
ABSTRACT

YUAN, SHOUGANG. Bandwidth-Efficient Secure Memory Designs for GPUs. (Under the
direction of Dr. Huiyang Zhou).

Wide adoption of cloud computing makes privacy and security a primary concern.

Although recent CPUs have integrated secure memory architecture, such support is still

missing for GPUs, a key accelerator in data centers.

In the first work, we explore two secure memory architectures, counter-mode encryp-

tion and direct encryption, for GPUs, and show that we need to architect secure memory

differently from it for CPUs. Our in-depth study reveals the following insights. First, as GPUs

are designed for high-throughput computation, its secure memory needs to deliver high

bandwidth. Second, with counter-mode encryption, the memory traffic resulting from the

metadata, i.e., the counters, MACs (message-authentication codes), and integrity tree, may

cause significant performance degradation, even in the presence of metadata caches. Third,

the sectored cache structure adopted by GPUs leads to multiple sequential accesses to the

same metadata cache line, which necessitates the use of MSHRs (miss-status handling

registers) for meta-data caches. Fourth, unlike CPUs, separate/partitioned metadata caches

perform better than unified metadata caches on GPUs. The reason is that GPU workloads

feature streaming accesses, which cause severe contention in the unified metadata cache

and the cached counters and integrity tree nodes may be evicted before being reused. Fifth,

the massive-threaded nature of GPUs make them latency-tolerant and the performance

impact due to the extra encryption/decryption latency is limited. As a result, direct encryp-

tion can be a promising alternative for GPU secure memory. The challenge, however, lies in

memory integrity verification as the integrity tree may incur high storage overhead and

metadata traffic.

In the second work, we point out that conventional CPU secure memory architecture

can not be directly adopted to the GPUs. The key reasons include: (1) accessing the security

metadata, including encryption counters, message authentication codes (MACs) and in-

tegrity trees, requires significant memory bandwidth, which may lead to severe bandwidth

competition with normal data accesses and degrade the GPU performance; (2) contempo-

rary GPUs use partitioned memory organization, which results in storage and coherence

problems for encryption counters and integrity trees since different partitions may need

to update the same counter/integrity tree blocks; and (3) the existing split-counter block

organization is not friendly to sectored caches, which are commonly used in GPU for band-

width savings. Based on these observations, we propose partitioned and sectored security

metadata (PSSM), which has two components: (a) using the offset addresses (referred to

as local addresses) within each partition, instead of the virtual or physical addresses, to

generate the metadata so as to solve the counter or integrity tree storage and coherence

problems and (b) reorganizing the security metadata to make them friendly to the sec-

tored cache structure so as to reduce the memory bandwidth consumption of metadata

accesses. With these proposed schemes, the performance overhead of secure GPU memory

is reduced from 59.22% to 16.84% on average. If only memory encryption is required, the

performance overhead is reduced from 29.53% to 5.18%.

In the third work, we analyze the security guarantees that used to defend against physical

attacks, and make the observation that heterogeneous GPU memory system may not always

need all the security mechanisms to achieve the security guarantees. Based on the memory

types as well as memory access patterns either explicitly specified in the GPU programming

model or implicitly detected at run time, we propose adaptive security memory support

for heterogeneous memory on GPUs. Specifically, we first identify the read-only data and

propose to only use MAC (Message Authentication Code) to protect their integrity. By

eliminating the freshness checks on read-only data, we can use a single counter for such

data regions and remove the corresponding part in the Bonsai Merkel Tree (BMT), thereby

reducing the traffic due to counters and BMT. Second, we detect the common streaming

data access patterns and propose coarse-grain MACs for such stream data to reduce the

MAC access bandwidth. With the hardware-based detection of memory type (read-only or

not) and memory access patterns (streaming or not), our proposed approach adapts the

security support to significantly reduce the performance overhead. Our evaluation using

both memory-intensive and computation-intensive workloads shows that our scheme can

achieve secure memory on GPUs with low overheads for memory-intensive workloads while

not affecting computation-intensive workloads. Among the fourteen memory-intensive

workloads in our evaluation, our design reduces the performance overheads of secure GPU

memory from 53.9% to 10.2% on average. Compared to the state-of-the-art secure memory

designs for GPUs [Na21; Yua21a], our scheme outperforms PSSM by up to 36.8% and 10.4%

on average and outperforms Common counters by 77.5% on average for memory-intensive

workloads.

In the fourth work, we focus on encryption counters given their impact on the counter

and BMT traffic while leveraging prior schemes [Sai18; Taa18a] to address the MAC traffic.

We first analyze the characteristics of the encryption counters from a wide range of GPGPU

benchmarks and make two key observations. (1) With the split counter scheme, the cache

blocks in a large portion of the memory space, sometimes the entire GPU memory space,

share the same major counter value. (2) The difference among minor counters is fairly

limited. We then propose a novel scheme to reduce the encryption counter traffic. Our

design includes (a) a highly compact way of counter representation and (b) a verification

scheme to determine the correct minor counter values. In our design, we use a few on-chip

registers to hold the major counters and use a (7-bit) base value along with two small

(2-bit) deltas to represent the minor counters in a large memory chunk, one delta for

the most frequent delta between minor counters and the base, the other delta for the

maximal difference between a minor counter and the base. This way, for a large memory

chunk (e.g., 16kB), the counter overhead becomes nearly negligible (less than 2B). We then

leverage the existing MAC verification logic to verify the minor counters computed from

the base and deltas. Our approach essentially trades off decryption and integrity-check

latency for reduced counter-data traffic to take advantage of the latency-hiding nature of

GPUs. Compared to prior works on reducing counter traffic [Na21], our scheme handles

more counter value patterns (as we don’t restrict the counters to be the same in a memory

chunk) and is more effective in reducing counter traffic. Our study also reveals that the

GPU memory data are typically compressible. As a result, we can co-locate the MACs with

the compressed cache blocks, similar to [Taa18a]. Our experimental results show that our

proposed delta counter scheme significantly reduces the storage and bandwidth overheads

of encryption counters and achieves secure GPU memory with an average performance

overhead of 2.01% compared to GPU without security support. Our delta scheme is also

compatible with SYNERGY [Sai18], which leverages ECC chips to store MACs, and our

achieved performance overhead is 2.83%.

© Copyright 2023 by Shougang Yuan

All Rights Reserved

Bandwidth-Efficient Secure Memory Designs for GPUs

by
Shougang Yuan

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Engineering

Raleigh, North Carolina
2023

APPROVED BY:

Dr. James Tuck Dr. Xu Liu

Dr. Amro Awad Dr. Huiyang Zhou
Chair of Advisory Committee

BIOGRAPHY

The author received his bachelor’s degree of Information Management and Information

System from Northwest A&F University in 2015, and his master’s degree of Computer Science

from Xi’an Jiaotong University in 2018. He started his Ph.D. program in North Carolina

State University in 2018. His research mainly focused on secure memory architectures for

non-volatile memory and GPU memory.

ii

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. Huiyang Zhou, Dr. Amro Awad, Dr. James Tuck,

and Dr. Xu Liu for serving on my committee, and thank Dr. Yan Solihin for his help and

guidance during my PhD study.

iii

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

Chapter 1 INTRODUCTION AND BACKGROUNDS . 1
1.1 Introductions . 1
1.2 Background . 2

1.2.1 Threat Model and Scope of Work . 2
1.2.2 Security Mechanisms . 3

1.3 GPU Security . 5

Chapter 2 Analyzing Secure Memory Architecture for GPUs 6
2.1 Introduction . 6
2.2 Methodology . 8
2.3 Counter-Mode Encryption . 10

2.3.1 Performance Overhead . 10
2.3.2 MSHRs for Metadata Caches . 13
2.3.3 Metadata Cache Size . 14
2.3.4 Unified vs. Separate Metadata Caches . 16
2.3.5 AES Engine Throughput . 18
2.3.6 Die Area . 19

2.4 Direct Encryption . 22
2.4.1 Performance Overheads of Direction Encryption 22
2.4.2 Direct Encryption vs. Counter-mode Encryption 24
2.4.3 Integrity Protection . 24

2.5 Conclusions . 26

Chapter 3 PSSM: Achieving Secure Memory for GPUs with Partitioned and Sec-
tored Security Metadata . 27

3.1 Motivations . 27
3.1.1 Performance Impacts of Naive Design . 27
3.1.2 Problem Diagnosis . 29
3.1.3 Coarse-Grain Interleaving . 30
3.1.4 Sectored MDC . 31
3.1.5 Sectored Data Cache and MAC Verification 33

3.2 Architecture Design . 35
3.2.1 Overall Architecture . 35
3.2.2 Using Local Addresses for Security Metadata 36
3.2.3 Making Metadata Friendly to Sectored Caches 37
3.2.4 Encryption and MAC Engine . 39
3.2.5 Bandwidth for Accessing MACs . 40

iv

3.3 Evaluation . 41
3.3.1 Methodology . 41
3.3.2 Performance . 42

3.4 Conclusions . 47

Chapter 4 SHM: Adaptive Security Support for Heterogeneous Memory on GPUs 48
4.1 Motivation and Design Principles . 48

4.1.1 Heterogeneous Memory on GPUs . 48
4.1.2 Seed Generation in Counter-Mode Encryption 49
4.1.3 Overhead of MAC Accesses . 51

4.2 Architecture Design . 51
4.2.1 Overall Architecture . 51
4.2.2 Detecting Read-only Regions . 53
4.2.3 Detecting Streaming Accessed Chunks . 56
4.2.4 Using L2 as Victim Cache for Security Metadata 59

4.3 Methodology . 60
4.3.1 Hardware Overheads . 63

4.4 Evaluation . 63
4.4.1 Read Only Prediction . 63
4.4.2 Streaming Access Pattern Detection . 64
4.4.3 Overall Performance . 65
4.4.4 Performance Breakdown . 66
4.4.5 Bandwidth Saving . 67
4.4.6 Power Saving . 69
4.4.7 Using L2 as a Victim Cache . 69

4.5 Conclusions . 70

Chapter 5 Delta Counter: Bandwidth-Efficient Encryption Counter Representa-
tion for Secure GPU Memory . 71

5.1 Summary . 71
5.2 Motivations . 72

5.2.1 Major Counter Analysis . 73
5.2.2 Minor Counter Analysis . 74
5.2.3 MAC Bandwidth Requirement . 76

5.3 Architecture Design . 77
5.3.1 Overall Architecture . 77
5.3.2 Management of Major Counter Registers . 77
5.3.3 Delta Counter Entry . 81
5.3.4 Dataflow of DRAM Read and Write . 82
5.3.5 Delta Counter Cache Management . 82
5.3.6 Counter Cache and BMT Verification . 83
5.3.7 Data Compressibility . 84

5.4 Methodology . 86

v

5.5 Evaluation . 88
5.5.1 Overall Performance . 88
5.5.2 Performance breakdown . 88
5.5.3 Upper Bound Analysis . 92

5.6 Conclusions . 92

Chapter 6 CONCLUSIONS AND FUTURE WORKS . 94

vi

LIST OF TABLES

Table 2.1 Baseline GPU configuration . 8
Table 2.2 Metadata organization and storage . 9
Table 2.3 Metadata cache organization . 9
Table 2.4 Benchmarks . 10
Table 2.5 Evaluated designs for counter-mode encryption 11
Table 2.6 Die area of the AES engine . 20
Table 2.7 Scaled down die area of the AES engine and caches 20
Table 2.8 Evaluated designs for direct encryption . 22

Table 3.1 Baseline GPU Configuration . 41
Table 3.2 MDC and MEE Organization . 41
Table 3.3 Benchmarks . 42
Table 3.4 Evaluated designs for GPU secure memory with both memory encryp-

tion and integrity verification. 43
Table 3.5 Evaluated designs for GPU memory encryption. 43

Table 4.1 Security Mechanisms for GPU Heterogeneous Memory 49
Table 4.2 Security Mechanisms for Application Data . 49
Table 4.3 Handling Streaming Predictions for Read Accesses 59
Table 4.4 Handling Streaming Predictions for Write Accesses 60
Table 4.5 Baseline GPU Configuration . 61
Table 4.6 MDC and MEE Organization . 61
Table 4.7 Benchmarks . 61
Table 4.8 Evaluated designs for GPU secure memory with both memory encryp-

tion and integrity verification. 62
Table 4.9 Hardware Overhead . 63

Table 5.1 Baseline GPU Configuration . 86
Table 5.2 MDC and MEE Organization . 87
Table 5.3 Benchmarks . 87
Table 5.4 Evaluated designs for GPU secure memory with both memory encryp-

tion and integrity verification. 89

vii

LIST OF FIGURES

Figure 1.1 Counter-mode encryption and direct encryption 3

Figure 2.1 GPU architecture with secure memory support 7
Figure 2.2 Normalized IPC of counter mode encryption with Bonsai Merkle tree. 12
Figure 2.3 Distribution of different types of memory requests. 13
Figure 2.4 Amount of secondary misses in metadata caches. 14
Figure 2.5 Normalized IPC of secure memory with different numbers of MSHRs

in metadata caches. 15
Figure 2.6 Normalized IPC for different metadata cache sizes. 15
Figure 2.7 Normalized IPC of unified metadata caches vs separate metadata

caches. 17
Figure 2.8 Miss rates for different types of metadata in unified vs. separate meta-

data caches. 17
Figure 2.9 Reuse distance of counters of the benchmark fdtd2d 18
Figure 2.10 Reuse distance of MACs of the benchmark fdtd2d 18
Figure 2.11 Normalized IPC with different numbers of AES engines in each mem-

ory partition . 19
Figure 2.12 Normalized IPC with different L2 cache capacities 21
Figure 2.13 L2 cache miss rate . 21
Figure 2.14 Normalized IPC of direct encryption with different encryption latencies. 22
Figure 2.15 Normalized IPC of direct encryption and counter-mode encryption 23
Figure 2.16 Normalized IPC of direct encryption and counter-mode encryption

with integrity protection . 25

Figure 3.1 Normalized performance of secure memory designs to the baseline
GPU without secure memory support. 28

