
ABSTRACT

PAVLECHKO, ELLA. Partial Travel Time Representation of a Compact Riemannian Manifold
with Strictly Convex Boundary. (Under the direction of Teemu Saksala).

In this thesis a compact Riemannian manifold with strictly convex boundary is recon-

structed from its partial travel time data. This data assumes that an open measurement

region on the boundary is given, and that for every point in the manifold, the respective

distance function to the points on the measurement region is known. This geometric in-

verse problem has many connections to seismology, in particular to microseismicity. The

reconstruction is based on embedding the manifold in a function space. This requires the

differentiation of the distance functions. Therefore this thesis also studies some global

regularity properties of the distance function on a compact Riemannian manifold with

strictly convex boundary.
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CHAPTER

1

INTRODUCTION

In this thesis we solve a geometric inverse problem arising from seismology. In general,

inverse problems study how to convert measurements, referred to as data, to information

about a physical system. They are of particular use when the desired information about

a physical system may be difficult to access or cannot be obtained directly. This is the

case with many medical imaging procedures, since doctors do not want to interfere with a

patient’s organs unless it is deemed necessary. Instead, a physical system is probed with

various fields, such as X-rays, acoustic waves, or seismic waves. By probing the system we

obtain data which could consist of the time it takes for the wave to reach a receiver, strength

of the wave when it reaches a receiver, or the path a wave took through the system.

Let us consider a model in obstetric sonography, more commonly known as ultrasound

imaging. In this type of imaging, an ultrasonic scanner produces a sound wave, which

propagates in the body, reaches tissue boundaries, and then echoes back to the scanner.

The propagation is mathematically modeled by the wave equation, which gives a connection

between a wave’s speed and specific tissues. Thus the goal of the ultrasound inverse problem

is to determine the wave speed as a function of the position inside the body, which can

then be used to determine the specific tissues. In practice the wave speed is not what is
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determined by an ultrasound. Instead the current imaging procedure uses the travel time

of the wave, strength of the echo when it reaches the scanner, and location of the scanner

to produce an ultrasound image. One point in the image corresponds to the location of the

scanner and the time it took for the echo to return, and the shade of the point is determined

by the strength of the echo [39, pg. 4]. As a result the image quality largely depends on

the operator. Therefore exact measurements of tissue structures are not possible [64]. A

better understanding of the related inverse problem would lead to improvements in image

resolution.

The inverse problem in this thesis pertains to imaging the internal structures of a planet

using seismic waves. This type of imaging is essential to many industries ranging from oil

companies searching for pockets of oil or gas, to space agencies examining Mars’ inner core

to determine habitability [20]. In this type of imaging we probe the planet using seismic

waves that are either natural (i.e. earthquakes) or artificial (i.e. explosions). Since these

waves are strong enough to propagate through the planet’s interior, we then measure the

time it takes for a wave to reach a seismic sensor on the surface of the planet. In the case

of artificial seismic waves, we can also record the time of wave emission and compute the

total travel time. In practice, the emission times of natural sources are not known, but can

be closely approximated using a network of seismic sensors to triangulate the source time

[63, Section 7.2].

Since a seismic wave encounters variations in velocity due to changes in the physical prop-

erties of materials (i.e. composition, temperature, and pressure) [63, pg.69], it follows that

a seismic wave’s speed provides key insight and indirect information about the materials

inside a planet. Thus the goal of this inverse problem is to use the travel time data to deter-

mine the wave speed, and consequently the materials inside the planet. Early successes of

this inverse problem by Herglotz [23] and Wiechert and Zoeppritz [70] estimated Earth’s

diameter as well as the location of the mantle, crust, and core. In these papers they assume

spherical symmetry of the Earth and that the seismic wave speed only depends on the

depth.

A more realistic model is to assume that wave speed depends on the position [67]. This

is due to Fermat’s principle, which states the path chosen by a seismic wave will locally

minimize the travel time [63, pg. 71]. As a consequence, the path taken by a seismic wave,

called a ray, will vary in different types of media. For example an anisotropic medium is

one in which the wave speed varies based on the position and direction of propagation.
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This type of structure appears in crystals, cracks, pores, impurities, and sequences of thin

layers [8, pg. 11-12]. On the other hand an isotropic medium is one where the wave speed

is the same in all directions.

It has been shown that in an inhomogeneous isotropic medium the rays are geodesics of a

conformally Euclidean metric [8, Section 3.1.3], or in other words, a Riemannian metric. As

a result the travel time of a seismic wave in this medium is represented as a distance, where

the distance between two points in the object of interest is the shortest time it takes for any

waves to go from one point to the other. By modeling the propagation of a seismic wave

with the wave equation on a manifold, then the wave speed is given by the Riemannian

metric. The goal of this inverse problem is to determine the Riemannian manifold from the

boundary distance function, which is the distance between points on the boundary of the

manifold.

However, the solution to this problem is not unique, since the boundary distance function

is invariant under any change of coordinates fixing the boundary. Thus the best that one

can do is to recover the Riemannian manifold up to a boundary-preserving isometry. In the

geometric community this problem is known as the boundary rigidity problem and has

been extensively studied. As an example, manifolds with constant curvature conditions

have been shown to be boundary rigid [10] as well as metrics close to the Euclidean metric

[6].

In general, the boundary rigidity problem is false, since there may be regions ‘unseen’ by the

data and so altering the metric in those regions leads to a negative result. For this reason we

typically consider the boundary rigidity problem with additional geometric assumptions.

Due to a conjecture by Michel [41], a common assumption is the simplicity of the manifold.

By simplicity, we mean a manifold with strictly convex boundary and any two points are

connected by a unique distance minimizing geodesic. It has been confirmed that in two

dimensions a simple manifold is boundary rigid [48]. However, the question is still open for

higher dimensional cases.

A promising alternative is to increase the amount of available data. The scattering data maps

a point and direction of entrance of a geodesic to the point and direction of exit. This extends

our knowledge from only the distance-minimizing geodesics to all geodesics connecting

the boundary. Given the length of each geodesic along with the scattering data provides

the lens data. Alternatively, since the distance function is non-linear, we could consider the

linearization of the boundary rigidity problem, known as the tensor tomography problem.
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Because symmetric 2-tensors that solve the tensor tomography problem provide insight to

the solutions of the boundary rigidity problem, this linearization is the main tool that is

used to solve the boundary rigidity problem. Tomography is also an important technique in

many applications such as imaging the Sun’s interior [33], ocean acoustics [42], and medical

imaging [64].

Another set of data, and the one that is considered in this thesis, is comprised of the dis-

tances from points in the manifold to points on the boundary. That is, assuming an infinite

number of point-sources, the boundary distance function is the distance from a source

to the boundary. Physically the data is associated with deep-focus earthquakes, which are

seismic events occurring deeper in Earth’s mantle and whose waves are measured on the

surface [24, 31, 71]. Because isometric Riemannian manifolds preserve distances and are

indistinguishable in terms of geometry, the best one could hope for with this data is recov-

ering a Riemannian manifold up to an isometry. The authors in [29, 34]were able to prove

that with the boundary distance function one can recover the Riemannian manifold up to

a Riemannian isometry. However, we note that their proof relies on accessing the closest

boundary point. Physically this corresponds with placing seismic sensors everywhere on a

planet’s surface, which is infeasible for real-world applications.

In this thesis we study a more physically realistic scenario by restricting the region where

seismic sensors are placed. We consider an open subset of the boundary to represent the

measurement region. Thus, our data consists of the distances from any point in the manifold

to the points in the measurement region. We will show that this partial travel time data

determines the Riemannian manifold up to a Riemannian isometry under some geometric

constraints. Specifically, we assume that the manifold has a strictly convex boundary, which

allows for any point in the manifold to be accessed from the measurement region using a

distance-minimizing geodesic inside the manifold.

The main part of the proof is to use an embedding of the manifold into a function space to

reconstruct the topological, smooth, and Riemannian structures. This embedding maps

a point to its respective boundary distance function, which is determined by the given

data. However, showing this mapping is injective requires the differentiation of the distance

functions. Therefore we must determine when the distance functions are smooth, and so

we show some global regularity properties of distance functions on a compact Riemannian

manifold with strictly convex boundary.

We note that without the assumption of a strictly convex boundary our method fails. For
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example, consider a horseshoe-shaped planar domain with a measurement region at the

tip of one prong. A distance-minimizing curve starting from the measurement region and

traveling to the other prong must touch the boundary at some x0. Then from the point of

view of the measurement region, all points on the other prong and equidistant from x0 are

indistinguishable using the data. Thus the mapping from a point to its respective boundary

distance function is not injective, and we cannot apply the technique discussed in this

thesis.

1.1 Overview of the Thesis

We will briefly introduce the most important geometric notations, definitions, and theorems

related to this thesis in Chapter 2. The material presented in Sections 2.1 and 2.2 can be

found in many textbooks on Riemannian geometry. Readers familiar with those topics

are therefore encouraged to begin reading Sections 2.3 and 2.4, since they deal with more

specialized material which is not usually addressed in standard Riemannian geometry

courses.

In Chapter 3 of this thesis we review some related results in the field of geometric inverse

problems. Section 3.1 formalizes the discourse about the boundary rigidity problem, as well

as the scattering and tomography problems. We then discuss the work of [29, 34] in Section

3.2. Since this section is the most similar to the problem in this thesis, it is of particular

importance to the proof of our result.

The main result of this thesis is proved in Chapter 4. It is an extended version of the paper

Uniqueness of the partial travel time representation of a compact Riemannian manifold

with strictly convex boundary [47]. To conclude, in Chapter 5 we outline some possible

future research questions.
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CHAPTER

2

GEOMETRIC PRELIMINARIES

In this chapter we define the fundamental objects and tools of differential and Riemannian

geometry. We adapt much of our notation from [37] and [38].

2.1 Smooth Manifolds

We say that a topological space N is a topological manifold of dimension n ∈N if it is a

second countable Hausdorff space, where each point p ∈N has a neighborhood that is

homeomorphic to an open subset of Rn . That is, N can be covered by a collection of open

sets Ui which have a homeomorphism with some open subsets U ′i ⊆R
n ,

φi : Ui →U ′i , φi (p ) = (x
1
i (p ), ..., x n

i (p )).

The sets Ui are called the coordinate neighborhoods andφi are the coordinate mappings.

For a specific p ∈Ui , then (x 1
i (p ), ..., x n

i (p )) are called the local coordinates on Ui . The pair

(Ui ,φi ) is called a coordinate chart. The coordinate charts (Ui ,φi ) and (Uj ,φ j ) are smoothly

compatible coordinate charts ifφi ◦φ−1
j :φ j (Ui ∩Uj )→φi (Ui ∩Uj ) is a smooth mapping.
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A smooth atlasA = {(Ui ,φi )}i refers to the collection of smoothly compatible coordinate

charts that cover N . There may be several atlases on a manifold, some of which are finer

than others. Thus, we say an atlas is maximal if it is not properly contained in any other

smooth atlas. This maximal atlas on N is what defines the smooth structure on N . A

smooth manifold N is a topological manifold equipped with a smooth structure. As the

next Lemma shows, we only need to specify one smooth atlas on N to get the smooth

structure.

Lemma 1. Let N be a topological manifold.

(a) Every smooth atlasA for N is contained in a unique maximal smooth atlas, called

the smooth structure determined byA .

(b) Two smooth atlases for N determine the same smooth structure if and only if their

union is a smooth atlas.

Proof. Proved in [37, Proposition 1.17].

Let N be a smooth manifold. A map f : N →R is said to be smooth if for all p ∈N there

exists a chart (U ,φ) in the atlas such that p ∈U and f ◦φ−1 :φ(U )→R is a smooth function.

The collection of all smooth functions on N is denoted C∞(N ). Let N1 and N2 be smooth

manifolds. A map f : N1 → N2 is smooth if for every p ∈ N1 there exists smooth charts

(U ,φ) of N1 containing p and (V ,ψ) of N2 containing f (p ) such that f (U )⊆V and the map

ψ ◦ f ◦φ−1 is smooth from φ(U ) toψ(V ). A map f : N1→ N2 is a diffeomorphism if it is

smooth and has a smooth inverse.

The tangent space at p is denoted Tp N and is the n-dimensional vector space of all tangent

vectors at p . The disjoint union of the tangent spaces,

T N =
∐

p∈N

Tp N

is the tangent bundle of N . Additionally, the cotangent space T ∗p N is the space of linear

functionals on Tp N . For a smooth mapping f : N1→N2, there is an associated linear map

between the tangent spaces, D f |p : Tp N1→ Tf (p )N2 called the differential of f at p .

A manifold is compact if for every open cover there exists a finite subcover. Thus if N

is compact and smooth it has a finite atlas. Additionally, we say N is connected if there
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does not exist two disjoint, nonempty, open subsets of N whose union is N . Examples

of compact, smooth, connected manifolds are the n-dimensional unit-sphere or the n-

dimensional torus when n ≥ 1. All manifolds in this thesis are assumed to be compact,

smooth, and connected. We note that often the term closed manifold refers to a compact

manifold without boundary, whereas an open manifold means a noncompact manifold

without boundary. In Section 2.2 we survey the existing literature on closed manifolds and

solidify notations.

In the remaining sections of this thesis we will turn our attention to a compact mani-

fold with boundary, M , which is an n-dimensional smooth manifold whose points have

neighborhoods that are diffeomorphic to open subsets of the closed upper-half space

Hn = {(x1, ..., xn ) ∈ Rn : xn ≥ 0}. That is, M still has an atlasA = {(Ui ,φi )}i where Ui are

open subsets of M andφi : Ui →Hn are continuous maps such thatφi (Ui ) is an open subset

ofHn andφi : Ui →φi (Ui ) is a diffeomorphism. The boundary of M is denoted

∂M = {p ∈M : there exists (Ui ,φi ) ∈A such that p ∈Ui andφi (p ) ∈ ∂Hn},

while the interior of M is

M i n t = {p ∈M : there exists (Ui ,φi ) ∈A such that p ∈Ui andφi (Ui ) ∈Hn \ ∂Hn}.

Then M = ∂M ∪M i n t where ∂M ∩M i n t = ;. Note that ∂M can also be viewed as an n −1

dimensional manifold embedded in M . Examples of a compact smooth manifold with

boundary are the unit disc, paraboloid, cylinder, and catenoid.

2.1.1 Vector & Tensor Fields

If N is a smooth manifold with or without boundary, a smooth vector field on N is a smooth

map X : N → T N with the property that X (p ) ∈ Tp N for each p ∈ N . Equivalently, X is

a smooth vector field on N if it is a section of the map π : T N → N that is smooth and

satisfiesπ◦X = i dN . Thus we can visualize smooth vector fields as tangent vectors attached

to N which vary smoothly as they move from point to point. We will denote the collection

of all smooth vector fields on N as

X (N ) = {X : N → T N : X (p ) ∈ Tp N for all p ∈N , X is smooth}.
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Locally, if we let (E1, ..., En ) be a collection of smooth vector fields that are defined in an

open neighborhood U ⊆N , and such that for all p ∈U , (E1(p ), ..., En (p )) is a basis of Tp N ,

then (E1, ..., En ) is called a local frame.

Example 2. Suppose N is a smooth n-manifold with or without boundary. If (U , (x i )) is any

smooth coordinate chart for N around p then we can say that any point in U near p is given

by the local coordinates (x 1, ..., x n ). Thus, ( ∂∂ x 1 , ..., ∂
∂ x n ) forms a local frame. Then any vector

v ∈ Tp N at p can be given in Einstein summation notation as

v (p ) = v i ∂

∂ x i

�

�

p
,

where v i ∈R are called the components of v with respect to the coordinate basis [37, Proposi-

tion 3.15]. A vector field X ∈X (N ) at p is given locally as

X (p ) = X i (p )
∂

∂ x i

�

�

p

where X i : U →R are called the component functions of X .

Analogously to vector fields, we define a smooth covector field (or the differential 1-form)

to be the smooth mappingω : N → T ∗N such thatω(p ) ∈ T ∗p N . Equivalently, a covector

field is a section of T ∗N .

Example 3. Suppose N is a smooth n-manifold with or without boundary. Recall if f ∈ T ∗p N

then f : Tp N →R is a linear function, and if (U , (x i )) is any smooth coordinate chart for N

then

f (v ) = f
�

v i ∂

∂ x i
|p
�

= v i f
�

∂

∂ x i
|p
�

= ωi |p v i , v ∈ Tp N

where ωi |p = f
�

∂
∂ x i |p
�

∈ R. Thus if the v i form a basis for T ∗p N then the corresponding n-

tuple (ω1, ...,ωn ) determines a unique linear function, and we would consider the mapping

ω : N → T ∗N to map a point p to the uniquely determined f ∈ T ∗p N .

However, the v i may not be an appropriate choice of basis, so define the dual coframe to

be the set of vectors (ξ1, ...,ξn ) that form a basis for T ∗p N and ξi ( ∂∂ x j ) =δi
j . Then the smooth

covector fieldω at p is given locally as

ω(p ) = ωi |p ξi = ω
�

∂

∂ x i

�

�

p

�

ξi

whereωi : U →R are called the component functions ofω.
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Noticeωmaps a point p to a linear function of Tp N , whose input is a vector, so there is a

natural pairing between a vector field and a covector field. Letω(X ) : T ∗p N ×Tp N 7→R be

such a pairing, given by

(ω(p ), X (p )) 7→ω(p )(X (p )).

Using local coordinates (U , (x i )) on N such that ω = ωiξ
i and X = X j ∂

∂ x j then ω(X ) =

ωi X i . Abstracting this notion of pairing vector and covector fields, we define a multilinear

mapping

F : Tp N × · · ·×Tp N
︸ ︷︷ ︸

k

×T ∗p N × · · ·×T ∗p N
︸ ︷︷ ︸

ℓ

→R

to be a (k ,ℓ)-tensor or k -covariant and ℓ-contravariant tensor. Then the collection of

all (k ,ℓ)-tensors on Tp N is denoted T (k ,ℓ)(Tp N ). A k-covariant tensor is symmetric if it is

unchanged by interchanging any pair of arguments:

F (v1, ..., vi , ..., v j , ..., vk ) = F (v1, ..., v j , ..., vi , ..., vk ), v1, ..., vk ∈ Tp N .

A k -covariant tensor is antisymmetric (also called skew symmetric or alternating) if inter-

changing any pair of arguments makes it differ by a sign,

F (v1, ..., vi , ..., v j , ..., vk ) =−F (v1, ..., v j , ..., vi , ..., vk ).

Example 4. If F is a (1,1)-tensor then it is a multilinear mapping F : Tp N ×T ∗p N →R. In

local coordinates, let (E1, ..., En ) be the local frame and (ξ1, ...,ξn ) be the dual coframe. For

v := v i Ei ∈ Tp N andω :=ω jξ
j ∈ T ∗p N then

F (v,ω) = F j
i ξ

i (v )E j (ω)

= F j
i v kξi (Ek )ωℓE j (ξ

ℓ)

= F j
i v kδi

kωℓδ
ℓ
j

= F j
i v iω j .

Thus, F j
i is treated as a matrix. This leads to the intuition that tensors are multi-dimensional

matrices.

For a (1, 1)-tensor denoted F the trace Tr(F )would then be the sum of the diagonal entries of

the matrix F j
i , so as an operator it is expressed Tr : T (1,1)(Tp N )→Rwhere Tr(F ) = F i

i . In gen-

eral, for (k ,ℓ)-tensors with k ,ℓ≥ 1, we define the trace as Tr : T (k ,ℓ)(Tp N )→ T (k−1,ℓ−1)(Tp N )
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by letting Tr(F ) at (v1, ..., vk−1,ω1, ...,ωℓ−1) be the trace of the (1, 1)-tensor

F (v1, ..., vk−1, ·,ω1, ...,ωℓ−1·) ∈ T (1,1)(Tp N ).

We denote the (k ,ℓ) tensor-bundle of N as

T (k ,ℓ)(N ) =
∐

p∈N

T (k ,ℓ)(Tp N )

A section of a tensor bundle is called a tensor field on N . That is, a tensor field assigns a

tensor to each point of a manifold.

Example 5. • A vector field X is a (0, 1)-tensor field.

• A covector fieldω is a (1, 0)-tensor field.

• Since a (0, 0)-tensor is just a real number, a (0, 0)-tensor field is a continuous real-valued

function.

For more information on multilinear mappings and tensors, we refer the reader to [19,

Chapter 4] or [38, Appendix B].

2.2 Riemannian Manifolds

We define a Riemannian manifold (N , g ) to be a smooth manifold N equipped with a

smooth Riemannian metric g , which is a symmetric and positive definite 2-covariant

tensor field. We note that on any compact n-dimensional smooth manifold there may be

several Riemannian metrics possible. Thus, when defining a Riemannian manifold we must

specify our g .

Example 6. Take D 2 to be the 2-dimensional unit disc. Consider these three possible Rieman-

nian metrics for p ∈D 2: Euclidean gE , hyperbolic gH , and cylindrical gC (when p is away

from the origin). To define these metrics, first specify a coordinate system (x 1, x 2) for a point

p ∈ D 2. This induces a local frame ( ∂∂ x 1 , ∂
∂ x 2 ) ∈ Tp D 2 and dual coframe (d x 1, d x 2) ∈ T ∗p D 2

where d x i (d x j ) =δi
j . Then anyω ∈ T ∗p D 2 is given asω=ωi d x i , and we define the metric

11



using Einstein summation notation

g : Tp D 2×Tp D 2→R, g = g i j d x i ⊗d x j ,

where g i j = g ( ∂∂ x i , ∂
∂ x j ). In Table 2.1 we summarize the coordinates, resulting coframes, and

definitions of some different metrics.

Euclidean Hyperbolic Cylindrical
(x 1, x 2) (x , y ) (x , y ) (r,θ ), r > 0
(d x 1, d x 2) (d x , d y ) (d x , d y ) (d r, dθ )

g gE = d x 2+d y 2 gH =
d x 2+d y 2

1−x 2−y 2 gC = d r 2+ r 2dθ 2

Table 2.1 Three possible Riemannian metrics g on the 2-dimensional unit disc

Notice that the g i j for each metric can be expressed as a 2×2 matrix,

gE =

�

1 0

0 1

�

, gH =
1

1− x 2− y 2

�

1 0

0 1

�

, gC =

�

1 0

0 r 2

�

.

For any p ∈N the metric tensor g defines an inner product on Tp N , denoted 〈v, w 〉g for

v, w ∈ Tp N . Thus the length of a vector v ∈ Tp N is given by |v |g =
Æ

〈v, v 〉g . The unit-sphere

at p is denoted Sp N = {v ∈ Tp N : |v |g = 1} ⊂ Tp N .

Example 7. Continuing with the previous example on the unit disc, if a vector v ∈ Tp D 2 is

given in local coordinates as v = v i ∂
∂ x i , then the length of v in the different metrics are

|v |gE
=
p

(v 1)2+ (v 2)2, |v |gH
=

p

(v 1)2+ (v 2)2

1− x 2− y 2
, |v |gC

=
p

(v 1)2+ (r v 2)2.

Let (N1, g1) and (N2, g2) be Riemannian manifolds. A Riemannian isometry is a diffeomor-

phismψ : N1→N2 that preserves the Riemannian inner product:

〈v, w 〉g1
= 〈Dψ|p v, Dψ|p w 〉g2

, v, w ∈ Tp N .

We say that (N1, g1) and (N2, g2) are Riemannian isometric if there exists a Riemannian

isometry between them. The isometry class of (N , g ) is the collection of Riemannian man-

12



Figure 2.1 Examples of isometries

ifolds that are isometric to (N , g ). From the point of view of Riemannian geometry, two

isometric manifolds are the same.

Example 8. Continuing with our previous example, the 2-dimensional unit disc with Eu-

clidean metric gE is isometric to the 2-dimensonal unit disc embedded on the cylinder. This

is demonstrated in Figure 2.1. However, we note that the 2-dimensonal unit disc is not iso-

metric to a hemisphere. The reason for this is that the sphere has constant positive curvature

and the disc has constant zero curvature. These quantities are preserved in isometries. The

2-dimensional unit disc is also not isometric to the annulus, since they have different funda-

mental groups, which means they are not homeomorphic.

2.2.1 Levi-Civita Connection

Now that we can compute the lengths of vectors using the metric g , the natural question

arises how a vector changes if the base point is moved, which generalizes the concept of

derivative. That is, for a vector field X on the manifold N , we need an invariant way to

compare the values of vector fields at different points. In this section we define a coordinate-

invariant set of rules for taking directional derivatives of vector fields.

LetX (N ) be the collection of smooth vector fields on N . We define an affine connection∇
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(also known as a linear connection) as a map

∇ :X (N )×X (N )→X (N ), ∇ : (X , Y ) 7→∇X Y ,

such that it has the following properties:

(a) (Linearity in X )∇ f X1+g X2
Y = f ∇X1

Y + g∇X2
Y , f , g ∈C∞(N ).

(b) (Linearity in Y )∇X (a Y1+ b Y2) = a∇X Y1+ b∇X Y2, a , b ∈R.

(c) (Product Rule)∇X ( f Y ) = f ∇X Y + (X f )Y , f ∈C∞(N ).

We note that property (b) only has linearity over constants in Y , so an affine connection

need not be linear over C∞(N ) in Y . Thus,∇may not be a (2,1)-tensor.

Locally, let (E1, ..., En ) be a local frame (Defined in Section 2.1.1). Using Einstein summation

notation, then components of an affine connection are

∇Ei
E j = Γ

k
i j Ek . (2.1)

where local functions Γ k
i j are called the Christoffel symbols. In local coordinates this affine

connection took the vector E j and saw how much it changed as it was moved in the Ei -

th direction, resulting in a vector given by the (Ek ) frame. By the properties of an affine

connection if X , Y ∈X (N ) such that X = X i Ei and Y = Y j E j then

∇X Y = (X Y k +X i Y j Γ k
i j )Ek ,

is called the covariant derivative of Y in the direction of X . Intuitively, we understand the

covariant derivative is like the directional derivative of Y in the direction of X .

We now use the covariant derivative of a (k ,ℓ)-tensor field T to define a (k ,ℓ+ 1)-tensor

field. Let Yi ∈X (N ) andωi are smooth covector fields. Then the total covariant derivative

of a tensor field T is

∇T (ω1, ...,ωk , Y1, ..., Yℓ, X ) =∇X T (ω1, ...,ωk , Y1, ..., Yℓ), X ∈X (N ).

Example 9. If f ∈C∞(N ) then f is a (0, 0)-tensor field. Then

D f (X ) =∇ f (X ) =∇X f = X f , X ∈X (N ).
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is a (1, 0)-tensor field called the differential of f . The covariant Hessian of f is a (2, 0)-tensor

field defined by applying the total covariant derivative∇ twice, so Hess( f ) =∇2 f . Using [38,

Proposition 4.21], the covariant Hessian at p becomes

Hessp ( f )(X , Y ) =∇2 f (Y , X ) =∇X (∇Y f )−∇(∇X Y ) f = Y (X f )− (∇Y X ) f .

For a smooth curve γ : I →N the connection determines a unique operator Dt :X (γ)→
X (γ) called the covariant derivative along γ [38, Theorem 4.24]. If V ∈X (γ) is induced by

a vector field Y ∈X (N ) (i.e. V (t ) = Y (γ(t ))) then

Dt V (t ) =∇γ′(t )Y .

Furthermore, consider the smooth local coordinates (x 1, ..., x n ) near γ(t0), and local frame

( ∂∂ x 1 , ..., ∂
∂ x n ). We write V (t ) = V i (t ) ∂∂ x i

�

�

γ(t ) for t near t0, where V 1, ..., V n are smooth real-

valued functions defined on some neighborhood of t0 in I . Then,

Dt V (t ) =
�

V̇ k (t ) + γ̇i (t )V j (t )Γ k
i j (γ(t ))
� ∂

∂ x k

�

�

γ(t ). (2.2)

We note that there are many possible connections on the given manifold N . However, when

we specify the metric g on N then there is a unique linear connection compatible with g .

Lemma 10 (Fundamental Lemma of Riemannian Geometry). Let (N , g ) be a Riemannian

manifold, and X , Y , Z ∈X (N ). There exists a unique affine connection∇ on N that satisfies

properties (a)-(c) as well as:

(d) (Compatibility with metric tensor)∇X 〈Y , Z 〉g = 〈∇X Y , Z 〉g + 〈Y ,∇X Z 〉g .

(e) (Symmetry/Torsion free)∇X Y −∇Y X = [X , Y ], where [X , Y ] is the Lie bracket.

This connection is called the Levi-Civita connection of g .

Proof. Proven in [38, Theorem 5.4].

Informally, the compatibility condition indicates we are able to differentiate the inner prod-

uct by the usual ‘product rule’. Then the symmetry implies in local coordinates (x 1, ..., x n )
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with associated frame (d x 1, ..., d x n )

∇d x i d x j −∇d x j d x i = [d x i , d x j ] = 0, i , j = 1, ..., n .

The statement above is equivalent to the fact that Γ k
i j = Γ

k
j i .

We consider a point p ∈N where (x 1, ..., x n ) are the local coordinates near p , this gives rise

to a local frame ( ∂∂ x 1 , ..., ∂
∂ x n ). Then any vector v ∈ Tp N can be given as v = (v 1 ∂

∂ x 1 , ..., v n ∂
∂ x n ).

Thus the Levi-Civita connection near p has the form

∇v Y = v i ∂

∂ x i
Y k (p )

∂

∂ x k
+ Γ k

i j (p )v
i Y j (p )

∂

∂ x k
, (2.3)

where

Γ k
i j (p ) =

1

2
g k l

�

∂ g j l

∂ x i
+
∂ g i l

∂ x j
−
∂ g i j

∂ x l

�

. (2.4)

2.2.2 Gradient, Divergence, and Laplace-Beltrami Operators

We note, in a typical Calculus sequence∇ is used to denote the gradient operator. Then for

f ∈C∞(R3)we understand the gradient of f to be a vector field representing the direction

of maximum increase along a surface. However, in this thesis we use ∇ to represent the

Levi-Civita connection, which is a geometric notion of directional derivative. Thus in this

section we generalize the gradient to a Riemannian manifold. Let f ∈ C∞(N ) then the

gradient is defined by the equation

〈grad f , X 〉g = X f =D f (X ), for all X ∈X (N ). (2.5)

On the Riemannian manifold (N , g ) the divergence operator, div : X (N ) → C∞(N ), is

defined by

div(X ) = Tr(∇X ),

where Tr is the trace operator (see Section 2.1.1) and∇ is the total covariant derivative for

the Levi-Civita connection.

Example 11. Let N =Rn , then for vector field given by X = X k ek we find

div(X ) = grad ·X =
∂

∂ x k
X k ,
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which agrees with our Euclidean sense of divergence operator.

