
ABSTRACT

CLOUD, KIRKWOOD ALEXANDER. Topics in Games and Reinforcement Learning.
(Under the direction of Eric B. Laber and Ryan Martin).

The disciplines of statistics, game theory, and reinforcement learning provide tools

to support decision making. This thesis explores intersections of these fields. It is com-

posed of three investigations, covering (i) how a common statistical tool can be adapted

to enable better understanding of games people play, (ii) how a classic game-theoretic

algorithm can be improved to enable more efficient multiagent reinforcement learning,

and (iii) how quantification of uncertainty can enable safe applications of reinforcement

learning in high-stakes settings.
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Chapter 1

Introduction

Making decisions is hard! Thankfully, humans have developed many conceptual frame-

works, such as decision theory, operations research, ethical theory, statistics, game theory,

and reinforcement learning, to help with the process. Each of these frameworks can be

characterized by which aspects of decision making that they place front and center and

which aspects they neglect.

This thesis concerns topics at the intersection of statistics, game theory, and rein-

forcement learning. Broadly speaking, these areas can be characterized as follows.

• Statistics is about quanti�cation of uncertainty: given some process that produces

data, statistics provides formal tools for converting that data into statements about

the process which are calibrated to the amount of evidence conveyed by the data. In

a canonical statistics problem, scientists apply interventions to a system and collect

numerical measurements of the system after each intervention. The statistician is

tasked with using this data to provide (i) estimates of the effects of the interventions,

and (ii) some principled quantification of the uncertainty in these estimates. The

matter of what to do with the estimates is left squarely in the hands of the scientists

(or other domain experts).

• Game theory is about strategy, i.e., decision making considerations in the presence

of other decision makers. It places front and center questions about conflict, coop-

eration, and incentives between interacting decision makers, or agents. A canonical

game theory question is: given the options available to a set of agents and the agents’

preferences over outcomes, what assignment of agent behaviors will be stable, such

that no agent will have incentive to change their behavior? Game theory takes for
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granted that agents know their preferences exactly (represented numerically) and

typically assumes that the consequences of actions are known with certainty once

uncertainty about other agents’ actions is accounted for.

• Reinforcement learning is about learning from experience. In reinforcement learn-

ing, a decision maker interacts with a system by taking actions and observing a

numerical “reward” signal that is correlated with the quality of actions taken. The

learning problem is to update a decision rule to obtain greater rewards. These

updates may influence the distribution of data collected, introducing statistical

challenges. A decision maker in this setting faces fundamental tradeoffs, such as

whether to act to gather more information, or whether to act so as to earn greater

rewards now (the so-called exploration-exploitation tradeoff). A canonical problem

in reinforcement learning is the iterative playing of a finite number of slot ma-

chines, maintaining estimates of their payoff distributions, with the goal of earning

the greatest cumulative payoff. Given its emphasis on behavior and the reward in-

duced by behavior, reinforcement learning (narrowly construed) is not concerned

with uncertainty quantification, nor is it concerned with the presence of other de-

cision makers.

Each of the frameworks above offers a unique lens through which to analyze decision

problems, and powerful tools for doing so. Each also has its limitations. For example,

traditional statistics can be thought of as an entirely descriptive endeavor applied to a

system with which the analyst does not interact: it does not explicitly incorporate decision

making and often assumes that data was sampled in a convenient fashion, for example,

as independent and identical draws from a population. This precludes that the analysis

itself might change the data generated. On the other end of the spectrum, classical game

theory makes little attempt to be descriptive and is instead quite normative, detailing the

ways that ‘rational’ agents must act, and prescribing theoretically-stable configurations

of such agents. Game theory is abstract, assuming away many sources of uncertainty,

such as uncertainty in the environment or in one’s own preferences over outcomes.

Loosely speaking, reinforcement learning compromises between being purely descrip-

tive or normative: its tools can be used to analyze data generated by real-world agents, or

to recommend or prescribe actions for an agent. It is often studied with a focus on manu-

facturing desirable behavior that makes it more suitable as an engineering discipline (c.f.

control theory) than for data-scarce settings where careful quantification of uncertainty
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is essential, or real-world settings where consideration of other agents is critical.

Given their strengths and weaknesses, each of these frameworks has something pow-

erful to offer the others. It is this observation that motivates the work in this thesis,

which seeks to meld the frameworks together in various ways in order to provide better

tools for making decisions in a complicated world.1 Below, we outline the motivation for,

and result of, three different ways of melding the frameworks, each of which makes up a

chapter of this thesis.

Combining statistics and game theory

In light of its normative orientation, game theory does not provide tools for data-driven

analysis of games as they are played by people or algorithms. This type of analysis is

important. Video games are a massively popular form of entertainment worldwide, and in

order to create or balance them, game designers must understand how they are played. For

example: do certain strategies have an undesirable impact on the outcome of the game?

Does randomness play too large a role? Beyond game design, in many jurisdictions in the

United States and worldwide, the legality of gambling on a game depends on whether

skill or chance “predominates” in determining outcomes of that game. There is not an

established formalization of this notion. So, in both game design and in gambling law,

there is a need for statistical tools to characterize the influence of various aspects on the

outcome of the game.

In Chapter 2 (Variance decompositions for extensive-form games), we take

a common statistical tool and develop a version of it for extensive-form games, which

are a general model for games with discrete steps and partial observability that includes

chess and poker as special cases. The tool is the variance decomposition, which is used

in statistics to quantify sources of variation in an outcome of interest. The variance

decomposition for games allows the user to attribute variation in a game’s outcome

to different players and to chance, enabling new ways of analyzing games that may

have implications for gambling law or game design. Specifically, we derive a closed-form

expression and estimators for the variance in the outcome of an extensive-form game

that can be attributed to a single player, or to chance. We analyze poker hands, finding

1Of course, combinations of these frameworks have been explored extensively. Examples include
the �elds of multiagent reinforcement learning, statistical decision theory, and statistical approaches
to reinforcement learning, a.k.a. dynamic treatment regimes.
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that randomness in the cards dealt has a surprisingly small influence on the outcomes of

each hand. We comment briefly on extensions of this idea that could be used to measure

other interesting properties of games. This chapter is a reproduction of Cloud and Laber

(2021) with slight modi�cations.

Combining game theory and reinforcement learning

In the past five years there has been rapid process in machine learning methods for

decision making, especially in complicated, large-scale, multiplayer games like Chess,

Go, Dota II, Starcraft, and Stratego. A clear difficulty in learning to play these games is

figuring out how to act so as to effect certain changes in a complicated environment. This

is the kind of problem that reinforcement learning is meant to solve. However, there is

another significant difficulty, well understood in the literature but perhaps not at large:

learning in the presence of multiple agents. In all of the games above, a machine learning

algorithm must learn to act in a way that respects an implicit dynamism of the game:

through the game environment, the agent may face many different kinds of opponents.

These opponents might exploit behaviors which had produced favorable outcomes against

other agents. For example, a naive reinforcement learning algorithm applied to the game

Rock Paper Scissors, trained against a “Paper” opponent, will produce a “Scissors” agent,

earning high reward against its training opponent, but being punished severely by a

“Rock” agent. Considerations of these multi-agent dynamics exist in the realm of game

theory. So, in order to define suitable notions of convergence and design algorithms that

attain them, multi-agent reinforcement learning problems must bring game theory to

bear.

In Chapter 3 (Anticipatory fictitious play), we study a classic game-theoretic

algorithm that has previously been extended to multi-agent reinforcement learning with

success. The algorithm, called fictitious play, is used for finding equilibria in two-player

competitive games. However, it converges slowly in some games of interest, as we show

both theoretically and empirically. To address this deficiency, we propose a novel vari-

ant of fictitious play, called anticipatory fictitious play. Anticipatory fictitious play is

proved to converge, demonstrated to have superior empirical performance, and extended

to the setting of multi-agent reinforcement learning. In doing so, we provide an easy-to-

implement multi-agent reinforcement learning algorithm with better performance than

one powered by fictitious play. This chapter is a reproduction of Cloud et al. (2022) with

4



slight modi�cations and less extensive simulation results.

Combining statistics and reinforcement learning

There are many data-driven decision making problems where consideration of other

agents is not essential, and hence, game theory is not needed. For example, in clini-

cal trials, recommender systems, or other settings where many independent individuals

interact with a system, it is common to treat the problem as though patients or website

users as interchangable, independent, and stationary. This is reasonable because, for ex-

ample, giving one patient a treatment is unlikely to cause another patient later to respond

differently to that same treatment. Using data to tailor treatments to individuals in a

clinical trial, or to recommend media to web users, is a reinforcement learning problem.

However, in settings where a notion of “safety” is desired, a naive application of rein-

forcement learning is unlikely to be suitable. If a decision making system is to reliably

respect constraints on the effects of its actions, it is important to be able to quantify

uncertainty in the effects of its actions. Performing this quantification of uncertainty is

a problem for statistical inference.

In Chapter 4 (Safety-constrained online learning in contextual bandits), we

formulate and study a constrained reinforcement learning problem, where in addition to

reward maximization, a decision maker must also select actions according to a constraint

on their “safety.” Constraint satisfaction, like the underlying reward signal, is estimated

from noisy data and thus requires careful handling of uncertainty. We propose a novel

algorithmic framework which employs sample splitting in order to make more efficient

use of data than existing safe algorithms. The generality of our framework means that

it could potentially be applied to all sorts of real-world safety-critical decision problems,

including ones that use hard-to-analyze function approximators like artificial neural net-

works. However, we study our framework in the more restricted linear contextual bandit

setting in order to derive theoretical results that are suggestive of the practical safety and

utiliy of the method. We prove that, under suitable conditions, our algorithm is guar-

anteed to produce optimal safe behavior in the limit, and is approximately safe even in

small sample settings. In a variety of simulations, we validate the theory and demonstrate

superior empirical performance. In this way, we provide a reliable algorithm that can be

used for real-world safety-critical data-driven decision making problems. This chapter is

a preprint of a paper by Cloud, Laber, and Kosorok (forthcoming).
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Chapter 2

Variance decompositions for

extensive-form games

The extent to which an individual or chance can influence the outcome of a game is a

central question in the analysis of games. Consequently, the ability to characterize sources

of variation in game outcomes may have significant implications in areas such as game

design, law, and multi-agent reinforcement learning. We derive a closed-form expression

and estimators for the variance in the outcome of a general multi-agent game that is

attributable to a player or chance. We analyze poker hands to show that randomness in

the cards dealt has surprisingly little influence on the outcomes of each hand. A simple

example is given that demonstrates how variance decompositions can be used to measure

other interesting properties of games.

2.1 Introduction

From game design studios to courtrooms, randomness in games has been the subject of

extensive discussion. Game designers use random game elements to protect players’ egos,

increase gameplay variety, and limit the efficacy of mental calculation (Elias et al. 2012).

In U.S. state law, the question of whether Poker is predominantly a game of chance or

skill is considered to be central to the legality of online Poker (Kelly et al. 2007; Levitt

and Miles 2014).

The question of how to measure the role of luck versus skill has proved difficult and

produced many answers (DeDonno and Detterman 2008; Croson et al. 2008; Elias et al.
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2012; Levitt and Miles 2014; Heubeck 2008a,b; Getty et al. 2018). For example, in USA

v. Lawrence Dicristina, economic consultant and high-level amateur poker player Randal

Heeb testified that “statistical analysis of poker hands confirms that skill predominates

over chance.” His conclusion was based on a series of heuristic data analyses combined

with intuitive judgments (Heeb 2012). Others have argued that the strong association

between player skill rating and future earnings constitute strong evidence that poker

should be considered a game of skill (Levitt and Miles 2014; van Loon et al. 2015).

A first step in assessing the role of chance in a game is to quantify sources of uncer-

tainty. We examine how variation in the outcomes of a game can be attributed to players

or chance events by expressing variation in game outcomes as the sum of variance compo-

nents associated with (i) the actions taken by a player of interest, and (ii) all remaining

sources of variation. By applying this decomposition to a conceptual “chance player,” we

measure the degree to which randomness inherent in a game biases the results in favor

of a given player.

We derive an analytical expression for these variance components and use it to obtain

estimators which are model-free in the sense that they do not require access to an entire

game model or other players’ behavior. Our results apply to finite extensive-form games

in general. As an illustrative example, we analyze poker hands played by the DeepStack

poker agent against professional players (Moravcik et al. 2017) and find that chance

events have very little influence on the expected per-hand profit for a player relative to

the total variation in per-hand profit. A roadmap of the paper is as follows:

• Section 2.2 defines extensive-form games.

• Section 2.3.1 casts a general extensive-form game in terms of random variables.

Section 2.3.2 describes how to decompose the variance of a game outcome into the

sum of two nonnegative terms, gives a formula for the terms, and provides two ways

of estimating them.

• Section 2.4 gives estimates for the variance component for chance in collections of

Poker games.

• Section 2.5 offers an idea for a further variance decomposition for measuring skill,

chance, and non-transitivity in games and applies it to a conceptual game.

• Section 2.6 discusses the interpretation and relevance of the results.
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Figure 2.1: An example of an extensive-form game. Each node in the tree is a state
s 2 S and is annotated with the corresponding player, P-(s). The dashed line represents
Player 2’s information state; in this example, they cannot tell what move Player 1 played.
Rewards for Player 1 are shown below the terminal nodes.

2.2 Extensive-form games

An extensive-form game is a tree-based representation of a multi-agent system; Figure

2.1 displays a simple example. In this representation, the game is played by traversing

the tree from the root to a leaf node, with a player’s action at each node determining

the next node visited. Our notation is based on (Lanctot et al. 2009) and (Heinrich et al.

2015), with some modifications.

Let S denote the set of possible game states which we assume is finite; each state is

associated with a node in the game tree. Define N = f1; : : : ; ng to be the set of (non-

chance) players and let c denote the chance player. The player function P- : S ! N [ fcg
associates each state with a player. At each state s 2 S, there are a finite number

of available actions A(s), such that each a 2 A(s) uniquely determines the next state

visited in the tree (Shoham and Leyton-Brown 2008).

