
ABSTRACT

BREEN-MCKAY, MICHAEL J. A Combinatorial Approach to Problems in Evolutionary Biology and
Sparse Networks. (Under the direction of Blair D. Sullivan and Seth Sullivant.)

Graphs allow for relationships in complex systems to be modeled effectively by relatively simple

constructions. Graph theory bridges the line between theoretical computer science and discrete

math. The work in this thesis focuses on two graph theoretic topics and gives combinatorial and

algorithmic results to problems in both.

The r -coloring number is a graph invariant that is closely related to sparsity theory, giving a

characterization of graph classes with bounded expansion. In addition, its value guarantees the

existence of a linear order of the vertices with interesting properties for parameterized algorithms.

We show that the decision version of the r -coloring problem is NP-complete via a reduction from a

variant of 3-SAT. Additionally, this reduction implies that as a parameterized problem deciding the

r -coloring is para-NP-hard and as an optimization problem it does not admit a PTAS (polynomial

time approximation scheme). Using structural properties of r -coloring orders the best known

approximation algorithm is presented that runs in quadratic time on the input size.

Phylogenetic trees are used in evolutionary biology to model speciation and are often inferred

using genetic data. When phylogenies are formed from different genes the resulting graph structures

are rarely compatible. A mixture model combines distinct probability distributions for each gene

tree into a single probability measure using Markov processes. This requires that the set of input tree

parameters are identifiable. Using graph isomorphism arguments we show that multisets consisting

of four trees with N ≥ 6 leaves are identifiable by their induced subtrees on six leaves. We also

develop a tropical supertree method based on the relationship between weighted phylogenetic trees

and tropical geometry. Based on the tropical metric we utilize techniques from linear programming

and polyhedral geometry to describe the set of tropical supertrees.



© Copyright 2022 by Michael J. Breen-McKay

All Rights Reserved



A Combinatorial Approach to Problems in
Evolutionary Biology and Sparse Networks

by
Michael J. Breen-McKay

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2022

APPROVED BY:

Ernest Stitzinger Nathan Reading

Radmila Sazdanovic Donald Sheehy

Blair D. Sullivan
Co-chair of Advisory Committee

Seth Sullivant
Co-chair of Advisory Committee



DEDICATION

For my parents, Rita Breen and Bill McKay, without their love and support I would be lost.

And for every person that showed me kindness through this process.

I am forever in your debt.

ii



BIOGRAPHY

Michael was born down the street from Walden Pond, in Concord, Massachusetts and spent his first

23 years living just north of Boston. After stints as a banker, a sales representative, a web designer, a

social worker, and an heirloom seed importer he made the decision to go back to school and become

a math teacher. This led him to the mountains of western North Carolina, and UNC Asheville. On

the way to graduating summa cum laude he realized there was a world of higher level mathematics

that he had never been exposed to and made the decision to pursue a Ph.D. at North Carolina State

University in Raleigh, North Carolina. Aside from math, Michael loves competitive disc golf, cooking,

hiking, camping, and occasionally gets talked into rock-climbing.

iii



ACKNOWLEDGEMENTS

This thesis is the culmination of many years of hard and sometimes discouraging research. The

process has taught me a great deal about mathematics, but perhaps even more about myself. I am

proud to have reached this point, and I am excited to use this knowledge in my future endeavors.

With that being said, I could not have gotten here without the help of so many people.

I would like to thank my advisors, Blair D. Sullivan and Seth Sullivant. Without their guidance,

hard work, and patience this would not have been possible. Through our many meetings, editing

sessions and research ideas, they were always generous with their time and knowledge.

I would also like to extend my appreciation to the members of my committee: Radmila Saz-

danovic, Ernest Stitzinger, Nathan Reading, and Donald Sheehy. Thank you for your support and

availability throughout my time in graduate school. I was lucky enough to learn about topology

from Dr. Sazdanovic, algebra from Dr. Stitzinger, and Coxeter groups from Dr. Reading and these

classes were highlights of my time at NC State.

The first few years of grad school would have been much less enjoyable without the group from

Laundry 108. I am particularly thankful for the conversations and intense games of pool and darts

with Alex Chandler, Seth Watkins, Dustin Leininger, and Ben Hollering.

A special thanks to all the members of the research group Theory in Practice and in particular

my collaborator Brian Lavallee who provided a great deal of insight and guidance.

I would also like to thank my friends and family outside of school, as they were equally important

in my success, and at times the most neglected. I cannot list all of you, but to anyone that was a part

of my life during grad school, thank you for putting up with me. First and foremost, my parents Rita

and Bill, who have been there for me every step of the way and have always been models for the

type of person I would like to be. Thanks to my brother Tim, who always told me I was doing great,

even when it wasn’t true. I also would like to thank my uncles, Jeff and Harry. Jeff, who passed away

in 2020 inspires me every day to be as kind as possible to those around me. Harry has been one of

my biggest supporters and I consider him one of my closest friends. I would also like to thank my

biological mother Sandra Clark (1960-2012) and grandmother Evelyn Cronin (1934-2022). I am a

better person because of them and I know they would be proud. Thank you to my GDG family. Alex,

Darrus, John, and Kenny you are the best crew to throw discs through the woods with.

Finally, I would like to thank my partner Chelsea. She has given me a level of happiness and

support that I did not think I could have or deserved, all while making sure that I ate vegetables and

swam in rivers. I cannot wait for the rest of our adventures together.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Coloring Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Polyhedral Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Phylogenetic Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Tropical Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Tree Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

I Coloring Numbers 20

Chapter 2 Overview: Coloring Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Relationship to the Game Coloring Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Sparsity and Bounded Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Approximating the r-Coloring Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 3 Coloring Number Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Problem Statements and Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 A Reduction From 2-CLAUSE 3-SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 r-ORDERABLE is NP-Complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Additional Complexity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 4 Approximating the r-Coloring Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 r-Reach Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 k-Neighbor Restrictive Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Deriving k-Neighbor Restrictive Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

II Phylogenetic Trees 45

Chapter 5 Disentangling Phylogenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Disentangling Multisets of Four Unrooted Binary Trees . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Disentangling Sets of 3 Unrooted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



Chapter 6 Tropical Median Supertrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Tropical Tree Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Tropical Median Supertrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.5 Calculating Tropical Median Supertrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.6 Special Case: Two Input Ultrametrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.6.1 Tropical Mean Supertrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vi



LIST OF TABLES

Table 1.1 Common algorithm running times on an input of size n . . . . . . . . . . . . . . . . 6

vii



LIST OF FIGURES

Figure 1.1 A graph G with subgraph H highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 1.2 G − (a c ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 1.3 G − c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 1.4 G /H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 1.5 The complete subdivision of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 1.6 The result of suppressing the vertex d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 1.7 (Left) The graph G is linearly ordered using a degeneracy ordering. (Right)

The graph G embedded according to the linear order. Here we see that the
reach of v1, v2, v3 is 2, v4 has a reach of 1, and v5 a reach of 0. . . . . . . . . . . . . 10

Figure 1.8 The Minkowski sum of conv(V ) + cone(Y ). . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 1.9 The polyhedron P = conv(V )+ cone(Y )where V = {(0, 1, 1), (1, 0, 1), (2, 2, 1)}

and Y = {〈1, 1, 1〉}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 1.10 (Left) A rooted equidistant phylogenetic tree and (Right) an unrooted phylo-

genetic tree, both with leaves labeled from {1, 2, 3, 4}. . . . . . . . . . . . . . . . . . 14
Figure 1.11 Two trees that are graph isomorphic but are not equivalent phylogenies due

to the permuted leaf labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 1.12 The edge e is a cut edge that partions the leaves of T into: {1, 3}|{2, 4}. . . . . 15
Figure 1.13 In the rooted tree on the left the two edges adjacent to the root both give the

split {1}|{2, 3, 4}. Once we add the extra leaf 0, all edges give a unique partition. 16
Figure 1.14 If the graph on the left is T and K = {3,4,5}, then the graph on the right is

equivalent to T|K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 1.15 The points (0, 4, 4) and (0,−4, 0) in R3 and two geodesics between them. The

solid line gives the canonical tropical line segement. The points (0, 0, 0) and
(0, 4, 0) are their midpoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.1 Left: The subgraph Hr . Right: A subgraph of G (ϕ) where ϕ contains the
clauses c1 = (x j ∨ xk ∨ xl ) and c2 = (xk ∨ xl ). In both figures lines denote
edges, dashed lines denote disjoint paths of length r . A thick edge denotes
an edge or disjoint path of length r between all vertices in the set. . . . . . . . . 30

Figure 4.1 (−,−,−,+): We see that x adds at most b3(4)−1 to the reach of v . Any vertex
v reaches through such path is also in the 3 reach of v . Since x also reaches
v it is at most b3(4)−1. If x reaches other vertices through other path types
we must subtract this from b3(4) as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.2 (−,−,+,+):x adds at most (b2(4)−1) · b1 in this case. Again any 1-reach of x
must also be subtracted from the b2(4) term. . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.3 (−,+,−,+): Since b1(4) = 4, x has at most k = 4 forward neighbors, including
v . Assuming x1 <σ x2 <σ x3 we get that x1 adds at most b2(4)−3 on this path
type, x2 adds at most b2(4)−2, and x3 adds at most b2(4)−1. This is because
xi can reach all x j for j > i and also v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.4 (−,+,+,+): Again x can have at most k = 4 forward neighbors, including v ,
and they can also have at most k forward neighbors. So through this path
type each xi adds at most (b1(4)−1) · b1(4) to the reach of v . . . . . . . . . . . . . 42

Figure 5.1 The three possible edges the leaf labeled i can be attached to if two graphs
match on Ki and K j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



Figure 5.2 Ifκ(S , T ) = {i , j , k} then they are isomorphic graphs with a label permutation
on a single cluster. Above are the 3 possible clusters [Lon16]. . . . . . . . . . . . . 51

Figure 5.3 The structure of Ti corresponding to the first forbidden minor in the proof
of Theorem 5.4.9 with the 3 possible placements for the vertex labeled 10. . . 53

Figure 6.1 The two trees with internal branch lengths, that appear in the BHV tree space
in Figure 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 6.2 The two points (0, 2, 3) and (1, 1, 0) in BHV tree space and the geodesic con-
necting them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 6.3 The ultrametrics U1,U2,U3 ∈ U3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 6.5 Some binary tree topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 6.6 The ultrametric (6, 6, 6, 2, 6, 6) as a tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 6.7 An ultrametric U and a parameterization of Ψ−1

τ (U ). . . . . . . . . . . . . . . . . . 68
Figure 6.8 An ultrametric U and a parameterization of Ψ−1

τ (U ), where the height of the
tree increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 6.9 The two topologies that define the maximal cones that intersect the solution
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 6.10 The polytope P1 (Left), and a Schlegel diagram of P2 (Right). . . . . . . . . . . . . 73
Figure 6.11 P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 6.12 P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 6.13 Schlegel diagram of P1 and P2 viewed through the facet that is their intersec-

tion and is defined by the vertices: v0, v1, v2, v3, v4, v5. . . . . . . . . . . . . . . . . . 77
Figure 6.14 The two topologies that define the maximal cones that intersect the solution

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 6.15 Schlegel diagram of P1 through a different facet than the diagram above with

the edges of the tropical mean in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 6.16 A three-dimensional rendering of the polytope outlined in the figure to the

left. This simplex is the set of midpoints of geodesics between U1 and U2. . . 78

ix



CHAPTER

1

INTRODUCTION

The field of graph theory straddles the line between discrete math and theoretical computer science.

Among their many uses, graphs are studied for their combinatorial properties as discrete objects

[Die05], ability to model real-world relationships [Chu10], and their efficacy as data structures in

algorithm development [Eve11]. Often, when used to model real-world data, the resulting graphs

are relatively sparse [Chu10].

In this thesis we present work on two topics that involve sparse graphs: the generalized coloring

numbers and phylogenetic trees. The generalized coloring numbers are known to be small in sparse

graph classes, notably those of bounded expansion. Additionally, they allow for the construction of

linear vertex orders that have algorithmic implications. In this work we consider whether they can

be computed or approximated efficiently. Phylogenetic trees use acyclic graphs with leaves labeled

by species to model evolutionary relationships. They are typically studied in the field of evolutionary

biology, but the underlying structure is combinatorial in nature and can also be analyzed in contin-

uous geometric tree spaces. The work on phylogenetic trees in this thesis focuses on two problems:

identifiability and supertree methods. We first look at whether fixed size sets and multisets of trees

with identical labels can be identified by their induced subtrees. This is useful in proofs that the tree

parameters in Markov processes can be recovered. Next we consider sets of phylogenetic trees with

overlapping species and develop a method using tropical geometry to find a tree on the union of

their labels that captures their structure.

The remainder of this chapter provides the basic definitions, notation, and concepts that we

will need and also outlines the remainder of the thesis.

1



1.1 Graph Theory

We begin with a brief overview of definitions, results, and notation in graph theory. These will be

used extensively in the remaining chapters as the generalized coloring numbers are graph invariants

and phylogenetic trees are graphical models of speciation. Most of the graph notation will follow

that of [Die05].

Definition 1.1.1. A simple graph, G = (V , E ), is a pair of sets where V is a set of vertices or nodes

and E is a set of edges. Each edge of E is itself a pair of distinct vertices from V . If G is undirected

an edge is a set e = {x , y }. If G is directed an edge is an ordered tuple e = (x , y ), which represents

an edge pointing from x to y . Note: This definition implies there are no duplicate edges or loops

(e.g. {x , x }) which is why it is considered simple.

We point out that the undirected edges {x , y } and {y , x } are equivalent while the directed edges

(x , y ) and (y , x ) are not. If it is clear that a graph is undirected we will write the edge {x , y } as xy or

yx, interchangeably. If it is clear that a graph is directed we will likewise write xy for the edge (x , y ).

Definition 1.1.2. For a graph G = (V , E ) and x , y ∈G if xy ∈ E then we say x and y are adjacent or

neighbors. Both are incident to the edge x y . The number of edges incident to x is the degree of x

denoted deg(x ). The set of all neighbors of x , N (x ), is called the neighborhood of x .

Definition 1.1.3. Given two graphs G ,G ′ a graph isomorphism is a bijective function f : V (G )→
V (G ′) so that x y ∈ E (G ) if and only if f (x ) f (y ) ∈ E (G ′). If such a function exists we say G and G ′

are isomorphic and write this as G ≡G ′.

Definition 1.1.4. Let G be a graph and u , v ∈ (G ). An x , y -path P in G is a collection of distinct

vertices x = v0, v1, ..., vr = y so that vi vi+1 ∈ E (G ), for 0 ≤ i ≤ r − 1. The length of P , len(P ), is the

number of edges in the path. The distance between x and y is the length of the shortest path between

them, denoted dG (x , y ). The radius of a graph is given by rad(G ) =minx∈V (G )maxy ∈V (G )dG (x , y ).

The notion of neighborhoods can be generalized to a radius r . Specifically, the r -neighborhood

of a vertex v is the set of vertices that are at most distance r from v . We denote this as Nr (v ) and use

Nr [v ] :=Nr (v )∪{v } to denote the closed r -neighborhood.

Definition 1.1.5. A graph G is called connected if for all x , y ∈V (G ) there exists and x , y -path in G .

Otherwise we say G is disconnected.

Definition 1.1.6. A tree T = (V , E ) is a connected graph that is acyclic. A forest is the disjoint union

of trees. The degree one vertices are called leaves and an edge incident to a leaf is external. All other

edges and non-leaf vertices are called internal. We use L(T ) to denote the set of all leaves of the tree

T .

2



The structure of a tree will be used throughout the paper and, in particular, they are the basis of

the work in Part II. Often we will want to consider the substructures of a graph G . The following

definitions provide some of the more common examples.

Definition 1.1.7. For two graphs G = (V (G ), E (G )) and H = (V (H ), E (H )), H is a subgraph of G if

V (H )⊆V (G ) and E (H )⊆ E (G ), which we write H ⊆G . H is an induced subgraph of G , H ⊆i G if it

is a subgraph and for all x , y ∈V (H ) if x y ∈ E (G ) then x y ∈ E (H ).

Definition 1.1.8. A graph G is a subdivision of a graph W if G can be formed from W by replacing

edges in W with paths. It is an r -subdivision if these paths have length at most r and a complete

r -subdivision if G results from replacing every edge in W by a path of length r .

Definition 1.1.9. A graph G is an inflation of a graph W if V (G ) admits a partition {Vx ⊆V (G )|x ∈
V (W )} into connected subsets Vx such that x y ∈ E (W ) if and only if G contains a Vx −Vy edge. G

is a d -inflation if it is an inflation and in some partition Vx has radius at most d for all x ∈V (W ).

Definition 1.1.10. Let G and H be graphs. We say H is:

• a topological minor of G , denoted H ≼T G , if G contains a subdivision of H as a subgraph,

• an a -shallow topological minor (where a is a half-integer) of G , denoted H ≼a
T , if G contains

a 2a -subdivision of H ,

• a minor of G , denoted H ≼G , if G contains an inflation of H as a subgraph,

• a d -shallow minor of G , denoted H ≼d G , if G contains a d -inflation of H .

The minor and topological minor relationships can also be described in terms of graph edits.

Consider the following types of edits on the graph G = (V (G ), E (G )):

1. (Edge deletion) For e ∈ E (G ), deleting e from G gives the graph:

G − e = (V (G ), E (G ) \ e ).

2. (Vertex deletion) For v ∈V (G ), deleting v from G gives the graph:

G − v = (V (G ) \ v, E (G ) \ {v x ∈ E (G )}).

3. (Contraction) For H , a connected subgraph of G , contracting H gives the graph G /H :

V (G /H ) = (V (G )∪{vH }) \V (H )

E (G /H ) = (E (G ) \E (H ))∪{vH x : y x ∈ E (G ), y ∈H , x ∈V (G ) \V (H )}).

3



4. (Vertex suppression) For v ∈V (G )with degree 2 and neighbors x and y , suppressing v gives

the graph G ′:

V (G ′) = (V (G )− v )

E (G ′) = E (G )−{v x , v y }+ x y .

A graph H is a subgraph if it can be formed from G by edge deletions and vertex deletions. If we

restrict this to only vertex deletions then it is an induced subgraph. A graph H is a minor of G if H

can be formed by performing edge deletion, vertex deletion and contraction on G . It is a topological

minor if H can be formed through edge deletion, vertex deletion and vertex suppression. We note

that if H is a topological minor of G then it is also a minor of G as vertex suppression is a special

type of contraction.

Example 1.1.11. To demonstrate the definitions in this section we consider the graph

G = (V (G ), E (G )), where V (G ) = {a , b , c , d , e } and E (G ) = {a b , a c , b c , c d , d e } seen on the left of

Figure 1.1. Notice that if we delete the edge a c we get a tree that is a subgraph of G and is also an a -e

path shown in Figure 1.2. However if we delete the vertex c we get a forest, which is the subgraph

induced on a , b , d , e as in Figure 1.3.

Now we let H be the connected subgraph of G induced on a , b , and c that is highlighted in

Figure 1.1. then G /H is given by contracting this set to a vertex vH as shown in Figure 1.4. Note that

since H has radius one, G /H is a 1-shallow minor of G .

The graph in Figure 1.5 is a complete 2-subdivision of G , making G a 1-shallow topological

minor of it. The graph in Figure 1.6 shows the result of suppressing the vertex d in G .

1.2 Computational Complexity

In this section we give a short primer on the relevant topics in computational complexity. Unless

otherwise noted these definitions follow from the graduate text by Arora and Barak [Aro09], which

we also recommend for further details on the topic.

We consider the underlying question in the field of computational complexity: Can a given

problem be solved efficiently? To understand what is meant by “solved efficiently” it is necessary to

explain the types of problems we are considering, and how we measure the efficiency of the method.

These two things are naturally linked.

Definition 1.2.1. An algorithm is a finite sequence of well defined instructions, that typically solves

a class of problems. Computational problems are problems that are solvable by an algorithm.

In the literature the canonical example of an algorithm is a Turing machine, an abstract machine

that moves along an infinite tape reading and writing symbols based on a finite number of states.

4



a

bc

de

H

Figure 1.1 A graph G with
subgraph H highlighted

a

bc

de

Figure 1.2 G − (a c )

a

b

de

Figure 1.3 G − c

vH

de

Figure 1.4 G /H

a

bc

de

v1

v2

v3

v4

v5

Figure 1.5 The complete
subdivision of G .

a

bc

e

Figure 1.6 The result of
suppressing the vertex d .

The combination of the machine’s current state and the symbol read determines if the machine

either continues to a next instruction or halts. If at each state and symbol there is only one possible

instruction then the machine is said to be deterministic and otherwise it is nondeterminisitic Any

algorithm can be given as a Turing machine, so its simplistic nature provides a good basis to measure

complexity.

Often in computational complexity the underlying problem is given as a decision problem; a

problem with a TRUE-FALSE solution. Such a problem encoded into binary strings can be given as

a Boolean function, f (x ) : {0,1}i →{0,1}where i is a non-negative integer and the output value 1

represents TRUE and 0 represents FALSE. Problems that are phrased as computing a minimum or

maximum value can be given as a collection of decision problems with an additional input. For

example, consider the problem of finding the shortest path between two vertices in a graph. We can

alternatively choose a value k and instead ask if there exists a path between two vertices of length

at most k . The smallest k for, which the solution is TRUE is then the minimum such k . The time

complexity of an algorithm is determined by the maximum number of basic steps it takes to find

a solution. This quantity depends on the size of the input so time complexity is usual given as a

function of the size of the input. For complicated algorithms it becomes tedious to accurately count

these basic operations and the number of operations needed to perform a fixed command often

depends on the implementation. Because of this, it is common to refer to the asymptotic behavior

5



Table 1.1 Common algorithm running times on an input of size n .

Time complexity Running time in big-O notation

Constant time O (1)
Linear time O (n )
Quadratic time O (n 2)
Polynomial time O (n a ), where a ≥ 1
Logarithmic time O (log(n ))
Exponential time O (2p (n )), where p (n ) is a polynomial function of n
Factorial time O (n !)

of the function captured by big-oh notation to categorize computational problems.

Definition 1.2.2. If f and g are two functions from N to N, then we say f =O (g ) if there exists a

constant c such that f (n )≤ c · g (n ) for every sufficiently large n .

The categories or complexity classes are divided based on the big-oh running times of the

algorithms that solve them. For problems on graphs we often use the number of vertices, edges,

or a combination to describe the size of the input. Suppose we have a hypothetical deterministic

algorithm that outputs the solution to a problem by running through each vertex of a graph with n

vertices, and performing 3 basic operations at each step. Then the running time of the algorithm

would be f (n )≈ 3n =O (n ). If an algorithm has a running time equal to O (n ), then we say it runs in

linear time. Table 1.1 gives some of the commonly used running times.

