
ABSTRACT

BAKER, MICHAEL AARON. Root Multiplicities of some Hyperbolic Kac-Moody Lie Algebras.
(Under the direction of Kailash Misra).

Over 50 years ago, Victor Kac and Robert Moody introduced Kac-Moody Lie algebras

as a natural generalization of semisimple Lie algebras that were completely classified

already. These algebras have found many connections to phenomena in both mathematics

and physics. The Kac-Moody algebras come in three types: finite, affine, and indefinite.

Both finite and affine Kac-Moody algebras have had all root multiplicities calculated. The

indefinite type has root multiplicities computed in some cases, but they are not completely

known.

In this thesis, we have studied some root multiplicities for the hyperbolic Kac-Moody

Lie algebras g = H E (1)7 , H E (1)8 . We realize these algebras as minimal graded Lie algebras

whose local part is V ⊕ gl(n ;C)⊕V ′ for suitably chosen gl(n ;C)-modules V and V ′. This

realization gives rise to a natural Z-gradation g=⊕ j∈Zg j , where g0 = gl(n ;C), g−1 =V , and

g1 = V ′. It is known that the multiplicity of root α is the same as −α, so without loss of

generality we focus on the multiplicity of negative roots. We say the negative root α is of

degree − j if the α-root space is contained in g− j . Kang’s multiplicity formula allows one to

view the roots of g as some combination of weights in gl(n ;C)modules. Using this formula,

we calculate the multiplicities of roots in g.

We determine the root multiplicities of all roots up to degree −7 in H E (1)7 and root

multiplicities of all roots up to degree −8 and one special root of degree −9 for H E (1)8 .

This special root in H E (1)8 exceeds the proposed upper bound by Frenkel, which verifies

the calculation done by Kac et al. (1988). Additionally, three of the roots of H E (1)7 have

multiplicity that exceeds the proposed upper bound by Frenkel as well, which shows that

Frenkel’s conjecture does not hold for H E (1)7 .
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INTRODUCTION

Around 1870, Sophus Lie began his study of continuous transformation groups [O’Connor

and Robertson (2000)]. This research would give rise to the objects known as Lie groups,

smooth manifolds with a group structure. It was eventually shown that there is a corre-

spondence between these groups and their tangent spaces near the identity, called the Lie

algebra [Hall (2015)]. The Lie algebra, being a vector space with non-associative multiplica-

tion, is far easier to study than the whole Lie group. Thus, Lie algebras corresponding to Lie

groups were studied in order to find out properties of the group.

One important class of Lie algebras is simple Lie algebras, which have no nontrivial

ideals. Between 1888 and 1890, Wilhelm Killing offered the first classification of simple

Lie algebras over the complex numbers, which separated them into four infinite groups

An , Bn , Cn , Dn as well as five exceptions E6, E7, E8, F4, and G2 [Humphreys (2000)]. In 1894,

the Ph.D thesis of Élie Cartan both rigorously confirmed the classification made by Killing

and extended it to the real numbers [Cartan (1894)]. The beauty and simplicity of the

classification has made it one of the the most famous results in mathematics.

Over time, research began to focus on infinite dimensional Lie algebras. Considering

the success that was achieved on the classification of simple Lie algebras, the search for a

similar type of infinite dimensional Lie algebra was prioritized. Over 50 years later, Victor

Kac and Robert Moody would independently discover Kac-Moody algebras, a generalization

of semisimple Lie algebras which also contained a large class of infinite dimensional Lie

algebras as well [Kac (1990)]. These Kac-Moody algebras, associated with generalized Cartan

matrices A = (ai j )i , j∈I , I = {1, 2, . . . , n}, fall into three types: finite, affine, and indefinite [Kac

(1990)].

Let g be a Kac-Moody Lie algebra. For nonzero α ∈ Q , define the root lattice of g as

gα = {x ∈ g|[h , x ] =α(h )x , h ∈ h}, where h is the Cartan subalgebra of g. If gα 6= 0, then α is a

root and gα is called the α root space whose dimension is the multiplicity of α denoted by

mult(α) [Kac (1990)]. Roots can be classified as either real or imaginary, where roots of real

type all have multiplicity equal to 1 (see Kac (1990)). The roots of finite Kac-Moody algebras

are all real and so have multiplicity 1. The imaginary root multiplicities of affine Kac-Moody

algebras are equal to the rank of the Generalized Cartan Matrix associated to that algebra

[Kac (1990)]. The remaining category, indefinite Kac-Moody algebras, have imaginary root

multiplicities which were studied only in specific cases. They have been calculated for

H A(1)1 [Feingold and Frenkel (1983); Kang (1993b)], H A(1)n [Kang (1994); Hontz and Misra
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(1994)], H C (1)n [Klima and Misra (2008)], H D (1)
n [Wilson (2012)], H X (1)n for X = A, B , C , D

[Benkart et al. (1994)], H G (1)
2 [Hansen (2016)], H D (3)

4 [Erbacher (2012)], and E10 =H E (1)8 [Kac

et al. (1988); Klima et al. (2014)]. For any indefinite type Kac-Moody Lie algebra, the root

multiplicities are not known completely though.

In this thesis, we study the root multiplicities of the hyperbolic indefinite type Kac-

Moody algebras g=H E (1)7 , H E (1)8 . Using a well-known construction [Benkart et al. (1993a)],

we realize g as a minimal Z-graded Lie algebra with local part g−1⊕g0⊕g1 where g0 is the

Lie algebra gl(n ;C)with suitable modules g−1 and g1. This realization of g allows us to use

Kang’s multiplicity formula [Benkart et al. (1993a)], which involves viewing the roots of g

as combinations of weights in g0-modules. As the multiplicity of root α is the same as −α,

without loss of generality we can focus on determining the multiplicities of the negative

roots.

Let A = (ai j )i , j∈I be a symmetrizable Generalized Cartan Matrix associated with g. Let

S ⊂ I and gS = sl(n ;C) be the Kac-Moody Lie algebra with Cartan Matrix AS = (ai j )i , j∈S . Since

gl(n ;C) = sl(n ;C)⊕CI , where the central element acts trivially, the representation theory of

g0 and gS is the same and so we can look at combinations of weights of gS modules.

We say the degree of a root α is − j if the α-root space is contained in g− j . Since these

modules depend on the gradation, the degree of a root depends on the choice of S . Root

multiplicities in E10 of all roots up to degree−2, for their choice of S , were determined in Kac

et al. (1988). Root multiplicities in E10 =H E (1)8 were determined up to degree −5 in Klima

et al. (2014), for their choice of S . In this thesis, we have determined root multiplicities for

roots up to degree −8 for H E (1)8 . Additionally, we have determined root multiplicities for

roots up to degree −7 for H E (1)7 .

As root multiplicities are still unknown completely for all indefinite type Kac-Moody

algebras, finding an upper bound on the root multiplicities would be a natural first step

towards completely determining them. One bound of interest is Frenkel’s conjecture, which

claims that mult(α)≤ p (rank−2)
�

1− (α|α)2

�

where p k is the partition function in k colors. Kac

et al. (1988) showed that Frenkel’s conjecture fails for E10 in their degree −2, which means it

is not an upper bound for all indefinite Kac-Moody algebras. We calculate the multiplicity

of the degree −9 root (which is degree −2 in Kac et al. (1988)) which violated Frenkel’s

conjecture, verifying their results. Additionally, we find three degree −5 roots in H E (1)7

which violate Frenkel’s conjecture, showing that H E (1)7 is another indefinite Kac-Moody

algebra for which Frenkel’s conjecture does not hold.

In this thesis, we begin with a review of the basic Kac-Moody Lie algebra theory in

Chapter 1. We also discuss the construction of the algebras we are studying, as well as

iv



Frenkel’s conjecture. Chapter 2 reviews the representation theory of sl(n ;C), which is re-

lated to Kang’s formula as mentioned earlier. In particular, we discuss weights and their

multiplicities in the sl(n ;C)-modules which are related to Kostka numbers, a combinatorial

object.

The last two chapters involve using Kang’s multiplicity formula to calculate the root

multiplicities for indefinite Kac-Moody Lie algebras 1. H E (1)7 and 2. H E (1)8 with the following

Cartan matrices respectively:

1.
1 2 3 4 5 6 7 8

0

(Note: gS = sl(9;C))

2.
1 2 3 4 5 6 7 8

0

9

(Note: gS = sl(10;C))

In Chapter 3, we find all root multiplicities up to degree −7 in H E (1)7 , which include

three counterexamples to Frenkel’s conjecture. In Chapter 4, we find all root multiplicities

up to degree −8 in H E (1)8 , as well as the multiplicity of the special degree −9 root which is

the same counterexample that Kac et al. (1988) found.
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CHAPTER

1

SUMMARY OF KAC-MOODY ALGEBRAS

AND THE FF-CONSTRUCTION

1.1 Kac-Moody Lie algebras

We begin with introducing the terminology of Kac-Moody Lie algebras. More details can be

found in Humphreys (2000) and Kac (1990).

Definition 1.1.1 (Humphreys (2000)) A vector space L over the field of complex numbersC,

with an operation L × L→ L denoted (x , y )→ [x , y ] (called ‘bracket’) is called a Lie algebra

over C if

1. The bracket operation is bilinear

2. [x , x ] = 0 for all x ∈ L

3. The Jacobi identity [x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0 holds for all x , y , z ∈ L

Definition 1.1.2 (Kac (1990)) A n × n integral matrix A = (ai j )i , j∈I , where I = 1, . . . , n is

called a Generalized Cartan Matrix (GCM) if it satisfies the following:
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1. ai i = 2 for all i ∈ I

2. ai j are nonpositive integers when i 6= j

3. ai j = 0 if and only if a j i = 0

Definition 1.1.3 (Kac (1990)) We say the matrix A is indecomposable if there is no partition

of the set {1, 2, . . . , n} into two nonempty subsets so that ai j = 0 whenever i belongs to the first

subset and j belongs to the second subset.

Definition 1.1.4 (Kac (1990)) We say the matrix A is symmetrizable if there exists an invert-

ible diagonal matrix D such that D A is symmetric.

Definition 1.1.5 (Kac (1990)) A realization of A is a triple (h,π, π̌) where h is a complex

vector space, π= {α1, . . . ,αn} ⊂ h∗, and π̌= {α̌1, . . . , α̌n}= {h1, . . . , hn} ⊂ h satisfying

1. Both π and π̌ are linearly independent sets.

2. α j (hi ) = 〈hi ,α j 〉= ai j for all i , j

3. dim(h) = 2n − rank(A)

Definition 1.1.6 (Kac (1990)) Let A be a symmetrizable GCM and (h,π, π̌) be a realization

of A. Then the Kac-Moody Lie algebra g= g(A) is the Lie algebra on generators ei , fi for i ∈ I

and h, with the following relations:

[h , h ′] = 0 for h , h ′ ∈ h

[h , f j ] =−〈h ,α j 〉 f j for j ∈ I

[h , e j ] = 〈h ,α j 〉e j for j ∈ I

[ei , f j ] =δi , j hi for i , j ∈ I

(adei
)1−ai j (e j ) = (ad fi

)1−ai j ( f j ) = 0 for i 6= j

Definition 1.1.7 (Kac (1990)) We define three classes of indecomposible GCMs associated

with Kac-Moody Lie algebras.

1. A Kac-Moody Lie algebra of finite type has that det(A) 6= 0. Thus, there exists µ> 0 such

that Aµ> 0; Av ≥ 0 implies that v > 0 or v = 0.
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2. A Kac-Moody Lie algebra of affine type has that det(A) = 0 and the corank of A is 1.

Thus, there exists a µ> 0 such that Aµ= 0; Av ≥ 0 implies that Av = 0.

3. A Kac-Moody Lie algebra of indefinite type is when there exists µ> 0 such that Aµ< 0;

Av ≥ 0, v ≥ 0 implies that v = 0.

Definition 1.1.8 (Kac (1990)) For each i ∈ I , the simple reflection ri is an automorphism

of h∗ defined by ri (λ) =λ−〈hi ,λ〉αi . The group W generated by {ri | i ∈ I } is called the Weyl

group of g(A).

Definition 1.1.9 (Kac (1990)) For w ∈W , we say that w = ri1
ri2

. . . rik
for i j ∈ I is reduced

when k is minimal. The length of w , denoted l (w ), is defined as l (w ) = k .

Definition 1.1.10 (Kac (1990)) We define the root latticeQ to beQ =⊕i∈IZαi ,Q+ =⊕i∈IZ≥0αi ,

and Q− =⊕i∈IZ≤0αi . We note that Q+ =−Q−.

Definition 1.1.11 (Kac (1990)) The Kac-Moody Lie algebra g(A) has a root space decompo-

sition g(A) =⊕α∈Qgα, where

gα = {x ∈ g(A) | [h , x ] =α(h )x for all x ∈ h}

is called theα-root space. An elementα ∈Q is called a root ifα 6= 0 and gα 6= 0. The multiplicity

of a root α is defined as mult(α) = dim(gα).

