
ABSTRACT

WANG, WENGRAN. The Design and Evaluation of Automated Examples to Support Creative,
Open-Ended Programming. (Under the direction of Thomas Price).

Open-ended programming engages students by connecting computing with their real-

world experience and personal interests. However, such open-ended programming tasks

can be challenging, as they require students to implement features that may require knowl-

edge students are unfamiliar with. Code examples can help students to generate ideas

and implement those features, but students often face barriers when searching, learning,

and integrating those examples. This work explores what challenges students face when

using code examples during open-ended programming, and how to automatically generate

personalized code examples, and how to design systems to present examples, in order to

improve students’ programming performance, sense of ownership, and perceived creativity.

In this work, I investigate three research questions: 1) What are novices’ motivations, strate-

gies, and barriers when using code examples during open-ended programming? 2) How can

we design code examples to address students’ decision, search, mapping, understanding,

and testing barriers? 3) What is the impact of having access to code examples on students’

open-ended programming? I present 5 studies to address these research questions.

In Study 1, I built Example Helper, a tool that offers galleries of code examples for

students to search and use. I conducted a lab study with 12 pairs of high school students

when using Example Helper to complete open-ended programming tasks. The goal of

this study was to systematically analyze and describe students’ example reuse during

open-ended programming - what are their needs and strategies during example reuse

in open-ended programming. I found that students request code examples primarily to

explore ideas; understand how to start a step; debug incorrect code; confirm their own code;

or avoid re-implementing the same code. I also found 4 different strategies students employ

when requesting examples: by integrating one block/feature at a time; by comparing their

code with the example code to identify the key differences; by using tinkering to understand

an example code; or by implementing a feature after closing the example. I found that some

example requests (13.8%) also exhibit a lack of strategy, which is indicated by students

copying and replacing the example code with their own code blindly, and using shallow

debugging methods, such as making arbitrary changes. These findings suggest the need to

build example systems to address these motivations and strategies.

In Study 2, I investigated the challenges students encounter when using code examples

during open-ended programming, in an authentic classroom environment. I found that

students encounter 3 types of major barriers when using code examples in open-ended

programming: decision barrier - not knowing when to use an example; search barrier -

not knowing how to find a needed example; and integration barrier - failing to use the

example in their project, caused by difficulties in understanding, testing and modifying the

example code. These insights suggest future work to build example support systems, such

as supporting experimentation and modification to address integration barriers (Study 3),

and offering personalized support to address decision and search barriers (Study 4 and 5).

In Study 3, I improved the Example Helper system by offering search recommendations,

example previews, and testing windows. In a quasi-experimental comparison, I found that

across students who used the system, these improvements significantly improved example

integration compared to its earlier prototype.

In Study 4, I developed and evaluated Pinpoint, a system that helps Snap! programmers

understand and reuse an existing program by isolating the code responsible for specific

events during program execution. Specifically, a user can record the execution of the pro-

gram (including user inputs and graphical output), replay the output, and select a specific

time interval where the event of interest occurred, to view code that is relevant to this event.

I conducted a lab study to compare students’ program comprehension experience with

and without Pinpoint, and found suggestive evidence that Pinpoint helps users understand

and reuse a complex program more efficiently.

In Study 5, using the improved version of Example Helper from Study 3, I conducted

a controlled study to evaluate the impact of having access to code examples on students’

programming and learning outcomes. I conducted the study with 46 local high school

students in a full-day coding workshop, where half of the students had full access to 37 code

examples using EXAMPLE HELPER, and the other half had 5 standard, tutorial examples. I

found that students who had access to all 37 code examples used a significantly larger variety

of code APIs, perceived the programming as relatively more creative, but also experienced

a higher task load. I also found weak evidence of a better post-assignment performance

from the EXAMPLE HELPER group, showing that some students were able to learn and apply

the knowledge they learned from examples to a new programming task. My results show

that having access to code examples during open-ended programming helped students

become more creative, build projects with a larger variety of APIs, and learn new knowledge

for future tasks.

The contribution of this thesis includes: 1) A systematic analysis of the goals, strategies,

and barriers novices experience or encounter when using code examples during open-

ended programming (Studies 1 and 2); 2) The design and deployment of two interconnected

systems, which support just-in-time example extraction (Pinpoint); and testing-centered

example integration (Example Helper); each addressing one or more barriers students

encounter during example reuse (Studies 3, 4 and 5); 3) The empirical evaluations of the im-

pact of these example support systems on students' programming performance, perceived

creativity and learning outcomes(Study 4 and 5).

© Copyright 2023 by Wengran Wang

All Rights Reserved

The Design and Evaluation of Automated Examples to Support Creative, Open-Ended
Programming

by
Wengran Wang

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial ful�llment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina
2023

APPROVED BY:

Tiffany Barnes Kathryn Stolee

Eric Wiebe Thomas Price
Chair of Advisory Committee

DEDICATION

To mom and dad, for their unconditional love.

ii

BIOGRAPHY

Wengran was born into a family in Hangzhou, China that had a deep love for books and

music. Her father, Ronghao, who holds a Bachelor's degree in Computer Science from

Zhejiang University, introduced her to the magic of computing at a young age. When

Wengran was just eight years old, he gifted her with a personal website where he personally

typed and published all of her diaries. The experience of being able to share her thoughts

and ideas online through digital publishing left a profound impact on her.

Wengran's mother, Xiya, is a dedicated teacher, doctor, and mother. She spent all her

time working hard to support her family and take care of Wengran. She taught Wengran

that true beauty in life is not measured by material success or external possessions, but

rather by the internal experience of love, perseverance, and passion. Throughout her life,

Wengran's parents placed a high priority on her education, valuing it above all else.

Wengran attended Zhejiang University for her undergraduate studies, majoring in

Environmental Science and earning a minor degree in French Language and Literature.

While working on a research project focused on modeling local Carbon Dioxide emissions,

she became intrigued by the �elds of Statistics and Computer Science. This led her to

pursue a Master's degree in Statistics from NC State University, followed by a Ph.D. in the

Computer Science department, where she focused on the area of Computing Education.

Recognizing the impact that computing technology has on our world, Wengran is pas-

sionate about broadening participation in Computing Education. She �rmly believes that

involving individuals from marginalized groups can help build a more equitable future for

humanity. Through her research, she hopes to contribute to the goal of creating a more

inclusive and diverse computing community.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my advisor, Dr. Thomas Price, for his

brilliant ideas, high standards, extensive knowledge, strong support, and sheer sincerity. I

feel extremely fortunate and grateful to be able to work with Dr. Price, who has helped me

navigate through countless research ideas, build useful systems, run rigorous studies, and

write interesting papers. Dr. Price has been a role model for how to effectively engage with

and motivate teamwork, how to passionately initiate, pursue, and persist through research

projects, and how to mentor students with care, compassion, and kindness.

I would also like to extend my sincerest thanks to the professors and committee mem-

bers, from whom I have received great support and guidance.

• Many thanks to Dr. Gordon Fraser, for sharing his extensive knowledge about pro-

gram analysis and maintaining software engineering teamwork, involving me in

several wonderful research projects, introducing me to his amazing lab, and giving

me thoughtful critiques and insightful guidance.

• Special thanks to Dr. Tiffany Barnes, for sharing her energy, enthusiasm, and innova-

tive ideas in lots of meetings, and for encouraging me to pursue Ph.D. when I was

doing my Master's degree.

• Thanks also to Dr. Chris Martens, for sharing with me her experience and knowledge

in generative methods and game design.

• I'm also grateful to Dr. Kathryn Stolee, for her brilliant ideas and actionable sugges-

tions in advancing my work.

• Thanks should also go to Dr. Eric Wiebe, for his clear, rigorous, detailed advice for

running my student studies.