A sequence of actions z = (a1; : : : ; am) is a terminal history if it leads from the root to

a leaf of the game tree; let Z denote the set of all terminal histories. For each player i 2 N
and terminal history z 2 Z, a reward ri(z) 2 R is obtained by player i upon reaching

z. Each player i 2 N has a set of information states U i which represent collections

of nodes which are indistinguishable to the player. In particular, U i is a partition of

fs 2 S : P-(s) = ig with the additional condition that A(s) = A(s0) if s and s0 are in

the same information state. So, we can write A(u) for u 2 U i unambiguously. Define

U c = ffsg : P-(s) = cg. We consider games of perfect recall, so that for every player

i, each u 2 U i can be uniquely identified with the sequence of information states and

8



actions required to arrive there.

Finally, the behavior of each player i 2 N [ fcg is described by a policy �i (also

known as a behavioral strategy), which is a function that maps each information state

u 2 U i to a distribution over the allowable actions A(u). A policy pro�le is a tuple of

player policies, � = (�1; : : : ; �n). By convention, the policy of the chance player �c is

considered to be a fixed part of the extensive-form game itself and not a part of any

policy profile.

2.3 Variance decompositions for game outcomes

To formalize our results, we represent an extensive-form game in terms of random vari-

ables. Having done this, the outcome of the game will be a random variable Y indicating

the score obtained by a particular player.

2.3.1 Extensive-form games with random variables

First, we introduce random variables that represent the actions selected by players in

a single play of the game. For each i 2 N [ fcg, and for each u 2 U i, let A(u) be a

random variable taking values in A(u) which represents the action player i would take

given information state u. This variable always realizes a value, even if u is not reached

in a particular play of the game. Note that for u 6= u0 2 U i, it need not be the case that

A(u) is independent of A(u0). This manner of specifying player behavior is quite general

and can account for different models of player action selection. For example, a player

may randomly precommit to a deterministic policy (this is known as a mixed strategy in

the game theory literature), or select actions independently at random at each time step

(a behavioral strategy) (Koller and Megiddo 1996).

For each terminal history z 2 Z and player i 2 N [ fcg, let mi(z) be the number

of actions selected by player i along z, so that for each j 2 f1; : : : ;mi(z)g, we can write

uiz;j and a
i
z;j to denote the jth information state observed and action selected by player

i along terminal history z. Define I iz;j = 1[A(uiz;j) = aiz;j] to be the Bernoulli random

variable that indicates whether player i selects aiz;j at u
i
z;j. Finally, define I

i
z =

Qmi(z)
j=1 I iz;j

to be the Bernoulli random variable that indicates whether player i selects all actions

along z. (If mi(z) = 0, set I iz � 1.)

A terminal history occurs if and only if every action along it is selected. Therefore,
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Figure 2.2: A game as a function of player actions.

for each z 2 Z, Iz =
Q

i2N[fcg I
i
z defines a Bernoulli random variable such that the

success probability P (Iz = 1) is the probability that terminal history z is realized. Let

Z be a random terminal history variable such that P (Z = z) = P (Iz = 1) for all z that

represents a random play-through of the game. This allows us to cast the outcome of an

extensive-form game as

Y = [r1(Z); : : : ; rn(Z)];

as visualized in Figure 2.2. Write Y = r(Z) = rh(Z), the random variable representing

the reward for a player h 2 N upon one play of the game. Our goal is to express its

variance, V (Y ) = Ef[Y � E(Y )]2g, as a sum of nonnegative terms corresponding to

meaningful properties of the game.

2.3.2 Variance decomposition

Let i 2 N [ fcg be a player of interest, and let Ai = [A(u)]u2U i be the concatenation of

all actions for player i. By the law of total variance we can decompose the variance in

game outcomes as

V (Y ) = V [E(Y jAi)] + E[V (Y jAi)]: (2.1)

The term E(Y jAi) is the average game outcome upon many traversals of the game tree

when player i commits ahead of time to playing the actions in Ai. For example, E(Y jAc)

represents the average outcome for a group of poker players who play the same hand from

a deck with a particular card order many times, or the average outcome for a pair of chess
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players who start with the same colors every game. Then V [E(Y jAc)] is the variation in

this mean as the chance actions Ac vary, and represents the variation in game outcomes

“explained by” chance events. The latter term of (2.1) has a similar interpretation as the

variation in game outcomes not explained by actions selected by player i.

Let i 2 N [ fcg be a player of interest. Suppose that player i plays according to a

behavioral strategy �i, meaning that A(u) is independent of A(u0) for all u 6= u0 2 U i

and action probabilities are given by a policy such that P (Aiz;k = 1) = �i(aiz;kjuiz;k) for all
z 2 Z and k 2 f1; : : : ;mi(z)g. No such assumption is required for the remaining players;

we only require that other players’ (precommitments to) actions are independent of the

actions of player i.

Let �i(z) = P (I iz = 1) be the probability that player i assigns to actions along

terminal history z; similarly, ��i(z) = P (
Q

i02N[fcgnfig I
i0
z = 1) is the probability assigned

by other players, and �(z) = �i(z) ��i(z) = P (Iz = 1). For each information state u 2 U i,
define Z(u) = fz 2 Z : u is visited in zg, �(u) =

P
z2Z(u) �(z), �

i(u) =
P

z2Z(u) �
i(z),

and ��i(u) such that �(u) = �i(u) ��i(u). For each a 2 A(u), define Z(ua) = fz 2 Z :

u is visited in z and action a is selected at u:g. Define q(u; a) = E[r(Z)jZ 2 Z(u; a)] to
be the expected outcome given that player i is at u and takes action a; similarly, define

v(u) = E[r(Z)jZ 2 Z(u)].
Our main result is an expression of the variance in game outcomes explained by

player i’s actions as a sum of weighted, squared action-value and value functions over all

of player i’s information states:

V [E(Y jAi)] =
X
u2U i

� X
a2A(u)

[q(u; a)]2 �i(aju)� [v(u)]2
�
��i(u) �(u): (2.2)

A proof is provided in Appendix A.1. Computing this requires traversing the game tree

a fixed number of times and hence is O(jSj). From this we obtain a formula for the other

variance component by observing that E[V (Y jAi)] = V (Y )� V [E(Y jAi)], where V (Y )

can be evaluated as
P

z2Z [r(z)�
P

z02Z r(z
0)�(z0)]2 �(z).

Assuming ��i, q, and v are known, given an i.i.d. sequence of � playthroughs of the

game, each generating a sequence Uk = (Uk;1; : : : ; Uk;lk) of observed information states

in U i, then the following is a consistent estimator for V [E(Y jAi)] as proved in Appendix
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A.2:

��1

�X
k=1

lkX
l=1

� X
a2A(Uk;l)

[q(Uk;l; a)]
2�i(ajUk;l)� [v(Uk;l)]

2
�
��i(Uk;l): (2.3)

In practice, q and v can be estimated by supervised learning and �i = �=��i can be

estimated with �̂(u) = ��1
P�

k=1

Plk
l=1 1(Uk;l = u) and �i(u) = �i(u) (assuming the

analyst does not have access to opponent policies and observations). However, if there

are many possible information states, i.e., jU ij is large, �̂(u) will greatly overestimate the

visit probability. An alternative is a more straightforward regression-based estimator.

Our regression-based estimator works by fitting a model for the conditional mean of the

game outcome given a player’s actions, then computing the empirical variance of the

conditional mean estimator. The procedure is:

1. Specify a model f� that maps the collection of all actions for the player of interest

to a real number, f� : �u2U iA(u)! R.

2. For a each observed game k 2 f1; : : : ; �g, record action-outcome pairs (Ai
k; Yk). For

each k, if an information state for the player of interest, u 2 U i was not visited

in game k, sample A(u) � �i(�ju) and include the sampled action in Ai
k. Fit the

model on the action-outcome pair data to find a �̂ that minimizes the mean square

error, ��1
P�

k=1[Yk � fb�(Ai
k)]

2, so fb�(�) estimates E(Y jAi = � ).

3. Estimate V [E(Y jAi)] using the sample analog with fb�(Ai) plugged in for E(Y jAi):

��1

�X
k=1

"
fb�(Ai

k)� ��1

�X
h=1

fb�(Ai
h)

#2

: (2.4)

The regression-based estimator is consistent if fb� is consistent for E(Y jAi = � ); a proof

is provided in Appendix A.2.

2.4 Analysis of pro poker players versus DeepStack

We analyze 150 thousand hands of heads-up no-limit poker played by different players

against the DeepStack poker agent, including 45 thousand hands played by self-identified

professional players. For details on how the data were generated, see the supplemental
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materials of the DeepStack paper (Moravcik et al. 2017). Our goal is to understand the

role chance has in influencing the per-hand profits of a human playing against DeepStack,

so we will estimate the variance component for chance for games played by each human

player indexed by j 2 f1; : : : ; 33g. We also include an algorithm used for poker agent

evaluation called Local Best Response (index j = 0), which we include as a form of

transfer learning in order to improve estimates of expected outcomes for the human

players. Assume that player j plays according to a policy �j and write E�j(Y jAc) to

denote the expected per-hand profit for player j against DeepStack given all chance

events Ac. Then we would like to know V [E�j(Y jAc)] for each j.

We use a neural network to estimate E�j(Y jAc) given a player and the realization of

all chance events:

• The player’s pocket cards (2 cards)

• DeepStack’s pocket cards (2 cards)

• The flop (3 cards)

• The turn (1 card)

• The river (1 card)

The neural network shares a representation of cards across all inputs: each card rank

(e.g. Ace) and suit (e.g. hearts) is associated with a learned vector embedding; a card is

represented by the concatenation of these embeddings. To capture the unordered nature

of players’ pocket cards and the flop, the card representations for each of those groups

is summed. The architecture is depicted in Figure 2.3 and hyperparameters are given in

Appendix A.3.

Our model was trained by stochastic gradient descent with the Adam optimizer

(Kingma and Ba 2014) with early stopping based on cross-validation loss using a 90%/10%

train-test split. If a hand ended before all chance events were observed (for example, if a

player folded before the river), the cards associated with that chance event were randomly

sampled from the remaining cards in the deck at that point in the game. These cards

were resampled in each epoch of training in order to decrease variance. We present our

results in Table 2.1. For each player, the empirical variance of the regression estimator

was computed over both the training and test data and is recorded in column “Chance

var.” Due to randomness in the training procedure (neural network initialization, train-
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Figure 2.3: The neural network architecture used for analysis of DeepStack hands. The
input for each card (shown in blue) is a concatenation of the rank and suit of the card.
The rank and suit are each assigned a vector embedding, with the same weights shared
for all card inputs.

test split, and sampled actions), we repeat the procedure 100 times and report average

results and standard deviations.

The results are somewhat surprising: typical values for the percent of total variance

“explained” by chance events fall between 0% and 5%, with low standard deviations. We

conclude that the influence of chance events alone on per-hand outcomes is quite limited.

Rather, the large amount of variation in per-hand profits is mostly explained by player

randomization and the interaction between those actions and chance. We elaborate in

the Discussion section.

2.5 A three-way decomposition for assessing skillful-

ness of a game

As another example of using variance decompositions to analyze games, we present a

concept for measuring skill, chance, and non-transitivity that is inspired by prior work

on decompositions of games (Candogan et al. 2011) and recent developments regarding

14



Table 2.1: Analysis of the variance in per-hand player profit (in $1,000’s) for human
professionals against the DeepStack poker agent. Standard deviations are given in paren-
theses and are based on 100 replications of the training procedure.

Player name Hands played Mean pro�t Variance Chance var. Chance var. %

Local best response 106,221 -0.07 4.71 0.11 (0.04) 2.4 (0.9)
Ivan Shabalin 3,122 -0.03 3.42 0.09 (0.03) 2.7 (1.0)
Pol Dmit 3,026 -0.09 4.99 0.11 (0.05) 2.2 (0.9)
Muskan Sethi 3,010 -0.21 8.07 0.12 (0.05) 1.5 (0.7)
Dmitry Lesnoy 3,007 0.01 4.42 0.09 (0.03) 1.9 (0.7)
Stanislav Voloshin 3,006 0.01 3.27 0.11 (0.05) 3.3 (1.4)
Lucas Schaumann 3,004 -0.02 2.59 0.11 (0.04) 4.1 (1.5)
Phil Laak 3,003 -0.08 3.58 0.10 (0.04) 2.8 (1.1)
Antonio Parlavecchio 3,003 -0.11 7.22 0.13 (0.05) 1.8 (0.7)
Kaishi Sun 3,002 -0.00 4.14 0.11 (0.04) 2.6 (1.0)
Martin Sturc 3,001 0.05 2.58 0.09 (0.03) 3.5 (1.3)
Prakshat Shrimankar 3,001 -0.02 3.47 0.10 (0.04) 2.9 (1.2)
Tsuneaki Takeda 1,901 0.03 7.46 0.09 (0.04) 1.3 (0.6)
Youwei Qin 1,759 -0.20 14.80 0.11 (0.04) 0.7 (0.3)
Fintan Gavin 1,555 0.00 10.97 0.11 (0.05) 1.0 (0.4)
Giedrius Talacka 1,514 -0.05 11.46 0.12 (0.05) 1.0 (0.5)
Juergen Bachmann 1,088 -0.18 7.80 0.17 (0.09) 2.2 (1.2)
Sergey Indenok 852 -0.03 13.90 0.11 (0.05) 0.8 (0.3)
Sebastian Schwab 516 -0.18 6.25 0.10 (0.05) 1.7 (0.8)
Dara Okearney 456 -0.02 3.37 0.15 (0.06) 4.5 (1.9)
Roman Shaposhnikov 330 0.09 3.95 0.09 (0.04) 2.3 (1.0)
Shai Zurr 330 -0.12 4.15 0.09 (0.04) 2.2 (0.8)
Luca Moschitta 328 -0.14 4.83 0.11 (0.07) 2.4 (1.4)
Stas Tishekvich 295 0.03 3.90 0.11 (0.05) 2.9 (1.2)
Eyal Eshkar 191 -0.07 8.77 0.13 (0.05) 1.5 (0.6)
Jefri Islam 176 -0.38 10.56 0.10 (0.05) 0.9 (0.4)
Fan Sun 122 0.13 9.27 0.12 (0.08) 1.2 (0.9)
Igor Naumenko 102 -0.09 0.61 0.08 (0.04) 13.1 (6.4)
Silvio Pizzarello 90 -0.51 10.44 0.17 (0.19) 1.7 (1.9)
Gaia Freire 76 -0.01 0.09 0.10 (0.06) 111.8 (63.9)
Alexander B�os 74 -0.00 1.29 0.05 (0.03) 3.9 (2.1)
Victor Santos 58 0.18 0.96 0.12 (0.07) 12.6 (7.5)
Mike Phan 32 1.12 25.58 0.07 (0.05) 0.3 (0.2)
Juan-Manuel Pastor 7 -0.73 1.14 0.06 (0.08) 5.7 (7.3)
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learning in the context of complex games with nontransitive elements (Balduzzi et al.

