
ABSTRACT

NORTH, EVAN ISAAC. Non-Iterative Domain Decomposition using the Method of Difference
Potentials. (Under the direction of Semyon Tsynkov.)

The Helmholtz equation governs the propagation of time-harmonic waves. For domains many

wavelengths in size, it becomes intractable to solve directly, even on modern computers. Non-

overlapping Domain Decomposition Methods (DDMs) attempt to alleviate the cost growth by

partitioning the domain into smaller, simpler subdomains thus creating subproblems that are

coupled to one another along their interfaces. In this dissertation, we describe a framework that

utilizes the method of difference potentials (MDP) to resolve the said coupling and enables the

simultaneous solution of the subproblems.

Traditionally, DDMs resolve this coupling by an iterative process that alternates between directly

solving a localized approximation of the subproblem and updating the resulting boundary condi-

tions using parameterized transmission conditions. These iterations are repeated until convergence,

and the rate of convergence relies heavily on the chosen transmission conditions. In contrast to

traditional DDMs our method is non-iterative, utilizing only a single global step for the boundary

and interface data followed by the solution of the decoupled subproblems.

The MDP reduces the Helmholtz equation on each subdomain to a Calderon’s boundary equation

with projection on its boundary. The unknowns for the Calderon’s equation are the Dirichlet and

Neumann data. Coupling between neighboring subdomains is rendered by applying their respective

Calderon’s equations to the same data at the common interface. Solutions on individual subdomains

are computed concurrently using a straightforward direct solver.

The Calderon’s operators are expensive to compute but can be stored and reused for similar

problems. In the context of domain decomposition, this property extends to subproblems that

share common properties — such as wavenumber or domain shape — so if several subproblems

across the decomposition are similar, their corresponding operators only need to be computed

once. Domains with properties that are periodically repeated are a natural choice for applying

this methodology. The efficacy of the method is demonstrated by simulating wave propagation

within a photonic crystal ring resonator (PCRR), a device used in micro-scale electronics for filtering

particular frequencies from a signal.

The domain for a PCRR simulation can be constructed by starting with a lattice of evenly-spaced

scattering rods. Rods are then removed in particular patterns so that the absence of rods leaves

the impression of a traditional ring resonator. The resulting structure of a PCRR domain suggests

a decomposition into two unique blocks: a square centered over a scattering rod and a square

without a scattering rod. By building a PCRR from these “building blocks”, one can quickly and easily

redesign a new prototype for simulation because the pre-computation of the Calderon’s operators

only needs done once for each kind of building block.

The scope of this dissertation covers the construction, implementation, and numerical simula-



tions of the two fundamental subdomains mentioned above: a square with a constant wavenumber

and a square whose piece-wise constant wavenumber is defined to be split over a simple shape,

such as a circle, within the domain. These two subdomains form the building blocks that general

rectangular domains can be broken into. Although we restrict ourselves to these simple cases for

convenience, many of the formulas and ideas translate directly to more sophisticated examples.
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CHAPTER

1

INTRODUCTION

1.1 Motivation

This dissertation introduces a non-iterative numerical method for solving non-overlapping domain

decomposition problems. The application of focus for this work is the simulation of wave propaga-

tion in the frequency domain. One type of structure that is often used to simulate wave propagation

is a waveguide. A waveguide is a structure that allows the propagation to occur only in a particular

direction, such as sound passing through an instrument or air ducts. In the field of optics, a ring

resonator (see Figure 1.1) is a closed loop waveguide paired with a light input and output. The ring’s

geometry determines certain resonant frequencies that propagate from the input, around the ring,

and out at the output. Non-resonant frequencies will not propagate into and around the ring, so the

ring resonator acts as a filter where a range of frequencies is the input into the system, only allowing

the resonant frequencies to propagate to the output channel.

These resonators are used in a variety of optical applications, notably in fiber-optic cables. Some

applications are in the field of biosensing [Chremmos et al., 2010; Fard et al., 2013], where ring

resonators are integrated into micro-scale electronics. Such integrated waveguide ring resonators

are known to suffer exponential propagation losses with the reduction of the ring radii. That sets a

practical lower limit on the radius of the ring at a few micrometers [Chremmos et al., 2010]. For such

micro-scale applications, photonic crystal ring resonators (PCRRs) offer a promising alternative,

proving less sensitive to size-dependent losses [Chremmos et al., 2010]. PCRRs are constructed

with periodically placed scattering rods where the exclusion of rods is used to form the path of the

waveguide (Figure 1.2), with the rods themselves serving as a discrete alternative to a continuous

wall. As a signal propagates through the waveguide, the rods refract and transmit the signal. This
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Figure 1.1 Example of a traditional ring resonator operating at a resonant frequency.

allows the signal to propagate down the open channels and into the central ring resonator in the

usual fashion. Resonant frequencies can be tuned with the radius of the ring, as well as the size,

material, and placement of the rods. Additionally, the periodic lattice of PCRRs can be structured

with different symmetries (e.g., square, hexagonal, octagonal, etc...) [Romero-Vivas et al., 2005]

depending on the application.

Figure 1.2 Layout of a photonic crystal ring resonator. Gray circles represent scattering rods and red indi-
cates the path of a resonant signal.

Simulating the actual 3-dimensional structure is costly, so 2-dimensional simulations are com-

monly used as a surrogate for testing the efficacy of different arrangements of rods [Chremmos et al.,
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2010]. In the frequency domain, simulations involve solving the Helmholtz equation:

∆u +k 2u = f , x ∈Ω

where k ∈ R+ represents the wavenumber and is piecewise defined, representing the material

properties of the background (typically air) or the rods individually. Due to the composite nature

of the geometry of PCRRs, finite element methods have been the traditional solution method

[Rodriguez-Esquerre et al., 2005; Rubio-Merccdes et al., 2004]. These involve sophisticated grids

with high refinement levels to accurately resolve the space around each rod, leading to costly

simulations.

Alternatively, the structure of the PCRR suggests the use of a domain decomposition method

(DDM) where each rod is handled in its own subdomain (see Figure 1.3). Two known roadblocks

for common iterative DDMs are cross-points (points where more than two subdomains meet) and

discontinuous wavenumbers, both of which will be present in straightforward decompositions of a

PCRR. Recent DDMs have found ways to mitigate these issues [Gander et al., 2016; D. Gordon et al.,

2020], often through the use of context-dependent preconditioners or (computationally expensive)

auxiliary variables. In our paper [North et al., 2022] (as well as Chapter 2 of this dissertation) we

present a non-iterative DDM that is inherently insensitive to both cross-points and discontinuous

wavenumbers. This insensitivity is due to the underlying use of the method of difference potentials

(MDP) [Ryaben’ kii, 2002].

Figure 1.3 Depiction of how a PCRR can be broken into a small collection of basic subdomains (building
blocks). Red represents artificial boundaries that are introduced to separate the subdomains from one
another.

Originally proposed by Ryaben’kii [Ryaben’ kii, 2002; Ryaben’kii, 1985], the MDP can be inter-

preted as a discrete version of the method of Calderon’s operators [Calderón, 1963; Seeley, 1966] in

the theory of partial differential equations. The MDP reduces a given partial differential equation

from its domain to the boundary. The resulting boundary formulation involves an operator equa-
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tion (Calderon’s boundary equation with projection) with both Dirichlet and Neumann data in the

capacity of unknowns. After solving the boundary operator equation, the solution is reconstructed

on the domain using Calderon’s potentials. Therefore, the MDP allows one to parameterize solutions

on the domain using their boundary data. This proves convenient for a domain decomposition

framework. Indeed, once the original domain has been partitioned into subdomains, the Calderon’s

boundary equations for individual subdomains are naturally coupled with the appropriate interface

conditions that are also formulated in terms of the Dirichlet and Neumann data. This yields an

overall linear system to be solved only at the combined boundary. The computation of the boundary

projection operators is performed ahead of time and completely in parallel.

Rather than iteratively updating and matching boundary data along the interfaces as in tradi-

tional DDMs [Dolean et al., 2015], our method solves for all of the boundary and interface data

simultaneously. The MDP benefits from the speed and convenience of a high-order finite difference

method built on a regular, structured grid, even in the case of non-conforming geometries (such

as the circular rods). Additionally, the MDP utilizes pre-computed operators that are built for a

particular domain and unique for a given wavenumber. After the operators have been computed

once they can simply be reused with new source or boundary data, assuming the geometry and

wavenumber remain the same. In the context of DDMs, this property allows the same operators

to be used for subproblems with the same shape and wavenumber. Our proposed decomposition

of a PCRR only involves two kinds of subdomains — an empty square and a square with a rod, see

Figure 1.3. By computing only two sets of operators, we obtain the pre-computed information for

hundreds of subdomains for free.

Figure 1.4 The two extreme cases of domain decompositions in terms of how much time is saved when
pre-computing the MDP operators. In Ω1 all subdomains use the same operator so it is only computed
once. In Ω2 all subdomains have different wavenumbers, so the operators will need computed for all nine
subdomains separately.

The pre-computation of operators is a major point of interest for decomposition methods. In

traditional MDP settings, once an operator is computed for a particular domain and wavenumber,
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that operator can be reused for new problems that vary the source and boundary data. These

operators are expensive to compute, so this can lead to substantial savings in computation time.

Reusability of the operators extends to identical subdomains that share material properties (such

as the wavenumber), allowing the computation of one operator in place of many. Of course, the

actual savings in computation time will depend on how many qualitatively different subdomains are

present in the decomposition. The bounding cases of the time savings are described in Figure 1.4,

though most practical applications will fall between these cases.

The rest of this section covers the relevant background information for the numerical methods,

excluding the MDP, utilized in the work of this dissertation. Chapter 2 presents the MDP in the

context of a plain square and how to implement basic interface conditions between subdomains.

Chapter 3 introduces the rod subdomain, which includes interface conditions between the rod and

its surrounding subdomain as well as absorbing boundary conditions.

1.2 Background

1.2.1 Domain Decomposition

Domain Decomposition Methods were originally introduced by Schwarz [Schwarz, 1870] to prove the

existence and uniqueness of solutions to the Poisson equation over irregularly shaped domains. The

original Schwarz algorithm used overlapping decompositions (Figure 1.5), but was later extended to

non-overlapping decompositions (Figure 1.6) by Lions [Lions, 1990]. In this work, we focus on the

case of non-overlapping subdomains. Accordingly, this section begins by providing a brief overview

of non-overlapping DDMs including the original method by Lions for the Poisson equation and

subsequent adaptation by Després for the Helmholtz equation. For a more rigorous introduction to

DDMs, including proofs of convergence and calculation of convergence factors, see [Dolean et al.,

2015; Gander, 2008].

Figure 1.5 The classical DDM example. An irregular domain composed of two shapes, decomposed into
two overlapping subdomains. Classical PDE analysis is non-trivial in the left domain, but is generally
straightforward on shapes like circles and rectangles.
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1.2.1.1 Non-Overlapping Formulation

Consider the Poisson equation over a rectangular domain Ω ⊂R2 with boundary ∂ Ω, (such as in

Figure 1.6). Then the following Dirichlet boundary value problem (BVP) can be posed:







∆u = f in Ω

u = 0 on ∂ Ω
(1.1)

Consider a partitioning of Ω that splits the domain into two subdomains, Ω1 and Ω2, by introducing

Figure 1.6 Basic non-overlapping decomposition of a domain Ω (with boundary ∂ Ω) into two subdomains,
Ω1 and Ω2. A fictitious boundary, Σ, is introduced to indicate the separation between subdomains, and ni

is the outward unit normal vector of Ωi on Σ.

an artificial interface Σ=Ω1 ∩Ω2 as in Figure 1.6. The BVP (1.1) can be reformulated over the new

subdomains individually:







∆u1 = f in Ω1

u1 = 0 on Ω1 ∩ ∂ Ω
(1.2a)







∆u2 = f in Ω2

u2 = 0 on Ω2 ∩ ∂ Ω
(1.2b)







u1 = u2, on Σ
∂ u1
∂ n1
=− ∂ u2

∂ n2
on Σ

(1.2c)

where the interface conditions (1.2c) guarantee that the combined solution of (1.2) coincides with

that of (1.1):






u1 = u , in Ω1

u2 = u , in Ω2

Conditions other than (1.2c) can be formulated on Σ so that the resulting combined problem is

well-posed, but its solution will be different from the true solution of (1.1).
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There are two separate interface conditions in (1.2c). They apply to both subproblems (1.2a) and

(1.2b) at the same time and couple these subproblems together. However, each subproblem (1.2a)

or (1.2b) considered independently, i.e., with no connection to the other subproblem, is not fully

specified and cannot be solved on its own because it is missing boundary conditions onΣ. To enable

the individual solvability, one needs to provide these boundary conditions. Yet unlike in (1.2c), one

cannot specify more than one boundary condition on Σ for either of the two standalone problems

(1.2a) or (1.2b), as that would result in an overdetermination. In other words, when solving (1.2a)

one cannot specify both u1 and ∂ u1
∂ n1

along Σ, and likewise for (1.2b).

To avoid the overdetermination and still allow for separate solutions of individual subproblems,

P.L. Lions proposed to use one Robin boundary condition [Lions, 1990], formed as a linear combina-

tion of the two continuity conditions (1.2c). For any pair of constants
�

p1, p2

�

∈R2, this transmission

condition (or interface condition) yields the following combined formulation in lieu of (1.2):















∆u1 = f in Ω1

u1 = 0 on Ω1 ∩ ∂ Ω
�

∂
∂ n1
+p1

�

u1 =
�

∂
∂ n1
+p1

�

u2 on Σ

(1.3a)















∆u2 = f in Ω2

u2 = 0 on Ω2 ∩ ∂ Ω
�

∂
∂ n2
+p2

�

u2 =
�

∂
∂ n2
+p2

�

u1 on Σ

(1.3b)

Each of the two subproblems (1.3) is individually well-defined in the sense that the third equation in

either (1.3a) or (1.3b) can be interpreted as a Robin boundary condition onΣ for u1 or u2, respectively,

with the right-hand side of the respective equation providing the data. However, the relation of the

combined formulation (1.3) to the original BVP (1.1) requires a special inquiry.

Lions conducted the corresponding analysis in [Lions, 1990]. He replaced the combined formu-

lation (1.3) with the iteration:















∆u (n+1)
1 = f in Ω1

u (n+1)
1 = 0 on Ω1 ∩ ∂ Ω

�

∂
∂ n1
+p1

�

u (n+1)
1 =

�

∂
∂ n1
+p1

�

u (n )2 on Σ

(1.4a)















∆u (n+1)
2 = f in Ω2

u (n+1)
2 = 0 on Ω2 ∩ ∂ Ω

�

∂
∂ n2
+p2

�

u (n+1)
2 =

�

∂
∂ n2
+p2

�

u (n )1 on Σ

(1.4b)

and proved that this iteration converges to the solution of (1.1) as n increases. The rate of con-

vergence depends on the choice of the parameters p1 and p2. As the next iteration n +1 for each

subproblem only relies on the other subproblem’s current iteration n , the subproblems can be
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solved in parallel to one another, a highly desirable trait for DDMs. The proof given in [Lions, 1990]

extends to an arbitrary number of subdomains.

1.2.1.2 Helmholtz Adaptation

Complications arise when applying (1.4) directly to the Helmholtz equation. Consider the following

BVP over the domain from Figure 1.6:







∆u +k 2u = f in Ω

u = 0 on ∂ Ω
(1.5)

To guarantee well-posedness of (1.5), i.e., to avoid resonance, −k 2 may not be an eigenvalue of

the underlying Laplace problem. However, when considering a decomposition such as the one

in Figure 1.6 with the Lions transmission condition, it is non-trivial to know that −k 2 will always

remain outside the spectrum of the corresponding Laplace subproblem, which only becomes more

problematic when various decompositions are considered. This issue was addressed in [Després,

1993] when Després proposed the use of Lions’ transmission condition with p1 = p2 = i k (where

i =
p
−1). This choice yields the following subproblems (cf. (1.3)):















(∆+k 2)u1 = f in Ω1

u1 = 0 on Ω1 ∩ ∂ Ω
�

∂
∂ n1
+ i k

�

u1 =
�

∂
∂ n1
+ i k

�

u2 on Σ

(1.6a)















(∆+k 2)u2 = f in Ω2

u2 = 0 on Ω2 ∩ ∂ Ω
�

∂
∂ n2
+ i k

�

u2 =
�

∂
∂ n2
+ i k

�

u1 on Σ

(1.6b)

Després’ transmission condition shifts the spectrum of the operator to the complex domain, guar-

anteeing that resonant frequencies are avoided on each subproblem (1.6a) or (1.6b). It does so at the

cost of introducing complex values into the problem, but for many applications, this is computa-

tionally not an issue. An iterative procedure similar to (1.4) can be employed for (1.6), and Després

showed in [Després, 1993] that said procedure will converge.

1.2.1.3 Other Considerations

The methods outlined above are the foundation of most modern DDMs for the Helmholtz equation,

and have been improved upon in recent years. For example, quasi-optimal convergence rates have

been achieved by optimizing the choice of transmission conditions with the so-called “square root

operator” [Boubendir et al., 2012]. However, while this leads to convergence in fewer iterations, it

generally requires more expensive iterations.

Recent work has also been dedicated to the resolution of interior cross-points. The interior
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cross-points are points where more than two subdomains meet, and they pose no issues at the

continuous level of the formulation. Yet the cross-points are known to adversely affect the accuracy

and convergence if not discretized with care. In [Gander et al., 2016], several methods are discussed

for resolving these cross-points for elliptic problems, and [Modave et al., 2020] provides an extension

of the quasi-optimal method from [Boubendir et al., 2012] that accounts for interior cross-points.

In Chapter 2, we demonstrate how the issue of cross-points is resolved naturally with our method,

with no special consideration. While some other methods can also address the cross-points (see, for

example, [D. Gordon et al., 2020]), we emphasize that our method is completely insensitive to them

by design.

1.2.2 Absorbing Boundary Conditions

When simulating a PCRR, waves continue propagating toward infinity when they leave the domain

of interest, contributing no reflections back into the domain of interest. In two dimensions, this

effect is traditionally modeled by the Sommerfeld radiation condition [Sommerfeld, 1949]

lim
r→∞

p
r
�

∂

∂ r
− i k

�

u (x , y ) = 0, r =
Æ

x 2+ y 2. (1.7)

This exact boundary condition is imposed at infinity, making it ill-suited for use in computational

methods. Instead, we introduce an approximation of (1.7) called an absorbing boundary condition

(ABC) at the edge of the domain. The simplest example of such an ABC is obtained by enforcing

(1.7) on the boundary of the domain (rather than at infinity):

�

∂

∂ n
− i k

�

u = 0, on ∂ Ω

where n represents the outward normal direction with respect to ∂ Ω. By its nature as an approxima-

tion, an ABC is inexact and will produce artificial reflections at the boundary which travel back into

the domain of interest. A better quality ABC generates fewer reflections.

Various approaches have been taken to produce ABCs that reduce the artificial reflections, see

approaches by Engquist and Majda [Engquist et al., 1977], Hagstrom and Hariharan [Hagstrom et al.,

1988], and Bayliss et al. [Bayliss et al., 1982; Bayliss et al., 1980]. Additionally, see [S. V. Tsynkov, 1998]

for a cohesive review of these and other methods.

We consider the second-order ABC developed by Engquist and Majda [Engquist et al., 1977]:

Bu
def= i k

∂ u

∂ n
−k 2u −

1

2

∂ 2u

∂ τ2
= 0 (1.8)

where ∂
∂ τ represents differentiation with respect to the tangential coordinate. The normal and

tangential coordinates used in (1.8) conveniently translate into Cartesian coordinates when the

condition is set on the edge of a square. Details of how we implement (1.8) within our method can

be found in Chapter 3.
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1.2.3 Finite Difference Scheme

The MDP can be implemented in conjunction with any finite difference scheme as the underlying

approximation, even in the case of complex or non-conforming boundaries. High-order schemes

are effective in combating the well-known pollution effect [I. M. Babuška et al., 2000; Bayliss et al.,

1983; Deraemaeker et al., 1999], generally achieving higher accuracy with coarser discretizations.