I am also grateful to my collaborators and mentees, who contributed directly to my

work presented here:

• My collaborators, co-authors, and lab mates, who contributed to my work: Ally Limke,

for doing extensive, patient, careful, and insightful work in classroom and camp

studies, and for teaching me how to develop rapport with students. Samiha Marwan,

for sharing with me great insight and ideas about measures, study design, her great

paper editing skills, and her loving, optimistic life attitude. Yang Shi, for involving

iv

me in researching AI for education, and for giving me frank, honest critiques. Thank

James Skripchuk, and John Marsden, for sharing with me various ideas from different

perspectives; John Bacher, for helping me run studies with skills and care; Keith Tran,

for helping me conduct thoughtful analysis. Thank Benyamin Tarbarsi, Heidi Reichert,

and Sandeep Sthapit, for helping me with research and paper writing, even when it's

last-minute.

• My amazing collaborators from Germany. Many thanks to Andreas Stahlbauer, for his

extensive knowledge and insight on static program analysis, and software engineering.

Thank Patric Feldmeier, for his excellent programming skills and dedication. Thank

Sebastian Schweikl, for his various ideas, software knowledge, and kindness. Thank

Adina Deiner, for her support and teamwork. And thank Florian Obermüler, for his

generous help.

• Many (former) students, who helped me get started: Rui Zhi, for helping me get

to learn about the amazing �eld of Computing Education; Alexander Milliken, for

working with me through many camp studies; Nick Lytle, for sharing insights to start

my �rst research paper; Yihuan Dong, who shared with me great ideas and insights on

computational thinking. Thank Jennifer Tsan, for sharing with me excellent insights

on open-ended programming and pair programming, and for her great support and

kindness.

• My amazing mentees and undergraduate students, who gave me support and moti-

vation. Thank Mahesh Bobbadi and Audrey Le Meur, for their dedication and com-

mitment. I felt lucky to have the chance to work closely with them, who gave me

lots of inspiration and motivation, and brought novel perspectives to my research.

Thank Yudong Rao and Archit Kwatra, whose efforts and hard work went to the proto-

type systems that informed my research. Thank Neeloy Gomes and Sarah Martin, for

providing help during my student studies.

• Thank many instructors who provided me with the resources, opportunities, and

extensive support to run my studies and deploy my systems: Bita Akram, Amy Isvik,

Veronica Catété, for always being there to run camp and classroom studies with me,

and providing support with both teaching and research. Thank Shuyin Jiao, Adam

Gaweda, Sterling McLeod, John Marsden, and many other instructors, for offering

me many research opportunities with their students.

v

In the end, I want to express my deepest gratitude to my family. The completion of my

dissertation would not have been possible without their love and support. Thank Wai Po

(Yunying Lu), for her perseverance and love. She showed me the magic of words and poems

when I was just learning to speak. Thank Wai Gong (Yunfa Weng), for his brilliant, strong

mind, Wai Gong believed in and loved me, trusting me to achieve the best in my life. Thank

Nai Nai and Ye Ye (Zhenying Kong and Lishui Wang), for their silent, constant love. I carry

their love and kindness with me.

Thank Mama, Xiya Weng, for teaching me to take strong stands and live a passionate,

courageous life.

Thank Baba, Ronghao Wang, for teaching me the value of action, the long-term effect

of staying focused, and the power of details.

Thank my husband, Yudong Rao, for being such a joyful presence.

vi

TABLE OF CONTENTS

List of Tables . x

List of Figures . xi

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Research Outline . 3

1.2.1 Understanding students' needs and challenges during example use 3
1.2.2 Addressing the challenges in two different dimensions. 4
1.2.3 An Evaluation of Having Access to Examples in Open-Ended Pro-

gramming . 5
1.3 Research Questions . 5
1.4 Contributions . 6

Chapter 2 Related Work . 7
2.1 Open-Ended Programming . 7
2.2 Code Examples . 9

2.2.1 Code Examples for Closed-Ended Programming Problem 9
2.2.2 Code Example Systems for Open-Ended Programming 10
2.2.3 Code Examples for Informal Learning Settings 12

Chapter 3 Novices' Motivations and Strategies for Using Code Examples in Open-
Ended Programming . 16

3.1 Introduction . 16
3.2 Example Helper System . 18
3.3 Study Setup . 19

3.3.1 System . 19
3.3.2 Participants & Procedure . 21

3.4 Analysis . 23
3.5 Results . 25

3.5.1 Motivations: Why do students ask for examples? 25
3.5.2 Strategies: How do students learn and use an example? 26
3.5.3 An in-depth example . 32
3.5.4 Outcomes of example use . 33

3.6 Discussion . 34
3.6.1 Support design and planning for creating complex projects 35
3.6.2 Encourage effective example learning strategies 35

3.7 Limitations & Conclusion . 37

Chapter 4 Novices' Learning Barriers When Using Code Examples in Open-Ended
Programming . 38

vii

4.1 Introduction . 38
4.2 Example Helper System . 39
4.3 Participants & Procedure . 41
4.4 Analysis . 42
4.5 Results & Discussion . 43
4.6 Limitation & Conclusions . 50
4.7 Acknowledgements . 51

Chapter 5 Exploring Design Choices to Support Novices' Example Use During
Creative Open-Ended Programming . 52

5.1 Introduction . 52
5.2 The EXAMPLE HELPERSystem . 54

5.2.1 Interface Design . 54
5.2.2 Example Content Design . 55

5.3 Methods . 57
5.3.1 Participants & Procedure . 57
5.3.2 Data & Analysis . 58

5.4 Results & Discussion . 59
5.4.1 RQ1: How did students use examples? . 59
5.4.2 RQ2: Who used examples? . 61
5.4.3 RQ3: To what extent did our design choices address students' learning

barriers? . 62
5.5 Limitations & Conclusion . 64
5.6 Acknowledgements . 64

Chapter 6 Pinpoint : A Record, Replay, & Extract System to Support Code Com-
prehension and Reuse . 65

6.1 Introduction . 65
6.2 Related Work . 66

6.2.1 Code Reuse . 67
6.2.2 Supporting Code Comprehension & Reuse 67

6.3 System Design Goals & Formative Study . 68
6.4 The Pinpoint System . 69

6.4.1 The Pinpoint Design . 69
6.4.2 Pinpoint Implementation . 72

6.5 Methods . 73
6.5.1 Participants and Study Design . 74
6.5.2 Materials: Two Reuse Assignments . 75

6.6 Data Collection and Analysis . 76
6.6.1 Pretest . 77
6.6.2 Task Performance . 77
6.6.3 Qualitative Interview Analysis . 77

6.7 Results and Discussion . 78

viii

6.7.1 RQ1: What was the impact of Pinpoint on students' ability to extract
and reuse code from an example? . 78

6.7.2 RQ2: What are students' perceptions of their reuse experience? 80
6.8 Conclusions and Future Work . 82

Chapter 7 Investigating the Impact of On-Demand Code Examples on Novices'
Open-Ended Programming Experience . 83

7.1 Introduction . 83
7.2 Related Work . 84

7.2.1 Open-Ended Programming . 84
7.2.2 Code Examples . 85
7.2.3 Open-Ended Programming . 88
7.2.4 Code Examples . 88

7.3 Methods . 90
7.3.1 The EXAMPLE HELPERSystem . 90
7.3.2 Participants & Learning Context . 92
7.3.3 Procedure . 93
7.3.4 Measures . 94

7.4 Results . 97
7.5 Discussion & Conclusion . 101

Chapter 8 Conclusion .103
8.1 Research Questions . 103

8.1.1 Research Question 1 . 103
8.1.2 Research Question 2 . 105
8.1.3 Research Question 3 . 106

8.2 Design Principles & Future Work . 107
8.3 Contributions . 108

ix

LIST OF TABLES

Table 3.1 5 situations where students ask for code examples and their frequen-
cies among a total of 88 example requests. 25