2019; Omidshafiei et al. 2020). For simplicity, assume we are given a symmetric two-

player zero-sum game and a population of players represented by a finite set of policies

Π, each with a skill rating �� for � 2 Π. One notion of the skillfulness of the game is

the variance in outcomes explained by players’ skill ratings alone, assuming two policies

(�1; �2) are sampled uniformly from Π:

V (Y ) = V [E(Y j��1 ; ��2)] + E[V (Y j��1 ; ��2)]: (2.5)

Applying the law of total variance to the conditional variance V (Y j��1 ; ��2), we condition

on chance actions Ac as in (2.1) to obtain V (Y j��1 ; ��2) = V [E(Y jAc; ��1 ; ��2)j��1 ; ��2 ]+

E[V (Y jAc; ��1 ; ��2)j��1 ; ��2 ]. Using linearity of expectation and the tower rule, this allows

us to extend (2.5) to

V (Y ) =V [E(Y j��1 ; ��2)] (skill)

+EfV [E(Y jAc; ��1 ; ��2)j��1 ; ��2 ]g (chance)

+E[V (Y jAc; ��1 ; ��2)]: (remaining) (2.6)

We apply this formula to analyze a simple game parametrized by constants n 2 N,

c 2 N [ f0g, and � 2 [0; 1] that is an abstract model of a game with a skill component

(some strategies are strictly better than others), a nontransitive component (there exist

cycles of pure strategies), and chance (some games are decided by events entirely out

of the players’ hands). Skillful Rock Paper Scissors, or SkillRPS(n, c, �), is defined as

follows: each player i 2 f1; 2g simultaneously selects a number Ni 2 f1; : : : ; ng and a

move Ai 2 fRock, Paper, Scissorsg. Player 1’s score is S = N1 � N2 + c � RPS(A1; A2),

where RPS is the payoff function for Rock Paper Scissors depicted in Table 2.2.

Table 2.2: The payoff function RPS(a1,a2).

a1na2 Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1

Scissors -1 1 0
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The outcome of the game for player 1 is Y =

(1�W )[1(S > 0)� 1(S < 0)] +W (2Z � 1), where W � Bernoulli(�) and

Z � Bernoulli(1=2) are chance events such that W determines whether the game

is decided by a fair coin flip Z. Note that when n = 1, c > 0, � = 0, the game is classic

Rock Paper Scissors, when � = 1 it is a coin flip, and when c = 0 it is a transitive game.

The game can be represented in extensive form as shown in Figure 2.1, which depicts

SkillRPS(2, 0, 0:5).

Figure 2.4: Three-way variance decompositions for SkillRPS with different game pa-
rameters under the assumption that players selects moves independently and uni-
formly at random, i.e., for i 2 f1; 2g, Ni � Uniform(f1; : : : ; ng) and Ai �
Uniform(fRock, Paper, Scissorsg) and are independent. Details on the variance com-
ponents for SkillRPS are included in Appendix A.4.

In Figure 2.4, the three-way decomposition is given across many values of the SkillRPS

game parameters, showing that the components correspond to meaningful properties

of games: increasing the probability that the game outcome is determined by a coin

flip increases the chance variance component to 1 as the other variance components

decrease smoothly; increasing the bonus for winning at Rock Paper Scissors decreases

the skill component. In this case, the “remaining” variation corresponds directly to the

non-transitivity introduced by the RPS component of the game.

17



2.6 Discussion

One might hope that the variance component for chance V [E(Y jAc)] measures how lucky

a game is in the context of the players playing the game. We argue that this is not the

case, and conclude with thoughts on the applicability of variance component estimation

for the analysis of games.

First, the variance component for chance does not measure how lucky a game is

because by design it avoids measuring variation introduced by random player actions.

Consider the classic version of Rock Paper Scissors (RPS) depicted in Table 2.2. A cau-

tious player can guarantee an expected payoff of 0 by assigning uniform probability to

each action, causing the outcome of the game to be uniformly random over f�1; 0; 1g.
For this reason, it is natural to view RPS as a game of luck— however, RPS as typically

modeled does not have a chance player. All variation in RPS comes from randomness in

player action selection. So, if we are to call RPS a game of luck, then a notion of luck

that only considers chance events is inadequate.

Second, the variance component for chance is conservative in that it only measures

the marginal (average) effect of chance actions on game outcomes. It does not capture the

interaction between chance events and player actions. For example, consider a variant of

RPS in which one of the players is replaced with a chance player. If the non-chance player

employs a uniform random policy, then the expected outcome is 0 regardless of action

is selected by chance. Thus E(Y jAc = a) = 0 for each a 2 fRock;Paper; Scissorsg. This
means that for any chance policy, the variance component for chance is 0, yet from the

player’s perspective, against a uniform chance policy, it is as though the game outcome

is entirely determined by chance!

What the variance component for chance actually measures is the per-game amount

that chance biases the outcome in favor of a player. In both the examples given above,

luck plays a significant role in the game outcomes, but the realization of chance events

alone does not tend to significantly tilt the game in the favor of either player— so our

measure evaluates to 0. Returning to the analysis of DeepStack poker hands, we see that

despite the large amount of variation in per-hand profits (of which any one realization

could be called “lucky”) the game (as played at a high level) is in some sense fair: on

a hand-by-hand basis, the average amount that the random deck order advantages or

disadvantages a particular player is small.

Video game designers may find the variance component for chance helpful in assessing
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the per-play advantage gleaned by a player due to chance events. We speculate that for

a rewarding game experience, the variance component should be kept low, or else players

will feel a sense of limited agency. Returning to the question of the legality of poker, our

measure could represent a sufficient (but not necessary) criterion for determining that a

game is “predominantly due to chance:” if the ratio of the variance component for the

chance player to the total variation is greater than 50%, then clearly the game outcomes

could be said to be predominantly due to chance. The three-way variance decomposition

in (2.6) offers a way to characterize meaningful properties of games that arise in the

context of multiagent reinforcement learning and presents new research challenges such

as (i) accounting for estimation error in the skill rating (however it is defined), and

(ii) accounting for the actual distribution from which policies are sampled to play each

other, which is often not uniform but rather skill-based, such that players with nearby

skill ratings are likely to be placed together.
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Chapter 3

Anticipatory fictitious play

3.1 Introduction

Matrix games (also known as normal-form games) are an abstract model for interactions

between multiple decision makers. Fictitious play (FP) (Brown (1951)) is a simple al-

gorithm for two-player matrix games. In FP, each player starts by playing an arbitrary

strategy, then proceeds iteratively by playing the best strategy against the empirical av-

erage of what the other has played so far. In some cases, such as two-player, zero-sum

games, the empirical average strategies will converge to a Nash equilibrium.

Although there are more efficient algorithms for computing Nash equilibria in ma-

trix games (Adler 2013; Shoham and Leyton-Brown 2008), there are a few reasons why

fictitious play remains a topic of interest. First, it serves as a model for how humans

might arrive at Nash equilibria in real-world interactions (Luce and Raiffa 1989; Brown

1951; Conlisk 1993a). Second, FP is extensible to real-world games which are large and

complicated. Our work is primarily motivated by the secondary application.

The initial step towards extending FP to real-world games was by Kuhn (1953),

which established the equivalence of normal-form games (represented by matrices) and

extensive-form games (represented by trees with additional structure). Loosely speaking,

this means that results which apply for matrix games may also apply to much more com-

plicated decision making problems, such as ones that that incorporate temporal elements

or varying amounts of hidden information. Leveraging this equivalence, Heinrich et al.

(2015) proposed an extension of FP to the extensive-form setting, full-width extensive-

form fictitious play (XFP), and proved that it converges to a Nash equilibrium in two-
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player, zero-sum games. Heinrich et al. (2015) also proposed Fictitious Self Play (FSP),

a machine learning approximation to XFP. In contrast to XFP, which is intractable for

real-world games whose states cannot be enumerated in practice, FSP relies only on basic

operations which can be approximated in a machine learning setting, like averaging (via

supervised learning) and computing best responses (via reinforcement learning). In this

way, FSP provides a version of fictitious play suitable for arbitrarily complex two-player,

zero-sum games. Not long after the introduction of FSP, Lanctot et al. (2017) presented

Policy Space Response Oracles (PSRO), a general framework for fictitious-play-like rein-

forcement learning algorithms in two-player, zero-sum games. These ideas were employed

as part of the groundbreaking AlphaStar system that defeated professional players at

StarCraft II (Vinyals et al. 2019).

We introduce anticipatory fictitious play (AFP), a simple variant of fictitious play

which is also reinforcement-learning-friendly. In contrast to FP, where players iteratively

update to exploit an estimate of the opponent’s strategy, players in AFP update proac-

tively to respond to the strategy that the opponent would use to exploit them.

We prove that AFP is guaranteed to converge to a Nash equilibrium in two-player

zero-sum games and establish an optimal convergence rate for two classes of games that

are of particular interest in learning for real world games (Balduzzi et al. 2019), a class of

“cyclic” games and a class of “transitive” games. Numerical comparisons suggest that in

AFP eventually outperforms FP on virtually any game, and that its improvement over

FP improves as games get larger. Finally, we propose a reinforcement learning version

of AFP that is implementable as a one-line modification of an RL implementation of

FP, such as FSP. These algorithms are applied to a stochastic, competitive multiagent

environment with cyclic dynamics.

3.1.1 Related work

Aside from the literature on fictitious play and its extension to reinforcement learn-

ing, there has been substantial work on “opponent-aware” learning algorithms. These

algorithms incorporate information about opponent updates and are quite similar to

anticipatory fictitious play.

In the context of evolutionary game theory, Conlisk (1993a) proposed an “extrapo-

lation process,” whereby two players in a repeated game each forecast their opponents’

strategies and respond to those forecasts. Unlike AFP, where opponent responses are
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explicitly calculated, the forecasts are made by linear extrapolation based on the change

in the opponent’s strategy over the last two timesteps. Conlisk (1993b) proposed two

types of “defensive adaptation,” which are quite similar in spirit to AFP but differ in

some important details; most importantly, while they consider the opponent’s empirical

payoffs at each step, they do not respond directly to what the opponent is likely to play

given those payoffs.

Shamma and Arslan (2005) proposed derivative action fictitious play, a variant of

fictitious play in the continous time setting in which a best response to a forecasted

strategy is played, like in (Conlisk 1993a). The algorithm uses a derivative-based forecast

that is analogous to the discrete-time anticipated response of AFP. However, their con-

vergence results rely on a fixed, positive entropy bonus that incentivizes players to play

more randomly, and they do not consider the discrete-time case.

Zhang and Lesser (2010) proposed Infinitesimal Gradient Ascent with Policy Pre-

diction, in which two policy gradient learning algorithms continuously train against a

forecast of the other’s policy. Their algorithm represents the core idea of AFP, albeit

implemented in a different setting. However, their proof of convergence is limited to 2x2

games. Foerster et al. (2018) and Letcher et al. (2018) take this idea further, modifying

the objective of a reinforcement learning agent so that it accounts for how changes in the

agent will change the anticipated learning of the other agents. This line of research is ori-

ented more towards equilibrium finding in general-sum games (e.g. social dilemmas), and

less on efficient estimation of equilibria in strictly competitive two-player environments.

3.2 Preliminaries

A (finite) two-player zero-sum game (2p0s game) is represented by a matrix A 2 Rm�n,

so that when player 1 plays i and player 2 plays j, the players observe payoffs (Ai;j;�Ai;j)
respectively. Let ∆k � Rk be the set of probability vectors representing distributions over

f1; : : : ; kg elements. Then a strategy for player 1 is an element x 2 ∆m and similarly, a

strategy for player 2 is an element y 2 ∆n.

A Nash equilibrium in a 2p0s game A is a pair of strategies (x�; y�) such that each

strategy is optimal against the other, i.e.,

x� 2 argmax
x2�m

x|Ay� and y� 2 argmin
y2�n

(x�)|Ay:
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The Nash equilibrium represents a pair of strategies that are “stable” in the sense that no

player can earn a higher payoff by changing their strategy. At least one Nash equilibrium

is guaranteed to exist in any finite game (Nash Jr 1950).

Nash equilibria in 2p0s games enjoy a nice property not shared by Nash equilibria

in general: in 2p0s games, if (x1; y1) and (x2; y2) are Nash equilibria, then (x2; y1) is a

Nash equilibrium. In a 2p0s game, we define a Nash strategy to be be one that occurs as

part of some Nash equilibrium. Note that the aforementioned property does not hold in

general, so normally it is only valid to describe collections of strategies (one per player)

as equilibria.