Compact schemes do not require additional boundary conditions beyond those supplied with the

differential equation itself. Therefore, we have chosen to use the fourth-order, compact scheme for

the Helmholtz equation as presented in [Harari et al., 1995; Singer et al., 1998]:

1

h 2

�

um+1,n +um−1,n +um ,n+1+um ,n−1−4um ,n

�

+
1

6h 2

�

um+1,n+1+um−1,n+1+um+1,n−1+um−1,n−1+4um ,n

− 2
�

um+1,n +um−1,n +um ,n+1+um ,n−1

��

(1.9)

+
k 2

12

�

um+1,n +um−1,n +um ,n+1+um ,n−1+8um ,n

�

= fm ,n +
1

12

�

fm+1,n + fm−1,n + fm ,n+1+ fm ,n−1−4 fm ,n

�

Figure 1.7 The stencils for the compact scheme given in (1.9).

The scheme (1.9) uses a 9-point stencil for the left-hand side of the PDE and a 5-point stencil for

the right-hand side (see Figure 1.7) with uniform step size in the x− and y−directions (∆x =∆y = h).

Additionally, (1.9) was derived with the assumption of a constant wavenumber, k . This assumption

suffices for us because we assume that the decomposition yields subdomains that each have their

own constant value of k . One could also consider a sixth-order scheme for constant [Turkel et al.,

2013] or variable [Singer et al., 2006] wavenumber, or a fourth-order scheme for a more general

form of the Helmholtz equation with a variable coefficient Laplace-like term and wavenumber

[S. Britt et al., 2011]. However, for the scope of this dissertation we will focus on the case of piecewise

constant k .
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CHAPTER

2

UNIFORM SUBDOMAINS FOR DDM

FRAMEWORK

The first building block to be introduced is the case of the empty subdomain - a square that contains

no obstructing objects (such as a scattering rod). In the context of the Helmholtz equation these

subdomains have a constant wavenumber, though they may have different wavenumbers from

subdomain to subdomain. In this chapter, the formulation of the Method of Difference Potentials

(MDP) is described for the case of a square domain. Details are then provided about how to combine

more than one square in a domain decomposition formulation. This chapter is adapted from [North

et al., 2022].

2.1 Method of Difference Potentials

To introduce the MDP [Ryaben’ kii, 2002], consider the inhomogeneous Helmholtz equation with a

general (constant-coefficient) Robin boundary condition

∆u +k 2u = f (2.1a)

αu +β
∂ u

∂ n
=φ (2.1b)

over the domain Ω ⊂ R2 and its decomposition depicted in Figure 1.6. In a similar manner to

traditional DDMs, we split the problem into two separate subdomains as in (1.2), and encounter

the same issue of needing to enforce continuity of the solution and its flux over the interface Σ.
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The key role of the MDP is to impose the required interface conditions on Σ. The MDP replaces

the governing differential equation, the Helmholtz equation (2.1a), on the domain by an equivalent

operator equation at the boundary (Calderon’s boundary equation with projection). The latter is

formulated with respect to the Cauchy data of the solution, i.e., the boundary trace of the solution

itself (Dirichlet data) and its normal derivative (Neumann data). The reduction to the boundary

is done independently for the individual subdomains Ω1 and Ω2 (see Figure 1.6). The resulting

boundary equations with projections on the neighboring subdomains share the Dirichlet and

Neumann data as unknowns at the common interface Σ, which directly enforces the continuity of

the solution and its flux. For the remaining parts of the boundaries, ∂ Ω1\Σ and ∂ Ω2\Σ, the boundary

equations with projections are combined with the boundary condition (2.1b), which is formulated

in terms of the Cauchy data of the solution. Altogether, the MDP solves a fully coupled problem

for the Helmholtz equation similar to (1.2), and the constituent subproblems can still be solved

independently and in parallel.

Indeed, Calderon’s operators are computed with the help of the auxiliary problem, which is

formulated for the same governing equation, but on a larger auxiliary domain. The auxiliary problem

must be uniquely solvable and well-posed. Otherwise, the auxiliary problem can be arbitrary, and is

normally chosen so as to enable an easy and efficient numerical solution. In particular, the auxiliary

domain would typically have a simple, regular shape; some examples are shown in Figure 2.1.

Given that for domain decomposition one needs to compute the Calderon operators separately for

individual subdomains, we embed each subdomain within its own auxiliary domain, see Figure 2.2,

and solve the resulting auxiliary problems independently. In practice, we also take advantage of the

fact that in some of our simulations the subdomains are identical and reuse the computed operators

accordingly. Precise criteria for the selection of an auxiliary domain, as well as details of how to

efficiently account for identical subdomains, are discussed in Section 2.1.1.1.

Figure 2.1 Example domains (solid border) and a reasonable choice of auxiliary domain (dotted border)
for each.

In the rest of this section, those parts of the MDP necessary to implement it in the framework of

DDM are introduced. For a detailed account of the theory and derivation of the MDP, see [Ryaben’ kii,

2002], as well as [S. Britt et al., 2011; Medvinsky et al., 2012], among others. Additionally, for details
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Figure 2.2 The auxiliary domain setup for our problem with the domain decomposition from Figure 1.6

on handling more complicated boundary conditions, as well as extending this method to domains

with curvilinear sides, see [D. S. Britt et al., 2013] or [Medvinsky et al., 2016], respectively.

2.1.1 Base Subdomain

In this section, all of the components needed to perform the MDP algorithm on one base subdomain

are defined. Considering the model domain from Figure 1.6, a logical choice of base subdomain is

a square. For the sake of introducing the MDP on the base subdomain, throughout Section 2.1.1

we will refer to the base subdomain simply as Ωwith boundary Γ , where Ω is a square with a side

length of 2, centered about the origin. This simple case is used for efficiency. There is no substantial

difficulty to treat alternative — including non-rectangular — subdivisions.

2.1.1.1 Auxiliary Problem

We will embed the base subdomain Ω in a larger domain Ω0. This larger domain is known as the

auxiliary domain, on which we formulate the auxiliary problem (AP). The AP should be uniquely

solvable and well-posed, and should allow for a convenient and efficient numerical solution.

LetL represent the Helmholtz operator:L u
def= (∆+k 2I )u , where I is the identity operator. We

formulate the AP on Ω0 by supplementing the inhomogeneous Helmholtz equation with homo-

geneous Dirichlet conditions on the y−boundaries and local Sommerfeld-type conditions on the

x−boundaries:


























L u = g , (x , y ) ∈Ω0,

u = 0, y =±1.1,

∂ u
∂ x + i k u = 0, x = 1.1,

∂ u
∂ x − i k u = 0, x =−1.1.

(2.2)

The choice of Sommerfeld-type conditions on the x−boundaries makes the spectrum of the AP

(2.2) complex, guaranteeing that resonance is avoided for any real wavenumbers k . Hence, the AP

(2.2) has a unique solution u for any right-hand side g . It should be noted that although similar in

form to the Després condition from Section 1.2.1.2, the Sommerfeld-type conditions in (2.2) do not

serve any transmission-related purpose, as they exist solely on the auxiliary domain and not on the

physical boundary Γ .
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To discretize the AP (2.2), we first replace the operatorL with the left-hand side of the scheme

(1.9). This creates a collection of equations centered at the node indexed by (m , n ):

1

h 2

�

um+1,n +um−1,n +um ,n+1+um ,n−1−4um ,n

�

+
1

6h 2

�

um+1,n+1+um−1,n+1+um+1,n−1+um−1,n−1+4um ,n (2.3a)

− 2
�

um+1,n +um−1,n +um ,n+1+um ,n−1

��

+
k 2

12

�

um+1,n +um−1,n +um ,n+1+um ,n−1+8um ,n

�

= gm ,n .

To maintain the overall accuracy of the solution, the boundary conditions also need to be approxi-

mated to fourth-order. For the y−boundaries this is trivial, as the boundary nodes can directly be

set to zero, i.e. for m = 0, ..., M set

um ,0 = um ,N = 0. (2.3b)

The following discretization of the Sommerfeld-type conditions was derived for the variable coeffi-

cient Helmholtz equation in [S. Britt et al., 2011] and simplified for the constant coefficient case in

[D. S. Britt et al., 2013]:

�

uM ,n −uM−1,n

h
−

1

6h

�

uM ,n+1−uM−1,n+1+uM ,n−1−uM−1,n−1

−2
�

uM ,n −uM−1,n

��

−
k 2h

24

�

uM ,n −uM−1,n

�

�

+ i k

�

uM ,n −uM−1,n

h
+

h 2k 2

8
uM− 1

2 ,n

+
uM− 1

2 ,n+1−2uM− 1
2 ,n +uM− 1

2 ,n−1

2

�

= 0

(2.3c)

�

u1,n −u0,n

h
−

1

6h

�

u1,n+1−u0,n+1+u1,n−1−u0,n−1−2
�

u1,n −u0,n

��

−
k 2h

24

�

u1,n −u0,n

�

�

− i k

�

u1,n −u0,n

h
+

h 2k 2

8
u 1

2 ,n +
u 1

2 ,n+1−2u 1
2 ,n +u 1

2 ,n−1

2

�

= 0.

(2.3d)

Conditions (2.3c) and (2.3d) were derived under the assumption that the source function is com-

pactly supported. In our current setting, the grid function gm ,n will be specified on the interior

grid nodes, m ∈ {1, ..., M −1} and n ∈ {1, ..., N −1}, and will be zero on the outermost grid nodes,

m ∈ {0, M } and n ∈ {0, N }.
We define the discrete operatorL (h ) as the application of the left-hand side of (2.3a), allowing

the discrete AP to be expressed asL (h )u = g subject to the boundary conditions from (2.3b), (2.3c),

and (2.3d). Similar to the continuous AP (2.2), the finite difference AP (2.3) has a unique solution u

for any discrete right-hand side g . This solution u defines the inverse operator G (h ): u =G (h )g .
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In particular, the right-hand side g may be defined as

gm ,n =B (h ) fm ,n
def= fm ,n +

1

12

�

fm+1,n + fm−1,n + fm ,n+1+ fm ,n−1−4 fm ,n

�

(2.4)

whereB (h ) represents the application of the stencil from the right-hand side of the scheme (1.9).

We emphasize that G (h ) is defined for any grid function g , not just those of the form g =B (h ) f . The

discrete AP can be solved by a combination of a sine-FFT in the y−direction and a tridiagonal solver

in the x−direction to create an efficient approximation method for the solution to the continuous

AP (2.2).

2.1.1.2 Grid Sets and Difference Potentials

Let N0 be a Cartesian grid on Ω0 with uniform step size h in both the x− and y− directions. Let

M0 ⊂N0 be the set of nodes strictly interior to Ω0, i.e. not on the boundary (see Figure 2.3). Define

M+ =M0 ∩Ω as the nodes that are interior to the original domain Ω, and the exterior nodes as

M− =M0\M+. Let N+ be the set of nodes needed to apply the 3×3 stencil from Figure 1.7 to every

node inM+, and similarly letN− be the same forM− (see Figures 2.4a and 2.4b). Finally, we define

the grid boundary γ=N+ ∩N− as the discrete analogue of the original problem’s boundary, Γ (see

Figure 2.4c). Consider a grid function ξγ defined on the discrete boundary γ. We can then define

(a)N0 (b)M0

Figure 2.3 Cartesian grid sets used for the stencils presented in Figure 1.7 overlaid with the domain Ω.

the difference potential with density ξγ as

PN+ξγ
def=w −G (h )

�

L (h )w
�

�

M+
�

, w =







ξγ on γ,

0 on N0\γ.
(2.5)

The operationL (h )w
�

�

M+ in (2.5) represents first applying the operatorL (h ) to the grid function w ,

then truncating the result to the grid setM+. The difference potential PN+ξγ is a grid function defined

on N+ (hence the notation). It satisfies the homogeneous finite difference equationL (h )(PN+ξγ) = 0
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(a) •−M+, ◦−N+ (b) •−M−, ◦−N− (c) •−γ

Figure 2.4 Discrete analogue grid sets of the interior, exterior, and boundary with respect to the original
problem domain Ω.

onM+. By truncating the difference potential to the grid boundary, we obtain the projection operator

Pγ:

Pγξγ
def= (PN+ξγ)

�

�

γ
. (2.6)

The projection Pγ defined by (2.6) has the following property: a grid function ξγ satisfies the differ-

ence Boundary Equation with Projection (BEP)

Pγξγ+T r (h )G (h )g = ξγ (2.7)

if and only if there is a solution u on N+ to the finite difference equation (2.3a) such that ξγ is

the trace of u on the grid boundary γ. In this case, u is reconstructed by means of the discrete

generalized Green’s formula

u = PN+ξγ+G (h )g . (2.8)

In particular, the discrete right-hand side g in equations (2.7) and (2.8) may be given by (2.4):

g =B (h ) f . Then, the discrete BEP (2.7) equivalently reduces the fourth order accurate discrete

approximation of the Helmholtz equation L (h )u = B (h ) f from the grid domain N+ to the grid

boundary γ. It will be convenient to specifically study the case where the governing equation is

homogeneous, i.e. f ≡ 0. In this case, (2.7) reduces to

Pγξγ = ξγ. (2.9)

Similar to (2.7) and (2.8), solutions of (2.9) can be used to reconstruct the corresponding solution u

in the homogeneous case with the use of the difference potential

u = PN+ξγ. (2.10)
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2.1.1.3 Equation-Based Extension

In order for u from (2.8) to approximate the solution of (2.1a) on N+, the grid density ξγ must be

related, in a certain way, to the trace of the solution u at the continuous boundary Γ . This relation

is expressed by the extension operator. Consider a pair of functions defined on Γ : ξΓ = (ξ0, ξ1)
�

�

Γ
.

One can consider ξ0 and ξ1 as the Dirichlet and Neumann data, respectively, of some function

v = v (x , y ) on Ω0:

(ξ0, ξ1)
�

�

Γ
=
�

v,
∂ v

∂ n

�

�

�

�

�

Γ

.

This function v can be defined in the vicinity of Γ as a truncated Taylor expansion, with ρ represent-

ing the distance (with sign) from the point of evaluation to Γ :

v (x , y ) def= v |Γ +ρ
∂ v

∂ n

�

�

�

�

Γ

+
ρ2

2

∂ 2v

∂ n2

�

�

�

�

Γ

+
ρ3

6

∂ 3v

∂ n3

�

�

�

�

Γ

+
ρ4

24

∂ 4v

∂ n4

�

�

�

�

Γ

. (2.11)

The definition (2.11) of the new function v (x , y ) is not complete until the higher order normal

derivatives are provided. These can be obtained using equation-based differentiation applied to the

Helmholtz equation (2.1a), where we assume v is a solution and v and ∂ v
∂ n are known analytically

on Γ . When the domain Ω is a square, the outward normal derivatives on Γ can be interpreted as

standard x− or y− derivatives (or their negative counterparts), depending on which portion of the

boundary one is considering.

For example, let the right side of the square be x = X = const. The outward normal derivative then

coincides with the positive x− derivative. By rearranging (2.1a) we immediately get an expression

for the second x−derivative evaluated along Γ :

∂ 2v

∂ x 2
(X , y ) = f (X , y )−

∂ 2v

∂ y 2
(X , y )−k 2v (X , y ). (2.12)

In this arrangement, v (X , y ) can be replaced with the known ξ0(y ) and ∂ 2v
∂ y 2 (X , y ) can be replaced

with its second tangential derivative, ξ′′0 (y ). The third and fourth derivatives can also be obtained

by first differentiating (2.1a) with respect to x , then subsequently replacing v (X , y ) with ξ0(y ),
∂ v
∂ x (X , y )withξ1(y ), and ∂ 2v

∂ x 2 (X , y )with the right-hand side of (2.12). This process yields the following

expressions:

v (X , y ) = ξ0(y ), (2.13a)

∂ v

∂ x
(X , y ) = ξ1(y ), (2.13b)

∂ 2v

∂ x 2
(X , y ) = f (X , y )−ξ′′0 (y )−k 2ξ0(y ), (2.13c)

∂ 3v

∂ x 3
(X , y ) =

∂ f

∂ x
(X , y )−ξ′′1 (y )−k 2ξ1(y ), (2.13d)

∂ 4v

∂ x 4
(X , y ) =

∂ 2 f

∂ x 2
(X , y )−

∂ 2 f

∂ y 2
(X , y )−k 2 f (X , y ) +ξ(4)0 (y ) +2k 2ξ(2)0 (y ) +k 4ξ0(y ). (2.13e)
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The expressions in (2.13) can be substituted into (2.11) to calculate the values of v (x , y ) near the

right side of Γ . Similar derivations can be used to compute v (x , y ) near other sides of the square,

keeping in mind that the outward normal derivative on the left and bottom sides of the square

correspond to the negative x− and y− derivatives, respectively.

The function v = v (x , y ) can be constructed starting from any pair of functions (ξ0,ξ1) defined

on Γ by means of substituting (2.13a)-(2.13e) into the Taylor expansion (2.11). Then, sampling v

only on the grid boundary γ, we define the extension operator Ex that yields the grid function ξγ as

the following:

ξγ = Ex(ξ0,ξ1) = v
�

�

γ
.

As seen in (2.13), the operator Ex depends on the source term f . Hence, Ex is an affine operator:

ExξΓ = Ex(H )(ξ0,ξ1) +Ex(I ) f (2.14)

where Ex(H ) represents its homogeneous (i.e., linear) part that only depends on (ξ0,ξ1), and Ex(I ) is

the inhomogeneous part that accounts for the source term from (2.1a).

Although the formulae for the normal derivatives (2.13) were derived using the Helmholtz

equation, ξΓ = (ξ0,ξ1) does not need to represent the Cauchy data of a solution u to (2.1a) in order

to apply the operator Ex. However, if ξΓ does correspond to a solution u : ξΓ =
�

u , ∂ u
∂ n

��

�

Γ
, then

ξγ = ExξΓ approximates this solution near Γ with fifth-order accuracy with respect to the grid size

h , specifically at the grid nodes of γ.

Let u be a solution to (2.1a) on Ω in the homogeneous case, f ≡ 0, and let ξΓ be the trace of

u along the continuous boundary Γ such that ξΓ =
�

u , ∂ u
∂ n

� �

�

Γ
. Let ξγ = ExξΓ and let PN+ξγ be the

difference potential with density ξγ. Let p be the order of accuracy of the finite difference scheme

(Sections 1.2.3 and 2.1.1.1). According to Reznik [Reznik, 1982, 1983] (alternatively, see [Ryaben’

kii, 2002]), as the grid N0 is refined, PN+ξγ converges to the solution u (on the grid N+) with the

convergence rate of O (h p ) provided that the number of terms in the Taylor expansion (2.11) is equal

to p +q , where q is the order of the differential operatorL . Given that the Helmholtz equation is

second-order and we use a fourth-order finite difference scheme (1.9), this would suggest the use of

six terms in our extension. In practice, it has repeatedly been observed (see [Medvinsky et al., 2012],

[Medvinsky et al., 2016], and [D. S. Britt et al., 2013], among others) that while sufficient, this bound

is not tight, and the number of terms typically matches the order of accuracy of the finite difference

scheme alone. Our use of four terms in (2.11) is corroborated by the numerical experiments in

Section 2.2.

