let ( f⊣, f⊢) ∈ Z 2(L/Z ,F). Then Inf(( f⊣, f⊢) +B2(L/Z ,F)) = ( f ′⊣ , f ′⊢ ) +B
2(L ,F) where

f ′⊣ (x , y ) = f⊣(x +Z , y +Z ) and f ′⊢ (x , y ) = f⊢(x +Z , y +Z ) for x , y ∈ L . Moreover,

δ(( f ′⊣ , f ′⊢ ) +B
2(L ,F)) = ( f ′′⊣ , g ′′⊣ , f ′′⊢ , g ′′⊢ )

where

f ′′⊣ (x + L ′, z ) = f ′⊣ (x , z ) = f⊣(x +Z , z +Z ) = 0,

g ′′⊣ (z , x + L ′) = f ′⊣ (z , x ) = f⊣(z +Z , x +Z ) = 0,

f ′′⊢ (x + L ′, z ) = f ′⊢ (x , z ) = f⊢(x +Z , z +Z ) = 0,

g ′′⊢ (z , x + L ′) = f ′⊢ (z , x ) = f⊢(z +Z , x +Z ) = 0

for all x ∈ L and z ∈ Z . Thus,

δ(Inf(( f⊣, f⊢) +B2(L/Z ,F))) =δ(( f ′⊣ , f ′⊢ ) +B
2(L ,F))

= ( f ′′⊣ , g ′′⊣ , f ′′⊢ , g ′′⊢ )

= (0, 0, 0, 0)

which implies that Im(Inf)⊆ kerδ.

Conversely, suppose that δ(( f ′⊣ , f ′⊢ ) +B
2(L ,F)) = ( f ′′⊣ , g ′′⊣ , f ′′⊢ , g ′′⊢ ) = (0,0,0,0) for some

cocycle ( f ′⊣ , f ′⊢ ) ∈Z
2(L ,F). In other words,

0= f ′′⊣ (x + L ′, z ) = f ′⊣ (x , z ), 0= f ′′⊢ (x + L ′, z ) = f ′⊢ (x , z ),

0= g ′′⊣ (z , x + L ′) = f ′⊣ (z , x ), 0= g ′′⊢ (z , x + L ′) = f ′⊢ (z , x )

for all x ∈ L , x ∈ Z . One computes

f ′⊣ (x + z , y + z ′) = f ′⊣ (x , y ) + f ′⊣ (x , z ′) + f ′⊣ (z , y ) + f ′⊣ (z , z ′) = f ′⊣ (x , y ),

f ′⊢ (x + z , y + z ′) = f ′⊢ (x , y ) + f ′⊢ (x , z ′) + f ′⊢ (z , y ) + f ′⊢ (z , z ′) = f ′⊢ (x , y )

for all z , z ′ ∈ Z , which implies that the bilinear forms g⊣ : L/Z × L/Z −→ F and g⊢ : L/Z ×
L/Z −→ F, defined by g⊣(x +Z , y +Z ) = f ′⊣ (x , y ) and g⊢(x +Z , y +Z ) = f ′⊢ (x , y ), are well-
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defined. Furthermore, (g⊣, g⊢) ∈Z 2(L/Z ,F) since ( f ′⊣ , f ′⊢ ) is a cocycle. Thus,

Inf((g⊣, g⊢) +B2(L/Z ,F)) = ( f ′⊣ , f ′⊢ ) +B
2(L ,F),

which implies that kerδ⊆ Im(Inf).

Theorem 5.5.2. (Ganea Sequence) Let Z be a central ideal of a finite-dimensional diassocia-

tive algebra L. Then the sequence

(L/L ′⊗Z ⊕Z ⊗ L/L ′)2 −→M (L )−→M (L/Z )−→ L ′ ∩Z −→ 0

is exact.

Proof. Let F be a free diassociative algebra such that L = F /R and Z = T /R for ideals T and

R of F . Since Z ⊆ Z (L ), we have T /R ⊆ Z (F /R ), and thus F ◊T +T ◊F ⊆R . Now inclusion

maps β : R ∩ F ′ −→ T ∩ F ′ and γ : T ∩ F ′ −→ T ∩ (F ′+R ) induce homomorphisms

R ∩ F ′

F ◊R +R◊F

β
−→

T ∩ F ′

F ◊T +T ◊F

γ
−→

T ∩ (F ′+R )
R

−→ 0.

Since R ⊆ T ,
T ∩ (F ′+R )

R
=
(T +R )∩ (F ′+R )

R
∼=
(T ∩ F ′) +R

R

which implies that γ is surjective. By Theorem 5.1.12,

M (L )∼=
R ∩ F ′

F ◊R +R◊F
and M (L/Z )∼=

T ∩ F ′

F ◊T +T ◊F
.

Also

L ′ ∩Z ∼= (F /R )′ ∩ (T /R )∼=
F ′+R

R
∩

T

R
∼=
(F ′+R )∩T

R
.

Therefore, the sequence M (L/Z )
γ
−→ L ′ ∩Z −→ 0 is exact. Since

kerγ=
(T ∩ F ′)∩R

F ◊T +T ◊F
=

R ∩ F ′

F ◊T +T ◊F
= Imβ ,

the sequence M (L )
β
−→M (L/Z )

γ
−→ L ′ ∩Z is exact.

It remains to show that

(L/L ′⊗Z ⊕Z ⊗ L/L ′)2 −→M (L )
β
−→M (L/Z )−→ L ′ ∩Z
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is exact. Define four maps

θ⊣ :
T

R
×

F

R + F ′
−→

R ∩ F ′

F ◊R +R◊F
, θ⊢ :

T

R
×

F

R + F ′
−→

R ∩ F ′

F ◊R +R◊F
,

α⊣ :
F

R + F ′
×

T

R
−→

R ∩ F ′

F ◊R +R◊F
, α⊢ :

F

R + F ′
×

T

R
−→

R ∩ F ′

F ◊R +R◊F

by

θ⊣(t , f ) = t ⊣ f + (F ◊R +R◊F ), θ⊢(t , f ) = t ⊢ f + (F ◊R +R◊F ),

α⊣( f , t ) = f ⊣ t + (F ◊R +R◊F ), α⊢( f , t ) = f ⊢ t + (F ◊R +R◊F )

for t ∈ T , f ∈ F . These maps are bilinear since multiplication operations are bilinear. To

check that they are well-defined, suppose (t +R , f + (R + F ′)) = (t ′ +R , f ′ + (R + F ′)) for

t , t ′ ∈ T and f , f ′ ∈ F . Then t − t ′ ∈R and f − f ′ ∈R +F ′, which implies that t = t ′+ r and

f = f ′+ x for some r ∈R and x ∈R + F ′. One computes

t ⊣ f − t ′ ⊣ f ′ = (t ′+ r ) ⊣ ( f ′+ x )− t ′ ⊣ f ′

= r ⊣ f ′+ r ⊣ x + t ′ ⊣ x

∈ (R ⊣ F ) + (R ⊣ F ) + (T ⊣R +T ⊣ F ′)

which is contained in F ◊R +R◊F since

T ⊣ F ′ = T ⊣ (F ⊣ F ) +T ⊣ (F ⊢ F )

= (T ⊣ F ) ⊣ F +T ⊣ (F ⊣ F )

= (T ⊣ F ) ⊣ F + (T ⊣ F ) ⊣ F

and T ⊣ F ⊆R . Next,

t ⊢ f − t ′ ⊢ f ′ = (t ′+ r ) ⊢ ( f ′+ x )− t ′ ⊢ f ′

= r ⊢ f ′+ r ⊢ x + t ′ ⊢ x

∈ (R ⊢ F ) + (R ⊢ F ) + (T ⊢R +T ⊢ F ′)

which is also contained in F ◊R +R◊F since

T ⊢ F ′ = T ⊢ (F ⊣ F ) +T ⊢ (F ⊢ F )

= (T ⊢ F ) ⊣ F + (T ⊢ F ) ⊢ F
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and T ⊢ F ⊆R . Expressions f ⊣ t − f ′ ⊣ t ′ and f ⊢ t − f ′ ⊢ t ′ fall in F ◊R +R◊F by similar

manipulations, via the identities of diassociative algebras and the fact that F ⊣ T , F ⊢ T ,

T ⊣ F , and T ⊢ F are contained in R . Thus our bilinear forms θ⊣, α⊣, θ⊢, and α⊢ are well-

defined, and so induce linear maps

θ⊣ :
T

R
⊗

F

R + F ′
−→

R ∩ F ′

F ◊R +R◊F
, θ⊢ :

T

R
⊗

F

R + F ′
−→

R ∩ F ′

F ◊R +R◊F
,

α⊣ :
F

R + F ′
⊗

T

R
−→

R ∩ F ′

F ◊R +R◊F
, α⊢ :

F

R + F ′
⊗

T

R
−→

R ∩ F ′

F ◊R +R◊F
.