Figure 3.2 A single (128B) counter block corresponds to 128 data blocks in 32
partitions. Similarly, one BMT node requires multiple counter blocks. 29

Figure 3.3 The IPC of different page interleaving granularities, normalized to
the baseline GPU with 256B interleaving and without secure memory
support. 31

Figure 3.4 Performance comparison of secure GPU with non-sectored MDCs
(labeled ’secureMem’) and sectored MDCs (labeled ’sec_mdc’). 32

Figure 3.5 A Split-counter block of 128B, containing 1×128-bit major counter
and 128× 7-bit minor counters. When split into 4 sectors, the first
sector contains the major counter and some minor counters. 33

Figure 3.6 The IPC of a non-sectored L2 cache with different numbers of request
merges in an L2 MSHR normalized to the baseline sectored L2. 34

Figure 3.7 The L2 MSHRs. (a) The structure of an L2 MSHR. (b) The MSHR state
of a sectored L2 after the access sequence A1-A5. (c) The MSHR state
of a non-sectored L2 cache after the same access sequence A1-A5. . . 35

viii

Figure 3.8 Secure GPU architecture with the trust boundary as the GPU chip . . 36
Figure 3.9 Physical and local addresses in partitioned memory organization. . . 37
Figure 3.10 Sectored split-counter design: each sector has 1×32-bit major counter

and 32×7-bit minor counters. 38
Figure 3.11 Numbers of stores per kilo instructions (SPKI). 38
Figure 3.12 The encryption/decryption process in PSSM. The input to the AES

encryption engine ensures encryption seed uniqueness, both tempo-
rally and spatially. 39

Figure 3.13 The MAC generation process in PSSM. The MAC computation output
is truncated to 64/32 bits. Sector id is used when a MAC is generated
for each sector. 40

Figure 3.14 Normalized IPC of different secure GPU memory designs. 44
Figure 3.15 MDC miss rates (in MPKI) of the PSSM_nL2_4B_sMdc design. 45
Figure 3.16 Normalized IPC of the PSSM_nL2_4B_sMdc design with different

ideal MDCs. 46
Figure 3.17 Normalized IPC of different GPU memory encryption schemes. . . . 46

Figure 4.1 Seed generation for (a) not-read-only data and (b) read-only data. . . 49
Figure 4.2 Integrity tree with read-only regions excluded. 50
Figure 4.3 The ratio of memory accesses (i.e., L2 misses and L2 write backs)

accessing streaming data as well as read-only data in various GPU
workloads. 52

Figure 4.4 Overall architecture. 53
Figure 4.5 The read-only detector and streaming detector in a memory partition.

Their inputs are the LLC misses and write backs. 56
Figure 4.6 An example showing the propagation from the shared counter to the

per block counters. 56
Figure 4.7 The process of shared counter update when using the read only reset

API. 56
Figure 4.8 Breakdown of read-only predictions. 64
Figure 4.9 Breakdown of streaming pattern predictions 65
Figure 4.10 Normalized IPC of different secure GPU memory designs. 66
Figure 4.11 Performance impacts of different optimizations. 67
Figure 4.12 Bandwidth overheads due to security metadata, normalized to regu-

lar data bandwidth, of different designs. 68
Figure 4.13 Normalized Energy Consumption per Instruction for different designs. 69
Figure 4.14 Normalized IPC when enabling L2 as a victim cache for security meta-

data. 70

Figure 5.1 Number of Unique Major Counters . 73
Figure 5.2 Distribution of delta value that less than 4. 75
Figure 5.3 Average ratio of the most common counter value in a 16kB region of

which the delta among minor counters is less than 4. 75

ix

Figure 5.4 Data and MAC layout. 76
Figure 5.5 Overall architecture. 78
Figure 5.6 Major Counter Entry and Layout of Per-Block Counter. 79
Figure 5.7 An example of major counter register management 79
Figure 5.8 Handling of Minor Counter Overflow . 80
Figure 5.9 Delta counter representation and associated access patterns. 81
Figure 5.10 DRAM flow for memory read and write. 82
Figure 5.11 Delta Counter Management . 83
Figure 5.12 Counter Cache Management . 84
Figure 5.13 Compression Cache Management . 85
Figure 5.14 Overall Performance of Different Designs . 90
Figure 5.15 Ratio of Counter Traffic in Memory. 91
Figure 5.16 Ratio of Compressible Memory Access. 91
Figure 5.17 Distribution of Number of Encryptions that Each Memory Access

Needs to Try. 92

x

CHAPTER

1

INTRODUCTION AND BACKGROUNDS

1.1 Introductions

Cloud computing has become the predominant computing paradigm. With the cloud

being a shared resource, it is critical to provide users with sufficient privacy and security

guarantees. Toward this end, hardware-based trusted execution environments (TEEs),

such as Intel SGX [Gue16b; Cor19] and ARM TrustZone [Pin19], have been integrated

onto the CPUs to provide secure isolated computing environment for cloud users. TEEs

can protect against both compromised system software, e.g., hypervisors and operating

system (OS), and physical attacks such as memory tampering [Gue16b]. A critical building

block for TEE is secure memory engine, which keeps data in memory encrypted [Gue16a;

Kap16] and protects its integrity [Gue16a]. However, such secure memory architecture

support is missing on GPUs, a key accelerator in clouds for a wide range of workloads

including machine learning, scientific computing, 3D rendering, etc. As the system security

is determined by its weakest link, we argue that accelerators such as GPUs also need to

provide TEE.

Recognizing the needs, some recent works, including Graviton [Vol18] and HIX [Jan18],

1

tried to provide TEE for the workloads offloaded to GPUs. Graviton assumes that the system

software stack, including GPU drivers, the OS, and hypervisor, cannot be trusted and the

attackers have physical access to the hardware. To protect against software attacks, the

GPU management operations are offloaded to the GPU command processors instead of

being relegated to the GPU drivers, which runs within the untrusted host kernel space.

Furthermore, Graviton provides new primitives, such as secure memory copy, to prevent

attackers from snooping upon the PCIe bus. HIX, alternatively, mainly focuses on protecting

the I/O path between the hardware and software. Although it also keeps the GPU drivers

out of the trust boundary by isolating it from the kernel space, it relies on the secure CPU

enclaves to protect the refactored GPU drivers. However, in these previous works, the threat

model is weaker than conventional CPU TEE, as they do not provide secure memory support

and require system software (e.g., GPU driver) to be trusted.

In this dissertation, we explore the design space and implication of supporting hardware

based TEEs for GPUs. We start our investigation with a detailed performance analysis for

GPU secure memory designs, and identified that the memory bandwidth competition be-

tween the regular data and security metadata is the major performance bottleneck. In our

second work, we propose a simple yet effective scheme, called PSSM (Partitioned and Sec-

tored Security Metadata), to alleviate the memory bandwidth pressure of security metadata

access. In our third work, we analyze the different security mechanisms in conventional

CPU TEEs, and argue that heterogeneous GPU memory may not always need all the security

guarantees as conventional CPU TEEs. And in our last work, we analyze the encryption

counter behaviors, and propose an bandwidth efficient encryption counter representation,

namely, delta counter, for secure GPU memory.

1.2 Background

1.2.1 Threat Model and Scope of Work

The threat model for CPU TEE, such as Intel SGX, assumes two types of threats: compro-

mised system/privileged software (such as the OS and hypervisor) and attackers that have

physical access to the remote server and the abilities to snoop/scan and modify data stored

in off-chip memory. CPU TEE assumes that the processor chip provides a security boundary,

where all on-chip components are assumed to be out of the reach of attackers. In general,

TEE requires three major architecture supports: hardware key management, attestation,

and secure memory engine (which encrypts and protects the integrity of data stored off the

2

processor chip) [Lie00; Suh07; Yan03; Yan06]. Of these, secure memory incurs the largest

performance overheads as it must be active at all time and affects the critical path of load

instructions. Due to the enormity of the overheads, recent attempts to extend CPU TEE

to GPUs [Jan18; Vol18] ignore the physical attack threats and enlarge the trust base (e.g.,

adding GPU memory module to the trust base). In contrast, this research assumes the

same threat model in CPU TEE also affects GPUs, and assumes that GPU chip provides

the security boundary, where all the data stored in the on-chip resources such as registers

and caches are safe. The attackers may have physical access to the GPUs hardware, and

have the capability to snoop the GPU memory buses or to scan/tamper the GPU memory

content.

The scope of this paper covers the design space of secure memory for GPUs. Hardware

key management and attestation have been well studied in previous work (i.e., Graviton

[Vol18] and HIX [Jan18]) and are beyond the scope of this paper. Securing the communica-

tion channel between CPU and GPU is also outside the scope of this work. Existing solutions

for that may include PCI modification [Jan18], or for tighter integration, secure cache co-

herence protocol [Rog08a]. Furthermore, side channel attacks such as timing-based side

channel attack [Jia16] are also out of the scope of our work.

1.2.2 Security Mechanisms

Memory encryption. The goal of memory encryption is to protect data confidentiality [Lee05;

Rog08b; Rog06; Zha05]. The cryptographic hardware engines residing in the memory

controller are responsible for performing encryption/decryption before the data is sent

to/returned from the off-chip memory. Generally, there are two approaches for memory

encryption as shown in Fig. 1.1: counter-mode encryption and direct encryption.

Figure 1.1: Counter-mode encryption and direct encryption

3

Counter-mode encryption can hide the decryption latency by overlapping it with mem-

ory reads, and thus offload the decryption latency from the critical path of load instructions.

In counter-mode encryption, there is a counter associated with each cache line. When the

memory controller is fetching the data from off-chip memory, the corresponding counter

and the block address are used to generate a one-time pad (OTP) using the encryption

engine such as AES. The memory controller can recover the plaintext by XORing the data

and OTP in one cycle and then supply the data to processors. To guarantee the security, the

counters cannot be reused. Hence, at each dirty eviction from the last level cache (LLC),

the counter corresponding to the cache line will be incremented. Since the encryption

strength of counter-mode memory encryption is conditional upon not reusing the counters,

if the attacker can trigger reuse of counters, the encryption will be broken [Yan06; Rog07].

Therefore, counter-mode encryption fundamentally relies on counter integrity protection

to provide data confidentiality.

Direct encryption can also be used for the security purpose. In contrast to counter-mode

encryption, with direct encryption, confidentiality does not necessarily require integrity

protection. The main disadvantage of direct encryption is that it exposes the latency of

decryption to the critical path of memory reads, because decryption can only start after

the data is fetched from memory [Suh03].

Memory Integrity Verification. As discussed earlier, counter-mode encryption requires

integrity protection of counters [Rog07]. Furthermore, MACs are needed to protect against

memory tampering attack [Yan06; Zou19]. As pointed out by Rogers et. al [Rog07], stateful

MACs calculated from the ciphertext, block address and the corresponding counter can

provide data integrity protection, and the Merkle tree (MT) only needs to cover the counters

to protect against counter-replay attacks. This scheme is named BMT and can help to

reduce the storage overheads of the MT. Moreover, the BMT is much shallower than the

original MT. Any modification to the data or MACs stored in the off-chip memory can be

detected by comparing the MACs when the data is fetched from memory. Similarly, any

modification or replay of the counters can be detected by traversing the BMT and comparing

the hash values in the BMT nodes. In contrast, with direct encryption, encryption protection

is not dependent on integrity verification; and integrity verification provides additional

protection against memory tampering and replay attacks. Integrity protection relies on

(1) MAC of the ciphertext and (2) a Merkle/Hash Tree based on the entire memory with a

special on-chip register storing the root of the tree [Gas03].

4

1.3 GPU Security

Recent studies highlight the needs for security support within accelerators. Deep learning

(DL) is such an application that attracts special attention [Liu17]. Several recent works [Zuo20;

Hua20b; Hua20a] aim to extend the existing memory encryption and integrity verification

schemes to DL accelerators.

The work [Zuo20] by Zuo et al. pointed out that the gap between the throughput of AES

engine and the GPU memory bandwidth is the key bottleneck for secure GPU memory. To

reduce the overhead of encryption, they proposed: (1) selective memory encryption, (2)

co-location of data and the corresponding counter. In comparison, our work differs from

this prior work in the following ways. First, our work consider data integrity protection,

which is missing in this prior work. Second, we perform a detailed study on metadata cache

designs, including the impact from the sectored L2 caches as well as unified metadata caches

and separate metadata caches. Third, we exploit pipelined AES engines to overcome the

AES throughput limitation and explore the design trade-offs for different AES throughput.