A solution to a 2p0s game A is a pair of strategies (x�; y�) such that

min
y2�n

(x�)|Ay � (x�)|Ay� � max
x2�m

x|Ay�:

We say v� = (x�)|Ay�, which is unique, the value of the game. Nash equilibria are

equivalent to solutions of 2p0s games (Shoham and Leyton-Brown 2008), which is why

we use the same notation. Finally, the exploitability of a strategy is the difference between

the value of the game and the worst-case payoff of that strategy. So the exploitability of

x 2 ∆m is v� �minx|A, and the exploitability of y 2 ∆n is maxAy � v�.

3.2.1 Fictitious play

Let e1; e2; : : : denote the standard basis vectors in Rm or Rn. Let BRkA be the best response

operator for player k, so that

(8y 2 ∆n) BR1
A(y) = fei 2 Rm : i 2 argmaxAyg;

(8x 2 ∆m) BR2
A(x) = fej 2 Rn : j 2 argminx|Ag:

Fictitious play is given by the following process. Let x1 = x1 = ei and y1 = y1 = ej be

initial strategies for some i, j. For each t 2 N, let

xt+1 2 BR1
A(yt); yt+1 2 BR2

A(xt);

xt+1 =
1

t+ 1

t+1X
k=1

xt; yt+1 =
1

t+ 1

t+1X
k=1

yt:
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In other words, at each timestep t, each player calculates the strategy that is the best

response to their opponent’s average strategy so far. Robinson (1951) proved that the

pair of average strategies (xt; yt) converges to a solution of the game by showing that the

exploitability of both strategies converge to zero.

Theorem 1. (Robinson, 1951) If f(xt; yt)gt2N is a FP process for a 2p0s game with payoff

matrix A 2 Rm�n, then

lim
t!1

minx|tA = lim
t!1

maxAyt = v�;

where v� is the value of the game. Furthermore, a bound on the rate of convergence is

given by

maxAyt �minx|tA = O(t�1=(m+n�2)) for all t 2 N;

where a = maxi;j Ai;j.

(Robinson did not explicitly state the rate, but it follows directly from her proof, as

noted in Daskalakis and Pan (2014) and explicated in our Appendix B.2.1.)

3.3 Anticipatory Fictitious Play

Although FP converges to a Nash equilibrium in 2p0s games, it may take an indirect path.

For example, in Rock Paper Scissors with tiebreaking towards the minimum strategy

index, the sequence of average strategies fx1; x2; : : : g orbits the Nash equilibrium, slowly

spiraling in with decreasing radius, as shown on the left in Figure 3.1. This tiebreaking

scheme is not special; under random tiebreaking, the path traced by FP is qualitatively

the same, resulting in slow convergence with high probability, as shown in Figure 3.2.

Given that FP appears to do an especially poor job of decreasing exploitability in

the case above, we consider alternatives. Inspired by gradient descent, we ask if there

is there a way to follow the gradient of exploitability towards the Nash equilibrium

(without explicitly computing it, as is done in Lockhart et al. (2019)). By definition, the

best response to the average strategy is a strategy that maximally exploits the average

strategy. So, a natural choice of update to reduce exploitability is to move the average

strategy in a direction that counters this best response.
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Figure 3.1: A visualization of the first 50 steps of FP (xFP
1 ; xFP

2 ; : : : ; xFP
50 ) and first 25

steps of AFP (xAFP
1 ; xAFP

2 ; : : : ; xAFP
25 ) on Rock Paper Scissors. This corresponds to an equal

amount of computation per algorithm (50 best responses). Ties between best response
strategies were broken according to the ordering ‘Rock,’ ‘Paper,’ ‘Scissors.’ The Nash
equilibrium is marked by a star. The shading indicates the exploitability of the strategy
at that point, with darker colors representing greater exploitability.

To this end, we propose anticipatory �ctitious play (AFP), a version of fictitious

play that “anticipates” the best response an adversary might play against the current

strategy, and then plays the best response to an average of that and the adversary’s

current average strategy. (Simply responding directly to the opponent’s response does

not work; see Appendix B.1.) Alternatively, one can think of AFP as a version of FP

that “forgets” every other best response it calculates. This latter interpretation enables a

convenient implementation of AFP as a modification of FP as demonstrated in Algorithm

2.

Remark. The AFP update is seemingly consistent with human psychology: it is quite

intuitive to imagine how an adversary might try to exploit oneself and to respond in order

to best counter that strategy. Given that fictitious play provides a model for how humans

or other non-algorithmic decision makers might arrive at an equilibrium in practice (Luce

and Raiffa 1989; Brown 1951) anticipatory fictitious play offers a new model for how this

may occur. We leave further consideration of this topic to future work.

AFP is given by the following process. For some i 2 f1; : : : ;mg and j 2 f1; : : : ; ng,
let x1 = x1 = ei and y1 = y1 = ej be initial strategies for each player. For each t 2 N,
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Figure 3.2: Comparison of FP and AFP performance (minx|tA) on RPS with random
tiebreaking. The highlighted region depicts the 10th and 90th percentiles across 10,000
runs. All variation is due to randomly sampled tiebreaking. The value of the game is
v� = 0.

define

x0t+1 2 BR1
A(yt); y0t+1 2 BR2

A(xt);

x0t+1 =
t
t+1
xt +

1
t+1
x0t+1; y0t+1 =

t
t+1
yt +

1
t+1
y0t+1;

xt+1 2 BR1
A(y

0
t+1); yt+1 2 BR2

A(x
0
t+1);

xt+1 =
1

t+ 1

t+1X
k=1

xt; yt+1 =
1

t+ 1

t+1X
k=1

yt: (3.1)

Here, x0t+1 and y0t+1 are the best response to the opponent’s average strategy. They are

the strategies that FP would have played at the current timestep. In AFP, each player

“anticipates” this attack and defends against it by calculating the opponent’s average

strategy that include this attack (x0t and y
0
t), and then playing the best response to the

anticipated average strategy of the opponent.

In Figure 3.1, we see the effect of anticipation geometrically: AFP “cuts corners,” lim-

iting the extent to which it overshoots its target. In contrast, FP aggressively overshoots,

spending increasingly many steps playing strategies that take it further from its goal.
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The effect on algorithm performance is pronounced, with AFP hovering near equilibrium

while FP slowly winds its way there.

Of course, RPS is a very specific example. It is natural to wonder: is AFP good in

general? The rest of the chapter seeks to answer that question. We begin by proving that

AFP converges to a Nash equilibrium.

Proposition 1. If f(xt; yt)g is an AFP process for a 2p0s game with payoff matrix

A 2 Rm�n, the conclusion of Theorem 1 holds for this process. Namely, AFP converges

to a Nash equilibrium, and it converges no slower than the rate that bounds FP.

Proof. (Idea) Generalize the original proof of Theorem 1. We work with accumulating

payoff vectors U(t) = tA|xt and V (t) = tAyt. In the original proof, a player 1 strat-

egy index i 2 f1; : : : ;mg is called eligible at time t if i 2 argmaxV (t) (similarly for

player 2). We replace eligibility with the notion of E-eligibility, satisfied by an index

i 2 argmax[V (t) + E], for any E 2 Rm with kEk1 < maxi;j jAi;jj. Essentially, an index

is E-eligible if it corresponds to a best response to a perturbation of the opponent’s his-

tory yt or a perturbation of the game itself. The original proof structure can be preserved

in light of this replacement, requiring only minor modifications to some arguments and

new constants. Treating the in-between strategies in AFP, x0t and y0t, as perturbations

of xt and yt, it follows that AFP satisfies the conditions for the generalized result. A

complete proof is given in Appendix B.2.

3.4 Application to normal form games

Proposition 1 establishes that AFP converges and that AFP’s worst-case convergence

rate satisfies the same bound as FP’s, where the worst-case is with respect to games and

tiebreaking rules. The next proposition shows that for two classes of games of interest,

AFP not only outperforms FP, but attains an optimal rate. In both classes, our proofs will

reveal that AFP succeeds where FP fails because AFP avoids playing repeated strategies.

The results hold for general applications of FP and AFP rather than relying on specific

tiebreaking rules.

The classes of games that we analyze are intended to serve as abstract models of

two fundamental aspects of real-world games: transitivity (akin to “skillfullness;” some

ways of acting are strictly better than others) and nontransitivity (most notably, in the

form of strategy cycles like Rock < Paper < Scissors < Rock). Learning algorithms for
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real-world games must reliably improve along the transitive dimension while accounting

for the existence of strategy cycles; see Balduzzi et al. (2019) for further discussion.

For each integer n � 3, define payoff matrices Cn and T n by

Cn
i;j =

8>>><>>>:
1 if i = j + 1 mod n;

�1 if i = j � 1 mod n;

0 otherwise;

and T ni;j =

8>>><>>>:
(n� i+ 2)=n if i = j + 1;

�(n� i+ 2)=n if i = j � 1;

0 otherwise,

for i; j 2 f1; : : : ; ng. The game given by Cn is a purely cyclic game: each strategy beats

the one before it and loses to the one after it; C3 is the game Rock Paper Scissors.

For each Cn, a Nash equilibrium strategy is [n�1; : : : ; n�1]|. The game given by T n

could be considered “transitive:” each strategy is in some sense better than the last, and

[0; : : : ; 0; 1]| is a Nash equilibrium strategy. The payoffs are chosen so that each strategy

i is the unique best response to i � 1, so that an algorithm that learns by playing best

responses will progress one strategy at a time rather than skipping to directly to strategy

n (as would happen if FP or AFP were applied to a game that is transitive in a stronger

sense, such as one with a single dominant strategy; c.f. the definition of transitivity in

(Balduzzi et al. 2019)). Note: T n could be defined equivalently without the n�1 factor,

but this would create a spurious dependence on n for the rates we derive.

The following proposition establishes a convergence rate of O(t�1) for AFP applied to

Cn and T n. This rate is optimal within the class of time-averaging algorithms, because

the rate at which an average changes is t�1. Note: we say a random variable Yt = Ωp(g(t))

if, for any � > 0, there exists c > 0 such that P [Yt < cg(t)] < � for all t.

Proposition 2. FP and AFP applied symmetrically to Cn and T n obtain the rates

given in Table 3.1. In particular, if fxt; xtgt2N is an FP or AFP process for a 2p0s

game with payoff matrix G 2 fCn; T ng with tiebreaking as indicated, then maxGxt =

R(t): Tiebreaking refers to the choice of xt+1 2 argmax BR1
G(xt) when there are multiple

maximizers. The “random” tiebreaking chooses between tied strategies independently and

uniformly at random. For entries marked with “arbitrary” tiebreaking, the convergence

rate holds no matter how tiebreaks are chosen.

Proof. (Sketch, Cn) Full proofs of all cases are provided in Appendix B.3. Define ∆0 =

[0; : : : ; 0]| 2 Zn and ∆t = tCn xt for each t 2 N. The desired results are equivalent to
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Table 3.1: Convergence rates for FP and AFP on Cn and T n.

Algorithm Game G Tiebreaking Rate R(t) Caveats

FP Cn random Ωp(t
�1=2)

AFP Cn arbitrary O(t�1) n = 3; 4
FP T n arbitrary Ω(t�1=2) t < t�(n)
AFP T n arbitrary O(t�1)

max∆t = Op(
p
t) under FP for the given tiebreaking rule, and max∆t is bounded under

AFP for n = 3; 4. Let it be the index played by FP (AFP) at time t (so xt = eit). It

follows that

∆t+1;j =

8>>><>>>:
∆t;j � 1 if j = it � 1 mod n;

∆t;j + 1 if j = it + 1 mod n;

∆t;j otherwise;

(3.2)

for each t 2 N0 and j 2 f1; : : : ; ng. Note that the entries of ∆t always sum to zero.

In the case of FP, it is easy to verify that max∆t is nondecreasing for any choice of

tiebreaking. For each m 2 N0, define tm = infft 2 N0 : max∆t = mg. Then by Markov’s

inequality,

P (max∆t < m) = P (tm > t) � E(tm)=t =
1

t

m�1X
k=0

E(tk+1 � tk):

Examining the timesteps at which it+1 6= it and relating them to ftkg, we show in the

appendix that the time to increment the max from k to k+1 satisfies E(tk+1�tk) = O(k).

Thus the bound above becomes P (max∆t < m) � O(m2)=t. Now let c 2 R�0 be arbitrary

and plug in cd
p
te for m, so we have P (max∆t < c

p
t) � c2O(1) ! 0 as c ! 0. So

max∆t = Ωp(
p
t).

For the AFP case, consider the first timestep at which max∆t = m + 1. Working

backwards and checking cases, it can be shown that in order for the maximum value to

increment from m to m + 1, there must first be a timestep where there are two non-

adjacent entries of m with an entry of m� 1 between them. This cannot happen in the

n = 3;m = 2 case because three positive entries (2,1,2) don’t sum to zero. Similarly,
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in the n = 4;m = 2 case, it turns out by (3.2) that ∆t = [a; b;�a;�b] for some a, b.

So there cannot be three positive entries in this case either. Therefore maxt∆t � 2 for

n = 3; 4.

The proofs of Proposition 2 establish a theme: FP can be slow because it spends

increasingly large amounts of time progressing between strategies (playing xt = xt+1 =

� � � = xt+k with k increasing as t increases), whereas AFP avoids this. (Return to Figure

3.1 for a visual example.)

Some further comments on the results: we only obtain the O(t�1) rate for AFP applied

to Cn in the n = 3; 4 case. We conjecture that: (i) for a specific tiebreaking rule, AFP has

the same worst-case rate as FP but with a better constant, (ii) under random tiebreaking,

AFP is Op(t
�1) for all n.

Our results are noteworthy for their lack of dependence on tiebreaking: worst-case

analyses of FP typically rely on specific tiebreaking rules; see Daskalakis and Pan (2014),

for example. As for the “t < t�(n)” caveat for FP applied to T n, this is an unremarkable

consequence of analyzing a game with a pure strategy equilibrium (all probability assigned

to a single strategy). We write t�(n) to indicate the first index at which FP plays en.

