
ABSTRACT

ACITELLI, CATHERINE BARBARA. The Design of an Undergraduate Cryptography Course
with Python and SageMath. (Under the Direction of Ernest Stitzinger).

The field of Cryptography is rapidly evolving, and the development of quantum com-

puters is on the rise. Lattice-based cryptosystems are promising candidates for quantum

resistance, and it is the responsibility of institutions to prepare students for related careers.

Undergraduate students in mathematics and mathematics-adjacent fields can – and should

– study lattice-based cryptography. However, the field lacks a comprehensive undergraduate

curriculum that emphasizes the mathematical depth and the practical applications of cryp-

tography. Thus, we focus on the undergraduate accessibility of lattice-based cryptography

with Python through the development of a self-contained course that relies solely only on a

background in linear algebra. We wove the use of Python, the most widely used computer

language, and SageMath, a Python-based computer algebra system, throughout the course

to complement the mathematical theory. The main focuses of the course are lattice-based

cryptosystems and lattice reduction algorithms. A standard 15−week semester begins with

a linear algebra review and an introduction to Python and Sage. Necessary abstract algebra

and number theory are introduced as they become relevant. By expanding on decades of

cryptography research and taking a novel application-based approach, completion of this

course accomplishes five main outcomes for students: it enhances their algebraic thinking,

allows them to learn the Python computing language, gives them the opportunity to explore

multiple facets of algorithm design, enables them to see the fluidity of mathematics, and

prepares them well for a variety of different career paths.

Our work seeks to prepare students for the growing competitive landscape of career

paths necessitating expertise in the totality of cryptosystems, so we have also included

complementary focal areas on Digital Signature Schemes, Blind Signature Schemes, and

Zero Knowledge Proofs. A Digital Signature binds a signer to a document and allows the

recipient to verify the authenticity of the document. A Blind Signature first conceals the

message before a third party signs it. A Zero Knowledge Proof allows a prover to prove that

they know a piece of information without revealing it to the verifier. We created signature

schemes, blind signature schemes, and zero knowledge proof protocols to accompany

the GGH and NTRU cryptosystems. Inclusion of these elements into our work further

underscores our dedication to delivering a well-rounded and thorough undergraduate-

level course in Cryptography.

© Copyright 2022 by Catherine Barbara Acitelli

All Rights Reserved

The Design of an Undergraduate Cryptography Course
with Python and SageMath

by
Catherine Barbara Acitelli

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2022

APPROVED BY:

Jo-Ann Cohen Alina Duca

Erin Krupa Kailash Misra

Ernest Stitzinger
Chair of Advisory Committee

DEDICATION

To my parents, AJ and Beth Acitelli, for their constant love and support during my

academic career.

To my grandfather, Mario Acitelli, Ph.D., for his encouragement and enthusiasm

throughout my Ph.D. journey.

ii

BIOGRAPHY

Catie Acitelli was born in Binghamton, New York to AJ and Beth Acitelli, the third of four

children. She grew up in Weddington, North Carolina and graduated from Charlotte Catholic

High School in 2008. Catie was a North Carolina Teaching Fellow at North Carolina State

University, where she earned Bachelors of Science degrees in Mathematics and Secondary

Mathematics Education. As an undergraduate student, she began her teaching career in

2009 as a recitation leader for various calculus courses. After graduating in 2012, Catie

began teaching high school mathematics and coaching cheerleading in Charlotte, North

Carolina. She wrote district curricula for the Advanced Functions and Modeling and Pre-

Calculus courses and trained teachers on the effective implementation of the curricula. She

earned the Most Valuable Teacher Award at two different high schools. After teaching and

coaching for six years, Catie returned to North Carolina State University to pursue a Ph.D.

in Mathematics under the direction of Dr. Ernest Stitzinger. During her graduate work, she

served as a Teaching Assistant for various calculus and discrete math courses and as the

Instructor of Record for a number of calculus and linear algebra courses. Catie was awarded

the 2021 Graduate Student Association Outstanding Teaching Assistant Award and the 2021

Mathematics Department Maltbie Award for Excellence in Teaching. As a Preparing the

Professoriate Fellow, Catie redesigned the Introduction to Linear Algebra curriculum to

emphasize the importance of proof writing. She was also a significant contributor to the

new curriculum for first year graduate students in the Mathematics Department, which

emphasizes both teaching and leadership. She leverages her expertise in curriculum writing

for her research at North Carolina State University. When Catie is not doing math, she is

watching a sports game, cooking, listening to a true crime podcast, or hanging out with her

dog, Bella.

iii

ACKNOWLEDGEMENTS

I would like to thank everyone at North Carolina State University who believed in me,

encouraged me, pushed me, and ultimately helped me grow as a mathematician. First

and foremost, I would like to thank my dissertation advisor, Dr. Ernest Stitzinger, for your

constant support and guidance and for our many helpful (and fun) conversations. You

believed in me when I didn’t believe in myself, and you always provided me with the

encouragement and enthusiasm I needed to keep going. Thank you for trusting me with

this project and for reminding me that it is okay to take breaks.

To my family, thank you for your unwavering support of my academic endeavors. Thank

you to my siblings, Rachelle, Mario, and Angelo, for always understanding when I had

to say “no” to a birthday party or family event. Thank you for being excited about every

important milestone in my Ph.D. journey. And thank you to Sam, Sara, and Caroline, for

your encouragement along the way. I could not have done it without your support. Thank

you to my parents, Beth and AJ, for helping in every way you knew how, including watching

your granddog, Bella, pretty frequently. Thank you for always listening, for always being

invested, and for always being in my corner. Thank you especially to my sister, Rachelle

Reed, Ph.D., for just “getting it” when I felt like nobody else did, reminding me that I am not

alone, and setting an example for what it looks like to be a woman in STEM. To my neices

and nephews - Leona, Addie Grace, AJ, Ellie, Graydon, and Madison - thank you for being

a light and for rooting Aunt Miss Catie on, even if you didn’t realize it. Thank you to my

grandpa, Mario Acitelli, Ph.D., for your constant support and excitement. I always enjoyed

hearing about your experiences as a graduate student, and I am so grateful to have had

such a great role model. I hope that I make you proud. And to Bella, thank you for helping

me get through it all and for loving me no matter what.

To all of the teachers that helped me get to where I am today, I cannot thank you enough.

To the first math teacher that really challenged me, Trish Wendover, thank you for helping

me see the beauty of math and for seeing something special in that awkward fourth grader

in your classroom. To my high school teachers, Cat Jordan and Joanne Winters, you were

instrumental in ensuring a solid mathematical foundation and a love for the subject. You

gave me incredible examples of how to teach and inspired me to do just that. To John Griggs,

thank you for believing in me since day one and for providing me with my first teaching

opportunity that would set me on the path to doing what I love most. Thank you to my

coworkers from my high school teaching days, for helping to shape me into the educator I

am today. And to all of my other teachers and professors along the way - thank you.

Thank you to the other members of this Ph.D. program at NC State. You each are an

iv

inspiration, and you kept me going. I appreciate all the helpful conversations, both about

math and otherwise, and I could not have done it without you all. In particular, thank you to

Michael, Ben, and Dana, for reminding me to take breaks and to have a little fun. And thank

you to my “non-math” support system of friends. You all kept me grounded and helped

me navigate the emotional ride of graduate school. In particular, thank you to Carolyn and

Kassidy, for always uplifting me, cheering me on, and reminding me that I can do it. I am

forever grateful.

Thank you to the other Mathematics Education Masters and Ph.D. students, for wel-

coming me into your program and classes with open arms and minds. I appreciate all the

pedagogical conversations, and I am grateful for your excitement about - and passion for -

education.

Thank you to Panera Bread and Starbucks, for providing me with the spaces in which I

was most productive. To the employees, thank you for your kindness and your interest in

my work. And for the never-ending supply of brain fuel in the form of coffee.

Lastly, thank you to North Carolina State University and the Department of Mathematics,

for letting me call you home for eight academic years - some of the best of my life. Go Pack!

v

TABLE OF CONTENTS

LIST OF FIGURES . ix

Chapter 1 Introduction . 1
1.1 A Brief Introduction to Public Key Cryptography . 1
1.2 Proposed Course and Course Design Aspects . 2

1.2.1 Intended Audience . 4
1.2.2 The Use of Python and SageMath . 4
1.2.3 Content Organization . 6
1.2.4 Course Objectives . 8
1.2.5 Comments on the Text . 9

Chapter 2 A Review of Linear Algebra . 10
2.1 Vector Spaces . 10
2.2 Matrix Algebra . 20
2.3 Systems of Linear Equations . 30
2.4 Matrix Inverses . 36
2.5 Determinants . 42
2.6 Inner Product Spaces . 46
2.7 The Gram Schmidt Algorithm . 52
2.8 Exercises . 59
2.9 Computer Exercises . 62

Chapter 3 A Review of Abstract Algebra . 64
3.1 Basic Arithmetic . 64
3.2 Euclidean Algorithm . 67
3.3 Modular Arithmetic . 69
3.4 Groups . 70
3.5 Rings . 76
3.6 Fields . 82
3.7 Exercises . 86
3.8 Computer Exercises . 87

Chapter 4 Pre-Quantum Cryptosystems and their Computational Hard Problems 88
4.1 RSA . 88

4.1.1 The RSA Problem . 91
4.2 Elgamal . 92

4.2.1 Discrete Logarithm Problem . 92
4.2.2 Diffie-Hellman Problem . 92

4.3 Knapsack . 96
4.3.1 The Subset-Sum Problem . 96

4.4 Exercises . 100
4.5 Computer Exercises . 100

vi

Chapter 5 Introduction to Lattices . 103
5.1 Definition and Basic Properties . 103
5.2 Lattice Hard Problems . 109

5.2.1 The Shortest Vector Problem . 109
5.2.2 The Closest Vector Problem . 112

5.3 Babai’s Algorithm . 113
5.4 Exercises . 122
5.5 Computer Exercises . 123

Chapter 6 Lattice-Based Public Key Cryptosystems . 124
6.1 GGH . 124
6.2 NTRU . 129

6.2.1 Congruential Public Key Cryptosystem . 129
6.2.2 NTRUEncrypt . 132
6.2.3 NTRUEncrypt with Lattices . 138

6.3 Exercises . 141
6.4 Computer Exercises . 143

Chapter 7 Lattice Reduction Algorithms . 146
7.1 2−D Gaussian Lattice Reduction . 146
7.2 LLL Lattice Reduction Algorithm . 152
7.3 Exercises . 158
7.4 Computer Exercises . 158

Chapter 8 The LLL and Lattice-Based Cryptosystems . 160
8.1 LLL on the Knapsack . 160
8.2 LLL on the GGH . 162
8.3 LLL on the Congruential Public Key Cryptosystem 164
8.4 LLL on the NTRU . 165
8.5 Computer Exercises . 167

Chapter 9 Signature Schemes . 169
9.1 RSA Signature Scheme . 170
9.2 GGH Signature Scheme . 171
9.3 NTRU Signature Scheme . 173
9.4 Computer Exercises . 177

Chapter 10 Blind Signature Schemes . 179
10.1 RSA Blind Signature Scheme . 180
10.2 GGH Blind Signature Scheme . 182
10.3 NTRU Blind Signature Scheme . 184
10.4 Computer Exercises . 188

Chapter 11 Zero Knowledge Proofs . 190
11.1 Discrete Logarithm Zero Knowledge Proof . 191
11.2 GGH Zero Knowledge Proof . 192

vii

11.3 NTRU Zero Knowledge Proofs . 195
11.4 Computer Exercises . 199

viii

LIST OF FIGURES

Figure 2.1 linearly dependent vectors in R2 . 17
Figure 2.2 linearly independent vectors in R2 . 17
Figure 2.3 e1 and e2 form a basis for R2. 19
Figure 2.4 A geometric interpretation of determinant in two dimensions. 44

Figure 5.1 L = {a1v1+a2v2 : a1, a2 ∈Z} ⊂R2 . 104
Figure 5.2 A fundamental domainF =F (v1, v2) ofL 107
Figure 5.3
⋃

v∈L
F +v= {x+v : x ∈F} covers R2. 108

Figure 5.4 v and v′ are shortest vectors inL . 111
Figure 5.5 v ∈L is the closest lattice vector to the target vector w ∈R2. 112
Figure 5.6 The closest lattice point v to target point w is also the closest vertex

of w’s surrounding parallelogram. 114
Figure 5.7 v ∈L is the closest lattice point to target point w ∈R2, but v′ ∈L is

the closest parallelogram vertex to w. 115

Figure 7.1 L = span{v1, v2} . 148
Figure 7.2 The same latticeL with old v1 and new v2. 149
Figure 7.3 L with swapped v1 and v2 . 150
Figure 7.4 L with good basis v1 and v2 . 151

ix

CHAPTER

1

INTRODUCTION

1.1 A Brief Introduction to Public Key Cryptography

Two entities, call them Alice and Bob, want to exchange information without anyone else

knowing what it is that they are saying. They encrypt messages to send to each other, and

they decrypt the messages that they receive from one another. The encrypted message

is called the ciphertext and the decrypted message is called the plaintext. In other words,

the plaintext is the message they want to send, and the ciphertext is the message that

actually gets sent. For a long time, Alice and Bob did this by agreeing on a secret key that

their adversary (or eavesdropper), Eve, did not have. This meant that Alice would encrypt

a message using a secret key and send it to Bob. Bob would use that same secret key to

decrypt the message and recover the plaintext. Since Eve did not know the secret key, she

was unable to decrypt a ciphertext that she intercepted. We have just described a private key

cryptosystem. In these cryptosystems, Alice and Bob know the same amount of information.

For this reason, these ciphers are known as symmetric ciphers.

In 1976, Whitfield Diffie and Martin Hellman introduced the idea of public key cryp-

tography and made major contributions to the field. [8] A public key cryptosystem has

the advantage that anyone can encrypt a message, but only the key creator can decrypt it.

1

Let us assume now that Bob is sending messages to Alice, and Alice needs to decrypt the

ciphertext messages to recover the plaintext messages. In a public key cryptosystem, Alice

has a private key that only she knows and a public key that everyone knows. Bob uses the

public key to encrypt a message to send to Alice, and Alice uses the private key to decrypt

it. Note that anyone can encrypt a message, but only Alice can decrypt it. Eve has a hard

time decrypting an intercepted ciphertext, because she does not have the private key. Since

Alice and Bob know different amounts of information in a Public Key Cryptosystem, this

idea is called an asymmetric cipher.

A public-key cryptographic scheme has three parts:

• Key generation: Given a security parameter, this outputs a public key and a private

key.

• Encryption algorithm: This takes a public key and a plaintext message as input and

outputs a ciphertext message.

• Decryption algorithm: This takes as input a private key and ciphertext message and

outputs a plaintext message.

We will focus solely on public key cryptography, with an emphasis on more modern

mathematical constructions.

1.2 Proposed Course and Course Design Aspects

Secure Public Key Cryptosystems have an encryption algorithm that is easy to compute

with the private key and a decryption algorithm that is hard to compute with only the

public key. This idea is known as a one-way function. In other words, the security of Public

Key Cryptosystems relies on the hardness of their underlying problems. For example, the

RSA Cryptosystem [25], which is the most widely used encryption scheme, relies on the

hardness of integer factorization.

It is easy to multiply two prime numbers, say 263 and 839, and get a composite number,

220, 657. It is much more difficult to begin with the composite number 220, 657, and factor

it into 263×839. This is the integer factorization problem. When numbers are small, it is not

difficult to solve by brute force. However, the largest known prime number has 24,862,048

digits. [17] You can imagine how this gets difficult quickly.

There is currently not a way for a classical computer to find the prime factors of a

composite number in less than exponential time, as classical computers cycle through

cases individually, testing one number at a time. However, Shor’s algorithm factors integers

on a quantum computer in polynomial time. [26]

2

As soon as quantum computers have enough stable quantum bits (qubits), many known

cryptosystems will become insecure and therefore pose a security risk. Companies like IBM,

Google, and Microsoft have invested billions of dollars into the research and development

of quantum computers, racing to achieve quantum supremacy. In fact, IBM promises a

1000 qubits quantum computer by 2023. [28] This gives rise to a need for quantum-safe - or

at least quantum-resistant - cryptosystems, and constructions based on integer lattices

(defined below and discussed in Section 5.1) are proving promising. [21] The National

Security Agency affirms that constructions of cryptosystems based on hard lattice problems

are “among the most efficient post-quantum designs.” [20]

Definition 1 (Integer Lattice).

Let v1, v2, v3, . . . , vn ∈Zn be a set of linearly independent vectors. The integer lattice (or integral

lattice) is given by

L =
�

a1v1+a2v2+a3v3+ · · ·+an vn : ai ∈Z, 1≤ i ≤ n
	

.

Lattice-based cryptography is more relevant now than ever, and undergraduate stu-

dents need to be exposed to it as early as possible. Until now, undergraduate mathematics

cryptography courses have focused largely on historical cryptosystems rather than more

modern ones. Aside from the obvious value of learning the history of cryptography, mathe-

matics educators often use this type of course setting as a catch-all class for applications

of Abstract Algebra, as many early cryptosystems make use of number theory and alge-

braic structures. The reason for the omission of more modern systems is likely twofold:

many of the modern hardness proofs involve advanced graduate level mathematics, and

cryptanalysis is deeply rooted in computer programming. This is why the vast majority

of university cryptography courses are housed in graduate Computer Science or related

programs and assume prior computer programming knowledge. Modern cryptography

courses in mathematics departments are typically saved for graduate studies. However,

much of this content is accessible to undergraduate students who have taken a course in

Linear Algebra.

The course that we are proposing is designed as an introductory course for under-

graduates to explore modern cryptography from both theoretical and application-based

perspectives. Students will gain practical experience through their interactions with the

course content, the SageMath Computer Algebra System, and Python Programming. The

main goal of this course is to make introductory lattice-based cryptography accessible to

undergraduate students in mathematics, computer science, engineering, and other related

fields. By engaging students with the theoretical and practical applications of modern

3

cryptographic algorithms, students will be prepared to enter careers in related fields upon

graduation.

1.2.1 Intended Audience

The basic study of modern lattice-based cryptography requires that students have a back-

ground in linear algebra and familiarity with basic proof structures. [14] This content is,

however, reviewed as needed in the proposed course. For example, prior to even defining a

lattice, there is a review of vector spaces from linear algebra. Students may also benefit from

a familiarity with some elements of abstract algebra and number theory. However, this is a

self-contained introductory course, and necessary background from the aforementioned

content is included. While prior programming experience may also be beneficial, it is not

required, as this course assumes no such prior knowledge.

Lattice-based cryptography has direct implications to cybersecurity, and students in

a variety of academic programs may have interest in studying this closely. The Joint Task

Force in Cybersecurity Education lists eight basic knowledge areas that all post-secondary

Cybersecurity Curricula should include. [7]None of these main areas is mathematics. Each

knowledge area is divided into knowledge units, and each knowledge unit is further divided

into topics. One of these topics is devoted to “mathematical background” and consists

of basic abstract algebra concepts and pre-quantum encryption algorithms. Knospe’s A

Course in Cryptography [16] asserts that “cryptography can easily be underestimated by

mathematicians,” as they do not consider the whole picture of the cryptosystem, but that

“algebra can be a major stumbling block” for non-math majors. The biggest pitfall to current

cryptography courses is the failure to recognize the complexity of cryptography and the

depth of its mathematical foundation. Thus, students must understand the underlying

mathematical theory. Since modern cryptography is based on computations that are im-

practical to do by hand, students must also know how to practically implement a variety

of algorithms on a computer program. An Introduction to Cryptography with Python will

approach the content from both angles, providing students from various programs the

opportunity to explore modern cryptography.

1.2.2 The Use of Python and SageMath

Undergraduates in mathematics programs are typically exposed to computer programming

by way of MATLAB, Mathematica, or Maple, if at all. It is common that mathematics and

mathematics education majors take at most one introductory course in a computer lan-

guage. They do not get the same type of practical or hands-on experience with applications

4

as their counterparts in computer science related fields, as mathematics degree programs

are often more grounded in theory. Undergraduates in computer science, computer engi-

neering, computer software development, cybersecurity, etc. (CS) begin writing code as

soon as they enter college. It is also common that CS majors take the standard Calculus

sequence and Linear Algebra; however, they do not get the same type of theoretical experi-

ence later on as their peers in mathematics programs. Extending the National Research

Council’s recommendation of a balance in conceptual and procedural aspects of K-12

mathematics curricula, [9] this post-secondary course will employ a parallel development

of the theory behind cryptographic systems and the implementation of their algorithms.

The choices of Python and SageMath are purposeful. SageMath, or Sage for short, is

a powerful Python-based Computer Algebra System that allows students to explore the

basics of Python and computer programming in general. It also provides a bridge for the

algebraic gaps that often occur for students. Python was originally designed by Guido van

Rossum for readability. [22] Compared to other languages, it is easy to teach, easy to learn,

and easy to understand because of its simple syntax. Historically, the first program one

writes when learning a new language is “Hello World.” The Python code to do this is

print(‘‘Hello World’’)

while the Java code is

class Hello {
public static void main (String[] args) {

System.out.printIn(“Hello World”);
}
}

Java programming does not lend itself nicely to cryptography from a syntactical stand-

point. Programmers spend more time trying to figure out nuances of the code than they

do understanding the algorithms. A similar argument can be made for other languages as

well. In a 2009 experimental study on the effectiveness of Maple Worksheets for Student

Cryptography Exploration, it was found that students with more programming background

opted to use languages like C and C++ for their projects, but they were unable to replicate

the coding in those less forgiving environments. [19] It is important to note that Maple is

used in educational settings, but not often in industry outside of engineering.

In designing a curriculum, it is necessary to consider the applicability of what students

learn to related careers [7], and Python is one of the most widely used computer languages

worldwide. As one of the most widely used languages, Python is compatible with a variety

5

of different operating systems and it is both free to use and open source, so it is accessible

to all. It is also computationally powerful, as it has built-in support for exact arithmetic of

large numbers. [22]

To supplement the use of Python, this course will also employ the power of SageMath,

a Python-based, open source computer algebra system. It allows students to manipulate

algebraic expressions and learn the language of Python along the way. Sage has many built-

in functions that allow users to compute things rather quickly. Additionally, students who

do not have a strong algebraic background are not prevented from course participation. In

fact, bridging the algebraic gap could allow for more active participation in the classroom

and, ultimately, further advances in the field. Students can focus on the concepts and

applications without getting “hung up” on the algebra. In this course, Sage is used as a

gateway to Python.

1.2.3 Content Organization

This new Introduction to Cryptography course uses an integrated approach via SageMath

and Python, introducing both necessary mathematical and programming background as

needed. For example, students at this stage of their mathematical careers are undoubtedly

familiar with computing the greatest common divisor (gcd) of two integers. This is one of

the first codes students will write in this course. Leveraging this prior knowledge in the

beginning of the semester to explore programming loops allows students to both under-

stand the structure and appreciate the power of a loop. The curriculum includes sample

algorithms and ready to implement Python and Sage code. Students are also presented

with general algorithms and asked to write corresponding programs as exercises.

After working through their own computer code, students will then be provided with

actual Python code, so that they can implement it immediately. Since there are many ways

to write a code that will take in two integers and return their gcd, for example, students

can then engage in rich discussion around the content. In addition to standard practice

exercises at the conclusion of each section, there are collaborative and coding exercises

serving as embedded assessments that challenge students to use what they have learned to

make their current code more efficient and to develop new code.

Another way that this course activates prior knowledge to build connections is through

motivating examples and proof structures. For example, while the proof of the Cauchy-

Schwarz Inequality for dot product in Euclidean Space can be done in a variety of ways,

the method chosen in the background Linear Algebra chapter of this course hinges on the

relationship between the discriminant and the roots of a quadratic function. This theme

is carried throughout the course, as students are expected to draw on their linear algebra

6

background to build up to lattice reduction algorithms. One of the first cryptographically

relevant algorithms students encounter is the Gram-Schmidt orthogonalization algorithm,

a standard algorithm for any first-year linear algebra course. The Gram-Schmidt Orthog-

onalization Algorithm serves as the basis for algorithms that students encounter in this

course, most notably the LLL algorithm of Lenstra, Lenstra, and Lovász. [18]

The course begins with an overview of basic linear algebra, following [2] and [12], and

basic number theory, following [10] and [15]. Mathematical content is introduced as it is

needed for successful progression in the course. Since the only required prerequisite is

an introductory linear algebra course, concepts such as polynomial rings are introduced

just before studying the NTRU Public Key Cryptosystem, for example. Concepts are intro-

duced at a level of rigor that is consistent with what is necessary for understanding their

cryptographic applications. [14]

A written curriculum accompanies the course. The beginning workings of this curricu-

lum are presented in this dissertation and will continue to develop into a textbook. Each

section in the written curriculum contains motivating examples, an encryption scheme, a

decryption scheme, an adversarial attack scheme, algorithms, pseudocode, Python and

Sage code, worked examples, and practice problems. Corresponding signature schemes,

blind signature schemes, and zero knowledge proofs are discussed in their own chapters.

In creating coding exercises, this course adopts the notion that practice exercises should

contain problems that allow for computational practice and conceptual exploration. Algo-

rithms and given blocks of code are presented in their entirety.

There are four possible tracks for teaching cryptography – mathematics, computer

science, computer engineering, and information security – and they are typically disjoint.

In order to merge these four tracks, cryptography courses should include the introduction

of mathematical background and classical algorithms without a computer, step-by-step

presentation of algorithms and pseudocode, and actual code implementation. Assigned

problems should allow students to work through computations by hand before turning to

a computer program so that they better understand the mathematical intricacies of the

algorithm.

The exercises in the text for this introductory cryptography course are structured in a

way that resembles this idea. The first exercises in each section are designed to be completed

by hand, and they precede coding exercises for the same concepts and cryptosystems. The

intention is that students gain a deep understanding of, and appreciation for, the power of

the algorithm. As mentioned, this thesis includes course notes that will later be restructured

into a textbook.

7

1.2.4 Course Objectives

The purpose of this course is to familiarize undergraduate students with lattice-based

cryptography and prepare them for associated careers. By the end of the course, students

will be able to make sense of cryptographic encryption and decryption algorithms based

on (computationally) hard lattice problems and implement them in Python and SageMath.

Computational hardness refers to the efficiency of the algorithm.

This course explores hard problems based on lattices. While they will be discussed in

detail later, it is worth a preview now, as it illustrates the course progression. Two of the

known hard problems with lattice constructions are the Shortest Vector Problem (SVP) and

the Closest Vector Problem (CVP), and they are closely related. Following Hoffstein, Pipher,

and Silverman [14], we will define the SVP and CVP as follows:

Problem 1.2.1 (The Shortest Vector Problem).

Find a shortest nonzero vector in latticeL . In other words, find 0 ̸= v ∈L such that ∥v∥ is

minimized.

Problem 1.2.2 (The Closest Vector Problem).

Given a vector w ∈Rn that is not inL , find a vector v ∈L that is closest to w. In other words,

find a vector v ∈L that minimizes the Euclidean norm ∥w−v∥.

Students are first introduced to the 2-dimensional version of the SVP and the CVP, so

that they are able to visualize the effect of orthogonality on the solvability of these problems.

They will explore the relationship of a fundamental lattice domain to the CVP in order to

describe the conditions under which Babai’s Algorithm actually finds the closest vector.

The closest lattice vector to a non-lattice target point is the closest vertex of a fundamental

domain of a lattice when the fundamental domain meets specific criteria, of which students

will be able to identify. This is discussed in detail in Section 5.3. This translates directly to

the construction of the GGH public key cryptosystem. Alice is able to decrypt a ciphertext

using the private key, formed by reasonably orthogonal lattice vectors, while Eve can likely

not decrypt it with only the public key, formed by reasonably parallel vectors. As their

first application of studying lattices, students will be able to describe both problems and

solve them in low dimension by hand using 2−D Gaussian Lattice Reduction and Babai’s

Algorithm before using Sage or Python to extend these ideas to higher dimensions. [3]

Much of the known lattice-based cryptography hinges on the hardness of the SVP and CVP

and associated problems, so students should become intimately familiar with them via

two-dimensional visualizations, worked examples, practice exercises, and collaborative

work.

8

A natural next thought for students is that reasonably parallel vectors ought to be

able to be turned into reasonably orthogonal ones. The progression of An Introduction to

Cryptography with Python allows students to think creatively about next steps. Drawing on

prior knowledge, students should recognize that the first exposure they had to an algorithm

that mimics lattice basis reduction was the Gram-Schmidt Algorithm from their linear

algebra course and the review section. Much of the coursework here requires that students

have Gram-Schmidt mastered from both a theoretical standpoint and a practical standpoint.

In fact, the LLL algorithm of Lenstra, Lenstra, and Lovász calls the Gram-Schmidt function

to execute. The LLL algorithm is a lattice reduction algorithm that inputs a random basis

and outputs an LLL basis. Though this is discussed in detail later in the course, roughly

speaking, an LLL basis is a basis that can solve what is known as the approximate SVP.

Students in this course will be able to understand theoretically and implement practically

the LLL algorithm to reduce a “bad” basis to a “good” basis in order to solve the SVP, CVP,

and closely related problems in a reasonable amount of time. Here,“reasonable” refers to

polynomial time.

1.2.5 Comments on the Text

What follows is a collection of course notes, or portions of the written curriculum, for

the aforementioned course. The intention is for these notes to form the foundation for a

textbook. It is important to note that this is a working document. We do not claim that it is

complete, and we intend to continue to rework and revise aspects of this written curriculum

as the course runs in subsequent semesters.

Cryptography is concerned with the sending and receiving of messages. The goal is

to get a message from point A to point B without an eavesdropper (E) figuring out what

the message says. The notion of A to B without E evolved into “Alice" to “Bob" without

“Eve.” Throughout the following notes, we will follow convention and use Alice (she/her),

Bob (he/him), and Eve (she/her) for the message recipient, sender, and eavesdropper,

respectively. Signature schemes involve the signing of a document by Samantha (she/her),

and the verification of the signature by Victor (he/him). Likewise, zero knowledge proof

protocols involve the prover, Peggy (she/her), attempting to prove that she knows some

information without the verifier, Victor (he/him), knowing the information.

The goal of this course is for students to becoming familiar with lattice-based cryptosys-

tems. Since a lattice is very similar to a vector space, it is necessary that students review

their linear algebra notions of vector spaces. For this reason, we begin with a linear algebra

review.

9

CHAPTER

2

A REVIEW OF LINEAR ALGEBRA

This section is composed of well-known definitions and results in Linear Algebra. They

appear in a number of introductory textbooks. See, for example, [2] or [12], which we have

used here.

2.1 Vector Spaces

While it is not necessary to memorize the ten axioms of vector spaces, it is important to

familiarize yourself with the properties before moving forward.

Definition 2 (Real Vector Space).

Let V be a set equipped with addition as ⊕ and scalar multiplication as ⊙. Then (V ,⊕,⊙) is a

real vector space if for all u, v, w ∈V and for all a , b ∈R,

1. (Closure under addition) u⊕v ∈V

2. (Commutativity of addition) u⊕v= v⊕u

3. (Associativity of addition) (u⊕v)⊕w= u⊕ (v⊕w)

4. (Additive identity) There exists a 0 ∈V such that u⊕0= u= 0⊕u

5. (Additive inverse) There exists a −u ∈V such that u⊕−u= 0=−u⊕u

10

6. (Closure under scalar multiplication) a ⊙u ∈V

7. (Multiplicative identity) There exists a 1 ∈R such that 1⊙u= u

8. (Associativity of scalar multiplication) (a b)⊙u= a ⊙ (b ⊙u)

9. (Distributivity) a ⊙ (u⊕v) = a ⊙u⊕a ⊙v

10. (Distributivity) (a + b)⊙u= a ⊙u⊕ b ⊙u

Example 2.1.1 (Not a Vector Space).

Let V =Rwith the following addition and multiplication. For all a , b ∈R and scalars k ∈R,

a ⊕ b = 4a +4b k ⊙a = k a .

Then, (V ,⊕,⊙) is not a vector space since, for example, axiom 3 does not hold. Observe that

(1⊕2)⊕3= (4 ·1+4 ·2)⊕3

= 12⊕3

= 4(12) +4(3)

= 60

but that

1⊕ (2⊕3) = 1⊕ (4 ·2+4 ·3)

= 1⊕20

= 4(1) +4(20)

= 84

Since (a ⊕ b)⊕ c ̸= a ⊕ (b ⊕ c) for all a , b , c ∈R , (V ,⊕,⊙) is not a real vector space

Example 2.1.2 (Vector Space [2]).

Let V = R2 =

¨�

u1

u2

�

: u1, u2 ∈R

«

with addition and multiplication defined below. For all

u, v ∈R2 and k ∈R,

u⊕v=

�

u1

u2

�

⊕

�

v1

v2

�

=

�

u1+ v1+1

u2+ v2+1

�

k ⊙v= k ⊙

�

v1

v2

�

=

�

k v1+k −1

k v2+k −1

�

.

We will show that (V ,⊕,⊙) is a real vector space by checking each of the axioms.

11

1. u⊕v ∈V since u⊕v=

�

u1

u2

�

⊕

�

v1

v2

�

=

�

u1+ v1+1

u2+ v2+1

�

is a vector in R2.

2. u⊕v= v⊕u because u⊕v=

�

u1+ v1+1

u2+ v2+1

�

and v⊕u=

�

v1+u1+1

v2+u2+1

�

. By commutativity

of addition of real numbers, these two statements are equal.

3. We want to show that (u⊕v)⊕w= u⊕ (v⊕w) for all u, v, w ∈V . Considering each side

separately, observe that

(u⊕v)⊕w=

�

u1+ v1+1

u2+ v2+1

�

⊕

�

w1

w2

�

=

�

(u1+ v1+1) +w1+1

(u2+ v2+1) +w2+1

�

=

�

u1+ v1+w1+2

u2+ v2+w2+2

�

and

u⊕ (v⊕w) =

�

u1

u2

�

⊕

�

v1+w1+1

v2+w2+1

�

=

�

u1+ (v1+w1+1) +1

u2+ (v2+w2+1) +1

�

=

�

u1+ v1+w1+2

u2+ v2+w2+2

�

4. We want to show that there exists a 0V ∈R2 such that u⊕0V =u= 0⊕u for all u ∈V .

That is, we want to find y such that u⊕y= u. Note that u⊕y=

�

u1+ y1+1

u2+ y2+1

�

. We want

this to equal

�

u1

u2

�

. Equating these gives that y1 =−1 and y2 =−1. So, there does exist a

0V ∈R2 such that u⊕0V = u. Namely, 0V = y=

�

−1

−1

�

. One can verify that 0v ⊕u= u as

well.

5. We want to show that there exists a w ∈ R2 such that u⊕w = 0V . That is, we want

to find w1, w2 ∈ R such that

�

u1

u2

�

⊕

�

w1

w2

�

=

�

−1

−1

�

. Setting

�

u1+w1+1

u2+w2+1

�

=

�

−1

−1

�

yields

w=

�

−2−u1

−2−u2

�

. So, the additive inverse of u is

�

−2−u1

−2−u2

�

.

12

6. k ⊙v ∈V since k ⊙v= k ⊙

�

v1

v2

�

=

�

k v1+k −1

k v2+k −1

�

is a vector in R2.

7. 1⊙v= 1⊙

�

v1

v2

�

=

�

1v1+1−1

1v2+1−1

�

=

�

v1

v2

�

= v.

8. We want to show that (a · b)⊙v= a ⊙ (b ⊙v) for all a , v ∈R. We see that

(a b)⊙v=

�

a b v1+a b −1

a b v2+a b −1

�

and

a ⊙ (b ⊙ v) = a ⊙

�

b v1+ b −1

b v2+ b −1

�

=

�

a (b v1+ b −1) +a −1

a (b v2+ b −1) +a −1

�

=

�

a b v1+a b −1

a b v2+a b −1

�

9. We want to show that k ⊙ (u⊕v) = k ⊙u⊕k ⊙v for all u, v ∈ and k ∈R. Observe that

k ⊙ (u⊕v) = k ⊙

�

u1+ v1+1

u2+ v2+1

�

=

�

k (u1+ v1+1) +k −1

k (u2+ v2+1) +k −1

�

=

�

k u1+k v1+2k −1

k u2+k v2+2k −1

�

and

k ⊙u⊕k ⊙v= k ⊙

�

u1

u2

�

⊕k ⊙

�

v1

v2

�

=

�

k u1+k −1

k u2+k −1

�

⊕

�

k v1+k −1

k v2+k −1

�

=

�

k u1+k −1+k v1+k −1+1

k u2+k −1+k v2+k −1+1

�

=

�

k u1+k v1+2k −1

k u2+k v2+2k −1

�

.

10. Lastly, we want to show that (a +b)⊙v= (a ⊙v)⊕ (b ⊙v) for all a , b ∈R and v ∈V . We

13

see that

(a + b)⊙v=

�

(a + b)v1+ (a + b)−1

(a + b)v2+ (a + b)−1

�

=

�

a v1+ b v1+a + b −1

a v2+ b v2+a + b −1

�

and

(a ⊙v)⊕ (b ⊙v) =

�

a v1+a −1

a v2+a −1

�

⊕

�

b v1+ b −1

b v2+ b −1

�

=

�

(a v1+a −1) + (b v1+ b −1) +1

(a v2+a −1) + (b v2+ b −1) +1

�

=

�

a v1+ b v1+a + b −1

a v2+ b v2+a + b −1

�

.