Fourth, the proposed solution by Zuo et al. [Zuo20] is specific to DL while our work covers

a wide range of workloads.

Similar to Zuo’s work [Zuo20], Hua et al. [Hua20b; Hua20a] aimed to provide memory

protection for the deep learning workloads running on the accelerators. As mentioned

in [Hua20b], the overheads of memory encryption and integrity verification come from the

extra memory accesses generated by the security metadata. In their system design, they

proposed to provide memory encryption and integrity verification based on a coarse gran-

ularity of memory objects. Their key observation is that accelerators often explicitly move

data between on-chip memory and off-chip DRAM at the object granularity. In comparison,

our work provides detailed performance analysis of both counter-mode encryption and

direct encryption and explore different metadata cache design choices.

Other works, including HIX [Jan18] and Graviton [Vol18] that aimed to provide the TEE

for GPUs, mainly focused on protecting the user program and data from untrusted OS

or privileged malicious software (hypervisor), and did not consider the physical attacks,

i.e., memory scanning and tampering attacks. In other words, these two works did not

provide hardware-based memory encryption and integrity verification protections. The

data stored on GPU off-chip memory is plaintext and there is no support for integrity

checks. In comparison, our work defines a stronger threat model, and provides detailed

performance study on memory encryption and integrity verification for GPUs.

5

CHAPTER

2

ANALYZING SECURE MEMORY

ARCHITECTURE FOR GPUS

2.1 Introduction

Similar to the CPU TEE (e.g., Intel SGX), the secure memory hardware is placed in the

memory controller in our design, as shown in Fig. 2.1. As GPUs incorporate multiple memory

controllers to provide high memory bandwidth, the same secure memory hardware is

replicated in each memory controller.

We start our investigation with counter-mode encryption and Bonsai Merkle Tree (BMT)

[Rog07], which are the state-of-art secure memory architecture on CPUs. Counter-mode

encryption is introduced to hide the decryption latency and BMT is used to verify the

integrity of data through its counters, which are used to encrypt/decrypt the data along

with the secret key. In counter-mode encryption, the security metadata include counters,

BMT, and MACs of the ciphertext. To reduce the extra memory accesses for fetching the

metadata, on-chip metadata caches are commonly employed. We model the counter-

mode encryption and BMT support upon a GPU model based on Nvidia Volta [Jia18]

6

architecture, and identify that hardware-based secure memory architecture can incur

significant performance overhead for GPUs. The main reason is that the metadata data

accesses generate a lot of memory traffic even in the presence of metadata caches. Given

the high bandwidth requirements of GPUs, the additional memory traffic contends for

the memory bandwidth and significantly slows down the GPUs performance. Also, we

observe that due to the sectored L2 cache structure in GPUs, the streaming data accesses

leads to a high ratio of secondary misses (i.e., misses to the same cache block after it

being requested) in the metadata caches, which highlight the importance of the MSHRs to

filter out redundant memory requests. Furthermore, due to the nature of high-throughput

computation of GPUs, high-throughput cryptographic engines are also needed to produce

a balanced system.

Besides counter-mode encryption, we also analyze the alternative design of direct

encryption. Without counters, BMT is infeasible. Therefore, we resort to a Merkle Tree (MT)

to perform integrity checks. In other words, with direct encryption, the security metadata

include MACs and the MT, both of them are used for memory integrity verification. Our

analysis reveals the following interesting observations. First, direct encryption itself does

not lead to high performance overheads because GPUs are designed to be latency tolerant.

Actually, our results show that direct encryption can perform better than counter-mode

encryption even with a high encryption latency of 160 cycles. Second, memory integrity

protection may become the performance bottleneck due to the memory traffic generated

by MAC and MT accesses.

Figure 2.1: GPU architecture with secure memory support

7

Table 2.1: Baseline GPU configuration

SM config 80 SMs, 1132 MHz
Register File 256KB/SM, 20MB in total
L1 D-Cache 32KB/SM
Shared Memory 96KB/SM
L2 cache 2 banks/partition, 96KB/bank, 6MB

in total
DRAM 850MHz, 868GB/s, 32 partitions

2.2 Methodology

We model different secure memory architecture supports using GPGPU-Sim v4.0 [Kha20].

The configuration of our baseline GPU model is shown in Table 2.1, which is based on the

Nvidia Volta architecture [Jia18]. In our experiments, we assume that a range of 4GB device

memory is protected, and the metadata cache line size is aligned to the data cache line size,

which is 128B. The metadata organization and storage overhead are listed in Table 2.2.

For counter-mode encryption, each counter cache line maintains one 128-bit major

counter (shared by data blocks within a 16KB memory chunk) and 128 7-bit per block

minor counters, thereby covering 128 lines of data. In other words, the ratio between data

and counter capacity is 128 and the overall counter blocks take 32MB (=4GB/128) off-chip

storage. Using a 64-bit MAC for each 128B data, the overall MAC consumes 256MB storage.

As a result of the sectored L2 cache, we use truncated MAC, i.e., 16-bit MAC for each 32B

sector. For the BMT, we build a 6-level 16-ary hash tree and its overall capacity is 2.14 MB,

excluding the counter blocks that serve as the leaf nodes of the BMT. Therefore, the overall

capacity of metadata is 290.14MB (=32+256+2.14 MB) for counter-mode encryption.

With direct encryption, using the same 64-bit MAC for each 128B data, the overall MAC

consumes 256MB memory. As the MT is built upon the 4GB data, we use a 7-level 16-ary

tree and the overall capacity is 17.1MB, excluding the MACs that serve as the leaf nodes

of the MT. Therefore, the overall memory overhead is 273.1MB (=256+17.1 MB) for direct

encryption.

The separate metadata caches, which include the counter cache, MAC cache, and

BMT/MT cache, are modeled in each memory partition (i.e., each memory controller).

The metadata cache specification is listed in Table 2.3. State-of-the-art secure memory

architecture in CPUs uses speculative verification and lazy update for BMT/MT [Gas03].

We also adopt these schemes on GPUs. Speculative verification means that the memory

8

Table 2.2: Metadata organization and storage

Metadata Type Counter-mode Encryp-
tion

Direct Encryption

Counter 128b/16KB, 7b/blk,
32MB

-

MAC 8B/blk, 2B/sector,
256MB

8B/blk, 2B/sector,
256MB

BMT/MT 16 ary, 6 levels, 2.14MB 16 ary, 7 levels, 17.1MB

Table 2.3: Metadata cache organization

Counter cache {2,4,8,16,32,64}KB/Memory Partition, 2KB default,
128B blk, 64 MSHRs, allocate-on-fill policy

Mac cache {2,4,8,16,32,64}KB/Memory Partition, 2KB default,
128B blk, 64 MSHRs, allocate-on-fill policy

(Bonsai)Merkle Tree
cache

{2,4,8,16,32,64}KB/Memory Partition, 2KB default,
128B blk, 64 MSHRs, allocate-on-fill policy

Unified metadata cache 6KB/Memory Partition, 128B blk, 192 MSHRs,
allocate-on-fill policy

Hash/Mac latency 40 cycles default
AES engines {1,2}/Memory Partition, 2 default.

controller can supply the data to the core before the corresponding integrity check is

finished. Later on, if there is a failure in integrity verification, an exception would be raised.

Lazy update means that only when a counter block or a tree node is evicted from the counter

cache or BMT/MT cache, its parent will be updated in the BMT/MT cache.

In our study, we assume pipelined AES engines and pipelined MAC units. This way,

the encryption latency or the MAC computation latency would not affect the throughput.

With AES-128, 16B of data can come out of a pipelined AES engine each cycle. With the

memory clock frequency of 850MHz, the throughput of the pipelined AES engine is 13.6

GB/s (=16B*850MHz). With 2 AES engines in each memory partition, the throughput would

match the memory bandwidth, resulting in a balanced design. Therefore, we use 2 pipelined

AES engines in each partition by default. We model different AES latencies and a 40-cycle

latency for the MAC unit. With counter-mode encryption, the AES latency does not matter

as it is hidden by design.

Our benchmarks are selected from the Rodinia-3.1 [Che09], Parboil [Str09] and poly-

bench [GG09]benchmark suites to cover a wide range of workloads. Table 2.4 lists the details

of these benchmarks. For each benchmark, we simulate until it has run for 4 million cycles.

9

Table 2.4: Benchmarks

Categorization Benchmark name Bandwidth utilization IPC

non
memory
intensive

heartwall <1% 1,195.37
lavaMD <1% 4,615.23
nw <2% 23.90
b+tree 12%-14% 2,768.61

medium
memory
intensive

backprop 25% 3,067.61
cfd 15%-50% 1,076.98
dwt2d 20%-50% 784.70
kmeans 40%-45% 97.04

memory
intensive

bfs 5%-60% 699.51
srad_v2 79%- 80% 3,306.82
streamcluster 78%-80% 1,178.18
2Dconvolution 53% 2,487.22
fdtd2d 82%-83% 1,773.95
lbm 58% 552.12

Table 2.4 also reports the bandwidth utilization and the IPC (instruction-per-cycle) for each

benchmark when running on the baseline GPU without secure memory support. In this

paper, we categorize the benchmarks which consume more than 50% peak DRAM band-

width as memory intensive, the benchmarks which consume less than 20% peak DRAM

bandwidth as non memory intensive, and the remaining as medium memory intensive.

2.3 Counter-Mode Encryption

In this section, we perform an in-depth study on extending counter-mode encryption and

BMT to GPUs. Different design options, as listed in Table 2.5, are explored to reveal the

performance bottlenecks.

2.3.1 Performance Overhead

Fig. 2.2 shows the performance of various GPU secure memory models normalized to the

baseline GPU without security support. From the figure, we can see that adding secure

memory support may incur significant performance overhead. The normalized IPC is

reduced by 65.9% on average using the geometric mean (Gmean), and can be up to 91.06%

for memory-intensive workloads such as lbm.

To identify the performance bottleneck, we model different idealistic designs. From

10

Table 2.5: Evaluated designs for counter-mode encryption

Scheme What It Represents

baseline Baseline GPU without secure memory support.
secureMem Baseline GPU with secure memory support

using counter-mode encryption and BMT. In
Section 2.3.1, no MSHR is modeled, in Sec-
tion 2.3.2, 2.3.3, 2.3.4, 2.3.5, there are 64 MSHRs
for each metadata cache.

secureMem_xMB secure GPU memory with different L2 capacities
upon our baseline GPU with counter-mode en-
cryption and BMT.

0_crypto secureMem with 0 MAC latency and encryption
latency.

perf_mdc secureMem with perfect metadata caches, i.e.,
there are no cache misses and write backs.

large_mdc secureMem with unlimited capacity for metadata
caches, meaning that there are only cold misses.

mshr_x secureMem with different mshr capacity for meta-
data caches.

separate secureMem with separate metadata caches in each
memory partition/unit.

unified secureMem with a unified metadata cache, which
caches all types of metadata, in each memory par-
tition/unit.

11

Fig. 2.2, we can see that zero cycle cryptographic operation latency (zero-cycle MAC and

AES) does not alleviate the performance overhead. This is expected as GPUs are massively

parallel machines and leverage high-degrees of TLP to hide the latency. However, when we

model ideal metadata caches or unlimited capacity metadata caches, the GPU performance

with secure memory support becomes very close to the baseline. This indicates that the

accesses to the security metadata is the performance bottleneck.

Figure 2.2: Normalized IPC of counter mode encryption with Bonsai Merkle tree.

To further analyze the impact of the metadata accesses, in Fig. 2.3 we compare the

amounts of different types of memory requests when secure memory is integrated, i.e., the

secureMem model in Table 2.5. The memory-request types include regular data read and

write requests (labeled ’data’), counter reads (labeled ’ctr’), MAC reads (labeled ’mac’), BMT

reads (labeled ’bmt’), and all the writebacks from the metadata caches (labeled ’wb’).

From Fig. 2.3, we can make the following observations. First, for all benchmarks, the

memory requests to fetch MACs from off-chip memory account for a major portion of

the memory traffic (25.58% on average). Second, the counter requests also account for a

large portion of memory traffic (21.77% on average). Third, some benchmarks, including

bfs, b+tree, kmeans, nw and lbm, have a relatively high ratio of memory requests for

fetching the BMT blocks from memory. The reason is that these benchmarks have relatively

high counter-cache miss rates and the fetched counters need to be validated. Fourth,

extra memory traffic due to metadata accesses may not necessarily lead to performance

degradation. For example, for the non-memory intensive benchmarks (heartwall, lavaMD

and nw), the metadata accesses account for a large portion of the memory traffic (66.07%,

12

62.71%, 75.41%), but the performance impact is near zero. The reason is that for these

benchmarks, the memory bandwidth is under-utilized as shown in Table 2.4. Therefore,

additional traffic does not result in contention for the memory bandwidth. Fifth, some

benchmarks, including bfs, dwt2d and lbm, have relatively high amounts of metadata-cache

writebacks, which also impact the performance.

Figure 2.3: Distribution of different types of memory requests.