Definition 1.1.12 (Kac (1990)) For a root α=
∑

i∈I kiαi , we define the height of α, denoted

ht, to be ht(α) =
∑

k∈I ki . We define the principal gradation g = ⊕ j∈Zg j by setting g j =

⊕α:ht(α)= jgα. Note that g0 = h, g−1 =
∑

i∈I C fi , and g1 =
∑

i∈I Cei .

Definition 1.1.13 (Kac (1990)) Let g± =⊕ j≥1g± j . Then, the principal triangular decomposi-

tion of g is

g= g−⊕g0⊕g+

Definition 1.1.14 (Kac (1990)) The set of roots of g is denoted as ∆, which can be written

as∆=∆+ t∆−, where∆+ =
¦

∑

i∈I kiαi | ki ∈Z≥0

©

is the called the set of positive roots and

∆− =
¦

∑

i∈I kiαi | ki ∈Z≤0

©

is the called the set of negative roots.

3



1.2 Integrable representations

Definition 1.2.1 (Kac (1990)) A g-module is h-diagonalizable if V =⊕λ∈h∗Vλ, where

Vλ =
¦

v ∈V | h · v =λ(h )v for all h ∈ h
©

is called the λ-weight space. If Vλ 6= 0, then λ is called a weight of V . The number multV (λ) :=

dim(Vλ) is called the multiplicity of λ in V .

Definition 1.2.2 (Kac (1990)) When all the weight spaces are finite-dimensional, we define

the character of V to be

ch(V ) =
∑

λ∈h∗
dim(Vλ)e

λ

where e λ are basis elements of the group algebraC[h∗]with the binary operation e λe µ = e λ+µ.

Definition 1.2.3 (Kac (1990)) A g-module V is called a highest-weight module with highest

weight λ ∈ h∗ if there is a nonzero vector v ∈V such that

1. g+ · v = 0

2. h · v =λ(h )v for all h ∈ h∗

3. U (g) · v =V , where U (g) is the universal enveloping algebra of g.

The vector v is called the highest-weight vector.

Definition 1.2.4 (Kac (1990)) An h-diagonalizable module over a Kac-Moody algebra g(A)

is called integrable if all ei and fi for all i ∈ I are locally nilpotent on V.

Definition 1.2.5 (Kac (1990)) Ifλ(hi ) ∈Z≥0 for all i ∈ I , thenλ is called a dominant integral

weight. If λ is dominant integral, then V (λ) is integrable.

Definition 1.2.6 (Kac (1990)) A g-module V is called irreducible if it has only has two g-

submodules, itself and {0}. We say that V is completely reducible if V is a direct sum of

irreducible g-submodules.

4



1.3 Construction of H E (1)7

The algebra H E (1)7 is the Kac-Moody Lie algebra associated with the Dynkin diagram

1 2 3 4 5 6 7 8

0

We follow the construction of the Lie algebra started by Feingold and Frenkel [Feingold

and Frenkel (1983)] for some Lie algebras of hyperbolic type and expanded by Kang [Kang

(1993a)] for use with his multiplicity formula. In honor of Feingold and Frenkel, we shall

refer to this construction as the FF-construction henceforth. Consider S ⊂ I , where S = {0}
and I = {0, 1, . . . , 8}, and let gS = g(AS ) be the Kac-Moody Lie algebra associated to the Cartan

Matrix AS = (ai j )i , j∈S . Denote the set of roots of gS as∆S , the set of positive roots as∆+S , the

set of negative roots as ∆−S , and the Weyl group of gS as WS . Define ∆+(S ) :=∆+ \∆+S and

W (S ) = {w ∈W | Φw ⊂∆+(S )}where Φw = {α ∈∆+ | w −1(α) ∈∆−}.
For α ∈Q , define the generalized height of αwith respect to S by htS (α) =

∑

(i∈I \S )ki and

the degree ofα as deg(α) = htS (α). Then we can define aZ-gradation g(A) =⊕ j∈Zg
(S )
j induced

by S (the S-gradation) by setting g
(S )
j =⊕α:htS (α)= jgα. Then, g(S )0 = gS +h and all homogeneous

subspaces g(S )j are finite dimensional and so are completely reducible modules over g(S )0 .

If we let g(S )+ =⊕ j≥1g
(S )
j and g

(S )
− =⊕ j≥1g

(S )
− j , then we have a triangular decomposition g(A) =

g
(S )
− ⊕g

(S )
0 ⊕g

(S )
+ .

In order to consider the subalgebra sl(9;C) ⊂ H E (1)7 , we choose our S-gradation sets

as I = {0,1, . . . ,8} and S = {1, . . . ,8}. Thus, AS = (ai j )i , j∈S is the Cartan Matrix of sl(9;C). By

sl(n ;C) representation theory, h = span
�

hi = Ei ,i − Ei+1,i+1 | 1 ≤ i ≤ 8
	

, which means that

g
(S )
0 = sl(9;C)+h= gl(9;C). We can then define the maps εi (h ) = i th diagonal entry of h ∈ h,

Λi = ε1+ . . .+εi for i ∈ S , and αi = εi −εi+1 for i ∈ S . The simple root α0|h =−Λ5 =−ε1−ε2−
ε3−ε4−ε5, while the other simple roots remain as previously defined. Any root of H E (1)7

can be written in terms of the simple roots:

α=
8
∑

i=0

kiαi where ki ∈Z≥0 or ki ∈Z≤0

However, it is established that dim(gα) = dim(g−α), so without loss of generality, we only

5



examine the negative roots

α=−
8
∑

i=0

kiαi where ki ∈Z≥0

1.4 Construction of H E (1)8

The algebra H E (1)8 is the Kac-Moody Lie algebra associated with the Dynkin diagram

1 2 3 4 5 6 7 8

0

9

We consider another version of the FF-construction for H E (1)8 . Consider S ⊂ I , where

S = {0} and I = {0, 1, . . . , 9}, and let gS = g(AS ) be the Kac-Moody Lie algebra associated to the

Cartan Matrix AS = (ai j )i , j∈S . Denote the set of roots of gS as∆S , the set of positive roots as

∆+S , the set of negative roots as∆−S , and the Weyl group of gS as WS . Define∆+(S ) :=∆+ \∆+S
and W (S ) = {w ∈W | Φw ⊂∆+(S )}where Φw = {α ∈∆+ | w −1(α) ∈∆−}.

For α ∈Q , define the generalized height of αwith respect to S by htS (α) =
∑

(i∈I \S )ki and

the degree ofα as deg(α) = htS (α). Then we can define aZ-gradation g(A) =⊕ j∈Zg
(S )
j induced

by S (the S-gradation) by setting g
(S )
j =⊕α:htS (α)= jgα. Then, g(S )0 = gS +h and all homogeneous

subspaces g(S )j are finite dimensional and so are completely reducible modules over g(S )0 .

If we let g(S )+ =⊕ j≥1g
(S )
j and g

(S )
− =⊕ j≥1g

(S )
− j , then we have a triangular decomposition g(A) =

g
(S )
− ⊕g

(S )
0 ⊕g

(S )
+ .

In order to consider the subalgebra sl(10;C)⊂H E (1)8 , we choose our S-gradation sets

as I = {0, 1, . . . , 9} and S = {1, . . . , 9}. Thus, AS = (ai j )i , j∈S is the Cartan Matrix of sl(10;C). By

sl(n ;C) representation theory, h= span
�

hi = Ei ,i −Ei+1,i+1 | 1≤ i ≤ 9
	

. We can then define

the maps εi (h ) = i th diagonal entry of h ∈ h, Λi = ε1+ . . .+εi for i ∈ S , and αi = εi −εi+1 for

i ∈ S . The simple root α0|h =−Λ7 =−ε1−ε2−ε3−ε4−ε5−ε6−ε7, while the other simple

roots remain as previously defined. Any root of H E (1)8 can be written in terms of the simple

roots:

α=
9
∑

i=0

kiαi where ki ∈Z≥0 or ki ∈Z≤0

However, it is established that dim(gα) = dim(g−α), so without loss of generality, we only

6



examine the negative roots

α=−
9
∑

i=0

kiαi where ki ∈Z≥0

Klima et al. (2014) used a method similar to ours to compute the multiplicities of domi-

nant H E (1)8 roots up to degree −5 in this labeling. Our results match what they had found

up to degree −5.

1.5 Kang’s Multiplicity Formula

Let C be the trivial g-module. The homology modules Hk (g
(S )
− ) = Hk (g

(S )
− ,C) are obtained

from the g
(S )
0 -module complex

. . . Λk (g(S )− ) Λk−1(g(S )− ) Λ1(g(S )− ) Λ0(g(S )− ) C 0
dk d1 d0

with the differentials dk defined by dk :Λk (g(S )− )→Λk−1(g(S )− ) defined by

dk (x1 ∧ . . .∧ xk ) =
∑

s<t

(−1)s+t [xs , xt ]∧ x1 ∧ . . .∧ x̂s ∧ . . .∧ x̂t ∧ . . .∧ xk

for k ≥ 2, xi ∈ g
(S )
− , and d1 = d0 = 0 where Hk (g

(S )
− ) = ker(dk )/Im(dk+1). The terms x̂ j represent

that x j is omitted from the wedge product. From the Z-gradation of g(S )− , we have a Z-

gradation on Λk (g(S )− ). For j ≥ 0 and xi ∈ g
(S )
− , we define Λk (g(S )− ) j to be the subspace of Λk (g(S )− )

spanned by x1 ∧ . . .∧ xk such that deg(x1) + . . .+ deg(xk ) = − j . From the Z-gradation on

Λk (g(S )− ), we have a Z-gradation on Hk (g
(S )
− ). From the definition of Λk (g(S )− ), it is immediate

that Λk (g(S )− )− j =Hk (g
(S )
− )− j = 0 for k > j . The g

(S )
0 -structure of the homology modules is made

apparent by Kostant’s formula.

Theorem 1.5.1 (Kostant’s formula)

Hk (g
(S )
− )
∼=

⊕

w∈W (S )
l (w )=k

VS (wρ−ρ)

where VS (λ) is the integrable highest-weight g(S )0 -module with highest weight λ. The weight

ρ ∈ h∗ is defined by the property 〈ρ,αi 〉=αi (ρ) = 1 for all i ∈ I .

Kostant proved this formula for finite-dimensional simple Lie algebras [Kostant (1959)].

It was first extended to symmetrizable Kac-Moody Lie algebras where AS is of finite type by
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Garland and Lepowsky [Garland and Lepowsky (1976)] and eventually to symmetrizable

Kac-Moody Lie algebras where AS is of arbitrary type [Liu (1992)].

Now, we proceed with applying Kostant’s formula to the LL-construction when gS
∼= sl(n ),

a finite-dimensional simple Lie algebra. In this case, dim((g(S )0 )α) is known for all α ∈∆S and

dim(VS (wρ−ρ)τ) is known for all w ∈W (S ) and τ ∈ h∗. Then, the Euler-Poincare principle

to our g(S )0 -module complex yields

∞
∑

k=0

(−1)k ch Λk (g(S )− ) =
∞
∑

k=0

(−1)k ch Hk (g
(S )
− )

which expands to

1− ch g(S )− +
∞
∑

k=2

(−1)k ch Λk (g(S )− ) = ch H0(g
(S )
− )− ch H1(g

(S )
− ) +

∞
∑

k=2

(−1)k ch Hk (g
(S )
− )

Recall that H0(g
(S )
− )∼=C. Additionally,

H1(g
(S )
− )
∼=
⊕

i∈I \S
VS (−αi ) = g(S )−1

and, for k > j ,

ch Λk (g(S )− )− j = ch Hk (g
(S )
− )− j = 0.

On the left-hand side, we have that

ch Λk (g(S )− )− j =
∑

n1<...<nr
k1+...+kr=k

k1n1+...+kr nr= j

ch Λk1(g(S )−n1
) . . . ch Λkr (g(S )−nr

).

Meanwhile, on the right-hand side, we can use Kostant’s formula to show that

ch Hk (g
(S )
− )− j = ch

�

∑

w∈W (S )
l (w )=k

VS (wρ−ρ)
�

− j

=
∑

w∈W (S )
l (w )=k

deg(wρ−ρ)=− j

ch VS (wρ−ρ).
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Combining these yields a recursive formula for the g
(S )
0 -character of g(S )− j :

ch g
(S )
− j =

j
∑

k=2

(−1)k
∑

n1<...<nr
k1+...+kr=k

k1n1+...+kr nr= j

ch Λk1(g(S )−n1
) . . . ch Λkr (g(S )−nr

)

−
j
∑

k=2

(−1)k
∑

w∈W (S )
l (w )=k

deg(wρ−ρ)=− j

ch VS (wρ−ρ)

Suppose α is a negative root of degree − j , where j ≥ 2. By matching coefficients in the

expansions of the characters, we get

dim gα =
j
∑

k=2

(−1)k
∑

n1<...<nr
k1+...+kr=k

k1n1+...+kr nr= j

dim Λk1(g(S )−n1
) . . . dim Λkr (g(S )−nr

)

−
j
∑

k=2

(−1)k
∑

w∈W (S )
l (w )=k

deg(wρ−ρ)=− j

dim VS (wρ−ρ),

which we call Kang’s multiplicity formula [Benkart et al. (1993a)].

