
 

ABSTRACT 

SONG, LIDONG. Deep Learning for Power System Synthetics Data Generation and Anomaly 

Detection. (Under the direction of Dr. Ning Lu). 

 

Electric power systems (EPS) have evolved significantly over the past few decades. The 

incorporation of distributed energy resources has made the power grid a more complex, unstable, 

and nonlinear structure than conventional power grids. Meanwhile, artificial intelligence (AI) 

and deep learning (DL) has been widely adopted recently due to their durability and versatility in 

managing complex nonlinearity on large-scale systems. This paper’s work focuses on leveraging 

state-of-the-art DL technology to solve three power system problems: load profile super-

resolution (LPSR), load profile inpainting for missing load data restoration and baseline 

estimate; False data injection attack (FDIA) and detection in distribution system with integration 

of battery energy storage system (BESS). 

First, ProfileSR-GAN, a novel two-stage LPSR framework, is proposed to upsample low-

resolution load profiles (LRLPs) to high-resolution ones (HRLPs). A GAN-based model is 

applied in the first stage to restore high-frequency components from the LRLPs. The GAN-based 

model uses weather data and LRLPs to reflect load-weather dependency. In the second stage, a 

polishing network directed by outline loss and switching loss removes unrealistic power 

fluctuations in generated HRLPs and improves point-to-point matching accuracy. New load 

shape evaluation measures are designed to evaluate the HRLPs' realisticness. Simulation findings 

show that the ProfileSR-GAN outperforms the state-of-the-art approaches in all shape-based 

metrics and can achieve equivalent point-to-point matching accuracy. After converting LRLPs to 

HRLPs, non-intrusive load monitoring can be significantly improved.  

Next, a GAN-based load profile inpainting network (Load-PIN) is proposed to restore 

missing load data segments and estimate the baseline for a demand response event. The inputs 



 

are time series load data before and after the inpainting period, together with explanatory 

variables (e.g., weather data). The innovation of the Load-PIN lies in the design of the GAN 

Generator. A Generator structure consisting of a coarse network and a fine-tuning network is 

proposed. The coarse network provides an initial estimation of the data. The fine-tuning network 

consists of self-attention blocks and gated convolution layers for adjusting the initial estimates. 

The Load-PIN is tested on three real-world datasets for two applications: patching missing data 

and deriving baselines of conservation voltage reduction (CVR) events. Compared with the state-

of-the-art methods, the simulation results show that Load-PIN is more flexible and achieves 15-

30% accuracy improvement. 

Finally, a reinforcement learning (RL) based stealth false data injection attack (FDIA) 

model and a temporal graph convolution network (TGCN) based detection algorithm is proposed 

to mitigate the risk of false data injection attacks against the battery state of charge (SoC) of the 

distribution system with BESS integration. First, an agent based on deep Q-learning was 

developed to solve the contradiction between the high computational cost of nonlinear stealth 

FDIA constraints and real-time online deployment. A state estimation (SE) based bad data 

detection (BDD) environment is developed to interact with the RL agent, through which the 

agent learns to launch stealth SoC FDIA that can avoid being identified by SE-based BDD. 

Then, TGCN, a deep learning model that combines GCN and gated recurrent unit (GRU), is 

proposed to leverage the graph nature of the power grid and the temporal features of time-series 

measurements for FDIA detection. The experiment demonstrates that the Grid-TGCN model 

outperforms the state-of-the-art method in terms of accuracy and F1 score while keeping a 

lightweight model structure, making it a promising solution for deploying and using in large-

scale complex power grids. 
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CHAPTER 1  INTRODUCTION 

1.1 Load Profile Super Resolution  

In recent years, there has been a steady increase in the deployment of smart meters, 

which has supported the explosion of data-driven research in power systems, particularly load 

consumption data-supported applications, such as load analysis, load forecasting, and load 

management. However, due to factors such as the cost of data communication and storage, most 

utilities only collect low-resolution smart meter data. A common practice to record the total 

energy consumed through smart meters is to collect the load power data with a sampling interval 

of 15 or 30 minutes, through which an average power consumption for the interval is computed. 

During this process, fast power variations within each sampling interval are lost, as shown in 

Figures 1.1 (a) and (c). This is called the smoothing effect of signal averaging. 

In recent years, two global activities, electrification in the transportation sector [1, 2] and 

decarbonization [3] in the energy sector, greatly expedited the integration of distributed energy 

resources (DERs), such as solar, wind, batteries, controllable loads, and electric vehicle chargers. 

However, uncertainties and variabilities inherent in renewable generation outputs and battery 

charging/discharging actions will lead to more frequent significant and rapid power variations, 

causing circuit overloads and weakening the voltage stability [4]. Consequently, for high-DER 

penetration distribution grids, where fast power variations are visible, it is increasingly important 

to use HR load profiles for planning and operation studies such as quasi-static power flow 

analysis or non-intrusive load monitoring (NILM). 
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SR

 
          (a) LR load profile        (b)   LR image                      (c) HR load profile        (d) HR image    

Figure 1.1. An illustration of super-resolution problems 

Recovering the HR data from the LR data is a data up-sampling process. In the past, 

interpolation is widely used to up-sample LR load profiles or patch the missing data. However, 

the main drawback of interpolation is that it cannot restore intra-interval power fluctuations.  

In image processing, the super-resolution (SR) [5] refers to the technique of generating 

HR images from LR images, as illustrated in Figures 1.1 (c) and (d). A wide variety of deep-

learning methods have been developed for image SR, for example, ultrasound imaging [6], line-

fitting [7], and iris recognition [8]. Similarly, in audio signal processing, audio super-resolution 

(ASR) is used to recover the HR audio signals from the LR signals using deep-learning models 

[9]. 

Motivated by image and audio SR, we define load profile super-resolution (LPSR) as a 

technique for generating realistic HR load profiles from LR load profiles. In power system 

applications, the development of LPSR is still in its infancy stage. In [10], Liu et al. developed 

super-resolution perception (SRP) for processing smart meter data. SRP combines Convolution 

Neural Network (CNN) with supervised learning based on Mean Square Error (MSE) loss. 

However, the MSE-based supervised learning algorithms can introduce unrealistic details and 

cause over-smoothing in the reconstructed HR data. This drawback has also been widely 

observed in image recovery studies [11].  
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Generative Adversarial Network (GAN) [12] based methods are widely used in solving 

image SR problems. Because the adversarial training between Generator and Discriminator can 

effectively capture the inherent probability distribution of the HR data, GAN-based methods can 

usually obtain more realistic SR results than the CNN or MSE-based approaches [13]. 

In the power system domain, GAN has been used for generating load profiles [14, 15], 

wind farm outputs [16], simulating load forecasting uncertainty [17], synthesizing appliance 

power signatures [18], and appliance-level energy disaggregation [19]. However, to the best of 

our knowledge, using GAN-based methods for LPSR is still an uncharted area. Chapter 2 

proposes a novel two-stage LPSR framework to up samples low-resolution load profiles to high-

resolution ones. Simulation findings show that the ProfileSR-GAN outperforms the state-of-the-

art approaches in all shape-based metrics and can achieve equivalent point-to-point matching 

accuracy. 

1.2 Customer Baseline Load Estimation 

The reliability and flexibility of power system operation face severe challenges due to the 

growing uncertainties from the supply side because of the fast-increasing penetration of 

renewable energy sources. Demand Response (DR) aims at improving the operational efficiency 

of power plants and grids, and it constitutes an effective means of reducing grid risk during peak 

periods to ensure the safety of power supplies. One key challenge related to DR is customer 

baseline load (CBL) calculation. A fair and accurate baseline provides helpful information for 

resource planners and system operators who wish to implement DR programs. Most current CBL 

estimation methods for incentive-based demand response rely heavily on historical data and are 

unable to adapt to the cases when the load patterns in the DR event day are not similar enough to 

those in non-DR days.  
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One category of CBL estimation methods that are early developed and widely adopted by 

ISOs is average-based methods. Examples of averaging approaches include the direct average of 

X previous days; the average of the highest X of Y days (HighXofY); the average of the middle 

X of Y days (MidXofY); and an average of the lowest X of Y days Significant disadvantage of 

these averaging-based methods is that they can lead to significant errors when applied to 

residential customers. This is because residential load patterns cannot be maintained at the same 

stable level as commercial and industrial loads. Moreover, aggregated residential load patterns 

tend to have more robust heterogeneity when compared to industrial and commercial loads 

because residential electricity consumption directly relates to random human activities. 

Therefore, the loads are more vulnerable to changes in natural and social factors. 

To solve the heterogeneity issue in residential CBL estimation, regression-based methods 

are developed, including Support Vector Regression [20-22], Gaussian Process Regression [23, 

24], Lasso regression [25, 26], Quantile regression [27], and Linear Regression [28, 29]. To 

improve the CLB performance, control group and clustering-based methods [20, 21, 25, 29, 30] 

are introduced and combined with regression tools. However, these regression-based methods 

are usually highly customized and too sophisticated to reproduce, which is limited the wide 

deployment in industrial applications.  

At the same time, the booming of machine learning techniques and the availability of 

large-scale smart meter data motivates machine learning-based methods. [31] proposed using the 

Long Short Term Memory (LSTM) network to predict the baseline load for incentive-based 

demand response. [32] adopted the stacked auto-encoders (SAEs) under the federated learning 

(FL) framework.  
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This paper proposes a novel Generative Infilling Network (GIN) combing the Gated 

Convolution Neural Network [33] and the multi-head attention machoism proposed in Transform 

Network [34]. Metrics evaluation demonstrates that the proposed GIN method outperforms the 

state-of-the-art method, which achieves higher accuracy with a smaller network scale. Algorithm 

design and implementation details are explained in Chapter 3. 

1.3 Attack and Anomaly Detection for Smart Distribution Grid With BESS 

Smart grid's innovative technology will revolutionize our society, economy, and 

environment, which will be achieved by integrating information and communication 

technologies (ICT) into the power grid, evolving it into a cyber-physical system (CPS). In this 

process, however, security concerns have taken a back place. With the numerous ICT 

components, the smart grid's security has been severely weakened by the increasing number of 

cyber-attacks. This created a great deal of concern regarding the dependability and security of 

the ever-desired smart grid in light of the tremendous economic and stability concerns. 

With the development of energy storage technology, the cost of energy storage units, 

such as lithium batteries and lead-acid batteries, has decreased significantly. The Battery Energy 

Storage System (BESS) is, therefore, widely deployed in the distribution network. It plays a 

crucial role in grid operation, such as energy management and demand response under the grid-

connected state mode, or works as a grid-forming unit to realize volt-var control and frequency 

regulation of the distribution network under island mode. Due to the vast energy storage capacity 

of battery cells deployed on the grid, malicious attacks that cause failures will result in 

immeasurable losses and safety risks. Consequently, cyberattacks against BESS have aroused 

widespread concern and interest. 
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In light of the aforementioned context, this paper conducts an in-depth analysis of the 

distribution network's hidden False Data Injection Attack (FDIA). A stealth FDIA algorithm 

based on reinforcement learning is proposed against the current State Estimation (SE) based Bad 

Data Detection (BDD) system. Then, considering the graph nature of the power grid, a Graph 

Convolutional Network (GCN) based anomaly detection algorithm is designed. The 

experimental results demonstrate that the proposed RL-based attack is capable of evading the 

detection of existing BDD. The GCN-based anomaly detection algorithm identifies concealed 

FDIA effectively. 
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CHAPTER 2 LOAD PROFILE SUPER-RESOLUTION  

2.1 Background 

This chapter presents a novel two-stage load profile super-resolution (LPSR) framework, 

ProfileSR-GAN, to upsample the low-resolution load profiles (LRLPs) to high-resolution load 

profiles (HRLPs). It is a common practice for utilities to downsample smart meter measurements 

from high-resolution (HR) to low-resolution (LR) (e.g., 15-, 30-, or 60-minute)[35]. This will 

significantly lower the costs of communicating, storing, and processing the data collected from 

millions of smart meters. But at the same time, it brings certain negative effects, causing a lot of 

helpful user load information to be lost in the down-sampling process. At the same time, 

however, it causes many useful user load information to be lost in the downsampling process. 

Therefore, it is necessary to design a way to recover this lost high-resolution information from 

low-resolution data, which can better guide the supplier's service strategy and achieve the effect 

of energy saving and efficient operation. 

The LPSR problem is formulated as a Maximum-a-Posteriori problem. In the first stage, 

a GAN-based model is adopted to restore high-frequency components from the LRLPs. To 

reflect the load-weather dependency, aside from the LRLPs, the weather data is added as an 

input to the GAN-based model. In the second stage, a polishing network guided by outline loss 

and switching loss is novelly introduced to remove the unrealistic power fluctuations in the 

generated HRLPs and improve the point-to-point matching accuracy. To evaluate the 

realisticness of the generated HRLPs, a new set of load-shape evaluation metrics is developed. 

Simulation results show that: i) ProfileSR-GAN outperforms the state-of-the-art methods in all 

shape-based metrics and can achieve comparable performance with those methods in point-to-

point matching accuracy, and ii) after applying ProfileSR-GAN to convert LRLPs to HRLPs, the 
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performance of a downstream task, non-intrusive load monitoring, can be significantly improved. 

This demonstrates that ProfileSR-GAN is a compelling new mechanism for restoring high-

frequency components in down-sampled time-series data sets and improves the performance of 

downstream tasks that require HR load profiles as inputs. 

We present a two-stage load profile super-resolution (LPSR) framework, ProfileSR-

GAN. In the first stage, a GAN-based model is adopted to restore high-frequency components 

from the low-resolution load profiles (LRLPs). To reflect the load-weather dependency, aside 

from the LRLPs, the weather data is added as an input to the GAN-based model. The LPSR 

problem is formulated as a Maximum-a-Posteriori problem. To make the generated HRLPs more 

realistic, we use the method introduced in [11, 36] to construct the Generator loss function so 

that adversarial and feature-matching losses can be used to recover the high-frequency 

components missed in the downsampling process effectively. In the second stage, a polishing 

network is designed to connect to the GAN model to remove unrealistic power fluctuations from 

the generated HRLPs. A new set of load shape evaluation metrics is developed for evaluating the 

realisticness of the generated profiles and for comparing the performance with other state-of-the-

art algorithms. 

Firstly, we formulated the LPSR problem as a Maximum-a-Posteriori problem that can be 

solved using GAN-based approaches. We added weather data as an input to the GAN model to 

reflect the load-weather dependency. Secondly, we proposed connecting a polishing network to 

the GAN model to remove unrealistic power fluctuations in the GAN-generated HR load 

profiles. This significantly improves the ProfileSR-GAN performance on the point-to-point 

matching accuracy. Thirdly, we designed the performance evaluation metrics for evaluating the 

realisticness of the generated HR profiles. Our simulation results show that ProfileSR-GAN 
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outperforms the state-of-the-art algorithms. As an effective mechanism for restoring high-

frequency components, ProfileSR-GAN can improve the performance of downstream tasks (e.g., 

NILM) that require HR load profiles as inputs. 

The rest of the chapter is organized as follows. Section 2.2 formulates the LPSR problem, 

and Section 2.3 introduces the ProfileSR-GAN framework. Experimental results are presented in 

Sections 2.4 and 2.5. Section 2.6 concludes the chapter. 

2.2 Load Profile Super Resolution Problem Formulation 

Let PHR represent the HR measurements with N data points.  PLR is the set of LR 

measurements down-sampled from PHR by averaging α continuous samples, where α is called the 

scale-up factor. Thus, PLR has M data points and M = N/α.  The down-sampling process can be 

expressed as 

( )

LR HR

1 1

1 m

m n m

n m

P P





 = − +

= +    ,m M n N                                (2.1) 

where ƞ represents noises caused by disturbances in the data acquisition process; n and m are the 

index of the HR and LR measurements, respectively.  

As shown in Figure 2.1, when a 1-minute load profile is down-sampled to 5-, 15-, and 30-

minute load profiles, the high-frequency components will be filtered out because of the 

smoothing effect in signal averaging. The smoothing effect becomes more apparent when 𝛼 

increases. Compared with the 1-minute load profile, the 15- and 30-minute load profiles have 

lower load peaks and contain slower power variations. In addition, individual device on/off and 

cycling behaviors are no longer distinguishable. In the following sections, we will introduce the 

ProfileSR-GAN for restoring the intra-interval power variations from LR load profiles. 
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Figure 2.1. Daily load profiles with different granularity 

Strengthening of Smart Grid functionalities has become the need of the 21st Century. 

Security evolves to be the primary concern at the deployment level of Smart Grids. Cyber 

security threats and vulnerabilities in smart grid networks must be addressed before the 

deployment of the Smart Grid. Our proposed intrusion detection scheme identifies anomalies in 

the Smart Grid traffic and detects attacks like flooding, which causes Denial of Service in Smart 

Grid Networks. 

In this paper, we plan to leverage deep learning techniques for the clustering of traffic 

data and outlier detection for the data transmitted between the utility data center and the field 

devices. 

Super-resolution algorithms originate from the image processing domain for processing 

2-dimensional images. The 1-dimensional LPSR problem can be formulated as a Maximum a 

Posteriori (MAP) estimation problem as introduced in [37]. 