2.3.2 MSHRs for Metadata Caches

As shown in Fig. 2.3, metadata accesses are the main contributor for additional memory

traffic. A deeper analysis reveals that many metadata cache misses are secondary misses,

meaning that the missed metadata blocks have already been requested but have not re-

turned from the memory. We report the ratio of secondary misses in different benchmarks

in Fig. 2.4. We can see that the secondary misses account for 64.96%, 59.67% and 85.63% for

counter/MAC/BMT cache misses on average. And it can be even more than 90% for some

memory-intensive benchmarks like streamcluster. The reason is that contemporary GPUs

usually employ the sectored cache structures to reduce memory bandwidth requirement.

However, the sectored L2 cache combined with streaming data access pattern will lead to

multiple sequential access to the same cache line in metadata cache. Suppose we have

a streaming memory access pattern with 4 memory requests {0x0, 0x20, 0x40, x60}. In a

non-sectored L2 cache with 128B cache line, one cache miss will be generated, which in turn

leads to one counter/MAC cache miss. With a sectored L2 cache (4 sectors and each sector

13

size of 32B), in contrast, four L2 misses are generated, which leads to four counter/MAC

cache misses (1 primary and 3 secondary) to the same counter/MAC cache line.

Figure 2.4: Amount of secondary misses in metadata caches.

The solution to avoiding the memory traffic generated by the secondary metadata cache

misses is to add MSHRs to metadata caches. Here, we show the performance impact with

different MSHR sizes for metadata caches and the results are shown in Fig. 2.5. Due to the

metadata cache organization (i.e., one metadata cache line may cover multiple data cache

lines/sectors), we assume each MSHR entry can merge at most 512/64/64 requests in the

counter/MAC/BMT cache. As we can see from Fig. 2.5, 64 MSHRs in a metadata cache can

be a good choice considering the performance and hardware cost. Hence, we assume 64

MSHRs as the default size in our experiments.

2.3.3 Metadata Cache Size

In the next experiment, we vary the metadata cache size from 2KB to 64KB. The performance

results are shown in Fig. 2.6. Since our baseline GPU has 32 memory partitions, the overall

metadata cache capacity would vary from 192KB (=32x3x2KB) to 6MB (=32x3x64KB).

As expected, enlarging the metadata cache reduces the memory traffic and improves

the performance. However, there is still a performance degradation of 46.17% on average

even when the overall metadata cache capacity is enlarged to 6MB in total, which is equal

to the capacity of our baseline GPU. For memory-intensive benchmarks, the performance

overhead can be even more significant. For example, with the 6MB metadata cache, secure

14

Figure 2.5: Normalized IPC of secure memory with different numbers of MSHRs in meta-
data caches.

memory support still slows down the GPUs by 78.87% for kmeans, 67.82% for srad_v2

and 72.64% for lbm. On one hand, these benchmarks have very high memory bandwidth

utilization, therefore any additional memory traffic will incur more contention to the

memory system. On the other hand, these benchmarks have many cold misses even in the

presence of large metadata caches.

In the baseline GPU, each memory partition has 192KB (=92KB*2) L2 cache capacity,

and each counter cache line has 128 minor counters. To maintain the counters for all the

L2 cache blocks in this memory partition, the capacity of counter cache should be at least

192KB/128 = 1.5KB. Therefore we use 2KB as the default size for metadata caches in each

memory partition.

Figure 2.6: Normalized IPC for different metadata cache sizes.

15

2.3.4 Unified vs. Separate Metadata Caches

On CPU secure memory, Lehman et al.[Leh18] have studied the metadata cache access

patterns and concluded that caching all metadata together in an unified metadata cache

is better than caching them in separate metadata caches. In our experiment, we model

an unified metadata cache in each memory partition that has the same capacity as the

combined capacity of the three separate metadata caches. The performance comparison

between the unified and separate metadata caches is shown in Fig. 2.7.

From Fig. 2.7 we can see that in contrast to CPUs, separate metadata caches outperform

the unified metadata cache on GPUs. To figure out the reason, we report the miss rates of

different types of metadata in Fig. 2.8. From Fig. 2.8, we can see that with unified metadata

cache, the miss rate of different metadata all raises. From 22.77% to 24.03% for encryption

counters, from 31.75% to 31.82% for MACs and from 4.02% to 5.93% for BMT. The reason

is, the newly fetched metadata blocks keep on evicting the other metadata blocks from

the unified metadata cache due to the streaming access pattern of the GPU workloads,

which results in higher metadata misses. Moreover, every evicted counter and BMT node

may need to update their parents, which potentially leads to more write updates to the

BMT cache and more dirty evictions from BMT nodes. Our evaluation results show that the

memory traffic due to metadata writebacks in unified metadata cache can be 1.47X higher

than those with separate metadata caches on average.

We also study the reuse distance of metadata in GPU secure memory. We choose the

benchmark fdtd2d as our case study and present the reuse distance distribution of its

counter and MAC accesses in Fig. 2.9 and Fig. 2.10, respectively. With the unified cache, we

first collect the metadata access trace from partition 0 and extract sub-traces for each type

of metadata. Then we compute the reuse distance based on the sub-traces. The references

are grouped into different reuse distance buckets, where [x,y]means the reuse distance

between x and y. From the figure, we can see that since GPUs feature streaming data access

pattern, the metadata also shows a streaming pattern as most metadata accesses have

a reuse distance of zero (i.e., accessing the same metadata cache line). In addition, with

unified metadata caches, the counter and MAC accesses show higher numbers of accesses

with reuse distances in the range between 65 and 512 while having smaller numbers of

accesses with reuse distances between 1 and 8. This indicates that higher capacities are

required to capture these reuses using unified caches compared to separate caches. Note

that accesses with small reuse distances (e.g., 0) do not always result in cache hits. The

reason is that if the first access is a miss and the data has not been fetched, subsequent

16

accesses to the same cache line become secondary misses.

Overall, our conclusion is that for streaming data access patterns, we may either use

separate metadata caches or adopt smart replacement policies to avoid the thrashing

behavior. Note that the thrashing-avoiding replacement policies proposed for CPU last-

level caches may not be readily adopted. The reason is that each newly fetched metadata

block may be accessed multiple times as each metadata block protects multiple data blocks.

For example, one MAC block contains MACs for 16 data blocks, with perfectly streaming

accesses, the MAC block will be reused for 16 times.

Figure 2.7: Normalized IPC of unified metadata caches vs separate metadata caches.

Figure 2.8: Miss rates for different types of metadata in unified vs. separate metadata
caches.

17

Figure 2.9: Reuse distance of counters of the benchmark fdtd2d

Figure 2.10: Reuse distance of MACs of the benchmark fdtd2d

2.3.5 AES Engine Throughput

To achieve high-throughput computation, GPUs usually have high requirements for the

memory bandwidth. For example, our baseline GPU has a peak memory bandwidth of

868 GB/s. So far, we have assumed that each memory partition can be equipped with 2

pipelined AES engines such that the encryption throughput can catch up with the memory

bandwidth. In this case, there would be a total of 64 (=2*32) AES engines residing on the

GPU chip.

18

To analyze the performance impact with different numbers of AES engines for each

memory partition/unit, we reduce the number of AES engines in each memory parti-

tion/unit from 2 to 1 and the performance results are shown in Fig. 2.11. From the figure,

we can see that although some benchmarks such as b+tree and kmeans observe a little

performance degradation, most of the benchmarks are not affected by having just one

pipeline AES engine in each memory partition. The reason is that for benchmarks with

relatively low memory utilization, neither the memory bandwidth nor the AES throughput

is the performance bottleneck. For the workloads with high memory bandwidth utilization,

the performance bottleneck is the extra memory traffic generated by metadata accesses.

Only after the memory bottleneck is addressed, the limitation due to AES throughput may

be exposed. Some memory-intensive benchmarks, such as srad_v2, streamcluster, 2Dcon-

volution, fdtd2d and lbm also exhibit slight performance improvement when the number

of AES engines is reduced from 2 to 1. The reason is that these benchmarks have relatively

high memory bandwidth utilization and large numbers of metadata write backs. Delaying

some memory accesses due to limited AES throughput leads to a change in warp scheduling

decisions as well as the cache access patterns, which results in small performance increase.

Figure 2.11: Normalized IPC with different numbers of AES engines in each memory
partition

2.3.6 Die Area

GPUs are highly-parallel processors, and most of their die area is dedicated for computa-

tional resources such as SIMT cores. For example, our baseline GPU models Nvidia Quadro

19

Table 2.6: Die area of the AES engine

- Tech Die Area

JSSC’11[Mat11] 45nm 0.15mm2

JSSC’19[Sin19] 130nm 13241µm 2

JSSC’20[Kum20] 14nm 4900 µm 2

Table 2.7: Scaled down die area of the AES engine and caches

- Area(mm2)/tech Area(mm2)/12nm

AES engine 0.0049/14nm 0.0036
64KB cache 0.125821/32nm 0.01769
96KB cache 0.128101/32nm 0.01801

GV100, which is fabricated using 12nm FinFET Nvidia (FNN) technology with 21.1 billion

transistors integrated on a die with the size of 815mm2 [Jia18]. It integrates 80 SMs and each

SM has 64 FP32 cores, 32 FP64 and 8 Tensor cores, which means a total of 5120 FP32 cores,

2560 FP64 cores and 640 Tensor cores.

To evaluate the die area required for counter-mode encryption, we estimate the area

of both AES engine and the metadata caches. We list the results from prior works on AES

design in Table 2.6 and scale the most recent design [Kum20] to the 12nm technology as

shown in Table 2.7. From the table, we can see that the area of one AES engine is estimated

as 0.0036 mm2. As there are 32 memory partitions, the total area for 32/64 AES engines is

0.1152/0.2304 mm2.

We use CACTI v6.5 to estimate the die area for the caches. As CACTI reports the area

estimation using the 32nm technology, we also scale the results down to the 12nm tech-

nology, as shown in Table 2.7. As CACTI does not support modeling of small caches like

2KB, we report the area estimate of 64KB as 64KB is the aggregated capacity of one type of

metadata caches in 32 partitions.

To make room for the die area required by the AES engines and metadata caches, we

choose to reduce the L2 cache size. Since each L2 bank is 96KB, we also use CACTI to

estimate the area. To accommodate 32 AES engines, the L2 cache capacity would need to

be reduced by 0.1152 mm2/0.01801mm2*96KB = 614KB. Similarly, the metadata caches

will occupy 0.01769*3 = 0.05307 mm2 on chip area, and hence reducing the L2 capacity by

0.05307/0.01801*96KB = 283KB. If we assume MAC units have similar die area compared

to AES engines, the security related hardware resources will reduce the L2 capacity by

614+614+298 = 1526KB in total (24.84% L2 cache capacity).

20

Figure 2.12: Normalized IPC with different L2 cache capacities

To evaluate the performance impact of the reduced L2 capacity, Fig. 2.12 shows the

normalized performance for different L2 cache sizes, ranging from 4MB to 6MB. From

the figure, we can see that although many benchmarks are not sensitive to the L2 cache

capacity, a few of them show relatively high performance degradation. To better understand

the reasons, we also report the L2 cache miss rate in Fig. 2.13. From the figure, we can see

that some medium-memory-intensive benchmarks show high sensitivity to L2 capacity. It

is expected since computation-intensive benchmarks (e.g., heartwall and lavaMD) have

small numbers of L2 accesses whereas highly memory intensive benchmarks such as lbm

or fdtd2d have very high L2 miss rates. Changing L2 capacity has little impact on these

workloads.

Figure 2.13: L2 cache miss rate

21

Table 2.8: Evaluated designs for direct encryption

Scheme What It Represents

direct_x direct encryption with different en-
cryption latency of x cycles

ctr counter-mode memory encryption
without any integrity protection

ctr_bmt counter-mode encryption with BMT
to protect counter integrity

ctr_mac_bmt counter-mode encryption with BMT
and MACs

direct_mac direct encryption with MACs.
direct_mac_mt direct encryption with MACs and MT.

2.4 Direct Encryption

In this section, we evaluate direct encryption and explore the option of different levels of

integrity protection. The designs that we evaluate in this section are listed in Table 2.8.

2.4.1 Performance Overheads of Direction Encryption

As direct encryption exposes the decryption latency to the critical path of memory read

accesses, it can slowdown the performance heavily on CPUs [Yan03]. However, GPUs are

designed for high-throughput computation by exploiting the high degrees of TLP. Hence,

GPUs are able to tolerate long operation latency. It is expected that adding some encryption

latency to the memory access would not hurt the GPU performance significantly.

Figure 2.14: Normalized IPC of direct encryption with different encryption latencies.

22

We model the direct encryption with different encryption/decryption latencies upon

our baseline GPU and the performance results are shown in Fig. 2.14. As expected, direct

encryption does not affect the GPU performance much. When the encryption latency varies

from 40 cycles to 160 cycles, the IPC slowdown is 1.33%, 3.02%, 5.93%, respectively on aver-

age. Some benchmark, e.g., b+tree, nw and streamcluster, show more than 10% slowdowns

at the high encryption latency of 160 cycles. The reasons are different among these three

benchmarks: (1) benchmark streamcluster suffers from high L2 miss rate (97.02%) as shown

in Fig. 2.13, which leads to many memory read accesses, (2) benchmark nw is limited by

the small kernel (shown in Table 2.4) such that they do not have enough threads to hide

the encryption latency. (3) benchmark b+tree shows interesting results because it’s neither

bounded by kernel size nor L2 miss rate. Digging deeper, we find that with a high encryption

latency of 160 cycles, b+tree suffers from 2.42X dram stall time compared the baseline GPU.