1.6 Kac, Moody, and Wakimoto’s Study of E10

Kac et al. (1988) took a different approach to finding the multiplicities of roots in an algebra

called E10, which is isomorphic to our H E (1)8 . The Dynkin diagram for E10 is

-1 0 1 2 3 4 5 6

8

7

They found a function that generated all of the multiplicities for a certain level (degree).

Define the functionφ(q ) by

φ(q ) :=
∞
∏

j=1

(1−q j )

9



and the functions p (8)(n ) and ξ(n ) by

1

φ(q )8
=
∑

n≥0

p (8)(n )q n

1

φ(q )8

�

1−
φ(q 2)
φ(q 4)

�

=
∑

n≥0

ξ(n )q n

For α ∈∆, we have that

mult(α) = dim(gα) =















p (8)
�

1− (α|α)2

�

if α is of level 0 or 1

ξ
�

3− (α|α)2

�

if α is of level 2

As the functions p 8(n ) and ξ(n ) are defined via power series expansion, this gives an

extremely powerful way of determining root multiplicities for E10 when they are level 0, 1,

or 2 in this labeling. Additionally, they were able to find a root of level 2, α, that disproves

Frenkel’s conjecture

dim(gα)≤ p (rank−2)
�

1−
(α|α)

2

�

However, the weakness lies in the roots that are missed, who are of higher level. Never-

theless, by converting any results obtained using our methodology to the labeling of Kac

(1968) gives a way to check some of the root multiplicities we get for H E (1)8 .
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CHAPTER

2

REPRESENTATION THEORY OF sl(n ;C)

2.1 Construction of sl(n ;C)

A representation of a Lie algebra g on a vector space V gives a tool to associate each

element in g with a linear transformation on V . In this case, a natural choice of bracket

is the commutator bracket defined as [A, B ] = AB −B A for linear transformations A and

B . Since these are linear transformations between finite spaces, we can represent them

with matrices and so build Lie algebras whose elements are matrices. We define gl(n ;C) as

the set of n ×n matrices over C. This is a very rich algebra consisting of many interesting

subalgebras, so we take inspiration from group theory and focus on the “simple" subalgebras

that have no nontrivial subalgebras. As mentioned in the Introduction, one such class is

An−1 = sl(n ;C), which are the trace zero matrices in gl(n ;C). As a Kac-Moody Lie algebra,

there is an associated Cartan matrix A = (ai j )n−1
i , j=1 where

ai j =















2, i = j

−1, |i − j |= 1

0, else
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We consider the Cartan subalgebra h = span{hi = Ei ,i − Ei+1,i+1 | 1 ≤ i ≤ n − 1} contained

in sl(n ;C), where Ei , j = (δi , j )i j are the standard basis elements of the space of square

matrices and δi , j is the Kronecker delta. Define εi (h ) = i th diagonal entry of h for h ∈ h

and i = 1, . . . , n − 1. The set of simple roots αi ∈ h∗ can be defined as αi = εi − εi+1 for

i = 1, . . . , n − 1. Notice that αi (h j ) = a j i by these definitions. Additionally, sl(n ;C) has Sn

as its Weyl group, which is generated by the elements ri = (i , i +1) for i = 1, . . . , n −1, also

called the simple reflections.

2.2 Weight Multiplicities

Denote the fundamental weights of sl(n ;C) as Λi = ε1 + . . .+ εi for i = 1, . . . , n − 1. Let

P =
⊕

ZΛi be the weight lattice and P + = {λ ∈ P |λ(hi )≥ 0} be the set of dominant weights.

For λ ∈ P +, we have λ =
∑k

i=1λiεi where k ≤ n and λ1 ≥ . . . ≥ λk > 0 is a partition of

|λ| =
∑

λi = m . This means that the coefficients of dominant weights written in terms

of εi can be seen as partitions, so there is a correspondence between dominant weights

and partitions. The dominant weight µ = µ1ε1 + . . .+µkεk is associated with a partition

µ= {µ1 ≥ . . .≥µk > 0}. For the other direction, we can partition |λ|=m with the dominant

weight µ, µ ` |λ|, if m =
∑k

i=1µi . The number of nonzero coefficients of the weight was

assumed to be k , so the length of the partition l (µ) = k .

As a module for ge = g⊕CI = sl(n ;C)⊕CI = gl(n ;C), V = V (λ) has that the central

element I acts like the scalar 0. Since gl(n ;C) = sl(n ;C)⊕CI , where I acts like 0, the repre-

sentation theories of sl(n ;C) and gl(n ;C) are the same and so we can examine the highest

weight modules of sl(n ;C).
Now, we seek a description of the weights in each irreducible module V (λ), along

with the multiplicities of these weights. This is given in terms of the dominance order

on partitions, which we define here. Let µ = {µ1 ≥ . . . ≥ µl (µ) > 0} be a partition and Pi =

µ1+ . . .+µi be the i th partial sum, where Pi (µ) = Pl (µ)(µ) for i ≥ l (µ). Then, the dominance

order on partitions, denoted λ ≥ µ, is defined as Pi (λ) ≥ Pi (µ) for all i , and we say that λ

dominates µ. Then, Benkart et al. (1993b) provides us with the following theorem:

Theorem 2.2.1 (Benkart et al. (1993b)) When g is a simple Lie algebra of type An−1, the set

of dominant weights of the ge -irreducible module V (λ) is {µ | µ ` |λ|,λ ≥ µ, and l (µ) ≤ n}
where µ=µ1ε1+ . . .+µnεn is the weight corresponding to partition µ= {µ1 ≥ . . .≥µl (µ) > 0}.

Recall that any dominant weight µ of V (λ) can be acted upon by a Weyl group element

ω ∈ Sn to give any other weightωµ of V (λ). As the Weyl group is Sn , we obtain this action
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by permutations of the coefficients of µ=
∑

k jε j , where the default decreasing order of k j

would be the dominant weight. Also, mult(µ) = dim(Vµ) = dim(Vωµ) =mult(ωµ), so we need

only determine the dimension of dominant weight spaces of V (λ), which is given by this

theorem in Benkart et al. (1993b):

Theorem 2.2.2 (Benkart et al. (1993b)) Let g= sl(n ;C) and suppose that µ is a dominant

weight of V (λ). Then µ ` |λ| and the dim(V (λ)µ) = Kλ,µ, where Kλ,µ is the Kostka number, the

number of column-strict tableaux of weight µ and shape λ.

2.3 Kostka numbers

In order to determine the multiplicities of these dominant weights of An−1, we need to

be able to compute these Kostka numbers. Associated with the partition λ = {λ1 ≥ . . . ≥
λl (λ) > 0} is its Ferrers diagram or Young frame having λi left-justified boxes in the i th row

for i = 1, . . . , l (λ). Let us consider an example for a partition 7 called λ. For this partition

λ= {5≥ 2> 0} ` 7, the frame of λwould be

F (λ) =

Let us assume now that we are interested in computing the Kostka number K{5,2},{3,22}.

The {5, 2}means we are dealing with the same frame as above, and the {3, 22}means that we

are placing three 1s, two 2s, and two 3s into these boxes. Since the tableaux is semistandard,

we require all placements of the 1s, 2s, and 3s which obey the following rules:

1. the numbers are non-decreasing down each row from left to right

2. the numbers are strictly increasing down each column from top to bottom

Under these considerations, there are only three such tableaux:

1 1 1 2 2

3 3

1 1 1 2 3

2 3

1 1 1 3 3

2 2

which means that K{5,2},{3,22} = 3.
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CHAPTER

3

H E (1)7

3.1 Roots of Degree -1

By our construction of H E (1)7 , we know that g(S )−1 =VS (−α0) =VS (Λ5) =VS (ε1+ε2+ε3+ε4+ε5).

By sl(9;C) representation theory, we know that the dominant weights of this module are

the weights under it in the dominance order. In other words, we need weights µ=µ1ε1+

µ2ε2+µ3ε3+µ4ε4+µ5ε5 for which ε1+ε2+ε3+ε4+ε5 ≥µ1ε1+µ2ε2+µ3ε3+µ4ε4+µ5ε5

in the dominance order. One can then see that the only dominant weight satisfyingly this

condition is ε1+ε2+ε3+ε4+ε5 associated with the partition {15}. By Lemma 1.5.2, we have

that mult({15}) = K{15},{15} = 1, where the last equality follows immediately from the fact that

there is only one semistandard Young tableaux of the same height and weight.

3.2 Roots of Degree -2

Recall that W (S ) = {w ∈W | Φw ⊂∆+(S )}. By our Lemma 1.5.1, we know that we can get the

elements of W (S ) of length 2 from those elements of length 1, r0. Then, we see with a little
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calculation that, for i 6= 0,

r0(αi ) =αi −αi (h0)α0

=







αi , i 6= 5

α0+α5, i = 5

This means that the only element where l (w ) = 2 in W (S ) is w = r0r5. Now,

r0r5ρ−ρ = r0(ρ−α5)−ρ

= r0ρ− r0α5−ρ

=ρ−α0− (α5−α5(h0)α0)−ρ

=−2α0−α5

= 2(ε1+ε2+ε3+ε4+ε5)− (ε5−ε6)

= {24, 12}

which means that deg(r0r5ρ−ρ) =−2 and so we can reduce our formula for the multi-

plicity in degree −2 to the following:

mult(α) = X2−
∑

w∈W (S )
l (w )=2

deg(wρ−ρ)=−2

Kwρ−ρ,α

= X2−K{24,12},α

Now we can use Kang’s multiplicity formula to determine the root multiplicities of all

dominant roots of degree −2, which will give us all root multiplicities of degree −2 via the

Weyl group action. Therefore, we need all µ such that µ= (2−k1)ε1+(2+k1−k2)ε2+(2+

k2−k3)ε3+(2+k3−k4)ε4+(2+k4−k5)ε5+(k5−k6)ε6+(k6−k7)ε7+(k7−k8)ε8+k8ε9 where

2−k1 ≥ 2+k1−k2 ≥ 2+k2−k3 ≥ 2+k3−k4 ≥ 2+k4−k5 ≥ k5−k6 ≥ k6−k7 ≥ k7−k8 ≥ k8, which

corresponds to all partitions of 10 who have their largest summand not exceed 2 and with 9

or fewer summands. These partitions can be listed: {2, 18},{22, 16},{23, 14},{24, 12},{25}. The

table below lists the dominant roots and important pieces of Kang’s multiplicity formula

used to determine the multiplicities. The full set of roots can be obtained from permutations
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of the coefficients of εi for each dominant root.

Table 3.1: Degree -2 Dominant Root Multiplicities for H E (1)7

α X2 K{24,12} mult(α)
{22, 16} 10 9 1
{2, 18} 35 28 7

Example 3.2.1 Show that the degree −2 dominant root α= {22, 16} has multiplicity 1.

We recall the multiplicity formula for a degree −2 root in H E (1)7 is mult(α) = X2 −
K{24,12},{22,16}. To find X2, we need to first find all pairs of permutations of degree -1 dominant

roots which sum to α. In other words, all pairs of permutations of {15}which sum to {2, 18}.

α 2 2 1 1 1 1 1 1 0
ε1 1 1 1 1 1 0 0 0 0
ε2 1 1 0 0 0 1 1 1 0

Notice that the first two columns of the sum must contain 1 and the last column can

only contain 0. Additionally, there are only 3 ones left to place for each row and each column

can only contain one 1. However, recall that the collection of all roots are permutations

of the dominant roots, so we can preserve all columns summing to 1 with a permutation.

There are 6!
3!3! = 20 ways that these columns can be arranged. However, this overcounts the

true value because we require that ε1 >ε2 in order to have no sums repeated, so we must

divide by 2 to take out all pairs of permutations of ε1 and ε2 that repeat. Hence, X2 =
20
2 = 10.

Now, we only need find K{24,12},{22,16}, which is the number of ways to fit two 1s, two 2s,

one 3, one 4, one 5, one 6, one 7, and one 8 in the following frame:
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F (λ) =

The top four boxes are forced to contain the two 1s and two 2s and the third row, first column

box has to contain 3. Working through the remaining possibilities gives the following Young

tableaux:

1 1

2 2

3 4

5 6

7

8

1 1

2 2

3 4

5 8

6

7

1 1

2 2

3 4

5 7

6

8

1 1

2 2

3 6

4 7

5

8

1 1

2 2

3 6

4 8

5

7

1 1

2 2

3 7

4 8

5

6

1 1

2 2

3 5

4 6

7

8

1 1

2 2

3 5

4 7

6

8

1 1

2 2

3 5

4 8

6

7

This means our Kostka number K{24,12},{22,16} = 9. Thus, we have

mult(α) = X2−K{24,12},{22,16} = 10−9= 1

Example 3.2.2 Show that the degree −2 dominant root α= {2, 18} has multiplicity 7.

