
ABSTRACT

HU, HENGRUI. A Hybrid Finite-Volume-Finite-Difference Scheme and Augmented Method
for Chemotaxis System. (Under the direction of Alina Chertock.)

In this dissertation, we work on the numerical solutions for two models which are

encountered in biological studies.

We start with the Patlak-Kelle-Segel chemotaxis system and related models, and develop

both the second-order and fourth-order positivity-preserving hybrid finite-volume-finite-

difference scheme for this type of system. The new schemes combined the finite difference

scheme and the finite-volume scheme which based on modifications of a Godunov-type

upwind method. We demonstrate high-accuracy, stability and computational efficiency of

the proposed schemes in a number of numerical examples.

In the second part, we focus on the chemotaxis-fluid model defined in an irregular

domain (the domain with curve boundary) and derived a second-order positivity-preserving

finite-volume-finite-difference scheme for this system. A finite-volume upwind scheme is

applied to evolve the chemotaxis part of the system, while the fluid equations are solved by

a finite-difference scheme, and both of the finite-volume and finite-difference schemes

involved in the proposed scheme are modified by the immersed interface method and

augmented technique to work for the irregular domain problem. The performance of the

new scheme is studied by a number of numerical examples.
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CHAPTER

1

INTRODUCTION

In this dissertation, we study two different sets of systems which encountered in biological

studies.

The first part of the dissertation is devoted to the development of the finite-volume-

finite-difference (FVFD) method for the Patlak-Keller-Segel (PKS) chemotaxis system and

related models. In the second part, we focus on a different type of system called chemotaxis-

fluid system, which models the motion of swimming bacteria, so called Bacillus subtilis,

living in fluid and consume oxygen. In this chapter, we briefly introduce the overview of

these two models and the idea of numerical schemes for these models.
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1.1 Patlak-Keller-Segel model

Chemotaxis refers to mechanisms by which cellular motion occurs in response to an exter-

nal stimulus, usually a chemical one. Chemotaxis phenomenon plays an important role

in bacterial aggregation and pattern formation mechanisms, as well as in tumor growth.

The description of chemotaxis was first made by T W. Engelmann (1881) and W.F. Pfeffer

(1884) in bacteria and H.S. Jennings (1906) in ciliates. The well-known Patlak-Keller-Segel

(PKS) system introduced in (67; 68; 69; 110) is widely used for chemotaxis, this classic PDE

model is governed by a system of advection-diffusion-reaction equations, which in the

two-dimensional (2-D) case read as:







ρt +∇· (χρ∇c ) =µ∆ρ,

αct =D∆c −γc c +γρρ,
(x , y ) ∈Ω⊂R2, t ≥ 0, (1.1)

whereρ(x , y , t ) stands for the density of the bacteria, c (x , y , t )denotes the concentration of

the chemoattractant, χ > 0 is a chemotactic sensitivity constant, µ and D are the diffusion

coefficient for bacteria and chemoattractant respectively, γρ > 0 and γc > 0 are the reaction

coefficients represent the production and degradation rate of the chemoattractant. The

parameterα is equal to either 1 or 0, which correspond to the parabolic-parabolic or reduced

parabolic-elliptic coupling, respectively.

The PKS system Eq. 1.1 can be generalized by taking into account additional factors

such as growth and death of the bacteria, presence of food or other chemicals in the system

and production of the chemoattractant by the bacteria (see, e.g., (123; 122)). One may also

consider a more realistic and complicated chemotactic sensitivity function χ =χ(ρ, c ) as

in (57; 67) instead of just using a sensitivity constant.

Chemotaxis systems have been widely used and extensively analyzed (see, e.g., (56; 58;
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63; 64; 112) and references therein) in the past few decades. An important common property

of all the chemotaxis models is their ability to model a concentration phenomenon that

mathematically leads to rapid growth of solutions in small neighborhoods of concentration

points. The solutions may blow up or exhibit a very singular, spiky behavior depend on

the spatial dimension and the total mass, which is conserved under the assumption that

no-flux boundary conditions are imposed:

M :=

∫

Ω

ρ(x , y , t )d x d y =

∫

Ω

ρ(x , y , 0)d x d y . (1.2)

In one-dimensional space case, the global solution of Eq. 1.1 exists, and converges to

a stationary solution as t →∞. In two-dimensional space, it was proved that, provided

the total mass of cells is below a critical threshold Mc , the solution of Eq. 1.1 exists globally

in time. Otherwise, the solution blows-up in finite time (see, e.g., (19; 63; 64; 111)). In the

parabolic-elliptic case (α= 0), the threshold Mc =
8π
χ . In the parabolic-parabolic case (α= 1),

the solution globally exists in time and its L∞−norm is uniformly bounded for all time

if the total mass M < 4π
χ , if the total mass 4π

χ <M < 8π
χ , the solution may blow up at the

boundary of the domain Ω, and the blow-up may occurs in the solution if the total mass

M > 8π
χ . This blow-up of solution is termed as chemotatic collapse, and it mathematically

describes a bacteria concentration phenomenon that occurs in real biological experiments

(see, e.g., (1; 12; 17; 18; 24; 30; 104; 113)).

While the blow-up is a reasonable model of the bacterial aggregation, it creates enor-

mous challenges to both numerical and analytical study. And in order to get rid of the

blow-up in solution, a lot of regularizations of the PKS model Eq. 1.1, which admit bounded

and global-in-time solution, have been introduced in the literature. Most of the regularized
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models can be read as the following form:







ρt +∇· (g (ρ)Q(χ ,∇c )) =µ∆ρ,

αct =D∆c −γc c +γρρ,
(1.3)

where g > 0 and Q are some smooth functions (see, e.g., (58; 63; 64; 23) and references

therein).

For example, the signal-dependent sensitivity model can be obtained by taking

g (ρ) =ρ and Q(χ ,∇c ) =
χ∇c

(1+κc )2
, (1.4)

the density-dependent sensitivity model can be obtained by setting

g (ρ) =
ρ

1+κρ
and Q(χ ,∇c ) =χ∇c , (1.5)

where κ is a small regularization parameter and these models converges to the PKS system

Eq. 1.1 as κ→ 0. There exists a global bounded solution for these models, and the regu-

larization parameter κ makes it possible to conduct a detailed analysis and investigate

properties of solutions (see, e.g., (127; 128)).

A saturated chemotactic flux model was introduced in (23), with the following g and Q:

g (ρ) =ρ, and Q(χ ,∇c) =











χ∇c , if |∇c | ≤ s ∗,

� χ |∇c | − s ∗
p

1+ (χ |∇c | − s ∗)2
+ s ∗

� ∇c

|∇c |
, otherwise,

(1.6)

where s ∗ is a switching parameter that defines small gradient values. so that the saturated

chemotactic flux function affect only large gradient regimes. For small gradient regimes, the
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system Eq. 1.6 reduces to the PKS model Eq. 1.1. The solution for this saturated chemotactic

flux model is spiky but bounded (see, e.g., (23; 75)).

The multi-component chemotaxis model is also widely discussed (see, e.g., (41; 42; 43;

130)). A mathematical model for two noncompetitive species was propose in (130), in two

dimensional case, this two species chemotaxis model is written as following:























(ρ1)t +∇· (χ1ρ1∇c ) =µ1∆ρ1,

(ρ2)t +∇· (χ2ρ2∇c ) =µ2∆ρ2,

αct =D∆c +γρ1
ρ1+γρ2

ρ2−γc c ,

(x , y ) ∈Ω⊂R2, t ≥ 0, (1.7)

Here in Eq. 1.7, ρ1(x , y , t ) and ρ2(x , y , t ) denote the cell densities of the first and second

species, c (x , y , t ) stands for the chemoattractant concentration,χ2 >χ1 are the chemotactic

sensitivities, positive constants µ1 and µ2 are diffusion coefficients, γρ1
and γρ2

are the

production rates for the first and second species, γc is the consumption rate.

Performing a dimensional analysis introduced by ESpejo in (44), the system Eq. 1.7

reduces to






















(ρ1)t +∇· (χ1ρ1∇c ) =µ1∆ρ1,

(ρ2)t +∇· (χ2ρ2∇c ) =∆ρ2,

εct =∆c +γρ1
ρ1+γρ2

ρ2−γc c ,

(x , y ) ∈Ω⊂R2, t ≥ 0, (1.8)

where ε = µ1
D . On the other hand, the molecular diffusion is much faster than the cell

diffusion (µ1�D ), so it’s natural to assume that ε≈ 0 and obtain the following system:























(ρ1)t +∇· (χ1ρ1∇c ) =µ1∆ρ1,

(ρ2)t +∇· (χ2ρ2∇c ) =∆ρ2,

∆c +γρ1
ρ1+γρ2

ρ2−γc c = 0,

(x , y ) ∈Ω⊂R2, t ≥ 0, (1.9)
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Like the classical PKS system, solutions of Eq. 1.9 may either remain smooth (with decaying

maxima of bothρ1 andρ2) or blow up in a finite time. Moreover, only simultaneous blowup

is possible (see, e.g. (41; 43)). However, in the blowup regimeρ1 andρ2 may develop different

types of singularities depending on the values of χ1 and χ2 and on the total mass of each

species:

m1 :=

∫

Ω

ρ1(x , y , 0)d x d y and m2 :=

∫

Ω

ρ2(x , y , 0)d x d y . (1.10)

It was proven in (41; 43) that the global solution exists if

8πµ1m1

χ1
+

8πm2

χ2
− (m1+m2)

2 ≥ 0 and m2 ≤
8π

χ2
, (1.11)

that the solution ρ2 blows up faster than ρ1 if

8πµ1m1

χ1
+

8πm2

χ2
− (m1+m2)

2 ≤ 0 and m1+m2 ≤
8π

χ1
, (1.12)

that the solutions ρ1 and ρ2 blow up at the same rate if

m1+m2 >
8π

χ1
, (1.13)

and for
8πµ1m1

χ1
+

8πm2

χ2
− (m1+m2)

2 ≥ 0 and m2 >
8π

χ2
, (1.14)

the question on the behavior of the solution remains open.

The chemotaxis term in PKS model Eq. 1.1 and Eq. 1.7 is highly nonlinear, and the diffu-

sion term has infinite propagation speed in the context of the solution, therefore capturing

blowing up or spiky solutions numerically is a very challenging task. It’s difficult to guaran-

tee nonlinear stability of the numerical method since the convective part of chemotaxis
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system may loose hyperbolicity. In many other models, appearance of small negative values

is numerically acceptable, but in the chemotaxis models, even the small negative values in

numerical solution ρ will lead to the spikes of negative bacteria density, which makes the

numerical solution totally irrelevant. So preserving positivity in the numerical solutions

is crucial for a good numerical scheme since it is the only way to enforce the nonlinear

stability. At the same time an accurate and efficient numerical method is important for the

modeling and analysis of chemotaxis systems. Let us briefly review some of the numerical

methods that have been proposed in the literature.

A finite-volume, (47), and finite-element, (100; 117), methods have been proposed for

the PKS system with the parabolic-elliptic coupling, that is, the system Eq. 1.1 with α= 0

using an assumption that the chemoattractant concentration c changes over much smaller

time scales than the bacteria density ρ. A fractional step numerical method for fully time-

dependent chemotaxis system from (123; 131) has been proposed in (124). However, the

fractional step (operator splitting) approach may not be applicable for the system Eq. 1.1

since the convective part of the chemotaxis system may loose the hyperbolicity. As it has

been demonstrated in (22), the latter is a generic situation for the PKS model with parabolic-

parabolic (α= 1) coupling. Several methods for the parabolic-parabolic PKS system have

been recently proposed: a family of high-order discontinuous Galerkin methods has been

designed in (39; 40); an implicit flux-corrected finite-element method has been developed

in (119). These methods achieve high-order of accuracy, but their high memory usage and

computational costs are of obvious drawbacks. A simpler and more efficient second-order

finite-volume central-upwind scheme has been derived in (22) for the PKS system with

α= 1 and extended to several more realistic chemotaxis and related models. Finally, in (38)

a modified version of the scheme from (22) is extended to PKS system in irregular geometry

by employing the idea of the difference potentials.
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1.2 Chemotaxis-Fluid model

Bioconvection patterns are a collective phenomenon and usually appear in shallow suspen-

sions of upward swimming micro-organisms that are a little bit denser than water. When

the upper regions of the suspensions becomes sufficiently dense due to the gathering of

the micro-organisms, Rayleigh-Taylor-type instability occurs and the micro-organisms fall

down. Oxytactic bacteria, such as Bacillus subtilis, which can swim up oxygen gradients, is

commonly used in bioconvection experiments.

The chemotaxis-fluid system has been proposed in (60) to describe the bio-convection

in modestly diluted cell suspensions under the assumptions that the contribution of the

bacteria to the density of the suspension is small and the interactions between cells are

neglected. This model couples a convective chemotaxis system with the incompressible

Navier-Stokes equation. In the two-dimensional (2-D) case, the chemotaxis-fluid system

can be written as:



































ρt +u ·∇ρ+χ∇·
�

ρr (c )∇c
�

=Dρ∆ρ,

ct +u ·∇c =Dc∆c −ρκr (c ),

ρ̂(ut +u ·∇u) +∇p =η∆u−ρ∇Φ,

∇·u= 0,

(x , y ) ∈Ω⊂R2, t ≥ 0, (1.15)

where ρ(x , y , t ) stands for the concentration of bacteria, c (x , y , t ) denote the chemoattrac-

tant (oxygen) concentration, χ > 0 is a chemotactic sensitivity constant, κ is the oxygen

consumption rate, and u is the velocity field of the fluid flow, with fluid density ρ̂, pressure p

and viscosity η,Dρ and Dc are the diffusion coefficient for bacteria and oxygen, respectively.

The source term ρ∇Φ :=ρVb g (ρb − ρ̂)z in the fluid equation describes the gravity exerted

by the bacterium onto the fluid, which is along the upward direction z and proportional to
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the volume of the bacterium Vb , g = 9.8m/s 2 is the gravitation acceleration and the density

of bacteria is ρb , which is a littler denser than water.

In Eq. 1.15, the oxygen concentration c and the bacterial concentration ρ diffuse with

their diffusion constant Dρ and Dc arise from the random swimming trajectories respec-

tively, and convected with the fluid. The dimensionless cut-off function r (c )models the

inactivity threshold of the bacteria due to the low oxygen concentration, approaching unity

for large c and vanishing rapidly for c below the inactivity threshold c ∗. Experiments con-

ducted by Tuval (see, e.g., (121)) suggest that we can use a step function r (c ) = θ (c − c ∗)

to model the cut-off function. The oxygen consumed is proportional to this function r (c )

and the concentration of bacteria ρ. In chemotaxis, the bacteria swim to the high oxy-

gen concentration region with a velocity proportional to the gradient of the oxygen, and

depending on the chemotactic sensitivity χ and motility function r (c ). We remark that,

unlike the Keller-Segel model, that the oxygen is consumed by the bacteria in this model

Eq. 1.15, instead of produced by the bacteria. In particular, the system Eq. 1.15 describes

the experiments conducted by Hillesdon et al. (see, e.g., (60)) with a suspension of Bacillus

subtilis in a water chamber. In these experiments, the initial suspension is well stirred, the

oxygen diffuses through the top water-air surface, the oxytactic bacteria, which consume

oxygen, will swim up the oxygen gradient and concentrate below the surface, so a high con-

centration layer can be observed near the top water-air surface. The bacteria consume the

oxygen and ,in some areas, the oxygen concentration will fall below the threshold c ∗ and the

bacteria become inactive in these areas. Since the bacteria are a little bit denser than water,

instabilities occur in the high concentration layer and will form some mushroom-shaped

plumes that sink downward. The linear stability of the system Eq. 1.15 was discussed in

(59) and the the weakly nonlinear stability was analyzed in (103) .