2.1.1.4 Series Representation of the Boundary Data

Consider a set of basis functions, {ψ j }, and the following two sets of pairs

ψ
(0)
j =

�

ψ j , 0
�

, ψ
(1)
j =

�

0,ψ j

�

, j = 1, ...,∞. (2.15)

18



Recall that we denote the boundary data by ξΓ = (ξ0,ξ1), where ξ0 represents the Dirichlet data and

ξ1 represents the Neumann data. Specifically, consider one smooth section of Γ (i.e. one side of the

square), denoted Γ ∗, and let its boundary data be denoted ξΓ ∗ =
�

ξ∗0,ξ∗1
�

. The separate components

of this section of boundary data can be expanded individually along Γ ∗:

ξΓ ∗ =
�

ξ∗0,ξ∗1
�

=
∞
∑

j=1

c(0)j ψ
(0)
j +

∞
∑

j=1

c(1)j ψ
(1)
j . (2.16)

The infinite series (2.16) can be truncated after a finite number of terms to provide an approximation

of ξΓ ∗ . The number of terms M ∗ is typically taken so as to make the truncated terms negligible with

respect to the accuracy attainable on the grid:

ξΓ ∗ =
M ∗
∑

j=1

c(0)j ψ
(0)
j +

M ∗
∑

j=1

c(1)j ψ
(1)
j . (2.17)

Provided that the boundary data are sufficiently smooth, for the appropriately chosen basis func-

tionsψ j (e.g. Chebyshev, Fourier, etc...) the value of M ∗ can be taken relatively small. The series

Figure 2.5 A labeling of the sides of Γ . The choice of ordering is arbitrary and only given here as a visual
reference for the linear system in Section 2.1.1.5.

representation (2.17) can be extended to apply to all four sides of the square Γ by combining the

corresponding basis functions. Consider the labeling of the sides in Figure 2.5, and the following

definition of the expanded set of basis functions Ψ j :

Ψ j+(i−1)M ∗ =







ψ j , on Γi

0, otherwise
for i = 1, ..., 4. (2.18)
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Every element of Ψ in (2.18) is defined on the entire Γ , while each ξΓ i has a series expansion inde-

pendent of the others. Then, similar to (2.15) we define the following pairs:

Ψ (0)j =
�

Ψ j , 0
�

, Ψ (1)j =
�

0,Ψ j

�

, j = 1, ..., M

where M = 4 ·M ∗, and write the expansion of ξΓ as

ξΓ =
M
∑

j=1

c(0)j Ψ
(0)
j +

M
∑

j=1

c(1)j Ψ
(1)
j . (2.19)

Note that the choice of the same system of basis function for both the Dirichlet and Neumann

data, as well as for all four sides of the square, is not a requirement. However, it provides extra

convenience for constructing the linear system in Section 2.1.1.5 and building the DDM extension

in Section 2.1.2.

2.1.1.5 Forming the Base Linear System

Applying the extension operator (2.14) to the series representation of ξΓ in (2.19), we have:

ExξΓ = Ex(H )

 

M
∑

j=1

c(0)j Ψ
(0)
j +

M
∑

j=1

c(1)j Ψ
(1)
j

!

+Ex(I ) f

=
M
∑

j=1

c(0)j Ex(H )Ψ (0)j +
M
∑

j=1

c(1)j Ex(H )Ψ (1)j +Ex(I ) f . (2.20)

Setting ξγ =ExξΓ and substituting it into the BEP (2.7) with g =B (h ) f yields:

Pγξγ = ξγ−T r (h )G (h )B (h ) f

PγExξΓ = ExξΓ −T r (h )G (h )B (h ) f

Pγ

 

M
∑

j=1

c(0)j Ex(H )Ψ (0)j +
M
∑

j=1

c(1)j Ex(H )Ψ (1)j +Ex(I ) f

!

=
M
∑

j=1

c(0)j Ex(H )Ψ (0)j +
M
∑

j=1

c(1)j Ex(H )Ψ (1)j +Ex(I ) f −T r (h )G (h )B (h ) f

M
∑

j=1

c(0)j PγEx(H )Ψ (0)j +
M
∑

j=1

c(1)j PγEx(H )Ψ (1)j +PγEx(I ) f

=
M
∑

j=1

c(0)j Ex(H )Ψ (0)j +
M
∑

j=1

c(1)j Ex(H )Ψ (1)j +Ex(I ) f −T r (h )G (h )B (h ) f .
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By collecting similar terms, we obtain the following system of linear algebraic equations

M
∑

j=1

c(0)j (Pγ− Iγ)Ex(H )Ψ (0)j +
M
∑

j=1

c(1)j (Pγ− Iγ)Ex(H )Ψ (1)j

= (Iγ−Pγ)Ex(I ) f −T r (h )G (h )B (h ) f (2.21)

where Iγ represents the identity operator in the space of grid functions ξγ defined on γ. System

(2.21) can be written in matrix form:

Q c = F (2.22)

where the matrix Q =
�

Q (0), Q (1)
�

is given by

Q =
�

(Pγ− Iγ)ExΨ (0)1 , ... , (Pγ− Iγ)ExΨ (0)M ,
︸ ︷︷ ︸

Q (0)

(Pγ− Iγ)ExΨ (1)1 , ... , (Pγ− Iγ)ExΨ (1)M
︸ ︷︷ ︸

Q (1)

�

. (2.23)

This matrix has dimension |γ| ×2M where |γ| is the number of nodes in the grid boundary γ. The

column vector

c = [c1, ... , cM
︸ ︷︷ ︸

c (0)ᵀ

, cM+1, ... , c2M
︸ ︷︷ ︸

c (1)ᵀ

]ᵀ (2.24)

in equation (2.22) is a vector of unknowns with dimension 2M , while the vector F has dimension

|γ| and represents the inhomogeneous part of the problem: (Iγ−Pγ)Ex(I ) f −T r (h )G (h )B (h ) f . The

first M columns of Q in (2.23) form the sub-matrix Q (0) and correspond to the coefficients {c (0)j } in

(2.24), while columns M +1 through 2M form Q (1) and correspond to {c (1)j }.
Note that, solution to (2.22) is not unique, as the system is derived only from (2.7), (2.4) and

does not take into account any boundary conditions. Therefore, we interpret the underdetermined

system (2.22) as a core piece of the multi-subdomain decomposition algorithm, rather than a system

to be solved in its own right. The decomposition algorithm is described in Section 2.1.2 for the

case of two subdomains and subsequently extended in Section 2.1.3 to the case of a larger number

of subdomains. For a discussion about implementing boundary conditions and completing the

algorithm in the single domain case, see [D. S. Britt et al., 2013; S. Britt et al., 2011; Medvinsky et al.,

2012, 2016; Ryaben’ kii, 2002].

2.1.2 Extension to 2 Subdomains

Reconsider the problem of solving (2.1) over a partitioned domain as in Figure 1.6. Let Γ (i ) represent

the boundary ofΩi , and let each Γ (i ) be composed of its four sides as in Figure 2.5, so that Γ (i , j ) denotes

side j of Γ (i ). Further, define a new set of indices, B , to be the indices of Γ (i , j ) that correspond to the

boundary edges. For the two-domain case, this yields B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 4)}, as well

as its complement B û = {(1, 4), (2, 3)} for the indices corresponding to both sides of the interface Σ.
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Let all grid sets and operators from Section 2.1.1 be defined for Ω1 and Ω2, independently. Partition

and index the matrix Q and the unknown column vector c with the following notation:

Q (i ,∗,k ) =
�

Q (i ,1,k ) Q (i ,2,k ) Q (i ,3,k ) Q (i ,4,k )
�

c (i ,∗,k ) =
�

c (i ,1,k )ᵀ c (i ,2,k )ᵀ c (i ,3,k )ᵀ c (i ,4,k )ᵀ
�ᵀ

.

For Q (i , j ,k ), the indices i ∈ {1, 2} and j ∈ {1, 2, 3, 4} denote those columns corresponding to the basis

functions defined to be non-zero over Γ (i , j ). The index k ∈ {0, 1} distinguishes between the Dirichlet

and Neumann data (compare to the notation Q (0) and Q (1) in Section 2.1.1.5). The use of c (i , j ,k )

similarly identifies the coefficients of the corresponding basis functions over Γ (i , j ) in either the

Dirichlet or Neumann case. The independent linear systems for Ω1 and Ω2 can then be written as

Q (1,∗,∗)c (1,∗,∗) = F (1) and Q (2,∗,∗)c (2,∗,∗) = F (2)

where Q (i ,∗,∗) =
�

Q (i ,∗,0) Q (i ,∗,1)
�

and c (i ,∗,∗) =
�

c (i ,∗,0)ᵀ c (i ,∗,1)ᵀ
�ᵀ

. Note that the construction of Q (i ,∗,∗)

is identical to that of (2.23) over a single subdomain. Equivalently, the independent linear systems

can be expressed simultaneously as the block-diagonal system

�

Q (1,∗,∗) 0

0 Q (2,∗,∗)

��

c (1,∗,∗)

c (2,∗,∗)

�

=

�

F (1)

F (2)

�

. (2.25)

Similar to (2.22), the solution to (2.25) is not unique because it is derived only from the discrete BEP

(2.7) combined with (2.4) for each subdomain and does not account for the boundary condition

(2.1b). Additionally, since Ω has been decomposed into Ω1 and Ω2, an interface (or transmission)

condition is needed to account for the lack of a boundary condition along the interface Σ.

2.1.2.1 Boundary Conditions

To account for the boundary conditions, consider one Γ (i , j ) (for (i , j ) ∈ B ). Substitute the series

representation at the boundary (cf. (2.17)) into the boundary condition (2.1b) for both u and ∂ u
∂ n .

Expand the right-hand side of (2.1b) as φ =
∑M ∗

m d
(i , j )
m ψm (using the same basis functions as in

(2.15)). Then,

α

�

M ∗
∑

m=1

c (i , j ,0)
m ψm

�

+β

�

M ∗
∑

m=1

c (i , j ,1)
m ψm

�

=
M ∗
∑

m

d (i , j )
m ψm . (2.26)

Assuming that the basis functionsψm are orthogonal, we derive from (2.26):

αc (i , j ,0)
m +β c (i , j ,1)

m = d (i , j )
m , for m ∈ {1, ..., M ∗}. (2.27)

The M ∗ equations (2.27) can be obtained for each index pair in B , adding a total of 6M ∗ extra

equations. Note here that the sets of equations obtained for each Γ (i , j ) are independent from one

another, allowing greater flexibility in the boundary condition (2.1b). For example, the definitions
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of α and β in (2.1b) can be piece-wise constant, split along the different sections of Γ , i.e. on Γ (i , j )

α=α(i , j ) β =β (i , j ) (2.28)

whereα(i , j ) andβ (i , j ) are constants and
�

α(i , j ),β (i , j )
�

6= (0, 0) for any pair (i , j ) ∈ B . This generalization

allows for both Dirichlet and Neumann conditions (β (i , j ) = 0 or α(i , j ) = 0, respectively) as particular

cases. The equations being added by (2.27) are sparse compared to the rest of (2.25), which can

be taken advantage of computationally, see Section 2.1.2.3. Further information on implementing

mixed boundary conditions, as well as extending this process to include variable coefficient Robin

conditions, can be found in [D. S. Britt et al., 2013].

2.1.2.2 Interface Condition

The standard interface condition requires continuity of the solution and its flux across the interface

(see Section 1.2.1.1). These two conditions can be enforced by equating the series representations of

the Dirichlet data along Γ (1,4) and Γ (2,3), as well as setting the series representation for the Neumann

data of Γ (1,4) equal to the negative of that for Γ (2,3):

M ∗
∑

m=1

c (1,4,0)
m ψm =

M ∗
∑

m=1

c (2,3,0)
m ψm (2.29a)

M ∗
∑

m=1

c (1,4,1)
m ψm =−

M ∗
∑

m=1

c (2,3,1)
m ψm . (2.29b)

As with the boundary conditions in Section 2.1.2.1, the use of identical sets of orthogonal basis

functions along each side is exploited to obtain the following two sets of equations for each m ∈
{1, ..., M ∗}:

c (1,4,0)
m − c (2,3,0)

m = 0, (2.30a)

c (1,4,1)
m + c (2,3,1)

m = 0. (2.30b)

Collectively, (2.30) provides 2M ∗ equations to supplement (2.25).

Alternative interface conditions can be chosen and implemented in a similar fashion. For

example, if ui is the solution to the subproblem on Ωi , then for constants a (0), a (1), b (0), b (1) and

smooth functions η(0),η(1), a class of interface conditions can be defined as follows on the interface

Γ (1,4) = Γ (2,3):

a (0)u1+ b (0)u2 =η
(0) a (1)

∂ u1

∂ n1
+ b (1)

∂ u2

∂ n2
=η(1). (2.31)

Any transmission conditions of type (2.31) can be accounted for by following the same steps as

in (2.29) and (2.30). The only addition is to let η(0) =
∑M ∗

m=1η
(0)
mψm and η(1) =

∑M ∗

m=1η
(1)
mψm be the
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expansions of η(0) and η(1). This yields

a (0)c (1,4,0)
m + b (0)c (2,3,0)

m =η(0)m

a (1)c (1,4,1)
m + b (1)c (2,3,1)

m =η(1)m

as the conditions for the coefficients, where the choice of a (0) = a (1) = b (1) = 1, b (0) = −1, and

η(0) ≡η(1) ≡ 0 recovers the original condition. By allowing linear combinations and inhomogeneities

in the interface conditions, a wider set of situations such as jumps over the interface in the solution,

its flux, or both can be accounted for. In this work, however, we are only considering the case where

the solution and its flux are continuous on Σ.

2.1.2.3 Solving the Complete System

By supplementing the system (2.25) with the equations derived in (2.27) and (2.30), the complete

system can be expressed as a new matrix equation

Q c (∗,∗,∗) = F (2.32)

where the dimension of Q is (2|γ|+8M ∗)×16M ∗. The system (2.32) can be solved by minimizing the

`2 norm ‖Q c (∗,∗,∗)−F ‖2 through traditional least squares methods, e.g., a QR-factorization. Note that

while the least squares solution is unique, it is the existence of a classical solution to (2.1) — from

which (2.32) is ultimately derived — that guarantees ‖Q c (∗,∗,∗) − F ‖2 will be within discretization

error of zero. In fact, if M ∗ is chosen large enough in (2.17), then ‖Q c (∗,∗,∗)− F ‖2 decreases at a rate

of O (h 4) (the order of accuracy of the finite difference scheme) as the grid is refined.

Rather than adding equations (2.27) and (2.30) to the system, these conditions can instead

be resolved through substitution and the elimination of unknowns. For the boundary condition

equations (2.27), first consider the case where (2.1b) reduces to a Dirichlet boundary condition

(i.e. α = 1, β = 0). In this case, the coefficients c (i , j ,0) (for (i , j ) ∈ B ) are obtained directly when

expanding the right-hand side of (2.1b), eliminating those coefficients from the larger linear system.

The coefficients in c (i , j ,0) are multiplied by the corresponding columns of Q (i , j ,0), then subtracted

over to the right-hand side of (2.25). If (2.1b) reduces to a Neumann condition (i.e. α = 0, β = 1),

the same process is followed but for c (i , j ,1) and Q (i , j ,1). In either case, this process eliminates 6M ∗

unknowns from the system (M ∗ unknowns for each (i , j ) ∈ B ) leaving 10M ∗ unknowns rather than

the original 16M ∗ unknowns.

When (2.1b) does not reduce to a Dirichlet or Neumann condition (α 6= 0 and β 6= 0), we can still

eliminate unknowns by means of substitution. Consider (2.27), and rearrange the terms to solve for

either c
(i , j ,0)
m or c

(i , j ,1)
m :

c (i , j ,1)
m =

1

β
d (i , j )

m −
α

β
c (i , j ,0)

m . (2.33)

From (2.33), the 1
β d

(i , j )
m terms can be multiplied by the corresponding columns of Q (i , j ,1) and sub-

tracted to the right-hand side, while the αβ c
(i , j ,0)
m terms can be combined with their like terms from the
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original system (2.25). Similar to the Dirichlet and Neumann cases, 6M ∗ unknowns are eliminated

from the system.

The interface conditions (2.30a) can be accounted for by adding the respective columns, Q (1,4,0)
m

and Q (2,3,0)
m , and eliminating one of the coefficients, c (1,4,0)

m or c (2,3,0)
m . As these conditions exist for

m ∈ {1, ..., M ∗}, resolving the interface conditions this way eliminates M ∗ unknowns from the

system. Following the same process for (2.30b) (subtracting columns instead of adding) eliminates

an additional M ∗ unknowns.

In the case where (2.27) and (2.30) are included as supplemental equations, the overall system

has dimension (2|γ|+ 8M ∗)× 16M ∗. If the conditions are resolved, the dimension is reduced to

2|γ| ×8M ∗, which enables faster solution. The solution vector c (∗,∗,∗) is used to reconstruct ξΓ (1) and

ξΓ (2) through the series representation (2.17) for each subproblem. In turn,ξΓ (1) andξΓ (2) are extended

to their respective grid boundaries, as described in Section 2.1.1.3. Finally, a fourth-order accurate

approximation to the unique solution of (2.1) is obtained by applying (2.8) to the resulting ξγ(1) and

ξγ(2) . These approximations collectively provide an approximation of the global solution to (2.1) on

the overall domain Ω.

2.1.3 Extension to N Subdomains

The extension to N subdomains is a natural extension of the two-subdomain case. Consider (2.1)

over a domain Ω that is split into N identical (square) subdomains, whose interfaces are full edges

of the squares (see Figure 2.6). Returning to the triple index notation used in Section 2.1.2, let

Figure 2.6 Examples of domains that have a valid N−subdomain decomposition.

the first argument vary from 1 to N , rather than stopping at 2, and let all grid sets and operators

from Section 2.1.1 be defined independently for each Ωi . To build the matrix for the linear system,

combine the Q (i ,∗,∗) from each subdomain in a block-diagonal style. The vectors of unknowns and
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right-hand sides from each subdomain are simply appended to create the following system:













Q (1,∗,∗) 0 0 0

0 Q (2,∗,∗) 0 0

0 0
... 0

0 0 0 Q (N ,∗,∗)

























c (1,∗,∗)

c (2,∗,∗)

...

c (N ,∗,∗)













=













F (1)

F (2)

...

F (N )













. (2.34)

To generalize the handling of boundary and interface conditions, extend the definition of the set B

B =
�

(i , j )
�

�Γ (i , j ) ∩ ∂ Ω 6= ;
	

(2.35)

so that |B ∪ B û| = 4N . If (i , j ) ∈ B , then Γ (i , j ) has an associated boundary condition specified by

(2.1b) and the process described in Section 2.1.2.1 can be applied for each (i , j ) ∈ B to obtain the

necessary supplemental equations. If (i , j ) ∈ B û, then Γ (i , j ) is an interface, requiring the process

from Section 2.1.2.2 to determine the supplemental equations. Adding these equations yields the N

subdomain version of (2.32):

Q N c (∗,∗,∗) = F N (2.36)

where Q N and F N represent the matrix from the left-hand side of (2.34) and the vector of the

right-hand side, respectively, after being supplemented with boundary and interface condition

equations. The shape of the domain determines how many equations correspond to boundary

conditions as opposed to interface conditions, but there will always be 4N M ∗ equations added to

(2.34) (M ∗ equations for each Γ (i , j )). As in Section 2.1.2.3, these equations can often be resolved with

substitution and elimination to reduce the cost of solving the linear system.

2.1.4 Implementation Details

In this section, we provide the important implementation details of the proposed algorithm, which

are further justified in Section 2.1.5. We assume that all subdomains are identical squares and that

Ω satisfies the requirements described at the beginning of Section 2.1.3 and in Figure 2.6. In (2.1a),

we assume that the wavenumber k is piece-wise constant over Ω, and constant on any given Ωi .

Such assumptions allow the exploration of the best-case scenario. A brief discussion of possible

generalizations is given in Section 2.4. Consider the following summary of the algorithm:

1. For each Ωi :

(a) Define the auxiliary problem (2.2), as well as the grid sets and operators from Sec-

tion 2.1.1.2.

(b) Compute Q (i ,∗,∗), the left-hand side of (2.22).

(c) Compute PγEx(I ) f and T r (h )G (h )B (h ) f to form F (i ) from the right-hand side of (2.21).

2. Solve (2.36) for c (∗,∗,∗):
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(a) Assemble (2.34) and resolve the boundary conditions and interface conditions (either as

supplemental equations or as in Section 2.1.2.3).

(b) Compute the QR-factorization of Q N =Q R .

(c) Compute c (∗,∗,∗) =R−1Q ∗F N where Q ∗ is the conjugate transpose of Q .

3. For each Ωi :

(a) Use c (i ,∗,∗) and the series representation (2.17) for each Γ (i , j ) to reconstruct the boundary

data.