From the Bayesian rule, we have 

( )
( )

( )

LR HR HR

HR LR

LR

| ( )
| =

p P P p P
p P P

p P
                                     (2.2) 

where p(PHR| PLR) is the conditional probability of PHR given PLR, p(PLR| PHR) is the conditional 

probability of PLR given PHR, and p(PHR) and p(PLR) is the prior probability of the HR and LR 

load profiles, respectively. 
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The objective function of an LPSR problem is to maximize the probability of the 

occurrence of PHR for a given PLR. Using the MAP estimation method presented in [37], the 

estimated HR profile, 𝑃̂HR, can be obtained by 

( ) ( )( )HR

HR LR HR HR

ˆ

ˆ ˆ ˆargmax log | log
P

P p P P p P= +                              (2.3) 

where 𝑃̂HR is the estimated HR load profile. 

The conditional probability of observing PLR given 𝑃̂HR under a Gaussian noise (i.e., ƞ in 

(2.1) has a zero mean with variance σ) can be calculated as 

( )
2

LR LR

LR HR 2

2

ˆ
1ˆ| exp

22 

 − −
 =
 
 
 

P P
p P P                                (2.4) 

where 𝑃̂LR is the LR load profile derived from 𝑃̂HR. 

Substituting (2.4) into (2.3), we have 

( )( )HR

2
HR LR LR HR

ˆ 2

ˆ ˆ ˆarg min log
P

P P P p P= − −                               (2.5) 

where𝜆 = 2√2𝜋𝜎3 is the regularization factor. 

In (2.5), the second term represents the prior knowledge of PHR. Traditionally, the MSE-

based method tries to find a 𝑃̂HR by minimizing the distance between PLR and 𝑃̂LR (i.e., ‖𝑃̂LR −

𝑃LR‖
2

2). However, in practice, there is only one LR observation for a HR profile. As a result, solely 

relying on ‖P̂LR-PLR‖
2

2
 can make the LPSR problem ill-posed, i.e., (2.3) may not have a unique 

solution [5]. For example, it is possible that the same LR profile can be obtained by down-

sampling two different HR profiles.  

Therefore, it is essential to constrain the solution space by introducing the prior 

knowledge of PHR into the SR problem formulation, as formulated by the second term in (2.5). 

Note that we refer to prior knowledge as the information a learner already has before learning a 
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new problem [38]. In this paper, two types of prior knowledge are used. First, weather data and 

LR profiles are used as inputs to account for the known dependency of electricity consumption 

on the weather. Second, the two terms used in the generator loss function (refer to Section II.C): 

adversarial loss and feature-matching loss, represent prior knowledge of the shape characters 

extracted by the discriminator network from the actual waveforms. 

2.3 ProfileSR-GAN Network Design And Implementation Details 

2.3.1 Generative Adversarial Network 

A GAN model consists of two components: a generator network (G) and a discriminator 

network (D), as shown in Figure 2.2. A latent vector z, usually a Gaussian noise, is used as the 

input to generate the target output G(z). Then, the generator output, G(z), which is the generated 

data, and the real data, x, are sent to D. The goal of D is to distinguish which data sets are real 

and which are fake.  

The training of a GAN model is an alternative and adversarial process: G tries to generate 

samples G(z) that can fool D; D learns to identify G(z) from x by assigning larger probabilities to 

x and smaller ones to G(z). As introduced in [12], this process is formulated as a minimax game  

      ( )
( ) ( )~ ~minmax , [log ( )] [log(1 ( ( )))]

D
p

G
pV D G D D G= −+

x zx zx zE E                      (2.6) 

where V(D,G) is the reward function, p(x) and p(z) are the probability distributions of 

training data and latent vector, E is the expectation operator.  
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Figure 2.2. The original generative adversarial network (GAN) model 

2.3.2 Profilesr-GAN 

This section introduces architecture design, generator loss function selection, and 

polishing network loss function selection of the proposed ProfileSR-GAN framework. 

As shown in Figure 2.3, ProfileSR-GAN is a two-stage process. In the first stage, LR 

profiles and their corresponding weather data are used as inputs of the GAN-based model to 

generate HR profiles through adversarial training. In the second stage, a polishing network will 

remove unrealistic power fluctuations from the GAN-generated HR profiles. 
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Figure 2.3. The two-stage ProfileSR-GAN architecture with corresponding kernel size (k), 

number of feature maps (n), and stride (s) indicated for each convolution layer 
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The generator network is a deep CNN. First, convolution layers are used to extract high-

level features from the input data. Then, we implement transpose convolution layers to recover 

the HR profiles. Inspired by [36],  we use ReLU as the activation function. Residual blocks are 

inserted between two consecutive convolutional layers [39] to alleviate the gradient diminishing 

issue. We also adopt batch normalization following each convolutional layer [40] to enhance the 

training process. 

The architecture summarized by Radford et al. [41] is used for constructing the 

discriminator network. The activation function is LeakyReLU. The discriminator network is 

trained to solve the maximization problem defined by (2.4). It contains four convolutional layers 

with an increasing number of kernels from 4 to 32. This allows us to compress the input profiles 

to high-level feature maps. Finally, the resulting feature maps will go through a fully connected 

(FC) layer and a sigmoid function to obtain the probability for real/fake classification. The 

polishing network is also a deep CNN bearing similar network structures as the generator, except 

that the two up-sampling transpose convolution layers are removed, and the number of kernels is 

reduced.  

2.3.3 Loss Function Design For GAN Networks 

Let θG be the parameter of the generator network. The generator loss, LG, is minimized to 

find an optimal θG by  

( )( )LR HRmin ,
 G

G
GL G P P

                                               (2.7) 

1 2G cont advs featL L L L = + +
                                          (2.8) 

where Lcont is the content loss; Ladvs is the adversarial loss; Lfeat is the feature-matching loss; λ1 

and λ2 are the weight coefficients.  
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To compute the content loss, Lcont, MSE is used to calculate the point-to-point distance 

between the generated and the   ground truth HR profiles as  

2
LR HR

2

1
( )= −

GcontL G P P
N

                                           (2.9) 

By minimizing the MSE, the generator is incentivized to find the maximum likelihood 

estimation of ground truth. However, relying solely on MSE-based Lcont leads to over-

conservative results in LPSR. As shown in Figure 2.4, the generated HR profile is overly 

smooth, so it cannot restore high-frequency, significant power variations. To resolve this issue, 

two loss terms, Ladvs and Lfeat, are used in (2.8). 

LR Lcont -based HR Real HR

3

2

1

P
(k

W
)

 
Figure 2.4. The LR profile, HR profile generated only based on Lcont, and real HR profile 

The discriminator in GAN is trained to distinguish the fake from the real by minimizing 

the discriminator loss function, LD, calculated as  

HR LR[log ( ) log(1 ( ( )))]=
D D GDL D P D G P  − + −                            (2.10)     

where θD is the parameters of the discriminator networks.  

Let the second term related to θG in (2.10) be the adversarial loss Ladvs. We have 

LRlog(1 ( ( ))) = −
D GadvsL D G P                                           (2.11) 

By minimizing Ladvs, the generator network favors solutions that cannot be distinguished 

as “fake” by the discriminator network to make the generated HR more realistic. Inspired by 

[12], we rewrite (2.11) as  
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LRlog( ( ( ))) = −
D GadvsL D G P                                           (2.12) 

to provide sufficient gradients and add robustness to the training process. 

The feature-matching loss, Lfeat, is defined as the distance between high-level feature 

maps extracted by the hidden layers of the discriminator network [42]. It is calculated as 

( ) ( )
2

LR HR

1

( ) 
=

= − G

J

feat j j

j

L G P P                                 (2.13) 

where φj(·) represents the output of the jth intermediate convolution layer of the discriminator 

network, given real/fake HR profiles as inputs. J is the number of intermediate layers involved in 

the loss function. As shown in Figure 2.5, the extracted feature maps are pretty different between 

real and fake profiles. Because high-frequency significant power variations can be embedded in 

those hidden features, using Lfeat can train the generator to generate more realistic HR profiles.  
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Figure 2.5. Hidden feature maps extracted by the convolutional layers of the discriminator 

network 

Note that the output of the discriminator network is a binary classifier (yes/no) and 

cannot be directly used to calculate how close the generated load profile resembles the actual. 

However, one can compare feature values in each hidden convolutional layer when fake and 
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actual profiles are examined. By minimizing Lfeat, the generator will favor solutions that share 

similar features with the actual HR profiles to make the results more realistic.  

2.3.4 Loss Function Design For The Polishing Network 

Since the GAN model recovers the high-frequency components by reducing the 

adversarial loss and feature-matching loss, its performance in minimizing MSE loss is 

compromised. This is because point-to-point matching accuracy is sacrificed in exchange for the 

flexibility of generating more realistic details.  

To resolve this issue, the loss function of the polishing network, Lpol, is designed to have 

two new loss terms: the outline loss, Loutl, and the switching loss, Lswit, so we have 

outl switpol LL L= +                                                      (2.14) 

2 2
HR HR HR HR

max max max max
2 2

1 1ˆ ˆ( ) ( ) ( ) ( )outlL P P P P
N N

   − + − − −=          (2.15) 

2
HR HR

max max
2

1 ˆ
swit PL P

N
  − =                                           (2.16) 

                        HR HR HR HR HR HRˆ ˆ ˆ( 1) ( ),     ( 1) ( )P P n P n P P n P n = + −  = + −  

where ξmax is the max pooling operator [43] moving across the entire signal with a kernel size of 

kmax at stride smax , ∆ is the first-order difference operator. Note that Loutl focuses on comparing 

the local peaks and valleys of the generated profile with the ground truth profile. This is also a 

proven effective solution used in solving image segmentation problems [44]. Lswit focuses on 

comparing the change of load between two consecutive sampling intervals so that the load 

changing rates are similar to the ground truth profile.  

Figure 2.6 shows an example of a daily load profile before and after polishing. Note that 

the on/off of appliances normally lead to flat upper and lower boundaries instead of arbitrary 

fluctuations. This is because an appliance usually runs at a relatively fixed power level. 
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Together, Loutl and Lswit help flatten the unrealistic fluctuations to improve point-to-point 

accuracy. 
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(a) Before polishing           (b) After polishing            (c) Ground truth 

Figure 2.6. An illustration of comparing the envelopes of the generated daily HR profiles (before 

and after polishing) with that of the actual daily load profile 

2.4 Metrics Evaluation 

To train and test the proposed model, we use the 1-minute smart meter data set collected 

from 148 residential households in Austin, TX in 2015 by the PECAN Street association [45]. 

The hourly weather-related data set, including dry ball temperature, visibility, humidity, wind 

speed, sunrise and sunset time, are downloaded from [46] and then up-sampled to minute-level 

resolution by linear interpolation to pair with the LR load profiles.  

The annual data are split into daily data. After excluding the days with missing data or 

abnormal data, we finally have 53,000 sets of daily load profiles. Those profiles are divided into 

two groups: 70% for training, 15% for validation, and 15% for testing. The 1-min data is down-

sampled to 5-min and 30-min to obtain PHR and PLR, so the scale factor α is 6. The Gaussian 

noise, ƞ, has a zero mean with a variance of 0.01. 

2.4.1 Training Setup 

Adam, an algorithm for first-order gradient-based optimization of stochastic objective 

functions introduced in [47], is used with momentum terms β1 = 0.99 and β2 = 0.999. The slope 

of the LeakyReLU is 0.2. Hyperparameters are tuned on the validation dataset listed in Table 2.1. 
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Deep neural network models are built in the PyTorch environment and trained on a single GPU 

of NVIDIA GeForce RTX 3080. The training time is approximately 10 hours. 

To demonstrate the impact of introducing GAN-based components (Ladvs and Lfeat), we 

design a CNN model with the same network structure as the ProfileSR-GAN generator (see the 

upper left part in Figure 2.3) as a controlled experiment. The CNN model is purely trained by the 

MSE loss defined in equation (2.7). The linear interpolation (LERP) method with a scale-up 

factor of α = 6 is used as the benchmark case. Other SR approaches, including SRP [10], ASR [9] 

are also included in performance evaluation. 

(c) Scores (b3) Feature loss

ProfileSR-GAN
CNN

Real HR

ProfileSR-GAN

CNN

(a) Discriminator loss

(b) Generator loss

(b1) Content loss
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(d) Polisher loss
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Figure 2.7. Training curves of ProfileSR-GAN (a) discriminator loss of ProfileSR-GAN, (b) 

generator loss of ProfileSR-GAN and CNN, (b1) content loss of ProfileSR-GAN and CNN, (b2) 

adversarial loss of ProfileSR-GAN generator, (b3) feature loss of ProfileSR-GAN generator, (c) 

scores of real, fake HR profiles given by discriminator. (d) polishing loss, (e) outline loss, (f) 

switching loss. 
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Table 2.1. Hyperparameter configurations for ProfileSR-GAN 

Parameter Value 

Learning rate 1e-4 

Ladvs weight - λ1  0.05 

Lfeat weight - λ2 0.5 

Batch size 32 

Max pooling kernel size - kmax 3 

Max pooling stride - smax 1 

Training epochs 300(GAN) + 300(polishing) 

Figure 2.7 shows the loss plots in the two stages and scores given by the discriminator for 

the real and generated HR profiles during the GAN training process. The following observations 

are made for each training stage. 

Initialization (0 - 10 epoch) 

As shown in Figure 2.7(a), initially, there is a sharp decrease of discriminator loss. This 

means that the discriminator is learning the feature differences between the real and generated 

HR profiles quickly. Consequently, the discriminator starts to assign a higher score to the real 

profile and a lower score to the fake one, as shown in Figure 2.7(c). Meanwhile, as shown in 

Figure 2.7(b), although both CNN and ProfileSR-GAN have decreased generator losses, the 

generator loss of ProfileSR-GAN starts to bounce back quickly. This is because the decrease in 

content loss (see Figure 2.7(b1)) is offset by the increase of the adversarial loss (see Figure 

2.7(b2)) and the feature-matching loss (see Figure 2.7(b3)). 

Evolving (10-50 epoch):  

In this stage, for ProfileSR-GAN, the adversarial training allows the generator and 

discriminator to improve each other. The discriminator loss keeps decreasing, showing that the 

discriminator becomes more effective in identifying the real HR profiles from the fake ones. 

Note that despite the increasing generator loss, the performance of the generator continues to 

improve. This shows that guided by the discriminator, the generator is learning to achieve an 

optimal trade-off between Achieving lower MSE error and generating more realistic profiles. In 
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other words, the content loss is sacrificed to lower the adversarial loss and feature losses. In 

contrast, the CNN model merely focuses on minimizing the MSE content loss.  

Balanced (after 100 epochs):  

After about 100 epochs, the generator and the discriminator of ProfileSR-GAN reach a 

balance in performance. There is no further decrease in discriminator loss, showing that the 

generator has the ability to generate realistic HR profiles to fool the discriminator. Meanwhile, 

the scores assigned to profiles by the discriminator are also stabilized: the score of a fake HR 

profile generated by the CNN model is around 0.2, much lower than those received by 

ProfileSR-GAN around 0.38). Note that the score of a real profile is approximately 0.62.  

For the polishing network, both the outline loss and the switching loss drop sharply 

during the first 20 epochs and then stabilize at around the 300th epoch.  

2.4.2 LPSR Results And Performance Evaluation 

In the image SR problem, evaluations of the restored HR images are usually based on a 

human-judgment-based measurement, called the Mean Opinion Score testing. However, in 

LPSR, substantial domain knowledge and expertise are required to visually distinguish whether a 

generated load profile is realistic. Therefore, we need a set of metrics for evaluating the quality 

of the generated HR load profiles. 

MSE, as a point-wise comparison between two waveforms, is insufficient for comparing 

the shape of waveforms. For example, a minor time shift in waveforms can lead to a large MSE, 

even though the two waveforms have the same shape. Therefore, in this paper, we introduce 

three shape-wise load profile evaluation metrics: Peak Load Error (PLE), Frequency Component 

Error (FCE), and Critical Point Error (CPE). The metrics are calculated as 

LR HRmax( ( )) max( )
G

P G PLE P −=                                          (2.17) 
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G PF PCE
N

 −= F F                                      (2.18) 

LR HR( ( )
1

( ))C
N

G P PPE −=  R R                                      (2.19)  

where  is the Discrete Fourier Transform operator and  is the Ramer Douglas Peucker 

operator [48]. 

PLE measures the peak load difference between the ground-truth HR profiles and the 

restored HR profiles by SR algorithms. PLE has a clear physical meaning and is essential 

because accurately restoring the intra-interval peak load is critical for the distribution system 

operation and planning.  

FCE measures the frequency-domain similarity between two profiles. Since the critical 

challenge of LPSR is to restore the intra-interval, high-frequency components, FCE can compare 

the frequency-domain characteristics to evaluate the effectiveness of the SR algorithms.   

Ramer Douglas Peucker algorithm simplifies a waveform in the time domain by 

eliminating non-critical points and keeping only shape-defining points [48]. Consequently, CPE 

measures the difference between the number of critical points of two waveforms to compare their 

similarity.  