We now restrict our discussion of vector spaces to Euclidean n−space, orRn , for positive

integers n . Addition in Rn is given by













x1

x2
...

xn













⊕













y1

y2
...

yn













=













x1

x2
...

xn













+













y1

y2
...

yn













=













x1+ y1

x2+ y2
...

xn + yn













,

and scalar multiplication, for a ∈R, is given by

a ⊙













x1

x2
...

xn













= a ·













x1

x2
...

xn













=













a x1

a x2
...

a xn













.

Remark 2.1.1. From now on, we will use a ·u (or simply a u) to denote scalar multiplication

and u+v to denote vector addition.

Example 2.1.3. Let v=







1

2

3






.

Python and Sage take vectors as rows. We must keep this in mind as we work.

To enter v as a row vector into Python,

import numpy as np

14

v = np.array([1,2,3])

To enter v as a row vector into SageMath,

sage: v = vector([1,2,3])

Now, let w=







4

5

6






. Find v+w and −2 ·w.

sage: w = vector([4,5,6])
sage: v + w
(5, 7, 9)

sage: -2*w
(-8, -10, -12)

So, v+w=







5

7

9






and −2 ·w=







−8

−10

−12






.

Definition 3 (Real Subspace).

If S ⊆Rn is also a vector space with the same addition and scalar multiplication, then S is

called a subspace.

Theorem 2.1.1. A nonempty subset of Rn is a subspace if and only if it is closed under

addition and scalar multiplication. That is, a nonempty S ⊂Rn is a subspace if and only if

u+v ∈ S and a u ∈ S for all u, v ∈ S and for all a ∈R.

We leave the proof as an exercise for the reader.

Remark 2.1.2. From now on, we refer to any subspace ofRn as simply a vector space. Likewise,

when we say “vector space,” it is safe to assume that we are talking about a subspace of Rn .

Definition 4 (Linear Combination).

Let V be a vector space, and let v1, v2, . . . vk ∈V . Any vector of the form a1v1+a2v2+ · · ·+ak vk ,

where a1, a2, . . . , ak ∈R, is called a linear combination of v1, v2, . . . vk .

Definition 5 (Span).

The set of all linear combinations is called the span of v1, v2, . . . vk and is denoted by

span{v1, v2, . . . vk }= {a1v1+a2v2+ · · ·+ak vk : a1, a2, . . . ak ∈R}.

15

Remark 2.1.3. span{v1, v2, . . . , vk } is a subspace of R n .

Remark 2.1.4. If span{v1, v2, . . . , vk }=V , we say

1. v1, v2, . . . , vk span V .

2. {v1, v2, . . . , vk } spans V .

3. V is spanned by v1, v2, . . . , vk .

4. V is the linear span of v1, v2, . . . , vk .

5. {v1, v2, . . . , vk } is a spanning set for V .

Definition 6 (Linear Independence and Dependence).

A set of vectors v1, v2, . . . vk ∈V is linearly independent if a1v1+a2v2+ · · ·+ak vk = 0 implies

that a1 = a2 = · · · = ak = 0. The set is linearly dependent if a1v1+a2v2+ · · ·+ak vk = 0 for

some nonzero scalar ai (1≤ i ≤ k).

Figure 2.1 shows two linearly dependent vectors in R2, namely

�

1

1

�

and

�

3

3

�

.

a1

�

1

1

�

+a2

�

3

3

�

=

�

0

0

�

�

a1+3a2

a1+3a2

�

=

�

0

0

�

This gives the system of equations and solution







a1+3a2 = 0

a1+3a2 = 0
=⇒ a1 =−3a2

So, there exists nonzero scalars a1 and a2 such that a1

�

1

1

�

+a2

�

3

3

�

=

�

0

0

�

. This means

that the two vectors are linearly dependent. In other words, these two vectors are linearly

dependent because the second is a scalar multiple of the first.

Figure 2.2 shows two linearly independent vectors in R2, namely

�

2

1

�

and

�

−1

3

�

.

16

a1

�

2

1

�

+a2

�

−1

3

�

=

�

0

0

�

�

2a1−a2

a1+3a2

�

This gives the system of equations and solution







2a1−a2 = 0

a1+3a2 = 0
=⇒ 2a1 = a2 and a1 =−3a2 =⇒ a1 = a2 = 0

Since the only solution to the system of equations is a1 = a2 = 0, these two vectors are

linearly independent. Notice that one is not a scalar multiple of the other.

Figure 2.1 linearly dependent vectors in R2 Figure 2.2 linearly independent vectors in R2

Remark 2.1.5. In Rn ,

• The zero vector 0 is linearly dependent.

• A single vector v is linearly independent if and only if v ̸= 0.

• Two vectors are linearly independent if and only if they are not scalar multiples of one

another.

• {v, 0} is linearly dependent for any vector v.

Theorem 2.1.2. Let T = {v1, v2, . . . , vn} ⊆Rn , and let S = {v1, v2, . . . , vn , vn+1} ⊆Rn . That is,

let T ⊆ S ⊆Rn . Then,

17

1. If T is linearly dependent, then S is linearly dependent. That is, a superset of a lin-

early dependent set is linearly dependent. In other words, you cannot make a linearly

dependent set independent by adding vectors to it.

2. If S is linearly independent, then T is linearly independent. That is, a subset of a linearly

independent set is linearly independent. In other words, you cannot make a linearly

independent set dependent by removing vectors.

3. If T is a spanning set forRn , then S is a spanning set for Rn .

Example 2.1.4. We will show an example of statement 2. Let T =

















1

0

0






,







0

0

1

















and S =

















1

0

0






,







0

1

0






,







0

0

1

















. Then T ⊆ S ⊆R3. For ease of notation, denote the vectors in S as {e1, e2, e3}.

We can see that S is linearly independent, because a1e1+a2e2+a3e3 = 0 ⇐⇒ a1 = a2 = a3 = 0.

So, T is also linearly independent.

Remark 2.1.6. S = {v1, v2, . . . , vn} ⊆Rn is linearly dependent if and only if there is at least one

vector vk ∈ S such that vk is a linear combination of the other vectors for some k = 1, 2, . . . , n.

That is, S is linearly dependent if and only if vk ∈ span{v1, v2, . . . , vk−1, vk+1, . . . , vn} for some

vk ∈ S.

Definition 7 (Basis).

A basis for a vector space V is a set of linearly independent vectors {v1, v2, . . . , vn} that span V .

Remark 2.1.7. We call {e1, e2, . . . , en}, as in Example 2.1.4, the standard basis forRn , where

ei has a 1 in the i th position and a 0 elsewhere (1 ≤ i ≤ n). Figure 2.3 shows the standard

basis for R2 in red.

18

Figure 2.3 e1 and e2 form a basis for R2.

Every real vector space has a basis. We can represent a vector space as a linear span of a

set of vectors, which can be linearly independent. In that way, we can now say that a real

vector space is {a1v1 + a2v2 + · · ·+ an vn : a1, a2, . . . , an ∈ R} for basis vectors v1, v2, . . . , vn .

This notion of a vector space is important moving forward, as we begin to discuss lattices.

Theorem 2.1.3. Any two bases of the same vector space have the same number of vectors.

Definition 8 (Dimension).

The dimension of a vector space V , denoted dim (V), is the number of basis vectors.

Example 2.1.5. dim (Rn) = n.

Example 2.1.6. Let V = span

















1

−1

2






,







2

1

−3






,







3

0

−1

















. Then dim (V) = 2, since the third

vector is the sum of the first two.

Proposition 2.1.1. {v1, v2, . . . , vn} is a basis for vector space V if and only if every w ∈V has

a unique representation as a linear combination of v1, v2, . . . , vn .

19

2.2 Matrix Algebra

We begin with some basic matrix notation that we will carry throughout the course. We

use capital letters to denote matrices. As you may have noticed, we use boldface lowercase

letters for vectors and non-boldface lowercase letters for scalars.

A =













a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn













• A ∈Rm×n

• A is an m ×n matrix with m rows and n columns.

• A has m ·n elements.

• ai j is in row i and column j .

• A has m row vectors and n column vectors.

• Row i of A is
�

ai 1 ai 2 . . . ai n

�

∈R1×n for 1≤ i ≤m .

• Column j of A is a j =













a1 j

a2 j
...

am j













∈Rm×1 =Rm for 1≤ j ≤ n . This course will default to

using vectors as columns, though other texts may use row vectors for cryptographic

applications. We will be sure to specify.

• “Column View” of A: A =
�

a1 a2 . . . an

�

, where a j ∈Rm for 1≤ j ≤ n .

Example 2.2.1 (Matrices in Python and Sage).

Let A =







1 2 3

4 5 6

7 8 9






.

To enter A into Python,

import numpy as np

A = np.array([[1,2,3],[4,5,6],[7,8,9]])

20

To enter A into SageMath,

sage: A = Matrix([[1,2,3],[4,5,6],[7,8,9]])

To extract, for example, the first column or the first row of A in Sage, we can do the

following:

sage: A[:,0]
[1]
[4]
[7]

sage: A[0,:]
[1 2 3]

Note that Python and Sage both begin their indexing at 0, not at 1.

Definition 9 (Equality of Matrices).

Two matrices are equal if they are the same size and have all corresponding equal entries.

That is, A = B if A, B ∈Rm×n with ai j = bi j for all 1≤ i ≤m and 1≤ j ≤ n.

Operations with Matrices: Let A, B ∈Rm×n and α ∈R.

• Addition: C = A+B has entries ci j = ai j + bi j , 1≤ i ≤m , 1≤ j ≤ n .

– Column View: C =
�

a1+b1 a2+b2 . . . an +bn

�

.

– Zero Matrix: 0m×n ∈Rm×n has all entries equal to 0, and A+0m×n = 0m×n+A = A.

• Scalar Multiplication: M = αA has elements mi j = αai j , 1 ≤ i ≤m , 1 ≤ j ≤ n for

α ∈R.

– Column View: M =
�

αa1 αa2 . . . αan

�

.

– Zero Matrix: 0 ·A = A ·0= 0m×n .

Example 2.2.2 (Matrix Algebra).

Let A =

�

1 2 3

4 5 6

�

and B =

�

1 −3 5

−2 4 −6

�

. Find A−2B .

21

Column View: Denote A =
�

a1 a2 a3

�

and B =
�

b1 b2 b3

�

. Then

A−2B =
�

a1−2b1 a2−2b2 a3−2b3

�

=

��

1

4

�

−2 ·

�

1

−2

� �

2

5

�

−2 ·

�

−3

4

� �

3

6

�

−2 ·

�

5

−6

��

=

�

−1 8 −7

8 −3 18

�

Element View: Denote A =

�

a11 a12 a13

a21 a22 a23

�

and B =

�

b11 b12 b13

b21 b22 b23

�

. Then

A−2B =

�

a11−2 · b11 a12−2 · b12 a13−2 · b13

a21−2 · b21 a22−2 · b22 a23−2 · b23

�

=

�

1−2(1) 2−2(−3) 3−2(5)

4−2(−2) 5−2(−4) 6−2(−6)

�

=

�

−1 8 −7

8 −3 18

�

We can compute this in Sage as follows:

sage: A = Matrix([[1,2,3], [4,5,6]])
sage: B = Matrix([[1,-3,5], [-2,4,-6]])
sage: A - 2*B
[-1 8 -7]
[8 -3 18]

It is done very similarly in Python:

import numpy as np

A = np.array([[1,2,3],[4,5,6]])
B = np.array([[1,-3,5],[-2,4,-6]])

print(A-2*B)

[[-1 8 -7]
[8 -3 18]]

22

Properties of Matrix Operations: For A, B , C ∈Rm×n and α,β ∈R, we have the following:

• (Commutativity of Addition) A+B = B +A

• (Associativity of Addition) A+ (B +C) = (A+B) +C

• (Zero Matrix or Additive Identity) A+0m×n = 0m×n +A = A

• (Commutativity of Scalar Multiplication) α ·A = A ·α

• (Associativity of Scalar Multiplication) α(β ·A) = (αβ) ·A

• (Distributivity) α(A+B) =α ·A+α ·B and (α+β) ·A =α ·A+β ·A

Remark 2.2.1. Rm×n with element-wise addition and scalar multiplication is a vector space.

Matrix-Vector Multiplication: If A ∈Rm×n , x ∈Rn , then Ax ∈Rm , and we can write Ax as a

linear combination of the columns of A with coefficients from x:

Ax=













a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

























x1

x2
...

xn













= x1













a11

a21
...

am1













+ x2













a12

a22
...

am2













+ · · ·+ xn













a1n

a2n
...

amn













.

Column View: For A =
�

a1 a2 . . . an

�

,

Ax= x1a1+ x2a2+ · · ·+ xn an .

Example 2.2.3 (Matrix-Vector Multiplication).

Let A =

�

1 2 3

4 5 6

�

and x ∈R3. Then

Ax=

�

1 2 3

4 5 6

�







x1

x2

x3






= x1

�

1

4

�

+ x2

�

2

5

�

+ x3

�

3

6

�

=

�

x1+2x2+3x3

4x1+5x2+6x3

�

∈R2×1 =R2.

To compute this in Sage,

sage: var(’x1’,’x2’,’x3’)
sage: A = Matrix([[1,2,3],[4,5,6]])

23

sage: x = vector([x1,x2,x3])
sage: A*x
(x1 + 2*x2 + 3*x3, 4*x1 + 5*x2 + 6*x3)

Example 2.2.4 (Inner Product).

Let A =
�

4 3 2 1
�

and x ∈R4. Then

Ax=
�

4 3 2 1
�











x1

x2

x3

x4











= x1

�

4
�

+ x2

�

3
�

+ x3

�

2
�

+ x4

�

1
�

= 4x1+3x2+2x3+1x4 ∈R.

Example 2.2.4 is an example of what is known as an inner product. Specifically, this is a dot

product. Note that row · column= scalar.

Try Example 2.2.4 in SageMath. Don’t forget to define your variables.

Matrix Multiplication: If A ∈Rm×n and B ∈Rn×k , then AB ∈Rm×k . Note that the number

of columns in A must be the same as the number of rows in B in order for the matrix

multiplication to be defined.

Column View: Denote B =
�

b1 b2 . . . bk

�

, b j ∈R n , 1≤ j ≤ k . Then

AB = A
�

b1 b2 . . . bk

�

=
�

Ab1 Ab2 . . . Abk

�

.

Column j of AB is the matrix-vector product of A with column j of B .

Element View: The (i , j) element of AB is the inner product of row i from matrix A and

column j from matrix B . That is,

(AB)i j = ai 1b1 j +ai 2b2 j + · · ·+ai n bn j =
n
∑

p=1

ai p bp j , for 1≤ i ≤m , 1≤ j ≤ k .

Example 2.2.5 (Matrix Multiplication).

Let A =

�

1 2 3

4 5 6

�

and B =







1 0 −1

1 1 1

−2 3 1






. Find AB .

24

Column View: Denote B =
�

b1 b2 b3

�

. Then

AB =
�

Ab1 Ab2 Ab3

�

, where

Ab1 =

�

1 2 3

4 5 6

�







1

1

−2






= 1

�

1

4

�

+1

�

2

5

�

+−2

�

3

6

�

=

�

−3

−3

�

,

Ab2 =

�

1 2 3

4 5 6

�







1

1

−2






= 0

�

1

4

�

+1

�

2

5

�

+3

�

3

6

�

=

�

11

23

�

, and

Ab3 =

�

1 2 3

4 5 6

�







1

1

−2






=−1

�

1

4

�

+1

�

2

5

�

+1

�

3

6

�

=

�

4

7

�

. So,

AB =

�

−3 11 4

−3 23 7

�

.

Element View: AB =

�

1 2 3

4 5 6

�







1 0 −1

1 1 1

−2 3 1






, with the (i , j) element of AB as the dot

product of row i from matrix A with column j from matrix B . For example,

(AB)11 =
�

1 2 3
�







1

1

−2






= 1(1) +1(2) +−2(3) =−3, and

(AB)12 =
�

1 2 3
�







0

1

3






= 0(1) +1(2) +3(3) = 11,

and so on. Thus, just as before,

AB =

�

−3 11 4

−3 23 7

�

.

If we wanted to do this in Python, we would execute the code below:

import numpy as np

25

A = np.array([[1,2,3],[4,5,6]])
B = np.array([[1,0,-1],[1,1,1],[-2,3,1]])

print(np.dot(A,B))

[[-3 11 4]
[-3 23 7]]

We can, of course, compute this in SageMath as well:

sage: A = Matrix([[1,2,3],[4,5,6]])
sage: B = Matrix([[1,0,-1],[1,1,1],[-2,3,1]])
sage: A*B
[-3 11 4]
[-3 23 7]

Example 2.2.6 (Outer Product).

Let A =











1

−1

1

2











and B =
�

2 3 4
�

. Then

AB =











1

−1

1

2











�

2 3 4
�

=











2 3 4

−2 −3 −4

2 3 4

−4 −6 −8











.

To compute this in Sage:

sage: A = Matrix([[1],[-1],[1],[2]])
sage: B = Matrix([[2,3,4]])
sage: A*B
[2 3 4]
[-2 -3 -4]
[2 3 4]
[4 6 8]

Example 2.2.6 is an example of an outer product. Note that column ·row=matrix. Contrast

this with the inner product in Example 2.2.4.

26

Properties of Matrix Multiplication:

• (Associativity) For A ∈Rm×n , B ∈Rn×k , and C ∈Rk×l ,

A = A · (B ·C) = (A ·B) ·C ∈Rm×l .

• (Distributivity) For A, B ∈R m×n and C , D ∈Rn×k ,

A · (C +D) = AC +AD ∈Rm×k

(A+B) ·C = AC +B C ∈Rm×k .

• (Scalar Multiplication) For A ∈Rm×n , B ∈Rn×k , and α ∈R,

(αA) ·B =α(A ·B) = A · (αB) ∈Rm×k .

Remark 2.2.2. In general, matrix multiplication is not commutative. That is AB ̸= B A unless

both A and B are 1×1 matrices.

Example 2.2.7 (Matrix Multiplication is not Commutative).

Let A =

�

1 3

2 4

�

and B =
�

2 −1
�

.

Then AB is not defined, but B A =
�

2 −1
�

�

1 3

2 4

�

=
�

0 2
�

.

Example 2.2.8 (Matrix Multiplication is not Commutative).

Let Let A =

�

1 −1

0 1

�

and B =

�

0 1

1 −1

�

.

Then AB =

�

−1 2

1 −1

�

, but B A =

�

0 1

1 −2

�

.

Identity Matrices: The n ×n identity matrix, denoted In , is a square matrix with 1s on the

main diagonal and 0s elsewhere. We denote the columns of the identity matrix as ei for

1≤ i ≤ n , where ei has a 1 in the i th position and 0s elsewhere.

27

Example 2.2.9.

I1 =
�

1
�

∈R1×1, I2 =

�

1 0

0 1

�

=
�

e1 e2

�

∈R2×2, I3 =







1 0 0

0 1 0

0 0 1






=
�

e1 e2 e3

�

∈R3×3

In =













1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1













=
�

e1 e2 . . . en

�

∈Rn×n

To generate, for example, a 5×5 identity matrix in Sage,

sage: I5 = identity_matrix(5)
sage: I5
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

Remark 2.2.3. For every A ∈ Rn×n , A · In = In · A = A. In is the multiplicative identity in

Rn×n .

Transpose of a Matrix: Let A ∈ Rm×n . Then AT ∈ Rn×m changes columns into rows and

rows into columns. That is, if (A)i j = ai j , then (AT)i j = a j i .

Example 2.2.10.

For A =

�

1 2 3

4 5 6

�

∈R2×3, AT =







1 4

2 5

3 6






∈R3×2.

We can also find this two ways in Sage:

sage: A = Matrix([[1,2,3],[4,5,6]])
sage: A.transpose()
[1 4]
[2 5]
[3 6]

28

sage: A.T
[1 4]
[2 5]
[3 6]

Or, we could use Python:

import numpy as np

A = np.array([[1,2,3],[4,5,6]])

print(A.T)

[[1 4]
[2 5]
[3 6]]

Properties of Transposes: Let A, B ∈Rm×n . Then

• (AT)T = A

• (A+B)T = AT +B T

• (αA)T =αAT for all α ∈R

• (AB)T = B T AT

Definition 10 (Symmetric and Skew Symmetric Matrices).

Let A ∈Rn×n . If AT = A, then A is symmetric. If AT =−A, then A is skew-symmetric.

Example 2.2.11 (Symmetric and Skew Symmetric Matrices).

A =







0 4 1

4 −1 5

1 5 3






is symmetric since AT =







0 4 1

4 −1 5

1 5 3






= A, and

B =







0 −2 −1

2 0 3

1 −3 0






is skew-symmetric since B T =







0 2 1

−2 0 −3

−1 3 0






=−B .

29

2.3 Systems of Linear Equations

Definition 11 (System of Equations).


























a11x1+a12x2+ · · ·+a1n xn = b1

a21x1+a22x2+ · · ·+a2n xn = b2
...

am1x1+am2x2+ · · ·+amn xn = bm

is a system of m linear equations in n variables.

The coefficient matrix of this system is













a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn













∈ Rm×n , where ai j is the

coefficient of x j in equation i .

The augmented matrix of this system is













a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
...

...

am1 am2 . . . amn bm













∈Rm×(n+1).

Remark 2.3.1.

Solving the system of linear equations given by



























a11x1+a12x2+ · · ·+a1n xn = b1

a21x1+a22x2+ · · ·+a2n xn = b2
...

am1x1+am2x2+ · · ·+amn xn = bm

is

equivalent to the following statement:

Given A =













a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn













and b=













b1

b2
...

bm













, find x=













x1

x2
...

xn













so that Ax= b.

Example 2.3.1 (Coefficient and Augmented Matrices).

The system of linear equations















x1+ x2−3x3 = 3

−2x1− x2 =−4

4x1+2x2+3x3 = 7

has coefficient matrix







1 1 −3

−2 −1 0

4 2 3







30

and augmented matrix







1 1 −3 3

−2 −1 0 4

4 2 3 7






. We will use the augmented matrix to solve for

x1, x2, x3.

To enter an augmented matrix in Sage, simply use the augment command. Just be sure to

enter b as a matrix instead of a row vector.

sage: A = Matrix([[1,1,-3],[-2,-1,0],[4,2,3]])
sage: b = Matrix([[3],[4],[7]])
sage: A.augment(b)
[1 1 -3 3]
[-2 -1 0 4]
[4 2 3 7]

Given a linear system Ax= b, we want to find x that makes the statement true. As we

have seen, a system of linear equations can be represented by an augmented matrix. We will

use what is known as Gaussian Elimination on our matrices to solve systems of equations.

Solving Linear Systems To solve a system of linear equations, form the augmented matrix.

Then, do the following:

1. Use row operations to reduce the augmented matrix to row echelon form.

















∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ . . . ∗ ∗
...

...

∗ ∗ ∗ . . . ∗ ∗

















Augmented Matrix

Row Operations
−−−−−−−−−→

















∗ ∗ ∗ . . . ∗ ∗
∗ ∗ . . . ∗ ∗
∗ . . . ∗ ∗

...
...

...

∗ ∗

















Row Echelon Form (REF)

2. Solve for unknowns from the bottom up (back substitution).

Example 2.3.2. Solve the following system. While illustrating row operations, we will use Ri

to denote the i th row. We will define valid row operations in a moment. This example shows

how to use row operations to get a matrix into REF, or upper triangular form, and how to use

back substitution to solve a system.















x1+ x2−3x3 = 3

−2x1− x2 =−4

4x1+2x2+3x3 = 7

31

Augmented Matrix (and row operations):







1 1 −3 3

−2 −1 0 4

4 2 3 7







R2=R2+2R1−−−−−−→
R3=R3−4R1







1 1 −3 3

0 1 −6 2

0 −2 15 −5







R3=R3+2R2−−−−−−→







1 1 −3 3

0 1 −6 2

0 0 3 −1







Back Substitute:















x1+ x2−3x3 = 3

x2−6x3 = 2

3x3 =−1

=⇒
eq’n 3

x3 =
−1

3
=⇒

eq’n 2
x2 = 0 =⇒

eq’n 1
x1 = 2

This system has solution x=







x1

x2

x3






=







2

0
−1
3






.

Definition 12 (Consistent System).

A system that has a solution is called a consistent system. A consistent system of linear

equations has either one or infinitely many solutions.

What does the solution to the previous example problem tell us?

“Row View:” All three linear equations can be satisfied at the same time, namely when

x1 = 2, x2 = 0, and x3 =
−1
3 .

“Column View:” x1







1

−2

4






+x2







1

−1

2






+x3







−3

0

3






=







3

−4

7






has a solution for x1, x2, x3, so







3

−4

7






∈

span

















1

−2

4






,







1

−1

2






,







−3

0

3

















.

Valid Row Operations (“Elementary Row Operations”)

The following row operations, as seen in Example 2.3.2, on the augmented matrix of a linear

system will not change the solution of the system:

1. Exchanging two rows (Ei↔ E j)

2. Scaling a row (Ei =αEi for 0 ̸=α ∈R)

3. Adding a multiple of one row to another (Ei = Ei +αE j for α ∈R)

32

Definition 13 (REF).

A matrix is in row echelon form (REF) if

1. the leading nonzero element of a row is to the left of all other lower leading nonzeros,

2. elements below a leading nonzero entry are zero, and

3. zero rows are at the bottom

Example 2.3.3 (REF Examples and Non-examples).

The following coefficient matrices are in REF:







3 1 1 1

0 2 1 1

0 0 1 1






,







0 3 0 1

0 0 4 0

0 0 0 0






,







0 3 0 0

0 0 0 0

0 0 0 0







The following coefficient matrices are not in REF:







0 1 1 1

0 2 1 1

0 0 1 1






,







0 3 0 1

2 0 4 0

0 0 0 0






,







0 0 0 0

0 3 0 0

0 0 0 0







The first matrix has elements below the leading nonzero entry in row 1. The second matrix

has a leading nonzero element in row 2 that is to the left of the leading nonzero element in

row 1. The third matrix has a row of all zeros above a nonzero row.

To solve the system in Example 2.3.2 in Sage, simply create the augmented matrix, and

use the rref() command. This puts the matrix in Row Reduced Echelon Form, which is REF

plus two additional conditions: 1s on the diagonal and 0s above and below any leading 1s.

Then, just read off the solution as we did with the equations above.

sage: A = Matrix([[1,1,-3,3],[-2,-1,0,-4],[4,2,3,7]])
sage: A.rref()
[1 0 0 2]
[0 1 0 0]
[0 0 1 -1/3]

This tells us that x1 = 2, x2 = 0, and x3 =
−1
3 .

Alternatively, you can define two matrices and use the augment command and then

use rref():

33

sage: A = Matrix([[1,1,-3],[-2,-1,0],[4,2,3]])
sage: B = Matrix([[3],[-4],[7]])
sage: (A.augment(B)).rref()
[1 0 0 2]
[0 1 0 0]
[0 0 1 -1/3]

Example 2.3.4 (System with No Solution).

Solve the following system of linear equations.















x + y + z = 4

3x − y − z = 2

x +3y +3z = 8







1 1 1 4

3 −1 −1 2

1 3 3 8







R2=R2−3R1−−−−−−→
R3=R3−R1







1 1 1 4

0 −4 −4 −10

0 2 2 4







R3=R3+
1
2 R2−−−−−−−→







1 1 1 4

0 −4 −4 −10

0 0 0 −1





















x + y + z = 4

−4y −4z = 10

0 =−1

The third equation is a false statement. So, this system has no solution.

Definition 14 (Inconsistent System).

A system that has no solution is called an inconsistent system.

What does the solution to the previous example problem tell us?

“Row View:” Not all equations can be satisfied at the same time.

“Column View:” b ̸∈ span{v1, v2, v3}, where v1, v2, v3 are the columns of the coefficient ma-

trix and b is the right hand side of the augmented matrix.

Example 2.3.5 (System with Infinitely Many Solutions).

Solve the following system of linear equations using Gaussian Elimination.















x1− x2+ x3 = 5

x1− x2 = 2

2x1−2x2+ x3 = 7

34







1 −1 1 5

1 −1 0 2

2 −2 1 7







R E F−−→







1 −1 1 5

0 0 −1 3

0 0 0 0













x1− x2+ x3 = 5

− x3 =−3

This gives that x3 = 3. Back substituting x3 = 3 into the first equation and solving for x1

gives x1 = x2+2. So, there are infinitely many solutions (i.e. this system is consistent), each

dependent on our free choice of x2. For example, if we choose x2 = 1, then x1 = 3 and x3 = 3.

Definition 15 (Free and Leading Variables).

In our previous example (Example 2.3.5), x2 is a free variable; there is no leading entry in

the x2 column of the REF of a consistent system.

x1 and x3 are leading variables; there is a leading nonzero entry in the x1 and x3 columns of

the REF.

If there is a free variable, we assign it a parameter when we write the solution. In Example

2.3.5, let x2 = t ∈R. Then, writing our solution as a vector gives

x=







x1

x2

x3






=







t +2

t

3






=







1

1

0






t +







2

0

3






for all t ∈R

.

Remark 2.3.2. Number of free variables +Number of leading variables =Number of vari-

ables.

Remark 2.3.3. The only possible outcomes of solving a linear system are

• one unique solution (example 2.3.2),

• no solution (example 2.3.4), or

• infinitely many solutions (example 2.3.5).

Definition 16 (Rank).

The number of nonzero rows (i.e. the number of leading variables) of the REF of a matrix is

called the rank of the matrix.

35

Example 2.3.6 (Rank).

The matrix







1 0 3

0 2 4

0 0 0






has rank 2.

To find the rank of this matrix with Sage, simply use the rank() command.

sage: A = Matrix([[1,0,3],[0,2,4],[0,0,0]])
sage: rank(A)
2

While using Sage to give us the rank in this example is very simple, doing so is a beneficial

tool when you have something like a 300×400 matrix and need to know the rank. It would

be time consuming to row reduce that and count the leading nonzero entries!

Now, let us see how systems of equations can connect to the idea of rank. Consider







1 0 5 2

0 1 7 −1

0 0 0 1






.

Let A be the coefficient matrix and let A be the augmented matrix. Then rank(A) = 2 and

rank(A) = 3. Note that this system is inconsistent.

Consider







1 0 3 1

0 1 2 −5

0 0 0 0






with the same description for A and A. Then rank(A) =rank(A) = 2.

Note that this system is consistent. It has infinitely many solutions since x3 is a free variable.

Theorem 2.3.1. Let A be the augmented matrix of a linear system, and let A be its corre-

sponding coefficient matrix, as above. Then

1. the system is consistent if and only if rank(A) =rank(A)with

• unique solution if and only if rank(A) = number of variables, and

• infinitely many solutions if and only if rank(A)< number of variables.

2. the system is inconsistent if and only if rank(A) ̸=rank(A).

2.4 Matrix Inverses

Definition 17 (Invertible Matrix).

A ∈Rn×n is said to be invertible (or nonsingular) if there exists B ∈Rn×n such that AB =

B A = In .

36

If A ∈Rn×n is not invertible, A is called singular.

Theorem 2.4.1. Let A ∈Rn×n . If A−1 exists, it is unique.

Proof. Let A ∈ Rn×n , and let B , C ∈ Rn×n be such that AB = B A = In and AC = C A = In .

Then

B = B · In

= B (AC) (by assumption that In = AC)

= (B A)C (by associativity of matrix multiplication)

= In ·C (by assumption that B A = In)

=C

We have shown that, if two matrices satisfy the definition of matrix inverse, then they

must be equal. So, the inverse of A ∈Rn×n is unique if it exists.

In the case where AB = B A + In , B is called the inverse of A, denoted A−1. That is,

AA−1 = A−1A = In .

Note that only a square matrix can have an inverse, as a non-square matrix cannot be

row reduced to the identity matrix.

So, how do we find the inverse of an n ×n matrix, if it exists?

Recall: Every linear system can be written as a matrix-vector equation Ax= b, where

A ∈Rm×n , x ∈Rn , and b ∈Rm . Take m = n (square) here.

Example 2.4.1. (n = 3)

For A =







a11 a12 a13

a21 a22 a23

a31 a32 a33






, we want to find B =







b11 b12 b13

b21 b22 b23

b31 b32 b33






such that AB = B A = I3. We

will find B such that AB = I3, and leave the checking that B A = I3 up to the reader. So, let us

find B such that







a11 a12 a13

a21 a22 a23

a31 a32 a33













b11 b12 b13

b21 b22 b23

b31 b32 b33






=







1 0 0

0 1 0

0 0 1






.

Taking the column view, we can write B =
�

b1 b2 b3

�

and I3 =
�

e1 e2 e3

�

. Then,

finding B amounts to finding b1, b2, b3 ∈R3 such that

37

Ab1 = e1, Ab2 = e2, Ab3 = e3.

Setting these up as systems of equations and writing them as augmented matrices, we

have that

�

A e1

�

,
�

A e2

�

,
�

A e3

�

,

which gives us the solutions

b1, b2, b3,

respectively. This tells us that A−1 = B =
�

b1 b2 b3

�

. For ease, we can write the three

systems above in one augmented matrix

�

A I3

�

and row reduce to row reduced echelon form until we have

�

I3 B
�

In general, to find A−1, if it exists, of A ∈Rn×n , we do the following:

�

A In

� R o w R e d u c e−−−−−−−−→
�

In A−1
�

Example 2.4.2 (Finding a Matrix Inverse).

Let A =







1 1 −2

−1 2 0

0 −1 1






. Find A−1, if it exists.







1 1 −2 1 0 0

−1 2 0 0 1 0

0 −1 1 0 0 1







R2=R2+R1−−−−−−→







1 1 −2 1 0 0

0 3 −2 1 1 0

0 −1 1 0 0 1







R2↔R3−−−−→







1 1 −2 1 0 0

0 −1 1 0 0 1

0 3 −2 1 1 0







R3=R3+3R2−−−−−−→







1 1 −2 1 0 0

0 −1 1 0 0 1

0 0 1 1 1 3







R2=−R2−−−−→







1 1 −2 1 0 0

0 1 −1 0 0 −1

0 0 1 1 1 3







38

R1=R1−R2−−−−−−→







1 0 −1 1 0 1

0 1 −1 0 0 −1

0 0 1 1 1 3







R1=R1+R3−−−−−−→
R2=R2+R3







1 0 0 2 1 4

0 1 0 1 1 2

0 0 1 1 1 3







This gives us that A−1 =







2 1 4

1 1 2

1 1 3






. You should check that A ·A−1 = I3 and A−1 ·A = I3.

Example 2.4.3 (Matrix Inverses in Python and Sage).

Of course, we can use a computer to find the inverse of a matrix. In SageMath, one of the

ways to do this is as follows:

sage: A = Matrix([[1,1,-2],[-1,2,0],[0,-1,1]])
sage: A^(-1)
[2 1 4]
[1 1 2]
[1 1 3]

In Python, we have to input a matrix as an array, and then we can use the linear algebra

package.

import numpy as np

A = np.array([[1,1,-2],[-1,2,0],[0,-1,1]])

print(np.linalg.inv(A))

[[2. 1. 4.]
[1. 1. 2.]
[1. 1. 3.]]

Remark 2.4.1. A ∈Rn×n is invertible if and only if A row reduces to In .

If a matrix does not row reduce to the identity, then it does not have an inverse. So, if we

try to row reduce
�

A In

�

to have the identity on the left, then we cannot find an inverse. We

have already seen that nonquare matrices cannot be invertible, In fact, not even all square

matrices are invertible (see Example 2.4.4).

39

Example 2.4.4 (Singular Square Matrix).

Let A =

�

1 1

1 1

�

. We will attempt the procedure to find the inverse of A.

�

1 1 1 0

1 1 0 1

�

R2=R2−R1−−−−−−→

�

1 1 1 0

0 0 −1 1

�

We see that the left-hand side is not the identity matrix, so A is not invertible.

When we try to put this in Sage, we get an error message:

sage: A = Matrix([[1,1],[1,1]])
sage: A^(-1)
ZeroDivisionError: matrix must be nonsingular

Properties of Inverses Let A, B ∈Rn×n be invertible. Then

• (A−1)−1 = A

Check: A−1A = In

• (k A)−1 = k−1A−1 for all k ∈R−{0}.
Check: (k A) · (k−1A−1) = k Ak−1A−1 = k k−1AA−1 = 1 · In = In

• AB is also invertible with (AB)−1 = B−1A−1.

Check: (AB)(B−1A−1) = AB B−1A−1 = AIn A−1 = AA−1 = In

• (AT)−1 = (A−1)T = A−T

Check: (AT)(A−1)T = (A−1A)T = (In)T = In

Proposition 2.4.1. A ∈R n×n is nonsingular (invertible) if and only if Ax= b has a unique

solution x= A−1b for all b ∈Rn .

Proof.

b= Ax

A−1b= A−1Ax (left multiply by A−1)

A−1b= x (since A−1A = In)

Example 2.4.5 (Solving Systems Using Matrix Inverses).