(b) Extend ξΓ (i ) using Ex to obtain ξγ.

(c) Apply (2.8) to ξγ to obtain a local, fourth-order approximation to the solution u on Ωi .

The local solutions are then assembled to collectively provide a global approximation of the solution

u on Ω. Note, that the entirety of steps 1 and 3 can be distributed on parallel processors for each

subdomain. Once the algorithm has been run, the structure of the method allows several problem

variations to be solved more economically because they do not affect the structure of terms that

have already been computed in specific parts of steps 1 and 2.

The first part of the algorithm that requires special consideration is step 1(b). Constructing

Q (i ,∗,∗) is expensive (see Section 2.1.5), but in general we do not need to recompute it every time

the algorithm is run. Due to the use of geometrically identical subdomains as well the same set

of basis functions throughout the problem, the only factor that distinguishes Q (i ,∗,∗) from Q ( j ,∗,∗) is

the wavenumber k on Ωi and Ω j . Therefore, Q (i ,∗,∗) can be reused for any subdomain Ω j such that

the value of k is shared across both Ωi and Ω j . The cost to construct Q (i ,∗,∗) should only be accrued

once for each unique value of k across all subdomains. In the case where k is uniform across Ω,

Q (i ,∗,∗) =Q ( j ,∗,∗) for all i , j ∈ {1, ..., N }, so the base linear system is only computed once, regardless of

the number of subdomains. Further, as long as each Q (i ,∗,∗) is saved after being computed, it can

be reused in future problems for subdomains with the corresponding value of k , thus allowing the

algorithm to run without constructing any Q (i ,∗,∗) matrices. In this sense, we consider Q (i ,∗,∗) to be

pre-computed, thereby separating the cost of its construction from the run-time complexity of the

algorithm.

In step 2(b), a QR factorization is used to find the least squares solution of the matrix equation

(2.36). The cost of QR factorization grows as the number of subdomains increases (see Section 2.1.5).

However, once the factorization has been performed, changes to the right-hand sides of (2.1a) and

(2.1b) (i.e., f and φ, respectively) do not affect the left-hand side of (2.36). Thus, for a series of

problems where only f and φ vary, the cost of the QR factorization is only accrued on the first

problem, effectively sharing its cost between such problems. Examples of the time saved in such

cases are reported in Section 2.2. Further, in the case whereφ changes while f remains the same,

step 1(c) can also be reused, thus starting the algorithm from step 2(c) and saving the cost of applying

G (h ) in step 1(c).
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Finally, if the type of boundary condition is changed on a given Γ (i , j ) by changing the piecewise-

constant values of α or β on the left-hand side of (2.1b), then the algorithm can begin at step 2(a).

However, in practice we do not exploit this case for time savings as step 2(a) is relatively inexpensive

to compute.

2.1.5 Complexity

The complexity of the algorithm depends on two main factors: Solving the discrete AP (i.e. applying

the operator G (h )) and computing the QR-factorization of Q N from (2.36). Further, the applications

of G (h ) include the pre-computed construction of Q (i ,∗,∗) and the run-time steps 1(c) and 3(c) of the

algorithm. We emphasize that our algorithm provides the exact solution of the discrete Helmholtz

problem, as opposed to the traditional DDMs that are typically iterative. Due to the non-iterative

nature of our method, a direct comparison of its complexity to that of the conventional DDMs is

poorly defined and not explored in this chapter. We, however, provide a thorough analysis of the

complexity of our method as it depends on the various parameters of the discretization.

First, consider applications of G (h ). This operator is only applied to individual subdomains, so

let n be the number of grid nodes in one direction in the discretization of an auxiliary domain.

Recall from Section 2.1.1.1 the choice of boundary conditions for the y−boundaries in (2.2) and

the requirement that k be constant on Ωi . These choices allow the discrete AP to be solved with a

combination of a sine-FFT in the y−direction and a tridiagonal solver in the x−direction, yielding a

complexity of O (n 2 log n ). This is the contribution of one application of G (h ), but G (h ) gets applied

many times over the course of the method. In particular, the construction of any Q (i ,∗,∗) requires

8M ∗ applications of G (h ) — one for each column — giving the construction of Q (i ,∗,∗) a complexity

of O
�

M ∗n 2 log n
�

. In the worst-case scenario where every subdomain has a unique value of k , the

construction of all N of the distinct Q (i ,∗,∗) matrices is O
�

N M ∗n 2 log n
�

. However, it is important

to note that the columns of Q (i ,∗,∗) are independent of one another, allowing the construction of

Q (i ,∗,∗) to be distributed to a number of parallel processors up to the horizontal dimension of the

matrix. Furthermore, G (h ) is also applied twice to every subdomain to construct the right-hand side

of (2.34), and an additional application is required in (2.8) to obtain the final approximation. These

3N applications contribute O (N n 2 log n ) to the overall method complexity.

The cost of the QR-factorization of Q N from (2.36) is the other main contribution to the method’s

complexity. Assuming that (2.36) is formed by resolving the boundary and transmission conditions

as discussed in Section 2.1.2.3, the dimensions of Q N are N |γ| × 4N M ∗. Note that |γ| is roughly

proportional to n because γ only contains those nodes closest to the boundary of the subdomain, see

Figure 2.4c. The QR-factorization of a matrix depends linearly on the first dimension and quadrati-

cally on the second, giving our QR-factorization a complexity of O
�

(N n )(N M ∗)2
�

, or equivalently,

O
�

N 3n (M ∗)2
�

. Further, M ∗ is typically held constant for a given collection of problems (the selection

of M ∗ is discussed further in Section 2.2), so we consider the cost to be O
�

N 3n
�

. When the number

of subdomains is large, it will become necessary to avoid repeating the QR-factorization when

possible as discussed in Section 2.1.4, which leaves us with the O
�

N 2n
�

operation of multiplying
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R−1Q ∗ by the source vector F N .

Combining the costs of solving the AP and computing the QR-factorization gives the method

an overall complexity of O
�

N 3n +N n 2 log n
�

. For comparison, consider a simplified situation: let

Ω be a square, and let N =N 2
d such that there are Nd subdomains along each side of Ω, allowing

the complexity to be rewritten as O
�

nN 6
d +n 2N 2

d log(n )
�

. Consider solving (2.1) over this Ω with

a finite-difference method and without domain decomposition. If the wavenumber is constant

and uniform, and the boundary conditions on either the x− or y−boundaries are homogeneous

Dirichlet conditions, then we can directly use the FFT-based solver mentioned earlier. This domain

has nNd nodes in each direction, so the complexity of this method would be O
�

(nNd )2 log(nNd )
�

.

This complexity is better than that of the proposed method. Yet we stress that the FFT-based solver is

only applicable in this simplest case, and is inflexible in terms of boundary conditions and variation

of the wavenumber. In order to relax the requirements on the wavenumber and boundary conditions,

we would need to resort to an LU or similar factorization to invert the finite difference operator with

a complexity of O
�

((nNd )2)3
�

= O
�

(nNd )6
�

. This approach can capture a wide range of boundary

conditions and a variable wavenumber, but it is still ill-suited to cases with piecewise-constant k , as

the global solution loses regularity at the interfaces. In these simple cases where all methods apply,

the FFT- and LU-based solvers provide lower and upper bounds for the expected performance of

our method. However, unlike these two methods, our method extends naturally to more complex

domain shapes and boundary conditions.

2.2 Numerical Results

In this section, we present numerical results corroborating the fourth-order convergence of the

method, as well as the theoretical computational costs as discussed in Section 2.1.5. For all the test

cases, we consider the Helmholtz equation (2.1) where the wavenumber k is constant on any given

Ωi but piecewise constant over Ω. The coefficients α and β from (2.1b) are piecewise constant on

each Γ (i ) such that each is constant on any given subdomain edge, Γ (i , j ). However, for convenience

in presentation, most examples use a uniform boundary condition across the entire ∂ Ω.

In all the test cases, we choose the domain Ω such that it can be split into N identical, square

subdomainsΩi , whose interfaces are all full edges. EachΩi has side length 2 and every corresponding

auxiliary domain is a square with side length 2.2. For consistency, we always letΩ1 be centered at the

origin. Two particular domain shapes that provide convenient and systematic settings for analysis

are a long duct and a large square. The duct is a quasi-one dimensional decomposition where Ωi+1

extends from Ωi in the positive x−direction, allowing us to directly observe various behaviors of the

method with respect to the number of subdomains N . On the other hand, a square domain will

be decomposed into N =N 2
d subdomains as discussed in Section 2.1.5, where Ω1 is again centered

at the origin, and acts as the “bottom-left" corner of Ω (see Figure 2.11), with N − 1 subdomains

extending in both the positive x− and y− directions. This domain gives us less direct control over

N itself, but it provides a framework to observe the method’s performance in the presence of an
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increasing number of interior cross-points.

All auxiliary problems are solved with the method of difference potentials employing the fourth-

order accurate compact finite difference scheme (1.9) on a series of Cartesian grids, starting with n =

64 cells uniformly spaced in each direction and progressively doubling n with each refinement. The

number of basis functions M ∗ used in the expansion of ξΓ (i , j ) is generally chosen grid-independent

[Medvinsky et al., 2012], such that the boundary data are represented to a specified tolerance that is

smaller than the error attainable on the given grids. Further increasing M ∗ offers little to no benefit

in the final accuracy of the method as we are still limited by the accuracy of the finite difference

scheme. It has even been observed that selecting M ∗ too large can have adverse effects on the overall

accuracy [D. S. Britt et al., 2013], particularly on coarse grids. In this event, it is sufficient to simply

reduce M ∗ for the coarse grids, a practice that we indicate in the relevant results.

There are two kinds of test problems in this section: those with a known exact solution, and those

without a known solution. For the test cases with a known solution, the source term and boundary

data are derived by substituting the solution into the left-hand side of (2.1a) and (2.1b), respectively.

In this case, the error is computed by taking the maximum norm of the difference between the

approximated and the exact solution on the gridM+ (across all subdomains). The convergence rate

is then determined by taking the binary logarithm of the ratio of errors on successively refined grids.

In general, these test cases either have a uniform wavenumber throughout the domain, or are posed

across a small number of subdomains in order to simplify the derivation of an exact solution.

On the other hand, when we want to specify the boundary conditions, source function, or piece-

wise constant wavenumber, we do not necessarily have an exact solution available and therefore

cannot compute the error directly to determine convergence. Instead, we introduce a grid-based

metric where we compare the approximations on the shared nodes of successively refined grids.

For a grid with n ×n nodes, we denote the corresponding approximation by u (h )n . Because of how

the grids are structured, the nodes of the n
2 ×

n
2 grid are a subset of those in the n ×n grid, so we

can compute the maximum norm of the difference between these approximations, ‖u (h )n −u (h )n
2
‖∞,

on the nodes ofM+ from the n
2 ×

n
2 grid. Similar to the first case, we can then estimate the conver-

gence rate by considering the binary logarithm of the ratio of these maximum norm differences

on successive grids. The new convergence metric does not evaluate the actual error. If, however,

the discrete solution converges to the continuous one with a certain rate in the proper sense, then

this alternative metric will also indicate convergence with the same rate regardless of whether the

continuous solution is known or not and so it is convenient to use when the true solution is not

available.

All of the computations in this section were performed in MATLAB (ver. R2019a) and used the

package Chebfun [Driscoll et al., 2014] to handle all Chebyshev polynomial related operations. The

QR-factorizations were performed using MATLAB’s built-in ‘economy-size’ QR-factorization.
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2.2.1 Uniform Wavenumber

In order to measure the complexity of the solver, we start with the case of one subdomain (i.e.Ω1
∼=Ω).

We use the homogeneous test solution u = e i kp
2
(x+y ) with wavenumber k = 13, M ∗ = 40, and Robin

boundary conditions defined by α = 1 and β = 1 in (2.1b). The results in Table 2.1 corroborate

both the fourth-order convergence rate of the overall method and the computational complexity

of solving the discrete AP. As discussed in Section 2.1.5, for a grid with n nodes in each direction,

the FFT-based solver should have a complexity of O (n 2 log n ), which produces the scale factors of

approximately 4 in the right-most column of Table 2.1 as n is doubled. Note that Table 2.1 also

corroborates the same complexity for the construction of Q from (2.22) (or equivalently, Q (i ,∗,∗)

from (2.34)) because the dominating cost of constructing Q is the application of G (h ) for every basis

function in the subdomain. Note that, the G (h ) timings will remain approximately constant for any

number of subdomains N (up to the available number of processors), with only small increases due

to the overhead incurred by parallel communication.

Table 2.1 Grid convergence and time (in seconds) to apply G (h ) to solve the discrete AP for the single sub-

domain base case. The test solution is e i kp
2
(x+y ) with k = 13, the Robin boundary conditions are defined by

α=β = 1 in (2.1b), and M ∗ = 40.

n Error Rate G (h ) time Ratio

64 1.05e-03 - 0.0064 -
128 6.42e-05 4.04 0.0083 1.30
256 3.94e-06 4.03 0.042 5.07
512 2.47e-07 4.00 0.186 4.44

1024 1.53e-08 4.01 0.824 4.44
2048 9.89e-10 3.95 3.430 4.17

Next, we consider cases where Ω can be decomposed into two or more subdomains, under the

simplifying assumption that k is uniformly constant throughout Ω, sharing the same value on every

Ωi . This case is the simplest to consider because every Ωi will use the same Q (i ,∗,∗), removing the

need to compute a new Q (i ,∗,∗) for every possible value of k in a given problem. Tables 2.2 – 2.5

display the grid convergence for several examples that were derived from known test solutions. Note

that for each of these tables, changing the test solution only affects the source and boundary data,

which means Q N from (2.36) and its QR-factorization remain the same for all three test problems.

Hence, for each of Tables 2.2 – 2.5, the QR-factorization is only computed once (during the first case)

and is reused for the second and third cases, allowing those problems to be solved at a reduced cost.

Table 2.2 shows the grid convergence of the case with two subdomains, which uses the example

domain given in Figure 1.6 with basic Robin boundary conditions defined by α = 1 and β = 1 in

(2.1b). By comparing the grid convergence of the first test case in Table 2.2 to that of Table 2.1,

we can see that including the domain decomposition does not affect the convergence rate of the
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method, and also has very little effect on the error itself. The second and third test solutions are

both inhomogeneous, and clearly still converge with the designed rate of convergence.

Table 2.2 Grid convergence for three test solutions over a two-subdomain Ωwhere Ω1 is centered at the
origin and the interface with Ω2 is at x = 1. A uniform wavenumber k = 13 is used in both subdomains,
M ∗ = 40, and the Robin boundary condition is uniformly defined by α=β = 1 in (2.1b). Errors marked with
∗ are computed with M ∗ = 20.

e i kp
2
(x+y ) e

−1
1−(x 2+y 2) sin4(πx )sin(πy )

n Error Rate Error Rate Error Rate

64 8.52e-03 - 7.93e-04∗ - 1.37e-03 -
128 5.15e-04 4.05 3.16e-06∗ 7.97 8.32e-05 4.04
256 3.12e-05 4.05 2.18e-07 3.86 5.13e-06 4.02
512 1.91e-06 4.03 1.34e-08 4.03 3.19e-07 4.01

1024 1.20e-07 4.00 8.31e-10 4.01 2.00e-08 4.00
2048 7.37e-09 4.02 5.18e-11 4.00 1.26e-09 3.99

In Table 2.3, we use the exact same test solutions, wavenumber, and boundary conditions as in

Table 2.2, but on a larger scale with N = 24 subdomains extending in the positive x−direction from

Ω1. On this larger scale, we can directly observe the O (N 3n ) complexity of the QR-factorization with

respect to n , which was explained in Section 2.1.5 (see Table 2.6 for the complexity with respect to

N ). In the first two columns of Table 2.3, we see that as the grid dimension n is doubled, the time

for the QR-factorization is approximately doubled as well.

Table 2.3 Grid convergence and QR-factorization timing for three test solutions where Ω is a long duct of
N = 24 subdomains. Ω1 is centered at the origin and each subsequent Ωi is attached horizontally in the
positive x−direction. A uniform wavenumber k = 13 is used in all subdomains, M ∗ = 40, and the Robin
boundary condition is uniformly defined by α=β = 1 in (2.1b). The ratios of QR times demonstrates linear
complexity with respect to the grid dimension n . Errors marked with ∗ were computed with M ∗ = 20. Note
that the QR-factorization does not need repeated for the ∗ cases, as their factorizations can be extracted
directly from the existing factorization in each case.

e i kp
2
(x+y ) e

−1
1−(x 2+y 2) sin4(πx )sin(πy )

n QR Time Ratio Error Rate Error Rate Error Rate

64 3.23 - 3.89e-02 - 8.34e-04∗ - 1.07e-03 -
128 6.58 2.00 8.08e-04 5.59 4.29e-06∗ 7.60 6.38e-05 4.07
256 13.50 2.05 4.85e-05 4.06 6.10e-07 2.81 3.95e-06 4.01
512 28.91 2.14 3.01e-06 4.01 3.80e-08 4.00 2.46e-07 4.01

1024 60.13 2.08 1.89e-07 4.00 2.38e-09 4.00 1.54e-08 4.00
2048 108.77 1.81 1.39e-08 3.77 1.51e-10 3.98 1.02e-09 3.91
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Table 2.4 Grid convergence for three test solutions where Ω is a large square comprising of 3 subdomains
in each direction, and the bottom left subdomain is centered at the origin. A uniform wavenumber k = 13
is used in all subdomains, M ∗ = 40, and the Robin boundary condition is uniformly defined by α=β = 1 in
(2.1b). Errors marked with ∗ are computed with M ∗ = 20.

e i kp
2
(x+y ) e

−1
1−(x 2+y 2) sin4(πx )sin(πy )

n Error Rate Error Rate Error Rate

64 9.08e-03 - 8.63e-04∗ - 1.86e-03 -
128 5.76e-04 3.98 4.76e-06∗ 7.50 1.12e-04 4.06
256 3.63e-05 3.99 1.64e-07 4.86 6.92e-06 4.01
512 2.27e-06 4.00 1.02e-08 4.01 4.30e-07 4.01

1024 1.42e-07 4.00 6.39e-10 4.00 2.70e-08 4.00
2048 8.83e-09 4.01 4.01e-11 3.99 1.69e-09 3.99

The case of a large square domain is reported in Table 2.4, with the same three test solutions

as previous tables. In this case, there is a subdomain that is entirely interior and therefore has no

boundary condition given, as well as numerous cross-points where more than two subdomains

meet at a single point. As can be seen in Table 2.4, the errors and convergence rate are unaffected by

the presence of an interior subdomain and cross-points in this simple case, while more extreme

cases are presented in Tables 2.10 and 2.11 in Section 2.2.2.

Table 2.5 Grid convergence for three test solutions over two subdomains with mixed boundary conditions
as indicated in Figure 2.7. A uniform wavenumber k = 13 is used in both subdomains, and M ∗ = 40. Errors
marked with ∗ are computed with M ∗ = 20.

e i kp
2
(x+y ) e

−1
1−(x 2+y 2) sin4(πx )sin(πy )

n Error Rate Error Rate Error Rate

64 1.73e-03 - 2.08e-04∗ - 9.61e-04 -
128 1.05e-04 4.04 3.49e-06∗ 5.90 5.86e-05 4.04
256 6.55e-06 4.01 1.56e-07 4.49 3.62e-06 4.02
512 4.10e-07 4.00 9.69e-09 4.01 2.25e-07 4.01

1024 2.56e-08 4.00 6.06e-10 4.00 1.41e-08 3.99
2048 1.60e-09 4.00 3.79e-11 4.00 8.77e-10 4.01

Table 2.5 displays the grid convergence for a problem with mixed boundary conditions (see also

Figure 2.7), showing that the method is robust enough to handle such boundary conditions without

affecting its convergence rate. The domain, wavenumber, and test solutions in Table 2.5 are the

same as in Table 2.2, saving the cost of two applications of G (h ) (per subdomain) because F in the

right-hand side of (2.34) does not need to be computed. As the type of boundary condition changed

(i.e., α or β in (2.1b) changed) we need to recompute the QR-factorization for the first test solution,
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reusing it for the second and third test solutions.