Definition 1.2.3. The complexity class P consists of all decision problems that are computable by a

deterministic Turing machine in O (n a ) time (polynomial time), for a ≥ 1.

The problems in P are then those that in a sense can be computed efficiently. Although a problem

that can be solved by an algorithm with running time O (n 100)might not be practically efficient it is

polynomial in n , which is required by the definition of P, often a more efficient algorithm will exist.

A fundamental set of problems in the field are those that can be expressed using a select few

logical operators.

Definition 1.2.4. A Boolean formula over the variables x1, . . . , xn consists of the variables and the

logical operators AND (∧), NOT (¬) and OR (∨). If ϕ is a Boolean formula over variables x1, . . . , xn ,

and z ∈ {0, 1}n , then ϕ(z ) denotes the value of ϕ when the variables of ϕ are assigned the values of

z (where we identify 1 with TRUE and 0 with FALSE). If there exists z so that ϕ(z ) = 1, or TRUE then

we say the formula ϕ is satisfiable, and otherwise we say it is unsatisfiable. A Boolean formula over

6



the variables x1, . . . , xn is in Conjunctive Normal Form (CNF for short) if it can be written as

∧

i

�

∨

j

vi j

�

where each vi j
is either a variable xk or its negation.

For exampleϕ = (u1∨u2∨¬u3)∧ (¬u2∨u1) is a CNF Boolean formula. The collections joined by

AND are called the clauses. This leads to a fundamental decision problem.

Input: a CNF-formula φ with clauses c1, . . . , cm consisting of variables x1, . . . , xn

such that each clause contains at most 3 variables.

Problem: is there a valid assignment of x1, . . . , xn that satisfiesφ?

3-SAT

There is no known deterministic Turing machine that can decide this for all possible inputs in

polynomial time. However, for an instance of 3-SAT φ on variables x1, . . . , xn and an assignment

z ∈ {0,1}n a deterministic Turing machine can decide if φ(z ) is TRUE in polynomial time. This

distinction between efficiently deciding if the existence of a solution and efficiently certifying if a

given solution is correct allows us to define another complexity class.

Definition 1.2.5. The class NP consists of all decision problems that can have TRUE solutions that

can be certified in polynomial time.

We can see that P⊆NP, but whether or not these sets are equal is one of the most important open

problems in theoretical computer science. Many results dealing with computational complexity

are dependent on the assumption that P ̸= NP. Assuming they are not equal, we may ask which

problems are in NP and not in P? It would be ideal to have a method of showing that one problem is

at least as hard as another. In Chapter 3 we will use a reduction to do just this.

Definition 1.2.6. Let A and B be decision problems. We say there exists a many-one reduction from

A to B if there exists a polynomial algorithm that takes instances of A to instances of B preserving

output. We denote this as A ≤p B .

Many-one reductions now give us a way to order problems by their hardness. Suppose A and

B are decision problems with A ≤p B and there exists a machine MB that decides B accurately in

polynomial time. Clearly, A can also be computed in polynomial time by mapping an instance of

A to an instance of B and using the machine MB . The contrapositive shows that if A cannot be

computed in polynomial time, neither can B .

Definition 1.2.7. We say a problem B is NP-hard if for all A ∈NP we have A ≤p B . We say a problem

B is NP-complete if it is NP-hard and it is in NP.

7



Of course, if P ̸= NP, then no problem that is NP-complete can be in P .

Theorem 1.2.8 ([Kar72]). 3-SAT is NP-complete.

In [Kar72], Karp proved the above theorem and also showed that a variety of problems from logic,

graph theory, and set theory are NP-complete. If a problem has been shown to be NP-complete, we

consider a few additional algorithmic techniques.

First, if the decision variant of a problem is NP-complete, but the underlying problem is an opti-

mization problem, we might ask if we can compute an approximate solution that gives a theoretical

guarantee on how close it is to the optimal solution.

Definition 1.2.9. Let P be an minimization (or maximization problem), f (n )> 1 (or f (n )< 1) be a

computable function, and A be a polynomial-time algorithm that takes instances of P as input. We

say A is a f (n )-approximation algorithm if for all ϕ ∈ P it holds that if OPT is the minimum solution

then OPT≤ A(ϕ)≤ f (n ) ·OPT (or if OPT is the maximum solution then f (n )OPT≤ A(ϕ)≤ρ). If f (n )

is a constant function then we say P has a constant-factor approximation.

An important distinction in the definition is that a problem that admits a constant-factor ap-

proximation has a theoretical guarantee that is not dependent on the size of the instance. It is then

natural to further refine the class NP into the problems that can have such an approximation.

Definition 1.2.10. The class APX is the set of NP optimization problems for which there exists a

constant-factor approximation algorithm. A problem is said to have a polynomial-time approxima-

tion scheme, and be in the class PTAS, if for every ρ > 1 in the minimization case (or for every ρ < 1

in the maximization case) there exists a ρ-approximation algorithm.

Another branch of computational complexity, parameterized complexity, focuses on determin-

ing if problems can be solved efficiently with respect to additional parameters.

Definition 1.2.11. A decision problem with an additional fixed parameter k is called a parameterized

problem.

A parameterized problem considers instances of the general problem restricted by an additional

parameter with the hope of finding an algorithm that computes a solution efficiently on this subset.

For example, we might consider the instances of 3-SAT with at most k variables. If such an instance

has n clauses, then we can check all of the 2k assignments in O (2k n ) time, which is exponential in

k but linear in n .

Definition 1.2.12. Let P be a decision problem and k be a parameter and f be a computable

function. If P can be solved by a deterministic algorithm with running time f (k )n O (1) for all k , then

P is said to be fixed parameter tractable or FPT. If P can be solved by a deterministic algorithm with

running time n f (k ) for all k then P is said to be in XP. If for some fixed k the problem P is NP-hard,

then we say that P is para-NP-hard.

8



While the problems in both FPT and XP admit algorithms that are polynomial in n for a fixed

k , those in FPTare particularly nice as the exponent of n is not dependent on k . We point out that

XP=para-NP-hard if and only if P=NP.

When trying to compute or approximate values such as the r -coloring number it is useful to

first determine the complexity classes that the underlying problem belongs to. This information will

set some clear expectations on the quality of potential algorithms. In Chapter 3 we will look at the

r -coloring number under the lens of computational complexity and give classifications for each

of the variants. In Chapter 4 we look at approximating the r -coloring number and improve on the

current best known approximation algorithm.

1.3 Coloring Numbers

Given a graph G on n vertices we consider a bijectionσ : V (G )→ [n ]. This is called a linear order of

G , and we use Π(G ) to refer to all linear orders on G . We denote such a maps asσ= (v1, v2, . . . , vn ),

and the set of all linear orders on a graph G as Π(G ). As a subscript Gσ simply means that G is

linearly ordered byσ. Such orders give a natural orientation to the edges of the underlying graph.

Definition 1.3.1. Let Gσ be a linearly ordered graph. For a vertex vi we say the forward neighbors of

vi are its neighbors with index greater than i and denote this set as R (vi ,Gσ). The order of this set is

called the reach of vi with respect toσ. The maximum over all vertices in G is the reach of G with

respect toσ.

Definition 1.3.2. The minimum reach of G over all possibleσ is the degeneracy of G .

degen(G ) := min
σ∈Π(G )

max
vi∈Gσ

|R (vi ,Gσ)|

The degeneracy of a graph is a well-studied graph invariant and is equivalent (although off-by-

one) to the coloring number defined in [Erd66]. The coloring number was used to give a bound to

the chromatic number, χ . The chromatic number is the minimum integer k so that each vertex of

G can be colored with one of k colors so that no adjacent vertices are colored the same. We give this

theorem in terms of degeneracy.

Theorem 1.3.3 ([Erd66]). For any graph G , χ(G )≤ degen(G ) +1.

Hence, for any orderσ if the reach of G with respect toσ is k , then G has a proper coloring with

at most k +1 colors. This can be seen by greedily coloring the vertices from the last vertex inσ to

the first. No vertex will have more than k colored neighbors and therefore k +1 colors will suffice.

An alternative definition of degeneracy is that a graph G has degeneracy k if every subgraph of

G has minimum degree at most k . A critical property of degeneracy is that an optimal order can

be formed in linear time by greedily choosing a vertex with the minimum number of unordered

9



v1

v3v4

v2

v5

v1 v2 v3 v4 v5

Figure 1.7 (Left) The graph G is linearly ordered using a degeneracy ordering. (Right) The graph G embedded
according to the linear order. Here we see that the reach of v1, v2, v3 is 2, v4 has a reach of 1, and v5 a reach of 0.

neighbors to be next in the order [Mat83]. Due to the relative simplicity with which degeneracy

orders can be calculated they are useful parameters in a variety of algorithms [Gol08].

Simply, degeneracy guarantees an order of the vertices that bounds the intersection of each

N (vi )∩{v j } j>i . Furthermore, for any graph G , the degeneracy of G gives an upper bound on the

minimum degree vertex of every subgraph of G . In this sense it is a global property that tells us

something about local relationships. It is then natural to generalize this notion to larger neighbor-

hoods. Although one could simply try to bound Nr (vi )∩{v j : j > i }, additional requirements on the

paths provide a more meaningful structure. Introduced by Kierstead and Yang in 2003 [Kie03], the

so-called generalized coloring numbers provide such a structure.

Definition 1.3.4. Given a linearly ordered graph Gσ and vertices x <σ y we say that y is weakly

r -reachable by x if there exists an x -y path P such that 1≤ len(P )≤ r and for any internal vertex

of P , z , we have that z <σ y . If there is an x -y path P such that 1≤ len(P )≤ r and for any internal

vertex z we have z <σ x we say y is strongly r -reachable from x , or simply r -reachable. We use

wRr (x ,Gσ) and Rr (x ,Gσ) to denote the set of vertices weakly r -reachable and strongly r -reachable

from x , respectively. The size of these sets is the weak r -reach and the r -reach.

It is clear that Rr (x ,Gσ) ⊆wRr (x ,Gσ) ⊆Nr (x ). Using these definitions of reach, we can give a

particular linear ordering a score based on the vertex with the largest reach.

Definition 1.3.5. Given a linear ordered graph Gσ the weak r -coloring number of Gσ is

min
σ∈Π(G )

max
v∈V (G )

|wRr (v,Gσ)|

and the r -coloring number of Gσ is

min
σ∈Π(G )

max
v∈V (G )

|Rr (v,Gσ)|.

The coloring orders provide a structurally predictable way to traverse a graph that can be useful

algorithmically. They can also be used to characterize classes of graphs that have bounded expansion,

which we will discuss more in Chapter 2.

10



1.4 Polyhedral Geometry

The work in Chapter 6 will rely heavily on definitions and results from polyhedral geometry. The

main reference for this section is from the text by Ziegler [Zie12]. Generally, the spaces we consider

will be convex subspaces of Rd .

Definition 1.4.1. A point set K ⊆ Rd is convex if for any x , y ∈ K we have that the straight line

segment between x and y given by {λx +(1−λ)y : 0≤λ≤ 1} is also in K . The convex hull of a point

set K ⊆Rd is the smallest convex set containing K and is denoted conv(K ).

For a finite set of points K = {x1, . . . , xn} the convex hull can be given as

conv(K ) = {λ1 x1+ · · ·+λn xn :λi ≥ 0,
n
∑

i=1

λ1 = 1}.

Definition 1.4.2. A V-polytope is the convex hull of a finite set of points in some Rd . An H-

polyhedron is an intersection of finitely many closed half-spaces in some Rd . This is often given as

P (A, z ) = {x ∈Rd : Ax ≤ z }, where A ∈Rm×d and z ∈Rm . An H-polyhedron that does not contain a

ray ({x + t y : x , y ∈Rd , t ≥ 0} for any y ≠ 0) is bounded and called an H-polytope. A set of points

P ⊆Rd that can be presented as either an H-polytope or a V-polytope is called a polytope.

Polyhedra and polytopes will be used frequently in Chapter 6 to describe solution sets. One

might notice that the definition of a polytope implies that it is an H-polytope or a V-polytope. In

actuality, every polytope can be described using either presentation.

Theorem 1.4.3 (Main theorem for polytopes). A subset P ⊆Rd is the convex hull of a finite point set

(a V-polytope)

P = conv(V ) for some V ∈Rd×n

if and only if it is a bounded intersection of halfspaces (an H-polytope)

P = P (A, z ) for some A ∈Rm×d , z ∈Rm .

Definition 1.4.4. A cone is a nonempty set of vectors C ⊆ Rd and all linear combinations with

non-negative coefficients of any finite subset of vectors. For an arbitrary set of points Y ⊆Rd the

conical hull of Y is the intersection of all cones containing Y and can be given as

CY = {λ1 y1+ · · ·+λn yn : {y1, . . . , yn} ⊆ Y ,λi ≥ 0}.

For our purposes, we will only consider cones that are the conical hull of a finite set of points Y ,

in which case the points in CY are all linear combinations with non-negative coefficients of Y .

11



+ =

Figure 1.8 The Minkowski sum of conv(V ) + cone(Y ).

Definition 1.4.5. If P and Q are subsets of Rd then the Minkowski Sum of P and Q is defined to be

P +Q := {x + y : x ∈ P, y ∈Q}.

A V-polyhedron is a set P ⊆Rd that is given as the Minkowski sum

P = conv(V ) + cone(Y ) for some V ∈Rd×n , Y ∈Rd×n ′ .

Theorem 1.4.6 (Main theorem for polyhedra). A subset P ⊆Rd is a V-polyhedron if and only if it is a

H-polyhedron.

The Minkowski sum of a polytope and a ray will be particular useful for the analysis in Chapter 6.

Example 1.4.7 gives a visual interpretation of this and the general description of a V-polyhedron.

Example 1.4.7. We begin with the V-polyhedron defined by conv(V ) and cone(Y ) inR2, where V

is the set of points {(0,1), (1,0), (2,2)} and Y is the set of vectors {〈1,1〉, 〈1, 3
4 〉}. Figure 1.8 gives the

polyhedron P that is the Minkowski sum of conv(V ) and cone(Y ).

Next we consider V = {(0,1,1), (1,0,1), (2,2,1)} and Y = {〈1,1,1〉} and the Minkowski sum of

conv(V ) and cone(Y ). Here cone(Y ) is the ray that starts at the origin and passes through the point

(1, 1, 1). The resulting polyhedron P can be seen in Figure 1.9. It is unbounded and we notice that if

we intersect P with the plane z = a for any a ≥ 1 the result is a polytope that is isometric to conv(V ).

1.5 Phylogenetic Trees

In this section we give the basic definitions and notation that will be used in Part II to describe

phylogenetic trees.

Definition 1.5.1. Let X be a set. A phylogenetic X -tree (or X -tree) is a tree with |X | leaves labeled

uniquely by an element in X . If a unique interior vertex is identified as the root then the X -tree is

called rooted, otherwise it is unrooted. We use T (X ) to refer to the set of all unrooted X -trees and

RT (X ) the set of all rooted X -trees.

12



x

y

z

Figure 1.9 The polyhedron P = conv(V ) + cone(Y )where V = {(0, 1, 1), (1, 0, 1), (2, 2, 1)} and Y = {〈1, 1, 1〉}.

Typically, the set X corresponds to some collection of species, and the branching structure

represents the evolutionary relationships between them. Other than the root, vertices in an X -tree

with degree-2 do not contribute to the branching structure. We can suppress a degree-2 vertex by

deleting it and adding an edge between its two neighbors. An X -tree with no degree-2 vertices, other

than perhaps the root, is said to be refined.

Definition 1.5.2. Let T , T ′ be X -trees and suppose that T results from smoothing all non-root

degree-2 vertices of T ′. We say that T is the topology of T ′.

Often we will assume that X = [n ] = {1,2, . . . , n}, and refer to these as phylogenetic n-trees (or

simple n-trees). When present, the root vertex represents a common ancestor. The edges in rooted

trees can be thought of as being directed away from the root. The number of edges incident to a

vertex and directed away from it is called the out-degree of the vertex. An important subset are

X -trees and rooted X -trees minimize the possible branching at each interior vertex.

Definition 1.5.3. A X -tree is said to be binary if it is unrooted and all interior vertices have degree

three, or if it is rooted and all interior vertices have out-degree two. We use B (X ) to refer to the set of

all unrooted binary X -trees and R B (X ) the set of all rooted binary X -trees.

We note that this is slightly different from the typical definition of a binary tree. Vertices with

degree 2 (other than a root) do not contribute to the branching structure and are typically smoothed

in X -trees, resulting in full binary trees. Figure 1.10 shows both a rooted and unrooted binary 4-tree.

Notice that other than the additional root vertex at the top of the tree on the right, the trees are

otherwise identical in their structure.

Trees have the property that deleting any edge from the graph results in exactly two connected

components. Each of these components contains at least one of the original leaves labeled by X ,

giving a natural partition of X .

13



1 2 34

1

2

3

4

Figure 1.10 (Left) A rooted equidistant phylogenetic tree and (Right) an unrooted phylogenetic tree, both
with leaves labeled from {1, 2, 3, 4}.

Definition 1.5.4. Let T be an X -tree and e an edge of T . The graph T − e that results when e

is removed from T partitions X into two disjoint sets, call these A and B = X \ A. We say A|B
(equivalently B |A) is a split of T induced by e . The set of all splits of T is denoted Σ(T ). If e is

incident to a leaf, then either A or B has order one and we call this a trivial or a thin split.

Beyond the trivial splits we distinguish two additional special structures.

Definition 1.5.5. Let T be an X -tree and A|B a split. If |A|= 2 then A is called a cherry of T and if

|A|= 3 then it is called a cluster of T .

One might notice that in the unrooted case every edge induces a unique split, however in the

rooted case, if the root has out-degree two then both of these edges induce the same split. To

distinguish between the two we imagine that a ‘0’ leaf is attached via an edge to the root. This added

leaf both transforms the rooted tree into an unrooted tree and also forces the two edges to induce

distinct splits.

In Chapter 5 we will look at methods to identify sets and multisets of phylogenies. To do this we

will need what it means for two trees to be equivalent.

Definition 1.5.6. Given two X -trees, T , W , we say T and W are equivalent, T ∼= W , (or simply

T = W ) if there exists a graph isomorphism f : V (T ) → V (W ) so that x y ∈ E (T ) if and only if

f (x ) f (y ) ∈V (W ) and f is the identity map on the leaves.

An important operation in both identifiability and supertree computation is the reduction of a

phylogeny on a set of leaves to a sub-phylogeny on a subset of the leaves.

Definition 1.5.7. Given a tree T ∈ T (X ) (or RT (X )) and S ⊆ X the subtree of T induced by S is the

unique tree in T (S ) (or RT (S )) that results when all leaves not labeled from S are deleted from T

and all new degree two vertices are suppressed. We denote this tree as T|K . (See Figure 1.14)

14



1 2 34 4 2 31

Figure 1.11 Two trees that are graph isomorphic but are not equivalent phylogenies due to the permuted leaf
labels.

1

3

2

4
e →

1

3

2

4

Figure 1.12 The edge e is a cut edge that partions the leaves of T into: {1, 3}|{2, 4}.

1.6 Tropical Geometry

Here we give a brief introduction to tropical geometry along with some important definitions

and notation. For additional background we recommend the introductory book by Maclagan and

Sturmfels [Mac15].

We use Rtrop to denote R∪{−∞}. Tropical geometry is the geometry over the tropical semiring

(Rtrop,⊞,⊙). The two operations are tropical addition (⊞) and tropical multiplication (⊙). For a , b ∈R
we define these as:

a ⊞ b :=max(a , b ) and a ⊙ b := a + b

Under these operations we see that our additive and multiplicative identities are −∞ and 0, respec-

tively. The lack of an additive inverse prevents the tropical semiring from being a ring.

A computational benefit of tropical algebra is that the tropical operations are linearizing, mean-

ing that common mathematical objects become linear. For instance if we consider a tropical multi-

variate polynomial such as F (x , y , z ) = 7⊙x 2⊙ y ⊞−5⊙ y 3⊙z 2⊞z 4, we see that it can be given using

standard arithmetic as F (x , y , z ) =max(2x + y +7, 3y +2z −5, 4z ), where each term is a classically

linear function. Tropical polynomials are then piecewise linear functions.

The space Rn
trop is a semimodule over the tropical semiring. Tropical addition and scalar multi-

plication are defined component wise. For x, y ∈Rn and α ∈Rwe have:

Tropical addition : (x1, ..., xn )⊞ (y1, ..., yn ) := (x1⊞ y1, ..., xn ⊞ yn )

Tropical scalar multiplication :α⊙ (x1, ..., xn ) := (α⊙ x1, ...,α⊙ xn )

15



1 2 3 4

→

0

1 2 3 4

Figure 1.13 In the rooted tree on the left the two edges adjacent to the root both give the split {1}|{2, 3, 4}.
Once we add the extra leaf 0, all edges give a unique partition.

1

2

3 4

5

3

4

5

Figure 1.14 If the graph on the left is T and K = {3, 4, 5}, then the graph on the right is equivalent to T|K .

In this space we can also measure the tropical distance between x, y, which we denote dtr(x, y).

dtr(x, y) :=max
i
(xi − yi ) +max

j
(yj − x j )

Unlike Euclidean geometry, geodesics are not unique in tropical geometry. The tropical line segment

is used as a canonical geodesic.

Definition 1.6.1. Given x, y ∈Rn , the tropical line segment is defined to be

tline(x, y) := {α⊙ x ⊞β ⊙ y :α,β ∈R}.

Note that formally the set of points tline(x, y) is a two dimensional set inRn , so the name “tropical

line segment” might seem mysterious. The name makes sense when we consider that the tropical

distances that we have computed are invariant for all tropical scalar multiples of the points. That is

for all α,β ∈R,

dtr(α⊙x,β ⊙y) = dtr(x, y).

Hence, it is natural to consider the tropical projective torus, Rn/R1, obtained by modding out the

action of tropical scalar multiplication. The torus can be mapped to Rn−1 by scaling so that the first

coordinate is equal to 0. For example, given x= (x1, x2, ..., xn ) ∈Rn we will use x= (0, x2−x1, ..., xn−x1)

as the representative of x inRn/R1. Considered in the tropical projective torus, for any x, y ∈Rn , the

tropical line segment between x and y is the concatenation of at most n −1 ordinary line segments.

Figure 1.15 shows the tropical line segment between the points (0, 4, 4) and (0,−4, 0) in the tropical

16



(0,−4, 0) (0, 0, 0)

(0, 4, 4)

(0, 0, 4)

Figure 1.15 The points (0, 4, 4) and (0,−4, 0) in R3 and two geodesics between them. The solid line gives the
canonical tropical line segement. The points (0, 0, 0) and (0, 4, 0) are their midpoints.

projective torus.

Once we have the notion of tropical line segments, we can also talk about sets being tropically

convex.