Table 3.2 4 example reuse strategy and the copy-run-debug behavior (i.e., lack
of strategy). Strategies started with ? denotes example use strategies
not mentioned in prior work [Wan20c; Ich15]. 30

Table 5.1 EXAMPLE HELPERdesign targets to address the search, decision, test-
ing, and modi�cation barriers students encounter when using code
examples during open-ended programming. 56

Table 7.1 Statistics for the control (ctrl.) and example (exp.) groups, with the p -
value and effect sizes. * means the data follows the normal distribution. 98

Table 7.2 Statistics for the control (ctrl.) and example (exp.) groups, with the p -
value and effect sizes. * means the data follows the normal distribution. 100

x

LIST OF FIGURES

Figure 3.1 The Example Helper Interface. 18
Figure 3.2 The Example Helper Interface. 20
Figure 3.3 L3 copied, modi�ed, and tested to integrate the example code to their

own code one at a time . 26
Figure 3.4 Using the comparison strategy, E7 identi�ed meaningful differences

to use in their own context, without discarding un-meaningful differ-
ences. 27

Figure 3.5 L4 employed the strategy “ understanding through tinkering ” to
understand an unfamiliar block - “set size to”. 28

Figure 3.6 Case study: students' implementation of spawn_clones. 31

Figure 4.1 The Example Helper Interface. 40
Figure 4.2 # unfamiliar blocks v.s. integration rate. 47
Figure 4.3 example type v.s. integration rate . 48

Figure 5.1 The EXAMPLE HELPER interface, which includes a selection-based
gallery (left) and a playground view (right) for students to program
while using the example as a reference. 54

Figure 6.1 Pinpoint users can 1) record a program execution (including user
input and graphical output), 2) replay a recording and select a time
interval where an event has occurred, and 3) inspect an executable
code slice relevant to the event, where the code executed inside the
selected time interval is highlighted. 70

Figure 6.2 Users can also trace changes to individual variables by selecting “How”
questions on different variables and attributes. 72

Figure 6.3 For the 11 students without perfect performance, The Late group
(shown in yellow) showed signi�cantly more improvement than the
Early group (shown in green). 79

Figure 7.1 The EXAMPLE HELPERinterface [Wan22]. Students can browse and
search for examples in a gallery (left) interface, and then test and
modify them in a sandbox (right), where they may also click to copy
the example into their own workspace. 91

xi

CHAPTER

1

INTRODUCTION

1.1 Motivation

Open-ended programming projects, where students make apps, games, and stories that they

have designed themselves, are widely-used in many introductory programming curricula

[Gar15; McG18; Gro18] and online, informal learning settings [Pep07]. During open-ended

programming, students can freely explore, design, and implement a relatively complex

programming project, and can express their ideas creatively [Hul15]. As open-ended projects

enable learners to freely de�ne their own goals, they allow learners to connect their real-

world experiences and interests with their programming projects [Pap80], motivating them

to pursue Computer Science [Mar02; Guz05].

Open-ended programming projects are characterized by a number of properties that

make them engaging, but which can also be challenging for novice programmers: First,

they require students to engage in the complex cognitive processes of generating ideas,

designing plans and implementing solutions [Win11; Blu91]. Because the projects are

somewhat or fully student-designed, students need to engage in these activities and manage

a large and complex project. This can lead to many challenges during both design and

1

implementation [Ald18; Kok16; Wri07]. Second, open-ended programming encourages

students to be ambitious in their designs to create interesting artifacts, which often requires

students to combine different programming concepts and APIs, or make use of APIs they

are still unfamiliar with. and write larger, more complex projects than typical assignments.

Lastly, as students can freely explore among in�nite choices to generate ideas and develop

solutions, it is dif�cult for instructors to prepare students with all possible materials before

project-making; or offer students personalized feedback or suggestions when they request

help during programming. This suggests the need for better ways to support novices working

on open ended projects.

Code examples provide a promising option to help students overcome these challenges.

Many novices use code examples to explore ideas, learn new programming concepts, and

to integrate new API usage patterns into their open-ended projects [Ker17b; Kha19]. Prior

work has shown that novices consider code examples as useful learning materials [Lah05],

and that they were able to reuse new API usage patterns effectively after learning them

from code examples [Ich17]. However, exploratory studies from prior work also show that

novices encountered a number of challenges when integrating examples into their own

code [Ich15], such as dif�culties understanding the example code, and integrating the

example code to their own code [Ich15; Wan20c].

A large body of related work has focused on developing example support and studying

students' example learning for closed-endedprogramming problems (i.e., with prede�ned

speci�cations, rather than student-de�ned goals) [Ich15; Zhi19; Tra94; Bru01], while little

has explored building example support for open-ended programming projects. In particular

the open-ended programming projects addressed in this work can be characterized by

a number of distinct challenges. First, as open-ended programming includes multiple

iterative phases of design, planning and implementation, students may need code examples

for a variety of goals, and may use them in different ways. Second, as students freely decide

the goals of their projects, we do not know what examples a student will need before

project-making. This motivates my work to systematically investigate the phenomenon

of example use during open-ended programming (i.e., why and how students use code

examples during open-ended programming), to explore the ways in which students may

encounter barriers to use code examples during open-ended programming, to design and

evaluate systems to address these barriers, and to evaluate how access to examples affect

students' open-ended programming experience.

2

1.2 Research Outline

I present my thesis work in three parts. The �rst part explores the affordances and challenges

of example use during open-ended programming; the second part discusses the design,

deployment and evaluation of two complementary and interconnected example support

systems, each addressing speci�c challenges for example reuse; the third part discusses

evaluations of each of the three support systems, with implications for pedagogy and tools

to support example use during open-ended progamming.

1.2.1 Understanding students' needs and challenges during example use

I begin in Chapter 2 with a literature review on the related work on open-ended program-

ming and code examples, and discuss the design space for building example-based support

for open-ended programming.

In Chapters 3 and 4, I discuss a systematic analysis on the phenomenon of example use

during open-ended programming. To do that, I �rst built a prototype version of Example

Helper, a gallery-based example support system, and deployed it in a lab study with a

group of high school students. I employed the Case Study Research methodology to ana-

lyze students' motivations and strategies when using code examples during open-ended

programming, using an aggregation of log, think-aloud (Chapter 3). Next, I deployed the

Prototype Example Helper system to an introductory programming classroom, where I in-

vestigated the speci�c challenges students experience when using those examples. I found

that students encounter the following barriers: 1) many students do not use examples even

when they need help (decision barrier), perhaps due to the lack of personalization of the

examples' content, or due to the lack of awareness or trust towards the code examples. 2)

They encounter dif�culties in describing which examples they want when searching (search

barrier). 3) When they �nd an example they need, they encounter barriers to map a property

of the example to the property of their own code, as the example is presented in a different

context than the students' own code (mapping barrier). 4) When learning an example, they

also encounter dif�culties understanding the example code (understanding barrier). Lastly,

5) they need immediate access to modifying and testing each code examples, which the

Prototype Example Helper did not offer (testing barrier).

3

1.2.2 Addressing the challenges in two different dimensions.

In Chapters 5 and 6, I present two new systems that I have built to address the challenges

students encounter during example reuse.

• Example Helper (Chapter 5).I completely redesigned Example Helper to address the

challenges identi�ed in Chapter 4, such that the system includes immediate search

results, autocomplete suggestions, and direct running and modi�cation support in

the example browsing and testing interface. I conducted a quasi-experimental study

on the usage of Example Helper for creating open-ended programming projects, and

found that Example Helper helped students to integrate more examples into their

own code compared to its prior prototype.