These, in turn, yield a linear transformation

θ :
�

F

R + F ′
⊗

T

R
⊕

T

R
⊗

F

R + F ′

�2

−→
R ∩ F ′

F ◊R +R◊F

defined by θ (a , b , c , d ) =α⊣(a ) +θ⊣(b ) +α⊢(c ) +θ⊢(d ). The image of θ is

F ◊T +T ◊F

F ◊R +R◊F

which is precisely equal to {x +(F ◊R +R◊F ) | x ∈R ∩ F ′, x ∈ F ◊T +T ◊F }= kerβ . Thus

the final part of our sequence is exact.

Corollary 5.5.3. (Stallings Sequence) Let Z be a central ideal in a finite-dimensional diasso-

ciative algebra L. Then the sequence

M (L )−→M (L/Z )−→ Z −→ L/L ′ −→
L

Z + L ′
−→ 0

is exact.

Proof. Follows by the same logic as the Leibniz case with the replacements F ◊R +R◊F for

F R +R F and F ◊T +T ◊F for F T +T F .

5.5.2 The Main Result

We refer to the map β that appears in the Ganea sequence as the natural map. Let Z be a

central ideal in a finite-dimensional diassociative algebra L . We will prove the equivalence

of the following statements:

1. δ is the trivial map,

2. β is injective,
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3. M (L )∼= M (L/Z )
L ′∩Z ,

4. Z ⊆ Z ∗(L ).

The following two lemmas form the equivalence of our first three statements. Both hold

similarly to their Leibniz analogues.

Lemma 5.5.4. Let Z be a central ideal in a finite-dimensional diassociative algebra L and

consider the map

δ : M (L )−→ (L/L ′⊗Z ⊕Z ⊗ L/L ′)2

from Theorem 5.5.1. Then

M (L )∼=
M (L/Z )

L ′ ∩Z

if and only if δ is the trivial map.

Lemma 5.5.5. Let Z be a central ideal in a finite-dimensional diassociative algebra L and

consider the natural map β : M (L )−→M (L/Z ) from Theorem 5.5.2. Then

M (L )∼=
M (L/Z )

L ′ ∩Z

if and only if β is injective.

It remains to show that these conditions are equivalent to Z ⊆ Z ∗(L ). As in Chapter

4, we say that a central extension 0 −→ A −→ B −→ C −→ 0 is stem if A ⊆ B ′. Consider a free

presentation 0−→R −→ F
π−→ L −→ 0 of L and let X denote the quotient algebra X

F ◊R+R◊F for

any X such that F ◊R +R◊F ⊆ X ⊆ F . Since R = kerπ and F ◊R +R◊F ⊆ R , π induces a

homomorphism π : F −→ L such that the diagram

F L

F

π

π

Figure 5.9 Induced π.

commutes. Since R ⊆ Z (F ), there exists a complement S
F ◊R+R◊F to R∩F ′

F ◊R+R◊F in R
F ◊R+R◊F

where S ⊆ R ⊆ kerπ and S ⊆ R ⊆ kerπ. Thus π induces a homomorphism πS : F /S −→ L

such that the extension 0−→R/S −→ F /S
πS−→ L −→ 0 is central. This extension is stem since

R/S ∼= R∩F ′

F ◊R+R◊F = kerπS implies that F /S is a cover of L .
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Lemma 5.5.6. For every free presentation 0 −→ R −→ F
π−→ L −→ 0 of L and every central

extension 0−→ kerω−→ E
ω−→ L −→ 0, one has π(Z (F ))⊆ω(Z (E )).

Proof. Since the identity map id : L −→ L is a homomorphism, we can invoke Lemma 5.4.2,

yielding a homomorphism β : F −→ E such that the diagram

0 R
F ◊R+R◊F

F
F ◊R+R◊F L 0

0 kerω E L 0

γ

π

β id

ω

Figure 5.10 Invoking Lemma 5.4.2 again.

is commutative, where γ is the restriction of β to R . As in the Leibniz case, we obtain

E = A+β (F ), where A = kerω. It remains to show that β (Z (F )) centralizes A and β (F ). We

first compute

β (Z (F )) ∗β (F ) =β (Z (F ) ∗ F ) =β (0) = 0,

β (F ) ∗β (Z (F )) =β (F ∗Z (F )) =β (0) = 0

where ∗ ranges over ⊣ and ⊢. Next, we know that A ∗E and E ∗A are zero, and so A ∗β (Z (F ))
and β (Z (F )) ∗ A must be zero as well. Thus, β (Z (F )) centralizes E , which implies that

β (Z (F ))⊆ Z (E ). Therefore,ωβ (Z (F ))⊆ω(Z (E )), or π(Z (F ))⊆ω(Z (E )).

The rest of this chapter follows similarly to its Leibniz case via simple replacements.

By applying the preceding results and above discussion (concerning F /S as a cover), we

thereby complete the diassociative analogue.

Theorem 5.5.7. For every free presentation 0 −→ R −→ F
π−→ L −→ 0 of L and every stem

extension 0−→ kerω−→ E
ω−→ L −→ 0, one has Z ∗(L ) =π(Z (F )) =ω(Z (E )).

Lemma 5.5.8. Let Z be a central ideal of finite-dimensional diassociative algebra L and

consider the map β : M (L )−→M (L/Z ) from Theorem 5.5.2. Then Z ⊆ Z ∗(L ) if and only if β

is injective.

Theorem 5.5.9. Let Z be a central ideal of a finite-dimensional diassociative algebra L and

δ : M (L )−→ (L/L ′⊗Z ⊕Z ⊗ L/L ′)2
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be as in Theorem 5.5.1. Then the following are equivalent:

1. δ is the trivial map,

2. the natural map β is injective,

3. M (L )∼= M (L/Z )
L ′∩Z ,

4. Z ⊆ Z ∗(L ).

We conclude this chapter by narrowing our focus to when the conditions of Theorem

5.5.9 hold for Z = Z (L ). Under this assumption, the center of the cover goes onto the center

of the algebra.

Theorem 5.5.10. Let L be a diassociative algebra and Z (L ) be the center of L. If Z (L )⊆ Z ∗(L ),

thenω(Z (E )) = Z (L ) for every stem extension 0−→ kerω−→ E
ω−→ L −→ 0.
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CHAPTER

6

MULTIPLIERS AND COVERS OF PERFECT

DIASSOCIATIVE ALGEBRAS

Recall that a diassociative algebra L is perfect if L = L ′, where L ′ = L◊L .

6.1 Universal Central Extensions

The aim of this section is to establish connections between perfect diassociative algebras

and universal central extensions. Consider a finite-dimensional diassociative algebra L , an

L-module A, and two central extensions E : 0−→ A −→H −→ L −→ 0 and E1 : 0−→ A1 −→H1 −→
L −→ 0. We say that E covers E1 if there exists a homomorphism τ : H −→H1 such that the

diagram

E : 0 A H L 0

E1 : 0 A1 H1 L 0

τ id

Figure 6.1 Showing E covers E1.
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commutes, where the unmarked map is τ|A. If τ is unique, then E uniquely covers E1. An

extension E is universal if it uniquely covers any central extension of L .

Lemma 6.1.1. If E : 0 −→ A −→H
φ
−→ L −→ 0 and E1 : 0 −→ A1 −→H1

φ1−→ L −→ 0 are universal

central extensions of L, then there exists an isomorphism H −→H1 which carries A onto A1.

Proof. Since both extensions are universal and central, there exist homomorphisms τ :

H −→H1 and τ1 : H1 −→H such that the diagrams

0 A H L 0

0 A1 H1 L 0

τ

φ

id

φ1

0 A1 H1 L 0

0 A H L 0

τ1

φ1

id

φ

Figure 6.2 Showing τ and τ1.

commute. We thus have a mapping τ1τ : H −→ H such that φτ1τ = φ1τ = φ. Since τ is

unique, τ1τ= idH . Similarly, ττ1 = idH1
. Therefore, τ is an isomorphism and τ|A maps A

onto A1.