Definition 1.6.2. A set S ⊆Rn is tropically convex if for all x , y ∈ S , tline(x , y ) ∈ S .

Note that 1.6.2, like the traditional definition of convexity, includes all line segments connecting

pairs of points in the set. This does not imply, however, that a tropically convex set contains all

geodesics between points in the set, only the canonical geodesics. Given S ⊂Rn , the tropical convex

hull of S , tconv(S ), is then the smallest convex set containing S , or, equivalently, the set of tropical

linear combinations of points in S :

tconv(S ) = {a1⊙ x1⊞ · · ·⊞aℓ⊙ xℓ : a1, ..., aℓ ∈R, x1, ..., xℓ ∈ S}.

Observe that in Rn , a point x = (x1, x2, ..., xn ) does not meet the definition of a tropically convex

convex set. Instead the lineR⊙ x is the convex hull of x . This shows an additional benefit of working

in Rn/R1, as the set {λ⊙ x :λ ∈R} is projected to a single point.

1.7 Tree Metrics

In evolutionary biology, researchers can make use of a variety of methods to determine an evolu-

tionary distance between pairs of taxa. For instance, aligning DNA or amino acids allows Hamming

distance to be computed. This gives a natural distance function, δ : X ×X →R≥0. These distances

can be incorporated to give a best fit weighted phylogenetic tree. Specifically, a weighted phyloge-

netic X -tree, (T , w ) with w > 0, gives a distance function dT : X ×X →R≥0, where dT (x , y ) is the

sum of the edge weights along the path between x and y . It is natural to ask if for any arbitrary

distance function δ on X , is there a weighted X -tree (T , w ) so that δ= dT ? It turns out that this is

not always true. First we see that weighted trees give a metric on X .

Definition 1.7.1. A metric on a set X is a function, d : X ×X → [0,∞) such that for all x , y , z ∈ X

we have:

17



• Identity of indiscernibles: d (x , y ) = 0⇐⇒ x = y

• Symmetry: d (x , y ) = d (y , x )

• Triangle inequality: d (x , z )≤ d (x , y ) +d (y , z )

A distance function realized by positive edge weights on a tree is a metric on the set of leaf labels.

However, it is not the case that every metric can be represented on a tree. These tree metrics satisfy

a stronger condition than the triangle inequality, called the four point condition.

Definition 1.7.2. A metric (M , d ) satisfies the four-point condition if for all distinct i , j , k , l ∈M we

have that the

max{d (i , j ) +d (k , l ), d (i , k ) +d ( j , l ), d (i , l ) +d ( j , k )}

is achieved at least twice.

The four-point condition is equivalent to the tropical quadratic Plücker relations, and can also

be expressed using the tropical operations:

d (i , j )⊙d (k , l )≤
�

d (i , k )⊙d ( j , l )
�

⊞
�

d (i , l )⊙d ( j , k ), for all i , j , k , l ∈M
�

Theorem 1.7.3 ([Ste16]). A metric d : X ×X →R≥0 satisfies the four-point condition if and only if

there is an X -tree T with positive edge weights such that d = dT .

A metric that satisfies the four-point condition is a tree metric. For the work in Chapter 6 we

consider the following restriction of tree metrics.

Definition 1.7.4. A metric (M , d ) is called an ultrametric if it satisfies the three-point condition,

where for all distinct i , j , k ∈M we have that max{d (i , j ), d (i , k ), d ( j , k )} is achieved at least twice.

Under the tropical operations this relationship is equivalent to the inequality:

d (i , j )≤ d (i , k )⊞d ( j , k ), for all i , j , k ∈M .

Satisfying the three-point condition implies that the four-point condition is also satisfied. The

three-point condition characterizes the tree metrics that result from equidistant trees.

Lemma 1.7.5 ([Ste16]). A metric is an ultrametric if and only if it is a tree metric corresponding to an

equidistant tree.

We will use T X and UX to denote all tree metrics and ultrametrics on X , respectively. In the case

where X = [N ], we use T N and UN . As we will see later on, ultrametrics admit stronger geometric

properties for analysis. Considering equidistant trees in the framework of evolutionary biology is

not without reason. If we think of the leaves of a phylogeny as a set of species at some fixed time

18



and a point on the tree to be some common ancestor. In closely related species that have roughly

similar generation times, it can be reasonable to assume that the inferred phylogenetic tree could

be an equidistant tree. For more distantly related species, evolutionary time and clock time might

not be the same and methods that can infer more general trees are needed.

Due to the symmetric property of metrics, tree metrics are often represented as cophenetic

vectors of length n =
�N

2

�

or upper triangular N ×N matrices. In other words we may think of T

as the vector vT = (dT (1,2), dT (1,3), ..., dT (N −1, N )) or as the upper triangular matrix AT defined

below.

AT [i , j ] =

¨

dT (i , j ) if i < j

0 otherwise.

Hence any phylogeny can be assigned a unique point in Rn . Typically, we will use the notation

T (i , j ) to denote the coordinate value corresponding to dT (i , j ) in these equivalent representations

interchangeably.

1.8 Outline of Thesis

The remainder of this thesis is structured as follows. Chapters 2, 3, and 4 describe results pertaining

to the r -coloring numbers. In Chapter 2 we give a brief survey of a selection of past and current

research. This covers some important relationships between the r -coloring number and bounded

expansion, game coloring numbers, and r -admissibility. Chapter 3 presents results pertaining to

the computational complexity of the r -coloring number. We give a reduction of the problem from

a variant of 3-SAT, showing that it is NP-complete, para-NP-hard, and that it does not admit a

polynomial-time approximation scheme. Finally, we present a best known approximation algorithm

that produces a linear order witnessing the approximation. In Chapters 5 and 6 we present work on

problem from evolutionary biology involving phylogenetic trees. The results in Chapter 5 improve

on existing results for identifying sets and multisets of phylogenies based on induced subtrees.

Chapter 6 outlines a method to compute supertrees from a collection of phylogenies. By utilizing

a tropical variant of treespace as a metric space, we combine the information from sets of input

ultrametrics and provide a geometrically useful set of minimum distance supertrees.

19



Part I

Coloring Numbers

20



CHAPTER

2

OVERVIEW: COLORING NUMBERS

2.1 Introduction

The present chapter gives a brief survey of relevant past research involving the r -coloring numbers.

We hope to highlight its relationship with other important areas of research such as the game

coloring number and sparsity theory. We also review a piece of work on r -admissibility, which gave

a previous approximation algorithm for the r -coloring number, from which we drew inspiration.

2.2 Relationship to the Game Coloring Number

In Section 1.3 we mentioned that Kierstead and Yang [Kie03] introduced the generalized coloring

numbers. Here we summarize the results from that paper.

Kierstead and Yang note that graph theoretic algorithms are often improved when the vertices

are processed in a useful linear order. Recall from Theorem 1.3.3 that a greedy coloring algorithm

that queues the vertices according to a degeneracy order provides a guarantee on the number of

necessary colors. In fact, there exists a linear order such that a greedy coloring algorithm will use

the optimal number of colors. The focus of their work was the relationship between various linear

orders with an emphasis on the r -game coloring number.

We consider a two player turn-based coloring game played on a graph G and let r be a positive

integer. The game begins with all vertices unordered. The first player to act, Alice, chooses a vertex

and it is marked as v1. The second player, Bob, chooses an unordered vertex and it is marked as v2.

21



This continues with players choosing an unordered vertex to add to the order. Play continues until

all vertices have been ordered, giving a linear orderσ. The score of the game is

s := max
vi∈Gσ

|Rr (vi ,Gσ)|.

Alice’s goal is to minimize the score and Bob’s is to maximize the score. The r -game coloring number

is the smallest s so that with optimal play by Alice she is guaranteed a score at most s . For a graph G

we denote this value as gcolr (G ).

In defining this generalization of the standard game coloring number, which is equivalent to

the 1-game coloring number, they also defined the r -reach and weak r -reach and the generalized

coloring numbers. The main purpose of these new invariants was to provide bounds on the r -game

coloring number but the authors also showed some interesting properties based on the definitions.

The first result demonstrates a relationship between the 2-coloring number and the acyclic

chromatic number.

Definition 2.2.1. The acyclic chromatic number of a graph G , denoted χa (G ) is the least k so that

their exists a proper vertex coloring of G with k colors so that every pair of color classes induces a

forest.

Theorem 2.2.2 ([Kie03]). Every graph G satisfies χa (G )≤ col2(G )−1 (using our definition of col2(G )).

The proof of this is similar in nature to the proof that degeneracy is an upper bound for the

chromatic number. This demonstrated that their generalization of reach to higher radii could

be related to other invariants. Furthermore, they showed that the weak r -coloring number and

r -coloring number have a clear relationship.

Lemma 2.2.3 ([Kie03]). Every graph G satisfies wcolr (G )≤ (colr (G ))r .

We recreate this proof here as it provides some intuition into the relationship between the two.

Proof. Let G be a graph and colr (G ) = k and supposeσ is an optimal order such that colp (Gσ) = k . By

induction on r we show that for every y ∈V (G )we have |wRr (y ,Gσ)| ≤ (colr (G ))r . At r = 1 the weak

r -reach of a vertex is also its r -reach, so this is trivial. Assume it is true up to some r = p −1. For each

x ∈wRp (y ,Gσ) choose a shortest qualifying path Py x . We note that if z is the first vertex on some

Py x such that y <σ z and z is distance i from y then z ∈Ri (y ,Gσ)\Ri−1(y ,Gσ) and x ∈wRp−1(z ,Gσ)

is in the weak p −1-reach of z . Therefore,

|wRp (y ,Gσ)| ≤
p
∑

i=1

|Ri (y ,Gσ) \Ri−1(y ,Gσ)|wcolp−i (G )≤ |Rp (y ,Gσ)|wcolp−1 .

By the inductive hypothesis and the assumption thatσ is optimal we get

|wRp (y ,Gσ)| ≤ colp (G )(colp−1(G ))
p−1 ≤ (colp (G ))

p .

22



Using an argument that relies on Lemma 2.2.3 they showed that for special graph classes we can

bound the r -coloring number by a function dependent on r and the 1-coloring number.

Theorem 2.2.4 ([Kie03]). There exists a function f such that for all positive integers k and r , if C is a

topologically closed class of graphs such that col1(G )≤ k for every G ∈ C then colr (G )≤ f (k , r ) for

every G ∈ C.

The proof itself is constructive and the function used in the proof is defined recursively as

f (k , 1) = 1 and f (k , r ) = k f (k , r −1)2(r−1)2 . Theorem 2.2.4 implies that planar graphs have r -coloring

numbers bounded by this function.

The final main result of the paper provides a relationship between the r -game coloring number

and the generalized coloring numbers.

Theorem 2.2.5 ([Kie03]). Every graph G = (V , E ) satisfies:

gcolr (G )≤ 3 wcol2r (G )
2 ≤ 3(col2k (G ))

4r .

The second inequality follows directly from Lemma 2.2.3. The first inequality is proved with

direct strategy for Alice to follow in the game. This strategy is based on having an optimal weak

2r -coloring number and a similar path fixing argument to the proof of of Lemma 2.2.3 given above.

Kierstead and Yang’s work on linear orders that minimize certain paths had implications beyond

the game coloring number. In the next section we show that they have an important relationship to

sparsity theory.

2.3 Sparsity and Bounded Expansion

In 2012 Nešetřil and Ossona de Mendez [Neš12] developed a theory of sparsity intended to provide

a combinatorial framework for defining and studying sparse mathematical objects. While designed

to be general enough to use broadly (e.g. for sets, matrices, etc.) the main focus of their text (and

also our research) is sparse undirected graphs.

We begin with an example of the nuance required in defining what it means to be sparse. Given a

graph G , what feature of this graph might one consider when trying to define if it is sparse or dense?

An obvious choice is an invariant such as average density, |E |/|V |, which reflects the average global

density. However, large graphs with low average density may still contain a dense subgraph such as

a large clique. Additionally, a clique with the edges subdivided many times might appear sparse but

retains the structure (and “density”) of the underlying clique in some sense.

23



With this in mind, sparsity theory uses relative definitions on infinite classes of graphs. In this

setting a graph is not sparse or dense in and of itself but instead we consider the sparsity of a graph

family.

Definition 2.3.1. A class of graphs, C, is a set of graphs that can be either finite or infinite. A class C
is:

hereditary if for every graph G ∈ C, if H ⊆i G then H ∈ C,

monotone if for every graph G ∈ C, if H ⊆G then H ∈ C,

minor closed if for every graph G ∈ C, if H ≼G then H ∈ C,

topologically minor closed if for every graph G ∈ C, if H ≼T G then H ∈ C.

We are now able to define and then refine how [Neš12] approach the notion of sparseness in

infinite graph classes. We present two main classifications, nowhere dense and bounded expansion.

There are many equivalent characterizations for each of these properties but we limit our attention

to the most straightforward and relevant.

Definition 2.3.2. A class of graphs C is nowhere dense if for every d there exists a graph H such

that H ̸≼d G for all G ∈ C.

An important subset of nowhere dense graph classes are sparser classes with so-called bounded

expansion. We first define a graph invariant used in the classification of these families.

Definition 2.3.3. The greatest reduced average density (or grad) with rank d of a graph G = (V , E ) is

∇d (G ) :=max
§ |E |
|V |

: H ≼d (G )
ª

We note that this mimics the idea of average density except that one must consider the average

density of all d -shallow minors of G .

Definition 2.3.4. A class C of graphs has bounded expansion if for every t there exists c (t ) such

that∇t (G )≤ c (t ) for all G ∈ C.

Intuitively, the graphs that belong to a class with bounded expansion have no t -shallow minors

with average density greater than c (t ). The first motivation for studying graph classes that are

sparse is that most real-world graphs are, in fact, sparse. The second motivation for considering

graph classes with bounded expansion is that they have been shown to admit particularly efficient

algorithms. In particular, graph properties that can be stated using first-order logic consist of many

generally hard problems, but these problems can be efficiently solved on classes with bounded

expansion. The subgraph isomorphism problem, which asks if a graph G has a subgraph isomorphic

to a graph H , can be stated in first-order logic and is known to be NP-complete [Coo71]. But for

any graph in a class with bounded expansion it was shown by Nešetřil et. al. [Neš08] that it can be

24



solved in linear time. Furthermore, Dvořák [Dvo13a] showed that all graph properties expressible in

first-order logic can be decided in linear time on graphs that are in a class with bounded expansion.

The generalized coloring numbers, in a sense, capture the property of bounded expansion. In

an optimal order a vertex has high r -reach when it has a relatively dense r -neighborhood. The

following alternative characterization of bounded expansion solidifies this relationship.

Lemma 2.3.5 ([Zhu09]). A class C of graphs has bounded expansion if and only if there is a function

f :N→N such that colr (G )≤ f (r ) for all r ∈N and all G ∈ C.

2.4 Approximating the r-Coloring Number

In Chapter 4 we will present an algorithm to produce a linear order that approximates the r -coloring

number. This work follows closely from the work of Dvořák in [Dvo13b], which we present here.

We begin by introducing an additional parameter based on linear orders that is closely related

to the generalized coloring numbers.

Definition 2.4.1. For a graph G , a linear orderσ ∈Π(G ), and a vertex v ∈G , the r -backconnectivity

of v with respect toσ, denoted br (v,Gσ), is the maximum number of disjoint paths with length at

most r that begin at v and end at a vertex after v in the ordering. The r -admissibility of Gσ admr (Gσ)

is the maxv∈Gσ br (v,Gσ)). The r -admissibility of the graph G is the minσ∈Π(G ) admr (Gσ).

The definition of r -admissibility implies that for any graph G , admr (G )≤ colr (G ). We can see

this by considering any orderσ and vertex v . For any of the disjoint paths from v counted by the

admissibility, the first vertex after v in the order is in Rr (v,Gσ).

Dvořák showed that any minimum r -admissibility ordering bounds the weak r -coloring number.

Lemma 2.4.2 ([Dvo13b]). Let r ≥ 1 and k ≥ 2 be integers. Let G be a graph and σ = v1, v2, . . . , vn a

linear order of its vertices. If the r -admissibility of Gσ is at most c , then its weak r -coloring number is

at most k r+1−1
k−1 −1 (under our off-by-one definition of the weak r -coloring number).

Although it was not mentioned explicitly, the proof of Lemma 2.4.2 shows that an r -admissibility

ordering also gives a bound on the r -coloring number.

Corollary 2.4.3. Let r ≥ 1 and k ≥ 2 be integers. Let G be a graph andσ= v1, v2, . . . , vn a linear order

of its vertices. If the r -admissibility of Gσ is at most c , then its r -coloring number is at most k (k −1)r .

We use the applicable pieces from Dvořák’s proof of Lemma 2.4.2 to prove Corollary 2.4.3.

Proof. Let G be a graph r ≥ 1 and k ≥ 2 integers and supposeσ ∈Π(G )witnesses admr (Gσ)≤ k . For

a vertex v ∈G we compute the r -reach of v . From v create a breadth-first search tree T = T (Gσ)

that is constructed so that a branch ends when a vertex after v inσ is reached. Such a tree can be

25



“pruned” so that the leaves are the exactly the r -reach of v by continuously removing all leaves that

are either before v in the order, or are greater than distance r from v in the tree. No vertex in T can

have degree greater than k . If the root v has degree greater than k then it has at least k +1 disjoint

paths G with respect toσ, contradicting the assumption that admr (Gσ)≤ k . The interior vertices

are all before v inσ and if they have degree k +1 then there are k disjoint paths to the leaves below

them in G and and another disjoint path up the tree to v , again a contradiction. Hence T has at

most k (k −1)r−1 leaves, which completes the proof.

The tree used in this proof will be addressed in detail in Definition 4.2.1. An r -admissibility order

would then be a (k −1)r−1-approximation of the r -coloring number. Such an order can be found

by choosing vertices with the minimum back-degree greedily, but for r ≥ 5 computing the back-

connectivity is NP-complete. Dvořák then shows that there exists an O (r n 3) time r -approximation

of the admissibility. This constructs an order with admissibility at most r k if the r -admissibility of

the graph is k . Combining this approximation with Corollary 2.4.3 we get an order with max r -reach

at most (r k )(r k −1)r−1.

26



CHAPTER

3

COLORING NUMBER HARDNESS

The results given in Chapters 3 and 4 are the result of a collaboration with B. Lavallee and B. Sullivan

at the University of Utah. Over the course of this collaboration my main focus was developing the

approximation algorithm but this could not have been accomplished without the assistance of my

collaborators. B. Lavallee identified an NP-hard problem and was able to work out a reduction for

the weak r -coloring number. Using the same problem I was able to give an additional reduction for

the r -coloring number, however it was B. Lavallee that pointed out the additional para-NP-hard

and no PTAS results that follow from this reduction. I thank both of them for their insight and help

throughout the process.

3.1 Introduction

As discussed in the previous chapter, the generalized coloring numbers provide a characterization

of graph classes with bounded expansion; they also imply linear orders with useful algorithmic

properties. Naturally, we would like to compute these values on arbitrary graphs and, when possible,

construct optimal linear orderings. In this chapter, we consider whether either of these objectives can

be accomplished efficiently. We recall from Section 1.2 that graph properties which can be framed as

a NP-complete decision problem do not have efficient (polynomial time) algorithms unless P=NP.

We prove in the following sections that the r -coloring number is such a graph property. Furthermore,

we consider the next natural questions: can the r -coloring number be approximated efficiently?

and can the r -coloring number be computed using a parameterized algorithm?

27



3.2 Problem Statements and Known Results

We begin by defining the decision problem associated with the r -coloring number.

Input: a graph G = (V , E ) and an integer k ∈N.

Problem: is there a linear orderσ= (v1, . . . , vn ) of V such that colr (Gσ)≤ k ?

r -ORDERABLE

For the value r = 1, deciding r -ORDERABLE is equivalent to computing the degeneracy of G

which can be done in linear time. However, when r = n , deciding r -ORDERABLE is equivalent to

computing the treewidth of G which is NP-complete [Arn87]. This means that the r -coloring number

bridges between treewidth and degeneracy, but other than these extremal values of r there were

previously no existing hardness results for r -ORDERABLE. The weak r -coloring number, on the other

hand, was shown to be NP-hard when r ≥ 3 in [Gro15]. Grohe et al. gave a reduction from BALANCED

COMPLETE BIPARTITE SUBGRAPH, but it could not be extended to the weak 2-coloring number or the

the r -coloring number for any r . Intuitively, one might expect that the r -coloring number would

also be NP-hard for r ≥ 3, but when r = 2 a polynomial time algorithm was plausible. The work

presented in this chapter will show that r -ORDERABLE is in fact NP-complete, even when r = 2.

Additionally, our reduction gives results with regard to the optimization and parameterized versions

of the problem, which we discuss in Section 3.5.

3.3 A Reduction From 2-CLAUSE 3-SAT

Our approach uses a reduction from 2-CLAUSE 3-SAT, a variant of 3-SAT, which restricts the number

of clauses each literal can appear in.

Input: a CNF-formula φ with clauses c1, . . . , cm consisting of variables x1, . . . , xn

such that each clause contains either 2 or 3 variables and each literal (x j or

x j ) appears in exactly 2 clauses.

Problem: is there a valid assignment of x1, . . . , xn that satisfiesφ?

2-CLAUSE 3-SAT

To show that 2-CLAUSE 3-SAT is NP-hard we require the following lemma of Tovey [Tov84].

Lemma 3.3.1 ([Tov84]). Boolean satisfiability is NP-complete when restricted to instances with 2 or 3

variables per clause and at most 3 occurrences per variable.

Proposition 3.3.2. 2-CLAUSE 3-SAT is NP-complete.

28



Proof. As a satisfiability problem, 2-CLAUSE 3-SAT is clearly in NP. To show it is NP-hard we consider

an instanceϕ of boolean satisfiability with 2 or 3 occurrences per variable and at most 3 occurrences

per variable as in Lemma 3.3.1.

We may assume that for each variable there is at least one positive and one negative occurrence.

If not, this variable can be preprocessed without consequence. This implies that no literal appears

more than twice. It remains to show that we can pad the occurrence of each literal to be exactly

two without affecting satisfiability. If a literal x appears only once, then we add the new variables

y1, ..., y5 and clauses:

(x ∨ y1 ∨ y2)∧ (y1 ∨ y3 ∨ y4)∧ (y1 ∨ y3 ∨ y4)∧ (y1 ∨ y4 ∨ y5)∧ (y2 ∨ y4 ∨ y5)∧ (y2 ∨ y3 ∨ y5)∧ (y2 ∨ y3 ∨ y5)

Note that we add a unique set of five variables for each literal that only appears once, and they

only appear in the clauses given above. We can see that each new variable has 2 occurrences per

literal, and these clauses can be satisfied by setting y1, ..., y5 to true. We can repeat this process until

all literals have exactly two occurrences resulting in an instance of 2-CLAUSE 3-SAT in polynomial

time.