The multiplicity formula for a degree −2 root in H E (1)7 is mult(α) = X2−K{24,12},{22,16}. To

find X2, we need to first find all pairs of permutations of degree -1 dominant roots which

sum to α. In other words, all pairs of permutations of {15}which sum to {2, 18}.

α 2 1 1 1 1 1 1 1 1
ε1 1 1 1 1 1 0 0 0 0
ε2 1 0 0 0 0 1 1 1 1

Notice that the first column of the sum must contain 1 and the last column can only

contain 0. Additionally, there are only 4 ones left to place for each row and each column can

only contain one 1. However, recall that the collection of all roots are permutations of the

dominant roots, so we can preserve all columns summing to 1 with a permutation. There
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are 8!
4!4! = 70 ways that these columns can be arranged. However, this overcounts the true

value because we require that ε1 >ε2 in order to have no sums repeated, so we must divide

by 2 to take out all pairs of permutations of ε1 and ε2 that repeat. Hence, X2 =
70
2 = 35.

Now, we only need find K{24,12},{2,18}, which is the number of ways to fit two 1s, one 2, one

3, one 4, one 5, one 6, one 7, one 8, and one 9 in the following frame:

F (λ) =

The top two boxes are forced to contain the two 1s and the second row, first column box

has to contain 2. The 3 can be placed on either the third row, first column or the second

row, second column. In the first case, only 4, 5, or 6 could got in the row below it, otherwise

there would be no larger number left to fit in the fourth row, second column. This gives us,

with a ∈ {4, 5, 6},

1 1

2

3

a

Since all the remaining numbers are distinct, we just need the number of unique pairs

we can make with these numbers. For a = 4, we have 5 objects, so the number of pairs is
�

5
2

�

= 10. For a = 5, we have 4 objects and so
�

4
2

�

= 6 pairs. For a = 6, we have 3 objects and

so
�

3
2

�

= 3 pairs, so in total there are 19 possibilities when 3 is placed in the third row, first

column.

When 3 is placed in the second row, second column, we must have that 4 is placed in

the third row, first column. Like before, this means that 5 can either be placed in the fourth

row, first column or third row, second column. In the first case, we would have the following

tableau:
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1 1

2 3

4

5

Since all the remaining numbers are larger than 5, we need only count the number of pairs

that fit in the empty first column boxes, as the remaining spots will be fixed then. We are

making pairs from 4 numbers, so there will be
�

4
2

�

= 6 pairs that can be chosen. When 5 is

placed in the third row, second column, we must have that 6 is placed in the fourth row,

first column. Once again, we need only count the unique pairs that can be made in the

first column and everything else will be determined. There are 3 numbers to choose, so

we have
�

3
2

�

= 3 pairs. Thus, when we put 3 in the second row, second column, there are 9

possibilities.

This means our Kostka number K{24,12},{2,18} = 19+9= 28. Thus, we have

mult(α) = X2−K{24,12},{2,18} = 35−28= 7

3.3 Roots of Degree -3 and Lower

As before, we require the set of w ∈W (S )where 2≤ l (w )≤ 7 in order to determine the root

multiplicities up until degree −7. One can construct a program in either Maple or MATLAB

in order to do this manually, and receive Table 3.2 of these w ∈W (S ) along with wρ−ρ in

the ε-basis.

By our multiplicity formula, we have that the roots of degree less than or equal to −3

and greater than or equal to −7 only have contributions from Kostka numbers coming

from entries whose length is equal to the absolute value of the degree. For instance, Kang’s

multiplicity formula is simplified to the following for degree −3:

mult(α) = X2−X3+K{33,23},α+K{34,13},α

where we recall that

X i =
∑

β1<...<βr
k1+...+kr=k

k1β1+...+kr βr=α

�

dim gβ1

k1

�

. . .

�

dim gβr

kr

�
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Table 3.2: Set of w ∈W (S )with 2≤ l (w )≤ 7 in H E (1)7

w l (w ) deg(wρ−ρ) wρ−ρ
r0r5 2 −2 {24, 12}

r0r5r4 3 −3 {33, 23}
r0r5r6 3 −3 {34, 13}

r0r5r4r3 4 −4 {42, 34}
r0r5r4r6 4 −4 {43, 3, 22, 1}
r0r5r6r7 4 −4 {44, 14}

r0r5r4r3r2 5 −5 {5, 45}
r0r5r4r3r6 5 −5 {52, 42, 32, 1}
r0r5r4r6r5 5 −5 {53, 32, 22}
r0r5r4r6r7 5 −5 {53, 4, 22, 12}
r0r5r6r7r8 5 −5 {54, 15}

r0r5r4r3r2r1 6 −6 {56}
r0r5r4r3r2r6 6 −6 {6, 53, 42, 1}
r0r5r4r3r6r5 6 −6 {62, 5, 42, 3, 2}
r0r5r4r3r6r7 6 −6 {62, 52, 32, 12}
r0r5r4r6r5r0 6 −6 {63, 34}
r0r5r4r6r5r7 6 −6 {63, 4, 3, 22, 1}
r0r5r4r6r7r8 6 −6 {63, 5, 22, 13}

r0r5r4r3r2r1r6 7 −7 {64, 52, 1}
r0r5r4r3r2r6r5 7 −7 {7, 62, 52, 4, 2}
r0r5r4r3r2r6r7 7 −7 {7, 63, 42, 12}
r0r5r4r3r6r5r0 7 −7 {72, 6, 43, 3}
r0r5r4r3r6r5r4 7 −7 {72, 53, 32}
r0r5r4r3r6r5r7 7 −7 {72, 6, 5, 4, 3, 2, 1}
r0r5r4r3r6r7r8 7 −7 {72, 62, 32, 13}
r0r5r4r6r5r0r7 7 −7 {73, 4, 33, 1}
r0r5r4r6r5r7r6 7 −7 {73, 42, 23}
r0r5r4r6r5r7r8 7 −7 {73, 5, 3, 22, 12}

For degree −4, Kang’s multiplicity formula simplifies to the following:

mult(α) = X2−X3+X4−K{42,34},α−K{43,3,22,1},α−K{44,14},α
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For degree −5, Kang’s multiplicity formula simplifies to the following:

mult(α) = X2−X3+X4−X5+K{5,45},α+K{52,42,32,1},α+K{53,32,22},α+K{53,4,22,12},α+K{54,15},α

For degree −6, Kang’s multiplicity formula simplifies to the following:

mult(α) = X2−X3+X4−X5+X6−K{56},α−K{6,53,42,1},α−K{62,5,42,3,2},α

−K{62,52,32,12},α−K{63,34},α−K{63,4,3,22,1},α−K{63,5,22,13},α

For degree −7, Kang’s multiplicity formula simplifies to the following:

mult(α) = X2−X3+X4−X5+X6−X7+K{64,52,1},α+K{7,62,52,4,2},α+K{7,63,42,12},α+K72,6,43,3},α+K{72,53,32},α

+K{72,6,5,4,3,2,1},α+K{72,62,32,13},α+K{73,4,33,1},α+K{73,42,23},α+K{73,5,3,22,12},α

Now we can use Kang’s multiplicity formula to determine the root multiplicities of all

dominant roots of degree −3, which will give us all root multiplicities of degree −3 via the

Weyl group action. Therefore, we need all µ such that µ= (3−k1)ε1+(3+k1−k2)ε2+(3+

k2−k3)ε3+(3+k3−k4)ε4+(3+k4−k5)ε5+(k5−k6)ε6+(k6−k7)ε7+(k7−k8)ε8+k8ε9 where

3− k1 ≥ 3+ k1 − k2 ≥ 3+ k2 − k3 ≥ 3+ k3 − k4 ≥ 3+ k4 − k5 ≥ k5 − k6 ≥ k6 − k7 ≥ k7 − k8 ≥ k8

which corresponds to all partitions of 15 who have their largest summand not exceed 3 and

with 9 or fewer summands. The table below lists the dominant roots and important pieces

of Kang’s multiplicity formula used to determine the multiplicities. The full set of roots can

be obtained from permutations of the coefficients of εi for each dominant root.

Table 3.3: Degree -3 Dominant Root Multiplicities for H E (1)7

α X2 X3 K{33,23} K{34,13} mult(α)
{3, 24, 14} 23 106 42 42 1
{27, 1} 21 105 50 35 1
{26, 13} 87 285 110 95 7

Example 3.3.1 Show that the degree −3 dominant root α= {3, 24, 14} has multiplicity 1.

The multiplicity formula for a degree −3 root in H E (1)7 is mult(α) = X2−X3+K{33,23},α+
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K{34,13},α. To find X2, we need to first find all pairs of permutations of one degree -2 dom-

inant root and one degree -1 dominant root which sum to α. In other words, all pairs of

permutations of {15} and {22,16} or {2,18} which sum to {3,24,14}. Let us first start with

permutations of {15} and {22, 16}.

α 3 2 2 2 2 1 1 1 1
ε1 2 2 1 1 1 1 1 1 0
ε2 1 0 1 1 1 0 0 0 1

Notice that the first column of the sum must contain 2 and 1 and one of the next four

columns can only contain 2 and 0. Additionally, the other three columns in the second

through fifth column are forced to both contain 1. This leaves only columns with 0 or 1 for

the last four columns, where three of the ones are in the first row and one is in the second

row. Thus, the table above is the only way to place these two roots up to permutations of

the columns which sum to the same number. There are
�

4
1

��

4
1

�

= 16 ways that these columns

can be arranged. Now, we look at the permutations of {15} and {2, 18}.

α 3 2 2 2 2 1 1 1 1
ε1 2 1 1 1 1 1 1 1 1
ε2 1 1 1 1 1 0 0 0 0

Notice that the first column of the sum must contain 2 and 1 and the next four columns

must contain 1 and 1. The remaining four columns can only contain 1 and 0 with all of the

ones in the first row, so this is the only way to place these two roots up to permutations of

the columns which sum to the same number. There is only 1 way to arrange these columns.

Thus, we have that X2 = 16
�

1
1

��

1
1

�

+1
�

7
1

��

1
1

�

= 23.

To find X3, we need to find all pairs of permutations of three degree −1 dominant roots

which sum to {3, 24, 14}. In order to simplify our calculation, we shall not worry about the

dominance order on the rows in this case. If we find all possible cases with all possible

permutations of the relevant columns, then we can simply divide by 3!= 6 in order to get

all the ordered possibilities. The first column can only contain 1s because it must sum
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to 3. The next four columns must sum to 2, so these columns must contain two 1s and

one 0. There are only 3 ways to make such a column: place the 0 in the first, second, or

third row. Like before, we want to eventually take all permutations of these columns. Thus,

we find all ways to place these 3 objects into 4 bins so that the order is fixed, and then

we can take all permutations to obtain all possibilities without over-counting these four

columns. By stars-and-bars, there are
�

4+3−1
3−1

�

= 15 ways to arrange these columns with order

not mattering. The remaining four columns are determined by the previous five (up to

permutation of the columns) so if we write out all allowed arrangements of second through

fifth column, we will have all the possibilities. We note however that all 3 possibilities that

repeat the same pattern in the 2 columns four times will not contribute to the multiplicity

as that will be the same root added twice which yields
�

1
2

��

1
1

�

= 0 to the multiplicity, so there

are only 12 ways to arrange the columns in order, which we list below:

α 3 2 2 2 2 1 1 1 1
ε1 1 1 1 1 1 0 0 0 0
ε2 1 1 1 1 0 1 0 0 0
ε3 1 0 0 0 1 0 1 1 1
ε1 1 1 1 1 0 1 0 0 0
ε2 1 1 1 1 1 0 0 0 0
ε3 1 0 0 0 1 0 1 1 1
ε1 1 1 1 1 1 0 0 0 0
ε2 1 1 1 0 0 1 1 0 0
ε3 1 0 0 1 1 0 0 1 1
ε1 1 1 1 0 0 1 1 0 0
ε2 1 1 1 1 1 0 0 0 0
ε3 1 0 0 1 1 0 0 1 1
ε1 1 1 1 1 1 0 0 0 0
ε2 1 1 0 0 0 1 1 1 0
ε3 1 0 1 1 1 0 0 0 1
ε1 1 1 1 1 0 1 0 0 0
ε2 1 1 0 0 1 0 1 1 0
ε3 1 0 1 1 1 0 0 0 1
ε1 1 1 1 0 0 1 1 0 0
ε2 1 1 0 1 1 0 0 1 0
ε3 1 0 1 1 1 0 0 0 1
ε1 1 1 0 0 0 1 1 1 0
ε2 1 1 1 1 1 0 0 0 0
ε3 1 0 1 1 1 0 0 0 1
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α 3 2 2 2 2 1 1 1 1
ε1 1 1 0 0 0 1 1 1 0
ε2 1 1 1 1 1 0 0 0 0
ε3 1 0 1 1 1 0 0 0 1
ε1 1 1 1 1 0 1 0 0 0
ε2 1 0 0 0 1 0 1 1 1
ε3 1 1 1 1 1 0 0 0 0
ε1 1 1 1 0 0 1 1 0 0
ε2 1 0 0 1 1 0 0 1 1
ε3 1 1 1 1 1 0 0 0 0
ε1 1 1 0 0 0 1 1 1 0
ε2 1 0 1 1 1 0 0 0 1
ε3 1 1 1 1 1 0 0 0 0

When you go through each of these 12 possibilities and count all the possible ways

to rearrange the columns (permutations of columns that sum to 2 times permutations of

columns that sum to 1), you will get 636 possibilities. However, these are the unordered

rows, so when we consider the rows as ordered and get rid of all permutations of the rows,

we obtain that there are 636
3! = 106 possible ways to arrange the rows and obtain α as the

sum. As each possiblity contributes
�

1
1

��

1
1

��

1
1

�

= 1 to the multiplicity, that means that X3 = 106.