Solve Ax= b for A =







1 1 −2

−1 2 0

0 −1 1






, when b=







1

−3

2






.

40

From our last example, we know that A−1 =







2 1 4

1 1 2

1 1 3






, so

x= A−1b=







2 1 4

1 1 2

1 1 3













1

−3

2






=







7

2

4






.

This is a unique solution since A−1 exists.

Example 2.4.6 (Solving Systems Using Matrix Inverses in Sage).

There are a number of ways to do this in Sage. We will illustrate three of them that we use

later on in the course.

sage: A = Matrix([[1,1,-2],[-1,2,0],[0,-1,1]])
sage: b = vector([1,-3,2])
sage: A^(-1)*b
(7, 2, 4)

sage: A\b
(7, 2, 4)

sage: (A.augment(b)).rref()
[1 0 0 7]
[0 1 0 2]
[0 0 1 4]

In Python, we use the numpy library and the linear algebra package again, in two differ-

ent ways. We can use the inverse function with the dot() function or simply use the solve()

function.

import numpy as np

A = np.array([[1,1,-2],[-1,2,0],[0,-1,1]])
b = np.array([1,-3,2])

print(np.linalg.inv(A).dot(b))

[7. 2. 4.]

41

print(np.linalg.solve(A,b))

[7. 2. 4.]

As we have seen already, if A is not invertible, Sage will give you an error.

In particullar, for A ∈Rn×n , the homogeneous system Ax= 0n has the unique solution

x= 0n . In other words, the columns of A spanRn and are linearly independent. This implies

the following theorem.

Theorem 2.4.2. A =
�

a1 a2 . . . an

�

is nonsingular/invertible if and only if {a1, a2, . . . , an}
is a basis for Rn .

In summary, we have that for A ∈Rn×n , the following are equivalent:

• A is nonsingular/invertible.

• AT is nonsingular/invertible.

• A row reduces to In (A is “row equivalent” to In).

• Ax= b has a unique solution x ∈Rn for every b ∈Rn .

• The columns of A span R n .

• rank(A) = n .

• Ax= 0n has only the trivial solution.

• The columns of A are linearly independent.

• The columns of A form a basis for Rn .

2.5 Determinants

Definition 18 (Determinant).

Let A ∈Rn×n . The determinant of A, denoted det (A) or |A|, is a scalar given inductively by

42

n = 1 : A =
�

a11

�

det (A) = a11

n = 2 : A =

�

a11 a12

a21 a22

�

det (A) = a11a22−a12a21

n = 3 : A =







a11 a12 a13

a21 a22 a23

a31 a32 a33






det (A) = a11

�

�

�

�

�

a22 a23

a32 a33

�

�

�

�

�

−a12

�

�

�

�

�

a21 a23

a31 a33

�

�

�

�

�

+a13

�

�

�

�

�

a21 a22

a31 a32

�

�

�

�

�

...

Remark 2.5.1. When n = 2, the determinant of a matrix represents the signed area of the

parallelogram whose sides are formed by the column vectors of the matrix.

Example 2.5.1 (Geometric Interpretation of Determinant of a 2×2 Matrix).

Let A =

�

3 −1

2 4

�

. Then det (A) = (3)(4)− (2)(−1) = 14. Figure 2.4 shows the graph of the column

vectors of A in red and blue. The parallelogram formed by these vectors is shaded in gray. We

calculate the area of the gray region by finding the area of the whole rectangle and subtracting

the area of the yellow and green triangles. The area of the rectangle is (4)(6) = 24. The area of

each yellow triangle is 1
2 (3)(2) = 3. The area of each green triangle is 1

2 (1)(4) = 2. Thus, the area

of the parallelogram is 24− (3+3+2+2) = 24−10= 14, which is exactly the determinant of A.

43

Figure 2.4 A geometric interpretation of determinant in two dimensions.

Remark 2.5.2. When n = 3, the determinant of a matrix represents the signed volume of the

parallelepiped whose sides are formed by the column vectors of the matrix. When n > 3, the

determinant of a matrix represents the signed hypervolume of the hyperparallelepiped (or

n−parallelotope) whose sides are formed by the column vectors of the matrix.

Example 2.5.2 (Determinant of a 3×3 Matrix).

Let A =







1 2 4

3 4 2

2 2 1






. Then,

det (A) = 1 ·

�

�

�

�

�

4 2

2 1

�

�

�

�

�

−2 ·

�

�

�

�

�

3 2

2 1

�

�

�

�

�

+4 ·

�

�

�

�

�

3 4

2 2

�

�

�

�

�

= 1(4 ·1−2 ·2)−2(3 ·1−2 ·2) +4(3 ·2−2 ·4)

= 0+2−8

=−6

44

So, the signed volume of the parallelepiped formed by







1

3

2






,







2

4

2






, and







4

2

1






is −6.

Example 2.5.3 (Determinants in Python and Sage).

Of course, we can ask Python or Sage to calculate the determinant for us. In Python, we can

do the following:

import numpy as np
A = np.array([[1,2,4],[3,4,2],[2,2,1]])
print(np.linalg.det(A))

-6

To do the same in Sage, we can do one of the following:

sage: A = Matrix([[1,2,4],[3,4,2],[2,2,1]])
sage: A.det()
-6

sage: det(A)
-6

sage: A.determinant()
-6

Properties of Determinants: Let A ∈Rn×n . Then,

1. det (AT) = det (A).

2. If A has two identical rows or two identical columns, then det (A) = 0.

3. If A has an entire row or column of 0s, then det (A) = 0.

4. If A is triangular, then det (A) =
∏n

i=1 ai i = a11a22 · · ·ann . (Note that all diagonal

matrices are triangular.)

5. If a row or column of A is multiplied by k to obtain B , then det (B) = k ·det (A). In

particular det (k ·A) = k n det (A).

6. If B is obtained by swapping two rows of A, then det (B) =−det (A).

45

7. If B is obtained by adding a nonzero scalar multiple of one row of A to another, then

det (B) = det (A).

8. If A has two linearly dependent rows or two linearly dependent columns, then det (A) =

0.

9. det (AB) = det (A)det (B).

10. det (Am) = (det (A))m for m ∈N.

11. If A is invertible, then det (A−1) = 1
det (A) .

We encourage the reader to come up with examples to verify each of the 11 properties.

2.6 Inner Product Spaces

Definition 19 (Inner Product Space).

An inner product space is a vector space V over R together with a map 〈·, ·〉 : V ×V → R
called an inner product such that for all u, v, w ∈V , c ∈R, the following properties hold:

1. (positivity) 〈v, v〉 ≥ 0

2. (definiteness) 〈v, v〉= 0 if and only if v= 0

3. (additivity) 〈u+v, w〉= 〈u, w〉+ 〈v, w〉

4. (homogeneity) 〈c ·u, v〉= c · 〈u, v〉

5. (symmetry) 〈u, v〉= 〈v, u〉

The inner product that we will deal with throughout the remainder of the course is the dot

product in Euclidean space, so we define that now.

Definition 20 (Dot Product).

Let v, w ∈ Rn such that v =













v1

v2
...

vn













and w =













w1

w2
...

wn













. The dot product, also called the scalar

product, of v and w is given by

v ·w=
n
∑

i=1

vi wi = v1w1+ v2w2+ · · ·+ vn wn

46

Example 2.6.1 (Dot Product).






1

−2

5






·







−3

1

2






= (1)(−3) + (−2)(1) + (5)(2) = 5.

To do this in Sage, we first define our vectors. Then, we use dot_product() to calculate the

dot product.

sage: u = vector([1,-2,5])
sage: v = vector([-3,1,2])
sage: u.dot_product(v)
5

The dot product of v with itself is a special case.

v ·v= v1v1+ v2v2+ · · ·+ vn vn = v 2
1 + v 2

2 + · · ·+ v 2
n .

Since (vi)2 ≥ 0 for all vi , 1≤ i ≤ n , we have that

v ·v≥ 0 and v ·v= 0 if and only if v= 0. (2.1)

This gives rise to a description of the length of a vector.

Definition 21 (Euclidean norm).

The Euclidean norm, also called the length, of v ∈Rn is given by

∥v∥=
q

v 2
1 + v 2

2 + · · ·+ v 2
n =

�

n
∑

i=1

v 2
i

�1/2

.

Example 2.6.2 (Euclidean Norm).

Let v=











1

−2

0

3











. Then ∥v∥=
p

(1)2+ (−2)2+ (0)2+ (3)2 =
p

14.

To compute this with Sage, we use v.norm() after defining v:

sage: v = vector([1,-2,0,3])
sage: v.norm()
sqrt(14)

Note that v ·v= v 2
1 + v 2

2 + · · ·+ v 2
n = ∥v∥

2.

47

Definition 22 (Angle Between Vectors).

The angle θ between any two nonzero vectors v and w in Rn satisfies

v ·w= ∥v∥∥w∥cos (θ),

and is therefore given by

θ = cos−1
�

v ·w
∥v∥∥w∥

�

.

Example 2.6.3 (Angle Between Vectors).

Suppose we want to find the angle between u=







1

−2

3






and v=







−4

5

6






. We can do this with the

help of Sage.

sage: u = vector([1, -2, 3])
sage: v = vector([-4, 5, 6])
sage: arccos(u.dot_product(v)/(norm(u)*norm(v))).n()
1.44866394480060

This is in radians. We use .n() here to get a numerical approximation, because Sage would

otherwise return arccos(2/539*sqrt(77)*sqrt(14)), which is not super helpful.

In lattice-based cryptography, we will often be concerned about the orthogonality of

our basis vectors. For this reason, we now define orthogonal vectors and discuss properties

and results that can, again, be found in any introductory linear algebra course. For example,

see [2] or [12].

Definition 23 (Orthogonal Vectors).

v and w are orthogonal if they are perpendicular at their point of intersection. We denote

orthogonal with the symbol ⊥. That is, v⊥w if v and w meet at a right angle.

Lemma 2.6.1 (Dot Product of Orthogonal Vectors).

Two nonzero vectors v and w in Rn are orthogonal if and only if v ·w= 0.

Proof. cosθ = 0 if and only if θ = π2 +πk for k ∈Z.

Properties of the Dot Product

Let u, v, w ∈Rn and c ∈R. Dot product has the following properties:

1. (Commutativity) v ·w=w ·v

48

2. (Distributivity) u · (v+w) = u ·v+u ·w and (u+v) ·w= u ·w+v ·w

3. (Scalar Multiplication) (c v) ·w= c (v ·w)

Proposition 2.6.1 (Cauchy-Schwarz Inequality).

For v, w ∈Rn ,

|v ·w| ≤ ∥v∥∥w∥.

Proof. Let v, w ∈Rn and t ∈R.

(v+ t w) · (v+ t w) = v ·v+v · (t w) + (t w) ·v+ (t w) · (t w)

= ∥v∥2+ t (v ·w) + t (v ·w) + t 2w ·w

= ∥v∥2+2t (v ·w) + t 2∥w∥2

By (2.1) above, this expression is non-negative. We let a = ∥w∥2, b = 2v ·w, and c = ∥v∥2.

Recall from a basic algebra class that if a > 0, then a t 2 + b t + c ≥ 0 for all t ∈ R exactly

when b 2−4a c ≤ 0, which gives b 2 ≤ 4a c . Substitution yields

(2(v ·w))2 ≤ 4∥v∥2∥w∥2

(v ·w)2 ≤ ∥v∥2∥w∥2

Taking square roots gives

|v ·w| ≤ ∥v∥∥w∥.

Theorem 2.6.2. Nonzero orthogonal vectors are linearly independent.

Proof. Let v1, v2, . . . , vk be mutually orthogonal. That is, vi ·v j = 0 for all i ̸= j . We want to

show that for a1v1+a2v2+ · · ·+ak vk = 0, we have a1 = a2 = · · ·= ak = 0. We compute the

dot product of vi with both sides: vi · (a1v1+a2v2+ · · ·+ak vk) = vi ·0. This gives

a1(vi ·v1) +a2(vi ·v2) + · · ·+ai (vi ·vi) + · · ·+ak (vi ·vk) = 0

Since the vectors are mutually orthogonal, vi ·v1 = 0, vi ·v2 = 0, . . . , vi ·vk = 0, but vi , vi ̸= 0.

Thus, we have that ai (vi · vi) = 0. But, since vi · vi = ∥v1∥2 > 0, we get that ai = 0. We can

repeat this process for every i = 1,2, . . . , k . So, this will give us that a1 = a2 = · · · = ak = 0.

Thus, v1, v2, . . . , vk are linearly independent.

49

Remark 2.6.1. Nonzero orthonormal vectors are linearly independent. This follows the same

proof, just with ∥vi ∥2 = 1.

Definition 24 (Orthogonal and Orthonormal Bases).

A basis {v1, v2, . . . , vn} of vector space V is an orthogonal basis of V if vi · v j for all i ̸= j ,

1≤ i , j ≤ n.

If, in addition, ∥vi ∥= 1 for all 1≤ i ≤ n, then {v1, v2, . . . , vn} is an orthonormal basis for V .

Example 2.6.4 (Normalizing a Vector).

Suppose v=







1

2

3






. To normalize v, we simply divide by the norm.

u=
1

∥v∥
v=

1
p

14







1

2

3






=







1p
14
2p
14
3p
14







We can normalize a vector in Python as follows:

import numpy as np

v1 = array([1,2,3])
v1/np.linalg.norm(v1)

This will output the following:

array([0.26726124, 0.53452248, 0.80178373])

We can normalize a vector in Sage in a similar way:

sage: v1 = vector([1,2,3])
sage: v1/v1.norm()
(1/14*sqrt(14), 1/7*sqrt(14), 3/14*sqrt(14))

sage: v1/v1.norm().n()
(0.267261241912424, 0.534522483824849, 0.801783725737273)

50

Remark 2.6.2. If {v1, v2, . . . , vn} is an orthogonal basis for vector space V , and if v= a1v1+

a2v2+ · · ·+an vn ∈V for ai ∈R, 1≤ i ≤ n, then

∥v∥2 = ∥a1v1+a2v2+ · · ·+an vn∥2

= (a1v1+a2v2+ · · ·+an vn) · (a1v1+a2v2+ · · ·+an vn)

=
n
∑

i=1

n
∑

j=1

ai a j (vi ·v j)

=
n
∑

i=1

a 2
i ∥vi ∥2 (since vi ·v j = 0 when i ̸= j)

If {v1, v2, . . . , vn} is an orthonormal basis for V , then

∥v∥2 =
n
∑

i=1

a 2
i ∥vi ∥2

=
n
∑

i=1

a 2
i (since ∥vi ∥= 1 for all i)

Example 2.6.5 (Orthogonal Basis).

Determine if

















1

1

1






,







−2

1

1






,







0

1

−1

















is an orthogonal basis for R3.

We have three vectors in R3, so it suffices to check that they are mutually orthogonal. We

will do this with Sage.

sage: v1 = vector([1,1,1])
v2 = vector([-2,1,1])
v3 = vector([0,1,-1])

sage: v1.dot_product(v2)
0
sage: v2.dot_product(v3)
0
sage: v1.dot_product(v3)
0

Since all dot products are 0, the vectors are mutually orthogonal, and so the given vectors

form an orthogonal basis for R3.

51

Example 2.6.6 (Orthonormal Basis).

Using the vectors from the last example, create an orthonormal basis for R3.

All we need to do here is normalize the vectors. We will again use Sage to do this.

sage: v1/norm(v1)
(1/3*sqrt(3), 1/3*sqrt(3), 1/3*sqrt(3))

sage: v2/norm(v2)
(-1/3*sqrt(6), 1/6*sqrt(6), 1/6*sqrt(6))

sage: v3/norm(v3)
(0, 1/2*sqrt(2), -1/2*sqrt(2))

So, we have that an orthonormal basis for R3 is

















1
3

p
3

1
3

p
3

1
3

p
3






,







−1
3

p
6

1
6

p
6

1
6

p
6






,







0
1
2

p
2

−1
2

p
2

















.

2.7 The Gram Schmidt Algorithm

The Gram-Schmidt Algorithm inputs a basis for a vector space V ⊆ Rn and outputs an

orthogonal basis for the same vector space. This concept is important for lattice reduction

algorithms later in the text. In order to perform the standard Gram-Schmidt Algorithm, we

first need a few more definitions.

Definition 25 (Orthogonal Complement).

For vector space V ⊆ Rn , the set V ⊥ (pronounced “V-perp"), called the orthogonal com-

plement of V , is the set of vectors in Rn that are orthogonal to every vector in V . In other

words,

V ⊥ = {u ∈Rn : u ·v= 0 for all v ∈V }.

Remark 2.7.1. For any vector space V ⊂Rn , dim(V) +dim(V ⊥) = n.

Definition 26 (Orthogonal Projection).

Let V be a vector space in Rn . Every vector y ∈ Rn can be expressed uniquely as y = v+ v̂,

where v ∈V and v̂ ∈V ⊥. The vector v is called the orthogonal projection of y onto V

Let u, v ∈V . The orthogonal projection of v onto u is given by projuv=
v ·u
u ·u

u.

52

If {u1, u2, . . . , un} is an orthogonal basis for V , then the orthogonal projection of y onto V is

given by

v= projV (y) =
�

y ·u1

u1 ·u1

�

u1+
�

y ·u2

u2 ·u2

�

u2+ · · ·+
�

y ·un

u1 ·un

�

un

=
y ·u1

∥u1∥2
u1+

y ·u2

∥u2∥2
u2+ · · ·+

y ·un

∥un∥2
un

Remark 2.7.2. Note that v̂= y−v ∈V ⊥ is always orthogonal to all vectors in V . The distance

from a vector y ∈ Rn to the vector space V is the distance between y and the orthogonal

projection of y onto V . So, the “closest vector" in V to y ∈Rn is v. In other words, we have the

following theorem:

Theorem 2.7.1. Let V ⊂Rn be a vector space, and let y ∈Rn be such that y= v+ v̂, with v ∈V

and v̂ ∈V ⊥. Then for any w ∈V , ∥y−w∥ is minimized when w= v. That is, ∥y−v∥< ∥y−w∥
for all v ̸=w ∈V .

Proof. Let w ∈ V be distinct from v ∈ V . Since V is a vector space, w− v ∈ V . Since v̂ =

y−v ∈ V ⊥, v̂ is orthogonal to every vector in V . In particular, y−v is orthogonal to w−v.

We can write y−w= (y−v)+ (v−w). This implies that ∥y−w∥2 = ∥y−v∥2+ ∥v−w∥2. Since

∥v−w∥2 > 0, we then have that ∥y−w∥2 > ∥y−v∥2. Taking square roots yields ∥y−v∥< ∥y−w∥,
as desired.

We henceforth denote the projection of y onto vector space V by projV (y).

We can take any basis for a vector space and reduce it to an orthogonal or orthonormal

basis using the Gram-Schmidt Algorithm.

The standard Gram-Schmidt Algorithm is as follows:

Choose a basisB = {v1, v2, . . . , vn} for V . Gram-Schmidt computes an orthogonal basis

B ′ = {u1, u2, . . . , un} for V .

53

u1 = v1

u2 = v2−
v2 ·u1

u1 ·u1
u1

u3 = v3−
v3 ·u1

u1 ·u1
u1−

v3 ·u2

u2 ·u2
u2

...

un = vn −
n−1
∑

i=1

vn ·ui

u1 ·ui
ui

Theorem 2.7.2 (Gram-Schmidt Algorithm).

Let {v1, v2, . . . , vn} be a basis for vector space V ∈ Rn . The following algorithm creates an

orthogonal basis {u1, u2, . . . , un} for V .

The Gram-Schmidt Orthogonalization Algorithm takes basis vectors v1, v2, . . . vn for V as

input and outputs orthogonal basis vectors u1, u2, . . . un for V .

Algorithm 1 Gram-Schmidt Orthogonalization Algorithm

1: Set u1 = v1

2: for i = 2, 3, . . . , n

3: for 1≤ j < i

4: µi j =
vi ·u j

∥u j ∥2

5: Set ui = vi −
∑i−1

j=1µi j u j

Example 2.7.1. Gram-Schmidt Orthogonalization

Let V = span





























−1

1

1

0











,











−1

0

1

0











,











1

0

0

1





























. Find an orthogonal basis for V .

54

u1 = v1

u2 = v2−
v2 ·u1

u1 ·u1
u1

=











−1

0

1

0











−
2

3











−1

1

1

0











u2 =











−1
3
−2
3
1
3

0











u3 = v3−
v3 ·u1

u1 ·u1
u1−

v3 ·u2

u2 ·u2
u2

=











1

0

0

1











−
−1

3











−1

1

1

0











−
−1/3

2/3











−1
3
−2
3
1
3

0











u3 =











1
2

0
1
2

1











So, {u1, u2, u3} is an orthogonal basis for V .

If we wanted to normalize this to get an orthonormal basis, we would simply divide by

norms.

55

w1 =
u1

∥u1∥
=

1
p

3











−1

1

1

0











w1 =













−1p
3

1p
3

1p
3

0













w2 =
u2

∥u2∥
=

1
p

2/3











−1
3
−2
3
1
3

0











w2 =













−1p
6
−2p

6
1p
6

0













w3 =
u3

∥u3∥
=

1
p

3/2











1
2

0
1
2

1











w3 =













1p
6

0
1p
6

2p
6













Then, {w1, w2, w3} is an orthonormal basis for V .

We will now present another way of thinking of a Gram-Schmidt basis, but we first need

a few more definitions and notions.

Definition 27 (Orthogonal Matrix).

An orthogonal matrix, Q , is an n ×n matrix with orthonormal row and column vectors

such that Q T Q = In .

Definition 28 (Upper Triangular Matrix).

A matrix is upper triangular if all matrix entries below the main diagonal are zero. We saw

these with row echelon forms of matrices.

56

Q R Decomposition

One of the ways that we can decompose a matrix into two matrix factors is called the

Q R decomposition. The Q R decomposition decomposes a matrix A into A =Q R , where Q

is orthogonal and R is upper triangular.

The Gram-Schmidt process produces the columns of Q . We can get the columns of R

by either keeping track of the column operations or by computing R =Q T A. We will briefly

describe the Q R process here so that we can use it to code Gram-Schmidt in Python and

Sage more efficiently.

Let A =
�

v1 v2 . . . vn

�

.

We begin with our same basis vectors (the columns of our matrix A) v1, v2, . . . , vn , and

we compute our Gram-Schmidt orthogonal vectors as before. At each step of the process,

we denote ei =
ui
∥ui ∥ . We can then express the columns of A as linear combinations of the

orthonormal basis:

v1 = (e1 ·v1)e1

v2 = (e1 ·v2)e1+ (e2 ·v2)e2

v3 = (e1 ·v3)e1+ (e2 ·v3)e2+ (e3 ·v3)e3

...

vn =
n
∑

i=1

(ei ·vn)ei

where ei ·vi = ∥ui ∥. This can be rewritten in the form A =Q R , where

Q =
�

e1 e2 . . . en

�

R =













e ·v1 e1 ·v2 e1 ·v3 . . .

0 e2 ·v2 e2 ·v2 . . .

0 0 ee ·v3 . . .
...

...
...

...













Example 2.7.2 (QR Decomposition).

We will follow an example from [23] to illustrate this.

Let A =







12 −51 4

6 167 −68

−4 24 −41






. Use Gram-Schmidt to find Q . Let U =

�

u1 u2 u3

�

and Q =

57

�

u1
∥u1∥

u2
∥u2∥

u3
∥u3∥

�

. Then U , the matrix with orthogonal columns is

U =







12 −69 −58
5

6 158 6
5

−4 30 −33







So, Q , an orthogonal matrix is given by

Q =







6
7
−69
175

−58
175

3
7

158
175

6
175

−2
7

6
35

−33
35







Then, we can find R by R =Q T A, which gives

R =







14 21 −14

0 175 −70

0 0 35







So, we have

A =Q R =







6
7
−69
175

−58
175

3
7

158
175

6
175

−2
7

6
35

−33
35













14 21 −14

0 175 −70

0 0 35







Example 2.7.3 (Gram-Schmidt with QR Decomposition in Python).

In Python, we can now execute the Gram-Schmidt orthonormalization process as follows:

import numpy as np

def gramschmidt(A):
Q, R = np.linalg.qr(A)
return Q

A = np.array([[1,2,3],[4,5,6],[7,8,9]])
gramschmidt(A)
array([[-0.12309149, 0.90453403, 0.40824829],

[-0.49236596, 0.30151134, -0.81649658],
[-0.86164044, -0.30151134, 0.40824829]])

58

2.8 Exercises

Many of these exercises are adapted from [2].

1. Let V =

















x

y

z






∈R3











with addition defined by







x1

y1

z1






⊕







x2

y2

z2






=







x1− x2

y1− y2

z1− z2






and scalar

multiplication defined by α⊙







x

y

z






=







αx

αy

αz






. Determine whether or not (V ,⊕,⊙) forms

a vector space.

2. For the given vector space V , prove whether or not the subset S is a subspace of V .

(a) S =

¨�

a b

c d

�

∈R2×2 : 2b − c = 0

«

; V =R2×2, the vector space of all 2×2 matrices

(b) S = {a2x 2+a1x +a0 : a0, a1, a2 > 0}; V =P2, the vector space of polynomials of

degree at most 2.

3. Let V1 and V2 be subspaces of vector space V . Show that V1 ∩V2 is also a subspace of

V . Is V1 ∪V2 always a subspace of V ?

4. Show that







−3

−3

1






is a linear combination of the vectors







−1

−1

2






,







0

−1

−1






,







0

−1

−2






,







−3

−1

−2






.

5. Let S = {x 2+1, x +2,−x 2+ x }.

(a) Does S spanP3?

(b) Does S spanP2?

6. IsB =

















−1

2

1






,







1

0

1






,







1

1

1

















a basis for the vector space R3?

7. Is S =

¨�

1 0

0 0

�

,

�

1 1

0 0

�

,

�

−2 1

1 1

�

,

�

0 0

0 2

�«

a basis for R2×2?

8. Let W be the subspace of R2×2 matrices with trace equal to 0. That is,

W =

¨�

a b

c d

�

∈R2×2 : a +d = 0

«

. Show thatB =

¨�

1 0

0 −1

�

,

�

0 1

0 0

�

,

�

0 0

1 0

�«

is a basis

for W .

59

9. Let {v1, v2, v3} be a basis for vector space V . Show that {v1, v1+v2, v1+v2+v3} is also

a basis for V .

10. LetB = {v1, v2, . . . , vn} be a basis for the vector space V . Let c ∈R, and let A ∈Rn×n .

(a) Show thatB ′ = {c v1, c v2, . . . , c vn} is also a basis for V .

(b) Show thatB ′′ = {Av1, Av2, . . . , Avn} is also a basis for V .

11. Find a basis for the subspace S = {x ∈R4 : Ax= 0}, where A =







3 3 1 3

−1 0 −1 −1

2 0 2 1






.

12. Suppose A ∈R3×3, and suppose that Ax= b has a solution x ∈R3 for all b ∈R3. Explain

why the columns of A span R3.

13. Consider the linear system














x − y +2z = a

2x +4y −3z = b

4x +2y + z = c

Find the values of a , b , and c for which the system will have

(a) no solution

(b) exactly one solution

(c) infinitely many solutions

14. Let A ∈Rm×n , B ∈Rn×k , C ∈Rk×n , and D ∈Rn×n . Determine the dimensions of each

of the following. If it is not defined, say so.

(a) AB

(b) C T B

(c) A(D T C)T

(d) (AT C T)T B

(e) (A−D T)B

(f) B C −A

15. Let A, B ∈R3×3 with det (A) = 2 and det (B) = 3. Evaluate each of the following:

(a) det (2A−1)

60

(b) det (AB T)

(c) det (A−1B T)

(d) det (−B 3)

(e) det ((AB)−1)

16. Explain why det(A−1) = 1
det (A) when A is invertible.

17. Find the determinant of each of the following:

(a) A =

�

6 9

1 3

�

(b) B =







2 7 11

3 4 10

5 6 16







18. Find all vectors in R2 that are orthogonal to v=

�

1

3

�

with respect to the dot product.

19. Verify that

















1
3
1
3
1
3






,







−1
2

0
1
2

















is orthogonal. Then, normalize it to produce an orthonor-

mal set.

20. Is

















1

2

1






,







1

1

1






,







−1

1

0

















an orthonormal basis for R3?

21. Let u=

�

−3

5

�

and v=

�

2

1

�

.

(a) Verify that {u, v} is a basis for R2.

(b) Use Gram-Schmidt to find an orthogonal basis for R2.

(c) Find an orthonormal basis forR2.

22. Let v1 =







4

2

−3






, v2 =







1

0

3






, and v3 =







0

−2

5






.

(a) Verify that {v1, v2, v3} is a basis for R3.

(b) Use Gram-Schmidt to find an orthonormal basis for R3.

61

2.9 Computer Exercises

1. Determine whether or notB =

















17

−31

12






,







−11

14

−2






,







6

−16

10

















forms a basis for R3.

2. Let M =











1 2 3

4 5 6

5 7 9

3 6 9











. Find a basis for the subspace spanned by the columns of the

matrix M .

3. Let A =







1 2 3

1 3 6

2 6 13






.

(a) Find A−1.

(b) Solve the linear system Ax= b, where b=







1

3

5






.

4. Find det (A) for A =







0 1 3

2 1 2

1 2 1






.

5. Determine if M =











4 7 −3 2

−1 0 11 3

−6 8 1 4

2 9 10 −7











is invertible.

6. Write code that verifies mutual orthogonality of vectors inRn for n ≤ 4.

7. Use the given algorithm to write a Python code to execute the Gram-Schmidt Orthog-

onalization algorithm. Use that code to verify your answers to problems 21 and 22

above.

8. Find an orthogonal basis for R3 ifB =

















13

21

4






,







−8

11

9






,







2

−13

10

















is a basis for R3.

62

9. Using the provided Python code, find an orthonormal basis for R5 with basis














































4

−3

0

1

2

















,

















1

2

0

1

1

















,

















−1

0

4

−2

3

















,

















5

1

−1

2

0

















,

















0

3

−2

1

4















































.

63

CHAPTER

3

A REVIEW OF ABSTRACT ALGEBRA

This review of abstract algebra contains well-known definitions and results. For a complete

review, see for example, [10] and [15], which we have used here.

3.1 Basic Arithmetic

Definition 29 (Divides).

Let a , b ∈Zwith b ̸= 0. We say that b divides a if a = b c for some c ∈Z. We write b |a for “b

divides a ” and b ̸ |a for “b does not divide a .” We may also say that b is a divisor of a or that

b is a factor of a .

Common divisors of a and b are numbers that divide both a and b .

Definition 30 (GCD).

Let a , b ∈ Z with a ̸= 0 and b ̸= 0. The greatest common divisor (gcd) of a and b is the

largest integer d that divides both a and b . In other words, gcd (a , b) = d if

1. d |a and d |b , and

2. if c |a and c |b , then c ≤ d .

64

Example 3.1.1 (GCD).

Let’s find the gcd of 36 and 16.

The divisors of 36 (up to sign) are 1, 2, 3, 4, 6, 9, 12, 18, and 36. The divisors of 16 (again, up to

sign) are 1, 2, 4, 8, and 16. We see that the greatest common divisor is 4.

We can find the gcd of two integers in Python by first importing the math library.

import math
print(math.gcd(36, 16))
4

If we want to calculate this in SageMath, we simply type

sage: gcd(36,16)
4

Definition 31 (Prime and Composite Numbers).

A positive integer p ≥ 2 is called prime if p is divisible only by ±1 and ±p . A positive integer

that is not prime (i.e., one that has at least one divisor other than 1 and itself) is called

composite.

Example 3.1.2 (GCD with Python).

In Python, a %b gives the remainder when a is divided by b . If the remainder is 0, then b |a .

So, we can check if a number is prime by checking remainders in Python:

n = 13479

composite = False

if n > 1:
for i in range(2,n):

if (n % i) == 0:
composite = True
break

if composite:
print(n, "is not a prime number.")

65

else:
print(n, "is a prime number.")

13479 is not a prime number.

Example 3.1.3 (GCD with Sage).

To determine if a number is prime in Sage, we use the .is_prime() command. If the code

returns True, then the number is prime. If it returns False, then the number is composite.

sage: a = 13479
sage: a.is_prime()
False

sage: b = 7919
sage: b.is_prime()
True

Definition 32 (Relatively Prime).

a , b ∈Z are called relatively prime if gcd (a , b) = 1.

Example 3.1.4 (Relatively Prime).

sage: gcd(437895484,3289547)
1

Since gcd(437895484, 3289547) = 1, we have that 437, 895, 484 and 3, 289, 547 are relatively

prime.

Note that neither 437, 895, 484 nor 3, 289, 547 is prime (you should check this with Sage),

but they are relatively prime to one another because they share no factors greater than 1.

Remark 3.1.1. If p is prime, then all positive integers less than p are relatively prime to p .

Theorem 3.1.1 (Fundamental Theorem of Arithmetic).

Every integer greater than 1 can be decomposed into a unique (up to ordering) product of

prime numbers.

This is also known as the Unique Factorization Theorem or the Prime Factorization

Theorem. That is, every integer a can be written as a = p e1
1 ·p

e2
2 ·p

e3
3 · · ·p

ek
k , where pi prime

and ei ∈Z>0 (1≤ i ≤ k).

66

Example 3.1.5 (Factoring).

600= 23 ·3 ·52

Of course, we can just ask Sage to factor it for us.

sage: factor(600)
2^3 * 3 * 5^2

3.2 Euclidean Algorithm

Proposition 3.2.1 (The Division Algorithm).

For nonzero integers a and b , there exist unique integers q and r such that

a = q b + r,

with 0≤ r < |b |. We call q the quotient and r the remainder.

Example 3.2.1 (Division Algorithm).

In Python, we can define a function divisionalgorithm(a , b) that takes in integers (a , b)with

a > b and outputs the pair (q , r).

def divisionalgorithm(a,b):
q = 0
r = a
while r >= b:

r -= b
q += 1

return q,r

a = 44
b = 3
print(divisionalgorithm(a,b))
(14,2)

This says that 44= 14 ·3+2.

Example 3.2.2 (Division Algorithm in Python and Sage).

Another way to implement the division algorithm in Python or in Sage is to simply use the //

67

command and the % command. Note that // gives the integer obtained by performing the

division, and % gives the remainder of the division.

print(44//3, 44%3)
14, 2

The Euclidean Algorithm

We define the Euclidean Algorithm to find the gcd (a , b) as follows:

a = q0b + r0

b = q1r0+ r1

r0 = q2r1+ r2

r1 = q3r2+ r3

...

rn−2 = qn rn−1+ rn

rn−1 = qn+1rn ,

where rn = gcd (a , b) is the last nonzero remainder.

Example 3.2.3. Let us find gcd (1476, 684).

1476= 684 ·2+108

684= 108 ·6+36

108= 36 ·3+0

Since 36 is the last nonzero remainder, gcd (1476, 684) = 36.

Example 3.2.4. Now that we know the Euclidean Algorithm, we have a new way to calculate

the gcd of two integers with Python, using recursion.

def gcd(a, b):
if b == 0:

return a
else:

return gcd(b, (a % b))

a = 36
b = 16

68

print(gcd(a,b))
4

Extended Euclidean Algorithm

Suppose that a and b are both positive integers. The Extended Euclidean Algorithm

says that the equation a u + b v = gcd (a , b) always has a solution for integers u and v . In

other words, we can find u , v ∈Z such that a u + b v = gcd (a , b). We will illustrate this by

way of an example.

In Example 3.2.3, we found that gcd (1476, 684) = 36 using the Euclidean Algorithm. To

find integers u , v such that 1476 ·u +684 · v = 36, we simply “work backwards.” We start

at the second-to-last line of our work (684= 108 ·6+36) and write 36 as 36= 684−108 ·6.

We then use the line above it to write 108 as 108= 1476−684 ·2 and substitute. We then

simplify until we have our solution. The work is shown below:

36= 684−108 ·6

= 684− (1476−684 ·2) ·6

= 684−6 ·1476+12 ·684

36=−6 ·1476+13 ·684

We have written 36= (1476) · (−6) + (684) · (14).

3.3 Modular Arithmetic

Think back to when you were learning to tell time. After 12 o’clock comes 1 o’clock, not

13 o’clock. So, for example, instead of 18 o’clock, you say that it is 6 o’clock in the evening.

What if the clock only had 9 numbers? Then 10 o’clock would really be 1 o’clock, 11 o’clock

would be 2 o’clock, and so on. We can represent that last one by 9+2≡ 2, and we can say

that 11 is congruent to 2 on a 9−hour clock. This is exactly modular arithmetic.

Definition 33 (Congruent Modulo n).

Let n ∈ Z≥1. a , b ∈ Z are congruent modulo n if a − b is divisible by n. n is called the

modulus, and we write

a ≡ b (mod n).

Example 3.3.1 (Modular Arithmetic).

16≡ 6(mod 5), since 5 divides 16−6= 10.

However, 19 ̸≡ 4(mod 7) since 7 does not divide 19−4= 15.

69

Example 3.3.2 (Modular Arithmetic in Sage).