We now give an explicit map that takes an instance of 2-CLAUSE 3-SAT to an equivalent instance

of r -ORDERABLE.

Definition 3.3.3. Given an instance ϕ of 2-CLAUSE 3-SAT, let G (ϕ) be the following graph. For each

variable x j which appears inϕ, add the vertices v j and v ′j and the edge v j v ′j to G (ϕ). For each clause

ci in ϕ, we add a vertex ui to G (ϕ). For each literal x j (or x j ) in ci , we add a disjoint x j − ci path of

length r to G (ϕ). We call the (r −1) degree-2 vertices on this path subdivision vertices.

We then construct a gadget Hr , and add it to G (ϕ). Hr consists of three parts. The first part is a

4-clique which we call the clause clique (Hc ), the second a 6-clique called the variable clique (Hv ),

and finally three independent vertices called the apex vertices (Ha ). Each vertex in Ha is connected

to each vertex in Hv by an edge and to each vertex in Hc by a disjoint path of length r . We now

describe how Hr is connected to the rest of G (ϕ). For every clause vertex ui , we add an edge from ui

to every vertex in Hc . We designate three vertices in Hv as positive and the other three as negative.

For every variable xi and the corresponding literal vertices vi and v ′i , we add an edge from each vi

to each of the three positive vertices in Hv and an edge from v ′i to each of the three negative vertices

in Hv . Additionally, for a clause ci which contains only 2 variables, we add a disjoint path of length

r from ui to an arbitrary vertex in Hv . We use S to denote the set of all subdivision vertices in G (ϕ).

This construction is illustrated in Figure 3.1.

For an instance of 2-CLAUSE 3-SAT, let A be an assignment of the variables. We say that A induces

a canonical orderσ(A) on the vertices of G (ϕ). In fact,σ(A) is any linear order of G (ϕ) that satisfies:

S <σ(A) true literals in A <σ(A) clause vertices <σ(A) false literals in A <σ(A) Hc <σ(A) Ha <σ(A) Hv

29



Hc

Ha

Hv

Hr Hc

Ha

Hv

u1

u2

Hr

v j

vk

vl

v ′j

v ′k

v ′l

Figure 3.1 Left: The subgraph Hr . Right: A subgraph of G (ϕ)where ϕ contains the clauses c1 = (x j ∨ xk ∨ xl )
and c2 = (xk ∨ xl ). In both figures lines denote edges, dashed lines denote disjoint paths of length r . A thick

edge denotes an edge or disjoint path of length r between all vertices in the set.

The reduction given in Definition 3.3.3 will be utilized throughout this chapter to connect

instances of 2-CLAUSE 3-SAT with r -ORDERABLE. We first establish several key properties of G (ϕ)

and linear orders that are necessary in our reduction. Its purpose is to admit an order with no vertex

having reach 7 if and only if the instanceϕ is satisfiable. The structure of G (ϕ) is such that no clause

vertex can be added to an order until one of the literals it contains has been added. Initially, only the

literal vertices and subdivision vertices have reach less than 7. If a literal vertex vi is added to the

order then its negation vi can now reach all the vertices in Hv . Notice that vi can also reach some

vertex on the path from it to any clause vertex corresponding to a clause that contains xi if they are

unordered. Hence, it has reach greater than 6 until all the clause vertices and subdivision vertices in

its reach are ordered. In the remainder of this section, we prove some additional properties of G (ϕ)

that will be applicable.

Proposition 3.3.4. For all r colr (Hr ) = 6.

Proof. We first consider a linear orderσ of Hr satisfying S <σ Hc <σ Ha <σ Hv . Note that this is the

same order these vertices would have in a canonical order for some G (ϕ). We consider each set of

vertices individually and count their maximum possible r -reach. Each subdivision vertex lies on a

path from a vertex in Hc and a vertex in Ha and therefore has a reach of at most two inσ. A vertex in

Hc can reach at most all other vertices in Hc and exactly all vertices in Ha , for a maximum reach

of six. A vertex in Ha cannot reach any other vertex in Ha , and only reaches all vertices in Hv , so

each has a reach of six. Finally, each vertex in Hv can only reach other vertices in Hv , as they are

the only unordered vertices, and this gives a maximum of five. By the above analysis we have that

colr (Hr )≤ 6.

Now, if we consider the graph induced by a single vertex in Ha and all of Hv , we get a clique on 7

vertices which has coloring number six. This implies colr (Hr )≥ 6, completing the proof.

30



Proposition 3.3.5. Letσ be a linear order of Hr such that colr ((Hr )σ) = 6. If x ∈Hc and y ∈Hv then

x <σ y .

Proof. To produce a contradiction, suppose that x ∈Hc and y ∈Hv , and letσ be an order such that

colr (Gσ) = 6 and y <σ x . We may assume that y is the first vertex from Hv inσ. Let z be the vertex

in Ha that appears first inσ. If z <σ y , we see that z reaches all of Hv and some vertex on the path

of length r from z to x . Therefore, z has r -reach at least seven, contradicting thatσ is optimal. On

the other hand, if y <σ z then y reaches all other vertices in Hv and all vertices in Ha . This implies

the r -reach of y is eight, again contradicting thatσ is optimal.

Proposition 3.3.4 also gives an important restriction to graphs such as G (ϕ) that have Hr as a

subgraph.

Corollary 3.3.6. If G is a graph such that colr (G ) = 6 and Hr ⊆G , then in any optimal orderσ such

that colr (Gσ) = 6, if v ∈Hc is the vertex from Hc that appears earliest inσ then Rr (v,Gσ)⊂Hr .

The implication of Proposition 3.3.5 and Corollary 3.3.6 is that an order witnessing that G (ϕ) has

coloring number at most 6 must have all clause vertices appearing before all vertices in Hc and Hv .

As in the above proof, we will often assume that subdivision points are at the beginning of an

order. The following lemma shows that this assumption does not increase the reach.

Lemma 3.3.7. Let G be a graph and σ a linear order of the vertices of G so that colr (Gσ) = k > 2.

Suppose P is a u − v path in G of length r and all internal vertices of P have degree 2 in G . Define the

linear orderσ′ to be identical to the orderσ with the exception that the internal vertices of P appear

first inσ′. Then colr (Gσ′ )≤ k .

Proof. It suffices to show that all vertices in Gσ′ have r -reach at most k . It is clear that for a vertex

x ∈G −P it holds that |Rr (v,Gσ′ )| ≤ |Rr (v,Gσ)| ≤ k . Any subdivision vertex can reach at most two

other vertices which is less than k by assumption. Assume u <σ v , which implies that u <σ′ v . Then

Rr (v,G ′σ) ⊂ Rr (v,Gσ). Finally, for u , we see that v is the only potentially new vertex that u could

reach. If u could already reach v inσ, then we are done. If v was not in the reach of u , then another

vertex on P must have been in the reach of u , specifically the first subdivision vertex on P that

appears after u inσ. Therefore |Rr (u ,Gσ′ )| ≤ |Rr (u ,Gσ)| ≤ k .

3.4 r-ORDERABLE is NP-Complete

To complete the reduction, we must show that our map preserves output. Specifically, we will show

that given an instance of 2-CLAUSE 3-SAT ϕ, G (ϕ) has r -coloring number six if and only if ϕ is

satisfiable. We begin by proving the following two lemmas.

31



Lemma 3.4.1. Let ϕ be an instance of 2-CLAUSE 3-SAT, and let G (ϕ) be the graph defined in Defini-

tion 3.3.3. If ϕ is satisfiable, then colr (G (ϕ)) = 6.

Proof. Let ϕ be an instance of 2-CLAUSE 3-SAT with n variables and G = G (ϕ). Suppose A is an

assignment witnessing that ϕ is satisfiable. For clarity, if x1 is set to true, then we say x1 is a true

literal in A and x1 is a false literal. Otherwise, x1 is a false literal and x1 is a true literal. We consider

the canonical orderσ(A). The subdivision vertices appear first and they each have reach at most 2.

Next,σ(A) orders the vertices corresponding to true literals in A. In their reach, there are two vertices

corresponding to the clauses that contain them, the vertex corresponding to their negation, and

three vertices in Hv for a total reach of 6. We now proceed to the clause vertices. Since A is a satisfying

assignment, they also have reach at most six: all four vertices in Hc and any vertices corresponding

to literals they contain that are set to false. If a satisfied clause contains three literals, then at most

two false literal vertices are in their reach of the corresponding clause vertex. If a satisfied clause

contains two variables, the reach of the corresponding clause vertex may include at most one false

literal vertex and one arbitrary vertex in Hv . Next inσ are the vertices corresponding to false literals

in A. These can reach all the vertices in Hv , of which there are six and nothing else. Finally, no vertex

in Hr has reach greater than six in this order by Proposition 3.3.4.

It remains to show that any order witnessing colr (G (ϕ)) = 6 maps to a satisfying assignment ofϕ.

The map is straightforward. Given a linear orderσ of G (ϕ), we say A(σ) is the following assignment.

For a variable xi , if vi <σ v ′i , then xi is set to true in A(σ). If v ′i <σ vi , then xi is set to false in A(σ).

We claim that if A(σ) is not a satisfying assignment, then G (ϕ) has coloring number greater than 6.

Lemma 3.4.2. Let ϕ be an instance of 2-CLAUSE 3-SAT, and let G (ϕ) be the graph given in Defini-

tion 3.3.3. If ϕ is not satisfiable, then c o lr (Gϕ)> 6.

Proof. Let G =G (ϕ). We assume thatϕ is not satisfiable andσ is a linear order such that colr (Gσ) = 6

to produce a contradiction. By Proposition 3.3.6 and Lemma 3.3.7, we may assume that all subdi-

vision vertices appear first in σ and all clause vertices appear before all the vertices in Hc . Since

A(σ) does not satisfy ϕ by assumption, without loss of generality we suppose ci = (x1 ∨ x2 ∨ x3) (or

ci = (x1 ∨ x2)) is not satisfied by A(σ) and that in G we have v1 <σ v2 <σ v3 (or v1 <σ v2). Because ci

is not satisfied, it must be the case that v ′j <σ v j for all j ∈ {1, 2, 3} (or j ∈ {1, 2}). One of the following

two cases must hold, either ui <σ v1 or v1 <σ ui . In the first case, by Corollary 3.3.6 ui must be

ordered before the vertices in Hc . Hence, ui is able to reach all vertices in Hc as well as v1, v2, and v3

(or an arbitrary vertex in Hv instead of v3) for a total reach of seven, a contradiction. In the second

case, v1 can reach ui and all six vertices of Hv , again a contradiction. Therefore colr (Gσ)> 6.

Using these lemmas we prove the main result of this chapter.

Theorem 3.4.3. For r ≥ 2 and k ≥ 6, r -ORDERABLE is NP-Complete.

32



Proof. From Lemmas 3.4.1 and 3.4.2, if r -ORDERABLE were solvable in polynomial time for k ≥ 6

then any instance of 2-CLAUSE 3-SAT would also be solvable in polynomial time. It is therefore at

least as hard as 2-CLAUSE 3-SAT which is NP-hard by Proposition 3.3.2. Given an orderσ we can

check the reach of each vertex in polynomial time so r -ORDERABLE is in NP. By definition, it is

NP-complete for r ≥ 2 and k ≥ 6.

3.5 Additional Complexity results

In the last section we showed that r -ORDERABLE is NP-complete for r ≥ 2 and sufficiently large k .

As we are not able to compute the r -coloring numbers and their optimal orders in polynomial time,

it is natural to ask if we can approximate the value. We first restate r -ORDERABLE as an optimization

problem.

Input: a graph G = (V , E ).

Problem: find the minimum k such that there exists a linear orderσ= (v1, . . . , vn ) of

the vertices of G with colr (Gσ)≤ k .

MINIMUM r -ORDERABILITY

Solving MINIMUM r -ORDERABILITY would simultaneously solve r -ORDERABLE, and as we have

shown, in general this cannot be done in polynomial time. However, we can look for algorithms with

polynomial running time that approximate the value k . The best case scenario would be to show

that MINIMUM r -ORDERABILITY is in PTAS. The following theorem implies that this is not possible.

Theorem 3.5.1. For r ≥ 2, MINIMUM r -ORDERABILITY does not admit a polynomial-time

ρ-approximation for ρ < 7
6 assuming P ̸=N P .

Proof. Lemmas 3.4.1 and 3.4.2 imply that 2-CLAUSE 3-SAT can be answered by determining if

the auxiliary graph G (ϕ) has r -coloring number at most 6. A ρ-approximation with ρ < 7
6 for r -

ORDERABLE would differentiate between these cases as it will return a value less than 7 if colr (G )≤ 6.

Since 2-CLAUSE 3-SAT is NP-hard, no such algorithm can run in polynomial time unless P =N P .

Notice that this does not imply that there is no constant factor approximation of MINIMUM

r -ORDERABILITY for fixed values of r . We only state that there cannot be one for every ρ > 1. In

Chapter 4 we give a polynomial approximation of the r -coloring number that improves on the best

known.

New we consider a version of the problem that is parameterized by the input k .

33



Input: a graph G = (V , E ), a parameter k ∈N.

Problem: is there a linear orderσ= (v1, . . . , vn ) of V such that colr (Gσ)≤ k ?.

(k , r )-ORDERABILITY

Theorem 3.5.2. Assuming P ̸=N P and r ≥ 2, r -ORDERABLE is in para-NP-hard when parameterized

by k .

Proof. Lemmas 3.4.1 and 3.4.2 imply that for r ≥ 2, 2-CLAUSE 3-SAT can be answered by deter-

mining if the auxiliary graph G (ϕ) has r -coloring number at most 6. Our reduction shows that

(k , r )-ORDERABILITY is NP-hard when k = 6, and the problem is therefore in para-NP-hard.

In conclusion, this chapter has shown that for r ≥ 2 and k ≥ 6 the target problem r -ORDERABLE

cannot, in general, be solved efficiently, even when parameterized by the natural parameter. We note

para-NP-hard problems do not admit XP-algorithms unless P=NP. Furthermore, it does not admit

a polynomial time approximation scheme. In the next chapter, we will consider an approximation

algorithm with a theoretical guarantee that improves on the current best known.

34



CHAPTER

4

APPROXIMATING THE R-COLORING

NUMBER

4.1 Introduction

In the previous chapter, we showed that r -ORDERABLE is NP-hard to solve. This means that we

cannot expect to define an algorithm that computes the r -coloring number for arbitrary graphs in

polynomial time. In Section 2.4, we discussed the previous best approximation algorithm, achieving

an r (k r −1)r−1-approximation. The work depends on first approximating the r -backconnectivity of

a vertex and choosing the vertex with the minimum, giving an approximate r -admissibility order

that also approximates the r -coloring number. Our technique keeps track of the i -reach directly for

1≤ i ≤ r .

The algorithm is a generalization of the exact algorithm used to find degeneracy orders extended

to higher radii. It works by taking as input the graph G and a lower bound on the r -coloring number

such as the degeneracy, k . It then greedily chooses any vertex to be added to an orderσ provided

it has i -reach below a predetermined function of k and i . These bounds are called k -neighbor

restrictive bounds and will be defined in Section 4.3. If at any point no vertex can be chosen, we

show that this implies colr (G )> k , and we increase k to k +1, recompute the bounds, and continue

choosing vertices for the order. Once the algorithm completes the orderσ we have an order with

bounded reach. Currently, we do not have a way to describe the reach of a vertex in an graph that is

35



not linearly ordered. In order to formally discuss our approach, we need to define partial orders.

Definition 4.1.1. Let G be a graph on n vertices. A partial linear order of G is an order σ =

(v1, v2, . . . , vi ) for i ≤ n . If a vertex has not yet been added to σ, we say that it is unordered, oth-

erwise it is ordered.

By convention, if vi is in a partial order and v is not, then we take vi <σ v , and unordered vertices

are not related.1 The reach of an unordered vertex is equal to its reach if were the next vertex added

toσ,

4.2 r-Reach Tree

In this section, we describe the underlying structure of the r -reach of a vertex with respect to a

linear order (or partial linear order) as a BFS tree. A tree with these properties was first mentioned

in [Dvo13b] and we formalize the definition here.

Definition 4.2.1. Let G be a graph with partial linear order σ and r be a positive integer. For an

ordered vertex v ∈G let G ′ be the subgraph of G with V (G ′) =Nr [v ] and E (G ′) = {x y ∈ E (G ) : x , y ∈
V (G ′), x ≤σ v or y ≤σ v }. The r -reach tree of v with respect toσ, denoted Tr (v,Gσ), is constructed

as follows. Compute a breadth-first search tree in G ′ rooted at v , adding neighbors to the queue from

low to high alongσ, stopping a branch at height r or when a vertex after v inσ is reached. Remove

any leaves that are less than v with respect toσ. Ifσ is a partial linear order and v is unordered, we

compute this tree as if v has been added toσ as the next vertex.

The r -reach tree has important structural properties that we describe in the following proposi-

tion.

Proposition 4.2.2. For a tree T = Tr (v,Gσ) then the following hold:

• The leaves of T are the exactly the r -reach of v with respect toσ,

• If x is a leaf, and the unique v -x path in T has length d , then x is not (d −1)-reachable from v

in Gσ,

• Ti (v,Gσ) is a subtree of Tr (v,Gσ) for 1≤ i ≤ r .

Proof. The properties follow from the breadth-first search (BFS) nature of the r -reach tree. From the

construction, all paths from v to a leaf are paths in G . They are also qualifying paths as the interior

path vertices are before v inσ. The leaves in T are then a subset of Rr (v,Gσ). If x ∈Rr (v,Gσ) then

there is a qualifying path consisting of edges in G ′, and the BFS would find x in at most r steps.

1In poset terminology, the vertices inσ are a chain, the unordered vertices are an antichain.

36



The minimum distance follows directly from the definition of a breadth-first search. The graph

G ′ includes all edges on all qualifying paths by which x is reachable from v and the breadth-first

search will always find a shortest such path.

Finally, the subtree property can be seen by showing that Tr−1(v,Gσ) is a subtree of Tr (v,Gσ).

We simply remove all of the leaves from Tr (v,Gσ) that are distance r from v and also remove any

resulting leaves that appear before v inσ. The order of the breadth-first search being determined by

σ guarantees that this edit gives exactly Tr−1(v,Gσ). By induction, Ti (v,Gσ)must also be a subtree

of Tr (v,Gσ).

4.3 k-Neighbor Restrictive Bounds

This section describes a set of bounds that can be determined from the r -reach tree. The intuition

for using this interpretation of the reach is that it allows us to quantify how the earlier vertices in a

linear order affect the reach of the root vertex. If we can limit the amount of branching that occurs

at each vertex in a reach tree, then we also limit the number of leaves and therefore the reach of the

root vertex.

We begin with a discussion of the base case, when r = 1. Let G be a graph with col1(G ) = k and

σ ∈ Π(G ) witnessing this. For any v ∈ V (G ), the r -reach tree of v with respect to σ will be a star

graph with at most k leaves. Also, if the 1-coloring number of G is unknown and you order the

vertices by greedily choosing the next vertex to have 1-reach at most k , either you order all vertices

and can state that c o l1(G )≤ k or at some point no vertex can be chosen, implying that col1(G )> k .

You can then continue the order choosing vertices with 1-reach at most k +1. For some k + i , i > 0

the order will be completed and this implies col1(G ) = k + i . We extend this idea to the general r .

Definition 4.3.1. Let Gσ be a (possibly partially) linearly ordered graph and consider a set

{b1, b2, . . . , br } ∈Z+. We sayσ satisfies the bounds if for all v ∈Gσ, |Ri (v,Gσ)| ≤ bi .

Definition 4.3.2. For a fixed integer r ≥ 1, we call a set of functions {bi (k )}1≤i≤r k -neighbor restrictive

if the function is increasing for k > 0 and for any graph G and any partial linear orderσ of G , which

satisfies the bounds, if v is unordered and the i -reach tree of v has more than bi leaves, then in this

tree, v has at least k +1 neighbors.

In the next section, we will show that if we greedily choose the vertices to satisfy a set of k -

neighbor restrictive bounds and if no vertex can be chosen, then colr (G )> k .

4.4 Main Algorithm

In this section we present the main algorithm, which uses k -neighbor restrictive bounds to approxi-

mate the r -coloring number of a graph.

37



input :A graph G , integer r > 0, k -neighbor restrictive bounds {bi (k )}1≤i≤r .
output :An orderσ and integer k satisfying colr (Gσ)≤ br (k )

1 S ←V (G )
2 σ← [;]
3 k ← 1
4 while S is not empty do
5 if there exists v ∈ S so that |Ri (Gσ, v )| ≤ bi (k ) for all i then
6 append v toσ and remove it from S
7 else
8 k ← k +1
9 returnσ,k

Algorithm 1: BoundedColoring(G , r,{bi (k )}1≤i≤r )

Theorem 4.4.1. Given a graph G and 1≤ k ≤ colr (G ), Algorithm 1 returns an orderσ and value t

such that t ≤ colr (G )≤ colr (Gσ)≤ br (t ).

Proof. It is clear that the algorithm will return an orderσ and integer k , since for sufficiently large

values of k all unordered vertices will satisfy all bounds. By definition, all vertices, regardless of the

value of k when they were chosen will have r -reach at most br (k ) as br (k ) ≥ br (k − i ). Therefore,

colr (G )≤ colr (Gσ)≤ br (k ).

It remains to show that the output k is at most the r -coloring number of G . In the algorithm

k increases by one each time when no vertex satisfies the bound {bi (k )}1≤i≤r . It suffices to show

that if the algorithm is run and at some point k = colr (G ) then there is always a vertex that can be

chosen. We suppose for some G the algorithm reaches k = col(G ) and no unordered vertex satisfies

all bounds. Therefore, every unordered vertex must not satisfy at least one bi (k ) if it were chosen

next. Let P be the set of vertices ordered byσ and Q =V (G ) \P . Let γ be a linear order of G so that

colr (Gγ) = k . Let v be the first vertex from Q that appears in γ. Since v ∈Q there is some bound it did

not satisfy and suppose i is the smallest such index so that bi (k ) is not satisfied (i.e. Ri (v,Gσ)> bi (k )).

Let Tσ = Ti (v,Gσ). By definition of the reach tree Tσ has more than bi (k ) leaves, all of which lie in Q .

Because our bounds were k -neighbor restrictive, this implies that v had at least k +1 neighbors in

Tσ. For each neighbor we can associate a path in Tσ from v to a leaf through this neighbor. These

paths are disjoint except for v . By our choice of v , in γ the endpoints of these paths appear after

v . Hence, each of these paths must have a first vertex that appears after v in γ. These vertices are

i -reachable from v and there are at least k +1 of them. This contradicts that the r -reach of v is at

most k in γ.

We note that using the right data structures to track the i -reach of every vertex Algorithm 1 can

be implemented to run in time O (r · br ·n 2).