Our results show that given longer dram stall time, all the available warps in b+tree suffer

12.2% more pipeline cycles to wait data from memory on average, and thus slowdown the

performance. Although high encryption/decryption latency does not impact the GPU per-

formance significantly, we choose 40 cycles as the default encryption/decryption latency,

which is consistent with prior work on AES encryption for CPUs [Leh18].

Figure 2.15: Normalized IPC of direct encryption and counter-mode encryption

23

2.4.2 Direct Encryption vs. Counter-mode Encryption

To better understand the trade-offs between direct encryption and counter-mode encryp-

tion, we examine their performance in Fig. 2.15. From Fig. 2.15, we can make two obser-

vations. First, as discussed above, the performance impact of direct encryption is almost

negligible. Second, compared with direct encryption, counter-mode encryption without

integrity checks can lead to a relatively high performance overhead (33.06% on average,

and up to 66.44% for the memory-intensive workload lbm). As we studied in section 2.3,

the main reason is that counter-mode encryption will generate additional memory traffic

to fetch/store counters from/to the off-chip main memory.

Moreover, as we discussed in Chapter 1 section 1.2.2, counter-mode encryption funda-

mentally relies on counter integrity protection to provide data confidentiality. The reason is

that the counters are used for encryption and decryption. Without integrity checks of the

counters, the GPU cannot tell whether a counter has been altered by the attacker or not. In

this case, an attacker may be able to manipulate the counters to recover the plaintext. It can

be illustrated as follows. Let us use P as the plaintext, C as the ciphertext, and K as the secret

key of AES. Then the ciphertext is generated by C = EK (A||C t r)⊕P , where A is the address

of the memory block and C t r is the counter. P can be recovered with C ⊕EK (A||C t r) if C t r

can be controlled by the attacker. Hence, with counter-mode encryption, BMT is needed

anyway to provide integrity protection to the counters stored in the off-chip memory.

As we can see from Fig. 2.15, adding the integrity protection to counters further increases

the performance overhead, 43.94% on average for all the benchmarks in our study.

In summary, our evaluation suggests that if the memory only needs to be encrypted,

direct encryption would be a better choice for GPUs.

2.4.3 Integrity Protection

Memory encryption can provide data confidentiality. However, it cannot provide memory

integrity protection when the attackers have the ability to tamper the memory contents.

With counter-mode encryption, data integrity protection is provided by stateful MACs, and

counter integrity protection is provided by BMT. With direct encryption, one can choose to

build MAC upon cyphertext with/without a Merkle Tree (MT). The MT is needed to prevent

replay attacks and can be built with the MACs as its leaf nodes.

We model these schemes and compare the performance results in Fig. 2.16. For fairness,

we assume the same on chip resource used by the metadata caches. In counter-mode

24

encryption, as mentioned in Section 2.3, a 2KB on-chip metadata cache is used for each

type of metadata and a total of 6KB on-chip resource is used in each memory partition.

In direct encryption with MAC, we model a MAC cache with the size of 6KB. In direct

encryption with both MAC and MT, we model a 3KB MAC cache and 3KB MT cache (the

MACs will not access the MT cache as they are cached in the MAC cache).

Figure 2.16: Normalized IPC of direct encryption and counter-mode encryption with
integrity protection

From Fig. 2.16, we can make two observations. First, given the same on-chip resource for

metadata caches, direct encryption with MAC can still perform better than counter-mode

encryption scheme with BMT (42.65% vs. 63.45% IPC slowdown on average). Second, MT

can have high performance impact upon direct encryption. Combined with MACs, it can

slowdown the GPUs IPC by 71.87% on average. The reason is that with the same memory

protection range, the height of MT (7-level 16-ary tree) is higher than the BMT (6-level

16-ary tree). On one hand, a higher hash tree means that the integrity verification process

(every newly fetched MAC block must be authenticated) needs to traverse a longer path

and potentially incurs more memory traffic to fetch/store the tree nodes from/to off-chip

memory. On the other hand, a higher hash tree, although just 1 level higher, has much

larger capacity (due to the arity), which leads to high contention for the MT cache.

25

2.5 Conclusions

In this paper, we perform detailed performance analysis of different secure memory archi-

tecture designs for accelerators like GPUs. From our study, we conclude that we need to

architect GPU secure memory differently from it in CPUs. Our key observations include:

(1) Due to the latency-hiding capability, direct encryption can be a better alternative to

counter-mode encryption for GPUs if only data confidentiality is needed. (2) The AES

throughput limitation can be reasonably addressed with one pipelined AES engine in each

memory partition. (3) To support integrity verification, both counter-mode encryption

and direct encryption need to be further optimized to reduce the performance overhead.

In either design, the key bottleneck is the memory traffic generated by security metadata

accesses. (4) Metadata caches can reduce the memory traffic and separate metadata caches

can be a better choice than unified metadata caches for GPUs. (5) The use of sectored L2

cache on GPUs necessities MSHRs for the metadata caches to reduce the memory traffic.

26

CHAPTER

3

PSSM: ACHIEVING SECURE MEMORY FOR

GPUS WITH PARTITIONED AND

SECTORED SECURITY METADATA

3.1 Motivations

3.1.1 Performance Impacts of Naive Design

To pinpoint the performance bottlenecks of adopting CPU secure memory to GPUs directly,

we first perform a detailed performance analysis. The simulation methodology is presented

in Section 3.3.1. We model the secure memory architecture with split-counter mode en-

cryption, combined with MAC and BMT for integrity protection. A 64KB cache is added for

each type of security metadata. There are 32 memory partitions in our baseline GPU model,

thus each memory partition is equipped with a 2KB counter cache, a 2KB BMT cache, and

a 2KB MAC cache. We assume the metadata cache (MDC) line size of 128B, the same as the

data cache line size. A split-counter block with 128B consists of 1×128-bit major counter

and 128×7-bit minor counters (SC_128) is adopted in this naive design, as shown in Fig.

27

3.5. This way, one counter block is used for 128 data blocks or a major counter is shared

among 128 data blocks.

Fig. 3.1 reports the instruction per cycle or IPC (higher is better) of secure memory

designs normalized to the baseline GPU without secure memory support. In the figure, the

design directly adopted from CPU secure memory is labeled secureMem. Two idealistic (but

infeasible) designs are also included to determine performance bottlenecks. large_mdc

represents an ideal design with unlimited MDC capacity, while 0_crypto represents an

ideal design with zero-latency cryptographic operations (i.e., zero encryption and MAC

computation latencies). In all these designs, the metadata are generated using the physical

addresses. In other words, the addresses used in counter mode encryption and MACs are

physical addresses of the data blocks.

Figure 3.1: Normalized performance of secure memory designs to the baseline GPU with-
out secure memory support.

From Fig. 3.1, we can see that directly adopting the CPU secure memory design results in

a performance slowdown for GPU of 59.66% on average (geometric mean). The performance

degradation is even higher for memory-intensive benchmarks like lbm (91%) and srad_v2

(84%). Zero cryptographic latency does not improve the performance of secure memory,

primarily because GPUs being designed to be latency tolerant. On the other hand, with

unlimited MDC sizes, the average performance is more than doubled and approaches the

baseline GPU without secure memory, indicating that the memory accesses to fetch/store

security metadata from/to off-chip memory is the main performance bottleneck. Moreover,

we can observe that even with unlimited MDC capacity, where only cold misses on metadata

remain, the performance slowdown can still be significant, 13% on average. The reason

28

is that the performance of GPUs is highly bounded by memory bandwidth and we would

better avoid any additional memory bandwidth contention.

3.1.2 Problem Diagnosis

As presented in Section 3.1.1, even with unlimited MDCs, there is a performance gap be-

tween the baseline GPU and the one with secure memory support. By analyzing the MDCs

in different partitions, we discover that the partitioned memory structure and memory

interleaving used in contemporary GPUs lead to redundant metadata being fetched to

and stored in the MDCs in different partitions. This implies that some memory bandwidth

is wasted due to unnecessary data transfers. The main reason for the redundant meta-

data among different memory partitions is that the state-of-the-art split-counter mode

encryption organizes the counters based on data blocks’ physical addresses. However, with

partitioned memory structure, memory blocks within the same physical page are mapped

to different memory partitions so as to avoid the partition camping problem [Aji11][Yan10].

In our baseline GPU, pseudo random memory interleaving is employed and the interleaving

granularity is 256B (2 memory blocks or cache lines with the block/line size of 128B). With

split counters, one counter block contains the encryption counters for many data blocks

mapped to different partitions. Since each memory partition has its own memory con-

trollers and cannot access other partitions directly, there is a question of how to maintain

the split counters.

Figure 3.2: A single (128B) counter block corresponds to 128 data blocks in 32 partitions.
Similarly, one BMT node requires multiple counter blocks.

The problem is further illustrated with Fig 3.2. Here, we simply assume the sequential

interleaving scheme and the interleaving granularity is 2 memory blocks. With split counters,

29

one 128B counter block protects 128 data blocks and these data blocks are distributed across

the 32 memory partitions. As a result, the same counter block needs to be accessed by

all the 32 memory partitions and it may be stored in the counter cache in each partition,

leading to significant redundancy. Besides the redundancy in counter caches, another key

problem is, which memory partition should be used to accommodate this counter block in

off-chip memory? There are two options.

Option 1: Redundant counters We can store several copies of the counter block in

different partitions such that each partition can access the its own copy. For example, a

copy of counter block 0 can be stored in off-chip memory corresponding to partition 0,

another stored in partition 1, etc. However, the issue is the coherence among the multiple

copies of the same counter block. If there is one minor counter overflow in one partition, the

major counter would need to be updated for all the copies of the counter block. But there is

no communication channel across different partitions to support such an operation. The

remedy would be adding an interconnect network across different partitions, which would

incur high hardware cost.In our paper, we adopt this design with redundant counters as

our baseline.

Option 2: Single copy of counters We can also store all the metadata in one partition.

For example, all counter blocks can be stored in partition 1. When partition 2 received

a memory request, which needs to access its counter block, the memory controller in

partition 2 would have to access partition 1, thereby requiring the interconnects across

different partitions.

Note that the BMT nodes share the same problems as the counters since the BMT is

built on top of the counter blocks. In other words, a BMT node needs to be accessed by

multiple partitions.

3.1.3 Coarse-Grain Interleaving

To solve the counter redundancy and coherence problem, one possible solution is to enlarge

the interleaving granularity to larger memory chunks like page-level memory interleav-

ing [Zha00]. For example, if four consecutive memory pages in the physical memory space

(assuming 4KB pages) can be assigned to the same memory partition, all the 128 data

blocks (16kB = 128*128B) corresponding to a 128B counter block would reside in the same

memory partition. However, the problem of such coarse interleaving granularity is partition

camping [Aji11], which means that multiple streaming multiprocessors (SMs) may try to

access the data from the same memory partition, resulting in contention at the partition

30

and low memory bandwidth utilization overall.

To evaluate the performance impact of coarse interleaving granularity, we model the

memory interleaving at 1-page and 4-page granularity without secure memory and nor-

malize the performance to the IPC of baseline GPU without secure memory. The results

are shown in Fig. 3.3. As we can see from Fig. 3.3, 1-page interleaving slows down GPU

performance by 13% on average compared to the baseline GPU, which uses 2-block/256B

interleaving. Moreover, 1-page interleaving cannot solve the counter storage problem as

one counter block still contains the counters from more than one partition. In compar-

ison, 4-page interleaving can eliminate the counter storage problem entirely, as all the

data blocks, whose counters are in the same counter block, reside in the same partition.

The overheads, however, are increased: 4-page interleaving reduces GPU performance by

almost 29% on average due to more severe partition camping.

Figure 3.3: The IPC of different page interleaving granularities, normalized to the baseline
GPU with 256B interleaving and without secure memory support.

Even with coarse-grain interleaving, the problem with the BMT remains. Some BMT

nodes, especially those in high levels of the tree, are still needed by different partitions, as

one BMT node may have several children nodes that span over multiple partitions.

3.1.4 Sectored MDC

Sectored caches are commonly used for commercial GPUs to reduce memory bandwidth

consumption. As pointed out in Section 3.1, the key performance bottleneck of GPUs with

secure memory support is the bandwidth contention due to metadata accesses. Therefore,

31

we expect that the GPU performance can benefit from sectored MDCs. In our baseline GPU,

the data caches (both L1 and L2) use 128B cache lines and each cache line has 4 sectors, i.e.,

each sector has a size of 32B. Similarly, we model the MDC with 4 sectors in each cache line.

Fig. 3.4 shows the performance comparison of secure GPU with sectored and regular (i.e.,

non-sectored) MDCs of the same capacity and set associativity. As expected, we can clearly

see that the performance of sectored MDC is significantly better than the non-sectored

MDC. As such, we conclude that sectored MDCs are preferred for GPU secure memory

design.