Both FP and AFP will play en forever some finite number of steps after they play it for

the first time, thus attaining a t�1 rate as the average strategy “catches up” to en. Our

result shows that until this point, FP is slow, whereas AFP is always fast.

For a visualization of the n = 20 case, demonstrating AFP’s superiority despite these

caveats, see Appendix B.4.

3.4.1 Numerical results

In order to compare FP and AFP more generally, we sample large numbers of random

payoff matrices and compute aggregate statistics across them. Matrix entries are sam-

pled as independent, identically distributed, standard Gaussian variables (note that the

shift- and scale-invariance of matrix game equilibria implies that the choice of mean and

variance is inconsequential). Since FP and AFP are so similar, and AFP computes two

best responses per timestep, it’s natural to wonder: is AFP’s superior performance just

an artifact of using more computation per timestep? So, in order to make a fair compari-

son, we compare the algorithms by the number of best responses calculated instead of the

number of timesteps (algorithm iterations). Using the worst-case payoff as the measure
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of performance, we compare FP and AFP based on the number of responses computed

and based on matrix size in Figures 3.3 and 3.4.

The result is that AFP is clearly better on both counts. Although FP is better for a

substantial proportion of 30� 30 games at very early timesteps t, AFP quickly outpaces

FP, eventually across each of 1,000 matrices sampled. In terms of matrix size, FP and

AFP appear equivalent on average for small matrices, but quickly grow separated as

matrix size grows, with AFP likely to be much better.

Figure 3.3: For 1,000 randomly sampled (30,30) matrices A, the proportion of the time
that min (xAFP

r=2 )|A � min (xFP
r )|A for r = 2; 4 : : : ; 200. A 95% Agresti-Coull confidence

interval (Agresti and Coull 1998) for the true proportion is highlighted. Note that after
only about six best responses, AFP is better half the time, and by 130, AFP is better
than FP essentially 100% of the time.

3.5 Application to reinforcement learning

We apply reinforcement learning (RL) (Sutton and Barto 2018) versions of FP and AFP

in the context of a (two-player, zero-sum, symmetric) stochastic game (Shapley (1953)),

defined by the tuple (S;O;X ;A;P ;R; p0), where S is the set of possible states of the
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Figure 3.4: Average performance of FP vs. AFP at the 100th best response (timestep 100
for FP, timestep 50 for AFP) as matrix size is varied. All matrices are square. Highlighted
regions show the 10th and 90th percentiles.

environment, O is the set of possible observations received by an agent, X : S ! O�O
gives the observations for each player based on the current state, P : S �A�A ! ∆(S)
defines the transition dynamics for the environment given each player’s action, R : S !
R � R defines the reward for both players such that R(st) = (rt;�rt) are the rewards

observed by each player at time t, and p0 2 ∆(S) is the initial distribution of states, such

that s0 � p0. Let H be the set of possible sequences of observations. Then a policy is a

map � : H ! ∆(A). An episode is played by iteratively transitioning by the environment

according to the actions sampled from each players’ policies at each state. Players 1

and 2 earn returns (
P

t rt;�
P

t rt). The reinforcement learning algorithms we consider

take sequences of observations, actions, and rewards from both players and use them to

incrementally update policies toward earning greater expected returns. For background

on reinforcement learning, see Sutton and Barto (2018). For details on machine learning

approximations to FP, see Heinrich et al. (2015). Table 3.2 gives a high-level overview of

the relationship.

The stochastic game we choose is TinyFighter, a minimal version of an arcade-style

fighting game shown in Figure 3.5. It features two players with four possible actions: Move

Left, Move Right, Kick, and Do Nothing. Players are represented by a rectangular body

and when kicking, extend a rectangular leg towards the opponent.
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Table 3.2: The normal-form game analogies used to extend FP and AFP to reinforcement
learning.

Normal-form game Stochastic/extensive-form game

Strategy Policy
Payo� Ai;j Expected return E�i;�j (

P
t rt)

Best response Approximate best response by RL
Strategy mixture

P
�ixi,P

�i = 1, �i � 0
At start of episode, sample policy �i with prob-
ability �i. Play entire episode with �i.

Kicking consists of three phases: Startup, Active, and Recovery. Each phase of a kick

lasts for a certain number of frames, and if the Active phase of the kick intersects with any

part of the opponent (body or leg), a hit is registered. When a hit occurs, the players are

pushed back, the opponent takes damage, and the opponent is stunned (unable to take

actions) for a period of time. In the Startup and Recovery phases, the leg is extended,

and like the body, can be hit by the opponent if the opponent has a kick in the active

phase that intersects the player. The game is over when a player’s health is reduced to

zero or when time runs out.

Player observations are vectors in R13 and contain information about player and

opponent state: position, health, an ‘attacking’ indicator, a ‘stunned’ indicator, and how

many frames a player has been in the current action. The observation also includes the

distance between players, time remaining, and the direction of the opponent (left or right

of self). The game is partially observable, so information about the opponent’s state is

hidden from the player for some number of frames (we use four, and the game runs at

15 frames per second). This means a strong player must reason about the distribution of

actions the opponent may have taken recently and to respond to that distribution; playing

deterministically will allow the opponent to exploit the player and so a stochastic strategy

is required to play well.

3.5.1 Adapting FP and AFP to reinforcement learning

Neural Population Learning (NeuPL) (Liu et al. 2022) is a framework for multiagent re-

inforcement learning wherein a collection of policies is learned and represented by a single

neural network and all policies train continuously. For our experiments, we implement

FP and AFP within NeuPL, as shown in Algorithm 1. For reference, we also include a
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Figure 3.5: A screenshot of the TinyFighter environment, where players attempt to land
kicks in order to reduce the other’s health from 100 to zero.

simple RL version of FP and AFP in the style of PSRO in Appendix B.6.

Algorithm 1 NeuPL-FP/AFP

1: O 2 fOFP;OAFPg . Input: FP or AFP opponent sampler.
2: fΠ�(t) : H ! ∆(A)gnt=1 . Input: neural population net.
3: for Batch b = 1; 2; 3; : : : ; do
4: B  fg
5: while per-batch compute budget remains do
6: Tlearner � Uniform(f1; : : : ; ng)
7: Topponent � O(Tlearner)
8: Dlearner  PlayEpisode(Π�(Tlearner);Π�(Topponent))
9: B  B [Dlearner

10: end while
11: Π�  ReinforcementLearningUpdate(B)
12: end for

The terms in the algorithm are as follows: the opponent sampler O determines the

distributions of opponents that each agent faces and is the only difference between the
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Figure 3.6: A visual depiction of the distributions of opponents (“meta-strategies” in
PSRO or NeuPL) each learner faces in a population learning implementation of FP or
AFP. The (i; j)-entry is the probability that, given that agent i has been sampled to train
in a given episode, it will face agent j in that episode. Dark blue indicates probability 1,
white indicates probability 0.

FP and AFP implementations. We have, for each t > 1,

OFP(t) = Uniform(f1; 2; 3; : : : ; t� 1g); and

OAFP(t) = Uniform(fk < t : k oddg [ ft� 1g):

These distributions are depicted in Figure 3.6. Just as each step of FP involves com-

puting a best response to an average against all prior strategies, sampling from OFP(t)

corresponds to training agent t uniformly against the prior policies; just as AFP can

be thought of “forgetting” every other index, OAFP(t) trains learner index t uniformly

against every odd indexed policy plus the most recent policy. The neural population net

Π�(t) : H ! ∆(A) defines a different policy for each agent index t, and can equivalently

be represented as Π�(ajs; t).

3.5.2 Experimental setup

For the population neural net, we used a simple actor-critic (Sutton and Barto 2018) ar-

chitecture with a separate actor and critic network. The actor is a 3-layer dense MLP with

ReLU activations and layer widths (512, 256, 256, 4) with action masking applied prior

to a Softmax layer. Its inputs are a concatenation of the player observation and a vector
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representing the distribution of opponents faced by the currently training agent index t

(e.g., [0:5; 0:5; 0; : : : ; 0] for agent t = 3 in FP or AFP). The critic is the same, except layer

widths are (256, 256, 128, 1) and an additional input is used: the index of the opponent

sampled at the beginning of this episode, in line with the original implementation Liu

et al. (2022).

Note that the actor (policy network) does not observe which opponent it faces, only

the distribution over agents it faces; this is important because otherwise our agent would

not learning a best response to an average policy as intended in FP and AFP. The

reason for including this information for the critic (value network) is that it may reduce

the variance of the value function estimator (although, of course, it could increase the

variance in estimated state values by conditioning on information that would normally

be averaged over).

We implemented NeuPL within a basic self-play reinforcement learning loop by wrap-

ping the base environment (TinyFighter) within a lightweight environment that handles

NeuPL logic, such as opponent sampling. For reinforcement learning, we use the Asyn-

chronous Proximal Policy Optimization (APPO) algorithm (Schulman et al. 2017), a

distributed actor-critic RL algorithm, as implemented in RLLib (Moritz et al. 2018) with

a single GPU learner and 80 workers. Hyperparameter settings are given in Appendix

B.5. We use a population size of n = 8. We train the entire neural population net (agents

1-8) for 8,000 steps, where a step is roughly 450 minibatch updates of stochastic gradient

descent. This corresponds to about 80 hours of training, during which time 31 million

episodes are played. We repeat this procedure independently five times for FP and five

times for AFP.

3.5.3 Results

To evaluate exploitability, we made use of the fact that each FP and AFP neural pop-

ulation are made up of agents trained to “exploit” the ones that came before them.

Specifically, each agent is trained to approximate a best response to the average policy

returned by the algorithm at the previous timestep. So, to estimate the exploitability of

NeuPL-FP or NeuPL-AFP at step t 2 f1; : : : ; n � 1g, we simply use the average return

earned by agent t+1 against agents f1; : : : ; tg to obtain the within-population exploitabil-

ity of agent t. This metric is convenient, but insufficient on its own. In order for it to be

useful, the agents in the population must have learned approximate best responses that
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Figure 3.7: Comparison of NeuPL-FP and NeuPL-AFP on TinyFighter. Highlighting
indicates a pointwise 90% confidence region.

are close to actual best responses; if they have not, it could be that within-population ex-

ploitability is low, not because the average policy approximates a Nash policy but because

nothing had been learned at all. To account for this, we also evaluate the populations

learned using relative population performance (Balduzzi et al. 2019), which measures the

strength of one population of agents against the other. The purpose of using relative

population performance is simply to verify that one algorithm did not produce generally

more competent agents than the other.

We paired each of the five replicates of FP and AFP and computed the relative

population performance for each, obtaining values of 1.85, 3.35, -4.60, -0.45, and -0.81,

for an average of -0.13 and a Z-test based 90% confidence interval width of 1.99. This

suggests that the relative strength of agents produced by FP and AFP is not significantly

different from 0. So, it is reasonable to use within-population exploitability to compare

FP and AFP, as shown in Figure 3.7.

We find that AFP has lower estimated exploitability, with the average policy at t = 7

earning -8.07 (standard error 0.61) average total reward against agent 8, whereas the

same statistic for FP was -9.57 (standard error 0.40) average total reward. While these

results are favorable for AFP, they are on the borderline of statistical significance and it

is our view that further study is needed, including on other stochastic games. For further

experiments and experimental details, see Cloud et al. (2022), the preprint corresponding
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to this chapter.

3.6 Conclusion

We proposed a variant of �ctitious play for faster estimation of Nash equilibria in two-

player, zero-sum games. Anticipatory �ctitious play is intuitive, easy to implement, and

supported by theory and numerical simulations which suggest that it is virtually always

preferable to �ctitious play. Consequently, we shed new light on two motivating problems

for �ctitious play: primarily, large-scale multiagent reinforcement learning for complicated

real-world games; also, modeling strategic decision making in humans.

3.7 Acknowledgements

Ryan Martin provided mentorship and guidance with the creation of this chapter, Philip

Wardlaw helped orchestrate preliminary reinforcement learning experiments, Adam Venis

and Angelo Olcese contributed ideas for the proofs of FP and AFP applied toCn , Jesse

Clifton and Eric Laber provided helpful comments on a draft, and Jesse Clifton and Marc

Lanctot suggested related works that had been overlooked.

38



Chapter 4

Safety-constrained online learning in

contextual bandits

4.1 Introduction

Bandit algorithms (Lai and Robbins 1985) allow for ongoing experimentation and opti-

mization in sequential decision making problems in health care (Villar et al. 2015), ad

targeting (Schwartz et al. 2017; Sawant et al. 2018), education (Ra�erty et al. 2018), and

other personalized services (Balakrishnan et al. 2018; Li et al. 2010). In the basic model

of a multi-armed bandit, a decision maker faces a sequence of identical choices between

k actions, orarms. Each arm has an unknown distribution of real-valued rewards that is

sampled from independently and identically each time the arm is pulled. The goal of the

learner is to maximize the cumulative reward earned. To achieve this, the learner must

balance acting to gather information with acting to earn reward, facing the so-called

exploration-exploitation tradeof. Contextual bandits (Wang et al. 2005; Goldenshluger

and Zeevi 2011) extend the multi-armed bandit model by including an independent and

identically random distributed variable on which the reward distribution depends. Ban-

dits have been extensively studied and are commonly used for real-world decision making

(Slivkins 2019).

Although multi-arm and contextual bandit models see wide use, they may not be

suitable for safety-critical settings, where the cost of certain actions can be very high,

or where there are other constraints on algorithm behavior that cannot be enforced

by modifying the reward distributions of a bandit model. Problems in these settings
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may be better modeled as safety-constrained learning problems, in which a learning

algorithm seeks to maximize reward subject to a constraint on the e�ect of its actions

which it respects with high probability. For example, an algorithm deployed within a

mobile health application might tailor messages to diabetic patients to encourage them

to exercise, subject to the constraint that the patient's glucose level stays in a safe

range. In robotics, an autonomous driving system might be expected to navigate to its

destination subject to the constraint that no humans are hurt or property is damaged.