We can evaluate modular arithmetic using Sage in two different ways:

sage: 14 % 4
2
sage: mod(14,4)
2

Properties of Modular Arithmetic

1. If a ≡ b (mod n) and c ≡ d (mod n), then

a ± c ≡ b ±d (mod n) and a · c ≡ b ·d (mod n)

2. There exists b ∈Z such that a · b ≡ 1(mod n) if and only if gcd (a , n) = 1

Remark 3.3.1. In (2) above, we say that b is a multiplicative inverse of a (mod n). Moreover,

if a · b1 ≡ a · b2 ≡ 1(mod n), then b1 ≡ b2(mod n).

3.4 Groups

Definition 34 (Binary Operation).

A binary operation ⋆ on set G is a function ⋆(·, ·) that takes two elements of G to another

element of G . Instead of writing ⋆(f , g), we will write f ⋆g for a binary operation on f , g ∈G .

Definition 35 (Group).

A group is a set G , together with a binary operation ⋆, such that for all f , g , h ∈G ,

1. (Closure under ⋆) f ⋆ g ∈G .

2. (Existence of an identity) there exits an element e ∈G such that e ⋆ f = f = f ⋆ e for all

f ∈G .

3. (Existence of inverses) there exists an element p ∈G such that f ⋆p = e = p ⋆ f . We call

p the inverse of f in G , and we often write f −1.

4. (Associativity) (f ⋆ g) ⋆h = f ⋆ (g ⋆h).

Remark 3.4.1. We can show that an identity element is unique, so we can refer to it as the

identity element in a group. We will write f g for f ⋆ g .

70

Proof. Suppose that e and e ′ are both identities in group G . Then, we have that g e = g

and e ′g = g for all g ∈G . In particular, these statements hold for g = e ′ and g = e . Choose

g = e ′ in the first one to get that e ′e = e ′. Choose g = e in the second one to get e ′e = e .

Since we have two expressions for e ′e , we get that e ′ = e .

Remark 3.4.2. We use e and 1 interchangeably to denote the identity element.

Definition 36 (Abelian Group).

A group G with operation ⋆ is abelian (or commutative) if, in addition to Definition 35, for

all f , g ∈G , f ⋆ g = g ⋆ f .

Remark 3.4.3. We will mostly deal with finite, abelian groups. We will be careful to specify

in the case that we are not.

In general, we will not use the notation ⋆ for an operation. Most frequently, we will use

addition or multiplication as our operations.

Example 3.4.1 (Abelian Group Under Addition).

The integers, Z, is an abelian group under addition. In this group, the identity element is

0 and we denote the inverse of g ∈ Z as −g . However, the integers is not a group under

multiplication, because the integer 2, for example, does not have a multiplicative inverse in

the integers.

Example 3.4.2 (Group Under Multiplication).

R−{0} is a group under multiplication with e = 1 and g −1 = 1
g .

Example 3.4.3 (Group Under Matrix Multiplication).

G L (2,R) =

¨�

a b

c d

�

∈R2×2 : a d − b c ̸= 0

«

is the set of all 2× 2 matrices with real entries

whose determinant is nonzero. G L (2,R) is a group under matrix multiplication. The identity

element is the identity matrix

�

1 0

0 1

�

. The inverse of an element in G L (2,R) is
1

a d − b c

�

d −b

−c a

�

.

However, the set of all 2×2 matrices is not a group under matrix multiplication, because

the inverse of a matrix does not exist when it has a zero determinant.

Theorem 3.4.1. Left and right cancellation hold in a group. That is, for all a , b , c ∈ G ,

b a = c a implies that b = c and a b = a c implies that b = c .

Proof. Suppose that b a = c a . Since inverses exist for all group elements, we have that

b a a−1 = c a a−1, or b e = c e , so b = c . A similar argument gives us the other part of this

claim.

71

Theorem 3.4.2. Let G be a group. For all g ∈G , the inverse of g is unique. That is, for each

g ∈G , there exists a unique f ∈G such that f g = g f = e .

Proof. Suppose, for the sake of contradiction, that f and h are both inverses of g ∈G . Then

f g = e and hg = e . Since we have two expressions for e , we can equate them, getting

hg = f g . By our cancellation theorem, we get that h = f .

Theorem 3.4.3. For f , g in group G , (f g)−1 = g −1 f −1.

Proof. We know that (f g)−1 is the inverse of (f g), so we have that (f g)(f g)−1 = e . We can

also see that (f g)(g −1 f −1) = f g g −1 f −1 = f e f −1 = f f −1 = e . Now that we have two expres-

sions for e , we can equate them to see that (f g)(f g)−1 = (f g)(g −1 f −1). By cancellation, we

have that (f g)−1 = g −1 f −1.

Definition 37 (Group Order).

The order of group G is the number of elements in G . We denote the order of G by |G |.

If |G | is finite, we say that G is finite. Otherwise, we say that G is infinite.

Example 3.4.4 (Group Order).

Consider the group G = {1,3,7,9} under multiplication module 10. This has order 4, since

there are 4 elements in the group.

We often care about repeated addition or repeated multiplication. We define those as

follows:

mg =m · g def= g + g + · · ·+ g
︸ ︷︷ ︸

m times

and g m def= g · g · · ·g
︸ ︷︷ ︸

m times

Definition 38 (Subgroup).

H is a subgroup of group G if H ⊆G and H is a group. We write H ≤G .

Theorem 3.4.4. Let G be a group and H ⊆G be nonempty. Then H ≤G if H is closed under

the group operation and closed under taking inverses. That is, H ≤ G if for all a , b ∈ H ,

a b−1 ∈H .

Proof. Since H and G have the same operation, and it is associative in G , it must also be

associative in H . Since we know, by assumption, that H is nonempty, we have that there

exists some h ∈H . We know that all elements have an inverse, so h−1 exists as well, giving

us hh−1 = e . So, the identity is in H . We know that h−1 ∈H when h ∈H because e h−1 ∈H

by assumption. And, since we have shown that h−1 ∈ H whenever h ∈ H , we have that

g (h−1)−1 = g h ∈H , so H is closed. Thus, H ≤G .

72

So, in order to prove that H is a subgroup of G , it suffices to show that

1. H is nonempty

2. f , h ∈ h =⇒ f h ∈H

3. h−1 ∈H for all h ∈H

You can combine statements 2 and 3 into one statement and show that f h−1 ∈H .

Theorem 3.4.5. Let 〈a 〉= {a n : n ∈Z}. Then 〈a 〉 is a subgroup of G for all a ∈G .

Proof. Since a ∈ 〈a 〉, we have that 〈a 〉 is nonempty. Let a n , a m ∈ 〈a 〉. Then a n (a m)−1 =

a n a−m = a n−m , which is a power of a . So, a n (a m)−1 ∈ 〈a 〉. Thus, 〈a 〉 is a subgroup of G .

Remark 3.4.4. 〈a 〉 is called the cyclic subgroup of G generated by a . If we have that G = 〈a 〉,
then we say that G is a cyclic group and that a is a generator of G .

Example 3.4.5 (Cyclic Group Under Multiplication Modulo 10).

Consider again the group G = {1,3,7,9} under multiplication modulo 10. Note that 31 =

1, 32 = 9, 33 = 7, 34 = 1, 35 = 3, 36 = 9, So, G = 〈3〉, and G is a cyclic group with

generator 3.

Example 3.4.6 (Cyclic Group Under Addition Modulo n).

The set Zn = {0,1, . . . , n − 1} for n ≥ 1 is a cyclic group under addition modulo n. 1 and

−1= n −1 are generators.

Example 3.4.7 (Generators of Z and Zn).

Z has two generators, 1 and −1. Zn can have multiple generators. For example, Z8 = 〈1〉=
〈3〉= 〈5〉= 〈7〉.

We pause to talk more about Zn . We note that many texts use the notation Z/(nZ)
here. We use Zn to denote the ring of integers modulo n . We discuss this a little more in

future sections, but we feel that it is important to talk about Zn now. If you have taken an

Algebra course, you may recognize that Z/nZ is the quotient ring of Z by principal ideal

nZ, and that 0, 1, 2, . . . , n −1 are the coset representatives for congruence classes. For us, it

is only important right now that we understand the basics that we need for cryptosystems.

Addition and multiplication are done as “usual” with integers, and the results are reduced

modulo n . You can construct the addition and multiplication tables for Zn using Sage.

73

Example 3.4.8 (Addition and Multiplication Tables).

We show an example of the addition and multiplication tables for Z8 with SageMath.

sage: from sage.matrix.operation_table import OperationTable
sage: G = Integers(8)
sage: OperationTable(G, operator.add, names=’digits’)
+ 0 1 2 3 4 5 6 7
+----------------

0| 0 1 2 3 4 5 6 7
1| 1 2 3 4 5 6 7 0
2| 2 3 4 5 6 7 0 1
3| 3 4 5 6 7 0 1 2
4| 4 5 6 7 0 1 2 3
5| 5 6 7 0 1 2 3 4
6| 6 7 0 1 2 3 4 5
7| 7 0 1 2 3 4 5 6

sage: OperationTable(G, operator.mul, names=’digits’)
* 0 1 2 3 4 5 6 7
+----------------

0| 0 0 0 0 0 0 0 0
1| 0 1 2 3 4 5 6 7
2| 0 2 4 6 0 2 4 6
3| 0 3 6 1 4 7 2 5
4| 0 4 0 4 0 4 0 4
5| 0 5 2 7 4 1 6 3
6| 0 6 4 2 0 6 4 2
7| 0 7 6 5 4 3 2 1

Definition 39 (Unit).

a ∈Zn is called a unit of Zn if there exists some b ∈Zn such that a b = 1. In other words, a

unit in Zn is an element that has a multiplicative inverse in Zn .

Example 3.4.9 (Unit).

ConsiderZ14. If we take the operation to be multiplication, the set of units inZ14 is {1, 3, 5, 9, 11, 13}.
For example,

11 ·9= 99≡ 1(mod 14) so 11−1 ≡ 9(mod 14).

We often call this set U14 or Z∗14 (see exercise 6).

74

Remark 3.4.5. Euler’s Totient Function (also called the Phi (φ) Function) counts the number

of positive integers less than n that are relatively prime to n. It gives the order of Z∗n .φ(n) is

used in Cryptography in the RSA Cryptosystem.

Example 3.4.10 (Euler’s Totient Function).

For example,φ(7) = 6 andφ(8) = 4.

Remark 3.4.6. When p is prime, every nonzero element of Zp is a unit. This means that

Z∗p = {1, 2, 3, . . . , p −1}, and every element in Z∗p has a multiplicative inverse.

When p is prime, Zp is an example of a field. Other fields you might be familiar with

are R,Q, and C. A field is a commutative ring in which every nonzero element has a multi-

plicative inverse. Since Zp has a finite number of elements, we call Zp a finite field, so we

sometimes denote it as Fp . Similarly, we sometimes denote Z∗P as F∗p . When we write Zp , we

use equivalence (≡), and when we write Fp , we use equality (=). We remark that finite fields

are sometimes called Galois Fields, so Fp is sometimes written as G F (p). We will see this in

some of our Sage examples.

Definition 40 (Zero Divisor).

A nonzero element a ∈ Zn is called a zero divisor if there exists a nonzero element c ∈ Zn

such that a c = 0.

Example 3.4.11 (Zero Divisor).

Consider Z15. The element 3 is a zero divisor in Z15 because 3 ·5≡ 0(mod 15). 5 is also a zero

divisor for the same reason.

Definition 41 (Order).

The order of a modulo p is the smallest positive integer k such that a k ≡ 1(mod p).

Proposition 3.4.1. The order of the subgroup 〈g 〉 is the smallest positive m for which g m = e .

If such an m does not exist, we say that the order is infinite.

Proof. Let m be finite. We claim that 〈g 〉 = {e , g , g 2, g 3, . . . , g m−1}. For any n ∈ Z, we can

write n = q m + r , where 0≤ r ≤m −1. So,

g n = g q m+r

= g q m g r

= (g m)q g r

= e g r

= g r

75

We also claim that that all of the elements e , g , g 2, g 3, . . . , g m−1 are distinct. Suppose, for

the sake of contradiction, that g i = g j for some 0 ≤ i < j ≤ m − 1. Then g i− j = e . This

contradicts that m is the smallest integer such that g m = e .

Theorem 3.4.6 (Lagrange’s Theorem).

If G is a finite group and H is a subgroup of G , then |H | divides |G |.

Remark 3.4.7. The proof of Lagrange’s Theorem involves the use of cosets. We omit the proof,

but encourage the reader to see any standard undergraduate Abstract Algebra textbook for a

discussion.

Corollary 3.4.6.1. If G is a finite group and g ∈G , then the order of g divides the order of G .

That is, |g |
�

�|G |. In particular, g |G | = e for all g ∈G .

Proof. First, recall that |g |= |〈g 〉|. So by Lagrange’s Theorem, we have |G |= |g | ·k for some

k ∈Z>0. So, we have that g |G | = g |g |·k = e k = e .

Theorem 3.4.7 (Fermat’s Theorem).

If a , p ∈Zwith p prime and p ̸ |a , then a p−1 ≡ 1(mod p).

Proof. Assume that p is prime. Then the group of units in Zp is Z∗p = {1,2,3, . . . , p −1} by

Remark 3.1.1. So, we have that |Z∗p |= p −1. Let a ∈Z∗p have order k . That is, k is the smallest

positive integer such that a k ≡ 1(mod p). Then {1, a , a 2, a 3, . . . , a k−1} form a subgroup of

Z∗p when reduced modulo p . By Lagrange’s Theorem, k
�

�|Z∗p |. That is, p −1= k m for some

m ∈Z>0. Then we have a p−1 ≡ a k m ≡ (a k)m ≡ 1m ≡ 1(mod p).

Corollary 3.4.7.1. If a , p ∈Zwith p prime and p ̸ |a , then a p ≡ a (mod p).

Proof. This follows directly from Fermat’s Theorem.

The most important topic for studying more modern cryptography is the theory of finite

fields of prime order. We will introduce enough algebra to get to a working understanding

of the topic.

3.5 Rings

Definition 42 (Ring).

A nonempty set R equipped with two operations, addition and multiplication, is a ring if it

satisfies each of the following properties for all a , b , c ∈R :

1. (Closure under addition) a , b ∈R =⇒ a + b ∈R

76

2. (Associativity of addition) a + (b + c) = (a + b) + c

3. (Commutativity of addition) a + b = b +a

4. (Existence of additive identity) There exists 0R ∈R such that a +0R = a = 0R +a

5. (Existence of additive inverse) There exists a d ∈R such that a +d = 0R

6. (Closure under multiplication) a , b ∈R =⇒ a b ∈R

7. (Associativity of multiplication) a (b c) = (a b)c

8. (Left Distributivity) a (b + c) = a b +a c

9. (Right Distributivity) (a + b)c = a c + b c

Remark 3.5.1. Axioms 1−5 of a ring just say that a ring is an abelian group under addition.

Definition 43 (Commutative Ring).

If, in addition to 1− 9, a b = b a for all a , b ∈ R , we call R a commutative ring. (This is

commutativity of multiplication.)

Definition 44 (Ring with Identity).

If, in addition to 1−9, there exists a 1R ∈ R such that a 1R = a = 1R a for all a ∈ R , then we

call R a ring with identity. (This is the existence of a multiplicative identity.)

Example 3.5.1 (Ring with Identity).

Z andRwith the usual multiplication and addition are commutative rings with identity.

Zn is also a commutative ring with identity under the usual addition and multiplication.

Example 3.5.2 (Ring).

LetM2×2(R) =

¨�

a b

c d

�

∈R2×2

«

be the set of all 2× 2 matrices with real entries.M2×2(R)

is a ring with identity, but it is not commutative. The zero matrix is the additive identity,

and the identity matrix is the multiplicative identity. However, matrix multiplication is not

commutative.

Remark 3.5.2. We will most often deal with commutative rings with identity, and we will

be careful to specify if that is not the case. From this point forward, it is safe to assume that

“ring” means “commutative ring with identity” unless otherwise specified.

Definition 45 (Divides).

Let R be a ring. Let a , b ∈R with b ̸= 0. We say that “b divides a ” and write b |a if there exists

a c ∈R such that a = b c . This is the same as in Z.

77

Definition 46 (Unit).

Let R be a ring. An element u ∈R is called a unit if it has a multiplicative inverse. An element

a ∈R is called irreducible if a is not a unit and if a = b c , then either b or c is a unit.

Definition 47 (Congruent Modulo n).

Let R be a ring, and let n ∈R . Then a , b ∈R are congruent modulo n if n |(a − b). As before,

we write a ≡ b (mod n).

Again as before, we have that if a ≡ b (mod n) and c ≡ d (mod n), then

a ± c ≡ b ±d (mod n) and a · c ≡ b ·d (mod n)

Definition 48 (Congruence Class).

Let R be a ring, and let n ∈ R with n ̸= 0. Then for any a ∈ R , the set of all a ′ ∈ R that are

congruent modula n to a is denoted by a . The set of a is called the congruence class of a ,

and we denote the set of all congruence classes by R/(n) or R/nR . We call this a quotient ring

of R by n. That is,

R/nR = {a : a ∈R }= {a ′ : a ′ ≡ a (mod n) for a ∈R }.

Addition an multiplication work just like we would hope that they would. That is,

a + b = a + b and a · b = a · b .

Definition 49 (Subring).

Let R be a ring. A nonempmty subset S ⊆R is a subring of R if it is a ring itself.

Theorem 3.5.1. Let R be a ring and S ⊆R be nonempty. Then S is a subring of R if

• S is closed under addition (a , b ∈ S =⇒ a + b ∈ S),

• S is closed under multiplication (a , b ∈ S =⇒ a b ∈ S),

• S contains R ’s additive identity (0R ∈ S), and

• S contains the additive inverse of all a ∈ S ((−a) ∈ S for all a ∈ S)

Theorem 3.5.2. The additive inverse of a ∈ R is unique. That is, a + x = 0R has a unique

solution for x in R .

78

Proof. Let a ∈R . By axiom 5, we know that an additive inverse of a exists. That is, we know

that a + x = 0R has a solution in R . Suppose to the contrary that b and c both satisfy this

equation. Then a + b = 0R and a + c = 0R . Observe

c = 0R + c = (a + b) + c = a + b + c = b +a + c = b + (a + c) = b +0R = b .

We have that b = c , so the additive inverse is unique.

We often write −a for the additive inverse of a ∈R . This gives us the notion for subtrac-

tion.

Theorem 3.5.3. For a , b , c ∈R , if a + b = a + c , then b = c .

Proof.

a + b = a + c

−a + (a + b) =−a + (a + c)

(−a +a) + b = (−a +a) + c

0R + b = 0R + c

b = c

The nice thing is that all of the properties we are used to using “work” in a ring. We list

them below.

Properties of Ring R : Let R be a ring, and let a , b ∈R . Then

1. a ·0R = 0R = 0R ·a

2. a (−b) =−a b and (−a)b =−a b

3. −(−a) = a

4. −(a + b) = (−a) + (−b)

5. −(a − b) =−a + b

6. (−a)(−b) = a b

If R has identity 1R ̸= 0R , then we also have that (−1R)a =−a .

79

With all this in mind, we now begin to look at Polynomial Arithmetic, which will be very

important in the NTRU Cryptosystem later on.

If R is any ring, we can form a ring of polynomials where the coefficients are taken from

the ring R . We denote the polynomial ring by

R [x] = {a0+a1x +a2x 2+ · · ·+an x n : n ≥ 0; a0, a1, a2, . . . , an ∈R }

The elements of R [x] described above are called polynomials with coefficients in R ,

where the ai are the coefficients from R .

Example 3.5.3 (Polynomials).

You are likely already familiar with the ring Z[x]. An example of a polynomial in Z[x] is

2+3x − x 2, because all of the coefficients are in Z. The polynomials 1−0.5x 2 is not, however,

in Z[x], since 0.5 ̸∈Z. But, 1−0.5x 2 ∈R[x].

Example 3.5.4 (Polynomial).

The polynomial x +2x 2 ∈Z3[x], since it has coefficients in Z3.

To enter this into Sage, we first need to define the ring.

sage: R.<x> = PolynomialRing(GF(3),x)
sage: f = x + 2*x^2

Definition 50 (Leading Coefficient and Degree).

The leading coefficient of a nonzero polynomial a0+a1x +a2x 2+ · · ·+an x n is an ̸= 0, and

the degree is n. In other words, the degree is the largest power of x that occurs with a nonzero

coefficient, and the leading coefficient is that nonzero coefficient.

Definition 51 (Monic).

A nonzero polynomial with a leading coefficient of 1 is called a monic polynomial.

Example 3.5.5 (Degree and Leading Coefficient).

f (x) = 3−2x +4x 2+7x 3−x 4 has degree 4 and leading coefficient−1. We write deg (f (x)) = 4

for the degree. Of course, if the polynomial is long or not in standard form, or if we need to

use the degree in another part of our code, we might want to ask Sage to find these for us.

sage: R.<x> = PolynomialRing(ZZ,x)
sage: f = 3 - 2*x + 4*x^2 + 7*x^3 - x^4
sage: f.degree()

80

4

sage: f.leading_coefficient()
-1

Arithmetic with polynomials in R [x] is exactly what we are used to, and it follows from

the fact that R [x] is a ring. First, we have polynomial addition defined as follows:

(a0+a1x +a2x 2+ · · ·+an x n) + (b0+ b1x + b2x 2+ · · ·+ bn x n)

= (a0+ b0) + (a1+ b1)x + (a2+ b2)x
2+ · · ·+ (an + bn)x

n

We also have that polynomial multiplication is defined as follows:

(a0+a1x +a2x 2+ · · ·+an x n)(b0+ b1x + b2x 2+ · · ·+ bm x m)

= a0b0+ (a0b1+a1b0)x + (a0b2+a1b1+a2b0)x
2+ · · ·+an bm x n+m

where the coefficient of x k for all k ≥ 0 is
k
∑

i=0

a1bk−i .

Example 3.5.6 (Polynomial Arithmetic).

In Z3[x], let g (x) = 2x − x 2+ x 3 and f (x) =−1+2x −2x 2+ x 3. Then

g (x) + f (x) = (2x − x 2+ x 3) + (−1+2x −2x 2+ x 3)

=−1+ (2+2)x + (−1−2)x 2+ (1+1)x 3

=−1+4x −3x 2+2x 3

=−1+ x +2x 3

= 2+ x +2x 3

Note that we computed the addition of the coefficients first, and then we reduced them

modulo 3. To do this in Sage, we do the following:

sage: R.<x> = PolynomialRing(GF(3),x)
f = 2*x - x^2 + x^3
g = -1 + 2*x - 2*x^2 + x^3

sage: g + f
2*x^3 + x + 2

We now compute the product of g (x) and f (x).

81

g (x) · f (x) = (2x − x 2+ x 3)(−1+2x −2x 2+ x 3)

=−2x +4x 2−4x 3+2x 4+ x 2−2x 3+2x 4− x 5− x 3+2x 4−2x 5+ x 6

=−2x +5x 2−7x 3+6x 4−3x 5+ x 6

= x +2x 2+2x 3+ x 6

Notice that we computed the product normally, and then we reduced the coefficients

modulo 3. We could also compute the product in Sage:

sage: g*f
x^6 + 2*x^3 + 2*x^2 + x

Remark 3.5.3. If R is commutative, then so is R [x]. Likewise, if R has multiplicative identity

1R , then 1R is also the multiplicative identity of R [x].

3.6 Fields

Definition 52 (Integral Domain).

An integral domain is a commutative ring R with identity 1R ̸= 0 such that if a b = 0R , then

a = 0R or b = 0R for all a , b ∈R . That is, there are no zero divisors.

Definition 53 (Field).

A field is a commutative ring R with identity 1R ̸= 0 such that every nonzero element in R

has a multiplicative inverse in R .

Theorem 3.6.1. Let R be an integral domain, and let f (x), g (x) ∈ R [x] be nonzero. Then

deg (f (x) · g (x)) = deg f (x) +deg (g (x)).

Proof. Let f (x), g (x) ∈ R [x] be given by f (x) = a0 + a1x + a2x 2 + · · ·+ an x n and g (x) =

b0 + b1x + b2x 2 + · · ·+ bm x m , where an ̸= 0R and bm ̸= 0R . That is, deg (f (x)) = n and

deg (g (x)) =m . By definition, the largest exponent that f (x)g (x) can have is n +m . We

know that an ̸= 0R and bm ̸= 0R . Since R is an integral domain, an bm ̸= 0R . So, f (x)g (x) is

nonzero and has degree n +m = deg (f (x))+deg (g (x)).

Corollary 3.6.1.1. If R is an integral domain, so is R [x].

Corollary 3.6.1.2. Let R be an integral domain, and let f (x) ∈R [x]. Then f (x) is a unit in

R [x] if and only if f (x) is a unit in R . If F is a field, the units in F[x] are the nonzero constants

in F.

82

Recall the division algorithm you used in prior math classes to find, say, that 2x 2−3x+1
x+1 =

2x −5+ 6
x+1 . Another way to write this is 2x 2−3x +1= (2x −5)(x +1)+6. This process is

the division algorithm with a remainder. We can perform this algorithm on any polynomial

ring F[x] provided that F is a field. Rings that we are allowed to perform this algorithm on

are called Euclidean Domains.

We say that F[x] is Euclidean. Let F be a field, and let a (x), b (x) ∈ F[x] with b (x) ̸= 0.

Then we can write a (x) = b (x) ·q (x)+ r (x)with 0≤ deg (r (x))< deg (b (x)). We call q (x) the

quotient and r (x) the remainder.

Definition 54 (Common Divisor).

As one would expect, we can define a common divisor inF[x]. A common divisor of f (x), g (x) ∈
F[x] is d (x) ∈F[x] that divides both f (x) and g (x). d (x) is a greatest common divisor (or

gcd) of f (x) and g (x) if it is a divisor of highest degree.

Euclidean Algorithm

Let F be a field, and let f (x) and g (x) be in F[x] with g (x) ̸= 0. Then we can perform the

Euclidean Algorithm to find gcd (f (x), g (x)) as follows:

f (x) = g (x) ·q1(x) + r1(x)

g (x) = r1(x) ·q2(x) + r2(x)

r1(x) = r2(x) ·q3(x) + r3(x)

r2(x) = r3(x) ·q4(x) + r4(x)
...

rn−2(x) = rn−1(x) ·qn (x) + rn (x)

rn−1(x) = rn (x) ·qn+1(x)

At each step, 0≤ deg (ri−1(x))< deg (ri). gcd (f (x), g (x)) = rn (x), the last nonzero remain-

der.

The Extended Euclidean Algorithm works the same way it did with integers. It says

that there exists u (x), v (x) ∈F[x] such that f (x)u (x) + g (x)v (x) = gcd (f (x), g (x)).

The next proposition and example come from [14]. You can see the details of the proof

there.

Proposition 3.6.1. Let F be a field and p (x) ∈F[x] such that p (x) ̸= 0. Then every nonzero

congruence class a (x) ∈F[x]/(p (x)) has a unique representative r (x) satisfying deg (r (x))<

deg (p (x)) and a (x)≡ r (x)(mod p (x)).

83

Example 3.6.1 (Addition and Multiplication in a Ring).

Consider the ring F[x]/(x 2+1). Every element in this quotient ring is uniquely represented

by a polynomial of the form a + b x with a , b ∈F. We perform addition in the usual way:

a1+ b1x +a2+ b2x = (a1+a2) + (b1+ b2)x .

Multiplication starts off in the usual way:

a1+ b1x ·a2+ b2x = a1a2+ (a1b2+a2b1)x + b1b2x 2

but we need to divide by x 2+1 and take the remainder. This gives us

a1+ b1x ·a2+ b2x = (a1a2− b1b2) + (a1b2+a2b2)x .

Observe that dividing by x 2+1 is the same as replacing x 2 with −1. The idea here is that

we can think of making x 2+1= 0, so we just replace all of the x 2 terms with −1.

Example 3.6.2 (Polynomial Multiplication).

Let’s consider Z[x]/(x 3−1). We will find the product of f (x) = 2x 2+ x −1 and g (x) = x 2+2.

f (x)g (x) = (2x 2+ x −1)(x 2+2)

= 2x 4+ x 3−3x 2+4x 2+2x −6

= 2x 4+ x 3+ x 2+2x −6

= 2x 3 · x + x 3+ x 2+2x −6

= 2(1) · x + (1) + x 2+2x −6

= 2x +1+ x 2+2x −6

= x 2+4x −5

Of course, we can do this in Sage as well.

sage: R.<x> = PolynomialRing(ZZ,x)
sage: F.<x> = R.quotient_ring(x^3-1)
sage: f = F(2*x^2+x-3)
sage: g = F(x^2+2)
sage: f*g
x^2 + 4*x - 5

Example 3.6.3 (Polynomial Multiplication). Now, let’s consider the same product, but this

time in Z4[x]/(x 3−1). We compute the product the exact same way that we did before. Then,

84

we reduce the coefficients mod 4 to get f (x)g (x) = x 2+1. In Sage, we could simply change

our polynomial ring to have coefficients in Z4 instead of Z.

sage: R.<x> = PolynomialRing(GF(4),x)
sage: F.<x> = R.quotient_ring(x^3-1)
sage: f = F(2*x^2+x-3)
sage: g = F(x^2+2)
sage: f*g
x^2 + 1

85

3.7 Exercises

1. Use the Euclidean Algorithm to find gcd(42, 93) by hand.

2. Use the Euclidean Algorithm to find gcd(1533, 26187) by hand.

3. Find gcd(42823,6409). Then, find integers x and y such that 42823x + 6409y =

gcd(42823, 6409).

4. Use the Euclidean algorithm to verify that 44 and 17 are relatively prime. Then, find

x and y such that 44x +17y = 1.

5. Find a multiplicative inverse of 13 mod 35.

6. Let Z∗n be the set of all positive integers less than n > 1 and relatively prime to n . In

other words,Z∗n is the set of units inZn . Show thatZ∗n is a group under multiplication

modulo n .

7. List the elements of Z∗12. Find the order of the group and the order of each element in

the group.

8. Is Z∗14 cyclic? If so, what is/are its generator(s)?

9. List all (six) cyclic subgroups of Z∗15.

10. List the elements of 〈7〉 in Z∗18.

11. Let H and K be subgroups of group G . Show that H ∩K is also a subgroup of G .

12. Show that an element and its inverse have the same order in any group.

13. Find all units in Z7 and Z8.

14. Find all zero divisors in Z7 and Z8.

15. Based on questions 13 and 14, what can you say about units and zero divisors in Zn ?

(It may be helpful to list out the units and zero divisors for a few more groups, such

as Z9 and Z10.)

86

3.8 Computer Exercises

1. Write a Python code that performs the Extended Euclidean Algorithm to find x and

y such that a x + b y = 1, where gcd(a , b) = 1. Verify that your code works with your

answer to numbers 3 and 4 above.

2. Verify your solutions to problems 1 and 2 above.

3. Generate an addition and multiplication table for Z12 and Z13.

4. Compute the sum and product of f (x) = 2x 4−x 3+x −2 and g (x) =−2x 3+x 2+2x −1

in Z3[x]
x 5−1 .

87

CHAPTER

4

PRE-QUANTUM CRYPTOSYSTEMS AND

THEIR COMPUTATIONAL HARD

PROBLEMS

4.1 RSA

In 1976, Whitfield Diffie and Martin Hellman famously introduced the concept of public

key cryptography in [8]. Ron Rivest, Adi Shamir, and Leonard Adleman answered the call for

such cryptosystems in 1978. [25]We will now discuss one of the oldest and most widely-used

Public Key Cryptosystems to date, the RSA of Rivest, Shamir, and Adelman.

Key Creation

Alice chooses two distinct primes, p and q . These primes should be similar in magnitude

but differ by a few digits. She then computes the public modulus, n = p q . Next, she com-

putesφ(n) = (p −1)(q −1). Note that this is Euler’s Totient function. Alice then chooses an

integer e such that 1< e <φ(n) and gcd(e ,φ(n)) = 1. e is called the encryption exponent.

Alice will keep her private key (p , q) a secret and publish her public key (n , e).

88

Encryption

Suppose Bob wants to send the plaintext message m to Alice. m should be an integer with

0≤m < n . To encrypt the the message, Bob computes c ≡m e (mod n). Notice that he uses

Alice’s encryption exponent, e , to do this. He then sends the ciphertext c to Alice.

Decryption

Alice receives c from Bob, and she wants to recover m . She first computes the decryption

exponent d ≡ e −1(modφ(n)). In order to calculate d , Alice should use the Euclidean Al-

gorithm to find d such that d e ≡ 1(modφ(n)). To recover the plaintext, Alice raises the

ciphertext to the power of the decryption exponent, modulo n . In other words, she com-

putes m ′ ≡ c d (mod n). m ′ is exactly the plaintext message m .

It remains to show that m ′ =m . In order to do so, we first need another theorem.

Theorem 4.1.1 (Euler’s Theorem).

If gcd (a , n) = 1, then aφ(n) ≡ 1(mod n).

Here,φ(n) is Euler’s totient function, which is the number of integers in {1,2, . . . , n −1}
that are relatively prime to n, as we saw in the review of abstract algebra.

Proof. The units in Zn form a group under multiplication. We denote this with Z∗n . Since

gcd (a , n) = 1, we know that a is in this group. This group hasφ(n) elements. The subgroup

generated by a is {a n : n ∈Z}= {1, a , a 2, . . . , a m−1} and has order m . By Lagrange’s Theorem,

m |φ(n). That is,φ(n) = k m for some k ∈Z. Then we have that

aφ(n) ≡ a mk ≡ (a m)k ≡ 1k ≡ 1(mod n).

Remark 4.1.1. When n is prime, Theorem 4.1.1 is just Fermat’s Little Theorem: Let p be a

prime which does not divide the integer a . Then a p−1 ≡ 1(mod p).

Proposition 4.1.1. In the RSA Cryptosystem, m ′ =m. That is, m ′ = c d (mod n) =m

89

Proof.

m ′ ≡ c d (mod n)

= (m e)d (mod n)

=m e d (mod n)

=m 1+kφ(n)(mod n) (for some k ∈Z≥0)

=m (mφ(n))k (mod n)

=m (mod n) (Euler’s Theorem)

m ′ =m

Example 4.1.1 (RSA).

We will illustrate the RSA with a toy example. In practice, primes p and q are much larger.

Key Creation

Suppose that Alice chooses distinct primes p = 3 and q = 11. Note that these are similar in

magnitude. She computes the public modulus n = 3×11= 33 and her secretφ(n) = 2×10= 20.

She then chooses an encryption exponent e = 7. Note that 1< 7< 20 and gcd(7, 20) = 1. Alice

publishes (n , e) = (33, 7) and keeps (p , q) = (3, 11) private.

Encryption

Suppose that Bob wants to send the plaintext message m = 18 to Alice. Note that he has

chosen m such that 1≤m < n. He computes c ≡ 187(mod 33) = 6 and sends ciphertext c = 6

to Alice.

Decryption

Alice receives c = 6 from Bob. She first computes her decryption exponent d ≡ 7−1(mod 20) = 3.

Note that 3 · 7 ≡ 1(mod 20). She uses d to compute m ′ ≡ 63(mod 33) = 18. Note that Alice

recovered the plaintext message.

Example 4.1.2 (RSA with Sage).

We will work through another example of RSA with SageMath.

Key Creation

Alice chooses p = 499 and q = 643. Recall that you can check that these are prime. She then

90

computes n = p q = 320857 and φ(n) = (p − 1)(q − 1) = 319716 and chooses encryption

exponent e = 71. She checks that gcd(71, 319716) = 1.

sage: p = 499
sage: q = 643
sage: n = p*q
sage: phi = (p-1)*(q-1)
sage: e = 71
sage: gcd(e, phi)
1

Encryption

Bob wants to send a message m = 327 to Alice. He computes c ≡m e (mod 320857) = 142145

and sends it to Alice.

sage: m = 327
sage: c = mod(m^e, n)
sage: c
142145

Decryption

Alice receives c = 142145. She first computes her decryption exponent d ≡ e −1(modφ(n))≡
71−1(mod 319716) = 211643. She then decrypts the ciphertext by computing m ′ ≡ c d (

mod n)≡ 142145211643(mod 320857) = 327.

sage: d = mod(e^(-1),phi)
sage: mprime = mod(c^d,n)
sage: mprime
327

She has recovered the plaintext.

4.1.1 The RSA Problem

An adversary, Eve, can intercept c , the ciphertext message. She already knows e , the en-

cryption exponent, and n , the public modulus. Her task, then, is to compute m . We can

frame this as the RSA Problem.

Problem 4.1.1 (RSA Hard Problem).

Given an RSA public key (n , e) and ciphertext c ≡m e (mod n), compute m.

91

This means that Eve would need to invert the RSA function to recover the plaintext

message. There are a number of ways to attack the RSA when n is small. But, when n is

sufficiently large and randomly generated, it is known that the RSA problem is hard to solve.

That is, the RSA function is a trapdoor function. It would be easy to solve if Eve just knew p

and q . Then, she could just computeφ(n) and decrypt just as Alice would. This is known

as the Integer Factorization Problem. So, it is clear that breaking RSA boils down to solving

the Integer Factorization Problem.