• Pinpoint (Chapter 6). Pinpoint is a system that helps Snap programmers to understand

and reuse an existing complete program by isolating the code responsible for speci�c

events during program execution. Speci�cally, a user can record an execution of

the program (including user inputs and graphical output), replay the output, and

select a speci�c time interval where the event of interest occurred, to view code that

is relevant to this event. Students can search and identify a subset of code blocks

from a complex example program. I conducted a lab study with 17 students, and

found suggestive evidence that Pinpoint improves students' ability to integrate code

examples into their own projects. The students explained forming more con�dent

hypothesis about a code segment's runtime behaviors, employing more focused,

targeted example learning approach, and connecting different code segments more

easily using Pinpoint.

These two systems are complementary and address barriers students encounter at

different phases of project-making. 1) To address the decision barrier , I increase students'

awareness and trust towards the code examples, by including students in the process of

example co-creation. Pinpoint extracts code examples based on students' own toggling of

an execution trace. 2) Pinpoint also addresses the search barrier, by extending the modes

of example search from simply typing text in a searchbox, to also include allowing students

to �nd examples by drawing storyboards or searching within larger example projects. 3)

To address the understanding barrier , Pinpoint uses highlighted code blocks to directly

map the executing code to its corresponding output. 4) Lastly, to address the testing barrier ,

Example Helper allows students to quickly access, run and modify examples from within in

the example browser.

4

1.2.3 An Evaluation of Having Access to Examples in Open-Ended Pro-

gramming

In Chapter 7, I discuss a controlled study, which aims to evaluate the effect of having access

to code examples on novices' open-ended programming experience, including their 1)

project complexity, 2) self-perceived task load and creativity, and 3) learning outcomes. I ran

a controlled study in a full-day coding workshop, with students recruited from local high

schools. The examples were provided through EXAMPLE HELPER, on which students can

search, select, test and use an example from a gallery of code examples. Going beyond the

system evaluation studies discussed in Chapters 5 and 6, this work measures the impact of

example use in a longer (3 hours), ecologically valid learning setting (a day camp classroom),

where students made a project from start to �nish, which they had the freedom to design and

plan themselves. Further, I not only investigate the extent of API use from code examples, I

also investigate how access to examples affects the complexity of students' projects, their

post-task performance, and students' perceptions of task load and creativity.

1.3 Research Questions

This work investigates the following 3 high-level research questions:

• RQ1:What are novices' motivations, strategies, and barriers when using code examples

during open-ended programming? . This RQ is addressed in Chapers 3 and 4, where I

discuss the phenomena of example reuse during open-ended programming, and the

key barriers students encounter when using code examples.

• RQ2:How can we design code examples to address students' decision, search, mapping,

understanding, and testing barriers? This RQ is addressed in Chapters 5, 6, where I

discuss the design and deployment of two complementary example support systems

to address the above learning barriers.

• RQ3:What is the impact of having access to code examples on students' open-ended

programming? This RQ is addressed in Chapter 7, where I discuss the evaluation of

the Example Helper system, and evaluate its impact on students' project complexity,

self-perceived task load and creativity, and learning outcomes.

5

1.4 Contributions

The contribution of this proposed thesis includes:

• A systematic analysis of the goals, strategies, and barriers novices experience or

encounter when using code examples during open-ended programming.

• The design and deployment of two interconnected systems, which support, respec-

tively, just-in-time example extraction (Pinpoint); and testing-centered example inte-

gration (Example Helper); each addressing one or more barriers students encounter

during example reuse;

• The empirical evaluations of the impact of these example support systems on stu-

dents' programming performance and perceived creativity;

6

CHAPTER

2

RELATED WORK

I discuss the Related Work in two parts. First, I discuss the open-ended programming

context, which situates my work. Next, I discuss prior work on code examples, and the gaps

between prior work and my proposed thesis.

2.1 Open-Ended Programming

The �rst step towards creating learner-centric tools, such as those presented in this work, is

to understand students' own needs and practices [Guz15]. In order to understand how to

build tools to support open-ended programming, I �rst review the bene�ts of open-ended

programming, exploratory programming behaviors, and the challenges they may encounter

when making open-ended programming projects.

Open-ended programming allows learners to integrate personal interests into creating

an artifact that is meaningful to them. Many efforts to promote open-ended programming

draw on the theory of Constructionism [Pap80], which suggests that learners effectively

build their own knowledge structure when engaging in creating a programming artifact

they feel connected with [Pap80]. In many introductory programming curricula, the process

7

of completing an open-ended project includes the multiple phases of student-centered

activities, where students generate ideas, make designs, discuss plans, and implement their

solutions [Mil21].

Prior work also has summarized two key types of challenges novices encounter when

making open-ended programming projects. The �rst is the cognitive challenges towards the

self-directed process of designing, planning, and building an open-ended project [Wri07],

which requires self-regulatory skills [Win11], focused attention [Wri07] and high levels of

engagement [Kok16]. Prior work has shown that students encounter barriers in multiple

phases of the self-driven activities of designing and building a programming artifact. For

example, Marx et al. conducted four case studies with middle school teachers, and dis-

cussed multiple barriers towards a project-based learning approach, such as dif�culties to

engage students throughout the time-consuming process of goal setting, planning, and

implementation [Mar94]. Aldabbus conducted a qualitative survey and interview study with

24 teachers in multiple disciplines on their classroom experience of project-based learning,

and found that 3 / 4 of the teachers were unable to implement project-based learning with

their students, and discussed challenges including students seeking for expedient solu-

tions, rather than meaningfully engage in the problem-solving process [Ald18]. This shows

that students need external support when completing multiple phases of open-ended

programming, including design, planning and code implementation.

The second type of challenge novices face when making open-ended programming

projects relates to the dif�cult process of building a complete, functional programming

artifact, which requires organizing and implementing many different programming con-

cepts and API knowledge. Prior work has discussed many challenges when novices build

an open-ended programming project. 1) They may struggle to design “logically-coherent”

programming components, and may start by putting together all possible code elements

that seemed relevant [Mee11]. 2) Their programs may suffer from code smells such as dupli-

cated code [Rob17]. 3) Their �nal artifacts were shown to be lack of usage of fundamental

programming concepts (e.g., variables, operations), from a systematic evaluation of 80

novices' open-ended projects collected from 20 urban middle school classrooms [Gro18].

These show struggles to apply existing concepts into code, or to explore new programming

concepts or APIs. Kirschner, Sweller, and Clark summarized through a literature review

that open-ended discovery may lead to experiential learning, where learners rely heavily on

trial-and-error instead of learning new knowledge [Kir06]. These challenges encountered by

novices during open-ended programming are examples of “Play Paradox” [Nos96], which

explains that learning activities should strike a balance between creative exploration and

8

some levels of external support [Nos96]. This shows the need for supporting open-ended

programming with information and materials that demonstrate API knowledge and code

usage patterns.

2.2 Code Examples

Prior work on code examples for novice programmers focus primarily on supporting stu-

dents to complete closed-ended programming problems, where they are asked to make

a program to complete a set speci�cation [Gro14; Zhi19; Wan20c]. In this discussion, I

�rst summarize the Worked Example effect , and discusses evidence of the effect of code

examples to support learning and programming performance. However, little research has

focused on the open-ended programming context, which adds speci�c challenges towards

example use. I �rst review related work on code examples for closed-ended programming

tasks, which sets the foundation of my work. I next discuss the literature on using code

examples for open-ended programming, and discuss the challenges for code reuse in this

context.