The LPSR results and metric values are summarized in Table 2.2 and Figures. 2.8 to 2.10. 

From the results, we have the following observations. 

Visual comparison of the generated daily load profiles. As shown in Figures. 2.8 and 2.9, 

the generated intra 30-min high-frequency components from ProfileSR-GAN are very similar to 

the ground truth profiles in terms of the magnitude of generated peaks, appliance cycling 

behaviors, and the envelopes of the load profiles. LERP and ASR fail to generate the intra 30-

min power variations. In the daily profiles generated by SRP and CNN, the intra 30-min power 
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variations are unrealistic with peak loads lower than that of the actual. This shows that 

ProfileSR-GAN can learn to exclude unrealistic components that are easy-to-be-identified-as-a-

fake through the use of a discriminator. 

 
Figure 2.8. LPSR results for generating daily load profiles (upsampling from 30-min to 5-min 

resolution). Lower resolution (LR), linear interpolation (LERP), convolution neural network 

(CNN), ProfileSR-GAN (unpolished), ProfileSR-GAN, and ground truth (GT). 

Table 2.2 Metric evaluation results 

SR method LERP ASR SRP CNN 

ProfileSR 

GAN-

(unpolished) 

ProfileSR 

GAN 

(polished) 

MSE 
mean 0.55 0.44 0.42 0.41 0.61 0.51 

Gain / 20% 24% 25% -11% 7% 

PLE 
mean 1.38 0.99 0.92 0.91 0.86 0.73 

Gain / 28% 33% 34% 38% 47% 

FCE 
mean 7.22 5.83 5.36 5.38 4.81 4.65 

Gain / 19% 26% 25% 33% 36% 

CPE 
mean 0.65 0.41 0.29 0.31 0.26 0.25 

Gain / 37% 55% 52% 60% 62% 

* "Gain" represents the improvement w.r.t LERP baseline 
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Figure 2.9. Comparison of frequency components and critical point errors 

 
Figure 2.10. Violin plots of the performance metrics. Medians are shown as the white markers  

CNN ProfileSR-GAN Real HR

PLE=1.86 PLE=0.16

MSE = 0.97 MSE = 1.36 Real HR

Critical points=140

CPE=0.13

Critical points=185

CPE=0.03

Critical 
points=176

D
F

T
 a

m
p

li
tu

d
e

R
D

P
 a

p
p

ro
x

im
at

io
n

H
R

 p
ro

fi
le

s 
(k

W
)

MSE PLE

FCE CPE

3.0

1.0

0.0

2.0

4.0

4.0

2.0

0.0

3.0

5.0

1.0

20

10

0

15

25

5

0.6

0.2

0.0

0.4

0.8

k
W

2
k

W

k
W

LERP ASR SRP CNN PrflSR-GAN

(unpolished)

PrflSR-GAN



  25 

 

Comparison of MSE: As shown in Table 2.2, MSE-based methods outperform the GAN-

based model in achieving the lowest MSE. This is reasonable since MSE is the only optimization 

objective those models need to take care of. However, only emphasizing point-wise MSE on 

averaging the point-to-point distance leads to smooth outputs. As shown in Figs. 9 and 10, such 

processes will filter out high-frequency components because recovering high-frequency detail is 

risking high point-to-point mismatch. A similar soothing effect has also been observed in the 

image SR problem and is reported in [11]. The results in Table 2.2 also shows that after adding a 

polishing network, there is an 18% improvement in MSE, showing the effectiveness of adding a 

polishing network to the ProfileSR-GAN architecture for improving point-wise accuracy 

Comparison of PLE: From Table 2.2 and Figure. 2.9 and 2.9, we can see that the 

magnitude of the peak in the ProfileSR-GAN generated profile is very similar to that in the 

ground truth curves. On the contrary, the peak load restored by LERP and MSE-based methods 

has a relatively large gap with the ground truth. Successfully restoring the load peaks is critical 

for distribution circuit analysis because load peaks often represent critical operating conditions.  

Comparison of FCE: From the spectrum plots in Figure 2.9, we can see that the 

ProfileSR-GAN model can recover more high-frequency components than LERP and MSE-

based methods.  

Comparison of CPE: As shown in Table 2.2 and Figure 2.9, ProfileSR-GAN achieved the 

best performance in critical points matching. We can see that the simplified profile of ProfileSR-

GAN is still very similar to the ground truth, indicating that they have similar profile complexity. 

The profiles generated by MSE-based methods and LERP, by contrast, have much fewer critical 

points. 
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Comparison of the performace of the shape-wise evaluation metrics on test set: As shown 

in Figure 2.10, ProfileSR-GAN consistently outperforms LERP and other MSE-based models in 

terms of PLE, FCE, CPE while maintaining an acceptable MSE level.  

2.4.3 2D Visualization of LPSR results 

To intuitively compare the LPSR results from different SR methods, we select the 

generated daily HR profiles of a single house from April 1st to September 1st in 2015 to make the 

2-D visualization of different SR model outputs, as shown in Figure 2.11. First, we apply 

discrete Fourier transformation to extract the frequency-domain components of the HR profiles 

generated by different SR methods. Then, we use t-SNE [49] to reduce the dimension to 2-D for 

better visualization. We can see that the 2-D representations of ProfileSR-GAN results is the 

closest to the ground truth area. Meanwhile, the distance between the SR result and the ground 

truth is measured by the Wasserstein distance. As shown in Table 2.3, ProfileSR-GAN achieves 

the best performance.   

Table 2.3. Wasserstein distance of 2D Representation of SR results 

              SR models 

Metrics 
LERP ASR SRP CNN 

ProfileSR

-GAN 

Wasserstein 

distance 

X-axis 4.560 4.518 3.391 3.506 0.679 

Y-axis 1.170 1.136 1.089 1.066 0.256 

 



  27 

 

 
Figure 2.11. 2-D visualization of the frequency components extracted from the HR profiles 

generated by different SR methods 

2.4.4 Performance Comparison under Different Scale-Up Factor 

To evaluate the impact of the scale-up factor α, we compare the case of α=6 (i.e. from 

LR-30min to HR-5min) with two other cases: α=12 (i.e. from LR-60min to HR-5min) and α=3 

(i.e. from LR-15min to HR-5min). We keep the same ProfileSR-GAN network structure shown 

in Figure 2.4 and alter only the stride of the transpose convolution layer of the generator network 

to cope with different α values.  
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Figure 2.12. Performance evaluation for cases with different scale-up factors 

As shown in Figure 2.12, when α decreases, all SR methods perform better (i.e., four 

error metrics tend to reduce). This is expected because a smaller α represents a less ill-posed 

LPSR problem, making the problem easier to solve. In most cases, the MSE-based methods still 

outperform the GAN-based methods in MSE. We also observe that the MSE of ProfileSR-GAN 

significantly reduces when α decreases, showing that the LPSR problem becomes easier to solve 

when there are fewer points to recover in an interval. 

Moreover, compared with LERP and MES-based learning, ProfileSR-GAN is more 

effective for larger α (e.g., α = 12 and α = 6). Because for a large α, the LPSR problem is highly 

ill-posed: restoring the ground truth HR profile from the observed individual LR profile is 

challenging. However, the ProfileSR-GAN generator can approximate the distribution of the 
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realistic HR profile dataset under the guidance of the feature-matching loss and adversarial loss.  

Therefore, it can generate HR samples that have a better chance to be realistic.  

When α is small (e.g., α=3), the distribution approximation ability of the GAN-based 

method becomes less essential because each individual LP profile already contains enough 

information to recover the new missing points in an interval, making the MSE-based model 

better choices. 

2.4.5 Impact of Weather Data 

As mentioned in Section III.A, weather data serves as part of the prior knowledge in this 

paper to enhance the GAN-based model performance. To assess the impact of the weather data 

on the performance of ProfileSR-GAN, we conduct a controlled experiment: we train two 

identical ProfileSR-GAN models, one with and the other without weather data. The performance 

metrics of the two models are summarized in Table 2.4. We can see that using the weather data 

as input achieves better performance in all four metrics.  

Table 2.4. Performance comparison for quantifying the impact of using weather data as input 

Metrics 
Weather 

Data 

α=12 

(60 to 

5min) 

α=6 

(30 to 

5min) 

α=3 

(15 to 

5min) 

MSE 
with 0.782 0.512 0.201 

without 0.793 0.524 0.213 

PLE 
with 1.081 0.731 0.475 

without 1.145 0.765 0.491 

FCE 
with 5.964 4.652 3.125 

without 5.982 4.725 3.163 

CPE 
with 0.243 0.247 0.227 

without 0.251 0.252 0.259 
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2.5 Experiments on Non-Intrusive Load Monitoring 

NILM methods are used to disaggregate electricity consumption from the smart meter 

level to the appliance level by capturing the unique signatures of each appliance. Because LPSR 

aims at restoring the high-frequency components of a down-sampled load profile, NILM is a 

natural downstream task and can be used to evaluate the effectiveness of LPSR. If the high-

frequency load signatures can be recovered by LPSR, the NILM algorithm should be able to 

achieve better performance. 

As shown in Figure 2.13, the experiment includes four steps: 

1) LPSR implementation. Five different LPSR methods are used, including the proposed 

ProfileSR-GAN and four other benchmarking methods, to upsample the 30-min aggregated LR 

load profiles back to 5-min HR load profiles.  

2) NILM model training. The NILM models are trained using the real 5-min aggregated 

profiles. The outputs of the NILM are 5-min appliance level profiles. The trained NILM models 

can recognize appliances once provided with an aggregated load profile. In this paper, we will 

use three different NILM models: Denoising Autoencoder (DAE) [50], sequence to point model 

(Seq2Point) [51], and sequence to sequence model (Seq2Seq) [51]. These models are provided 

by the Non-intrusive Load Monitoring Toolkit (NILMTK) [52], which is an open-source NILM 

algorithm platform.  

3) NILM model testing. After the NILM models are trained, they are fed with the HR 

profiles generated in step 1 to evaluate how well the appliance profiles can be recognized.  

4) NILM result evaluation. The recognized appliance profiles in step 3 are compared with 

the ground truth to evaluate the NILM performance when using up-sampled load profiles by 

ProfileSR-GAN.  
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Figure 2.13. Flowchart of the NILM experiments 

Pecan Street data set paired with weather data from [46] is used to support the NILM 

experiments. We randomly selected four residential users from the data set. Each user has five 

appliances, i.e., air conditioner, electric furnace, fridge, dishwasher, and microwave. The data is 

one-month length from August 1st to September 1st, 2015, with 1-min granularity. We down 

sample the original 1-min aggregated profiles and appliance level profiles to 5-min as PHR and 

30-min as PLR. The first 20 days are used for training the NILM models, and the last 11 days for 

evaluation.  

Two metrics are adopted to evaluate the NILM performance for each appliance. The first 

is the root mean square error (RMSE): 

( )
2

1

1
ˆ

T

t t

t

RMSE y y
T =

= −                                                (2.20) 

where T is the profile length, yt is the actual power consumption of the target appliance at 

time t, and ŷ
t
 is the corresponding NILM estimation. The second metric is the Overall Error (OE) 
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[53], which measures the percentage power consumption mismatch between the NILM 

estimation and the ground truth. 

ˆˆ/ /t t t t

t t t t

OE y Y y Y= −                                             (2.21) 

Where Yt denote the actual aggregated power consumption of all appliances at time t, and 

Ŷt is the corresponding NILM estimation. The calculation results are shown in Table 2.5.  

Table 2.5. Performance Comparison of different NILM algorithms 

Appliance Metrics Root mean square error (kW) Overall error (10-1) 

Houses LERP ASR SRP CNN ProfileSR- 

GAN 

LERP ASR SRP CNN ProfileSR- 

GAN 

Air-

conditioner 

1 1.063 1.049 1.024 1.016 0.969 0.780 0.883 0.403 0.430 0.346 

2 1.216 1.201 1.071 1.103 1.048 2.417 2.303 1.587 1.917 0.758 

3 1.348 1.350 1.134 1.199 0.922 4.949 4.925 2.620 3.004 1.102 

4 0.793 0.809 0.710 0.727 0.679 0.713 0.790 0.404 0.453 0.104 

mean 1.105 1.102 0.985 1.011 0.905 2.215 2.225 1.253 1.451 0.578 

Fridge 1 0.105 0.106 0.105 0.105 0.106 0.145 0.155 0.128 0.144 0.040 

2 0.071 0.074 0.074 0.078 0.067 0.325 0.285 0.233 0.261 0.160 

3 0.102 0.104 0.089 0.088 0.084 2.703 2.712 1.258 1.539 0.482 

4 0.078 0.079 0.078 0.079 0.078 0.278 0.335 0.138 0.153 0.236 

mean 0.089 0.091 0.087 0.087 0.084 0.863 0.872 0.439 0.524 0.230 

Electric 

furnace 

1 0.118 0.116 0.106 0.106 0.090 0.329 0.362 0.162 0.138 0.130 

2 0.063 0.064 0.057 0.058 0.056 0.687 0.634 0.501 0.644 0.474 

3 0.299 0.299 0.220 0.243 0.201 0.571 0.569 0.689 0.654 0.349 

4 0.071 0.073 0.066 0.067 0.064 0.055 0.057 0.049 0.064 0.021 

mean 0.138 0.138 0.112 0.119 0.103 0.410 0.405 0.350 0.375 0.244 

Dish 

washer 

1 0.127 0.135 0.100 0.114 0.075 0.453 0.495 0.293 0.329 0.051 

2 0.364 0.365 0.321 0.333 0.224 1.378 1.362 0.832 0.990 0.151 

3 0.128 0.123 0.102 0.106 0.073 1.434 1.351 0.636 0.755 0.248 

4 0.089 0.086 0.105 0.095 0.087 0.065 0.049 0.163 0.123 0.025 

mean 0.177 0.177 0.157 0.162 0.115 0.832 0.814 0.481 0.549 0.119 

Microwave 1 0.085 0.084 0.083 0.084 0.083 0.114 0.124 0.130 0.138 0.156 

2 0.023 0.022 0.022 0.022 0.021 0.023 0.018 0.018 0.020 0.010 

3 0.028 0.028 0.013 0.014 0.013 0.468 0.453 0.037 0.055 0.023 

4 0.123 0.122 0.121 0.122 0.120 0.489 0.492 0.433 0.458 0.160 

mean 0.065 0.064 0.060 0.060 0.059 0.273 0.272 0.154 0.168 0.087 

As shown in Table 2.5, using ProfileSR-GAN for upsampling achieves the best 

performance in most cases. This is because NILM algorithms rely heavily on capturing the load 

switching signature in the aggregated load profile (e.g., the rising and falling edges, the spikes), 

which are usually caused by the appliance ON/OFF or cycling activities. Thus, by restoring the 

high-frequency waveforms, ProfileSR-GAN makes it easier for NILM to identify appliance-level 

load profiles and energy consumption patterns. The MSE-based SR methods produce over-
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smoothed HR profiles, which provides fewer waveform signatures for NILM to capture. These 

results further demonstrate the value of the proposed ProfileSR-GAN model. Figure 2.14 shows 

the NILM results for the air conditioner identification as an illustration of the results. 
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Figure 2.14. NILM results comparison for air conditioner based on Seq2Seq algorithm 

2.6 Conclusion 

In this chapter, we propose ProfileSR-GAN, a 2-stage GAN-based method for solving 

LPSR problems. In the first stage, a GAN-based model is trained to restore the high-frequency 

components from the low-resolution data. In the second stage, a polishing network is developed 

to remove unrealistic power fluctuations in the GAN generated high-resolution load profiles. 

Compared with conventional up-sampling methods, such as interpolation and CNN-based 

methods, the proposed ProfileSR-GAN achieves superior performance in restoring high-

frequency components inside sampling intervals. The overall performance improvements 
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attribute to three aspects: the adversarial training of the GAN-based model, the inclusion of 

weather data, and the fine-tuning of the polishing network.  

The simulation results demonstrate that ProfileSR-GAN achieved 36%-62% 

improvements in shape-related evaluation metrics compared with the baseline method (i.e., the 

linear interpolation method). An application of ProfileSR-GAN is presented as a case study to 

demonstrate that applying ProfileSR-GAN on upsampling can benefit downstream tasks that 

require the use of high-resolution load profiles. Simulation results show that when using 

ProfileSR-GAN to up sample the low-resolution profiles before conducting NILM, appliance-

level activities can be better recognized by the NILM algorithms. 
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CHAPTER 3 LOAD PROFILE INPAINTING FOR BASELINE ESTIMATION 

3.1 Background 

Missing data is a common issue in distribution system load profile processing. 

Oftentimes, missing data are caused by temporarily lost communication with the equipment. 

Statistics show that approximately 70% of missing data segments in power distribution systems 

are less than 4 hours. Thus, restoring short missing data segments is critical for improving the 

data utilization rate and providing high-quality data sets to down-stream data processing tasks.  