It has been shown in (98) that, in the three-dimensional case, the weak solutions for
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system Eq. 1.15 exist locally, while in the two-dimensional case, the local existence of the

weak solutions is proved under the assumption that the motion of the fluid is slow, which

is for Stokes equation instead of Navier-Stokes equation. Global existence of the weak

solutions for system Eq. 1.15 was proved in (Duan et al.), in the three-dimensional case, the

global existence result was obtained, while in two dimensional case, the global existence is

proved for Chemotaxis-Stokes system with finite bacteria mass Mρ :=
∫

Ω
ρ(x , y ,0)d x d y

and small initial oxygen concentration c . Global existence and the asymptotic behavior

of the Chemotaxis-Stokes system with nonlinear bacteria diffusion term was discussed

in (Di Francesco et al.). Global existence for Chemotaxis-Navier-Stokes system in two-

dimensional case with large date was obtained in (96).

Several numerical methods for chemotaxis-fluid system have been proposed in the

literature. A conservative finite-difference method for a narrow, tall domain with a rigid

bottom, a stress-free top and lateral boundaries in two-dimensional space has been devel-

oped in (49). A particle method coupled with a finite-volume method has been proposed

in (62), which discretely represents the bacteria by individual particles instead of by con-

tinuous bacteria concentration and numerically solves the chemical transport equation

and Navier-Stokes equation by a finite-volume method. A finite-volume-finite-difference

method for the chemotaxis-fluid system Eq. 1.15 in a rectangular two-dimensional domain

has been derived in (21), which discretizes the chemotaxis equations by a finite-volume

upwind scheme, and solves the Navier-Stokes equations in vorticity form by applying a

finite-difference method.

Particularly, in this dissertation, we focus on the the system Eq. 1.15 defined in a two-

dimensional domainΩwith a curved boundary on the top part (see figure Fig. 1.2). This sys-

tem was proposed in Tuval et al.(121) to describe experiments with a quasi-two-dimensional

suspension of the swimming bacteria Bacillus subtulis in a water drop on a piece of glass

10



(see figure Fig. 1.1).

Figure 1.1: Experimental observation of stages to self-concentration in a sessile drop from
Tuval et al.(121). Initially it’s a well-mixed drop on a piece of glass. First, the bacterials swim
up to the fluid-air surface form a high-concentration layer near the surface. Later, due to
the gravitational force and consumption of the oxygen, the instabilities form at the this
layer and plumes begin to sink downward.

At the top fluid-air surface ∂ Ωt o p , there is no flux of bacteria through this fluid-air

interface, the oxygen concentration is assumed to be the same as the oxygen concentration

in air ca i r since the oxygen diffuse much faster in the air than in the fluid (about three orders

of magnitude faster), and the surface is stress free, which leads to the normal direction fluid

velocity, and the tangential fluid stress equal to zero:

χρr (c )cn−Dρρn = 0, c = ca i r , u ·n= 0, (n · (∇u+∇uT ))×n= 0, ∀(x , y ) ∈ ∂ Ωt o p . (1.16)

In Eq. 1.16, n and τ are the unit normal and tangential direction respectively. At the bottom
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fluid-glass interface ∂ Ωb o t , there is no fluxes of both bacterial and oxygen, and the fluid

velocity is assumed to be zero:

ρy = cy = 0, u= 0, ∀(x , y ) ∈ ∂ Ωb o t . (1.17)

∂ Ωt o p

Ω

∂ Ωb o t

Figure 1.2: The exact domain Ω of the chemotaxis-fluid system Eq. 1.15 introduced in
(121) with curve top boundary ∂ Ωt o p

1.3 Finite-volume method for conservation/balance law

Finite-volume methods are widely used to numerically solve hyperbolic conservation/balance

laws. Solutions of such systems may break down and develop nonsmooth structures such

as shock waves, rarefaction waves and singular δ−shocks even when the initial data are

smooth. The finite-volume method is a reconstruction-evolution-projection method, at

some certain time t , reconstructs a global solution from the cell-averages, evolves in time

based on the integral form of the conservation law and then projects back to the original

grid to get the solution at next time level.

12



As a simple example, consider the one-dimensional conservation law:

q (x , t )t + f (q )x = 0, x ∈R, t ≥ 0. (1.18)

Introduce small scales in both space (∆x ) and time (∆t ), and integrate the conservation

law with respect to x and t over the control volume [x − ∆x
2 , x + ∆x

2 ]× [t , t +∆t ]:

∫ t+∆t

t

∫ x+∆x
2

x−∆x
2

q (ξ,τ)τdξdτ+

∫ t+∆t

t

∫ x+∆x
2

x−∆x
2

f
�

q (ξ,τ)
�

ξ
dξdτ. (1.19)

Define the cell averages of q :

q (x , t ) :=
1

∆x

∫ x+∆x
2

x−∆x
2

q (ξ, t )dξ, (1.20)

and the averaged fluxes:

F (x , t ) :=
1

∆t

∫ t+∆t

t

f
�

q (x ,τ)
�

dτ, (1.21)

then Eq. 1.19 gives us the finite-volume scheme:

q (x , t +∆t ) =q (x , t )−
∆t

∆x

�

F (x +
∆x

2
, t )− F (x −

∆x

2
, t )
�

. (1.22)

Introducing a spatial grid {x j } such that

x j+1− x j =∆x , x j− 1
2
= x j −

∆x

2
, x j+ 1

2
= x j +

∆x

2
(1.23)
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and the computational cells

I j := [x j− 1
2
, x j+ 1

2
].

The finite-volume schemes can be mainly split into two cases, central and upwind, depend-

ing on the setting of control volume.

x j−1 x j− 1
2

x j x j+ 1
2

x j+1

t n

t n+1

x j− 3
2

x j−1 x j− 1
2

x j x j+ 1
2

t n

t n+1

Figure 1.3: Space-time control volumes: upwind (left) and central (right) settings

For any time t = t n , define t n+1 = t n +∆t , in the upwind schemes, choosing the control

volume [x j− 1
2
, x j+ 1

2
]× [t n , t n+1], the cell averages q n+1

j at time t n+1 can be obtained by:

q n+1
j =q n

j −
∆t

∆x

�

F n
j+ 1

2
− F n

j− 1
2

�

, (1.24)

where

q n
j ≈

1

∆x

∫

I j

q (x , t n )d x ,

F n
j+ 1

2
≈

1

∆t

∫ t n+1

t n

f (q (x j+ 1
2
, t ))d t .

(1.25)

Since the solution cell averages q n
j are constant in each computational cell I j , and discon-

tinuous at cell interface x = x j+ 1
2
, the numerical fluxes F n

j+ 1
2

can be obtained by solving a

Riemann problem at each cell interface (see, e.g., (51; 50; 71; 118; 13)). Thus, these upwind

schemes are restricted to the systems for which an explicit formula for the solutions of the
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Riemann problem is available.

On the other hand, the central schemes allow one to solve the system without solving

Riemann problem. It is obtained using the same finite-volume evolution equation Eq. 1.22,

but the space-time control volumes are [x j , x j+1]× [t n , t n+1]:

q n+1
j+ 1

2
=

1

2∆x

�

∫ x
j+ 1

2

x j

eq n
j (x )d x +

∫ x j+1

x
j+ 1

2

eq n
j+1(x )d x

�

−
1

∆x

∫ t n+1

t n

�

F
�

q (x j+1, t )
�

− F
�

q (x j , t )
�

�

d t ,

(1.26)

where eq n
j (x ) is a piecewise function constructed from the cell averages. As long as a suitable

CFL condition is chosen and no waves generated at the cell interfaces will reach the verti-

cal segment, the solution remains constant at x = x j , so the flux integrals can be exactly

evaluated, and it is clear that the space integrals can be also exactly computed in a straight-

forward manner. The central scheme is simple and universal to solve hyperbolic systems of

conservation laws due to the feature that no Riemann solver is required, but it may have a

larger numerical dissipation and excessive numerical diffusion since it does not catch the

resolution of nonlinear waves. Central schemes have been broadly developed including

higher-order methods, multidimensional generalizations and staggered and nonstaggered

grids (see, e.g., (48; 84; 105; 3; 66; 97; 10; 86; 95; 72; 76; 81; 82; 77; 107; 93; 116; 108; 109; 28)).

Recently, a new Godunov-type finite-volume method, central-upwind (CU) scheme,

has been developed. The central-upwind scheme combines the high accuracy and low

dissipation of the upwind scheme with the universality and simplicity of the central scheme.

The key idea of the CU schemes is to select space-time control volumes in the evolution

step adaptively depending on the size of Riemann fans generated at each cell interfaces,

more precisely the speeds of propagation of waves at each cell interface. Based on these

propagation speeds, one can choose two sets of control volumes (see figure Fig. 1.4). One

contains the smooth part of the solution (the red part in Fig. 1.4), and the other contains all
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nonlinear waves from each cell interface (the blue part in Fig. 1.4). Same as central schemes,

one can always choose a proper time step which guarantee that no waves generated at cell

interfaces reach the boundaries of the control volumes, thus the evolution in the control

volume remains central and can be obtained in a straightforward manner.

x j− 3
2

x j−1 x j− 1
2

x j x j+ 1
2

t n

t n+1

Figure 1.4: Space-time control volumes for central-upwind method

The central-upwind schemes for systems of hyperbolic conservation laws were initially

posted in (81), and have been developed including multudimensional and higher-order

methods (see, e.g., (77; 16; 78; 15; 79; 32; 80; 73)). These CU schemes can capture the

resolution of nonlinear waves and reduce the numerical dissipation, and can be widely

applied to solve the hyperbolic systems of conservation laws due to the Riemann-solver-free

feature.

1.4 Immersed interface method and augmented technique

Interface problems occur in a lot of applications, for example, when there are two different

kinds of materials or the same material at different states, we are dealing with an interface

problem. Mathematically, the interface problem is usually modeled by a partial-differential-

equation (PDE) system defined on a domain divided into several parts by some interfaces.
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The input data such as the parameters and source terms in the PDE system may be discon-

tinuous or even singular across the interfaces. Due to these irregularities, the solution to an

interface problem is typically non-smooth or even discontinuous.

Immersed interface methods (see, e.g., (87; 85; 89; 90)) are developed to numerically

solve PDE systems defined in an interfaced domain or a domain with irregular bound-

arys. For example, consider a Poisson equation defined in a domain Ω⊂R2 with a curved

boundary ∂ Ω:

∆φ(x , y ) = f (x , y ), (x , y ) ∈Ω⊂R2, (1.27)

subject to a Dirichlet boundary condition:

φ(x , y ) = g (x , y ), (x , y ) ∈ ∂ Ω. (1.28)

In order to apply the immersed interface method, we first embed the domain Ω into a

rectangular computational domainΩ= [a , b ]× [c , d ] which contains Ω as Figure Fig. 1.5

and treat the domain boundary ∂ Ω as an interface inside the rectangular computational

domainΩ. In the regionΩ\Ω, we assume the functionφ(x , y ) satisfies the equation

∆φ(x , y ) = 0. (1.29)

This extension leads to an interfaced domain problem:

∆φ(x , y ) =







f (x , y ), x ∈Ω,

0, x ∈Ω\Ω,
(1.30)

with the interface condition Eq. 1.28. For simplicity, we denote the solutionφ(x , y ) =φ−x ,y

inside domainΩ, andφ(x , y ) =φ+(x , y ) in the complement of the domainΩ\Ω. The solution
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∂ Ω

Ω

Ω

Figure 1.5: The rectangular computational domainΩ which contains the exact elliptic
domain Ω of the equation Eq. 1.27.

of this interfaced domain problem Eq. 1.30 may have a discontinuity across the interface

∂ Ω, thus we difine jump conditions at a point X on the interface ∂ Ω as follows:

[φ]x=X := lim
x→X,x∈Ω\Ω

φ+(x)− lim
x→X,x∈Ω

φ−(x),

[φn]x=X := lim
x→X,x∈Ω\Ω

φ+n (x)− lim
x→X,x∈Ω

φ−n (x),
(1.31)

whereφn(X) =
∂ φ
∂ n (X) =∇φ(X) ·n is the normal derivative ofφ at control point X.

We consider the interfaced domain problem Eq. 1.30 in the computational rectangular

domainΩ ⊂ R2, where we introduce a Cartesian mesh with ∆x = (b − a )/nx and ∆y =

(d − c )/ny , where nx and ny are the numbers of grid points used in the x and y direction,

respectively. A grid point (x j , yk ) is called regular if all the neighborhood grid points (x j±1, yk )

and (x j , yk±1) are located at the same side of the interface, otherwise, the grid point is

irregular.

At a regular grid point (x j , yk ), we approximate the Laplacian by the standard 5-points
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stencil, and write a numerical scheme for problem Eq. 1.30 as:















φ−j+1,k −2φ−j ,k +φ
−
j−1,k

(∆x )2
+
φ−j ,k+1−2φ−j ,k +φ

−
j ,k−1

(∆y )2
= f j ,k , if(x j , yk ) ∈Ω,

φ+j+1,k −2φ+j ,k +φ
+
j−1,k

(∆x )2
+
φ+j ,k+1−2φ+j ,k +φ

+
j ,k−1

(∆y )2
= 0, if(x j , yk ) ∈Ω\Ω,

(1.32)

whereφ±j ,k =φ
±(x j , yk ) and f j ,k = f (x j , yk ).

At an irregular grid point (x j , yk ), we assume the interface ∂ Ω and the mesh intersect at

(α, yk ) and (x j ,β ) as shown in Figure Eq. 1.6.

Ω\Ω

Ω

(x j ,β )
(α, yk )

(x j , yk ) (x j+1, yk )

Figure 1.6: The irregular grid point (x j , yk ), the interface ∂ Ω intersect with the mesh at
(α, yk ) and (x j ,β )

The central difference approximation forφ−x x (x j , yk ) is:

φ−x x (x j , yk ) =
φ−j+1,k −2φ−j ,k +φ

−
j−1,k

(∆x )2
. (1.33)

As shown in Figure Fig. 1.6, the grid point (x j+1, yk ) is located outside the domain Ω, and

the solutionφ− at this pointφ−j+1,k is not defined. So, we expandφ−j+1,k at the intersection
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(α, yk ) by the Taylor expansion, and approximate it usingφ+j+1,k , which is defined, and jump

conditions at point (α, yk ):

φ−j+1,k =φ
−(α, yk ) + (x j+1−α)φ−x (α, yk ) +

(x j+1−α)2

2
φ−x x (α, yk ) +O (∆x 3)

=(φ+(α, yk )− [φ](α, yk )) + (x j+1−α)(φ+x (α, yk )− [φx ](α, yk ))

+
(x j+1−α)2

2
(φ+x x (α, yk )− [φx x ](α, yk ))+O (∆x 3)

=φ+j+1,k −
�

[φ](α, yk ) + (x j+1−α)[φx ](α, yk ) +
(x j+1−α)2

2
[φx x ](α, yk )

�

+O (∆x 3).
(1.34)

Then the central difference approximation forφ−x x (x j , yk ) in Eq. 1.33 can be rewritten as:

φ−x x (x j , yk ) =

�

φ+j+1,k −C (x j+1,α)
�

−2φ−j ,k +φ
−
j−1,k

(∆x )2
, (1.35)

where

C (x j+1,α) = [φ](α, yk ) + (x j+1−α)[φx ](α, yk ) +
(x j+1−α)2

2
[φx x ](α, yk ). (1.36)

Similarly, the approximation forφ−y y (x j , yk ) can be computed as:

φ−y y (x j , yk ) =

�

φ+j ,k+1−C (β , yk+1)
�

−2φ−j ,k +φ
−
j ,k−1

(∆y )2
, (1.37)

where

C (β , yk+1) = [φ](x j ,β ) + (yk+1−β )[φy ](x j ,β ) +
(yk+1−β )2

2
[φy y ](x j ,β ). (1.38)

The numerical scheme for the domain interface problem Eq. 1.30 at an irregular grid point
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(x j , yk ) can be written as:

φ+j+1,k −2φ−j ,k +φ
−
j−1,k

(∆x )2
+
φ+j ,k+1−2φ−j ,k +φ

−
j ,k−1

(∆y )2
= f j ,k +C j ,k , (1.39)

where the correction term is:

C j ,k =
C (x j+1,α)

(∆x )2
+

C (β , yk+1)
(∆y )2

. (1.40)

Combining Eq. 1.32 and Eq. 1.39, and using the proper jump conditions, the IIM method

for the domain interface problem Eq. 1.30 yields:

φ j+1,k −2φ j ,k +φ j−1,k

(∆x )2
+
φ j ,k+1−2φ j ,k +φ j ,k−1

(∆y )2
= f j ,k +C j ,k , (1.41)

where

f j ,k =







f (x j , yk ), (x j , yk ) ∈Ω,

0, (x j , yk ) ∈Ω\Ω,
(1.42)

and C j ,k is the correction term corresponding to the irregular grid point (x j , yk ), while for

regular grid point, C j ,k = 0.