2.2.1 Code Examples for Closed-Ended Programming Problem

The Worked Example Effect

Worked Examples (WEs) are a form of instructional support, which give students a demon-

stration of how to solve the problem [Cla11]. WEs are traditionally offered in lieu of problem

solving, usually “before” or “after” a student solves a distinct but related programming task

[Bru01; Tra94]. The effectiveness of WEs is primarily grounded in Cognitive Load Theory,

which argues that learners have a �nite amount of mental resources during problem-solving

(called cognitive load), and when problems impose an unnecessary burden on those re-

sources (intrinsic load), the student has fewer resources left for processing and learning the

material (germane load) [Swe88]. WEs support learning by providing support for “borrow-

ing” knowledge, reducing the unnecessary intrinsic load [Swe06]. Programming learning

environments use WEs widely. For example, WebEx provides web-based self-explaining

code examples for students [Bru01]. Such programming WEs could help students learn the

problem-solving schema [Gen03] and transfer it to another task [Tra94]. Trafton et al. evalu-

ated 40 undergraduate students' post-test scores after programming in BATBook, a Lisp

programming learning environment, and found that those with alternating WE and prob-

9

lem solving (PS) pairs performed better than those with PS pairs [Tra94]. However, another

group, who saw all WE problems, followed by all PS problems (not in pairs), solved problems

signi�cantly slower, and achieved signi�cantly lower post-test scores. These results show

the promising bene�ts of using examples to support learning and performance.

Code Example Systems for Closed-Ended Programming Problems

Based on the theory of the Worked Example Effect, prior work discussed several systems

that used code examples to support completion of closed-ended programming problem.

For example, my own prior work explored offering step-by-step examples with options to

immediately run the example code [Wan20c]. Other systems offer an online database of

annotated examples [Bru01]. Peer Code Helper offers such step-by-step code examples from

the same task, during block-based programming [Zhi19]. An evaluation on 22 high school

novice students showed that students using these code examples solved tasks quicker than

those without, without hindering their learning [Zhi19]. The FIT Java Tutor [Gro15] provides

such step-by-step code examples for Java programming. Investigation on �ve students'

programming experience showed that students occasionally followed the feedback and

improved their program over time [Gro14]. However, novices also encountered a number of

challenges when understanding code examples. For example, Looking Glass provides stu-

dents with annotated code examples from a similar task during block-based programming

[Ich15]. However, learners had dif�culties understanding these examples in Looking Glass,

encountering “example comprehension hurdles” while trying to connect example code

to their own code [Ich15]. In a study evaluating 23 students' experience with step-by-step

code examples offered during Java programming, students barely followed the examples,

reporting them being “unspeci�c and misleading” [Coe17]. Therefore, more work is needed

to design new forms of example feedback, to improve students' understandings of code

examples, and connect code examples more closely for students' own program [Col88].

2.2.2 Code Example Systems for Open-Ended Programming

Example Use During Open-Ended Programming

I �rst review the types of example reuse behaviors during open-ended programming. Open-

ended programming practice is a type of exploratory programming, which is de�ned as

practices, of which the goal is “open-ended”, and “evolves through the process of pro-

gramming” [Ker17b]. Different from programming tasks with a �xed goal or speci�cation,

10

exploratory programming typically includes many exploration / experimentation-based

activities, such as bricolage, tinkering, sketching, and hacking [Ber16; Ker17b]. In a system-

atic literature review across various types of exploratory programming practices, Kery and

Myers summarized that, different from non-explorative, speci�cation-based programming,

in exploratory programming, programmers engage in the following three key types of dis-

tinguishing activities [Ker17b]: 1) Opportunistic programming, where programmers rely

heavily on code examples found from online resources, and often use functionalities such

as copy-and-paste to patch together example code into their program [Bra09]. 2) Debugging

into existence: After directly copying code found from online resources, programmers de-

bug those code until they work correctly in their program [Ros93]; and 3) Rapid prototyping,

where programmers iteratively create, test, and experiment with a prototype at an early

stage of the programming process [Har08; Ker17a]. Based on these key distinguishing activ-

ities, Kery and Myers suggested building tools to support exploration and experimentation

among exploratory programmers [Ker17b].

Little prior work has developed code example systems to support open-ended program-

ming. To increase awareness of API usage patterns, Ichinco, Hnin, and Kelleher used a set

of static rules to automatically check programs and �nd opportunities to prompt code

examples that demonstrates a speci�c API use (e.g., for how to use a code block). In a study

with novice students making open-ended programming projects, the group of students who

have access to these static code examples used these suggestions twice as much comparing

to the group who used documentations instead of code examples, and included those new

API methods from code examples more frequently. This work shows the potential of using

code examples to support open-ended programming.

However, related work only discussed authoring static code examples when supporting

open-ended programming [Ich17], and is lack of investigation in the following aspects: First,

during open-ended programming students may use a wide variety of APIs and features,

in various combinations. Therefore, it is dif�cult to anticipat e all possible choices of

examples students may need. This suggests the need for more personalized or automatically

generated examples. Second, examples present a different context from the students' own

work, which has been shown to cause “example comprehension hurdles”, as students

encounter challenges to connect example code to their own code [Ich15], which raises the

question of how to generate code examples that best suit students' needs and are easier to

understand. Finally, related work only focused on direct measures of whether the example

were used by the students, but not how it affected the students' project-making outcomes.

11

2.2.3 Code Examples for Informal Learning Settings

In informal learning and project-making context, code examples are also one of the pri-

mary resources students and end-users use to learn programming knowledge and API

usage patterns [Bra09]. Such an example usage scenario arises when a programmer feels

in need of resources in the middle programming. They search for a code example (e.g.,

through documentation or forums) [Bra09], and then integrate the example to their project

through testing and modi�cation [Bra09]. Prior work has shown that, different from learning

traditional Worked Examples [Cla16], where programmers engage in deliberate learning

of a step-by-step demonstration beforeworking on the actual task [Mor15; Tra94; Pir94],

learning an example in the middle of programming is a type opportunistic learning [Bra09;

Gao20], where programmers search, select, and copy code examples to “get something

to work with”, and then brie�y test or modify to integrate examples into their own code

[Ros93]. When investigating experienced programmers' opportunistic learning, Rosson

and Carroll found that these programmers made effective use of examples to complete

functionalities that they were unfamiliar with, but many don't re�ect on how the example

works [Ros93]. They may also struggle to apply or extend examples afterwards [Tha20].

While this explains the experts' opportunistic learning of code examples, and described

how experts can encounter dif�culties in using and applying code examples, it is unclear

how this theory will extend to novices.

Code Reuse Behaviors

A key phase of using examples during open-ended programming is code reuse, which refers

to the process of identifying useful components of example code and integrating them

into one's own program [Hol09]. Programmers reuse code examples for different purposes,

such as exploring ideas, understanding implementation details, and debugging their own

code [Wan20c]. Learning from code examples before or while making a similar program

has been shown to help students not only complete the program faster [Zhi19], but also to

perform better on a concept-related posttest [Tra94], and to effectively learn how to use

APIs later in their own code [Ich17].

Holmes et al. conducted four case studies on programmers' process of code reuse, and

characterized the reuse process into two stages: 1) locating and selecting and 2) integrating

[Hol09]. During the locating and selecting stage, programmers need to navigate through a

complete example program to �nd relevant areas of interest [Hol09]. This process can be

challenging for both experienced and novice programmers. For example, Ko et al. found that

12

in this selection stage, software developers begin by searching for relevant information, but

they often make use of limited and misrepresented cues in the program or the environment,

causing failed searches [Ko06]. Similarly, Gross et al. conducted an observational study for 14

novice programmers to identify code responsible for a target functionality, and found that

they engage in a cyclic search process of 1) generating assumptions based on a search target

in the code or output, and then 2) read and search code to adjust or expand the potential

code region relevant to the target functionality. These programmers frequently made false

assumptions and failed 59% of the code identi�cation tasks [Gro10a]. These results suggest

that programmers need support that helps them make more accurate assumptions when

relating functionality to a relevant code segment.