Moreover, algorithms used for restoring missing data can also be used to identify the 

operational baseline of demand response (DR) programs. For example, Conservation Voltage 

Reduction (CVR) is widely used by utilities for peak load reduction [54]. During a CVR event, 

system voltage at the substation bus will be reduced by 2-4% to achieve load reduction. To 

quantify the CVR caused load reduction, it is very important for utility engineers to accurately 

estimate what the original load profile (i.e., the baseline) during a CVR event would have been 

had the bus voltage not been reduced. Because the pre- and post- CVR load profiles representing 

customer consumption under normal system voltage, uncovering the CVR baseline is equivalent 

to restoring missing data in the CVR period. Because baseline estimation is essential to DR 

performance evaluation, inpainting the would-have-been load profile during a DR event is highly 

valuable to load service providers. 

Existing missing data restoration methods for load profile inpainting are categorized into 

model-based and data-driven. Model-based methods use physical system models to simulation 

responses to external disturbances in hope of restoring missing data segments. For example, to 

estimate the CVR baseline, researchers use the distribution system topology and load models to 

predict load changes when system voltage changes [55-59]. In general, model-based methods 
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require accurate distribution system models. However, in practice, distribution system models 

are incomplete and inaccurate due to topology changes and lack of measurements. Moreover, 

load composition varies with respect to the time-of-the-day while customer consumption patterns 

shift constantly due to occupancy and weather conditions. Therefore, it is often times infeasible 

for utilities to apply model-based methods for restoring missing data segments. 

Thus, the data-driven approach is the dominant approach for missing data restoration. 

Data-driven methods can be further categorized into three approaches: similarity-based, 

regression-based, and generative-based. The similarity-based approach groups load profiles by 

day type, weather conditions, and similarity among load profiles. The missing data segments are 

restored by referencing to the data on the load profiles having the best similarity match. 

Similarity-based methods are straightforward, easy to implement and explainable, therefore are 

widely used in field implementation[59-61]. However, in many cases, similarity metrics are 

normally defined by human analysts and can be based on the weighted average of many factors 

(e.g., weather, time, geographical conditions, and load types). This makes the accuracy of the 

method a dependent on subjective selections of similarity metrics and weights. 

Regression-based methods include linear regression [61], Long Short Term Memory 

(LSTM) [31], Stacked Autoencoder (SAE) [32] , Gaussian Regression [23], and Support Vector 

Regression (SVR) [20, 62]. Regression-based methods usually achieve higher estimation 

accuracy compared to the similar day approach because of their nonlinear learning capabilities, 

especially when using deep-learning models. However, compared with similarity-based methods, 

the deep-learning based methods are less explainable and having higher computing costs. Thus, 

in recent years, hybrid solutions combining multiple regression models [24, 26, 27] are proposed 

for baseline estimation or missing data restoration.  
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The main drawbacks of the existing regression-based approaches is that the restored data 

segments need to have the same fixed length. In practice, the duration of missing data varies 

from minutes to several hours. To cope with variable missing data length, many existing methods 

either increase the output window to cover the longest event or train separate models for 

different missing data length. This inevitably increases model complexity with added computing 

and deployment cost.  

In this paper, we propose a third approach for missing data restoration: the Generative 

Adversarial Nets (GAN) based approach. Studies of using GAN to solve the missing data 

restoration problem is still in infancy. In [63, 64], the authors discuss the basic theory of GAN in 

restoring missing data, while in [65, 66], the authors implement a GAN-based method in power 

domain to restore the grid measurement data and the PV profiles. Inspired by image inpainting, 

we develop a Load Profile Inpainting Network (Load-PIN) using GAN [12] as the basic structure 

of a highly accurate and flexible missing data restoration framework for recovering missing data 

on load profiles. The framework, with little fine-tuning, can be readily applied for DR baseline 

estimation. The generator consists of a coarse network and a fine-tuning network. Initially, the 

bidirectional time series load data before and after the missing data segment together with the 

explanatory variables are fed into the coarse network to obtain an initial estimation for the 

missing part. Next, initial estimations are sent to the fine-tuning network consisting of Gated 

Convolution layers [33] and Multi-head self-attention blocks [34] to improve accuracy. The 

generator network is trained under the guidance of the discriminator with specially designed loss 

functions. 
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The rest of the chapter are organized as follows: Section 3.2 formulates the CVR 

baseload estimation problem, Section 3.3 introduces the proposed Load-PIN model, Section 3.4 

demonstrates the case study results, and Section 3.5 concludes this paper. 

3.2 Customer Baseline Load Estimation Problem Formulation 

In this section, we first illustrate the problem formulation of load profile inpainting and 

the background of the GAN based approach. Then, we present the proposed 2-stage GAN 

generator structure and the loss function design of the Load-Load-PIN framework. 

Denote a historical time series matrix of load as 𝐘 = [𝑦1, 𝑦2, … , 𝑦𝐿], where 𝐿 is the length 

of the time series. Denote the explanatory variables X as 

𝑋 =

[
 
 
 
𝑥1
1 𝑥2

1 ⋯ 𝑥𝐿
1

𝑥1
2 𝑥2

2 ⋯ 𝑥𝐿
2

⋮ ⋮ ⋱ ⋮
𝑥1
𝐸 𝑥2

𝐸 ⋯ 𝑥𝐿
𝐸]
 
 
 

                                                      (3.1) 

where E is the number of explanatory variables.  

Define an event to be a missing data segment (see Fig. 3.1(a)) or an unknown DR 

baseline (see Fig. 3.1(b)). Assume there are 𝑁 events 𝐘 and the duration of the ith event (i.e. the 

ith inpainting period) is 𝑇𝑒𝑣𝑒𝑛𝑡
𝑖 . The inpainting duration vector, 𝐓𝑒𝑣𝑒𝑛𝑡, is  

  𝐓𝑒𝑣𝑒𝑛𝑡  =  [𝑇𝑒𝑣𝑒𝑛𝑡
1 , 𝑇𝑒𝑣𝑒𝑛𝑡

2 , … , 𝑇𝑒𝑣𝑒𝑛𝑡
𝑁 ]                                           (3.2) 

while the ith restored data segment, 𝐘𝑒𝑣𝑒𝑛𝑡
𝑖 , is  

 𝐘𝑒𝑣𝑒𝑛𝑡
𝑖   =  [𝑦̂1

𝑖 , 𝑦̂2
𝑖 , … , 𝑦̂

𝑇𝑒𝑣𝑒𝑛𝑡
𝑖
𝑖 ]                                                (3.3) 



  39 

 

 
Figure 3.1. Two basic event types: (a) missing data restoration, and (b) DR baseline 

identification.  Blue solid lines are field measurements and red dotted lines are uncovered data 

segments 

As shown in Fig. 3.2, we divide the load profile containing the ith event into three 

periods: [𝐗𝒆𝒗𝒆𝒏𝒕
𝒊 , 𝐘𝒆𝒗𝒆𝒏𝒕

𝒊 ] as the inpainting data period, [𝐗𝒑𝒓𝒆
𝒊 , 𝐘𝒑𝒓𝒆

𝒊 ] as the pre-event period, and 

[𝐗𝒑𝒐𝒔𝒕
𝒊 , 𝐘𝒑𝒐𝒔𝒕

𝒊 ] as the post-event period.  

Thus, a load profile inpainting problem can be described as 

𝐘𝑒𝑣𝑒𝑛𝑡
𝑖 = 𝑓𝜃(𝐗𝒑𝒓𝒆

𝒊 , 𝐘𝒑𝒓𝒆
𝒊 , 𝐗𝒆𝒗𝒆𝒏𝒕

𝒊 , 𝐗𝒑𝒐𝒔𝒕
𝒊 , 𝐘𝒑𝒐𝒔𝒕

𝒊 )                                (3.4) 

where 𝑓𝜃 is the mapping function. 

 
Figure 3.2. An illustration of the division of the load profile containing an event 

In the similarity-based approach, pre- and post- event data are mainly used for identifying 

similar days. Traditional forecasting-based methods use only pre-event data, 𝐗𝒑𝒓𝒆
𝒊  and 𝐘𝒑𝒓𝒆

𝒊 , to 

model inputs to forecast 𝐘𝑒𝑣𝑒𝑛𝑡
𝑖 . Most correlation-based methods take 𝐗𝒆𝒗𝒆𝒏𝒕

𝒊  as inputs to build 
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the mapping function between 𝐘 and X (e.g., temperature and voltage) for estimating 𝐘𝑒𝑣𝑒𝑛𝑡
𝑖 . 

Thus, one of the main drawbacks of the state-of-the-art methods is that the information contained 

in all five available data sets (i.e., [𝐗𝒑𝒓𝒆
𝒊 , 𝐘𝒑𝒓𝒆

𝒊 , 𝐗𝒆𝒗𝒆𝒏𝒕
𝒊 , 𝐗𝒑𝒐𝒔𝒕

𝒊 , 𝐘𝒑𝒐𝒔𝒕
𝒊 ]) have not yet been fully 

utilized. To resolve this deficiency, we take the GAN based approach to use all 5 available data 

sets as inputs to fθ for predicting 𝐘𝑒𝑣𝑒𝑛𝑡
𝑖 . 

3.3 GAN-Based Approach Implementation 

As shown in Fig. 2.2, a GAN model consists of a generator network (G) and a 

discriminator network (D). The input of the generator is a latent vector 𝐳, often a Gaussian noise. 

The generated data, 𝐺(𝐳), along with the actual data, 𝐱, are then passed to discriminator D. The 

goal of D is to distinguish real data sets from the fake ones. The training of a GAN model is an 

iterative, adversarial process: G tries to generate samples 𝐺(𝐳) to fool D; D learns to identify 

𝐺(𝐳) from 𝐱 by assigning greater probabilities to 𝐱 and smaller ones to 𝐺(𝐳). As introduced in 

[12], this process is formulated as a minimax game  

( )
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                               (3.5) 

where 𝑅(𝐷, 𝐺) is the reward function, 𝑝(𝐱) and 𝑝(𝐳) are the probability distributions of training 

data and latent vector, E is the expectation operator. 

The Load-PIN framework is illustrated in Fig. 3.4. The model input z has three parts: 24-

hour load and temperature profiles, and a Boolean mask indicating the event period as one and 

the normal period as zero. The load data resolution varies from 1-minute to 15-minute and the 

missing data duration, 𝑇𝑒𝑣𝑒𝑛𝑡, is less than 4 hours. The generator contains two stages: a coarse 

network for initial estimation and a fine-tuning network for polishing. The discriminator is a 

deep convolutional network with specially designed loss functions.  
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3.3.1 Training Sample Generation  

The goal of the sample generation process is to generate samples evenly distributed in 

yearly load profiles so that the trained model will not be biased by factors such as the time-of-the 

day and season-of-the-year. To achieve this goal, we slide a 24-hour moving window over yearly 

historical load profiles, as shown in Fig. 3.3. In this paper, the time shift (△t) of the moving 

window is one hour.  

There are two considerations. First, to train and test the Load-PIN model, the training and 

testing samples should be generated from load profiles containing no CVR events. This is 

because, during a CVR event, system voltages are reduced by 2-4% for load reduction, making 

the load profile under the normal system voltage (the ground truth) unknown to the analyst. 

Second, the missing data segment will be positioned at the center of the 24-hour window so that 

the pre- and post- event data are equal in length. Third 

After the Load-PIN model is trained, we apply it to CVR samples for CVR baseline 

identification. A CVR sample is a 24-hour load profile with the CVR event being placed in the 

middle of the 24-hour window (See Fig. 3.3). 

 
Figure 3.3. Training sample generation process  
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Denote Ntrain , Ntest, and NCVR as the total number of training samples, testing samples, and 

CVR samples, respectively. For the ith normal sample, a mask of variable length (but less than 4-

hour) is placed in the middle of the 24-hour window. The data being masked is the ground truth 

(𝐘𝑒𝑣𝑒𝑛𝑡
𝑖 ) of the forecasted missing data segment (𝐘𝑒𝑣𝑒𝑛𝑡

𝑖 ). Before and after the mask are the pre-

event and post-event load segments (i.e., 𝐘𝒑𝒓𝒆
𝒊 , 𝐘𝒑𝒐𝒔𝒕

𝒊 ). Meanwhile, load segments are paired with 

their corresponding temperature profiles as the explanatory variable (i.e.,𝐗𝒑𝒓𝒆
𝒊 , 𝐗𝒆𝒗𝒆𝒏𝒕

𝒊 , 𝐗𝒑𝒐𝒔𝒕
𝒊 ). 

After 𝐘𝑒𝑣𝑒𝑛𝑡
𝑖  is estimated using (3.4), we can optimize the model parameters by 

𝜃∗ = arg min
𝜃
∑ ‖𝐘𝑒𝑣𝑒𝑛𝑡

𝑖 − 𝐘𝑒𝑣𝑒𝑛𝑡
𝑖 ‖

2

2𝑁𝑡𝑟𝑎𝑖𝑛
𝑖=1       (3.6) 

3.3.2 Generator Network: 1st-Stage Coarse Network 

In the first stage, we employ the Gated Convolution Network (GCN) [33] to formulate an 

encoder-decoder structure to restore the masked segments. Compared with conventional 

convolution neural network (CNN), GCN adds an additional feature-wise gating control 

mechanism, which learns soft masks automatically to compute the hidden layer features as 

 ( ) ( ) ( )lh + =    +X X W b X U c                                             (3.7) 

where X is the input of layer hl, W, b, U, c are trainable parameters. σ is the sigmoid 

function, φ can be any activation function (e.g., ReLU and LeakyReLU), and ⊗ is the element-

wise product between matrices. This equation demonstrates that different weights of filters are 

applied at different temporal points to produce the output, resulting in a dynamic feature 

selection mechanism for each channel and each time point. Besides, Gated Transpose 

Convolution Network (GTCN) [67] layers are introduced to recover the estimated daily profiles 

from the GCN output. 

 The 1st-stage coarse network is trained purely based on the point-to-point content loss 

function, 𝐿𝑐𝑜𝑎𝑟𝑠𝑒 .  



  43 

 

𝐿𝑐𝑜𝑎𝑟𝑠𝑒 =
1

𝐻
‖𝐺𝜃𝐺1(𝐳) − 𝐏‖2

2
                                             (3.8) 

where θG1 is the parameter of the coarse generator network, P is the ground truth load 

profile, and H is the dimension of P.  

Note that instead of computing the point-to-point content loss (𝐿𝑐𝑜𝑎𝑟𝑠𝑒) for the entire 24-

hour period, we calculate only the content loss for the masked segment plus a few points before 

and after the masked segment, the length of which is H. For example, in this paper, H is set as 5 

hours to cover the masked segment with a minimum margin of 0.5 hour. This ensures that the 

coarse network focuses on the masked period to enhance accuracy and achieve smoother 

transition between non-event periods and the event period (i.e., no spikes during the transitions).  

3.3.3 Generator Network: 2nd-Stage Fine-Tuning Network 

In the second stage, we make two modifications to the conventional GAN framework: 

adding Multi-head self-attention and considering the tradeoff between content loss, feature 

matching loss and adversarial loss in the loss function to polish the first-stage results and 

recover realistic details (high-frequency components).  

Self-attention, also known as intra-attention, is a technique for focusing attention on 

various points in a single sequence when creating a representation of the sequence. An attention 

function can be described as mapping a query and a set of key-value pairs to an output, where the 

query, keys, values, and output are all vectors. The output is computed as a weighted sum of the 

value as 

 
T

( , , ) ( )Attention softmax


=
QK

Q K V V                           (3.9) 

where Q, K, and V include learnable parameters representing query-key-value pairs, 

respectively, α is a scaling factor. Instead of performing a single attention function, [34] founds it 
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beneficial to linearly project the queries, keys, and values multiple times with different learned 

linear projections in parallel, which is multi-head attention formulated as 

1 2( , , ) ( , ,..., )

( , , )

n

i i i i

MultiHead concate head head head

head Attention

=

=

O

Q K V

Q K V W

QW KW VW
                              (3.10) 

where 
i

Q
W ,

i

K
W ,

i

V
W  and WO are the learnable parameter matrices of the projection. This 

allows the temporal dependencies to be modeled without considering their distances in the input 

or output sequences [68]. 

The loss function of the fine-tuning network (𝐿𝑟𝑒𝑓𝑖𝑛𝑒) includes 3 terms: the content loss, 

the adversarial loss (𝐿𝑎𝑑𝑣) and the feature-matching loss (𝐿𝑓𝑒𝑎𝑡), as shown in (3.11)-(3.13). λ1 

and λ2 are the weights. Same as in 𝐿𝑐𝑜𝑎𝑟𝑠𝑒 , the content loss minimizes point-to-point errors. 𝐿𝑎𝑑𝑣 

improves the realisticness of the estimation results by maximizing the scores of the 

discriminator, where M is the dimension of the discriminator output (shown as the 3D blue 

matrix in Fig. 3.4). 𝐿𝑓𝑒𝑎𝑡  is defined in (3.13) as the distance between high-level feature maps 

extracted from the hidden layers of the discriminator network, where φj(·) represents the output 

of the jth intermediate convolution layer of the discriminator network. J is the number of 

intermediate layers in the discriminator network. Because high-level features of real load profiles 

are embedded in the hidden layer outputs, 𝐿𝑓𝑒𝑎𝑡  guides the fine-tuning network to generate more 

realistic results by matching those high-level features extracted from real profiles. Similar to 

𝐿𝑐𝑜𝑎𝑟𝑠𝑒 , all 3 loss terms in 𝐿𝑟𝑒𝑓𝑖𝑛𝑒  are calculated using the 5-hour segment instead of the 24-hour 

load profile. 