The approximation Eq. 1.41 is defined provided the jump conditions Eq. 1.31 are known.

However, in our case, the proper jump conditions should be determined numerically

according to the boundary condition Eq. 1.28 using the augmented technique (see, e.g.,

(88; 90; 91)). To this end, we assume that the jump conditions are [φ] = 0 and [φn] = q (x , y )

on ∂ Ω, and define the augmented variable at selected control points (usually the orthogonal

projections of all the irregular grid points on the interface ∂ Ω or the intersections of the
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interface ∂ Ω and the mesh), X= [X1, X2, · · · , Xm ]T :

Q= [q1, q2, · · · , qm ], (1.43)

where qi = [φn](Xi ) = q (Xi ) is the discrete value of the jump condition [φn] at control point

Xi . This augmented variable Q becomes a part of the solution for the interface problem

Eq. 1.30, and should be calculated numerically. To do so, we can observe that the correction

terms C j ,k ’s in Eq. 1.41 are linear combinations of the jump conditions, so we can write

Eq. 1.41 in the matrix form:

AΦ+B Q= F, (1.44)

where A and B are sparse matrices, Φ is a vector whose components areφ j ,k , the approxi-

mate solution to the interfaced domain problem Eq. 1.30 and F is a vector consist of f j ,k ,

the discrete values of the source term.

On the other hand, we can interpolate Φ and obtainφ−(X), which provide an approxi-

mation to the boundary condition Eq. 1.28 as limit values ofφ(X) from Ω− side. The inter-

polation scheme depends on Φ and Q linearly, so we can write

φ(X) =CΦ+D Q= g (X), (1.45)

where C and D are two sparse matrices. Combining Eq. 1.44 and Eq. 1.45, we obtain the

following system of equations:





A B

C D









Φ

Q



=





F

g (X)



 . (1.46)

Then the solution Φ of the linear system Eq. 1.46 gives us a discrete approximation of the
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exact solutionφ(x , y )which satisfy the equation Eq. 1.27 in the domain Ω and the Dirichlet

boundary condtition Eq. 1.28 on ∂ Ω.

Next, we eliminate Φ from Eq. 1.46 and solve the resulted linear system for Q:

(D −C A−1B )Q= g (X)−C A−1F. (1.47)

To do so, we define the residual of the boundary condition Eq. 1.28 corresponding to the

augmented variable Q as:

R (Q) :=R (Φ(Q)) =CΦ+D Q− g (X). (1.48)

If we set the augmented variable Q= 0, the equation Eq. 1.44 yields

Φ(0) = A−1F, (1.49)

and the right hand side of the Schur-complement equation Eq. 1.47 can be computed as:

g (X)−C A−1F = g (X)−C A−1F

= g (X)−CΦ(0)

= g (X)− (CΦ(0) +D 0) =−R (0).

(1.50)

For arbitrary augmented variable Q, we can easily compute the left hand side matrix-vector
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multiplication of Eq. 1.46 as follows:

(D −C A−1B )Q=D Q−C A−1B Q

=D Q−C A−1(F −AΦ(Q))

=D Q−CΦ(0) +CΦ(Q)

= (D Q+CΦ(Q)− g (X))− (D 0+CΦ(0)− g (X))

=R (Q)−R (0).

(1.51)

Thus, Eq. 1.51 gives us a way to compute the matrix-vector multiplication of the Schur-

complement equation Eq. 1.47, so we can solve it for the augmented variable Q by GMRES

method which only requires to compute the matrix-vector multiplication to solve a linear

system. We can also easily construct the Schur-complement matrix D−C A−1B by setting the

augmented variable Q as zero and unit vectors e1, e2, · · · , em and calculate the corresponding

residual R (0) and R (ei ) for i = 1, 2, · · · , m , then difference of the residuals R (ei )−R (0) gives us

the i -th column of the Schur-complement matrix. Once we constructed the matrix, we can

apply any linear solver to solve for the suitable augmented variable Q. Once the augmented

variable Q is obtained, we can apply the IIM scheme, and plug it back into Eq. 1.44 to solve

forφ.

1.5 Particle method

In the past several decades, particle methods have been applied to solve a broad class of

problems arising in fluid dynamics, solid state physics, medical physics and astrophysics

(see, e.g., (25; 27; 45; 55; 101; 61)). In these methods, the numerical solution is sought as a

linear combination of Dirac delta-functions whose positions and coefficients represent
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the locations and weight of the particles. The locations and weights of particles are first

chosen to approximate the initial data and then evolved in time according to the system of

ODEs obtained from a weak formulation of the problem. The point values of the computed

solution at time t > 0 are obtained by regularizing the particle solution.

Particle methods are most naturally applied to solve transport equations, but over

the years, these methods have beed extended to a larger class of equations that include

dispersion, diffusion and other nonlinear terms. In particular, we are interested in the

application of the particle methods for convection-diffusion equations. As an example, we

consider the following two-dimensional convection-diffusion equation:

u (x , y , t )t +
�

f (x , y , t )u
�

x
+
�

g (x , y , t )u
�

= ν∆u , ν> 0, (x , y ) ∈Ω⊂R2, t ≥ 0, (1.52)

subject to the initial condition:

u0(x , y ) = u (x , y , 0), (1.53)

where u is an unknown function, the velocities f (x , y , t ), g (x , y , t ) and the diffusion coeffi-

cient ν are given. The particle solution is a linear combination of Dirac delta-functions,

u N (x , y , t ) =
N
∑

i=1

wi (t )δ(x − xi (t ), y − yi (t )), (1.54)

for some set (xi (t ), yi (t ), wi (t )) of points (xi (t ), yi (t )) and coefficients wi (t ), where N is the

total number of particles, wi (t ) is particle weight representing the amount of the quantity

u carried by the i th partitcle and (xi (t ), yi (t )) is location of the i th particle. As mentioned

above, in order to apply the particle methods, the location (xi , yi ) and weight wi need to be
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properly chosen to approximate the initial condition Eq. 1.53 at time t = 0:

u N
0 (x , y ) =

N
∑

i=1

wi (0)δ(x − xi (0), y − yi (0)). (1.55)

There are many ways to determine these coefficients wi (0) and initial locations (xi (0), yi (0)),

and we do this by following the steps introduced in (20). First of all, we divide the computa-

tional domain Ω into N non-overlapping subdomains Ωi :

N
⋃

i=1

Ωi =Ω, Ωi

⋂

Ω j = ;, ∀i 6= j . (1.56)

The location of the i th particle, (xi (0), yi (0)) is set to be at the center of mass of Ωi and the

initial weight is the entire mass of u0(x , y ) in Ωi , which leads to the following formula for

wi (0):

wi (0) =

∫

Ωi

u0(x , y )d x d y . (1.57)

The initial locations and weights of the particles will be evolved in time according to the

system of ODEs obtained by considering a weak formulation of the problem Eq. 1.52. The

ODE system corresponding to the convection-diffusion equation Eq. 1.52, reads (see, e.g.,

(20)) as follow:

d xi (t )
d t

= f (xi (t ), yi (t ), t ),

d yi (t )
d t

= g (xi (t ), yi (t ), t ),

d wi (t )
d t

=βi (t ),

d

d t
|Ωi (t )|=

�

fx (xi (t ), yi (t ), t ) + g y (xi (t ), yi (t ), t )
�

|Ωi (t )|,

(1.58)
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where

βi =
ν

σ2

N
∑

j=1

ησ(xi (t )− x j (t ), yi (t )− yj (t )){w j (t )|Ωi (t )| −wi (t )|Ω j (t )|},

ησ(x , y ) =
1

σ2
η(

x

σ
,

y

σ
).

(1.59)

Here η ∈ L 1(R2) is an even function, and σ is a characteristic length. Once the particle

solution Eq. 1.54 has be obtained, we need to recover the point values of the computed

solution from its particle distribution. There are many different ways to perform such a

regularization. One of the most widely used methods is based on taking a convolution

product with a mollification kernel, ςε(x , y ), satisfying the following properties

ςε(x , y ) =
1

ε2
ς(

x

ε
,

y

ε
) and

∫

R2

ς(x , y )d x d y = 1, (1.60)

where ε is a characteristic length of the kernel ςε(x , y ) (see, e.g., (115)). Then the regularized

solution can be defined as

u (x , y , t ) :=
N
∑

i=1

wi (t )ςε(x − xi (t ), y − yi (t )). (1.61)

There are many different kinds of mollification kernel like Gaussian, generalized Gaussian

and compactly supported mollifiers have been derived in the past decades, and there

is a lot of discussion in the literature on the selection of a mollification kernel (see, e.g.,

(2; 6; 7; 8; 26; 29; 33; 34; 35; 54; 102; 106; 114; 115)). And particularly, in our investigation,

we applied the inverse distance weighting interpolation to recover the point values of the

computed solution from the particle solution (see, e.g., (129; 99)).
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CHAPTER

2

HIGH-ORDER POSITIVITY-PRESERVING

HYBRID

FINITE-VOLUME-FINITE-DIFFERENCE

METHODS FOR CHEMOTAXIS SYSTEMS

In this chapter, we develop and study hybrid finite-volume-finite-difference (FVFD) schemes

for the Patlak-Keller-Segel chemotaxis system Eq. 1.1 and related models. Our FVFD method
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solve the bacteria density equation in Eq. 1.1 using a (high-order) positivity-preserving

finite-volume method, while a much simpler chemoattractant concentration equation is

solved by a simple (high-order) centered-difference scheme. The new schemes are highly

accurate, computationally efficient and robust.

This chapter is organized as follows. First, in §2.1.1 we design a second-order positivity-

preserving hybrid FVFD scheme for the PKS system Eq. 1.1. In §2.1.2, we develop a fourth-

order positivity-preserving hybrid FVFD method. Finally, in §2.2 we illustrate the perfor-

mance of the proposed schemes in several numerical experiments. To conduct the exper-

iments in §2.2 we extend the developed methods to the two-species chemotaxis system

Eq. 1.7 that was originally proposed and analytically studied in (31; 41; 42; 43; 44; 46; 83; 130).

2.1 Hybrid Finite-Volume-Finite-Difference Schemes

To derive high-order positivity-preserving numerical schemes for the chemotaxis system

Eq. 1.1, we first rewrite it in the following equivalent form:







ρt + (χρu −ρx )x + (χρv −ρy )y = 0,

αct =∆c −γc c +γρρ,
u := cx , v := cy , (2.1)

where u and v are the chemotactic velocities.

We consider the system Eq. 2.1 in a square domain Ω ⊂ R2, where we introduce a

Cartesian mesh consisting of the cells I j ,k := [x j− 1
2
, x j+ 1

2
]× [yk− 1

2
, yk+ 1

2
], which, for the sake of

simplicity, are assumed to be of the uniform size∆x∆y , that is, x j+ 1
2
− x j− 1

2
≡∆x for all j

and yk+ 1
2
− yk− 1

2
≡∆y for all k . On this mesh, a general semi-discrete hybrid FVFD scheme
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for the PKS system Eq. 2.1 will have the following form:















dρ j ,k

d t
=−
F j+ 1

2 ,k −F j− 1
2 ,k

∆x
−
G j ,k+ 1

2
−G j ,k− 1

2

∆y
,

α
d c j ,k

d t
=∆ j ,k c −γc c j ,k +γρρ j ,k .

(2.2)

Here, the cell averages of the density,ρ j ,k (t ) ≈
1

∆x∆y

∫∫

I j ,k
ρ(x , y , t )d x d y , and the point

values of the chemoattractant concentration, c j ,k (t )≈ c (x j , yk , t ), are the evolved quantities,

F j+ 1
2 ,k and G j ,k+ 1

2
are the numerical fluxes in the x - and y -directions, respectively,∆ j ,k is a

discrete Laplacian, and ρ j ,k (t )≈ρ(x j , yk , t ) are the approximate point values of the density.

In what follows, we construct the second- (§2.1.1) and fourth-order (§2.1.2) hybrid FVFD

schemes. In order to distinguish between the second- and fourth-order numerical fluxes

and discrete Laplacians, we will denote them byF II
j+ 1

2 ,k
, G II

j ,k+ 1
2
,∆II

j ,k andF IV
j+ 1

2 ,k
, G IV

j ,k+ 1
2
,∆IV

j ,k ,

respectively.

2.1.1 Derivation of the Second-Order Scheme

In this section, we present a detailed derivation of the second-order hybrid FVFD scheme

of the form Eq. 2.2.

We first write the second-order numerical fluxes in Eq. 2.2 as follows:

F II
j+ 1

2 ,k
=χρII

j+ 1
2 ,k

u II
j+ 1

2 ,k
− (ρx )

II
j+ 1

2 ,k
, G II

j ,k+ 1
2
=χρII

j ,k+ 1
2
v II

j ,k+ 1
2
− (ρy )

II
j ,k+ 1

2
. (2.3)

The cell density derivatives, (ρx )II
j+ 1

2 ,k
and (ρy )II

j ,k+ 1
2
, and velocities, u II

j+ 1
2 ,k

and v II
j ,k+ 1

2
, are

30



approximated using the central differences:

(ρx )
II
j+ 1

2 ,k
=
ρ j+1,k −ρ j ,k

∆x
, (ρy )

II
j ,k+ 1

2
=
ρ j ,k+1−ρ j ,k

∆y
,

u II
j+ 1

2 ,k
=

c j+1,k − c j ,k

∆x
, v II

j ,k+ 1
2
=

c j ,k+1− c j ,k

∆y
,

(2.4)

while the point values ρII
j+ 1

2 ,k
and ρII

j ,k+ 1
2

are computed in an upwind manner:

ρII
j+ 1

2 ,k
=







ρE
j ,k , if u II

j+ 1
2 ,k
> 0,

ρW
j+1,k , otherwise,

ρII
j ,k+ 1

2
=







ρN
j ,k , if v II

j ,k+ 1
2
> 0,

ρS
j ,k+1, otherwise.

(2.5)

In Eq. 2.5, the one-sided point values at the interfaces, ρE
j ,k , ρW

j+1,k , ρN
j ,k and ρS

j ,k+1, are

calculated using a second-order piecewise linear reconstruction

eρ(x , y ) =ρ j ,k + (ρx ) j ,k (x − x j ) + (ρy ) j ,k (y − yk ), (x , y ) ∈ I j ,k (2.6)

as follows:

ρE
j ,k = eρ(x j+ 1

2
−0, yk ) =ρ j ,k +

∆x

2
(ρx ) j ,k ,

ρW
j+1,k = eρ(x j+ 1

2
+0, yk ) =ρ j+1,k −

∆x

2
(ρx ) j+1,k ,

ρN
j ,k = eρ(x j , yk+ 1

2
−0) =ρ j ,k +

∆y

2
(ρy ) j ,k ,

ρS
j ,k+1 = eρ(x j , yk+ 1

2
+0) =ρ j ,k+1−

∆y

2
(ρy ) j ,k+1.