Using the divergence operator we create a second order linear elliptic partial differen-

tial operator of a Riemannian manifold (N , g ) called the Laplace-Beltrami operator∆g :

C∞(N )→C∞(N ), defined by

∆g f = div(grad f ), for all f ∈C∞(N ). (2.6)

(Note that many books define∆g f =−div(grad f ) so the operator has nonnegative eigen-

values.) In local coordinates (x 1, ..., x n ) the gradient, divergence, and Laplace-Beltrami

operator are given by

grad f =
�

g i j ∂ f

∂ x i

�

∂

∂ x j
,

div
�

X i ∂

∂ x i

�

=
1
p

det(g )

∂

∂ x i

�

X i
Æ

det(g )
�

,

∆g f =
1
p

det(g )

∂

∂ x i

�

g i j
Æ

det(g )
∂ f

∂ x j

�

,

where g i j is the inverse matrix of g [38, Proposition 2.46].

2.2.3 Distance Function

The metric tensor g also defines the length of any path in N . Letγ : [a , b ]→N be a piecewise

smooth curve segment, then the length of the path γ is denoted

L (γ) =
∫ b

a

�

�

�

�

dγ(t )
d t

�

�

�

�

g

d t . (2.7)

We note that the length of the path γ([a , b ]) is invariant of the parametrization.

Lemma 12. Let α : [ã , b̃ ]→ [a , b ] be C 1 and α′ ̸= 0. We say γ̃= γ ◦α is the reparametrization

of γ. Then

L (γ̃) =L (γ).

Proof. This is shown in [37, Proposition 13.25]. The key idea of the proof is to let γbe smooth

and either α′ > 0 or α′ < 0, then use a change of variables with α(t ) = s so the following
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holds,

L (γ̃) =
∫ b̃

ã

�

�

�

�

d γ̃(α(t ))
d t

�

�

�

�

g

d t =

∫ b̃

ã

|α′(t )γ′(α(t ))|g d t =

∫ b

a

|γ′(s )|g d s =L (γ).

Then for any piecewise smooth curve, apply the same argument on each subinterval where

γ is smooth.

This lets us define the distance function on N ,

d (x , y ) = inf
γ
{ L (γ) : γ is a piecewise smooth curve starting at x and ending at y }.

From this definition, the following Lemma shows the compact Riemannian manifold (N , g )

is a compact metric space, which induces a metric topology. However, recall by definition

that the manifold N already has a pre-existing topology. So we must also show the existing

topology agrees with the metric topology induced on N .

Lemma 13. Let (N , g ) be a connected Riemannian manifold with or without boundary. With

the distance function d then N is a metric space whose metric topology is the same as the

given manifold topology.

Proof. See the proof in [38, Proposition 2.55].

We say that a path γ : [a , b ] → N with γ(a ) ̸= γ(b ) is distance minimizing if L (γ) =
d (γ(a ),γ(b )) (i.e. it is a shortest path between its endpoints).

Example 14. Consider x , y ∈ S 2 to be points on the equator that are not anitpodal, shown

in Figure 2.2. There are several possible curves connecting x and y , however, a distance

minimizing curve γ is the shortest path along the equator which connects them. All other

curves like γ1 (which goes around the back of the sphere) and γ2 (which does not lay on the

equator) are longer than γ.

2.2.4 Geodesics

Consider a smooth path γ : [a , b ]→N and let γ(t ) = (x 1(t ), ..., x n (t )) be its representation

in local coordinates on (U ,φ). Then γ is said to be a geodesic if it satisfies the second-order
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Figure 2.2 Distance minimizing curve γ shown on the sphere

differential equation,

Dt γ̇(t ) =
d 2 x k (t )

d t 2
+

d x i (t )
d t

d x j (t )
d t

Γ k
i j (x (t )) = 0 (2.8)

known as the geodesic ODE. Here, Γ k
i j are the Christoffel symbols given in equation (2.4) and

γ̇(t ) = d
d t γ(t ). Recall in Euclidean space that straight lines have an acceleration, or second

derivative, equal to zero. In the Riemannian sense, equation (2.8) is the generalization of the

acceleration being zero. Thus, we consider geodesics to be the generalization of ‘straight’

lines on the manifold.

We now derive the geodesic ODE. If γ : [a , b ]→ N is a smooth path, then a variation of

γ is a family of curves Γ : I × [a , b ]→N such that I is an open interval containing 0 and

Γ (0, t ) = γ(t ). It is called a proper variation if in addition, Γ (s , a ) = γ(a ) and Γ (s , b ) = γ(b ) for

all s ∈ I . Notice that when s is fixed then Γ (s , ·) is a smooth curve as depicted in Figure 2.3.

We say the variation field of Γ is the piecewise smooth vector field V (t ) = ∂s Γ (0, t ) along

γ. We say that a vector field V along γ is proper if V (a ) = 0 and V (b ) = 0. Clearly by the

definitions, the variation field of every proper variation is itself proper.

Lemma 15 (First Variation Formula). Let (N , g ) be a Riemannian manifold. Suppose γ :

[a , b ]→N is a smooth curve, Γ : I ×[a , b ]→N is a proper variation of γ, and V is its variation

field. ThenLg (Γ (s , ·)) is a smooth function of s and

d

d s

�

�

�

s=0
Lg (Γ (s , ·)) =−
∫ b

a

〈V , Dt γ̇〉g d t . (2.9)

Here Dt γ refers to the covariant derivative along γ, defined in Section 2.2.1.

Proof. The proof is in [38, Theorem 6.3] and thus omitted here.
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Figure 2.3 A proper variation of γ, denoted Γ .

We say that a smooth curve γ is a critical point ofLg if for every proper variation Γ (s , ·) of γ

the derivative ofLg (Γ (s , ·))with respect to s is zero at s = 0.

Lemma 16. A smooth curve γ is a critical point forLg if and only if it is a geodesic.

Proof. If d
d s

�

�

�

s=0
Lg (Γ (s , ·)) = 0 for every proper variation Γ , then by (2.9) it follows that

〈V , Dt γ̇〉g = 0 for all proper variation fields V . Then from [38, Theorem 6.4] it follows that

Dt γ̇= 0, which is equivalent to (2.8).

If γ is a geodesic it satisfies (2.8). Thus, Dt γ̇= 0 and by (2.9) we have d
d s

�

�

�

s=0
Lg (Γ (s , ·)) = 0 for

every proper variation Γ . Thus γ is a critical point ofLg .

Thus geodesics are critical points ofLg , which gives rise to equation (2.8). We now provide

a few examples of how to use this equation to compute geodesics on different manifolds.

Example 17. (Geodesics on a sphere) Recall that a sphere of radius r > 0 is a 2-dimensional

Riemannian manifold defined by the set of points p ∈R3 such that ∥p∥gE
= r . Consider the

coordinate neighborhood on the sphere parameterized by spherical coordinates

X (θ ,φ) = (r cos(θ )sin(φ), r sin(θ )sin(φ), r cos(φ)), θ ∈ (0, 2π),φ ∈ (0,π).

All points on the sphere are given by similar coordinate neighborhoods. So we consider the

local coordinates for this manifold to be (x 1, x 2) = (θ ,φ). We first calculate the metric, g on
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the sphere.

Xθ = (−r sin(θ )sin(φ), r cos(θ )sin(φ), 0)

Xφ = (r cos(θ )cos(φ), r sin(θ )cos(φ),−r sin(φ))

g =

�

Xθ ·Xθ Xθ ·Xφ
Xφ ·Xθ Xφ ·Xφ

�

=

�

r 2 sin2(φ) 0

0 r 2

�

and if sin(φ) ̸= 0 it has the inverse

g −1 =

�

1
r 2 sin2(φ) 0

0 1
r 2

�

.

Using formula (2.4) then we find Γ k
i j for all i , j , k ∈ {1, 2}.

Γ 1
11 = 0= Γ 1

22

Γ 1
12 =

cos(φ)
sin(φ)

= Γ 1
21

Γ 2
11 =−cos(φ)sin(φ)

Γ 2
12 = 0= Γ 2

21

Γ 2
22 = 0

Thus, the geodesic ODE gives the system of equations







θ̈ +2 cos(φ)
sin(φ) θ̇ φ̇ = 0

φ̈− cos(φ)sin(φ)(θ̇ )2 = 0.
(2.10)

We now show that curves with constant θ are solutions to the system. If θ = c , then the first

equation of (2.10) holds trivially, while the second equation becomes φ̈ = 0, implying it is

affine, orφ(t ) = a t + b for a , b ∈R. Thus, the curve on the sphere given by

γ(t ) = (r cos(c )sin(φ(t )), r sin(c )sin(φ(t )), r cos(φ(t ))), c ∈ (0, 2π)

is a geodesic. These curves are known as great circles since it is the intersection of the sphere

and a plane through the center of the sphere. By the rotational symmetry of the sphere, all

great circles on the sphere are geodesics.
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Figure 2.4 Some geodesics on a sphere of radius r .

However, we note that the only ’parallel’ (i.e. curves with constantφ) of the sphere that is a

geodesic is the equator (when φ = π
2 ). Let φ = c , then the first equation of (2.10) becomes

θ̈ = 0, implying θ (t ) = a t +b for a , b ∈R. Using this in the second equation of (2.10), then it

follows−cos(c )sin(c )(a )2 = 0. Since a = 0 implies the geodesic is a point, it is an uninteresting

case, and ignored. Taking a ≠ 0 then either cos(c ) = 0 or sin(c ) = 0. However, to have g −1 and

the Christoffel symbols defined, we assumed sin(φ) ̸= 0. Thus, cos(c ) = 0, implying c = π(2n+1)
2

for n ∈Z. The resulting geodesic is given by

γ(t ) = (r cos(θ (t )), r sin(θ (t )), 0)

which is the equator of the sphere, and also a great circle.

Example 18. (Geodesics on a catenoid [16, pg. 258-261]) We now consider an example

which has rotational symmetry across only one axis. Define the catenoid to be a surface

of revolution generated by rotating the curve (v 2 + 1,0, v ) about the z -axis. Consider the

coordinate neighborhood on the catenoid which is parameterized as

X (u , v ) = ((v 2+1)cos(u ), (v 2+1)sin(u ), v ) ∈R3, u ∈ (0, 2π), v ∈R.

All points on the catenoid are given by similar coordinate neighborhoods. For this example,
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our local coordinates become (u , v ). Finding the metric on the catenoid,

Xu = (−(v 2+1)sin(u ), (v 2+1)cos(u ), 0)

Xv = (2v cos(u ), 2v sin(u ), 1)

g =

�

Xu ·Xu Xu ·Xv

Xv ·Xu Xv ·Xv

�

=

�

(v 2+1)2 0

0 4v 2+1

�

which has the inverse

g −1 =

�

1
(v 2+1)2 0

0 1
4v 2+1

�

.

Using equation (2.4) we find the Christoffel symbols are given by

Γ 1
11 = 0= Γ 1

22

Γ 1
12 =

2v

v 2+1
= Γ 1

21

Γ 2
11 =−

2v 3+2v

4v 2+1

Γ 2
12 = 0= Γ 2

21

Γ 2
22 =

4v

4v 2+1

Thus, the geodesic ODE gives the system of equations







ü + 4v
v 2+1 u̇ v̇ = 0

v̈ − 2v 3+2v
4v 2+1 (u̇ )

2+ 4v
4v 2+1 (v̇ )

2 = 0.
(2.11)

Instead of solving this system, we verify that meridians/longitudes parametrized by arclength

s and the ‘equator’/‘waist’ are geodesics, whereas all other parallels are not geodesics.

We define a meridian/longitude to have u (s ) = constant and v (s ) is parametrized by ar-

clength s so that γ(s ) = ((v (s )2+1)cos(c ), (v (s )2+1)sin(c ), v (s )) is a meridian and ∥γ̇(s )∥= 1.

Since the first equation of (2.11) is trivially satisfied by u = constant, it causes the second

equation to be

v̈ +
4v

4v 2+1
(v̇ )2 = 0.

Since d
d s γ(s ) = (2v v̇ cos(c ), 2v v̇ sin(c ), v̇ ) and ∥ d

d s γ(s )∥g = 1 when parametrized by arclength,
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Figure 2.5 Some geodesics on a catenoid

we have












d

d s
γ(s )













g

= (4v 2+1)(v̇ )2 = 1.

Therefore, (v̇ )2 = 1
4v 2+1 . By derivation,

2v̇ v̈ =−
8v

(4v 2+1)2
v̇ =−

8v

4v 2+1
(v̇ )3

and since v̇ ̸= 0,

v̈ =−
4v

4v 2+1
(v̇ )2.

Thus, meridians satisfy the geodesic ODE.

Now consider the parallels/latitudes, which are defined to have u (t ) = t and v (t ) = constant.

Plugging in v (t ) = constant to the first equation of (2.11), it gives ü (t ) = 0, which holds for

u (t ) = t . Plugging v (t ) = constant into the second one, it becomes

2v 2+2v

4v 2+1
(u̇ )2 = 0.

Since u̇ ̸= 0 and 4v 2+1 ̸= 0 then we must have v = 0, which on this catenoid corresponds to

the ‘equator’/‘waist’. Thus, the only parallel on the catenoid that is a geodesic is the ‘equator’/

‘waist’.

As the next Lemma shows, given any point p ∈N and vector v ∈ Tp N there exists a unique
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geodesic which starts at p and has initial velocity v . We denote this geodesic as γp ,v :R→N .

Lemma 19 (Existence and Uniqueness of Geodesics). Let N be a smooth manifold and

∇ a connection in T N . For any p ∈N , any v ∈ Tp N there exists an open maximal interval

I ⊂ R containing 0 and a geodesic γp ,v : I → N satisfying γp ,v (0) = p , γ̇p ,v (0) = v . Any two

such geodesics agree on their common domain.

Proof. This was shown in [38, Theorem 4.27], and thus omitted here.

Example 20. Going back to Example 17, we saw that great circles on a sphere were geodesics.

For the case of the sphere, through each point and tangent to each direction there passes

exactly one great circle. Thus by the uniqueness of the geodesic, the great circles are the only

geodesics of a sphere.

We now have defined two important types of curves, geodesics and distance-minimizing

curves. The natural question arises about the relationship between them. In fact, we can

say that if there is a distance minimizing curve between two points in N then the curve

is a geodesic. However, the converse doesn’t apply, and geodesics may not be distance-

minimizing in a global sense.

Example 21. As an example, we revisit the sphere in Figure 2.2 where x and y are points

on the equator and are not antipodal. The curve γ1 is a geodesic connecting x to y since

it is a great circle, but this is not a distance minimizing curve. Only the curve γ is distance

minimizing.

The following Lemma summarizes this result.

Lemma 22. Let (N , g ) be a connected Riemannian manifold,

(a) For any two points in N , if there is a distance minimizing curve between them then

this curve is a geodesic.

(b) Geodesics are locally distance-minimizing.

Let γ([a , b ]) be a geodesic between its endpoints. If a < t0 < b , then there exists an ϵ > 0

such that [t0− ϵ, t0+ ϵ]⊂ [a , b ] and γ([t − ϵ, t + ϵ]) is distance minimizing.

Proof. This was shown in [38, Proposition 6.10 and Theorem 6.12] and [15, Proposition

3.6 and Remark 3.8].
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As the following Lemma shows, any two points in a compact Riemannian manifold can be

connected with a distance minimizing curve.

Lemma 23 (Hopf-Rinow Theorem). Let (N , g ) be a compact and connected Riemannian

manifold and x , y ∈N . Then there exists a distance minimizing path between x and y .

Proof. When N does not have a boundary this is a Corollary of [38, Theorem 6.19]. For a

manifold with boundary, the same result is shown in [5, Proposition 2.5.19].

If (N , g ) is a compact and connected Riemannian manifold without boundary, then applying

Lemma 23 (the Hopf-Rinow Theorem) we can connect any two points in N with a distance

minimizing curve. It then follows from Lemma 22(a) that any two points in N can be

connected with a geodesic. However for a pair of points there may be several geodesics of

the same length connecting them.

Example 24. For example take N to be the unit sphere in Example 17. There are an infinite

number of great circles/meridians of length π connecting the north pole to the south pole.

We further investigate the property of several geodesics between points in the next section.

2.2.5 Critical Distances

Consider a closed Riemannian manifold (N , g ). The set of geodesics starting at a point p

determines the mapping,

expp : Tp N →N , expp (v ) = γp ,v (1)

which is called the exponential mapping. Because there may be several geodesics of the

same length connecting a pair of points, we note that the exponential mapping may not be

injective on Tp N . Although, because expp is a smooth map between manifolds of the same

dimension, the Inverse Function Theorem guarantees that it is a local diffeomorphism of

each point v ∈ Tp N where D expp |v is invertible [38, pg. 297]. A point q = γp ,v (1) is called a

conjugate point of p along γp ,v if D expp |v is singular (i.e. it is degenerate). Equivalently,

the conjugate point q is a critical point of expp .
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From the degeneracy of D expp |v that means q is a point along γp ,v where the geodesic

fails to be distance minimizing. To denote the time we can travel along γp ,v until it fails to

be distance minimizing, define the cut distance function:

τcut : SN →R, τcut(p , v ) = sup{t > 0 : d (p ,γp ,v (t )) = t }. (2.12)

Thus the geodesic segment γp ,v : [0, t ] → M is a distance minimizing curve for any t ∈
[0,τcut(p , v )].

Traditionally on a closed Riemannian manifold (N , g ) the set

cutN (p ) := {γp ,v (τcut(p , v )) ∈N : v ∈ Sp N } (2.13)

is known as the cut locus of the point p ∈N and each point in this set is called a cut point

of p . The following Lemma details what the points in the cut locus look like.

Lemma 25 (Klingenberg’s Lemma). Suppose (N , g ) is a complete, connected Riemannian

manifold, p ∈N and v ∈ Sp N . Then at least one of the following holds for q = γp ,v (τcut(p , v )):

(a) There exists another distance minimizing geodesic from p to q

(b) q is the first conjugate point to p along γp ,v .

Furthermore, for any t0 ∈ (0,τcut(p , v )) the geodesic γp ,v |[0,t0] has no conjugate points and is

the unique unit-speed minimizing curve between its endpoints.

Proof. Proven in [38, Proposition 10.32].

Example 26. The cut locus of a point on the ellipsoid can be seen in Figure 2.6. As demon-

strated, most of the points in the cut locus can be connected to p with equal length geodesics,

one across the front of the ellipsoid and the other around the back.

We now consider some properties of the cut locus and the cut distance function.

Lemma 27. The cut distance function τcut is continuous on SN .

Proof. Proven in [38, Theorem 10.33] and [32, Lemma 2.1.5].

Lemma 28. d (p , ·) is smooth on N \ ({p}∪ cutN (p )) but not at any q ∈ ({p}∪ cutN (p )).
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Figure 2.6 The cut locus of the ellipsoid.

Proof. Proven in [49, Section 9.1].

Much of our work in Section 4.2 is done generalizing Lemmas 25, 27, and 28 to the case of

manifolds with strictly convex boundary.

2.2.6 Second Fundamental Form

The Riemannian metric tensor g is often referred to as the First Fundamental Form, which

is an intrinsic property of the Riemannian manifold. In this section we discuss the extrinsic

properties of a Riemannian manifold. In other words, we want to see how ‘curvy’ our

manifold is in the ambient space. Let (N , g ) be an oriented Riemannian submanifold of

(Ñ , g̃ ). In particular then N is an embedded submanifold of Ñ and g is the induced metric

from Ñ , with g = i ∗N g̃ = g̃ ◦ iN such that iN : N ,→ Ñ is the inclusion map. We consider∇ to

be the Levi-Civita connection of (N , g ) and ∇̃ to be the Levi-Civita connection of (Ñ , g̃ ). By

studying the extrinsic properties of N in Ñ we must then consider the relationship between

these two Levi-Civita connections.

With this ambient space Ñ equipped, we decompose the ambient tangent bundle T Ñ |N
into tangential and orthogonal components, denoted T ⊤Ñ and T ⊥Ñ respectively, using

orthogonal projections. Consider vector fields X , Y inX (N ) that can be extended locally

toX (Ñ ), then the covariant derivative ∇̃X Y is a vector field on Ñ (see Section 2.2.1). De-
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composing the covariant derivative into its tangential and normal components, we denote

∇̃X Y = (∇̃X Y )⊤+ (∇̃X Y )⊥.

Here the shorthand notations X ⊤ and X ⊥ are used for the orthogonal projections onto the

tangential and orthogonal components.

Let us turn our attention to the normal component. We define the Second Fundamental

form of M to be the map Π :X (N )×X (N )→ T ⊥Ñ given by

Π(X , Y ) = (∇̃X Y )⊥,

where X and Y are extended arbitrarily to an open subset of Ñ .

We note a few key properties of the Second Fundamental Form:

(a) This operator is symmetric since,

Π(X , Y ) = (∇̃X Y )⊥ = (∇̃Y X + [X , Y ])⊥ = (∇̃Y X )⊥+ [X , Y ]⊥
︸ ︷︷ ︸

=0

= (∇̃Y X )⊥ =Π(Y , X ).

The equation above follows from the symmetry of the Levi-Civita connection, linearity

of the projection, and the extension of [X , Y ] to a vector field on Ñ (i.e. it is tangential

to N ).

(b) (The Gauss Formula) If X , Y ∈X (N ) are extended arbitrarily to smooth vector fields

on a neighborhood of N in Ñ the following formula holds along N ,

∇̃X Y =∇X Y +Π(X , Y ).

The proof of this formula can be found in [38, Theorem 8.2].

Since Π(X , Y ) is considered to be the ‘normal component’ of ∇̃X Y , then by the de-

composition∇X Y is the ‘tangential component’.

Example 29. Consider the smooth surface N embedded in R3 depicted in Figure 2.7. There

we see a depiction of Gauss’ formula, and decompose ∇̃X Y into its tangential and normal

components. The normal component of ∇̃X Y is given by the Second Fundamental Form

Π(X , Y ).
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Figure 2.7 The second fundamental form of a smooth surface embedded in R3.

In this thesis, we are interested in the case when N is an oriented submanifold of Ñ of

codimension 1. That is, if η is the outward-pointing vector field on N , we can rewrite the

second fundamental form as

Π(X , Y ) = 〈∇̃X Y ,η〉g η.

We note that due to the uniqueness of the outer normal direction many textbooks choose to

omit η on the far right of the expression, in which case Π is referred to as the scalar second

fundamental form.

It follows that for p ∈N and vectors v, w ∈ Tp N thatη(p ) is normal to Tp N (i.e.η(p ) ∈ T ⊥p N ).

Then Π : Tp N ×Tp N → T ⊥p N and

Πp (v, w ) = 〈∇̃v w ,η(p )〉g η(p ).

That way Πp (v, w ) denotes the value of Π(X , Y ) at a specific p ∈N . Recall that ∇̃X Y |p only

depends on X |p and the value of Y along any curve γ(t ) with γ̇(0) = X |p so that Πp (v, w )

does not depend on the choice of the extension of η.

Now that we can decompose derivatives of the ambient space into meaningful tangential

and normal components, we can analyse how quickly the space N curves away from the

tangential components. For a point p ∈N we define the shape operator (also referred to as

the Weingarten operator) as the operator Sp : Tp N → Tp N which satisfies

〈Πp (v, w ),η(p )〉g = 〈Sp (v ), w 〉g , for all w ∈ Tp N . (2.14)
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So the shape operator returns a vector whose inner product with w gives the length of the

second fundamental form. While it may not initially seem like much, the shape operator

has many important properties:

(a) If η is a normal vector field to N defined in a neighborhood of p then Sp (v ) =−∇vη.

(b) Sp is a linear operator, which follows from the properties of the Levi-Civita connection.

(c) The shape operator is self-adjoint. That is, for all v, w ∈ Tp M then 〈Sp (v ), w 〉g =
〈v,Sp (w )〉g . This follows from the symmetry of Π.

(d) For p ∈N , then Sp has real eigenvalues λ1, ...,λn which represent the principal curva-

tures of N at p . The corresponding eigenvectors vi are called principal directions. For

more details we refer to [16] and [38].

Applying these properties means we can also think of the shape operator as measuring

how much N pulls away from Tp N in a neighborhood of p . This is demonstrated in the

following example.

Example 30. Let N be a sphere of radius r > 0, embedded in R3. We consider the coordinate

neighborhoods expressed in spherical coordinates, similar to

X (θ ,φ) = (r sin(θ )cos(φ), r sin(θ )sin(φ), r cos(θ )), θ ∈ (0, 2π),φ ∈ (0,π).

So for each p ∈N the vectors (Xθ , Xφ) = (
∂ X
∂ θ , ∂ X

∂ φ ) , calculated in Example 17, form a frame for

Tp N . Then for any point p ∈N the outer unit normal is given by

η=
Xθ ×Xφ
|Xθ ×Xφ |

= (sin(θ )cos(φ), sin(θ )sin(φ), cos(θ )) =
X (θ ,φ)

r
.

Applying the shape operator to the basis vectors (Xθ , Xφ), we see from property (a) of the

shape operator,

Sp (Xθ ) =−∇Xθη=−
∂

∂ θ
η=−

Xθ
r

Sp (Xφ) =−∇Xφη=−
∂

∂ φ
η=−

Xφ
r

.
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For any v ∈ Tp N we denote v = (v 1Xθ + v 2Xφ), and it follows that

Sp (v ) = −∇vη = −∇v 1Xθ+v 2Xφη = − (v
1 Xθ

r
+ v 2

Xφ
r
) = −

v

r
.

Specifically, the shape operator in the basis (Xθ , Xφ) is given as

Sp =−
1

r

�

1 0

0 1

�

.

Due to rotational symmetry the sphere has the same curvature at every point, so we can

disreguard the basepoint.

Observe that a circle in the plane with radius r parametrized by arclength has a curvature of

− 1
r (when the unit normal is outward) [16, Section 1-5]. In Example 17 we saw that geodesics

on the sphere with arclength parametrization correspond to great circles of radius r . Then

the shape operator indicates that for each p ∈ X the surface is curving away from the tangent

plane in a manner corresponding to a circle in every direction.

2.3 Closed Extension of Manifolds with Boundary

From this point onward in this thesis, we consider (M , g ) to be a compact Riemannian

manifold with nonempty boundary ∂M . Specifically in this section we will construct a

closed manifold, called the double of (M , g ), such that (M , g ) is isometrically embedded in

its double. In the construction we will always need to be cautious near the boundary of M , so

we begin by establishing a neighborhood of the boundary, called the collar neighborhood.

If M is a compact manifold with boundary, there exists a smooth vector field η ∈ X (M )
whose restriction to ∂M is the outer unit-normal. Define the boundary exponential map-

ping, exp∂M : ∂M ×R→M by

exp∂M (z , t ) = γz ,−η(z )(t ),

where γz ,−η(z ) is the geodesic of (M , g )with the initial conditions (z ,−η(z )) ∈ SM . For suffi-

ciently small ϵ > 0 then exp∂M (z ,ϵ) ∈M . Denote

Cϵ = ∂M × [0,ϵ)

32



to be a subset of the boundary cylinder ∂M × [0,∞). Then define Ωϵ := exp∂M (Cϵ). If there

exists an ϵ > 0 such that Ωϵ is diffeomorphic to Cϵ with ∂M ×{0} 7→ ∂M then Ωϵ is called a

collar neighborhood. The following lemma shows that such an ϵ > 0 exists on compact

manifolds.

Lemma 31. Let (M , g ) be a compact manifold with smooth boundary. Then ∂M has a collar

neighborhood.

Proof. Modification of [37, Theorem 9.24 and 9.25] and [22, Proposition 3.42]. Let z0 ∈ ∂M .

Define local coordinates on the boundary as (z 1, ..., z n−1) so then (z 1, ..., z n−1, t ) are local

coordinates on ∂M ×R. Consider the map E : ∂M ×R→M so that E : (z , t ) 7→ exp∂M (z , t ).

Then E (z0, 0) = γz0,−η(z0)(0) = z0. Moreover,

D E
�

�

(z0,0)

∂

∂ z i
=
∂

∂ z i
, D E
�

�

(z0,0)

∂

∂ t
= γ̇z0,−η(z0)(0) =−η(z0).

Since the vectors ∂
∂ z i and −η(z ) are linearly independent the differential of E at (z0,0) is

invertible. Then, by the Inverse Function Theorem, there is an open neighborhood V0 ⊆ ∂M

containing z0 and ϵ0 > 0 such that E |([0,ϵ0)×V0) = exp∂M ([0,ϵ0)×V0) is a diffeomorphism onto

its image, which we will denote U0 ⊆M .

Since M is compact, then ∂M is also compact. Thus, there exists a finite number of points

(z1, ..., zN ) in ∂M with open neighborhoods (Vi )Ni=0 covering ∂M and ϵi > 0 such that Ui :=

exp∂M ([0,ϵi )×Vi )⊂M is diffeomorphic to Vi . If we set ϵ̃ =min{ϵi } then exp∂M ([0, ϵ̃)×∂M ) is

a local diffeomorphism onto its image, by definition. Since injective local diffeomorphisms

are diffeomorphisms, we would like to show there exists an ϵ < ϵ̃ such that exp∂M ([0,ϵ)×∂M )

is injective.

Suppose there is no such ϵ > 0 that makes it injective. Define sequences {zn , wn} ∈ ∂M and

an , bn ∈ [0, ϵ̃) such that (zn , an ) ̸= (wn , bn ) and exp∂M (zn , an ) = exp∂M (wn , bn ) for an , bn → 0

and, passing to subsequences if necessary, zn → z and wn → w . Then exp∂M (zn , an )→
exp∂M (z ,0) = z and exp∂M (wn , bn )→ exp∂M (w ,0) = w , so we must have z = w . However

this implies there exists a neighborhood [0, ϵ̃) × V that contains (zk , ak ) ̸= (wk , bk ) and

exp∂M (zk , ak ) = exp∂M (wk , bk ) for sufficiently large values of k , which violates the fact that

[0, ϵ̃)×V is locally diffeomorphic and thus injective. This provides a contradiction.

Then exp∂M ([0,ϵ)× ∂M ) is a diffeomorphism onto its image, which is the desired collar

neighborhood Ωϵ.

33



We now discuss some properties of the maximal collar neighborhood, which we will refer to

as the collar neighborhood of ∂M , whereΩϵ is the collar neighborhood with the maximum

ϵ value. The next Lemma shows each point in M has a closest boundary point, and these

points are unique inside the collar neighborhood.

Lemma 32. Let (M , g ) be a compact Riemannian manifold with smooth boundary. For every

p ∈M there exists a (possibly non-unique) closest boundary point zp ∈ ∂M which satisfies

d (zp , p ) = inf
z∈∂M

d (p , z ) = d (p ,∂M )

and p = exp∂M (zp , d (p ,∂M )).

Proof. Using the reverse triangle inequality, we see

|d (p , z1)−d (p , z2)| ≤ d (z1, z2), p ∈M , z1, z2 ∈ ∂M

so the function d (p , ·) : ∂M → R is a continuous function on the boundary. Since M is

assumed to be compact, then ∂M must be compact as well. Thus d (p ,∂M ) is a compact

subset ofR, meaning that it has a minimum value. So there must be a point zp ∈ ∂M such

that d (p , zp ) is the minimum distance from p to the boundary.