During the integration stage of code reuse, programmers need to adapt and integrate

the selected code into their own program [Hol09]. During this process, programmers may

directly copy a subset of an example code to their own code, or may re-implement a func-

tionality by themselves after reading and learning an example [Wan22]. Prior work has

identi�ed many barriers programmers encounter when integrating example code [Wan21].

For example, Wang et al. analyzed 44 novice programmers' example integration process,

and found that these programmers encountered barriers in understanding how to integrate

an unfamiliar code block into their own context, mapping the functionality of a part of an

example to their own code and modifying the example to �t their own needs [Wan21]. Wang

et al. also found that students prefer smaller code examples with few or no unfamiliar code

blocks [Wan21]. This shows the need to craft examples into smaller, comprehensible code

segments, so that students may understand a speci�c segment before integrating it into

their own code.

Remixing in Scratch

To support code reuse, the Scratch online program community is built on the culture of

remixing [Das16], where users can reuse another program by making copies of an existing

Scratch program and make modi�cations to build their own code [Kha19]. Remixing al-

lows programmers of diverse background and programming skills to creatively collaborate

with one another asynchronously [Mon07], so that they may share ideas, and learn new

skills and techniques from one another [Roq16]. In the online communities offered by

Scratch and other novice programming environments (e.g. Snap !), many programmers

start programming by using another project and modifying it to make their own version

[Kha19]. As a result, a large portion of projects in Scratch are remixed projects [Mon12].

13

However, empirical research has found many issues with remixed programs, speci�cally in

the online Scratch community, pointing to potential challenges programmers encounter

when remixing. Remixed programs can lack transfer of API knowledge from the original

program to the remixed program. For example, Khawas et al. analyzed 8142 Scratch projects

remixed from 160 original programs to inspect evidence of learning of Scratch API knowl-

edge (cloning and procedures), and found that the remixed programs failed to use the

cloning APIs correctly when needed even when the original program used clones; and the

majority (98.6%) of remixed programs did not create new procedures when remixing from

an original program that uses procedure [Kha19]. As a result, Hill and Monroy-Hernandez

collected and analyzed peer rating data on more than 1 million scratch projects in the

online Scratch community, and found that the remixed projects were rated lower by their

peers. This con�rms that remixers tend to be lower skilled and may need help with program

comprehension and integrating their own code. Similarly, Amanullah and Bell conducted

an analysis on 9141 Scratch users' programs, and found that even when programmers ob-

served a sophisticated API usage pattern (e.g., Process All Items) when remixing another's

program, they generally did not use them later in their own original programs, and that

many remixing users copy the original program without understanding it [Ama19]. This

suggests the users need to understand a program in order to apply and modify it in their

remixing programs, or transfer the usage of programming concepts from the remixing

program to their own future programs.

Supporting Code Comprehension

Code comprehension refers to the process of programmers building a mental model of

how a piece of code works [Von95; Gro10a]. Von Mayrhauser de�ned that a key cognitive

process during code comprehension is generating a hypothesis of the causal effect from

a code segment to its output [Von95]. Programmers of different levels may all form an

incorrect hypothesis, but experts discard questionable hypotheses and form correct ones

more quickly than novices [Von95].

Prior work has developed tools to support program comprehension for programming

education and end users. For example, Python Tutor visualizes stack traces for students to

see internal data representations of the program state [Guo13]. However, it is not designed

for complex user inputs and graphical output of games and apps. Whyline in Alice [Coo00]

helps users to ask why and why not questions for debugging their own code [Ko04a]. How-

ever, it can only answer object-speci�c questions such as “Why did Pacman resize .5?”, but

14

not “object-relative” [Ko04a] questions such as “Why did Pacman resize after the Ghost

moved”, which were frequently asked by Alice programmers [Ko04a].

Some prior work applied record / replay systems to help users understand or debug

programs [Gro10b; Bur13]. Timelapse is a record / replay-based tool for debugging web

applications, which points to the users the lines of code responsible for a point of interest

during the recorded trace [Bur13]. Similarly, Gross et al. developed a record / replay tool

to help users in Looking Glass to record and select the timeframe of interest during the

playback. The system then highlights the code responsible for the timeframe [Gro10b].

However, both interfaces only highlight the lines of code responsible for the selected time

frame in the output, but do not extract an executablecode slice from the program.

15

CHAPTER

3

NOVICES' MOTIVATIONS AND

STRATEGIES FOR USING CODE

EXAMPLES IN OPEN-ENDED

PROGRAMMING

3.1 Introduction

Code examples are one of the primary sources of information that programmers of all

skill levels use to acquire programming knowledge and learn language usage patterns

[Rob09; Bra09; Par11; Lan89; Bai20]. In particular, novice programmers stand to bene�t

from programming examples, which can introduce new programming concepts [Mor15;

Tra94; Pir94; Wan20c], and scaffold users to create more complex and interesting programs

[Ich17]. However, prior work on systems that support novices' example use have identi�ed a

variety of barriers encountered by students, such as dif�culties to understand the example

code, to integrate the example code to their own code, and to modify the example towards

16

their own goals [Ich15; Wan20c].

These barriers raise questions about how systems can more effectively support novices'

example use. To do so, it is important to understand situations in which novices are asking

for and using examples. Speci�cally, we aim to investigate students' motivations for using

examples, as effective support systems must directly address these motivations [Guz15]. For

example, a student who is using examples to implement a feature may need very different

support from a student using examples to verify their work or generate ideas. Additionally,

we investigate students example use strategies because systems should encourage effective

strategies, and discourage less effective ones [Ko11].

In this work, we ask the research question: What are novices' motivations and strategies

for using examples when creating open-ended programming projects? We choose to

focus on open-ended projects, because these projects attract students of varying interests

by allowing them to pursue goals that feel meaningful to them [Guz05], and are therefore

widely used in many introductory programming curricula [Gar15; McG18; Gro18] as well as

after-school, informal learning settings [Pep07]. However, students are also known to face

a number of barriers to incorporate challenging new programming patterns and APIs in

open-ended programming [Gro18], which code examples that demonstrate such knowledge

may help to overcome [Ich17].

We conducted our study with 24 high school novice students as they created open-ended

programming projects. While making these projects, students were able to search, browse,

view and copy code examples from a system called Example Helpe [Wan21], an example

support system designed for open-ended programming in Snap ! [Moe12]. We analyzed

video, interview, logs, and project submissions, identifying 5 distinct motivations and 4 key

strategies that students employ when using examples. We also found that students almost

always use somestrategy, but that when they instead simply copy the example without

modi�cation, this rarely leads to successful integration. Students also reported examples

being helpful for their performance on current and future tasks, which is supported by

student outcomes in our study. Based on these �ndings, we then propose a set of design rec-

ommendations to facilitate students' learning through creative design and planning, active

code reconstruction, and comparison-based knowledge integration. Our key contributions

are:

• An analysis of novices' motivations and strategies when using code examples in

open-ended programming.

• Recommendations of design opportunities for systems to incentivize effective learn-

17

Figure 3.1: The Example Helper Interface.

ing from active use of examples.

3.2 Example Helper System

The design goal of Example Helper is to allow students to view and incorporate existing

programming patterns into their own code through effective use of code examples. To lower

the barrier for making these programming projects [Mor11], the system is incorporated into

Snap! [Moe12], a novice programming environment. Similar to other novice programming

environments (e.g., Scratch [Res09]), Snap! already offers open-source galleries of complete

programming artifacts from other programmers, but these are complete projects which

demonstrate many related programming features. By contrast, Example Helper offers small

snippets of code examples [Rob09] that demonstrate speci�c functionalities, collected in a

curated, browsable gallery. We developed this curated set of examples through an analysis

of students' programs from prior semester, extracting key program features that were shared

across students, and built these as examples. Many of these key features include usage of

multiple sprite interactions 1 (e.g., in a collision event), we therefore also included examples

that include usage of multiple sprites. Two experts then reconstructed examples from this

repository to include cleaner and higher-quality code. When a student needs an example

during programming, they can click on a “show example” button within the scripting area

1A sprite in Snap ! is an object (i.e., in object-oriented programming) that has its own code (scripts),
costumes (e.g., a button), and variables.