Now, we need to find K{33,23},{3,24,14}, which is the number of ways to fit three 1s, two 2s,

two 3s, two 4s, two 5s, one 6, one 7, one 8, and one 9 in the following frame:

F (λ) =

First, we notice that the first row can only contain 1s, the second row must contain 2s in

the first and second column, and the third row must have 3 in the first column. There are

two options to place the other 3: both 3s are in the third row, first and second columns or

one 3 is in the second row, third column and one 3 is in the third row, first column.

Let us consider the first type of tableau:
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1 1 1

2 2

3 3

We must place 2 numbers from the set {4, 4, 5, 5, 6, 7, 8, 9} in order to fill out the top square.

The numbers must be distinct, so we only have 5(6)
2 = 15 possibilities for the top square. We

break this up into cases in order to determine how many tableaux have these 15 squares:

either there is either both a 4 and a 5 in that square, there is one of 4 and 5 in that square, or

there is neither in that square. In the first case, we have

1 1 1

2 2 4

3 3 5

Obviously, there is only one square has this form as all spaces are filled. There is only

{4,5,6,7,8,9} left for the bottom part of the tableau, which can be arranged in 5 ways, so

we have 5 possible tableaux. In the second case, we have

1 1 1

2 2 a

3 3 b

where a ∈ {4,5} and b ∈ {6,7,8,9}, which has 2(4) = 8 ways of occurring. There is only

{4, a , 5, 6, 7, 8, 9}\{b } left. Considering the position of {4, 4} and {5, 5} are fixed in the bottom

part of the tableau and all possible elements of b are distinct, without loss of generality we

can say a = 4 and b = 9 as we will obtain the same amount of possibilities for each of these

squares, so we have {4, 4, 5, 6, 7, 8} left to fill the bottom part of the tableau. There are only 2

ways to fill this part of the tableau, so we have 8 ∗2= 16 possible tableaux. In the final case,

we have
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1 1 1

2 2 b

3 3 c

where b , c ∈ {6,7,8,9}. There are 3(4)
2 = 6 ways to make the upper square in this case. That

means that we have {4, 4, 5, 5, 6, 7, 8, 9} \ {b , c } left in our set, so we have {4, 4, 5, 5} left. That

means the fourth row must have all 4s and the fifth row must have all 5s, so there is only

one way to place the remaining numbers. Thus, there are only 6 tableaux. In total, we have

16+5+6= 27 tableaux whose 3s are on the third row.

Now, let us consider the other type of tableau:

1 1 1

2 2 3

3

where we only have {4,4,5,5,6,7,8,9} left to fill the tableau. At least one 4 must be in the

third row, second column. If the other 4 is placed in the third row, third column, then we

have {5,5,6,7,8,9} left for the bottom part of the tableau, which there are only 2 ways to

arrange these numbers there and so there are 2 tableaux of this type. If we put a 5 in the

third row, third column, then we have only {4,5,6,7,8,9} left for the bottom part of the

tableau, which can be arranged in 5 ways. If we put b ∈ {6,7,8,9} in the third row, third

column, the tableau looks like:

1 1 1

2 2 3

3 4 b

with 4 possible tableaux. The remaining numbers are {4, 5, 5, 6, 7, 8, 9} \ {b } that can fill the

bottom of the tableau. Since the numbers b can be are distinct, without loss of generality

we can say b = 9 as the contribution will be the same regardless of what b is. Then, we have
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1 1 1

2 2 3

3 4 9

with {4,5,5,6,7,8} left to fill out the tableau. There are 2 ways to arrange the numbers in

this case, so we have 8 possible tableaux in total for this case. In total, we have 2+5+8= 15

tableaux. Thus, we have K{33,23},{3,24,14} = 27+15= 42.

Now, we need to find K{34,13},{3,24,14}, which is the number of ways to fit three 1s, two 2s,

two 3s, two 4s, two 5s, one 6, one 7, one 8, and one 9 in the following frame:

F (λ) =

First, we notice that the first row can only contain 1s, the second row must contain 2s in

the first and second column, and the third row must have 3 in the first column. There are

two options to place the other 3: both 3s are in the third row, first and second columns or

one 3 is in the second row, third column and one 3 in the third row, first column.

Let us consider the first type of tableau:

1 1 1

2 2 3

3

Now, we look at where to place the 4s. At least one 4 must go in the third row, second column.

The other 4 can go in either the third row, third column or fourth row, first column. For

the first of these subcategories, we must place the 5s in the fourth row, first and second

columns. This leaves us with the following:
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1 1 1

2 2 3

3 4 4

5 5

Notice we are left with only {6, 7, 8, 9} left to place, which are all distinct. All the lower blocks

can only have one order because of this, so we only have the freedom to choose which of

these four to place in the fourth row, third column. Thus, there are only 4 of these type. For

the second of these subcategories, we have the following tableau:

1 1 1

2 2 3

3 4

4

The first empty diagonal going from top to bottom must contain the two 5s and one of

{6,7,8}. If we have 6 in that diagonal, there are 3 ways to arrange that diagonal and 3

numbers left to pick for the fourth row, third column, which leaves us with 9 tableaux. If we

have 7 in that diagonal, there are 2 ways to arrange that diagonal which leaves us 2 numbers

{8, 9} to pick for the fourth row, third column and there is 1 way to pick 6 as the number in

the fourth row, third column, which leaves us with 5 tableaux. If we have 8 in that diagonal,

there are only 2 ways to arrange that diagonal and 1 number left to pick for the fourth row,

third column, which leaves us with 2 tableaux. Thus, for the first placement of the second 3,

there are 4+9+5+2= 20 choices.

Let us consider the second type of tableau:

1 1 1

2 2

3 3
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We are forced to place a 4 in the fourth row, first column. Additionally, we must either place

a 4 or 5 in the second row, third column, so let us consider both subcategories of tableau.

The first subcategory looks like:

1 1 1

2 2 4

3 3

4

We again require that the first free diagonal going from top to bottom contains both 5s,

and there are 4 things we can place in the third row, third column, {5,6,7,8}. If we pick 5

for the third row, third column, then we have 4(5)
2 = 10 ways of picking a pair of numbers

from {5,6,7,8,9} to fill out the fourth row and everything else fill be fixed, so there are 10

tableaux for this case. If we pick 6, 7, or 8 for the third row, third column, then the other

entries on that diagonal must be 5 as stated previously, so we need only worry about how

many ways there are to pick the entry b in the fourth row, third column from {6, 7, 8, 9}\{b }.
There are 3 choices for 6, 2 choices for 7, and 1 choice for 8. In total, there are 16 tableaux

for this subcategory. The other subcategory looks like:

1 1 1

2 2 5

3 3

4 4

This tableau only has {5, 6, 7, 8, 9} left to place, which are all distinct. That means whatever

is place in the third column will determine the rest of the tableau. There are three numbers

to place in the third row, third column as we cannot put 5 below 5 or 9 above the bottom

of a column, so there are 3(4)
2 = 6 ways of picking pairs of numbers from {6,7,8,9} for

the third column so the numbers are ordered, so there are 6 tableaux in this case. Thus,

for the second placement of the second 3, there are 16+ 6 = 22 choices. Thus, we have

K{34,13},{3,24,14} = 20+22= 42.
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From the above calculations, we have the multiplicity of the root α= {3, 24, 14} as

mult(α) = X2−X3+K{33,23},α+K{34,13},α = 23−106+42+42= 1

As we can see from the previous example, the computation of root multiplicities for

smaller degrees becomes more and more complicated. Additionally, the number of potential

roots to check increases dramatically as well. In order to move forward, we will make use of

the MATLAB program in Appendix A to simplify this process. The following table shows the

roots of degree −4, which are partitions of 20 which do not exceed 4 in the largest entry and

do not exceed length 9.

Table 3.4: Degree −4 Dominant Root Multiplicities for H E (1)7

α X2 X3 X4 K{42,34} K{43,3,22,1} K{44,14} mult(α)
{4, 3, 26, 1} 33 315 900 71 475 71 1
{34, 23, 12} 41 381 1072 122 529 80 1
{4, 28} 119 805 1855 126 910 126 7
{33, 25, 1} 141 960 2205 206 1025 148 7
{32, 27} 455 2380 4550 357 1960 273 35
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The following table shows the roots of degree −5, which are partitions of 25 which do

not exceed 5 in the largest entry and do not exceed length 9.

Table 3.5: Degree −5 Dominant Root Multiplicities for H E (1)7

α X2 X3 X4 X5 K{5,45}
{5, 34, 24} 46 648 3638 7029 45
{43, 3, 25} 60 855 4645 8800 118
{42, 34, 22, 1} 59 840 4601 8811 127
{42, 33, 24} 214 2198 9863 16416 191
{4, 36, 2, 1} 202 2133 9765 16445 202
{4, 35, 23} 682 5464 20785 30655 312
{38, 1} 644 5306 20580 30660 322
{37, 22} 2030 13265 43470 57225 511

α K{52,42,32,1} K{53,32,22} K{53,4,22,12} K{54,15} mult(α)
{5, 34, 24} 1332 1240 1332 45 1
{43, 3, 25} 1737 1366 1671 59 1
{42, 34, 22, 1} 1965 1394 1458 48 1
{42, 33, 24} 3132 2432 2700 89 7
{4, 36, 2, 1} 3456 2472 2412 76 7
{4, 35, 23} 5535 4262 4437 141 35
{38, 1} 5985 4312 4032 126 35
{37, 22} 9639 7378 7371 231 140
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The following table shows the roots of degree −6, which are partitions of 30 which do

not exceed 6 in the largest entry and do not exceed length 9.

Table 3.6: Degree −6 Dominant Root Multiplicities for H E (1)7

α X2 X3 X4 X5 X6 K{56} K{6,53,42,1}
{6, 4, 36, 2} 56 1065 9005 34360 48060 0 1025
{6, 38} 210 2758 18935 63385 80885 0 1540

{52, 4, 34, 22} 82 1604 12888 47120 64696 44 2283
{52, 36, 2} 278 3977 26755 86825 109065 60 3325
{5, 44, 3, 23} 99 1781 13794 49694 68007 53 2866
{5, 43, 34, 1} 78 1522 12509 46658 64939 49 2736
{5, 43, 33, 22} 308 4315 28548 91767 114889 72 4109
{5, 42, 35, 2} 937 10333 58550 168340 193430 100 5955
{5, 4, 37} 2716 24297 119000 307370 325185 140 8715
{46, 3, 2, 1} 80 1581 13130 49210 68750 59 3406
{46, 23} 339 4650 30365 97005 121335 89 5086
{45, 33, 1} 281 4017 27530 90765 115410 79 4776
{45, 32, 22} 1005 11025 62050 177720 204090 119 7230
{44, 34, 2} 2866 25781 126007 324590 343072 166 10438
{43, 36} 7822 59147 253605 590550 576400 236 15234

α K{62,5,42,3,2} K{62,52,32,12} K{63,34} K{63,4,3,22,1} K{63,5,22,13} mult(α)
{6, 4, 36, 2} 6760 4895 1230 6760 1025 1
{6, 38} 10500 7700 2100 10500 1540 7

{52, 4, 34, 22} 8923 6783 1307 8256 1345 1
{52, 36, 2} 13915 10625 2290 13060 2014 7
{5, 44, 3, 23} 10120 6938 1100 8018 1329 1
{5, 43, 34, 1} 10317 6694 1392 7162 995 1
{5, 43, 33, 22} 15706 10918 2010 12816 2025 7
{5, 42, 35, 2} 24210 17081 3485 20295 3083 35
{5, 4, 37} 37170 26621 5845 31885 4718 140
{46, 3, 2, 1} 11710 6830 1232 6960 971 1
{46, 23} 17650 11234 1757 12580 1981 7
{45, 33, 1} 17820 10754 2172 11325 1506 7
{45, 32, 22} 27110 17598 3148 20095 3065 35
{44, 34, 2} 41408 27482 5382 31822 4736 140
{43, 36} 63105 42773 8935 50025 7332 490
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The following table shows the roots of degree −7, which are partitions of 35 which do

not exceed 7 in the largest entry and do not exceed length 9.