Lemma 6.1.2. If E : 0−→ A −→H
φ
−→ L −→ 0 is a universal central extension, then both H and

L are perfect.

Proof. Consider the central extension

0−→ A×H /H ′ −→H ×H /H ′
ψ
−→ L −→ 0

whereψ(a , b ) =φ(a ) for a ∈H and b ∈H /H ′. For i = 1, 2, define homomorphisms

τi : H −→H ×H /H ′

by τ1(h ) = (h ,0) and τ2(h ) = (h , h +H /H ′). Then ψτ1(h ) = ψ(h ,0) = φ(h ) and ψτ2(h ) =

ψ(h , h +H /H ′) = φ(h ), which implies that ψτi = φ for i = 1,2. Since E is universal, we

have τ1 =τ2. Thus H /H ′ = 0, and so H =H ′. One computes

L ′ = (H /A)′ =
H ′+A

A
=

H +A

A
=H /A = L

84



and therefore H and L are perfect.

Lemma 6.1.3. Let E : 0 −→ A −→ H
φ
−→ L −→ 0 and E1 : 0 −→ A1 −→ H1

φ1−→ L −→ 0 be central

extensions and suppose H is perfect. Then E covers E1 if and only if E uniquely covers E1.

Proof. The reverse direction is clear. In the forward direction, suppose E covers E1. Then

there exists a homomorphism τ : H −→H1 such that the diagram

0 A H L 0

0 A1 H1 L 0

τ

φ

id

φ1

Figure 6.3 Showing τ.

commutes. Suppose there is another homomorphism β : H −→H1 such that the diagram

0 A H L 0

0 A1 H1 L 0

β

φ

id

φ1

Figure 6.4 Showing β .

commutes. It remains to show that τ=β . Let x , y ∈H . Then

φ1(β (x )−τ(x )) =φ1(β (x ))−φ1(τ(x ))

=φ(x )−φ(x )

= 0

implies that β (x )−τ(x ) ∈ kerφ1 = A1 ⊆ Z (H1). Similarly, one obtains β (y )−τ(y ) ∈ Z (H1),
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and so β (x ) =τ(x ) +a and β (y ) =τ(y ) + b for some a , b ∈ Z (H1). We compute

β (x ⊣ y ) =β (x ) ⊣β (y )

=τ(x ) ⊣τ(y ) +τ(x ) ⊣ b +a ⊣τ(y ) +a ⊣ b

=τ(x ⊣ y )

since a , b ∈ Z (H1). Similarly, β (x ⊢ y ) =τ(x ⊢ y ), and thus τ and β are equal on H ′. Since

H is perfect, we have τ=β .

Lemma 6.1.4. Let L be a finite-dimensional perfect diassociative algebra. Then the extension

E : 0−→ 0−→ L −→ L −→ 0 is universal if and only if every central extension of L splits.

Proof. In the forward direction, let E1 : 0−→ A −→H
φ
−→ L −→ 0 be a central extension of L .

Then there exists a unique homomorphism τ : L −→H such that the diagram

E : 0 0 L L 0

E1 : 0 A H L 0

τ

id

id

φ

Figure 6.5 Showing τ.

commutes. Thereforeφτ= idL , which implies that E1 splits.

Conversely, suppose every central extension of L splits and let E1 : 0−→ A −→H
φ
−→ L −→ 0

be a central extension. Then there exists a homomorphism β : L −→H such thatφβ = idL ,

which implies that the diagram

E : 0 0 L L 0

E1 : 0 A H L 0

β

id

id

φ

Figure 6.6 Showing β .

commutes. Thus E covers E1. Since L is perfect, Lemma 6.1.3 guarantees that E uniquely

covers E1, and therefore E is universal.
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Lemma 6.1.5. Let E1 : 0 −→ B −→ G
φ
−→ L −→ 0 and E2 : 0 −→ C −→ L

ψ
−→ H −→ 0 be central

extensions and let π=ψφ and A = kerπ. If G is perfect, then E3 : 0−→ A −→G
π−→H −→ 0 is a

central extension.

E3 E1

0 0

A B

G

E2 0 C L H 0

0 0

π
φ

ψ

Figure 6.7 Interaction of E1, E2, and E3.

Proof. For any a ∈ A = kerπ, one has ψφ(a ) = π(a ) = 0. Therefore, for any x ∈ G , φ(a ⊣
x ) =φ(a ) ⊣φ(x ) = 0 since φ(a ) ∈ kerψ. Similarly, φ(a ⊣ x ), φ(x ⊣ a ), and φ(x ⊢ a ) are all

zero. For a ∈ A, let λ⊣a , λ⊢a , ρ⊣a , ρ⊢a be adjoint operators on G defined by λ∗a (x ) = a ∗ x and

ρ∗a (x ) = x ∗ a , where ∗ ranges over ⊣ and ⊢. Since φ(λ∗a (x )) = 0 and φ(ρ∗a (x )) = 0, we get
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λ∗a (x ),ρ
∗
a (x ) ∈ kerφ ⊆ Z (G ). Now let y , z ∈G . Then

λ⊣a (y ⊣ z ) = a ⊣ (y ⊣ z ) As= (a ⊣ y ) ⊣ z = 0,

λ⊣a (y ⊢ z ) = a ⊣ (y ⊢ z ) D1= a ⊣ (y ⊣ z ) As= (a ⊣ y ) ⊣ z = 0,

λ⊢a (y ⊣ z ) = a ⊢ (y ⊣ z ) D2= (a ⊢ y ) ⊣ z = 0,

λ⊢a (y ⊢ z ) = a ⊢ (y ⊢ z ) As= (a ⊢ y ) ⊢ z = 0,

ρ⊣a (y ⊣ z ) = (y ⊣ z ) ⊣ a
As= y ⊣ (z ⊣ a ) = 0,

ρ⊣a (y ⊢ z ) = (y ⊢ z ) ⊣ a
D2= y ⊢ (z ⊣ a ) = 0,

ρ⊢a (y ⊣ z ) = (y ⊣ z ) ⊢ a
D3= (y ⊢ z ) ⊢ a

As= y ⊢ (z ⊢ a ) = 0,

ρ⊢a (y ⊢ z ) = (y ⊢ z ) ⊢ a
As= y ⊢ (z ⊢ a ) = 0

since a ⊣ y , a ⊢ y , z ⊣ a , z ⊢ a ∈ Z (G ), where “As” denotes the associativity of the diasso-

ciative multiplications. Therefore λ∗a and ρ∗a are trivial maps on G ′ =G , and so a ∈ Z (G ),

which implies that E3 is central.

Lemma 6.1.6. Let E1, E2, E3, and their involved maps be as in Lemma 6.1.5. If E1 is universal,

then so is E3.

Proof. Suppose E1 : 0 −→ B −→ G
φ
−→ L −→ 0 is a universal extension. By Lemma 6.1.2, G

and L are perfect. Since H is the homomorphic image of G , H is also perfect. Let E4 : 0−→
D −→ S

ω−→H −→ 0 be another central extension of H . Let T = {(a , b ) ∈ L ×S |ψ(a ) =ω(b )}
and define multiplications on T by (a , b ) ⊣ (c , d ) = (a ⊣ c , b ⊣ d ) and (a , b ) ⊢ (c , d ) = (a ⊢
c , b ⊢ d ). Then T is closed under multiplication since ψ(a ⊣ c ) = ψ(a ) ⊣ ψ(c ) = ω(b ) ⊣
ω(d ) =ω(b ⊣ d ) andψ(a ⊢ c ) =ω(b ⊢ d ) similarly. Thus T is a subalgebra of L ×S . Let λ

be the projection of T onto L . Since E1 is universal, there exists a unique homomorphism

α : G −→ T such that the diagram

E1 : 0 B G L 0

0 0×D T L 0

α

φ

id

λ

Figure 6.8 Showing α.
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commutes, i.e. such thatλα=φ. Let γ : T −→ S be the natural projection given by γ(a , b ) = b .

Let β = γα. Given g ∈ G , set α(g ) = (a , b ). Then β (g ) = γα(g ) = γ(a , b ) = b and φ(g ) =

λα(g ) = λ(a , b ) = a , which implies that ωβ (g ) = ω(b ) = ψ(a ) = ψφ(g ) = π(g ). Thus the

diagram

E3 : 0 A G H 0

E4 : 0 D S H 0

β

π

id

ω

Figure 6.9 Showing π=ωβ .

commutes, and so E3 covers E4. Since G is perfect, we know that E3 uniquely covers E4.