Problem 4.1.2 (Integer Factorization Problem).

Given n = p q , find primes p and q .

It is not difficult to factor n when n is small. In fact, there are a number of factoring

algorithms (and pre-programmed functions in Sage) that do this for us. But, when n is

sufficiently large and randomly generated, it is very hard to find p and q .

4.2 Elgamal

We now discuss the Elgamal Cryptosystem of Taher Elgamal from 1985 as presented in [14].

Before getting into he cryptosystem itself, we need to look at its underlying hard problem.

4.2.1 Discrete Logarithm Problem

LetFp be a finite field. Then there exists an element g ∈Fp such thatF∗p = {1, g , g 2, . . . , g p−2}.
In particular, Fermat’s Little Theorem says that g p−1 = 1. g is called a primitive root of Fp .

Problem 4.2.1 (Discrete Logarithm Problem).

Let g be a primitive root of Fp . Let h ∈Fp be nonzero. Find an exponent x such that g x ≡ h (

mod p).

The number x is called the discrete logarithm of h with base g . It is denoted by logg (h).

4.2.2 Diffie-Hellman Problem

The Diffie-Hellman Problem allows Alice and Bob to share some key without Eve being able

to know what it is.

The Diffie-Hellman Key Exchange has public parameters (p , g), where p is a large prime

and g is a primitive root of large prime order in F∗p .

92

Alice chooses her secret key a ∈Z and computes A ≡ g a (mod p). She sends A to Bob.

At the same time, Bob chooses his own secret key b ∈Z and computes B ≡ g b (mod p). He

sends B to Alice.

Alice receives B from Bob and computes B a (mod p). Bob receives A from Alice and

computes Ab (mod p). Note that

B d ≡ (g b)a ≡ g a b ≡ (g a)b ≡ Ab (mod p),

so this is their shared secret key.

Example 4.2.1 (Diffie-Hellman Problem).

The Diffie-Hellman Problem has public parameters p = 1039 and g = 593.

sage: p = 1039
sage: g = 593

Alice chooses a = 323 and computes A ≡ 593323(mod 1039) = 108. She sends A = 108 to

Bob.

sage: a = 323
sage: A = mod(g^a, p)
sage: A
108

At the same time, Bob chooses b = 691 and computes B ≡ 593691(mod 1039) = 613. He

sends B = 613 to Alice.

sage: b = 691
sage: B = mod(g^b, p)
sage: B
613

Alice receives B = 613 and computes 613323(mod 1039) = 617.

sage: mod(B^a, p)
617

Bob receives A = 108 and computes 108691(mod 1039) = 617.

93

sage: mod(A^b, p)
617

They both got 617, so this is their shared key.

Eve can inercept A and B . Her problem then becomes to solve one of the following:

593a ≡ 108(mod 1039) or 593b ≡ 613(mod 1039).

Eve knows A = g a , B = g b , g , and p . If she can solve the Discrete Log Problem, she can

find either a or b (or both), and then find g a b , which is Alice and Bob’s secret shared key.

Problem 4.2.2 (Diffie-Hellman Problem).

Given the values of g a (mod p) and g b (mod p), find the value of g a b (mod p).

If Eve can solve the Discrete Log Problem, then she can clearly solve the Diffie-Hellman

Problem. Note that it is unknown whether solving the Diffie-Hellman Problem solves he

Discrete Log Problem.

Elgamal Cryptosystem

The Elgamal Cyrptosystem has public parameters (p , g), where p is a large prime, and

g is a primitive root of large prime order in Fp .

Key Creation

Alice chooses a private key a ∈Z, where 1≤ a ≤ p −1 and computes A ≡ g a (mod p). She

publishes A as her public key.

Encryption

Bob wants to send a plaintext message m to Alice, where 2 ≤ m ≤ p − 1. He chooses a

random integer k and computes c1 = g k (mod p) and c2 =m Ak (mod p). He sends (c1, c2)

as his ciphertext to Alice.

Decryption

Alice receives (c1, c2) and computes (c a
1)
−1 · c2(mod p). This gives her back exactly m .

Proposition 4.2.1. In the Elgamal Cryptosystem, (c a
1)
−1 · c2(mod p) =m.

94

Proof.

(c a
1)
−1 · c2 ≡ ((g k)a)−1 ·m Ak (mod p)

≡ (g a k)−1 ·m Ak (mod p)

≡ (g a k)−1m (g a)k (mod p)

≡ (g a k)−1(g a k)m (mod p)

=m

Example 4.2.2 (Elgamal).

The Elgamal Cryptosystem has public parameters p = 2677 and g = 993.

sage: p = 2677
sage: g = 993

Key Creation

Alice chooses a = 1234 and computes A ≡ g a (mod p) ≡ 9931234(mod 2677) = 2661 and

sends it to Bob.

sage: a = 1234
sage: A = mod(g^a,p)
sage: A
2661

Encryption

Bob receives A = 2661. He wants to send m = 2132 to Alice. He picks k = 213 and computes

c1 and c2. He gets c1 ≡ g k (mod p) ≡ 993213(mod 2677) = 2563 and c2 ≡m Ak (mod p) ≡
2132 ·2661213(mod 2677) = 2549. He sends (c1, c2) = (2563, 2549) to Alice.

sage: m = 2132
sage: k = 213
sage: c1 = mod(g^k,p)
sage: c1
2563

sage: c2 = mod(m*A^k,p)
sage: c2
2549

95

Decryption

Alice receives (c1, c2) = (2563,2549) and computes (c a
1)
−1 · c2(mod p)≡ (25631234)−1 ·2549(

mod 2677= 2132. This is exactly m.

sage: mod((c1^a)^(-1)*c2,p)
2132

4.3 Knapsack

We will now introduce the Knapsack Cryptosystem by first discussing its hard problem, the

Subset-Sum Problem.

4.3.1 The Subset-Sum Problem

Problem 4.3.1 (The Subset-Sum Problem).

Suppose you are given a list N = (N1, N2, . . . , Nk) of positive integers and another integer M .

Find a subset of the elements of N that sum to M , assuming that there exists at least one such

sum.

Equivalently, let v= (v1, v2, . . . , vk) be a binary vector. Given

M =
k
∑

i=1

vi Ni ,

find v or another binary vector giving M .

Example 4.3.1 (Subset-Sum).

Let N = (4,6,7,11,15,17,20,31,41,43,47) and M = 98. Then, a subset whose entries sum to

M is {6, 7, 11, 31, 43}. It is easy to check that this is the only such subset.

Example 4.3.2 (Subset Sum).

Use the same N as our last example. Now, say we have M = 76. A subset whose entries sum to

M is {4, 11, 20, 41}. Another subset whose entries sum to M is {4, 31, 41}.

Remark 4.3.1. The solution to a subset-sum problem, if it exists, is not necessarily unique.

Remark 4.3.2. It turns out that solving a Subset-Sum Problem is very difficult, so it cannot

be used for a cryptosystem. However, if Alice has some secret information that guarantees a

solution, it can be used. This leads us to superincreasing sequences.

96

Definition 55 (Superincreasing Sequence).

A superincreasing sequence of integers is a list of positive integers r = (r1, r2, . . . , rn) such

that

ri+1 ≥ 2ri for all 1≤ i < n .

The following algorithm, as presented in [14], solves the Subset-Sum problem for a

superincreasing sequence M and target integer S , assuming that a solution exist. It takes

(M,S) as input and outputs x ∈ {0, 1}n , a binary solution to the Subset-Sum problem.

Algorithm 2 Subset-Sum for a Superincreasing Sequence

1: Loop i from n down to 1
2: If S ≥Mi

3: set xi = 1
4: S = S −Mi

5: Else set xi = 0
6: End loop

Example 4.3.3 (Subset-Sum Algorithm for a Superincreasing Sequence).

Let r= (4, 9, 21, 45, 91, 187, 379) and S = 327. Note that r is superincreasing since ri+1 ≥ 2ri for

all 1≤ i < 7. We will use Algorithm 2.

S = 327 ̸≥ 379= r7, so x7 = 0.

S = 327≥ 187= r6, so x6 = 1.

S = 327−187= 140

S = 140≥ 91= r5, so x5 = 1

S = 140−91= 49

S = 49≥ 45= r4, so x4 = 1

S = 49−45= 4

S = 4 ̸≥ 21= r3, so x3 = 0

S = 4 ̸≥ 9= r2, so x2 = 0

97

S = 4≥ 4= r1, so x1 = 1

Thus, x=

























1

0

0

1

1

1

0

























. Note that rx= (1)(4)+(0)(9)+(0)(21)+(1)(45)+(1)(91)+(1)(187)+(0)(379) =

327.

We will now discuss the Knapsack Cryptosystem, as presented in [14], a cryptosystem

based on the Subset-Sum Problem and superincreasing sequences.

Key Creation

Alice chooses a superincreasing sequence r = (r1, r2, . . . , rn). She then chooses relatively

prime integers A and B with B > 2rn . She computes Mi = Ari (mod B) for 1 ≤ i ≤ n and

publishes M= (M1, M2, . . . , Mn) as her public key.

Encryption

Bob chooses a binary plaintext message x ∈ {0, 1}n and computes S =Mx to send to Alice.

Decryption

Alice receives S and computes S ′ ≡ A−1S (mod B). She then uses Algorithm 2 to solve the

Subset-Sum Problem for S ′ using her secret superincreasing sequence r. She gets back x,

the plaintext, which satisfies r ·x= S ′.

Example 4.3.4 (Knapsack Cryptosystem).

Key Creation

Alice chooses superincreasing sequence r = (4,9,21,45,91,187,379) and integers A = 123

and B = 802. Note that gcd (A, B) = 1 and B > 2 ·379= 758. She then computes Mi = 123ri (

mod 802) for all i to get M= (492, 305, 177, 723, 767, 545, 101). Notice that this sequence is not

superincreasing, so we could not use the described algorithm to solve a Subset-Sum problem

with it. Alice publishes M.

sage: A = 123
sage: B = 802
sage: gcd(A,B)

98

1

sage: R = IntegerModRing(B)
sage: r = Matrix(R, [4,9,21,45,91,187,379])
sage: M = A*r
sage: M
[492 305 177 723 767 545 101]

Encryption

Bob wants to encrypt x=

























1

0

0

1

1

1

0

























. He computes S =Mx= (1)(492) + (0)(305) + (0)(177) + (1)(723) +

(1)(767) + (1)(545) + (0)(101) = 2527 to send to Alice.

sage: Mb = Matrix([492, 305, 177, 723, 767, 545, 101])
sage: x = vector([1,0,0,1,1,1,0])
sage: S = Mb*x
sage: S
(2527)

Decryption

Alice receives S = 2527 and computes S ′ ≡ 123−1(2527)(mod 802) = 327. She then solves the

Subset-Sum problem for S ′ using r as we did in Example 4.3.3. Note that she recovers exactly

x.

sage: S = 2527
sage: Sprime = mod(A^(-1)*S, B)
sage: Sprime
327

Attack

Eve intercepts S = 2527, but she does not know the superincreasing sequence. So, she cannot

decrypt the ciphertext.

99

4.4 Exercises

1. Bob wants to send plaintext message m = 8 to Alice using the RSA. Use the public key

(33, 7) to calculate the ciphertext c . Then, use Alice’s private key (3, 11, 20) to recover

the plaintext.

2. Suppose you choose p = 19 and q = 17 for part of your private key with the RSA

Cryptosystem. Using e = 283 as your exponent, calculate d .

3. Suppose φ(n) = 439200. Determine which of the following, if any, are valid public

exponents: e1 = 3, e2 = 5, e3 = 7.

4. Collaborative Use p = 197 and q = 211 for the RSA Cryptosystem. Compute n and

φ(n), and choose e . Give (n , e) to a partner, and have a partner encrypt a numerical

plaintext message of their choosing. Once your partner gives you the ciphertext,

recover the plaintext message.

5. For the Knapsack Cryptosystem, take r= (4,9,21,45,91,187,379). Suppose A = 145

and B = 901.

(a) Compute M .

(b) Encrypt x=

























0

1

1

1

0

0

1

























.

(c) Decrypt the cyphertext to recover x.

4.5 Computer Exercises

1. The Diffie-Hellman Key Exchange has public parameters p = 2203 and g = 421. Alice

sends Bob the value of A = 794. Bob uses the secret value b = 245.

(a) What value of B should Bob send to Alice?

(b) What is Alice and Bob’s shared secret value?

(c) Can you figure out a ?

100

2. The public parameters of the Elgamal Cryptosystem are p = 1951 and g = 213.

(a) Alice chooses a = 823 as her private key. What is her public key?

(b) Bob wants to send Alice the message m = 1023. He chooses random k = 119.

What is the ciphertext (c1, c2) that he should send to Alice?

(c) Alice receives the (c1, c2) from part (b). Decrypt this ciphertext to recover m .

(d) Suppose that Eve intercepts (c1, c2). What is the problem that she must solve in

order to decrypt the ciphertext? Can you solve it?

3. Find the two prime factors of 260947.

4. Suppose that Alice receives ciphertext c = 522885 from Bob. Alice knows thatφ(n) =

913440 and e = 179. If n = p q , where p = 1039, find q . Then, decrypt the ciphertext.

5. Suppose that n = p q = 667 and the public exponent is e = 3 for the RSA Cyrptosystem.

(a) Encrypt the plaintext message m = 273.

(b) Determine p and q .

(c) Use p and q to recover the plaintext message m .

6. Suppose that a public key for an RSA Cryptosystem is (n , e) = (2331757, 23).

(a) Encrypt the plaintext message m = 732985.

(b) Suppose you know that n = p q , where p = 1451. Find q , and use it to calculate

d .

7. The following code takes as input p , q , and e of the RSA cryptosystem and outputs

decryption exponent d . Write code the executes the remaining portions of the RSA

cryptosystem.

def generate_d(p,q,e):
if not is_prime(p):

print(‘‘p is not prime’’)
return

if not is_prime(q):
print(‘‘q is not prime’’)
return

phi = (p-1)*(q-1)

101

if gcd(e, phi) != 1:
print(‘‘e and phi are not relatively prime’’)
return

return inverse_mod(e, phi)

8. Write a computer program that executes the Subset-Sum of a Superincreasing Se-

quence alogorithm in 2.

102

CHAPTER

5

INTRODUCTION TO LATTICES

With algorithms like Shor’s Algorithm (see [26]), which can factor a composite number into

the product of primes in polynomial time on a Quantum computer, and the promise for

Quantum computers (see [28]) in the near future, comes the need for Quantum-resistant

cryptosystems. Constructions based on lattices are proving promising. Before getting into

these cyrptosystems, we must first become comfortable with lattices and their properties.

We draw on our knowledge of vector spaces to work with lattices. We follow [14] for many

of the definitions and properties.

5.1 Definition and Basic Properties

Definition 56 (Lattice).

Let v1, v2, . . . , vn ∈Rn be linearly independent vectors. The latticeL generated by these vectors

is the set of all linear combinations of v1, v2, . . . , vn with integer coefficients. That is,

L = {a1v1+a2v2+ · · ·+an vn : a1, a2, . . . , an ∈Z}=

¨

n
∑

i=1

ai vi : ai ∈Z, 1≤ i ≤ n

«

.

Vectors v1, v2, . . . , vn are called basis vectors ofL .

103

Definition 57 (Integer Lattice).

If basis vectors v1, v2, . . . , vn ∈Zn ,L is called an integer (or integral) lattice.

We will deal exclusively with integer lattices.

Definition 58 (Dimension).

The dimension of a lattice is the number of basis vectors.

Example 5.1.1 (Lattice).

The 2−dimensional integer lattice in Figure 5.1 generated by v1 =

�

2

1

�

and v2 =

�

1

3

�

is given by

L = {a1v1+a2v2 : a1, a2 ∈Z}.

Figure 5.1L = {a1v1+a2v2 : a1, a2 ∈Z} ⊂R2

Let us now look at how we could generate the matrix representation of the lattice from

Example 5.1.1 with SageMath.

sage: M = Matrix(ZZ,[[2,1],[1,3]])

104

sage: M
[2 1]
[1 3]

We can also check whether or not specific vectors are in the lattice.

sage: vector([1,1]) in span(M)
False

sage: vector([4,2]) in span(M)
True

sage: vector([3,-1]) in span(M)
True

sage: vector([-36,12]) in span(M)
True

We can also find the linear combination of basis vectors using Sage. Say we want to

know what specific linear combination of v1 and v2 gives us that last vector that we tested,
�

−36

12

�

. We just use the solve_left command.

sage: b = vector([-36,12])
sage: M.solve_left(b)
(-24, 12)

Then, we can check that this is, in fact, true:

sage: -24*M[0] + 12*M[1]
(-36, 12)

We can also generate a random lattice basis with SageMath:

sage: sage.crypto.lattice.gen_lattice(m=10, lattice=True)
Free module of degree 10 and rank 10 over Integer Ring
User basis matrix:
[0 1 0 -1 0 -1 0 -1 0 1]
[1 -1 -1 0 1 0 1 1 0 0]

105

[0 0 -1 -1 -1 -1 1 0 1 0]
[0 0 1 0 0 -1 -1 -1 2 0]
[1 1 1 1 -1 1 1 0 1 0]
[-1 0 1 0 0 -1 1 1 0 -2]
[1 -1 1 -1 -1 2 0 0 1 0]
[-1 0 1 -1 0 -1 -1 2 -1 1]
[0 -1 1 1 0 -2 2 -1 -1 1]
[-3 0 0 1 0 1 1 0 2 1]

Recall that Sage uses row vectors.

Remark 5.1.1. An integer lattice is an additive subgroup of Zn for some n.

Definition 59 (Fundamental Domain).

LetL be an n− dimensional lattice with ordered basisB = {v1, v2, . . . , vn}. The fundamental

domain ofL corresponding toB is given by

F (B) =

¨

n
∑

i=1

ci vi : 0≤ ci < 1

«

.

A fundamental domain is also called a fundamental region or a fundamental paral-

lelepiped.

Figure 5.2 shows a fundamental regionF of the latticeL from Figure 5.1.

106

Figure 5.2 A fundamental domainF =F (v1, v2) ofL

We now state a proposition that we will need in Section 5.3.

Proposition 5.1.1. LetL be an n−dimensional lattice with a fundamental regionF . Then

every vector w ∈Rn can be uniquely written in the form

w= x+v, where x ∈F and v ∈L .

Equivalently,
⋃

v∈L
F +v= {x+v : x ∈F}

exactly covers Rn .

Figure 5.3 shows a geometric example of the same latticeL covering R2.

107

Figure 5.3
⋃

v∈L
F +v= {x+v : x ∈F} covers R2.

We now prove the proposition.

Proof. LetB = {v1, v2, . . . , vn} be a basis for latticeL ⊂Rn andF =F (B) a fundamental

region ofL . SinceB is n linearly independent vectors in Rn ,B is also a basis for Rn . So,

any w ∈Rn can be written as

w=
n
∑

i=1

ai vi for some ai ∈R.

Write ai = ci +ki with 0≤ ci < 1 and ki ∈Z. Then

w= (c1+k1)v1+ (c2+k2)v2+ · · ·+ (cn +kn)vn

= c1v1+k1v1+ c2v2+k2v2+ · · ·+ cn vn +kn vn

= (c1v1+ c2v2+ · · ·+ cn vn)
︸ ︷︷ ︸

x∈F

+(k1v1+k2v2+ · · ·+kn vn)
︸ ︷︷ ︸

v∈L

Uniqueness follows from 0≤ ci < 1.

108

Definition 60 (Determinant).

LetL be an n−dimensional lattice with fundamental domainF . The determinant ofL ,

denoted det (L), is the volume ofF .

SupposeB = {v1, v2, . . . , vn} is a basis for latticeL with corresponding fundamental domain

F . Let V be the n ×n matrix whose i th column is vi . Then

det (L) =Vol (F) = |det (V)|.

Remark 5.1.2. All fundamental domains of a single lattice have the same volume since any

two bases for a lattice are related by a unimodular matrix.

Definition 61 (Hadamard Inequality).

Let latticeL ⊂Rn have basisB = {v1, v2, . . . , vn}, and letF =F (B) be the corresponding

fundamental domain. The Hadamard Inequality is given by

det (L) =Vol (F)≤ ∥v1∥∥v2∥ · · ·∥vn∥.

The closerB is to orthogonal, the closer this comes to equality.

Definition 62 (Hadamard Ratio).

For a basisB = {v1, v2, . . . , vn} of latticeL ⊂Rn , the Hadarmard Ratio ofB is given by

H (B) =
�

det (L)
∥v1∥∥v2∥ · · ·∥vn∥

�1/n

,

where 0<H (B)≤ 1. The closer this value is to 1, the closerB is to orthogonal. The reciprocal

of the Hadamard Ratio is often called the orthogonality defect.

5.2 Lattice Hard Problems

As we know, the security of cryptosystems relies on the hardness of their underlying prob-

lems. We now discuss two well-studied hard lattice problems. Note that there are other

versions of these, but we will just discuss the basic Shortest Vector Problem and the Closest

Vector Problem. We again follow [14] in defining them.

5.2.1 The Shortest Vector Problem

Problem 5.2.1 (The Shortest Vector Problem).

Find a shortest nonzero vector in latticeL . That is, find 0 ̸= v ∈L that minimizes ∥v∥.

109

Example 5.2.1 (Shortest Vector).

As shown in Figure 5.4, the latticeL =

¨

a1

�

2

1

�

+a2

�

1

3

�

: aa , a2 ∈Z

«

from Figure 5.1 has a

short vector v=

�

2

1

�

. That is, ∥v∥=
p

22+12 =
p

5 is the smallest Euclidean norm inL .

Note that v′ =

�

−1

2

�

is also a short vector inL , as ∥v′∥=
p

(−1)2+22 =
p

5. It is clear that a

solution to The Shortest Vector Problem (SVP) is not unique. For that reason, we call v (and

v′) a short vector, instead of the short vector.

We follow [14] in defining the Gaussian expected shortest length of a shortest vector, and we

encourage the reader to see [14] for an in depth discussion of it.

Definition 63 (Gaussian expected shortest length).

LetL be a lattice of dimension n. The Gaussian expected shortest length is

σ(L) =
s

n

2πe
(det (L))1/n ,

and we expect that a shortest vector v ∈L satisfy

∥v∥ ≈σ(L).

110

Figure 5.4 v and v′ are shortest vectors inL .

Example 5.2.2 (Gaussian Expected Length).

From our previous example, we expect the shortest length to be

σ(L) =
s

n

2πe
(det (L))1/n

=

√

√ 2

2πe
|(2)(3)− (1)(1)|1/2

=

√

√ 1

πe

p
5

=

√

√ 5

πe

≈ 1.35624

Note that
p

5≈ 2.23607, which is relatively close to the expected shortest length.

111

5.2.2 The Closest Vector Problem

Problem 5.2.2 (The Closest Vector Problem).

Given a vector w ∈Rn with w ̸∈ L , find a v ∈L that is closest to w. That is, find v ∈L that

minimizes ∥w−v∥. We call w our “target vector.”

We now switch to identifying all vectors with points in space, so that our figures do not get

too crowded.

Example 5.2.3 (Closest Vector).

TakeL to be as in our previous examples, and suppose our target vector is w=

�

4

3

�

. Note that

w ̸∈ L , as there does not exist a1, a2 ∈Z such that a1v1+a2v2 =w.

The closest vector to w is v =

�

4

2

�

, as ∥w− v∥ =

�

4

3

�

−

�

4

2

�

= 1 is the minimum distance

between w and any other y ∈L .

Figure 5.5 v ∈L is the closest lattice vector to the target vector w ∈R2.

As in Definition 63, we again follow [14] in saying that ifL is a lattice of dimension n and

112

w ∈Rn is a random target point, then we expect v ∈L to satisfy

∥v−w∥ ≈σ(L).

5.3 Babai’s Algorithm

We have seen that closest vectors can be relatively easy to find when we have a picture in

2−D. A natural next question would be How can we find the closest vector to a target point

for any lattice?

Recall the definition and visual for a lattice’s Fundamental Domain (Definition 59 and Figure

5.2). Recall also, as in Figure 5.3, that the union of unique representations of vectors inRn

as the sum of a point in the lattice and a point in the fundamental domain exactly coversRn .

Consider Example 5.2.3 again. Draw the “shifted” fundamental region around the target

point w, as shown in Figure 5.6. Observe that the closest lattice vector to the target point is

the closest vertex of the surrounding parallelepiped.

113

Figure 5.6 The closest lattice point v to target point w is also the closest vertex of w’s surrounding
parallelogram.

Let us now consider a different basis for L with the same target vector w. Suppose we

use the basis

¨�

2

1

�

,

�

7

6

�«

. If we draw our fundamental region around the target point (as in

Figure 5.7), we see that the closest parallelogram vertex is not the closest lattice point to

the target point. Why is that?

114

Figure 5.7 v ∈L is the closest lattice point to target point w ∈R2, but v′ ∈L is the closest parallel-
ogram vertex to w.

As it turns out, the idea that the closest vertex is the closest lattice point is dependent on

how orthogonal the basis vectors are. In Figure 5.6, the basis vectors are close to orthogonal;

in Figure 5.7, the basis vectors are close to parallel. In order for this idea to work out, we

need that the basis vectors are reasonably orthogonal.

Definition 64 (Good Basis and Bad Basis [14]).

A good basis is a basis in which the vectors are “reasonably orthogonal,” or close to pairwise

orthogonal.

A bad basis is a basis in which the vectors are “reasonably parallel,” or far from pairwise

orthogonal.

Orthogonality of Two Vectors

Recall from Definition 22 that the angle between two vectors v1 and v2 satisfies

cos (θ) =
v1 ·v2

∥v1∥∥v2∥
. (5.1)

The closer this ratio is to 0, the less v1 and v2 are to being orthogonal. Therefore, two vectors

115

are reasonably orthogonal if the ratio in (5.1) is close to 0.

This definition is practical to use in very small dimensions, but we need a way to check for

orthogonality in larger dimensions.

Recall from Definition 62 that the Hadamard Ratio corresponding to basisB = {v1, v2, . . . , vn}
forL is given by

H (B) =
�

det (L)
∥v1∥∥v2∥ · · ·∥vn∥

�1/n

. (5.2)

The closer this value is to 1, the closerB is to orthogonal. Therefore, vectors v1, v2, . . . , vn

are reasonably orthogonal if (5.2) is close to 1.

Babai’s Closest Vertex Algorithm finds the closest vertex to the targest point by writing

the target vector as a linear combination of the basis vectors and then rounding them to

integers. In this algorithm, we use the notation ⌊ci ⌉ to represent the nearest integer to ci .

Theorem 5.3.1 (Babai’s Closest Vertex Algorithm [14]).

LetL ⊂Rn be a lattice, and let {v1, v2, . . . , vn} be a reasonably orthogonal basis forL . Sup-

pose w ∈ Rn is an arbitrary vector. Then the following algorithm solves the Closest Vector

Problem.

Babai’s Closest Vertex Algorithm inputs w ∈Rn , the target vector, and {v1, v2, . . . , vn}, a rea-

sonably orthogonal basis forL . It outputs v ∈L , the closest lattice vector to the target vector

w.

Algorithm 3 Babai’s Closest Vertex Algorithm

1: Write w= c1v1+ c2v2+ · · ·+ cn vn with ci ∈R, i = {1, 2, . . . , n}
2: Set ai = ⌊ci ⌉ for i = {1, 2, . . . , n}
3: Return v= a1v1+a2v2+ · · ·+an vn

Algorithm 3 is sometimes referred to as “Babai’s Rounding Algorithm.”

Example 5.3.1 (Babai’s Algorithm).

Let’s revisit our example (Example 5.2.3) of finding the closest lattice point to target point

w=

�

4

3

�

using the lattice basisB =

¨�

2

1

�

,

�

1

3

�«

.

116

We first check that the basis vectors are reasonably orthogonal. We will do this using the

Hadamard Ratio. Let V =

�

2 1

1 3

�

.

� |det (V)|
∥v1∥∥v2∥

�1/2

=
� |(2)(3)− (1)(1)|
p

5 ·
p

10

�1/2

=
�

5
p

50

�1/2

≈ .840896

We can do this in Sage:

sage: V = Matrix([[2,1],[1,3]])
sage: v1 = V[:,0]
sage: v2 = V[:,1]
sage: (abs(det(V))/(v1.norm()*v2.norm()))^(1/2)
0.8408964152537145

Though not as close as we would like, this is reasonably close to 1, so we can considerB to be

a “good” basis.

We now proceed to using Babai’s Algorithm (Algorithm 3):

Step 1 Write w= c1v1+ c2v2. That is, find c1, c2 ∈R such that w= c1v1+ c2v2.

�

4

3

�

= c1

�

2

1

�

+ c2

�

1

3

�

�

4

3

�

=

�

2c1+1c2

1c1+3c2

�

Setting corresponding components equal to one another yields the system of equations







2c1+ c2 = 4

c1+3c2 = 3

Solving this system of equations gives

c1 = 1.8

c2 = 0.4

117

sage: V = Matrix([[2,1],[1,3]])
sage: b = vector([4,3])
sage: V\b.n()
(1.80000000000000, 0.400000000000000)

Step 2 Round c1 and c2 to the nearest integer.

⌊c1⌉= ⌊1.8⌉= 2= a1

⌊c2⌉= ⌊0.4⌉= 0= a2

Step 3 Return closest vector v= a1v1+a2v2.

v= 2

�

2

1

�

+0

�

1

3

�

=

�

4

2

�

sage: v = 2*V[:,0] + 0*V[:,1]
sage: v
[4]
[2]

Therefore, the closest lattice point to w is v by Babai’s Algorithm.

Example 5.3.2 (Babai’s Algorithm with a Bad Basis).

Now, let’s look at the same problem with our basis from Figure 5.7. Consider the basis

B ′ =

¨�

2

1

�

,

�

7

6

�«

for the same lattice. We will use the same target point, w=

�

4

3

�

.

We must first check to see if the basis is “good.” We can again use the Hadamard Ratio.

�

detL
∥v′1∥∥v

′
2∥

�1/2

=
� |(2)(6)− (1)(7)|
p

22+12
p

72+62

�1/2

=
�

5
p

425

�1/2

≈ 0.4925

118

sage: B = Matrix([[2,7],[1,6]])
sage: b1 = B[:,0]
sage: b2 = B[:,1]
sage: (abs(det(B))/(b1.norm()*b2.norm()))^(1/2).n()
0.4924790605054523

This is reasonably far from 1, so we can considerB ′ to be a “bad” basis since the vectors

are close to parallel. Though we should stop here, we will continue to use Babai’s Algorithm

to illustrate a point.

Step 1 Write w= c1v′1+ c2v′2. That is, find c1, c2 ∈R such that w= c1v′1+ c2v′2.

�

4

3

�

= c1

�

2

1

�

+ c2

�

7

6

�

�

4

3

�

=

�

2c1+7c2

1c1+6c2

�

Setting corresponding components equal to one another yields the system of equations







2c1+7c2 = 4

c1+6c2 = 3

Solving this system of equations gives

c1 = 0.6

c2 = 0.4

sage: B = Matrix([[2,7],[1,6]])
sage: w = vector([4,3])
sage: B\w.n()
(0.600000000000000, 0.400000000000000)

Step 2 Round c1 and c2 to the nearest integer.

⌊c1⌉= ⌊0.6⌉= 1= a1

⌊c2⌉= ⌊0.4⌉= 0= a2

119

Step 3 Return closest vector v= a1v′1+a2v′2.

v′ = 1

�

2

1

�

+0

�

7

6

�

=

�

2

1

�

sage: 1*B[:,0] + 0*B[:,1]
[2]
[1]

Therefore, the closest vertex to w is v′ by Babai’s Algorithm. However, we know that

v =

�

4

2

�

is closer, since ∥w− v∥ = 1 and ∥w− v′∥ =
p

8 ≈ 2.828. It is clear that Babai’s

algorithm failed here, as we did not find the closest lattice point. This is because we

started with a “bad” basis.

We can also check thatσ(L) =
q

2
2πe (det (L))1/2 ≈ 0.765, and 1 is much closer to this

than
p

8 is.

sage: numerical_approx(sqrt(2/(2*pi*e))*(det(V))^(1/2))
0.765178616561644

Example 5.3.3 (Babai’s Algorithm with Sage).

We will work another short example of Babai’s Algorithm using Sage.

Suppose we have a good basisB =

¨�

7

−1

�

,

�

1

3

�«

. Let V be the matrix with these basis vectors

as columns. Recall that Sage takes the rows of a matrix, so we enter V as follows:

sage: V = Matrix([[7,1],[-1,3]])

Suppose our target vector is w=

�

8

−3

�

. Then, we enter

sage: w = vector([8,-3])

To find c1 and c2 such that w= c1

�

7

−1

�

+ c2

�

1

3

�

, we simply solve the system V c=w. Since the

columns of V form a basis forL , V is invertible. So, we can simply calculate c=V −1w by

doing

120

sage: c = V\w
sage: c.n()
(1.22727272727273, -0.590909090909091)

Then, for every c−value, we need to round to the nearest integer. One way to do this is

sage: for x in c:
a = round(x)
print(a)

1
-1

This will give us 1 and−1. All that is left is to write v= a1v1+a2v2. We’ll do this by referencing

the columns of V .

sage: v = 1*V[:,0] + -1*V[:,1]
sage: v
[6]
[-4]

This gives us that v=

�

6

−4

�

. To check that v is close to w, we need v to be written as a vector, so

we write

sage: v1 = vector([6,-4])

and then compute

sage: (v1-w).norm()
sqrt(5)

to see that ∥v−w∥=
p

5.

Remark 5.3.1. For a discussion on solving the SVP in ideal lattices algebraically, see for

example [4] and [5].

121

5.4 Exercises

1. LetL be the lattice spanned by v1 =

�

8

−3

�

and v2 =

�

1

14

�

.

(a) Find the volume of a fundamental domain ofL .

(b) Find another basis forL . It may be helpful to draw a picture of the 2−dimensional

lattice.

(c) Find the volume of a fundamental domain ofL using your basis from part (b).

How does this compare to your answer from part (a)?

2. LetL be an integral lattice inR2 that is generated by the basisB =

¨

v1 =

�

7

−1

�

, v2 =

�

1

3

�«

.

Suppose w=

�

8

9

�

∈R2.

(a) Use Babai’s algorithm to find a vector v ∈L that is close to w.

(b) LetB ′ =

¨

v′1 =

�

−5

7

�

, v′2 =

�

−9

17

�«

be another basis forL . Use Babai’s algorithm

to find a vector v′ ∈L that is close to w.

(c) Compare with your answers from parts (a) and (b). Which is a “better" answer?

Why?

3. Let L be the lattice generated by

¨

v1 =

�

7

−1

�

, v2 =

�

1

3

�«

. Verify that v1 and v2 are

reasonably orthogonal. Find the closest vector inL to the target point w=

�

328

133

�

.

4. Explain why Babai’s Closest Vector Algorithm requires a “reasonably orthogonal”

basis.

5. Let v1 =







10

−9

4






, v2 =







17

11

−3






, and v3 =







−6

13

5






.

(a) Verify that {v1, v2, v3} is a basis for some latticeL .

(b) Use the Hadamard Ratio to determine if this is a good basis or a bad one.

122

5.5 Computer Exercises

1. Write a short code that inputs basis vectors and outputs the result of Hadamard’s

Ratio to check for reasonably orthogonal vectors. Verify your answer from Problem 4

above.

2. Refer to Algorithm 3. Write Python code that executes Babai’s Algorithm.

3. (We use an example from [14].) LetL ⊂R2 be the lattice given by the basis v1 =

�

137

312

�

and v2 =

�

215

−187

�

. Find the closest vector inL to target point w=

�

53172

81743

�

.

4. Complete the last problem again, but this time with basis v′1 =

�

1975

438

�

, v′2 =

�

7548

1627

�

.

5. Suppose you have a good basis for latticeL ofB =

















2

−4

6






,







−3

4

5






,







6

5

−3

















. Find the

closest lattice point to target vector w=







622

103

95






.

6. Generate a random latticeL of dimension 5 in Sage. Pick a vector w not inL . (Recall

that you can check this with Sage.). Solve the CVP for w inL .

123

CHAPTER

6

LATTICE-BASED PUBLIC KEY

CRYPTOSYSTEMS

We now discuss some of the most promising lattice-based cryptosystems, the GGH of

Golreich, Goldwasser, and Halevi [11], and the NTRUEncrypt of Hoffstein, Pipher, and

Silverman [13].

6.1 GGH

The GGH Cryptosystem is named for its creators, Goldreich, Goldwasser, and Halevi. [11]. It

is based on the computer’s inability to solve the CVP in a reasonable amount of time. Before

we get into the discussion, we need one quick definition. The rest of the cryptosystem, we

will find, is very familiar.

Definition 65 (Unimodular Matrix).

A matrix A ∈Zn×n is unimodular if det (A) =±1. Equivalently, A ∈Zn×n is unimodular if

A−1 ∈Zn×n .

Remark 6.1.1. Two bases for the same lattice, expressed in matrix form, are related by a

unimodular matrix. [5]

124

We will now proceed with the construction of the GGH Cryptosystem.