    𝐿𝑟𝑒𝑓𝑖𝑛𝑒 =
1

𝐻
‖𝐺𝜃𝐺2

(𝒛) − 𝑷‖
2

2
+ 𝜆1𝐿𝑎𝑑𝑣 + 𝜆2𝐿𝑓𝑒𝑎𝑡                          (3.11) 

          𝐿𝑎𝑑𝑣 = −
1

𝑀
𝐷 (𝐺𝜃𝐺2

(𝒛))                                             (3.12) 



  45 

 

          𝐿𝑓𝑒𝑎𝑡 = ∑ ‖𝜑𝑗 (𝐺𝜃𝐺2
(𝒛)) − 𝜑𝑗(𝑷)‖

2

2
𝐽
𝑗=1                                 (3.13) 

3.3.4 Discriminator Network 

The discriminator network is trained to solve the maximization problem defined by (3.5). 

In practice, an event can happen at any time of the day with varying lengths. To help the 

discriminator focus on the event duration, we also sent the corresponding Boolean mask together 

with the load profile. The discriminator contains five convolutional layers with an increasing 

number of kernels. This allows us to compress the input profiles into high-level feature matrix, in 

which each element can cover the entire input load profile. Finally, the adversarial loss is applied 

to each neural to identify the fake and real inputs.  

Inspired by [67], we adopt spectral normalization and hinge loss to stabilize the training 

process of the discriminator by minimizing the loss function LD calculated as  

𝐿𝐷 =
1

𝑀
𝑅𝑒𝐿𝑈 (1 − 𝐷𝜃𝐷(𝑷)) +

1

𝑀
𝑅𝑒𝐿𝑈 (1 + 𝐷𝜃𝐷(𝐺(𝒛)))             (3.14) 

where θD is the parameters of the discriminator networks.  

3.3.5 Model Performance Evaluation  

Three performance metrics are calculated: normalized Root Mean Squared Error 

(nRMSE), Energy Error (EE), and 𝑏𝑖𝑎. 

2

1
21

1 testN
i

i i i
eventevent event event

itest

nRMSE T
N =

= − Y Y Y         (3.15) 

 
1

1 1

1
( )

i
test eventN T

i i i

t t event

i ttest

EE y y
N = =

= −  Y                      (3.16) 

1 1

1 1
( ) 100%

i
test event i iN T

t t

i i
i ttest event t

y y
bias

N T y= =

−
=                                        (3.17) 
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where nRMSE evaluates the expected point-to-point error; EE evaluates the expected 

accumulated energy error; 𝑏𝑖𝑎𝑠 reflects whether the model has a consistent difference between 

the actual and the missing data. 

3.3.6 CVR Efficacy Estimation  

To evaluate the performance of a CVR program containing NCVR CVR events, the trained 

model is used to estimate the CVR baseline for each CVR sample so the expected load reduction 

when executing CVR can be calculated.  

The raw average, normalized load reduction of the ith CVR event is 

 
1

1
100%

i
event i iT

i t t

raw i i
tevent t

y y
CVR

T y=

−
=                               (3.18) 

The net average, normalized load reduction of the ith CVR event considering the 

forecasting bias is 

 
i i

net rawCVR CVR bias= −                                              (3.19) 

When calculating the forecasting bias in CVR baseline estimation, only the testing 

samples in the same season and having missing data during the CVR event periods are selected, 

i.e., the bias reflects the consistent difference between the actual and the missing data in CVR 

periods only.  

If CVRnet is negative, load is reduced during the CVR period. If CVRnet is positive, load is 

increased during the CVR periods, making the feeder unfit for CVR.  

The average CVR factor for all CVR events is 

 
1

1 CVRN
i i

f net

iCVR

CVR CVR V
N =

=                                    (3.20) 

where iV is the voltage reduction ratio during the ith CVR event. Note that the CVR factor can 

be used by utilities to identify suitable feeders for CVR. 
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Figure 3.4. The proposed Load-PIN framework.“GC” refers to a gated convolution block, “GTC” 

refers to a gated transpose convolution block, “CNN” refers to a convolutional block, and 

“Attention” refers to a self-attention block. “ks” means kernel size, “kn” means number of 

kernels, and “st” means stride 

Table 3.1. Network parameter of proposed Load-PIN model 

Generator 

Coarse 

Layer gc gc gc gc gc gtc gc gtc gc 

ks 5 4 3 4 3 3 3 3 3 

kn 64 128 128 256 256 128 128 64 1 

st 1 2 1 2 1 2 1 2 1 

Refine 

Layer gc gc gc gc gc gc gcn attn*4 gcn*2 gtcn gcn gtcn gcn 

ks 5 4 3 4 3 3 3 3 3 3 3 3 3 

kn 64 64 64 64 64 128 256 64 1 2 128 2 128 

st 1 2 1 2 1 1 1 1 256 128 1 128 1 

Discriminator 

Layer cnn cnn cnn cnn cnn 

ks 4 4 4 4 4 

kn 16 32 64 128 256 

st 2 2 2 2 2 

3.4 Case Study 

In this paper, as shown in Table 3.2, three test cases are set up to demonstrate the efficacy 

of the proposed method: Base case for performance benchmarking, fixed-duration CVR case, 

and variable-duration CVR case. 

Table 3.2. Test Case Descriptions 

Case 

Description 
Source Resolution 

Data 

Length 
Data Size 

CVR 

Events 

1 Base 
PECAN 

Street 
1-minute 1-year 

318 residential 

users 
None 

2 
Fixed 

duration 
Utility A 15-minute 2-year 

3 

feeders 
24 

3 
Variable 

duration 
Utility B 5-minue 1-year 1 substation 33 
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To benchmark LoadPIN, we compare its performance with five other deep learning 

models: Multi-layer Perceptron (MLP) [69], Long-short Term Memory (LSTM) [70], Temporal 

Convolutional Net (TCN) [71], Bi-LSTM (Bidirectional LSTM) [72], and SAE (Stacked Auto-

Encoder) [73].  

Using only the pre-event data (i.e., X_pre and Y_pre) as inputs, MLP, TCN, and LSTM 

formulate missing data restoration and CVR baseline identification as a load forecasting 

problem. Bi-LSTM and SAE are bi-direction models. Thus, the inputs for the Bi-LSTM, SAE 

LoadPIN models are the same. Model hyper-parameters are selected based on the trial-and-error 

method. 

In each case, all models are trained (70%), validated (15%) and tested (15%) on non-CVR 

samples. For the two CVR cases, the trained model is applied on the CVR samples for CVR 

baseline identification. The baselines are then used for computing CVR factors, which will be 

used to assess the efficacy of the CVR program. 

3.4.1 Performance Evaluation for Missing Data Restoration 

As shown in Table 3.3, in the base case, PECAN Street data [45] is used for performance 

benchmarking on missing data restoration. To test the impact of data resolution on estimation 

accuracy, 1-minute data are downsampled to 5-min, 15-min, 30-min and 1-h. To benchmark the 

model performance at different load aggregation levels, we test on aggregated load profiles of 10 

users, 50 users, 100 users, 200 users and 300 users. After combining 5 data resolutions and 5 

load levels, we obtain 25 test scenarios in total. The mask length is set to be 3-hour. 

From the results, the following observations are made: 

▪ As shown in Table 3.3, the three bidirectional models (i.e., Bi-LSTM, SAE, and 

Load-PIN) outperform the one-directional forecasting models in most cases. As 
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shown in Fig. 3.5, the bidirectional models (solid lines) have lower RMSEs than 

the one-directional models (dashed lines), especially in the second half of the 3-

hour estimation window. The results clearly demonstrate that, by adding post-

event data into the input, the accuracy will improve significantly. The step-by-

step RMSEs distributions shown in Fig. 3.6 further confirm the above 

observation. 

▪ As shown in Table 3.3, when data granularity is 5-min and 15-min, Load-PIN 

outperforms all other models and shows 15-30% improvement compared with the 

second-best model. This shows that LoadPIN can extract information hidden 

inside the high-resolution data for forecasting the missing data segments. 

However, if the data resolution is too low, the LoadPIN does not show significant 

performance improvements. This is because in those cases, forecasting average 

values outweigh uncovering load shape details. 

▪ As shown in Fig. 3.7, when the load aggregation level increases from 10 to 300 

users, both 𝑛𝑅𝑀𝑆𝐸  and EE decrease. As shown in Fig. 3.7(a), to achieve a 

smaller 𝑛𝑅𝑀𝑆𝐸, the best data granularity (highlighted by yellow rectangles) for a 

group with less than 100 users is 1-h and for 300 users is 15-min. This is because 

when load aggregation level increases, the load profile becomes smoother. Thus, 

it is possible to use higher data granularity for restoring more detailed load 

shapes, which, in turn, improves the point-to-point accuracy. According to Fig. 

3.7(b), to achieve a smaller 𝐸𝐸, the best data granularity (highlighted by yellow 

rectangles) is 15-minute. 
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▪ As shown in Fig. 3.8, Load-PIN performance is consistent across different hours 

of the day and in different seasons. Note that the error is substantially smaller for 

summer peak load periods (i.e. between 15:00-18:00 in summer months), which is 

highly desirable for CVR baseline identification. 

To summarize, benchmark tests show that Load-PIN outperforms all other algorithms in 

missing data restoration.  Higher resolution data is preferred when there are more users in the 

group. In most cases, 5 or 15 minutes data set are sufficient for restoring a missing data segment 

with a duration of 4-hour or less. 

Estimation steps Estimation steps

R
M

S
E

 
  (a)                                                                           (b) 

Figure 3.5. LoadPIN performance evaluation: averaged step-by-step RMSE of the 6 models 

during 3-hour estimation interval. Test on the aggregated load of 300 users. (a) 15-min data 

granularity, (b) 5-min data granularity 
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(a)                                                                         (b) 

Figure 3.6. Averaged step-by-step RMSE and the 90% confidence intervals of the 6 models 

during 3-hour estimation period. Test on the aggregated load of 300 users. (a) 15-min data 

granularity, (b) 5-min data granularity 

 
(a)                                                                    (b) 

Figure 3.7. Impact of data resolution on missing data restoration. (a) nRMSE, (b) EE. Note the 

value is an averaged of all 6 deep learning models. The yellow rectangles highlight the smallest 

error under each aggregation level  
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(a)                                                                         (b) 

Figure 3.8. Performance of Load-PIN on (a) different hours of the day, (b) months of the year 

Table 3.3. Model performances on the Pecan Street Test Case 

data 

granularity 

aggregation 

level 

nRMSE EE 

LSTM TCN MLP SAE 
Bi-

LSTM 

Load-

PIN 

improvemen

t 
LSTM TCN MLP SAE LSTM 

Load-

PIN 
improvement 

1-min 

10users 0.46 0.43 0.39 0.35 0.57 0.35 -0.85% 0.22 0.21 0.16 0.15 0.26 0.15 -1.99% 

50users 0.25 0.21 0.19 0.15 0.22 0.12 18.90% 0.17 0.13 0.11 0.08 0.13 0.06 23.35% 

100users 0.19 0.17 0.15 0.11 0.16 0.10 7.79% 0.13 0.10 0.09 0.06 0.10 0.06 4.48% 

200users 0.16 0.15 0.12 0.08 0.12 0.07 15.74% 0.12 0.10 0.06 0.05 0.09 0.05 4.14% 

300users 0.15 0.13 0.10 0.07 0.11 0.09 -25.30% 0.12 0.09 0.06 0.05 0.08 0.05 -12.78% 
    mean 0.24 0.22 0.19 0.15 0.24 0.15 3.26% 0.15 0.13 0.10 0.08 0.13 0.08 3.44% 

5-min 

10users 0.39 0.34 0.35 0.32 0.38 0.19 39.76% 0.20 0.13 0.15 0.15 0.17 0.08 38.46% 

50users 0.20 0.15 0.15 0.14 0.15 0.10 26.63% 0.14 0.08 0.08 0.08 0.08 0.07 9.76% 

100users 0.15 0.11 0.12 0.10 0.11 0.11 -7.36% 0.10 0.06 0.07 0.06 0.06 0.05 11.79% 

200users 0.15 0.09 0.12 0.08 0.08 0.07 17.36% 0.11 0.05 0.09 0.05 0.05 0.05 3.40% 

300users 0.08 0.08 0.10 0.07 0.07 0.06 13.73% 0.05 0.05 0.07 0.05 0.05 0.04 24.77% 
    mean 0.19 0.15 0.17 0.14 0.16 0.11 18.02% 0.12 0.07 0.09 0.08 0.08 0.06 17.64% 

15-min 

10users 0.30 0.30 0.30 0.27 0.28 0.21 21.20% 0.15 0.15 0.15 0.14 0.15 0.09 37.89% 

50users 0.14 0.14 0.15 0.12 0.12 0.09 24.88% 0.09 0.10 0.09 0.08 0.07 0.05 28.46% 

100users 0.11 0.11 0.12 0.09 0.09 0.08 8.68% 0.07 0.07 0.09 0.06 0.06 0.05 17.67% 

200users 0.10 0.10 0.09 0.07 0.07 0.05 31.02% 0.07 0.07 0.06 0.05 0.05 0.04 20.47% 

300users 0.08 0.08 0.09 0.06 0.06 0.05 15.70% 0.06 0.05 0.07 0.05 0.05 0.03 35.10% 
    mean  0.15 0.15 0.15 0.12 0.13 0.10 20.30% 0.09 0.09 0.09 0.08 0.07 0.05 27.92% 

30-min 

10users 0.27 0.27 0.28 0.23 0.23 0.22 4.74% 0.15 0.15 0.19 0.15 0.14 0.11 23.15% 

50users 0.15 0.14 0.15 0.11 0.11 0.09 15.70% 0.12 0.09 0.09 0.08 0.07 0.07 2.81% 

100users 0.11 0.12 0.12 0.08 0.08 0.08 5.02% 0.08 0.09 0.08 0.06 0.06 0.05 8.16% 

200users 0.10 0.10 0.10 0.07 0.07 0.06 11.97% 0.07 0.06 0.07 0.05 0.05 0.04 14.69% 

300users 0.09 0.10 0.10 0.06 0.06 0.05 16.35% 0.06 0.06 0.07 0.05 0.05 0.04 12.78% 
    mean 0.14 0.15 0.15 0.11 0.11 0.10 10.75% 0.10 0.09 0.10 0.08 0.07 0.06 12.32% 

1-h 

10users 0.29 0.28 0.27 0.19 0.19 0.19 -0.84% 0.19 0.23 0.18 0.15 0.15 0.12 17.53% 

50users 0.14 0.14 0.15 0.09 0.09 0.10 -11.87% 0.11 0.10 0.11 0.07 0.07 0.08 -8.50% 

100users 0.13 0.13 0.11 0.07 0.07 0.07 1.72% 0.10 0.09 0.08 0.06 0.06 0.05 14.47% 

200users 0.12 0.11 0.11 0.06 0.06 0.06 -4.37% 0.10 0.07 0.08 0.05 0.05 0.05 -3.68% 

300users 0.11 0.09 0.09 0.05 0.06 0.04 21.79% 0.09 0.06 0.07 0.04 0.05 0.04 6.43% 

   mean 0.16 0.15 0.15 0.09 0.09 0.09 1.28% 0.12 0.11 0.10 0.07 0.08 0.07 5.25% 

 

3.4.2 Performance Evaluation on CVR Baseline Estimation 



  53 

 

In this section, we apply the proposed Load-PIN model to estimate the CVR baseline for 

actual feeders in North Carolina, USA. For each feeder, we first train and test the Load-PIN 

model using data collected in non-CVR days (same as in Section III.A). Next, the trained model 

is used for baseline estimation in CVR days. The estimated baselines are used to calculate the 

CVR factor for CVR efficacy assessment. 

(1) Fixed CVR Duration 

As shown in Table 3.2, the fixed CVR duration case is conducted using data collected 

from three residential distribution feeders in utility A, namely BR, DF and SL. All 24 labeled 

CVR events are in summer months with a fixed duration of 3 hours between 14:00 and 19:00 

p.m. The CVR voltage reduction is 4%. The model performance is evaluated on non-CVR days. 

Note that forecasting bias is removed using methods introduced in Section II.C.6 when 

calculating CVR load reduction.   