We consider the case that d (z , p ) is smooth at zp . Since ∂M has codimension 1, and zp is

a minimal point it follows that grad∂M d (z , p )|z=zp
= 0. From the Hopf-Rinow Theorem on

length-spaces (see Lemma 23 and [5, Proposition 2.5.19]) there exists a distance minimizing

curve from z ∈ ∂M to p ∈M . This curve does not touch the boundary at any other z̃ ∈ ∂M ,

since if it did then by the triangle inequality d (z̃ , p ) < d (z , p )meaning it is not distance

minimizing. Thus the distance minimizing curve from z to p is a geodesic and is denoted

γz ,v . Let γ̇z ,v (0) = v = v ⊥+v ⊤ where v ⊤ is parallel to Tz∂M and v ⊥ is normal to Tz∂M . Since

the gradient of the distance function is the velocity of the geodesic γz ,v ,

v = gradd (z , p ) = grad∂M d (z , p ) + v ⊥.

If z = zp then v is normal to Tz∂M , or v =−η(zp ). Thus

p = γzp ,−η(zp )(t ) = exp∂M (zp , d (p ,∂M )).

In the case that d (z , p ) is not smooth at zp along γzp ,v , let t ∈ (0, d (zp , p )) and define the

point p ′ := γzp ,v (t ) so that p and p ′ are both on γzp ,v . Using the Inverse Function Theorem
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then d (z , p ′) is smooth. The same process as above then shows the geodesic from z to p ′ is

still normal to the boundary, and gives the desired result.

It follows from Lemma 32 that we can express any point p ∈Ωϵ using boundary normal

coordinates,

exp−1
∂M (p ) = (zp , d (p ,∂M )) (2.15)

where zp denotes the unique boundary point such that d (p , zp ) = d (p ,∂M ). For any z ∈ ∂M

near zp it has local coordinates (z 1, ..., z n−1), so the local coordinates around p are under-

stood as (z 1(zp ), ..., z n−1(zp ), d (p ,∂M )).

From the proof of Lemma 31 we see γz ,−η(z )([0, t ]) is the unique shortest geodesic to ∂M

when t < ϵ. However, as t becomes larger than ϵ, the geodesic γz ,−η(z )([0, t ]) fails to be the

shortest geodesic from γz ,−η(z )(t ) to ∂M . Thus there is a critical value where each geodesic

γz ,−η(z ) fails to be the unique shortest geodesic to ∂M . Define that value to be the boundary

cut distance function, τ∂M (z ) for z ∈ ∂M . Thus when t <τ∂M (z )we have γz ,−η(z )([0, t ]) is

the unique shortest geodesic to ∂M . Yet if t > τ∂M (z ) then γz ,−η(z )([0, t ]) is not a shortest

geodesic from γz ,−η(z )(t ) to ∂M .

Lemma 33. Let (M , g ) be a complete, connected, Riemannian manifold with smooth bound-

ary, ∂M . The function τ∂M is continuous on ∂M .

Proof. This is done similarly to the proof of [38, Theorem 10.33]. It is also discussed in [29,

Theorem 2.12].

2.3.1 The Double Construction

We now utilise these collar neighborhoods to attach two manifolds along their boundaries.

A common way of attaching two spaces together is by identifying the boundaries in an

equivalence relation. A relation∼ on a set X is called an equivalence relation if it is reflexive

(x ∼ x for all x ∈ X ), symmetric (x ∼ y implies y ∼ x ), and transitive (x ∼ y and y ∼ z

imply x ∼ z ). For each x ∈ X the equivalence class of x , denoted [x ], is the set of all y ∈ X

such that y ∼ x . Let X /∼ denote the set of equivalence classes in X so that π : X → X /∼
maps each point to its equivalence class.

If X and Y are topological spaces, a surjective map f : X → Y is said to be a quotient map
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provided a subset V ⊂ Y is open in Y if and only if f −1(V ) is open in X . If π is a surjective

map then π is a quotient map when X / ∼ has the topology that declares V ⊂ X / ∼ to

be open if and only if π−1(V ) is open in X . This topology on X / ∼ is called the quotient

topology of π. If X /∼ is equipped with the quotient topology of π, then X /∼ is called the

quotient space.

Example 34. As an example, let M and N be compact n-manifolds with nonempty bound-

aries, and suppose h : ∂ N → ∂M is a diffeomorphism. Define the disjoint union,

M
∐

N = {(x , 1), (y , 2) : x ∈M , y ∈N }

so that each point in the disjoint union indicates which set it comes from. When it is clear

which manifold a point p ∈M
∐

N originates from, we omit the index. Then the disjoint

union topology declares a subset of M
∐

N to be open if and only if its intersection with M is

open in M , and its intersection with N is open in N . Moreover, the injections iM : M →M
∐

N

and iN : N →M
∐

N are topological embeddings.

The equivalence relation∼ on M
∐

N identifies points on ∂ N with the corresponding image

on ∂M from the map h : ∂ N → ∂M . That is, for y ∈ ∂ N then y ∼ h (y ), and similarly for

x ∈ ∂M then x ∼ h−1(x ). Points in the interiors of the manifolds are not identified with any

other points. The quotient space determined by this equivalence relation then ‘glues’ together

the boundaries. All equivalence classes on M
∐

N are given by

M ∪h N :=
�

M
∐

N
�

/∼ = {{x } : x ∈M i n t }∪ {{y } : y ∈N i n t }

∪ {{y , h (y )} : y ∈ ∂ N }

∪ {{x , h−1(x )} : x ∈ ∂M }.

This space is known as an adjunction space, and can be thought of as attaching M to N

along h. The following Lemma outlines some important properties of this space.

Lemma 35. Let M and N be compact smooth n-manifolds with nonempty boundaries, and

suppose h : ∂ N → ∂M is a diffeomorphism. Then:

(a) M ∪h N is a topological manifold (without boundary).

(b) M ∪h N has a smooth structure such that there are regular domains (i.e. properly em-

bedded codimension 0 submanifolds with boundary) M ′, N ′ ⊆M ∪h N diffeomorphic
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to M and N respectively, and satisfying

M ′ ∪N ′ =M ∪h N , M ′ ∩N ′ = ∂M ′ = ∂ N ′.

(c) M ∪h N is compact.

(d) If M and N are connected then M ∪h N is connected.

Proof. Adapted from [37, Theorem 9.29].

(a) Let ΩM and ΩN be the collar neighborhoods of ∂M and ∂ N respectively. For each

p ∈ΩM we express it locally in boundary normal coordinates p = (x , t )where x ∈ ∂M

and t ∈ [0,∞), and similarly for points in ΩN . Now define a functionφ :ΩM

∐

ΩN →
(−ϵM ,ϵN )× ∂M such that

φ(p ) =







(x ,−t ), p = (x , t ) ∈ΩM

(h (y ), t ), p = (y , t ) ∈ΩN

.

This mapφ can be seen as the ‘gluing’ of the collar neighborhoods. We will start by

showing this map is continuous. We emphasize that ΩM ,ΩN and (−ϵM ,ϵN )× ∂M are

metrizable topological spaces, so we consider a sequence { ỹn := (yn , tn )}∞n=1 in ΩN

which converges to ỹ := (y , t )where y ∈ ∂ N . Thenφ( ỹn ) = (h (yn ), tn ), and since h is

a diffeomorphism thenφ( ỹn )→ (h (y ), t ) =φ( ỹ ). This provesφ ◦ iN |ΩN
is continuous

and similarly φ ◦ iM |ΩM
is continuous. By [37, Proposition A.25 (a)] then φ must be

continuous.

Additionally note that the restriction of φ to ΩM or ΩN is a topological embedding

with closed images. Thus for any closed set A ⊂ ΩM

∐

ΩN then A ∩ ΩM is closed

in ΩM and A ∩ΩN is closed in ΩN . It then follows that φ(A) is closed, making φ a

closed map. For q ∈ (−ϵM ,ϵN )× ∂M observe that φ−1(q ) corresponds to (x , t ) ∈ΩM

or (y , t ) ∈ ΩN , then by the diffeomorphism h it follows that φ is surjective. Recall

that a closed, surjective, and continuous map is a quotient map [43, Section 22],

meaning that φ is a quotient map. From [43, Corollary 22.3(a)] then φ induces a

homeomorphism ψ : π(ΩM

∐

ΩN ) → (−ϵM ,ϵN ) × ∂M such that φ = ψ ◦ π. Thus,

π(ΩM

∐

ΩN ) is a topological n-manifold.

We must also show the region away from π(ΩM

∐

ΩN ) is a topological n-manifold.

For any [p ] ∈
�

(M ∪h N ) \π(ΩM

∐

ΩN )
�

⊂π(M i n t
∐

N i n t ) it corresponds to one point
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Figure 2.8 Attaching collar neighborhoods together

x ∈M i n t or y ∈ N i n t which naturally implies π|M i n t
∐

N i n t is injective. Then by the

definition of the quotient map, π|M i n t
∐

N i n t is a homeomorphism onto its image. This

shows that π(M i n t
∐

N i n t ) is locally Euclidean and of dimension n .

Since M and N are smooth manifolds they are second countable, so from [37, Propo-

sition A.25(g)] then M
∐

N is second countable. Since π|M i n t
∐

N i n t is a homeomor-

phism onto its image, then π(M i n t
∐

N i n t ) is second countable. Moreover, sinceψ

is a homeomorphism then π(ΩM

∐

ΩN ) =ψ−1 ((−ϵM ,ϵN )× ∂M ) is second countable.

Together, then

M ∪h N =π(Ωm

∐

ΩN )∪π(M i n t
∐

N i n t )

is second countable and locally Euclidean with dimension n .

We now show that M ∪h N is also Hausdorff. Let [p ] ̸= [q ] be in M ∪h N . If they are

both in π(ΩM

∐

ΩN ) then take Up = ψ−1(Ũ ) and Vq = ψ−1(Ṽ ), where Ũ and Ṽ are

disjoint neighborhoods ofψ([p ]) andψ([q ]) in (−ϵM ,ϵN )× ∂M . Then by the homeo-

morphismψ the neighborhoods of [p ] and [q ], Up and Vq respectively, are disjoint.

Similarly if [p ] and [q ] are both in π(M i n t
∐

N i n t ) then there exists disjoint neighbor-

hoods Up =π(Ũ ) and Vq =π(Ṽ )where Ũ and Ṽ are neighborhoods of π−1([p ]) and

π−1([q ]) in M i n t or N i n t . Now, without loss of generality assume [p ] ∈ π(ΩM

∐

ΩN )

and [q ] ∈π(M i n t
∐

N i n t ). Specifically of interest is when [p ] ∈π(∂M
∐

∂ N ), which

is when there exists some x ∈ ∂M and y ∈ ∂ N such that π(h (y )) = π(x ) = [p ]. Let

π−1([q ]) ∈M i n t and take x ∈ ∂M so that π(x ) = [p ]. Since M is Hausdorff there exists

disjoint neighborhoods Ũ and Ṽ of x and π−1([q ]) respectively in M . Now consider

the neighborhood W̃ ofφ(x ) in (−ϵM ,ϵN )×∂M such that W̃ ∩ (−ϵM , 0]×∂M ⊂φ(Ũ ).

38



Figure 2.9 Local coordinates for the space M ∪h N .

It follows that Up =ψ−1(W̃ ) and Vq =π(Ṽ ) are disjoint neighborhoods of p and q in

M ∪h N . A similar construction for π−1([q ]) ∈N i n t provides the required disjoint sets,

making M ∪h N a Hausdorff space. Therefore M ∪h N is an n-dimensional topological

manifold without boundary.

(b) Define charts on M ∪h N to be,

�

π(U ),ϕ ◦π−1|π(U )
�

, for each smooth chart (U ,ϕ) on M i n t or N i n t

�

ψ−1(U ),ϕ ◦ψ|ψ−1(U )

�

, for each smooth chart (U ,ϕ) on (−ϵM ,ϵN )× ∂M ,

as depicted in Figure 2.9. Since they are compositions of homeomorphisms they

define coordinate charts on M ∪h N . To determine the smooth compatibility of the

charts, we must prove the following are smooth mappings from Rn to Rn ,

(ϕi ◦π−1) ◦ (ϕ j ◦ψ)−1 : (ϕ j ◦ψ)|π(Ui )∩ψ−1(Uj )→ (ϕi ◦π−1)|π(Ui )∩ψ−1(Uj )

(ϕ j ◦ψ) ◦ (ϕi ◦π−1)−1 : (ϕi ◦π−1)|π(Ui )∩ψ−1(Uj )→ (ϕ j ◦ψ)|π(Ui )∩ψ−1(Uj )

(ϕi ◦π−1) ◦ (ϕ j ◦π−1)−1 : (ϕ j ◦π−1)|π(Ui )∩π(Uj )→ (ϕi ◦π−1)|π(Ui )∩π(Uj )

(ϕi ◦ψ) ◦ (ϕ j ◦ψ)−1 : (ϕ j ◦ψ)|ψ−1(Ui )∩ψ−1(Uj )→ (ϕi ◦ψ)|ψ−1(Ui )∩ψ−1(Uj ).

Taking a look at these first two mappings, notice that π(Ui )∩ψ−1(Uj ) is entirely con-

tained inπ(ΩM

∐

ΩN ), but is away from the boundary ∂M . Thus, for the first mapping

(ϕi ◦π−1) ◦ (ϕ j ◦ψ)−1 = ϕi ◦π−1 ◦ψ−1 ◦ϕ−1
j = ϕi ◦φ−1 ◦ϕ−1

j

and is a smooth coordinate map based on the existing smooth coordinates in M and
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N . In the third mapping, notice that π(Ui )∩π(Uj ) is contained in M i n t or N i n t , so the

smoothness follows from the definition of smooth manifolds M and N . As for the last

mapping, sinceψ is a homeomorphism, it becomesϕi ◦ϕ j |Ui∩Uj
, which is smooth on

(−ϵM ,ϵN )× ∂M . These smoothly compatible charts provide a smooth structure on

M ∪h N .

We now need to show that π ◦ iM : M → M ∪h N is a smooth embedding. Define

M ′ = π ◦ iM (M ) and N ′ = π ◦ iN (N ). Observe that in terms of the local coordinates

defined above, π ◦ iM |M i n t is the identity map and π ◦ iM |∂M is the inclusion map.

Because h is a diffeomorphism, then π ◦ iM is smooth up to the boundary of M .

Thus, π ◦ iM is a smooth embedding, M ′ is a regular domain in M ∪h N , and M ′ is

diffeomorphic to M . Similar considerations apply to N .

Now let ∂M ′ =π ◦ iM (∂M ) and ∂ N ′ =π ◦ iN (∂ N ). Due to the identification of points

on the boundaries, then ∂M ′ = ∂ N ′. Additionally, the smooth embeddings imply

that M ′ ∩N ′ ⊃ ∂M ′ = ∂ N ′. The opposite inclusion follows from the diffeomorphism

h : ∂M → ∂ N and the quotient map identifying elements of the boundary together.

It follows that

M ′ ∪N ′ =M ∪h N , M ′ ∩N ′ = ∂M ′ = ∂ N ′.

(c) Since M and N are compact and π is a continuous map, then π(M ) =M ′ and π(N ) =

N ′ are compact. Then from part (b) since M ∪h N =M ′ ∪N ′ it follows that M ∪h N is

compact.

(d) Since M and N are connected and π is a continuous map, then π(M ) = M ′ and

π(N ) =N ′ are connected. Then from part (b) since M ∪h N =M ′∪N ′ and M ′∩N ′ ̸= ;
it follows that M ∪h N is connected.

The double of (M , g ) is the manifold

D (M ) =M ∪I d M

where I d : ∂M → ∂M is the identity map of ∂M . Thus another way to view D (M ) is as the

quotient space formed by taking the disjoint union M
∐

M and identifying a point on the

boundary with itself in the identical copy of M .
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Corollary 36. If (M , g ) is a compact and connected smooth manifold with boundary, then

the following hold:

(a) D (M ) is a compact and connected smooth manifold without boundary.

(b) There are regular domains M+, M− ⊂D (M ) diffeomorphic to M such that

D (M ) =M+ ∪M−, M+ ∩M− = ∂M+ = ∂M−.

We denote the topological embeddings i± : M → M
∐

M so that F± = π ◦ i± and

M± = F±(M ).

Proof. This is a direct application of Lemma 35.

Thus, we have the topological and local coordinate structures on D (M ). It remains to

determine the metric structure on D (M ). Doing so will require extending the metric across

∂M so that it preserves smoothness. We say that a metric g̃ on D (M ) satisfies the extension

property of g on M if F+ =π ◦ i+ is an isometric embedding.

Lemma 37. Let (M , g ) be a compact connected n-dimensional Riemannian manifold with

smooth boundary. There exists a metric g̃ on D (M )which satisfies the extension property of

g on M .

Proof. To simplify the proof we represent the metric g with a smooth function f . We then

show if f ∈C∞(M ) then there exists an extension f̃ ∈C∞(D (M )) such that f̃ |M+
= f ◦ F −1

+ .

We defined f ∈C∞(M ) so that for each x0 ∈M there exists coordinate chart (U0,φ0) of x0

where f ◦φ−1
0 is smooth. In the case that φ0(U0) is an open subset ofHn we interpret the

smoothness of f ◦φ−1
0 to mean that each point ofφ0(U0) has a neighborhood inRn on which

f ◦φ−1
0 extends to a smooth function [37, pg. 33]. Thus for y0 :=φ0(x0) there exists an open

neighborhood V0 ⊂Rn around y0, and a smooth extension of f ◦φ−1
0 , denoted ℓ0 ∈C∞(V0),

such that f ◦φ−1
0 = ℓ0|Hn∩V0

. This is depicted in Figure 2.10. Taking an intersection if necessary,

we embed the set V0 onto (−ϵM ,ϵM )× ∂M where ϵM is the constant that defines the collar

neighborhood of ∂M . It follows for z0 := F+(x0) that it is contained in the set B0 :=ψ−1(V0)

and there exists a function L0 ∈C∞(B0)where L0|B0∩M+
= f ◦ F −1

+ .

We will now create the smooth extension of the double D (M ). Since D (M ) is compact there

exists a finite number of points (z1, ..., zN ) in F+(∂M ) with neighborhoods {Bi }Ni=1 which

41



Figure 2.10 Extension of a smooth function f on M to a smooth function f̃ on the double
D (M ).

cover F+(∂M ) and L i ∈ C∞(Bi ) such that L i |Bi∩M+
= f ◦ F −1

+ . Consider a partition of unity

{ξi }Ni=1 subordinate to this cover. Then we define an extension of f on
⋃N

i=1 Bi ⊂D (M ) as

f̂ ∈C∞(
⋃N

i=1 Bi )where

f̂ =
N
∑

i=1

L iξi .

For x ∈M+ ∩ (
⋃N

i=1 Bi ) then

f̂ (x ) =
N
∑

i=1

L i (x )ξi (x ) = f ◦ F −1
+ (x )

�

N
∑

i=1

ξi (x )

�

= f ◦ F −1
+ (x ).

Now define the constant ϵ > 0 so that Ψ−1 ((−ϵ,ϵ)× ∂M )⊂
⋃N

i=1 Bi . We set

B :=Ψ−1 ((−ϵ,ϵ)× ∂M )

We also define the sets B± := F±(M \Ωϵ/2)where Ωϵ/2 is a collar neighborhood of M . Then

{B−,B , B+} forms an open cover of D (M ). Consider the partition of unity {α1,α2,α3} sub-

ordinate to the cover so that αi ∈ [0, 1] on D (M ). A visualization of this partition can be seen

in Figure 2.11. Now let f + = f ◦ F −1
+ : M+→Rk and f − = f ◦ F −1

− : M−→Rk and define the
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Figure 2.11 A partition of unity subordinate to the cover of D (M ).

function

f̃ =α1 f −+α2 f̂ +α3 f +.

By construction, f̃ ∈C∞(D (M )) and f̃ |M + = f ◦ F −1
+ .

As a consequence of Lemma 37 there exists a metric g̃ such that (M , g ) is isometrically

embedded in the closed and connected manifold (D (M ), g̃ ). We say that (D (M ), g̃ ) is a

closed extension of (M , g ).

2.3.2 Properties of the Manifold Resulting From Its Closed Extension

Since (M , g ) is isometrically embedded in the closed extension (D (M ), g̃ ), by studying some

geometric properties of D (M ) it provides extrinsic properties on M . In this Section we

introduce several of the properties that will be used later in this thesis.

Lemma 38. Let (M , g ) be a compact manifold with smooth boundary and let (D (M ), g̃ ) be

its closed extension. There is a function ρ ∈C∞(D (M )), so that ρ(x ) = d (x ,∂M ) near ∂M

in D (M ) \M , and gradρ(z ) =η(z ) for all z ∈ ∂M where η is the outer pointing unit normal

vector field.

Proof. Since ∂M is a compact codimension 1 subspace of D (M ) there exists the unit vector

field ηwhich is outer pointing on ∂M in D (M ). Consider the flow-out of this vector field,
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defined by Θ :R× ∂M →D (M )where

Θ(t , z ) = γz ,η(z )(t ).

Similarly to the construction of the collar neighborhood in Lemma 31 then there is a collar

neighborhood of ∂M in D (M ), denoted Ω⊂D (M ). That is, there are values ϵ, ϵ̃ > 0 where

Θ is a diffeomorphism from Ω to (−ϵ, ϵ̃)× ∂M .

Let the function πt be the projection of (t , z ) ∈Ω to theR component. Define f : D (M )→R
by f (x ) =πt ◦Θ−1(x ). Then f is negative on M+ (the original copy of M ) and f is positive

on M− (the reflected copy of M ). Let C = {x ∈ Ω : d (x ,∂M ) < 3
4 min{ϵ, ϵ̃}} so that C is

another collar neighborhood of ∂M that is a strict subset of Ω. Denote A± = M± \C so

that {A+,Ω, A−} forms an open cover of D (M ). Consider the partition of unity {α1,α2,α3}
subordinate to the cover so that αi ∈ [0, 1] on D (M ). Define the smooth function

ρ =−ϵα1+ f α2+ ϵ̃α3.

For x in the collar neighborhood C then ρ(x ) = d (x ,∂M ). By the definition of the collar

neighborhood of the boundary, then gradρ(z ) =η(z )when z ∈ ∂M . Moreover,

M = {x ∈D (M ) : ρ ≤ 0}

∂M = {x ∈D (M ) : ρ = 0}

D (M ) \M = {x ∈D (M ) : ρ > 0}.

Let (M , g ) be a compact manifold with smooth boundary, by Lemma 37 every manifold of

this type has a closed extension, (N , g ). Let ρ be defined as in Lemma 38. Now we use ρ to

determine when a geodesic reaches the boundary of M . Define the function

h : SN ×R→R, h (p , v, t ) =ρ(γp ,v (t )).

Due to the smoothness of ρ near ∂M , by the chain rule the function h is smooth in the

collar neighborhood of ∂M .

Lemma 39. Let (M , g ) be a compact manifold with smooth boundary and closed extension
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(N , g ). If (p , v ) ∈ SN and if t0 > 0 is such that x0 = γp ,v (t0) ∈ ∂M then

h (p , v, t )
�

�

t=t0
= 0

∂ h

∂ t
(p , v, t )

�

�

�

�

t=t0

=

�

η(x0),
∂ γp ,v

∂ t
|t=t0

�

g

∂ 2h

∂ t 2
(p , v, t )

�

�

�

�

t=t0

=Hessx0
(ρ)

�

∂ γp ,v

∂ t
|t=t0

,
∂ γp ,v

∂ t
|t=t0

�

.

Proof. This was shown in [46, Lemma 3.1.13] and [4, pg. 198]. Since ρ|∂M = 0 then

h (p , v, t )
�

�

t=t0
= 0. Also, using that gradρ|∂M =η then

∂ h

∂ t
(p , v, t )

�

�

�

�

t=t0

=Dρ
�

�

x0

�

∂ γp ,v

∂ t

�

�

�

�

t=t0

�

=

�

gradρ(x0),
∂ γp ,v

∂ t

�

�

�

�

t=t0

�

g

=

�

η(x0),
∂ γp ,v

∂ t

�

�

�

�

t=t0

�

g

.

Finally, from the compatibility with the metric tensor

∂ 2h

∂ t 2
(p , v, t )

�

�

�

�

t=t0

=
d

d t

�

gradρ
�

�

γp ,v (t )
,
∂ γp ,v

∂ t

�

g

�

�

�

�

t=t0

=

�

∇ ∂ γp ,v
∂ t

gradρ,
∂ γp ,v

∂ t

�

g

�

�

�

�

t=t0

+

�

gradρ,∇ ∂ γp ,v
∂ t

∂ γp ,v

∂ t

�

g

�

�

�

�

t=t0

and γp ,v being a geodesic implies∇ ∂ γp ,v
∂ t

∂ γp ,v

∂ t = 0. The rest follows by Example 9 and (2.5),

∂ 2h

∂ t 2
(p , v, t )

�

�

�

�

t=t0

=

�

∇ ∂ γp ,v
∂ t

gradρ,
∂ γp ,v

∂ t

�

g

�

�

�

�

t=t0

= ∇2ρ

�

∂ γp ,v

∂ t

�

�

�

�

t=t0

,
∂ γp ,v

∂ t

�

�

�

�

t=t0

�

= Hessx0
(ρ)

�

∂ γp ,v

∂ t

�

�

�

�

t=t0

,
∂ γp ,v

∂ t

�

�

�

�

t=t0

�

.

Corollary 40. If (M , g ) is a compact manifold with smooth boundary, then for any (x , v ) ∈
T ∂M one has

−



Πx (v, v ),η(x )
�

g
=Hessx (ρ)(v, v ) =

d 2

d t 2
ρ(γx ,v (t ))|t=0.

Proof. This was shown in [46, Lemma 3.1.12]. Let (x , v ) ∈ T ∂M , then by the previous
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Figure 2.12 Computing the shape operator of the boundary of the catenoid

Lemma

h (x , v, 0) = 0

∂ h

∂ t
(x , v, 0) = 〈η(x ), v 〉= 0

∂ 2h

∂ t 2
(x , v, 0) = 〈∇v gradρ, v 〉 = Hessx (ρ)(v, v ).

Since gradρ|∂M =η then by (2.14),

〈∇v gradρ, v 〉= 〈∇vη, v 〉= 〈−Sx (v ), v 〉=−



Πx (v, v ),η(x )
�

. (2.16)

2.4 Strictly convex boundary

In this section we consider the Riemannian manifold (M , g ) and its double D (M ), so that M

is embedded in D (M ). Then the boundary of M , denoted ∂M , is an oriented Riemannian

submanifold of D (M ). We say that a Riemannian manifold (M , g ) has a strictly convex

boundary ∂M if for all x ∈ ∂M the shape operator Sx : Tx∂M → Tx∂M is negative definite.

This means that

〈Πx (v, w ),η(x )〉= 〈Sx (v ), w 〉g ,

is strictly negative whenever v, w ∈ Tx∂M agree, but does not vanish.

Example 41. The catenoid whose boundary is given by a ‘parallel’ is a manifold with strictly
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convex boundary. Consider the catenoid M with a parametrization

X (u , v ) = ((v 2+1)cos(u ), (v 2+1)sin(u ), v ), u ∈ (−π,π), v ∈ [−2, 2],

so for each p ∈ M the vectors (Xu , Xv ), given in Example 18, form a frame for Tp M . The

boundary of the catenoid is given by parallels located at ±2. It will suffice to prove that one of

these parallels is strictly convex. Up to reparametrization, the upper parallel is given by

γ(t ) = X (t , 2) = (5 cos(t ), 5 sin(t ), 2), t ∈ (−π,π).

Observe that Xu |v=2 spans Tpγ. Yet due to the rotational symmetry of the catenoid, we only

need to compute the shape operator at one point. Consider p0 := γ(0) = (5,0,2). Then, the

tangent vector along γ at p0 is given by

w :=
dγ

d t

�

�

t=0
= (0 , 5 , 0).

Since the vectors (Xu , Xv ) are orthogonal spanning sets of Tγ(t )M we have the outer normal to

∂M is

η(t ) = (4 cos(t ), 4 sin(t ), 1) = Xv |v=2, t ∈ (−π,π).

Specifically at p0, then t = 0 and η(0) = (4, 0, 1). Thus,

Sp0
(w ) = −∇wη = − (Γ 1

12(1)(1) + Γ
1
22(1)

2)Xu .

Note that

Γ 1
12 =

2v

v 2+1
,Γ 1

22 = 0

and at p0 then v = 2 and u = 0, yielding

Sp0
(w ) =− (0, 4, 0) .

Clearly then 〈Sp0
(w ), w 〉g = −20 which is strictly negative, meaning that the boundary is

strictly convex at p0. By rotational symmetry, this means the catenoid has strictly convex

boundary.

An implication of strict convexity of the boundary is that any geodesic meeting the boundary

tangentially immediately exits M .

Lemma 42. Let (M , g ) be a Riemannian manifold with strictly convex boundary. Let p ∈ ∂M
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Figure 2.13 A non-geodesically convex manifold.

and v ∈ Tp∂M . Then the geodesic γp ,v locally stays outside ∂M .

Proof. (Proved in [46] and earlier in [4]) By strict convexity of ∂M we also have

〈Πp (v, v ),η(p )〉g < 0. From Corollary 40 then h (p , v,0) = 0, ∂
∂ t h (p , v,0) = 0, and

∂ 2

∂ t 2 h (p , v, 0)> 0. Taylor expanding h we observe

h (p , v, t ) = h (p , v, 0)
︸ ︷︷ ︸

=0

+
�

∂

∂ t
h (p , v, 0)
�

︸ ︷︷ ︸

=0

t +
1

2

�

∂ 2

∂ t 2
h (p , v, 0)

�

︸ ︷︷ ︸

>0

t 2+O (t 3),

then for small t , h (p , v, t )> 0 and so γp ,v (t ) /∈M .

Another commonly used notion of convexity is the geodesic convexity, which assumes

that any pair of points p , q ∈M can be connected by a distance minimizing geodesic (not

necessarily unique) which is contained in the interior M i n t of M modulo the terminal

points.

Example 43. Consider the horseshoe-shaped domain Ω of R2 shown in Figure 2.13. The

points p̃ and q̃ cannot be connected by a line contained in Ω. Thus Ω is not geodesically

convex. Additionally, because the points p and q in Ω are connected with a straight line that

intersects the boundary tangentially and stays inside Ω, then Ω does not have strictly convex

boundary.

As [2] and [65] discuss, there are several other related notions of convexity on a Riemannian

manifold, like variational convexity, However, for the purposes of this thesis we will concen-

trate on geodesic convexity and strict convexity. We relate these two notions of convexity

by showing that strictly convex boundary implies geodesic convexity.
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Lemma 44. Let (M , g ) be a compact manifold with nonempty boundary. If the boundary of

M is strictly convex then M is geodesically convex.

Proof. Let p ∈ ∂M ⊂N , where N is the closed extension of M . By [38, Theorem 6.17] there

is r1 > 0 such that every metric ball B (p , r ) of N for r ∈ (0, r1) is geodesically convex. By this

we mean that for each x , y ∈ B (p , r ) the distance minimizing geodesic segment connecting

these points is contained in the ball B (p , r ).