An ad-targeting system for a website might have a goal to maximize a user's chance

of clicking an ad, subject to the constraint that the user does not terminate use of the

website.

In this chapter we present an algorithmic framework for safety-constrained data-driven

decision making that departs from previous approaches. We present our framework in

the setting of a linear contextual bandit with two outcomes, the usual \reward" outcome

and an additional real-valued \safety" outcome. In this setting, an algorithm is expected

to maximize expected reward subject to a constraint on the expected value of the safety

outcome. We prove that in the limit, an algorithm in our framework respects the safety

constraint and achieves optimal reward subject to that constraint. We also derive the

limiting distribution of scaled versions of the estimators used, allowing for approximate

statistical inference. An outline of the chapter is as follows: in Section 4.2 we introduce

contextual bandits and basic reinforcement learning terminology before formalizing a

notion of a safe and consistent bandit learning algorithm. In Section 4.3 we outline

di�erent approaches to the problem of safety-constrained learning and give a detailed

account of our proposed method, Split-Propose-Test. In Section 4.4 we provide theoretical

results on the performance of our method. In Section 4.5 we compare our method with

a baseline across a variety of simulated bandit environments. We close with a discussion

of the contribution and the broad areas of the problem that are ripe for further study.

4.1.1 Related work

Past work on data-driven decision making under safety constraints has operationalized

the problem in various ways. For example, some have assumed that the safety constraint

is a functional of the same outcome that is being optimized (Laroche et al. 2019; Thomas

et al. 2015; Wu et al. 2016; Kazerouni et al. 2017), which is a special case of the multi-

outcome setting we consider here. An example of this would be \maximize pro�t in
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expectation, subject to the constraint that pro�t must be nonnegative with high prob-

ability." A common criterion in this line of work is that an update to an algorithm's

behavior must earn at least as much reward in expectation as the previous iteration with

high probability.

Others consider the constrained multi-outcome learning problem in more general set-

tings than bandits, like Markov Decision Processes (MDPs), but make strong assumptions

about knowledge of environmental dynamics, such as Berkenkamp et al. (2021), which

considers the case of MDPs but requires speci�cation of a Gaussian process prior distri-

bution over environment dynamics. Others address the problem in complicated settings

but do not provide theoretical guarantees; for example, L•utjens et al. (2019) uses en-

sembles of neural networks to obtain heuristic uncertainty estimates to enable robots

to navigate environments while avoiding novel obstacles; similarly, Balata et al. (2021)

considers various methods for continuous time MDPs, none of which provably satisfy a

safety constraint with high probability. In the context of medical decision making, Huang

and Xu (2020) and Laber et al. (2018) deal with the o�ine setting, which allows for un-

safe data collection and only requires safety of a newly estimated policy after data are

collected.

Problem settings very similar to ours have been studied in Amani et al. (2019, 2020),

Moradipari et al. (2021), and Pacchiano et al. (2021), which consider safety-constrained

learning in di�erent versions of a linear contextual bandit setting. Unlike the other works

and ours, Amani et al. (2019) de�nes the set of safe actions in terms of a known lin-

ear transformation of the unknownreward parameter, with no observation of a safety

outcome. Moradipari et al. (2021) and Pacchiano et al. (2021) use a formulation that is

nearly equivalent to ours, wherein stochastic observations at each timestep provide data

with which to estimate the set of safe actions. All of these works propose algorithms which

work in the following way: at each timestep, (1) estimate a set of actions that, with high

probability, contains no unsafe actions; (2) apply a standard reinforcement learning cri-

terion for reward-maximization, i.e., Thompson Sampling (Thompson 1933; Russo et al.

2018) or UCB (Auer 2002), limited to the estimated action set. Our proposed algorithm

uses a di�erent strategy to guarantee safe action selection, enabling better performance

in problems with large action spaces. In our simulation experiments, we use the Safe-LTS

algorithm of Moradipari et al. (2021) as a competitive baseline for comparison.
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4.2 Problem formulation

We consider a contextual bandit, which is de�ned by an independent and identically

distributed (i.i.d.) collection of random variables (de�ned on a sample space 
),

f X t ; Y �
t (a) : a 2 Ag t2 N;

where X t : 
 ! X is a random context observed at timet, and Y �
t (a) : 
 ! Y is

the potential outcome that would be observed at timet if action a 2 A were taken at

time t (Rubin 1978; Splawa-Neyman et al. 1990). We will sometimes drop the subscript

to refer to a generic sampleX . Let A t be the action selected at timet, and assume

that Yt = Y �
t (A t ) is observed at time t. The history at time T is composed of the

observed data up to that point,HT = f (X t ; A t ; Yt )gT
t=1 . Let �( A ) be the set of probability

distributions over A . A policy � : X ! �( A ) determines a distribution over actions

based on the observed context. Alearning algorithm is a collection of data-dependent

policiesf � tgt2 N such that each� T is determined byHT � 1. Throughout this chapter, unless

stated otherwise, we assume that actions are sampled independently from some learning

algorithm, AT � � T (X T )jHT � 1 for all T 2 N, so � T (ajx) = P(AT = ajX T = x; H T � 1) for

all x 2 X , a 2 A , and T 2 N. We will occasionally abuse notation by using� (x) to refer

the random variable sampled from a policy evaluated atx 2 X .

In the safety-constrained contextual bandit setting, depicted in Figure 4.1, we are

given functions r : Y ! R and s : Y ! R that de�ne scalar outcomes of interest,

reward Rt = r (Yt ) and safety St = s(Yt ). The goal is to maximize expected reward

while satisfying a constraint on the expected safety. This constraint is de�ned in terms

of a known, �xed baseline policy� 0 : X ! A which represents a decision rule that is

considered to be acceptablea priori . For example, in the clinical setting,� 0 might be \the

standard of care:" a rule for assigning treatments that is well-established and considered

proper in the healthcare community.

De�ne action-value functions for reward and safety,

Qr (x; a) = E(Rt jX t = x; A t = a); and

Qs(x; a) = E(St jX t = x; A t = a):

Note that we could replaceQs with another functional of the conditional distribution of
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safety, such as a quantile (Leqi and Kennedy 2021). Throughout, we assume thatQr and

Qs are linear with respect to a known feature vector� : X � A ! Rd, so that for some

� r 2 Rd and � s 2 Rd,

Qr (x; a) = Qr (x; a; � r ) = � (x; a)| � r ; and

Qs(x; a) = Qs(x; a; � r ) = � (x; a)| � s;

for all x 2 X , a 2 A. All results presented here would also hold if the two outcomes had

di�erent feature vectors, � r and � s, but we state it this way for simplicity.

For each contextx 2 X , and for some �xed, known safety tolerance� � 0, de�ne the

set of � -safe actions

A �
x =

�
a 2 A : Qs(x; a) � Qs[x; � 0(x)] � �

	
:

De�ne a learning algorithm f � tgt2 N as (�; � )-safe if

P[� T (X ) =2 A �
X ] � � + op(1): (4.1)

Although (4.1) is stated in terms of limiting behavior, we are interested in algorithms for

which the rate of unsafe action selection is controlled a rate close to� in �nite samples,

and for which safety with probability 1 is eventually attained. Finally, de�ne a learning

algorithm f � tgt2 N as (�; � )-consistent if it is (�; � )-safe and

P

(

Qr [X; � T (X )] � sup
a2A �

X

Qr (X; a)

)

! 1 asT ! 1 : (4.2)

In other words, an algorithm is (�; � )-consistent if it is safe and it earns at least as much

reward as optimal under the safety constraint. Our goal is to construct an (�; � )-consistent

learning algorithm.

4.3 Split-Propose-Test

Given a contextX t = x, a natural way to decide whether actiona is � -safe is to perform

a statistical test of the hypothesisH 1 : a 2 A �
x against the null H 0 : a =2 A �

x . In other

words, we start with the default assumption that the action is not safe, and only conclude
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Context X T

Action AT

Reward RT

Safety ST

Historical data HT � 1

Figure 4.1: A contextual bandit with two outcomes of interest. At each timestepT =
1; 2; : : : , an i.i.d. draw of X T is observed, an action isAT is selected based onX T and
historical data HT � 1, and outcomesRT and ST are observed.

it is safe it there is strong evidence that suggests that it is safe. If the null is rejected, we

say that the action passes the safety test. If an action passes the safety test, then we can

be con�dent that the action is safe. To help motivate our proposed procedure, consider

three test-based options for selecting an action at timet, given context X t and history

H t � 1.

1. (Test �rst) For all actions a 2 A , use H t � 1 to perform a hypothesis test ofH 0 :

a =2 A �
X t

. Then, maximize estimated expected reward over the actions that pass the

test.

2. (Optimize �rst, ignoring safety) Pick an action that is estimated to maximize re-

ward, then test it for safety. Choose this action if it passes the safety test.

3. (Optimize �rst, accounting for safety) Pick an action that is estimated to be optimal

according to a criterion de�ned in terms of both reward and safety, then test it for

safety. Choose this action if it passes the safety test.

In each case, if no safe action is identi�ed, the default� 0(X t ) is chosen.

Each of these approaches has shortcomings. Option 1 (Test �rst) is the strategy used

by Moradipari et al. (2021) and Pacchiano et al. (2021). It faces the challenges of multiple

testing. If we do not correct for multiple testing, then the safety condition (4.1) will not

hold; if we correct for multiple testing, we may su�er from a lack of power to detect safe

actions which results in the algorithm following standard of care and failing to improve.

Option 2 (Optimize �rst, ignoring safety) is a non-starter because in some problems

reward and safety may trade o� against each other. As a simple example, suppose that

Qr (x; a) = � Qs(x; a) for all x; a. In this case, optimizing for reward while ignoring safety
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HT � 1 Split

X T

Propose

Test AT

Aprop
T

Figure 4.2: A schematic of Split-Propose-Test.

means picking unsafe actions. These actions will not pass the safety test and hence the

algorithm will not learn. Finally, Option 3 (Optimize �rst, accounting for safety) avoids

multiple testing and performs optimization in a way that is aware of safety. However,

if we use the entirety of the historical data both to decide which action likely has high

expected reward and to test whether the action is safe, the safety test may not be valid

due to the dependence between the action selection and test.

We propose a variant of Option 3 called Split-Propose-Test (SPT), where the prob-

lem of data reuse is mitigated by sample splitting. For anyT 2 N and index set

I � f 1; : : : ; Tg, let H (I ) = f (X t ; A t ; Yt ) : t 2 I g. A high-level overview of SPT is as

follows: at each timestepT 2 N,

1. (Split) Partition HT � 1 into a \proposal" dataset H (I prop
T � 1 ) and a \test" dataset

H (I test
T � 1).

2. (Propose) Use the proposal dataset to propose an actionAprop
T .

3. (Test) Use the test dataset to test ifAprop
T is safe. If the test passes, chooseAprop

T .

Otherwise, choose the default� 0(X T ).

The SPT procedure is depicted in Figure 4.2. We specify the details of each step in

subsequent subsections, but before this, we introduce some notation.

De�ne the estimators

b� r;I = arg min
� 2 Rd

X

t2 I

[Rt � � (X t ; A t )| � ]2; and

b� s;I = arg min
� 2 Rd

X

t2 I

[St � � (X t ; A t )| � ]2: (4.3)

In Section 4.3.1 we will describe choices forI prop
T and I test

T . For now, write b� r; prop
T = b� r;I prop

T ,
b� s;prop

T = b� s;I prop
T , and b� s;test

T = b� s;I test
T .
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For x 2 X , a 2 A , and index setI , let 	 �;�
x (a; I ) be a nominally level-� hypothesis

test for H 0 : a =2 A �
x computed as a function of dataH (I ), where 	 �;�

x (a; I ) = 1 indicates

rejection of H 0 (action a passes the safety test) and 	�;�x (a; I ) = 0 indicates failure to

reject H 0 (action a does not pass the safety test). LetAprop
t be an action proposed based

on H (I prop
T ). SPT relies on the following parameters: a sequence of exploration parameters

f � tgt2 N with � t 2 [0; 1] for eacht; a sequence of safety test levelsf � tgt2 N with � t 2 [0; 1]

for eacht.

Let f Utgt2 N
iid� Uniform([0; 1]) be independent of the contextual bandit. The action

returned by SPT at time T is

AT = � SPT
T (X T ) =

8
>>><

>>>:

A random
T if UT � � T ;

Aprop
T if UT > � T and 	 �;� T

X T
(Aprop

T ; I test
T � 1) = 1;

� 0(X T ) otherwise;

(4.4)

whereA random
T

iid� Uniform(A). Each of the three cases serves a purpose: choosingA random
T

a nonzero proportion of the time guarantees that we generate data that is diverse enough

to reliably estimate � r and � s; we would like to chooseAprop
T , our best guess at a safe and

high-reward action, but we only choose it if it passes the safety test;� 0(X T ) is known to

be safe so we fall back to it ifAprop
T does not pass the safety test.

4.3.1 Split step details

Sample splitting enables the use of an approximately valid hypothesis test of a single

action when that action was chosen based on the data, thereby avoiding the need to test

all actions for safety prior to selecting one based on its estimated reward.

For t � T 2 N, let ZT;t be a Bernoulli random variable that indicates membership of

data point t in the propose set. ForT 2 N, de�ne I prop
T = f t 2 f 1; : : : ; Tg : ZT;t = 1g

and I test
T = f t 2 f 1; : : : ; Tg : ZT;t = 0g. To simplify the analysis, our proofs will assume

that sample splitting indicators are independent and identically distributed, i.e., that

ZT;t = Z t for all t; T , and f Z tgt2 N
iid� Bernoulli(pprop ), with ptest = 1 � pprop .