Table 3.4. Model performances on the 3 test feeders (in percentage) 

(%) Feeder TCN LSTM MLP SAE BLSTM Load-PIN 

nRMSE 

BR 3.12 3.13 3.8 4.05 3.67 2.50 

DF 3.87 3.78 5.56 6.35 5.8 2.86 

SL 3.66 3.72 3.91 4.03 3.67 3.02 

EE 

BR 2.02 2.03 2.63 2.91 2.54 1.13 

DF 2.86 2.75 4.03 4.91 3.78 1.98 

SL 2.54 2.65 2.77 2.47 2.18 1.40 

Absolute 

Bias 

BR 0.33 0.37 1.52 1.79 0.39 0.03 

DF 1.63 0.18 2.34 3.32 1.13 0.22 

SL 1.03 1.21 1.1 1.31 0.11 0.05 

 

As shown in Table 3.4, Load-PIN outperforms the other methods (lowest 𝑛𝑅𝑀𝑆𝐸 and 

𝐸𝐸) by a large margin. From the results, we made the following observations 

▪ As shown in Fig. 3.9, the results obtained by Load-PIN (the solid brown line) show similar 

trends as the average of all six models (the solid pink line). This shows that LoadPIN 

captures the trending information well.  



  54 

 

▪ In Fig. 3.10, we randomly plot four CVR baselines for each feeder (out of 24 CVR events). 

The forecasted baseline shows a smooth transition from the pre-CVR to CVR periods and 

from the CVR to post-CVR periods.  

▪ As shown in Figs. 3.9 and 3.10, for all three feeders, we observe clear load reduction (i.e. the 

value of CVR effect is negative in Fig. 3.9) in the first 1.5-hour. However, for feeders BR 

and DF, a pay-back period is observed in the second 1.5-hour. In fact, the amount of load 

reduction starts to diminish after the first hour. In some cases, feeder loads start to rise after 

the initial drop until exceeding the baseline.  

▪ This CVR diminishing and subsequent pay-back effect is very likely caused by the increasing 

penetration of thermostatically controlled appliances (e.g., refrigerators, ovens, air 

conditioners) and LED lighting loads, which are rapidly replacing the incandescent lighting 

loads. Note that when voltage is low, appliances will turn on longer if a fixed amount of 

energy is required in each duty cycle.  

▪ For feeder SL, even though the pay-back effect is less visible compared to feeders BR and 

DF, the CVR effect also diminishes after one hour.  

▪ Overall, the results show that CVR efficacy will diminish in a prolonged CVR event, which 

indicates that the utilities may need to execute CVR for a period less than 2-hour. 
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Figure 3.9. Averaged step-by-step CVR effects of the 3 test feeders in NewRiver 
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Baseline estimation by PIN CVR period

 
Figure 3.10. Examples of the Load-PIN generated CVR baseline 

(2) Variable-length CVR Cases 

As shown in Table 3.2, in this case, we use 5-minute data collected by a utility at a 

distribution substation bus to identify the CVR baseline for CVR events with variable durations. 

There are 33 CVR events with duration range from 75 minutes up to 190 minutes. Fig. 3.11 

shows the daily voltage profiles at the feeder head of 3 identified CVR days as an example.  
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Figure 3.11. Examples of daily voltage profiles of three  CVR event days measured at the feeder 

head 
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To make the bidirectional models (including Load-PIN) adapt to the varying-length CVR 

events, we randomly put a mask to each training sample with varying lengths between 1 - 4 

hours. For the 3 forecasting models, we fix the output window to 4 hours so all possible CVR 

durations are covered in their forecasting range.  

As shown in Table 3.5, Load-PIN outperforms all other models by achiving the smallest 

nRMSE and EE. The model bias is 0.43 only slightly higher than that of LSTM. The results 

demonstrate that Load-PIN can handle varying-length estimation tasks by leveraging the closest 

bidirectional data around each CVR events.  

Table 3.5. Model performance on Fayetteville feeder case (in percentage) 

(%) TCN LSTM MLP SAE BLSTM Load-PIN 

nRMSE 3.23 4.13 4.93 4.31 3.18 2.15 

Energy 1.91 2.69 3.37 3.03 1.95 1.07 

Absolute Bias 0.82 0.27 1.17 1.74 1.57 0.43 

We implement the six trained models to estimate the CVR baseline for all the 33 events, 

and then calculate the averaged CVR effect, as shown in Fig. 3.12. Note that due to the uneven 

durations of the CVR events, results are less stable after 2h because the durations of many CVR 

events are less than 2 hours. However, we can still see similar trends with the fixed-duration case 

(using data from utility B): the CVR effect is more significant in the first hour and the initial load 

drop period will be followed by a pay-back period where load will rise. 
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Figure 3.12. Averaged step-by-step CVR effects at a substation bus 
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3.5 Conclusion 

In this paper, we propose a novel deep-learning model Load-PIN to solve the CVR 

baseload estimation problem. Load-PIN merges Gated Convolution and Multi-head self-attention 

mechanisms into the GAN based framework to enhance the estimation accuracy. Load-PIN is 

trained using the dynamic-masking strategy so that it can handle CVR events with varying 

duration. We first demonstrate that at higher load aggregation levels, higher data resolution can 

achieve better estimation accuracy. In general, 5-min and 15-min resolutions are sufficient for 

feeder level studies. Next, we demonstrate that the Load-PIN model can achieve 15-30% 

accuracy improvement under the suggested data granularity, compared with 5 benchmarking 

methods. Using the trained LoadPIN model for CVR baseline identification, we computed the 

CVR factors for CVR programs with fixed- and variable- CVR durations. We show that CVR 

can achieve load reduction in the first 1 hour. However, after 1.5 hours, the CVR effect starts to 

diminish and a pay-pack period can be observed. This may cause unexpected load peaks in post-

CVR periods. From the results, we want to make two recommendations. First, the CVR 

execution duration should be less than 2-hours. Second, feeders with high penetration of 

thermostatically controlled loads may not be good candidates for prolonged CVR programs. 
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CHAPTER 4 ANOMALY DETECTION IN SMART DISTRIBUTION GRID WITH 

BATTERY ENERGY STORAGE SYSTEM 

4.1 Background 

Cyber-physical attacks against the smart grid can result in catastrophic financial losses 

and, more importantly, life-threaten issues. The three most common classifications based on the 

mechanism of attack delivery are cyber-based attacks, network-based attacks, and 

communication-based attacks. Cyber-based attacks are exclusively delivered through the 

system's internet layer. Code manipulation, command manipulation, FDIA, and sleep deprivation 

are examples of cyber-based attacks. Through virtual network access, network-based attacks are 

constructed without impacting the source code or firmware of the system or the physical 

communications system. The main attack in this category is Denial of Service (DoS), in which 

the network will become unreachable due to a high volume of useless packets. Even at the 

network layer, FDIA is feasible. Man-in-the-middle, packet sniffing, rogue node, and fuzzing are 

examples of additional network-based attacks. Communication-based attacks rely on the actual 

physical communications network to deliver the attacks. These attacks can be carried out by 

disrupting the communication channel or transmitting forged messages (e.g., FDIA). 

When examining the categorization of cyber-physical attacks in depth, it is evident that 

FDIA could be implemented at all communication layers. Even worse, FDIA is more dangerous 

due to its difficulty to detect (e.g., stealth FDIA). In contrast to other attack types, the system 

may appear to operate normally without realizing the existence of FDIA until severe damage 

happens. Over the past decade, extensive research has been conducted on FDIA's effects, 

revealing a vast array of effects. [74] provides comprehensive statistics of FDIA research work 
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in recent years, as illustrated in Figure 4.1. Clearly, the current research on FDIA focuses 

primarily on the steady-state analysis of basic attacks on transmission systems. However, as 

stated previously, with the development of the smart distribution grid and the widespread 

deployment of energy storage systems, the risk of FDIA attacks on distribution networks is 

tremendous, but minimal research has been conducted in this area. This paper will therefore 

investigate stealth FDIA for the distribution system, particularly integrated with BESS.  A real-

time stealth FDIA generation method based on reinforcement learning is proposed, which can 

attack SoC, the most critical measurement quantity of BESS, without being detected by a state 

estimation-based bad data detection system, resulting in the miscalculation of the storage 

capacity by the control center, leading to erroneous energy management instructions, and causing 

in economic losses or power supply interruption accidents. Then, an anomaly detection algorithm 

based on the graph convolutional network is proposed combined with the essential characteristics 

of the power grid as a graph, which can effectively identify stealth FDIA for BESS SoC. 

 
Figure 4.1. Statistics of FDIA research 

The remaining of this chapter is structured as follows. The chapeter begins by introducing 

the model of the integrated power distribution system and BESS, including the state estimation 

technique of the distribution system with the BESS unit and the estimation method for battery 

SoC. Then, an attacker algorithm based on the reinforcement learning framework is introduced, 

including training environment development, model learning method, simulation experiment, 

and evaluation of results. Then a stealth FDIA detection technique is proposed using the graph 

convolution network (GCN) and gated recurrent network (GRU). Compared to current state-of-
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the-art algorithms, experimental results indicate that this method can achieve high precision 

while maintaining a light architecture, which provides a practical solution for large-scale power 

systems. 

4.2 System Model  

4.2.1 Distribution System Monitoring and State Estimation with BESS Integration 

 
Figure 4.2. A single-line diagram of a typical distribution system with BESS integration 

As depicted in Figure 4.2, for a distribution system with integrated BESSs, the 

measurement devices communicate with the control center via various communication links, 

such as wide area networks, public cellular networks, etc. At the point of common coupling 

(PCC), the BESS connects via the three-phase AC-DC voltage source converter (VSC), coupling 

transformer, and LCL filter with bidirectional power flows. Conventional distribution system 

monitoring is mainly dependent on the distribution supervisory control and data acquisition 

(SCADA) system, which provides most of the real-time measurements, including the voltage 

amplitude (Vi), active and reactive power injection (Pi, Qi) of each bus, and active and reactive 

power flow (Pij, Qij) between buses. When introducing BESS, The BESS controller usually 

determines the magnitude modulations (m) and phase-displacement angles (𝜃) based on the 

active and reactive power setpoints. For battery monitoring and control, a battery management 
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system collects battery bank measurements, such as terminal voltage (Vdc) and current (Idc), and 

estimates battery pack statuses, such as SoC. 

SE is used to analyze meter measurement data and power system models to estimate the 

state of the power grid as precisely as possible. SE is the estimation of unknown state variables 

in a power grid based on meter readings. The control center uses the output of SE to perform 

contingency analysis, which involves reasoning about potential operational problems in the grid, 

actions they may take to avoid these problems, and the potential side effects of these actions. A 

power flow model is a set of equations that depicts the flow of energy on each transmission line 

of a power grid. AC power flow is power flow models that incorporate both real and reactive 

power and are formulated using nonlinear equations. Generally, the SE can be formalized by 

𝒛 = [

𝑧1
𝑧2
⋮
𝑧𝑚

] = [

ℎ1(𝑥1, 𝑥2, … 𝑥𝑛)

ℎ2(𝑥1, 𝑥2, … 𝑥𝑛)
⋮

ℎ𝑚(𝑥1, 𝑥2, … 𝑥𝑛)

] = ℎ(𝒙) + 𝑒                               (4.1) 

Where 𝒛 = [𝑧1, 𝑧2, … 𝑧𝑚]
𝑇  represents the measurement vector with m measurements. 𝒙 =

[𝑥1, 𝑥2, … 𝑥𝑛 ]
𝑇  represents the state vector with n variables. 𝒆 = [𝑒1, 𝑒2, … 𝑒𝑚]

𝑇  represents the 

measurement error vector, in which each error variable is assumed to follow Gaussian 

distribution with zero mean and variance of 𝜎𝑖.  ℎ(∙) is a nonlinear vector function derived from 

the network topology based on AC power flow models, which can be derived by 

𝑃𝑖𝑗 = 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗) − 𝐺𝑖𝑗𝑉𝑖𝑗
2                                 (4.2) 

𝑄𝑖𝑗 = 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗) + 𝑉𝑖
2(𝐵𝑖𝑗 − 𝑏𝑠,𝑖𝑗)                         (4.3) 

𝑃𝑖 = 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)
𝑛
𝑗=1                                    (4.4) 

𝑄𝑖 = 𝑉𝑖∑ 𝑉𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗)
𝑛
𝑗=1                                    (4.5) 
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where 𝐺𝑖𝑗 , 𝐵𝑖𝑗  represents the conductance and susceptance of bus parameter, 𝑏𝑠,𝑖𝑗  denotes the 

shunt susceptance associated to the respective π model. 

 
Figure 4.3. Equivalent circuit model of VSC for power system state estimation 

The DC grid of the battery storage usually connects with the AC grid using the VSC. The 

connection of the VSC to the grid is facilitated by the presence of a coupling transformer and an 

LCL filter at the output side of the VSC. [75] proposed an enhanced VSC converter model for 

power system state estimation, as shown in Fig. 4.3, where XT, XC, and XL represent the 

equivalent impedance of the coupling transformer and LCL filter. The DC grid is coupled with 

the AC side follows the control signal of PWM modulation index m, and power conservation by 

the following equation 

𝑉𝑟 = 𝑚𝑉𝑑𝑐 √2⁄                                                          (4.6) 

𝑃𝑟𝑖 + 𝑃𝑑𝑐 + 𝑃𝑙𝑜𝑠𝑠 = 0                                                    (4.7) 

𝑃𝑑𝑐 = 𝑉𝑑𝑐𝐼𝑑𝑐                                                           (4.8) 

𝑃𝑙𝑜𝑠𝑠 = 𝐼𝑟𝑖
2𝑅𝑎𝑐 + 𝑉𝑑𝑐

2 𝑅𝑑𝑐⁄                                                 (4.9) 

where Rac and Rdc represents the series resistance of AC and DC bus. The following 

measurement functions are added to measurement function ℎ(∙) based on eq. (4.6) - (4.9) 

𝑉̂𝑑𝑐 = 𝑉𝑑𝑐 + 𝑒𝑉𝑑𝑐                                                      (4.10) 

𝐼𝑑𝑐 = 𝐼𝑑𝑐 + 𝑒𝐼𝑑𝑐                                                        (4.11) 

𝑃𝑟𝑖 = −𝑉𝑑𝑐𝐼𝑑𝑐 − 𝐼𝑟𝑖
2 𝑅𝑎𝑐 − 𝑉𝑑𝑐

2 𝑅𝑑𝑐⁄                                       (4.12) 
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Based on formulas (4.2)-(4.5) and (4.10)-(4.12), the measurement vector of the smart 

distribution system with BESS integration is defined as 𝒛 = [|𝑉𝑖|, 𝑃𝑖 , 𝑄𝑖 , 𝑃𝑖𝑗 , 𝑄𝑖𝑗 , 𝑉𝑑𝑐, 𝐼𝑑𝑐, 𝑚],  the 

state vector is defined as = [|𝑉𝑖|, 𝜃𝑖 , 𝑉𝑑𝑐, 𝐼𝑑𝑐].  

The purpose of SE is to obtain the estimated system states x that best fit the 

measurements z using a mathematical model (4.1). The most prevalent method for estimating the 

state of a power system is the weighted least squares (WLS) estimator [76], which minimizes the 

weighted measurement residuals by solving the optimization  

𝒙 = 𝑎𝑟𝑔min
𝒙
(𝒛 − ℎ(𝒙))

𝑇
𝑾(𝒛− ℎ(𝒙))                                 (4.13) 

Where 𝑾 = 𝑑𝑖𝑎𝑔(𝜎1
−2, 𝜎1

−2,⋯ , 𝜎𝑚
−2) is the weights matrix for measurements, which is usually 

determined by the variance of measurement noise. The optimization problem (4.13) can be 

solved iteratively using Gauss-Newton algorithm [76]. 

However, SE using an AC power flow model is computationally costly and does not 

always converge to a solution. As a result, sometimes, power system engineers approximate the 

AC power flow model with a linearized power flow model, the DC power flow model [77]. It is 

a simplification of a complete AC power flow that focuses just on active power flows while 

disregarding voltage support, reactive power management, and transmission losses by assuming 

the bus voltage magnitudes are already known and equal to 1.0 per unit and ignoring all shunt 

elements, bus and branch, and reactive power flow. The DC power flow can be formulated as 

𝑃𝑖𝑗 =
𝜃𝑖−𝜃𝑗

𝑋𝑖𝑗
                                                          (4.14) 

Accordingly, the measurement function can be modified if DC power flow is applied as 

𝒛 = 𝑯𝒙 + 𝒆 

where 𝑯 is Jacobian matrix determined by grid topology and line parameters. And the WLS state 

estimation results result can be obtained by solving 



  64 

 

𝒙 = (𝑯𝑇𝑾𝑯)−1𝑯𝑇𝑾𝒛                                                 (4.15) 

In the smart power system, bad data measurements can originate from a variety of 

sources, including meter reading errors and cyber-attacks (e.g., FDIA). A bad data detection 

system takes into account the geographical correlation and statistics of measurement noises for 

BDD based on measurement residuals [78]   

‖𝒛 − ℎ(𝒙)‖2
2                                                        (4.16) 

where 𝒙 is the estimated state variables using the WLS method. In the case of measurements 

with noises that are normally distributed, the squared measurement residual stays below a 

threshold 𝜏 when using a hypothesis test with a significance level λ. As a result, ‖𝒛 − ℎ(𝒙)‖2
2  > 

τ signals bad data with a chance of false alarm probability of λ [75]. 