Figure 3.4: Performance comparison of secure GPU with non-sectored MDCs (labeled
’secureMem’) and sectored MDCs (labeled ’sec_mdc’).

However, there is a problem with separating split-counters into sectors as shown in

Fig. 3.5. With a 128B counter block being divided into 4 sectors, the major counter (128b)

along with 18 minor counters (7b each) is usually stored in the first sector (32B) while

the remaining minor counters are stored in other sectors. If an L2 cache miss leads to a

counter access to the sector other than the first, the memory controller still needs to issue

2 memory requests to fetch 2 sectors containing the major counter and the corresponding

minor counter to recover the counter value needed for memory encryption/decryption. To

avoid such additional memory transactions, the counter block organization needs to be

redesigned such that it can be friendly to the sectored cache structure.

32

Figure 3.5: A Split-counter block of 128B, containing 1×128-bit major counter and 128×7-
bit minor counters. When split into 4 sectors, the first sector contains the major counter
and some minor counters.

3.1.5 Sectored Data Cache and MAC Verification

In CPU secure memory, a MAC is calculated for each cache line. On GPUs, sectored data

caches are commonly used to save bandwidth consumption. However, secure memory

presents a new trade off between regular data bandwidth and metadata bandwidth con-

sumption. On one hand, if a MAC is generated for each line, MAC computation and verifi-

cation would require all the sectors in the cache line, which would force a sectored cache

to operate like a non-sectored one. On the other hand, if one MAC is used for each sector,

the amount of MAC data will be highly increased, which would lead to high MAC data

storage and bandwidth overheads. One partial solution is to truncate the MAC size for a

sector. Although this might compromise the strength of MAC verification, we consider the

performance impact of such MAC truncation in our evaluation.

As the design of one MAC per cache line would essentially make a sectored cache to

behave like a non-sectored one, we examine the performance difference between the sec-

tored and non-sectored caches for GPUs without secure memory. In our experiment, we

compare a non-sectored L2 cache with a sectored L2 while keeping L1 caches as sectored.

The reason is that sectored L1 caches help reduce bandwidth pressure on the L1-L2 inter-

connect network. We report the IPCs of non-sectored L2 cache designs normalized to the

sectored L2 cache design in Fig. 3.6. The label ’nL2_N’ denotes the model of non-sectored

L2 cache where each L2 MSHR (miss status handling register) can merge up to N requests

that missed in the L2 cache and each request is a cache line. In our baseline GPU with

sectored L2 cache, each L2 MSHR can merge 4 L2 miss requests and each request is one

sector (i.e., 32B) rather than a cache line. The structure of such a MSHR is illustrated in Fig.

3.7 (a), where the primary miss (labeled ’priMiss’) is the first request to the cache line/sector

and the secondary misses (labeled ’secMiss’) are the merged requests. If a request finds a

matching MSHR but all its entries have been occupied, the request will be stalled and block

the subsequent requests.

As we can see from Fig. 3.6, the performance of non-sectored L2 is very close to it of

33

the sectored L2 for most benchmarks when N is 16 or larger. For N being 4, the sectored L2

has significantly higher performance for several memory intensive benchmark. The reason

is that the non-sectored L2 design suffers many more MSHR stalls due to the merging

granularity. Considering a streaming-like access sequence, A1, A2, A3, A4, A5, all of which

are misses and map to different sectors in the same cache line: A1 and A5 to sector 1, A2 to

sector 2, A3 to sector 3, and A4 to sector 4. With a sectored L2, A1, A2, A3, and A4 reside in

different MSHRs and A5 merges with A1, as illustrated in Fig. 3.7 (b). With a non-sectored L2,

A1, A2, A3, and A4 reside in the same MSHR and A5 is blocked since the matching MSHR is

fully occupied, as illustrated in Fig. 3.7 (c). After fixing this MSHR stall with higher N values,

the performance of the non-sectored L2 is very close to the sectored one. One exception

is benchmark kmeans, for which sectored accesses reduce the overall bandwidth and a

sectored L2 has better performance as a result of poor spatial locality of the benchmark.

On the contrary, the benchmark lbm exhibits strong spatial locality and the non-sectored

L2 designs show higher performance than the sectored one.

In summary, we can see that although a sectored L2 is beneficial for certain workloads,

the performance of a non-sectored L2 cache is very close the sectored one on average.

Note that for a sectored cache with one MAC per cache line, the MSHRs would not be a

bottleneck since the requests are processed at the sector granularity.

Figure 3.6: The IPC of a non-sectored L2 cache with different numbers of request merges
in an L2 MSHR normalized to the baseline sectored L2.

34

Figure 3.7: The L2 MSHRs. (a) The structure of an L2 MSHR. (b) The MSHR state of a
sectored L2 after the access sequence A1-A5. (c) The MSHR state of a non-sectored L2 cache
after the same access sequence A1-A5.

3.2 Architecture Design

3.2.1 Overall Architecture

From our performance study in Section 3.1, we observed that CPU secure memory scheme

cannot be directly adopted to GPU without losing much performance. To adapt the se-

cure memory architecture design for GPUs, we propose partitioned and sectored security

metadata (PSSM). PSSM has two simple yet effective components. First, it uses the partition-

local addresses, which are the offsets within a partition, instead of physical addresses to

construct the security metadata. Second, it reorganizes the split counter blocks to make

them friendly to sectored caches. Our overall architecture design is shown in Fig. 3.8. With

partitioned memory, each memory partition has its own memory controller. The memory

encryption engine (MEE) [Gue16b] and MDCs are integrated into the on-chip memory

controller. PSSM eliminates the metadata redundancy and coherence problem, and thus

we can store the security metadata locally in each memory partition. There is also no need

for cross-partition communication.

The MEE operates as an extension to the memory controller. It contains the AES en-

cryption engines and hash/MAC engines. All the L2-to-DRAM requests are forwarded to

the MEE, and the MEE will encrypt/decrypt data before sending/fetching it to/from the

off-chip memory. To verify data integrity, the MEE will also generate additional memory

transactions to validate the MAC for each data block, and traverse/update the integrity tree.

A special register (labeled as Root in Fig. 3.8) is used for the root of the integrity tree. Also,

a special off-chip memory region is reserved in each memory partition to store the security

35

Figure 3.8: Secure GPU architecture with the trust boundary as the GPU chip

metadata including counters, MACs and intermediate integrity tree nodes.

3.2.2 Using Local Addresses for Security Metadata

With a partitioned memory structure, each memory access will be mapped to a partition. If

this access misses in the L2 cache banks of the partition, the access goes to the off-chip

memory through the memory controller of the partition. There is a mapping function, which

converts the physical address into a partition id and a partition offset. In our design, we

propose to use the partition offset, which we refer to as local address, to generate/organize

the security metadata.

In Fig. 3.9, we illustrate the difference between physical and local addresses with

an example of sequential interleaving across 32 memory partitions and the interleaving

granularity is 2 memory blocks. With a 4KB page size, 32 memory blocks within the same

physical page are mapped to 16 partitions, i.e., blk0, blk1, ..., blk15, where the blkids are

physical addresses. With sequential interleaving, the partition id can be computed as

(physical address / partition granularity) % number of partitions or blkid/2%32 whereas the

partition offset is (physical address /number of partitions / partition granularity) * partition

granularity + physical address % partition granularity), or (blkid/64)*2 + blkid % 2, where

’/’ is integer division and ’%’ is remainder. PSSM uses local addresses for security metadata.

As shown in Fig. 3.9, a local page contains 32 blocks with consecutive local addresses while

their physical addresses are not consecutive.

Using local addresses to organize the counter blocks, memory blocks within the same

local page will share one counter block. PSSM stores the counter blocks locally within each

partition memory. Therefore, the BMT is also constructed solely based on the counter

blocks within the same partition. In other words, each partition has its own BMT with the

36

Figure 3.9: Physical and local addresses in partitioned memory organization.

root stored in the corresponding on-chip memory controller. The benefits of this design are:

(1) metadata (counter/bmt node) redundancies are eliminated and there is no coherence

issue, (2) smaller and shallower integrity trees compared to a single BMT for all partitions.

Our baseline GPU uses pseudo random interleaving [Rau79]memory. There are also

other memory interleaving schemes, e.g., sequential interleaving, prime-module interleav-

ing [Law82], skewed-interleaving [HAR87], etc. A common feature of memory interleaving

is the nature of bijection [Rau79], which means that with local addresses and partition ids,

the corresponding physical addresses can be computed, and vise versa. Also, the cost of

address transformation between a physical address and a local address is usually minor.

3.2.3 Making Metadata Friendly to Sectored Caches

As discussed in Section 3.1, sectored MDCs are preferred than non-sectored ones because

their bandwidth-saving effects. A MAC cache line and a BMT cache line can be easily broken

into smaller sectors since the MAC size and the hash values are a multiple of bytes (e.g.,

8). A counter cache line or a counter block, however, is not friendly to sectored caches as

discussed in Section 3.1.4. In PSSM, a single major counter is divided into multiple major

counters and a major counter is shared by a smaller number of minor counters. Taking a

4-way sectored block as an example in Fig. 3.10, for each sector of 32B, there is a 32-bit

major counter and 32 7-bit minor counters and we refer to this counter block design as

SC_32. In other words, one sector in a counter block corresponds to 32 data blocks.

Our sectored counter design is inspired from the memory write characteristics of GPU

applications. In Fig. 3.11, we report the numbers of stores per kilo instructions. The figure

clearly shows that memory writes only account for a very small portion of overall instruc-

tions. The write back caches (i.e., L2) combine multiple stores to the same cache lines,

further reducing the numbers of writes to memory.

37

Figure 3.10: Sectored split-counter design: each sector has 1×32-bit major counter and
32×7-bit minor counters.

As a result, although PSSM uses a smaller major counter (32 bits) than the design in Fig.

3.5 (128 bits), there would not be a problem with the potential major counter overflows.

Moreover, compared to the design in Fig. 3.5, the PSSM counter block design in Fig. 3.10

has lower overhead of a minor counter overflow: each minor counter overflow leads to 32

blocks to be re-encrypted rather than 128 blocks in Fig. 3.5.

Note that even with our proposed PSSM counter block design, there are subtle issues

with sectored MDCs, counter and BMT caches in particular, due to BMT verification. With

the secure hash function, a 128B counter block (or a 128B BMT node) is hashed into an 8B

value as a part of the counter block’s (or the node’s) parent. To verify a sector in a counter

block (or a BMT node), all the sectors in the same counter block (or the node) are needed to

generate the hash. Therefore, the sectored counter cache or the sectored BMT cache needs

to operate like a non-sectored one for the verification purpose. The benefit of a sectored

counter cache or BMT cache is the reduced write traffic: when a dirty counter block or a

BMT node is evicted, not all its sectors are dirty.

In the case where BMT verification is not needed, the sectored counter cache can

operate normally for both read misses and dirty evictions, i.e., one sector at a time rather

than one line at a time.

Figure 3.11: Numbers of stores per kilo instructions (SPKI).

38

3.2.4 Encryption and MAC Engine

In counter-mode encryption, the choice of pad value is critical for security because pad

reuse can lead to information leakage. In other words, the pad value must be unique. In

conventional CPU secure memory, to ensure the temporal uniqueness, which means that

pads are unique over time for each memory block, a counter value is maintained for each

memory block as a pad component and is incremented on each write back. To maintain

the spatial uniqueness, the physical block address is also included to form the encryption

pads.

In PSSM, the encryption/decryption is performed at the granularity of a cache sector.

It can be illustrated with Fig. 3.12. However, given that local addresses can be the same

across different memory partitions and lead to pad-reuse, PSSM includes the partition id

and sector id into the encryption pad. Let us use P as the plaintext, C as the ciphertext,

and K as the secret key of AES. The memory encryption can be denoted as

C = EK (l o c a l _a d d r ||C t r ||p i d ||s e c _i d)⊕P

where l o c a l _a d d r is the local address of the memory block, C t r is the combination

of major counter and minor counter, p i d is the memory partition id, s e c _i d is the sector

id within the cache line. The size of each input field is shown in Fig. 3.12. Depending on

the number of memory partitions and partition granularity, the sizes of each field for the

encryption input are adjusted accordingly.

Figure 3.12: The encryption/decryption process in PSSM. The input to the AES encryption
engine ensures encryption seed uniqueness, both temporally and spatially.

In PSSM, the MAC may be calculated based on a cache sector or a cache line. The input

fields and MAC calculation process are illustrated with Fig. 3.13. PSSM includes the sector

id, partition id, and the local address into the MAC calculation to make the MAC location

dependent. Note that depending on what MAC algorithm being used, the padding bits of

39

Figure 3.13: The MAC generation process in PSSM. The MAC computation output is
truncated to 64/32 bits. Sector id is used when a MAC is generated for each sector.

the MAC engine can be different.

3.2.5 Bandwidth for Accessing MACs

Among different types of metadata, accessing MACs incur high memory bandwidth (See

Section 3.3.2). To address this performance bottleneck, PSSM may opt to truncate the MAC

value to a smaller size. In our default setup, a MAC of 8B is used for each 32B sector/128B

cache line. In our experiments, we evaluate the performance when we truncate the MAC

value to 4B. We think that the truncated MAC is sufficient for GPU security for a few reasons.