38



4.5 Deriving k-Neighbor Restrictive Bounds

Our focus in this section is the construction of k -neighbor restrictive bounds. Ideally, the functions

will be as small as possible and it should be easy to determine the set {bi (k )}1≤i≤r for an arbitrary

r > 0. In the first part of this section, we construct minimum k -neighbor restrictive bounds and

show that for r > 4 the process becomes particularly tedious. At the end of the section, we give an

alternative set of bounds that is asymptotic to the minimum set. We are able to express this set as a

family of computable polynomials.

By definition, k -neighbor restrictive bounds are recursive. Given a set of k -neighbor restrictive

bounds {bi (k )}1≤i≤r−1, if we assume a linearly ordered graph satisfies these bounds and a vertex v

has k neighbors in its r -reach tree, then br (k ) is just the maximum possible r -reach of v .

We begin with the base case.

Proposition 4.5.1. For r = 1, b1(k ) = k is the minimum k -neighbor restrictive bound.

Proof. This follows trivially from the properties of degeneracy.

Proposition 4.5.2. For r = 3 and k > 2 the functions {b1(k ) = k , b2(k ) = k 2−k , b3(k ) = 2k 3−3k 2} are

the minimum k -neighbor restrictive bounds.

Proof. The bound b1(k ) = k follows simply from Lemma 4.5.1. To compute b2(k ) we suppose G

is a graph and σ ∈ Π(G ) that satisfies b1(k ) = k . Let v ∈ G be a vertex with exactly k neighbors

in its 2-reach tree, T = T2(v,Gσ). We give a formula for the 2-reach of v and find a maximum. Let

N +
T (v ) = {x ∈ NT (v ) : v ≤σ x } and N −

T (v ) = {x ∈ NT (v ) : x ≤σ v }. These sets must be disjoint and

satisfy: |N +
T (v )|+ |N

−
T (v )| = k . Each vertex in N +

T (v ) adds exactly one to the 2-reach of v as they

appear after v inσ. If x ∈N −
T (v ), x is earlier than v inσ and can only contribute to the 2-reach of v

via a forward edge to a vertex past v . This vertex is in the 1-reach of x , which is at most k becauseσ

satisfies b1(k ) = k . Clearly, v is in the 1-reach of x , so x adds at most k −1 to the 2-reach of v . Hence,

|R2(v,Gσ)| ≤ |N +
T (v )|+ (k −1)|N −

T (v )|= k − |N −
T (v )|+ (k −1)|N −

T (v )|= k + (k −2)|N −
T (v )|.

For k > 2 this is maximized by making |N −
T (v )| as large as possible, which gives |N −

T (v )|= k . Therefore,

the maximum 2-reach of v is at most k 2−k and by our construction we have demonstrated that

this 2-reach is attainable.

We repeat this process to compute b3(k ), assuming a graph G and orderσ that satisfy b1(k ) = k

and b2(k ) = k 2 − k . Again, suppose v ∈G and v has k neighbors in its 3-reach tree T = T3(v,Gσ).

The sets N +
T (v ) and N −

T (v ) are as before. As before each vertex in N +
T (v ) contributes at most one to

the 3-reach of v .

For each backward neighbor w ∈N −
T (v ), there are three types of paths that can add to the reach

of v . First, if w has a neighbor that appears after v inσ, then v reaches this vertex. The next case is

39



that w has a neighbor that is after w but before v inσ. Similar to above, the total number of forward

neighbors of w is k , one of which is v because the 1-reach of w must be less than b1(k ) = k . If a

forward neighbor of w has k neighbors after v then it adds k to the reach of v .

Additionally, w can have neighbors that appear before it inσ. We have no guarantee as to the

quantity, only the guarantee that any vertices that v can reach through w along such a path must

also be in the 2-reach of w and therefore there are less than b2(k ). We notice that each forward

neighbor of w can add at most k to the reach of v but subtracts one from the 2-reach of w . Therefore

if 1≤ pw ≤ k is the number of forward neighbors for some w ∈N −
T (v ) then let rv (w ) be a function

describing the reach added to v through a back neighbor w . To maximize this value we assume all

forward neighbors of w other than v appear before v in the order and have k neighbors after v .

This gives the formula:

rv (w )≤ b2(k )−pw + (pw −1)k ≤ 2k 2−3k .

For k > 2, for the purposes of maximizing the value, we assume that all of v ’s neighbors in its

3-reach tree are backward neighbors. Giving

|R3(v,Gσ)| ≤
∑

w∈N −T (v )

rv (w )

≤ k (2k 2−3k )

= 2k 3−3k 2

Hence 2k 3−3k 2 is the maximum attainable reach for v .

We see that calculating the function bi (k ) is dependent on the bounds b1(k ), ..., bi−1(k ). At higher

radii this dependence and the interaction between interior vertices in the reach tree becomes harder

to manage. Example 4.5.3 demonstrates this complexity.

Example 4.5.3. In this example we give a demonstration of the difficulty that occurs when trying to

calculate b4(k ).

We suppose that r = 4 and k = 4 and assume we have a graph G and order σ that satisfies

b1(4) = 4, b2(4) = 42−4= 12, and b3(4) = 2(4)3−3(4)2 = 80. The paths of length four allow for the most

branching and therefore the highest possible reach. We describe each type of maximal path by the

direction of the edges with respect toσ, where ‘-’ gives an edge that moves backwards and ‘+′ an

edge that moves forward. All paths must begin with ‘-’ and end with a ‘+’ to be valid. This gives

the possible paths as (−,−,−,+),(−,−,+,+),(−,+,−,+), and (−,+,+,+). Figures 4.1, 4.2, 4.3, and 4.4

illustrate these paths, respectively.

In these calculations, we wish to maximize the branching to get the highest possible reach.

40



x v
−−
−+

Figure 4.1 (−,−,−,+): We see that x adds at most b3(4)−1 to the reach of v . Any vertex v reaches through
such path is also in the 3 reach of v . Since x also reaches v it is at most b3(4)−1. If x reaches other vertices

through other path types we must subtract this from b3(4) as well.

x v
−−
++

Figure 4.2 (−,−,+,+):x adds at most (b2(4)−1) · b1 in this case. Again any 1-reach of x must also be
subtracted from the b2(4) term.

We start with (−,+,+,+) , which is the most straightforward. There are the maximum k = 4 back

neighbors of v . Each has at most three forward neighbors other than v , each of these have at most 4

forward neighbors, and each of these have at most 4 forward neighbors. This gives a total reach of v

through this type of path as 4 ·3 ·4 ·4= 192. We note that this assumes the x vertices have maximum

1-reach, as do the xi vertices.

Next, we consider paths of type (−,+,−,+). Each x1 type vertex adds b2(4)− b1(4)− 3, the x2

vertices each add b2(4)− b1(4)− 2 and the x3 vertices each add b2(4)− b1(4)− 1. This gives a total

of k ((b1(4)− 1)b2(4)− (b1(4)− 1)b1(4)− 6) = 72. We point out here that 6 can be calculated as the

k − 1 triangle number. For the type (−,−,+,+) we get that each x vertex adds b2(4)− b1(4) giving

k (b1(4) · b2(4)− b1(4)) = 176. Finally through type (−,−,−,+) we have each x adds b3 − b2 giving

k (b3− b2) = 272. Putting this all together b4(4) = 712.

The example above shows that we are able to calculate the next bound in a set of k -neighbor

restrictive bounds by simply looking at all paths of length r that begin with a − and end with a +.

In general, we can use this computation to show a k -neighbor restrictive bound b4(k ) is given

by:

b4(k )≤ k ((b1−1)(b1)(b1) + ((b1−1)b2(k )− (b1−1)b1− (b1)(b1−1)/2) + (b1b2− b1) + (b3− b2)).

Or, in terms of k :

b4 ≤ 5k 4−
19k 3

2
+

5k 2

2
.

Indeed, calculating the exact bounds becomes inefficient. The interactions demonstrated in

Example 4.5.3 between vertices that can reach each other obfuscate the desired calculation. We

instead construct bounds that are slightly larger, specifically taking the dominating term of the

best possible. To achieve this we disregard whether the construction is feasible and just give the

maximum possible for each path type in terms of the bounds.

41



x x1 x2 x3 v
−+
−+

Figure 4.3 (−,+,−,+): Since b1(4) = 4, x has at most k = 4 forward neighbors, including v . Assuming
x1 <σ x2 <σ x3 we get that x1 adds at most b2(4)−3 on this path type, x2 adds at most b2(4)−2, and x3 adds at

most b2(4)−1. This is because xi can reach all x j for j > i and also v .

x x1 x2 x3 v
−+
++

Figure 4.4 (−,+,+,+): Again x can have at most k = 4 forward neighbors, including v , and they can also have
at most k forward neighbors. So through this path type each xi adds at most (b1(4)−1) ·b1(4) to the reach of v .

Specifically, for each path type we compute the maximum possible reach and ignore any inter-

actions between vertices along these paths. Under this method, if we were to recompute the bound

given by Example 4.5.3, we would not consider that the xi can reach v or each other. We call these

the simplified k -neighbor restrictive bounds.

Observation 4.5.4. For a given path type, the simplified reach possible through such a path can be

read as a product from the -,+ description. Specifically, the first minus gives a factor of k since these

are the k neighbors of the root in the r -reach tree. Starting from the left we count consecutive terms

until a + is reached. Since we assume all maximal paths are saturated, we subtract the next lower

index from each. For instance (−,−,−,+,−,+) would be broken up into (−), (−,−,+), (−,+) giving

(k )(b3− b2)(b2− b1). Also (−,+,−,+,+)would be (−), (+), (−,+), (+) giving (k )(b1−1), (b2− b1), (b1). If

the term after the first minus is a plus we subtract one since we know this vertex can also reach the

root. Since all terms have the leading k term we can remove it from our path types. So we think of

the first example (−,−,−,+,−,+) as k times the product (−,−,+), (−,+) = (b3− b2)(b2− b1).

If p is a path type, we let s (p ) be the product described above.

Definition 4.5.5. We let P(r ) denote the set consisting of the 2r−2 path types given by sequences of

length r −1 consisting of + and - such that the last term is a plus.

As in Observation 4.5.4 we omit the first negative sign, hence these are vectors of length r −1.

Lemma 4.5.6. The set of bounds b1(k ), b2(k ), ..., br (k ), where

b1(k ) = k and bi (k ) = k
∑

p∈P(i )
s (p ),

42



are k -neighbor restrictive.

Proof. This follows by induction. If r = 1 it is clearly true. If we assume it is true for r ≤ ℓ−1, then

bℓ(k ) is constructed by definition to be greater than the max (ℓ)-reach possible by a vertex with k

neighbors in its ℓ-reach tree in an order satisfying b1(k ), ..., bℓ−1(k ).

The highest degree term of the resulting polynomial is of particular interest as it is the same in

the minimum k -neighbor restrictive bounds. It can also be described relatively simply.

Lemma 4.5.7. Let C j be the j th Catalan number. If bi (k ) is a bound from Lemma 4.5.6, then the

highest degree term of bi (k ) is Ci−1k r .

We recall that the j th Catalan number can be given as an equivalence relation:

C j =
j−1
∑

i=0

Ci C j−1−i

Proof. It holds for b1(k ). Suppose it is true up to bℓ(k ), 1< ℓ< r . We calculate the sum in Lemma 4.5.6

in parts. Let Pi (ℓ+1) be the set of path types in P(ℓ+1)with the first plus sign at index i , 1≤ i ≤ ℓ.
Notice that removing the first i terms from a type gives a new type in P(ℓ+1− i ). The sum of these

multiplied by k is exactly bℓ+1−i (k ). Hence we can rewrite bℓ+1 as follows:

bℓ+1(k ) = k
∑

p∈
P(ℓ+1)

s (p )

= k
ℓ
∑

i=1







∑

q∈
P(ℓ+1−i )

bi s (q )







=
ℓ
∑

i=1






bi k
∑

q∈
P(ℓ+1−i )

s (q )







=
ℓ
∑

i=1

bi bℓ+1−i

Let Dj denote the dominating term of b j . Then,

Dℓ+1 =
ℓ
∑

i=1

Di Dℓ+1−i

43



Adjusting the indices and by the inductive hypothesis we get:

Dℓ+1 =
ℓ−1
∑

i=0

Ci k i+1Cℓ−1−i k ℓ−i

= k ℓ+1
ℓ−1
∑

i=0

Ci Cℓ−1−i

=Cℓk
ℓ+1

In fact these dominating terms also give a set of k -neighbor restrictive bounds.

Lemma 4.5.8. The set of bounds {bi =Ci−1k i }, 1≤ i ≤ r are k -neighbor restrictive.

Proof. This set of bounds ignores all interactions when calculating a path types score. It is then

calculated in the same way as the bounds in Lemma 4.5.6 giving the same dominating term and

result.

Using this set of bounds with Algorithm 1 gives an order of an arbitrary graph that witnesses

a Cr−1t r−1-approximation of the r -coloring number in polynomial time, where k is at most the

r -coloring number of the graph.

Theorem 4.5.9. Let G be a graph, C j be the j th Catalan number and r ≥ 1 be an integer. Using {bi (x ) =

Ci−1 x i }1≤i≤r , Algorithm 1 gives a Cr−1k r−1-approximation for the MINIMUM r -ORDERABILITY prob-

lem in time polynomial in n, where k = colr (G ).

Proof of Theorem 4.5.9. By Lemma 4.5.8 the bounds are k -neighbor restrictive and our starting

value k = 1≤ colr (G ). By Theorem 4.4.1 Algorithm 1 returns an orderσ and value t satisfying:

k ≤ colr (G )≤ colr (Gσ)≤Cr−1k r

This gives the desired approximation.

44



Part II

Phylogenetic Trees

45



CHAPTER

5

DISENTANGLING PHYLOGENIES

5.1 Introduction

In evolutionary biology, phylogenetic trees provide a useful model to study speciation. Given a

collection of species (or taxa, short for taxonomic unit) the fundamental goal of phylogenetic study

is to find the tree that best captures the evolutionary branching, and in some cases the evolutionary

distance, between these species. Before the development of genetic analysis, most models were

formed from strictly morphological data. In recent years the ability to compare species based on

their genetic differences has led to more robust techniques and an influx in data points. Phylogenies

may be inferred in a variety of ways, including discretely coded characters, gene frequencies, and

molecular sequences. We refer the reader to [Fel04] for a more in depth survey. Each method comes

with its own set of trade-offs and assumptions. Parsimony methods, for example, look for the

phylogeny with the minimum number of evolutionary events necessary. Maximum likelihood and

Bayesian methods use a more probabilistic approach and assumes a probability distribution. In

this Chapter we focus on the identification, or disentangling, of sets and multisets of phylogenies

and combining phylogenies with contrasting taxa. This is particularly relevant to certain statistical

techniques, which we briefly touch on.

A character is a function from the set of species X into a set of states S . Here S could be the

binary existence of a morphological feature or the nucleotide at a position in a genetic sequence.

In statistical techniques, using the characters from a specific gene it is possible to estimate the

evolutionary tree corresponding to that gene. Considering the set of trees for a collection of genes

46



one goal is to recreate the phylogeny representing the evolution of the taxa. While these models tend

to be easier to work with under the assumption that all genes evolve under a single Markov process,

this is perhaps not the most accurate. An alternative phylogenetic mixture model assumes that each

character is generated independently allowing for the possibility that a particular gene evolved at

a different rate or along a different tree. Each character is given its own probability distribution

and these are combined into a phylogenetic mixture. However, when mixing Markov processes it

is necessary that the input tree parameters remain identifiable. This is called disentangling a set

(or multiset) of phylogenies. In this chapter we study the disentangling number and improve upon

existing results using a graph isomorphism argument.

5.2 Preliminaries

The work in this chapter is focused on the identification of sets and multisets of binary [n ]-trees

using the induced subtrees. Recall that the set of all binary [n ]-trees is denote B (n ) The notation
�B (n )

r

�

is used to refer to all subsets of B (n ) consisting of r trees and likewise
�R B (n )

r

�

for subsets of

R B (n ) of size r . A double parentheses notation,
��

B (n )
r

��

and
��

R B (n )
r

��

, is used when we consider

multisets of size r . When elements of such sets and multisets are written out explicitly we will use

the notation {T1, . . . , Tr } ∈
�B (n )

r

�

and [T1, . . . , Tr ] ∈
��

B (n )
r

��

.

Let T = {T1, . . . , Tr } ∈
�B (n )

r

�

and K ⊆ [n ]. We can define the set of subtrees induced by K as T|K :=

{T1|K , . . . , Tr |K }. Similarly, if we let T = [T1, . . . , Tr ] ∈
��

B (n )
r

��

and K ⊆ [n ] then T|K := [T1|K , . . . , Tr |K ] is

also a multiset. A key distinction here is that if T ∈
��

B (n )
r

��

then T|K is a multiset in
��

B (K )
r

��

. However,

if T ∈
�B (n )

r

�

then T|K is a potentially smaller set in
�T K

≤r

�

.

The following example motivates this work. Suppose T ∈
�B (n )

r

�

and we are given T|K for all

K ∈
�[n ]

k

�

, where k is a fixed non-negative integer. For what integer k is it always possible to identify

T as the input? Determining this k would imply that the induced subtree map on all k element

subsets gives a unique signature for all T ∈
�B (n )

r

�

. The analog of this question but for T ∈
��

B (n )
r

��

is

also relevant and considered in Section 5.4. The value of k is dependent on r but is not dependent

on n . Indeed, sets and multisets of trees with an arbitrary number of leaves can be identified via

relatively small subsets of the leaves.

Definition 5.2.1. Let S ,T ∈
�B (n )

r

�

, suppose S ≠ T . We say K ⊆ X disentangles S and T if S|K ̸= T|K .

For n ≥ k , we say that
�[n ]

k

�

disentangles
�B (n )

r

�

if for any two sets T ,S ∈
�B (n )

r

�

such that S ≠ T , there

exists K ∈
�[n ]

k

�

such that T|K ̸∼=S|K . The set disentangling number D (r ) is the smallest k such that
�[n ]

k

�

disentangles
�B (n )

r

�

for all n ≥ k . The multiset disentangling number D̃ (r ) is the smallest k such

that
�[n ]

k

�

disentangles
��

B (n )
r

��

for all n ≥ k . The rooted set disentangling number and rooted multiset

disentangling number given by R D (r ) and R D̃ (r ), respectively, have analogous definitions.

47



5.3 Known Results

First introduced by Matsen et al. [Mat08], the set disentangling numbers were later generalized by

Humphries [Hum08]. Much of their work was focused on reconstructing sets of trees from their

combined splits.

Definition 5.3.1. A quartet tree is a binary phylogeny with four leaves. A rooted triple is a rooted

binary phylogeny with three leaves. For T ∈ B (n )we define the quartets displayed by T as

Q := {T|K : K ∈
�

[n ]
4

�

, T|K ∈ B (n )}.

For T ∈R B (n )we define the rooted triples displayed by T as

R := {T|K : K ∈
�

[n ]
3

�

, T|K ∈R B (n )}.

Lemma 5.3.2 ([Ste16]). Let T , T ′ ∈ B (n ). Then T ∼= T ′ if and only ifQ(T ) =Q(T ′).

Lemma 5.3.3 ([Ste16]). Let T , T ′ ∈ B (n ). Then T ∼= T ′ if and only ifR(T ) =R(T ′).

Corollary 5.3.4. D (1) = D̃ (1) = 4 and R D (1) =R D̃ (1) = 3.

The above lemmas are often stated as “quartets determine binary trees” and “rooted triples

determine rooted binary trees” and are commonly referenced. In [Mat08] it was shown that this

value exists for r = 2.

Theorem 5.3.5 ([Mat08]). D (2) = 6.

In general, It is not immediately clear that we should expect a value of D (r ) to exist. However

in [Hum08] it was proved that D (r ) is monotonic in r and well-defined. Furthermore, a first upper

bound for D (r )was proven.

Theorem 5.3.6 ([Hum08]). The function D (r ) is monotonic, well-defined and 3(⌊log2 r ⌋+1)≤D (r )≤
3r for all r ≥ 2.

The multiset and rooted multiset disentangling numbers were introduced by Sullivant in [Sul11].

We note that when r = 1 and r = 2 there is no difference between the set and multiset variants

of the problem. As early as r = 3, the set variant allows for multiple trees to map to the same

induced subtree. For example, consider T = {T1, T2, T3} and S = {S1,S2,S3} in
�[n ]

3

�

and let K ⊂ [n ]. If

T1|K = T2|K = S1|K and T3|K = S2|K = S3|K we would be unable to differentiate between T|K and S|K as

they are sets. In the multiset case this would have disentangled T and S . The multiset disentangling

number is weaker and this gives us that D̃ (r )≤D (r ) and R D̃ (r )≤ R D (r ). The following theorem

shows that there are only two possible values for D̃ (r ) for all r ≥ 2.

48



Theorem 5.3.7 ([Sul11]). 3(⌊log2 r ⌋+1)≤ D̃ (r )≤R D̃ (r ) +1= 3(⌊log2 r ⌋+1) +1

The proofs rely in large part on arguments from polytope theory and the encoding of multisets

of trees as high-dimensional contingency tables. In [Lon16] Long offered a more direct proof of

the final equality that relied entirely on the tree structure. Additionally, the multiset disentangling

number for r = 3 was proved.

Theorem 5.3.8 ([Lon16]). D̃ (3) = 6.

5.4 Disentangling Multisets of Four Unrooted Binary Trees

In this section we will adapt some of the techniques used by Long to prove that
�[n ]

4

�

disentangles
��

B (n )
r

��

. Most proofs will requires us to assume under an induced map two multisets are equivalent

and produce a contradiction. Although these sets allow multiplicity they still require a one-to-one

map between elements in two sets for them to be considered equivalent. The following definition

formalizes this notion.

Definition 5.4.1. Let T ,S ∈
��

B (n )
r

��

and K a subset of [n ] that does not disentangle T and S . Label

the trees of S and T so that T = [T1, . . . , Tr ] and S = [S1, . . . ,Sr ]. For 1≤m ≤ r , let

mi =min({m ∈ [r ] \ {m1, . . . , mi−1} : Sm |K = Ti |K )

Then with respect to the chosen labeling, we say that Smi
and Ti are partners at K .

This gives a matching between the elements of T|K and S|K . A useful tool in our analysis will be

subsets of [n ] that have size n −1. For i ∈ [n ]we use Ki to denote the set [n ] \ {i }. Notice that if T
and S in
��

B (n )
r

��

are not disentangled by sets of size n −1 then each S is partnered with some Tl for

each Ki . If S and Tl are partners for j of the Ki then we call them j -partners. We can also count the

total number of matches that could happen between two trees in T and S .