(2.7)

In order to ensure that the point values in Eq. 2.7 are both second-order and nonnegative,
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the slopes in Eq. 2.6 are calculated adaptively using

(ρx ) j ,k =















ρ j+1,k −ρ j−1,k

2∆x
, if ρ j ,k ±

∆x

2
·
ρ j+1,k −ρ j−1,k

2∆x
=ρ j ,k ±

ρ j+1,k −ρ j−1,k

4
≥ 0,

minmod
�

2
ρ j+1,k −ρ j ,k

∆x
,
ρ j+1,k −ρ j−1,k

2∆x
, 2
ρ j ,k −ρ j−1,k

∆x

�

, otherwise,

(ρy ) j ,k =















ρ j ,k+1−ρ j ,k−1

2∆y
, if ρ j ,k ±

∆y

2
·
ρ j ,k+1−ρ j ,k−1

2∆y
=ρ j ,k ±

ρ j ,k+1−ρ j ,k−1

4
≥ 0,

minmod
�

2
ρ j ,k+1−ρ j ,k

∆y
,
ρ j ,k+1−ρ j ,k−1

2∆y
, 2
ρ j ,k −ρ j ,k−1

∆y

�

, otherwise.

(2.8)

Here,

minmod(z1, z2, . . .) :=



















min(z1, z2, . . .), if zi > 0 ∀i ,

max(z1, z2, . . .), if zi < 0 ∀i ,

0, otherwise,

and the positivity of reconstructed point values is ensured by the positivity-preserving

generalized minmod limiter, (94; 105; 120; 126), under the assumption that the cell averages

of ρ are nonnegative.

Remark 2.1.1 We note that the minmod limiter used in Eq. 2.8 can be replaced with another

(positivity-preserving) nonlinear limiter; see, e.g., (94; 105; 120; 126).

Next, we use the standard five-point stencil to obtain a second-order approximate

Laplace operator in Eq. 2.2:

∆II
j ,k c =

c j+1,k −2c j ,k + c j−1,k

(∆x )2
+

c j ,k+1−2c j ,k + c j ,k−1

(∆y )2
. (2.9)

This completes the derivation and the resulting second-order semi-discrete hybrid
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FVFD scheme is














dρ j ,k

d t
=−
F II

j+ 1
2 ,k
−F II

j− 1
2 ,k

∆x
−
G II

j ,k+ 1
2
−G II

j ,k− 1
2

∆y
,

α
d c j ,k

d t
=∆II

j ,k c −γc c j ,k +γρρ j ,k .

(2.10)

We now consider the cases α= 1 and α= 0 separately.

Parabolic-Parabolic Case (α= 1). In this case, the obtained scheme Eq. 2.10 is a system of

time-dependent ODEs, which has to be numerically integrated using a stable and accurate

ODE solver. In our numerical experiments, we use strong stability preserving Runge-Kutta

methods (SSP RK); see, e.g., (52; 53). The SSP property is essential for the resulting fully

discrete scheme to preserve positivity of both {ρ j ,k} and {c j ,k} as stated in the following

theorem. We prove this result for the first-order forward Euler discretization, but it is also

valid for the SSP methods, whose time steps are convex combinations of several forward

Euler steps.

Theorem 2.1.1 Assume that the system of ODEs Eq. 2.10 with α= 1, Eq. 2.3–Eq. 2.9 is inte-

grated using the forward Euler method:

ρ j ,k (t +∆t ) =ρ j ,k (t )−λ
�

F II
j+ 1

2 ,k
(t )−F II

j− 1
2 ,k
(t )
�

−µ
�

G II
j ,k+ 1

2
(t )−G II

j ,k− 1
2
(t )
�

, (2.11)

c j ,k (t +∆t ) = (1−∆t γc )c j ,k (t ) +∆t∆II
j ,k c (t ) +∆t γρρ j ,k (t ), (2.12)

where λ := ∆t /∆x and µ := ∆t /∆y . Then, the evolved cell densities, ρ j ,k (t +∆t ), and

chemoattractant concentrations, c j ,k (t +∆t ), will be nonnegative for all j , k providedρ j ,k (t )

and c j ,k (t ) are nonnegative for all j , k and the following CFL-like condition is satisfied:

∆t ≤min
§

∆x

8a
,
∆y

8b
,
∆x∆y

4K
,

1

max{K1,ε}

ª

, (2.13)
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where

a :=χmax
j ,k
|u II

j+ 1
2 ,k
|, b :=χmax

j ,k
|v II

j ,k+ 1
2
|,

K :=
∆x

∆y
+
∆y

∆x
, K1 :=max

j ,k

�

γc +
2K

∆x∆y
−
γρρ j ,k

c j ,k

�

.
(2.14)

Proof: We follow the lines of the positivity proof in (22). We begin with the cell density

equation Eq. 2.11 and note that the positivity-preserving property of the interpolant Eq. 2.6

will guarantee that the reconstructed point valuesρE
j ,k ,ρW

j ,k ,ρN
j ,k andρS

j ,k will be nonnegative

providedρ j ,k (t )≥ 0, ∀ j , k . We then use Eq. 2.3–Eq. 2.5 and the conservation property for

the cell densities,ρ j ,k =
1
8 (ρ

E
j ,k +ρ

W
j ,k +ρ

S
j ,k +ρ

N
j ,k )+

1
2ρ j ,k , to regroup the terms in Eq. 2.11

as follows:

ρ j ,k (t +∆t ) =
�

1

8
−
λχ

2

�

|u II
j− 1

2 ,k
| −u II

j− 1
2 ,k

�

�

ρW
j ,k +

�

1

8
−
λχ

2

�

|u II
j+ 1

2 ,k
|+u II

j+ 1
2 ,k

�

�

ρE
j ,k

+
λχ

2

�

|u II
j+ 1

2 ,k
| −u II

j+ 1
2 ,k

�

ρW
j+1,k +

λχ

2

�

|u II
j− 1

2 ,k
|+u II

j− 1
2 ,k

�

ρE
j−1,k

+
�

1

8
−
µχ

2

�

|v II
j ,k− 1

2
| − v II

j ,k− 1
2

�

�

ρS
j ,k +

�

1

8
−
µχ

2

�

|v II
j ,k+ 1

2
|+ v II

j ,k+ 1
2

�

�

ρN
j ,k

+
µχ

2

�

|v II
j ,k+ 1

2
| − v II

j ,k+ 1
2

�

ρS
j ,k+1+

µχ

2

�

|v II
j ,k− 1

2
|+ v II

j ,k− 1
2

�

ρN
j ,k−1

+ρ j ,k (t )
�

1

2
−

2K∆t

∆x∆y

�

+∆t
�ρ j+1,k (t ) +ρ j−1,k (t )

(∆x )2
+
ρ j ,k+1(t ) +ρ j ,k−1(t )

(∆y )2

�

.

As one can see,ρ j ,k (t +∆t ) is a linear combination of the cell averagesρ j ,k (t ),ρ j±1,k (t ),

ρ j ,k±1(t ) and the reconstructed point valuesρW
j ,k ,ρE

j ,k ,ρW
j+1,k ,ρE

j−1,k ,ρS
j ,k ,ρN

j ,k ,ρS
j ,k+1,ρN

j ,k−1,

which are nonnegative. The coefficients of this linear combination are also nonnegative

under the CFL-like condition Eq. 2.13, which guarantees thatρ j ,k (t +∆t )≥ 0 for all j , k .

Finally, the CFL-like condition Eq. 2.13 ensures that all of the terms on the right-hand

side (RHS) of Eq. 2.12 are nonnegative and thus c j ,k (t +∆t )≥ 0 for all j , k , which completes

the proof of the theorem. �
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Parabolic-Elliptic Case (α= 0). In this case, the scheme Eq. 2.10 is a system of differential-

algebraic equations (DAEs). The second equation in Eq. 2.10 now reduces to a system of

linear algebraic equations for c j ,k , which is to be solved by an accurate and efficient linear

algebric solver. It should be observed that the matrix of this linear system is diagonally

dominant, which would guarantee the positivity of c , while the positivity of ρ is enforced

the same way as in the parabolic-parabolic case, but with a different CFL-like condition as

summarized in the following theorem.

Theorem 2.1.2 Assume that the first equation of the system of DAEs Eq. 2.10 with α = 0,

Eq. 2.3–Eq. 2.9 is integrated using the forward Euler method resulting in equation Eq. 2.11,

while the system of linear algebraic equations for c j ,k is solved exactly. Then, the evolved cell

densities,ρ j ,k (t +∆t ), and chemoattractant concentrations, c j ,k (t +∆t ), will be nonnegative

for all j , k providedρ j ,k (t ) and c j ,k (t ) are nonnegative for all j , k and the following CFL-like

condition is satisfied:

∆t ≤min
¦∆x

8a
,
∆y

8b
,
∆x∆y

4K

©

,

where a , b and K are given by Eq. 2.14.

2.1.2 Derivation of the Fourth-Order Scheme

In this section, we present a detailed derivation of the fourth-order hybrid FVFD scheme of

the form Eq. 2.2.

We first write the fourth-order numerical fluxes as follows:

F IV
j+ 1

2 ,k
=χ(ρu )IV

j+ 1
2 ,k
− (ρx )

IV
j+ 1

2 ,k
, G IV

j ,k+ 1
2
=χ(ρv )IV

j ,k+ 1
2
− (ρy )

IV
j ,k+ 1

2
. (2.15)

As in the case of the second-order scheme, the cell density derivatives are approximated

35



using the central differences:

(ρx )
IV
j+ 1

2 ,k
=
ρ j−1,k −15ρ j ,k +15ρ j+1,k −ρ j+2,k

12∆x
,

(ρy )
IV
j ,k+ 1

2
=
ρ j ,k−1−15ρ j ,k +15ρ j ,k+1−ρ j ,k+2

12∆y

(2.16)

while the chemotactic flux terms are computed in an upwind manner:

(ρu )IV
j+ 1

2 ,k
=







ρNE
j ,k u j+ 1

2 ,k+ 1
2
+4ρE

j ,k u j+ 1
2 ,k +ρSE

j ,k u j+ 1
2 ,k− 1

2
, if u j+ 1

2 ,k > 0,

ρNW
j+1,k u j+ 1

2 ,k+ 1
2
+4ρW

j+1,k u j+ 1
2 ,k +ρSW

j+1,k u j+ 1
2 ,k− 1

2
, otherwise,

(ρv )IV
j ,k+ 1

2
=







ρNW
j ,k v j− 1

2 ,k+ 1
2
+4ρN

j ,k v j ,k+ 1
2
+ρNE

j ,k v j+ 1
2 ,k+ 1

2
, if v j ,k+ 1

2
> 0,

ρSW
j ,k+1v j− 1

2 ,k+ 1
2
+4ρS

j ,k+1v j ,k+ 1
2
+ρSE

j ,k+1v j+ 1
2 ,k+ 1

2
, otherwise.

(2.17)

The velocities u and v in Eq. 2.17 are obtained using the fourth-order central differences:

u j+ 1
2 ,k =

c j−1,k −27c j ,k +27c j+1,k − c j+2,k

24∆x
,

v j ,k+ 1
2
=

c j ,k−1−27c j ,k +27c j ,k+1− c j ,k+2

24∆y
,

(2.18)

and

u j+ 1
2 ,k+ 1

2
=

1

48∆x

�

30(c j+1,k+1− c j ,k+1+ c j+1,k − c j ,k )

−3(c j+1,k+2− c j ,k+2+ c j+1,k−1− c j ,k−1)− (c j+2,k+1− c j−1,k+1+ c j+2,k − c j−1,k )
�

,

v j+ 1
2 ,k+ 1

2
=

1

48∆y

�

30(c j+1,k+1− c j+1,k + c j ,k+1− c j ,k )

−3(c j+2,k+1− c j+2,k + c j−1,k+1− c j−1,k )− (c j+1,k+2− c j+1,k−1+ c j ,k+2− c j ,k−1)
�

.

(2.19)

The discrete point values of the cell density along the interfaces, ρE
j ,k , ρW

j ,k , ρN
j ,k , ρS

j ,k , ρNE
j ,k ,
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ρNW
j ,k ,ρSE

j ,k andρSW
j ,k , are calculated using a fourth-order piecewise polynomial reconstruction

eρ(x , y ) =
∑

j ,k

P j ,k (x , y )1 j ,k (x , y ) (2.20)

as follows:

ρE
j ,k = eρ(x j+ 1

2
−0, yk ), ρ

W
j ,k = eρ(x j− 1

2
+0, yk ), ρ

N
j ,k = eρ(x j , yk+ 1

2
−0),

ρS
j ,k = eρ(x j , yk− 1

2
+0), ρNE

j ,k = eρ(x j+ 1
2
−0, yk+ 1

2
−0), ρNW

j ,k = eρ(x j− 1
2
+0, yk+ 1

2
−0),

ρSE
j ,k = eρ(x j+ 1

2
−0, yk− 1

2
+0), ρSW

j ,k = eρ(x j− 1
2
+0, yk− 1

2
+0).

(2.21)

In Eq. 2.20, 1 j ,k (x , y ) is the characteristic function of cell I j ,k , and the polynomialsP j ,k (x , y )

are

P j ,k (x , y ) =ρ j ,k + (ρx ) j ,k (x − x j ) + (ρy ) j ,k (y − yk )

+
1

2
(ρx x ) j ,k (x − x j )

2+ (ρx y ) j ,k (x − x j )(y − yk ) +
1

2
(ρy y ) j ,k (y − yk )

2

+
1

6
(ρx x x ) j ,k (x − x j )

3+
1

2
(ρx x y ) j ,k (x − x j )

2(y − yk )

+
1

2
(ρx y y ) j ,k (x − x j )(y − yk )

2+
1

6
(ρy y y ) j ,k (y − yk )

3

+
1

24
(ρx x x x ) j ,k (x − x j )

4+
1

4
(ρx x y y ) j ,k (x − x j )

2(y − yk )
2+

1

24
(ρy y y y ) j ,k (y − yk )

4

(2.22)

with the coefficients calculated from the following 13 conservation requirements (see (74)

for details including the precise expressions for the reconstructed point values ofρ in terms

of its cell averages):

1

∆x∆y

∫∫

I j+m ,k+`

P j ,k (x , y )d x d y =ρ j+m ,k+`, {m ,` ∈Z : |m |+ |`| ≤ 2}. (2.23)

Next, we use the nine-point stencil to obtain a fourth-order approximate Laplace oper-
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ator,

∆IV
j ,k c =

−c j−2,k +16c j−1,k −30c j ,k +16c j+1,k − c j+2,k

12(∆x )2

+
−c j ,k−2+16c j ,k−1−30c j ,k +16c j ,k+1− c j ,k+2

12(∆y )2
,

which can be rewritten in terms of diffusion fluxes as

∆IV
j ,k c =−

H IV
j+ 1

2 ,k
−H IV

j− 1
2 ,k

∆x
−
L IV

j ,k+ 1
2
−L IV

j ,k− 1
2

∆y
(2.24)

with

H IV
j+ 1

2 ,k
=
−c j−1,k +15c j ,k −15c j+1,k + c j+2,k

12∆x
,

L IV
j ,k+ 1

2
=
−c j ,k−1+15c j ,k −15c j ,k+1+ c j ,k+2

12∆y
.

(2.25)

The obtained fourth-order semi-discrete hybrid FVFD scheme is



















dρ j ,k

d t
=−
F IV

j+ 1
2 ,k
−F IV

j− 1
2 ,k

∆x
−
G IV

j ,k+ 1
2
−G IV

j ,k− 1
2

∆y
,

α
d c j ,k

d t
=−
H IV

j+ 1
2 ,k
−H IV

j− 1
2 ,k

∆x
−
L IV

j ,k+ 1
2
−L IV

j ,k− 1
2

∆y
−γc c j ,k +γρρ j ,k ,

(2.26)

where ρ j ,k is a point value of ρ at the center of cell I j ,k given by

ρ j ,k =
1

5760

�

27
�

ρ j−2,k +ρ j ,k−2+ρ j ,k+2+ρ j+2,k

�

+10
�

ρ j−1,k−1+ρ j−1,k+1+ρ j+1,k−1+ρ j+1,k+1

�

−368
�

ρ j−1,k +ρ j ,k−1+ρ j ,k+1+ρ j+1,k

�

+7084ρ j ,k

�

. (2.27)

As in the case of the second-order scheme, we consider the cases α= 1 and α= 0 separately.