First, any random modification only has a very small chance of producing a hash collision

due to the nature of computation resistance of the underlying hash function. With 4B MAC,

an attacker only has 1
232 or less than 1 in a billion chance to successfully bypass the MAC

verification by randomly changing any bits of the data in off-chip memory.

Second, unlike CPUs which may run long-running server applications, most GPU appli-

cations execute short-running kernels. Every instance of kernel execution uses a different

session key hence the attacker cannot succeed across different kernel executions. Hence,

the attacker must succeed in producing a hash collision within a single kernel lifetime.

Some attacks, such as rowhammer, takes a while to succeed, e.g., 0.64 second on average

to flip a single bit in the RAMbleed attack [GOO19]. Therefore, as long as a single kernel

executes for less than 1 hour, the chance of thousands of bit flips producing a hash collision

is still much less than one in a million. Furthermore, once MAC mismatch is detected, GPU

will be rebooted hence the attacker for practical purposes can only modify memory once

before detection.

40

Table 3.1: Baseline GPU Configuration

SM config 80 SMs, 1132 MHz
Register File 256KB/SM, 20MB in total
L1 D-Cache 32KB/SM
Shared Memory 96KB/SM
L2 cache 2 banks per memory partition,

each L2 cache bank is 96KB, 6MB
in total

DRAM 850MHz, 32 partitions, 868GB/s,
pseudo random memory inter-
leaving.

Table 3.2: MDC and MEE Organization

Counter cache 2KB / memory partition, 128B blk, 4-way
sectored, 256 MSHRs, allocate-on-fill policy,
sectored as default unless otherwise noted.

Mac cache 2KB / memory partition, 128B blk, 4-way
sectored, 256 MSHRs, allocate-on-fill policy,
sectored as default unless otherwise noted.

Bonsai Merkle
Tree cache

2KB / memory partition, 128B blk, 4-way
sectored, 256 MSHRs, allocate-on-fill policy,
sectored as default unless otherwise noted.

Hash/Mac latency 40 cycles
AES engines 1 pipelined AES/memory partition

3.3 Evaluation

3.3.1 Methodology

We evaluate our designs with GPGPU-Sim v4.0 [Kha20]. Our baseline GPU configuration is

shown in Table 3.1, which is modeled based on the Nvidia Volta architecture [Jia18].

In our experiments, we assume that a range of 4GB device memory is protected. The

detailed MDC and MEE organization is listed in Table 3.2. The MDCs are sectored by default

unless otherwise specified. The different secure memory designs that we evaluate in our

experiments are listed in Table 3.4. In one of our experiments, we also relax our threat

model and only focus on GPU memory encryption without integrity protection. Table 3.5

lists the schemes we evaluate for GPU memory encryption, including different designs

using split-counters and one using monolithic counters.

We use 16 benchmarks from a wide range of benchmark suites including Rodinia

41

Table 3.3: Benchmarks

Categorization Benchmark name Bandwidth utilization

non
memory
intensive

heartwall <1%
lavaMD <1%
stencil <1%
sad 5%-7%
nw <2%
b+tree 12%-14%

medium
memory
intensive

backprop 25%
cfd 15%-50%
dwt2d 20%-50%
kmeans 40%-45%

memory
intensive

bfs 5%-60%
srad_v2 79%- 80%
streamcluster 78%-80%
2Dconvolution 53%
fdtd2d 82%-83%
lbm 58%

3.1 [Che09], Parboil [Str09] and Polybench [GG09]. Table 3.3 elaborates the details of these

benchmarks. For each benchmark, we simulate 4 million cycles. The reason is that previous

works [Lin18] have pointed out that the variation of statistic counters becomes very small

after the kernel is simulated for 2 million cycles for these benchmarks. Table 3.3 also classify

the benchmarks based on their bandwidth utilization when running on the baseline GPU

without secure memory support. We report normalized IPCs in our evaluation with the

baseline as the GPU with sectored data caches and without secure memory support.

3.3.2 Performance

Overall Performance We evaluate our PSSM designs for both one MAC per sector and one

MAC per cache line MAC with different MAC sizes, and report the performance results

(normalized to the baseline GPU) in Fig. 3.14. From the figure, we can make the following

observations. First, compared with the baseline secure memory design, labeled ’secure-

Mem’, our PSSM scheme improve the performance significantly. The average performance

overhead is reduced from 59.22% to 42.03% for PSSM_sL2_8B_sMdc, 31.09% for PSSM_-

sL2_4B_sMdc, 19.06% for PSSM_nL2_8B_sMdc and 16.84% for PSSM_nL2_4B_sMdc. The

main reason is that the redundant metadata are eliminated. One exception is benchmark

nw, for which our PSSM_sL2_8B design performs worse than the secure memory baseline.

42

Table 3.4: Evaluated designs for GPU secure memory with both memory encryption and
integrity verification.

Scheme What It Represents

secureMem Baseline GPU with secure memory, and the secu-
rity metadata is organized with physical address.
Sectored L2 cache and 2B MAC per sector.

PSSM_sL2_xB_sMdc secure GPU memory with our PSSM design, the
L2 cache is sectored, and the MAC is x bytes per
sector.

PSSM_sL2_8B_nMac secure GPU memory with our PSSM design, the
L2 cache is sectored, and the MAC is 8B bytes per
sector. The MAC cache is non-sectored to show the
impact of sectored MAC cache.

PSSM_nL2_xB_sMdc secure GPU memory with our PSSM design, the L2
cache is sectored (but behaving like non-sectored)
since the MAC is x bytes per cache line.

Table 3.5: Evaluated designs for GPU memory encryption.

Scheme What It Represents

SC_128_nMdc Encrypted GPU memory with split counters. The
major counter is 128-bit and the encryption coun-
ters are organized with physical address and the
counter cache is non-sectored.

PSSM_Mono_Ctr_sMdc Encrypted GPU memory with 32-bit monolithic
counters. The counters are organized with local
addresses and the counter cache is sectored.

PSM_SC_128_nMdc Encrypted GPU memory with split counters. The
counters are organized with local addresses. The
major counter is 128-bit and the counter cache is
non-sectored.

PSSM_SC_32_sMdc Encrypted GPU memory in split counters. The
counters are organized with local addresses. The
major counter is 32-bit and the counter cache is
sectored.

43

The reason is that this benchmark has an irregular small kernel, whose baseline IPC is only

23.4. With our PSSM and the 8B MAC per L2 sector design, the warp scheduling decision

was altered, leading to performance variation. Second, MAC caches benefit from sectored

cache designs, as we can see from Fig. 3.14, PSSM_sL2_8B_sMdc performs better than

PSSM_sL2_8B_nMac. It is expected because MAC accounts for the most storage overhead

for security metadata, and every DRAM access must be authenticated with MAC. Third, a

sectored L2 with one MAC per cache line outperforms sectored L2 caches with one MAC

per sector MAC. The reason is that the MAC storage overhead of the one-MAC-per-sector

design is much higher (N times) that of one-MAC-per-cache-line design, where N is the

number of sectors in a cache line. Consequently, the bandwidth requirement of MAC ac-

cesses is much higher in one-MAC-per-sector designs, leading to more severe memory

bandwidth contention. Fourth, truncating the MAC size from 8B to 4B further reduces the

memory bandwidth contention, resulting in a performance overhead reduction for both

PSSM_sL2_4B_sMdc and PSSM_nL2_4B_sMdc.

Figure 3.14: Normalized IPC of different secure GPU memory designs.

To better understand the performance impacts, we also present the numbers of meta-

data cache misses per kilo instructions of our PSSM_nL2_sMdc design in Fig. 3.15. From

the figure, we can make two observations: First, the MAC cache has high miss rates for

most workloads and potentially contributes to high memory bandwidth consumption,

especially for the memory intensive benchmarks. Second, the benchmarks kmeans and

lbm have very high cache miss rates for all the three types of metadata. The reason is that

these two benchmarks have L2 miss rates higher than 95%, and each DRAM access needs

44

Figure 3.15: MDC miss rates (in MPKI) of the PSSM_nL2_4B_sMdc design.

its corresponding metadata, which contends for memory bandwidth. High L2 miss rates

combined with high miss rates of metadata caches lead to high performance overheads, as

we can see from Fig. 3.14. As a result, kmeans and lbm still show significant performance

slowdowns even with our PSSM design.

Remaining Performance Bottleneck As we can see from Fig. 3.14, even with our best

design, there is still some performance overhead, 16.84% on average for PSSM_nL2_SC_-

32_sMdc. To better understand where the remaining overhead comes from, we model ideal

MDCs under different scenarios. These ideal designs will limit one specific MDC resource

and make the other MDC resource unlimited (meaning that there are only cold misses for

these types of metadata). For example, the label smallCtr models a 2KB counter cache per

partition while the MAC cache and the BMT cache have unlimited capacity. Similarly, the

label smallMac and smallBmt means the MAC cache or BMT cache is 2KB while the others

are unlimited. The label large_mdc models unlimited cache capacity for all the three types

of metadata. We present the results in Fig. 3.16. From Fig. 3.16, we can see that the MAC

accesses remain to be the main bottleneck. The reason is that the MACs incur the most

storage overhead among all three types of metadata. At every memory read or write, the

corresponding MACs must be accessed to verify the data or updated and any MAC cache

miss would lead to additional bandwidth pressure.

Memory Encryption For the systems where data confidentiality is the main concern, we

may forego data integrity protection to reduce the performance and the hardware overhead.

With this application scenarios in mind, we evaluate different GPU memory encryption

designs as listed in Table 3.5 and the results are shown in Fig. 3.17.

From Fig. 3.17, we can make the following observations. First, compare with the direct

45

Figure 3.16: Normalized IPC of the PSSM_nL2_4B_sMdc design with different ideal MDCs.

Figure 3.17: Normalized IPC of different GPU memory encryption schemes.

adoption of the split-counter mode encryption from the CPU (labeled ’SC_128_nMdc’),

our PSSM designs can improve the performance significantly. The main reason is that

the counter redundancy is totally eliminated and the memory bandwidth consumption

for the counters is reduced significantly. Second, with our PSSM design, split-counter

schemes perform better than the one using monolithic counters. The reason is that with

monolithic counters, each 128B block needs a 32-bit counter. In comparison, with split

counters, one 128B counter block is shared by 128 128B data blocks. Therefore, one 128B

data block requires 8 bits as its counter storage overhead. The 4X higher counter storage

in the monolithic counter scheme leads to higher pressure on the counter cache and

subsequently higher bandwidth consumption. Third, with split counters in our PSSM

design, our sectored counter organization, i.e., SC_32, performs better than the SC_128

organization on average. Hence, we conclude that if the focus is on data confidentiality, the

46

PSSM_SC_32 design would be the choice.

3.4 Conclusions

In this paper, we propose architectural designs for secure memory support on GPUs. Our

performance analysis identifies that the partitioned memory architecture of GPUs is not

compatible with conventional secure metadata and the existing counter block organization

is not friendly to sectored cache structures. We propose Partitioned and Sectored Security

Metadata, which is a simple-yet-effective approach to (a) use partition-local addresses for

metadata and (b) reorganize the split-counter block to make it fit with sectored caches.

Our results show that our proposed scheme effectively reduces the performance overheads

of secure memory support on GPUs. Our study also reveals that even with our proposed

scheme, memory bandwidth contention due to metadata accesses remains a performance

bottleneck for memory intensive workloads. For systems only requiring data confidentiality,

the metadata is reduced to only counters. In such a case, our proposed scheme incurs only

5.18% performance overhead on average.

47

CHAPTER

4

SHM: ADAPTIVE SECURITY SUPPORT FOR

HETEROGENEOUS MEMORY ON GPUS

4.1 Motivation and Design Principles

4.1.1 Heterogeneous Memory on GPUs

To achieve high-throughput computation, GPUs have a complex heterogeneous memory

system. It includes registers, local memory, global memory, constant memory, texture

memory and several levels of caches. Among these different memory spaces, some are on-

chip and do not need any protection as the GPU chip forms the trusted boundary; some are

off-chip but have special access constraints during kernel execution, while the remaining

ones are vulnerable to conventional physical attacks, and need strong protections.

We analyze the security mechanisms on CPU TEEs, and make the observation that GPUs

may not always need freshness guarantee for some memory spaces due to their read-only

nature during kernel execution. We show the summary of our analysis on Table 4.1. One

observation we make is that the integrity tree does not need to cover read-only spaces like

constant and texture memory.

48

Table 4.1: Security Mechanisms for GPU Heterogeneous Memory

Space Location Mechanisms

Register on-chip –
Local Memory off-chip C + I + F

Shared Memory on-chip –
Global Memory off-chip C + I + F

Constant Memory off-chip C + I
Texture Memory off-chip C + I (+ F)

Caches on-chip –

Table 4.2: Security Mechanisms for Application Data

Data Property Guarantees

Application code Read-only C + I
Input Read-only C + I

Output Read/Write C + I + F
In-flight Data Read/Write C + I + F

Moreover, as pointed out in previous work [Na21], some global memory data are most

likely to be read-only. The reason is that GPU adopts a copy-then-execute model, and the

data copied from host memory will not be updated anymore on device memory after the

initial copy. For example, In OpenCL programs, the input buffer can be explicitly defined

as read only. CUDA programs, however, allow the kernel code to modify the input, which

necessitates the freshness checks. Toward this end, we also analyze the security protections

from the application perspective and show it in Table 4.2. Similar to the constant and

texture memory spaces, these read-only data also do not need freshness checks.