Key Creation

Alice chooses a reasonably orthogonal basis B = {v1, v2, . . . , vn} of Zn . The closer the

Hadamard ratioH (B) is to 1, the more orthogonal the basis vectors are. She keeps her

good basisB private. Alice then forms a new basisB ′ = {v′1, v′2, . . . , v′n}, where the vectors

are reasonably parallel. If we let V =
�

v1 v2 . . . vn

�

be the matrix with Alice’s good basis

as columns, we can find a bad basis by computing V ′ = V U , where U is a unimodular

matrix. Note that U should not be the identity matrix, and Alice should check the Hadamard

Ratio of the columns of V ′ to be sure that they are reasonably parallel. One way to generate

U is to take a product of a large number of randomly chosen elementary matrices. [14]

Elementary matrices are matrices that are obtained by applying one row operation to the

identity matrix. The columns of V ′ form the bad basis,B ′. Alice publishesB ′ as her public

key.

Encryption

Suppose that Bob wants to send the plaintext message p= (p1, p2, . . . , pn) to Alice. He uses

the elements of p as coefficients in a linear combination of the bad basis vectors. That is, he

computes m= p1v′1+p2v′2+ · · ·+pn v′m ∈Z
n . Bob then chooses a small r ∈Zn and computes

the ciphertext m′ =m+ r. He sends m′ to Alice.

Decryption

Alice receives the ciphertext c from Bob. Since she knows that c is close to m′, she simply

solves the CVP for c with the private basisB . Since she is using the good basis, she will re-

cover m′. This allows her to then use the public basisB ′ to get back the plaintext message m.

Attack

Let us suppose that Eve intercepts the ciphertext message c. To decrypt the message, she

needs to solve the CVP for c. But, Eve only knows the public basisB ′. Recall that these

vectors are nearly parallel. So, the vector she recovers from solving the CVP will likely not

be anywhere close to m.

Remark 6.1.2. The key to the GGH is the random noise vector r.B should be chosen carefully,

so that r does not shift the nearest lattice point.

125

Example 6.1.1 (GGH).

Key Creation

Suppose Alice has a good basis ofB =

¨

v1 =

�

7

−1

�

, v2 =

�

1

3

�«

. The latticeL spanned by v1

and v2 has determinant 22 and Hadamard ratio

H (v1, v2) =
�

det (L)
∥v1∥∥v2∥

�1/2

≈ 0.991902.

Thus, it is clear thatB is reasonably orthogonal.B is Alice’s secret key.

Let V =
�

v1 v2

�

=

�

7 1

−1 3

�

.

Alice chooses a unimodular matrix U =

�

2 3

3 5

�

and computes V U =

�

17 26

7 12

�

.

The columns of V U give a new basisB ′ =

¨

v′1 =

�

17

7

�

, v′2 =

�

26

12

�«

.

Recall thatL has determinant 22. (One can check that |det(V U)|= 22.) The Hadamard ratio

ofB ′ is

H (v′1, v′2) =

�

det(L)
∥v′1∥∥v

′
2∥

�1/2

≈ 0.20442.

Thus, it is clear thatB ′ is a reasonably parallel basis forL .

Alice publishesB ′, the public key.

sage: V = Matrix([[7,1],[-1,3]])
sage: (abs(det(V))/(V[:,0].norm()*V[:,1].norm()))^(1/2)
0.9919021676052067

sage: U = Matrix([[2,3],[3,5]])
sage: det(U)
1

sage: W = V*U
sage: W
[17 26]

126

[7 12]

sage: (abs(det(W))/(W[:,0].norm()*W[:,1].norm()))^(1/2)
0.20442250330688122

Encryption

Bob has the public keyB ′. He wants to send the plaintext message p= (24,−3) to Alice, but

he must first encrypt it.

Bob computes the linear combination ofB ′ with coefficients from p. m= 24v′1−3v′2 =

�

330

132

�

.

Bob then chooses a random noise vector, r=

�

−2

1

�

, and computes m′ =m+ r=

�

328

133

�

.

Bob sends m′ to Alice.

sage: m = 24*W[:,0] - 3*W[:,1]
sage: m
[330]
[132]

sage: r = Matrix([[-2],[1]])
sage: mprime = m + r
sage: mprime
[328]
[133]

Decryption

Alice receives m′. She uses Babai’s Algorithm to solve the CVP for m′ with her private basisB :

c1

�

7

−1

�

+ c2

�

1

3

�

=

�

328

133

�

gives c1 ≈ 38.3818 and c2 ≈ 57.227. Then a1 = ⌊c1⌉= 39 and a2 = ⌊c2⌉= 57.

Alice computes a1v1+a2v2 = 39

�

7

−1

�

+57

�

1

3

�

=

�

330

132

�

. Note that this is exactly m.

To recover p, Alice solves p1v′1+p2v′2 =m.

127

p1

�

17

7

�

+p2

�

26

12

�

=

�

330

132

�

gives Alice p= (24,−3), which is Bob’s plaintext message.

sage: (V.augment(mprime)).rref().n()
[1.00000000000000 0.000000000000000 38.6818181818182]
[0.000000000000000 1.00000000000000 57.2272727272727]

sage: s = 39*V[:,0]+57*V[:,1]
sage: s
[330]
[132]

sage: (W.augment(s)).rref()
[1 0 24]
[0 1 -3]

Remark 6.1.3. Note that when Eve intercepts the message, she will have to solve the CVP

using the public key. As we have seen, she will likely not be able to solve it with the bad basis.

sage: (W.augment(mprime)).rref().n()
[1.00000000000000 0.000000000000000 21.7272727272727]
[0.000000000000000 1.00000000000000 -1.59090909090909]

sage: a = 22*W[:,0]-2*W[:,1]
sage: a
[322]
[130]

sage: (W.augment(a)).rref()
[1 0 22]
[0 1 -2]

She recovered p′ = (22,−2) ̸= p.

As we will see later on, there is a way for her to reduce the bad basis to a good one in order

to help her solve the CVP in small dimensions.

128

6.2 NTRU

The NTRU Public Key Cryptosystem is due to Hoffstein, Pipher, and Silverman. [13]We

begin with a discussion of a Congruential Public Key Cryptosystem, the lowest dimensional

NTRU, following [14], before proceeding to the NTRUEncrypt [13].

6.2.1 Congruential Public Key Cryptosystem

Key Creation

Alice first chooses a large q ∈Z>0. She then chooses f , g ∈Z>0 that are small relative to q

and such that

1. f <

s

q

2

2.

s

q

4
< g <

s

q

2

3. gcd(f , q g) = 1

Alice then computes h ≡ f −1g (mod q). Note that 0 < h < q . She keeps her private key

(f , g) a secret and publishes her public key (q , h).

Encryption

Bob wants to send a plaintext message m to Alice. He chooses m and a random r ∈Z such

that

1. 0<m <
s

q

4
and

2. 0< r <
s

q

2

Bob computes the ciphertext c ≡ r h +m (mod q), noting that 0< c < q . He then sends the

ciphertext c to Alice.

Decryption

Alice computes a ≡ f c (mod q) so that 0< a < q . She then computes m ′ ≡ f −1a (mod g),

where 0<m ′ < g . Alice recovers the plaintext message m ′ =m .

Proposition 6.2.1. In the Congruential Public Key Cryptosystem, m ′ =m. That is, f −1a (

mod g) =m.

129

Proof. We first consider a that Alice computes during decryption.

a = f c

≡ f (r h +m)(mod q) (replacing c)

≡ f r h + f m (mod q) (distributing f)

≡ f r f −1g + f m (mod q) (replacing h)

≡ r g + f m (mod q) (since f f −1 = 1)

From our construction, we note that

r g + f m ≤
s

q

2

s

q

2
+
s

q

2

s

q

4

<
q

2
+

q

2

< q

So, we now have that a = r g + f m .

Now, we consider m ′, the message Alice gets after decrypting c .

m ′ = f −1a (mod g)

= f −1(r g + f m)(mod g) (replacing a)

= f −1(0+ f m) (since r g ≡ 0(mod g))

= f −1 f m

=m (since f −1 f = 1)

Example 6.2.1 (Congruential Public Key Cryptosystem).

Key Creation

Alice picks q = 100 and chooses private key (f , g) = (7,6). Note that f <
q

q
2 =
p

50 and

5=
q

q
4 < g <
q

q
2 =
p

50. She then computes h ≡ f −1g (mod q) = 43 ·6(mod 100) = 58. She

publishes her public key (q , h) = (100, 58).

Encryption

Bob wants to send the plaintext message m = 2 to Alice. He chooses r = 3. Note that 0 <

130

m <
q

q
4 = 25 and 0 < r <

q

q
2 =
p

50. He computes c ≡ r h +m (mod q) = 3 · 58+ 2(

mod 100) = 176(mod 100) = 76. He sends ciphertext c = 76 to Alice.

Decryption

Alice receives c = 76 and computes a ≡ f c (mod q) = 7 · 76(mod 100) = 32. She then

computes m ′ ≡ f −1a (mod g) = 1 ·32(mod 6) = 2. Alice has recovered the plaintext message

m ′ =m = 2.

Example 6.2.2 (Congruential Public Key Cryptosystem with Sage).

We work through another example using SageMath.

Key Creation

Alice picks q = 8675309 and chooses private key (f , g) = (1642,1733). She checks that her

conditions are met, calculates h, and publishes her public key (q , h) = (8675309, 681557).

sage: q = 8675309
sage: q.is_prime()
True

sage: (sqrt(q/2)).n()
2082.70365150686

sage: (sqrt(q/4)).n()
1472.69387518248

sage: f = 1642
sage: g = 1733
sage: gcd(f, q*g)
1

sage: h = mod(f^(-1)*g, q)
sage: h
681557

Encryption

Bob wants to send the message m = 1130 to Alice. He chooses r = 1822 and computes

c ≡ r h +m (mod q) = 1228797 to send to Alice.

131

sage: m = 1130
sage: r = 1822
sage: c = mod(r*h+m, q)
sage: c
1228797

Decryption

Alice receives c = 1228797 and computes a ≡ f c (mod q) and then m ′ ≡ f −1a (mod g) to

recover m ′ =m.

sage: a = mod(f*c,q)
sage: a
5012986

sage: mod(f^(-1),g)*mod(a,g)
1130

This congruential public key cryptosystem can be broken by using the two-dimensional

Gaussian Lattice Reduction Algorithm in Section 7.1.

In higher dimensions, NTRU is susceptible to the LLL lattice basis reduction algorithm.

6.2.2 NTRUEncrypt

Before diving into the NTRUEncrypt Cryptosystem, we need a few more definitions and

ideas. We follow [14].

Definition 66 (Trinary Polynomial).

A trinary polynomial is a polynomial in T (d1, d2) , where

T (d1, d2) =















a(x) has d1 coefficients equal to 1

a(x) a(x) has d2 coefficients equal to −1

a(x) has all other coefficients equal to 0

for any d1, d2 ∈Z>0.

Example 6.2.3. In T (2, 1), we could have f (x) = x 5− x 3+1.

Definition 67 (Center Lift).

The center lift of f (x) ∈
Zp [x]

(x n −1)
to a polynomial in

Z[x]
(x n −1)

is f̂ (x) such that

132

1. f̂ (x) is congruent to f (x)(mod p) and

2. the coefficients fi are such that −1
2 p < fi ≤ 1

2 p .

Example 6.2.4 (Center Lift).

Suppose we have f (x) = 7x 4+3x 2+2x +9 ∈Z11[x]. All coefficients must be between −5.5

and 5.5. So, f̂ (x) =−4x 4+3x 2+2x −2.

Remark 6.2.1. For p , q distinct primes and n prime, we will let R , Rp , and Rq be the following

polynomial rings

R =
Z[x]
(x n −1)

, Rp =
Zp [x]

(x n −1)
, Rq =

Zq [x]

(x n −1)
.

As before, any polynomial in R can be written in either Rp or Rq by reducing its coefficients

mod p or q , respectively.

We are now ready to discuss one of the most promising cryptosystem for quantum-

resistance, the NTRUEncrypt.

Public Parameters

The NTRUEncrypt has public parameters (n , p , q , d), where n and p are prime, gcd(p , q) = 1,

gcd(n , q) = 1, and q > (6d +1)p .

Key Creation

Alice chooses a private key f (x) ∈T (d +1, d) and g (x) ∈T (d , d). It must be the case that

f (x) has an inverse in both Rp and Rq . If the polynomial she chooses is not invertible in

both Rp and Rq , she discards it and picks another. She chooses f (x) ∈T (d +1, d) because

polynomials in T (d , d) do not have inverses in Rq .

We will denote the inverse of f (x) in Rp by Fp (x) and the inverse of f (x) in Rq by Fq (x).

That is,

Fp (x) f (x) = 1(mod p) and Fq (x) f (x) = 1(mod q).

Alice then computes h (x) = Fq (x)g (x) in Rq . h (x) is Alice’s public key. Her private key is

(f (x), g (x)).

Encryption

Suppose Bob wants to send a message m (x) to Alice. The plaintext message, m (x) ∈R , that

Bob wants to send must be the center lift of a polynomial in Rp . That is, Bob’s plaintext

message m (x) ∈R has coefficients mi such that −1
2 p <mi ≤ 1

2 p . Bob then picks a random

133

polynomial r (x) ∈T (d , d) and computes e (x) = p r (x)h (x)+m (x) in Rq . e (x) is the cipher-

text that Bob sends to Alice.

Decryption

Alice computes a (x) = e (x) f (x) in Rq . She then center-lifts a (x) to â (x) in R and computes

b (x) = â (x)Fp (x) in Rp . Alice gets that b (x)≡m (x).

Example 6.2.5 (NTRUEncrypt).

Suppose Alice and Bob have agreed to the public parameters (n , p , q , d) = (3, 3, 101, 1). Note

that q = 101> (6d +1)p = 21. We have

R =
Z[x]
(x 3−1)

, R3 =
Z3[x]
(x 3−1)

, and R101 =
Z101[x]
(x 3−1)

.

Key Creation

Alice picks f (x) = x 2+ x −1 ∈T (2, 1) and g (x) = x −1 ∈T (1, 1). She computes the inverse of

f (x) in R3 to get F3(x) = 2x 2+2x and in R101 to get F101(x) = 51x 2+51x . Alice then computes

h (x) = F101(x)g (x) in R101. This gives h (x) = (51x 2+51x)(x −1) = 51x 3−51x =−51x +51

in R101. She publishes her public key h (x) =−51x +51.

Encryption

Suppose Bob wants to send a message m (x) = x to Alice. He chooses a random r (x) =

x 2 − 1 ∈ T (1,1) and computes his ciphertext e (x) = p h (x)r (x) +m (x) in R101. This gives

e (x) = 3(−51x +51)(x 2−1) + x = 52x 2+53x −3. He sends e (x) to Alice.

Decryption

Alice receives e (x) and computes a (x) = e (x) f (x) in R101. So, a (x) = (x 2+x −1)(52x 2+53x −
3) =−3x 2−4x +7. She then center lifts a (x) to â (x) =−3x 2−4x +7 and computes b (x) =

â (x)F3(x) in R3. She gets b (x) = (−3x 2−4x +7)(2x 2+2x) = (−x +1)(2x 2+2x) = 4x +3= x .

Note that Alice has recovered the plaintext message as b (x) =m (x).

We will illustrate the decryption of NTRU with another example, from [14].

Example 6.2.6 (NTRU).

This NTRUEncrypt has public parameters (n , p , q , d) = (7,3,37,2). Alice’s private key is

(f (x), Fp (x)), where

f (x) =−1+ x − x 3+ x 4+ x 5 and F3(x) = 1+ x − x 2+ x 4+ x 5+ x 6.

134

The reader should verify that F3 f ≡ 1(mod 3). Alice receives the ciphertext

e (x) = 2+8x 2−16x 3−9x 4−18x 5−3x 6

from Bob. To decrypt the message, Alice first computes a (x) = e (x) f (x) in R37.

a (x) = e (x) f (x)

= (2+8x 2−16x 3−9x 4−18x 5−3x 6)(−1+ x − x 3+ x 4+ x 5)

= 33+32x +5x 2+ x 3+29x 4+3x 5+9x 6

Alice then center-lifts a (x) to â (x) in R to find â (x) =−4−5x +5x 2+ x 3−8x 4+3x 5+9x 6.

Lastly, she computes b (x) = â (x)F3(x) in R3.

b (x) = â (x)F3(x)

= (−4−5x +5x 2+ x 3−8x 4+3x 5+9x 6)(1+ x − x 2+ x 4+ x 5+ x 6)

= x +2x 4+ x 6

Hence, the plaintext message was x +2x 4+ x 6.

Theorem 6.2.1. If the NTRUEncrypt parameters (n , p , q , d) satisfy the condition that q >

(6d +1)p , then b (x) =m (x), where b (x) is the polynomial Alice finds during decryption, and

m (x) is Bob’s plaintext message.

Proof. We begin by considering Alice’s polynomial a (x).

a (x) = f (x)e (x) (in Rq)

= f (x)[p h (x)r (x) +m (x)] (replacing ciphertext e (x))

= p f (x)h (x)r (x) + f (x)m (x) (distributing f (x))

= p f (x)Fq (x)g (x)r (x) + f (x)m (x) (replacing h (x))

= p g (x)r (x) + f (x)m (x) (since f (x)Fq (x)≡ 1(mod q))

We now consider the size of the coefficients in the polynomial p g (x)r (x) + f (x)m (x) in R .

Let us first look at p g (x)r (x). If g (x) = g0+g1x+g2x 2+· · ·+gn−1x n−1 and r (x) = r0+r1x+

r2x 2+ · · ·+rn−1x n−1, then the leading coefficient of g (x)r (x) is g0rn−1+g1rn−2+ · · ·+gn−1r0.

Since g (x) and r (x) are in T (d , d), the largest possible coefficient for each is d . Thus, the

largest possible coefficient for g (x)r (x) is 2d . Hence, the largest possible coefficient of

135

p g (x)r (x) is p 2d .

We now turn to f (x)m (x). If we let f (x) = f0+ f1x + f2x 2+ · · ·+ fn−1x n−1 and m (x) =

m0+m1x +m2x 2+ · · ·+mn−1x n−1, then the leading coefficient of f (x)m (x) is f0mn−1+

f1mn−2 + · · ·+ fn−1m0. Recall that the coefficients of m (x) are such that −1
2 p <mi ≤ 1

2 p

and that f (x) ∈T (d +1, d). This gives that the largest possible coefficient of f (x)m (x) is

(2d +1)12 p .

Together, this gives that the largest possible coefficient of a (x) = p g (x)r (x)+ f (x)m (x) is

p 2d +(2d +1)12 p = p
�

2d +d + 1
2

�

= p
�

3d + 1
2

�

. We made the assumption that (6d +1)p < q ,

and dividing by 2 gives us p
�

3d + 1
2

�

≤ 1
2 q . This tells us that, when Alice calculates a (x) =

p g (x)r (x)+ f (x)m (x) in Rq and lifts it to R , she gets the exact values for the coefficients.

That is, a (x) = p g (x)r (x) + f (x)m (x) in R .

We now consider b (x), calculated in Rp .

b (x) = Fp (x)a (x)

= Fp (x)[p g (x)r (x) + f (x)m (x)] (replacing a (x))

= Fp (x)[0+ f (x)m (x)] (since p g (x)r (x)≡ 0(mod p))

= Fp (x) f (x)m (x)

=m (x) (since Fp (x) f (x)≡ 1(mod p))

Example 6.2.7 (NTRU with Sage).

We will work through another problem using Sage.

Suppose we have public parameters (n , p , q , d) = (5, 3, 41, 2). First, we’ll define our polynomial

ring R3 =
Z3[x]
(x 5−1) .

sage: R.<x> = PolynomialRing(GF(3),x)
sage: R3.<x> = R.quotient_ring(x^5-1)

Next, Alice can choose her f 3 = f (x) = −x 4+ x 3+ x 2 − x + 1 ∈ T (3,2) and compute F 3 =

F3 = f −1(x) = 2x 3+2x 2 in R3:

sage: f3 = R3(-x^4+x^3+x^2-x+1)
sage: F3 = f3^(-1)

136

sage: F3
2*x^3 + 2*x^2

Let’s define R 41=R41 =
Z41[x]
(x 5−1) and calculate F 41= f −1(x) in R41.

sage: S.<x> = PolynomialRing(GF(41),x)
sage: R41.<x> = S.quotient_ring(x^5-1)
sage: f41 = R41(-x^4+x^3+x^2-x+1)
sage: F41 = f41^(-1)
sage: F41
21*x^3 + 21*x^2

This returns F41 = 21x 3 + 21x 2. Alice then chooses g (x) = x 4 + x 3 − x 2 − x ∈ T (2,2) and

computes h (x) = F41(x)g (x) = 40x 4+20x 3+21x 2+ x by doing the following:

sage: g = R41(x^4+x^3-x^2-x)
sage: h = F41*g
sage: h
40*x^4 + 20*x^3 + 21*x^2 + x

To encrypt his plaintext message m (x) = x 2+ x −1, Bob chooses r (x) = x 3− x 2+ x −1 and

calculates ciphertext e (x) = 3h (x)r (x) +m (x) by doing

sage: m = R41(x^2+x-1)
sage: r = R41(x^3-x^2+x-1)
sage: e = 2*h*r+m
sage: e
3*x^4 + 20*x^2 + 20*x + 40

This code returns e (x) = 3x 4+20x 2+20x +40, and then e is sent to Alice.

To decrypt e (x), Alice computes a (x) = e (x) f (x)

sage: a = e*f41
sage: a
3*x^4 + 37*x^3 + 2*x^2 + 4*x + 37

to get that a (x) = 3x 4+37x 3+2x 2+4x +37. All that is left to do is for Alice to center lift a (x)

to â (x) and compute b (x) = â (x)F3(x). She does this by doing

137

sage: ahat = ZZ[‘x’]([coeff.lift_centered() for coeff in a.lift()])
sage: ahat
3*x^4 - 4*x^3 + 2*x^2 + 4*x - 4

sage: b = ahat*F3
sage: b
x^2 + x + 2

This gives that b (x) = x 2+ x +2, which is congruent to m (x) = x 2+ x −1(mod 3).

The hard problem associated with the NTRU public key cryptosystem is as follows:

Problem 6.2.1 (NTRU Key Recovery).

Given public key h (x), find trinary polynomials f (x) and g (x) such that f (x)h (x) = g (x) in

Rq .

One of the ways that an adversary can attack the NTRU is by framing the problem as a

lattice problem. We briefly discuss this reframing, and we discuss the attack in the next two

chapters.

6.2.3 NTRUEncrypt with Lattices

Given Alice’s public key h (x) = h0+h1x + · · ·+hn−1x n−1, we can construct the NTRU matrix

Mh associated with h (x) as follows:

Mh =

�

In h

0 q In

�

where h is the matrix of the coefficients of h (x)mod(x n −1), x h (x)mod(x n −1), . . . ,

x n−1h (x)mod(x n −1) as rows.

Remark 6.2.2. The NTRU matrix Mh is a 2n ×2n matrix.

We can view h as the matrix of cyclical permutations of the coefficients of h (x). Then

the NTRU matrix is

138

Mh =

































1 0 . . . 0

0 1 . . . 0
...

...
...

...

0 0 . . . 1

h0 h1 . . . hn−1

hn−1 h0 . . . hn−2
...

...
...

...

h1 h2 . . . h0

0 0 . . . 0

0 0 . . . 0
...

...
...

...

0 0 . . . 0

q 0 . . . 0

0 q . . . 0
...

...
...

...

0 0 . . . q

































Remark 6.2.3. The rows of Mh span the latticeLh associated with h (x).

Example 6.2.8 (NTRU Matrix).

Suppose we have (n , p , q , d) = (3,3,101,1) and h (x) = 51−51x , as in Example 6.2.5. Then

the NTRU matrix associated with h (x) is

Mh =





















1 0 0

0 1 0

0 0 1

51 −51 0

0 51 −51

−51 0 51

0 0 0

0 0 0

0 0 0

101 0 0

0 101 0

0 0 101





















and the latticeLh is spanned by the rows of Mh.

Remark 6.2.4. Often, it is convenient to view the NTRU martrix associated with h (x) as a

2×2 block matrix with real coefficients

�

I h

0 q I

�

.

In Rq , we know that h (x) = Fq (x)g (x), so f (x)h (x) = g (x). Then, in R , we have that

g (x) = f (x)h (x) +q u (x) (6.1)

for some u (x) ∈R .

If we identify the pair of polynomials

f (x) = f0+ f1x + f2x 2+ · · ·+ fn−1x n−1 and u (x) = u0+u1x +u2x 2+ · · ·+un−1x n−1

139

with the vector of their coefficients

(f, u) = (f0, f1, . . . , fn−1, u0, u1, . . . , un−1) ∈Z2n

and consider

(f, u)Mh,

we see that

(f, u)

�

I h

0 q I

�

= (fI , fh+uq I)

By (6.1), we then have that

(f, u)Mh = (f, g).

This says that we can obtain the vector (f, g) by taking some integer linear combination of

the rows of the NTRU matrix Mh. Thus, (f, g) is in the NTRU latticeLh. Note that, since f (x)

and g (x) are trinary polynomials, (f, g) is a short vector inLh.

Remark 6.2.5. Other promising quantum-resistant cryptosystems are based on the learning

with errors (LWE) problem. See [1] for a summary and discussion of this.

140

6.3 Exercises

1. Suppose Alice uses the GGH Cryptosystem with a private basis of

B =

¨

v1 =

�

4

13

�

, v2 =

�

−57

−45

�«

and public basisB ′ =

¨

v′1 =

�

25453

9091

�

, v′2 =

�

−16096

−5749

�«

.

(a) Compute the determinant of Alice’s lattice and the Hadamard ratio ofB and

B ′. Interpret the meaning of each Hadamard ratio.

(b) Bob sends Alice the encrypted message m′ =

�

155340

55483

�

. Use Alice’s private basis

to decrypt the message and recover the plaintext. Also, determine Bob’s pertur-

bation vector r.

(c) Eve intercepts the encrypted message. Use the public basis to try to decrypt the

message. Is the output equal to the plaintext?

2. LetB =

¨�

7

−1

�

,

�

1

3

�«

andC =

¨�

17

7

�

,

�

26

12

�«

be bases for latticeL .

(a) Determine which basis is a good basis and which is a bad one.

(b) Alice uses the good basis as her private key in the GGH Cyrptosystem and pub-

lishes the bad basis as the public key. Bob wants to send Alice the plaintext

message P = (24,−3). Compute m.

(c) Use the noise vector r =

�

−2

1

�

to help Bob compute ciphertext m′ to send to

Alice.

(d) Find m using Alice’s private key, and use m to recover the plaintext message.

(e) Suppose Eve intercepts the ciphertext message. Try to decrypt the ciphertext

using the bad basis. Can Eve recover P ?

3. Alice chooses a private basisB =

¨�

1

45

�

,

�

45

−1

�«

and a public basisB ′ =

¨�

361

37

�

,

�

1850

184

�«

for the GGH Cryptosystem.

(a) Bob wants to send Alice the plaintext message P = (35, 27). Use the perturbation

vector r=

�

−2

3

�

to encrypt his message to send to Alice.

(b) Use the private basis to help Alice decrypt the ciphertext and retrieve the plain-

text message.

141

(c) Eve intercepts the message. Try to decrypt the ciphertext from Eve’s perspective.

Can she recover the plaintext message?

4. Alice and Bob are using the GGH Cryptosytem to exchange messages. Alice chooses a

good basis for her lattice to beB =

¨�

1

6

�

,

�

8

2

�«

.

(a) Verify thatB is a good basis.

(b) Use unimodular matrix U =

�

2 5

1 2

�

to find Alice’s public basis.

(c) Bob wants to encrypt the plaintext message P = (13,−7). He picks r=

�

−1

1

�

. What

is his ciphertext message?

(d) Use Alice’s private basis to decrypt the ciphertext message and recover P .

5. Collaborative (Groups of 3). In this problem, you will create your own 2−dimensional

GGH Cryptosystem example. You will take on the role of each of Alice, Bob, and Eve.

(a) (Alice) Individually, pick a private basis, and compute a public basis. Keep your

private basis a secret. Publish your public basis (give it to the other members of

your group). There are now three different public bases.

(b) (Bob) Select one of the public bases that is not your own. Be certain that everyone

has picked a different one. Decide the plaintext message that you wish to send

to Alice. Use the public basis that you chose to encrypt the message. Send it to

the creator of the basis.

(c) (Alice) You should have just received a ciphertext message. Use your private key

to recover the plaintext message.

(d) (Eve) Intercept the message that you did not create or receive. Use the appropri-

ate public basis to try and decrypt the message. Did you recover the plaintext

message?

6. In the Congruential Public Key Cryptosystem, let q = 8675309, f = 1642, and g = 1733.

(a) Compute h .

(b) Bob wants to send Alice m = 1130. Use r = 1822 to calculate his ciphertext.

(c) Decrypt c to recover m .

7. Let f (x) = 5x 2+3x −2 and g (x) =−3x 2−4x −1. Find f (x)g (x) in
Z[x]

x 3−1
by hand.

142

8. Suppose f (x) = 3x 2−2x +1 and g (x) = 2x 2−4x −7. Compute f (x)g (x) in
Z5[x]
x 3−1

by

hand.

9. Find the center lift of a (x) = 5x 4−17x 3+13x 2−4x −20 in Z21[x].

10. Suppose a (x) =−14x 3+7x 2−3x +12 ∈
Z15[x]
x 5−1

. Centerlift a (x) to a (x) in
Z[x]

x 5−1
.

11. In the NTRU Cryptosystem, we are given h (x) = 3+14x −4x 2+13x 3−6x 4+2x 5+7x 6

and q = 29. Write the NTRU matrix.

12. Find your own set of public parameters for the NTRUEncrypt that satisfies the condi-

tions.

6.4 Computer Exercises

1. Alice chooses a good basis ofB =











v1 =







234

−673

254






, v2 =







−112

422

177






, v3 =







43

633

79

















.

(a) Let

U =







2 3 5

3 2 3

9 5 7






.

Verify that U is unimodular.

(b) Let V =
�

v1 v2 v3

�

. Compute V U to get the public basis.

(c) Bob wants to send Alice the plaintext message P = (163,97,246). Encrypt this

message using noise vector r=







−1

3

2






.

(d) Decrypt the ciphertext from both Alice and Eve’s perspectives.

2. Alice uses the GGH Cryptosystem with

private basisB =











v1 =







27

−19

99






, v2 =







32

113

27






, v3 =







41

24

−13

















and

public basisB ′ =











v′1 =







551

630

189






, v′2 =







391

313

273






, v′3 =







437

469

188

















.

143

(a) Bob sends Alice the encrypted message m′ =







727

139

−246






. Use Alice’s private key to

decrypt the message and recover the plaintext.

(b) Find Bob’s pertubation vector, r.

(c) Try to decrypt Bob’s message from Eve’s perspective.

(d) Help Alice recover the plaintext message.

3. Verify your answer from numbers 7 and 8 above with a short computer code.

4. Take f and g as in number 8 above. Find f −1(x) and g −1(x) in
Z5[x]
x 3−1

, if they exist.

5. Take NTRU public parameters to be (n , p , q , d) = (11,3,61,3). Suppose that Alice

chooses f (x) = 1+ x + x 2+ x 4− x 6− x 8− x 10 and g (x) = 1+ x 2+ x 4− x 6− x 8− x 9.

(a) Find Fp (x), Fq (x), and h (x).

(b) Suppose that Bob wants to send Alice the plaintext message m (x) = 1+ x + x 3−
x 4+ x 7. Using r (x) = 1− x 3+ x 4+ x 7− x 9, calculate the ciphertext e (x).

(c) Help Alice calculate a (x) and use it to decrypt the message.

6. Alice and Bob are using the NTRUEncrypt Public Key Cryptosystem with public

parameters (n , p , q , d) = (7, 3, 41, 2). Alice’s public key is

h (x) = 30x 6+20x 5+40x 4+2x 3+38x 2+8x +26.

Bob wants to send Alice the message m (x) = x 4 − x 2+ 2.. He chooses the random

polynomial r (x) =−x 5+ x 3− x 2+ x .

(a) What is the ciphertext, e (x), that Bob should send to Alice?

(b) Alice has private key f (x) = x 6−x 4+x 3+x 2−1. Find F3(x), and use it to decrypt

the ciphertext from part (a).

7. Alice and Bob are using public NTRU parameters (n , p , q , d) = (11, 3, 53, 2). Alice has

private f (x) = x 10− x 7+ x 4+ x 3− x and public key

h (x) = 29x 10+43x 9+12x 8+18x 7+27x 5+13x 4+47x 3+44x 2+13x +19.

(a) Bob wants to send m (x) = x 8+ x 7− x 5+ x 3+ x 2− x +1 to Alice using random

r (x) = x 10− x 7− x 3+ x . What is his ciphertext message?

144

(b) Help Alice decrypt the ciphertext and recover m (x).

8. (Collaborative) Use your parameters in number 12 above to choose private keys f (x)

and g (x).

(a) Compute h (x), and give your public parameters and h (x) to a partner.

(b) Have your partner encrypt a secret message, m (x), and send you the ciphertext,

e (x).

(c) Use your secret key to decrypt the ciphertext message and recover the plaintext

message.

145

CHAPTER

7

LATTICE REDUCTION ALGORITHMS

As we have seen with Babai’s Algorithm, one of the keys to public key cryptosystems is

the “good" basis of reasonably orthogonal, short vectors. It is natural to wonder how to

turn a “bad” basis into a “good” one. We describe two well-known algorithms here. The

2−D Gaussian Lattice Reduction turns a 2−dimensional bad basis into a good one and

therefore solves the SVP in two dimensions. The LLL Lattice Reduction Algorithm reduces

any basis to a good one in higher dimensions, and thus solves a version of the SVP in higher

dimensions.

7.1 2−D Gaussian Lattice Reduction

Suppose we have basisB = {v1, v2} ⊂R2 that spans a latticeL . In order to find a shortest

vector inL , we use the 2−Dimensional Gaussian Lattice Reduction Algorithm, as presented

in [14].

• If ∥v2∥< ∥v1∥, swap v1 and v2.

• Compute m =

�

v1 ·v2

∥v1∥2

�

. That is, round
v1 ·v2

∥v1∥2
to the nearest integer.

• If m = 0, then v1 is the shortest vector.

146

• If m ̸= 0, set v∗2 = v2−mv1.

– Note that m is the scalar projection of v2 onto v1. This is the same scalar as from

the Gram-Schmidt process, but we now round m to the nearest integer so that

we are still working with lattice vectors.

– Note also that the vector v∗2 is the projection of v2 onto the orthogonal comple-

ment of v1.

• If ∥v2∥< ∥v1∥, swap v1 and v2, and repeat the process.

• If ∥v1∥ ≤ ∥v2∥, stop. v1 is a shortest nonzero lattice vector inL and {v1, v2} is a “good”

basis forL .

Proposition 7.1.1 (2−Dimensional Gaussian Lattice Reduction Algorithm [14]).

LetL ⊂R2 be spanned by {v1, v2}. The following algorithm inputs any lattice basis vectors

v1 and v2 and returns a reasonably orthogonal basis for the same lattice,L . As a result, the

algorithm solves the SVP for 2−dimensions.

Algorithm 4 2−D Gaussian Lattice Reduction

1: If ∥v2∥< ∥v1∥, swap v1, v2

2: Calculate m =
�

v1·v2
∥v1∥2
£

3: If m = 0
4: v1, v2

5: v2 = v2−mv1

Example 7.1.1. We will walk through an example of this reduction by hand.

Suppose we have a 2−D lattice spanned by the vectors v1 =

�

−5

7

�

and v2 =

�

−9

17

�

, as shown in

7.1. We can see that the vectors are not reasonably orthogonal in the geometric representation,

but we will verify this with the Hadamard Ratio. Then, we will reduce this bad basis to a

good one using the 2−D Lattice Reduction Algorithm.

sage: V = Matrix([[-5,-9],[7,17]])
sage: (abs(det(V))/(V[:,0].norm()*V[:,1].norm()))^(1/2)
0.3646304886549454

147

The Hadamard Ratio is far from 1, so this is a “bad” basis. We will continue with the 2−D

lattice reduction.

Figure 7.1L = span{v1, v2}

We check the Euclidean norms of each to find that ∥v1∥ ≈ 8.6 and ∥v2∥ ≈ 19.2. We see that

∥v1∥< ∥v2∥, so we continue to find m and replace v2 with v2−mv1.

sage: v1 = vector([-5,7])
sage: v2 = vector([-9,17])
sage: v1.norm().n()
8.60232526704263

sage: v2.norm.n()
19.2353840616713

sage: m = round((v1.dot_product(v2))/(v1.norm())^2)
sage: m
2

148

sage: v2 = v2 - m*v1
sage: v2
(1, 3)

We now have that v1 =

�

−5

7

�

and v2 =

�

1

3

�

, as shown in Figure 7.2.

Figure 7.2 The same latticeL with old v1 and new v2.