Figure 2.7 The mixed boundary condition for Table 2.5. The coefficients α and β are defined separately for
each exterior edge of the subdomains.

In Table 2.6, we can see how the timing for the QR-factorization grows with respect to the number

of subdomains, N . Recall from Section 2.1.5 that the complexity of the QR-factorization should be

O
�

N 3n
�

, so as N is doubled we would expect to see the execution time of the QR-factorization in-

crease by a factor of 8. However, as can be seen in Table 2.6, the execution time of the QR-factorization

actually scales slower than its theoretical complexity would suggest, at least for the sizes of problems

we were able to test.

Table 2.6 Timings for the QR-factorization (in seconds) on the 2048×2048 grid. Ω is a long duct of N sub-

domains, and the test solution is u = e i kp
2
(x+y ) with M ∗ = 40 and k = 13 in all subdomains. The Robin

boundary condition is defined by α=β = 1 in (2.1b).

N QR time Ratio

1 0.064 -
2 0.29 4.61
4 1.66 5.65
8 11.72 7.04

16 61.89 5.28
32 362.42 5.86

2.2.2 Piecewise-Constant Wavenumber

We now focus on cases where k is piecewise-constant over Ω (with constant value ki over any Ωi ).

New Q (i ,∗,∗) matrices are needed for any new values of ki , but recall that we only need to compute

Q (i ,∗,∗) once for each unique ki . For the results in this section, it is assumed that any necessary Q (i ,∗,∗)

matrices were appropriately computed ahead of time.

Tables 2.7 and 2.8 show the grid convergence for the two-subdomain and four-subdomain cases,

respectively. In both cases, the test solution is obtained by considering an incident wave, e i k1 x in
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Ω1, and deriving the corresponding reflected and transmitted waves by enforcing continuity of the

function and its normal derivative at each interface. This derivation can be found in Section 2.3.

Table 2.7 shows the results of taking k1=5 and allowing jumps to k2, varying between 13, 20, and

40, with cross-sections of each of these solutions plotted in Figure 2.8. The method maintains its

fourth-order rate of convergence, even on the largest jump from 5 to 40. It is worth pointing out

here that as k2 is increased, we need to increase M ∗ because more oscillatory solutions will require

more basis functions to maintain high-order accuracy. In cases where M ∗ ≥ 50, this causes a loss of

accuracy on the coarsest grid, so M ∗ is reduced only for the n = 64 grid in the relevant test cases.

The four-subdomain case presented in Table 2.8 was derived similar to the two-subdomain case,

but only for one test solution. The values of k on each subdomain in this example are k1 = 3, k2 = 5,

k3 = 13, and k4 = 20, and the solution is plotted in Figure 2.9. Even with four unique wavenumbers,

it can be seen in Table 2.8 that the method still has fourth-order convergence.

Table 2.7 Grid convergence for the two-subdomain test case with the incident wave u = e i k1 x and Dirichlet
boundary conditions, as plotted in Figure 2.8. The jump in wavenumber goes from k1 = 5 to the indicated
value of k2, and M ∗ is chosen separately for each case to ensure accuracy beyond that obtained on the
finest grid. Errors marked with a ∗ were computed with M ∗ = 30.

k1 = 5 k2 = 13 k1 = 5 k2 = 20 k1 = 5 k2 = 40
M ∗ = 40 M ∗ = 50 M ∗ = 60

n Error Rate Error Rate Error Rate

64 3.23e-02 - 8.81e-02∗ - 1.27e+01∗ -
128 1.98e-03 4.03 5.13e-03 4.10 1.08e-01 6.88
256 1.21e-04 4.04 3.13e-04 4.03 6.51e-03 4.06
512 7.59e-06 3.99 1.96e-05 4.00 4.03e-04 4.01

1024 4.69e-07 4.02 1.22e-06 4.01 2.52e-05 4.00
2048 3.09e-08 3.92 7.78e-08 3.97 1.57e-06 4.01

(a) k1 = 5, k2 = 13 (b) k1 = 5, k2 = 20 (c) k1 = 5, k2 = 40

Figure 2.8 Real part of the test solutions from Table 2.7. These solutions have no dependence on y , so
cross-sections in the x−direction are plotted. In each plot, it is clear that the frequency of the plane-wave
changes at the interface.
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Table 2.8 Grid convergence for u = e i k x over four subdomains with Dirichlet boundary conditions, and
wavenumbers k1 = 3, k2 = 5, k3 = 13, and k4 = 20. Ω1 is centered at the origin, and each subdomain extends
in the positive x−direction, with M ∗ = 50. The error marked with a ∗ was computed with M ∗ = 30.

n Error Rate

64 2.02e-02∗ -
128 1.21e-03 4.08
256 7.38e-05 4.03
512 4.61e-06 4.00

1024 2.87e-07 4.01
2048 2.05e-08 3.80

Figure 2.9 Real part of the test solution from Table 2.8. The solution has no dependence on y , so a cross-
section is plotted. Each Ωi has a distinct wavenumber ki , with k1 = 3, k2 = 5, k3 = 13, and k4 = 20. Moving in
the positive x−direction, the wavenumber and frequency increase, while the amplitude decreases.

Additionally, we point out the increase in error as k2 increases in Table 2.7. We attribute this

increase to the pollution effect [Bayliss et al., 1985], because it appears consistent with our addi-

tional observations of the pollution effect for problems with uniform wavenumbers (no jumps)

that are comparable to k2. We therefore conclude that the method is not inherently sensitive to

discontinuities in the wavenumber.

As we allow the test cases to become more complex in geometry and wavenumber distribution,

it becomes more difficult to obtain analytic test solutions. Instead, we specify the boundary and

source data directly, and calculate errors on shared nodes between subsequent resolutions of the

grid. For simplicity, the source function is taken to be a “bump” function:

f (x , y ) =







exp
�

−1
1
4−(x 2+y 2)

�

x 2+ y 2 < 1
2

0 otherwise
(2.37)

In Table 2.9, we present an example of a long duct of N = 16 subdomains with a change in wavenum-

ber at every interface, alternating between k = 5 and k = 40 (depicted in Figure 2.10). The three

cases in Table 2.9 represent homogeneous Dirichlet, Neumann, and Robin (α= β = 1) boundary

conditions, respectively, and show that the method maintains its design rate of convergence for all

three types of boundary conditions.

In Table 2.10, the domain is a large square decomposed into N = N 2
d (cf. Section 2.1.5) sub-
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Table 2.9 Grid convergence on the duct of N = 16 subdomains depicted in Figure 2.10, various homoge-
neous boundary conditions, and the source function from (2.37). The wavenumbers alternate between
k = 5 and k = 40, and M ∗ = 60.

Dirichlet Neumann Robin

n ‖u (h )n −u (h )n
2
‖∞ Rate ‖u (h )n −u (h )n

2
‖∞ Rate ‖u (h )n −u (h )n

2
‖∞ Rate

256 1.51e-03 - 5.79e-04 - 3.50e-04 -
512 1.08e-04 3.81 7.54e-06 6.26 3.57e-06 6.62

1024 6.76e-06 3.99 4.62e-07 4.03 2.19e-07 4.03
2048 4.22e-07 4.00 2.90e-08 3.99 1.38e-08 3.99

Figure 2.10 The decomposition used to compute Table 2.9 where the wavenumbers are alternating in each
subdomain. Ω1 is indicated in the left-most subdomain with each subsequent subdomain being attached
in the positive x−direction. Wavenumbers are assigned as k = 5 for gray subdomains and k = 40 in white
subdomains.

domains, where the piecewise constant values of the wavenumber are defined in a checkerboard

pattern with k = 5 and k = 40 as in Figure 2.11. These examples combine the qualitative aspects of

Tables 2.4 and 2.9, containing cross-points as well as a changing wavenumber at every interface

(now in both the x− and y−directions). We emphasize that no special considerations were given to

internal or boundary cross-points, yet the method’s convergence does not suffer from their presence.

Table 2.10 Grid convergence on a large square decomposed into N =N 2
d subdomains and a checkerboard

pattern for its wavenumber as depicted in Figure 2.11. There are homogeneous Dirichlet boundary condi-
tions and the source function is (2.37). The checkerboard wavenumbers are k = 5 (gray) and k = 40 (white),
with M ∗ = 60.

N = 16 N = 25 N = 36

n ‖u (h )n −u (h )n
2
‖∞ Rate ‖u (h )n −u (h )n

2
‖∞ Rate ‖u (h )n −u (h )n

2
‖∞ Rate

256 8.54e-04 - 6.48e-03 - 4.31e-04 -
512 6.90e-05 3.63 7.45e-04 3.12 1.76e-05 4.61

1024 4.36e-06 3.98 4.90e-05 3.93 1.09e-06 4.01
2048 2.73e-07 4.00 3.06e-06 4.00 6.79e-08 4.01

Table 2.11 shows the final example, which returns to the case of a square domain decomposed

into 3×3 subdomains, but with wavenumbers assigned as in Figure 2.12. In contrast to the config-

urations of Figures 2.10 and 2.11, this example uses a different wavenumber in each subdomain

(similar to Figure 2.9). This is the costliest test case for the method, as Q (i ,∗,∗) is different for every Ωi .
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Figure 2.11 The 4×4 decomposition used in the first case of Table 2.10 where the wavenumbers are assigned
in a checkerboard pattern, with k = 5 in the gray subdomains and k = 40 in the white subdomains.

Figure 2.12 Piecewise constant values of the wavenumber k for the example computed in Table 2.11.

However, we can still use those Q (i ,∗,∗) matrices computed for k = 5,13, and 20 that were used for

earlier examples. In Table 2.11, fourth-order convergence is clearly observed.

Table 2.11 Grid convergence on a square domain decomposed into N = 9 subdomains with homoge-
neous Dirichlet boundary conditions and the source function from (2.37). Each subdomain has a unique
wavenumber as depicted in Figure 2.12, and M ∗ = 60.

n ‖u (h )n −u (h )n
2
‖∞ Rate

256 9.04e-05 -
512 3.14e-06 4.85

1024 1.89e-07 4.05
2048 1.20e-08 3.98

2.2.3 Further Studies

Thus far, we have focused on domains that are either squares or ducts, making it straightforward to

generate solutions that have no singularities and can ensure the design rate of convergence for the

method. Moving beyond simple square and duct decompositions will often introduce reentrant

corners, an example of which is shown in the third plot of Figure 2.6. Reentrant corners may cause

a solution to develop a singularity on the boundary, which in turn can cause the method to lose

its design rate of convergence. In order to observe this phenomenon, we introduce the “Block L”
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Figure 2.13 The “Block L” domain decomposition used in Table 2.12. Ω1 is centered over the origin, with
interfaces to Ω2 and Ω3 at x = 1 and y = −1, respectively. This configuration creates a reentrant corner at
the point (x , y ) = (1,−1).

domain in Figure 2.13 which contains one reentrant corner, and demonstrate the convergence

obtained by our method under two different types of solutions.

Table 2.12 shows the grid convergence over the Block L domain. The first case is derived from the

exact solution u = e i kp
2
(x+y ), and the second case uses a homogeneous Dirichlet boundary condition

with the source function (2.37). In the first case, the test solution contains no singularities, and as

expected Table 2.12 reflects the design rate of convergence. This indicates that the reentrant corner

itself is not an issue for our method. However, the solution in the second case develops a singularity,

and the breakdown in the convergence rate in Table 2.12 is indicative of that. For Case 1, we are able

to compute the error directly with the known test solution, but for Case 2 we compute the error on

successively refined grids as described earlier.

The breakdown of convergence in the second case is a result of the solution’s own singularity,

rather than a shortcoming of the method. The resolution of singularities at reentrant corners with

the MDP has been explored in [Magura et al., 2017]. The method can also handle general shaped

subdomains but these fall outside the scope of this dissertation.

Table 2.12 Grid convergence for the Block L case from Figure 2.13 with Dirichlet boundary conditions and
uniform wavenumber k = 13, with M ∗ = 40. In Case 1, the boundary and source data are derived from the

plane-wave u = e i kp
2
(x+y ), which results in fourth order convergence. In Case 2, the boundary data is zero,

and the source function is given in (2.37). Case 2 develops a singularity at the reentrant corner and breaks
down the convergence.

Case 1 Case 2

n Error Rate ‖u (h )n −u (h )n
2
‖∞ Rate

64 9.58e-04 - - -
128 6.03e-05 3.99 4.08e-06 -
256 3.76e-06 4.00 1.98e-06 1.04
512 2.35e-07 4.00 1.09e-06 0.86

1024 1.47e-08 4.00 1.02e-06 0.10
2048 9.80e-10 3.91 4.70e-07 1.12
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2.3 Supplemental Derivation of a Test Solution

Consider a domain Ω ⊂R2 split into two subdomains, Ω1 and Ω2, as in Figure 2.14. Let each sub-

domain have its own corresponding wavenumber, k1 or k2, which we will assume is constant for

simplicity in this derivation. We seek a function u ∈C 1(Ω) that incorporates the reflected and trans-

mitted parts of an incident wave that starts in Ω1 and propagates toward the interface, located at

x = 0 for simplicity.

Figure 2.14 The setup for deriving the reflected and transmitted parts of a one-dimensional incident wave
hitting an interface in a domain composed of two subdomains.

Let u1 = e i k1 x be the incident wave in Ω1. When the wavenumber changes at the interface x = 0,

u1 is partially reflected back into Ω1 and partially transmitted through to Ω2. The reflected wave

has some amplitude R and travels in the opposite direction of u1, giving us u2 = R e −i k1 x . The

transmitted part, on the other hand, will have its own amplitude T , traveling in the same direction

as u1 and with the wavenumber k2, giving u3 = T e i k2 x . This allows us to write the function u as:

u (x , y ) =







e i k1 x +R e −i k1 x , x ¶ 0

T e i k2 x , x ¾ 0
. (2.38)

The condition to enforce continuity of the function at the interface is

e i k1 x |x=0+R e −i k1 x |x=0 = T e i k2 x |x=0

=⇒ 1+R = T (2.39)
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and for continuity of the derivative we get

�

∂

∂ x
e i k1 x

�

|x=0+
�

∂

∂ x
R e −i k1 x

�

|x=0 =
�

∂

∂ x
T e i k2 x

�

|x=0

=⇒
�

i k1e i k1 x
�

|x=0−
�

i k1R e −i k1 x
�

|x=0 =
�

i k2T e i k2 x
�

|x=0

=⇒ i k1− i k1R = i k2T

=⇒ k1(1−R ) = k2T

=⇒ 1−R =
k2

k1
T . (2.40)

By combining (2.39) and (2.40), we can solve for R and T to get

R =
k2

2k1
−

1

2
, T =

k2

2k1
+

1

2
. (2.41)

The values of R and T from (2.41) can be plugged into (2.38) to obtain the function u (x , y ), defined

across Ω.

Figure 2.15 The setup for deriving the reflected and transmitted parts of a one-dimensional incident wave
hitting an interface in a domain composed of four subdomains.

For a larger case with four subdomains, consider the scenario depicted in Figure 2.15, with

interfaces at x = x1, x2, and x3. This scenario is a direct extension of the two-subdomain case, and

we can obtain a linear system by similarly enforcing continuity of the function and its derivative at

each interface. For example, at the interface between Ω1 and Ω2 (i.e. x = x1) enforcing continuity of

the function itself yields:

c1e i k1 x1 + c2e −i k1 x1 = c3e i k2 x1 + c4e −i k2 x1

which can be rewritten as

c1e i k1 x1 + c2e −i k1 x1 − c3e i k2 x1 − c4e −i k2 x1 = 0.

By including the corresponding conditions for both the function and its derivative at all three
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interfaces, we get the following system of equations:

c1e i k1 x1 + c2e −i k1 x1 − c3e i k2 x1 − c4e −i k2 x1 = 0

c3e i k2 x2 + c4e −i k2 x2 − c5e i k3 x2 − c6e −i k3 x2 = 0

c5e i k3 x3 + c6e −i k3 x3 − c7e i k4 x3 − c8e −i k4 x3 = 0

k1c1e i k1 x1 −k1c2e −i k1 x1 −k2c3e i k2 x1 +k2c4e −i k2 x1 = 0

k2c3e i k2 x2 −k2c4e −i k2 x2 −k3c5e i k3 x2 +k3c6e −i k3 x2 = 0

k3c5e i k3 x3 −k3c6e −i k3 x3 −k4c7e i k4 x3 +k4c8e −i k4 x3 = 0.

Note that this only provides six equations for eight unknowns. As in the two-subdomain case, we

can pick one of the waves to be the incident wave, and choose to set its amplitude to 1 for simplicity,

so we can directly choose c1 = 1. Further, the boundary of Ω is not reflective, which means that

c7e i k4 x does not reflect upon reaching the right boundary, leaving c8 = 0. This leaves six equations

for six unknowns, which allows this problem to be solved uniquely.

The same process can be applied to the N−subdomain case. If we let the incident wave to be

given in Ω1, then its reflection back into Ω1 has an undetermined amplitude. For Ω2 through ΩN−1,

there are two waves traveling in opposite directions for which the amplitudes are also undetermined.

Finally, there is no reflected wave in ΩN , so there is only one amplitude to solve for, yielding a total

of 1+2(N −2)+1= 2N −2 unknowns. This scenario contains N −1 interfaces, and each interface

has two conditions: continuity of the function and continuity of the derivative. These conditions

yield 2(N −1) = 2N −2 equations, allowing us to solve for the 2N −2 unknowns.

2.4 Conclusions

We have adapted the Method of Difference Potentials to solve a non-overlapping Domain Decom-

position formulation for the Helmholtz equation. After solving for the boundary information along

all interfaces, the direct solves for all subproblems can be distributed and performed concurrently.

Further, the formulation is convenient for handling piecewise-constant wavenumbers, as well as

mixed boundary conditions. Numerical results corroborate the fourth-order convergence rate of

the method in numerous situations, most notably for decompositions with cross-points and for

transmission problems with a large jump in the wavenumber. Our formulation also allowed us to

demonstrate different behaviors of the method, such as its performance on solutions with singulari-

ties and the method’s complexity with respect to the number of subdomains or grid dimension.

Once the boundary/interface data have been obtained for the subdomains, only one direct solve

is required per subdomain, and this set of direct solves can be parallelized on a number of processors

up to the number of subdomains. However, this comes at the cost of requiring the QR-factorization

of a large system. Even though the QR-factorization scales slower than its theoretical complexity

would suggest, for cases with more than N = 8 subdomains the QR-factorization already outweighs

the final PDE solves in cost. However, once the QR-factorization has been computed, new problems
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with variations in the source and boundary data can be solved at a reduced cost by simply reusing

the computed QR-factorization. The framework that is laid out in this Chapter can be adapted

and extended in numerous ways to broaden the applicability of the method. Briefly mentioned in

Section 2.1.2.2, interface conditions of the form (2.31) can be implemented trivially along every

interface to account for more complex properties of the solution there, such as jumps in the normal

derivative or solution itself. The method can be generalized to account for a smoothly varying

wavenumber k = k (x , y ) in each subdomain, although it may reduce the efficiency as the FFT-based

solver would no longer be applicable. Base subdomains of a different shape could be included, such

as those with piecewise-curvilinear boundaries, in order to account for more complex geometries.

In this chapter, we have built a domain decomposition framework from a fundamental building

block. In Chapter 3 we implement that framework in conjunction with a new type of building block.

This new building block permits simulations over domains with more interesting properties (e.g.

refraction across circular rods rather than just across linear interfaces). The implementation of

absorbing boundary conditions for these subdomains is also described. Together, the new building

block and absorbing boundary conditions allow us to simulate a particular kind of waveguide —

a photonic crystal ring resonator — the structure of which contains periodicities and material

discontinuities that lend themselves naturally to our method.
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CHAPTER

3

COMPOSITE SUBDOMAINS FOR PCRR

SIMULATIONS

In addition to the empty square building block (subdomain) described in Section 2.1.1, the decom-

position of a PCRR (Figure 1.3) also requires a building block that consists of a square with an interior

scattering object. This building block should fit into the decomposition framework described in

Chapter 2, allowing edges to be implemented both as exterior edges (boundary conditions) or inte-

rior edges (interface conditions). The focus of this chapter is to describe the inclusion of interface

conditions along the scattering object inside of this new building block, as well as the implementa-

tion of absorbing boundary conditions (Section 1.2.2) at exterior boundary edges. Together, these

two additions to the DDM framework allow the method to be used in simulating traditional wave

propagation problems that rely on scattering mechanics and outgoing wave propagation.