Definition 5.4.2. Let S , T ∈ B (n ), n > 3. Then κ(S , T ) is the largest subset of [n ] such that S|Ki
= T|Ki

for all i ∈ κ(S , T ).

We can tell a significant amount about the structural similarities of S and T from the size of

κ(S , T ).

Definition 5.4.3. Let S , T ∈ T[n ], n > 3. If S ̸= T but S ≃ T and there exists an isormorphism

ϕ : S → T that is the identity map everywhere except a cluster i , j , k . Then we call this map a cluster

permutation.

Lemma 5.4.4. Let S , T ∈ B (n ), n > 3. Then the following properties hold:

49



(i) If |κ(S , T )|= 1, with κ(S , T ) = {i }, then there are two unique edges, eS , eT in S|Ki
= T|Ki

that can

be subdivided and have the pendant with leaf i attached to recover S and T , respectively.

(ii) If |κ(S , T )|= 2, with κ(S , T ) = {i , j }, then in the graph S|Ki
= T|Ki

there are three possible place-

ments for i to recover T and S, each on an edge incident to the neighbor of j . (See Figure 5.1).

(iii) If |κ(S , T )| = 3, with κ(S , T ) = {i , j , k}, then S and T are isomorphic and there is a cluster

permutation from S to T (See Figure 5.2).

(iv) If |κ(S , T )|> 3, κ(S , T ) = [n ] and S = T .

Proof. This is an expansion of a proof by Long [Lon16]. Given S and T such that κ(S , T ) = {i },
property (i) follows immediately from the observation that when the leaf labeled i is removed, S

and T each have a single vertex of degree 2. The unique placement of this vertex and the edge that

results from smoothing it gives eS and eT in S|Ki
= T|Ki

.

To show (ii) if Ki , j = [n ]\{i , j } then S|Ki , j
= T|Ki , j

. Call this graph H . Let vi (S ) be the vertex labeled

i in S and ei (S ) the edge incident to vi (S ). Since S |K j
= T |K j

it is clear that ei is attached to the same

edge in H for both of these. A similar argument applies to the edge that e j is attached to in H . If

these edges were distinct in H then S would be identical to T , a contradiction. This implies that in

both S and T the edges that ei and e j attach to collapse to the same edge in H . Figure 5.1 gives all

such possible placements of i with respect to j . If κ(S , T )< n this implies that S ̸= T and we must

have different placements of i in each.

If κ(S , T ) = {i , j , k} as in (iii), then Long [Lon16] showed that vi , v j , and vk are at most distance

three from each other in both S and T . This implies that they are the same tree apart from the labels

of an i , j , k cluster. The isomorphism is clear as it takes a graph in Figure 5.2 to some other graph in

Figure 5.2 by permuting the labels on the cluster.

Finally, to prove (iv) suppose κ(S , T )> 3 and S ̸= T . Again all vertices in κ(S , T )must be distance

three from each other. This implies two different rooted trees with at least four vertices that, for all

subsets of size 3 have identical induced subtrees. This contradicts R D (1) = 3.

It immediately follows from the definitions that if Si and Tj are ℓ-partners then κ(Si , Tj )≥ ℓ.

Corollary 5.4.5. If ϕ : T → S is a cluster permutation on cluster {i , j , k} then κ(T ,S ) = {i , j , k}.

Lemma 5.4.6. Let S , T ,U ∈ B (n ) for n > 5. If ϕ : S → T is a cluster permutation andσ : T →U is a

cluster permutation, then |κ(S ,U )| is either 0, 3, or n.

Proof. Since n > 5 all clusters in S , T , and U do not share any leaves. Hence U is isomorphic to S

by a permutation of the clusters of S defined byσ ◦ϕ : S →U . If both ϕ andσ permute the same

cluster then the map is a cluster map or the identity map everywhere. If two clusters are permuted

by the composition then for any i we have S|Ki
̸=U|Ki

and κ(S ,U ) is empty.

50



j

RT1 RT2

i

ii

Figure 5.1 The three possible edges the leaf labeled i can be attached to if two graphs match on Ki and K j .

RT

i j k

RT

i k j

RT

j k i

Figure 5.2 If κ(S , T ) = {i , j , k} then they are isomorphic graphs with a label permutation on a single cluster.
Above are the 3 possible clusters [Lon16].

Corollary 5.4.7. Let S , T ,U ∈ B (n ) for n > 5. If |κ(T ,S )|= 3= |κ(T ,S ′)| then either κ(T ,S ) = κ(T ,S ′) or

κ(T ,S )∩κ(T ,S ′) = ;.

We see that when r is relatively low compared to the possible D (r ) the number of partners each

tree must have to avoid being disentangled is relatively high. This technique will be less beneficial

for larger values of r as r overtakes D (r ) relatively quickly (r ≥ 16). For ease of notation we define

two matrices to store matches and the size of κ.

Definition 5.4.8. Let S ,T ∈
��

B (n )
r

��

and label the trees of S and T so that T = [T1, . . . , Tr ] and

S = [S1, . . . ,Sr ]. Let Mp (S ,T ) be the matrix with Mp [i , j ] = ℓ where Ti and Sj are ℓ-partners. Let

Mκ(S ,T ) be the matrix with Mκ[i , j ] = |κ(Ti ,Sj )|.

For both matrices in Definition 5.4.8 we may assume that the values along the diagonal are at

least as large as all values below them in the column, after them in their row or on a lower diagonal.

If not through row and column swaps this can be achieved and S and T can be relabeled.

We can now prove the main result of this chapter.

Theorem 5.4.9. D̃ (4) = 9.

Proof. Suppose D̃ = 10 and let Ki = [10]\ i . Then there must exist S , T ∈
��

B (10)
4

��

such that S|Ki
= T|Ki

for all 1≤ i ≤ 10. We may assume that no tree in S is identical to a tree in T . If they were we could

51



remove them and disentangle the shorter multisets. We form the matrix M =Mp (T ,S), and consider

the possible values in M . Ti must match with some Sj for each Kl , hence it is a partition of 10 into

four parts. Based on Lemma 5.4.4, since no Ti = Sj each part must have size at most 3. Therefore

every row and column will have the form {3, 3, 3, 1} or {3, 3, 2, 2} as the only possibilities up to some

permutation.

First forbidden minor: We first notice that M cannot have the following matrix as a two by two

minor in any orientation:
�

3 1

3 3

�

.

Suppose Ti and Si correspond to the first row and column, respectively, and Tj , Sj to the second row

and column. This implies a composition of cluster maps Ti → Si → Tj → Sj . By Lemma 5.4.6 Ti and

Sj are isomorphic up to permutations of their clusters. Since Ti must correspond to a row vector

of the form {3,3,3,1}, its structure is that of three clusters rooted from three edges adjacent to a

trivalent vertex. Some leaf not in any cluster must be attached along one of these edges. Since Sj is

isomorphic to Ti via cluster maps, Sj has the same structure including the placement of this leaf. If

Ti and Sj match on this tenth leaf as is required then Ti = Sj , a contradiction to the assumption that

T and S are disjoint.

If any row is of the form {3,3,3,1} then the column containing the 1 must also be of this form.

This implies no other entry in M is a 3, which is not possible base all columns and rows summing to

10. Therefore, every row and column is of the form {3, 3, 2, 2}.
Second forbidden minor: We now assume all rows contain exactly two 3’s and two 2’s as entries.

We consider the following possible two by four minor:

�

3 3 2 2

2 2 3 3

�

Suppose T1 and T2 correspond to the first and second rows, respectively, and the columns are labeled

in order by S1, S2, S3 and S4. There is then a cluster permutation ϕ1 : T1 → S1 and a cluster map

on a distinct cluster ϕ2 : T1→ S2. Let c1, c2 be the specific clusters in T1. Without loss of generality,

suppose S1 has a permutation of c1 given by c ′1 and an identical c2. Therefore S2 has the cluster c1

and a permutation of c2, denoted c ′2. A symmetric argument gives that T2, S3, and S4 also have two

distinct clusters. T2 and S1 are 2-partners, which implies they each share at least one identical cluster

c ′1 or c2, since the tree induced by some Ki cannot affect both clusters. The same follows for T2 and

S2, implying T2 has either the cluster c1 or c ′2. It follows that T2 has one cluster that is either c1 or c ′1
and also a cluster that is c2 or c ′2. The cluster permutations from T2 to S3 and S4 imply they also have

clusters permutations of c1 and c2. However since S3 and S4 are 2-partners with T1 for {i , j } ⊆ [10]

that are not contained in either cluster they both must have exactly c1 and c2. This implies that T2

cannot have c ′1 and c ′2 as it would be 0-partners with S3 and S4. It also cannot have c1 and c2 since

52



1, 2, 3

4, 5, 6 7, 8, 9

10

10 10

Figure 5.3 The structure of Ti corresponding to the first forbidden minor in the proof of Theorem 5.4.9 with
the 3 possible placements for the vertex labeled 10.

by a counting argument it must have a cluster map to one of them along one of these clusters that

permutes either c1 or c2. In either case T2 either has c ′1 and c2 or c1 and c ′2 and cannot be 2-partners

with one of S1 or S2. A contradiction.

To complete the proof we show that no four by four matrix consisting of rows and columns of the

form {3, 3, 2, 2} does not contain the second forbidden minor. We simply take a row to be {3, 3, 2, 2}.
The first column must have two 2’s. The second column then cannot have any twos on the same

column as these twos which implies the second column has three 3’s, a contradiction to all rows

having exactly two 3’s.

5.5 Disentangling Sets of 3 Unrooted Trees

Here we use a similar technique as above, but we will rely heavily on the matrix Mκ. In this setting,

we do not have the guaranteed 1-to-1 mapping between S and T , so we are unable to use the

partners definition from the previous section. This alone has a significant effect on the number of

possible matrices to consider. Additionally, it cannot be assumed that T ∩S = ;. To demonstrate

this, suppose T = {T1, T2} and S = {S1,S2} and the set K disentangles T and S. One troublesome

hypothetical would be the situation where T1|K = S1|K = T2|K and S2|K is unique to S|K . Choose any

T so that T|K = S2|K , if T is added to both S and T we get sets with a non-empty intersection that

are no longer disentangled by K . If the intersection of T and S is empty, then the subsets of [n ] of

size 6 are sufficient to disentangle them.

Theorem 5.5.1. For any S ,T ∈
�B (7)

3

�

with S ̸= T , there exists Ki , 1≤ i ≤ 7 so that S|Ki
̸= T|Ki

.

Proof. We suppose not, to produce a contradiction, and let S ,T ∈
�B (7)

3

�

such that for all i ∈ [7]we

have S|Ki
= T|Ki

. Consider the matrix M =Mκ(T ,S).

53



Case 1: We assume that T ∩S is empty. All entries of M must be at most three. Furthermore,

each row and column must add up to a value in [7, 8, 9]. If a row adds to less than 7 then for some Ki

the corresponding tree does not match with any other tree. This implies that every entry in M is

at least one. First we note that if every row and column sum to exactly seven, they are covered by

Long’s proof of the multiset case, as this means that for each i the matches are distinct. Suppose the

sum of a row or column in M is equal to nine. Then some tree corresponds to a row or column of

the form {3,3,3}. As we are assuming that every tree has a match for all Ki . This is only possible if

each of the seven leaves are in a cluster, a contradiction.

Now suppose T1 corresponds to a row of the form {3,3,2}. Again we see that strictly through a

counting argument T1 has two distinct clusters giving the specific structure of two clusters attached

by an edge and the seventh leaf attached along this edge. This additional leaf and some leaf from a

cluster must match with S3. We relabel the leaves so that κ(T1,S1) = {1, 2, 3}, κ(T1,S2) = {4, 5, 6}, and

κ(T1,S3) = {6, 7}. As previously mentioned, the structure of T1 must have two clusters and v7 must lie

on the path between their roots. Both S1 and S2 have the same structure except S1 has a permuted

{1, 2, 3} cluster and S2 a permuted {4, 5, 6} cluster. From (ii) of Lemma 5.4.4 we see that v6 and v7 are

at most distance three in both T1 and S3. The tree S3 can have either a {4,5,7} cluster or v6 and v7

are a cherry. It must also have an identical {1, 2, 3} cluster to T1. Note that S3 must match with some

element of T three times giving a cluster permutation. We assume without loss of generality that

|κ(T2,S3)|= 3. The second row and column must sum to at least 7 which gives that |κ(T2,S1)|> 0 and

|κ(T2,S2)|> 0. As they are isomorphic by the cluster map, T2, like S3, does not have a {4, 5, 6} cluster

and is unable to match with S1 or S2 on K1, K2, or K3. However, by the same cluster map T2 must also

have a {1,2,3} cluster. Therefore, there exist i , j ∈ {4,5,6,7} such that T2|Ki
= S1|Ki

and T2|K j
= S2|K j

,

implying that T2, S1, and S2 all have an identical {1, 2, 3} cluster, a contradiction.

Case 2: Next we consider the situation arising from the intersection of T and S containing a

single tree. We construct the matrix Mκ, assuming that T1 = S1.







7 ∗ ∗
∗ a b

∗ c d







Suppose at least one of a , b , c , or d are equal to 3 and without loss of generality assume it is

a . Then there is a cluster isomorphism from T2 to S2 and we label this cluster A in T2 and A′ in S2

to show that they are permuted. For the second row and column to sum to at least 7, both T2 and

and S2 must match with T1 = S1 for some leaf not in A. Then for some i , j not in A we have that

T1|Ki
= T2|Ki

has cluster A and T1|K j
= S2|K j

has cluster A′, a contradiction.

54



Therefore a = b = c = d = 2 and we must have that Mκ is:







7 3 3

3 2 2

3 2 2







This implies a composition of cluster isomorphisms from T2→ T1→ S2. By Lemma 5.4.4 they

cannot match two times.

Case 3: The final case occurs when T ∩S has size two. This means Mκ has two sevens, which we

can assume are along the diagonal.






7 ∗ ∗
∗ 7 ∗
∗ ∗ a







Again a must be greater than 0. If a = 1 then we have:

Mκ =







7 ∗ 3

∗ 7 3

3 3 1







This gives a composition of cluster isomorphisms from T3 → S1 = T1 → S3 again implying that

κ(T3,S3) ∈ {0, 3, 7}, a contradiction.

If a = 2 we get, up to row and column swaps, one of two possible matrices for Mκ.







7 ∗ 3

∗ 7 ∗
3 ∗ 2













7 ∗ 3

∗ 7 ∗
∗ 3 2







The first fails, again, by the composition of cluster isomorphisms between T3 and S3. In the second,

to avoid such an isomorphism we can complete the matrix further.







7 ∗ 3

∗ 7 2

2 3 2







The cluster isomorphism from T1 = S1 → S3 implies S1 has a cluster A and S3 a permutation

of this, A′. Notice that T3 and S3 do not match on any of the leaves in A. Then for some i ∈ A, T3

must match with T2 = S2 and both must have a cluster containing i . If T3 has the cluster A′ then

T2 has a permutation of A′ and cannot match with S3 on a vertex not in A. This is a contradiction.

We can assume that T3 and T2 have a cluster containing i but not both of the other vertices in A.

Also, as κ(T3,S2) and κ(T3,S3) are disjoint, and we let j ∈ κ(T3,S3). The graphs T3|K j
and S3|K j

each

55



have a cluster containing i that are otherwise disjoint. Therefore T3|K j
̸= S3|K j

, a contradiction to

j ∈ κ(T3,S3).

If a = 3, again T3 has a cluster A and S3 a permutation of A, A′. Both match with T1 = T2 for some

i and j , respectively and i , j /∈ A. This implies T1|Ki
has the cluster A and T1|K j

has the cluster A′, a

contradiction.

As with the multiset case as r increases the forced number of matches in the entries of Mκ

decrease to the point that some trees might never match with each other. A case based technique,

such as this, could be feasible for a few additional values of D (r ) and D̃ (r ), but it will be necessary

to innovate new techniques to determine these values in general.

56



CHAPTER

6

TROPICAL MEDIAN SUPERTREES

6.1 Introduction

In this chapter, we develop a method for amalgamating sets of small trees on overlapping taxa

into larger supertrees. By their nature, phylogenies are doomed to be incomplete. Their formation

becomes exceedingly complex as the number of species grows. Due to this, they are often formed

by focusing on a particular gene found in some subset of species. When coupled with the fact that

different genes might evolve along different trees and at different rates it becomes quite difficult

to infer a full phylogenetic picture. Instead, biologists often end up with sets of phylogenies that

have overlapping taxa, and potentially different branching structures and edge lengths. Supertree

methods are used to combine these incomplete phylogenies into a larger model of evolutionary

relationships that exist [BE02]. Given a set of phylogenies A= {T1, . . . , Tr }, potentially these input

trees do not conflict with each other and there are natural choices for the supertree; we say such trees

are compatible. If the trees in A are compatible and only one supertree fits with the data then we say

A is definitive. Of course, there is no guarantee of compatibility, and if we consider phylogenies with

weighted edges it is not expected that any larger weighted tree will perfectly match with the data.

Since the trees constructed by many phylogeny algorithms usually come with this additional weight

information, it is natural to try to develop methods for comparing trees and computing supertrees

that include this information. In Section 1.7 we showed that weighted phylogenies induce unique

tree metrics. These metrics can be used to give each tree a coordinate in a continuous geometric

space, called a tree space and compared using a distance metric from tropical geometry. The work

57



in this chapter uses the combinatorial and geometric properties of weighted phylogenies and tree

space to develop a supertree method.

6.2 Background

We recall that we use T (N ) to denote the set of all [N ]-trees and T N to denote the set of all trees

with positive edges weights (or equivalently tree metrics) on N . The additional parameter of edge

weights will be used to map weighted phylogenies to a continuous geometric space called a tree

space.

The purpose of supertree methods is the inference of large phylogenetic trees on many taxa

from data points that are themselves phylogenies on subsets of these taxa. A useful supertree

method should give repeatable results and also work even when the input trees have incompatible

topologies. Many of the existing methods for inferring phylogenies such as maximum parsimony and

maximum likelihood can be adapted to infer supertrees, although some give statistically inconsistent

or misleading results [Ste08]. As an alternative to traditional methods, geometric-based supertree

methods have been developed allowing for robust statistical analysis. Such methods rely on mapping

weighted phylogenies to coordinates in a metric space which allow for statistical analysis.

The first fully developed tree space was described by Billera, Holmes, and Vogtman [Bil01] and is

referred to as BHV space. Recall from Definition 1.5.4 that every edge of an X -tree defines a split

which in turn partitions X into two parts. Splits defined by exterior edges are called thin and interior

edges are called thick. We observe that in an X -tree, the number of splits equals the number of

edges, and is therefore not exhaustive of all possible partitions of the leaves. In fact, if two trees

have identical thick splits then they have the same underlying topology, and vice versa. Notice that

any two splits A|B and C |D that appear on a single tree have the property that one of the following

subsets is empty:

A ∩C A ∩D B ∩C B ∩D (6.1)

Definition 6.2.1. Let X be a set and A|B and C |D be two partitions or splits of X . We say these splits

are compatible if one of the intersections (6.1) is empty. For any collection of pairwise compatible

splits, there exists an X -tree with exactly those splits.

To describe BHV space, we consider the maximal orthants of the space first. We fix a leaf set

X and take S to be a set of compatible thick splits of maximum size. There is a unique X -tree T

that achieves this set of splits and as we have assumed it to be maximum, |S |= |X | −3. We order the

splits lexicographically, each corresponding to a coordinate, and allow these coordinates to have

values in [0,∞). These values represent the possible weights of the edges that induce the split. The

value zero is included to allow for non-binary phylogenies along the boundary of the orthants to be

present. This orthant is given as OB H V (T ) and is isometric toR|S |≥0. If T1 and T2 are in B (X ) and have

thick splits S1 and S2, respectively, then let P = S1 ∩S2. We can then glue the orthants OB H V (T1) and

58



1 2 3 4

3 2

T1

1 2 3 4

1

1

T2

Figure 6.1 The two trees with internal branch lengths, that appear in the BHV tree space in Figure 6.2

OB H V (T2) along their boundary, which is isometric to R|P |≥0. Gluing all maximal orthants results in

the BHV space on the leaves X , given by B H VX . The origin in this space is called the cone point, 0,

and corresponds to the star shaped tree with a single internal vertex and |X | leaves. The cone point

is contained in all orthants of B H VX implying there is a path between any two trees, and allowing

us to give this space a distance function. Within each orthant the distance between two trees can be

calculated using the standard Euclidean metric. For two trees in different orthants, T1, T2, we define

the distance between them, denoted dB H V (T1, T2), to be the infimum of all piecewise smooth paths

between them.

In this description of the original BHV space, we notice that thin splits are omitted. Their addition

amounts to taking the product of BHV space with an n-dimensional orthant, and therefore had little

effect on the geometry of the space. Using this expanded space, a supertree method was developed

by Grindstaff and Owen [Gri18], building off of previous work on this concept By Bi et al. [Ren17].

We use B H V ′X to denote the full BHV space, meaning the space described above with thin splits

included. In B H V ′X the cone point corresponds to the graph consisting of a single point with all

leaves associated to it.

As noted previously, there is a map from rooted phylogenies on [N ] to unrooted phylogenies on

X ∪{0}, where the leaf labeled 0 is attached to the root. If preferred, we may use this to define BHV

space in terms of rooted phylogenies.

Example 6.2.2. We consider two rooted binary trees in B H V[4], shown in Figure 6.1. For the purposes

of visualization in this example, we use traditional BHV space, rather than the full BHV space. Hence,

each tree has two internal edges, and lives in a two-dimensional orthant. T1 has the coordinates

(2, 3) in the orthant corresponding to the splits 12|034, and 012|34, respectively. T2 has coordinates

(1,1) in the orthant corresponding to 01|234 and 012|34. In the Grindstaff and Owens adaptation

these would have six-dimensions.

In Figure 6.2 we see the two orthants, the ray that is their intersection, and the geodesic between

them. Both trees lie in different orthants and share a ray corresponding to their common split. This

ray, given by the vertical axis, corresponds to a non-binary topology. The geodesic between the two

trees moves along one orthant to a point on the ray and then along the second orthant.

59



T1
T2

012|34

12|034

01|234

1234

1 2 3 4

1 2 3 4

Figure 6.2 The two points (0, 2, 3) and (1, 1, 0) in BHV tree space and the geodesic connecting them.

In this three-dimensional space, giving T1 the coordinates (0, 2, 3) and T1 the coordinates (1, 1, 0)

then the point p on the ray has coordinates (0,5/3,0). The distance between T1 and T2 is then the

Euclidean distance between T1 and p summed with the Euclidean distance between T2 and p .

A key aspect of the method demonstrated in [Gri18] for computing supertrees is the ability to lift

a tree in T ∈ T S to a set of trees in T N that share the underlying structure of T . We begin by first

describing the natural map from T N to T S , S ⊆ [N ].