18

of Snap! to open a gallery of code examples. The student then follow two steps to select

and use an example within their own source code:

Step 1: Search for an example. The student can �nd an example by: browsing through the

gallery; or �ltering and search for examples by clicking on a tag, or querying in a search

box. The search box �nds a set of examples the student need by looking for words that

overlapped in the examples' names. To visually understand the functionality of the example,

the student may also hover on the example to look at the gif animation of the code's output.

Step 2: Use an example. After �nding a needed example, the student can click on the gif

animation, and learn the example using the following steps:

Read the code in relation to the output. The student may click on different sprites to

look at the example code for each sprite (shown in Figure 3.1). They may also look at the

animation of the output next to the example code, since reading code in relation to output

has been shown to trigger students to re�ect on how the example code works [Wan20c]. The

student can also click on the “Open the Project” button to view the example in a separate

window and experiment with it.

Write a self-explanation. The student can re�ect on the example by writing down a

self-explanations: “What in the code here creates the effect that you see in the animation?”.

We designed self-explanation prompt because self-explanation is a critical step towards

learning from an example [Tho20; Atk03], since it promotes students to stop and think

deeper about the code example [Ale16; Ger04].

Copy the example code. To allow students to test and modify the example easily, after

writing their self-explanation of the example, the student may then drag and copy the

example to their own code. To discourage students from immediately copying the code

without thinking about it, we restricted the length of the self-explanation answer to be at

least 30 characters.

3.3 Study Setup

Our study setup aims to collect multiple sources of data to record novices' example-usage

experience, in an authentic, engaging open-ended programming experience.

3.3.1 System

We built a system called Example Helper, which adds a “show example” button on the

Snap! editor, showing a gallery of examples upon request (Figure 3.2). Example Helper is

19

Figure 3.2: The Example Helper Interface.

particularly suitable for our goal to analyze novices' example use, for three key reasons:

High-quality examples

Example Helper includes a curated gallery of high-quality code examples, collected from a

systematic analysis of common game behaviors students make in open-ended program-

ming, and re�ned by expert researchers for the purpose of readability and integration of

advanced programming concepts (e.g., lists).

Supports for searching, copying, and testing example code

Example Helper is designed speci�cally for supporting open-ended programming, where

students may need to learn to use and integrate new concepts and code patterns on their

own [Gro18]. This process of searching for and learning programming knowledge is de-

scribed by the COIL model [Gao20], which includes information collection & organization;

and solution testing. Students are provided with supports for all these three elements by

Example Helper. First, a student can search for an example (information collection): When

clicking the “show example” button, students see a gallery of examples, where they can

20

browse; search over a search box; or �lter examples based on tags. Next, when they �nd an

example and click to open it, they can read or copy code (information organization): when

reading, the student can navigate through codes on different sprites 2, shown by different

tabs in the example interface (Figure 3.2). They may also copy example code by dragging

it to their own code. Last, to test code, they may run copied example code in their own

program, or open the example code in a separate window by clicking on the “open the

project” button (solution testing).

Prompts to self-explain

When reading an example, the student may answer a self-explanation prompt: “Why does

the code here create the effect you see in the animation?”. After typing 30 characters, they

can copy the example code by dragging blocks to their own workspace. Example Helper

encourages this self-explanation process, as it has consistently been shown to aid learning

from examples [Shi08; Atk03; Wan20c].

3.3.2 Participants & Procedure

We held our study in a summer internship program, which aimed to teach high school

students programming, and creating computing-infused projects for middle and high

school teachers. The program was held online due to the COVID-19 pandemic. Our par-

ticipants included 24 high school students in the program, 7 males and 17 females, who

self-reported as 2 White, 2 African American, 17 Asian, 1 Other, 2 Multiracial. The researchers

who conducted the study were not directly involved with the internship program outside

of instructing students during the study.

Our study occurred in the �rst 3 days of the second week, described below, before which

students completed a one-week coding bootcamp to program in NetsBlox [Bro17]. We

designed a controlled study with alternating conditions, where the Early group (n = 7 pairs)

having access to examples only on Day 2, and the Late group (n = 5 pairs) having access to

examples only on Day 3 3. A researcher demonstrated how to use Example Helper, but stu-

dents were not speci�cally prompted to use examples. To ensure an authentic and engaging

learning experience, students pair programmed in Days 2 & 3, as pair-programming has

2A sprite in Snap ! is an object, such as an actor in a game.
328 students attended the study, based on which we assigned 7 pairs in each group. However, 2 students

from 2 separate pairs in the Late group did not consent, we therefore excluded the two pairs' data from
analysis.

21

been shown to promote higher performance for novices during open-ended programming

[Gro18], and is a standard practice in many real-world classrooms [Lew11; Lyt20; Tsa21].

We, therefore, analyzed students in pairs.

Day 1: warm-up activity to assign groups & pairs

Students did a Snap ! -based warm-up activity on Day 1, where they programmed 18 short,

closed-ended tasks, including drawing shapes and programming multiple-sprite interac-

tions, using loops and conditionals [Wan20b]. We ranked students' performance based on

the time each student spent completing the warm-up activity, and used this rank to balance

groups, such that each group had a similar average performance. We also assigned students

with adjacent ranks into the same pair, which can promote better learning outcomes for

the pairs [Lew15].

Day 2 & 3: building games

On Days 2 & 3, students built games with two different themes – breakout and space-

invaders, respectively. These two themes include features such as the player interacting with

a larger group of sprites (e.g. bricks, enemies), or collision causing them to disappear. These

themes were suitable open-ended tasks, as they required the usage of many concepts (e.g.,

loops) and APIs (e.g., cloning in Snap !). Additionally, they provided �exibility and variability

in game design [Hun04] (e.g., adding new actors with different roles, and designing levels),

allowing students to incorporate their own choices and goals. To foster creativity, we started

Days 2 & 3 by introducing a variety of breakout / space invader games, retrieved from the

online Scratch community [Mal10; Wan20a]. We did not require any speci�c features in

games, and encouraged students to make unique and creative artifacts.

Interviews

To understand students' own perceptions, at the end of Days 2 & 3, we invited each pair to a

15-minute semi-structured interview, where they discussed their experience by answering

questions such as “Describe a scenario where you have requested a code example”. When

students used vague terms such as “helpful”, we encouraged them to describe a concrete

example usage scenario they experienced.

22

3.4 Analysis

We analyzed our data using the “Case Study Research” [Yin17; Ham12] method, a systematic

approach to research “decisions” – “why they were taken, how they were implemented,

and with what result” [Sch71]. Yin proposed that these “why” and “how” questions require

tracing over time, and are therefore dif�cult to be summarized as incidents or frequencies,

but rather require analysis from a time-series-based perspective, collecting data from

multiple sources to describe phenomena with their own context – “cases” [Yin17].

Data Organization. To ensure construct validity [Cro55], we collected and organized data

following the 3 principles by Case Study Research: 1) We collected data from “ multiple

sources” [Yin17], including: a) video recordings of students' screen, including transcriptions

of pair conversations; b) interview transcriptions; c) logs, including students' code and

activities (e.g., each code edit) at every timestamp; and d) students' �nal submissions. 2)

Since we focused on analyzing example usage, we de�ned each example request as a single

“case”, and created a “ case study database ” [Yin17] of all 88 example requests. For each

request, we compiled a “case pro�le”, including the data from sources (a) – (c). Because we

encouraged students to describe concrete scenarios (Section 3.3), most interview quotes

map to speci�c example requests, though some do not – for those interviews that describe

students' general experience, and for data source (d), we 3) established a “ chain of evidence ”

[Yin17] by linking interview and submissions to the case pro�les of corresponding pairs, to

enable tracing back / forward between different data sources and analysis stages [Yin17].