For the purposes of this chapter, consider again the inhomogeneous Helmholtz equation posed

over a domainΩwith boundary ∂ Ω, but with a general boundary condition operatorBu
def=αu+β ∂ u

∂ n :

∆u +k 2u = f , in Ω (3.1a)

Bu =φ, on ∂ Ω. (3.1b)

The wavenumber is still assumed to be constant for a given subproblem. However, whereas Chapter

2 considered wavenumbers that changed between squares, this chapter focuses on the case where

the wavenumber changes across the rod, causing refraction of the signal.

This chapter is adapted from [North et al., n.d.] and begins with Section 3.1 which gives the

formulation of the Helmholtz equation over the decompositions being discussed in this chapter.
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Section 3.2 is an analogue to Section 2.1, introducing and notating the MDP in the context of this

rod subdomain. The numerical results of Section 3.3 are split into two sets of results: those that

quantify the performance of the method in simplified scenarios (Section 3.3.1) and those that serve

as more practical simulations of the expected physics in a PCRR (Section 3.3.2).

3.1 Decomposition Formulation

The decomposition of the PCRR relies on two fundamental building blocks: an empty square and

a square that contains a circle (Figure 1.3). The empty square building block can be visualized in

Figure 1.6, where a larger (rectangular) domain Ω is split into two identical subdomains Ω1 and

Ω2 separated by an interface Σ. The formulation of the Helmholtz BVP (3.1) over the two empty

subdomains can then be expressed as







∆u1+k 2
1 u1 = f , in Ω1

Bu1 =φ, on Ω1 ∩ ∂ Ω







∆u2+k 2
2 u2 = f , in Ω2

Bu2 =φ, on Ω2 ∩ ∂ Ω
(3.2a)







u1 = u2, on Σ
∂ u1
∂ n1
=− ∂ u2

∂ n2
, on Σ

(3.2b)

where the constant wavenumbers k1 and k2 characterize the material properties in Ω1 and Ω2.

As discussed in Section 1.2.1, subproblems (3.2a) only have boundary conditions defined along

their exterior edges, leaving them underdetermined. Thus we include the two conditions of (3.2b)

to provide the necessary conditions along the interface Σ to ensure the solution of (3.2) on each

subdomain matches that of (3.1), i.e.,







u = u1 in Ω1,

u = u2 in Ω2.

Although other transmission conditions can be used in place of (3.2b), we note that the solutions

obtained in the respective subdomains would no longer match their corresponding parts of the

global solution to (3.1).

The second building block, the square that contains a circle (henceforth referred to as the “rod

subdomain”) is itself treated as a decomposition into two pieces: the circle itself and the rest of

the square outside of the circle (see Figure 3.1). In this decomposition, the interface Σ is the circle.

Physically, the rod subdomain is used to model parts of the PCRR where the scattering rods exist

and create material discontinuities. Therefore, when reformulating (3.1) over the rod subdomain Ω j
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Figure 3.1 Decomposition of the rod subdomain into two of its own subdomains such that Ω j =Ω j ,1 ∪Ω j ,2.
The dotted circle is not part of ∂ Ω j .

we allow k to change as it crosses the circle, i.e.







∆u1+k 2
1 u1 = f in Ω j ,1

Bu1 =φ on ∂ Ω j

(3.3a)

n

∆u2+k 2
2 u2 = 0 in Ω j ,2 (3.3b)







u1 = u2, on Ω j ,1 ∩Ω j ,2

∂ u1
∂ n1
=− ∂ u2

∂ n2
, on Ω j ,1 ∩Ω j ,2.

(3.3c)

Note that, the subproblem (3.3b) does not have a boundary condition explicitly associated with

it, and that the entirety of the boundary condition (3.1b) is associated with (3.3a). Instead, the

boundary information for (3.3b) is provided solely by the transmission conditions (3.3c). If k1 = k2,

this subproblem becomes mathematically equivalent to the empty subdomain case (see Section

2.1.1 or [North et al., 2022]), so we generally assume k1 6= k2.

For decompositions that incorporate both kinds of subdomains, we follow the notation intro-

duced in Figure 3.2. Interfaces between two separate squares Ωi and Ω j are labeled Σi , j . Thus, Σi , j

and Σ j ,i are equivalent and can be used interchangeably. Within a rod subdomain Ω j , the circular

interface is simply denoted Σ j . The decomposition of Ω j remains consistent with Figure 3.1, where

Ω j =Ω j ,1 ∪Ω j ,2.

As an example, the following is a breakdown of how (3.1) could be formulated across the domain
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Figure 3.2 Example of how various parts of a composite domain are labeled when considered as part of the
same decomposition.

Ω=Ωi ∪Ω j depicted in Figure 3.2:







∆ui +k 2
i ui = f , in Ωi

Bui =φ, on ∂ Ω∩Ωi






∆u j ,1+k 2
j ,1u j ,1 = f , in Ω j ,1

Bu j ,1 =φ, on ∂ Ω∩Ω j ,1
n

∆u j ,2+k 2
j ,2u j ,2 = f , in Ω j ,2 (3.4)







ui = u j ,1, on Σi , j

∂ ui
∂ ni
=− ∂ u j ,1

∂ n j ,1
, on Σi , j







u j ,1 = u j ,2, on Σ j

∂ u j ,1

∂ n j ,1
=− ∂ u j ,2

∂ n j ,2
, on Σ j .

(3.5)

Although (3.4) is restricted to two building blocks, it provides a sense of how the equation can be

broken down across a variety of subdomains. As such, to avoid unnecessarily complicated and

repeated equations, the formulations for the rest of this chapter are assumed to be abstracted from

(3.4) according to their defined domains.

3.2 Method of Difference Potentials for Rod Subdomains

In this section, we introduce the method of difference potentials in the context of the rod subdomain.

The individual pieces of the formulation have been rigorously introduced and explored in previous

works [Albright et al., 2017; D. S. Britt et al., 2013; Medvinsky et al., 2012, 2013, 2016; Reznik, 1982;

Ryaben’ kii, 2002]. The case of the empty subdomain is covered in Section 2.1.1 (see also [North

et al., 2022]). In this section we present these individual pieces within a unified framework as they
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relate to the decomposition of the PCRR. The following sections are intended to only provide the

definitions relevant to the topic of the rod subdomain. Many of the equations and definitions are

direct extensions of the work in Section 2.1 and [North et al., 2022], and are presented here without

discussion or justification. Refer to [North et al., 2022] and the citations therewithin for a more

complete presentation of the material.

3.2.1 Auxiliary Problems

Computing the Calderon’s potentials and projections requires setting an appropriate auxiliary

problem (AP), which serves to define an inverse to the discrete Helmholtz operator. The AP is

formulated on an auxiliary domain that contains the physical domain as a subset. It should be

uniquely solvable and well-posed, and should admit an efficient numerical solution. Otherwise, the

AP can be arbitrary [Ryaben’ kii, 2002] and our specific choice is made for reasons of convenience.

We start by briefly introducing the auxiliary problem for the empty subdomain (as in Section 2.1.1.1

and [North et al., 2022]) to show how the same AP can be used for the part of the rod subdomain

that is exterior to the circle (Ω j ,1 in Figure 3.1). Additionally, we introduce an AP for the interior of

the circle in the rod subdomain.

Figure 3.3 Auxiliary domain Ω0 surrounding an empty subdomain Ω j .

Let Ω j be a square with side length 2L , centered about the origin. Define the auxiliary domain

Ω0,ε1 ⊃Ω j to be the square of side length 2(L +ε1) for some small ε1 > 0 (Figure 3.3, practical choices

for ε1 are discussed in Section 3.3). Consider the following auxiliary problem:



























L j u ≡ (∆+k 2
j )u = g (x , y ) ∈Ω0,ε1 ,

u = 0 y =±(L + ε1),
∂ u
∂ x + i k j u = 0 x = L + ε1,

∂ u
∂ x − i k j u = 0 x =−L − ε1.

(3.6)

The AP (3.6) is defined for any right-hand side (RHS) g . The Sommerfeld-like conditions on the
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x−bounds are chosen to ensure the AP is well-posed by shifting the spectrum of the subproblem

to the complex plane, ensuring resonance is avoided for any real wavenumber k j . The Dirichlet

conditions on the y−bounds permit an efficient numerical solution by means of a sine-FFT in the

y−direction paired with a tridiagonal solver.

Let Ω j be a rod subdomain (Figure 3.1) such that the boundary ∂ Ω j is again a square with side

length 2L and is centered about the origin, and let the circle inside the rod subdomain Ω j ,2 have

radius R . Further, let the material discontinuity be characterized by the following definition of the

wavenumber k j :

k j =







k j ,1 (x , y ) ∈Ω j ,1,

k j ,2 (x , y ) ∈Ω j ,2.

The rod subdomain requires the definition of two auxiliary problems. The first of these APs is

equivalent to (3.6) and accounts for the solution inside of Ω j ,1. Note that even though k j has a

discontinuity, this AP still uses the constant value assigned to Ω j ,1, i.e.



























L j ,1u ≡∆u +k 2
j ,1u = g (x , y ) ∈Ω0,ε1 ,

u = 0 y =±(L + ε1),
∂ u
∂ x + i k j ,1u = 0 x = L + ε1,

∂ u
∂ x − i k j ,1u = 0 x =−L − ε1.

(3.7a)

The second AP handles the interior of the circle and requires its own auxiliary domain. Let ε2 > 0

be given and define Ω0,ε2 to be a square of side length 2(R + ε2) so that Ω0,ε2 ⊃ Ω j ,2. Consider the

following AP:


























L j ,2u ≡∆u +k 2
j ,2u = g (x , y ) ∈Ω0,ε2 ,

u = 0 y =±(R + ε2),
∂ u
∂ x + i k j ,2u = 0 x =R + ε2,

∂ u
∂ x − i k j ,2u = 0 x =−R − ε2.

(3.7b)

Figure 3.4 depicts both auxiliary domains, Ω0,ε1 and Ω0,ε2 in relation to their respective subdomains.

The Helmholtz operatorsL j ,1 = (∆+k 2
j ,1) andL j ,2 = (∆+k 2

j ,2) of the rod subdomain APs (3.7a) and

(3.7b) are discretized using the left-hand side of the finite difference scheme (1.9) with the discrete

counterparts denoted byL (h )j ,1 andL (h )j ,2 , respectively. In order to preserve the overall accuracy of the

scheme, the boundary conditions from the APs also need to be discretized to fourth-order accuracy.

The Dirichlet conditions set at the y−bounds, y =±(L +ε1) and±(R +ε2), are trivial as the boundary

nodes simply are set to zero, i.e., for a discretization with M +1 nodes in the x−direction and N +1

nodes in the y−direction, set

um ,0 = um ,N = 0, m = 0, ..., M . (3.8a)
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Figure 3.4 Auxiliary domains Ω0,ε1 and Ω0,ε2 depicted containing their respective domains. Ω j can be an
empty or rod subdomain.

For the conditions on the x−bounds, we use the following discretization, derived for the variable

coefficient Helmholtz equation in [S. Britt et al., 2011] and simplified for the constant-coefficient

case in [D. S. Britt et al., 2013]:

�

uM ,n −uM−1,n

h
−

1

6h

�

uM ,n+1−uM−1,n+1+uM ,n−1−uM−1,n−1

−2
�

uM ,n −uM−1,n

��

−
k 2h

24

�

uM ,n −uM−1,n

�

�

+ i k

�

uM ,n −uM−1,n

h
+

h 2k 2

8
uM− 1

2 ,n

+
uM− 1

2 ,n+1−2uM− 1
2 ,n +uM− 1

2 ,n−1

2

�

= 0

(3.8b)

�

u1,n −u0,n

h
−

1

6h

�

u1,n+1−u0,n+1+u1,n−1−u0,n−1−2
�

u1,n −u0,n

��

−
k 2h

24

�

u1,n −u0,n

�

�

− i k

�

u1,n −u0,n

h
+

h 2k 2

8
u 1

2 ,n +
u 1

2 ,n+1−2u 1
2 ,n +u 1

2 ,n−1

2

�

= 0.

(3.8c)

The discrete APs for the rod subdomain can now be expressed asL (h )j ,1 u (h ) = g (h ) andL (h )j ,2 u (h ) = g (h ),

subject to the discrete boundary conditions (3.8). Since (3.7a) and (3.6) are basically the same,

L (h )j ,1 u (h ) = g (h ) also discretizes (3.6). Like their continuous counterparts (3.7) (and (3.6)), the discrete

APs have unique solutions for any right-hand side g (h ). Indeed, each of these APs can be solved

directly by a combination of a FFT in the y direction and a tridiagonal elimination in the x direction.

The resulting solutions define the inverse operators G (h )j ,l : u (h ) =G (h )j ,l g (h ) for l = 1, 2. By design, the

operators G (h )j ,l apply to an arbitrary g (h ). If f represents a physical source function, see equation

(3.1a), then

g (h ) =B (h ) f def= fm ,n +
1

12

�

fm+1,n + fm−1,n + fm ,n+1+ fm ,n−1−4 fm ,n

�

(3.9)
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whereB (h ) denotes the application of the right-hand side stencil from (1.9). However, for construct-

ing the difference potentials the operators G (h )j ,l will need to be applied to right-hand sides g (h )

besides (3.9), see Sections 3.2.2 and 3.2.3.

3.2.2 Difference Potentials and Operators

In this section, we define the grid sets that serve as discrete analogues for the various parts of

the rod subdomain. These grid sets are used to define the difference potential, which is the key

operator and discrete analogue to the Calderon’s operator. The difference potential in turn defines

the boundary projection operator. Following the example of [D. S. Britt et al., 2013; Medvinsky

et al., 2012; North et al., 2022], we also present the equation-based extension operator that links

the continuous data to the discrete nodes as well as the spectral representation of the solution

at the boundary. Throughout this section, we only consider a single rod subdomain Ω j . As such,

the subscript indices are simplified and restricted to l ∈ {1,2} to indicate whether the grid set or

operator is constructed for Ω j ,1 or Ω j ,2, dropping the first index j altogether.

Let N0
l be a uniformly spaced Cartesian grid over Ω0,εl andM0

l ⊂ N
0
l be the set of nodes that

are strictly inside ofN0
l (i.e. excluding the outermost layer). The nodes ofM0

l that are inside of the

physical domain Ωl areM+l =M
0
l ∩Ωl , and the exterior nodes areM−l =M

0
l ∩Ω

û
l (the complement

of Ωl ). Note that specifically, the nodes ofM+1 lie inside the boundaries of the square and outside

the circle (Figure 3.5a), while the nodes ofM+2 fall inside the circle itself. Let N+l (N−l ) consist of the

nodes obtained when applyingL (h )l to the nodes ofM+l (M−l ). The sets N+l and N−l are depicted in

Figures 3.5b and 3.5c. ThenN+l andN−l will have a set of overlapping nodes near the boundary of Ωl .

This set of nodes is γl =N+l ∩N
−
l , and is referred to as the discrete boundary.

(a) ◦−M+1 •−M
−
1 (b) ◦−N+1 •−N

−
1 �−γ1 (c) ◦−N+2 •−N

−
2 �−γ2

Figure 3.5 Depictions of several grids sets. For each, N0 is the underlying mesh of grid nodes.

To simplify notation, the index l will also be dropped. Many of the definitions and results in

Section 3.2.2 are given identically for both parts of the subdomain, so grid sets and operators should

be interpreted as consistent within their particular subdomain.
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3.2.2.1 Difference Potentials and Projections

Consider a grid function ξγ specified on the discrete boundary γ. We then define the difference

potential with density ξγ as

PN+ξγ
def=w −G (h )

�

L (h )w
�

�

M+
�

, where w =







ξγ on γ,

0 on N0\γ.
(3.10)

The difference potential (3.10) truncated to the grid boundary γ defines the discrete boundary

projection operator Pγ
Pγξγ

def=
�

PN+ξγ
� �

�

γ
≡ T r (h )(PN+ξγ) (3.11)

where the operator T r (h ) refers to trace (truncation) of the grid set to its associated boundary γ. The

projection Pγ given by (3.11) has the following key property:

Theorem 1 (Ryaben’kii) A grid functionξγ satisfies the difference boundary equation with projection

(BEP)

Pγξγ+T r (h )G (h )g = ξγ (3.12)

if and only if there is a solution u onN+ to the finite difference equationL (h )u = g such that ξγ is the

trace of u on the grid boundary γ, i.e. ξγ = T r (h )u.

The proof of Theorem 1 (as well as that of the projection property, P 2
γ = Pγ) can be found in [Ryaben’

kii, 2002]. If the BEP (3.12) holds for ξγ on γ, then the solution u can be reconstructed on N+ by

means of the discrete generalized Green’s formula:

u = PN+ξγ+G (h )g . (3.13)

3.2.2.2 Equation-Based Extension

To guarantee the grid function ξγ in (3.13) accurately represents the continuous boundary data

of the solution, we use an extension operator. For a given boundary Γ (either Γ = ∂ Ω1 or Γ = ∂ Ω2),

consider a pair of functions (ξ0,ξ1) defined along Γ . One can consider these two functions as the

Dirichlet and Neumann data, respectively, of some underlying function v = v (x , y ) on Ω0:

(ξ0,ξ1) =
�

v,
∂ v

∂ n

�

�

�

�

�

Γ

.

Near Γ , the function v can be expanded into a truncated Taylor series, where ρ represents the

(unsigned) distance from the point of evaluation to the nearest point on Γ :

v (x , y ) def= v |Γ +ρ
∂ v

∂ n

�

�

�

�

Γ

+
ρ2

2

∂ 2v

∂ n2

�

�

�

�

Γ

+
ρ3

6

∂ 3v

∂ n3

�

�

�

�

Γ

+
ρ4

24

∂ 4v

∂ n4

�

�

�

�

Γ

. (3.14)
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Discussion and results pertaining to the number of terms included in this expansion can be found

in [D. S. Britt et al., 2013; Medvinsky et al., 2012; North et al., 2022], and trace back to formal results

by Reznik [Reznik, 1982, 1983].

When the functionsξ0 andξ1 are given, the first two terms of (3.14) can be computed directly. For

the higher-order derivative terms, formulas can be produced by using equation-based differentiation

applied to the Helmholtz equation (3.1a), where we assume v is a solution and v and ∂ v
∂ n are known

analytically on Γ .

For example, when Γ is the right side of a square (where x = X is constant), the outward normal

derivative coincides with the positive x−derivative. By substituting v = ξ0 and ∂ v
∂ n = ξ1, we can

obtain the following sequence of formulas (see Section 2.1.1.3 or [North et al., 2022] for details on

this derivation):

v (X , y ) = ξ0(y ),

∂ v

∂ x
(X , y ) = ξ1(y ),

∂ 2v

∂ x 2
(X , y ) = f (X , y )−ξ′′0 (y )−k 2ξ0(y ), (3.15)

∂ 3v

∂ x 3
(X , y ) =

∂ f

∂ x
(X , y )−ξ′′1 (y )−k 2ξ1(y ),

∂ 4v

∂ x 4
(X , y ) =

∂ 2 f

∂ x 2
(X , y )−

∂ 2 f

∂ y 2
(X , y )−k 2 f (X , y ) +ξ(4)0 (y ) +2k 2ξ(2)0 (y ) +k 4ξ0(y ).

Such formulas can also be obtained for the other sides of a square by substituting the boundary

coordinates and appropriately identifying the outward normal derivatives, for example on the left

side the outward normal derivative coincides with the negative x−derivative.