Therefore, E3 is universal.

The proof of the following lemma holds by the same logic as its Lie analogue (Lemma

6.7 in [1]), but we provide it here for the sake of completeness and to detail how it fits in

with the previous lemmas.

Lemma 6.1.7. Let L be a finite-dimensional perfect diassociative algebra. If 0−→ 0−→H
φ
−→

L −→ 0 is a universal extension, then so is 0−→ 0−→ L −→ L −→ 0.

Proof. Let 0−→ A −→ L ∗
ψ
−→ L −→ 0 be an arbitrary central extension of L . Then there exists a

unique homomorphism θ : H −→ L ∗ such that the diagram

0 0 H L 0

0 A L ∗ L 0

θ

φ

id

ψ

Figure 6.10 Showing θ .

commutes. In other words,φ =ψθ . However, sinceφ is an isomorphism, let β = θφ−1 be

the homomorphism from L to L ∗. One computesψβ =ψθφ−1 =φφ−1 = idL , which means
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β is a section ofψ that is also a homomorphism. Thus, our central extension

0−→ A −→ L ∗
ψ
−→ L −→ 0

splits. By Lemma 6.1.4, and since L is perfect, we know that 0 −→ 0 −→ L −→ L −→ 0 is

universal.

6.2 Multipliers and Covers

We now return to multipliers and covers. Let L be a finite-dimensional perfect diassociative

algebra with free presentation 0−→R −→ F −→ L −→ 0 and consider the central extension

0−→
R

F ◊R +R◊F
−→

F

F ◊R +R◊F
π−→ L −→ 0.

We compute

L ′ = Im
�

F

F ◊R +R◊F

�′

∼= Im
�

F ′+ F ◊R +R◊F

F ◊R +R◊F

�

= Im
�

F ′

F ◊R +R◊F

�

which implies that the restriction π|F ′/(F ◊R+R◊F ) induces a central extension

0−→
F ′ ∩R

F ◊R +R◊F
−→

F ′

F ◊R +R◊F
−→ L −→ 0

since L is perfect. By the work in Chapter 5, we know that the algebra (F ′∩R )/(F ◊R +R◊F )

is precisely the multiplier M (L ). Our aim is now to show that F ′/(F ◊R +R◊F ) is a cover of

L and that the above extension is universal.

Theorem 6.2.1. Let L be a finite-dimensional perfect diassociative algebra and 0−→R −→
F −→ L −→ 0 be a free presentation of L. Then F ′/(F ◊R +R◊F ) is a cover of L.

Proof. Since M (L )∼= (F ′ ∩R )/(F ◊R +R◊F ) and

L ∼=
F ′/(F ◊R +R◊F )

(F ′ ∩R )/(F ◊R +R◊F )
,
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it remains to prove that

F ′ ∩R

F ◊R +R◊F
⊆ Z
�

F ′

F ◊R +R◊F

�

∩
�

F ′

F ◊R +R◊F

�′

.

Clearly
F ′ ∩R

F ◊R +R◊F
⊆ Z
�

F ′

F ◊R +R◊F

�

and
F ′ ∩R

F ◊R +R◊F
⊆

F ′

F ◊R +R◊F
.

It thus suffices to show that

�

F ′

F ◊R +R◊F

�′

=
F ′

F ◊R +R◊F
.

We first note that
�

F ′

F ◊R +R◊F

�′

=
F ′′+ F ◊R +R◊F

F ◊R +R◊F

and that F ′′ + F ◊R + R◊F ⊆ F ′. Since L = L ′, we know that F /R = (F /R )′ = F ′+R
R . This

implies that, for all xi ∈ F , xi = yi + ri for some yi ∈ F ′ and ri ∈R . We compute

x1 ⊣ x2 = y1 ⊣ y2+ y1 ⊣ r2+ r1 ⊣ y2+ r1 ⊣ r2,

x1 ⊢ x2 = y1 ⊢ y2+ y1 ⊢ r2+ r1 ⊢ y2+ r1 ⊢ r2,

which both fall in F ′′+ F ◊R +R◊F . Thus, F ′ ⊆ F ′′+ F ◊R +R◊F , and so F ′/(F ◊R +R◊F )

is a cover of L .

Corollary 6.2.2. Let L be a finite-dimensional perfect diassociative algebra with free presen-

tation 0−→R −→ F −→ L −→ 0. Then F ′/(F ◊R +R◊F ) is perfect.

Proof. By the proof of Theorem 6.2.1, we have
�

F ′/(F ◊R +R◊F )
�′
= F ′/(F ◊R +R◊F ).

Theorem 6.2.3. Let L be a finite-dimensional perfect diassociative algebra with free presen-

tation 0−→R −→ F −→ L −→ 0. Then the extension

E : 0−→
F ′ ∩R

F ◊R +R◊F
−→

F ′

F ◊R +R◊F
−→ L −→ 0

is universal.

Proof. Let E1 : 0 −→ A −→ H −→ L −→ 0 be a central extension of L . By Lemma 5.4.2, it is

covered by a natural exact sequence, call it E2, making the diagram
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E2 : 0 R
F ◊R+R◊F

F
F ◊R+R◊F L 0

E1 : 0 A H L 0

β id

Figure 6.11 E2 covers E1.

commute. Since the diagram

E : 0 F ′∩R
F ◊R+R◊F

F ′

F ◊R+R◊F L 0

E1 : 0 A H L 0

θ id

Figure 6.12 E covers E1.

commutes, whereθ =β |F ′/(F ◊R+R◊F ), we know that E1 is covered by E . Since F ′/(F ◊R+R◊F )

is perfect, Lemma 6.1.3 implies that E uniquely covers E1. Thus, E is universal.

Theorem 6.2.4. If 0 −→ A −→ L ∗ −→ L −→ 0 is a universal central extension and L is perfect,

then A ∼=M (L ) and L ∗ is a cover of L.

Proof. We know that

0−→
F ′ ∩R

F ◊R +R◊F
−→

F ′

F ◊R +R◊F
−→ L −→ 0

is universal. By Lemma 6.1.1, there exists an isomorphism

L ∗ −→
F ′

F ◊R +R◊F

which carries A onto
F ′ ∩R

F ◊R +R◊F
∼=M (L ).

Thus A ∼=M (L ) and L ∗ is a cover of L .

Theorem 6.2.5. Let L be a finite-dimensional perfect diassociative algebra and let M (L ) = 0.

ThenH 2(L , A) = 0 for any central module A of L.
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Proof. Since M (L ) = 0, Theorem 6.2.3 implies that the extension

0−→ 0−→
F ′

F ◊R +R◊F
−→ L −→ 0

is universal. By Lemma 6.1.7, the extension 0 −→ 0 −→ L −→ L −→ 0 is also universal. By

Lemma 6.1.4, every central extension of L splits, and thusH 2(L , A) = 0.

Theorem 6.2.6. Let L be a finite-dimensional perfect diassociative algebra and let M (L ) = 0.

If Z is a central ideal of L, then Z ∼=M (L/Z ) and L is a cover of L/Z .

Proof. By the proof of Theorem 6.2.5, the extension 0−→ 0−→ L −→ L −→ 0 is universal. Since

L is perfect, Lemma 6.1.5 implies that 0−→ Z −→ L −→ L/Z −→ 0 is also universal. Thus, by

Theorem 6.2.4, M (L/Z )∼= Z , which implies that L is the cover of L/Z .

Theorem 6.2.7. Let L be a finite-dimensional perfect diassociative algebra and C be a cover

of L. Then C =C ′ and M (C ) = 0.

Proof. Let A =M (L ). Then L ∼=C /A and A ⊆ Z (C )∩C ′. One computes

L/L ′ ∼=
C /A

(C /A)′
∼=

C /A

(C ′+A)/A
∼=

C

C ′+A
.

Since L = L ′ and A ⊆ C ′, we have C = C ′+ A = C ′. Thus C is perfect. We now invoke our

extended Hochschild-Serre sequence that was obtained in Chapter 5.