Definition 6.2.3. Let T ∈ T X with weight function w : E (T )→R+ and S ⊆ X . The induced weighted

subtree of T induced by S is the tree T|S with the unique weight function w : T|S → R+ satisfying

dT (i , j ) = dT|S (i , j ) for all i , j ∈ S .

When we compute T|S and a degree two vertex v is suppressed, the edge that replaces this vertex

has weight equal to the sum of the weights of the two edges incident to v . In terms of the metric that

T induces on [N ], the restriction of this metric to S is exactly the metric induced by T|S . In [Zai16],

Zairis et al. defined the tree dimensionality map, which maps the set of trees in T N to a smaller

dimension tree space on a subset of [N ].

Definition 6.2.4. Let S ⊆ [N ]. The restriction ofT N toT S is the mapΨS : T N → T S , whereΨS (T ) = T|S
for all T ∈ T N .

We can then take the preimage of a tree with respect to the restriction map to find all trees in the

larger space that share its structure.

Definition 6.2.5. Let S ⊆ [N ] and T ∈ T S . We define the lift of T to T N given by the map Ψ−1
S : T S →

T N , where Ψ−1
S (T ) is the set of trees in T N that have T as a subtree induced by S .

60



Using this lift Grindstaff and Owen [Gri18] showed that when the intersection over all lifts of a

set of input trees was non-empty then it could be computed efficiently. Furthermore, they allowed

for inputs that did not have compatible topologies. This method minimizes an objective function

that could be either the sum of the distances to the lifts of the inputs over all trees in B H V ′N or the

sum of the squares of these distances.

6.3 Tropical Tree Space

BHV space provided an innovative method for parameterizing tree space in a geometrically meaning-

ful way, but it is not without its drawbacks. Lin et al. [Lin17] showed that given as few as three points

in BHV space, the geodesic triangle formed by these points can have arbitrarily large dimension.

This leads to further complications including the absence of useful projections onto BHV planes,

and the possibility of stickiness, when the Fréchet mean remains fixed despite small changes in the

data points. Also, the best known algorithm for calculating geodesics in BHV space [Owe10] runs in

quartic-time on the number of leaves. With this in mind, we approach our problems in tropical tree

space, also called palm tree space in [Mon18]. This space has a natural connection to the space of

phylogenies and does not produce many of the hindrances of BHV space.

In Section 1.7 we mentioned that a tree metric T ∈ T N can be given as a vector in Rn , where

n =
�N

2

�

, or as an N ×N matrix. This gives a natural coordinatization of each tree metric on [N ].

The first relationship between the space of tree metrics on [N ] and tropical geometry was given in

[Spe05]. Sturmfels and Speyer showed a homeomorphism between T N and a tropical version of the

Grassmanian. This follows from the four point condition, which characterizes tree metrics, being

equivalent to the Plücker relations that define the Grassmanian. In this coordinatization, the space

of rooted N -trees is tropically geometric. This is particularly evident in the tropical projective torus.

Definition 6.3.1. The tropical projective torus Rn/R1, where 1 = (1, . . . ,1), is the quotient space

given by the set of equivalence classes under

(x1, . . . , xn )∼ (y1, . . . , yn )⇐⇒ xi − yi = x j − yj for all 1≤ i , j ≤ n .

If x = (x1, ..., xn ) ∈ Rn then we use x to denote the representative vector in Rn/R1 for the

equivalence class containing x . We may think of x as the vector (x1− x1, x2− x1, . . . , xn − x1). This

maps the tropical projective torus onto Rn−1. In terms of T [N ] we see that modding out by scalars

is the same as disregarding external edge weights that differ by a constant. The main benefit of

working in the projective space is that we can endow the tropical projective torus with a metric.

Definition 6.3.2. Let x , y ∈Rn and x , y be their representatives in the tropical projective torus. The

61



tropical distance between x , y is given by

dtr(x , y ) := max
1≤i< j≤n

|(xi − yi )− (x j − yj )|= max
1≤i≤n

(xi − yi ) + max
1≤i≤n

(yi − xi ).

The function dtr is called the tropical metric.

The tropical distance function is not a metric on Rn although it is a well-defined metric space

on Rn/R1. However, for ease of notation for x , y ∈Rn we take dtr(x , y ) = dtr(x , y ).

Proposition 6.3.3 ([Mac15]). The space T N is the union of (2N −5)!! polyhedral cones inRn/R1, each

with dimension 2N −3 in Rn/R1. Each cone corresponds to a unique binary tree topology.

A binary tree on N leaves has 2N −3 edges and therefore the corresponding maximal cone has a

dimension of N −3 in Rn/R1. Points along the boundary of these cones correspond to some edge

weights being equal to 0, meaning these are non-binary, weighted [N ]-trees.

In this chapter we focus on a subset of T N , the space of equidistant trees or ultrametrics denoted

UN . Recall that T ∈ T N is an ultrametric if all leaves are equidistant from a designated root vertex, or

equivalently if as a metric T satisfies the three-point condition given in Definition 1.7.4. We restrict

to the space of ultrametrics mainly due to some of the geometric benefits they admit, however

in terms of phylogenetics one might consider the weights of edges as representing clock time. If

so, we would expect nearest common ancestors to be equidistant from current species. A useful

property of the space of equidistant phylogenetic trees, UN , is that it is tropically convex in the

tropical projective torus.

Theorem 6.3.4. The space of ultrametrics, UN , is tropically convex in Rn/R1.

Proof. Let U , W ∈ UN . We show that a ⊙U ⊞ b ⊙W is in UN . In the tropical projective torus

a ⊙U =U so it suffices to show that U ⊞W is in UN . For arbitrary but distinct i , j , k ∈ [N ]we check

the three point condition, that max(U (i , j )⊞W (i , j ),U (i , k )⊞W (i , k ),U ( j , k )⊞W ( j , k )) occurs at

least twice. By definition, for U (and also for W ) max(Ui , j ,Ui ,k ,Uj ,k ) occurs twice. Without loss of

generality assume U has a maximum in these three coordinates that is as least as large as W ’s. Then

this value is achieved in at least two coordinates after tropical addition, and the third coordinate

cannot be any larger.

Because every ultrametric U satisfies the three-point condition for every i , j , k ∈
�[N ]

3

�

this implies

that it must also satisfy at least one of the following sets of equations:

U (i , j )≤U (i , k ) =U ( j , k ) (6.2)

U (i , k )≤U (i , j ) =U ( j , k ) (6.3)

U ( j , k )≤U (i , j ) =U (i , k ). (6.4)

62



In fact, the equidistant property allows us to determine which of these equations are satisfied based

entirely on the underlying topology. For an ultrametric U ∈ UN with i , j ∈ [N ] and i ̸= j , we use i ∨ j

to denote the nearest common ancestor of i and j with respect to U .

Proposition 6.3.5. Let U ∈ UN . For all i , j , k ∈
�[N ]

3

�

at least one of the following must hold: i ∨ j =

i ∨k ,i ∨ j = j ∨k ,i ∨k = j ∨k . If i ∨ j = i ∨k then U satisfies U ( j , k )≤U (i , j ) =U (i , k ).

Proof. Let U ∈ UN and i , j , k ∈
�[N ]

3

�

. First, one of the equalities must be satisfied due to the unique

path from a leaf to the root. Suppose i and j have a nearest common ancestor that is at least

as far from the root as the nearest ancestor of i and k . Then the path from j to i is the same as

the path from k to i after i ∨ j . Now, without loss of generality suppose i ∨ j = i ∨ k and U does

not satisfy U ( j , k ) ≤U (i , j ) =U (i , k ) to obtain a contradiction. It is clear by assumption that the

U (i , j ) =U (i , k ). Clearly, j ∨k cannot be closer to the root than i ∨ j . If it were then i ∨ j would be

the nearest common ancestor of j and k . Hence U ( j , k )≤U (i , j ) =U (i , k ).

Notice that if U corresponds to a rooted binary topology then for all i , j , k one of i ∨ j = i ∨k ,

i ∨ j = j ∨ k , and i ∨ k = j ∨ k . If it satisfies i ∨ j = i ∨ k then it satisfies the strict inequality

U ( j , k ) < U (i , j ) = U (i , k ). On the other hand, if U is non-binary then for some i , j , k we have

U ( j , k ) =U (i , j ) =U (i , k ). We can use this fact to give ultrametric space as the union of polyhedral

cones.

Definition 6.3.6. Let τ be a rooted binary topology with leaves labeled by [N ]. The cone correspond-

ing to τ in UN is defined as:

Cτ := {U ∈ UN :∀{i , j , k} ⊆ [N ] if i ∨ j =τ i ∨k then U ( j , k )≤U (i , k ) =U ( j , k )}.

Proposition 6.3.7. The space of ultrametrics, UN , is the union of (2N −3)!! polyhedral cones, each

corresponding to a rooted binary tree topology τ and having dimension N −2 in Rn/R1.

Proof. As there are (2N −3)!! rooted binary tree topologies in UN . Clearly ever U ∈ UN lies some Cτ
as we can witness the metric U on a binary tree if we allowed edge weights equal to 0. If such a binary

tree had topology τ then U must be in Cτ. InRn all ultrametrics in a fixed cone are determined by

the weights of their internal edges and the weight of a single external edge. As a binary tree on N

leaves has 2N −2 edges and N −2 internal edges this gives that Cτ ahs Hence the has dimension

N −1 in Rn and N −2 in Rn/R1.

Example 6.3.8. We use the three trees given in Figure 6.3 to demonstrate some of the properties

discussed in this section. In R3 these ultrametrics have the coordinates given by:

63



1 2 3

5

2 2

3

U1

2 1 3

3

4

3

1

U2

3 1 2

2 2

6

4

U3

Figure 6.3 The ultrametrics U1,U2,U3 ∈ U3.

U1 = (0, 0,−6)

U2 = (0,−2, 0)

U3 = (0, 8, 8)

(0, 0, 0)

Figure 6.4

U1 = (U1(1, 2),U1(1, 3),U1(2, 3)) = (10, 10, 4)

U2 = (8, 6, 8)

U3 = (4, 12, 12)

Alternatively, we may also think of them as the upper triangular 3×3 matrices given by:

U1 =







0 10 10

0 4

0






U2 =







0 8 6

0 8

0






U3 =







0 4 12

0 12

0







In R3/R1 we get representatives: U1 = (0,0,−6), U2 = (0,−2,0), U3 = (0,8,8). In Figure 6.4 we

plot these representatives on a plane and include the tropical line segments between each pair.

Each Ui lies in a distinct cone, one of each of the three possible rooted binary trees on three leaves.

Three leaves is also the minimum size leaf set that has distinct cones, hence their only intersection

is the cone point at (0,0,0) and the tropical line segment between points in different cones must

pass through this point. This is not the case for trees on more leaves. We also see that dtr(U1,U2) =

max(0, 2,−6) +max(0,−2, 6) = 8.

64



6.4 Tropical Median Supertrees

In this section we define a set of supertrees that uses the relationship between equidistant weighted

trees and tropical geometry. Given a set of ultrametrics, A = {U1, ...,Uk }, where Ui has leaf set L i

and
⋃k

i=1 L i = [N ] the general goal is to find a subset of UN that captures the information in A. To

achieve this we leverage the tropical metric as a quantitative measure of the closeness of a supertree

to the input trees. The intuition is that we can consider the lifts of each Ui given by Ψ−1(Ui ) and if we

are able to find a subset of UN that minimizes the sum of the distances to these lifts then we get a

set of ultrametrics that is geometrically close to our input ultrametrics. To do this we need to define

the tropical distance between sets.

Definition 6.4.1. Let X , Y ⊂Rn and X , Y be the collection of representatives inRn/R1. The tropical

distance between two sets in Rn/R1 is defined as

dtr(X , Y ) := min
x∈X ,y ∈Y

dtr(x , y ).

The tropical metric allows us to define classic statistical functions in the quotient space Rn/R1.

The main such function we use for analysis are Fermat-Weber points (see [Lin18] for an in-depth

treatment).

Definition 6.4.2. For points v1, v2, . . . , vk ∈Rn/R1, the set of their tropical Fermat-Weber points is

argmin
u∈Rn/R1

k
∑

i=1

dtr(u , vi ).

The minimum distance is the value

min
u∈Rn/R1

k
∑

i=1

dtr(u , vi )

We generalize this definition to sets of ultrametrics that have differing leaf labels.

Definition 6.4.3. Let A= {U1, . . . ,Uk }, Ui ∈ U L i , and
k
⋃

i=1
L i = [N ]. Then the set of tropical median

supertrees of A is

Ãt r :=

¨

U ∈ UN :
k
∑

i=1

dtr(U ,Ψ−1(Ui )) is minimum

«

.

The minimum median distance is the value

Amin := min
U ∈UN

k
∑

i=1

dtr(U ,Ψ−1(Ui )).

65



4 1 2 3

τ1

4 1 2 3

τ2

Figure 6.5 Some binary tree topologies.

Note the analogy to the ordinary median inRwhere the median of a set of numbers {a1, . . . , ak }
is

argmin
x∈R

k
∑

i=1

|x −ai |.

In the case where the leaf sets of all ultrametrics are the same the tropical median supertrees and

the tropical Fermat-Weber points are the same. Calculating the set of tropical median supertrees

will be the main focus for the rest of this chapter.

6.5 Calculating Tropical Median Supertrees

Now that we have defined what a set of tropical median supertrees is we continue with a method for

computing them. As we will show, the tropical projective space admits useful geometric properties

that will allow us to describe the tropical median supertree as the Minkowski sum of a bounded

polytope and a ray. We will make use of linear programming techniques as well as the polytope

solver polymake [Ass17] for visualizations and polytope descriptions.

Our method for calculating the tropical median will require us to describe the problem as a

linear program. Hence, we need to express the search area (UN ), and the lifts (Ψ−1(Ui )) via linear

equalities and also express the tropical distance function (dtr(x , y )) as an optimization problem.

Similar to the work of Grindstaff and Owen in BHV space [Gri18]we approach the parameteriza-

tion of UN using a divide and conquer strategy. Despite being tropically convex inRn/R1, UN does

not have a description as linear inequalities inRn . However, for τ ∈R B ([N ]), the cone Cτ does have

such a description. Definition 6.3.6 shows that from each binary τwe can derive a set of equations

that all ultrametrics in Cτ must satisfy.

Example 6.5.1. Consider the rooted binary tree topologies labeled by [4], τ1 and τ2 given in Figure

6.5. For each i , j , k ∈ [4]we get a set of inequalities that any U in the cone corresponding to each

topology must satisfy.

66



4 1 2 3

2

1 1

3 3

Figure 6.6 The ultrametric (6, 6, 6, 2, 6, 6) as a tree.

i , j , k τ1 τ2

1, 2, 3 U (2, 3)≤U (1, 2) =U (1, 3) U (2, 3)≤U (1, 2) =U (1, 3)

1, 2, 4 U (1, 2)≤U (1, 4) =U (2, 4) U (1, 4)≤U (1, 2) =U (2, 4)

1, 3, 4 U (1, 3)≤U (1, 4) =U (3, 4) U (1, 4)≤U (1, 3) =U (3, 4)

2, 3, 4 U (2, 3)≤U (2, 4) =U (3, 4) U (2, 3)≤U (2, 4) =U (3, 4)

Of course, these lists are exhaustive and in practice they are not all necessary. For instance, the

relationships for τ1 can be reduced down to

U (1, 2) =U (1, 3),U (1, 4) =U (2, 4) =U (3, 4), and U (2, 3)≤U (1, 2)≤U (1, 4).

Notice that the ultrametric U = (6, 6, 6, 2, 6, 6)maps to the tree in Figure 6.6 and its corresponding

ultrametric satisfies all of the above inequalities. Hence it lies on the boundary of the cones implied

by τ1 and τ2.

We turn our focus to the preimage of an ultrametric in the Rn , specifically Ψ−1(U ). Much the

same way as the parameterization of UN we make use of the convexity of cones. We consider the

lift of an ultrametric U and restrict to a fixed rooted binary topology τ.

Definition 6.5.2. For an ultrametric U in US , S ⊆ [N ], and a rooted binary topology τ on [N ]we

define

Ψ−1
τ (U ) :=Ψ

−1(U )∩ Cτ.

Many topologies will not be compatible with U , so there will be certain τwhere Ψ−1
τ (U ) = ;. In

Proposition 6.5.3 we show that this lift to a fixed topology is classically convex in the ambient space

Rn .

Proposition 6.5.3. Given U ∈ US , S ⊆ [N ] and a rooted binary tree topology τ the set Ψ−1
τ (U )⊆ UN

is convex in Rn .

Proof. Suppose U ∈ US , S ⊆ [N ], and let U1,U2 ∈ Ψ−1
τ (U ). For all t so that 0 ≤ t ≤ 1 we consider

U ′ =U1(1− t ) +U2t . Because U1 and U2 have the same topology they satisfy the inequalities for Cτ.

67



1 2 3

3
5

22

1 2 34 5

3
5-(a+b)

b

a+b
a a22

Figure 6.7 An ultrametric U and a parameterization of Ψ−1
τ (U ).

Convexity of Cτ follows from the inequalities that define the cone, and therefore U ′ is also in Cτ. It

remains to show that U ′
|S =U . Given i , j ∈ S , U1(i , j ) =U (i , j ) =U2(i , j ), which implies that U ′(i , j )

is also equivalent to U (i , j ). Hence U is an induced subtree of U ′.

Example 6.5.4. We consider an ultrametric tree U = [4,10,10] in U [3] and a rooted topology τ

labeled by [5] as illustrated in Figure 6.7. Every topology that has the tree on the left as an induced

subtree can be formed by choosing an edge to add the leaf labeled 4, then repeating this process to

add a leaf labeled 5. In this example we do not increase the height of the tree. For U ′ ∈Ψ−1(U ), we

notice the following relationships:

• U ′(3, 4) =U ′(3, 5) = 2(a + b ).

• U ′(i , 5) =U ′(i , 4) =U ′(i , 3) for i ∈ [2].

• 0≤ a + b ≤ 5, a ≥ 0, b ≥ 0.

Hence, Ψ−1
τ (U ) is exactly the ultrametrics of the form:

















0 4 10 10 10

0 10 10 10

0 2(a+b) 2(a+b)

0 2a

0

















satisfying a , b ≥ 0 and also a + b ≤ 5.

Example 6.5.5. We again consider an ultrametric tree U = [4, 10, 10] in U [3] and a fixed topology τ

labeled from [5], as seen in Figure 6.8. Similar to Example 6.5.4, if we think of U as having an infinite

edge out of its root, denoted in the picture on the left by a dotted line, then we see that the topology

τ of the tree on the right can be achieved by adding the leaf labeled 4 to this dotted edge, and then

adding the leaf labeled 5 in the same way. Here we observe:

68



1 2 3

3
5

22

1 2 345

3

a

b

5
5+a

5+a+b

22

Figure 6.8 An ultrametric U and a parameterization of Ψ−1
τ (U ), where the height of the tree increases.

• U ′(i , 4) =U ′( j , 4) = 2(5+a ) for i , j ∈ [3].

• U ′(i , 5) =U ′( j , 5) = 2(5+a + b ) for i , j ∈ [4].

• a ≥ 0, b ≥ 0.

Here we have Ψ−1
τ (U ) is exactly the ultrametrics of the form:

















4 10 2(5+a) 2(5+a+b)

10 2(5+a) 2(5+a+b)

2(5+a) 2(5+a+b)

2(5+a+b)

















satisfying a , b ≥ 0.

Theorem 6.5.6. If U ∈ US and S ⊆ [N ] then Ψ−1(U ) is tropically convex in Rn/R1.

Proof. We suppose that X , Y ∈ Ψ−1(U ) in Rn . Convexity in Rn/R1 is equivalent to showing for all

a , b ∈R there exists Z ∈Ψ−1(U ), c ∈R, so that c ⊙Z = a ⊙X ⊞ b ⊙Y . In other words any tropically

linear combination is a scalar away from a supertree of U . Because X and Y both project onto U ,

for all i , j ∈ S we have that X (i , j ) = Y (i , j ). Let c =max{a , b } and Z = (a − c )⊙X ⊞ (b − c )⊙Y . UN

is tropically convex and hence a ⊙ X ⊞ b ⊙ Y is in UN , as is Z . By our choice of c , for all i , j ∈ S ,

Z (i , j ) = X (i , j ) = Y (i , j ). Hence Z|S =U and Z ∈Ψ−1(U ).

Corollary 6.5.7. If U ∈ US , S ⊆ [N ], and τ is a rooted binary topology labeled by [N ] then Ψ−1
τ (U ) is

tropically convex in Rn/R1.

Proof. If X , Y ∈Ψ−1
τ (U ) inR

n , then for all i , j , k , they both satisfy the same set of inequalities defined

byτ. Since the tropical operations preserve this property X ⊞Y has the same topology. Theorem 6.5.6

gives us that X ⊞Y ∈Ψ−1(U ).

69



The tropical convexity of Ψ−1(U ) allows us to perform computations in the tropical projective

torus, using the tropical operations, with the guarantee that our results may be translated back to a

supertree of U in Rn .

As mentioned in Example 6.5.4 some topologies in Ψ−1(U )may have larger heights than the

original {Ui }. Example 6.5.5 demonstrates this. We make the distinction between these two types of

topologies because those that do not increase the height give a bounded convex polytope, while

those that do increase the height are unbounded.

For algorithm optimization, there are situations when we can restrict the unbounded polytopes

to bounded versions, which we will discuss more in Section 6.6.

Up to this point we are able to define the space of ultrametrics as well as the space of lifts via

linear inequalities. In order to define the set of tropical median supertrees as the solution to a

linear programming problem it remains to show that the tropical distance can be defined as an

optimization problem. We recall that one definition of the tropical distance is given as

dtr(U1,U2) = max
1≤i< j≤N

(U1(i , j )−U2(i , j ) + max
1≤i< j≤N

(U2(i , j )−U1(i , j )),

and claim that this can be given as an optimization problem.

Proposition 6.5.8. Let x , y ∈Rn and suppose φ(x , y ) is the minimum value of the following opti-

mization problem:

minimize z1+ z2

subject to z1, z2 ∈R

z1 ≥ xi − yi , 1≤ i ≤ n

z2 ≥ yi − xi , 1≤ i ≤ n .

Thenφ(x , y ) = dtr(x , y ).

Proof. Follows directly from the definition of tropical distance.

We now have all the individual pieces involved in calculating the set of tropical median supertrees

can be given in terms of linear inequalities and optimization problems. The definition below can be

used to calculate the set for a fixed collection of topologies.