We again check the norms of v1 and v2. We still have that ∥v1∥ ≈ 8.6, and we find that

∥v2∥ ≈ 3.2. Since ∥v2∥< ∥v1∥, we swap v1 and v2.

sage: v1.norm().n()
8.60232526704263

sage: v2.norm().n()
3.16227766016838

149

sage: v1 = vector([1,3])
sage: v2 = vector([-5,7])

Now we have that v1 =

�

1

3

�

and v2 =

�

−5

7

�

, as shown in Figure 7.3.

Figure 7.3L with swapped v1 and v2

We proceed to calculate m, and we see that m = 2. So, we replace v2 with v1−2v2.

sage: m = round((v1.dot_product(v2))/(v1.norm())^2)
sage: m
2

sage: v2 = v2 - m*v1
sage: v2
(-7, 1)

Now, we have that v1 =

�

1

3

�

and v2 =

�

−7

1

�

, as shown in 7.4.

150

Figure 7.4L with good basis v1 and v2

We check ∥v1∥ and ∥v2∥. We still have that ∥v1∥ ≈ 3.2, and now we have that ∥v2∥ ≈ 7.1.

Since ∥v1∥< ∥v2∥, we do not swap. We proceed to calculate m.

sage: v1.norm().n()
3.16227766016838

sage: v2.norm().n()
7.07106781186548

sage: m = round((v1.dot_product(v2))/(v1.norm())^2)
sage: m
0

Since m = 0, we are done. Our good basis is then v1 =

�

1

3

�

and v2 =

�

−7

1

�

, as in Figure 7.4.

We can verify that this is a good basis with the Hadamard Ratio.

sage: V = Matrix([[1,-7],[3,1]])

151

sage: (abs(det(V))/(V[:,0].norm()*V[:,1].norm()))^(1/2)
0.9919021676052067

This is reasonably close to 1, so our new basis is a “good” one. Note, also, that this algo-

rithm solves the SVP, because v1 is a shortest vector inL .

In higher dimensions, this extends to the LLL Lattice Reduction Algorithm of Lenstra,

Lenstra, and Lovász. [18]

7.2 LLL Lattice Reduction Algorithm

For the next three definitions, we let B = {v1, v2, . . . , vn} be a basis for lattice L , and

B ′ = {v∗1, v∗2, . . . , v∗n} be the associated Gram-Schmidt orthogonal basis. The Gram-Schmidt

coefficients are µi , j =
vi ·v∗j
∥v∗j ∥2

. [16]

Definition 68 (Size Reduced).

B is size reduced if all Gram-Schmidt coefficients µi , j =
vi ·v∗j
∥v∗j ∥2

satisfy the condition that

|µi , j |< 1
2 for all 1≤ j < i ≤ n.

Definition 69 (Lovász Condition).

B andB ′ are said to satisfy the Lovász Condition if ∥v∗i ∥
2 ≥
�

3
4 −µ

2
i ,i−1

�

∥v∗i−1∥
2 for all 1 <

i ≤ n.

Definition 70 (LLL reduced).

The basisB is LLL reduced if it satisfies the size reduction condition and Lovász Condition

described above.

The LLL Lattice Reduction Algorithm (5) takes as an input basis vectors v1, v2, . . . , vn for

L and outputs an LLL reduced basis forL . We follow [14] for the LLL Algorithm.

152

Algorithm 5 LLL Lattice Reduction Algorithm

1: Set k = 2

2: Set v∗1 = v1

3: Loop while k ≤ n

4: Loop down j = k −1, k −2, . . . , 2, 1

5: Set vk = vk − ⌊µk j ⌉v j

6: End j loop

7: If ∥v∗k∥
2 ≥
�

3
4 −µ

2
k ,k−1

�

∥v∗k−1∥
2

8: Set k = k +1

9: Else

10: Swap vk−1 and vk

11: Set k =max (k −1, 2)

12: End If

13: End k loop

Note: At each step in the LLL Algorithm presented in Algorithm 5, v∗1, v∗2, . . . , v∗k is the

orthogonal set of vectors obtained by applying Gram-Schmidt to the current values of

v1, v2, . . . , vk , and µi , j is the associated quantity
vi ·v∗j
∥v∗j ∥2

.

Remark 7.2.1. The LLL algorithm solves the approximate SVP problem within a constant

factor. The details of the proof of this can be found in [14]. We will forego the details of the

proof and use the Hadamard Ratio to check orthogonality.

Example 7.2.1 (LLL by Hand).

We illustrate the LLL using a small example that we adapted from [27]. We want to reduce

the basis

¨�

201

37

�

,

�

1648

297

�«

to an LLL reduced basis. We start by defining

v1 =

�

201

37

�

, v2 =

�

1648

297

�

.

We let v∗1 = v1, and apply Gram-Schmidt to get

v∗2 =

�

1648

297

�

−

�

201

37

�

·

�

1648

297

�

�

201

37

�

·

�

201

37

�

�

201

37

�

=

�

1.133

−6.155

�

.

153

We now have

v1 =

�

201

37

�

, v2 =

�

1648

297

�

, v∗1 =

�

201

37

�

, v∗2 =

�

1.133

−6.155

�

.

We will use v1 to reduce v2:

v2 =

�

1648

297

�

−

















�

1648

297

�

·

�

201

37

�

�

201

37

�

·

�

201

37

�

















�

201

37

�

=

�

1648

297

�

= 8

�

201

37

�

=

�

40

1

�

We now have

v1 =

�

201

37

�

, v2 =

�

40

1

�

, v∗1 =

�

201

37

�

, v∗2 =

�

1.133

−6.155

�

.

Next, we check the Lovász Condition:

∥v∗1∥
2 = 41770, ∥v∗2∥

2 = 39.16, µ2,1 =

�

40

1

�

·

�

201

37

�

�

201

37

�

·

�

201

37

� ≈ 0.193,
�

3

4
−µ2

2,1

�

≈ 0.713

We have that

39.16= ∥v∗2∥
2 ̸≥
�

3

4
−µ2

2,1

�

∥v∗1∥
2 = 29782.01.

This means that we should swap the vectors. Now, we have that

v1 =

�

40

1

�

, v2 =

�

201

37

�

, v∗1 =

�

201

37

�

, v∗2 =

�

1.133

−6.155

�

.

Using v∗1 = v1, we again apply Gram-Schmidt reduction:

154

v∗2 =

�

201

37

�

−

�

201

37

�

·

�

40

1

�

�

40

1

�

·

�

40

1

�

�

40

1

�

=

�

−0.799

31.956

�

.

We now have that

v1 =

�

40

1

�

, v2 =

�

201

37

�

, v∗1 =

�

40

1

�

, v∗2 =

�

−0.799

31.956

�

.

We then use v1 to reduce v2:

v2 =

�

201

37

�

−

















�

201

37

�

·

�

40

1

�

�

40

1

�

·

�

40

1

�

















�

40

1

�

=

�

1

32

�

We now have that

v1 =

�

40

1

�

, v2 =

�

1

32

�

, v∗1 =

�

40

1

�

, v∗2 =

�

−0.799

31.956

�

.

Next, we check the Lovász Condition:

∥v∗1∥
2 = 1601, ∥v∗2∥

2 = 1021.76, µ2,1 =

�

1

32

�

·

�

40

1

�

�

40

1

�

·

�

40

1

� ≈ 0.045,
�

3

4
−µ2

2,1

�

≈ 0.748

We have that

1021= ∥v∗2∥
2 ̸≥
�

3

4
−µ2

2,1

�

∥v∗1∥
2 = 1197.548.

This means that we should swap again, giving

v1 =

�

1

32

�

, v2

�

40

1

�

, v∗1 =

�

40

1

�

, v∗2 =

�

−0.799

31.956

�

.

155

We again take v∗1 = v1, and use Gram-Schmidt:

v∗2 =

�

40

1

�

=

�

40

1

�

·

�

1

32

�

�

1

32

�

·

�

1

32

�

�

1

32

�

=

�

39.93

−1.25

�

.

Keeping track of our vectors, we have

v1 =

�

1

32

�

, v2 =

�

40

1

�

, v∗1 =

�

1

32

�

, v∗2 =

�

39.93

−1.25

�

.

Then, we use v1 to reduce v2:

v2 =

�

40

1

�

−

















�

40

1

�

·

�

1

32

�

�

1

32

�

·

�

1

32

�

















�

1

32

�

=

�

40

1

�

.

This means that v2 remains

�

40

1

�

.

Next, we check the Lovász Condition again:

∥v∗1∥
2 = 1025, ∥v∗2∥

2 = 1595.94, µ2,1 =

�

40

1

�

·

�

1

32

�

�

1

32

�

·

�

1

32

� ≈ 0.070,
�

3

4
−µ2

2,1

�

≈ 0.745

This gives us that

1595.94= ∥v∗2∥
2 ≥
�

3

4
−µ2

2,1

�

∥v∗1∥
2 = 763.625.

So, we can now move on to reducing the next vector. However, there are only two vectors

here. So we are done. We have that our reasonably orthogonal basis vectors are v1 =

�

1

32

�

and

v2 =

�

40

1

�

. We can check that these are reasonably orthogonal by computing the Hadamard

ratio to be

156

H (v1, v2) =
� |(1)(1)− (32)(40)|
p

1025
p

1601

�1/2

=

�

1279
p

1, 641, 025

�1/2

≈ 0.9992093124

This is very close to 1, so our vectors are, in fact, reasonably orthogonal. We have already

checked the Lovász and size conditions, so this is an LLL reduced basis.

Example 7.2.2 (LLL with Sage).

Suppose we wanted to reduce the basis from our previous example in Sage. We can simply

use the LLL function in Sage. We just need to remember that we use column vectors, and

Sage uses row vectors. So, we will need to use the transpose of the matrix and then find the

transpose of the LLL reduced matrix to get our reduced basis.

sage: V = Matrix([[201,1648],[37,297]])
sage: V.transpose().LLL().transpose()
[1 40]
[32 1]

157

7.3 Exercises

1. LetB =

¨�

10

9

�

,

�

17

11

�«

be a basis for latticeL .

(a) Verify thatB is a “bad” basis.

(b) Use the 2−dimensional Gaussian Lattice Reduction Algorithm to reduceB to a

“good” basis by hand.

(c) Verify that your new basis is “good.”

2. LetB =

¨�

2

1

�

,

�

7

9

�«

be a basis for latticeL .

(a) Verify thatB is a “bad” basis.

(b) Use the LLL Lattice Reduction Algorithm to reduceB to a “good” basis by hand.

(c) Verify that your new basis is “good.”

7.4 Computer Exercises

1. Write Python or Sage code that executes the 2−dimensional Gaussian Lattice Reduc-

tion Algorithm. It should take any 2−D basis as input, and it should output a “good”

basis.

2. Verify your answer from Problem 1a of the non-computer exercises with your code.

3. Write a Python or Sage code that checks the Lovász condition.

4. Write a Python or Sage code that checks the size condition.

5. Write a Python or Sage code that uses code from the previous two problems to execute

the LLL Latice Reduction Algorithm.

6. Check your answer from Problem 2 of the non-computer exercises with your code.

7. LetB =

















1

9

4






,







7

1

3






,







1

13

5

















.

(a) Verify thatB is a basis for a 3−dimensional latticeL .

(b) Find an LLL reduced basis forL .

158

(c) What is the shortest basis vector?

(d) Use the LLL basis to find the closest lattice vector to w=







−1

−10

5






.

159

CHAPTER

8

THE LLL AND LATTICE-BASED

CRYPTOSYSTEMS

Though not originally developed for the purpose of cryptography, the LLL Lattice Reduc-

tion Algorithm presented in Algorithm 5 has many cryptographic applications. In small

dimensions, the LLL can reduce bad bases to good ones and therefore pose a threat to

the lattice-based cryptosystems that we have studied to this point. We will show its impor-

tance via examples of attacks on the Knapsack, GGH, Congruential Public Key, and NTRU

Cryptosystems. We follow [14] for the basis of the constructions.

8.1 LLL on the Knapsack

Say that the message Eve intercepts is M= (m1, m2, . . . , mn) and the sum is S . She can form

the matrix

160

AM,S =





















2 0 0 . . . 0 1

0 2 0 . . . 0 1

0 0 2 . . . 0 1
...

...
...

...
...

...

0 0 0 . . . 2 1

m1 m2 m3 . . . mn S





















=
�

v1 v2 v3 . . . vn vn+1

�

,

and look at all of the integer linear combinations of v1, v2, . . . , vn , vn+1. As we know, this

is simply the lattice

L = {a1v1+a2v2+ · · ·+an vn +an+1vn+1 : a1, a2, . . . , an , an+1 ∈Z}.

We can find the LLL-reduced basis forL . We can then use the first LLL reduced basis

vector to find the solution to the Subset-Sum problem. We will see this through an example.

Example 8.1.1 (LLL on the Knapsack).

From our Example 4.3.3, Eve intercepts the message

M = (492,305,177,723,767,545,101) and knows the sum S = 2527. She needs to solve the

Subset-Sum problem. She sets up the matrix

AM,S =































2 0 0 0 0 0 0 1

0 2 0 0 0 0 0 1

0 0 2 0 0 0 0 1

0 0 0 2 0 0 0 1

0 0 0 0 2 0 0 1

0 0 0 0 0 2 0 1

0 0 0 0 0 0 2 1

492 305 177 723 767 545 101 2527































,

where the columns of AM,S form a basis forL . We LLL-reduce the basis using SageMath:

sage: A = Matrix([[2,0,0,0,0,0,0,1],[0,2,0,0,0,0,0,1],
[0,0,2,0,0,0,0,1],[0,0,0,2,0,0,0,1],[0,0,0,0,2,0,0,1],
[0,0,0,0,0,2,0,1],[0,0,0,0,0,0,2,1],
[492,305,177,723,767,545,101,2527]])

sage: A.transpose().LLL().transpose()
[-1 0 -3 2 0 1 -2 -2]
[1 0 1 2 0 -3 -4 2]

161

[1 2 -1 -2 -4 1 -2 -2]
[-1 -2 -1 -2 -2 -1 0 -2]
[-1 0 1 0 -2 1 -2 0]
[-1 2 -1 0 0 -3 0 4]
[1 0 -1 2 -2 -1 2 0]
[0 -1 -3 -2 -1 3 -1 3]

We extract the first column of the resulting matrix, and write it as a linear combination

of the original basis vectors v1, v2, . . . , vn , vn+1. That is, we are solving the system given by































2 0 0 0 0 0 0 1

0 2 0 0 0 0 0 1

0 0 2 0 0 0 0 1

0 0 0 2 0 0 0 1

0 0 0 0 2 0 0 1

0 0 0 0 0 2 0 1

0 0 0 0 0 0 2 1

492 305 177 723 767 545 101 2527





























































x1

x2

x3

x4

x5

x6

x7

x8































=































−1

1

1

−1

−1

−1

1

0































We solve this in SageMath

sage: b = vector([-1,1,1,-1,-1,-1,1,0])
sage: A\b
(-1, 0, 0, -1, -1, -1, 0, 1)

This gives x=
�

−1 0 0 −1 −1 −1 0 1
�T

. Note that (−1)(492)+ (0)(305)+ (0)(177)+

(−1)(723) + (−1)(767) + (−1)(545) + (0)(101) + (1)(2527) = 0, so we have solved the Subset-Sum

problem.

8.2 LLL on the GGH

The security of the GGH relies on the idea that solving the CVP is hard. In small dimensions,

Eve can intercept the ciphertext and reduce the matrix of the bad basis to a good one using

the LLL. This allows her to solve the CVP and recover the plaintext. We will work through

an example, following the construction in [14].

Example 8.2.1 (LLL on the GGH).

Refer to Example 6.1.1, and recall that the private basis for L is B =

¨�

7

−1

�

,

�

1

3

�«

and

162

the public basis isB ′ =

¨�

17

7

�

,

�

26

12

�«

. Bob sends Alice the ciphertext message m′ =

�

328

133

�

.

Suppose that Eve intercepts this. She only knowsB ′. As we showed in Example 6.1.1, Eve

cannot solve the CVP and recover the plaintext with this bad basis. Let W be the matrix with

column vectors v′1, v′2. She first computes the LLL reduced matrix of W . Note that, since we

use column vectors, we need to use the transpose of the matrix and of the LLL. She gets the

LLL reduced matrix to be

�

1 −7

3 1

�

. She computes the Hadamard Ratio to see that it is, in fact,

a good basis.

sage: W = Matrix([[17,26],[7,512]])
sage: mprime = Matrix([[328],[133]])
sage: L = (W.transpose()).LLL().transpose()
sage: L
[1 -7]
[3 1]

sage: (abs(det(L))/(L[:,0].norm()*L[:,1].norm()))^(1/2)
0.9919021676052067

Eve then solves the CVP for m′ using the LLL reduced basis. She gets m=

�

330

132

�

, and

she uses this to retrieve p= (24,−3), the plaintext message.

sage: (L.augment(mprime)).rref().n()
[1.00000000000000 0.000000000000000 57.2272727272727]
[0.000000000000000 1.00000000000000 -38.6818181818182]

sage: m = 57*L[:,0] - 39*L[:,1]
sage: m
[330]
[132]

sage: (W.augment(m)).rref()
[1 0 24]
[0 1 -3]

163

8.3 LLL on the Congruential Public Key Cryptosystem

We again follow the construction in [14]. Recall from Section 6.2.1 that Alice has private

key (f , g), both small integers, and public key (q , h), where h ≡ f −1g (mod q). So, if Eve

intercepts the message during transit, she knows (q , h) and needs to recover (f , g).

Since h ≡ f −1g (mod q), this amounts to Eve being able to find (F,G) such that F h ≡G (

mod q). Using properties of modular arithmetic, we see that this is the same as finding

(F,G) such that F h =G +q R . We can reframe this once more to the following: Eve needs to

find (F,G) such that

F

�

1

h

�

−R

�

0

q

�

=

�

F

G

�

,

where F and R are unknown integers,

�

1

h

�

and

�

0

q

�

are known vectors, and

�

F

G

�

is an un-

known short vector. If we let v1 =

�

1

h

�

and v2 =

�

0

q

�

, this can be viewed as a lattice problem.

That is, Eve is looking for short nonzero vector w=

�

F

G

�

∈L = {a1v1+a2v2 : a1, a2 ∈Z}.

Example 8.3.1 (LLL on the Congruential Public Key Cryptosystem).

In example 6.2.1, Alice published (q , h) = (100, 58) as her public key and kept (f , g) = (7, 6) as

her private key.

Eve needs to then find F and G such that

F

�

1

58

�

−R

�

0

100

�

=

�

F

G

�

.

In other words, she wants a short vector inL =

¨

a1

�

1

58

�

+a2

�

0

100

�

: a1, a2 ∈Z

«

.

She can perform the 2−D Lattice Reduction Algorithm in 4 to find a short vector that

will likely serve as a decryption key. The 2−D Lattice Reduction Algorithm outputs short

vector

�

−7

−6

�

, which is exactly −1 ·

�

7

6

�

. So, Eve has recovered the private key and can decrypt

the ciphertext message. We could also use the LLL Algorithm in 5 to find this shortest vector.

sage: L = Matrix([[1,0],[58,100]])
sage: L.transpose().LLL().transpose()
[-7 5]
[-6 -10]

164

We take the first column of the resulting matrix as v1, the shortest vector.

8.4 LLL on the NTRU

We illustrate the LLL attack on the NTRU with an example, continuing our example in 6.2.7.

The NTRU matrix is

Mh =









































1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 21 20 40

40 0 1 21 20

20 40 0 1 21

21 20 40 0 1

1 21 20 40 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

41 0 0 0 0

0 41 0 0 0

0 0 41 0 0

0 0 0 41 0

0 0 0 0 41









































On Sage, we find the LLL reduced matrix of Mh:

sage: M.LLL()
[-1 -1 -1 -1 -1 0 0 0 0 0]
[1 -1 -1 1 -1 1 1 -1 -1 0]
[-1 1 -1 -1 1 0 1 1 -1 -1]
[1 -1 1 -1 -1 -1 0 1 1 -1]
[-1 -1 1 -1 1 1 -1 -1 0 1]
[-3 0 8 0 -3 -7 8 0 -8 7]
[4 -7 -7 4 7 -1 -8 8 1 0]
[3 3 0 -8 0 -7 7 -8 0 8]
[4 7 4 -7 -7 1 0 -1 -8 8]
[0 -3 -3 3 5 11 4 12 11 3]

The LLL gives us short vectors. We’ll skip the first row, since it zeroed out half of the

entries. The next few rows of the LLL reduced matrix have the same length. We can see that

the third row of our our LLL reduced matrix gives us the coefficients of f (x) and g (x), up to

rotation. Split the row down the middle, and the left side gives coefficients of f (x)while

the right gives coefficients of g (x). Here, we get

f (x) =−1+ x − x 2− x 3+ x 4 and g (x) = x + x 2− x 3− x 4.

165

Note that the LLL reduction gave us the negative of both of our original f (x) and g (x)

functions. Any rotation of f (x) and g (x)will work as the private keys.

166

8.5 Computer Exercises

1. Suppose Eve knows the public key M = (951,668,327,1213,575,308,544) and inter-

cepts the integer message S = 3283 for the Knapsack Cryptosytem. Use the LLL Lattice

Reduction Algorithm to solve the Subset-Sum Problem.

2. Alice and Bob are exchanging messages with the GGH Cryptosytem. Alice’s public

basis isB ′ =

¨�

10

14

�

,

�

21

34

�«

. Eve intercepts the ciphertext m′ =

�

−28

−69

�

. Use the LLL

Lattice Reduction Algorithm to solve the CVP. Use your result to recover the plaintext

message, P .

3. Alice and Bob are again using the GGH Cryptosystem to communicate. This time,

Alice has public basisB ′ =

















62

−72

142






,







62

−31

84






,







111

−30

115

















. Eve intercepts the ciphertext

message m′ =







5605

−3476

8560






. Use the LLL Lattice Reduction Algorithm to find a good basis.

Use the good basis to recover m and then the plaintext message, P .

4. In the Congruential Public Key Cryptosystem, Eve intercepts a ciphertext message

c = 982. She knows Alice’s public keys (q , h) = (1023,659). Eve wants to recover the

plaintext message.

(a) Help Eve turn this into a lattice problem, and use the 2−dimensional Gaussian

Lattice Reduction Algorithm to solve the SVP and find the private key.

(b) Use the private key to figure out the plaintext message that Bob wanted to send

to Alice.

5. Alice and Bob are exchanging messages with the Congruential Public Key Cryptosys-

tem. Alice published the key (q , h) = (45237, 14249). Bob sent the ciphertext message

c = 26941 to Alice, and Eve intercepted it.

(a) Turn Eve’s problem into a lattice problem. Use the LLL Lattice Reduction Algo-

rithm to solve the SVP and find the private key.

(b) Use the private key to decrypt the ciphertext.

167

6. Refer to Example 6.2.5. Use the public key, h (x), to write the NTRU Matrix. Then, use

the LLL Lattice Reduction Algorithm to recover f (x) and g (x). Help Eve recover the

plaintext message.

7. The NTRU Public Key Cryptosystem that Alice and Bob are using has public parame-

ters (n , p , q , d) = (11, 3, 53, 2). Alice has public key

h (x) = 29x 10+43x 9+12x 8+18x 7+27x 5+13x 4+47x 3+44x 2+13x +19.

(a) Write the NTRU matrix using h (x) and q .

(b) Use the LLL Lattice Reduction Algorithm to find the LLL reduced form of your

matrix from part (a).

(c) What are Alice’s secret keys, f (x) and g (x)?

(d) Eve intercepts the ciphertext message

e (x) = 44x 10+44x 9+11x 8+47x 7+13x 6+42x 5+8x 3+41x 2+31x +52.

Decrypt this ciphertext to recover the plaintext message.

168

CHAPTER

9

SIGNATURE SCHEMES

Signing a paper document allows for the recipient of the message to be certain that the

document came from the signer. In the computer-based world, things are a little tougher

to sign. A digital signature helps verify that the message actually came from the authentic

document signer. It binds the person to that digital document.

In this chapter, Samantha is the signer and Victor is the verifier. The components of a

Digital Signature Scheme are as follows:

1. Key Generation Algorithm (completed by Samantha)

2. Signing Algorithm (a private algorithm for Samantha to securely sign a message)

3. Verification Algorithm (a public algorithm for anyone, particularly Victor, to verify

the signature)

At first glance, a cryptosystem and a digital signature scheme may look very similar. But,

there is a significant difference. Think of a cryptosystem as an after hours bank depository.

Anyone can deposit money into the narrow deposit box, but only the bank manager has

the key to open the box and retrieve the money. The narrow deposit box is like the public

encryption key, while the key to unlock the box is like the private decryption key. Think

of a digital signature scheme as a signet ring. Only the person wearing the ring can make

169

the impression in the wax, while anyone can verify that the wearer of the ring made the

impression. The ring itself is like the private signing algorithm, and the verification of the

wax impression is like the public verification algorithm.

We will show a signature scheme for each of the major cryptosystems that we have

discussed: RSA, GGH, and NTRU. The RSA one is well-known, the GGH follows [14], and

the NTRU scheme is new, to our knowledge.

9.1 RSA Signature Scheme

The RSA Signature Scheme is well known and appears many places. See, for example, [14].

Key Creation

Samantha chooses secret primes p and q and computes n = p q . She computes φ(n) =

(p −1)(q −1) and chooses verification exponent e with gcd (e ,φ(n)) = 1.

Signing

Samantha wants to sign document D , where 1<D < n . She computes exponent d ≡ e −1

mod (φ(n)). She signs D by computing S ≡D d (mod n). She sends her signature S to Victor

to verify.

Verification

Victor receives S and computes D ′ ≡ S e (mod n). He verifies that D ′ =D .

Example 9.1.1 (RSA Signature Scheme).

Key Creation

Samantha picks primes p = 17 and q = 37 and computes n = p q = 629.

sage: p = 17
sage: q = 37
sage: n = p*q
sage: n
629

Samantha computesφ(n) = (p −1)(q −1) = 576. She then chooses a verification exponent

e = 233. She checks to be certain that gcd (e ,φ(n)) = 1.

sage: phi = (p-1)*(q-1)
sage: phi
576

170

sage: e = 233
sage: gcd(e, phi)
1

Signing

Samantha wants to sign document D = 543. She computes her signing exponent d ≡ e −1(

modφ(n)) = 89.

sage: D = 543
sage: d = mod(e^(-1), phi)
sage: d
89

Lastly, Samantha computes her signature d ≡D d (mod n) = 373 to send to Victor.

sage: S = mod(D^d,n)
sage: S
373

Verification

Victor receives S = 343 and knows the verification exponent e = 233. He computes D ′ ≡ S e (

mod n) = 543, which is exactly D .

sage: mod(S^e,n)
543

9.2 GGH Signature Scheme

We now present the GGH Signature Scheme, as described in [14].

Key Creation

Samantha chooses a good basisB = {v1, v2, . . . , vn}and creates a bad basisB ′ = {v′1, v′2, . . . , v′n}
for latticeL . She creates the bad basis in the same way she did for the GGH cryptosystem -

by multiplying the matrix ofB by a unimodular matrix. She publishes the public keyB ′.

Signing

Samantha has document d to sign. She uses Babai’s Algorithm in 3 with the good basisB

171

to compute a vector s that is close to d. She writes s= a1v′1+a2v′2+ · · ·+an v′n and publishes

her signature (a1, a2, . . . , an).

Verification

Victor receives Samantha’s signature and computes s= a1v′1+a2v′2+ · · ·+an v′n . He verifies

that s is sufficiently close to d.

Example 9.2.1 (GGH Signature Scheme).

Key Creation

Samantha chooses good basisB =

¨�

7

−1

�

,

�

1

3

�«

. She multiplies the matrix ofB by unimod-

ular matrix

�

−1 −2

2 5

�

to obtain her bad basisB ′ =

¨�

−5

7

�

,

�

−9

17

�«

. She then publishesB ′

and keepsB a secret.

sage: V = Matrix([[7,1],[-1,3]])
sage: U = Matrix([[-1,-2],[2,5]])
sage: W = V*U
sage: W
[-5 -9]
[7 17]

Signing

Samantha wants to sign document d=

�

8

−3

�

. She uses Babai’s Algorithm to solve the CVP

withB for d to get s=

�

6

−4

�

.

sage: d = vector([8,-3])
sage: c = V\d
sage: c
(27/22, -13/22)

sage: for x in c:
a = round(x)
print(a)

1
-1

172

sage: s = 1 * V[:,0] + -1 * V[:,1]
sage: s
[6]
[-4]

She then writes s as a linear combination of her bad basis to get the coordinates of her

signature (−3, 1).

sage: W\s
[-3]
[1]

Verification

Victor receives Samantha’s signature (−3, 1) and computes s=−3

�

−5

7

�

+1

�

−9

17

�

=

�

6

−4

�

.

sage: -3*W[:,0] + 1*W[:,1]
[6]
[-4]

sage: s = vector([6,-4])
sage: (s-d).norm()
sqrt(5)

He then computes ∥s−d∥ =
p

5, which is sufficiently short. So, he accepts Samantha’s

signature on the document.

9.3 NTRU Signature Scheme

The NTRU Signature Scheme given below is our contribution.

The NTRU Signature Scheme has public parameters (n , p , q , d) as in the cryptosystem,

where n and p are prime, gcd (n , q) = 1, gcd (p , q) = 1, and 4d p +2d < q .

Key Creation

Samantha picks f (x) ∈T (d +1, d) such that both Fp (x) = f −1(x) in Rp and Fq (x) = f −1(x)

in Rq exist. She also picks g (x) ∈ T (d + 1, d) such that Gq (x) = g −1(x) in Rq exists. She

computes Fp (x), Fq (x), and Gq (x). She then computes h (x) = Fq (x)g (x) in Rq and makes

173

h (x) public. Note that h−1(x) = f (x)Gq (x) in Rq .

Signing

Samantha wants to sign message m (x) ∈T (d , d). She picks r (x) ∈T (d , d) and computes

signature e (x) = p r (x) f (x) +h−1(x)m (x) in Rq . She sends e (x) and m (x) to Victor.

Verification

Victor receives signature e (x) and message m (x). He computes b (x) = h (x)e (x) in Rq . Note

that

b (x) = h (x)e (x)

= h (x)(p r (x) f (x) +h−1m (x))

= h (x)p r (x) f (x) +h (x)h−1(x)m (x)

= h (x)p r (x) f (x) +m (x)

= p h (x)r (x) f (x) +m (x)

= p Fq (x)g (x)r (x) f (x) +m (x)

= p g (x)r (x) +m (x)

Victor centerlifts b (x) to b̂ (x) in R and reduces in Rp to get m (x). He accepts that the

message came from Samantha.

Example 9.3.1 (NTRU Signature Scheme).

Suppose an NTRU Signature Scheme have public parameters (n , p , q , d) = (5, 3, 37, 2). Then,

we have

R =
Z[x]

x 5−1
, Rp =R3 =

Z3[x]
x 5−1

, Rq =R37 =
Z37[x]
x 5−1

.

sage: R.<x> = PolynomialRing((GF(3),x)
sage: R3.<x> = R.quotient_ring(x^5-1)
sage: S.<x> = PolynomialRing(GF(37),x)
sage: R37.<x> = S.quotient_ring(x^5-1)

Key Creation

Samantha chooses f (x) = 1+ x − x 2− x 3+ x 4 ∈T (3, 2) and computes F3(x) = 2x 4+2x and

F37(x) = 19x 4+19x .

sage: f3 = R3(1+x-x^2-x^3+x^4)
sage: F3 = f3^(-1)

174

sage: F3
2*x^4 + 2*x

sage: f37 = R37(1+x-x^2-x^3+x^4)
sage: F37 = f37^(-1)
sage: F37
19*x^4 + 19*x

She also chooses g (x) = 1− x − x 2+ x 3+ x 4 ∈T (3, 2) and computes G37(x) = 19x 2+19.

sage: g = R37(1-x-x^2+x^3+x^4)
sage: G37 = g^(-1)
sage: G37
19*x^2 + 19

Lastly, she computes h (x) = F37(x)g (x) = x 4 and makes h (x) public.

sage: h = F37*g
sage: h
x^4

Signing

Samantha has message (or document) m (x) = x − x 2+ x 3− x 4 ∈T (2, 2) and chooses r (x) =

−1− x + x 3+ x 4 ∈T (2, 2). She computes her signature e (x) = 3r (x) f (x)+h−1(x)m (x) in R37.

She sends e (x) = 7x 4+11x 3+ x 2+25x +30 to Victor as her signature along with message

m (x).

sage: m = x-x^2+x^3-x^4
sage: r = -1-x+x^3+x^4
sage: e = 3*r*f37+h^(-1)*m
sage: e
7*x^4 + 11*x^3 + x^2 + 25*x + 30

Verification

Victor receives m (x) and e (x). He computes b (x) = h (x)e (x) = 30x 4+7x 3+11x 2+ x +25.

sage: b = h*e
sage: b
30*x^4 + 7*x^3 + 11*x^2 + x + 25

175

He then centerlifts b (x) to b̂ (x) in R and reduces it in R3 to get 2x 4+ x 3+2x 2+ x .

sage: bhat = ZZ[’x’]([coeff.lift_centered() for coeff in b.lift()])
sage: bhat
-7*x^4 + 7*x^3 + 11*x^2 + x - 12

sage: R3(bhat)
2*x^4 + x^3 + 2*x^2 + x

Note that this is equivalent to m (x) =−x 4+ x 3− x 2+ x . Victor accepts the signature and

message as Samantha’s.

176

9.4 Computer Exercises

1. Suppose Samantha wants to send document D = 74312 to Victor, and she want to sign

it. She uses the RSA Signature Scheme, which has a public modulus of n = 3962249

and a signing exponent of e = 961. Verify that the document came from Samantha if

she sends signature S = 1939192 with her document.

2. Samantha is using he RSA Signature Scheme to sign her document D = 62290. She

chooses private keys p = 1907 and q = 1223. She also chooses public signing exponent

e = 3361.

(a) What signature, S , should Samantha send to Victor?

(b) Help Victor verify that the document came from Samantha.

3. Samantha is using the GGH Signature Scheme to sign her document d=

�

11

25

�

. She

publishes a basis for latticeL to beB ′ =

¨�

30

26

�

,

�

74

61

�«

, and she sends her signature

(15,−6) to Victor. Verify that the document came from Samantha.

4. In the GGH Signature Scheme, Samantha uses a private basis ofB =

¨�

4

−7

�

,

�

5

2

�«

and

a public basis ofB ′ =

¨�

−7

−20

�

,

�

−13

−31

�«

. She wants to sign her document, d=

�

12

18

�

.

(a) What should Samantha send as her signature?

(b) Using your answer for part (a), verify that the document came from Samantha.

5. Samantha is using the GGH Signature Scheme to sign a document and send it to

Victor for verification. She picks a good lattice basis ofB =

















9

−8

7






,







−10

4

11






,







3

11

9

















and publishes a bad lattice basis ofB ′ =

















5

99

139






,







25

50

97






,







9

73

110

















. Suppose she wants

to sign document d=







17

33

6






.

(a) What is Samantha’s signature?

177

(b) Help Victor verify that d came from Samantha.

6. Samantha is using the NTRU Signature Scheme to sign her message m (x) = x 5− x 3+

x 2+ x . The public parameters for this signature scheme are (n , p , q , d) = (7,3,61, 2),

and the public key is

h (x) = 56x 6+46x 5+2x 4+39x 3+60x 2+11x +31.

Samantha’s signature is

e (x) = 55x 6+60x 5+50x 4+27x 3+23x 2+27x +4.

Help Victor verify that the message came from Samantha.

7. In the NTRU Signature Scheme, the public parameters are (n , p , q , d) = (7,3,41,2).

Samantha chooses f (x) = x 5+ x 4− x 2+ x −1 and g (x) =−x 6+ x 5− x 4+ x 2+1.

(a) Find Samantha’s public key, h (x).

(b) Suppose that Samantha wants to send message m (x) = x 6 − x 4 + x 3 − 1. She

chooses r (x) =−x 5− x 3+ x 2+ x . What is Samantha’s signature?

(c) Verify that your answers are correct by helping Victor verify that the message

came from Samantha.

178

CHAPTER

10

BLIND SIGNATURE SCHEMES

Suppose you want to vote in an election. You need your ballot signed by a third party before

it can be sent to its destination to be counted. However, you do not want the third party

signer to know how you voted. So, how do you secure it? You could place your original

document in an envelope on carbon copy paper, and seal the envelope. The signer could

sign the outside of the envelope without ever opening it and send it back to you. This way,

the signer has not seen the document, but she has signed it. When you open the envelope

back up, you can see her signature on the carbon copy paper. This is the idea behind a

Blind Signature Scheme. In a blind signature scheme, the signer cannot see the document

during the process of the signature generation, and the signer cannot match the signed

document to the author of the message. We can think of the signer as the election authority,

the author of the message as the voter, and the message recipient as the voting center. For

the purposes of this chapter, Samantha will be the election authority (signer), Alice will be

the voter (author and message sender), and Victor will be the voting center (verifier).