Additionally, when considering the rod subdomain there is a circular piece of the boundary

that requires its own extension. Using the same general expansion (3.14), we recast the Helmholtz

equation (3.1a) in polar coordinates (r,θ ):

1

r

∂ u

∂ r
+
∂ 2u

∂ r 2
+

1

r 2

∂ 2u

∂ θ 2
= f .

Consider the case of the interior of the rod so that the outward normal derivative coincides with

the positive r−derivative (at r =R a constant). The functions ξ0 and ξ1 then depend on θ and the
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following equations are obtained (as in [D. S. Britt et al., 2013]):

v (R ,θ ) = ξ0(θ ),

∂ v

∂ r
(R ,θ ) = ξ1(θ ),

∂ 2v

∂ r 2
(R ,θ ) = f (R ,θ )−

1

R
ξ1(θ )−

1

R 2
ξ′′0 (θ )−k 2ξ0(θ ), (3.16)

∂ 3v

∂ r 3
(R ,θ ) =

∂ f

∂ r
(R ,θ )−

1

R

∂ 2v

∂ r 2
(R ,θ ) +

1

R 2
ξ1(θ ) +

2

R 3
ξ′′0 (θ )−

1

R 2
ξ′′1 (θ )−k 2ξ1,

∂ 4v

∂ r 4
(R ,θ ) =

∂ 2 f

∂ r 2
−

2

R 3
ξ1(θ ) +

�

2

R 2
−k 2

�

∂ 2v

∂ r 2
(R ,θ )−

1

R

∂ 3v

∂ r 3
(R ,θ )

+

�

k 2

R 2
−

6

R 4

�

ξ′′0 (θ ) +
5

R 3
ξ′′1 (θ )−

1

R 2

�

∂ 2 f

∂ θ 2
(R ,θ )−

1

R 2
ξ(4)0 (θ )

�

,

where ξ(4)0 (θ ) represents the fourth derivative of ξ0(θ )with respect to θ . Note that when considering

the circle from outside the rod, the outward normal derivative will instead coincide with the negative

r−derivative.

The expressions from either (3.15), (3.16), or their appropriate analogues can be substituted

into (3.14) to construct v = v (x , y ) from any pair of functions (ξ0,ξ1) defined on Γ . Sampling this

function v only at nodes of the grid boundary γ defines the extension operator Ex that gives the

grid function ξγ:

ξγ = Ex(ξ0,ξ1) = v |γ.

As seen in (3.15) and (3.16) the extension operator depends on the source term f . The constribution

from the source term makes Ex an affine operator:

ExξΓ = Ex(H )(ξ0,ξ1) +Ex(I ) f .

The Ex(H ) (homogeneous) operator acts only on the input functions (ξ0,ξ1), while the Ex(I ) (inho-

mogneous) operator is dependent on the source function f from the original problem (3.1a).

We emphasize that although (3.1a) was used to construct the expressions of (3.15) and (3.16),

ξΓ = (ξ0,ξ1) does not need to represent the Cauchy data of a solution u to (3.1a) in order to apply

the operator Ex. However, if ξΓ does correspond to the trace of a solution u , i.e. ξΓ =
�

u , ∂ u
∂ n

��

�

Γ
, then

ξγ = ExξΓ approximates u with fifth-order accuracy near Γ with respect to the grid size, specifically

at the nodes of ξγ.

3.2.2.3 Spectral Representation at the Boundary

Following the example Section 2.1.1.4 we define a series representation of the boundary data, with

the additional consideration of the central circle. Consider the breakdown of the boundary Γ in

Figure 3.6. For each Γi , choose a set of Mi basis functions {ψ j }
Mi
j=1 such that eachψ j is supported

only on its corresponding Γi .
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Figure 3.6 Breakdown of the portions of Γ in the rod subdomain.

Generally speaking, each set {ψ j }
Mi
j=1 can be chosen independently. For this particular setup, we

use Chebyshev polynomials along the square edges Γ1, ...,Γ4 and Fourier basis functions around the

central circle boundary Γ5. To further simplify equations later on, we take each Chebyshev basis to

have the same dimension, Mc , and pick the Fourier basis along Γ5 such that M5 = |{ψ j }
Mr
−Mr
|= 2Mr +1.

Given these specifications, we can define a larger set of basis functions {Ψ j } such that

�

Ψ j

	M

j=1
= {ψ j }

Mc
j=1 ∪{ψ j }

Mc
j=1 ∪{ψ j }

Mc
j=1 ∪{ψ j }

Mc
j=1

︸ ︷︷ ︸

Γ1,...,Γ4

∪{ψ j }
Mr
−Mr

︸ ︷︷ ︸

Γ5

(3.17)

where M = 4Mc +2Mr +1. Using the basis functions {Ψ j } defined in (3.17), consider the following

pairs:

Ψ (0)j = (Ψ j , 0), Ψ (1)j = (0,Ψ j ), j = 1, ..., M . (3.18)

For boundary data of the form ξΓ = (ξ0,ξ1), the pairs defined in (3.18) allow the components ξ0 and

ξ1 to be expanded individually. Note that the set of functions used to define Ψ (0)j could be different

from those used to define Ψ (1)j , but for simplicity we use the same sets. Assume the boundary data

of the solution we seek is given in the form ξΓ =
�

u , ∂ u
∂ n

� �

�

Γ
, then that data can be expressed as the

following series representation

ξΓ =
M
∑

j=1

c(0)j Ψ
(0)
j +

M
∑

j=1

c(1)j Ψ
(1)
j (3.19)

where c(0) and c(1) are the unknown expansion coefficients of the Dirichlet and Neumann data,

respectively. For smooth boundary data, the Chebyshev and Fourier expansions converge rapidly,

making the truncated terms of the expansion negligible with respect to the accuracy attainable

on the grid for relatively small values of Mc and Mr . Specific values of Mc and Mr used in our

simulations are presented in Appendix A.

The series (3.19) is defined in relation to the subdomainΩ j ,1 (as in Figure 3.6). One could similarly

define a series representation of the solution at the boundary of Ω j ,2 as well, but instead we remark
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that along Ω j ,1∩Ω j ,2 (i.e. the circle) we know that u j ,1 = u j ,2 and
∂ u j ,1

∂ nj,1
=− ∂ u j ,2

∂ nj,2
, allowing the portion

(3.17) corresponding to Γ5 to be reused when considering Ω j ,2. This notion is utilized and further

explained in Section 3.2.3.2.

3.2.3 Linear System

Consider a rod subdomain Ω j =Ω j ,1 ∪Ω j ,2 with Γ = ∂ Ω j ,1. Let u be a solution to (3.1) over Ω j and

let ξΓ =
�

u , ∂ u
∂ n

��

�

Γ
be the trace of the Dirichlet and Neumann data of the solution at the boundary.

Let ξγ be given by applying the Ex operator to the series representation (3.19) of the solution at the

boundary of Ω j ,1:

ξγ := ExξΓ = Ex(H )

 

M
∑

j=1

c(0)j Ψ
(0)
j +

M
∑

j=1

c(1)j Ψ
(1)
j

!

+Ex(I ) f

=
M
∑

j=1

c(0)j Ex(H )Ψ (0)j +
M
∑

j=1

c(1)j Ex(H )Ψ (1)j +Ex(I ) f . (3.20)

The right-hand side of (3.20) can then be substituted into the discrete BEP (3.12) for Ω j ,1. After

rearranging terms, the following system is obtained:

M
∑

j=1

c(0)j (Pγ− Iγ)Ex(H )Ψ (0)j +
M
∑

j=1

c(1)j (Pγ− Iγ)Ex(H )Ψ (1)j

= (Iγ−Pγ)Ex(I ) f −T r (h )G (h )B (h ) f
︸ ︷︷ ︸

F

(3.21)

where the coefficients c(0)j and c(1)j are the unknowns and Iγ represents the identity operator on γ.

Letting F represent the right-hand side of (3.21) allows this equation to be expressed more compactly

as

Q c= F (3.22)

where Q and c have the following forms:

Q =
�

(Pγ− Iγ)ExΨ (0)1 , ... , (Pγ− Iγ)ExΨ (0)M ,
︸ ︷︷ ︸

Q (0)

(Pγ− Iγ)ExΨ (1)1 , ... , (Pγ− Iγ)ExΨ (1)M
︸ ︷︷ ︸

Q (1)

�

, (3.23)

c=[c1, ... , cM
︸ ︷︷ ︸

c (0)ᵀ

, cM+1, ... , c2M
︸ ︷︷ ︸

c (1)ᵀ

]ᵀ

where the dimensions of Q are |γ| ×2M . In addition to (3.22), consider the contributions from the

rod, Ω j ,2. Let Γr = ∂ Ω j ,2 and repeat the steps above for the boundary data ξΓr to obtain a separate
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system corresponding to the scattering rod:

Qr cr = Fr . (3.24)

In (3.24), cr represents the coefficients of the expansion of the boundary data along the circle Γr and

Fr is an analogue to the right-hand side of (3.21) when the discrete boundary is γr instead of γ. The

matrix Qr =
�

Q (0)r ,Q (1)r

�

has a form similar to Q from (3.23), with dimensions |γr | × (4Mr +2). The

expansions of the Dirichlet and Neumann data along Γr each use 2Mr +1 Fourier basis functions

since Γr contains only the circular boundary of the rod.

Note that the solutions of (3.22) and (3.24) are not unique because the BEPs (3.12) were derived

only from the Helmholtz equation (3.1a). Additional equations are needed to supplement the system

and make the solution c unique, although the exact nature of these conditions depends on the

context. Section 3.2.3.1 explains how to derive such equations from local ABCs given on the exterior

edges of ∂ Ω j ,1. When an edge of ∂ Ω j ,1 creates an interface with another subdomain, conditions can

be derived as in Section 2.1.2.2. In Section 3.2.3.2, we explain how to use the interface conditions

between Ω j ,1 and the rod Ω j ,2.

3.2.3.1 Resolving the Local ABCs

Consider the second-order Engquist-Majda ABC (1.8):

i k
∂ u

∂ n
−k 2u −

1

2

∂ 2u

∂ τ2
= 0. (3.25)

Our goal is to substitute the series representations of the Dirichlet and Neumann data into (3.25).

Without loss of generality, consider the series representation of the boundary data along one side of

the exterior of the square subdomain and pass it into condition (3.25):

i k

�Mc
∑

l=1

c(1)l ψl

�

−k 2

�Mc
∑

l=1

c(0)l ψl

�

−
1

2

∂ 2

∂ τ2

�Mc
∑

l=1

c(0)l ψl

�

= 0

Mc
∑

l=1

�

i k c(1)l −k 2c(0)l

�

ψl −
1

2

�Mc
∑

l=1

c(0)l

∂ 2

∂ τ2
ψl

�

= 0. (3.26)

The formulation does not include a direct substitution for tangential derivatives (only the solution

and its normal derivative). Instead, the second tangential derivative ∂ 2

∂ τ2 is passed onto the basis

functions and computed directly.

Along the edge of the square, tangential derivatives of the Chebyshev basis functions {ψl }
Mc
1

correspond to standard derivatives with respect to the argument. Given the Chebyshev coefficients

of a function (i.e. {c(0)l }), the coefficients of the second derivative (i.e. {dl }) can be computed with
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the following formula, adapted from [Karageorghis, 1988]:

al dl = 2 ·
∞
∑

j=1

j · (l + j ) · (l +2 j ) · c(0)l+2 j , al =







2, l = 0

1, l > 0.

The needed coefficients, {c(0)l } are unknown, so the formula is instead applied to each basis

function individually to construct a matrix A =
�

Ai , j

�

that represents the second derivative of the

sum:

∂ 2

∂ τ2

Mc
∑

l=1

c(0)l ψl =
Mc
∑

l=1

c(0)l

∂ 2

∂ τ2
ψl

=
Mc
∑

l=1

c(0)l

 

Mc
∑

j=1

Al , jψ j

!

=
Mc
∑

l=1

Mc
∑

j=1

c(0)l Al , jψ j

=
Mc
∑

j=1

ψ j

�Mc
∑

l=1

c(0)l Al , j

�

=
Mc
∑

j=1

�

A∗, j

�ᵀ
c(0)ψ j (3.27)

where row l of A corresponds to the coefficients of the second derivative ofψl , and A∗, j indicates

column j of A. Substituting (3.27) into (3.26) yields:

Mc
∑

l=1

�

i k c(1)l −k 2c(0)l

�

ψl −
1

2

�Mc
∑

l=1

�

A∗,l
�ᵀ

c(0)ψl

�

= 0

Mc
∑

l=1

�

i k c(1)l −k 2c(0)l −
1

2

�

A∗,l
�ᵀ

c(0)
�

ψl = 0.

Orthogonality of the Chebyshev basis tells us that for each of l = 1, ..., Mc , we get a condition that

relates the coefficients:

i k c(1)l −k 2c(0)l −
1

2

�

A∗,l
�ᵀ

c(0) = 0. (3.28)

The conditions of (3.28) are coupled due to the third term, preventing them from being handled

individually. Instead, consider them together as a matrix equation

i k c(1)−k 2c(0)−
1

2
Aᵀc(0) = ~0

−
�

k 2I +
1

2
Aᵀ
�

c(0)+ i k c(1) = ~0. (3.29)

The relationship between c(0) and c(1) in (3.29) provides Mc supplemental conditions for system
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(3.22). This process is repeated for each side of the subdomain that contains an appropriate ABC.

It is well-known that matrices such as A in (3.29) can lead to poor conditioning, particularly

when used in spectral solvers [Hesthaven et al., 2007]. This problem more readily manifests itself

in the presence of higher-order tangential derivatives (such as those that appear in higher-order

Engquist-Majda ABCs). The numerical results we present in Section 3.3.1 suggest that such poor

conditioning is avoided, for practical purposes, in the second-order condition we have chosen.

3.2.3.2 Resolving Interface Conditions Along the Rod

Let Γ5 ⊂ ∂ Ω j ,1 be the circle from the boundary of Ω j ,1 (as in Figure 3.6) and Γr = ∂ Ω j ,2. Consider the

following expansions of the boundary data along Γ5 and Γr , respectively:

ξΓ5 =
Mr
∑

l=−Mr

c(0)5,lψ
(0)
l +

Mr
∑

l=−Mr

c(1)5,lψ
(1)
l ,

ξΓr =
Mr
∑

l=−Mr

c(0)r,lψ
(0)
l +

Mr
∑

l=−Mr

c(1)r,lψ
(1)
l .

(3.30)

Note that ψ(0)l =
�

ψl , 0
�

and ψ(1)l =
�

0,ψl

�

, as well as our choice that along these circles, the basis

functions {ψl }
Mr
−Mr

are Fourier basis functions. Recall the interface conditions (3.3c) between two

Ω j ,1 and Ω j ,2 and substitute the series representations of the Dirichlet and Neumann data from

(3.30) into the interface conditions (3.3c):

Mr
∑

l=−Mr

c(0)5,lψl =
Mr
∑

l=−Mr

c(0)r,lψl ,

Mr
∑

l=−Mr

c(1)5,lψl =−
Mr
∑

l=−Mr

c(1)r,lψl .

By moving terms to the same side, factoring out basis functions, and exploiting the orthogonality

of the Fourier basis functions, we obtain conditions for each l =−Mr , ..., Mr that couple together

systems (3.22) and (3.24):

c(0)5,l − c(0)r,l = 0,

c(1)5,l + c(1)r,l = 0.

3.3 Numerical Results

In this section, numerical results are presented that demonstrate the performance of our method.

The first part, Section 3.3.1, focuses on smaller, simpler examples that explore the discretization
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error of the method as well as the reflection error introduced by the absorbing boundary condition.

Section 3.3.2 demonstrates more complex examples that are designed to more accurately represent

a real PCRR. Demonstrative simulations are shown for linear waveguides (Section 3.3.2.1) as well as

PCRR add/drop filters (Section 3.3.2.2).

For the results of this section, domains are constructed from collections of empty and rod

subdomains (as discussed in previous sections), with empty subdomains handled as discussed

in Chapter 2. The sides of each subdomain have a length of 2 and the rods have a radius of 0.37

(this selection is explained in Section 3.3.2). Every subdomain is discretized independently by grids

consisting of (n +1)× (n +1) nodes, with n = 2m , in order to take full advantage of the efficiency of

the Fourier transform used in the AP solver.

Throughout these results, two kinds of errors are used to discuss convergence. First, we consider

errors in the traditional sense:

||u (n )−u ||∞→ 0 as n→∞. (3.31)

In this case, u (n ) refers to the solution computed using n ×n grid nodes per subdomain and u is

the true solution (when such a function can be derived). When a true solution cannot be derived,

we instead assess the grid convergence by evaluating the norm of the difference between two

succeeding approximate solutions obtained on a sequence of refined grids:

||u (n )−u (2n )||∞→ 0 as n→∞. (3.32)

Proper grid convergence in the sense of (3.31) clearly implies (3.32). Additionally, if (3.31) is charac-

terized by a certain convergence rate, then the rate characterizing (3.32) will be at least as fast.

3.3.1 Preliminary Simulations

In order to evaluate the discretization error of the method and the reflection error introduced by the

local ABC, an exact solution needs to be constructed for reference. For simplicity, the discretiza-

tion and reflection errors are only computed directly in the rod subdomain for cases where the

wavenumber is constant between the rod and the rest of the subdomain (i.e. k1 = k2 = k ).

Consider the Green’s function:

G (x , y ) =
i

4
H (1)

0 (k
Æ

x 2+ y 2) (3.33)

where k is the wavenumber from (3.1a) and H (1)
0 is the Hankel function. It is well-known that (3.33)

satisfies the 2D Helmholtz equation with the point-source f (x , y ) = δ(x , y ) and the Sommerfeld

radiation condition (1.7). However, the singularity at the origin of the Hankel function makes G (x , y )

ill-suited for numerical evaluation. Therefore, we instead consider a smoothed variation obtained

by the following process:

1. Take the x−derivative of the fundamental solution (Gx =
∂G
∂ x ). This will make the resulting
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test solution anisotropic, i.e., more generic than a centrally symmetric solution.

2. Construct a function,η(r ), which is equal to 0 at r = 0, equal to 1 when r ≥R , and is sufficiently

smooth in 0< r <R . We use R = 1
2 and require 5 vanishing derivatives at each endpoint, i.e.

η(d )(0) =η(d )(R ) = 0 for d = 1, ..., 5.

3. Multiply the smoothing function by the differentiated fundamental solution to obtain a new

solution u =Gxη.

This function ur a d = Gxη is a solution to the homogeneous Helmholtz equation (i.e. f ≡ 0)

outside the radius of R = 1
2 . Inside that radius, the source function f can be derived by plugging

ur a d into the Helmholtz equation and taking its derivatives analytically:

f =
∂ 2

∂ x 2
(Gxη) +

∂ 2

∂ y 2
(Gxη) +k 2Gxη. (3.34)

For this section, the derivatives in (3.34) were computed with the (diff) command from the symbolic

computation toolbox in MatLab. The function ur a d and its corresponding source function f can be

seen in Figure 3.7, and ur a d is used throughout Sections 3.3.1.1 and 3.3.1.2 as a reference solution.

The simulations of Sections 3.3.1.3 and 3.3.2 are driven by the same source term f from (3.34).

Figure 3.7 Real part (left) and imaginary part (center) of the function ur a d , and the real part of the corre-
sponding derived source function f (right), all plotted for the wavenumber k = 3.