Definition 6.5.9. Let A = {U1,U2, . . . ,Um}, with Ui ∈ U L i and L i ⊆ [N ] for 1 ≤ i ≤ m . For B =

70



(τ0,τ1, . . . ,τm ), with τi ∈R B ([N ])we consider the following optimization problem:

minimize
m
∑

i=1

zi ,1+ zi ,2

subject to U ∈ Cτ0

Wi ∈Ψ−1
τi
(Ui ), 1≤ i ≤m

zi ,1 ≥U ( j , k )−Wi ( j , k ), 1≤ i ≤m , 1≤ j < k ≤N

zi ,2 ≥Wi ( j , k )−U ( j , k ), 1≤ i ≤m , 1≤ j < k ≤N .

We let f (τ0, . . . ,τm ) be the minimum value and F (τ0, . . . ,τm ) be the set of U ∈ Cτ0
that achieve this

minimum value.

Theorem 6.5.10. Let A= {U1,U2, . . . ,Um}, with Ui ∈U L i for L i ⊆ [N ], 1≤ i ≤m. Let B be the set of

all possible lists of the form (τ0,τ1, . . . ,τm ), where each τi is a rooted binary topology labeled from

[N ]. Given f (B ) and F (B ) from Definition 6.5.9 then

Amin =min
B∈B

f (B )

and

Ãt r = {F (B ) : B ∈B and f (B ) =Amin}.

Proof. The optimization problem given in Definition 6.5.9 finds the minimum sum of distances for

a fixed list of topologies, given by f (B ). Minimizing these sums over all possible lists of topologies,

B, is then the minimum possible sum, which by Definition 6.4.3 is equal to Amin. It is clear that

{F (B ) : B ∈ B and f (B ) =Amin} ⊆ Ãt r . By assumption, B is exhaustive, hence if U ∈ Ãt r then for

some B ∈B, U ∈ F (B ). Therefore, Ãt r = {F (B ) : B ∈B and f (B ) =Amin}.

Theorem 6.5.10 gives a rigorous method for calculating the set of tropical median supertrees.

However, the number of linear programs that must be run is extremely large. When running it

naively, over all of B it requires solving and storing results from ((2N −3)!!)k+1 linear programs. To

improve on this we can first consider which B ∈B are feasible.

Proposition 6.5.11. Let U be an ultrametric labeled from L ⊆ [N ]. Then Ψ−1(U ) lies in the union of

at most (2N −3)!!/(2|L | −3)!! maximal cones.

Proof. We assume U is binary to maximize the calculation. Note that when we add a single leaf to a

tree with |L | leaves there are (2|L | −1) places where we could add that leaf corresponding in order to

get a new binary topology. These correspond to the 2|L | −2 edges in the topology corresponding to

U , plus the option of adding a leaf above the root. The result then follows by induction.

71



Ultimately, this means that if each Ui has leaf set L i ⊆ [N ] then the number of linear programs

that need to be checked are at most

(2N −3)!!
r
∏

i=1

(2N −3)!!/(2|Si | −3)!!.

The term (2N −3)!! comes from considering all cones that could be the location of the median, while

the other terms correspond to the cones that contain the various lifts. In practice, this is only feasible

when N is small and the |L i | is close to N for all i .

As we show in Example 6.5.12, a straightforward method for calculating both Amin and Ãt r

involves iterating through the pertinent rooted binary tree topologies, solving a linear program

for each and storing the value and inequalities when a minimum distance is achieved. Each set

of inequalities is the H -representation of a polytope inR|A|(n+2)+n . We then consider the plane, Q ,

given by:
|A|
∑

i=1

zi ,1+ zi ,2 =Amin.

We then take each of the above polytopes, intersect them with Q , and project onto the n coordi-

nates corresponding to U in the linear program. This gives a polytope of solutions and taking the

union of all of these results in Ãt r . We can analyze these polytopes individually using tools such

as polymake [Ass17] to give improved descriptions of the space. In particular, while our solutions

are unbounded due to the nature of tropical scaling in Rn , these polytopes can be described as an

affine subspace of the (n +1) dimensional space. Here they are the Minkowski sum of a bounded

polytope and the ray from the origin that passes through 1. When it is deemed useful, we are then

able to search our solution set for ultrametrics with certain heights and/or topologies.

Example 6.5.12. Consider the ultrametrics, A= {U1,U2,U3} given by the matrices below.

U1 =

















0 18 34 100 ∗
0 34 100 ∗

0 100 ∗
0 ∗

0

















U2 =

















0 64 64 100 ∗
0 30 100 ∗

0 100 ∗
0 ∗

0

















U3 =

















0 100 ∗ 86 56

0 ∗ 100 100

0 ∗ ∗
0 86

0

















The ultrametrics U1 and U2 have leaf sets {1,2,3,4}, while U3 has leaf set {1,2}. For each of the

105 topologies in U5 and each of the 7 possible lifts of U1, U2, and U3 we run a linear program to

find the minimum distance. We find that Amin = 100 and this solution is achieved by 45 different

linear programs out of the 36,015 we ran. We input these into polymake and find that 2 unbounded

polytopes capture the tropical median. These polytopes can be given as the Minkowski sum of the

72



452 31

τ1

45 2 31

τ2

Figure 6.9 The two topologies that define the maximal cones that intersect the solution set.

v ′5

v2

v ′4

v ′3

v1

v0 v0

v2

v3

v4

v1

v5

v6

v8

v7

Figure 6.10 The polytope P1 (Left), and a Schlegel diagram of P2 (Right).

ray that passes through 1 and the bounded polytopes P1 and P2, with each row vector given below

representing a vertex.

P1 =





















34 34 66 34 0 66 34 66 34 66

34 34 70 34 0 70 34 70 34 70

30 30 66 30 0 66 30 66 30 66

34 34 70 40 0 70 40 70 40 70

34 34 66 36 0 66 36 66 36 66

30 30 66 36 0 66 36 66 36 66





















P2 =



































34 34 66 34 0 66 34 66 34 66

34 34 70 34 0 70 34 70 34 70

30 30 66 30 0 66 30 66 30 66

30 30 66 0 0 66 30 66 30 66

34 34 66 0 0 66 34 66 34 66

44 44 76 0 10 76 44 76 44 76

44 44 80 0 14 80 44 80 44 80

34 34 70 0 0 70 34 70 34 70

44 44 80 0 10 80 44 80 44 80



































From this we are able to give the tropical median explicitly as,

Ãt r = {a ⊙U : U ∈ P1 ∪P2, a ∈R≥0}.

We find that Ãt r ⊂ ( Cτ1
∪ Cτ2

) for the two binary topologies shown in Figure 6.9. Note that P1

is a subset of Cτ1
, while P2 lies in both Cτ1

and Cτ2
. In this case, P1 has dimension 3, while P2 has

dimension 4. Figure 6.10 shows the structure of P1 and a Schlegel diagram of P2. The facet of P1 in

red defined by v0, v1, and v2 denotes their intersection.

73



6.6 Special Case: Two Input Ultrametrics

The linear program given in the last section allows us to theoretically calculate the tropical median

in UN for a collection of convex lifts of ultrametrics in subspaces of UN . But, as we have seen, it

requires running a large number of linear programs to solve. In this section we provide methods to

improve the feasibility of our method. We begin by first introducing the span of an ultrametric U .

Definition 6.6.1. For an ultrametric U , the span of U denoted span{U }, is the difference between

its maximum and minimum coordinate.

Clearly, scaling an ultrametric does not change the span. Also, we may use the span to form an

upper bound on the minimum distance of the tropical median points.

Proposition 6.6.2. If A= {U1,U2, ...,Ur } then Amin ≤
∑r

i=1 span{Ui }.

Proof. For each Ui choose a lift in Ψ−1(Ui ) that has the same span as Ui . This can always be done

by simply attaching new leaves to existing vertices. Let y denote the ultrametric in UN with each

coordinate equal to one. The sum of the distances from the lifts to y is given by:

r
∑

i=1

dtr(y ,Ψ−1(Ui )) =
r
∑

i=1

span{Ui }.

This upper bound on the sum of the distances can potentially be used to rule out various

topologies and even give height restrictions to the lifted ultrametrics and ultrametrics in the tropical

median. It turns out that such restrictions are computationally advantageous, allowing us to restrict

the unbounded lifts and cones to tropical polytopes.

6.6.1 Tropical Mean Supertrees

Here we consider the special case when our input is only two trees: A= {U1,U2}. It is clear that Ãt r

is all points in UN that lie on a geodesic between Ψ(U1) and Ψ(U2). These points can be calculated

using the general method above. However, when we are limited to two trees there are subsets of our

solution set that can also be calculated using this method. We begin by presenting bounds of Amin

that hold in this case.

Proposition 6.6.3. Given A = {U1,U2}, let S ′ = L(U1)∩L(U2). If |S ′| ≥ 3 and U1,U2 are binary then

Amin ≥ dtr(U1|S ′ ,U2|S ′ ).

Proof. This follows from U1|S ′ and U2|S ′ being induced subtrees of all their respective lifts.

74



When the leaf intersection is at least 3 it may then be advantageous to check if it is feasible to lift

U1 and U2 while maintaining this lower bound. Our distance calculation provides bounds that each

added lift must remain between.

Definition 6.6.4. For U1, U2 with at least 2 shared leaves, let Dma x and Dmi n denote the maximum

and minimum value in U1−U2.

If U1, U2 are binary and share at least 3 leaves, then Dma x >Dmi n . If they share only 2 leaves,

Dma x =Dmi n .

If i is a leaf in both U1 and U2 and j is a leaf only in U1, then to maintain the distance from 6.6.3, j

must be attached to U2, forming U ′
2 so that Dmi n ≤U1(i , j )−U ′

2 (i , j )≤Dma x . If we consider the path

in U2 from i to the root and potentially past it onto the phantom edge, the points on this path that

are Dmi n/2 and Dma x /2 from i gives an initial boundary for the placement of i on U2. Repeating this

for all leaves only in U1 and taking the intersection of the bounded areas gives the viable placements

for i . The same can be done for leaves only in U2. If any viable placement areas are empty, then the

lower bound is not feasible. If none are empty all that is left is check if the coordinates that are new

in both lifts can maintain the minimum distance.

Another benefit in the case of two trees is that we are able to bound the height of our feasible

lifts, allowing us to express the lifts in a useful way.

Theorem 6.6.5. Let U1 ∈ UX and U2 ∈ UY and suppose X ∪Y = [N ] and |X ∩Y | ≥ 2. Let h1 =max(U1)

and h2 =max(U2). Any lift, U ′
2 ∈ Ψ

−1(U2) that lies on a minimum length geodesic between Ψ−1(U1)

and Ψ−1(U2)must satisfy:

max(U ′
2 )≤max(h2, 2(span{U1}+ span{U2}−Dma x +h1)

Proof. Proposition 6.6.2 shows that

dtr(Ψ
−1(U1),Ψ

−1(U2))≤ 2(span{U1}+ span{U2}).

Therefore, suppose i , j ∈ X ∩Y such that U1(i , j )−U2(i , j ) =Dma x . Let k be a leaf of U1 that is not a

leaf of U2. Then any lift U ′
2 must satisfy

U ′
2 (i , k )≤ 2(span{U1}+ span{U2})−Dma x +U1(i , k )

This allows us to give an upper bound for every coordinate in the lifts of U1 and U2, call these h1 and

h2, respectively.

In the two tree case a slightly different parameter that might be of interest is the set of midpoints

of the geodesics between the two lifts. These points are more similar to a mean, as they minimize

the sum of the squares of their distance from each lift. These can be calculated in the same manner.

75



We first run our lift over all topologies to determine Amin. Then, in our polytope we restrict each

pair of slack variables to equal Amin
2 .

Example 6.6.6. We consider the set of two ultrametrics A= {U1,U2}, where U1,U2 are defined by

the matrices:

U1 =

















100 78 78 ∗
100 100 ∗

50 ∗
∗

















U2 =

















26 ∗ 100 26

∗ 100 24

∗ ∗
100

















U1 has leaf set {1, 2, 3, 4} and U2 has leaf set {1, 2, 3, 5}. We lift U1 and U2 to U5 and using a linear

program solver determine that dtr(Ψ−1(U1),Ψ−1(U2)) = 96. Using polymake we can then represent all

ultrametrics in U5 that lie on a geodesic between these lifts as the Minkowski sum of the ray 1 and

the union of the polytopes given below.

P1 =























































76 76 76 76 76 76 0 26 76 76

28 28 28 28 28 28 0 0 28 28

76 76 76 76 76 76 0 48 76 76

50 50 50 50 50 50 0 0 50 50

50 50 50 50 50 50 48 0 50 50

28 28 28 28 28 28 26 0 28 28

50 100 100 50 100 100 24 0 100 100

26 100 100 26 100 100 24 0 100 100

50 100 100 50 100 100 48 0 100 100

2 28 28 2 28 28 0 0 28 28

2 76 76 2 76 76 0 48 76 76

50 76 76 50 76 76 0 0 76 76

2 76 76 2 76 76 0 0 76 76























































P2 =



































76 76 76 76 76 76 0 26 76 76

28 28 28 28 28 28 0 0 28 28

76 76 76 76 76 76 0 48 76 76

50 50 50 50 50 50 0 0 50 50

50 50 50 50 50 50 48 0 50 50

28 28 28 28 28 28 26 0 28 28

50 28 28 50 50 50 48 0 50 50

50 28 28 50 50 50 0 0 50 50

98 76 76 98 98 98 0 48 98 98



































The intersection of P1 and P2 is given by the vertices corresponding to the first six row vectors of

each. Both P1 and P2 are four dimensional and their intersection is a 3-dimensional facet of both.

Figure 6.13 gives the Schlegel diagram through that facet. Hence we can define the tropical median

of A to be:

Ãt r = {a ⊙U : U ∈ P1 ∪P2, a ∈R+}

All ultrametrics in the tropical median are in Cτ1
∪ Cτ2

for the topologies shown in Figure 6.14 with

the intersection lying on the boundary between the two cones.

Additionally, in this case we can calculate the polytope of midpoints. These are the ultrametrics

in Ãt r that are equidistant to each lift. Again we give this as a Minkowski sum of a polytope and the

76



v1

v2

v4

v5

v0

v3

Figure 6.11 P1

v1

v3

v0

v2

v4

v5

Figure 6.12 P2

Figure 6.13 Schlegel diagram of P1 and P2 viewed through the facet that is their intersection and is defined by
the vertices: v0, v1, v2, v3, v4, v5.

3 42 51
τ1

2 53 41
τ2

Figure 6.14 The two topologies that define the maximal cones that intersect the solution set.

ray 1.

P3 =











2 28 28 2 28 28 0 0 28 28

50 76 76 50 76 76 0 0 76 76

50 76 76 50 76 76 48 0 76 76

50 76 76 50 76 76 0 48 76 76











The polytope of midpoints lies in Cτ1
, for the topology τ1 listed above and only intersects P1.

As with the examples above, the presentation of the solution set allows us to restrict to a maximum

height, and in general we can also restrict to a fixed topology if multiple topologies are present.

The technique for finding the midpoint of the geodesics has the additional benefit that it can be

extended to other points on the geodesic. For instance, given two input trees one may want to

weight a certain tree more than the other. This only requires setting the slack variables equal to the

appropriate percentage of the geodesic distance. This amounts to changing two inequalities in the

H-description of the polytope.

77



v9

v11

v13

v14

Figure 6.15 Schlegel diagram of P1 through a
different facet than the diagram above with the

edges of the tropical mean in blue.

v9

v14

v11

v13

Figure 6.16 A three-dimensional rendering of
the polytope outlined in the figure to the left.

This simplex is the set of midpoints of geodesics
between U1 and U2.

78



BIBLIOGRAPHY

[Arn87] Arnborg, S., Corneil, D. G., and Proskurowski, A. “Complexity of finding embeddings in
ak-tree”. SIAM Journal on Algebraic Discrete Methods 8.2 (1987), pp. 277–284.

[Aro09] Arora, S. and Barak, B. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[Ass17] Assarf, B. et al. “Computing convex hulls and counting integer points with polymake”.
Math. Program. Comput. 9.1 (2017), pp. 1–38.

[Bil01] Billera, L. J., Holmes, S. P., and Vogtmann, K. “Geometry of the space of phylogenetic
trees”. Advances in Applied Mathematics 27.4 (2001), pp. 733–767.

[BE02] Bininda-Emonds, O. R., Gittleman, J. L., and Steel, M. A. “The (super) tree of life: proce-
dures, problems, and prospects”. Annual Review of Ecology and Systematics 33.1 (2002),
pp. 265–289.

[Chu10] Chung, F. “Graph theory in the information age”. Notices of the AMS 57.6 (2010), pp. 726–
732.

[Coo71] Cook, S. A. “The complexity of theorem-proving procedures”. Proceedings of the third
annual ACM symposium on Theory of computing. 1971, pp. 151–158.

[Die05] Diestel, R. “Graph theory 3rd ed”. Graduate texts in mathematics 173 (2005).

[Dvo13a] Dvořák, Z., Král, D., and Thomas, R. “Testing first-order properties for subclasses of
sparse graphs”. Journal of the ACM (JACM) 60.5 (2013), pp. 1–24.

[Dvo13b] Dvořák, Z. “Constant-factor approximation of the domination number in sparse graphs”.
European Journal of Combinatorics 34.5 (2013), pp. 833–840.

[Erd66] Erdős, P. and Hajnal, A. “On chromatic number of graphs and set-systems”. Acta Mathe-
matica Academiae Scientiarum Hungarica 17.1-2 (1966), pp. 61–99.

[Eve11] Even, S. Graph algorithms. Cambridge University Press, 2011.

[Fel04] Felsenstein, J. and Felenstein, J. Inferring phylogenies. Vol. 2. Sinauer associates Sunder-
land, MA, 2004.

[Gol08] Golovach, P. A. and Villanger, Y. “Parameterized complexity for domination problems on
degenerate graphs”. International Workshop on Graph-Theoretic Concepts in Computer
Science. Springer. 2008, pp. 195–205.

[Gri18] Grindstaff, G. and Owen, M. “Geometric comparison of phylogenetic trees with different
leaf sets”. arXiv preprint arXiv:1807.04235 (2018).

[Gro15] Grohe, M. et al. “Colouring and covering nowhere dense graphs”. International Workshop
on Graph-Theoretic Concepts in Computer Science. Springer. 2015, pp. 325–338.

79



[Hum08] Humphries, P. “Combinatorial aspects of leaf-labelled trees”. PhD thesis. University of
Canterbury, 2008.

[Kar72] Karp, R. M. “Reducibility among Combinatorial Problems”. Complexity of Computer
Computations. Boston, MA: Springer US, 1972, pp. 85–103.

[Kie03] Kierstead, H. A. and Yang, D. “Orderings on graphs and game coloring number”. Order
20.3 (2003), pp. 255–264.

[Lin18] Lin, B. and Yoshida, R. “Tropical Fermat–Weber Points”. SIAM Journal on Discrete Math-
ematics 32.2 (2018), 1229–1245.

[Lin17] Lin, B. et al. “Convexity in tree spaces”. SIAM Journal on Discrete Mathematics 31.3
(2017), pp. 2015–2038.

[Lon16] Long, C. “Algebraic Geometry of Phylogenetic Models”. PhD thesis. North Carolina State,
2016.

[Mac15] Maclagan, D. and Sturmfels, B. Introduction to tropical geometry. Vol. 161. American
Mathematical Soc., 2015.

[Mat08] Matsen, F. A., Mossel, E., and Steel, M. “Mixed-up trees: the structure of phylogenetic
mixtures”. Bulletin of Mathematical Biology 70.4 (2008), pp. 1115–1139.

[Mat83] Matula, D. W. and Beck, L. L. “Smallest-last ordering and clustering and graph coloring
algorithms”. Journal of the ACM (JACM) 30.3 (1983), pp. 417–427.

[Mon18] Monod, A. et al. Tropical Geometry of Phylogenetic Tree Space: A Statistical Perspective.
2018. arXiv: 1805.12400 [math.MG].

[Neš08] Nešetřil, J. and Mendez, P. Ossona de. “Grad and classes with bounded expansion II.
Algorithmic aspects”. European Journal of Combinatorics 29 (2008), pp. 777–791.

[Neš12] Nešetřil, J. and Mendez, P. Ossona de. Sparsity: graphs, structures, and algorithms. Vol. 28.
Springer Science & Business Media, 2012.

[Owe10] Owen, M. and Provan, J. S. “A fast algorithm for computing geodesic distances in tree
space”. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8.1
(2010), pp. 2–13.

[Ren17] Ren, Y. et al. “A combinatorial method for connecting BHV spaces representing different
numbers of taxa”. arXiv preprint arXiv:1708.02626 (2017).

[Spe05] Speyer, D. and Williams, L. “The tropical totally positive Grassmannian”. Journal of
Algebraic Combinatorics 22.2 (2005), pp. 189–210.

[Ste16] Steel, M. Phylogeny: discrete and random processes in evolution. SIAM, 2016.

80

https://arxiv.org/abs/1805.12400


[Ste08] Steel, M. and Rodrigo, A. “Maximum likelihood supertrees”. Systematic biology 57.2
(2008), pp. 243–250.

[Sul11] Sullivant, S. “The Disentangling Number For Phylogenetic Trees” (2011).

[Tov84] Tovey, C. A. “A simplified NP-complete satisfiability problem”. Discrete Applied Mathe-
matics 8.1 (1984), pp. 85–89.

[Zai16] Zairis, S. et al. “Genomic data analysis in tree spaces”. arXiv preprint arXiv:1607.07503
(2016).

[Zhu09] Zhu, X. “Colouring graphs with bounded generalized colouring number”. Discrete Math-
ematics 309.18 (2009), pp. 5562–5568.

[Zie12] Ziegler, G. M. Lectures on polytopes. Vol. 152. Springer Science & Business Media, 2012.

81


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Graph Theory
	Computational Complexity
	Coloring Numbers
	Polyhedral Geometry
	Phylogenetic Trees
	Tropical Geometry
	Tree Metrics
	Outline of Thesis

	I Coloring Numbers
	Overview: Coloring Numbers
	Introduction
	Relationship to the Game Coloring Number
	Sparsity and Bounded Expansion
	Approximating the r-Coloring Number

	Coloring Number Hardness
	Introduction
	Problem Statements and Known Results
	A Reduction From 2-Clause 3-SAT
	r-Orderable is NP-Complete
	Additional Complexity results

	Approximating the r-Coloring Number
	Introduction
	r-Reach Tree
	k-Neighbor Restrictive Bounds
	Main Algorithm
	Deriving k-Neighbor Restrictive Bounds


	II Phylogenetic Trees
	Disentangling Phylogenies
	Introduction
	Preliminaries
	Known Results
	Disentangling Multisets of Four Unrooted Binary Trees
	Disentangling Sets of 3 Unrooted Trees

	Tropical Median Supertrees
	Introduction
	Background
	Tropical Tree Space
	Tropical Median Supertrees
	Calculating Tropical Median Supertrees
	Special Case: Two Input Ultrametrics
	Tropical Mean Supertrees


	Bibliography