Choose r > 0 small enough so that we can use boundary normal coordinates on B (p , r ).

Let x , y ∈ B (p , r )∩M and let γ be the distance minimizing geodesic of N from x to y , so

that γ(0) = x and γ(1) = y . We write

γ(t ) = (z (t ), h̃ (t )),

where z (t ) is the projection of γ to ∂M and h̃ (t ) = ρ(γ(t )) = d (γ(t ), z (t )). If h̃ (t ) < 0 then

γ(t ) ∈M i n t for t ∈ (0, 1) and the claim holds.

Assume otherwise. Assume there exists a , b ∈ (0, d (x , y )) so that h̃ (a ) = h̃ (b ) = 0 and h̃ (t )≥ 0

on the interval [a , b ]. Then consider a variation of γ(t ) on the interval [a , b ],

Γ (s , t ) = (z (t ), (1+ s )h̃ (t )), t ∈ [a , b ],

where s is close to zero. Observe that when s is held constant then Γ (s , t ) traces out curves

connecting γ(a ) and γ(b ) in N , as depicted in Figure 2.14. Thus the variation is proper since

Γ (s , a ) = γ(a ) and Γ (s , b ) = γ(b ).

By the first variation formula (see Lemma 15), we get

d

d s

�

�

�

�

s=0

L (Γ (s , t )) =−
∫ b

a

〈V (t ), Dt γ̇(t )〉g d t

where V (t ) is the variation field of Γ given by

V (t ) :=
�

∂

∂ s
Γ (s , t )
�
�

�

�

s=0
= (0, h̃ (t ))gradρ(γ(t )) = h̃ (t )gradρ(γ(t )).

Note that V is a proper variation field since V (a ) =V (b ) = 0. Moreover, since

d

d t




γ̇(t ), gradρ(γ(t ))
�

g
=



Dt γ̇, gradρ(γ(t ))
�

g
+



γ̇(t ), Dt gradρ(γ(t ))
�

g
,
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Figure 2.14 Variation Γ (s , t ) in a strictly convex planar domain.

it follows that




V (t ),Dt γ̇(t )
�

g

=h̃ (t )



gradρ(γ(t )), γ̇(t )
�

g
−



Dt

�

h̃ (t )gradρ(γ(t ))
�

, γ̇(t )
�

g

=h̃ (t )



gradρ(γ(t )), γ̇(t )
�

g
− h̃ (t )



Dt gradρ(γ(t )), γ̇(t )
�

g
− ˙̃h (t )



gradρ(γ(t )), γ̇(t )
�

g

=
�

h̃ (t )− ˙̃h (t )
�




gradρ(γ(t )), γ̇(t )
�

g
− h̃ (t )



Dt gradρ(γ(t )), γ̇(t )
�

g
.

Since h̃ (t ) is a smooth function on [a , b ] that vanishes at the end points of this interval it at-

tains its positive maximum value h (t0)> 0 at a point t0 ∈ (a , b ). It follows from the strict con-

vexity of M and Proposition 60 that for small enough ϵ > 0 we have that M (ϵ) :=ρ−1(−∞,ϵ]

is a subset of N that contains M and has strictly convex boundary. Since γ̇(t0) is a unit

vector that is tangential to the boundary of M (h̃ (t0))we get

〈 ˙̃h (t ), γ̇(t )〉g
�

�

t=t0
= 〈gradρ(γ(t )), γ̇(t )〉g

�

�

t=t0
= 0.

Additionally, by (2.16), we have

〈V (t ), Dt γ̇(t )〉g
�

�

t=t0
= h̃ (t0)



Dt gradρ(γ(t )), γ̇(t )
�

g

�

�

t=t0
=−h̃ (t0)〈Π(γ̇(t0), γ̇(t0)),η(t0)〉g > 0.

However since γ is a geodesic, its covariant derivative Dt γ̇ vanishes. Thus
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Figure 2.15 A geodesically convex manifold that does not have strictly convex boundary.

〈V (t ), Dt γ̇(t )〉g
�

�

t=t0
= 0. This provides a contradiction. Therefore h̃ cannot be positive on

the interval (a , b ). This implies that γ(t ) is in M for every t ∈ [0, d (p , q )].

The following example shows that the converse of Lemma 44 need not be true.

Example 45. Consider M to be a convex body of R2 obtained by rounding the edges of a

square so that ∂M is smooth, as in Figure 2.15. Since M is convex for any x , y ∈M there

exists a line connecting them. However, the boundary of this manifold is not strictly convex

since for a point p on the ‘flat’ part of the boundary and v ∈ Tp∂M there exists small t > 0

where the geodesic γp ,v (t ) is in M .

2.4.1 Exit Time Function

Let (M , g ) be a compact Riemannian manifold with strictly convex boundary. Define the

exit time function,

τexit : SM →R∪{∞}, τexit(p , v ) = sup{t > 0 : γp ,v (t ) ∈M }.

Here γp ,v is the geodesic of (M , g ) with the initial conditions (p , v ) ∈ SM . Since the

boundary of M is strictly convex, Lemma 42 gives that geodesics hit the boundary

transversally, so τexit(p , v ) is the first time when the geodesic γp ,v hits the boundary and

(−τexit(p ,−v ),τexit(p , v )) is the maximal interval where the geodesic γp ,v is defined.

We say that (M , g ) is nontrapping if γp ,v reaches ∂M in a finite amount of time for all

(p , v ) ∈ SM . Otherwise, the manifold is trapping.

Example 46. As we showed in Example 18, the ‘equator’/‘waist’ on the catenoid is an example

of a geodesic which never hits the boundary. Thus, the ‘equator’/‘waist’ is a trapped geodesic

on the catenoid.

51



In this thesis we do not assume that τexit(p , v )<∞ for all (p , v ) ∈ SM . That is, (M , g )may

have trapped geodesics. However, as the following lemma shows, τexit is smooth on inward

pointing and non-trapping directions.

Lemma 47. Let (M , g ) be a compact Riemannian manifold with strictly convex boundary,

then for (p0, v0) ∈ SM \T ∂M with τexit(p0, v0) <∞ then there exists a neighborhood U ⊂
SM \T ∂M of (p0, v0) such that τexit(p , v )<∞ for all (p , v ) ∈U and τexit is smooth in U .

Proof. (Proof based on [52, Lemma 4.1.1] and [46, Lemma 3.2.3].) Assume (p , v ) ∈ SM

such that τexit(p , v )<∞. This implies γp ,v is non-trapping and (p , v ) /∈ T ∂M so v is non-

tangential to ∂M . Denote q := γp ,v (τexit(p , v )) so that q ∈ ∂M . Then if w := γ̇p ,v (τexit(p , v )),

by strict convexity w /∈ T ∂M (otherwise τexit(p , v ) = 0 which implies (x , v ) ∈ T ∂M ). Thus

〈w ,η〉> 0 where η is the outward-pointing normal vector. From Lemma 38 since y ∈ ∂M

we know gradρ(y ) =η(y ). Thus by strict convexity and Lemma 39,

d h

d t
(p , v,τexit(p , v )) = 〈gradρ(y ), w 〉 = 〈η(y ), w 〉 > 0. (2.17)

Recall the Implicit Function Theorem [37, Theorem C.40] says:

Let U ⊆Rm ×Rk be an open subset and let (x , y ) = (x 1, ..., x m , y 1, ..., y k ) denote the

coordinates on U . Supposeφ : U →Rk is a smooth function, (a , b ) ∈U and c =φ(a , b ). If

the k ×k matrix
�

∂ φi

∂ y j

�

�

(a ,b )

�

is nonsingular, then there exists neighborhoods V0 ⊆Rm of a

and W0 ⊆Rk of b and a smooth function F : V0→W0 such thatφ(x , y ) = c for (x , y ) ∈W0 if

and only if y = F (x ).

In Lemma 39 we showed there exists a neighborhood U such that h : U →R is a smooth

function with 0= h (p , v, t0). From (2.17) then ∂ h
∂ t ̸= 0, so by the Implicit Function Theorem

then there exists neighborhoods V0 of (p , v ) and W0 of t0 such that τexit : V0→W0 is smooth

and h (p , v, t ) = 0 if and only if t =τexit(p , v ).

Thus the smoothness of τexit holds on nontrapping and non-tangential directions. Yet there

is no such restriction on SM for continuity of τexit, and we show that τexit : SM →R∪{∞}
is continuous if ∂M is strictly convex.

Lemma 48. If (M , g ) is a compact Riemannian manifold with strictly convex boundary, then

τexit is continuous.
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Proof. Let (p , v ) ∈ SM . To show that τexit is continuous at (p , v )we consider three cases:

Case 1: If τexit(p , v ) = 0 then v is tangential or points outwards and the geodesic γp ,v exits

immediately (see Lemma 42). By the assumption of strict convexity and the continuity

of geodesics, for any geodesic γ(t ) starting near (p , v ) the distance from the boundary to

γ(t ) is of order t 2 [60, Section D.8.1]. Thus geodesics close to tangent to ∂M will be short,

proving that τexit is continuous at v .

Case 2: If 0 < τexit(p , v ) <∞ then γp ,v is non-trapping and (p , v ) /∈ T ∂M so v is non-

tangential to ∂M . Then continuity follows from the smoothness of τexit in a neighborhood

of (p , v ) from Lemma 47.

Case 3: If τexit(p , v ) =∞ then γp ,v is a trapped geodesic. We would like to show for every

m ∈ N there exists a neighborhood Um ⊂ SM of (p , v ) such that τexit(q , w ) ≥ m for all

(q , w ) ∈ Um . Assume otherwise. Let (pn , vn ) → (p , v ) in SM such that τexit(pn , vn ) < C <

∞. Then define yn := γpn ,vn
(τexit(pn , vn )) ∈ ∂M . For a sequence on a compact set ∂M

there exists a convergent subsequence, which we will denote ynk
→ y where y ∈ ∂M .

Since (τexit(pn , vn ))∞n=1 is bounded we may assume after passing to a subsequence that

τexit(pnk
, vnk
)→ B ≤C . By continuity of the exponential map,

γp ,v (B ) = lim
n→∞

γpnk
,vnk
(τexit(pnk

, vnk
)) = y .

This means γp ,v is not trapped, which provides a contradiction.
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CHAPTER

3

REVIEW OF SOME GEOMETRIC INVERSE

PROBLEMS

In this chapter we focus on geometric inverse problems, which are named due to the

geometric nature of the information in these inverse problems, as well as the techniques

used to solve them. We begin by describing the components of an inverse problem. A model

which is defined by some parameters, produces a set of observable information, which we

call data. In abstract terms, a Forward Problem can be stated as:

Given the parameters of a model, what is the corresponding data?

Now the associated Inverse Problem is stated in the following manner:

Given a set of equivalent data for a model, are the parameters equivalent?

For each problem the notion of equivalence depends on the context of the problem and

must be interpreted for each setting independently. This will be demonstrated in the next

example. Additionally when solving an inverse problem, we must be conscious of the

following:
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Figure 3.1 The boundary distance function on the unit-disc.

1. (Existence) Is there a set of parameters for the given data?

2. (Uniqueness) Is there a unique set of parameters for the given data?

3. (Stability) If two data sets are ‘close’ then are the respective parameters ‘close’?

If we are able to answer affirmatively for all three of the above questions, then according to

Hadamard [21] the inverse problem is said to be well posed. If it fails one of those conditions,

it is called ill-posed. Many inverse problems are ill-posed, see [28] for a comprehensive list

across many disciplines.

Example 49. Let (M , g ) be a compact Riemannian manifold with boundary. The metric g

induces a function

dg : ∂M × ∂M →R, dg (z1, z2) = inf{Lg (γ) : γ(0) = z1,γ(1) = z2,γ is a smooth curve}
(3.1)

called the boundary distance function. Depicted in Figure 3.1, this function gives a distance

between two points on the boundary, measured on a curve going through the manifold.

For these models, the parameters are M and g while the data is the boundary distance

function. In this case two metrics on M are considered equivalent if there is a boundary

preserving isometry, which is defined as a Riemannian isometryΨ : (M , g )→ (M , g̃ ) (defined

in Section 2.2) with the following properties,







Ψ|∂M = I d

g̃ =Ψ∗g = (DΨ ◦ g ◦ (DΨ)T ) ◦Ψ.
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It follows that

dg (z1, z2) = dΨ∗g (z1, z2) = d g̃ (z1, z2), for all z1, z2 ∈ ∂M .

Thus the boundary distance function is preserved under boundary preserving isometries. The

forward problem can be stated as follows:

Given a Riemannian manifold (M , g ), what is the respective boundary distance

function?

The associated inverse problem is:

Given a smooth manifold M with boundary and two metrics g1, g2 on M for which

dg1
|∂M×∂M = dg2

|∂M×∂M , are the associated Riemannian metrics the same up to

boundary-preserving isometry?

In the remainder of this chapter, we will survey several inverse problems whose data is

related to the distance function.

3.1 Boundary Rigidity

One of the most extensively studied geometric inverse problems formulated with the

distance functions is the boundary rigidity problem. This problem arose as a problem

in geophysics in an attempt to determine the inner structures of the Earth using seismic

waves, known as the inverse kinematic problem [50]. Because the speed of seismic waves

vary based on the material it is passing through [63], it is a key insight to determine the

composition of Earth’s interior. Initial estimates for the location of the mantle, crust, and

core were provided by Herglotz [23] and Weichert and Zoeppritz [70] (see also [69]). In

these papers they assume spherical symmetry of the Earth in the sense that the seismic

wave speed depends only on the depth. Mathematically they modeled the Earth by a 3-

dimensional disc D 3 with boundary S 2, and a Riemannian metric given by d s 2 = 1
c 2(|x |)d x 2,

where c is a positive function representing the wave speed. The inverse problem becomes:

Given dd s 2
1
= dd s 2

2
on D 3, are the associated wave speeds c1 and c2 the same?

They provided an affirmative answer for the problem under the assumption that d
d x

� |x |
c (|x |)

�

>

0.
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However, Earth deviates from perfect spherical symmetry. In geophysics these deviations

are called horizontal nonhomogeneities [53]. If the nonhomogeneities are small, then we

consider the wave speed c̃ (x )which depends on all position variables x ∈D 3, and deter-

mine this wave speed. This probem has been extensively studied, and is popular in practical

geophysics (see for example [50]).

When the medium is no longer spherically symmetric, we generalize this type of inverse

problem to any compact Riemannian manifold (M , g ). Due to Fermat’s principle we con-

sider the wave speed to be given by a Riemannian metric. Thus if the parameters of the

model are (M , g ) the data is the travel time dg (z1, z2) for all z1, z2 ∈ ∂M . We note this was

exactly the inverse problem posed in Example 49, and for convenience will restate it here.

The boundary rigidity problem poses:

Given a smooth manifold M with boundary and two metrics g1, g2 on M for which

dg1
|∂M×∂M = dg2

|∂M×∂M , are the associated Riemannian metrics the same up to

boundary-preserving isometry?

If the answer is affirmative then (M , g ) is said to be boundary rigid.

For a general Riemannian manifold the answer is negative. Since the boundary distance

function only takes into account the length of shortest geodesics between points on the

boundary, there may be regions ‘unseen’ by the data. This is exemplified in Figure 3.2,

where no distance minimizing geodesics connecting boundary points will travel into the

regions Ω1 or Ω2. Thus, we do not have information from these regions, and it is impossible

to distinguish the non-isometric surfaces in Figure 3.2 from each other solely from the

boundary distance function.

For that reason we consider the boundary rigidity problem under some restrictions on

the geometry of the manifold. One such restriction is the simplicity of the manifold. A

compact and connected Riemannian manifold (M , g )with smooth boundary ∂M is called

simple if the boundary ∂M is strictly convex and any two points x , y ∈M are joined by a

unique distance minimizing geodesic that depends smoothly on these points. This second

condition is equivalent to saying the exponential map expx is a diffeomorphism from the set

Mx = {v ∈ Tx M : v = 0, or ∥v ∥g ≤τexit(x , v
∥v ∥g )} onto M for every x ∈M . Thus all distances

in M are realized by geodesics, and it follows that a simple manifold is diffeomorphic to an

n-dimensional disc, denoted D n [26]. Thus when considering a simple manifold (M , g ),

the metric g is often referred to as a simple metric on D n .

Example 50. Some examples of simple domains are convex subsets of Rn , convex subsets
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Figure 3.2 An example of manifolds that are not boundary rigid.

of Hn , and open hemispheres of S n (i.e they do not contain the equator). Although these

examples all have constant curvature, because simplicity is preserved under small variations

of the metric, we can use these three examples to construct many other simple domains.

Michel conjectured in [41] that every simple Riemannian manifold is boundary rigid. In

two dimensions this was verified in [48], meaning simple surfaces with boundary are

boundary rigid. This proof relies on a connection between the boundary distance function

and the Dirichlet-to-Neumann map of the Laplace-Beltrami operator∆g for a Riemannian

metric in 2 dimensions. It has not been generalized to other dimensions. In fact, for higher

dimensional cases the boundary rigidity of simple manifolds is still open.

However, without assuming simplicity there have been many significant results in dimen-

sion 3 and higher for manifolds that satisfy constant curvature conditions. If (M , g ) is a

compact subdomain with smooth boundary of any of the following:

• Euclidean space Rn ,

• Hyperbolic spaceHn ,

• open hemispheres of S n ,

then (M , g ) is boundary rigid [10]. Additionally, non-trapping and geodesically convex

subdomains of the flat torus are boundary rigid [9]. It was also shown in [3] if a manifold
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Figure 3.3 The scattering relation on a planar domain.

(M , g ) admits an isometric immersion into the same dimensional Euclidean space, then M

is boundary rigid. Surveys of further results can be found in [10, 62].

It was shown in [6] that metrics that are C 2-close to the Euclidean metric are boundary

rigid, which is an extension of the semiglobal version of the result shown in [36]. Similarly,

metrics that are C 3-close to the Hyperbolic metric of a region in Hn are boundary rigid

[7]. A generic simple metric is also boundary rigid [56], which is obtained from linearizing

the boundary rigidity problem, and is discussed further in Section 3.1.2. Surveys of further

results can be found in [26] and [58].

In applications, one rarely has access to the whole boundary, thus partial data and local

reconstructions are important to consider. It was shown in [61] that one can recover locally

the manifold by the travel times of waves joining points close to a convex point on the

boundary. Manifolds with ‘some’ positive curvature have also been shown to locally be

boundary rigid [12]. Local results near the Euclidean metric are also known [55].

3.1.1 Scattering & Lens Rigidity

In light of the difficulties presented by the boundary rigidity problem, we turn our attention

to related problems with more data. Since the boundary distance function is determined

by the distance minimizing geodesics going through the manifold, an alternative problem

could consider the behavior of all geodesics going through the manifold. This information

is captured in the scattering relation, which is defined in the following manner. Let η be
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the outer pointing unit normal to the boundary, and define

∂i nSM = {(x , v ) ∈ S∂M : x ∈ ∂M , 〈η(x ), v 〉g ≤ 0},

∂o u t SM = {(x , v ) ∈ S∂M : x ∈ ∂M , 〈η(x ), v 〉g ≥ 0}.

The scattering relation on a non-trapping Riemannian manifold (M , g ) is the map

Σg : ∂i nSM → ∂o u t SM , Σg (x , v ) = (y , w ) = (γx ,v (τexit(x , v )), γ̇x ,v (τexit(x , v ))).

An example of this mapping is shown in Figure 3.3. The scattering rigidity problem poses:

Given a smooth non-trapping manifold M with boundary and two metrics g1, g2

on M for which Σg1
=Σg2

, are the associated Riemannian metrics the same up to

boundary-preserving isometry?

If the answer is affirmative, the manifold is said to be scattering rigid. As it was shown

in [13], without the non-trapping assumption this problem is ill-posed. This is because

changes in the metric near trapped directions is unseen by the data. So if there exists an

open U ⊂M where SU consists of trapped directions then take α ∈C∞(M ) such that α> 0

and supp(1−α)⊂U . By defining g̃ =αg then supp(g −g̃ )⊂U and g and g̃ are not isometric

but Σg =Σg̃ . Thus, manifolds with trapped geodesics and the same scattering data need

not determine isometric manifolds.

If in addition to the scattering data we also have knowledge about the length of the geodesics,

we have the lens data. The related lens rigidity problem poses:

Given a smooth non-trapping manifold M with boundary, two metrics g1, g2 on

M for which Σg1
=Σg2

, and the lengths of the geodesics in M , are the associated

Riemannian metrics the same up to boundary-preserving isometry?

If we are able to answer affirmatively, the manifold is said to be lens rigid.

On simple manifolds the lens rigidity, scattering rigidity, and boundary rigidity problems

are equivalent [41]. This is because on a simple manifold each pair of points is connected by

a unique geodesic, whose direction is determined by differentiating the distance function.

Thus, the boundary distance data determines an initial point and direction for a geodesic.

By doing this for both points on the boundary we attain the scattering data.

However, there are few results for non-simple manifolds. It has been shown that if a manifold

(M , g )with boundary ∂M is lens rigid and G is a finite group acting on (M , g ) freely then
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(M /G , g )with boundary ∂M /G is also lens rigid [11]. There has also been some progress

showing lens rigidity near a generic class of non-simple manifolds [59], but it has only been

shown locally.

3.1.2 Geodesic Ray Transform

Recall the goal of the boundary rigidity and lens rigidity problems was to recover the metric

tensor g up to boundary-preserving isometry. The linearization of these problems is the

tensor tomography problem, and it seeks to recover a symmetric (2,0)-tensor field ‘up to

natural obstruction’ from the integrals of the (2,0)-tensor field along geodesics [61]. In this

Section we will follow [54] to define the relevant terms, linearize the boundary rigidity

problem, and then show how the tomography problem can be used to solve a variant of the

boundary rigidity problem on simple manifolds with nonpositive sectional curvature.

Let (M , g ) be a simple Riemannian manifold, where g τ is a family of simple metrics on M

smoothly depending on a parameterτ ∈ (−ϵ,ϵ)with g 0 = g . Fix p , q ∈ ∂M , p ̸= q , and set A =

dg 0(p , q ). Let γτ : [0, A]→M be the geodesic of the metric g τ, such that γτ(0) = p and γτ(A) =

q . Since M is simple it is diffeomorphic to a disc, so we have global coordinates where

γτ(t ) = (γ1
τ(t ), ...,γn

τ (t )) and g τ = (g τi j ). The simplicity of metric g τ implies the smoothness

of the functions γi
τ(t ). It follows from (2.7) that

dg τ(p , q ) =

∫ A

0

r

g τi j (γτ(t ))γ̇i
τ(t )γ̇

j
τ(t ) d t

and so
1

A
[dg τ(p , q )]2 =

∫ A

0

g τi j (γτ(t ))γ̇
i
τ(t )γ̇

j
τ(t ) d t .

Differentiating with respect to τ, and setting τ= 0 then

1

A

∂

∂ τ

�

�

�

τ=0
[dg τ(p , q )]2 =

∫ A

0

fi j (γ0(t ))γ̇
i
0(t )γ̇

j
0(t ) d t +

∫ A

0

∂

∂ τ

�

�

�

τ=0

�

g 0
i j (γτ(t ))γ̇

i
τ(t )γ̇

j
τ(t )
�

d t ,

where fi j =
∂
∂ τ |τ=0 g τi j . That is, f = ( fi j ) is a symmetric tensor of order 2. Since γ0 is a

geodesic in a simple metric then it is distance minimizing and thus an extremal value of

the function E0(γ) =
∫ A

0
g 0

i j (γ(t ))γ̇
i (t )γ̇ j (t ) d t . Thus the right-most integral is zero and we
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define a function

I f (γ0) :=
1

A

∂

∂ τ

�

�

�

τ=0
[dg τ(p , q )]2 =

∫ A

0

fi j (γ0(t ))γ̇
i
0(t )γ̇

j
0(t ) d t .

The function I f on the set of geodesics joining boundary points is called the ray transform

of f . If dg τ does not depend on τ then I f (γ0) = 0.

On the other hand, if each of the metrics g τ is boundary rigid there exists a family of

boundary-preserving isometries Ψτ, where g τ = (Ψτ)∗g 0. Define a vector field V (x ) =
d

dτ |τ=0Ψτ(x ) on M , so that it has flow Ψτ. Differentiating g τ with respect to τ and putting

τ= 0 produces the Lie derivative of g 0 with respect to V , as seen in [37, pg. 321],

LV g 0 :=
∂

∂ τ

�

�

�

�

τ=0

(Ψτ)
∗g 0 =

∂

∂ τ

�

�

�

�

τ=0

g τ.

Let (x 1, ..., x n ) be local coordinates on M , so if Ψτ(x ) = (Ψ1
τ(x ), ...,Ψn

τ (x )) then

g τi j = (g
0
k l ◦Ψτ)

∂ Ψk
τ (x )
∂ x i

∂ Ψ l
τ(x )
∂ x j

. (3.2)

In local coordinates then [37, Example 12.35] shows

fi j =
∂

∂ τ

�

�

�

�

τ=0

g τi j = (LV g 0)i j

=V g 0
i j + g 0

i l

∂ V l

∂ x j
+ g 0

k j

∂ V k

∂ x i

=V k
�

∂

∂ x k
g 0

i j − Γ
l
i k g 0

l j − Γ
l
k j g 0

i l

�

+

�

g 0
i k

∂ V k

∂ x j
+ g 0

i k Γ
k
i l V l

�

+

�

g 0
k j

∂ V k

∂ x i
+ g 0

k j Γ
k
i l V l

�

.

Letting Vi = g 0
i j V j , then

fi j =∇V g 0
i j +
�

∂ Vi

∂ x j
− Γ k

i j Vk

�

+

�

∂ Vj

∂ x i
− Γ k

j i Vk

�

.

Due to the definition of the metric tensor, the first term vanishes. Finally, let∇i Vj =
∂ Vi

∂ x j −
Γ k

i j Vk , which represents the components of the total covariant derivatives of the field V in
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the metric g 0,

fi j =∇i Vj +∇ j Vi .

We then define,

(DV )i j :=
1

2

�

∇i Vj +∇ j Vi

�

=
1

2
fi j .

Observe that the condition Ψτ|∂M = I d implies that V |∂M = 0, and thus by the Fundamental

Theorem of Calculus

I (DV )(γ0) =

∫ A

0

d

d t
[Vi γ̇

i
0] d t =Vi γ̇

i
0

�

�

A

0
= 0.

The inverse problem associated to this realization is the tensor tomography problem:

Let f ∈C∞(T (2,0)(M )), if I f = 0 for all geodesics connecting boundary points in g 0,

does that imply the existence of a vector field V such that V |∂M = 0 and DV = f ?

By C∞(T (2,0)(M )) we denote the space of smooth covariant tensor fields of rank 2 on M .

If we can answer the above problem affirmatively, then the ray transform I of (M , g ) is

s-injective.

It follows from [54, Theorem 2.4] that any symmetric tensor f ∈C∞(T (2,0)(M )) admits an

orthogonal decomposition into solenoidal and potential parts, f s ∈ C∞(T (2,0)(M )) and

V ∈C∞(T (1,0)(M )) respectively, such that

f = f s +DV , δ f s = 0, V |∂M = 0.

Here δ is the operator such that [δ f ]i = g j k∇k fi j . Therefore, if I is injective on the space of

solenoidal tensors then I is s-injective [57, pg. 2]. We are now ready to connect back to the

boundary rigidity problem.

Lemma 51. For all τ ∈ (−ϵ,ϵ) let g τ be a family of simple metrics on a compact manifold

M which induce distances dg τ , and Iτ is the ray transform corresponding to the metric g τ.

If Iτ is s-injective for every τ, and the boundary distance functions dg τ are independent of

τ, then for each τ there exists a boundary preserving isometry Ψτ such that Ψ|∂M = I d and

Ψ∗g 0 = g τ.

Proof. We summarize the key ideas of the proof presented in [52, Lemma 4.8.3]. Start by

observing Iτ(
∂ g τ

∂ τ ) = 0 for all τ. As Iτ is s-injective then for all τ ∈ [0, 1] there exists a field V τ
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which is a solution to the system







D τV τ = ∂ g τ

∂ τ

V τ|∂M = 0.

Here D τ is the operator corresponding to the inner covariant differential, which depends

on τ. Thus if g τ is smooth, by the regularity theorems of the elliptic operator D τ, then V τ

is smooth in (x ,τ) ∈M × (−ϵ,ϵ).

Now let y (τ) := (y 1(τ), ..., y n (τ)) where y i (τ) are real valued functions, and consider the

system of ODE’s on M ,







d
dτ y i = (g τ)i j (y ) V τ

j (y ,τ), (y ,τ) ∈M × (−ϵ,ϵ)

y i (0) = y i , y ∈M .
(3.3)

It follows from [37, Theorem D.6] that because (g τ)i j (x ) V τ
j (x ,τ) is smooth for any (τ0, x0) ∈

(−ϵ,ϵ)×M there exists an open interval J0 ⊂ (−ϵ,ϵ) containing τ0 and a neighborhood

U0 containing x0 such that for each τ ∈ J0 and x ∈ U0 there is a C 1 map y i : J0 → M

that solves (3.3). Moreover, there exists a smooth map φi : J0 × J0 ×U0 → M such that

φi : (τ1,τ2, x ) 7→ y i (τ1). Thus the mapφ = (φ1, ...,φn ) is smooth and it satisfiesφ(0,τ, x ) = x .

Using [37, Theorem 9.48(c)] the mapψτ : x 7→φ(0,τ, x ) is a diffeomorphism onto its image

for all τ ∈ (−ϵ,ϵ). Moreover, since V τ|∂M = 0 thenψτ is the identity on ∂M , soψτ is a family

of boundary preserving isometries. Because dg τ is independent of τ, this equivalently

means the family of metrics are boundary rigid, and thus g 0 = (Ψτ)∗g τ.

Example 52. Let Ω be a convex domain on a hyperbolic surface. By [52, Lemma 4.3.3] for

every tensor field f ∈C∞(T (2,0)(M )) the solenoidal part f s is uniquely determined by the ray

transform I f . Thus, I is injective on the space of solenoidal tensors, and consequently I is

s-injective. After applying Lemma 51 then we see that small perturbations of the hyperbolic

metric on Ω are boundary rigid.

Similar work in [52] showed the boundary rigidity of metrics with small curvature. This

work also provided conditional and non-sharp stability estimates for metrics with small

curvature. Moreover, [12] used this to get local uniqueness results for the boundary rigidity

problem.

We note that to simplify the narrative and make the connection to the boundary rigidity
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question more clear, in this section we only introduced tensors of order 2. The definition of

I f and its analysis can be generalized to a wider class of metrics and symmetric tensors of

any order (see for example [52, 57]). Additional surveys on this problem can be found in

[58, 66, 10].

3.2 Boundary Distance Data

Given the difficulty of the boundary rigidity problem, it is worth considering some alterna-

tive/modified versions of the problem. In this next section we consider a related inverse

problem that has more data. Specifically, we assume sources of seismic activity can be

anywhere in the planet, and not just on the surface.