4.2.2 Soc Estimation of BESS 

SoC calculations must be precise for any battery-powered equipment intended to assist 

the energy management system (EMS) at the control center. In order to fulfill the needs of grid 

support functions such as voltage regulation and energy management, the battery bank of a 

BESS is often made up of a large number of battery cells. If the estimation SoC of each 

individual battery cell is considered, the result will be a high computational complexity, making 

it challenging to satisfy the needs of real-time applications. In addition, the balancing technology 

will be utilized in practice by the battery management system in order to keep the power of each 

battery under the balance [79]. As a result, when attempting to estimate the SoC of the BESS, the 

entire battery pack is typically considered to be a unit model as shown in Fig. 4.4 [80]. The 

terminal voltage Vdc can be determined as 

𝑉𝑑𝑐 = 𝐸𝑚 + 𝑉𝑅𝐶 + 𝑅𝑖𝑛𝐼𝑑𝑐
𝑡                                                 (4.17) 
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where Rin is the battery's internal resistance, Em is the internal open circuit voltage, which can be 

modeled as a non-linear function of SoC [81] 

𝐸𝑚 = 𝑔(𝜑)                                                           (4.18) 

which can be approximated by a polynomial equation of the seventh-order [81]. 

 
Figure 4.4. Equivalent circuit model for battery bank 

Theoretically, the battery SOC can be determined using the Coulomb counting approach 

by integrating the measured battery current as 

𝜑𝑡 = 𝜑𝑡−1 −
∆𝑡

3600𝒞
𝐼𝑑𝑐
𝑡                                               (4.19) 

where 𝜑𝑡 is the battery SoC at time step t, 𝜑𝑡 is the previous SoC, 𝒞 represents the battery bank 

capacity in Ah, ∆𝑡 is the sample time interval in seconds. However, due to measurement errors 

and noise, battery age, and unknown initial SoC, it might be difficult to calculate SoC in practice 

purely relying on the Coulomb counting method. Therefore, the extended Kalman filter (EKF) is 

adopted in [81] to determine the battery's SoC by approximating the nonlinearity of the system's 

dynamics using a linearized version of the nonlinear system model. The EKF is insensitive to the 

initial value and can adjust the output based on the measurement and the model prediction as 

follow 

{
 
 

 
 
𝑥̂𝑘
− = 𝑓(𝑥̂𝑘−1

− , 𝑢𝑘−1)                                State estimate time update

𝑃𝑘
− = 𝐴𝑘−1𝑃𝑘−1𝐴𝑘−1

𝑇 + 𝑄(𝑡)                Error covariance time update

𝐺𝑘 = 𝑃̂𝑘
−𝐶𝑘

𝑇[𝐶𝑘𝑃𝑘
−𝐶𝑘

𝑇 + 𝑅(𝑡)]−1           Kalman gain matrix

𝑥𝑘
− = 𝑥̂𝑘

− + 𝐺𝑘[𝑦𝑘 − ℎ(𝑥̂𝑘
−, 𝑢𝑘)]            State estimate measurement update

𝑃𝑘 = (𝐼 − 𝐺𝑘𝐶𝑘)𝑃𝑘
−                                 Error covariance measurement update

   (4.20) 
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where 𝑥, 𝑢 are the state and control variables, which refer to battery SoC, and Idc in battery SoC 

estimation problem. 𝑓(𝑥, 𝑢) and ℎ(𝑥, 𝑢) are the system function determined by Eq. (4.15 - 4.17). 

𝐴 is the Jacobian matrix of partial derivatives of 𝑓(𝑥, 𝑢) with respect to 𝑥𝑘−1  and 𝑢𝑘−1, 𝐶 is the 

Jacobian matrix of partial derivatives of h with respect to 𝑥𝑘 and 𝑢𝑘. 𝑃𝑘
− and 𝑃𝑘 is the prior and 

posteriori estimate error covariance. 𝑄(𝑡) is the process noise, which is calculated empirically 

with reference to the measurement noise variance [82]. 𝑅(𝑡)  is the measurement noise 

covariance, which is assumed to be constant.  

 

4.3 Stealth FDIA Formulation Against Soc Estimation 

4.3.1 State Estimation-Based Bad Data Detection in Power System 

The existence of bad data points has the potential to drastically reduce the performance of 

any of the static state estimators for the power system. [78, 83, 84] proposed bad data 

suppression algorithms based on real-time state estimation and its variants.  

Recent research demonstrates that an adversary can bypass existing bad data detection 

algorithms, posing grave operational risks to power grid systems, which is stealth FDIA. To 

compromise the FDIA, [85] proposed a stealth FDIA algorithm against the DC state estimation 

model by adding a nonzero attack vector 𝒂 = [𝑎1, 𝑎2, … , 𝑎𝑚]  to the original sensor 

measurements vector 𝑧. The attacked measurement vector 𝒛𝑎 = 𝒛 + 𝒂. This altered vector 𝒛𝑎 is 

transmitted to the control center, which uses it to produce false estimates 𝒙𝑎 = 𝒙 + 𝒄, where  𝒙 

represent the original estimations and 𝒄 represent the malicious errors introduced to 𝒙 . [85] 

researched an attack approach that can bypass the present BDD test using the principle 

𝒂 = 𝑯𝒄                                                            (4.21) 

4.3.2 Construction of Stealth FDIA Against SoC Estimation 
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Figure 4.5 depicts the workflow of the bad data detection system in a distribution system. 

First, the control center obtains system measurement data via the communication links, including 

the voltage amplitude of each bus, active and reactive power injection, and the power flow 

between the buses. Since the system considered in this study contains BESS, additional 

measurements must be added compared to the conventional grid, including the DC side voltage 

Vdc and current Idc, SoC (𝜑) measured by battery management system (BMS), as well as the 

control signal of PWM modulation index m in the VSC. Initially, residual-based BDD, as 

depicted in Eq. (4.14), will be used to check these field measurements. If the measurements can 

pass through the BDD, the obtained estimated state variables (Vdc, Idc) will be input to an EKF-

based SOC estimator, which is the same as the field BMS, and calculate an estimated SoC (𝜑̃). 

This estimated SoC (𝜑̃ ) will be cross-validated with the measured SoC to ensure that the 

remaining battery charge estimate is accurate. 

 
Figure 4.5. Diagram of a typical bad data detection in smart distribution with BESS integration 

As discussed in Section 4.1.1, the relationship between measurements and state variables 

can be expressed using the nonlinear function h. In general, the system function h of a power 

system is determined by the system's topology and line impedances, along with battery 

parameters such as capacity, internal resistance, open circuit function, etc. We assume the 



  68 

 

attacker has access to the topology, line, and battery parameters of the target power system and 

can inject malicious measurements into compromised meters to undermine the state estimation 

process. It is also assumed that, the EKF is already in a steady state before the attack. 

To successfully launch the attack against the battery SoC, the attacker must first modify 

the original measured SoC by attacking the communication link. However, this is insufficient 

because of the SoC cross-validation mechanism. In order to successfully trick the control center 

into accepting false SoC data, the attacker must inject the offset into the original Vdc and Idc to 

mislead the EKF into obtaining a value close to the attacked SoC. 

Analytical investigation of the construction concept of stealth FDIA against SoC 

estimation of BESSs is conducted in [80] through the development of static FDIAs targeting a 

single snapshot. Experiments demonstrate that the formulated static FDIAs can have a 

substantial effect on the precision of SoC estimation and circumvent the typical residual-based 

BDD in smart distribution systems with BESS integration as an optimization problem formulated 

as 

max
𝑎𝑡
|𝜑𝑡

𝑎 − 𝜑𝑡|                                                       (4.22) 

subject to device operation constraints (e.g., battery voltage and current limitation), and stealth 

attack constraint in Eq. (4.19), where 𝜑𝑡
𝑎 and is the battery SoC estimation using EKF follows 

Eq. (4.18) using attacked and original measurement vector 𝒛𝑎  and 𝒛 respectively. The attack 

vector 𝒂 = [∆𝑉𝑑𝑐, ∆𝐼𝑑𝑐]. Since the DC power flow model is adopted, (4.21) can be solved using 

linear programming (LP) in real-time application. However, the simplification assumption of DC 

power flow is limited to those MW-oriented applications where the effects of network voltage 

and Var conditions are minimal [86]. So DC power flow is not suitable for distribution feeder 
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analysis. However, if the non-linear power flow equations in Eq. (4.2-4.5) is adopted, the stealth 

attack constraint becomes 

𝒂 = ℎ(𝒙 + 𝒄) − ℎ(𝒙)                                                 (4.23) 

This nonlinearity makes the stealth attack problem unsolvable with LP and introduces a 

high computational cost. Based on our experiments, nonlinear constraints can not meet the 

requirements of real-time applications. Considering the above problems, a reinforcement 

learning-based stealth attack generation method is proposed. It transforms the traditional online 

optimization problem into offline deep learning training, making it possible to implement stealth 

attacks under the premise of satisfying nonlinear constraints. 

4.3.3 Stealth FDIA using Deep Reinforcement Learning 

Deep reinforcement learning (DRL) is a subfield of machine learning that combines deep 

learning (DL) and reinforcement learning (RL). RL examines the problem of a computational 

agent learning through trial and error to make decisions. Deep learning is incorporated into the 

solution, enabling agents to make decisions based on unstructured input data without the need for 

manual engineering of the state space. A typical framework of DRL is shown in Fig. 4.6. A 

reinforcement learning framework consists of an agent operating in an environment modeled by 

the current state. Based on the current state, the agent is capable of performing specific actions. 

After selecting an action at time t, the agent receives a reward and switches to a new state that is 

dependent on its current state and the chosen action. The process can be formulated as Markov 

Decision Process (MDP), in which the future of the process only depends on the current state 

[87] 

𝑃(𝑆𝑡+1|(𝑠0, 𝑎0),… (𝑠𝑡 , 𝑎𝑡)) = 𝑃(𝑆𝑡+1|(𝑠𝑡 , 𝑎𝑡))                           (4.24) 
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where 𝑠𝑡, 𝑎𝑡 are the state and reward of the current time step, respectively, and P is the state 

transition probability.  

 
Figure 4.6. A typical framework of reinforcement learning  

For the stealth FDIA problem, the RL environment is configured to simulate the 

distribution system with BESS, including the field measurement time series, the SE and BDD of 

the control center, and the battery SoC observer. The agent is an attacker modeled as a deep 

neural network. It collects field measurements and rewards as state inputs. The attack vector for 

FDIA is then generated as the action. This attack vector is first run through the SE-based BDD. 

If it is determined that the data is abnormal, the episode is terminated, and the reward function 

returns a large negative value as a penalty. If the attack vector passes BDD, the Vdc and Idc 

obtained through SE will be used for the SoC estimation based on EKF. An SoC will be 

calculated as 𝜑𝑎. The reward function will compare the original SoC (𝜑) with the 𝜑𝑎, and output 

a positive reward accordingly, which is used to motivate the agent to generate a policy that can 

pass BDD and maximize SoC error. 

 
Figure 4.7. RL framework for stealth FDIA against SoC 
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Instead of maximizing the SoC error in [85], this article proposes a target SoC mode, 

which means the attacker desires to cause the SoC to reach the target percentage at a specific 

time by injecting false data into the measurement vector; the injected data must pass BDD 

detection as a prerequisite. As shown in Eq. (4.24), a time-weighted reward mechanism is 

proposed to achieve this objective as 

𝑟𝑒𝑤𝑎𝑟𝑑 = {
𝑚𝑎𝑥 (0, 1 − |𝜑𝑎 −𝜑𝑡𝑎𝑟| ∙ (

𝑡

𝑇
)
2
)     successful attack

−100                                                detected or constraints violation

100                                                          bonus if |𝜑𝑎 −𝜑𝑡𝑎𝑟| < 1% at end

   (4.25) 

where 𝜑𝑡𝑎𝑟 is the target SoC value, t is current time step, T is the total time steps in one 

episode. The constraints include the SoC limitation, battery voltage and current limitation. To 

accommodate the FDIA problem, the discrete action space injects bias to DC voltage and current 

defined as 50 bias pairs of DC voltage and current, accumulating to the original Vdc and Idc. 

Q learning is a simple method for agents to learn how to act optimally in controlled 

Markovian domains. It is an incremental method for dynamic programming that imposes 

minimal computational demands. It functions by gradually enhancing its evaluations of the 

quality of particular actions at particular states [88]. Given strategy π for FDIA, the action value 

function Q for selecting action 𝑎 under input state 𝑠 can be defined as 

𝑄𝜋(𝑠, 𝑎) = ∑ {𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)|𝑠0 = 𝑠, 𝑎0 = 𝑎}∞
𝑡=0                                (4.26) 

where 𝛾 ∈ (0,1) is the discount factor for the future reward value, 𝑅(∙) is the reward function 

depicted in Eq. (4.24). The Q function measures the benefits of performing an action under a 

given set of conditions by calculating the accumulated value of the long-term expected reward. 

This function is utilized in the process. The optimal Q function Q* can be defined as 

𝑄∗(𝑠, 𝑎) = max
𝜋
𝑄𝜋(𝑠, 𝑎)                                              (4.27) 
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In a deep reinforcement learning algorithm, deep neural networks (DNN) are adopted to 

fit the Q function, which can give extensive capabilities for feature extraction and function 

fitting, making it suited for handling more complicated practical situations like stealth FDIA. To 

improve the neural network training, decayed 𝜖 -greedy [89] and double Q learning [90] 

strategies are employed. Table 4.1 shows the pseudocode of the DQL algorithm. 

Table 4.1. Pseudocode of DQL algorithm 

Algorithm 4.1 Deep Q learning  

Initialize action value network 𝑄 target action value network 𝑄̂ and update steps interval C 

Initialize experience replay memory 𝐷 and threshold 𝜏 

while not converged 

Update 𝜖 with 𝜖-decay 

Select action 𝑎 based on state 𝑠 using policy 𝜖-greedy 

Input action to environment, acquire 𝑑𝑜𝑛𝑒 signal, reward 𝑟 and next state 𝑠′ 

Memorize (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑𝑜𝑛𝑒) in experience replay buffer D 

if size(D) > 𝜏 

Randomly sample a minibatch of N transitions from D 

for each (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖
′, 𝑑𝑜𝑛𝑒𝑖) in minibatch 

if 𝑑𝑜𝑛𝑒𝑖 

𝑦𝑖 = 𝑟𝑖  

else 

𝑦𝑖 = 𝑟𝑖 +max
𝑎′∈𝐴

𝑄̂(𝑠𝑖
′, 𝑎′)  

End 

end 

Compute loss 𝐿 =
1

𝑛
∑ (𝑄(𝑠𝑖 , 𝑎𝑖) − 𝑦𝑖)

2𝑁
𝑖=0  

Update Q parameters using gradient decent algorithm to minimize loss 𝐿 

Deep copy network parameters from 𝑄 to 𝑄̂ every C steps 

end 

end 
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4.4 Stealth FDIA Detection Method 

4.4.1 Overview of Deep Learning-Based FDIA Detection in Smart Grid 

As explained in the preceding sections, the FDIA is one of the main types of attacks that 

can damage smart grid systems. Current studies demonstrate that deep learning-based approaches 

are effective in FDIA detection. [91, 92] proposed using auto-encoder (AE) as a classification 

strategy to detect FDIA, as AE are able to learn latent correlation structures in the data in an 

unsupervised manner, enabling them to detect corrupted data. [93] utilized a Convolutional 

Neural Network (CNN) and a Long Short Term Memory (LSTM) network to identify anomalies 

that cannot be recognized by conventional SE-based BDD. [94] proposed a Conditional Deep 

Belief Network (CDBN) that employs Conditional Gaussian-Bernoulli RBM (CGBRBM) to 

extract high-dimensional temporal characteristics for assessing temporal attack patterns 

presented by real-time measurement data. [95] used a conditional deep belief network (CDBN) 

to analyze time-series input data and collected characteristics to detect the FDIA. [96] integrated 

the autoencoders into an advanced generative adversarial network (GAN) framework that could 

detect anomalies under FDIAs by capturing the discrepancy between abnormal and secure 

measurements. 

The above anomaly detection models are proven effective. However, they overlooked the 

characteristic of power grids as graphs. A graph is a natural representation of a collection of 

things and their connections. For over a decade, researchers have created neural networks that act 

on graph data called graph neural networks [97] (GNNs). Physics simulations [98], fake news 

detection [99], and recommendation systems [100] are beginning to see practical applications. In 

a smart grid, anomaly detection research [101] proposed an approach based on GNN to identify 

the presence and location of the FDIA. A graphical detection technology that uses GNN is 
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developed in [102] for detecting tampered measurements without external knowledge and 

manual preprocessing of historical data. However, both graph-based methods only take a 

snapshot of the system as the model input and neglect to mine temporal information associations 

between consecutive frames. 

4.4.2 Stealth FDIA detection using temporal graph convolution network 

(1) Model framework 

To better mine and utilize the graph nature of the power grid and the temporal 

information, a grid-temporal graph convolution network (Grid-TGCN) is proposed to identify 

stealth FDIA attacks against SoC in the distribution system with BESS integration as shown in 

Fig.4.8. The FDIA detection task is specified as a binary graph-level classification problem. 