Parabolic-Parabolic Case (α= 1). In this case, the obtained scheme Eq. 2.26 is a system

of time-dependent ODEs, which, as before, has to be numerically integrated. Unfortunately,

even if one uses an SSP ODE solver, positivity ofρ and c cannot be guaranteed. We therefore
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modify the numerical fluxes following the approach proposed in (11) in the context of

shallow water models.

For simplicity of presentation, we consider the forward Euler time discretization of

Eq. 2.26:

ρ j ,k (t +∆t ) =ρ j ,k (t )−λ
�

F IV
j+ 1

2 ,k
(t )−F IV

j− 1
2 ,k
(t )
�

−µ
�

G IV
j ,k+ 1

2
(t )−G IV

j ,k− 1
2
(t )
�

,

c j ,k (t +∆t ) = (1−∆t γc )c j ,k (t ) +∆t γρρ j ,k (t )

−λ
�

H IV
j+ 1

2 ,k
(t )−H IV

j− 1
2 ,k
(t )
�

−µ
�

L IV
j ,k+ 1

2
(t )−L IV

j ,k− 1
2
(t )
�

,

(2.28)

where ∆t is selected according to the CFL-like condition similar to Eq. 2.13. In order to

design a positivity-preserving algorithm, we first introduce “draining” time steps:

∆t ρj ,k :=
∆x∆yρ j ,k (t )

f ρj ,k∆y + g ρj ,k∆x
and ∆t c

j ,k :=
∆x∆y [(1−∆t γc )c j ,k (t ) +∆t γρρ j ,k (t )]

f c
j ,k∆y + g c

j ,k∆x
, (2.29)

where

f ρj ,k :=max(F IV
j+ 1

2 ,k
, 0) +max(−F IV

j− 1
2 ,k

, 0), g ρj ,k :=max(G IV
j ,k+ 1

2
, 0) +max(−G IV

j ,k− 1
2
, 0),

f c
j ,k :=max(H IV

j+ 1
2 ,k

, 0) +max(−H IV
j− 1

2 ,k
, 0), g c

j ,k :=max(L IV
j ,k+ 1

2
, 0) +max(−L IV

j ,k− 1
2
, 0).

(2.30)

We note that one can easily show that under the following time step restriction:

∆t ≤min
j ,k

¦

min
�

∆t ρj ,k ,∆t c
j ,k

�©

, (2.31)

the fully discrete scheme Eq. 2.28 is positivity preserving. However, the time step bound

Eq. 2.31 is too severe and impractical since it may lead to appearance of very small and

decreasing time steps, which will not only make the scheme inefficient, but may simply

not allow the code to run through the final computational time.
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We therefore follow the idea in (11) and define the following quantities:

∆t ρ
j+ 1

2 ,k
:=min(∆t ,∆t ρm ,k ), m = j +

1

2
−

sgn(F IV
j+ 1

2 ,k
)

2
,

∆t ρ
j ,k+ 1

2
:=min(∆t ,∆t ρj ,`), `= k +

1

2
−

sgn(G IV
j ,k+ 1

2
)

2
,

∆t c
j+ 1

2 ,k
:=min(∆t ,∆t c

p ,k ), p = j +
1

2
−

sgn(H IV
j+ 1

2 ,k
)

2
,

∆t c
j ,k+ 1

2
:=min(∆t ,∆t c

j ,q ), q = k +
1

2
−

sgn(L IV
j ,k+ 1

2
)

2
,

(2.32)

and use them to replace the numerical fluxes in Eq. 2.28 with

cF IV
j+ 1

2 ,k
=
∆t ρ

j+ 1
2 ,k

∆t
F IV

j+ 1
2 ,k

, ÒG IV
j ,k+ 1

2
=
∆t ρ

j ,k+ 1
2

∆t
G IV

j ,k+ 1
2

cH IV
j+ 1

2 ,k
=
∆t c

j+ 1
2 ,k

∆t
H IV

j+ 1
2 ,k

, cL IV
j ,k+ 1

2
=
∆t c

j ,k+ 1
2

∆t
L IV

j ,k+ 1
2
.

(2.33)

The modified version of the fully discrete scheme Eq. 2.28 then reads as

ρ j ,k (t +∆t ) =ρ j ,k (t )−λ
�

cF IV
j+ 1

2 ,k
(t )− cF IV

j− 1
2 ,k
(t )
�

−µ
�

ÒG IV
j ,k+ 1

2
(t )− ÒG IV

j ,k− 1
2
(t )
�

, (2.34)

c j ,k (t +∆t ) = (1−∆t γc )c j ,k (t ) +∆t γρρ j ,k (t )

−λ
�

cH IV
j+ 1

2 ,k
(t )− cH IV

j− 1
2 ,k
(t )
�

−µ
�

cL IV
j ,k+ 1

2
(t )− cL IV

j ,k− 1
2
(t )
�

. (2.35)

We now prove its positivity-preserving property.

Theorem 2.1.3 The cell densitiesρ j ,k (t +∆t ) and chemoattractant concentrations c j ,k (t +

∆t ), computed by the fully discrete scheme Eq. 2.34, Eq. 2.35, Eq. 2.29, Eq. 2.30, Eq. 2.32,

Eq. 2.33, Eq. 2.15–Eq. 2.25 will be nonnegative providedρ j ,k (t ) and c j ,k (t ) are nonnegative

for all j , k .
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Proof: In order to prove positivity of ρ, one needs to consider different cases depending on

the sign of the fluxesF IV
j+ 1

2 ,k
and G IV

j ,k+ 1
2

given by Eq. 2.15. We will only consider one of these

cases, namely, assuming that

F IV
j+ 1

2 ,k
> 0, F IV

j− 1
2 ,k
> 0 and G IV

j ,k+ 1
2
< 0, G IV

j ,k− 1
2
< 0. (2.36)

in the cell I j ,k . All of the other cases can be analyzed in a similar way.

First, we use the definitions in Eq. 2.30 to obtain

f ρj ,k =F
IV
j+ 1

2 ,k
, g ρj ,k =−G

IV
j ,k− 1

2
, (2.37)

and then substituting Eq. 2.37 into Eq. 2.29 results in

∆t ρj ,k =
∆x∆yρ j ,k (t )

F IV
j+ 1

2 ,k
∆y −G IV

j ,k− 1
2
∆x

> 0. (2.38)

It also follows from Eq. 2.36 and Eq. 2.32 that

∆t ρ
j+ 1

2 ,k
=min(∆t ,∆t ρj ,k ), ∆t ρ

j− 1
2 ,k
=min(∆t ,∆t ρj−1,k ),

∆t ρ
j ,k+ 1

2
=min(∆t ,∆t ρj ,k+1), ∆t ρ

j ,k− 1
2
=min(∆t ,∆t ρj ,k ).

(2.39)

We now rewrite the cell density equation Eq. 2.34 as

ρ j ,k (t +∆t ) =ρ j ,k (t ) +
∆t ρ

j− 1
2 ,k

∆x
F IV

j− 1
2 ,k
−
∆t ρ

j ,k+ 1
2

∆y
G IV

j ,k+ 1
2
+
∆t ρ

j ,k− 1
2

∆y
G IV

j ,k− 1
2
−
∆t ρ

j+ 1
2 ,k

∆x
F IV

j+ 1
2 ,k

,

(2.40)
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and show that the RHS of Eq. 2.40 is positive. To this end, we first note that Eq. 2.36 implies

∆t ρ
j− 1

2 ,k

∆x
F IV

j− 1
2 ,k
−
∆t ρ

j ,k+ 1
2

∆y
G IV

j ,k+ 1
2
> 0. (2.41)

We then note that ∆t ρ
j+ 1

2 ,k
= ∆t ρ

j ,k− 1
2
≤ ∆t ρj ,k , and therefore using Eq. 2.38, Eq. 2.40 and

Eq. 2.41, we conclude with

ρ j ,k (t +∆t )>ρ j ,k (t ) +
∆t ρ

j ,k− 1
2

∆y
G IV

j ,k− 1
2
−
∆t ρ

j+ 1
2 ,k

∆x
F IV

j+ 1
2 ,k

≥ρ j ,k (t ) +
∆xρ j ,k (t )

F IV
j+ 1

2 ,k
∆y −G IV

j ,k− 1
2
∆x
G IV

j ,k− 1
2
−

∆yρ j ,k (t )

F IV
j+ 1

2 ,k
∆y −G IV

j ,k− 1
2
∆x
F IV

j+ 1
2 ,k
= 0,

which shows thatρ j ,k (t +∆t )≥ 0 for all j , k , provided thatρ j ,k (∆t )≥ 0 for all j , k .

The positivity proof for the c component of the solution can be obtained similarly, and

the proof of the theorem will be completed. �

Remark 2.1.2 We would like to emphasize that unlike Theorem 2.1.1, Theorem 2.1.3 guar-

antees positivity of ρ and c independently of the CFL condition. However, taking large∆t

will affect the stability of the fourth-order scheme. In practice, we have used the same CFL

condition Eq. 2.13 when implemented the fourth-order method.

Remark 2.1.3 Note that the positivity-preserving property of the second-order scheme

can be also enforced using the “draining” time step technique instead of the adaptive

reconstruction approach implemented in §2.1.1.

Parabolic-Elliptic Case (α= 0). In this case, the scheme Eq. 2.26 is a system of DAEs. The

second equation in Eq. 2.26 is a system of linear algebraic equations for c j ,k , which, as

before, is to be solved by an accurate and efficient linear algebra solver. However, the matrix
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of this linear system is no longer diagonally dominant, and thus the positivity of c is not

guaranteed (the positivity ofρ is enforced the same way as in the parabolic-parabolic case).

At the same time, in our numerical experiments, we have never observed any negative

values of c . We would also like to stress that even if some small negative values of c appear,

this would not lead to any negative blowup similar to the ones observed in (22), where

appearance of small negative values of ρ led the computed cell density to a meaningless

negative blowup.

2.2 Numerical Experiments

In this section, we test the developed second- and fourth-order hybrid FVFD schemes on

two numerical examples. In all of the examples, we have employed the zero Neumann

boundary conditions implemented using the standard ghost cell/ghost point technique.

The second-order scheme is implemented using the three-state third-order SSP RK method,

while the fourth-order scheme is realized using the five-stage fourth-order SSP RK method.

In both cases, time steps were chosen to ensure the positivity of the computed densities

and changed adaptively according to the CFL conditions identified in Theorems 2.1.1 and

2.1.2 for the second-order scheme and in Theorem 2.1.3 for the fourth-order scheme.

Example 1—Fast Blowup in the PKS Chemotaxis Model

In the first example taken from (22), we consider the initial-boundary value problem (IBVP)

for the PKS system Eq. 1.1 with χ = γc = γρ = α = 1 in a square domain [− 1
2 , 1

2 ]× [−
1
2 , 1

2 ]

subject to the radially symmetric bell-shaped initial data:

ρ(x , y , 0) = 1000 e −100(x 2+y 2), c (x , y , 0) = 500 e −50(x 2+y 2). (2.42)
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As it was demonstrated in (22), the solution of this IBVP is expected to develop a δ-type

singularity at the center of the computational domain in a very short time.

We first implement the proposed second- and fourth-order hybrid FVFD schemes on

a uniform mesh with∆x =∆y = 1/201. The cell densities computed at two pre-blowup

times t = 10−6 and 5×10−6, at which the solution still preserves its initial shape, are shown

in Figure 2.1. We also compute the solution at near-blowup t = 7.5×10−5 and past-blowup

t = 1.5×10−4 times, and plot the obtained cell densities in Figure 2.2. As one can see, the

obtained solutions are oscillation-free and the spiky structure is quite accurately resolved by

both schemes, but the blowup phenomenon is better resolved by the fourth-order method.

Figure 2.1: Example 1: ρ computed by the proposed second- (left column) and fourth-
order (right column) schemes on a uniform mesh with∆x =∆y = 1/201 at pre-blowup
times t = 10−6 (top row) and 5×10−6 (bottom row).

Next, we conduct a comparison study of the second- and fourth-order schemes. We
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Figure 2.2: Example 1: The same as in Figure Fig. 2.1, but at near-blowup 7.5×10−5 (top)
and past-blowup 1.5×10−4 (bottom) times.

first perform the accuracy test at a small pre-blowup time t = 10−6, at which the solution

of the IBVP Eq. 1.1, Eq. 2.42 is smooth. In order to measure the convergence rate, we

compute the solutions on a five different grids and compare the obtained results with the

reference solution, computed by the proposed fourth-order method on a fine mesh with

∆x =∆y = 1/801. The results are presented in Table 2.1, where one can clearly observe an

expected or even higher order of convergence for both ρ and c .

Finally, we numerically investigate the blowup in the PKS system by plotting the time

evolution of ||ρ||∞ computed by both the second- and fourth-order schemes on three con-

secutive meshes; see Figure 2.3. The vertical lines in these figures indicate the numerical

blowup times that are the times by which the value of ||ρ||∞ increases by a factor of four as

the grid is refined since the magnitude of finite-volume approximations of a δ-type singu-

larity is always proportional to 1/(∆x∆y ). As one can observe, the numerical blowup times
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Table 2.1: Example 1: L∞-errors for ρ and c and experimental rates of convergence for
the second- (left) and fourth-order (right) schemes.

grid ρ-error rate c -error rate
101 × 101 2.88E-1 2.44E-4
201 × 201 6.90E-2 2.09 6.18E-5 2.00
301 × 301 3.04E-2 2.03 2.76E-5 2.00
401 × 401 1.71E-2 2.01 1.55E-5 2.00
501 × 501 1.09E-2 2.01 9.95E-6 2.00

grid ρ-error rate c -error rate
101 × 101 7.56E-4 1.59E-6
201 × 201 1.26E-5 5.94 1.01E-7 4.00
301 × 301 1.15E-6 5.95 1.99E-8 4.04
401 × 401 2.07E-7 5.96 6.03E-9 4.16
501 × 501 5.34E-8 6.09 2.24E-9 4.46

for the second- and fourth-order schemes are quite different: the solution computed by the

second-order scheme blows up at about t ≈ 1.2×10−4, while its fourth-order counterpart

blows up at an earlier time t ≈ 1.1×10−4. This together with the fact that the magnitude

of the fourth-order solution is about twice larger than the magnitude of the second-order

one at the time of blowup, indicate that the use of a higher-order scheme is advantageous

when the blowup time should be estimated numerically.

Figure 2.3: Example 1: Time evolution of ||ρ||∞ for the second- (left) and fourth-order
(right) schemes on three consecutive meshes. The numerical blowup times are indicated
by the corresponding vertical lines.
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Example 2—Slow Blowup in the PKS Chemotaxis Model

In this example also taken from (22), we consider the same IBVP as in Example 1, but with

the uniform initial condition for the chemoattractant concentration:

c (x , y , 0) = 0.

According to (22), the solution of this IBVP develops the same δ-type singularity as in

Example 1, but at a much later time.

We implement the proposed second- and forth-order hybrid FVFD schemes on a uni-

form mesh with ∆x = ∆y = 1/201. The cell densities computed at a pre-blowup time

t = 0.3 and a past-blowup time t = 0.4 are presented in Figure 2.4. One can observe that the

obtained solutions are oscillation-free, and both of the second- and fourth-order scheme

can capture the spiky structure of the solutions. The blowup phenomenon is however better

resolved by the fourth-order scheme. This can be seen if the maximum cell density values

are compared: while for the second-order results, maxx ρ(x , 0.3)≈ 1626.7, the fourth-order

maximum is substantially larger, maxx ρ(x , 0.3)≈ 1713.9.

We also numerically study the blowup phenomenon by plotting the time evolution

of ||ρ||∞ computed by both the second- and fourth-order schemes on three consecutive

meshes with ∆x =∆y = 1/101, 1/201 and 1/801; see Figure 2.5. The numerical blowup

time for both schemes are measured based on the way the magnitude of ρ increases (as it

has been explained in Example 1): the second-order solution blows up at t ≈ 0.375, while

the fourth-order solution blows up at an earlier time t ≈ 0.35. One can also see that the

magnitude of the fourth-order solution is about twice as large as the magnitude of the

second-order one at the past-blowup time. These two facts confirm the advantage of the

higher-order scheme when the blowup time should be estimated numerically.
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Figure 2.4: Example 2: ρ computed by the proposed second- (left column) and fourth-
order (right column) schemes on a uniform mesh with∆x =∆y = 1/201 at pre-blowup
t = 0.3 (top row) and past-blowup t = 0.4 (bottom row) times.