For x ∈M , a compact Riemannian manifold with boundary, define the boundary distance

function of a point x as

rx : ∂M →R, rx (z ) = d (x , z ).

Then the boundary distance data, is given by

∂M and {rx ∈C (∂M ) : x ∈M }. (3.4)

Observe that if Ψ : (M1, g1)→ (M2, g2) is a Riemannian isometry (defined in Section 2.2) then

rp (z ) = d (p , z ) = d (Ψ(p ),Ψ(z )) = rΨ(p )(Ψ(z )).

Thus the boundary distance function is preserved under isometries. In this model, the

inverse problem becomes:

Given ∂M1,∂M2, a diffeomorphismφ : ∂M1→ ∂M2, and {rx ◦φ−1 ∈C (∂M1) : x ∈
M1}= {ry ∈C (∂M2) : y ∈M2}, are the associated Riemannian manifolds the same

up to isometry?

This question has been answered affirmatively in [34] and [29]. The rest of this section

summarizes the proof of this result.

For any x ∈M it follows that rx is a continuous function on the boundary. Since ∂M is

assumed to be compact there must be a point zx ∈ ∂M such that rx (zx ) is the minimum
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distance from x to the boundary. Additionally, by the proof of Lemma 32, then x and zx are

connected by a distance minimizing geodesic γ that is normal to ∂M . The normality of the

geodesics yields the following critical insight for their proof.

Lemma 53. Let (M , g ) be a compact Riemannian manifold with smooth boundary. For

x0 ∈M denote z0 to be a nearest point to x0 on the boundary. Then there are neighborhoods

U ⊂M of x0 and V ⊂ ∂M of z0 such that

(a) d (·, ·) ∈C∞(U ×V )

(b) gradx d (x , z )|x=x0
, considered as a function of z , is a diffeomorphism from V to its

image in Sx0
M . In particular, this means that this image is an open set in Sx0

M .

Proof. The proof can be found in [29, Lemma 2.15].

From the smoothness of the distance in Lemma 53(a), we can now use the travel time data

to distinguish points from one another. In other words, for p1 and p2 in M satisfying rp1
= rp2

on ∂M then p1 is p2. This is because having the same travel time data for p1 and p2 will have

the same point z on the boundary which minimizes rp1
and rp2

. Consequently if −η(z ) is an

inward pointing vector at z , due Lemma 32 then the geodesic γz ,−η(z ) contains p1 and p2 in

its image. Since they are also the same distance away from z along γz ,−η(z ), then they are

the same points.

We are now ready to reconstruct the topological structure on M . For f ∈C (∂M ) let ∥ f ∥∞ =
supz∈∂M | f (z )| and define the mapping

R : (M , g )→ (C (∂M ),∥ · ∥∞), R : x 7→ rx .

From our ability to separate the data it follows that R is injective. Using the triangle inequal-

ity we see that R is continuous. By the compactness of M it follows that R is also a closed

map. Thus R is a topological embedding, dictating the topological structure on M .

Now we consider the local coordinate structure for all points in our manifold. For points

sufficiently close to the boundary, or points inside the collar neighborhood of ∂M , we

identify them using the boundary normal coordinates (defined in (2.15)). So for each x0 ∈Ωϵ
let z0 be the unique boundary point such that d (x0, z0) = d (x0,∂M ). By the construction of

66



Figure 3.4 Local coordinates for the full data case.

the collar neighborhood (Section 2.3) there is a coordinate mapping ϕ defined by

ϕ :Ωϵ→R× ∂M , ϕ : x 7→ (d (x ,∂M ), zx ).

Here zx is the closest boundary point to x ∈Ωϵ, in other words it is the point which min-

imizes the distance d (x , ·)|∂M . Since the function d (x , ·)|∂M is given by the data, then its

minimizer is determined by the data, meaning that the function ϕ is data-driven.

For points further away from the boundary we introduce the boundary distance coordi-

nates. In general, these are constructed by taking a point x0 ∈M and finding z0 ∈ ∂M to be

a closest boundary point. By Lemma 53 there is a neighborhood U ⊂M of x0 and V ⊂ ∂M

of z0 such that the distances between points in these neighborhoods are smooth. It follows

that there are curves ci (t ), i = 1, ..., n −1, in ∂M such that ci (0) = z0 and vectors d ci
d t (0) = vi

that form an orthonormal basis of Tz0
∂M . For sufficiently small t > 0 the points z1 = c1(t ),

... zn−1 = cn−1(t ) are in V . The boundary distance coordinates are given by the mappingψ

defined by

ψ : x 7→ (d (x , z0), d (x , z1), ..., d (x , zn−1)), x ∈U . (3.5)

To show ψ is a coordinate mapping let w0 be the unit vector where expx0
(d (x0, z0)w0) =

z0. Due to [29, Lemma 2.13] x0 and z0 are not conjugate points and thus the mapping

D expx0
: Td (x0,z0)w0

Tx0
M → Tz0

M is an isomorphism. Now for i = 1, ..., n − 1 define the

vectors wi :=
�

D expx0
|d (x0,z0)w0

�−1
vi , so that {w0, w1, ..., wn−1} forms a basis of Tx0

M . For

sufficiently small s there are vectors w̃i (s ) ∈ Tx0
M such that w̃i (0) =w0 and d w̃i (s )

d s |s=0 =wi
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for i = 1, ..., n −1. Then zi = expx0
(d (x0, zi )w̃i (s0)) for some sufficiently small s0. Moreover,

gradx d (x , z )|x=x0
(zi ) =−

w̃i (s0)
∥w̃i (s0)∥g

and by construction they are linearly independent. Taking the musical isomorphism of the

gradients then Dx d (x , z )|x=x0
=
�

gradx d (x , z )|x=x0

�♭
where Dx is the differential with respect

to x , and evaluated at zi they are linearly independent. Thus the differential,

Dψ|x=x0
=
�

Dx d (x , z )|x=x0
(z0) , · · · , Dx d (x , z )|x=x0

(zn−1)
�T

has rank n . It follows by the inverse function theorem [37, Theorem C.34] that there exist

neighborhoods such thatψ−1 is a local diffeomorphism around x0. Thusψ provides a local

coordinate structure around x0, when x0 is away from the boundary.

Together, the boundary normal coordinates and boundary distance coordinates give local

coordinates for all points in M . Since the coordinate charts are smoothly compatible,

we have a smooth atlas on M . This can be extended to the unique maximal atlas of the

Riemannian manifold M as in Lemma 1, and thus defines the smooth structure.

It is left to reconstruct the Riemannian structure on M . For a point x0 ∈M i n t with closest

boundary point z0 ∈ ∂M , by construction of the local coordinates there are neighborhoods

U of x0 and V of z0 such that d (x , z ) is smooth for all (x , z ) ∈U ×V . Thus consider the

gradient gradx d (x , z ) for x ∈U which is the velocity of the distance minimizing unit speed

geodesic from z to x . In particular, the map

H̃x0
: z 7→ gradx d (x , z )|x=x0

, z ∈V

is well defined. However, this map is unknown from the given data.

Instead, we work with its sister map

Hx0
: z 7→Dx d (x , z )|x=x0

, z ∈V

where Dx is the differential of the distance function with respect to x . This map is known

from the given data. Moreover, Hx0
(z )♯ = H̃x0

(z )where ♯ is the musical isomorphism which
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maps co-vectors to vectors. Denote

W ∗ =Hx0
(V ),

so that W ∗ is an open subset of the unit co-sphere at x0 with respect to the metric tensor

g −1. Denote the elements of M in local coordinates as (x 1, ...x n ) so that the differentials

d x 1, ..., d x n form a basis in W ∗. Then for everyω,ν ∈W ∗ we can write

g −1(ω,ν) = g i jωiν j , where g i j = g −1(d x i , d x j ), i , j ∈ {1, . . . , n}.

Since W ∗ ⊂ S ∗x0
M is open it holds that we know the open cone,

C (W ∗) = {tω ∈ T ∗x0
M : ω ∈W ∗ : t > 0}

and the smooth function F : C (W ∗)→R, such that for ξ= tω ∈C (W ∗) then

F (ξ) :=
1

2
∥ξ∥2g =

1

2
g i jξiξ j =

1

2
t 2g i j d x i d x j =

1

2
t 2.

Therefore g i j is the Hessian of F . This determines the inverse metric g −1 in the correspond-

ing coordinates. Taking the inverse produces the metric g on M i n t . To determine the metric

on the whole M , express the metric tensor in terms of the boundary normal coordinates and

use the smoothness of these coordinates as one approaches ∂M . An alternative method

for reconstructing the metric on the boundary is done in [36, 72].
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CHAPTER

4

EXTENDED VERSION OF THE PAPER:

UNIQUENESS OF THE PARTIAL TRAVEL

TIME REPRESENTATION OF A COMPACT

RIEMANNIAN MANIFOLD WITH STRICTLY

CONVEX BOUNDARY

4.1 Main Theorem and the Geometric Assumptions

We consider a compact n-dimensional smooth manifold M with smooth boundary ∂M ,

equipped with a smooth Riemannian metric g . For points p , q ∈M the Riemannian distance

between them is denoted by d (p , q ). Then for p ∈M we define the boundary distance

function r̂p : ∂M → R given by r̂p (z ) = d (p , z ). Let Γ be a non-empty open subset of the

boundary ∂M . We denote the restriction of the boundary distance function on this set as
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rp := r̂p

�

�

Γ
. The collection

Γ and {rp : Γ →R : rp (z ) = d (p , z ), p ∈M }, (4.1)

are called the partial travel time data of Γ ⊂ ∂M . With these data we seek to recover the

Riemannian manifold (M , g )up to a Riemannian isometry. The following definition explains

when two Riemannian manifolds have the same partial travel time data (4.1).

Definition 54. Let (M1, g1) and (M2, g2) be compact, connected, and oriented Riemannian

manifolds of dimension n ∈ N, n ≥ 2 with smooth boundaries ∂M1 and ∂M2 and open

non-empty regions Γi ⊂ ∂Mi respectively. We say that the partial travel time data of (M1, g1)

and (M2, g2) coincide if there exists a diffeomorphismφ : Γ1→ Γ2 such that

{rp ◦φ−1 : p ∈M1}= {rq : q ∈M2}. (4.2)

We want to emphasize that the equality (4.2) is for the non-indexed sets of travel time

functions. Thus, for any p ∈M1 there exists a point q ∈M2 such that rp (φ−1(z )) = rq (z ) for

every z ∈ Γ2. We do not know a priori where the point p ∈M1 is or if there are several points

q ∈M2 that satisfy this equation.

We use the notations T M and SM for the tangent and unit sphere bundles of M . Their

respective fibers, for each point p ∈M , are denoted by Tp M and Sp M . In order to show that

the data (4.1) determine (M , g ), up to an isometry or in other words that the Riemannian

manifolds (M1, g1) and (M2, g2) of Definition 54 are Riemanian isometric, we need to place

an additional geometric restriction. We assume that (M , g ) has a strictly convex boundary

∂M which means that the shape operator S : T ∂M → T ∂M as a linear operator on each

tangent space Tx∂M of the boundary ∂M for a point x ∈ ∂M is negative definite (see

Section 2.4).

It was shown in Lemma 44 that the strict convexity of the boundary implies the geodesic

convexity of (M , g ). That is any pair of points p , q ∈M can be connected by a distance

minimizing geodesic (not necessarily unique) which is contained in the interior M i n t of M

modulo the terminal points. In particular any geodesic of M that hits the boundary exits

immediately.

The main theorem of this Chapter is the following:

Theorem 55. Let (M1, g1) and (M2, g2) be compact, connected, and oriented Riemannian
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manifolds of dimension n ∈N, n ≥ 2 with smooth and strictly convex boundaries ∂M1 and

∂M2 and open non-empty measurement regions Γi ⊂ ∂Mi respectively. If the travel time

data of (M1, g1) and (M2, g2) coincide, in the sense of Definition 54, then the Riemannian

manifolds (M1, g1) and (M2, g2) are Riemannian isometric.

Remark 56. Our assumptions in Theorem 55 do not prevent the existence of the conjugate

points. Actually quite a lot of work in this Chapter is needed to handle their existence. We

also allow the manifolds to have trapped geodesics.

4.1.1 Outline of the Proof of Theorem 55

The main tool of proving Theorem 55 is to differentiate the travel time functions given in

equation (4.1). As these functions are defined only on a small open subset of the boundary

we need to develop some regularity theorem for them. For this reason in Section 4.2 we

study the regularity properties of the distance function on Riemannian manifolds satisfying

the geometric constraints of Theorem 55. Section 4.2 has two main results. Theorem 57 is

the aforementioned regularity result and the key of the proof of Theorem 55. In order to

prove Theorem 57 we need to study, for each point in our manifold, the properties of its cut

locus. This is the set past which the geodesics shot from the chosen point are not anymore

distance minimizers. Theorem 65 collects the needed properties of these sets. Up to the

best of our knowledge the material presented in Section 4.2 does not exist or is not easily

accessible in the literature. Nevertheless, the corresponding results for manifolds without

boundaries are well known.

In Section 4.3 we apply Theorem 57 to reconstruct the Riemannian manifold from its

partial travel time data (4.1). This is done in five parts. Firstly we recover the geometry of the

measurement region. As the second step we recover the topological structure by embedding

the unknown manifold into a function space. Then we determine the boundary. The fourth

step is to find local coordinates. Since our manifold has a boundary, we need different

types of local coordinates for the interior and boundary points. Lastly we reconstruct the

Riemannian metric. All the steps in Section 4.3 are fully data driven. Finally, in Section 4.4

we show that if two Riemannian manifolds, as in Theorem 55, have coinciding partial travel

time data, in the sense of the Definition 54, then they are isometric.
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4.1.2 The Convexity of the Domain in Theorem 55 is Necessary

Let us construct an explicit example of a surface M and a subset Γ ⊂ ∂M so that our results

fail with data recorded only on Γ (this example was originally presented in [14]). We recall

that every pair of points on a smooth compact Riemannian manifold with boundary is

always connected by a C 1-smooth distance minimizing curve [1]. We choose our a manifold

to be the horseshoe-shaped domain of Figure 4.1. We split the domain M into two pieces M1

and M2 with respect to the line (red dotted line) that is normal to ∂M at x0 ∈ ∂M (blue dot).

Then we choose a domain Γ ⊂ ∂M1 (red arch) so that any minimizing curve joining a point

on Γ and a point in M2 touches the boundary near x0. The curve P ⊂M is any involute of

the boundary, meaning that the distance from all points on P to x0 is the same. Because

d (z , p ) = d (z , q ) for any z ∈ Γ and p , q ∈ P , from the point of view of our data (4.1), the

set P appears to collapse to a point.

P
M2

x0

Γ M1

Figure 4.1 A domain where partial data is insufficient.
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4.2 Distance Functions on Compact Manifolds with Strictly

Convex Boundary

The aim of this section is to prove the following regularity result for the Riemannian distance

function.

Theorem 57. Let (M , g ) be a smooth, compact, connected, and oriented Riemannian mani-

fold of dimension n ∈N, n ≥ 2 with smooth and strictly convex boundary. For any p0 ∈M

there exists an open and dense set Wp0
⊂ ∂M such that for every z0 ∈Wp0

there are neighbor-

hoods Up0
⊂M of p0 and Vp0

⊂M of z0 such that the distance function d (·, ·) is smooth in the

product set Up0
×Vp0

.

This result is the key of the proof of Theorem 55.

4.2.1 Critical Distances, Extensions and the Cut Locus

In this section we consider a Riemannian manifold (M , g ) as in Theorem 57, and study the

properties of several critical distance functions. We define the exit time function

τexit : SM →R∪{∞}, τexit(p , v ) = sup{t > 0 : γp ,v (t ) ∈M i n t },

where γp ,v is the geodesic of (M , g )with the initial conditions (p , v ) ∈ SM . Since the bound-

ary of M is strictly convex, τexit(p , v ) is the first time when the geodesic γp ,v hits the bound-

ary, and (−τexit(p ,−v ),τexit(p , v )) is the maximal interval where the geodesic is defined. We

do not assume that τexit(p , v ) <∞ for all (p , v ) ∈ SM . That is, (M , g )may have trapped

geodesics. Here we denote by J ⊂ SM the set of all non-trapped directions, that are those

(p , v ) ∈ SM for which τexit(p , v )<∞. It is shown in Section 2.4.1 that on compact Rieman-

nian manifolds with strictly convex boundary the set J is open in SM , the exit time function

τexit is continuous in J , and smooth on J \T ∂M .

For any p ∈M we define a star shaped set

Mp :=

�

v ∈ Tp M : v = 0, or ∥v ∥g ≤τexit

�

p ,
v

∥v ∥g

��

. (4.3)
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Thus Mp is the largest subset of Tp M where the exponential map of p

expp : Mp →M , expp (v ) = γp ,v (1)

is defined. Since ∂M is strictly convex this map is onto, but it does not need to be one-to-

one, since there can be several geodesics of the same length connecting p to some common

point. This leads to the following definition of the cut distance function:

τcut : SM →R, τcut(p , v ) = sup{t ∈ (0,τexit(p , v )] : d (p ,γp ,v (t )) = t }. (4.4)

Thus the geodesic segment γp ,v : [0, t ] → M is a distance minimizing curve for any t ∈
[0,τcut(p , v )].

Traditionally on a closed Riemannian manifold (N , g ) the set

cutN (p ) := {γp ,v (τcut(p , v )) ∈N : v ∈ Sp N } (4.5)

is known as the cut locus of the point p ∈N and each point in this set is called a cut point of

p . Moreover, the cut locus of p coincides with the closure of the set of those points q ∈N

such that there is more than one distance minimizing geodesic from p to q (see for instance

[32, Theorem 2.1.14]). It has been also shown in [49, Section 9.1] that d (p , ·) is smooth in

N \({p}∪cutN (p )) but not at any q ∈ ({p}∪cutN (p )). In order to understand the smoothness

properties of the distance function on a Riemannian manifold (M , g )with a strictly convex

boundary, our aim is to define the set analogous to the one in (2.13) in this context.

If N is a closed manifold and (p , v ) ∈ SN then by Klingenberg’s lemma [38, Proposition

10.32] either there is a second distance minimizing geodesic from p to γp ,v (τcut(p , v )) or

these points are conjugate to each other along γp ,v . In particular, the geodesic γp ,v is not a

distance minimizer beyond the interval [0,τcut(p , v )]. The following lemma extends this

result in our case.

Lemma 58. Let Riemannian manifold (M , g ) be as in Theorem 57 and (p , v ) ∈ SM . If

τcut(p , v )<τexit(p , v )

then at least one of the following holds for q := γp ,v (τcut(p , v )):

• There exists another distance minimizing geodesic from p to q .
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• q is the first conjugate point to p along γp ,v .

Moreover, for any t0 ∈ (0,τcut(p , v )) the geodesic segment γp ,v : [0, t0]→M has no conjugate

points and is the unique unit-speed distance minimizing curve between its endpoints.

Proof. Define C =τcut(p , v ). By the assumption, C <τexit(p , v )we can extend the geodesic

γp ,v beyond the point q . Let (Bi ) be a sequence of real numbers such that C < Bi <τexit(p , v )

and limi→∞Bi = C . From the definition of the cut distance function, γp ,v : [0, Bi ]→M is

not distance minimizing. Then for each i there is a unit vector wi ̸= v such that γ̃p ,wi
:

[0, Ai ]→M is a unit-speed distance minimizing geodesic with the properties γ̃p ,wi
(0) = p

and γ̃p ,wi
(Ai ) = γp ,v (Bi ) and Ai < Bi . Using the continuity of the distance function, we have

C = d (p ,γp ,v (C )) = lim
i→∞

d (p ,γp ,v (Bi )) = lim
i→∞

Ai

and so limi→∞Ai =C .

By compactness of the unit sphere, and passing to a subsequence if necessary, we can

assume that wi → w ∈ Sp M . We need to ensure that the γ̃(t ) = expp (t w ) stays inside the

manifold M and is a distance minimizer between p and q . Since γ̃p ,wi
: (0, Ai ]→M is in

M i n t , we know τexit(p , wi )> Ai . Then by the continuity of the exit time function near the

non-trapped directions

τexit(p , w ) = lim
i→∞

τexit(p , wi )≥ lim
i→∞

Ai =C .

Using this in combination with Ai →C and

q = lim
i→∞

expp (Bi v ) = lim
i→∞

expp (Ai wi ) = expp (C w )

means γ̃(t ) given by expp (t w ) will also be a unit-speed minimizing geodesic from p to

q = expp (C w ). Since q is an interior point we also get τexit(p , w )>C .

First we assume that w = v , which implies C w =C v , and hence for every neighborhood

U ⊂ T M of C v there exists an index k ∈N such that Ai wi , Bi v ∈U for all i ≥ k . Furthermore,

we have

expp (Ai wi ) = expp (Bi v ).

Therefore expp cannot be a local injection around C v , hence D expp (C v )must be singular.

This implies p and q are conjugate along γp ,v .
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Now we assume that q is not a conjugate point to p along γp ,v . All that is left to show is

that w ≠ v . We notice for each i ∈N that Ai wi ̸= Bi v in Tp M while expp (Ai wi ) = expp (Bi v ).

However, since q = expp (C v ) is assumed to not be a conjugate point to p along γp ,v , the

exponential map expp cannot have a critical point at C v (see for instance [38, Proposition

10.20]). By the Inverse Function theorem there is V ⊂ Tp M , a neighborhood of C v , in which

expp is injective. Since Bi v → C v there exists a value iN > 0 such that Bi v ∈ V for i ≥ iN .

Due to the injectivity we can also conclude that Ai wi /∈V for any i ≥ iN . Thus, C w ̸=C v ,

which implies w ̸= v .

Considering the case when t0 ∈ (0,τcut(p , v )) is identical to the proof in [38, Proposition

10.32a].

Since the manifold M has a non-empty boundary ∂M it holds that both the tangent bun-

dle T M and the unit sphere bundle SM are manifolds with boundaries ∂ T M and ∂ SM

respectively.

(p , v ) ∈ ∂ T M , ((p , v ) ∈ ∂ SM ) if and only if p ∈ ∂M .

We equip T M with the Sasaki metric gS . Thus we can consider T M , and its submanifold SM ,

as Riemannian manifolds. In the following the convergence and other metric properties in

T M or SM will be considered with respect to this metric.

Lemma 59. Let the Riemannian manifold (M , g ) be as in Theorem 57. The cut distance

function τcut is continuous in SM .

Proof. Let (p , v ) ∈ SM and C = τcut(p , v ). By the definition of τcut(p , v ) there exists a se-

quence ti →C such that γp ,v : [0, ti ]→M is distance minimizing. Then by the continuity of

the exponential map and the distance function,

d (p ,γp ,v (C )) = lim
i→∞

d (p ,γp ,v (ti )) = lim
i→∞

ti =C . (4.6)

Thus, γp ,v is distance minimizing on [0, C ].

Let (pi , vi ) be a sequence in SM such that (pi , vi ) → (p , v ). Defining Ci = τcut(pi , vi ) ≤
τexit(pi , vi ), then we would like to show Ci →C . For this it suffices to show

A := lim sup
i→∞

Ci ≤C ≤ lim inf
i→∞

Ci =: B .

We will start by showing A ≤ C . Passing to a subsequence, we have Cik
≤ τexit(pik

, vik
)
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and Cik
→ A. Using Equation (4.6), we know γpik

,vik
is minimizing on [0, Cik

]. Then by the

continuity of the exponential map and the distance function we have:

d (p ,γp ,v (A)) = lim
k→∞

d (p ,γpik
,vik
(Cik
)) = lim

k→∞
Cik
= A.

This makes γp ,v distance minimizing on [0, A]. Thus, A ≤C .

Next, we will show that C ≤ B . Suppose first that B =τexit(p , v ). In this case we have by the

definition of the cut time C ≤ B . To finish the proof we assume from here onwards that

B < τexit(p , v ). After passing to a subsequence, we have (pik
, vik
)→ (p , v ) and Cik

→ B as

k →∞. Let qik
= exppik

(Cik
vik
).

Since τcut(pik
, vik
)≤τexit(pik

, vik
) and

lim
k→∞

τexit(pik
, vik
) =τexit(p , v )> B = lim

k→∞
Cik
= lim

k→∞
τcut(pik

, vik
)

there must exist K ∈N such that

τcut(pik
, vik
)<τexit(pik

, vik
), for every k ≥ K .

Therefore, after possibly discarding the K first indices, it follows from the Lemma 58 that qik

is either a conjugate point to pik
along γpik

,vik
or there exists another distance minimizing

geodesic from pik
to qik

. Moreover, by the continuity of the exponential map

q := expp (B v ) = lim
k→∞

exppik
(Cik

vik
) = lim

k→∞
qik

.

By B < τexit(p , v ), the point q is contained in M , and we aim to show that either q is a

conjugate point to p along γp ,v , or that there is another geodesic of length B from p to q .

By Lemma 58 either of these yield C ≤ B and ends the proof.

Consider the first case, and assume qik
and pik

are conjugate to each other for each ik . Recall

conjugate points are critical values of the exponential map. To utilize this, we consider a

neighborhood U ⊂M of p with local coordinates (x1, ..., xn ), and define local coordinates

of T U =U ×Rn as (xi , yj )ni , j=1. We consider the map

exp: T U →M , (x , y ) 7→ expx (y )

near (p , B v ). Since (pik
, Cik

vik
) converges to (p , B v ) in T U and as qik

and pik
are assumed
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to be conjugate to each other, we have

det
�

Dy exppik
|Cik

vik

�

= 0.

Thus by the continuity of the map (x , y ) 7→ det(Dy expx |y ) this implies,

det
�

Dy expp |B v

�

= lim
k→∞

det
�

Dy exppik
|Cik

vik

�

= 0.

Therefore, q = expp (B v ) is a conjugate point to p along γp ,v .

Consider the second case, and assume that for each ik there are 2 distance minimizing

geodesics from pik
to qik

. The first geodesic is γk , where γk (0) = pik
and γ̇k (0) = vik

. Let the

second geodesic beσk whereσk (0) = pik
and σ̇k (0) =wk ∈ Spik

M . Moreover these geodesics

satisfy

γk (Cik
) =σk (Cik

) = qik
, and vk ̸=wk , for every k ∈N. (4.7)

After passing to a subsequence, we have by the compactness of SM that there is w ∈ Sp M

such that (pik
, wik
)→ (p , w ). Thus (pik

, Cik
wik
)→ (p , B w ) and (4.7), with the continuity of

the exponential map, yields

expp (B w ) = q = expp (B v ).

If v and w do not agree then γp ,v and γp ,w are two different geodesics of the length B

connecting p to q .

To conclude the proof we choose a neighborhood U ⊂ M of p and local coordinates

(x1, . . . , xn ) in U . Using the coordinates (xi , yj )ni , j=1 in T U and (x ′1, . . . , x ′n ) in a neighborhood

U ′ of q we define the map Φ in T U , near (p , B v ), by the formula

Φ(x , y ) = (x , expx (y )) ∈U ×U ′ ⊂M ×M .

The differential of this map can be written as

DΦ=







d x
d x

d x
d y

d expx
d x

d expx
d y






=







I 0

d expx
d x Dy expx






,

and making det(DΦ) = det(Dy expx ). If p and q are not conjugates along γp ,v (otherwise we

would be dealing with the previous case), we must have det(DΦ) ̸= 0 at the point (p , B v ).

79



Thus the Inverse Function Theorem, implies that Φ has a local inverse near (p , B v ).

Finally we take V ⊂ T U to be a neighborhood of (p , B v ) so that Φ is injective on V . For

the sake of contradiction, assume w = v . That would make both (pk , Cik
wk ) and (pik

, Cik
vik
)

converge to (p , B v ), so for a sufficiently large N we must have (pN , CN vN ), (pN , CN wN ) ∈V .

As wN ̸= vN we have distinct points (pN , CN wN ) and (pN , CN vN ) in V whose images under Φ

coincide. This is a contradiction to the injectivity of Φ in V . Thus w ̸= v , as desired.

As M has a boundary, the definition of the cut time function τcut, in the equation (2.12), has

an issue. Namely if τcut(p , v ) =τexit(p , v ) for some (p , v ) ∈ SM we do not know a priori if the

geodesic γp ,v just hits the boundary at γp ,v (τcut(p , v )) or if it is possible to find an extension

of (M , g ) such that γp ,v also extends as a distance minimizer.

To address this question, from here onwards we assume that (M , g ) has been isometrically

embedded in some closed Riemannian manifold (N , g ). This can be done for instance by

constructing the double of the manifold M as explained in Lemma 37 and extending the

metric g smoothly across the boundary ∂M . The issue with this extension is that it might

create ‘short cuts’ in the sense that there can be a curve in N , connecting some points of

M , which is shorter than any curve entirely contained in M . Therefore we always have

dM (p , q )≥ dN (p , q ), for all p , q ∈M ,

where dM (·, ·) and dN (·, ·) are the distance functions of M and N respectively. The following

proposition shows that while we stay close enough to M we do not need to worry about

these short cuts.

Proposition 60. Let (N , g ) be a smooth, connected, orientable, and closed Riemannian

manifold and M ⊂N an open set with closure M̄ such that ∂M is smooth and has negative

definite shape operator for an outward-pointing vector field on M̄ in N . We say ∂M is a

smooth strictly convex hyper-surface of (N , g ). Then there exists an open subset M̂ of N that

contains M̄ , and the boundary of M̂ is a smooth, strictly convex hyper-surface of N .

Moreover

dM̂ (p , q ) = dM (p , q ), for all p , q ∈ M̄ . (4.8)

Proof. Since ∂M is a smooth hyper-surface of N there exists a smooth function s : N →R
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Figure 4.2 Extension of M to M̂ .

and a neighborhood U of ∂M such that

|s (x )|= dist(x ,∂M ) := inf{dN (x , z ) : z ∈ ∂M }, and ∥grad s (x )∥g ≡ 1,

for every x ∈U . Moreover for each x ∈U there exists a unique z ∈ ∂M such that dN (x , z ) =

|s (x )|. We choose the sign convention of s such that s (x )≥ 0 for x ∈U \M . Then on ∂M

the gradient of the function s (·) agrees with the outward pointing unit normal vector field

of ∂M . The existence of this function is shown in Lemma 38.

By this construction, each p ∈U can be written uniquely as

p = (z (p ), s (p )) ∈ ∂M ×R,

where z (p ) is the closest point of ∂M to p . Thus on U we write the Riemannian metric as a

function of (z ,ϵ) ∈ ∂M ×R in the form ds2+ g̃ (ϵ, z ), where g̃ (ϵ, z ) is the first fundamental

form of the smooth hyper-surfaceΩ(ϵ) := s−1{ϵ}. By [38, Proposition 8.18]we can then write

the second fundamental form of Ω(ϵ) as a bi-linear form

Π(z ,ϵ)(X , Y ) =−
1

2

∂

∂ ϵ
g̃αβ (ϵ, z )X αY β ∈R

on TΩ(s ). Thus the eigenvalues λ1(z ,ϵ), . . . ,λn−1(z ,ϵ) of Π(z ,ϵ) are continuous functions of

(z ,ϵ) [68, Appendix V, Section 4, Theorem 4A]. SinceΩ(0) coincides with ∂M , which is strictly

convex, we have that λα(z , 0)< 0 for every α ∈ {1, . . . , n −1}. Thus there exists ϵ0 > 0 so that

λα(z ,ϵ)< 0, for every α ∈ {1, . . . , n −1} and |ϵ|< ϵ0.
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Therefore, for small enough ϵ > 0, we have that

M (ϵ) := s−1(−∞,ϵ)⊂M ∪U

is an open set of N that contains M̄ , and whose boundary ∂M (ϵ) =Ω(ϵ) is a smooth strictly

convex hyper-surface of N . We choose ϵ ∈ (0,ϵ0) and set M̂ =M (ϵ).