0−→Hom(L ,F)
Inf1−→Hom(C ,F) Res−→Hom(A,F) Tra−→M (L )

Inf2−→M (C )
δ−→ (C /C ′⊗A⊕A⊗C /C ′)2

Here, the term (C /C ′ ⊗ A ⊕ A ⊗C /C ′)2 must be zero since C = C ′, which yields M (C ) =

kerδ = Im(Inf2). Next, we also know that Hom(C ,F) = 0 since C is perfect. This implies

that 0 = Im(Res) = ker(Tra). Then Im(Tra) ∼= Hom(A,F) ∼= A ∼=M (L ) and therefore M (C ) =

Im(Inf2)∼=M (L )/ker(Inf2) =M (L )/ Im(Tra) =M (L )/M (L )∼= 0.
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CHAPTER

7

MULTIPLIERS OF NILPOTENT

DIASSOCIATIVE ALGEBRAS

In this chapter, we prove an alternative way to extend the Hochschild-Serre sequence from

Chapter 5 and apply it to study the multipliers of nilpotent diassociative algebras. We

compare this theory to its associative specialization and explicitly compute the multipliers

of an associative algebra as an associative algebra and then as a diassociative algebra.

Recall the sequences of ideals from Section 3.1. For a diassociative algebra L , we will

refer to L k as the k th term in the lower central series of L . For the present section, we say

that a diassociative algebra L is nilpotent of class n if L n ̸= 0 and L n+1 = 0. If L is nilpotent of

class n , it induces a central extension 0−→ L n −→ L −→ L/L n −→ 0. We also define the upper

central series of L by Z1 = Z (L ) and

Z j+1 = {x ∈ L | ∀l ∈ L , x ⊣ l , x ⊢ l , l ⊣ x , l ⊢ x ∈ Z j }

for j ≥ 1. In particular, for a nilpotent diassociative algebra L of class n , one has Zn = L ,

and thus L ′ ⊆ Zn−1.

Lemma 7.0.1. Let L be a diassociative algebra and Z j denote the j th term in the upper
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central series of L. Then

L s◊Zi +Zi◊L s ⊆ Zi−s

for all i ≥ s .

Proof. We proceed by induction on s . For the base case s = 1, one has L◊Zi +Zi◊L ⊆ Zi−1

by definition. Now assume that the statement holds for some s ≥ 1. We compute

L s+1◊Zi +Zi◊L s+1 = (L◊L s )◊Zi +Zi◊(L s◊L ) by Lemma 3.1.2

= L◊(L s◊Zi ) + (Zi◊L s )◊L (∗)

⊆ L◊Zi−s +Zi−s◊L by induction

⊆ Zi−s−1 by definition

where (∗) follows via the diassociative identities and the associativity of the multiplications.

7.1 The Main Result

The form (X ⊗Y ⊕Y ⊗X )2 will continue to denote (X ⊗Y ⊕Y ⊗X )⊕ (X ⊗Y ⊕Y ⊗X ). This

is not to be confused with the terms L n in the lower central series of an algebra L . We will

use L ′ to denote the second term L 2 in the lower central series.

Theorem 7.1.1. Let L be a nilpotent diassociative algebra and let A and B be ideals in L

such that L ′ ⊆ A and B ⊆ Z (L ). If f⊣(A, B ) = 0, f⊣(B , A) = 0, f⊢(A, B ) = 0, and f⊢(B , A) = 0 for

all ( f⊣, f⊢) ∈Z 2(L ,F), then there exists a homomorphism δ such that

H 2(L/B ,F) Inf−→H 2(L ,F) δ−→ (L/A⊗B ⊕B ⊗ L/A)2

is exact.

Proof. Consider elements x ∈ L , b ∈ B , and ( f ′⊣ , f ′⊢ ) ∈Z
2(L ,F). We define the bilinear forms

f ′′⊣ : L/A×B −→F, g ′′⊣ : B × L/A −→F,

f ′′⊢ : L/A×B −→F, g ′′⊢ : B × L/A −→F

by

f ′′⊣ (x +A, b ) = f ′⊣ (x , b ), g ′′⊣ (b , x +A) = f ′⊣ (b , x ),

f ′′⊢ (x +A, b ) = f ′⊢ (x , b ), g ′′⊢ (b , x +A) = f ′⊢ (b , x ).
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Since f ′⊣ (A, B ) = 0, f ′⊣ (B , A) = 0, f ′⊢ (A, B ) = 0, and f ′⊢ (B , A) = 0, all of these maps are well-

defined. We define δ′ :Z 2(L ,F)−→ (L/A⊗B ⊕B ⊗ L/A)2 by δ′( f ′⊣ , f ′⊢ ) = ( f
′′
⊣ , g ′′⊣ , f ′′⊢ , g ′′⊢ ). Now

consider an element ( f ′⊣ , f ′⊢ ) ∈B
2(L ,F). Then there exists a linear transformation ϵ : L −→F

such that f ′⊣ (x , y ) =−ϵ(x ⊣ y ) and f ′⊢ (x , y ) =−ϵ(x ⊢ y ) for all x , y ∈ L . For b ∈ B , however,

we compute

f ′′⊣ (x +A, b ) = f ′⊣ (x , b ) =−ϵ(x ⊣ b ) = 0, g ′′⊣ (b , x +A) = f ′⊣ (b , x ) =−ϵ(b ⊣ x ) = 0,

f ′′⊢ (x +A, b ) = f ′⊢ (x , b ) =−ϵ(x ⊢ b ) = 0, g ′′⊢ (b , x +A) = f ′⊢ (b , x ) =−ϵ(b ⊢ x ) = 0

since B ⊆ Z (L ). Thus, δ′( f ′⊣ , f ′⊢ ) = 0 for any coboundary ( f ′⊣ , f ′⊢ ), and so δ′ induces a well-

defined map δ :H 2(L ,F)−→ (L/A⊗B ⊕B ⊗ L/A)2 by δ(( f ′⊣ , f ′⊢ ) +B
2(L ,F)) = ( f ′′⊣ , g ′′⊣ , f ′′⊢ , g ′′⊢ ).

Now that we have established our δ, it remains to show that the sequence is exact.

Consider a cocycle ( f⊣, f⊢) ∈ Z 2(L/B ,F) and set f ′⊣ (x , y ) = f⊣(x + B , y + B ) and f ′⊢ (x , y ) =

f⊢(x +B , y +B ). We first recall (see Chapter 5) that Inf :H 2(L/B ,F)−→H 2(L ,F) is defined by

Inf(( f⊣, f⊢)+B2(L/B ,F)) = ( f ′⊣ , f ′⊢ )+B
2(L ,F). To show that Im(Inf)⊆ kerδ, consider ( f⊣, f⊢) ∈

Z 2(L/B ,F). Then ( f⊣, f⊢) induces tuples ( f ′⊣ , f ′⊢ ) and ( f ′′⊣ , g ′′⊣ , f ′′⊢ , g ′′⊢ ), as defined previously.

For x ∈ L and b ∈ B , one computes

f ′′⊣ (x +A, b ) = f ′⊣ (x , b ) = f⊣(x +B , b +B ) = 0,

g ′′⊣ (b , x +A) = f ′⊣ (b , x ) = f⊣(b +B , x +B ) = 0,

f ′′⊢ (x +A, b ) = f ′⊢ (x , b ) = f⊢(x +B , b +B ) = 0,

g ′′⊢ (b , x +A) = f ′⊢ (b , x ) = f⊢(b +B , x +B ) = 0

and so δ(Inf(( f⊣, f⊢)+B2(L/B ,F))) =δ(( f ′⊣ , f ′⊢ )+B
2(L ,F)) = ( f ′′⊣ , g ′′⊣ , f ′′⊢ , g ′′⊢ ) = (0, 0, 0, 0). Thus,

Im(Inf)⊆ kerδ.