However, more general schemes should work as well. A more general condition on

f ZT;t gt � T 2 N (which we do not prove) would be: for eachT 2 N, ZT;1; : : : ; ZT;T are

Bernoulli random variables expressible as a function only off (X t ; A t )gT
t=1 and some ex-

ternal source of randomness, withP(ZT;t = 1jHT ) bounded away from 0 and 1 with
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probability 1 for all t � T 2 N. In our simulations, we use strati�ed sampling based on

actions. For eacha 2 A and T 2 N, de�ne

TT;a =
�

t 2 f 1; : : : ; Tg : A t = a
	

:

At each T, for eacha 2 A , form an independent random partitionTT;a = bT prop
T;a [ bT test

T;a .

Then ZT;t = 1(t 2 [ a2A
bT prop

T;a ), and ZT;1; : : : ; ZT;T are (dependent) Bernoulli variables

that satisfy the condition stated above.

4.3.2 Propose step details

In this section, we derive a data-dependent objective function overA that will be used to

determine the action proposed at each timestep. The derivation is based on the goal of

maximizing the reward earned on the current timestep. We begin with the insight that,

as long as the safety test is valid at level� , any manner of choosing proposal actions is

guaranteed to be safe, because unsafe proposed actions will not pass the safety test at a

rate greater than � . Given this, it is acceptable to simply chooseAprop
T to maximize the

expected reward ofAT .

In SPT, the improvement over the default policy of the selected actionAT is

Qr [X T ; AT ] � Qr [X t ; � 0(X T )]. During the Propose step, our goal is to chooseAprop
T so

as to make this term large. However, we must do so without peeking at the test set.

So, we consider maximizing the improvement term in expectation. We assume here that

� T = 0, as the chance of selecting an action at random is irrelevant to the analysis. De�ne

the expected improvement ofa 2 A at context X T = x to be

JT (x; a) = E f Qr [X T ; AT ] � Qr [X T ; � 0(X T )] j X T = x; A prop
T = ag;

where the conditioning in this expression is to be interpreted as an intervention to set

Aprop
T equal to a. Note that the expectation here is over the distribution ofH (I test

T � 1). The

function JT (x; a) does not depend on the test set, so it is a good candidate for an action

proposal criterion. However, it depends on unknown quantities which must be estimated.
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In order to �nd an estimator, note that, by iterated expectation and (4.4),

JT (x; a) = E
�
E

�
Qr [x; A T ] � Qr [x; � 0(x)]

�
� 	 �;� T

x (Aprop
T ; I test

T � 1); Aprop
T = a

	 �
� Aprop

T = a
�

= f Qr [x; � 0(x)] � Qr [x; � 0(x)]gP[	 �;� T
x (a; I test

T � 1) = 0]

+ f Qr (x; a) � Qr [x; � 0(x)]gP[	 �;� T
x (a; I test

T � 1) = 1]

= f Qr (x; a) � Qr [x; � 0(x)]gP[	 �;� T
x (a; I test

T � 1) = 1] : (4.5)

Although Qr and P[	 �;� T
x (a; I test

T � 1) = 1] are unknown quantities, we can estimate them

using dataH (I prop
T � 1 ). De�ne

bJT (x; a) =
n

Qr (x; a; b� r; prop
T � 1 ) � Qr [x; � 0(x); b� r; prop

T � 1 ]
o

P
h
	 �;� T

x (a; eI prop
T � 1 ) = 1

�
�
� H (I prop

T � 1 )
i

;

(4.6)

where eI prop
T � 1 is a multiset formed by resampling with replacement fromI prop

T � 1 . Speci�-

cally, eI prop
T � 1 = f et1; : : :et jI prop

T � 1 jg
iid� Uniform(I prop

T � 1 ) is a bootstrap resampling of the proposal

dataset. As such, the probability measure in (4.6) is with respect to these resamplings,

and whatever source of variation is used to generate these samples (conditional onI prop
T � 1 )

is independent of all past and future data.

Finally, the proposed action is

Aprop
T 2 arg max

a2A

bJT (X T ; a);

which, based on the proposal data only, we expect to maximize the reward earned at this

timestep.

4.3.3 Test step details

Let x 2 X , a 2 A be �xed. In this section we develop the testing procedure for

H 1 : a 2 A �
x against H 0 : a =2 A �

x ;

using data H (I T ) for some index setI T � f 1; : : : ; Tg. To do this, we use a normal

approximation to the sampling distribution of the di�erence of action-value estimates.
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The approximation is

Qs(x; a; b� s;I T ) � Qs[x; � 0(x); b� s;I T ]
approx.

� N
�

Qs(x; a) � Qs[x; � 0(x)] ;
(b� s;I T )2(x; a)

T

�
;

where (b� s;I T )2(x; a) is de�ned by the following terms:

b� I T =
1

jI T j

X

t2 I T

� (X t ; A t )� (X t ; A t )| ;

b� s;I T =
1

jI T j

X

t2 I T

� (X t ; A t )� (X t ; A t )| [St � � (X t ; A t )| b� s;I T ]2; and �nally

(b� s;I T )2(x; a) = f � (x; a) � � [x; � 0(x)]g| ( b� I T )� 1b� s;I T ( b� I T )� 1f � (x; a) � � [x; � 0(x)]g:

For generic� 2 R, � 2 [0; 1], and x 2 X , the test for safety of actiona 2 A using data

I T is given by

	 �;�
x (a; I T ) = 1

� p
T

f � (x; a) � � [x; � 0(x)]g| b� s;I T + �
b� s;I T (x; a)

> z 1� �

�
; (4.7)

where z1� � is the 1� � quantile of a standard normal distribution. Consistency of the

safety test under various choices ofI T is given by Lemma 2.

4.4 Theory

In this section we state results about the behavior of SPT. Proofs are given in Appendix

C.2. We begin with a general result adapted from Chen et al. (2021), that the OLS

estimators used by SPT are consistent, then give a result that the safety tests used by

SPT converge as desired. With appropriately chosen parameters, these results then imply

our main theorem, which is that SPT is (�; � )-consitent (as de�ned Section 4.2). We end

with a result on the asymptotic normality of the sample-splitting OLS estimators in SPT

and a corollary that relates the theorem to the structure of SPT. To obtain these results,

we make the following assumptions.

(A1) The action spaceA is �nite.

(A2) There is a constantL � < 1 such that P [k� (X; a)k1 < L � ] = 1 for all a 2 A .
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(A3) Sample splitting indicators are indendent and identically distributed,ZT;t = Z t
iid�

Bernoulli(pprop ), with 0 < p prop < 1.

(A4) � min (�) > 0, where � = EA� Uniform( A ) [� (X; A )� (X; A )| ].

(A5) Let er = R � E(RjX; A ) and es = S � E(SjX; A ). These errors are uniformly

subgaussian in the sense that there exists� 2 > 0 such that

E[exp(cer )jX = x; A = a] � exp(� 2c2=2) for all c 2 R;

E[exp(ces)jX = x; A = a] � exp(� 2c2=2) for all c 2 R;

for all x 2 X and a 2 A .

(A6) Pf Qs(X; a) � Qs[X; � 0(X )] + � = 0g = 0 for all a 2 A .

Assumptions (A1), (A2), and (A3) are straightforward conditions which, in a real-world

application, can be ensured by choosing an appropriate representation for the problem.

Assumption (A1) could be weakened by introducing smoothness conditions on� , and

(A3) could be weakened to history-dependent sample splitting such as described in Sec-

tion 4.3.1; we leave such extensions to future work. Assumptions (A4) and (A5) are

similar to those in Chen et al. (2021) and allow for consistent estimation of� r and � s.

Assumption (A6) is a kind of margin condition to ensure that the safety test converges

to a non-stochastic limit. Without this condition, an action a might exist exactly on

the safety threshold. Its safety test would have a nonzero probability of both passing

and not passinga, even in the limit, which would complicate our analysis. However, the

main results should be unchanged so long as the reward-maximizing action does not exist

on the safety margin. Furthermore, SPT can still be guaranteed to perform reasonably

without this condition, although it may not enjoy ( �; � )-consistency. See Appendix C.1

for a further discussion of assumptions.

Lemma 1. If (A1), (A2), (A3), (A4), and (A5) hold and if at each timestep t there

is at least an � t -chance of selecting an action uniformly at random fromA, with f � tg

non-increasing andT �2
T ! 1 , then for any choice ofI T = I prop

T ; I test
T , f 1; : : : ; Tg, or eI prop

T ,

b� r;I T
p
�! � r ; and

b� s;I T
p
�! � s

50



as T ! 1 .

Lemma 2. If the conditions for Lemma 1 hold, (A6) holds, safety test levelsf � tgt2 N

are such that 0 < lim inf � t � lim sup� t < 1, then for any choice ofI T = I prop
T ; I test

T ,

f 1; : : : ; Tg, or eI prop
T , the safety test as de�ned in (4.7) is consistent in the sense that

	 � T ;�
X T +1

(a; IT )
p
�!

8
<

:
1 if Qs(X T +1 ; a) > Q s[X T +1 ; � 0(X T +1 )] � � ;

0 otherwise;

as T ! 1 .

Theorem 2. If (A1), (A2), (A3), (A4), (A5), and (A6) hold and SPT's parameters

satisfy � 1 � � , T �2
T ! 1 , � T ! 0, and � T is non-increasing, and� T = � � � T , then

Split-Propose-Test satis�es (4.1) and (4.2), i.e., it is (�; � )-consistent.

An example choice off � tg satisfying the above conditions is� t = � t � 1=3=2. Note

that we choose the safety test parametersf � tg so that � t + � t = � , so that the rate of

exploratory actions plus the rate of unsafe actions that pass the safety test is no greater

than the nominal safety level.

Theorem 2 establishes that SPT converges to optimal safe behavior in the limit. In

fact, it is slightly stronger than stated, because as the proof in Appendix C.2 reveals, the

probability of SPT selecting an unsafe action tends towards 0.

Two additional assumptions yield asymptotic normality of the OLS estimators, which

is useful for performing statistical inference but also valuable for understanding why SPT

uses sample splitting, as explained by a subsequent corollary. Forx 2 X and a 2 A , de�ne

J (x; a) = f Qr (x; a) � Qr [x; � 0(x)]g1(a 2 A �
x ): (4.8)

The �rst assumption is that with probability 1 there is a unique best safe action.

(B1) Pf J (X; a) has a unique maximum overAg = 1.

As argued at the end of the proof of Theorem 2, (B1) implies existence of a limiting

policy � 1 : X ! �( A ) such that

max
a2A

�
� � SPT

T (ajX ) � � 1 (ajX )
�
� p

�! 0 asT ! 1 : (4.9)
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This is important because our proof of the asymptotic normality of the OLS estimators

relies on existence of a limiting policy. The second assumption is that a covariance matrix

de�ned with respect to the limiting policy is invertible.

(B2) The matrix � � 1 = E � 1 [� (X; A )� (X; A )| ] is invertible.

Theorem 3. If the conditions for Theorem 2 hold and (B1) and (B2) hold, then the OLS

estimators for reward and safety in the two-outcome bandit are asymptotically normal,

and if estimated on di�erent datasets, asymptotically independent. Speci�cally,

p
T

2

6
4

b� r; prop
T � � r

b� s;prop
T � � s

b� s;test
T � � s

3

7
5  N

0

B
@

2

6
4

0

0

0

3

7
5 ;

2

6
4

A B 0

B C 0

0 0 D

3

7
5

1

C
A

as T ! 1 , where

A = ( pprop )� 1(� � 1 )� 1 � r
� 1

(� � 1 )� 1;

B = ( pprop )� 1(� � 1 )� 1 � r;s
� 1

(� � 1 )� 1;

C = ( pprop )� 1(� � 1 )� 1 � s
� 1

(� � 1 )� 1;

D = ( ptest )� 1(� � 1 )� 1 � s
� 1

(� � 1 )� 1;

and

� r
� 1

= E � 1 f [R � Qr (X; A )]2� (X; A )� (X; A )| g

� r;s
� 1

= E � 1 f [R � Qr (X; A )][S � Qs(X; A )]� (X; A )� (X; A )| g

� s
� 1

= E � 1 f [S � Qs(X; A )]2� (X; A )� (X; A )| g:

Based on the limiting distribution of the OLS estimators, Theorem 3 allows us to

perform approximately valid statistical inference for� r and � s. It is a special case of

Theorem 4, a more general result about estimating an arbitrary (�nite) number of pa-

rameters based on di�erent (possibly overlapping) splits of data in the contextual bandit

setting. See Appendix C.3.2 for details.

As formalized in the following corollary, Theorem 3 also implies that the proposal

action and safety test are asymptotically independent, validating the choice of sample
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splitting and lack of multiple-testing correction in SPT. Let

ZT (x; a) =
p

T
f � (x; a) � � [x; � 0(x)]g| ( b� s;I test

T � � s)
b� s;I test

T (x; a)
;

so the safety test can be written as

	 �;�
x (a; I test

T ) = 1
�

ZT (x; a) +
Qs(x; a) � Qs[x; � 0(x)] + �

b� s;I test
T (x; a)

> z 1� �

�
:

De�ne

(� s)2(x; a) = f � (x; a) � � [x; � 0(x)]g| (� � 1 )� 1 � s
� 1

(� � 1 )� 1f � (x; a) � � [x; � 0(x)]g:

Corollary 1. For any x 2 X and a 2 A , ZT (x; a)  N (0; 1) and b� s;I test
T (x; a)

p
�! � s(x; a)

as T ! 1 and are asymptotically independent of (b� r; prop
T ; b� s;prop

T ).

Corollary 1 elucidates the bene�t of the Split step in Split-Propose-Test: splitting

the data maintains the integrity of the safety test via approximate independence from

the quantities used to compute the proposed action. Corollary 1 is an important ad-

dendum because, technically, Theorem 2 is provable without sample splitting, i.e. using

I prop
T = I test

T = f 1; : : : ; Tg for eachT 2 N. This is because, broadly speaking, the only

fundamental requirement for SPT to work in the limit is that the estimators for� r and

� s are consistent. However, a version of SPT without sample splitting could have ter-

rible performance in �nite samples due to data reuse between the action proposal and

the safety test. Such reuse would corrupt the safety test, removing then nominal error

rate guaranteed by the testing procedure. This would cause problems in bandits when

errors es and er are highly correlated, or, perhaps more strikingly, in cases whereR = S.