Analysis. We next analyzed data to investigate our research question on novices' motivations

and strategies, following the 2 analytic techniques by Case Study Research.

Finding “patterns” [Yin17] from logs

A“pattern” describes cause, effect, or events that relate to the central phenomenon of

interest [Yin17]. As log data captures most precisely students' experience comparing to

interviews, which may suffer from response bias and inaccuracies [Del12; Pau91], we start

our analysis of cases �rst on their log data, a commonly-used primary data source to

analyze programmers' [Bra09], end users' [Ko04b] including novices' [Ich15] programming

experiences.

We �nd patterns of situations where students ask for examples, based on two types of log

data: 1) the code students have to complete a feature demonstrated by an example before

asking it (called “starter code”); and 2) the activities students engaged in with examples –

23

whether they attempted reusing the example code, or they immediately closed examples.

These two data types have been shown by prior work [Wan20c] to describe students' goals

for requesting examples. For example, we can infer a “debugging goal” when a student had

buggy code and used example to locate changes to make. Based on these two data types,

we identi�ed 5 situations where students ask for examples (e.g., “when starting a step”).

Similarly, we look for patterns of strategies by analyzing students' programming activi-

ties in logs. From the case database of 88 requests, we �rst �ltered out 41, where students

immediately closed the example after opening. For the remaining 47, we analyzed those

repetitive requests of the same example in aggregate, creating a total of 29 sets of example

requests. We started with a detailed account of all activities pairs engaged in when using

examples, such as the time when the student started programming the relevant feature,

their starting code, the programming behaviors they engaged in while using examples

(e.g., “copied block x from example code”), with timestamps, students' conversations (cap-

ture by the videos), the students' �nal code after completing (or abandoning) the feature

demonstrated by the example (called “�nal code”) and their comments in the interview

when available. One researcher coded thoroughly these documents, generating 7 initial

patterns of strategies. The researcher next worked with another researcher to merge similar

strategies, generating 4 strategies, and created de�nitions of these strategies. The researcher

next re-coded these documents again to con�rm these strategies and label each example

request with its corresponding strategies.

Building “explanations” [Yin17] from conversations, interviews and submissions

Based on the found patterns, we build explanations for two goals: 1) To �nd evidence from

students' conversations and interviews to explain motivations and strategies. Towards this

goal, we coded the conversations and interview data on each case pro�le to look for presence

of existing patterns, and examine whether new patterns appeared. Based on the situations

of when students ask examples, we used evidence from conversations and interviews to

explain motivations . This extra data con�rmed our identi�ed situations and strategies,

adding students' perceptions of causes and effects of their example usage motivations and

strategies. We used this data to re-code all case pro�les the third time, con�rming that

students' discussion were accurate at describing their example reuse scenarios.

2) If students' needs were met and their strategies effectively used, we would �nd ex-

amples not only supporting students' individual requests, but also helping them to create

more complex and creative projects. We therefore analyzed all students' project submis-

24

Table 3.1: 5 situations where students ask for code examples and their frequencies among
a total of 88 example requests.

?When browsing / exploring 38.6%
When starting a step 29.5%
When debugging incorrect / incomplete code 22.7%

?When �nished with a step 8.0%
?When re-implementing a step 1.1%

sions, following the approach by Catete et al. on developing scienti�c rubrics [Cat18]. Two

researchers independently examined all student programs to generate lists of all features

created by students in their programs, with each feature to 1) describe a distinct behavior of

the game and 2) could be adapted to other game design tasks. This created a total of 23 and

25 features for breakout and space invaders respectively. Examples of such features include

“an actor moves with a key pressed” and “increase score when one actor hits another”.

The two researchers then graded each student program by how many features in the list a

student program completed. This result is discussed in Section 3.5.4.

3.5 Results

3.5.1 Motivations: Why do students ask for examples?

Table ??shows 5 distinct situations when students requested examples. Among the 5 sit-

uations, 2 were discovered by prior work as students' motivations for using examples in

closed-endedtasks[Wan20c]; others (denoted with ?in the table) correspond to new, distinct

motivations that arise from our analysis, potentially due to the context of open-ended pro-

gramming. For each example-use situation we report, we also identify students motivations ,

reported in the interview data, that corresponded with these situations.

Many example requests (68.1%) come from students who opened an example about a

new feature not implemented in their code. Some students may have a browsing / exploring

motivation (38.6%), as evidenced by opening and closing the example, without attempting

to integrate the example to their own code. Students in interviews described that they

“scrolled through the gallery” to “choose our examples”, by “click [ing] on it” to open and

check “ if it looked like something in I would be using "[E6].

Others tried to integrate the example into their own code (29.5%), showing example

25

	List of Tables
	List of Figures
	Introduction
	Motivation
	Research Outline
	Understanding students' needs and challenges during example use
	Addressing the challenges in two different dimensions.
	An Evaluation of Having Access to Examples in Open-Ended Programming

	Research Questions
	Contributions

	Related Work
	Open-Ended Programming
	Code Examples
	Code Examples for Closed-Ended Programming Problem
	Code Example Systems for Open-Ended Programming
	Code Examples for Informal Learning Settings

	Novices' Motivations and Strategies for Using Code Examples in Open-Ended Programming
	Introduction
	Example Helper System
	Study Setup
	System
	Participants & Procedure

	Analysis
	Results
	Motivations: Why do students ask for examples?
	Strategies: How do students learn and use an example?
	An in-depth example
	Outcomes of example use

	Discussion
	Support design and planning for creating complex projects
	Encourage effective example learning strategies

	Limitations & Conclusion

	Novices' Learning Barriers When Using Code Examples in Open-Ended Programming
	Introduction
	Example Helper System
	Participants & Procedure
	Analysis
	Results & Discussion
	Limitation & Conclusions
	Acknowledgements

	Exploring Design Choices to Support Novices' Example Use During Creative Open-Ended Programming
	Introduction
	The Example Helper System
	Interface Design
	Example Content Design

	Methods
	Participants & Procedure
	Data & Analysis

	Results & Discussion
	RQ1: How did students use examples?
	RQ2: Who used examples?
	RQ3: To what extent did our design choices address students' learning barriers?

	Limitations & Conclusion
	Acknowledgements

	Pinpoint : A Record, Replay, & Extract System to Support Code Comprehension and Reuse
	Introduction
	Related Work
	Code Reuse
	Supporting Code Comprehension & Reuse

	System Design Goals & Formative Study
	The Pinpoint System
	The Pinpoint Design
	Pinpoint Implementation

	Methods
	Participants and Study Design
	Materials: Two Reuse Assignments

	Data Collection and Analysis
	Pretest
	Task Performance
	Qualitative Interview Analysis

	Results and Discussion
	RQ1: What was the impact of Pinpoint on students' ability to extract and reuse code from an example?
	RQ2: What are students’ perceptions of their reuse experience?

	Conclusions and Future Work

	Investigating the Impact of On-Demand Code Examples on Novices' Open-Ended Programming Experience
	Introduction
	Related Work
	Open-Ended Programming
	Code Examples
	Open-Ended Programming
	Code Examples

	Methods
	The Example Helper System
	Participants & Learning Context
	Procedure
	Measures

	Results
	Discussion & Conclusion

	Conclusion
	Research Questions
	Research Question 1
	Research Question 2
	Research Question 3

	Design Principles & Future Work
	Contributions