Table 3.7: Degree −7 Dominant Root Multiplicities for H E (1)7 (Part 1)

α X2 X3 X4 X5 X6 X7 K{64,52,1}
{7, 44, 34} 69 1632 18174 103197 284403 299072 0
{62, 42, 35} 102 2575 27950 151130 401975 416345 794
{6, 52, 42, 33, 2} 126 3032 31350 165030 433314 447262 1149
{6, 52, 4, 35} 409 7470 65670 308200 741980 715680 1528
{6, 5, 45, 22} 111 2875 30642 163735 433527 449715 1212
{6, 5, 44, 32, 2} 406 7380 64925 306129 740793 717375 1606
{6, 5, 43, 34} 1262 17931 134740 567615 1261807 1143984 2150
{6, 47, 1} 91 2310 25872 145040 397670 420525 1126
{6, 46, 3, 2} 1225 17544 132945 563905 1260165 1146755 2242
{6, 45, 33} 3614 41831 273213 1039530 2139040 1825355 3032
{54, 42, 3, 22} 144 3406 34394 178879 467568 483178 1669
{54, 4, 33, 2} 481 8503 72378 334068 799054 770779 2171
{54, 35} 1428 20330 149795 620245 1363735 1230800 2882
{53, 44, 3, 1} 102 2592 28515 157869 429604 453368 1534
{53, 44, 22} 431 8018 70391 330901 799988 776263 2274
{53, 43, 32, 2} 1385 19795 147173 615079 1362226 1235283 3021
{53, 42, 34} 3991 46652 301471 1133661 2313487 1966868 4049
{52, 46, 1} 348 6466 59575 293250 732945 724680 2081
{52, 45, 3, 2} 3857 45416 296417 1124530 2310280 1972935 4198
{52, 44, 33} 10650 105137 601575 2061730 3911823 3136929 5692
{5, 47, 2} 10339 102550 592018 2045260 3904250 3143910 5858
{5, 46, 32} 27337 232726 1189492 3730670 6595110 4995425 8024
{48, 3} 67753 506373 2331602 6720000 11092480 7946540 11360
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Table 3.8: Degree −7 Dominant Root Multiplicities for H E (1)7 (Part 2)

α K{7,62,52,4,2} K{7,63,42,12} K{72,6,43,3} K{72,53,32} K{72,6,5,4,3,2,1} K{72,62,32,13}
{7, 44, 34} 7236 4592 9106 6622 46144 4592
{62, 42, 35} 12504 8825 10882 7865 61920 6740
{6, 52, 42, 33, 2} 17082 10546 11736 9965 65552 6759
{6, 52, 4, 35} 23508 14805 16682 14360 97920 10325
{6, 5, 45, 22} 18579 11165 13874 10550 65360 6225
{6, 5, 44, 32, 2} 25374 15657 19372 15076 97824 9577
{6, 5, 43, 34} 34965 22033 27238 21582 145504 14660
{6, 47, 1} 18495 10550 15883 11200 61552 4710
{6, 46, 3, 2} 37467 23085 31018 22720 145312 13645
{6, 45, 33} 51759 32635 43303 32330 215312 20945
{54, 42, 3, 22} 22947 12646 13014 12282 69088 6650
{54, 4, 33, 2} 31167 17594 18351 17652 103680 10262
{54, 35} 42732 24710 25992 25260 154560 15770
{53, 44, 3, 1} 22914 11839 15357 13070 65040 5004
{53, 44, 22} 33615 18519 21615 18524 103296 9473
{53, 43, 32, 2} 45747 25983 30036 26300 154296 14606
{53, 42, 34} 62829 36585 42130 37447 229088 22434
{52, 46, 1} 33057 17270 24406 19350 97184 7140
{52, 45, 3, 2} 66810 38120 47791 39090 228704 20885
{52, 44, 33} 92016 53910 66589 55390 338336 32123
{5, 47, 2} 97182 55735 74319 57820 337856 29980
{5, 46, 32} 134325 79150 103209 81700 498176 46195
{48, 3} 195588 115900 157472 120120 731648 66660
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Table 3.9: Degree −7 Dominant Root Multiplicities for H E (1)7 (Part 3)

α K{73,4,33,1} K{73,42,23} K{73,5,3,22,12} mult(α)
{7, 44, 34} 9106 6622 7236 1
{62, 42, 35} 11980 8680 9834 1
{6, 52, 42, 33, 2} 10350 8072 9324 1
{6, 52, 4, 35} 17060 12560 14550 7
{6, 5, 45, 22} 9116 7610 8355 1
{6, 5, 44, 32, 2} 15284 11887 13110 7
{6, 5, 43, 34} 24817 18368 20439 35
{6, 47, 1} 9212 6070 5445 1
{6, 46, 3, 2} 22456 17410 18549 35
{6, 45, 33} 36016 26740 28917 140
{54, 42, 3, 22} 8896 7502 8664 1
{54, 4, 33, 2} 15076 11802 13689 7
{54, 35} 24700 18360 21486 35
{53, 44, 3, 1} 9142 6036 5673 1
{53, 44, 22} 13530 11194 12339 7
{53, 43, 32, 2} 22476 17515 19428 35
{53, 42, 34} 36294 27084 30432 140
{52, 46, 1} 13752 9150 8145 7
{52, 45, 3, 2} 33300 25870 27699 140
{52, 44, 33} 53092 39746 43344 490
{5, 47, 2} 49105 38095 39654 491
{5, 46, 32} 77449 58165 62037 1548
{48, 3} 112728 84960 89172 4530
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The degree −7 roots α= {5, 47, 2}, β = {5, 46, 32}, γ= {48, 3} have that

p (7)
�

1−
(α|α)

2

�

= 490< 491=mult(α)

p (7)
�

1−
(β |β )

2

�

= 1547< 1548=mult(β )

p (7)
�

1−
(γ|γ)

2

�

= 4522< 4530=mult(γ)

which all disprove Frenkel’s conjecture for H E (1)7 .
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CHAPTER

4

H E (1)8

4.1 Roots of Degree -1

By our construction of H E (1)8 , we know that g(S )−1 = VS (−α0) = VS (Λ5) = VS (ε1+ε2+ε3+ε4+

ε5+ε6+ε7). By sl(10;C) representation theory, we know that the dominant weights of this

module are the weights under it in the dominance order. In other words, we need weights

µ=µ1ε1+µ2ε2+µ3ε3+µ4ε4+µ5ε5+µ6ε6+µ7ε7 for which ε1+ε2+ε3+ε4+ε5+ε6+ε7 ≥
µ1ε1+µ2ε2+µ3ε3+µ4ε4+µ5ε5+µ6ε6+µ7ε7 in the dominance order. One can then see that

the only dominant weight satisfyingly this condition is ε1+ε2+ε3+ε4+ε5+ε6+ε7 associated

with the partition {17}. By Lemma 1.5.2, we have that mult({17}) = K{17},{17} = 1, where the

last equality follows immediately from the fact that there is only one semistandard Young

tableaux of the same height and weight.
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4.2 Roots of Degree -2

Recall that W (S ) = {w ∈W | Φw ⊂∆+(S )}. By our Lemma 1.5.1, we know that we can get the

elements of W (S ) of length 2 from those elements of length 1, r0. Then, we see with a little

calculation that, for i 6= 0,

r0(αi ) =αi −αi (h0)α0

=







αi , i 6= 7

α0+α7, i = 7

This means that the only element where l (w ) = 2 in W (S ) is w = r0r7. Now,

r0r7ρ−ρ = r0(ρ−α7)−ρ

= r0ρ− r0α7−ρ

=ρ−α0− (α7−α7(h0)α0)−ρ

=−2α0−α7

= 2(ε1+ε2+ε3+ε4+ε5+ε6+ε7)− (ε7−ε8)

= {26, 12}

which means that deg(r0r7ρ−ρ) =−2 and so we can reduce our formula for the multi-

plicity in degree −2 to the following:

mult(α) = X2−
∑

w∈W (S )
l (w )=2

deg(wρ−ρ)=−2

Kwρ−ρ,α

= X2−K{26,12},α

Now we can use Kang’s multiplicity formula to determine the root multiplicities of all

dominant roots of degree −2, which will give us all root multiplicities of degree −2 via the

Weyl group action. Therefore, we need allµ such thatµ= (2−k1)ε1+(2+k1−k2)ε2+(2+k2−
k3)ε3+(2+k3−k4)ε4+(2+k4−k5)ε5+(2+k5−k6)ε6+(2+k6−k7)ε7+(k7−k8)ε8+(k8−k9)ε9+k9ε10

where 2−k1 ≥ 2+k1−k2 ≥ 2+k2−k3 ≥ 2+k3−k4 ≥ 2+k4−k5 ≥ 2+k5−k6 ≥ 2+k6−k7 ≥
k7 − k8 ≥ k8 − k9 ≥ k9, which corresponds to all partitions of 14 who have their largest
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summand not exceed 2 and with 10 or fewer summands. These partitions can be listed:

{24, 16},{25, 14},{26, 12},{27}. The table below lists the dominant roots and important pieces

of Kang’s multiplicity formula used to determine the multiplicities. The full set of roots can

be obtained from permutations of the coefficients of εi for each dominant root.

Table 4.1: Degree -2 Dominant Root Multiplicities for H E (1)8

α X2 K{24,12} mult(α)
{24, 16} 10 9 1

Example 4.2.1 Show that the degree −2 dominant root α= {24, 16} has multiplicity 1.

We recall the multiplicity formula for a degree −2 root in H E (1)7 is mult(α) = X2 −
K{26,12},{24,16}. To find X2, we need to first find all pairs of permutations of degree -1 dominant

roots which sum to α. In other words, all pairs of permutations of {17}which sum to {24, 16}.

α 2 2 2 2 1 1 1 1 1 1
ε1 1 1 1 1 1 1 1 0 0 0
ε2 1 1 1 1 0 0 0 1 1 1

Notice that the first four columns of the sum must contain 1. Additionally, there are

only 3 ones left to place for each row and each column can only contain one 1. However,

recall that the collection of all roots are permutations of the dominant roots, so we can

preserve all columns summing to 1 with a permutation. There are 6!
3!3! = 20 ways that these

columns can be arranged. However, this overcounts the true value because we require that

ε1 > ε2 in order to have no sums repeated, so we must divide by 2 to take out all pairs of

permutations of ε1 and ε2 that repeat. Hence, X2 =
20
2 = 10.

Now, we only need find K{26,12},{24,16}, which is the number of ways to fit two 1s, two 2s,

two 3s, two 4s, one 5, one 6, one 7, one 8, one 9, and one 10 in the following frame:
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F (λ) =

The top eight boxes are forced to contain the two 1s,two 2s, two 3s, and two 4s and the third

row, first column box has to contain 5. Working through the remaining possibilities gives

the following Young tableaux:

1 1

2 2

3 3

4 4

5 6

7 8

9

10

1 1

2 2

3 3

4 4

5 6

7 9

8

10

1 1

2 2

3 3

4 4

5 6

7 10

8

9

1 1

2 2

3 3

4 4

5 7

6 8

9

10

1 1

2 2

3 3

4 4

5 7

6 9

8

10

1 1

2 2

3 3

4 4

5 7

6 10

8

9

1 1

2 2

3 3

4 4

5 8

6 9

7

10

1 1

2 2

3 3

4 4

5 8

6 10

7

9

1 1

2 2

3 3

4 4

5 9

6 10

7

8

This means our Kostka number K{26,12},{24,16} = 9. Thus, we have

mult(α) = X2−K{26,14},{24,16} = 10−9= 1

4.3 Roots of Degree −3 to −7

As before, we require the set of w ∈W (S )where 2≤ l (w )≤ 7 in order to determine the root

multiplicities up until degree −7. One can construct a program in either Maple or MATLAB

in order to do this manually, and receive Table 4.2 of these w ∈W (S ) along with wρ−ρ in

the ε-basis.