Blind signature schemes involve what is known as a challenge-response problem. Here,

Samantha is a third party signer, Alice is the message sender, and Victor is the message

recipient and verifier. Samantha sets up the parameters of the scheme and makes some

of them public. Alice wants to send a message, but she does not want the document to be

revealed to the signer. She blinds, or disguises, the document in some way before sending

179

it to Samantha. Samantha signs the document and sends it back to Alice. Then, Alice sends

the document and the signature to Victor. Victor can verify the document. We will work

through the RSA blind signature scheme, as shown in [14] and many other places, and then

we will proceed to new schemes that we have developed based on the GGH and NTRU

cryptosystems.

10.1 RSA Blind Signature Scheme

The RSA Blind Signature Scheme is well-known. We follow [14].

Key Creation

Samantha sets up the regular RSA parameters p , q , n ,φ(n), e , d , and she makes n and e

public.

Document Blinding

Alice has message m . She picks r such that gcd (r, n) = 1 and computes z ≡m r e (mod n).

z is sent to Samantha as the blinding factor.

Signing

Samantha computes y ≡ z d ≡m d r e d ≡m d r (mod n) and sends y back to Alice.

Unblinding and Message Sending

Alice computes s ≡ r −1 y ≡ r −1z d ≡ r −1(m d r)(mod n) =m d , which is sent to Victor, the

message recipient, along with m .

Verification

Victor computes s e ≡ (m d)e (mod n) = m and compares it to m . He accepts that the

message came from Alice with a blind signature from Samantha.

Example 10.1.1 (RSA Blind Signature Scheme).

Key Creation

Samantha chooses the parameters for the RSA Blind Signature Scheme. She chooses p = 67

and q = 31. She computes n = p q = 2077 andφ(n) = (p −1)(q −1) = 1980. She then chooses

e = 101 and checks that gcd (e ,φ(n)) = 1. Lastly, she calculates d ≡ e −1(modφ(n)).

sage: p = 67
sage: q = 31

180

sage: n = pq
sage: n
2077

sage: phi = (p-1)*(q-1)
sage: phi
1980

sage: e = 101
sage: gcd(e, phi)
1

sage: d = mod(e^(-1), phi)
sage: d
941

Document Blinding

Alice has message m = 1990 that she wants to send. She chooses r = 81 and checks that

gcd (n , r) = 1. She computes z ≡m r e (mod (n)) = 1641 to send to Samantha as the blinding

factor.

sage: m = 1990
sage: r = 81
sage: gcd(n, r)
1

sage: z = mod(m*r^e, n)
sage: z
1641

Signing

Samantha receives z and computes y = z d (mod n) = 680.

sage: y = mod(z^d, n)
sage: y
680

181

Unblinding and Message Sending

Alice receives y and computes her signature s ≡ r −1 y (mod n) = 1111. She sends her signa-

ture and the message to Victor.

sage: s = mod(r^(-1)*y, n)
sage: s
1111

Verification

Victor receives s and m. He computes s e (mod n) = 1990, which is exactly m.

sage: mod(s^e, n)
1990

Alice’s message has been verified.

10.2 GGH Blind Signature Scheme

In this section, we present an original Blind Signature Scheme for the GGH.

Key Creation

Samantha sets up the GGH with good basisB and bad basisB ′. She makesB ′ public.

Document Blinding

Alice has document d to be signed, but she does not want d to be revealed to Samantha.

She picks u ∈L and computes d+u=m, which is sent to Samantha as the blinding factor.

Signing

Samantha finds the closest vector s ∈ L to m usingB . s is sent to Alice as Samantha’s

signature.

Unblinding and Message Sending

Alice computes t= s−u. t is the Alice’s signature. Note that t ∈L . t and d are sent to Victor.

Verification

Victor checks that ∥t−d∥= ∥s−u−d∥= ∥s−m∥ is small and t ∈L . This checks that d came

from Alice.

182

Example 10.2.1 (GGH Blind Signature Scheme).

Key Creation

Samantha chooses good basisB =

¨�

7

−1

�

,

�

1

3

�«

and computes bad basis

¨�

17

7

�

,

�

26

12

�«

. She

makesB ′ public.

sage: V = Matrix([[7,1],[-1,3]])
sage: U = Matrix([[2,3],[3,5]])
sage: W = V*U
sage: W
[17 26]
[7 12]

Document Blinding

Alice wants to sign document d=

�

−13

4

�

. She picks u=

�

−4

−12

�

∈L and computes m= d+u=
�

−17

−8

�

. m is sent to Samantha.

sage: d = matrix([[-13],[4]])
sage: u = matrix([[-4],[12]])
sage: m = d + u
sage: m
[-17]
[-8]

Signing

Samantha receives m and solves the CVP usingB . The closest vector, s =

�

−17

−7

�

is sent to

Alice.

sage: (V.augment(m)).rref().n()
[1.00000000000000 0.000000000000000 -1.95454545454545]
[0.000000000000000 1.00000000000000 -3.31818181818182]

sage: s = -2*V[:,0]-3*V[:,1]
sage: s
[-17]
[-7]

183

Unblinding and Message Sending

Alice receives s and computes her signature t= s−u=

�

−13

5

�

. She sends t and d to Victor.

sage: t = s - u
sage: t
[-13]
[5]

Verification

Victor receives t and d. He checks that ∥t−d∥ is small and that t ∈L .

sage: (t-d).norm()
1.0

sage: (W.augment(t)).rref().n()
[1.00000000000000 0.000000000000000 -13.0000000000000]
[0.000000000000000 1.00000000000000 8.00000000000000]

Note that row reducing the matrix
�

W t
�

gives integer solutions. This means that t ∈L .

10.3 NTRU Blind Signature Scheme

In this section we present an original Blind Signature Scheme for the NTRU and show that

our protocol has the desired properties.

Samantha sets up the typical NTRU protocol by picking (n , p , q , d), where n and p are

prime, gcd (p , q) = 1, and gcd (n , q) = 1.

Key Creation

Samantha picks f (x) ∈ T (d + 1, d) that is invertible in Rq and Rp . She also picks g (x) ∈
T (d +1, d) that is invertible in Rq . She computes Fq (x) = f −1(x) in Rq , Fp (x) = f −1(x) in

Rp , and h (x) = Fq (x)g (x) in Rq . Note that h (x) has an inverse in Rq . h (x) is made public

along with n , p , q , and d .

Document Blinding

Alice wants to send m (x) to Victor, and she wants it to have a blind signature. m (x) should

have coefficients mi with −1
2 p <mi ≤ 1

2 p , just as in the cryptosystem. Alice picks t (x) ∈
T (d +1, d)with inverse in Rq . Alice computes s (x) =m (x)t (x) and sends it to Samantha

184

as her blinding factor.

Signing

Samantha picks r (x) ∈ T (d + 1, d) and computes e (x) = p r (x) f (x) + h−1(x)s (x) in Rq .

Samantha sends e (x) back to Alice as her signature.

Unblinding and Message Sending

Alice finds a (x) = h (x)t −1(x)e (x) in Rq . Note that

a (x) = h (x)t −1(x)e (x)

= h (x)t −1(x)[p r (x) f (x) +h−1(x)s (x)]

= h (x)t −1(x)[p r (x) f (x) +h−1(x)m (x)t (x)]

= h (x)t −1(x)p r (x) f (x) +h (x)t −1(x)h−1(x)m (x)t (x)

= Fq (x)g (x)t
−1(x)p r (x) f (x) +m (x)

= p g (x)t −1(x)r (x) +m (x)

Alice sends m (x) and a (x) to Victor.

Verification

Victor centerlifts a (x) to â (x) in R and reduces it in Rp to get back m (x). Note that

â (x) = p g (x)t −1(x)r (x) +m (x)

=m (x).

Example 10.3.1 (NTRU Blind Signature Scheme).

Public Parameters

Samantha sets up an NTRU protocol with (n , p , q , d) = (5,3,41,2). That is, she has the fol-

lowing public rings:

R =
Z[x]

x 5−1
Rp =R3 =

Z3[x]
x 5−1

Rq =R41 =
Z41[x]
x 5−1

.

Key Creation

Samantha chooses f (x) =−x 4+ x 3+ x 2− x +1 ∈T (3,2), and finds F3(x) = f −1(x) in R3 is

F3(x) = 2x 3+2x 2 and that F41(x) = f −1(x) in R41 is F41(x) = 21x 3+21x 2. She also chooses

g (x) = x 4+x 3−x 2+x−1 ∈T (3, 2)and finds that G41(x) = g −1(x) in R41 is G41(x) = 21x 2+21x .

185

She computes h (x) = F41(x)g (x) = x . She makes and h (x) public.

sage: R.<x> = PolynomialRing(GF(3),x)
sage: R3.<x> = R.quotient_ring(x^5-1)
sage: f3 = R3(-x^4+x^3+x^2-x+1)
sage: F3 = f3^(-1)
sage: F3
2*x^3 + 2*x^2

sage: S.<x> = PolynomialRing(GF(41),x)
sage: R41.<x> = S.quotient_ring(x^5-1)
sage: f41 = R41(-x^4+x^3+x^2-x+1)
sage: F41 = f41^(-1)
sage: F41
21*x^3 + 21*x^2

sage: g = R41(x^4+x^3-x^2+x-1)
sage: G41 = g^(-1)
sage: G41
21*x^2 + 21*x

sage: h = F41*g
sage: h
x

Document Blinding

Alice wants to send document m (x) = x 2+ x −1 to Victor. She chooses t (x) = x 4− x 3+ x 2−
x +1 ∈T (3, 2) and finds that T41(x) = t −1(x) in R41 is T41(x) = 21x +21. She then computes

s (x) =m (x)t (x) = 40x 4+ x 3+40x 2+3x +40, and sends s (x) to Samantha as her blinding

factor.

sage: m = x^2 + x - 1
sage: t = R41(x^4-x^3+x^2-x+1)
sage: T41 = t^(-1)
sage: T41
21*x + 21

186

sage: s = m*t
sage: s
40*x^4 + x^3 + 40*x^2 + 3*x + 40

Signing

Samantha receives s (x). She chooses r (x) = −x 4− x 3+ x 2+ x + 1 ∈ T (3,2) and finds that

R (x) = r −1(x) in R41 is R (x) = 21x 3 + 21. She computes e (x) = p r (x) f (x) +h−1(x)s (x) =

2x 4+2x 3+4x 2+31x +6, and she sends e (x) back to Alice as her signature.

sage: r = R41(-x^4-x^3+x^2+x+1)
sage: R = r^(-1)
sage: R
21*x^3 + 21

sage: e = 3*r*f41 + h^(-1)*s
sage: e
2*x^4 + 2*x^3 + 4*x^2 + 31*x + 6

Unblinding and Message Sending

Alice receives e (x) and computes a (x) = h (x)T41(x)e (x) = 3x 4+38x 3+39x 2+4x +2. Alice

sends a (x) and m (x) to Victor.

sage: a = h*T41*e
sage: a
3*x^4 + 38*x^3 + 39*x^2 + 4*x + 2

Verification

Victor receives a (x) and m (x). He centerlifts a (x) to â (x) in R and reduces it in R3 to get back

x 2+ x +2. He compares this to m (x) = x 2+ x −1. Note that x 2+ x +2≡ x 2+ x −1(mod 3),

which is m (x).

sage: ahat = ZZ[’x’]([coeff.lift_centered() for coeff in a.lift()])
sage: ahat
3*x^4 - 3*x^3 - 2*x^2 + 4*x + 2

sage: R3(ahat)
x^2 + x + 2

187

10.4 Computer Exercises

1. Suppose that Alice wants to send message m = 5938542 to Victor with the RSA Blind

Signature Scheme, but she wants to blind it before it is signed by Samantha. Samantha

has public keys (n , e) = (27631523,3943). Alice chooses r = 1218. What is Alice’s

blinding factor, z , that she sends to Samantha?

2. Suppose that Samantha has private keys (p , q) = (5023,5501) and she received the

blinding factor from the previous problem. Calculate d , and use it to find the value of

y , Samantha’s signature.

3. Samantha, Alice, and Victor are using the RSA Blind Signature scheme. Samantha

keeps primes p = 6421 and q = 6323 private and publishes n = 40599983 and e = 3001.

(a) Alice wants to send message m = 4887586. She chooses r = 1011. Find her

blinding factor, z .

(b) Samantha receives z . What is Samantha’s signature, y ?

(c) Alice receives Samantha’s signature, y . Find the value of s that Alice will send to

Victor along with her value of m .

(d) Help Victor verify that the message came from Samantha.

4. Use the GGH Blind Signature Scheme to answer this question. Samantha picks good

basisB =

¨�

5

−1

�

,

�

2

5

�«

and bad basisB ′ =

¨�

12

3

�

,

�

29

5

�«

. Alice wants to send docu-

ment d=

�

604

1964

�

. She chooses u=

�

1224

36

�

∈L .

(a) What is m that Alice sends to Samantha as her blinding factor?

(b) Find s for Samantha to send back to Alice.

(c) Compute t for Alice to send to Victor, along with d.

(d) Victor receives d and t. Verify that the document came from Alice.

5. Samantha sets up the GGH Blind Signature scheme with a good basis of

B =

















2

−4

6






,







−3

4

5






,







6

5

−3

















and a bad basis ofB ′ =

















46

53

5






,







36

26

10






,







37

39

6

















.

188

(a) Alice needs to have document d =







622

103

95






signed. She chooses lattice vector

u=







258

364

102






. Find her blinding factor, m.

(b) Solve the CVP using the good basis to find signature s for Samantha.

(c) Find t, Alice’s document signature to be sent to Victor.

(d) Help Victor verify that the document came from Alice.

6. Samantha sets up the NTRU Blind Signature Scheme with public parameters (n , p , q , d) =

(7, 3, 43, 2). She makes h (x) = 41x 6+42x 5+2x 4+41x 2+2x +2 public.

(a) Suppose that Alice wants to send message m (x) =−x 5+ x 3+ x 2−1. She picks

t (x) = x 6+ x 4− x 3− x 2+1 to help blind her document. Calculate s (x) to send

to Samantha.

(b) Suppose that Samantha’s private keys are f (x) = x 6 − x 5 + x 4 − x 3 + x 2 and

g (x) =−x 4+x 3+x 2−x+1, and suppose that she chooses r (x) = x 6+x 4+x 3−x−1.

Compute her signature, e (x).

(c) What is Alice’s signature, a (x)?

(d) If Victor receives m (x) and a (x), verify that m (x) came from Alice.

189

CHAPTER

11

ZERO KNOWLEDGE PROOFS

How do you prove to someone that you know information without giving them the infor-

mation? That is the idea behind a Zero Knowledge Proof. The concept here is that Victor

(the verifier) sends a random ciphertext to Peggy (the prover), and Peggy answers with the

plaintext of the ciphertext. The following example is adapted from [24].

The door that blocks a path has a secret password. Peggy claims that she knows it. How

can she prove to Victor that she knows it without also proving to Eve that she knows it and

without also giving away the password? Peggy enters the cave and picks one of the two

paths to the door. Victor stays outside so that he does not see which way she goes in. Once

Peggy is at the door, Victor enters the cave. He shouts to Peggy to tell her which route she

should take out. If she does not know the password to the door, she has to go back the

way that she came in. Otherwise, she can do as Victor asks. If she knows the password, she

will always be able to do as Victor asks. If she does not know the password, the probability

that she comes out the right door each time is 50%. After n times, if she does not know the

password, she only has
�

1
2

�n
chance of doing as Victor asks. After n times, it is shown that

she either does not have the password or she has a 1−
�

1
2

�n
chance of having the password.

She has not proven to a third party that she has the password. If Eve observes all that

has happened, Eve only knows what Victor asked for and where Peggy appeared. This does

not prove that Peggy has the password, because Victor and Peggy could have arranged in

190

advance a sequence of ways that Victor called out and Peggy then appears. Eve does not

know for sure if they cheated. Also, Victor does not learn the password, just that Peggy

knows it. No knowledge of Peggy’s has been shown to Victor other than that she has the

password. This is a zero knowledge proof.

Zero knowledge proofs are a series of challenge and response protocol that are popularly

used in identity verification. In a Zero Knowledge Proof, the prover presents the verifier

with a transcript that satisfies

1. Completeness (the verifier accepts an honest prover),

2. Soundness (the trasncript implies that the prover knows), and

3. Zero-Knowledge (does not reveal any additional information) [14].

We will show a common Zero Knowledge Proof for the Discrete Log Problem before

showing a new Zero Knowledge Proof for the GGH and the NTRU cryptosystems. The

Discrete Log Zero Knowledge Proof follows [6], and the GGH and NTRU protocols are our

contributions.

11.1 Discrete Logarithm Zero Knowledge Proof

We begin with a discussion of a Discrete Log Zero Knowledge Proof, as discussed in [6]. The

Discrete Log Problem is as follows:

Problem 11.1.1 (Discrete Log Problem).

Given a , b , p with p prime, what is x such that a x ≡ b (mod p)?

Peggy claims that she knows x and wants to prove this to Victor without revealing x .

Key Creation

Peggy picks r , computes c ≡ a r (mod p), and sends c to Victor.

Challenge

Victor asks Peggy for either r or (x + r)(mod (p − 1)). No information from the original

problem has been revealed by this step.

Response

Peggy sends either r or (x + r)(mod (p −1)).

191

Verification

If Peggy sends r , then Victor finds a r ≡ c (mod p), as should be the case. If Peggy sends (x +

r)(mod (p−1)), then Victor computes a (x+r)(mod (p−1))(mod p) = a x a r (mod p) = b c (mod p),

and it checks that Peggy knows x .

Remark 11.1.1. (x + r)(mod (p −1)) = x + r + (τ(p −1)), so a (x+r)(mod (p−1))(mod p) =

a x a r aτ(p−1)(mod p) = a x a r (mod p). Also, a x a r (mod p) = b c =⇒ a x (mod p) = c , and x

must be known to Peggy.

Remark 11.1.2. Why do Peggy and Victor need Peggy to send either r or x + r rather than

just using x + r ?

If all Peggy needs to do is use x + r , then she can instead cheat as follows:

She could pick r ′ and compute c ′ ≡ a r ′(a x)−1(mod p). She sends c ′ to Victor. As before,

Victor computes c ′b = a r (a x)−1a x (mod p) = a r ′(mod p). Remember that r ′ was sent to

Victor as x + r , so it looks like c ′b ≡ a x+r (mod p) as expected, but Peggy does not need to

know x in order to do this.

Notice that Victor never finds out x . Eve would never find out x if she was eavesdropping

either. This is a zero knowledge proof.

11.2 GGH Zero Knowledge Proof

We will now present an original Zero Knowledge Proof based on the GGH Cryptosystem.

Peggy has a good basisB for latticeL and wants to convince Victor of this without giving

him the basis. She’ll do this by solving the CVP.

Key Creation

Peggy picks a good basisB forL and computes a bad basisB ′ to send to Victor.

Challenge

Victor takes a vector x and sends the coordinates in terms of Rn to Peggy.

Response

Peggy uses her good basis to get a closest vector y to x. She writes y in terms of the bad basis

B ′ and sends it to Victor.

Verification

Victor uses the coordinates he receives to find y, and then he computes ∥y−x∥ to see that

192

the vectors are close. If they are sufficiently close, he accepts Peggy’s response as valid. They

repeat this a number of times.

Remark 11.2.1. The GGH Zero Knowledge Proof Protocol satisfies the following:

1. Completeness: If y is close to x, then Victor will always accept Peggy’s y. We use the

bound that ∥y−x∥ ≤
p

n det (L)1/n .

2. Soundness: If y is not close to x, Victor will likely not accept Peggy’s y. In other words,

there is a small probability that Victor will accept all of Peggy’s responses.

3. Zero Knowledge: Victor never finds out the good basis forL .

Example 11.2.1 (GGH Zero Knowledge Proof).

Key Creation

Peggy has good basisB =

¨�

6

1

�

,

�

1

4

�«

. Note that the Hadamard Ratio of this basis is 0.9576,

as calculated below with Sage.

sage: V = Matrix([[6,1],[1,4]])
sage: v1 = vector([6,1])
sage: v2 = vector([1,4])
sage: numerical_approx((det(V)/(v1.norm()*v2.norm()))^(1/2))
0.957637747926237

She forms V =

�

6 1

1 4

�

and chooses unimodularU =

�

2 −3

1 −2

�

to compute V U =

�

13 −20

6 −11

�

.

sage: U = Matrix([[2,-3],[1,-2]])
sage: V*U
[13 -20]
[6 -11]

This gives her bad basisB ′ =

¨�

13

6

�

,

�

−20

−11

�«

. She publishes her bad basis.

Challenge

Victor has the bad basisB ′. He picks vector x=

�

1

−5

�

to send to Peggy.

Response

Peggy solves the CVP for x using good basisB .

193

She sets up a1

�

6

1

�

+a2

�

1

4

�

=

�

1

−5

�

and solves the system on Sage.

sage: V = Matrix([[6,1],[1,4]])
sage: b = vector([1,-5])
sage: V\b.n()
(0.391304347826087, -1.34782608695652)

She rounds to get c1 = 0 and c2 =−1, and computes y= 0

�

6

1

�

−1

�

1

4

�

=

�

−1

−4

�

. She writes y

as coordinates with respect to the bad basisB ′.

sage: B = Matrix([[13, -20],[6,-11]])
sage: y = vector([-1,-4])
sage: B\v
(3, 2)

Peggy sends

�

3

2

�

to Victor to be verified.

Verification

Victor finds y by computing y= 3

�

13

6

�

+2

�

−20

−11

�

=

�

−1

−4

�

. He then computes ∥y−x∥=
p

5 to

verify that y is close to x.

sage: y = vector([-1,-4])
sage: x = vector([1,-5])
sage: (y-x).norm()
sqrt(5)

He verifies that ∥y−x∥ ≤
p

n det (L)1/n .

∥y−x∥ ≤
p

n det (L)1/n

≤
p

2

�

�

�

�

�

det

��

13 −20

6 −11

��

�

�

�

�

�

(1/2)

≤
p

2(23)1/2

≈ 6.7823

In fact,
p

5≈ 2.236≤ 6.7823, so y is close to x. Victor accepts Peggy’s response.

194

11.3 NTRU Zero Knowledge Proofs

In this section we present an original Zero Knowledge Proof protocol for the NTRU and

show that our protocol has the desired properties. (See, for example, Theorem 11.3.1.)

The NTRU Zero Knowledge Proof Protocol has public parameters (n , p , q , d), where n and

p are prime, gcd (n , q) = gcd (p , q) = 1, and 4d 2+2d < q .

As with the NTRU Cryptosystem, we have

R =
Z[x]
(x n −1)

, Rp =
Zp [x]

(x n −1)
, and Rq =

Zq [x]

(x n −1)
.

Peggy wants to prove to Victor that she knows f (x) and g (x)without him knowing enough

information to determine either.

Key Creation

Peggy picks f (x) ∈ T (d + 1, d) and g (x) ∈ T (d + 1, d) such that f (x) has inverse Fq (x) in

Rq and g (x) has inverse Gp (x) in Rp . She computes h (x) = f (x)g (x) in R and makes h (x)

public.

Challenge

Victor picks an m (x) ∈T (d , d) and computes e (x) = h (x)m (x) to send to Peggy.

Response

Peggy receives e (x) and computes a (x) = Fq (x)e (x) in Rq . Note that a (x) = Fq (x)e (x) =

Fq (x)h (x)m (x) = Fq (x) f (x)g (x)m (x) = g (x)m (x) in Rq . Peggy then centerlifts a (x) to R

and reduces it in Rp to get â (x). She then computes b (x) =Gp (x)â (x) in Rp to send back to

Victor.

Verification

Victor verifies that b (x) =m (x) to accept Peggy’s response. Note that b (x) =Gp (x)â (x) =

Gp (x)g (x)m (x) =m (x).

Remark 11.3.1. The NTRU Zero Knowledge Proof Protocol satisfies the following:

1. Completeness: If Peggy knows f (x) and g (x), she can find m (x) every time. This will

convince Victor that she does, in fact, know them.

195

2. Soundness: If Peggy does not know f (x) and g (x), she does not know Fq (x) or Gp (x),

and so she cannot recover m (x), forcing Victor to not accept her response.

3. Zero Knowledge: Victor cannot use the strategy that Peggy does, because he only knows

h (x). So, he cannot find f (x) and g (x).

Theorem 11.3.1. If the NTRU Zero Knowledge Protocol parameters (n , p , q , d) satisfy the

condition that q > 4d 2+ 2d , then b (x) =m (x), where b (x) is the polynomial Peggy finds

during her response, and m (x) is Victor’s plaintext challenge polynomial.

Proof. Let f (x), g (x) ∈T (d +1, d). We know that h (x) = f (x)g (x). In h (x), a coefficient is

of maximum size when all (d +1) 1s of f (x)match up in multiplication with all (d +1) 1s of

g (x). This yields a coefficient value of d +1. The same argument is true of the (d)−1s in f (x)

and g (x), yielding a coefficient value of d . This means that the largest possible coefficient

of h (x) is 2d +1.

We also have that m (x) ∈ T (d , d), and we calculate e (x) = h (x)m (x). The maximum

coefficient of e (x) happens when the largest coefficient values of h (x), 2d + 1, match in

multiplication with the same signed values in m (x) for a maximum of (2d +1)d = 2d 2+d .

We assumed that 4d 2+2d < q . Dividing by 2 gives 2d 2+d < q
2 . So, when Peggy centerlifts

a (x), she gets the exact coefficients back in R .

Now, we look at b (x):

b (x) =Gp (x)â (x)

=Gp (x)Fq (x)e (x)

=Gp (x)Fq (x)h (x)m (x)

=Gp (x)Fq (x) f (x)g (x)m (x)

=Gp (x)g (x)m (x)

=m (x)

Example 11.3.1 (NTRU Zero Knowledge Proof).

An NTRU Zero Knowledge Proof Protocol has public parameters (n , p , q , d) = (5, 7, 23, 2). Note

that 23= q > 4(2)2+2(2) = 20. We have

R =
Z[x]

x 5−1
Rp =R7 =

Z7[x]
x 5−1

Rq =R23 =
Z23[x]
x 5−1

196

Key Creation

Peggy chooses f (x) = −1− x + x 2 + x 3 + x 4 ∈ T (3,2) and finds F23 = f −1(x) in R23 to be

F23(x) = 12x 3+12x 2.

sage: R.<x> = PolynomialRing(GF(23),x)
sage: R23.<x> = R.quotient_ring(x^5-1)
sage: f = R23(-1-x+x^2+x^3+x^4)
sage: F = f^(-1)
sage: F
12*x^3 + 12*x^2

She also chooses g (x) = 1− x + x 2− x 3+ x 4 ∈ T (3,2) and finds G7(x) = g −1(x) in R7 to be

G7(x) = 4x +4.

sage: S.<x> = PolynomialRing(GF(7),x)
sage: S7.<x> = S.quotient_ring(x^5-1)
sage: g = S7(1-x+x^2-x^3+x^4)
sage: G = g^(-1)
sage: G
4*x + 4

Peggy then computes h (x) = f (x)g (x) in R to get h (x) = x 4+ x 3+ x 2+ x −3.

sage: h = f*g
sage: h
x^4 + x^3 + x^2 + x - 3

She publishes h (x). Peggy wants to prove to Victor that she knows f (x) and g (x) without

giving Victor any information.

Challenge

Victor picks m (x) = x − x 2+ x 3− x 4i nT (2, 2). He computes his challenge polynomial e (x) =

h (x)m (x) = 4x 4−4x 3+4x 2−4x and sends that back to Peggy.

sage: m = x - x^2 + x^3 - x^4
sage: e = h*m
sage: e
4*x^4 - 4*x^3 + 4*x^2 - 4*x

197

Response

Peggy receives e (x) and computes a (x) = F23(x)e (x) = 19x 4+2x 3+21x +4.

sage: a = F*e
sage: a
19*x^4 + 2*x^3 + 21*x + 4

She then center lifts a (x) to â (x) in R and reduces it in R7 to get that â (x) = −4x 4+ 2x 3−
2x +4= 3x 4+2x 3+5x 2+4. She then calculates b (x) =G7(x)â (x) to recover m (x) and prove

to Victor that she knows f (x) and g (x).

sage: ahat = ZZ[’x’]([coeff.lift_centered() for coeff in a.lift()])
sage: ahat
-4*x^4 + 2*x^3 - 2*x + 4

sage: G*ahat
6*x^4 + x^3 + 6*x^2 + x

Verification

Notice that Sage returns 6x 4+ x 3+6x 2+ x . This is equivalent to −x 4+ x 3− x 2+ x =m (x).

Victor accepts Peggy’s response as valid.

198

11.4 Computer Exercises

1. Peggy wants to prove to Victor that she knows the good basisB =

¨�

5

−1

�

,

�

2

5

�«

without

telling him that basis. She publishesB ′ =

¨�

12

3

�

,

�

29

5

�«

. Victor sends x=

�

9

7

�

to Peggy

as a challenge. What is her response?

2. Using the GGH Zero Knowledge Proof Protocol, Peggy publishes her public basis as

B ′ =

















127

−62

37






,







20

−12

12






,







25

−16

19

















for latticeL . Victor chooses x =







428

510

324






to send to

Peggy as a challenge. She returns the coordinates of her vector in terms of the bad

basis to be







178

−3310

1761






.

(a) What is Peggy’s vector, y?

(b) Determine whether or not x and y are reasonably close. Should Victor accept

Peggy’s response?

3. Peggy chooses a good lattice basis for a GGH Zero Knowledge Proof to be

B =

















3

−6

1






,







2

2

6






,







7

2

−3

















.

(a) Verify thatB is a good basis forL .

(b) Find a bad basis for the same lattice by multiplying the matrix of the good basis

by a unimodular matrix. Verify that your new basis is, in fact, bad. This is Peggy’s

public basis,B ′.

(c) Suppose that Victor chooses x=







319

437

413






. Find y, the closest vector to x inL , for

Peggy.

(d) Write your answer from part (c) in terms of the bad basis that you chose so that

Peggy can send it to Victor.

(e) Help Victor verify that the vectors x and y are close so that he can accept Peggy’s

response.

199

4. The NTRU Zero Knowledge Proof Protocol has public parameters (n , p , q , d) = (5, 3, 31, 2).

Peggy chooses secret f (x) ∈ T (3,2) to be f (x) = x 4 + x 3 − x 2 − x + 1 and secret

g (x) ∈T (3, 2) to be g (x) =−x 4+ x 3− x 2+ x +1.

(a) Find Peggy’s public h (x).

(b) Victor chooses m (x) ∈T (2, 2) to be m (x) = x 4− x 2− x +1. What is his challenge,

e (x), that he sends to Peggy?

(c) Peggy receives the challenge, e (x). Calculate a (x), and use it to find the value of

b (x) that Peggy sends to Victor as her response.

(d) Should Victor accept Peggy’s response as valid?

200

BIBLIOGRAPHY

[1] Ahrens, K. A. “Combinatorial Applications of the k-Fibonacci Numbers: A Crypto-

graphically Motivated Analysis”. PhD thesis. North Carolina State University, 2020.

[2] Axler, S. Linear Algebra Done Right. Springer International Publishing, 2015.

[3] Babai, L. “On Lovász’lattice reduction and the nearest lattice point problem”. Combi-

natorica 6.1 (1986), pp. 1–13.

[4] Batson, S. C. “The linear transformation that relates the canonical and coefficient

embeddings of ideals in cyclotomic integer rings”. International Journal of Number

Theory 13.09 (2017), pp. 2277–2297.

[5] Batson, S. C. “On the Relationship Between Two Embeddings of Ideals into Geometric

Space and the Shortest Vector Problem in Principal Ideal Lattices”. PhD thesis. North

Carolina State Univeristy, 2015.

[6] Chaum, D., Evertse, J.-H. & Graaf, J. v. d. “An improved protocol for demonstrat-

ing possession of discrete logarithms and some generalizations”. Workshop on the

Theory and Application of of Cryptographic Techniques. Springer. 1987, pp. 127–141.

[7] Cybersecurity Education, J. T. F. on. Cybersecurity Curricula 2017. Tech. rep. 2017.

[8] Diffie, W. & Hellman, M. “New directions in cryptography”. IEEE transactions on

Information Theory 22.6 (1976), pp. 644–654.

[9] Effectiveness, O. E. C. Judging the Quality of K-12 Mathematics Evaluations. 2004.

[10] Gallian, J. A. Contemporary abstract algebra. Chapman and Hall/CRC, 2021.

[11] Goldreich, O., Goldwasser, S. & Halevi, S. “Public-key cryptosystems from lattice

reduction problems”. Annual International Cryptology Conference. Springer. 1997,

pp. 112–131.

[12] Hoffman, K. Linear algebra. Englewood Cliffs, NJ, Prentice-Hall, 1971.

[13] Hoffstein, J., Pipher, J. & Silverman, J. H. “NTRU: A ring-based public key cryptosys-

tem”. International algorithmic number theory symposium. Springer. 1998, pp. 267–

288.

[14] Hoffstein, J., Pipher, J. & Silverman, J. H. An Introduction to Mathematical Cryptogra-

phy. Springer, 2014.

[15] Hungerford, T. W. Abstract algebra: an introduction. Cengage Learning, 2012.

[16] Knospe, H. A Course in Cryptography. Vol. 40. American Mathematical Soc., 2019.

201

[17] Largest known prime number. 2022.

[18] Lenstra, A. K., Lenstra, H. W. & Lovász, L. “Factoring polynomials with rational coeffi-

cients”. Mathematische annalen 261 (1982), pp. 515–534.

[19] May SJ, M. “Using Maple worksheets to enable student explorations of cryptography”.

Cryptologia 33.2 (2009), pp. 151–157.

[20] NSA. Home. 2022.

[21] Peikert, C. et al. “A decade of lattice cryptography”. Foundations and Trends® in

Theoretical Computer Science 10.4 (2016), pp. 283–424.

[22] Python. Applications for Python. 2021. URL: https://www.python.org/about/
apps/ (visited on 05/02/2021).

[23] QR decomposition. 2022.

[24] Quisquater, J.-J. et al. “How to explain zero-knowledge protocols to your children”.

Conference on the Theory and Application of Cryptology. Springer. 1989, pp. 628–631.

[25] Rivest, R. L., Shamir, A. & Adleman, L. “A method for obtaining digital signatures and

public-key cryptosystems”. Communications of the ACM 21.2 (1978), pp. 120–126.

[26] Shor, P. W. “Algorithms for quantum computation: discrete logarithms and factoring”.

Proceedings 35th annual symposium on foundations of computer science. IEEE.

1994, pp. 124–134.

[27] Suzuki, J. LLL example 1 - youtube. 2015.

[28] Wehden, K., Faro, I. & Gambetta, J. IBM’s roadmap for building an open quantum

software ecosystem. 2021. URL: https://www.ibm.com/blogs/research/2021/
02/quantum-development-roadmap/ (visited on 07/26/2021).

202

https://www.python.org/about/apps/
https://www.python.org/about/apps/
https://www.ibm.com/blogs/research/2021/02/quantum-development-roadmap/
https://www.ibm.com/blogs/research/2021/02/quantum-development-roadmap/

	LIST OF FIGURES
	Introduction
	A Brief Introduction to Public Key Cryptography
	Proposed Course and Course Design Aspects
	Intended Audience
	The Use of Python and SageMath
	Content Organization
	Course Objectives
	Comments on the Text

	A Review of Linear Algebra
	Vector Spaces
	Matrix Algebra
	Systems of Linear Equations
	Matrix Inverses
	Determinants
	Inner Product Spaces
	The Gram Schmidt Algorithm
	Exercises
	Computer Exercises

	A Review of Abstract Algebra
	Basic Arithmetic
	Euclidean Algorithm
	Modular Arithmetic
	Groups
	Rings
	Fields
	Exercises
	Computer Exercises

	Pre-Quantum Cryptosystems and their Computational Hard Problems
	RSA
	The RSA Problem

	Elgamal
	Discrete Logarithm Problem
	Diffie-Hellman Problem

	Knapsack
	The Subset-Sum Problem

	Exercises
	Computer Exercises

	Introduction to Lattices
	Definition and Basic Properties
	Lattice Hard Problems
	The Shortest Vector Problem
	The Closest Vector Problem

	Babai's Algorithm
	Exercises
	Computer Exercises

	Lattice-Based Public Key Cryptosystems
	GGH
	NTRU
	Congruential Public Key Cryptosystem
	NTRUEncrypt
	NTRUEncrypt with Lattices

	Exercises
	Computer Exercises

	Lattice Reduction Algorithms
	2-D Gaussian Lattice Reduction
	LLL Lattice Reduction Algorithm
	Exercises
	Computer Exercises

	The LLL and Lattice-Based Cryptosystems
	LLL on the Knapsack
	LLL on the GGH
	LLL on the Congruential Public Key Cryptosystem
	LLL on the NTRU
	Computer Exercises

	Signature Schemes
	RSA Signature Scheme
	GGH Signature Scheme
	NTRU Signature Scheme
	Computer Exercises

	Blind Signature Schemes
	RSA Blind Signature Scheme
	GGH Blind Signature Scheme
	NTRU Blind Signature Scheme
	Computer Exercises

	Zero Knowledge Proofs
	Discrete Logarithm Zero Knowledge Proof
	GGH Zero Knowledge Proof
	NTRU Zero Knowledge Proofs
	Computer Exercises