However, these conditions are not necessary for this version of SPT to exhibit unsafe

behavior, which can happen even whenR 6= S and er and es are independent. We give

such an example in Appendix C.4.2.

4.5 Simulation experiments

In this section, we evaluate SPT on a variety of simulated contextual bandit problems

designed to highlight di�erent aspects of safety-constrained learning. We compare SPT
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with a simple competitor and a hybrid of SPT and the competitor, each of which is (�; � )-

consistent. We evaluate these three algorithms based on their �nite sample performance

in terms of mean reward and satisfaction of the safety constraint. Each of the algorithms

is run independently many times on a variety of simulated bandit problems, with the

problems chosen to emphasize di�erent challenges of safe reinforcement learning. The

algorithms are as follows:

ˆ Pretest All (with Thompson Sampling): test all actions for safety and pick the

one with the highest estimated reward among the ones that passed the safety test;

this is essentially the algorithm proposed by Moradipari et al. (2021), extended to

a contextual bandit setting. In particular, use the safety test from Section 4.3.3,

plugging in the whole datasetHT � 1 in for H (I test
T � 1) and applying a Bonferroni

correction factor to preserve the level of the safety test. Select among the actions

that passed this conservative safety test according to estimated reward. To improve

exploration, we use the frequentist analogue to Thompson Sampling as follows. Let

e� r
T = arg min

� 2 Rd

TX

t=1

WT;t [Rt � � (X t ; A t )| � ]2;

where WT
iid� Multinomial( T; T � 1; : : : ; T � 1) are multinomial bootstrap weights

(Efron and Tibshirani 1994). At timestepT, based on historyHT � 1, with f Utgt2 N
iid�

Uniform([0; 1]) as in the setup to SPT, Pretest All selects

AT =

8
>><

>>:

A random
T if UT < � T

arg max�
a2A : 	 �;�= jAj

X T
(a;H T � 1 )=1

	 � (X T ; a)| e� r
T � 1 otherwise.

Like SPT, Pretest All is (�; � )-consistent because the safety test is consistent and
e� r

T
p
�! � r as T ! 1 , as proved in Appendix C.4.3.

ˆ SPT : as described in Section 4.3, with action selection rule (4.4). We use� t = �

for all t. The sample splitting performed at every step uses strati�ed sampling by

action, as described in Section 4.3.1.

ˆ SPT (fallback) : SPT with � t = �= 2, but if the proposed action does not pass the

safety test, select the action returned by Pretest All with safety level�= 2.
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Table 4.1: High-level summaries of each bandit setting.

Setting Bandit type Parameters Summary

All safe Standard All actions are safe but this isn't known a priori.
Dosage bandit Linear � r;s = � 0:5; 0; 0:5 Reward and safety trade o� against each other and

information is pooled between nearby actions, al-
lowing for gradual expansion of the action space.

Single-arm detection Standard jAj = 5; 10; 15 There is a single safe, high-reward arm amongst
many poor options.

Uniform-armed bandit Standard Reward and safety are functionals of the same out-
come.

Orthogonal actions Contextual dot = � 0:5; 0; 0:5 Each arm has its own parameters for reward and
safety, which may point in opposing, orthogonal,
or similar directions.

Noisy bandit Contextual dnoise = 5; 10; 15 A standard bandit augmented with features that
have zero e�ect on reward and safety.

The following parameters are shared between all algorithms and all runs:� 0(x) = 0 for

all x, � t = 0:1t � 0:1, and � = 0:1. For each algorithm-environment pair, we ran over 2,000

independent runs of the algorithm forT = 350 or 300 timesteps. For each experiment,

at least four samples per arm (\burn-in samples") were gathered before initializing the

algorithm.

4.5.1 Bandit setting descriptions

In this section we give detailed descriptions of each simulated bandit problem. High-level

summaries of each setting are given in Table 4.1.

Let ei 2 Rd denote thei th standard Euclidean basis vector. We say bandit is a multi-

armed or \standard" bandit if � (a) = ea+1 , we say it is a linear bandit if � (x; a) = � (a)

but it is not a standard bandit, and we say it is a contextual bandit otherwise. Except

when otherwise stated, errorser = R � E(RjX; A ) and es = S � E(SjX; A ) are normally

distributed and independent of (X; A ). Also, unless otherwise stated, these errors have

variance 1 and covariance 0. In bandits without contexts, we dropx as an input to Qr ,

Qs, and � .
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All safe

X A � d

- f 0; 1; : : : ; 9g 0 10

This is a simple multi-arm bandit where all arms are safe and have varying expected

rewards associated with them. In this setting,� (a) = ea+1 2 Rd, action 0 has mean

safety 0,Qs(0) = 0 and all other actions have safety 1,Qs(a) = 1 for a > 0. At the start

of each run, reward means are drawn from a multivariate standard normal distribution:

� r
1; : : : ; � r

d
iid� Normal(0; 1).

Dosage bandit

X A � d

- [0; 1] 0.1 10

The dosage bandit is a linear bandit that serves as a simple model of a medical decision

making problem where the e�cacy of a treatment trades o� against its safety (e.g., tumor

reduction vs. risk of toxicity (Thall and Cook 2004)). An actiona 2 [0; 1] represents a

dosage level of some treatment andQr (a) is increasing ina while Qs(a) is decreasing

in a. Consequently, the optimal action strikes a balance between e�cacy and safety,

achieving the greatest e�cacy while having the lowest expected safety allowable based

on the baseline policy� 0 and the safety tolerance� .

The mean reward and safety functions are represented as linear combinations ofd

radial basis functions ofa in order to approximate Qr (a) � 1 � exp(� 5a), Qs(a) �

1 � exp[5(a � 1)]. The centers of radial basis functions are evenly spaced in the unit

interval 0 = c1; : : : ; cd = 1, with ' c(a) = exp( � dja� cj). Errors are bivariate normal with

variance 0.01 and covariance 0.01� r;s , where� r;s 2 f� 0:5; 0; 0:5g.

56



Single-arm detection

X A � d

- f 0; 1; : : : ; kg, k = 5; 10; 15 0 jAj

This is a multi-armed bandit with many actions, one with much higher reward than the

others. In particular, Qr (a) = 100 � 1(a = 1), and Qs(a) = 1(a = 1) =2 � 1(a > 1)=2.

Because the reward-optimality of action 1 is so easy to detect, the problem essentially

reduces to being able to detect thata = 1 is safe. The Single-arm detection bandit is

a canonical motivating example for SPT, as SPT's ability to detect the safety ofa = 1

crucially does not depend on the number of actions so long as the amount of data per

action is �xed. On the other hand, typical multiple-testing procedures, including the

one used by Pretest All, have power that tends to 0 asjAj ! 0. This is illustrated in

Appendix C.4.1.

Uniform-armed bandit

X A � d

- f 0; 1; 2g 0.3 3

The uniform-armed bandit is a multi-armed bandit where the safety variable is de�ned

in terms of reward. This corresponds to the special case studied in much of the safe

reinforcement learning literature, where the safety constraint is a bound on a functional

of the reward distribution.

Reward is distributedRt jA t = a � Uniform([Qr (a) � wa; Qr (a)+ wa]), for some width

wa > 0, with Qr (a) > 0 for eacha. The safety outcome is de�ned asSt = 1(Rt � 0),

so Qs(a) = P(Rt � 0jA t = a). Consequently, the mean rewardsQr (a) determine the

unconstrained quality of each action, and the widthswa determine the associated risk

that a safety-constrained algorithm must respect.
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For the simulations here,Qr (0) = 0 :5, Qr (1) = 1, and Qr (2) = 1 :5, with widths

chosen so thatQs(0) = 1, Qs(1) = 0 :85, andQs(2) = 0 :4. With � = 0:3, this means that

a = 1 is the optimal safe action, even thougha = 2 earns greater reward in expectation

and safety is de�ned in terms of reward.

Orthogonal actions

X A � d

Normal(02; I 2) f 0; 1; 2; 3; 4g 0 10

The orthogonal actions bandit is a contextual bandit where actiona is represented by a

unique parameter vector for reward and safety, so there is no information pooled across

actions; equivalently, ifa 6= a0 then � (x; a)| � (x; a0) = 0 for all x 2 X . Each actiona 2 A

is represented by a unique parameter vector� r
a 2 R2 and � s

a. Then for x 2 R2, Qr (x; a) =

x | � r
a and Qs(x; a) = x | � s

a. This means the full parameter vector� r = [( � r
0)| ; : : : ; (� r

4)| ]| 2

R10, and similarly for � s, and � (x; a) = [0 ; 0; x| ; 0; : : : ; 0]| with the index of x occurring

based ona. At the beginning of each run, parameter vector pairs (� r
a; � s

a) are sampled

i.i.d. with marginal multivariate normal distributions such that

(� r
a)| � s

a

k� r
ak2k� s

ak2
= dot

for some value of dot2 f 0:5; 0; � 0:5g. Reward and safety errors are independently dis-

tributed, er � N (0; 42), es � N (0; 0:001).

Noisy bandit

X A � d

Normal(0dnoise ; I dnoise ) f 0; 1; : : : ; 4g 0 jAj + dnoise
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The noisy bandit is a standard bandit augmented with a context vector inRdnoise . A

learning algorithm must identify that the corresponding parameters are zero and instead

learn appropriate estimates for single arms. The reward and safety parameters are de�ned

as

� r = [0; 10; 20; 30; 40; 0|
dnoise

]| ; � s = [0; � 10; 33; � 10; 20; 0|
dnoise

]| ;

and � (x; a) = [ e|
a; 0|

dnoise
]| . Reward and safety errors are independently distributed,er �

N (0; 602), es � N (0; 202).

4.5.2 Results

The average performance of each algorithm across timestepst = 1; : : : ; T, with T = 350

or T = 300, is given in Table 4.2. Average performance at timestept = T is given in

Table 4.3. Algorithm trajectories are plotted in Figure 4.3 for bandits without contexts

and in Figure 4.4 for bandits with contexts.

The relative performance of SPT and Pretest All indicates how the algorithms handle

di�erent aspects of safety-constrained learning in the bandit setting. In general, we �nd

that SPT has superior performance in all the context-free bandits studied, and that SPT,

Pretest All, and SPT (fallback) all have very similar performance on the contextual

bandits studied. This means that SPT has stronger performance with regards to the

properties tested by those bandit settings, and taken together, suggest that SPT is a

reliable choice in practice.

However, note that this does not suggest that SPT and Pretest All perform equiv-

alently for bandits with contexts: it is straightforward to construct contextual bandit

examples that inherit the same properties of the multi-arm bandit settings we consider;

for example, one could modify the Orthogonal actions bandit to be (non-trivially) iso-

morphic to the All safe or Single-arm detection bandit by creating feature vectors that

mean that all actions are safe, or such that one action has especially high reward and is

uniquely safe. What our results in fact suggest is that the mere addition of contexts does

not di�erentiate the performance of SPT and Pretest All: absent other distinguishing fea-

tures, the two algorithms appear to perform roughly equivalently in general contextual

bandits.

The standard bandits tested certain properties, as summarized in Table 4.1 and re-
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capitulated here. The All safe bandit tests learning e�ciency when everything is safe;

the Dosage bandit tests learning that requires a gradual expansion of the estimated-to-

be-safe action set when reward and safety trade o� against each other; the single-arm

detection bandit tests the power of safety testing procedures under large action spaces,

and the Uniform-armed bandit tests learning when safety is de�ned as a functional of

the reward.

As expected, the di�erence between SPT and Pretest All is most pronounced in the

Single-arm detection setting, where SPT is much better able to identify a single best arm

in the presence of many low quality options by virtue of the fact that it performs targeted

hypothesis tests and has power to detect safe actions that is invariant to the size of the

action space, in the sense discussed in Appendix C.4.1. We also see superior performance

of SPT with respect to the other properties tested. Unsurprisingly, SPT (fallback) acts

as an interpolation of SPT and Pretest All.

Of particular interest is the Dosage bandit example, where SPT's initial performance

is poorer than that that of Pretest All. Despite this, SPT learns quickly, surpassing

Pretest All after about 100 timesteps, without any cost in terms of satisfaction of the

safety constraint. This result is encouraging as it demonstrates SPT's ability to explore

plausibly good actions in a more targeted way.

In terms of safety, all algorithms obtain nominal safety on average and at the �nal

timestep, although it takes a bit longer for SPT in some cases. This is not surprising,

as the Z-test of SPT relies on an asymptotic approximation (see Section 4.3.3) which

may break down in small samples. Although the same is true for Pretest All, the 1=jAj -

multiple-testing correction applied to the safety test level introduces conservatism.

4.6 Discussion

We proposed the SPT framework for converting a hypothesis testing procedure into

a safety-constrained online learning algorithm for contextual bandits, gave a theoreti-

cal account of its performance, and compared it to the baseline Pretest All algorithm,

demonstrating comparable or superior performance across a variety of problem settings.

In this work, our focus was on the general setting of multiple outcomes and on e�cient

exploration, especially in the case of multi-arm bandits with large action spaces which are

challenging for past approaches. Our theory is fairly general, as the only margin condition
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Figure 4.3: Algorithm performance over time for bandits without contexts. For each
bandit setting, two plots are given: (left) the average (over runs) mean reward obtained
per timestep,Ef Qr (X t ; � t (X t )g for eacht; (right) the proportion of the time that each
algorithm selected a safe action,E[1[� t (X t ) 2 A �

X t
] for each t. These quantities are

estimated with 2,000 independent runs of each algorithm. Highlighting indicates 95%
pointwise con�dence intervals. (The intervals are so narrow for safety estimates that we
omit them for visual clarity.)
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