Figure 2.5: Example 2: Time evolution of ||ρ||∞ for the second- (left) and fourth-order
(right) schemes on three consecutive meshes. The numerical blowup times are indicated
by the corresponding vertical lines.

It would also be instructive to look at the actual time-step size∆t used in the numerical

simulations. To this end, we provide Figure 2.6, where we plot ∆t as a function of time

48



t computed by both the second- and fourth-order schemes with∆x =∆y = 1/201. The

time-step size is chosen according to the CFL condition specified in Eq. 2.13 to guarantee

the positivity of the computed solution for both the second- and fourth-order schemes (see

Remark 2.1.2). As one can see, the upper bound on the time step in Eq. 2.13 is a minimum

of four terms: The first two,∆x/(8a ) and∆y /(8b ), are related to the chemotaxis flux in the

first equation in Eq. 1.1, while the third and fourth ones are due to the parabolic terms in

the system Eq. 1.1. In the (near) blowup regime, a and b in Eq. 2.13 become large and thus

the first two terms determine the size of time steps, in which case an explicit method is

efficient enough. However, when a and b are small, the third and fourth terms in Eq. 2.13

dominate, which reduces the efficiency of the explicit method. One of the ways to overcome

this difficulty is to use positivity preserving implicit-explicit (IMEX) methods (4; 5; 65) as

long as a and b remain relatively small; see, e.g., (22). The implementation of an IMEX

algorithm is outside the scope of the current study.

Figure 2.6: Example 2: Time step size∆t as a function of time t computed by both the
second- and fourth-order schemes with∆x =∆y = 1/201.
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Example 3—Blowup in the Two-Species Chemotaxis Model

In this example, we consider the IBVP for two-species chemotaxis model























(ρ1)t +∇·
�

χ1ρ1∇c
�

=∆ρ1,

(ρ2)t +∇·
�

χ2ρ2∇c
�

=∆ρ2,

∆c +ρ1+ρ2− c = 0,

(x , y ) ∈Ω⊂R2, t > 0, (2.43)

which was proposed in (130) and then further studied both analytically, (31; 41; 42; 43; 44;

46; 83), and numerically, (75). In Eq. 2.43,ρ1(x , y , t ) andρ2(x , y , t ) denote the cell densities

of the first and second non-competing species, c (x , y , t ) stands for the chemoattractant

concentration, χ2 >χ1 > 0 are the chemotactic sensitivity constants for the first and second

species, respectively.

As it was proven in (41; 43), solutions of Eq. 2.43 may either remain smooth (with

decaying maxima of bothρ1 andρ2) or blow up in a finite time. Moreover, only simultaneous

blowup is possible. However, in the blowup regimeρ1 andρ2 may develop different types of

singularities depending on the values of χ1 and χ2 and on the initial mass of each species:

m1 :=

∫

Ω

ρ1(x , y , 0)d x d y and m2 :=

∫

Ω

ρ2(x , y , 0)d x d y .

In particular, if
8πm1

χ1
+

8πm2

χ2
− (m1+m2)

2 ≥ 0 and m2 ≥
8π

χ2
, (2.44)

then ρ2 is expected to develop much stronger singularity than ρ1.

We now numerically study a specific example taken from (75), where the system Eq. 2.43

with χ1 = 1 and χ2 = 20 was considered on the domain Ω= [−3,3]× [−3,3] and subject to
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the bell-shaped initial data:

ρ1(x , y , 0) =ρ2(x , y , 0) = 50e −100(x 2+y 2). (2.45)

In this case, the total masses are m1 =m2 ≈π/2 and the condition Eq. 2.44 is satisfied.

Although the schemes presented in §2.1 have been derived for the one-species PKS

model, they can be straightforwardly extended to the two-species system Eq. 2.43 since the

equations for ρ1 and ρ2 are only coupled through the c -equation. We note that a detailed

description of the second-order hybrid FVFD scheme for the two-species model can be

found in (75).

We first conduct numerical simulations using both the second- and fourth-order schemes

on a uniform mesh with∆x =∆y = 6/201. The cell densities ρ1 and ρ2 computed at time

t = 3.3×10−3 are presented in Figure 2.7. As in Example 1, one can observe that while both

schemes accurately capture the spiky structure of the solution, the fourth-order scheme

achieves a higher resolution of the blowup phenomenon.

Next, we numerically investigate the blowup behavior of the system Eq. 2.43 by plotting

the time evolution of ||ρ1||∞ and ||ρ2||∞ computed by both second- and fourth-order

schemes on the four consecutive uniform meshes with∆x =∆y = 6/201, 6/401, 6/801 and

6/1601; see Figures 2.8 and 2.9. We measure the numerical blowup time for both schemes

based on the way the magnitude ofρ2 increases (as it has been explained in Example 1) and

observe that the second-order solution blows up at about t = 3.8×10−3, while the fourth-

order solution blows up a little earlier at about t = 3.3× 10−3. However, ||ρ1||∞ behaves

completely different from ||ρ2||∞: it first decreases, then increases and at the blowup time

the maximum of ρ1 is significantly smaller than the maximum of ρ2. Looking at the results

in Figure 2.8, one may conclude that only ρ2 blows up, but the analytical results proved in
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Figure 2.7: Example 3: ρ1 (top row) and ρ2 (bottom row) computed by the second- (left
column) and fourth-order (right column) schemes on a uniform mesh with ∆x =∆y =
6/201 at time t = 3.3×10−3.

(41; 43) state that only simultaneous blowup is possible, which suggests that the maximum

of ρ1 should also blow up at about t = 3.3× 10−3 though at a much slower rate than the

maximum of ρ2. In order to numerically verify this, we perform a mesh refinement study

and monitor ||ρ1||∞ and ||ρ2||∞ as functions of∆x , which is equal to∆y in this numerical

experiment. These functions are presented in Figure 2.10. As one can see from Figure 2.10

(left), the maximum of ρ1 computed by the second-order scheme behaves like the function

f I I
1 (∆x ) = 9( 3.51

∆x +90)1/4, while the maximum of ρ1 computed by the fourth-order scheme

behaves like the function f I V
1 (∆x ) = 11.15( 2.94

∆x +25)1/4. This shows that ρ1 blows up at the

rate of

||ρ1||∞ ∼
1

(∆x∆y )
1
8

.

52



At the same time, Figure 2.10 (right) illustrates that ||ρ2||∞ behaves like f I I
2 (∆x ) = 0.756

(∆x )2 for

the second-order results and like f I V
2 (∆x ) = 1.656

(∆x )2 for the fourth-order ones. This indicates

that ρ2 collapses to a δ-type singularity as

||ρ2||∞ ∼
1

∆x∆y
.

Figure 2.8: Example 3: ||ρ1||∞ as a function of t computed by the second- (left) and fourth-
order (right) schemes. The numerical blowup times are indicated by the corresponding
vertical lines.

We would like to emphasize that even though both the second- and fourth-order

schemes asymptotically behave in a similar way in the blowup regime, the magnitude

of both ρ1 and ρ2 are substantially larger in the fourth-order computations; see Figures

2.8–2.10. This clearly demonstrates the main advantage of using higher-order methods

for the two-species chemotaxis system. At the same time, it seems to be necessary to use

either adaptive mesh refinement or adaptive moving mesh technique to numerically detect

the blowup in ρ1 in a more convincing way. Development of adaptive techniques for the
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Figure 2.9: Example 3: ||ρ2||∞ as a function of t computed by the second- (left) and fourth-
order (right) schemes. The numerical blowup times are indicated by the corresponding
vertical lines.

Figure 2.10: Example 3: ||ρ1(x , y ,0.0033)||∞ computed by the second- and fourth-order
schemes plotted along with the functions f I I

1 (∆x ) = 9( 3.51
∆x +90)1/4 and f I V

1 (∆x ) = 11.15( 2.94
∆x +

25)1/4 (left) and ||ρ2(x , y ,0.0033)||∞ computed by the second- and fourth-order schemes
plotted along with the functions f I I

2 (∆x ) = 0.756
(∆x )2 and f I V

2 (∆x ) = 1.656
(∆x )2 (right) for∆x =∆y =

6/101, 6/201, . . . , 6/1601.

chemotaxis systems is beyond the scope of this paper and is left for future studies.
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CHAPTER

3

POSITIVITY-PRESERVING HYBRID

FINITE-VOLUME-FINITE-DIFFERENCE

METHODS FOR CHEMOTAXIS-FLUID

SYSTEMS

In this chapter, we derive and study a hybrid finite-volume-finite-difference scheme for

the chemotaxis-fluid systems Eq. 1.15 defined on the domain with a curved boundary.
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Our FVFD method is a splitting method which evolves the velocity filed of the fluid by

solving the incompressible Navier-Stokes equation using the projection method (see, e.g.,

(92)), then solves the oxygen concentration equation by a finite-volume upwind scheme to

update the oxygen concentration c . Lastly, the bacteria concentration equation is solved

by a finite-volume method.

This chapter is organized as follows. First, in §3.1 we introduce a dimensionless sys-

tem Eq. 3.3 which is obtained by rescaling the chemotaxis-fluid system Eq. 1.15. In §3.2,

we develop a FVFD scheme for the chemotaxis-fluid system Eq. 3.3, in §3.2.1 we briefly

introduce the projection method we applied to evolve the incompressible Navier-Stokes

equations in system Eq. 3.3, in §3.2.2, we illustrate the finite-volume upwind scheme for the

chemoattractant (oxygen) concentration equation and the finite-volume upwind scheme

for the bacteria concentration equation was derived in §3.2.3. Finally, in §3.3, we implement

the proposed scheme on several numerical examples.

3.1 Scaling and numerical set-up

In this dissertation, we consider the chemotaxis-fluid system Eq. 1.15 proposed in (121),

which is defined in a two-dimensional domain with a curved boundary on the top (see

Fig. 1.1 and Fig. 1.2) and subject to the boundary conditions Eq. 1.16 and Eq. 1.17. We denote

a characteristic length (for example, the depth of the fluid drop) by L and the characteristic

bacteria concentration by ρr , and rescale the variables in system Eq. 1.15 according to

Tuval et al. (121):

x′ =
x

L
, t ′ =

Dρ
L 2

t , c ′ =
c

ca i r
, ρ′ =

ρ

ρr
, p ′ =

L 2

ηDρ
p , u′ =

L

Dρ
u. (3.1)

56



This rescaling of variables will nondimensionalize the system Eq. 1.15 and give us five

dimensionless parameters to characterize it:

α :=
χca i r

Dρ
, β :=

κρr L 2

ca i r Dρ
, γ :=

Vbρr g (ρb − ρ̂)L 3

ηDρ
, δ :=

Dc

Dρ
, Sc :=

η

Dρρ̂
(3.2)

where Sc is the Schmidt number and ca i r is the oxygen concentration in the air surround

the fluid drop. Three of these parameters, α, δ and Sc, are determined by the properties

of bacteria, fluid and air, particularly for Bacillus subtilis in water, we have α = 10, δ = 5

and Sc = 500 (see, e.g. (121; 21)). The remaining two parameters β and γ depend on the

characteristic length L and the characteristic bacteria concentration ρr , and will vary

in different examples. Using these dimensionless parameters and the rescaled variables

without the prime notation, the chemotaxis-fluid system can be written as:



































ρt +∇· (uρ) +α∇·
�

ρr (c )∇c
�

=∆ρ,

ct +∇· (uc ) =δ∆c −β r (c )ρ,

ut +u ·∇u+Sc∇p = Sc∆u−γScρz ,

∇·u= 0,

(x , y ) ∈Ω⊂R2, t ≥ 0. (3.3)

The rescaled boundary conditions for the system Eq. 3.3 are:

αρr (c )cn−ρn = 0, c = 1, u ·n= 0, (n · (∇u+∇uT ))×n= 0, ∀(x , y ) ∈ ∂ Ωt o p , (3.4)

and

ρy = cy = 0, u= 0, ∀(x , y ) ∈ ∂ Ωb o t . (3.5)
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3.2 Derivation of the finite-volume-finite-difference scheme

In this section, we derive a finite-volume-finite-difference method for chemotaxis system

Eq. 3.3 defined in a domain Ω with curve boundary (see Fig. 1.2). The system Eq. 3.3 can be

written in coordinate form as follows:



















































ρt +
�

(u +αr (c )cx )ρ
�

x
+
�

(v +αr (c )cy )ρ
�

y
=∆ρ,

ct + (u c )x + (v c )y =δ∆c −β r (c )ρ,

ut +u ux + v u y +Scpx = Sc∆u ,

vt +u vx + v vy +Scpy = Sc∆v −Scγρ,

ux + vy = 0,

(x , y ) ∈Ω⊂R2, t ≥ 0. (3.6)

where u and v are the horizontal and vertical component of the velocity field u. In this

system Eq. 3.6, the oxygen concentration c is convected by the flow, diffused and affected

by the oxygen uptake source term −β r (c )ρ. The bacteria concentration ρ is governed

by convection chemotaxis fluxes, (u +αr (c )cx )ρ and (v +αr (c )cy )ρ, and the diffusion

term. As shown in Fig. 1.2, the domain of the system Ω is irregular (has a curved boundary

on the top part), so we apply the augmented method to solve the system Eq. 3.6. In the

numerical scheme presented, instead of just solving the system Eq. 3.6 in its exact domain

Ω, we embed the the domain Ω in to a rectangular computational domainΩ= [a , b ]× [c , d ]

which contains Ω and the bottom side coincides with the solid surface (the no-slip bottom

boundary ∂ Ωb o t of the exact domain). And for (x , y ) in the domainΩ\Ω, we assume that

the bacteria concentration ρ, oxygen concentration c and the fluid velocity u = (u , v )T
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satisfy the following equations:



































ρt =∆ρ,

ct =δ∆c ,

ut = Sc∆u ,

vt = Sc∆v,

(x , y ) ∈Ω\Ω, t ≥ 0. (3.7)

Then, we can treat the problem as an interfaced domain problem defined in the rectangular

computational domainΩ and we can treat the top boundary of the exact domain ∂ Ωt o p as

an interface inΩ and apply the immersed interface method to evolve the systems Eq. 3.6

and Eq. 3.7 on the entire computational domainΩ.

From one time level to the next, a splitting method was applied to evolve the velocity u,

oxygen concentration c and bacteria concentration ρ separately. We evolve the velocity u

in time by solving the incompressible Navier-Stokes equation in Eq. 3.6 using the projection

method (see, e.g., (92)). The oxygen-concentration equation and bacteria-concentration

equation are solved by a finite-volume upwind method.

To apply the splitting method, we divide the system Eq. 3.6 into three different parts.

The bacteria concentration equation:

ρt +
�

(u +αr (c )cx )ρ
�

x
+
�

(v +αr (c )cy )ρ
�

y
=∆ρ, (3.8)

with boundary conditions:

αρr (c )cn−ρn = 0, ∀(x , y ) ∈ ∂ Ωt o p , (3.9)
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and

ρy = 0, ∀(x , y ) ∈ ∂ Ωb o t . (3.10)

The oxygen concentration equation:

ct + (u c )x + (v c )y =δ∆c −β r (c )ρ, (3.11)

with the boundary conditions:

c = 1, ∀(x , y ) ∈ ∂ Ωt o p , (3.12)

and

cy = 0, ∀(x , y ) ∈ ∂ Ωb o t . (3.13)

And the fluid equation:























ut +u ux + v u y +Scpx = Sc∆u ,

vt +u vx + v vy +Scpy = Sc∆v −Scγρ,

ux + vy = 0,

(3.14)

with boundary conditions:

u ·n= 0, (n · (∇u+∇uT ))×n= 0, ∀(x , y ) ∈ ∂ Ωt o p , (3.15)

and

u = 0, v = 0, ∀(x , y ) ∈ ∂ Ωb o t . (3.16)

Given the solutions u (x , y , t ), v (x , y , t ), c (x , y , t ) and ρ(x , y , t ) at time t , we first solve
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the incompressible Navier-Stokes equation Eq. 3.14 to obtain the solutions at time t +∆t

by the projection method proposed in (92).