Conversely, consider a cocycle ( f ′⊣ , f ′⊢ ) ∈Z
2(L ,F) such that ( f ′⊣ , f ′⊢ ) +B

2(L ,F) ∈ kerδ. In

other words, δ(( f ′⊣ , f ′⊢ ) +B
2(L ,F)) = ( f ′′⊣ , g ′′⊣ , f ′′⊢ , g ′′⊢ ) = (0, 0, 0, 0), where f ′′⊣ , g ′′⊣ , f ′′⊢ , and g ′′⊢ are

defined using ( f ′⊣ , f ′⊢ ) as above. This implies that

f ′⊣ (x , b ) = f ′′⊣ (x +A, b ) = 0, f ′⊣ (b , x ) = g ′′⊣ (b , x +A) = 0,

f ′⊢ (x , b ) = f ′′⊢ (x +A, b ) = 0, f ′⊢ (b , x ) = g ′′⊢ (b , x +A) = 0

for all x ∈ L , b ∈ B . Define a pair ( f⊣, f⊢) of bilinear forms L/B×L/B −→Fby f⊣(x+B , y +B ) =

f ′⊣ (x , y )and f⊢(x+B , y+B ) = f ′⊢ (x , y ) for any x , y ∈ L . To show that f⊣ and f⊢ are well-defined,

consider elements x +B = x1+B and y +B = y1+B . Then x1 = x + b and y1 = y + c for
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some b , c ∈ B . We compute

f⊣(x1+B , y1+B ) = f ′⊣ (x1, y1)

= f ′⊣ (x + b , y + c )

= f ′⊣ (x , y ) + f ′⊣ (x , c ) + f ′⊣ (b , y ) + f ′⊣ (b , c )

= f ′⊣ (x , y )

= f⊣(x +B , y +B )

and, similarly, f⊢(x1+B , y1+B ) = f⊢(x +B , y +B ). Moreover, ( f⊣, f⊢) satisfies the diassocia-

tive cocycle identities since ( f ′⊣ , f ′⊢ ) does. We thus obtain an element ( f⊣, f⊢) ∈ Z 2(L/B ,F)
such that Inf(( f⊣, f⊢) +B2(L/B ,F)) = ( f ′⊣ , f ′⊢ ) +B

2(L ,F). Therefore, kerδ ⊆ Im(Inf), and the

sequence is exact.

7.2 Applications

Our first application of Theorem 7.1.1 is an alternative proof of Theorem 5.5.1 in the case

when L is a nilpotent diassociative algebra. Letting A = L ′ and B = Z ⊆ Z (L ), we obtain the

following.

Proposition 7.2.1. Let L be a nilpotent diassociative algebra and Z be a central ideal in L.

Then

H 2(L/Z ,F) Inf−→H 2(L ,F) δ−→ (L/L ′⊗Z ⊕Z ⊗ L/L ′)2

is exact.

Proof. To invoke Theorem 7.1.1, it suffices to show that f⊣(L ′, Z ) = 0, f⊣(Z , L ′) = 0, f⊢(L ′, Z ) =

0, and f⊢(Z , L ′) = 0 for all ( f⊣, f⊢) ∈ Z 2(L ,F). But this holds by the diassociative cocycle

identities and their ability to associate products within the bilinear forms. For example, we

compute

f⊣(L
′, Z ) = f⊣(L ⊣ L , Z ) + f⊣(L ⊢ L , Z )

= f⊣(L , L ⊣ Z ) + f⊢(L , L ⊣ Z )

= 0

via C4 and C2 respectively.

The following corollary is the diassociative analogue of a result that was proved in [6],

and we use a similar approach to our proof.
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Corollary 7.2.2. Let L be a nilpotent, finite-dimensional diassociative algebra and Z ⊆
Z (L )∩ L ′ be an ideal such that dim Z = 1. Then

dimH 2(L ,F) +1≤ dimH 2(L/Z ,F) +4 dim(L/L ′).

Proof. We may invoke our extended cohomological five-sequence regardless of dim Z .

0−→Hom(L/Z ,F)−→Hom(L ,F) Res−→Hom(Z ,F) Tra−→H 2(L/Z ,F)

Inf−→H 2(L ,F) δ−→ (L/L ′⊗Z ⊕Z ⊗ L/L ′)2

Since Z ⊆ L ′, we obtain Res = 0. This follows since Res simply restricts any homomor-

phism π : L −→ F to π|Z , and any product in F is zero. By exactness, Tra is injective. Thus,

dim(Im(Tra)) = 1 since dim(Hom(Z ,F)) = 1. Also by exactness, we know that

dim(Imδ) +dim(Im(Inf)) = dimH 2(L ,F)

and

dim(Im(Inf))+dim(Im(Tra)) = dimH 2(L/Z ,F).

We therefore compute

dimH 2(L ,F) +1= dimH 2(L ,F) +dim(Im(Tra))

= dim(Imδ) +dim(Im(Inf))+dim(Im(Tra))

= dim(Imδ) +dimH 2(L/Z ,F)

≤ dim((L/L ′⊗Z ⊕Z ⊗ L/L ′)2) +dimH 2(L/Z ,F)

= 4 dim(L/L ′) +dimH 2(L/Z ,F).

Theorem 7.2.3. Let L be a nilpotent diassociative algebra of class n. Then

H 2(L/L n ,F) Inf−→H 2(L ,F) δ−→ (L/Zn−1⊗ L n ⊕ L n ⊗Zn−1)
2

is exact.

Proof. Supposing that L is nilpotent of class n , we first note that L n ⊆ Z (L ) and L ′ ⊆ Zn−1 via

our preliminary discussion. To invoke Theorem 7.1.1, it suffices to show that f⊣(Zn−1, L n ) =

f⊣(L n , Zn−1) = f⊢(Zn−1, L n ) = f⊢(L n , Zn−1) = 0 for all ( f⊣, f⊢) ∈Z 2(L ,F) and n ≥ 1. For n = 1, we
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have f⊣(Z0, L ) = f⊣(0, L ) = 0 and, similarly, f⊣(L , Z0) = f⊢(Z0, L ) = f⊢(L , Z0) = 0. For k ≥ 1, we

compute

f⊣(Zk , L k+1) = f⊣(Zk , L k◊L )

= f⊣(Zk , L k ⊣ L ) + f⊣(Zk , L k ⊢ L )

= f⊣(Zk ⊣ L k , L ) + f⊣(Zk , L k ⊣ L )

⊆ f⊣(Z0, L ) + f⊣(Zk ⊣ L k , L )

⊆ f⊣(Z0, L )

= 0

via Lemma 3.1.2, C4, C1, and Lemma 7.0.1. The other computations follow similarly, and

thus the result holds by Theorem 7.1.1.

Remark. The Lie analogue of Theorem 7.2.3 relies on induction, but we note that the

diassociative version is attainable without it. This reveals that, while the diassociative

cocycle identities lack an anticommutative-type property, they are actually more powerful

than the Lie conditions in some ways.

Corollary 7.2.4. Let L be a nilpotent, finite-dimensional diassociative algebra of class n.

Then

dimH 2(L ,F)≤ dimH 2(L/L n ,F) +4 dim(L n )dim(L/Zn−1)−dim(L n ).

Proof. Consider the terms in our extended sequence

Hom(L ,F) Res−→Hom(L n ,F) Tra−→H 2(L/L n ,F) Inf−→H 2(L ,F) δ−→ (L/Zn−1⊗ L n ⊕ L n ⊗ L/Zn−1)
2

and denote

q = dim Hom(L n ,F),

r = dimH 2(L/L n ,F),

s = dimH 2(L ,F),

t = dim((L/Zn−1⊗ L n ⊕ L n ⊗ L/Zn−1)
2).

We first note that Fn = 0 for n ≥ 2, and thus any homomorphism f : L n −→ Fn , as the

restriction of some f ∈Hom(L ,F), is the zero map. Therefore Res= 0, and so Tra is injective.

It follows that q = dim(Im(Tra)) = dim(ker(Inf)), which implies that

r −q = dimH 2(L/L n ,F)−dim(ker(Inf)) = dim(Im(Inf))≤ s .
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On the other hand, we know that

dimH 2(L ,F)−dim(kerδ) = dim(Imδ)≤ t ,

and so s − dim(kerδ) ≤ t . Finally, the equality r − q = dim(Im(Inf)) = dim(kerδ) yields

s − (r −q )≤ t . We thus obtain

dimH 2(L ,F)≤ dimH 2(L/L n ,F) +dim((L/Zn−1⊗ L n ⊕ L n ⊗ L/Zn−1)
2)−dim Hom(L n ,F)

= dimH 2(L/L n ,F) +4 dim(L/Zn−1)dim(L n )−dim(L n )

from s ≤ t + r −q .

Corollary 7.2.5. Let L be a nilpotent, finite-dimensional diassociative algebra. Then

dimH 2(L ,F)≤ dimH 2(L/L ′,F) +dim(L ′)[4 dim(L/Z (L ))−4 dim((L/Z (L ))′)−1].