Let p , q ∈ M̄ and choose a distance minimizing unit speed geodesic γ: [0, dM̂ (p , q )]→ M̂

that connects these points. Now without loss of generality we may assume that γ(t̃ ) ∈U for

some t̃ ∈ [0, dM̂ (p , q )]. If this is not true then the trace of γ is contained in M and we are

done.

Since U is open and γ(t̃ ) ∈ U we can choose an interval [a , b ] ⊂ [0, dM̂ (p , q )] such that

γ([a , b ])⊂U and define a smooth function

s̃ : [a , b ]→R, s̃ (t ) := s (γ(t )).

Since p and q are in M̄ we may without loss of generality assume that s̃ (a ), s̃ (b )≤ 0.

We aim to verify that s̃ is always non-positive. To establish this we show that the maximum

value m ∈ R of s̃ is attained at the endpoints of the domain interval. So suppose that

m = s̃ (t0) is attained in some interior point t0 ∈ (a , b ). As t0 is a maximum point of s̃ , laying

in the interior of the domain interval, it must hold that ˙̃s (t0) = 0 and ¨̃s (t0)≤ 0. On the other

hand since γ is a geodesic, we have by the Weingarten equation [38, Theorem 8.13 (c)] that

˙̃s (t0) = 〈grads (γ(t0)), γ̇(t0)〉g , and ¨̃s (t0) = 〈Dt grads (γ(t0)), γ̇(t0)〉g =−Πγ(t0)(γ̇(t0), γ̇(t0)). (4.9)

Here Dt stands for the covariant differentiation along the curve γ. Therefore γ̇(t0) is tangen-

tial to the strictly convex hyper-surface Ω(m )which implies that Πγ(t0)(γ̇(t0), γ̇(t0))< 0. This

in conjunction with (4.9) leads into a contradiction with ¨̃s (t0)≤ 0. We have verified that for

all p , q ∈ M̄ any distance minimizing geodesic in M̂ , between these points, is contained in

M̄ . Therefore the equation (4.8) is true.

By Proposition 60 we may assume that M is contained in the interior of some compact,

Riemannian manifold (M̂ , g )with a smooth strictly convex boundary. Moreover the distance

function of M̂ restricts to the one of M . Thus for every (p , v ) ∈ SM̂ where p is in M we
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always have that

τcut(p , v )≤ bτcut(p , v ), and τexit(p , v )< bτexit(p , v ), (4.10)

where bτcut and bτexit are the cut distance and the exit time functions of (cM , g ) respectively.

Motivated by this observation we define the cut locus of a point p ∈M as

cut(p ) :={γp ,v (τcut(p , v )) ∈M : v ∈ Sp M , τcut(p , v ) = bτcut(p , v )}. (4.11)

The following result summarizes the basic properties of these sets.

Proposition 61. Let the Riemannian manifold (M , g ) be as in Theorem 57. Let p ∈M .

• The cut locus cut(p ) of the point p is a closed set of measure zero.

• If q ∈ cut(p ) and γ is a unit speed distance minimizing geodesic of M between p and q

then at least one of the following holds:

1. There exists another distance minimizing geodesic from p to q .

2. q is the first conjugate point to p along γ.

Proof.

• Let q ∈M belong to the closure of cut(p ), and choose a sequence qi ∈ cut(p ) that

converges to q . Then for each i ∈Nwe choose vi ∈ Sp M such that

qi = γp ,vi
(τcut(p , vi )) = γp ,vi

(bτcut(p , vi )).

After passing to the subsequence we may choose v ∈ Sp M so that vi → v as i →∞.

Thus due to continuity of the cut distance function given in Lemma 59 and the

continuity of the geodesic flow we arrive in

τcut(p , v ) = bτcut(p , v ), and q = γp ,vi
(τcut(p , v )) = γp ,vi

(bτcut(p , v )).

This implies that q ∈ cut(p ) as claimed.

In order to prove that cut(p ) has zero measure we note that

cut(p )⊂ {expp (τcut(p , v )v ) ∈M : v ∈ Sp M }=: CUT(p ).
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Since the cut distance is continuous on Sp M a similar proof to the one given in [38,

Theorem 10.34 (a)] yields that CUT(p ) has a measure zero. Therefore also cut(p ) is of

measure zero.

• If q ∈ cut(p ) then by (4.10) there is v ∈ Sp M such that

q = γp ,v (τcut(p , v )), τcut(p , v ) = bτcut(p , v )≤τexit(p , v )< bτexit(p , v ),

Thus Lemma 58 and Proposition 60 yield the second claim.

The following result introduces an open and dense subset of M where the distance function

of an interior point is smooth.

Lemma 62. Let the Riemannian manifold (M , g )be as in Theorem 57. Let p ∈M . The distance

function d (p , ·): M →R, is smooth precisely in the open and dense set M \ ({p}∪ cut(p )).

Proof. Let q0 ∈M \ ({p} ∪ cut(p )). Since cut(p ) is closed the point q0 has a neighborhood

U ⊂M that is contained outside of cut(p ). Let q ∈U . Since M is geodesically convex there

is v (q ) ∈ Sp M such that q = expp (t (q )v (q )) for some t (q ) ∈ (0,τexit(p , v (q ))]. Since q is not

in the cut-locus of p we have by equation (4.10) and the definition of the cut locus of p that

t (q )< bτcut(p , v (q )). By Lemma 58 and Proposition 60 this implies that γp ,v (q ) is the unique

distance minimizing geodesic from p to q . In particular d (p , q ) = t (q ).

Since p and q0 are not conjugate to each other along the geodesic γp ,v (q0), the exponential

map of p has an invertible differential at t (q0)v (q0) ∈ Tp M . As q0 is not p , the Inverse

function theorem implies that there is a neighborhood V ⊂U of q0 such that the function

q 7→ ∥exp−1
p (q )∥g = t (q ) = d (p , q )

is smooth on V . We have proven that the distance function d (p , ·) is smooth outside the set

{p}∪ cut(p ).

Proposition 63. Let the Riemannian manifold (M , g ) be as in Theorem 57. Let p ∈M and

q ∈M \ ({p}∪ cut(p )). There exist neighborhoods U ⊂M of p and V ⊂M of q such that the

distance function d (·, ·) is smooth in the product set U ×V .
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Proof. Let (N , g ) be a closed extension of (M , g ) as in Proposition 60. We define a smooth

map

F : (x , v ) ∈ T N 7→ (x , expx (v )) ∈N ×N .

Then the differential of this map can be written as

DF (x , v ) =

�

Id 0

∗ D expx (v )

�

.

Since q is not in the cut locus of p there is a v0 ∈ Tp N such that ∥v0∥g = dM (p , q ), expp (v0) = q

and D expp (v0) is not singular. Therefore det(DF (p , v0)) = det(D expp (v0)) does not vanish.

Thus the Inverse function theorem implies that there are neighborhoods fW ⊂ T N of (p , v0)

and W ⊂N ×N of (p , q ) such that the local inverse function of F ,

F −1 : W → fW , F −1(x , y ) = (x , exp−1
x (y )),

is a diffeomorphism.

Since q is not in the cut locus of p we have ∥F −1(p , q )∥g < bτcut

�

p , v0
∥v0∥g

�

. Thus by the conti-

nuity of the cut distance function bτcut (·, ·) of (N , g )we can choose a neighborhood W1 ⊂W

of (p , q ) such that

∥F −1(x , y )∥g < bτcut

�

x ,
F −1(x , y )
∥F −1(x , y )∥g

�

, for all (x , y ) ∈W1.

This gives dN (x , y ) = ∥F −1(x , y )∥g , for all (x , y ) ∈W1.

Finally we choose disjoint neighborhoods U ⊂M of p and V ⊂M of q such that U ×V is

contained in W1. Let (x , y ) ∈U ×V then γ(t ) := expx (t F −1(x , y )) for t ∈ [0,1] is a geodesic

of N that connects x to y having the length of dN (x , y ). Since both x and y are in M , we

get from the proof of Proposition 60 that γ(t ) is contained in M . This yields

dM (x , y ) = ∥F −1(x , y )∥g , for all (x , y ) ∈U ×V . (4.12)

Since the sets U and V are disjoint we have that F −1 does not vanish in U × V . Hence

equation (4.12) gives the smoothness of dM (·, ·) on U ×V .

Recall that we have assumed that M is isometrically embedded in a closed Riemannian

manifold (N , g ). Thus any geodesic starting from M can be extended to the entire R. Let
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p ∈N . We define the conjugate distance function τcon : Sp N →R∪∞ by the formula:

τcon(p , v ) = inf{t > 0 : γp ,v (t ) is a conjugate point to p}.

As the infimum of the empty set is positive infinity we set τcon(p , v ) =∞ in the case when

the geodesic γp ,v does not have any conjugate points to p . Since geodesics do not minimize

the distance beyond the first conjugate point it holds that

τcut(p , v )≤τcon(p , v ), if (p , v ) ∈ SM .

The following result is well known, but we could not find its proof in the existing literature,

so we provide one below.

Lemma 64. Let (N , g ) be a closed Riemannian manifold and p ∈N . The conjugate distance

function is continuous on Sp N .

Proof. Let vi ∈ Sp N for i ∈N converge to v .

We set

C =τcon(p , v ), B = lim inf
i→∞

τcon(p , vi ), and A = lim sup
i→∞

τcon(p , vi ).

It suffices to show that A ≤C ≤ B .

We assume first that C =∞. If A <∞ we choose a sub-sequence vik
of vi such that

τcon(p , vik
) converges to A. Then det(D expp (τcon(p , vik

)vik
)) = 0, and the smoothness of the

exponential map gives det(D expp (Av )) = 0 yielding that expp (Av ) is conjugate to p along

γp ,v . This implies that τcon(p , v ) ≤ A, which is impossible. By the same argument we see

that B =∞.

Let C <∞, and by the same limiting argument as above we get C ≤ B . Then we show that

A ≤ C . Choose a sub-sequence vik
such that τcon(p , vik

)→ A as k →∞. For the sake of

contradiction we suppose that A >C . By the definition of the conjugate distance function

we have that q = γp ,v (C ) is the first conjugate to p along γp ,v . By [38, Theorem 10.26] for

any ϵ ∈ (0, A−C ) there exists a piecewise smooth vector field X on the geodesic segment

γp ,v : [0, C + ϵ]→N , that vanishes on 0 and C + ϵ such that the index form of γp ,v over X is
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strictly negative. That is

Iv (X , X ) :=

∫ C+ϵ

0

〈Dt X , Dt X 〉g + 〈R (γ̇p ,v , X )γ̇p ,v , X 〉g dt < 0. (4.13)

Here we used the notation Dt for the covariant differentiation along γp ,v . The capital R

stands for the Riemannian curvature tensor.

We choose vectors E1, . . . , En of Tp N that form a basis of Tp N and extend them on γp ,v (t ) for

t ∈ [0, C +ϵ] via the parallel transport. Since parallel transport is an isomorphism the vector

fields {E1(t ), . . . , En (t )} constitute a basis of Tγp ,v (t )M . We write X (t ) = X j (t )E j (t ). Since X is

piecewise smooth it holds that the component functions X j (t ) are piecewise smooth. This

lets us ‘extend’ X on γp ,vik
by the formula

Xk (t ) = X j (t )E k
j (t ), (4.14)

where the vector field E k
j (t ) is the parallel transport of E j along γp ,vik

. Thus Xk is a piecewise

smooth vector field on γp ,vik
that vanishes at t = 0 and t =C + ϵ.

Since vik
→ v, as k →∞, it holds that

γp ,vik
(t )→ γp ,v (t ), and E k

j (t )→ E j (t ), uniformly in t ∈ [0, C + ϵ] as k →∞.

Therefore by (4.13), (4.14), the continuity of the Levi-Civita connection, and the Riemannian

curvature tensors we have

Ivik
(Xk , Xk )< 0, for large enough k ∈N.

By [38, Theorem 10.28] there exists sk ∈ (0, C +ϵ] so that γp ,vik
(0) and γp ,vik

(sk ) are conjugate

points. Therefore we must have sk ≥τcon(p , vik
) and we arrive at a contradictionτcon(p , vik

)<

A. This ends the proof.

4.2.2 The Hausdorff Dimension of the Cut Locus

We fix a point p ∈M for this sub-section. By Lemma 62 we know that for any p ∈M the

distance function d (p , ·) is smooth in the open set M \(cut(p )∪{p}). Moreover by Proposition

63 for each q in this open set there are neighborhoods U of p and V of q such that the
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distance function is smooth in the product set U ×V . As we are interested in the inverse

problem where we study distance function d (p , ·) restricted on some open subset Γ of the

boundary, we do not know a priori if this function is smooth on Γ . In particular we do not

know the size of the set cut(p )∩∂M yet. In this sub-section we show that the set ∂M \cut(p ),

where d (p , ·) is smooth, is always an open and dense subset of ∂M .

Proposition 61 yields that cut(p ) can be written as a disjoint union of

• Conjugate cut points:

Q (p ) := {γp ,v (t ) ∈M : v ∈ Sp M , t =τcut(p , v ) =τcon(p , v )} ⊂ cut(p ),

that are those points q ∈ cut(p ) such that there exists a distance minimizing geodesic

from p to q along which these points are conjugate to each other. By Proposition 61

and Lemma 64 the set Q (p ) is closed in M .

• Typical cut points: T (p )⊂ (τcut(p ) \Q (p )) that can be connected to p with exactly two

distance minimizing geodesics.

• A-typical cut points: L (p )⊂ (τcut(p )\Q (p )) that can be connected to p with more than

two distance minimizing geodesics. Thus an a-typical cut point is both non-conjugate

and non-typical.

It was proven in [25] that the Hausdorff dimension of the cut locus on a closed Riemannian

manifold (N , g ) is locally an integer that does not exceed dim N − 1. Moreover T (p ) is a

smooth hyper-surface of N and the Hausdorff dimension of Q (p )∪ L (p ) does not exceed

dim N −2. In this Chapter we will extended these results for manifolds with strictly convex

boundary. The main result of this section is as follows:

Theorem 65. Let (M , g ) be a smooth, compact, connected, and oriented Riemannian mani-

fold of dimension n ∈N, n ≥ 2 with smooth and strictly convex boundary. If p ∈M then

1. The set T (p ) of typical cut points is a smooth hyper-surface of M that is transverse to

∂M .

2. The Hausdorff dimension of Q (p )∪ L (p ) does not exceed n −2.

3. The Hausdorff dimension of cut(p ) does not exceed n −1.
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4. The set ∂M \ cut(p ) is open and dense in ∂M .

For the readers who want to learn more about Hausdorff measure and dimension we

suggest to have look at [5, 40]. Some basic properties of the Hausdorff dimension dimH are

collected in the following lemma.

Lemma 66. Basic properties of the Hausdorff dimension are:

• If X is a metric space and A ⊂ X then dimH (A)≤ dimH (X ).

• If X is a metric space andX is a countable cover of X then dimH (X ) = supA∈X dimH (A).

• If X , Y are metric spaces and f : X → Y is a bi-Lipschitz map then

dimH (A) = dimH ( f (A)) for any A ⊂ X .

• IfU ⊂M is open and M is a Riemannian manifold of dimension n ∈N then dimH (U ) =

n.

From here onwards we follow the steps of [25, 44] and develop machinery needed for the

proof of Theorem 65. We recall that we have isometrically embedded M into the closed

Riemannian manifold (N , g ). The maximal subset Mp ⊂ Tp M where the exponential map

expp : Mp →M of (M , g ) is well defined was given in (4.3) as

Mp =

�

v ∈ Tp M : v = 0 or ∥v ∥g ≤τexit

�

p ,
v

∥v ∥g

��

.

Thus the exponential function expp : Tp N →N of N agrees with that of M in Mp .

Let v0 ∈Mp be such that the exponential map expp is not singular at v0. The Inverse function

theorem yields that there are neighborhoods U ⊂ Tp N of v0 and Ṽ ⊂N of x0 = expp (v0) ∈M

such that expp : U → Ṽ is a diffeomorphism. We want to emphasize that even when v0 ∈Mp

the set U ⊂ Tp N does not need to be contained in Mp . If we equate Tp N and Tv0
(Tp N )we

note that the formula

Y (x ) =D expp

�

�

�

�

exp−1
p (x )

exp−1
p (x )

defines a smooth vector field on Ṽ that satisfies the following properties

Y (x ) = γ̇p ,exp−1
p (x )(1), and ∥Y (x )∥g = ∥exp−1

p (x )∥g . (4.15)
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The vector field Y is called a distance vector field related to p and U . Let x ∈ Ṽ and X ∈ Tx N .

It holds by a similar proof to [44, Lemma 2.2.] that

X ∥Y (x )∥g =
〈X , Y (x )〉g
∥Y (x )∥g

. (4.16)

In what follows we will always consider cut(p ) as defined for (M , g ) in equation (4.11). Let

q ∈ cut(p ) \Q (p ) and λ = d (p , q ). By Proposition 61 it holds that there are at least two

M -distance minimizing geodesics from p to q . Thus the set

Ep ,q := exp−1
p {q }∩SλM , where SλM = {w ∈ Tp M : ∥w ∥g =λ},

contains at least two points.

It was proven in [44] that the set Ep ,q is finite. We repeat the argument here as it is short.

Suppose that Ep ,q is not finite. Then by the compactness of SλM there is w ∈ SλM that

is an accumulation point of Ep ,q . We choose a sequence wi ∈ Ep ,q that converges to w .

Since λ≤τexit(p , wi
λ ) for every i ∈Nwe have that λ≤τexit(p , w

λ ). Then expp (w ) = q implies

that expp is not an injection in some neighborhood of w in Tp M . By the Inverse function

theorem expp cannot be of the full rank at w . Thus q ∈Q (p )which is a contradiction.

We write

Ep ,q = {wi : i ∈ {1, . . . , kp (q )}},

where kp (q ) ∈N is the number of distance minimizing geodesics from p to q . Since the set

Q (p ) is closed in M , the complement cut(p ) \Q (p ) is relatively open in cut(p ), and there

exists an open neighborhood W ⊂M of q such that Q (p )∩W = ;. Thus by the previous

discussion for any x ∈ cut(p ) ∩W there are only kp (x ) ∈ N many distance minimizing

geodesics connecting p to x . Moreover, as the following lemma shows, q is a local maximum

of the function kp defined on cut(p )∩W . This statement is an adaptation of the analogous

result given in [44].

Lemma 67. Let (M , g ) be a Riemannian manifold as in Theorem 65. Let p ∈M and q ∈
cut(p ) \Q (p ). Let the closed manifold (N , g ) be as in Proposition 60. Then there is a neigh-

borhood V of q in M such that

kp (x )≤ kp (q ), for every x ∈ cut(p )∩V . (4.17)
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Proof. Since the set Ep ,q is finite we can choose disjoint neighborhoods Ui ⊂ Tp N for each

wi ∈ Ep ,q , so that for each i ∈ {1, . . . , kp (q )} the map expp : Ui → Ṽ is a diffeomorphism on

some open set Ṽ ⊂N that contains q . We want to show that there is a neighborhood V ⊂M

of q such that for every x ∈V and for any M -distance minimizing unit speed geodesic γ

from p to x there is i ∈ {1, . . . , kp (q )} such that

γ(t ) = expp

�

t
X

∥X ∥g

�

, for some X ∈Mp ∩Ui .

Clearly this implies the inequality (4.17).

If the former is not true then there exist a sequence qk ∈M that converges to q and Xk ∈Mp

so that for each k ∈Nwe have

• expp (Xk ) = qk

• ∥Xk∥g = dM (p , qk )≤τexit(p , Xk
∥Xk ∥g )

• expp

�

t Xk
∥Xk ∥g

�

for t ∈ [0, dM (p , qk )] is a unit speed distance minimizing geodesic from

p to qk .

• Xk /∈U1 ∪ . . .∪Ukp (q ).

These imply that

lim
k→∞
∥Xk∥g = lim

k→∞
dM (p , qk ) = dM (p , q ).

Moreover, the sequence Xk ∈ Tp M is contained in some compact subset K of Tp M . After

passing to a sub-sequence we may assume Xk → X ∈ Tp M and the continuity of the exit

time function on the non-trapping part of SM gives ∥X ∥g ≤τexit(p , X
∥X ∥g ). Thus X ∈Mp and

by the continuity of expp we get expp (X ) = q , and ∥X ∥g = dM (p , q ).

Therefore t 7→ expp

�

t X
∥X ∥g

�

is a M -distance minimizing geodesic from p to q and X must

coincide with wi for some i ∈ {1, . . . , kp (q )}. Therefore Xk ∈ Ui for large enough k ∈ N.

This contradicts the choice of Xk , and possibly after choosing a smaller Ṽ , we can set

V =M ∩ Ṽ .

Suppose now that q ∈ T (p ) is a typical cut point, and V ⊂M is a neighborhood of q as in
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Lemma 67. Then by (4.17) it holds that

cut(p )∩V ⊂ T (p ), (4.18)

and Ep ,q = {w1, w2} ⊂ Tp N are the directions that give the two distance minimizing

geodesics expp (t wi ), t ∈ [0,1] from p to q . Let U1,U2 ⊂ Tp N be the neighborhoods of

w1 and w2 and Ṽ ⊂N a neighborhood of q as in the proof of Lemma 67. Finally we consider

the distance vector fields Y1, Y2 related to p and U1 and U2. Since these vector fields do not

vanish on Ṽ the function

ρ : Ṽ →R, ρ(x ) = ∥Y1(x )∥g −∥Y2(x )∥g ,

is smooth. The following result is an adaptation of [44, Propositions 2.3 & 2.4].

Lemma 68. Let Riemannian manifold (M , g ) be as in Theorem 65 and p ∈M . Let q ∈ T (p )⊂
M and define the closed manifold N as in Proposition 60. Let the neighborhood Ṽ ⊂N of q

and function ρ : Ṽ →R be as above. Then possibly after choosing a small enough Ṽ we have

ρ−1{0}∩M = Ṽ ∩ cut(p ). (4.19)

Moreover, the set ρ−1{0} is a smooth hyper-surface of N whose tangent bundle is given by the

orthogonal complement of the vector field Y1−Y2.

Proof. We prove first the equation (4.19).

• Let x ∈ρ−1{0}∩M . By the proof of Lemma 67 we can assume that a M -distance mini-

mizing unit speed geodesic from p to x is given by expp (t X1) , t ∈ [0, 1], for some X1 ∈
Mp∩U1. Also x = expp (X2) for some X2 ∈U2, but we do not know a priori if expp (t X2) ∈
M for all t ∈ [0, 1] or equivalently if X2 ∈Mp . However, by the definition of the distance

vector fields and the assumption x ∈ρ−1{0}we have that

dM (p , x ) = ∥X1∥g = ∥Y1(x )∥g = ∥Y2(x )∥g = ∥X2∥g . (4.20)

Let M̂ be as in Proposition 60. Thus we can assume that Ṽ ⊂ M̂ . Since q ∈ T (p ) there

is w2 ∈U2 so that expp (w2) = q and expp (t w2) ∈M ⊂ M̂ , for every t ∈ [0,1]. Since q

is an interior point of M̂ we can again choose smaller Ṽ so that expp (t X ) ∈ M̂ , for

every t ∈ [0, 1] and X ∈Ui , for i ∈ {1, 2}. Since x ∈M and expp (t X2) is a geodesic of M̂
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that connects p to x having the length of ∥X2∥g , the equation (4.20) and Proposition

60 imply that expp (t X2) ∈ M for every t ∈ [0,1]. Therefore equation (4.20) gives

x ∈ Ṽ ∩ cut(p ).

• Let x ∈ Ṽ ∩ cut(p )⊂ T (p ). Thus there are exactly two distance minimizing geodesics

of M from p to x . Since x ∈ Ṽ , it holds by the proof of Lemma 67 that one of these

geodesics has the initial velocity in U1 and the other in U2. Therefore ρ(x ) is zero by

the definition of the distance vector fields.

Then we prove that the set ρ−1{0} is a smooth hyper-surface whose tangent bundle is

orthogonal to the vector field Y1−Y2. By (4.16) we get

Xρ(x ) =
〈X , Y1(x )〉g
∥Y1(x )∥g

−
〈X , Y2(x )〉g
∥Y2(x )∥g

=
〈X , Y1(x )−Y2(x )〉g
∥Y1(x )∥g

, for every x ∈ρ−1{0}. (4.21)

Moreover the vector field Y1−Y2 does not vanish on Ṽ , since the geodesics related to these

two vector fields are different. This implies that the differential of the mapρ does not vanish

in Ṽ . Thus the set ρ−1{0} is a smooth hyper-surface of N , and by (4.21) its tangent bundle

is given by those vectors that are orthogonal to Y1−Y2.

Now we consider the set of conjugate cut points Q (p ). First we define a function

δ : Sp N →{0, 1, . . . , n −1}, δ(v ) is the dimension of the kernel of D expp at τcon(p , v )v.

If τcut(p , v ) =∞we set δ(v ) = 0.

Lemma 69. Let (N , g ) be a closed Riemannian manifold. Let p ∈N and v0 ∈ Sp N be such

that δ(v0) = 1. There exists a neighborhood U ⊂ Sp N of v0 such that δ(·) is the constant

function one in U .

Before proving this lemma we recall one auxiliary result from linear algebra.

Lemma 70. Let L : Rn →Rn be a self-adjoint bijective linear operator. Then the index i (L ) of

L, the dimension of the largest vector subspace of Rn where L is negative definite, equals the

amount of the negative eigenvalues of the operator L counted up to a multiplicity.

Proof. Since L is self-adjoint and invertible, the spectral theorem says that L has k ≤ n

positive eigenvalues λ1, . . . ,λk > 0 and n −k negative eigenvalues λk+1, . . . ,λn . Let e1, . . . , en
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be the respective orthonormal set of eigenvectors. Since L is negative definite on the vector

subspace span(ek+1, . . . , en )we must have that i (L )≥ n −k .

Suppose that i (L )> n−k and let Q be an i (L )-dimensional vector subspace ofRn where the

operator L is negative definite. We choose some vectors (v1, . . . , vi (L )) to constitute a basis

of Q . Let P be the vector subspace of Rn spanned by the eigenvectors e1, . . . , ek . Since L is

positive definite on P we must have that P ∩Q = {0}. Thus, the vectors e1, . . . , ek , v1, . . . , vi (L )

are linearly independent which is impossible since k + i (L )> n . Therefore i (L ) = n −k is

the amount of negative eigenvalues of the operator L .

Proof of Lemma 69. In this proof we adopt the definitions and results of [15, Chapter 11]

appearing in the proof of the Morse index theorem. For each v ∈ Sp M and t > 0 we use the

notation V (t , v ) for the vector space of all piecewise smooth vector fields that are normal

to the geodesic γp ,v in the interval [0, t ] and vanish at the endpoints. Then we define the

function i : [0,∞)×Sp N →N, to be the index of the symmetric bilinear form

It ,v (X , Y ) :=

∫ t

0

〈Ds X , Ds Y 〉g + 〈R (γ̇p ,v , X )γ̇p ,v , Y 〉g ds , X , Y ∈V (t , v ).

Hence,










δ(v )> i (t , v ) = 0, t ≤τcon(p , v )

δ(v ) = i (t , v ), t ∈ (τcon(p , v ),ϵ(v ))

δ(v )< i (t , v ), t > ϵ(v )

where ϵ(v )> 0 depends on v ∈ Sp N . Moreover, no γp ,v (t ), for t ∈ (τcon(p , v ),ϵ(v )) is conju-

gate to p along γp ,v . We choose t ∈ (τcon(p , v0),ϵ(v0)). Thus Lemma 64, gives δ(v )≤ i (t , v )

for v ∈ Sp N close enough to v0. Our aim is to find a neighborhood U ⊂ Sp N of v0 for which

1≤δ(v )≤ i (t , v ) = i (t , v0) =δ(v0) = 1, for v ∈U . (4.22)

Clearly this gives the result of the lemma.

The space V (t , v ) can be written as a direct sum of two of its vector sub-spaces V+(t , v )

and V−(t , v ), defined so that index form It ,v is positive definite on V+(t , v ) and the space

V−(t , v ) is finite dimensional. Moreover, these vector spaces are It ,v orthogonal. Thus the

index of It ,v coincides with the index of its restriction on V−(t , v ). Since the dimension of

V−(t , v ) is independent of a direction v ∈ Sp N , that is close to v0, we can identify all the
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spaces V−(t , v )with V−(t , v0) and consider the bilinear forms It ,v as a family of operators

on the finite dimensional vector space V−(t , v0), depending continuously on the parameter

v ∈ Sp N .

For each v ∈ Sp N , we consider the linear operator L t ,v : V−(t , v )→V−(t , v ), corresponding

to the bilinear form It ,v . Since γp ,v0
(t ) is not a conjugate point to p along γp ,v0

, zero is not an

eigenvalue of the linear operator L t ,v0
. Thus Lemma 70 implies that the operator L t ,v0

has

i (t , v0)negative eigenvalues. Since the eigenvalues of the operator L t ,v depend continuously

on the initial direction v ∈ Sp N , that are near v0, we can find a neighborhood U ⊂ Sp N of

v0 such that the linear operator L t ,v is invertible and has i (t , v0) negative eigenvalues for

every v ∈U . Hence, by Lemma 70 we have again that i (t , v ) = i (t , v0) for v ∈U . We have

verified the equation (4.22).

Lemma 71. Let (N , g ) be a closed Riemannian manifold, p ∈ N and suppose that δ is

constant in some open set U ⊂ Sp M . Then τcon(p , ·) is smooth in U .

Proof. If δ is zero in U then τcon(p , ·) is infinite and we are done. So we suppose that δ

equals to k ∈ {1, . . . , n −1} in U and get τcon(p , v )<∞ for every v ∈U .