For the oxygen concentration equation Eq. 3.11, we use the evolved velocity at time

t +∆t , take care of the diffusion term implicitly and discretize the equation in time by

forward Euler. This leads to an elliptic equation. In the exact domain Ω, we have:

δ∆c (x , y , t +∆t )−
1

∆t
c (x , y , t +∆t ) =

�

u (x , y , t +∆t )c (x , y , t )
�

x
+
�

v (x , y , t +∆t )c (x , y , t )
�

y

+β r (c (x , y , t ))ρ(x , y , t )−
1

∆t
c (x , y , t ),

(3.17)

while in the domainΩ\Ω, the equation is:

δ∆c (x , y , t +∆t )−
1

∆t
c (x , y , t +∆t ) =−

1

∆t
c (x , y , t ), (3.18)

At last, we use a similar strategy to solve the bacteria concentration equation Eq. 3.8

based on the updated solutions u (x , y , t +∆t ), v (s , y , t +∆t ) and c (x , y , t +∆t ), which

gives us:

∆ρ(x , y , t +∆t )−
1

∆t
ρ(x , y , t +∆t ) =

¦

�

u (x , y , t +∆t ) +αr (c (x , y , t +∆t ))cx (x , y , t +∆t )
�

ρ(x , y , t )
©

x

+
¦

�

v (x , y , t +∆t ) +αr (c (x , y , t +∆t ))cy (x , y , t +∆t )
�

ρ(x , y , t )
©

y

−
1

∆t
ρ(x , y , t ),

(3.19)

for (x , y ) ∈Ω, and when (x , y ) ∈Ω\Ω, the elliptic equation is:

∆ρ(x , y , t +∆t )−
1

∆t
ρ(x , y , t +∆t ) =−

1

∆t
ρ(x , y , t ). (3.20)
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3.2.1 Projection method for the fluid equation

In this section, we briefly illustrate the numerical method we used to solve the fluid equa-

tions Eq. 3.14 in the chemotaxis-fluid system. There are many different versions of the

projection method for the incompressible Navier-Stokes equations (see, e.g. (9; 14; 125; 70)

and references therein), and the one we used is originally posted in (14) and modified for

irregular domain case in (92) which is based on the pressure increment formulations. We

consider the equation Eq. 3.14 in the computational rectangular domainΩ= [a , b ]× [c , d ],

where we introduce a Cartesian mesh consisting of cells I j ,k := [x j− 1
2
, x j+ 1

2
]× [yk− 1

2
, yk+ 1

2
]

with uniform size∆x∆y for simplicity, that is x j+ 1
2
− x j− 1

2
≡∆x and yk+ 1

2
− yk− 1

2
≡∆y for

all j , k . On this mesh, given the velocities (u m , v m ), the pressure p m at time level t m and an

initial guess of augmented variable qm+1 = (q1, q2), the solutions at time t m+1 are evolved by

the following steps.

Step 1: Prediction step

u ∗j ,k −u m
j ,k

∆t
=







−Sc(p m
x ) j ,k −u m

j ,k (u
m
x ) j ,k − v m

j ,k (u
m
y ) j ,k +Sc∆ j ,k u ∗, x ∈Ω,

Sc∆u m , x ∈Ω\Ω,

v ∗j ,k − v m
j ,k

∆t
=







−Sc(p m
y ) j ,k −u m

j ,k (v
m
x ) j ,k − v m

j ,k (v
m
y ) j ,k +Sc∆ j ,k v ∗−Scγρm

j ,k , x ∈Ω,

Sc∆v m , x ∈Ω\Ω,
(3.21)

with jump conditions

[u ∗]∂ Ωt o p
= 0, [v ∗]∂ Ωt o p

= 0,
�

∂ u ∗

∂ n

�

∂ Ωt o p

= qm+1
u ,

�

∂ v ∗

∂ n

�

∂ Ωt o p

= qm+1
v , (3.22)

and boundary conditions

u ∗|
∂Ω = 0, v ∗|

∂Ω = 0. (3.23)
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Step 2: Projection step

∆ j ,kφ
m+1 =

(u ∗x ) j ,k + (v ∗y ) j ,k

Sc∆t
, x ∈Ω, (3.24)

with jump conditions

[φm+1]∂ Ωt o p
= 0,

�

∂ φm+1

∂ n

�

∂ Ωt o p

= 0, (3.25)

and boundary conditions
∂ φm+1

∂ n

�

�

�

∂Ω
= 0. (3.26)























u m+1
j ,k = u ∗j ,k −Sc∆t (φm+1

x ) j ,k , x ∈Ω,

v m+1
j ,k = v ∗j ,k −Sc∆t (φm+1

y ) j ,k , x ∈Ω

∇p m+1
j ,k =∇p m

j ,k +∇φ
m+1
j ,k , x ∈Ω.

(3.27)

Step 3: Interpolation and computing the residual of the boundary conditions

E m+1
1 = u ·n, and E m+1

2 = (n · (∇u+∇uT ))×n on ∂ Ωt o p . (3.28)

Step 1 and step 2 are the traditional steps of the projection method for the Navier-Stokes

equation in an interfaced domain. The augmented variables qm+1
u and qm+1

v defined only

along the top boundary of the exact domain ∂ Ωt o p are introduced in the prediction step and

must be properly chosen to guarantee that the boundary conditions Eq. 3.15 and Eq. 3.16

are satisfied at time t m+1, which means the residuals E m+1
1 and E m+1

2 computed in step 3

will equal to 0. Then, the obtained the velocity um+1 = (u m+1, v m+1) will satisfy the equation

Eq. 3.14 in the domain Ω and the boundary conditions Eq. 3.15 and Eq. 3.16.
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3.2.2 Finite-volume upwind scheme for the oxygen concentration equa-

tion

In this section, we introduce the second-order finite-volume scheme for the oxygen con-

centration equation Eq. 3.11. The discrete finite-volume upwind scheme for Eq. 3.17 and

Eq. 3.18 can be written in the following form:

δ∆ j ,kc m+1−
1

∆t
c m+1

j ,k =















G x
j+ 1

2 ,k
−G x

j− 1
2 ,k

∆x
+
G y

j ,k+ 1
2
−G y

j ,k− 1
2

∆y
+β r (c m

j ,k )ρ
m
j ,k −

1

∆t
c m

j ,k , x ∈Ω,

−
1

∆t
c m

j ,k , x ∈Ω\Ω.

(3.29)

with jump conditions

[c m+1]∂ Ωt o p
= 0,

�

∂ c m+1

∂ n

�

∂ Ωt o p

= qm+1
c (3.30)

where the cell averages of the concentrations, c j ,k (t ) =
1

∆x∆y

∫ ∫

I j ,k
c (x , y , t )d x d y , are the

evolved quantities, G x
j+ 1

2 ,k
and G y

j ,k+ 1
2

are the numerical fluxes in the x- and y-direction for

oxygen concentration c , respectively, and qm+1
c is the augmented variable defined along

∂ Ωt o p which can be chosen properly by the IIM and augmented method (see §1.4). The

numerical fluxes G x
j+ 1

2 ,k
and G y

j ,k+ 1
2

are computed as follows:

G x
j+ 1

2 ,k
= u j+ 1

2 ,k c j+ 1
2 ,k , G y

j ,k+ 1
2
= v j ,k+ 1

2
c j ,k+ 1

2
. (3.31)

At a regular cell interfaces, which means both of the cells corresponding to the interface

are regular cell, the velocities u j+ 1
2 ,k and v j ,k+ 1

2
are computed by mid point rule:

u j+ 1
2 ,k =

u j ,k +u j+1,k

2
, v j ,k+ 1

2
=

v j ,k + v j ,k+1

2
, (3.32)
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and for the irregular cell interface, we approximate the velocities as:

u j+ 1
2 ,k =







u j ,k , if I j+1,k ∈Ω\Ω,

u j+1,k , if I j ,k ∈Ω\Ω,
v j ,k+ 1

2
=







v j ,k , if I j ,k+1 ∈Ω\Ω,

v j ,k+1, if I j ,k ∈Ω\Ω.
(3.33)

At regular cell interface, the point values c j+ 1
2 ,k and c j ,k+ 1

2
can be computed in an upwind

manner:

c j+ 1
2 ,k =







c E
j ,k , if u j+ 1

2 ,k > 0,

c W
j+1,k , otherwise,

c j ,k+ 1
2
=







c N
j ,k , if v j ,k+ 1

2
> 0,

c S
j ,k+1, otherwise.

(3.34)

In Eq. 3.34, the one-sided point values at cell interface c E,W,NS
j ,k are calculated using a second-

order piecewise linear reconstruction:

ec (x , y ) =c j ,k + (cx ) j ,k (x − x j ) + (cy ) j ,k (y − yk ), (x , y ) ∈ I j ,k , (3.35)

as follows:

c E
j ,k = ec (x j+ 1

2
−0, yk ) =c j ,k +

∆x

2
(cx ) j ,k , c W

j ,k = ec (x j− 1
2
+0, yk ) =c j ,k −

∆x

2
(cx ) j ,k ,

c N
j ,k = ec (x j , yk+ 1

2
−0) =c j ,k +

∆y

2
(cy ) j ,k , c S

j ,k = ec (x j , yk− 1
2
+0) =c j ,k −

∆y

2
(cy ) j ,k .

(3.36)
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In order to guarantee that the point values computed by Eq. 3.36 have second-order accuracy

and nonnegative, we numerically calculate the slopes in Eq. 3.35 adaptively using:

(cx ) j ,k =











c j+1,k −c j−1,k

2∆x
, if c j ,k ±

∆x

2
·
c j+1,k −c j−1,k

2∆x
=c j ,k ±

c j+1,k −c j−1,k

4
≥ 0,

minmod
�

2
c j+1,k −c j ,k

∆x
,

c j+1,k −c j−1,k

2∆x
, 2

c j ,k −c j−1,k

∆x

�

, otherwise,

(cy ) j ,k =















c j ,k+1−c j ,k−1

2∆y
, if c j ,k ±

∆y

2
·
c j ,k+1−c j ,k−1

2∆y
=c j ,k ±

c j ,k+1−c j ,k−1

4
≥ 0,

minmod
�

2
c j ,k+1−c j ,k

∆y
,

c j ,k+1−c j ,k−1

2∆y
, 2

c j ,k −c j ,k−1

∆y

�

, otherwise.

(3.37)

While for irregular cell interface, similar to the velocities, we easily approximate the point

values c j+ 1
2 ,k and c j ,k+ 1

2
as following:

c j+ 1
2 ,k =







c E
j ,k , if I j+1,k ∈Ω\Ω,

c W
j+1,k if I j ,k ∈Ω\Ω,

c j ,k+ 1
2
=







c N
j ,k if I j ,k+1 ∈Ω\Ω,

c S
j ,k+1 if I j ,k ∈Ω\Ω.

(3.38)

3.2.3 Finite-volume upwind scheme for the bacteria concentration equa-

tion

In this section, we introduce the second-order finite-volume scheme corresponding to the

bacteria concentration equation Eq. 3.8. The discrete finite-volume upwind scheme for

Eq. 3.19 and Eq. 3.20 can be written in the following form:

∆ j ,kρ
m+1−

1

∆t
ρm+1

j ,k =















F x
j+ 1

2 ,k
−F x

j− 1
2 ,k

∆x
+
F y

j ,k+ 1
2
−F y

j ,k− 1
2

∆y
−

1

∆t
ρm

j ,k , x ∈Ω,

−
1

∆t
ρm

j ,k , x ∈Ω\Ω,

(3.39)
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with jump conditions

[ρ]∂ Ωt o p
= 0,

�

∂ ρ

∂ n

�

∂ Ωt o p

= qm+1
ρ , (3.40)

where the cell averages of the bacterial concentration,ρ j ,k (t ) =
1

∆x∆y

∫ ∫

I j ,k
ρ(x , y , t )d x d y ,

is the evolved quantity, F x
j+ 1

2 ,k
and F y

j ,k+ 1
2

are the numerical fluxes of ρ in the x- and y-

direction, respectively, and qm+1
ρ is the augmented variable defined along ∂ Ωt o p which can

be properly computed by the IIM and augmented method (see §1.4). The numerical fluxes

F x
j+ 1

2 ,k
andF y

j ,k+ 1
2

are computed as following:

F x
j+ 1

2 ,k
= [u j+ 1

2 ,k +αr (c j+ 1
2 ,k )(cx ) j+ 1

2 ,k ]ρ j+ 1
2 ,k , F y

j ,k+ 1
2
= [v j ,k+ 1

2
+αr (c j ,k+ 1

2
)(cy ) j ,k+ 1

2
]ρ j ,k+ 1

2
,

(3.41)

The velocities u j+ 1
2 ,k and v j ,k+ 1

2
are computed using Eq. 3.32 and Eq. 3.33, which is exactly

the same as what we do for the oxygen concentration equation. For regular cell interfaces,

we calculate the point values of the oxygen concentration c j+ 1
2 ,k and c j ,k+ 1

2
in Eq. 3.41 as

follows:

c j+ 1
2 ,k =

c E
j ,k + c W

j ,k+1

2
, c j ,k+ 1

2
=

c N
j ,k + c S

j ,k+1

2
, (3.42)

while for the irregular cell interfaces, these point values are computed as:

c j+ 1
2 ,k =







c E
j ,k , if I j+1,k ∈Ω\Ω,

c W
j+1,k , if I j ,k ∈Ω\Ω,

c j ,k+ 1
2
=







c N
j ,k , if I j ,k+1 ∈Ω\Ω,

c S
j ,k+1, if I j ,k ∈Ω\Ω.

(3.43)

At regular cell interfaces, the derivatives of oxygen concentration (cx ) j+ 1
2 ,k and (cy ) j ,k+ 1

2
are

approximated using central difference:

(cx ) j+ 1
2 ,k =

c j+1,k −c j ,k

∆x
, (cy ) j ,k+ 1

2
=

c j ,k+1−c j ,k

∆y
, (3.44)
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while at irregular cell interfaces, we approximate (cx ) j+ 1
2 ,k and (cy ) j ,k+ 1

2
as

(cx ) j+ 1
2 ,k =











c j ,k −c j−1,k

∆x
, if I j+1,k ∈Ω\Ω,

c j+2,k −c j+1,k

∆x
, if I j ,k ∈Ω\Ω,

c j ,k+ 1
2
=















c j ,k −c j ,k−1

∆y
, if I j ,k+1 ∈Ω\Ω,

c j ,k+2−c j ,k+1

∆y
, if I j ,k ∈Ω\Ω.

(3.45)

The point values of the bacteria concentration at cell interfaces, ρ j+ 1
2 ,k and ρ j ,k+ 1

2
, are ap-

proximated by the same method which is applied to approximate the oxygen concentration.

At regular cell interfaces the point values ρ j+ 1
2 ,k and ρ j ,k+ 1

2
are approximated in an upwind

manner:

ρ j+ 1
2 ,k =







ρE
j ,k , if u j+ 1

2 ,k +αr (c j+ 1
2 ,k )(cx ) j+ 1

2 ,k > 0,

ρW
j+1,k , otherwise,

ρ j ,k+ 1
2
=







ρN
j ,k , if v j ,k+ 1

2
+αr (c j ,k+ 1

2
)(cy ) j ,k+ 1

2
> 0,

ρS
j ,k+1, otherwise.