Proof. We proceed by induction on the nilpotency class of L . As a base case, if L is nilpotent

of class 1, then L ′ = 0 and the result holds trivially. Suppose now that the result holds for all

nilpotent diassociative algebras of class less than n . We note the following facts:

1. L/L n is nilpotent of class n −1,

2. L n ⊆ Z (L ),

3. L ′ ⊆ Zn−1(L ),

4. (L/L n )′ = L ′/L n ,

5. Z (L )/L n ⊆ Z (L/L n ).

Denote A = (L/L n )/Z (L/L n ) and B = L/Z (L ) = (L/L n )/(Z (L )/L n ). By fact 5, A is a homo-

morphic image of B , and so dim(A/A′)≤ dim(B/B ′). We thus have

dimH 2(L/L n ,F)≤ dimH 2((L/L n )/(L/L n )′,F) +dim((L/L n )′)[4 dim(A/A′)−1]

≤ dimH 2(L/L ′,F) +dim(L ′/L n )[4 dim(B/B ′)−1]

by induction, and

dimH 2(L ,F)≤ dimH 2(L/L n ,F) +4 dim(L/Zn−1)dim(L n )−dim(L n )
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by Corollary 7.2.4. Furthermore,

dim(L/Zn−1)≤ dim(L/(L ′+Z (L ))) = dim(B/B ′)

since L ′+Z (L )⊆ Zn−1. Combining these inequalities, we compute

dimH 2(L ,F)≤ dimH 2(L/L n ,F) +4 dim(L/Zn−1)dim(L n )−dim(L n )

≤ dimH 2(L/L ′,F) +dim(L ′/L n )[4 dim(B/B ′)−1]

+4 dim(B/B ′)dim(L n )−dim(L n )

= dimH 2(L/L ′,F) + [dim(L ′)−dim(L n )][4 dim(B/B ′)−1]

+4 dim(B/B ′)dim(L n )−dim(L n )

= dimH 2(L/L ′,F) +dim(L ′)[4 dim(B/B ′)−1]

which yields the desired result.

Noting that dim(B/B ′)≤ dim(L/L ′), the next corollary is an immediate consequence of

the previous one. What follows is an alternative way of writing our bound on dimH 2(L ,F)
that is based on the dimensions of L and L/L ′.

Corollary 7.2.6. dimH 2(L ,F)≤ dimH 2(L/L ′,F) +dim(L ′)[4 dim(L/L ′)−1].

Corollary 7.2.7. Let n = dim L and d = dim(L/L ′). Then

dimH 2(L ,F)≤−2d 2+d +4nd −n .

Proof. We first note that, since L/L ′ is abelian, its multiplierH 2(L/L ′,F) has the maximal

possible dimension of 2d 2 (a bound obtained in the proof of Lemma 5.1.2). Using Corollary

7.2.6, we compute

dimH 2(L ,F)≤ 2d 2+ (n −d )[4d −1]

= 2d 2+4nd −n −4d 2+d

since dim(L/L ′) = dim L −dim(L ′) implies that dim(L ′) = n −d .

7.3 Associative Case

We now consider the special case of associative algebras, as any associative algebra L can be

thought of as a diassociative algebra in which x ⊣ y = x ⊢ y . Indeed, this condition allows
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us to denote multiplication by x y without distinction, and the axioms of the diassociative

structure condense down to x (y z ) = (x y )z . Next, consider a pair of associative algebras A

and B , and a central extension 0−→ A −→ L −→ B −→ 0 of A by B . A 2-cocycle f ∈Z 2(B , A) is

a bilinear form f : B ×B −→ A that satisfies f (i , j k ) = f (i j , k ) for all i , j , k ∈ B . Recall that

any diassociative cocycle ( f⊣, f⊢)may be defined by a section µ : B −→ L2 of some equivalent

extension. In particular, f⊣(i , j ) =µ(i ) ⊣µ( j )−µ(i ⊣ j ) and f⊢(i , j ) =µ(i ) ⊢µ( j )−µ(i ⊢ j ). In

the associative case, one computes f⊣(i , j ) = f⊢(i , j ), and we may thus think of our cocycle

as a single bilinear form.

The five-term cohomological sequence is extended by L/A⊗B ⊕B ⊗ L/A for the asso-

ciative analogue of Theorem 7.1.1, which need only require that f (A, B ) = 0 and f (B , A) = 0

for all cocycles f ∈Z 2(L ,F). Moreover, our δmap is defined by δ( f ′+B2(L ,F)) = ( f ′′, g ′′),

where f ′′ : L/A×B −→ F and g ′′ : B × L/A −→ F. In the context of the diassociative to asso-

ciative simplification, this pair would arise by computing equalities f ′′⊣ = f ′′⊢ and g ′′⊣ = g ′′⊢
via f ′⊣ = f ′⊢ . Similarly, our other results that extend the sequence by a term of the form

(X ⊗Y ⊕Y ⊗X )2 need only extend by the term X ⊗Y ⊕Y ⊗X (as in the Leibniz sequences

of Chapter 4). The associative analogue of Corollary 7.2.2 is thus the inequality

dimH 2(L ,F) +1≤ dimH 2(L/Z ,F) +2 dim(L/L ′)

since dim(L/L ′ ⊗ Z ⊕ Z ⊗ L/L ′) = 2dim(L/L ′) in the case of dim Z = 1. The associative

analogue of Corollary 7.2.4 is

dimH 2(L ,F)≤H 2(L/L n ,F) +2 dim(L n )dim(L/Zn−1)−dim(L n ),

that of Corollary 7.2.5 is

dimH 2(L ,F)≤ dimH 2(L/L ′,F) +dim(L ′)[2 dim(L/Z (L ))−2 dim((L/Z (L ))′)−1],

and that of Corollary 7.2.6 is

dimH 2(L ,F)≤ dimH 2(L/L ′,F) +dim(L ′)[2 dim(L/L ′)−1].

For our last corollary, we obtain dimH 2(L ,F)≤−d 2+d +2nd −n , where n = dim L and

d = dim(L/L ′).
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7.4 Example

We denote by MAs(L ) the multiplier of L as an associative algebra, and by MDias(L ) the same

for L as a diassociative algebra. Recall that M∗(X ) = H 2
∗ (X ,F), where ∗ ranges over the

categories As and Dias. As with the Leibniz multiplier, the dimension of the associative

multiplier is bounded by n 2 for an algebra of dimension n (by the same logic used in

Lemmas 2.0.2 and 2.0.3 of [16]). The dimension of the diassociative multiplier is bounded

by 2n 2 (see Chapter 5). These bounds are reached exactly when the algebra is abelian.

Example 7.4.1. Let L be the 2-dimensional associative algebra with basis {x1, x } and

nonzero multiplication given solely by x1 x1 = x .

Associative Extension. We first compute the multiplier MAs(L ) of L as an associative algebra.

Let K be the cover M ⊕ L of L with multiplications given by

x1 x1 = x +m11,

x1 x =m12,

x x1 =m21,

x x =m22.

To simplify, we let x2 = x +m11 = x1 x1, and thus multiplication in K becomes

x1 x1 = x2,

x1 x2 =m12,

x2 x1 =m21,

x2 x2 =m22

where M is generated by m12, m21, m22 and K is generated by m12, m21, m22, x1, x2. To find

bases for our multiplier and cover, it remains to check linear relations between our gen-

erating elements. We note that any product of four or more elements in K is zero, and, in

particular, that m22 = x2 x2 = x1 x1 x2 = x1m12 = 0. It thus suffices to plug our x1’s into the
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associative identity. We compute

0=As(x1, x1, x1)

= x1(x1 x1)− (x1 x1)x1

= x1 x2− x2 x1

=m12−m21

which implies that m12 =m21. We let m12 ̸= 0 to obtain the maximal possible dimension of

our defining pair, and thus {m12} forms a basis for M =MAs(L ). In other words, dim MAs(L ) =

1.

We now verify that the inequality

dimH 2(L ,F) +1≤ dimH 2(L/Z ,F) +2 dim(L/L ′)

holds. Let Z = 〈x 〉, noting that Z ⊆ Z (L )∩ L ′ and dim Z = 1. Since L/Z is abelian, we know

that dim MAs(L/Z ) = dim(L/Z )2 = 1. Moreover, dim(L/L ′) = 1, and thus the inequality is

computed as 1+1≤ 1+2(1), or 2≤ 3. We can also check

dimH 2(L ,F)≤ dimH 2(L/L ′,F) +2 dim(L ′)dim(L/Z (L ))−dim(L ′)

for the associative analogue of Corollary 7.2.4, since L is nilpotent of class 2. Since L ′ =

Z (L ) = 〈x 〉, we have dim MAs(L/L ′) = (1)2 = 1 and dim(L ′) = dim(L/Z (L )) = 1. The inequality

thus becomes 1≤ 1+2(1)(1)−1, or 1≤ 2.