Let ξ1, . . . ,ξn−1 be a base of Tv0
Sp M and use the formula

Jv0,β (t ) =D expp

�

�

�

�

t v0

t ξβ , for β ∈ {1, . . . , n −1},

from [38, Proposition 10.10], to define (n − 1)-Jacobi fields Jv0,1(t ), . . . , Jv0,n−1(t ) along the

geodesic γp ,v0
. They span the vector space of all Jacobi fields along γp ,v0

(t ) that vanish at

t = 0 and are normal to γ̇p ,v0
(t ). As δ(v0) = k we may assume that Jv0,β (τcon(p , v0)) = 0 for

β ∈ {1, . . . , k}, implying Dt Jv0,β (τcon(p , v0)) ̸= 0 and Jv0,α(τcon(p , v0)) ̸= 0 for β ∈ {1, . . . , k} and

α ∈ {k +1, . . . , n −1}. Moreover, the vectors

Dt Jv0,1(τcon(p , v0)), . . . , Dt Jv0,k (τcon(p , v0)), Jv0,k+1(τcon(p , v0)), . . . Jv0,n−1(τcon(p , v0)) (4.23)

are linearly independent due to [32, Proposition 2.5.8 (ii)] and the properties of the geodesic

flow on SN presented in [45, Lemma 1.40].

Since Jacobi fields are solutions of the second order ODE they depend smoothly on the

coefficients of the respective equation. In particular, after choosing smaller U if necessary,

we can construct the family of Jacobi fields Jv,1(t ), . . . , Jv,n−1(t ) along the geodesic γp ,v (t )
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that depend smoothly on v ∈U , and span the vector space of all Jacobi fields along γp ,v (t )

that vanishes at t = 0 and are normal to γ̇p ,v (t ). Therefore the function

f : U × [0,τcon(p , v0) +1]→R, f (v, t ) = det(Jv,1(t ), . . . , Jv,n−1(t )),

is smooth and vanishes at (v, t ) if and only if γp ,v (t ) is conjugate to p .

We choose a parallel frame E1(t ), . . . , En−1(t ) along γp ,v0
(t ) that is orthogonal to γ̇p ,v0

(t ). With

respect to this frame we write

Jv0,β (t ) = j αβ (t )Eα(t ), for α,β ∈ 1, . . . , n −1,

for some some smooth functions j αβ (t ). From here we get

∂ j

∂ t j
f (v0,τcon(p , v0)) =

∂ j

∂ t j

�

∑

σ

sign(σ) jσ(1)1 (t ) jσ(2)2 (t ) · · · jσ(n−1)
n−1 (t )

��

�

�

�

t=τcon(p ,v0)

= 0,

for every j ∈ {0, . . . , k −1}. Above,σ is a permutation of the set {1, . . . , n −1}. Moreover the

covariant derivative of Jv0,β along γp ,v0
is written as Dt Jv0,β (t ) =

�

d
dt j αβ (t )
�

Eα(t ).

If A is the square matrix whose column vectors are given in the formula (4.23) we have

∂ k

∂ t k
f (v0,τcon(p , v0)) =±k ! det(A) ̸= 0.

Since δ(·) is constant k in the set U we have that ∂ k−1

∂ t k−1 f (v,τcon(p , v )) = 0 for every v ∈
U . Therefore the Implicit function theorem gives that the conjugate distance function is

smooth in some neighborhood V ⊂U of v0. Since v0 ∈U was chosen arbitrarily the claim

follows.

Let v0 ∈ Sp N be such that τcon(p , v0) < ∞. Then by lemmas 59 and 64 the functions

ec (v ) = expp (τcut(p , v )v ) ∈M , and eq (v ) = expp (τcon(p , v )v ) ∈N are well defined and con-

tinuous on some neighborhood U ⊂ Sp N of v0. Moreover, we have that

Q (p ) = {eq (v ) ∈M : τcut(p , v ) =τcon(p , v )}. (4.24)

The following result is an adaptation of [25, Lemma 2].

Proposition 72. Let Riemannian manifold (M , g ) be as in Theorem 65 and p ∈ M . The
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Hausdorff dimension of Q (p ) does not exceed n −2.

Proof. By (4.24) we can write the conjugate cut locus Q (p ) as a disjoint union of the sets

A1 = {eq (v ) ∈M : τcut(p , v ) =τcon(p , v ), δ(v ) = 1}

and

A2 = {eq (v ) ∈M : τcut(p , v ) =τcon(p , v ), δ(v )≥ 2}.

To prove the claim of this proposition it suffices to show that

A1 ⊂ {eq (v ) ∈N : dim
�

Deq (Tv Sp M )
�

≤ n −2}, (4.25)

since clearly we have that

A2 ⊂ {expp (w ) ∈N : w ∈ Tp N , dim
�

D expp (Tw (Tp N ))
�

≤ n −2},

and therefore by the generalization of the classical Sard’s theorem [51] the Hausdorff di-

mension of Q (p ) = A1 ∪A2 is at most n −2.

We choose v0 ∈ Sp N such that eq (v0) ∈ A1. By the properties of the Jacobi fields normal to

γp ,v0
, we can identify the kernel D expp (τcon(p , v0)v0)with some vector sub-space of Tv0

Sp M .

Since dim Tv0
Sp M = n −1 we can verify the inclusion (4.25) if we show that

ker D expp (τcon(p , v0)v0)⊂ ker Deq (v0). (4.26)

Since δ(v0) = 1 we get by lemmas 69 and 71 that there exists a neighborhood U ⊂ Sp N of v0

where the conjugate distance τcon(p , ·) and the map eq (v ) = expp (τcon(p , v )v ) are smooth.

Let ξ ∈ Tv0
Sp M be in the kernel of the differential of the exponential map. Then by the chain

and Leibniz rules we get

Deq (v0)ξ= γ̇p ,v0
(τcon(p , v0))Dτcon(p , v0)ξ.

Therefore Deq (v0)ξ= 0 if and only if Dτcon(p , v0)ξ= 0. So we suppose that Deq (v0)ξ ̸= 0.

Since δ(v ) = 1 for all v ∈U , the conjugate distance function is smooth on U and therefore

the set Σ := {τcon(p , v )v ∈ Tp N : v ∈ U } is a smooth sub-manifold of dimension n − 1.
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Moreover the restriction of the exponential map on this sub-manifold is a constant rank

map. Therefore it follows from the Rank theorem [37, Theorem 4.12] that the subset of

Tp N , near τcon(p , v0)v0, where D expp vanishes is diffeomorphic to a smooth sub-bundle

of T U ⊂ T Sp N . Then we use the existence of the ODE theorem to choose a smooth curve

v (·): (−1, 1)→U ⊂ Sp N such that v (0) = v0, v̇ (0) = ξ and v̇ (t ) ∈ ker D expp (τcon(p , v (t ))v (t ))

for every t ∈ (−1, 1). Thus c (t ) := eq (v (t )) is a smooth curve in M̂ that satisfies

ċ (t ) = γ̇p ,v (t )(τcon(p , v (t )))
d

d t
(τcon(p , v (t ))). (4.27)

Since d
d t (τcon(p , v (t0))) =Dτcon(p , v0)ξwe can assume that d

d t (τcon(p , v (t )))> 0 on some in-

terval (−ϵ,ϵ) for 0< ϵ < 1. Thus by equation (4.27) and the Fundamental theorem of calculus

we get that the length of c (t ) on [−ϵ,0] isL (c ) =
∫ 0

−ϵ ∥ċ (t )∥g dt =
∫ 0

−ϵ
d

d t (τcon(p , v (t )))dt =

τcon(p , v0)−τcon(p , v (−ϵ)). Below we denote the length of c (t ) asL (c ). From here by the

assumption τcon(p , v0) =τcut(p , v0) and the triangle inequality we get

τcon(p , v (−ϵ))≥dM̂ (p , eq (v (−ϵ)))

≥ dM̂ (p , eq (v0))−dM̂ (eq (v0), eq (v (−ϵ)))

≥ dM̂ (p , eq (v0))−L (c )

≥τcon(p , v (−ϵ)),

and the inequality above must hold as an equality. Therefore

dM̂ (p , eq (v (−ϵ)))+L (c ) = dM̂ (p , eq (v0)),

and the curve c (·): [−ϵ, 0]→ M̂ is part of some distance minimizing geodesic γ of M̂ from p

to eq (v (0)) that contains eq (v (−ϵ)). Thus we have after some reparametrization t = t (s ) that

γ(s ) = eq (v (t (s ))) = c (t (s ))

for every t (s ) ∈ (−ϵ, 0). By (4.27) we get that γ is a parallel to γp ,v (t ) for every t ∈ (−ϵ, 0). This is

not possible unless the geodesics γp ,v (t ) are all the same for every t ∈ (−ϵ, 0). Hence v (t ) and

c (t ) are constant curves. This leads to a contradiction. The inclusion (4.26) is confirmed

and the proof is complete.

We are ready to present the proof of Theorem 65.
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Proof of Theorem 65. Let p ∈M . In this proof we combine the observations made earlier

in this section. The proofs of the four sub-claims are given below.

(1) By Lemma 68 we know that T (p ) is a smooth hyper-surface of M whose tangent space

is normal to the vector field ν(q ) = Y1(q )−Y2(q ) for q ∈ T (p ). Since Y1(q ) ̸= Y2(q ) and

∥Y1(q )∥g = ∥Y2(q )∥g we get from the Cauchy-Schwarz inequality that

〈Y1(q ),ν(q )〉= ∥Y1(q )∥2g −〈Y1(q ), Y2(q )〉> 0

〈Y2(q ),ν(q )〉=−∥Y2(q )∥2g + 〈Y1(q ), Y2(q )〉< 0.

Thus Y1(q ) and Y2(q ) hit T (p ) from different sides. If q ∈ T (p )∩∂M and these surfaces

are tangential to each other at q we arrive in a contradiction: Since ν(q ) is normal to

both T (T (p )) and T ∂M we can without loss of generality assume that Y2(q ) is inward

pointing at q . This is not possible since the geodesic related to Y2(q ), that connects p

to q , is contained in M . Thus by equation (4.15) Y2(q ) is also outward pointing which

is not possible.

(2) By Proposition 72 we know that the Hausdorff dimension of the conjugate cut locus

Q (p ) does not exceed n −2. If we can prove the same for the set L (p ) of a-typical cut

points the claim (2) follows from Lemma 66.

Recall that L (p ) ⊂ (cut(p ) \Q (p )) is the set of points in M that can be connected to

p with more than two distance minimizing geodesics of M . Let q ∈ L (p ) and define

kp (q ) ∈N to be the number of distance minimizing geodesics from p to q . Then we

choose vectors w1, . . . , wkp (q ) ∈Mp and their respective neighborhoods Ui ∈ Tp N such

that for each i ∈ {1, . . . , kp (q )}

expp (wi ) = q , and expp : Ui → Ṽ

is a diffeomorphism on some open set Ṽ ⊂ N . Let Yi for i ∈ {1, . . . , kp (q )} be the

distance vector fields related to the Ui and p . Then we define a collection of smooth

functions

ρi j : Ṽ →R, ρi j (x ) = ∥Yi (x )∥g −∥Yj (x )∥g , i , j ∈ {1, . . . , kp (q )}.

By the proof of Lemma 68 it holds that the sets Ki j := ρ−1
i j {0}, for i < j are smooth
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hyper-surfaces of N that contain q . Also by [44, Proposition 2.6] it holds that the sets

Ki , j ,k := Ki k ∩K j k , for i < j < k

are smooth submanifolds of N of co-dimension two. Next we set K (q ) :=
⋃

i< j<k Ki , j ,k

and claim that

L (p )∩ Ṽ = K (q )∩M . (4.28)

Since the sets Ki , j ,k are smooth sub-manifolds of dimension n − 2 their Hausdorff

dimension is also n−2. Thus the equation (4.28) and Lemma 66 imply that Hausdorff

dimension of L (p ) does not exceed n −2.

Finally we verify the equation (4.28). If x ∈ L (p )∩ Ṽ it holds there are at least three

distance minimizing geodesics of M connecting p to x . Thus there are 1 ≤ i < j <

k ≤ kp (q ) so that

∥Yi (x )∥g = ∥Yj (x )∥g = ∥Yk (x )∥g = dM (p , x ),

which yields

ρi k (x ) =ρ j k (x ) = 0, and x ∈ Ki , j ,k ⊂ K (q ).

If x ∈ K (q )∩M then x ∈ Ki , j ,k ∩M for some i < j < k . Thus by the proof of Lemma 68

it holds that there are at least three distance minimizing geodesics of M connecting

p to x . Therefore x ∈ L (p )∩ Ṽ .

(3) Since we can write the cut locus of p as a disjoint union cut(p ) = T (p )∪ L (p )∪Q (p )

the parts (1) and (2) in conjunction with Lemma 66 yield the claim of part (3).

(4) Since ∂M is a smooth hyper-surface of an n-dimensional Riemannian manifold M

we have by part (1) that T (p )∩∂M is a smooth sub-manifold of dimension n−2, thus

it has the Hausdorff-dimension n −2. Also by part (3) we know that the Hausdorff

dimension of L (p )∩Q (p ) does not exceed n −2. We have proven that the Hausdorff

dimension of the closed set cut(p )∩∂M does not exceed n −2. Since the boundary of

M has the Hausdorff-dimension n −1 it follows that ∂M \ cut(p ) is open and dense

in ∂M . The density claim follows from the observation that by Lemma 66 the set

cut(p )∩∂M cannot contain any open subsets of ∂M as their Hausdorff dimension is

n −1.
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We are ready to prove Theorem 57.

Proof of Theorem 57. The proof follows from Proposition 63 and Theorem 65.

4.3 Reconstruction of the Manifold

4.3.1 Geometry of the Measurement Region

In this section we consider only one Riemannian manifold (M , g ) that satisfies the assump-

tions of Theorem 57 and whose partial travel time data (4.1) is known. Let ν(z ) be the

outward pointing unit normal vector field at z ∈ ∂M . The inward pointing bundle at the

boundary is the set

∂i n T M = {(z , v ) ∈ T M | z ∈ ∂M , 〈v,ν(z )〉g < 0}.

We restrict our attention to the vectors that are inward pointing and of unit length: ∂i nSM =

{(z , v ) ∈ ∂i n T M : ∥v ∥g = 1}. We emphasize that this set or its restriction on the open

measurement region Γ ⊂ ∂M is not a priori given by the data (4.1). Our first task is to

recover a diffeomorphic copy of this set. We consider the orthogonal projection

h : ∂i nSM → T ∂M , h (z , v ) = v −〈v,ν(z )〉gν(z ), (4.29)

and denote the set, that contains the image of h , as P (∂M ) = {(z , w ) ∈ T ∂M : ∥w ∥g < 1}.
It is straightforward to show that the map h is a diffeomorphism onto P (∂M ). For the

convenience of the reader we provide the proof of this claim in the following lemma.

Lemma 73. The mapping h : ∂i nSM → P (∂M ) is a diffeomorphism.

Proof. Clearly the map h given in equation (4.29) is smooth. Let (z , v ) ∈ ∂i nSM . Since

〈ν(z ), h (z , v )〉g = 0, we have that h (z , v ) is tangential to ∂M at z . Moreover since v ∈ ∂i nSM

we have by a direct computation that ∥h (z , v )∥2g < 1. Thus h (z , v ) ∈ P (∂M ).

Again by a direct computation we see that the inverse function of h is given by the smooth

map:

h−1 : P (∂M )→ ∂i nSM , h−1(z , w ) =w −
q

1−∥w ∥2g ν(z ).
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Therefore h is a diffeomorphism.

For the rest of this section we will be considering the vectors in P (∂M ), and with a slight

abuse of notation, each vector (z , v ) ∈ P (∂M ) represents an inward-pointing unit vector at

z . In the next lemma we show that the data (4.1) determines the restriction of P (∂M ) on Γ .

Lemma 74. Let Riemannian manifold (M , g ) be as in Theorem 57. The first fundamental

form g |Γ of Γ and the set

P (Γ ) = {(z , v ) ∈ T ∂M : z ∈ Γ , ∥v ∥g < 1}

can be recovered from the data (4.1).

Proof. Let (z , v ) ∈ T Γ . We choose a smooth curve c : (−1, 1)→ Γ for which c (0) = z , and ċ (0) =

v . Since the boundary ∂M of M is strictly convex the inverse function of the exponential

map expz is smooth and well defined near z on M . In addition, we have that

rz (c (t )) = d (z , c (t )) = ∥exp−1
z (c (t ))∥g .

We set c̃ (t ) = exp−1
z (c (t )) ∈ Tz M . As the differential of the exponential map at the origin is

an identity operator we get c̃ (0) = 0, and ˙̃c (0) = v ∈ Tz M . From here the continuity of the

norm yields

lim
t→0

rz (c (t ))
|t |

= lim
t→0













c̃ (0)− c̃ (t )
t













g

=




 ˙̃c (0)






g
= ∥v ∥g . (4.30)

By the data (4.1) and the choice of the path c (t ) ∈ Γ we know the left hand side of equation

(4.30). Therefore we have recovered the length of an arbitrary vector (z , v ) ∈ T Γ . Moreover,

the set P (Γ ) is recovered.

Since we know the unit sphere {v ∈ Tz∂M : ∥v ∥g = 1} for each z ∈ Γ the reconstruction of

the first fundamental form of Γ can be carried out as explained in the next lemma.

Lemma 75. Let (X , g ) be a finite dimensional inner product space. Let a > 0 and S (a ) := {v ∈
X : ∥v ∥g = a }. Then any open subset U of S (a ) determines the inner product g on X .

Proof. This proof is the same as the one in [29, Lemma 3.33]. For the convenience of the

reader we repeat it here. Choose a base e1, . . . , en of X . Then for every v, w ∈U we can write

g (v, w ) = g i j v i w j , where g i j = g (ei , e j ), i , j ∈ {1, . . . , n}.
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Thus it suffices to recover the matrix g i j . Since U ⊂ S (r ) is open it holds that we know the

open cone,

C (U ) = {t v ∈ X : v ∈U : t > 0}

and the smooth function

F : C (U )→R, F (x ) :=
1

2
∥x∥2g =

1

2
g i j x i x j =

1

2
t 2g i j v i v j =

1

2
t 2r 2.

Therefore g i j is the Hessian of F .

Let p0 ∈M . By Theorem 57 we can find a boundary point z0 ∈ Γ and neighborhoods Up0

and Vp0
for p0 and z0 respectively such that the distance function d (·, ·) is smooth in the

product set Up0
×Vp0

. For each z ∈ Γ ∩Vp0
we let γz be the unique distance minimizing unit

speed geodesic from p0 to z . If we decompose the velocity of the geodesic γz at rp0
(z ) into

its tangential and normal components to the boundary, then the tangential component

coincides with the boundary gradient of the travel time function rp0
at z . For this vector field

we use the notation grad∂M rp0
(z ) ∈ Pz (Γ ). Furthermore, by Lemma 74 we have recovered

the metric tensor of the measurement domain Γ ⊂ ∂M . Thus we can compute grad∂M rp0
(z )

whenever the respective travel time function rp0
is differentiable on Γ .

4.3.2 Topological Reconstruction

We first show that the data (4.1) separates the points in the manifold M .

Lemma 76. Let (M , g ) be as in Theorem 57. Let Γ ⊂ ∂M be open and p1, p2 ∈M be such that

rp1
(z ) = rp2

(z ) for all z ∈ Γ , then p1 = p2.

Proof. First we choose open and dense subsets W1, W2 ⊂ ∂M for the points p1 and p2

as we have for the point p0 in Theorem 57. Then we choose any point z0 ∈Wp1
∩Wp2

∩ Γ ,

neighborhoods Up1
of p1, Up2

of p2 and Vp1
, Vp2

of z0 as we have for p0 in Theorem 57. Thus the

distance function d (·, ·) is smooth in the product sets Up1
×V and Up2

×V , where V =Vp1
∩Vp2

is an open neighborhood of z0. Moreover for each (p , z ) ∈Upi
×V , i ∈ {1,2} there exists a

unique distance minimizing geodesic of M connecting p to z .
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If γi is the distance minimizing geodesic from pi to z0 for i = {1, 2} then by the discussion

preceding this lemma we have that grad∂M rpi
(z0) represents the tangential component of

γ̇i at rpi
(z0). Since rp1

= rp2
the tangential components of γ̇1 and γ̇2 are the same. Since the

velocity vectors of γ̇i at rpi
(z0) have unit length, they must also coincide. We get

z0 = γ1(rp1
(z0)) = γ2(rp2

(z0)) and γ̇1(rp1
(z0)) = γ̇2(rp2

(z0)).

Thus the geodesics γ1 and γ2 agree and we have p1 = p2.

We are now ready to reconstruct the topological structure of (M , g ) from the partial travel

time data (4.1). Let B (Γ ) be the collection of all bounded functions f : Γ →R and ∥ · ∥∞ the

supremum norm of B (Γ ). Thus (B (Γ ),∥ · ∥∞) is a Banach space. Since (M , g ) is a compact

Riemannian manifold each travel time function rp , for p ∈M , is bounded by the diameter

of M , which is finite. Thus

{rp = d (p , ·): Γ → [0,∞)| p ∈M } ⊂ B (Γ ),

and the map

R : (M , g )→ (B (Γ ),∥ · ∥∞), R (p ) = rp (4.31)

is well defined.

Proposition 77. Let Riemannian manifold (M , g ) be as in Theorem 57. The map R as in

(4.31) is a topological embedding.

Proof. By Lemma 76, we know that the map R is injective. Let x , y ∈M and set z ∈ Γ . Using

the triangle inequality we have

|rx (z )− ry (z )|= |d (x , z )−d (y , z )| ≤ d (x , y ).

Thus, ∥rx − ry ∥∞ ≤ d (x , y ), and R is a 1-Lipschitz function. Hence, it is continuous.

Let K be a closed set in M . Since M is a compact Hausdorff space the set K is compact.

Since the image of a compact set under a continuous mapping is compact, it follows that

R (K ) is closed. This makes R a closed map and thus a topological embedding.

The topology on M is then the inherited topology from the metric space (C (Γ ),∥ · ∥∞).
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Figure 4.3 The setσ(z , v ) for (z , v ) ∈ P (Γ ).

4.3.3 Boundary Determination

We recall that the data (4.1) only gives us the subset Γ of the boundary, and we do not know

yet if the travel time function r ∈R (M ) is related to an interior or a boundary point of M .

In this subsection we will use the data (4.1) to determine the boundary of the unknown

manifold M as a point set. However, due to Proposition 77 we may assume without loss of

generality that the topology of M is known. Also the set P (Γ ), as in Lemma 74, is known to

us.

Let (z , v ) ∈ P (Γ ), and define the set,

σ(z , v ) ={p ∈M | the point p has a neighborhood U ⊂M such that,

rq : Γ →R is smooth near z for every q ∈U ,

q 7→ grad∂M rq (z ) is continuous in U ,

grad∂M rp (z ) =−v }∪ {z },

(4.32)

where grad∂M rp (z ) is the boundary gradient of rp at z ∈ Γ . We recall that by Proposition 77 we

know the topology of M , and by Lemma 74 we know the geometry of Γ . These in conjunction

with the data (4.1) imply that we can recover the set σ(z , v ) for every (z , v ) ∈ P (Γ ). In the

next lemma we generalize the result [35, Lemma 2.9] and relate σ(z , v ) to the maximal
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distance minimizing segment of the geodesic γz ,v .

Lemma 78. Let (z , v ) ∈ P (Γ ) thenσ(z , v ) = γz ,v ([0,τcut(z , v )]).

Proof. Let t ∈ [0,τcut(z , v )) and define y := γz ,v (t ). Thus y is not in the cut locus of z

(see equation (4.11)). By Proposition 63 there exist neighborhoods U , V ⊂M of y and z

respectively, having the property that the distance function d (·, ·) is smooth in the product

setU×V . Therefore the function rq (·) = d (q , ·)|Γ is smooth near z for any q ∈U . Furthermore,

grad∂M rp (z ) =−v , and the function p 7→ grad∂M rp (z ) is continuous in U . Therefore y is in

σ(z , v ) and the inclusion γz ,v ([0,τcut(z , v )))⊆σ(z , v ) is true. This gives γz ,v ([0,τcut(z , v )])⊆
σ(z , v ).

Let p ∈σ(z , v ), then rp (z ) is smooth in a neighborhood of z and grad∂M rp (z ) =−v . Thus

γz ,v is the unique distance minimizing geodesic connecting z to p . Since the geodesic γz ,v

is not distance minimizing beyond the interval [0,τcut(z , v )]we have p ∈ γz ,v ([0,τcut(z , v )])

and thereforeσ(z , v )⊂ γz ,v ([0,τcut(z , v )]).

We set

Tz ,v := sup
p∈σ(z ,v )

rp (z ) = sup
p∈σ(z ,v )

d (p , z ), for (z , v ) ∈ P (Γ ). (4.33)

Notice that this number is determined entirely by the data (4.1), as opposed to τcut(z , v )

which requires our knowledge of when the geodesics were distance minimizing. By the

following corollary, these two numbers are the same.

Corollary 79. For any (z , v ) ∈ P (Γ )we have that Tz ,v =τcut(z , v ).

Proof. Let x ∈ σ(z , v ). It follows from Lemma 78 that d (x , z ) ≤ τcut(z , v ). By definition

of Tz ,v we get Tz ,v ≤ τcut(z , v ). Then we consider t ∈ [0,τcut(z , v )) and set y = γz ,v (t ). By

Lemma 78, we have y ∈σ(z , v ). Thus, t = d (y , z ) ∈ [0, Tz ,v )making [0,τcut(z , v ))⊆ [0, Tz ,v )

and consequently, τcut(z , v )≤ Tz ,v . Therefore, we have verified that Tz ,v =τcut(z , v ).

We will use the setsσ(z , v ), for (z , v ) ∈ P (Γ ) to determine the boundary ∂M of M . Since the

topology of M is known by Proposition 77, we can determine the topology of theseσ sets

from the data. The next lemma shows ifσ(z , v ) is closed then γz ,v (Tz ,v ) is on the boundary

of M .

Lemma 80. Let (z , v ) ∈ P (Γ ). Ifσ(z , v ) is closed then Tz ,v =τexit(z , v ).
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Proof. By the definition of Tz ,v we must have Tz ,v ≤τexit(z , v ).

Suppose that Tz ,v <τexit(z , v ). From Corollary 79 then we also know

τcut(z , v ) = Tz ,v <τexit(z , v ). (4.34)

Let p = γz ,v (Tz ,v ), and by Lemma 78 it holds that p ∈ σ(z , v ) = σ(z , v ). Since p ∈ cut(z )

we have by Lemma 58, that there either exists a second distance minimizing geodesic

from z to p or p is a conjugate point to z along γz ,v . In the first case let w ∈ P (Γ ) such

that γz ,w is another unit-speed distance minimizing geodesic from z to p . We note that

Tz ,v =τcut(z , w ).

Let U be a neighborhood of p as in (4.32). We consider a sequence ti ∈ [0, Tz ,v ], i ∈N such

that ti → Tz ,v as i →∞. Then for sufficiently large i the points pi = γz ,v (ti ) and qi = γz ,w (ti )

are in U and converge to p . By the continuity of the boundary gradient in U we have

grad∂M rpi
(z )→ grad∂M rp (z ) and grad∂M rqi

(z )→ grad∂M rp (z ), when i →∞. However, by

construction grad∂M rpi
(z ) = −v while grad∂M rqi

(z ) = −w for all i ∈ N. Thus grad∂M rp (z )

has multiple values, and rp is not differentiable at z , contradicting that p ∈σ(z , v ).

If the second case is valid, and since p ∈M i n t , we get by a similar proof as in [32, Theorem

2.1.12] that the exponential map expz is not a local injection at Tz ,v v ∈ Tz M . From here [32,

Theorem 2.1.14] implies that there is a sequence of points (pi )∞i=1 in M i n t that converges

to p and can be connected to z by at least two distance minimizing geodesics. By the

same argument as in the previous case, rpi
is not differentiable at z for any i ∈N, which

contradicts the fact that p ∈σ(z , v ). Thus inequality (4.34) cannot occur and we must have

Tz ,v =τexit(z , v ).

Lemma 81. Let p0 ∈ ∂M and z0 ∈ Γ , Up0
, and Vp0

be as in Theorem 57. For every p ∈Up0
we

denote η(p ) = −grad∂M rp (z0). There exists a neighborhood U ′p0
⊆Up0

of p0 such that for all

p ∈U ′p0
we have that p is in the closed setσ(z0,η(p )).

Proof. By these assumptions, d (·, ·) in Up0
× Vp0

is smooth. Define v0 = η(p0) and t0 =

τexit(z0, v0), then p0 = expz0
(t0v0). Since z0 was chosen to be a point outside the cut lo-

cus of p0, these points are not conjugate to each other along the geodesic γz0,v0
connecting

them. Therefore the differential D expz0
of the exponential map is invertible at t0v0 ∈ Tz0

M .

It follows from the Inverse function theorem that there exist respective neighborhoods

K ⊆M of p0 and J ⊆ Tz0
M of t0v0 such that expz0

: J → K is a diffeomorphism.
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Then we consider the open set

W =

�

exp−1
z0
(x )

∥exp−1
z0
(x )∥q

: x ∈ K ∩Up0

�

⊂ Sz0
M

that contains v0. Since the exit time function τexit is smooth on W , there exists an open

neighborhood W ′ ⊂W of v0 in Sz0
M such that

expz0
(τexit(z0, v )v ) ∈Up0

∩ ∂M , for every v ∈W ′.

We define the cone

Σ=
�

t v ∈ Tz0
M : v ∈W ′, t ∈ (0,τexit(z0, v )]

	

,

and the set

U ′p0
= {expz0

(w ) ∈M : w ∈Σ∩ J } ⊂Up0
.

Therefore U ′p0
is an open neighborhood of p0 in M , and by its definition for each p ∈U ′p0

it

holds that

rp (z0) = ∥exp−1
z0
(p )∥q ≤τexit(z0,η(p )),

and

q (p ) := γz0,η(p )(τexit(z0,η(p ))) ∈ ∂M ∩U ′p0
.

Finally we get from the Proposition 57 that z0, p , q (p ) ∈σ(z0,η(p )). By Lemma 78 we know

that the setσ(z0,η(p )) is contained in the trace of the geodesic γz0,η(p ). Since the boundary

∂M of M is strictly convex each geodesic can meet the boundary in at most two points. For

the geodesic γz0,η(p ) these points are z0 and q (p ). Thus

σ(z0,η(p )) = γz ,η(p )([0,τexit(z0,η(p ))]),

is closed. This ends the proof.

Corollary 82. Let p0 ∈ ∂M , z0 ∈ Γ and U ′p0
be as in Lemma 81. If we denote

η(p ) =−grad∂M rp (z0) then Tz0,η(p ) is smooth for all p ∈U ′p0
.

Proof. Since the exit time function is smooth on those (z , v ) ∈ ∂i nSM that satisfy

τexit(z , v )<∞ we only need to show that Tz ,η(p ) =τexit(z0,η(p )). This equation follows from

lemmas 80 and 81.
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We are now ready to determine the boundary of M from the data (4.1).

Proposition 83. Let (M , g ) be as in Theorem 57 and p0 ∈M . Then p0 ∈ ∂M if and only if

there exists (z , v ) ∈ P (Γ ) such that p0 ∈σ(z , v ) and rp0
(z ) = Tz ,v .