(3.46)

In Eq. 3.46, the one-sided point values at cell interfaceρE,W,N,S
j ,k are calculated using a second-

order piecewise linear reconstruction

eρ(x , y ) =ρ j ,k + (ρx ) j ,k (x − x j ) + (ρy ) j ,k (y − yk ), (x , y ) ∈ I j ,k , (3.47)

as follows:

ρE
j ,k = eρ(x j+ 1

2
−0, yk ) =ρ j ,k +

∆x

2
(ρx ) j ,k , ρW

j ,k = eρ(x j− 1
2
+0, yk ) =ρ j ,k −

∆x

2
(ρx ) j ,k ,

ρN
j ,k = eρ(x j , yk+ 1

2
−0) =ρ j ,k +

∆y

2
(ρy ) j ,k , ρS

j ,k = eρ(x j , yk− 1
2
+0) =ρ j ,k −

∆y

2
(ρy ) j ,k ,

(3.48)
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To guarantee that the point values computed by Eq. 3.48 have second-order accuracy and

nonnegative, we numerically calculate the slopes in Eq. 3.47 adaptively using:

(ρx ) j ,k =











ρ j+1,k −ρ j−1,k

2∆x
, if ρ j ,k ±

∆x

2
·
ρ j+1,k −ρ j−1,k

2∆x
=ρ j ,k ±

ρ j+1,k −ρ j−1,k

4
≥ 0,

minmod
�

2
ρ j+1,k −ρ j ,k

∆x
,
ρ j+1,k −ρ j−1,k

2∆x
, 2
ρ j ,k −ρ j−1,k

∆x

�

, otherwise,

(ρy ) j ,k =















ρ j ,k+1−ρ j ,k−1

2∆y
, if ρ j ,k ±

∆y

2
·
ρ j ,k+1−ρ j ,k−1

2∆y
=ρ j ,k ±

ρ j ,k+1−ρ j ,k−1

4
≥ 0,

minmod
�

2
ρ j ,k+1−ρ j ,k

∆y
,
ρ j ,k+1−ρ j ,k−1

2∆y
, 2
ρ j ,k −ρ j ,k−1

∆y

�

, otherwise,

(3.49)

While for irregular cell interface, we approximate the point values ρ j+ 1
2 ,k and ρ j ,k+ 1

2
as

following:

ρ j+ 1
2 ,k =







ρE
j ,k , if I j+1,k ∈Ω\Ω,

ρW
j+1,k if I j ,k ∈Ω\Ω,

ρ j ,k+ 1
2
=







ρN
j ,k if I j ,k+1 ∈Ω\Ω,

ρS
j ,k+1 if I j ,k ∈Ω\Ω.

(3.50)

3.3 Numerical example

In this section, we test the developed numerical scheme on some numerical examples. We

first design two test cases to test that our numerical scheme presents a correct numerical

solution, and performed a mesh refinement test to obtain the accuracy order. Then we

would apply the developed numerical scheme on an experimental example.

69



Example 1—Test Function Defined on a Half Circle

In the first example, we designed test functions defined on a half unit circle domain, Ω=

{(x , y ) | x 2+ y 2 ≤ 1, y ≥ 0}, and we set up the test functions u , v, p , c and ρ as following:



















































u (x , y , t ) = y (x 2+ y 2−1)(1+ t ),

v (x , y , t ) =−x (x 2+ y 2−1)(1+ t ),

p (x , y , t ) = 1+ t ,

c (x , y , t ) = 1− y 2(x 2+ y 2−1)(1+ t ),

ρ(x , y , t ) = (x 2+ y 2)(1+ t ).

(3.51)

These test functions are solutions for the following modified chemotaxis-fluid system:



















































ρt +
�

(u +αr (c )cx )ρ
�

x
+
�

(v +αr (c )cy )ρ
�

y
=∆ρ+Sρ,

ct + (u c )x + (v c )y =δ∆c −β r (c )ρ+Sc ,

ut +u ux + v u y +Scpx = Sc∆u +Su ,

vt +u vx + v vy +Scpy = Sc∆v −Scγρ+Sv ,

ux + vy = 0,

(x , y ) ∈Ω, t ≥ 0. (3.52)

These source terms Su , Sv , Sc and Sρ corresponding to u , v , c and ρ, respectively, are

computed by plugging Eq. 3.51 into the chemotaxis-fluid system Eq. 3.6:

Su = y (x 2+ y 2−1)− x (x 2+ y 2−1)2(1+ t )2−8Scy (1+ t ),

Sv =−x (x 2+ y 2−1)− y (x 2+ y 2−1)2(1+ t )2−8Scx (1+ t ) +Scγρ,

Sc =−y 2(x 2+ y 2−1) +2x y (x 2+ y 2−1)2(1+ t )2−δ(2x 2+14y 2−2)(1+ t ),

Sρ = (x
2+ y 2)−4(1+ t )− (1+ t )2(24x 2 y 2+22y 4−6y 2+2x 4−2x 2).

(3.53)
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In order to apply the IIM scheme, as described in previous section §1.4, we embed the

half circle domain into a rectangularΩ= [−1.5,1.5]× [0,1.5], and choose proper function

values in the region outside the half circleΩ\Ω to make our test function to be continuous

across the boundary ∂ Ω. The the extended test functions defined on the domainΩ are as

following:

u (x , y , t ) =







y (x 2+ y 2−1)(1+ t ), if x 2+ y 2 < 1,

0, otherwise.

v (x , y , t ) =







− x (x 2+ y 2−1)(1+ t ), if x 2+ y 2 < 1,

0, otherwise.

c (x , y , t ) =







1− y 2(x 2+ y 2−1)(1+ t ), if x 2+ y 2 < 1,

1, otherwise.

ρ(x , y , t ) =







(x 2+ y 2)(1+ t ), if x 2+ y 2 < 1,

1+ t , otherwise.

(3.54)

We first implement the proposed numerical scheme on a uniform mesh with ∆x =

∆y = 3/128 at time t = 0.05, the solutions are plotted in figure Fig. 3.1 and Fig. 3.2. As

one can see, the obtained solutions can preserve the positivity and match with the exact

solutions pretty well.

Next, we conduct the accuracy test at a small time, in order to measure the conver-

gence rate, we perform a mesh refine test and compare the obtained results with the exact

solutions. The results are presented in Table 3.1
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Figure 3.1: Example 1: velocities u (top row) and v (bottom row) computed by proposed
numerical scheme (left column) on a uniform mesh with∆x =∆y = 3/128 compare with
the exact values of the test case (right column) at time t = 5×10−2.

Table 3.1: Example 1: L∞-errors for u , v , c and ρ computed by the proposed scheme.

grid u-error rate v -error rate c -error rate ρ-error rate
64 × 32 1.25E-3 2.08E-3 2.76E-4 4.23E-2

128 × 64 5.15E-4 1.28 5.40E-4 1.95 6.92E-5 2.00 2.59E-2 0.71
256 × 128 1.69E-4 1.61 1.39E-4 1.96 1.79E-5 1.95 1.39E-2 0.90
512 × 256 5.71E-5 1.57 3.49E-5 1.99 4.78E-6 1.90 7.51E-3 0.89

Example 2—Test Function Without Given Pressure p

Normally in practice, the given initial conditions for the IBVP Eq. 3.6 will only have the

value of velocity filed u and v , and the densities c and ρ at time t = 0. We need to solve the

Pressure Poisson Equation (PPE) corresponding to the incompressible NS equation with

some proper chosen boundary conditions to get the pressure information p . While the

projection method we applied to evolve the NS equation does not require an exact initial
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Figure 3.2: Example 1: c (top row) and ρ (bottom row) computed by proposed numerical
scheme (left column) on a uniform mesh with∆x =∆y = 3/128 compare with the exact
values of the test case (right column) at time t = 5×10−2.

value for p , even if we input a initial guess for p at beginning, the solution u and v we

obtained for small time t may have some oscillation, but as time goes on, when t becomes

larger, that oscillation will be smoothed out and give us a good numerical solution. In order

to test this property, we design the following test functions defined in the half unit circle
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domain, and investigate the solutions with different input p at different times.

u (x , y , t ) =
y

4
t ,

v (x , y , t ) =−
x

4
(1− x 2)t ,

p (x , y , t ) = (−
3

4
x 3+

3

8
x )y ,

c (x , y , t ) = 1+ (x 2+ y 2−1)t ,

ρ(x , y , t ) = (x 2+ y 2)t .

(3.55)

Same as in the previous Example 1, we embed the half unit circle domain Ω into the rectan-

gular domainΩ= [−1.5, 1.5]× [0, 1.5], and extend the test functions toΩ:

u (x , y , t ) =











y

4
t , if x 2+ y 2 < 1,

y

4
(x 2+ y 2)t , otherwise.

v (x , y , t ) =











−
x

4
(1− x 2)t , if x 2+ y 2 < 1,

−
x y 2

4
t , otherwise.

p (x , y , t ) =











(−
3

4
x 3+

3

8
x )y , if x 2+ y 2 < 1,

0, otherwise.

c (x , y , t ) =







1+ (x 2+ y 2−1)t , if x 2+ y 2 < 1,

1, otherwise.

ρ(x , y , t ) =







(x 2+ y 2)t , if x 2+ y 2 < 1,

t , otherwise.

(3.56)

We compute the source terms Su , Sv , Sc and Sρ corresponding to our test functions 3.56
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and the IBVP Eq. 3.6, Eq. 3.7:

Su (x , y , t ) =











y

4
−

x (1− x 2)
16

t 2+Sc(−
9

4
x 2+

3

8
)y , if x 2+ y 2 < 1,

(x 2+ y 2)
4

y −2Scy t , otherwise.

Sv (x , y , t ) =











−
x

4
(1− x 2) +

y (3x 2−1)
16

t +Sc(−
3

4
x 3+

3

8
x )−Sc

3

2
x t , if x 2+ y 2 < 1,

−
x y 2

4
+Sc

x

2
t , otherwise.

Sc (x , y , t ) =











(x 2+ y 2−1) +
x 3 y

2
t 2−4δt , if x 2+ y 2 < 1,

0, otherwise.

Sρ(x , y , t ) =











(x 2+ y 2) + (8x 2+8y 2+
x 3 y

2
)t 2−4t , if x 2+ y 2 < 1,

1, otherwise.
(3.57)

We first implement the scheme on a uniform mesh with∆x =∆y = 3/128, and evaluate

the system at a small time t = 1.37×10−3 using the exact initial values of pressure p . The

solutions are shown in figure Fig. 3.3 and Fig. 3.4, and we can observe that the numerical

solutions agree with the exact solutions.

We next implement the numerical scheme on the same mesh, but with initial condition

p = 0, and plot the solutions in figure Fig. 3.5. We can clearly observe some oscillation in the

numerical solution for u and v , so they do not match with our test case plotted in Fig. 3.3.

While we keep the same initial setting and evaluate the numerical solutions at a later time

t = 5×10−2, plotting the solutions in figure Fig. 3.6 and Fig. 3.7, we can observe that the

oscillation has been smoothed out and the obtained numerical solutions converge to the

exact solutions.
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Figure 3.3: Example 2: velocities u (top row) and v (bottom row) computed by proposed
numerical scheme (left column) on a uniform mesh with∆x =∆y = 3/128 compare with
the exact values of the test case (right column) at time t = 1.37×10−3.

Example 3—Chemotaxis-Fluid system With Experimental Data

In this example taken from (21), we investigate the chemotaxis-fluid system Eq. 3.6 with

α= 10, β = 100, δ= 5, γ= 10000 and Sc= 500, (3.58)

in a flat drop-like domain, which can be described as a half ellipse:

Ω= {(x , y ) |
x 2

64
+ y 2 ≤

1

4
, y ≥ 0}. (3.59)
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Figure 3.4: Example 2: c (top row) and ρ (bottom row) computed by proposed numerical
scheme (left column) on a uniform mesh with∆x =∆y = 3/128 compare with the exact
values of the test case (right column) at time t = 1.37×10−3.

and subject to the initial data:

u = 0, v = 0, c = 1,

ρ =











0.5, if y <

s

0.352− (
x

8
)2−0.01 cos(2πx ),

1, otherwise.

(3.60)

In practice, we found that the the non-linear chemotaxis term in bacteria equation, the

large parameter γ and schmidt number Sc will lead to some stability issue close to the curve

boundary, the numerical solution obtained by our proposed finite-volume upwind scheme

will blow-up at the center of the top boundary. So practically in this example, we applied a

particle method to evolve the bacteria equation. We embed the half ellipse domain Ω into
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Figure 3.5: Example 2: velocities u (top-left), v (top-right), c (bottom-left) and ρ (bottom-
right) computed by proposed numerical scheme on a uniform mesh with∆x =∆y = 3/128
at time t = 1.37×10−3.

a rectangular domain Ω̄= [−5,5]× [0,1], implement the numerical scheme on a uniform

mesh ∆x = 10
201 and ∆y = 1

40 , and compute the solutions at different times. The bacteria

concentration ρ, the oxygen concentration c and the velocity field (u , v ) computed at a

small time t = 1.2×10−3 are presented in figure Fig. 3.8. We can observe that the bacteria

are moving toward the top boundary and form a higher concentration layer near the top

boundary, and in this layer, the oxygen consumption is larger due to the higher bacteria

concentration, so we have smaller oxygen concentration value c corresponding to this

layer.

We also computed the solutions for later time t = 8× 10−3, and plot the solutions in

figure Fig. 3.9, we can observe that as time goes on, the oxygen concentration c will become

smaller and gravity start to be dominant, so the bacteria will fall down and form a high
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Figure 3.6: Example 2: velocities u (top row) and v (bottom row) computed by proposed
numerical scheme (left column) on a uniform mesh with∆x =∆y = 3/128 compare with
the exact values of the test case (right column) at time t = 5×10−2.

concentration part close to the corner, and the large oxygen consumption in this region

leads to a low oxygen concentration c until it reaches the threshold value cc r i t = 0.3 which

the bacteria will become inactive.

Some physical experiments suggest that in some case, the bacteria will swim toward

the top boundary and form a high concentration layer, but instead of falling down along

the boundary, the bacteria may sink downward at the middle and present some finger

like plumes. In our numerical experiment, we did not get a numerical solution which can

simulate this process. However, the chemotaxis-fluid system is complicated, and pretty

sensitive to the shape of top curve boundary and the parameters. Thus, one needs to

work with scientist in biology and modeling to investigate a proper shape of domain and

corresponding parameters, and perform more experiment to capture these phenomena.
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Figure 3.7: Example 2: c (top row) and ρ (bottom row) computed by proposed numerical
scheme (left column) on a uniform mesh with∆x =∆y = 3/128 compare with the exact
values of the test case (right column) at time t = 5×10−2.

Figure 3.8: Example 3: velocity field (u , v ) (top), oxygen concentration c (mid) and bacteria
concentration ρ (bottom) computed at time t = 1.2×10−3.
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Figure 3.9: Example 3: velocity field (u , v ) (top), oxygen concentration c (mid) and bacteria
concentration ρ (bottom) computed at time t = 8×10−3.
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CHAPTER

4

CONCLUSIONS AND FUTURE WORK

In this thesis, we developed finite-volume-finite-difference schemes for approximating

the chemotaxis system and related models. The major contributions of two projects are

following:

• First we derived and implemented a second-order and fourth-order hybrid FVFD

schemes for chemotaxis equations, and performed 3 numerical experiments to

demonstrate that the developed numerical schemes can preserve the positivity of the

solutions and capture the blow-up phenomenon of the PKS model. We also extended

the developed schemes to the two-species chemotaxis system and investigated the
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different types of singularities of each specie for the multi-species system.

• Second, we developed and study a hybrid FVFD scheme for the chemotaxis-fluid

system defined on the domain with a curved boundary. In our developed numerical

scheme, we applied the immersed interface method and the augmented method to

treat the (irregular) grid points near the curved boundary. We presented 2 numerical

results for the numerical scheme, demonstrating that the numerical scheme is smooth

in the domain with a curved boundary and the numerical solutions converge to the

exact solutions. We also performed a numerical experiment to investigate behavior

of the bacteria in Bacillus subtilis suspension in a thin chamber.

In the future, we plan to work with scientist in biology and modeling to investigate the

chemotaxis-fluid model, figure out proper domains and parameters corresponding to vari-

ety of collective phenomenon of the bacteria, and perform more experiment to simulate

the bioconvection patterns. More over, we intend to investigate additional numerical ap-

proaches and computational techniques to simulate chemotaxis and related phenomenon.
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