Under this framework, multiple frames of system measurements are encoded in graph format as 

inputs of TGCN. The GCN is first used to extract spatial features, and the gated recurrent unit 

(GRU) is used for temporal feature analysis. The output of the final classification is generated by 

fully connected layers, indicating the possibility of frames containing stealth FDIA. 

 
Figure 4.8. Framework of Grid-TGCN 

The GCN filter, which operates on the nodes of a graph, is responsible for capturing the 

spatial properties that are located between the nodes through the use of its first-order 

neighborhood follow  

ℎ(𝑘) = 𝐷−1𝐴̂ ∙ ℎ(𝑘−1)𝑊(𝑘)𝑇 + ℎ(𝑘−1)𝐵(𝑘)
𝑇
                         (4.28) 
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where ℎ(𝑘) represents the features output at k layer, 𝑊 and 𝐵 are learnable parameters of weight 

and bias, 𝐴̂ = 𝐴 + 𝐼 is the adjacent matrix with added self-connection, 𝐼 is identity matrix, 𝐷 =

∑  𝐴̂𝑖𝑗𝑗  is the degree matrix for normalization purpose. In the Grid-TGCN model, a 5-layer of 

GCN is designed to obtain spatial dependence between buses. The average pool operation is 

applied at the last layer to summarize spatial features.  

Since the measurement data in the smart distribution system are time-series signals, 

obtaining temporal dependence between frames is another crucial aspect of the FDIA detection 

problem. LSTM model [103] and GRU model [104] have been shown to be effective in 

extracting temporal features. The LSTM and GRU are equally effective at different activities and 

employ gated mechanisms to memorize as much long-term knowledge as possible. However, 

because of its complicated structure, LSTM takes longer to be trained than GRU, because GRU 

has fewer parameters and a more straightforward structure. Therefore, in order to extract 

temporal dependence from the smart meter traffic data, we applied the GRU layers followed by 

GCN in the Grid-TGCN model. Fig 4.9 shows the calculation of GRU as 

𝑹𝑡 = 𝜎(𝑿𝑡𝑾𝑥𝑟 + 𝑯𝑡−1𝑾ℎ𝑟 + 𝒃𝑟)                                  (4.29) 

𝒁𝑡 = 𝜎(𝑿𝑡𝑾𝑥𝑧 +𝑯𝑡−1𝑾ℎ𝑧 + 𝒃𝑧)                                  (4.30) 

𝑯̃𝑡 = 𝑡𝑎𝑛ℎ(𝑿𝑡𝑾𝑥ℎ + (𝑹𝑡⨀𝑯𝑡−1)𝑾ℎℎ + 𝒃ℎ)                        (4.31) 

𝑯𝑡 = 𝒁𝑡⨀𝑯𝑡−1 + (1 − 𝒁𝑡)⨀𝑯̃𝑡                                  (4.32) 

where 𝑿 is spatial features inputs from GCN layers extracted from multiple measurement frames. 

𝑯̃𝑡 is the candidate latent state, 𝑯𝑡 is the new state, 𝑹𝑡 is the reset gate that helps capture short-

term dependencies in sequences, 𝒁𝑡 is update gate that helps capture long-term dependencies in 

sequences, 𝑾 and 𝒃 are learnable parameters. 
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Figure 4.9. Calculation flow of GRU 

(2) Loss function design 

In this study, the detection of FDIA is formulated as a binary classification problem. The 

final layer is a fully connected network, which employs the Sigmoid activation function to match 

labels in the training dataset. For the labeling configuration adopted in the simulation, the binary 

label 𝑌 of a measurement frame is based on the following criterion: 

𝑌 = { 
1       under FDIA

0       no attack
                                              (4.33) 

To achieve this goal, the loss function that measures the Binary Cross Entropy (BCE) 

between the binary label and the output probabilities is adopted as  

𝐿 = 𝑌 log 𝑌̂ + (1 − 𝑌) log(1 − 𝑌̂)                                  (4.34) 

where 𝑌 and 𝑌̂ denotes the real label and model prediction. 

(3) Evaluation metrics 

This research uses F1-Score and accuracy to evaluate the efficacy and practicability of 

the suggested false data attack detection approach in Eq. in order to evaluate the performance 

detection of the model (4.35-4.38). First, the following variables are defined: True positive (TP) 

is the FDIA's identification of an attack. False negative (FN) refers to FDIA recognized as 

normal data. The true negative value (TN) identifies the normal measurement for normal 
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operation. False positive (FP) refers to a normal sample is recognized as FDIA attack. There are 

three evaluation metrics specified as: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃)⁄                            (4.35) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄                                              (4.36) 

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄                                                 (4.37) 

𝐹1 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                                  (4.38) 

 

4.4 Case Study 

4.4.1 Simulation Model and Dataset  

To mimic the operational behavior of a actual distribution feeder more closely, a 

centralized feeder model is developed based on the IEEE 123 bus system in Simulink, as shown 

in Figure 4.10. The feeder head (Bus 1) is equivalent to Bus 149 in the IEEE 123 bus system as 

depicted in Fig. 4.10 and Fig. 4.11. All feeder load is aggregated and treated as a centralized load 

connected to Bus 3. In order to emulate the power consumption behavior of actual residential 

users, 83 users in Austin, TX with load profile from August 1st, 2017, to September 1st, 2017 

[45], are selected to aggregate the node load in the IEEE123 bus system. The reference power for 

node i (𝑃𝑟𝑒𝑓
𝑖 ) is provided by IEEE 123 bus specification. Random user will be added to the node 

𝑖 until the average annual power is accumulated to 40% of 𝑃𝑟𝑒𝑓
𝑖 . The VSC model designed in 

[105] is used to bridge the battery to the AC grid. The battery model from [106] and the BESS 

operation data from [107] are utilized to simulate BESS operations. The battery parameters are 

summarized in Table 4.3. As illustrated in Fig. 4.12, the OCV curve of a battery is approximated 
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by a 9th order polynomial regression. Figures 4.12 and 4.13 depict a 24-hour illustration of feeder 

load power, BESS power, and battery SoC on August 1st, 2017. 

 

 
Figure 4.10. One line diagram of test grid model 

 
Figure 4.11. IEEE 123 bus test feeder 

Table 4.2. Battery model parameters 

Nominal Capacity and power 571.9kWh/816Ah     250kW 

Nominal DC voltage and current 700.8V / 357A 

DC voltage range 595.2 – 787.2V 

DC current range -400A – 400 A 
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Figure 4.12. OCV-SoC curve regression 

 
Figure 4.13. Example of feeder load profile on August 1st, 2017 

 
Figure 4.14. BESS power and battery SoC on August 1st, 2017 

 

4.4.2 RL-Based Stealth FDIA against SoC Estimation  

For the simulation environment configuration, it is assumed that the control center 

collects measurement data every five minutes for SE-based BDD. The BDD trigger threshold 

was set at 1.1 times the maximum permissible residual error under normal working conditions. 

The attack duration was set to 4 hours (60 steps every episode). The target SoC is randomly 
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selected within the feasible range of battery SoC. The attack starts at a random moment between 

August 1st and August 25th, and the test set is the remaining data from August 25th to September 

1st. The action-value function is modeled using a 512*256 fully connected neural network. The 

framework for deep learning is implemented using the Pytorch platform. The model was for 

20,000 episodes trained on an RTX 3080 GPU. Table 4.3 provides a summary of the training 

hyper parameters.  

Table 4.3. Hyper parameter for RL training 

Hyper parameter Values 

Learning rate 5e-4 

Batch size 256 

epsilon decay from 0.1 to 0.01 

Target Q network update 

frequency 
every 10000 steps 

Discount factor 0.99 

 

Figure 4.15. illustrates the mean curve of epoch scores during the training procedure 

(sliding average per 100 epochs). At the beginning of training, the average score is negative 

because the attack is easily identified by BDD or causes the measurement data to exceed the 

device limit constraints (e.g., the SoC is above 100% or the battery voltage or current exceeds 

the maximum range), resulting in penalty as describe in Eq. (4.25). As training progresses, the 

episode reward gradually rises and tends to converge after 17,500 episodes since the model 

gradually learns to achieve the attack target without triggering BDD motivated by the reward 

function in Eq. (4.25).  

Figure 4.16 depicts several examples of attacks after training. Generally, the attack can be 

categorized into three types: maximum-underestimate, maximum-overestimate, and goal 

achieved. It should be noted that the attack type is not specified in advance but rather determined 

by the agent based on the SoC target and environmental feedback. When the target SoC is 
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significantly lower than the feasible SoC, the model will attempt to reduce the SoC as much as 

possible within the legal range allowed by BDD, as illustrated in 4.16. (a). Similarly, the model 

maximizes the estimate of SoC if the target SoC is excessively higher than the feasible SoC, as 

seen in 4.16. (b). If the target SoC is within a reachable range, the RL agent will launch an FDI 

attack to finally achieve the target SoC value at the end of the episode, as depicted in Figure 

4.16. (c) 

 
Figure 4.15. Stealth FDIA attacker RL training process 

 
(a) max-underestimate                  (b) max-overestimate                  (c) goal achieved 

Figure 4.16. Examples of RL-based stealth FDIA 
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4.4.3 Stealth FDIA Against SoC Detection Using TGCN 

(1) Training setup 

The data sets for training detection algorithms are generated based on the well-trained RL 

attackers. Over the span of 31 days, the attackers launched 93 attacks, each lasting four hours, at 

random. The data has a resolution of 5 minutes. For the TGCN model, each sample is 

constructed sequentially along with the measurement data frames with the previous one hour (12 

frames for each sample). All data samples are randomly shuffled, with 70% used for training, 

15% for validation, and 15% for testing. The model parameters that perform the best on the 

validation set are then utilized on the test set. The AE model from [92] is trained and evaluated 

in order to compare the proposed Grid-TGCN model with the current state-of-the-art algorithm. 

In addition, the TGCN model without the GRU layer (named as GCN) is employed for training 

and evaluation to demonstrate the impact of temporal characteristics. Table 4.4 provides a 

summary of the training hyperparameters. 

Table 4.4. Hyper parameters for FDIA detection model training 

Hyperparameter Values 

Learning rate 1e-3 

Batch size 16 

Optimizer Adam 

Training epochs 100 

Num of GCN layers  5 

GCN feature size 24/16/2/16/24 

Num of GRU layers 1 

GRU feature size 8 

(2) Training and metrics evaluation 

Figure 4.17 and Table 4.5 depict the loss function curves and metrics evaluation. It can be 

seen that AE performs slightly better than the GCN model without GRU layers, but it should be 

noticed that the model parameters number of GCN model is only 1.13K, which is only about 5% 
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of AE model parameters. Grid-TGCN has a considerably better loss performance than the other 

models. In addition, the higher accuracy and F1 score of Grid-TGCN model illustrate that the 

proposed algorithm can not only preserves the advantages of lightweight structure, but also 

significantly improves the stealth FDIA detection capability, as shown by the evaluation of 

metrics in Table 4.5. 

 
Figure 4.17. Training loss of FDIA detection algorithms 

Table 4.5. Metrics evaluation of stealth FDIA detection algorithms 

Metrics AE[92] GCN TGCN 

Accuracy 96.83% 95.37% 99.51% 

F1 score 0.966 0.949 0.995 

Parameters (103) 22.93 1.13 1.49 

 

4.4 Conclusion 

To mitigate the risk of FDIA against the battery SOC of the distribution system with 

BESS integration, a stealth FDIA generation technique based on reinforcement learning and an 

FDIA detection algorithm based on a temporal graph convolution network are presented.  

First, in order to resolve the contradiction between the high computational cost of 

nonlinear stealth FDI constraints and real-time online deployment, a reinforcement learning 
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algorithm based on deep Q-learning was designed. This algorithm then interacted with the 

simulation environment, which contains SE-based BDD as well as the EKF-based SoC observer. 

Through these interactions, the RL agent learns to generate stealth SoC FDIA that can pass BDD 

detection.  

Then, this study proposes a Grid-TGCN model to detect Stealth FDIA, a deep learning 

model that combines GCN and GRU that is able to fully mine and utilize the graph 

characteristics of the power grid as well as the temporal characteristics of the time-series 

measurement. The results of the experiments show that the proposed Grid-TGCN model not only 

outperforms the state-of-the-art algorithm in terms of accuracy and F1 score, but it also 

maintains very few model parameters, which provides a very promising solution for the 

deployment and application of large-scale complex power grids. 
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CHAPTER 5 SUMMARY AND FUTURE WORK 

5.1 Summary of Previous and Current Research 

5.1.1 Load Profile Super Resolution 

In this work, ProfileSR-GAN, a two-stage GAN-based method, is proposed for solving 

LPSR problems. In the first stage, a GAN-based model is trained to restore the high-frequency 

components from the low-resolution data. In the second stage, a polishing network is developed 

to remove unrealistic power fluctuations in the GAN generated high-resolution load profiles. 

Compared with conventional up-sampling methods, such as interpolation and CNN-based 

methods, the proposed ProfileSR-GAN achieves superior performance in restoring high-

frequency components inside sampling intervals. The overall performance improvements 

attribute to three aspects: the adversarial training of the GAN-based model, the inclusion of 

weather data, and the fine-tuning of the polishing network.  

The simulation results demonstrate that ProfileSR-GAN achieved 36%-62% 

improvements in shape-related evaluation metrics compared with the baseline method (i.e., the 

linear interpolation method). An application of ProfileSR-GAN is presented as a case study to 

demonstrate that applying ProfileSR-GAN on upsampling can benefit downstream tasks that 

require the use of high-resolution load profiles. Simulation results show that when using 

ProfileSR-GAN to upsample the low-resolution profiles before conducting NILM, appliance-

level activities can be better recognized by the NILM algorithms. 

5.1.2 Customer Baseline Load Estimation 

In this work, a novel deep-learning model Load-PIN is proposed to solve the missing data 

restoration and CVR baseload estimation problem. Load-PIN merges Gated Convolution and 

Multi-head self-attention mechanisms into the GAN based framework to enhance the estimation 
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accuracy. Load-PIN is trained using the dynamic-masking strategy so that it can handle CVR 

events with varying durations. We first demonstrate that at higher load aggregation levels, higher 

data resolution can achieve better estimation accuracy. In general, 5-min and 15-minute 

resolutions are sufficient for feeder-level studies. Next, we demonstrate that the Load-PIN model 

can achieve a 15-30% accuracy improvement under the suggested data granularity, compared 

with five benchmarking methods. Using the trained Load-PIN model for CVR baseline 

identification, we computed the CVR factors for CVR programs with fixed- and variable- CVR 

durations. We show that CVR can achieve load reduction in the first 1 hour. However, after 1.5 

hours, the CVR effect starts to diminish, and a pay-pack period can be observed. This may cause 

unexpected load peaks in post-CVR periods. From the results, we want to make two 

recommendations. First, the CVR execution duration should be less than 2 hours. Second, 

feeders with high penetration of thermostatically controlled loads may not be good candidates for 

prolonged CVR programs.  

5.1.3 Attack and Anomaly Detection for Smart Distribution Grid With BESS 

To mitigate the risk of false data injection attacks on the battery SOC of the distribution 

system with BESS integration, a reinforcement learning-based stealth FDIA generation approach 

and a TGCN-based detection algorithm are proposed. First, an RL technique based on a Deep Q 

learning agent was designed to resolve the contradiction between the high computing cost of 

nonlinear stealth FDI restrictions and real-time online deployment. SE-based BDD and EKF-

based SoC observers are designed in the simulation environment. Through the interactions with 

the environment, the RL agent learns to launch stealth SoC FDIA that avoids BDD detection. 

Then, Grid-TGCN is a deep learning model that combines GCN and GRU to extract and 

leverage the graph information of power grid and temporal features of timeseries measurement's 
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for FDIA detection. Experiments show that the Grid-TGCN model outperforms the state-of-the-

art method in terms of accuracy and F1 score while maintaining a light model structure, making 

it a promising solution for large-scale complex power grid deployment and application. 

5.2 Vision and Plan of Future Work 

The current state of deep learning in terms of theory and applications represents the initial 

stage of artificial intelligence. Even while it has found success in power system areas, it still 

faces theoretical, technological, economic, social, and ethical obstacles. As a black-box system, 

for instance, it is difficult for the deep learning model to have interpretability and solid constraint 

guarantees, which are crucial for power systems due to the fact that the operation of power grids 

often requires explicit security bounds. At the same time, there are a large number of data-driven 

tasks that do not involve safe operations that can be solved by deep learning methods in power 

systems. 

The research works in the three subfields will be expanded and progressed 

respectively.  The following is a summary of the sub-areas future research plan: 

 For the load profile super resolute study, the proposed super-resolution algorithm for 

load curves can be extended to the application of other power system data. For example, the 

generation of high-resolution irradiance curves can help provide more realistic PV output 

fluctuations. Similarly, the load profile inpainting for missing load data restoration can also be 

extended to other power system data recovery. 

The next step of research on FDIA can refer to the framework of GAN, which combines 

the training of the attacker and the detector, allowing them to learn and evolve from the feedback 

of the opponent. By adjusting the training parameters to balance the two roles, it is hopeful of 
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designing super-attackers that can fool traditional and deep learning-based detection algorithms 

or super-detector with extraordinary recognition ability. 
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