Diassociative Extension. Our algebra L can be thought of as the diassociative algebra with

basis {x1, x } and nonzero multiplications given solely by x1 ⊣ x1 = x = x1 ⊢ x1. Let K be the

cover M ⊕ L of L with multiplications denoted by

x1 ⊣ x1 = x +m11 x1 ⊢ x1 = x + s11

x1 ⊣ x =m12 x1 ⊢ x = s12

x ⊣ x1 =m21 x ⊢ x1 = s21

x ⊣ x =m22 x ⊢ x = s22.

Letting x2 = x1 ⊣ x1 = x +m11, we obtain x1 ⊢ x1 = x + s11 = x2−m11+ s11 = x2+m for some
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m ∈M . Thus, multiplication in K is given by

x1 ⊣ x1 = x2 x1 ⊢ x1 = x2+m

xi ⊣ x j =mi j xi ⊢ x j = si j

for (i , j ) ̸= (1,1). Now M is generated by m , m12, m21, m22, s12, s21, s22. As in the associative

case, we need to verify linear relations in K based on the five axioms of diassociative

algebras. Noting that any four-product is zero, we get m22 = s22 = 0, and it remains to plug

x1’s into the diassociative identities. We compute

0=As⊣(x1, x1, x1)

= x1 ⊣ (x1 ⊣ x1)− (x1 ⊣ x1) ⊣ x1

= x1 ⊣ x2− x2 ⊣ x1

=m12−m21

and

0=As⊢(x1, x1, x1)

= x1 ⊢ (x1 ⊢ x1)− (x1 ⊢ x1) ⊢ x1

= x1 ⊢ (x2+m )− (x2+m ) ⊢ x1

= s12− s21

which yields m12 =m21 and s12 = s21. In a similar fashion, plugging x1’s into axioms D1 and

D3 yields trivial equalities. Finally, axiom D2 yields m21 = s12, and thus {m , m12} forms a

maximal basis for M . Therefore, dim MDias(L ) = 2, which is notably different from MAs(L ).

To verify Corollary 7.2.2, let Z = 〈x 〉, which is again 1-dimensional and falls in Z (L )∩ L ′.

Since L/Z is abelian, we have dim MDias(L/Z ) = 2 dim(L/Z )2 = 2(1)2 = 2. Our inequality

dimH 2(L ,F) +1≤ dimH 2(L/Z ,F) +4 dim(L/L ′)

is thus satisfied, with 2+1≤ 2+4(1), or 3≤ 6. For Corollary 7.2.4, we want

dimH 2(L ,F)≤ dimH 2(L/L ′,F) +4 dim(L ′)dim(L/Z (L ))−dim(L ′)

since L is nilpotent of class 2. Since L ′ = Z (L ) = 〈x 〉, we have dim MDias(L/L ′) = 2(1)2 = 2 and

dim(L ′) = dim(L/Z (L )) = 1. The desired inequality is thus 2≤ 2+4(1)(1)−1, or 2≤ 5.

105



BIBLIOGRAPHY

[1] Batten, P. “Covers and multipliers of Lie algebras”. PhD thesis. North Carolina State

University, 1993.

[2] Brown, R. & Porter, T. “On the Schreier theory of nonabelian extensions: generalisa-

tions and computations”. Proceeding Royal Irish Academy 96A (1996), 213––227.

[3] Casas, J. M., Insua, M. A. & Rego, N. P. “On universal central extensions of Hom-Leibniz

algebras”. Journal of Algebra and Its Applications 13 (2014).

[4] De Graaf, W. A. “Classification of nilpotent associative algebras of small dimension”.

International Journal of Algebra and Computation 28.1 (2018), 133––161.

[5] Ginzburg, V. & Kapranov, M. “Koszul Duality for Operads”. Duke Mathematical Journal

76.1 (1994), pp. 203–272.

[6] Hardy, P. & Stitzinger, E. “On characterizing nilpotent lie algebras by their multipliers,

t (L ) = 3, 4, 5, 6”. Communications in Algebra 26.11 (1998), pp. 3527–3539.

[7] Jacobson, N. Lie Algebras. Dover, 1962.

[8] Karpilovsky, G. The Scur Multiplier. Oxford, Claredon Press, 1987.

[9] Liu, J., Sheng, Y. & Wang, Q. “On non-abelian extensions of Leibniz algebras”. Com-

munications in Algebra 46.2 (2018), pp. 574–587.

[10] Loday, J.-L. “Une version non commutative des algébres de Lie: les algébres de Leib-

niz”. Enseign. Math. 39.3-4 (1993), 269––293.

[11] Loday, J.-L. “Cup-product for Leibniz Cohomology and Dual Leibniz Algebras”. Math-

ematica Scandinavica 77.2 (1995), pp. 189–196.

[12] Loday, J.-L. “Dialgebras”. Dialgebras and related operads. Berlin: Springer, 2001,

pp. 7–66.

[13] Rikhsiboev, I., Rakhimov, I. & Basri, W. “The Description of Dendriform Algebra

Structures on Two-Dimensional Complex Space”. Journal of Algebra, Number Theory:

Advances and Applications 4.1 (2010).

[14] Rikhsiboev, I., Rakhimov, I. & Basri, W. “Four-Dimensional Nilpotent Diassociative

Algebras”. Journal of Generalized Lie Theory and Applications 9.1 (2015).

[15] Riyahi, Z. & Salemkar, A. “A remark on the Schur multiplier of nilpotent Lie algebras”.

Journal of Algebra 438 (2015), pp. 1–6.

106



[16] Rogers, E. “Multipliers and covers of Leibniz algebras”. PhD thesis. North Carolina

State University, 2019.

[17] Schafer, J. “Extensions of Nilpotent Groups”. Houston Journal of Mathematics 21.1

(1995), pp. 1–16.

[18] Schreier, O. “Über die Erweiterung von Gruppen, I”. Monatschefte für Mathematik

und Physik 34 (1926), pp. 165–180.

[19] Schur, I. “Über die Darstellung der endlichen Gruppen durch gebrochene lineare

Substitutionen”. Journal für die reine und angewandte Mathematik 127 (1904), pp. 20–

50.

[20] Scott, W. R. Group Theory. Dover, 1964.

[21] Shukla, U. “A cohomology for Lie algebras”. Journal of the Mathematical Society of

Japan 18.3 (1966).

[22] Yankosky, B. “On Nilpotent Extensions of Lie Algebras”. Houston Journal of Mathe-

matics 27.4 (2001).

[23] Yankosky, B. “On the Multiplier of a Lie Algebra”. Journal of Lie Theory 13.1 (2003),

pp. 1–6.

[24] Zinbiel, G. W. “Encyclopedia of types of algebras 2010” (2011).

107


	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	The Algebras of Loday
	Extension Theory
	The Schur Multiplier

	Factor Systems
	Factor Systems of Leibniz Algebras
	Belonging
	Equivalence
	Split Extensions
	Abelian A
	Central Extensions

	Factor Systems of Diassociative Algebras
	Factor Systems of Dendriform Algebras
	Cohomology

	Extensions of Nilpotent Algebras
	Nilpotency
	Leibniz Case
	Diassociative Case
	Examples

	Multipliers and Covers of Leibniz Algebras
	Hochschild-Serre Spectral Sequence
	Relation of Multipliers and Cohomology
	Unicentral Leibniz Algebras
	More Sequences
	The Main Result


	Multipliers and Covers of Diassociative Algebras
	Existence of Universal Elements and Unique Covers
	Diassociative Cohomology
	Hochschild-Serre Spectral Sequence
	Relation of Multipliers and Cohomology
	Unicentral Diassociative Algebras
	More Sequences
	The Main Result


	Multipliers and Covers of Perfect Diassociative Algebras
	Universal Central Extensions
	Multipliers and Covers

	Multipliers of Nilpotent Diassociative Algebras
	The Main Result
	Applications
	Associative Case
	Example