By our multiplicity formula, we have that the roots of degree less than or equal to −3

and greater than or equal to −7 only have contributions from Kostka numbers coming

from entries whose length is equal to the absolute value of the degree. For instance, Kang’s

multiplicity formula is simplified to the following for degree −3:

mult(α) = X2−X3+K{35,23},α+K{36,13},α
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Table 4.2: Set of w ∈W (S )with 2≤ l (w )≤ 7 in H E (1)8

w l (w ) deg(wρ−ρ) wρ−ρ
r0r7 2 −2 {26, 12}

r0r7r6 3 −3 {35, 23}
r0r7r8 3 −3 {36, 13}

r0r7r6r5 4 −4 {44, 34}
r0r7r6r8 4 −4 {45, 3, 22, 1}
r0r7r8r9 4 −4 {46, 14}

r0r7r6r5r4 5 −5 {53, 45}
r0r7r6r5r8 5 −5 {54, 42, 32, 1}
r0r7r6r8r7 5 −5 {55, 32, 22}
r0r7r6r8r9 5 −5 {55, 4, 22, 12}

r0r7r6r5r4r3 6 −6 {62, 56}
r0r7r6r5r4r8 6 −6 {63, 53, 42, 1}
r0r7r6r5r8r7 6 −6 {64, 5, 42, 3, 2}
r0r7r6r5r8r9 6 −6 {64, 52, 32, 12}
r0r7r6r8r7r6 6 −6 {65, 34}
r0r7r6r8r7r9 6 −6 {65, 4, 3, 22, 1}

r0r7r6r5r4r3r2 7 −7 {7, 67}
r0r7r6r5r4r3r8 7 −7 {72, 64, 52, 1}
r0r7r6r5r4r8r7 7 −7 {73, 62, 52, 4, 2}
r0r7r6r5r4r8r9 7 −7 {73, 63, 42, 12}
r0r7r6r5r8r7r0 7 −7 {74, 6, 43, 3}
r0r7r6r5r8r7r6 7 −7 {74, 53, 32}
r0r7r6r5r8r7r9 7 −7 {74, 6, 5, 4, 3, 2, 1}
r0r7r6r8r7r6r9 7 −7 {75, 4, 33, 1}
r0r7r6r8r7r9r8 7 −7 {75, 42, 23}

where we recall that

X i =
∑

β1<...<βr
k1+...+kr=k

k1β1+...+kr βr=α

�

dim gβ1

k1

�

. . .

�

dim gβr

kr

�

For degree −4, Kang’s multiplicity formula simplifies to the following:

mult(α) = X2−X3+X4−K{44,34},α−K{45,3,22,1},α−K{46,14},α
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For degree −5, Kang’s multiplicity formula simplifies to the following:

mult(α) = X2−X3+X4−X5+K{53,45},α+K{54,42,32,1},α+K{55,32,22},α+K{55,4,22,12},α

For degree −6, Kang’s multiplicity formula simplifies to the following:

mult(α) = X2−X3+X4−X5+X6−K{62,56},α−K{63,53,42,1},α

−K{64,5,42,3,2},α−K{64,52,32,12},α−K{65,34},α−K{65,4,3,22,1},α

For degree −7, Kang’s multiplicity formula simplifies to the following:

mult(α) = X2−X3+X4−X5+X6−X7+K{7,67}+K{72,64,52,1},α+K{73,62,52,4,2},α+K{73,63,42,12},α

+K{74,6,43,3},α+K{74,53,32},α+K{74,6,5,4,3,2,1},α+K{75,4,33,1},α+K{75,42,23},α

Now we can use Kang’s multiplicity formula to determine the root multiplicities of all

dominant roots of degree −3, which will give us all root multiplicities of degree −3 via the

Weyl group action. Therefore, we need allµ such thatµ= (3−k1)ε1+(3+k1−k2)ε2+(3+k2−
k3)ε3+(3+k3−k4)ε4+(3+k4−k5)ε5+(3+k5−k6)ε6+(3+k6−k7)ε7+(k7−k8)ε8+(k8−k9)ε9+k9ε10

where 3−k1 ≥ 3+k1−k2 ≥ 3+k2−k3 ≥ 3+k3−k4 ≥ 3+k4−k5 ≥ 3+k5−k6 ≥ 3+k6−k7 ≥ k7−k8 ≥
k8−k9 ≥ k9 which corresponds to all partitions of 21 who have their largest summand not

exceed 3 and with 10 or fewer summands. The table below lists the dominant roots and

important pieces of Kang’s multiplicity formula used to determine the multiplicities. The full

set of roots can be obtained from permutations of the coefficients of εi for each dominant

root.

Table 4.3: Degree −3 Dominant Root Multiplicities for H E (1)8

α X2 X3 K{35,23} K{36,13} mult(α)
{32, 27, 1} 21 105 50 35 1
{3, 29} 84 280 120 84 8

Example 4.3.1 Show that the degree −3 dominant root α= {32, 27, 1} has multiplicity 1.

The multiplicity formula for a degree −3 root in H E (1)7 is mult(α) = X2−X3+K{35,23},α+
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K{36,13},α. To find X2, we need to first find all pairs of permutations of one degree -2 dom-

inant root and one degree -1 dominant root which sum to α. In other words, all pairs of

permutations of {17} and {24, 16}which sum to {32, 27, 1}.

α 3 3 2 2 2 2 2 2 2 1
ε1 2 2 2 2 1 1 1 1 1 1
ε2 1 1 0 0 1 1 1 1 1 0

Notice that the first two columns of the sum must contain 2 and 1 and one of the next

two columns can only contain 2 and 0. Additionally, the next five columns in the second

through fifth column are forced to both contain 1. This leaves only columns with 1 in the

top row and 0 in the bottom row for the last column. Thus, the table above is the only way

to place these two roots up to permutations of the columns which sum to the same number.

There are 7!
2!5! = 21 ways that these columns can be arranged. Thus, we have that X2 = 21.

To find X3, we need to find all pairs of permutations of three degree −1 dominant roots

which sum to {32, 27, 1}. In order to simplify our calculation, we shall not worry about the

dominance order on the rows in this case. If we find all possible cases with all possible

permutations of the relevant columns, then we can simply divide by 3!= 6 in order to get

all the ordered possibilities. The first and second column can only contain 1s because it

must sum to 3. The next seven columns must sum to 2, so these columns must contain

two 1s and one 0. There are only 3 ways to make such a column: place the 0 in the first,

second, or third row. Thus, the table below is the only way to place these three roots up to

permutations of the columns which sum to the same number.

α 3 3 2 2 2 2 2 2 2 1
ε1 1 1 1 1 0 1 1 1 0 0
ε2 1 1 1 0 1 1 0 1 1 0
ε3 1 1 0 1 1 0 1 0 1 1

As one can see in this table, having more than 3 of any one of the possible three columns

that sum to 2 will lead to not enough 1s in the other rows for those to sum to 7. The same
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argument will show that you must have three of one type of column which sums to 2, and

two of the other types, so this table is the only possibility up to permutation. There are
7!

3!2!2! = 210 ways to pick the columns in this case. However, we must be wary of overcounting

as we did not consider the order of the weights. As we can see, one of the roots will have

a 1 in the last column, which distinguishes it from the others so it cannot be the same

as the other two roots. Therefore, we only need to order the other two roots, leading to

X3 =
1
2! (210) = 105.

Now, we need to find K{35,23},{32,27,1}, which is the number of ways to fit three 1s, three 2s,

two 3s, two 4s, two 5s, two 6s, two 7s, two 8s, two 9s, and one 10 in the following frame:

F (λ) =

First, we notice that the first row can only contain 1s, the second row can only contain

2s, the third row must have 3s in the first and second column, and the fourth row must

have 4 in the first column. There are two options to place the other 4: both 4s are in the

fourth row, first and second columns or one 4 is in the third row, third column and one 4 is

in the fourth row, first column.

Let us consider the first type of tableau:

1 1 1

2 2 2

3 3

4 4

5

The other 5 must go in either the fifth row, second column or third row, third column. For

the first option, we have two options to place the 6s:
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1 1 1

2 2 2

3 3

4 4

5 5

6 6

1 1 1

2 2 2

3 3 6

4 4

5 5

6

We can count the total numbers of these tableaux by considering all possible remaining

columns for the first and third rows. The first column can only have {7, 8, 9}while the third

column can have {7,8,9,10}. We must have at least one of {7,8,9} in the first and third

columns to avoid having duplicates in the second column. Using the above observations

in both cases, we have 9+9= 18 of these tableaux. For the second option, we have three

options to place the 6s. Let us list these options while also filling out any numbers whose

positions are fixed in these tableaux:

1 1 1

2 2 2

3 3 5

4 4 6

5 6

7

8

9

1 1 1

2 2 2

3 3 5

4 4 6

5 7

6 8

9

10

1 1 1

2 2 2

3 3 5

4 4

5 6

6

The first and second tableaux can be counted by just cycling through the remaining entries,

giving us 4+3 tableaux. The third can be filled by considering all possible remaining pairs

for the first and third columns, giving us 7 tableaux. Thus, we have 4+3+7= 14 of this type

and so 18+14= 32 tableaux of the first type.

Now, let us consider the other type of tableau:
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1 1 1

2 2 2

3 3 4

4 5

The other 5 must go in either the fourth row, third column or fifth row, first column. For

the first option, we have one option to place the 6s, so we shall list it after filling out the

remaining spaces whose numbers are fixed:

1 1 1

2 2 2

3 3 4

4 5 5

6 6

7

8

9

There are 4 ways to fill the remaining spaces, so we have 4 tableaux. For the second option,

we have three options to place the 6s, so we shall list them after filling out the remaining

spaces whose numbers are fixed:

1 1 1

2 2 2

3 3 4

4 5

5 6

6

1 1 1

2 2 2

3 3 4

4 5 6

5 6

7

8

9

1 1 1

2 2 2

3 3 4

4 5 6

5 7

6 8

9

10

The first tableaux can be filled by considering all possible remaining pairs for the first and

third columns, giving us 7 tableaux. The second and third tableaux can be counted by cycling

through the remaining entries, giving us 4+ 3 tableaux. Thus, we have 4+ 7+ 4+ 3 = 18
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of these tableaux of second type. Therefore, we have 32+ 18 = 50 tableaux in total, so

K{35,23},α = 50.

Now, we need to find K{36,13},{32,27,1}, which is the number of ways to fit three 1s, three 2s,

two 3s, two 4s, two 5s, two 6, two 7s, two 8s, two 9s, and one 10 in the following frame:

F (λ) =

First, we notice that the first row can only contain 1s, the second row can only contain 2s,

the third row must have 3 in the first and second column, and the fourth row must have 4

in the first column. There are two options to place the other 4: both 4s are in the fourth row,

first and second columns or one 4 is in the third row, third column.

Let us consider the first type of tableau:

1 1 1

2 2 2

3 3

4 4

One 5 must go in the fifth row, first column. The other 5 must go in either the fifth row,

second column or third row, third column. Let us consider the first subtype of tableau:
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1 1 1

2 2 2

3 3

4 4

5 5

One 6 must go in the sixth row, first column. The other six can either go in the sixth row,

second column or third row, third column. For the first option, we have one option to place

the 7s, so we shall list it after filling out the remaining spaces whose numbers are fixed:

1 1 1

2 2 2

3 3 7

4 4 8

5 5 9

6 6 10

7

8

9

This is the only way to fill this tableau, so we only have 1 tableau. For the second option,

we have three options to place the 7s, so we shall list them after filling out the remaining

spaces whose numbers are fixed:

1 1 1

2 2 2

3 3 6

4 4 7

5 5 8

6 7 9

8

9

10

1 1 1

2 2 2

3 3 6

4 4 7

5 5

6

7

1 1 1

2 2 2

3 3 6

4 4 8

5 5 9

6 7 10

7

8

9

The first option only has that 1 tableau. The second option can be filled by considering

all possible remaining pairs for the first and third columns, giving us 4 tableaux. The
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third option only has that 1 tableau. Therefore, for the first subtype of tableau, we have

1+1+4+1= 7 tableaux.

For the second subtype of tableau, we have

1 1 1

2 2 2

3 3 5

4 4

5

Both 6s must be placed in the first free diagonal going from top to bottom. There are three

ways to place them, so we shall list them after filling out the remaining spaces whose

numbers are fixed:

1 1 1

2 2 2

3 3 5

4 4 6

5 6

7 9

8

9

10

1 1 1

2 2 2

3 3 5

4 4 6

5

6

1 1 1

2 2 2

3 3 5

4 4

5 6

6

The first option can be counted by cycling through the remaining entries, giving 2 tableaux.

The second option can be counted by filling out all possible pairs of columns for the first

and third column and comparing them to see which are possible, which gives 5 tableaux.

The third option can be counted by filling out all possible pairs of columns for the first and

third column and comparing them to see which are possible, giving 6 tableaux. Therefore,

for the second subtype of tableau, we have 2+5+6= 13 tableaux and so we have 7+13= 20

tableux for the first type.

Let us consider the second type of tableau:
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1 1 1

2 2 2

3 3 4

4

One of the 5s must be placed in the fourth row, second column. The other 5 can be placed

in either the fifth row, first column or fourth row, third column. After filling the remaining

numbers which are fixed, let us consider the first subtype of tableau:

1 1 1

2 2 2

3 3 4

4 5 5

6 6

7 9

8

9

10

There are only two ways to place the remaining numbers, so there are only 2 tableaux of

this subtype.