3.3.1.1 Discretization Error

To evaluate the discretization error introduced by the method, we compare the computed solution

to the (exact) derived solution, ur a d = Gxη. This is done on a domain composed of an empty

subdomain and a rod subdomain (see Figure 3.8), where the empty subdomain is centered about

the origin. The Dirichlet boundary conditions and source function (3.34) are computed directly from

the exact solution ur a d . Table 3.1 demonstrates that the method achieves the design fourth-order

convergence rate of the underlying finite-difference method for a variety of wavenumbers.
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Figure 3.8 Depiction of the domain used in Table 3.1

Table 3.1 Discretization error ||u (n ) − u ||∞ and rate of convergence to the true solution u = Gxηwith
k = 5, 10, and 15. Dirichlet boundary conditions and source function are derived from the solution.

k = 5 k = 10 k = 15
n Error Rate Error Rate Error Rate

64 1.22e-04 - 9.14e-04 - 4.86e-01 -
128 7.53e-06 4.02 5.69e-05 4.01 2.11e-03 7.84
256 4.25e-07 4.15 3.65e-06 3.96 1.28e-04 4.04
512 2.83e-08 3.91 2.27e-07 4.00 8.01e-06 4.00

1024 1.64e-09 4.11 1.43e-08 3.99 5.01e-07 4.00

3.3.1.2 Reflection Error

Similar to the discretization error, evaluation of the reflection error requires an exact solution for

comparison. The function ur a d serves as the exact solution here as it did in Section 3.3.1.1, and

the source term is provided by (3.34). At the outer boundary, the second-order Engquist-Majda

absorbing boundary conditions (1.8) are applied to approximate the outgoing waves.

The reflection error is a property of the chosen boundary conditions and therefore independent

of the grid discretization. An example of this can be seen in the grid convergence analysis of Table

3.2, where the method appears to be converging as expected (fourth-order) on coarser grids before

the convergence levels off. This is the point at which the reflection error dominates the discretization

error. Due to the choice of a high-order finite-difference method, we generally expect this trade-off

from discretization error to reflection error to happen at relatively coarse grids.

Table 3.2 Absolute reflection error and convergence rate for a 3× 3 arrangement of empty subdomains
with k = 40 (see Figure 3.9) and second-order Engquist-Majda absorbing boundary conditions along the
exterior edges.

n ||u (n )−u ||∞ Rate
64 1.20e+02 -

128 4.38e+00 4.78
256 2.83e-01 3.95
512 1.76e-02 4.01

1024 1.76e-02 0.00
2048 1.76e-02 0.00
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Figure 3.9 Real parts of the computed solution approximating ur a d with k = 40 (left) and the error be-
tween the computed solution and ur a d (right), corresponding to Table 3.2. The domain is a 3×3 arrange-
ment of empty subdomains, and each subdomain is discretized by a grid of 512×512 nodes.

It is worth noting that the wavenumber chosen for Table 3.2 (and Figure 3.9) is higher than the

other choices throughout Section 3.3. For smaller wavenumbers, the reflection error dominates

the discretization error even at the coarser grid levels (see Table 3.3). In fact, [Engquist et al., 1977]

provides the following approximation for the amplitude of reflected waves (denoted b ) when using

second-order Engquist-Majda absorbing boundary conditions:

b ≈ a

�

�

�

�

cos(θ )−1

cos(θ ) +1

�

�

�

�

2

(3.35)

where a is the amplitude of the incident wave and θ is the angle of incidence. The expression (3.35)

is maximized when θ = π4 , which occurs at the corners of the domain (visualized in Figure 3.9. With

this choice of θ , (3.35) reduces to

b ≈ a

�

�

�

�

cos(π4 )−1

cos(π4 ) +1

�

�

�

�

2

=⇒ b ≈ (0.0294)a . (3.36)

Roughly speaking, (3.36) tells us that the amplitude of the reflection error will be around 3% of the

amplitude of the incident wave. To confirm this, the reflection error is evaluated across several

domains for k = 10 and presented in Table 3.3. Note that the lack of convergence in Table 3.3

confirms that the reflection error is not dependent on the grid discretization. By comparing Table

3.3 with Table 3.1, it is clear that the discretization error for this solution is notably smaller than the

reflection error. Further, note the improved performance as the size of the domain is increased. The

reflection error is expected to decrease as the domain grows larger (and as the amplitude of the

solution decreases), and this is confirmed in Table 3.3.

Tables 3.2 and 3.3 indicate that the reflection error prevents the computed solution from converg-

ing to the true solution, ur a d . The grid convergence, however, still takes place, albeit to a different

solution that is subject to reflections from the artificial outer boundary due to boundary condition
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Table 3.3 Maximum absolute and relative reflection errors along the exterior edges of Ω. Computed for
k = 10 for domains constructed from several arrangements of empty subdomains (1×1, 3×3, and 5×5).

1×1 3×3 5×5
Absolute Relative Absolute Relative Absolute Relative

n Error Error Error Error Error Error
64 2.37e-02 3.80% 1.08e-02 3.30% 7.91e-03 2.89%

128 2.59e-02 4.16% 1.12e-02 3.42% 7.81e-03 2.85%
256 2.59e-02 4.16% 1.12e-02 3.43% 7.81e-03 2.86%
512 2.65e-02 4.25% 1.13e-02 3.45% 7.85e-03 2.87%

(3.25). This is corroborated by the data in Table 3.4 that shows convergence in the sense of (3.32).

Table 3.4 Convergence analysis with respect to the self-convergence metric from (3.32). Domains are
composed of varying arrangements of empty subdomains (1×1, 3×3, and 5×5), and the wavenumber is
k = 10.

1×1 3×3 5×5
n ||u (n )−u (2n )||∞ Rate ||u (n )−u (2n )||∞ Rate ||u (n )−u (2n )||∞ Rate

64 4.09e-04 - 4.45e-04 - 6.17e-04 -
128 2.65e-05 3.95 2.84e-05 3.97 3.69e-05 4.06
256 1.82e-06 3.86 1.70e-06 4.06 2.26e-06 4.03
512 1.04e-07 4.13 1.09e-07 3.97 1.43e-07 3.98

3.3.1.3 Inclusion of Scattering Rods

By allowing a change in the wavenumber between the rod and the rest of the subdomain (i.e. k1 6= k2),

the refraction of a signal between two mediums can be simulated. We generally only consider the

case of k1 < k2 which represents the case where the rod has a higher refractive index than its

surrounding material. This formulation makes it difficult to compose an exact solution for reference

to demonstrate grid convergence, so convergence is considered as in (3.32). The domain is taken as

in Figure 3.8 with the source function (3.34) centered about the empty subdomain and second-order

Engquist-Majda absorbing boundary conditions along the exterior of the domain. The convergence

rate in Table 3.5 is indicative of the design fourth-order convergence rate as discussed earlier and

demonstrated in Tables 3.1 and 3.4.

3.3.2 PCRR Simulations

In this section, we present and discuss two forms of simulations associated with PCRRs. First is

an isolated bus waveguide with a varying number of rows of scattering rods on either side of the

channel. Second is the classic add-drop filter which can redirect a signal toward different output

channels depending on the frequency.
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Table 3.5 Convergence analysis with respect to the self-convergence metric from (3.32) for examples with
scattering rods. The domain is depicted in Figure 3.8, with wavenumber jumps indicated from k1 outside
the rod to k2 inside the rod.

k1 = 1 k1 = 3
k2 = 3 k2 = 10

n ||u (n )−u (2n )||∞ Rate ||u (n )−u (2n )||∞ Rate
64 2.82e-01 - 6.84e-01 -

128 3.33e-04 9.73 2.54e-03 8.07
256 1.44e-05 4.53 6.56e-06 8.60
512 1.29e-06 3.48 3.57e-07 4.20

As discussed in Section 3.3.1.2, the reflection error is expected to outweigh the discretization

error, even at relatively coarse grids. Therefore, results are only reported on a single grid (indicated

for each simulation). Additionally, we use a consistent setup scheme for determining the source

function for each simulation (see Figure 3.10). The source function f (from (3.34)) is placed between

rows of scattering rods, such that one empty subdomain separates the source’s subdomain from the

left edge of the domain. This way, the source can emulate an input signal that is primarily traveling

from the left to the right.

Figure 3.10 An example of how the source function (3.34) is placed within a PCRR domain. The source is
centered over one of the empty subdomains such that one empty subdomain sits between the source’s
support and the exterior boundary of the domain.

The parameters for the simulations are chosen to reflect those used in [Chremmos et al., 2010].

The descriptions of the primary parameters are as follows:

• a = Lattice periodicity, or the shortest center-to-center distance between two rods. Conse-

quently, a is also the length of each side of the subdomains.

• r = Radius of the scattering rods. The ratio of the radius of the rods to the lattice periodicity

(i.e. r /a ) is an important factor in determining valid frequencies for the PCRR.

• na i r , nr o d = Refractive indices of the background (air) and scattering rods, respectively.
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In [Chremmos et al., 2010], the lattice periodicity is chosen as a = 540nm and the radius of the rods

is r = 100nm, resulting in a ratio of r /a ≈ 0.185. The refractive indices are selected to represent

air (na i r = 1.00) and silicon (nr o d = 3.48). These parameters correspond to bus waveguides that

support wavelengths between approximately λ= 1270nm and λ= 1780nm.

For the simulations in this chapter, the parameters have been nondimensionalized. The lattice

periodicity (and side length of subdomains) is 2. In order to maintain the ratio of the rod radius to

lattice periodicity, we take r = 0.37 = 2×0.185 (hence the choice for the rod radius in the results

of Section 3.3.1). The refractive indices provide a ratio for the wavenumbers we select, namely

k2 = 3.48× k1. The background wavenumber k1 can then be derived by equating the ratio of the

lattice periodicity to the desired wavelength from each example, i.e.

(Physical)
a

λ
=

k1a

2π
(Nondimensionalized)

540

λ
=

2k1

2π
540π

λ
= k1. (3.37)

Therefore, a physical wavelength of 1550nm approximately corresponds to a wavenumber of k1 =

1.08. As our discretization is fourth order accurate, for this low value of the wavenumber the error

due to the second order Engquist-Majda boundary condition becomes dominant already on fairly

coarse grids, see Section 3.3.1.2.

For most of the figures in this section, we have chosen to present the imaginary part of the

solution. The real part of the source function has a high degree of variation at the origin, causing the

real part of the resulting solution to have abnormally high variation near the source. However, the

imaginary part changes much more gradually near the source, forming a much smoother and visually

interpretable image while still demonstrating the same qualitative behaviors as its corresponding

real part.

3.3.2.1 Bus Waveguides

Recall that a ring resonator is constructed from two bus waveguides and a ring-shaped waveguide

(Figure 1.1). For the specific case of a PCRR (Figure 1.2) the bus waveguide can be isolated to make

its own domain as in Figure 3.11. From [Chremmos et al., 2010], it is known that the number of

rows of scattering rods on either side of the open channel largely affects how efficiently the channel

propagates waves. Generally speaking, increasing the number of rows of rods will decrease the

amount of leakage from the waveguide at the expense of more computation time to account for

more rods. By computing the solution in domains with varying numbers of buffer rows of rods,

we can observe how the solution changes to determine how many rows are needed to capture the

qualitative behavior.

In order to analyze the impact of buffer rows of rods, we assemble a sequence of simulations that

represent bus waveguides with varying numbers of buffer rows. Each problem uses the same source
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Figure 3.11 One of the bus waveguides can be isolated and considered as its own domain.

function from (3.34) placed in the waveguide as described in Figure 3.10, along with second-order

Engquist-Majda boundary conditions along the exterior edges of the relevant subdomains. The

domain of interest is a 1× 15 assembly of empty subdomains with the corresponding number

of buffer rows of rod subdomains attached to both the top and bottom. The resulting computed

solutions are collectively presented on the left side of Figure 3.12. Note that the plots in Figure 3.12

only represent the empty subdomains down the center of the domain.

Figure 3.12 (Left) Imaginary part of the solution for varying numbers of buffer rows of rods and (right) the
absolute difference between a given solution and the preceding case. Plotted for k = 1.229 on a 129×129 grid
for each subdomain.

The right side of Figure 3.12 shows how the solution changes after each addition of a new buffer

row of rod subdomains. The error is calculated as the absolute difference between two solutions

within the empty subdomains, where the solution most clearly depicts a traveling wave. Notice that

the signal is noticeably fuzzy in the first solution (top-left of Figure 3.12), but becomes sharper when
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a second row of buffer rods is included. This difference is visualized in the first image of the right

column, where it can clearly be seen that the difference between the two solutions grows toward the

end of the domain. Although there is little visual difference between the cases of 2 and 3 buffers in

the left column, the second error plot still shows a discernible change at the right end of the channel.

Finally, the change when moving from 3 to 4 buffer rows is even less than the previous case, and

visually negligible when compared to the previous cases.

Ideally, the number of buffer rows would be taken to infinity (or at least arbitrarily high) to

provide the best approximation, but this is obviously impractical. Referring to the case of 2 buffers,

||u ||∞ ≈ 0.3256 and the maximum error between the cases of 2 and 3 buffers is approximately 0.0067.

Adding an extra row of buffers only improves the accuracy by 2%. Given that the reflection error

from the ABCs is around 3%, 2 buffer layers are chosen for the larger simulations of the next section.

3.3.2.2 PCRR Add-Drop Filter

The final set of simulations concern the functionality of a 2D PCRR add-drop filter. The only new

feature introduced for this structure is the ring resonator itself. The resonator is formed in a similar

fashion as the bus waveguides from Section 3.3.2.1, with the difference that the channel formed

by removing rods is now a square (note Figures 1.2, 1.3, and 3.11). Note that the shape of the ring

will depend on the symmetry of the lattice of rods; alternative arrangements (such as a hexagonal

resonator) can be found in [Chremmos et al., 2010].

Following the square lattice example from [Chremmos et al., 2010], a PCRR is constructed around

a resonator with a 3×3 set of rods at its center (as in Figure 3.11). Bus waveguides are appended

to the top and bottom of the resonator with one set of rods separating the bus waveguides from

the resonator. One extra row of rods is included on the top and bottom of the domain to prevent

leakage (following the example set by Section 3.3.2.1) forming a 13×15 lattice of subdomains as

in Figure 3.13. The system is driven by the source function f from (3.34), placed as in Figure 3.10,

which simulates an input signal from the top-left port with a given frequency. The frequency is

determined by the wavenumber k in the corresponding Helmholtz equation, and the relationship

of this k to a physical wavelength is given in (3.37).

The main simulations of focus are presented in Figures 3.14 and 3.15. They represent two

wavenumbers with qualitatively different behaviors in the PCRR. The first simulation, Figure 3.14,

represents a signal that is designed to pass through the device without being filtered. Some energy

does spread throughout the domain, particularly through the channels, but this kind of leakage

is to be expected given the use of discrete rods in place of continuous walls. The important piece,

qualitatively speaking, is that the strength of the signal in the bottom bus waveguide is distinctly

lower than in the top bus waveguide. For the second simulation, Figure 3.15 represents a signal that

the PCRR is designed to filter through the ring resonator. It is demonstrating the expected behavior,

which is for the strength of the signal to be greater at the bottom-left port than either port on the

right side of the domain.

Figures 3.16 and 3.17 provide examples of some of the alternative behaviors that the PCRR can
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Figure 3.13 The domain used for the PCRR simulations of Section 3.3.2.2. Solid lines denote interfaces
between subdomains, and the source function is centered about the origin.

express as the wavenumber/wavelength go further outside of the intended window of use for the

parameters. In Figure 3.16, the signal drops from the top bus into the resonator, but not into the

bottom bus. In Figure 3.17, the signal is approximately as strong at the right end of the top bus as it

is at the left end, but it enters the resonator just as in Figure 3.16. These two examples demonstrate

apparent deficiencies, which we believe to be attributed to the model as opposed to the method.

A known problem for such PCRRs stems from the the fact that a square duct is used in place of

a circle in the true ring resonator case, causing certain degenerative behaviors [Chremmos et al.,

2010]. The known way to combat this is by introducing four additional scattering rods in the corners

of the resonator such that they are equidistant from the three rods that currently form the corner.

Unfortunately, these points are at the intersection of the building blocks, making this supplement

incompatible with the framework in its current form. One potential solution is discussed in Chapter

4.

3.4 Conclusions

The goal of this chapter is to expand the framework introduced in Chapter 2 and [North et al., 2022]

for solving domain decomposition problems with the MDP, and to demonstrate the method’s ability

to simulate 2D photonic crystal ring resonators. To this end, the “rod subdomain” was introduced and

the implementation of local absorbing boundary conditions was described using the second-order
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Engquist-Majda conditions. Analysis of the discretization and reflection errors corroborated the

design properties of the underlying finite-difference method and ABCs, and numerical simulations

demonstrated that the method is able to properly capture the intended behavior of the PCRR.
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Figure 3.14 Example of a PCRR operating at an add-frequency corresponding to the wavenumber k = 1.13.
Each subdomain is discretized by a grid of 129×129 nodes.
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Figure 3.15 Example of a PCRR operating at a drop-frequency corresponding to the wavenumber k = 1.08.
Each subdomain is discretized by a grid of 129×129 nodes.
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Figure 3.16 Example of a PCRR operating at a resonant frequency corresponding to the wavenumber
k = 1.17.

Figure 3.17 Example of a PCRR operating at a resonant frequency corresponding to the wavenumber
k = 1.303.
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CHAPTER

4

FUTURE DIRECTIONS

The ideas described in this dissertation are only a framework from which one can build in a number

of directions. Due to this, we suggest a variety of different directions for potential future research.

As the method stands, the rod building block is a composition of two subdomains: the interior of

the circle and the area between the square and the circle. Because of this, including one rod building

block increases the computational cost of the method more than adding an empty building block.

Instead, we believe it could be beneficial to incorporate the scattering rod directly into the AP of

the building block. The interface conditions along the rod would no longer be handled at run-time,

reducing the cost of the overall QR-factorization. Intuitively speaking, our method currently uses

the same AP for all of the subdomains, but this change would use a customized AP for each unique

building block.

Given the “building block” nature of the framework, a natural question is whether the building

blocks can be combined into larger macro-blocks. The main difficulty in using blocks of different

sizes is getting the edges to align so that the orthogonality of the basis functions can be exploited

in the interface conditions as in (2.30). By combining the existing blocks into larger macro-blocks,

arbitrarily large sections of a simulation’s domain can be stored in pre-computed operators so that

the interface conditions are resolved before run-time. Of course, this would lead to a higher storage

cost than just having two fundamental blocks, so the benefit of this approach would have to be

considered based on the application.

If stronger performance in PCRR simulations is desired, then a valuable change to consider

is finding a way to implement supplemental rods that do not fall in the center of building blocks

(see Figure 4.1). In [Chremmos et al., 2010] these are shown to substantially improve the spectral

selectivity of the PCRR. The framework as presented in this dissertation does not support — at least
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not in an obvious way — adding such supplemental scattering rods into the domain. We believe

that one of the ways discussed above regarding macro-blocks could hold promise, allowing a larger

block to be defined that simply contains multiple scattering rods in the appropriate locations. In

Figure 4.1, this is demonstrated by the example block composed of four existing blocks. The dotted

lines imply the interfaces that exist in our current decomposition, but this will be incompatible with

a scattering rod at the center.

Figure 4.1 Example of how extra rods can be added to a PCRR setup to improve performance. On the left,
the extra rods are in red and are placed equidistant from the three closes existing rods. On the right, the
dotted lines represent what would be interfaces in the existing framework.

Another direction for the building blocks themselves is to expand into different shapes. For

example, PCRRs can be constructed from various symmetries [Chremmos et al., 2010], so another

viable building block shape could be hexagons. Moving beyond the cases of PCRRs, having a small

collection of unique shapes could provide a great deal of flexibility in the kinds of domains one

could create decompositions for. However, it is worth noting that, like the examples chosen for

numerical demonstrations in Sections 2.2 and 3.3, greater benefit is expected from domains that

are more easily tiled with as few unique building blocks as possible. Regarding the choice of APs

and other details for implementing the MDP on domains of general shapes, [Medvinsky et al., 2016]

and [D. S. Britt et al., 2013] are useful resources with which to start.

Many choices in the implementation of the method were made for convenience and the method’s

computational cost could be improved by giving careful consideration to several of these choices.

Most of these choices are specific to the construction and factorization of the overall linear system

(2.32). For example, by allowing the number of basis functions along the edges of subdomains to

vary, one can adaptively select them according to the expected complexity of the solution in that

part of the domain. By only using the necessary number of basis functions, the width of the final

linear system that gets factorized can be reduced, potentially by a significant amount. In a similar

sense, discretization grids can be chosen at different degrees of refinement depending on the nature

of the solution in given parts of the domain.
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