Proof. If p0 ∈ ∂M then we get from Lemma 81 that there exists (z0, v ) ∈ P (Γ ) such that p0 is

in the closed setσ(z0, v ). By Lemma 80 we have Tz0,v =τexit(z0, v ). Firstly the strict convexity

of ∂M implies that each geodesic has at most two boundary points. Secondly since p0 ≠ z0

are both boundary points contained inσ(z0, v ), which is a trace of a distance minimising

geodesic, it follows that Tz0,v = rp0
(z0).

To show the reverse direction, let (z , v ) ∈ P (Γ )be such that p0 ∈σ(z , v ) and Tz ,v = rp0
(z ). Thus

γz ,v ([0, rp0
(z )])⊆σ(z , v ), and it follows from Lemma 78 and Corollary 79 thatσ(z , v ) is closed.

By Lemma 80, the closedness of σ(z , v ) implies Tz ,v = τexit(z , v ). Thus, rp0
(z ) = τexit(z , v ),

making p0 ∈ ∂M .

4.3.4 Local Coordinates

By Proposition 83 we have reconstructed the boundary ∂M of the smooth manifold M .

In this section we use the partial travel time data (4.1) to construct two local coordinate

systems for p0 ∈M . Since M has a boundary, we need different coordinates systems based

on whether p0 ∈M i n t or p0 ∈ ∂M .

Proposition 84. Let (M , g ) be as in Theorem 57. Let p0 ∈M i n t , and choose z0 ∈ Γ , Up0
, and

Vp0
as in Theorem 57. Let the map α : Up0

→ Pz0
(Γ )×R be defined as

α(p ) = (−grad∂M rp (z0), rp (z0)). (4.35)

This map is a diffeomorphism onto its image α(Up0
)⊂ Pz0

(Γ )×R.

Proof. Since the distance function d (·, ·) is smooth in Up0
×Vp0

also the function α is smooth

on Up0
. By a direct computation we see that the inverse function of α, is given as,

α−1(v, t ) = expz0

�

t h−1(v )
�

, for (v, t ) ∈ Pz0
(Γ )×R.

where h : ∂i nSz0
M → Pz0

(Γ ), is the orthogonal projection given in (4.29). By the smoothness
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Figure 4.4 Local coordinates on M , which depend on whether p0 is in M i n t or ∂M .

of h−1 and the exponential map, it follows that α−1 is smooth. Thus, α is a diffeomorphism

onto its image, which is open in Pz0
(Γ )×R.

In particular, the function α, in (4.35), gives a local coordinate system near the interior

point p0. In order to define a coordinate system for a point at the boundary we will adjust

the last coordinate function of α to be a boundary defining function.

Proposition 85. Let (M , g ) be as in Theorem 57. Let p0 ∈ ∂M and choose z0 ∈ Γ , and U ′p0
as

in Lemma 81. Let η(p ) :=−grad∂M rp (z0) and βz0
: U ′p0
→ Pz0

(Γ )× [0,∞) be defined as

β (p ) = (η(p ), Tz0,η(p )− rp (z0)). (4.36)

This map is a diffeomorphism onto its image β (U ′p0
)⊂ Pz0

(Γ )× [0,∞).

Proof. Since the distance function d (·, ·) is smooth in U ′p0
×Vp0

and p0 ∈ ∂M we have by

Corollary 82, that the map Tz0,η(p ) is smooth for all p ∈U ′p0
. Thus β is smooth in U ′p0

. Again

by a direct computation we get that the inverse function of β is given as

β−1(v, t ) = expz0

��

Tz0,v − t
�

h−1(v )
�

for (v, t ) ∈ Pz0
(Γ )× [0,∞).

By the local invertibility of the exponential map expz0
at rp0

(z0)h−1(η(p0)) ∈ Tz0
M and the

equation rp (z0) = ∥exp−1
z0
(p )∥g for p ∈U ′p0

, the set η(U ′p0
) ⊂ Pz0

(Γ ) is open and the function

v 7→ Tz0,v , in this set is smooth, making β−1 smooth. Thus, β is a diffeomorphism onto its

image, which is open in Pz0
(Γ )× [0,∞).

Finally by Proposition 80 we get that Tz0,η(p )− rp (z0) = 0 if and only if p ∈U ′p0
∩ ∂M . Thus

this function defines the boundary.
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Combining the results of Propositions 84 and 85, we know that for p0 ∈ M , either the

function α as in (4.35) or the function β as in (4.36), gives a smooth local coordinate system.

Moreover these maps can be recovered fully from the data (4.1). As these two types of

coordinate charts cover M the smooth structure on M is then the same as the maximal

smooth atlas determined by these coordinate charts [38, Proposition 1.17].

4.3.5 Reconstruction of the Riemannian Metric

So far we recovered both the topological and smooth structures of the Riemannian manifold

(M , g ) from the data (4.1). In this section we recover the Riemannian metric g . We recall

that by Lemma 74 we know the first fundamental form of Γ .

In order to recover the metric on M we consider the distance function

d (p , z ) = rp (z ), for (p , z ) ∈M × Γ ,

which we have recovered by Proposition 77. Let p0 ∈M . By Theorem 57 we can choose z0 ∈ Γ
and neighborhoods Up0

and Vp0
for p0 and z0 respectively such that the distance function

d (p , z ) for (p , z ) ∈Up0
×Vp0

is smooth. Thus the map

Hp0
: Vp0
∩ Γ → T ∗p0

M , Hp0
(z ) =Dd (p0, z ) (4.37)

is well defined and smooth. Here D stands for the differential of the distance function

d (p , z ) with respect to the p variable in the open set Up0
⊂M and T ∗p0

M is the cotangent

space at p0. As we have recovered the smooth structure of M we can find Hp0
.

For z ∈Vp0
the gradient gradp d (p , z ) for p ∈Up0

is the velocity of the distance minimizing

unit speed geodesic from z to p (see for instance [38, theorems 6.31, 6.32]). In particular

the map

H̃p0
: (Vp0
∩ Γ ) ∋ z → gradp d (p0, z ) ∈ Sp0

M

is well defined and satisfies H̃p0
(z ) =Hp0

(z )♯, where ♯: T ∗p0
M → Tp0

M is the musical isomor-

phism, raising the indices, given in any local coordinates near p0 as (ξ♯)i = g i j (p0)ξ j . Note

that the inverse of ♯ is given by ♭ : Tp0
M → T ∗p0

M , that lowers the indices. Although we know

the map Hp0
, we do not know its sister map H̃p0

.

Lemma 86. Let p0 ∈M . Let z0 ∈ Γ , Up0
and Vp0

be as in Theorem 57. Then the image of the
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map Hp0
, as in (4.37), is contained the unit co-sphere

S ∗p0
M := {ξ ∈ T ∗p0

M : ∥ξ∥g −1 = 1},

and has a nonempty interior.

Proof. Let v ∈ Tp0
M such that expp0

(v ) = z0. Since ♭: Tp0
M → T ∗p0

M is a linear isomorphism

that preserves the inner product, the claim holds due to the local invertibility of the expo-

nential map expp near v , the equality d (p0, z ) = ∥exp−1
p0
(z )∥g , which is true for all z ∈ Vp0

,

and the continuity of the exit time function near v
∥v ∥g ∈ Sp0

M .

Since ♯ is a linear isomorphism that preserves the inner product we have [S ∗p0
M ]♯ = Sp0

M .

Thus, if H̃p0
(Vp0
)⊆ Sp0

(M ) is open and nonempty then Hp0
(Vp0
) = [H̃p0

(Vp0
)]♭ is an open and

nonempty subset of S ∗p0
M . So it suffices to show that H̃p0

(Vz0
) is open and nonempty.

Since d (p0, z ) = ∥exp−1
p0
(z )∥g for all z ∈ Vp0

, by the definition of H̃ given in (4.37), we have

that

H̃p0
(Vp0
) =

¨

gradp d (p , z )

�

�

�

�

p=p0

: z ∈Vp0
∩ Γ

«

=

¨

−
exp−1

p0
(z )

∥exp−1
p0
(z )∥g

: z ∈Vp0
∩ Γ

«

.

Since the inverse of the exponential map exp−1
p0

is a diffeomorphism from the neigh-

borhood Vp0
of z0 onto some neighborhood W ⊂ Tp0

M of exp−1
p0
(z0) we see that the set

Ã :=
n

−
exp−1

p0
(z )

∥exp−1
p0 (z )∥g

: z ∈Vp0

o

is open in Sp0
M .

In particular −
exp−1

p0
(z0)

∥exp−1
p0 (z0)∥g

is in Ã, and since z0 ∈ Γ we have that

∥exp−1
p0
(z0)∥g =τexit

�

p0,
exp−1

p0
(z )

∥exp−1
p0 (z )∥g

�

. Thus by the smoothness of the exit time function

the set W contains the image of the smooth function

f : A→ Tp0
M , f (v ) =−τexit(p0, v )v,

where A ⊂ Ã is a neighborhood of −
exp−1

p0
(z0)

∥exp−1
p0 (z0)∥g

. This implies that the set A is contained in

H̃p0
(Vz0
) as claimed.

Finally Lemma 75 in conjunction with the previous lemma lets us recover the inverse metric

g −1(p0) and thus the metric gp0
. This is formalized in the proposition below.
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Proposition 87. Let (M , g ) be as in Theorem 57 and p0 ∈M . The data (4.1) determines the

metric tensor g near p0 in the local coordinates given in Propositions 84 and 85.

Proof. Let z0 ∈ Γ , Up0
and Vp0

be as in Theorem 57. By Proposition 83 we can tell whether

p0 is an interior or a boundary point. Based on this we choose local coordinates of p0 as

in Proposition 84 or as in Proposition 85. Then we consider the function Hp0
given in the

equation (4.37). By Lemma 86 we know that image of the function Hp0
contains an open

subset of S ∗p0
M .

From here, by applying Lemma 75 we determine the inverse metric g i j (p0) in the afore-

mentioned coordinates. Finally taking the inverse of g i j (p0) determines g i j (p0). As this

procedure can be done for any point p ∈M , which is close enough to p0, we have recovered

the metric g near p0 in the appropriate local coordinates.

4.4 The Proof of Theorem 55

Let Riemannian manifolds (M1, g1) and (M2, g2) be as in Theorem 55. We recall that the

partial travel time data of these manifolds coincide in the sense of Definition 54. Let (B (Γi ),∥·
∥∞), for i ∈ {1,2}, be the Banach space of bounded real valued functions on Γi . We set a

mapping

F : B (Γ1)→ B (Γ2), F ( f ) = f ◦φ−1, (4.38)

whereφ is the diffeomorphism from Γ1 to Γ2. By the triangle inequality we have that F is a

metric isometry whose inverse mapping is given by F −1(h ) = h ◦φ. Taking Ri : (Mi , g i )→
(B (Γi ),∥ · ∥∞), as in the equation (4.31), we have by the equation (4.2) in Definition 54 that

F (R1(M1)) =R2(M2).

Therefore we get from Proposition 77 that the map

Ψ : (M1, g1)
R1−→ (B (Γ1),∥ · ∥∞)

F−→ (B (Γ2),∥ · ∥∞)
R−1

2−→ (M2, g2), (4.39)

is a well defined homeomorphism, that satisfies the equation

d2(Ψ(x ),φ(z )) = F (d1(x , ·))(φ(z )) = d1(x , z ), for all (x , z ) ∈M1× Γ1. (4.40)
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Here di (·, ·) is the distance function of (Mi , g i ). The goal of this section is to show that

Ψ is a Riemannian isometry. In the following lemma we show first that φ preserves the

Riemannian structure of the measurement regions.

Lemma 88. Let Riemannian manifolds (M1, g1) and (M2, g2) be as in Theorem 55. Then

Ψ|Γ1 =φ andφ : (Γ1, g1)→ (Γ2, g2) is a Riemannian isometry.

Proof. Let z1 be in Γ1. From equation (4.40) we get d2(Ψ(z1),φ(z1)) = 0. Thus Ψ(z1) =φ(z1)

and we have verified the first claim Ψ|Γ1 = φ. It follows from the proof of Lemma 74 and

equation (4.40) that ∥Dφv ∥g2
= ∥v ∥g1

, for all v ∈ T Γ1. Then the polarization identity implies

that the differential Dφ ofφ also preserves the first fundamental forms:

〈Dφv1, Dφv2〉g2
= 〈v1, v2〉g1

, for all v1, v2 ∈ T Γ1,

makingφ a Riemannian isometry.

In particular we get from this lemma that Dφ(P (Γ1)) = P (Γ2). Next we show that the mapping

Ψ takes the boundary of M1 onto the boundary of M2. In light of Proposition 83 we need to

understand how this map carries over the setsσ(z , v ), as in (4.32). The following lemma

gives an answer to this question.

Lemma 89. Let Riemannian manifolds (M1, g1) and (M2, g2) be as in Theorem 55. If (z0, v ) ∈
P (Γ1) then Ψ(σ(z0, v )) =σ(φ(z0), Dφv ).

Proof. Clearly we have that Ψ(z0) =φ(z0) ∈σ(φ(z0), Dφv ). So suppose that p0 ∈σ(z0, v ) \
{z0}. Hence, by the same argument as in the proof of Lemma 80, we get that z0 is not in the

cut-locus of p0. Thus by Proposition 63 we can choose a neighborhood U ×V ⊂M1×M1 of

(p0, z0)where the distance function d1(·, ·) is smooth. Since the map Ψ is a homeomorphism

the set Ψ(U ) ⊂ M2 is open, and we have by (4.40) that for each q ∈ Ψ(U ), the function

rq (·) = d1(Ψ−1(q ),φ−1(·)) is smooth on the open setφ(V ∩ Γ1)⊂ Γ2.

Sinceφ : Γ1→ Γ2 is a Riemannian isometry we have that

grad∂M2
rΨ(p )(φ(z0)) =Dφ(z0)grad∂M1

rp (z0), for p ∈U . (4.41)

Here D stands for the differential, grad∂M1
for the boundary gradient of Γ1 and grad∂M2

for
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that of Γ2. Since the right hand side of equation (4.41) is continuous in p , the function

q =Ψ(p ) 7→ grad∂M2
rq (φ(z0))

is continuous in Ψ(U ). Finally

grad∂M2
rΨ(p0)(φ(z0)) =Dφ(z0)grad∂M1

rp0
(z0) =−Dφ(z0)v

implies Ψ(p0) ∈σ(φ(z0), Dφv ).

On the other hand after reversing the roles of M1 and M2 we can use the same proof to

show σ(z0, v ) ⊃ Ψ−1(σ(φ(z0), Dφv )), implying Ψ(σ(z0, v )) = σ(φ(z0), Dφv ). This ends the

proof.

Lemma 90. Let Riemannian manifolds (M1, g1) and (M2, g2) be as in Theorem 55. Then

Ψ(∂M1) = ∂M2. Moreover, Ψ(M i n t
1 ) =M i n t

2 .

Proof. Let p ∈ ∂M1. Due to Proposition 83 there is a (z , v ) ∈ P (Γ1) such that p is in the closed

setσ(z , v ) and rp1
(z ) = Tz ,v . Thus Lemma 89 gives Ψ(σ(z , v )) =σ(φ(z ), Dφv ), and since Ψ

is a homeomorphism, also the setσ(φ(z ), Dφv ) is closed and contains Ψ(p ). Furthermore,

by equation (4.40) we have that rΨ(q )(φ(z )) = rq (z ), for all q ∈σ(z , v ). Therefore

Tφ(z ),Dφv = Tz ,v = rp (z ) = rΨ(p )(φ(z )).

From here Proposition 83 implies that Ψ(p ) is in ∂M2. Thus Ψ(∂M1)⊂ ∂M2 and by using

the same argument for Ψ−1 it follows that Ψ(∂M1) = ∂M2. Since M i n t
1 and ∂M1 are disjoint

and Ψ is a bijection we also have that Ψ(M i n t
1 ) =M i n t

2 .

Lemma 91. Let Riemannian manifolds (M1, g1) and (M2, g2) be as in Theorem 55. The map-

ping Ψ : M1→M2, given in formula (4.39), is a diffeomorphism.

Proof. Let p0 ∈M1, and choose Wp0
⊂ ∂M1 as in Theorem 57. Since φ : Γ1→ Γ2 is a diffeo-

morphism, the set φ(Wp0
∩ Γ1) is open and dense in Γ2. Then for Ψ(p0) ∈ M2 we choose

WΨ(p0) ⊂ ∂M2 as in Theorem 57 and consider the non-empty open set WΨ(p0)∩φ(Wp0
∩Γ1)⊂ Γ2.

We pick z0 ∈Wp0
∩ Γ1 such thatφ(z0) ∈WΨ(p0) ∩φ(Wp0

∩ Γ1).

Let neighborhoods Up0
⊂M1 of p0 and Vp0

⊂M1 of z0 be such that the distance function

d1(·, ·) is smooth in the product set Up0
×Vp0

. We also choose neighborhoods UΨ(p0) ⊂M2 of
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Ψ(p0) and VΨ(p0) ⊂M2 ofφ(z0) =Ψ(z0) to be such that the distance function d2(·, ·) is smooth

in the product set UΨ(p0)×VΨ(p0). Since Ψ : M1→M2 is a homeomorphism we may choose

these four sets in such a way that they satisfy

Ψ(Up0
) =UΨ(p0), and Ψ(Vp0

) =VΨ(p0).

By Lemma 90 we know that Ψ(p0) ∈M i n t
2 if and only if p0 ∈M i n t

1 , and Ψ(p0) ∈ ∂M2 if and

only if p0 ∈ ∂M1. Next we consider the interior and boundary cases separately.

Suppose first that p0 is an interior point of M1. The functions

Up0
∋ p 7→α1(p ) = (−grad∂M1

rp (z0), rp (z0)) ∈ Pz0
(Γ1)×R,

and

UΨ(p0) ∋ q 7→α2(q ) = (−grad∂M2
rq (φ(z0)), rq (φ(z0))) ∈ Pφ(z0)(Γ2)×R,

as in Proposition 84, are smooth local coordinate maps of M1 and M2 respectively. Moreover,

by the computations done in the proof of Lemma 89 we get for every p ∈Up0
that

rp (z0) = rΨ(p )(φ(z0)), and Dφ(z0)grad∂M1
rp (z0) = grad∂M2

rΨ(p )(φ(z0)).

Therefore for any (v, t ) ∈α1(Up0
)we have that

(α2 ◦Ψ ◦α−1
1 )(v, t ) = (Dφ(z0)v, t ).

Thus we have proven that the map α2 ◦Ψ ◦α−1
1 : α1(Up0

)→α2(UΨ(p0)) is smooth.

Then we let p0 be a boundary point of M1. Let η1(p ) := −grad∂M1
rp (z0) for p ∈ Up0

and

choose U ′p0
⊂ Up0

as in Lemma 81 to be such that the set σ(z0,η1(p )) is closed and the

function p 7→ Tz0,η1(p ) is smooth for every p ∈U ′p0
. Let U ′Ψ(p0)

:= Ψ(U ′p0
) ⊂UΨ(p0) and denote

η2(q ) :=−grad∂M2
rq (φ(z0)) for q ∈U ′Ψ(p0)

. Since we have that Dφ(z0)η1(p ) =η2(Ψ(p )) it holds

by Lemma 89 that the set σ(φ(z0),η2(Ψ(p ))) = Ψ(σ(z0,η1(p ))), is closed for every p ∈U ′p0
,

and thus the function U ′Ψ(p0)
∋ q → Tφ(z0),η2(q ) is smooth by Corollary 79. Moreover, we have

Tz0,η1(p ) = Tφ(z0),η2(Ψ(p )) for every p ∈U ′p0
.

Then we consider local coordinate maps

U ′p0
∋ p 7→β1(p ) = (η1(p ), Tz0,η1(p )− rp (z0)) ∈ Pz0

(Γ1)× [0,∞),
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of M1 and

U ′Ψ(p0)
∋ q 7→β2(q ) = (η2(q ), Tφ(z0),η2(q )− rq (φ(z0))) ∈ Pφ(z0)(Γ2)× [0,∞),

of M2, as in Proposition 85. By the discussion above we have for any (v, t ) ∈β1(U ′p0
) that

(β2 ◦Ψ ◦β−1
1 )(v, t ) = (Dφ(z0)v, t ),

which implies that the map (β2 ◦Ψ ◦β−1
1 ): β1(U ′p0

)→β2(U ′Ψ(p0)
) is smooth.

By combining these two cases we have proved that for every p0 ∈M a local representation

of the map Ψ is smooth, making Ψ : M1→M2 smooth. Finally by an analogous argument

for Ψ−1 we can show that this map is also smooth. Thus Ψ : M1→M2 is a diffeomorphism as

claimed.

We are ready to present the proof of our main inverse problem:

Proof of Theorem 55. By Lemma 91 we know that the mapΨ : M1→M2 is a diffeomorphism.

We define a metric tensor g̃2 on M1 as the pull back of the metric g2 with respect to map Ψ.

Thus it suffices to consider a smooth manifold M =M1 with an open measurement region

Γ = Γ1 ⊂ ∂M and two Riemannian metrics g1 and g̃2. Moreover ∂M is strictly convex with

respect to both of these metrics.

Let d̃2(·, ·) be the distance function of g̃2. We note that due to equation (4.40) we have

d1(p , z ) = d̃2(p , z ), for all (p , z ) ∈M × Γ . By Lemma 88 we get that g1(p ) = g̃2(p ) for all p ∈ Γ .

Let p0 ∈M . Thus the map Hp0
given by (4.37) is the same for both metrics. From here Lemma

86 and Proposition 87 imply that g1(p0) = g̃2(p0). Therefore map Ψ is a Riemannian isometry

as claimed.
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CHAPTER

5

FUTURE RESEARCH QUESTIONS

A natural progression from the work presented in Chapter 4 is to consider the stability of the

associated inverse problem. Recall that according to Hadamard [21], an inverse problem is

considered stable if two data sets are ‘close’ then the reconstructed manifolds are ‘close’.

Thus we will begin by introducing a notion of distance between manifolds.

5.1 Hausdorff & Gromov-Hausdorff Distances

Let (X , d ) be a metric space and for a subset S ⊂ X define the r -neighborhood of S to be

Ur (S ) =
⋃

x∈S
B (x , r ).

The Hausdorff distance between some subsets A and B of X is

dH (A, B ) = inf
r>0
{A ⊆Ur (B ) and B ⊆Ur (A)}.
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Figure 5.1 A metric space Z containing isometric copies of X and Y .

Example 92. Let A be an open set in the metric space X . Then dH (A, A) = 0, so the Hausdorff

distance cannot distinguish A from A. However, if A and B are closed sets in X and dH (A, B ) =

0 then A = B . In particular, dH provides a metric for the collection of all closed and bounded

subsets of X [5].

Let (X , dx ) and (Y , d y ) be compact metric spaces. Suppose (Z , dZ ) is a metric space with the

property that it contains isometric embeddings of X and Y , denoted X ′ and Y ′ respectively.

Such a metric space is illustrated in Figure 5.1. The collection of all metric spaces with this

property will be denotedZ . The Gromov-Hausdorff distance between X and Y , is defined

as

dG H (X , Y ) = inf
Z∈Z

�

dH (X
′, Y ′) in Z
	

.

Example 93. Let (X , dx ) and (Y , d y ) be compact metric spaces. If there exists an isometry

between these metric spaces then dG H (X , Y ) = 0. This means that the Gromov-Hausdorff

distance cannot distinguish between isometric manifolds.

This exemplifies why dG H is not a metric on the set of compact metric spaces. Instead, we

will consider dG H on the quotient space consisting of isometry classes of compact metric

spaces.

Lemma 94. LetC denote the set of compact metric spaces so thatC /∼ is the set of isometry

classes of compact metric spaces. The Gromov-Hausdorff distance is a metric onC /∼.

Proof. Shown in [5, Theorem 7.3.30].

119



Thus define the metric space (C /∼, dG H ) to be the Gromov-Hausdorff space. The topol-

ogy of this space, determined by the Gromov-Hausdorff distance, is called the Gromov-

Hausdorff topology. It was shown in [49, pg. 296] that (C /∼, dG H ) is separable and complete.

Moreover, a class of metric spaces C ⊂C is said to be pre-compact if every sequence in C

has a subsequence that is convergent in (C /∼, dG H ) [49, pg. 299].

5.2 Review of Some Stability Results

In an abstract sense, stability of an inverse problem can be defined as:

Consider the data D1, D2 in metric space (X , d ), where

d (D1, D2)<δ

where the data has the associated manifolds (M1, g1) and (M2, g2). The inverse

problem is considered stable if there exists a continuous function ϵ : [0,∞)→
[0,∞) depending on δ such that δ→ 0 implies ϵ(δ)→ 0, and

dG H (M1, M2)< ϵ(δ).

Example 95. In [30] the authors study two Riemannian manifolds (M1, g1) and (M2, g2)with

boundary satisfy certain geometric bounds. The boundary distance data on the respective

boundaries are denoted R (Mi )where R : x 7→ rx (·)|∂Mi
.

Let S = {zi }Ni=1 ⊂ ∂M be a finite δ-net for ∂M so that dH (S ,∂M ) < δ, where dH is the

Hausdorff distance on ∂M . Then define RS (M ) to be the restriction of R (M ) to S, so that

RS : x 7→ rx (·)|S . If r̂p : S →R then the finite family R̂S =
¦

�

r̂p (zi )
�N

i=1
∈RN : p = 1, ..., P

©

is a

δ-approximation to R (M ) if dH (R̂S , RS (M ))<δ, where dH is the Hausdorff distance on RN .

Taking R̂ i
s to be an δ-approximation of R (Mi ) then they show:

If dH (R̂ 1
s , R̂ 2

s ) < δ then there are uniform constants C0 and δ0 depending on the

geometric bounds such that for 0<δ<δ0 then dG H ((M2, g2), (M2, g2))<C0δ
1/18.

A key idea in this proof is to use Toponogov’s Theorem, which allows for the comparison

of distances in the manifolds to distances in a model space of constant curvature. This

connection to a model space is why there must be apriori geometric bounds on M1 and M2.
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Additional stability results on manifolds using different types of data can be found in [17, 18]

and [29, Section 4.4]. In the rest of this section we summarize the result presented by Ivanov

in [27], since this paper studies the stability of a closely related inverse probem to our work.

We note that their result does not provide explicit values of ϵδ in terms of δ, like Example

95. Thus, their techniques are promising for generalizing stability with a loose bound to the

partial boundary distance data.

For a Riemannian manifold M , we denote by diam(M ) the diameter, SecM is the sectional

curvature, and injM is the injectivity radius. DefineM (n , D , K , i0) to be the class of all com-

pact boundaryless Riemannian n-dimensional manifolds M with diam(M )≤D , |SecM | ≤ K ,

and injM ≥ i0.

Lemma 96. Let n ≥ 2 and K , D , i0 ∈ (0,∞) be given. The class of manifoldsM (n , D , K , i0) is

pre-compact in the Gromov-Hausdorff topology.

Proof. This result follows from [5, Theorem 10.7.2] and [49, Chapter 10]. They key idea is to

show that there is a noncontracting map from M to the ball of radius D in a simply con-

nected n-dimensional complete space of constant curvature K . Then for every sequence

(Mi , g i ) inM (n , D , K , i0) there exists a convergent subsequence (Mik
g ik
).

For a Riemannian manifold (M , g ) ∈M (n , D , K , i0) consider the nonempty open set F ⊂M

to be the observation domain. The distance difference data of M is given by the map

DF : (M , g )→ (C (F × F ),∥ · ∥∞)where

DF (x ) = d (x , y )−d (x , z ), x ∈M , (y , z ) ∈ F × F.

Example 97 (Proposition 6.4 in [27]). Let (M1, g1) and (M2, g2) belong toM (n , D , K , i0).

Assume that M1 and M2 share an open ball of radius ρ0 > 0 denoted F , they induce the same

topology and the same differential structure on F , and g1|F = g2|F .

For i = 1, 2, let D i
F denote the distance difference data of Mi and suppose that

dH (D
1

F (M1), D 2
F (M2))<δ

where dH is the Hausdorff distance in C (F × F ). Then there exists an ϵ > 0 such that

dG H (M1, M2)< ϵ.

They key idea of the proof is to assume otherwise. It then uses the pre-compactness of
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M (n , D , K , i0) and a limiting argument to construct two sequences whose data are the same,

but are not isometric. However, due to their earlier result (Theorem 1.3 in [27]) that is not

possible.

5.3 Possible Directions

Ideally, we first want to show stability for the full boundary data case. This entails proving

following:

Conjecture 98. Let (M1, g1) and (M2, g2) be compact Riemannian manifolds with boundary

such thatφ : ∂M1→ ∂M2 is a diffeomorphism. For i = 1, 2 define the mappings Ri : (Mi , g i )→
(B (∂Mi ),∥ · ∥∞) so that Ri : x 7→ rx (·)|∂Mi

and F : B (∂M1)→ B (∂M2) so that F ( f ) = f ◦φ−1. If

dH (F ◦R1(M1), R2(M2))<δ where dH is the Hausdorff distance in B (∂M2) then there exists a

continuous function ϵ : [0,∞)→ [0,∞) depending on δ such that δ→ 0 implies ϵ(δ)→ 0,

and dG H (M1, M2)< ϵ(δ).

One possible direction to prove this Conjecture is to use a limiting argument as in [27,

Proposition 6.4]. This technique will likely require adding geometric bounds on the manifold

or its boundary so that the manifolds are in a pre-compact space in the Gromov-Hausdorff

sense. Currently we are unsure which pre-compact space encompasses these compact

Riemannian manifolds with boundary so that the limiting argument works. Aside from

M (n , D , K , i0), some alternative pre-compact spaces in the Gromov-Hausdorff topology

are discussed in [49, Chapter 10] and [5, Chapters 7 and 10].

In the event that we are able to prove Conjecture 98, and it becomes an interesting (i.e.

non-trivial) result, the next step would be to generalize the method for the partial boundary

data. However, it is not immediately clear how to properly formulate the corresponding

conjecture. Specifically, we are not currently sure how to show when two data sets are ‘close’.

Question 99. Assume (Mi , g i ) are compact Riemannian manifolds with strictly convex

boundary and Γi ⊂ ∂Mi so that there is a diffeomorphism φ : Γ1 → Γ2. Define the maps

Ri : (Mi , g i )→ (B (Γi ),∥·∥∞) so that Ri : x → rx (·)|Γi and F : B (Γ1)→ B (Γ2) so that F ( f ) = f ◦φ−1.

Then what assumptions need to be on F or Γi so that dH (F ◦R1(M1), R2(M2))<δ?

Recall from (4.38) that if Γ1 and Γ2 are diffeomorphic and have coinciding data then dH (F ◦
R1(M1), R2(M2)) = 0. We might expect that if the Γi regions are from the same manifold
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then their data may be ‘close’, but even this assumption may not be enough. Consider the

example of the catenoid where Γ1 is the upper boundary circle and Γ2 is the lower boundary

circle so these two boundaries are diffeomorphic. However, there are many points p in the

catenoid where rp (·)|Γ1 looks very different than rp (·)|Γ2 , and so there is no guarantee the sets

F ◦R1(M ) and R2(M )will be close. Thus determining what makes two data sets ‘close’ in

the space B (Γ2)will require more thinking.
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