Let us consider the second subtype of tableau:

1 1 1

2 2 2

3 3 4

4 5

5
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Both 6s must be placed in the first free diagonal going from top to bottom. There are three

ways to place them, so we shall list them after filling out the remaining spaces whose

numbers are fixed:

1 1 1

2 2 2

3 3 4

4 5 6

5 6

7 9

8

9

10

1 1 1

2 2 2

3 3 4

4 5 6

5

6

1 1 1

2 2 2

3 3 4

4 5

5 6

6

The first option can be counted by cycling through the remaining entries, giving 2 tableaux.

The second option can be counted by filling out all possible pairs of columns for the first and

third column and comparing them to see which are possible, which gives 5 tableaux. The

third option can be counted by filling out all possible pairs of columns for the first and third

column and comparing the to see which are possible, giving 6 tableaux. Therefore, for the

second subtype of tableau, we have 2+5+6= 13 tableaux and so we have 2+13= 15 tableaux

for the second type. Therefore, we have 20+15= 35 tableaux in total, so K{36,13},α = 35.

From the above calculations, we have the multiplicity of the root α= {32, 27, 1} as

mult(α) = X2−X3+K{35,23},α+K{36,13},α = 21−105+50+35= 1

As we can see from the previous example, the computation of root multiplicities for

smaller degrees becomes more and more complicated. Additionally, the number of potential

roots to check increases dramatically as well. In order to move forward, we will make use of

the MATLAB program in Appendix A to simplify this process. The following table shows the

roots of degree −4, which are partitions of 28 which do not exceed 4 in the largest entry and

do not exceed length 10.

51



Table 4.4: Degree −4 Dominant Root Multiplicities for H E (1)8

α X2 X3 X4 K{44,34} K{45,3,22,1} K{46,14} mult(α)
{4, 36, 23} 36 353 1065 160 540 47 1
{39, 1} 36 378 1260 245 630 42 1
{38, 22} 155 1064 2590 385 1190 98 8

The following table shows the roots of degree −5, which are partitions of 35 which do

not exceed 5 in the largest entry and do not exceed length 10.

Table 4.5: Degree −5 Dominant Root Multiplicities for H E (1)8

α X2 X3 X4 X5 K{53,45} K{54,42,32,1} K{55,32,22} K{55,4,22,12} mult(α)
{5, 43, 36} 46 703 4270 8805 207 2421 1530 1035 1
{46, 33, 2} 58 876 5293 11065 405 3222 1767 1197 1
{45, 35} 220 2360 11430 20490 576 5376 3138 2118 8

The following table shows the roots of degree −6, which are partitions of 42 which do

not exceed 6 in the largest entry and do not exceed length 10.
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Table 4.6: Degree −6 Dominant Root Multiplicities for H E (1)8

α X2 X3 X4 X5 X6 K{62,56}
{6, 5, 47, 3} 57 1176 10927 45885 69195 147
{54, 44, 32} 78 1596 14272 58819 88722 383
{6, 49} 232 3304 24626 89460 122220 210
{53, 46, 3} 294 4342 31881 114590 156870 530
{52, 48} 1024 11522 70560 222460 276780 742

α K{63,53,42,1} K{64,5,42,3,2} K{64,52,32,12} K{65,34} K{65,4,3,22,1} mult(α)
{6, 5, 47, 3} 4928 14525 6104 1533 5880 1
{54, 44, 32} 7556 17950 7904 1843 7020 1
{6, 49} 7896 24150 9912 2478 9660 8
{53, 46, 3} 12040 30130 12804 3066 11535 8
{52, 48} 18984 49770 20776 5026 19040 44

The following table shows the roots of degree −7, which are partitions of 49 which do

not exceed 7 in the largest entry and do not exceed length 10.

Table 4.7: Degree −7 Dominant Root Multiplicities for H E (1)8

α X2 X3 X4 X5 X6 X7

{7, 56, 43} 72 1834 22614 143000 437000 499000
{63, 53, 44} 99 2582 30782 188000 567000 646000
{62, 56, 4, 3} 101 2682 32389 200000 609000 703000
{62, 55, 43} 390 7305 71402 382000 1040000 1110000
{6, 58, 3} 388 7484 74620 405000 1120000 1210000
{6, 57, 42} 1376 19846 162883 768782 1917720 1911315
{59, 4} 4472 52152 366184 1537956 3511200 3276000

α K{7,67} K{72,64,52,1} K{73,62,52,4,2} K{73,63,42,12} K{74,6,43,3} K{74,53,32}
{7, 56, 43} 43 4545 41688 15040 21677 20000
{63, 53, 44} 191 8637 55998 21707 27190 23638
{62, 56, 4, 3} 213 10685 67707 23750 28589 27880
{62, 55, 43} 265 13730 92826 34240 43498 39660
{6, 58, 3} 292 16640 111168 37400 46592 46600
{6, 57, 42} 369 21505 151488 53920 69405 65500
{59, 4} 516 33300 243972 84720 110292 106800
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α K{74,6,5,4,3,2,1} K{75,4,33,1} K{75,42,23} mult(α)
{7, 56, 43} 67552 8407 5530 1
{63, 53, 44} 85120 10384 6795 1
{62, 56, 4, 3} 89024 10088 6580 1
{62, 55, 43} 135104 16074 10540 8
{6, 58, 3} 141440 15904 10200 8
{6, 57, 42} 214240 25151 16430 44
{59, 4} 339456 39648 25740 192

4.4 Roots of Degree −8 and −9

The following table shows the roots of degree −8, which are all partitions of 56 which do

not exceed 8 in the largest entry and do not exceed length 10.
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Table 4.8: Degree −8 Dominant Root Multiplicities for H E (1)8 (Part 1)

Weight α X2 X3 X4 X5 X6 X7 X8

{8, 63, 56} 82 2534 39224 331443 1530645 3564675 3181002

{7, 66, 5, 42} 151 4633 67338 538829 2406100 5538375 4978005

{73, 57} 112 3619 54852 449008 2024330 4655070 4143522

{72, 63, 54, 4} 126 4070 60714 491800 2206769 5075898 4538603

{72, 62, 56} 467 10829 133237 947327 3864285 8267010 6996969

{68, 5, 3} 128 4363 68012 567959 2611476 6161960 5667312

{7, 65, 53, 4} 519 12010 146424 1034706 4210488 9020760 7673220

{68, 42} 591 13408 161315 1132292 4595528 9859080 8429015

{7, 64, 55} 1722 30707 315914 1976873 7341070 14650815 11799102

{67, 52, 4} 1874 33618 344932 2153592 7994882 15995210 12950595

{66, 54} 5748 83238 733303 4084324 13883809 25912690 19869735

Weight α K{78} K{8,75,62,1} K{82,73,62,5,2} K{82,74,52,12} K{83,72,53,3} K{83,7,63,4,3}

{8, 63, 56} 0 1395 43326 15165 77562 100080

{7, 66, 5, 42} 49 7083 109142 35445 122154 184221

{73, 57} 36 4221 68040 26460 103698 120960

{72, 63, 54, 4} 42 5487 86424 30474 112236 150318

{72, 62, 56} 51 6897 115281 41790 163884 207750

{68, 5, 3} 55 9045 146111 42915 161680 244685

{7, 65, 53, 4} 59 8814 144693 48270 179612 254391

{68, 42} 69 11229 180887 56355 197744 307741

{7, 64, 55} 72 11070 191769 65910 259128 348915

{67, 52, 4} 83 13938 238245 76200 286952 422527

{66, 54} 102 17514 314067 103680 409164 575643
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Table 4.9: Degree −8 Dominant Root Multiplicities for H E (1)8 (Part 2)

Weight α K{83,72,6,5,4,2,1} K{84,6,52,42} K{84,7,5,42,3,1}

{8, 63, 56} 212985 65295 127890

{7, 66, 5, 42} 355495 88605 173850

{73, 57} 286965 80865 164025

{72, 63, 54, 4} 319380 84642 169071

{72, 62, 56} 454965 126360 249390

{68, 5, 3} 406875 113142 181270

{7, 65, 53, 4} 505730 134001 258555

{68, 42} 562555 141912 267580

{7, 64, 55} 718140 197730 380985

{67, 52, 4} 797265 212178 397220

{66, 54} 1128930 309474 584205

Weight α K{84,62,5,32,1} K{84,7,52,3,22} K{85,42,32,2} Multiplicity

{8, 63, 56} 112950 79848 15804 1

{7, 66, 5, 42} 164385 109299 20028 1

{73, 57} 138411 101556 19881 1

{72, 63, 54, 4} 151017 105276 20076 1

{72, 62, 56} 218871 154899 29646 8

{68, 5, 3} 180663 108612 17592 1

{7, 65, 53, 4} 238374 160788 29880 8

{68, 42} 258573 167160 29856 8

{7, 64, 55} 344532 236667 44451 44

{67, 52, 4} 374472 245931 44808 44

{66, 54} 540126 362205 67041 192

The degree−9 roots are all partitions of 63 which do not exceed 9 in the largest entry and

do not exceed length 10. The degree−8 roots above provide enough information to calculate

the root multiplicity of the degree −9 root {73,67}, which will show a counterexample to

Frenkel’s conjecture for H E (1)8 .
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Table 4.10: Degree −9 Root Multiplicity for Dominant Root {73, 67} in H E (1)8

X2 20884

X3 306217

X4 2858282

X5 17873842

X6 74118576

X7 193343885

X8 282825270

X9 172869354

K{86,72,1} 4781

K{9,84,72,6,2} 257915

K{9,85,62,12} 84231

K{92,83,63,3} 905520

K{92,82,73,5,3} 1381996

K{92,83,7,6,5,2,1} 2318176

K{93,8,7,62,5,4} 3112200

K{93,82,6,52,3,1} 3372894

K{93,74,42} 541135

K{93,8,72,6,4,3,1} 4718880

K{93,82,62,4,22} 2014026

K{94,62,53} 361725

K{94,7,6,5,42,1} 2520945

K{94,8,52,4,3,2} 1538313

K{94,7,62,32,2} 1383375

K{95,43,32} 54901

Multiplicity 727

The degree−9 rootα= {73, 67}has p (8)
�

1− (α|α)2

�

= 726 but mult(α) = 727, which disproves

Frenkel’s conjecture.
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APPENDIX

A

CODE

This code will be updated on Github with further improvements. The link is available at the

following:

https://github.com/mabaker1216/Improved-Kang-Root-Multiplicity-Algorithm

ans1=0;
flag=0;
saverM=[];
l=1;
QB=AR8T; %Sorted array of roots for program to check
r=length(QB);
%checkagainer=[];
checkagainer=zeros(1000000000,8,’uint8’);
chkagr=length(checkagainer);
counter2=1;
%doublecheckagainer=[0,0];
%array must be sorted for program to work
% y is the sum being added to
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for i1=1:length(R1)
y2=y-RS(i1,:);
%outside loop does difference between root we are checking
%and all other possible roots
l=1;
r=length(QB);
%inside does two pointer method to check if difference is in array QB
while (l<=r)

% If sum is greater
if (isequal(QB(l,1:parsize)+QB(r,1:parsize),y2))

ya=QB(r,1:parsize);
yya=r;
while (isequal(QB(r,1:parsize),ya))&&(r>=l)

bet=[QB(l,dgr),QB(l,dgr+1),QB(l,dgr+2),QB(l,dgr+3),QB(r,dgr),
QB(r,dgr+1),QB(r,dgr+2),QB(r,dgr+3),i1];
bet(bet==0)=[];
if length(bet)==8
checkagainer(counter2,:)=sort(bet);
counter2=counter2+1;
%Next part removes duplicates in case memory is exceeded
%based on size of array, saved in ’int8’ because it
%is the smallest number type that can store
%the rows of the array QB
if counter2>length(checkagainer)

checkagainer=unique(checkagainer,’rows’);
chkagr2=length(checkagainer);
checkagainer=[checkagainer;zeros(chkagr-chkagr2,8,’int8’)];
counter2=chkagr2+1;
flag=flag+1;

end
end
r=r-1;

end
r=yya;
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l=l+1;
elseif (issortedrows([QB(l,1:parsize)+QB(r,1:parsize);y2]
,1:parsize,’ascend’))

l=l+1; %if sum is too small,
%move first pointer down

else
r=r-1; %if sum is too big,
%move second pointer up

end
end
i1
end

checkagainer( all(~checkagainer,2), : ) = [];
checkagainer=unique(checkagainer,’rows’);

%Next part computes root multiplicities from roots
%stored in checkagainer, all duplicates
%were removed in last step

for l1=1:length(checkagainer(:,5))
[C,ia,ic]=unique(checkagainer(l1,:));
a_counts=accumarray(ic,1);
ch=vector_counter_DM(Roots(C(:),mplc),a_counts(:));
mult(c,8)=mult(c,8)+ch;

end

mult(c,8);
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