4.1.2 Seed Generation in Counter-Mode Encryption

Figure 4.1: Seed generation for (a) not-read-only data and (b) read-only data.

49

Counter-mode encryption fundamentally requires that the counter used in each mes-

sage encryption must be unique because counter reuse makes the encryption vulnerable.

Hence, in counter-mode encryption, a per block counter is maintained and incremented

at every LLC write back. Among the different components of the encryption seed that is fed

into the AES engine, the counters are used to ensure the temporal uniqueness, while the

address and CID are used to ensure the spatial uniqueness. A key observation for read-only

memory regions, including constant memory, texture memory and some input data, is

that these memory spaces are not modified during single kernel execution. In other words,

there is no need to maintain the temporal uniqueness for read-only regions in single kernel

execution. However, we identify a potential physical attack scheme, called cross-kernel

replay attack, if the GPU context contains multiple kernels. In a multi-kernel workload,

the read-only memory space (e.g., constant memory) may be reused (i.e., overwritten by

the host) across different kernel invocations. An attacker can replay the read-only values

from previous kernels if she/he has physical access. Hence, we need a mechanism to keep

temporal uniqueness for read-only space in such scenarios. A shared counter is introduced

for this purpose. For non-read-only memory, the full seed is still generated with split coun-

ters as shown in Fig. 4.1(a). For read-only regions, the major counter is replaced with a

shared counter, which is stored on chip as a special register, and the minor counter are

zero-padded (more details in Section 4.2). Since the shared counter is stored on-chip and

is out of the reach of attackers, there is no need to check its integrity and freshness. As a

result, the integrity tree does not need to cover the read-only data as shown in Fig. 4.2.

Consequently, the memory bandwidth overheads due to integrity tree traversing are also

eliminated.

Figure 4.2: Integrity tree with read-only regions excluded.

50

4.1.3 Overhead of MAC Accesses

As pointed out by previous work [Yua21a], accessing the MACs can be a major overhead for

secure GPU memory because at each off-chip memory read/write, the corresponding MAC

block must be fetched/updated if it misses in the MAC cache.

To save the memory bandwidth for accessing MACs, PSSM [Yua21a] truncates the MAC

from 8B to 4B. However, truncating the MAC reduces the collision space as proved by the

birthday attack paradox [Gup15] – "With a birthday attack, it is possible to find a collision

of a hash function in
p

2n = 2n/2, with 2n being the classical preimage resistance security".

As a result, with n = 50, it is possible to find a collision by every
p

250 = 250/2 = 225 memory

updates. For a 4 GB device memory, there are 232/27 = 225 memory blocks with the block

size of 128B. If n ≤ 50, there would likely be a collision if an attacker writes to all the blocks.

In other words, the minimum size of MAC needs to be at least 50 bits to provide collision

resistance if the MAC is generated for each cache line. CPU secure memory uses a 8B MAC

per cache block. Directly adopting this MAC granularity to GPUs, however, incurs significant

bandwidth pressure.

Our work exploits the unique memory access pattern in GPUs. As pointed out in previous

work [Na21; Yua21b], GPU applications feature streaming data accesses. With streaming

accesses, all the blocks within a memory region are accessed. The implication is that one 8B

MAC can protect a larger memory chunk (e.g., one memory page) than a cache line/sector.

The challenge, however, is that such a coarse-grain MAC would incur more bandwidth

pressure for randomly accessed regions because at each MAC calculation, all the memory

blocks within this memory chunk are needed. As shown in Fig. 4.3, although GPU features

the streaming access pattern, there is still a significant portion of the memory accesses,

which access memory in a non-streaming (or random) manner. To solve this problem,

we propose dual-granularity MAC, in which an 8B MAC is maintained for each streaming

accessed chunk, and an 8B MAC is maintained for each cache line within a random-accessed

chunk.

4.2 Architecture Design

4.2.1 Overall Architecture

Similar to previous works [Yua21a; Yua21b; Na21], we assume that the GPU chip forms the

TCB. The overall GPU secure memory architecture is shown in Fig. 4.4. We adopt a scheme

51

Figure 4.3: The ratio of memory accesses (i.e., L2 misses and L2 write backs) accessing
streaming data as well as read-only data in various GPU workloads.

similar to PSSM [Yua21a], which integrates the memory encryption engine (MEE) into each

memory controller and each MEE solely protects a single GDDR memory partition. The

metadata caches (MDCs) including the counter cache, the MAC cache and the BMT cache,

are embedded into each memory controller to save the bandwidth for accessing security

metadata, which are generated using the partition local addresses to remove redundancy

across partitions [Yua21a]. A secure root is stored in each partition for its corresponding

integrity tree. A new on-chip shared counter is introduced as a special on-chip register,

which is shared by all the read-only regions for encryption/decryption.

With the MEE on GPUs, each memory access is forwarded to the MEE, to encrypt/decrypt

and authenticate the data. A key generator is also integrated onto the GPU command pro-

cessor. When a GPU context is initialized, the key generator produces a key tuple (K1, K2,

K3) for memory encryption, memory integrity and integrity tree, respectively.

The security metadata is stored in off-chip GDDR memory. Compared with conven-

tional CPU TEEs, we allocate space for dual-granularity MACs, per block MAC, which is

calculated from each data cache line and its corresponding counters; and per-chunk MAC,

which is produced by hashing the per block MAC within this chunk. During GPU context

initialization, both per chunk and per cache line MACs are calculated and written into the

device memory since we assume streaming accesses by default. At runtime, the hardware

predicts the memory access patterns, and makes the decision of fetching either the per

block MAC or per chunk MAC to verify the data read from off-chip memory. Note that

for the read-only regions, neither the per block MAC nor per chunk MAC will be updated

during kernel execution.

52

To adaptively select the data protection mechanisms, the GPU hardware needs to be

aware of the data type (i.e., read only or not) and the pattern (i.e., streaming or not). Hence,

we propose hardware-based detection schemes to detect the read-only regions and stream-

ing accessed chunks, as shown in Fig. 4.5, which illustrates the design in one memory

partition. In our baseline GPU, there are two L2 banks in each partition. In each memory

partition, we maintain two prediction bit vectors, one as read-only predictor and the other

as streaming predictor, and several memory access trackers (MAT) to detect the streaming

access pattern. For the read-only predictor, the bit vector is maintained with the granularity

of a memory region with the region size of M kB (e.g., M = 16) using local addresses. Here,

we use the terminology from [Yua21a], where a local address means the offset within a

partition after the physical address is mapped to partition ID and partition offset. The

streaming data prediction vector is maintained with the granularity of a memory chunk

(e.g., 4 KB) using local addresses.

Figure 4.4: Overall architecture.

4.2.2 Detecting Read-only Regions

To detect read-only regions at runtime, we use an N-entry bit vector, which is indexed with

the region ID. For example, with the region size of 16 KB, the least significant 14 bits of a

local address will be ignored and the next l o g2N bits are the index to the bit vector. All the

entries in the bit vector are initialized to 0, representing not-read-only by default. During

GPU context initialization, when the command processor allocates the memory space for

the input region, all the regions updated by CUDA memory copy APIs will be set to be as

read only by setting the bit vector entries to 1. If the GPU programming model is able to

provide additional information on different regions (for example, the input buffer of openCL

53

programs), the corresponding bit vector entries can also be initialized by the command

processor. In our evaluation, we do not assume such support from the programming model

or compiler.

During kernel execution, once a memory region is updated by a store instruction or

another CUDA memory copy API, the corresponding bit in the bit vector will be reset to

0, indicating that this region is not read only. Since all read-only regions share a single

on-chip counter, once a region is detected as not read only, we need to resort to the per

block counters, whose values will be propagated from the shared counter. To do so, we

reserve the counter storage space in the off-chip memory as if all the protected space would

use per block counters. Note that although allocated, the per block counters corresponding

to read-only regions are not accessed. If a region transits from read-only to not-read-only,

the shared counter will be copied as the major counter for this memory region, and the

minor counter corresponding to the block to be updated will be incremented by one from

the padding value (0 by default). Simultaneously, the minor counter of other blocks within

this region will be set as the padding value. Fig. 4.6 shows such an example. During step (a),

a memory region A is in read-only state (the corresponding bit in read-only vector is 1), and

the shared counter value is 3. In step (b), when a write request (i.e., a write to A[2] or the

third cache line in region A) is sent to the memory partition where region A is located, the bit

in the read-only bit vector will be reset to 0 immediately, indicating per-block counters will

be used for region A afterwards. In the meanwhile, counter update requests are generated

to update all the major counter corresponding to region A as the value of shared counter

and the minor counter corresponding to block A[2] will be incremented by 1 from the

padding value. These updates occur directly in the counter cache. In our example, the

shared counter is 3 and the padding value has been initialized as 0. Therefore, the counter

update increments the block counter for A[2] by 1, and sets its corresponding major counter

as 3. In step (c), there is another update to A[1], i.e., the second block in region A. Since per

block counters have been used, the corresponding minor counter is incremented as shown

in the figure. During step (b), after propagating the per block counters, the BMT also needs

to be updated to cover the newly added region by traversing from BMT leaves to the root.

This is achieved naturally as a result of counter updates.

Since our bit vector is indexed with region id and we do not keep tag information, it

is possible that different regions map to the same bit in the bit vector. This would lead to

lost opportunities for bandwidth saving but will not affect the security or correctness. The

reason is that we only allow a chunk to transit from read-only to not-read-only. As a result,

conflicts in the bit vector can only miss-classify a read-only region as not-read-only. In this

54

case, per block counters are used although all the counter values would be 0.

As mentioned above, in our read-only detection scheme, once a region is detected as

not-read-only, it will always stay in this way. This may be over pessimistic in recognizing

read-only regions. When analyzing the GPU workloads, we found that some multi-kernel

applications may reuse the input region such that right before each kernel invocation, new

input data from the host are copied to the same device location and such inputs are read

only during kernel execution. Following our scheme, however, once a region is overwritten,

it will be recognized as not-read-only. To recover such opportunities, we propose to a new

API, I np u t R e a d O nl y R e s e t (a d d r e s s r a ng e), which informs the command processor

to (a) reset the regions within the specified address range as read only, and (b) reset the

shared counter value to the maximum major counter value within this specific range to

avoid counter reuse. The reason for resetting the shared counter is to avoid the abuse

of this API for cross-kernel replay attacks discussed in Section 4.1.2. To reset the shared

counter value, the command processor need to issue a request to the memory controller

and scan the counter values for the regions specified by this new API. This process can be

illustrated in Fig. 4.7. When a memory region, i.e, a d d r _r a ng e , is reset to be read-only by

this API, the corresponding counter region is scanned and the maximum per block major

counter value is returned (90, in this case), and this maximum per block counter is then

compared with the shared counter value to update the on-chip shared counter. As showed

in previous work [Na21], the memory scanning overhead is typically negligible due to the

high bandwidth accesses of consecutive memory locations.

The consequence of altering the shared counter is that the previously detected read-only

regions cannot be reused as they are encrypted with the old shared counter value. In our

study, we found that the multi-kernel workloads completely overwrite the input region and

do not reuse read-only regions. For a workload with such read-only region reuses, we can

choose to (a) not take advantage of this new API and treat the otherwise read-only regions

as not-read-only, and (b) re-encrypt the affected region with the new shared counter value.

Note that resetting a not-read-only region to read only has no impact on the BMT, as the

affected path is simply not traversed if the region is indeed read only. If not, any update to

the region will make it not-read-only and update the per-block counters, which induces

BMT traversing to the root.

55

Figure 4.5: The read-only detector and streaming detector in a memory partition. Their
inputs are the LLC misses and write backs.

Figure 4.6: An example showing the propagation from the shared counter to the per block
counters.

Figure 4.7: The process of shared counter update when using the read only reset API.

4.2.3 Detecting Streaming Accessed Chunks

The purpose of streaming access detection is to use dual-granularity MACs, i.e., coarse-grain

MAC (i.e., per chunk MAC) for streaming-accessed chunks and fine-grain MAC (i.e., per

block MAC) for random-accessed ones, to reduce the MAC access bandwidth. To support

dual-granularity MACs, we reserve space for both MACs and access only one of them at

runtime based on the access pattern.

Our hardware scheme to detect streaming accessed chunks is shown in Fig. 4.5. It

contains two components. The first one is a bit vector indexed by local chunk IDs to predict

whether a chunk is streaming accessed or not. The second one is chunk-level memory

access trackers, each of which contains a chunk tag, a 1-bit write flag and a set of counters to

56

monitor the block access patterns within a chunk. Since GPU applications feature streaming

accesses, we eagerly initialize the bit vector predictor to all 1s, indicating all chunks are

streaming accessed. Whenever there are memory accesses, i.e., L2 misses or L2 write backs,

a memory access tracker will be used to start monitoring the memory access pattern in the

corresponding chunk. In our design, a chunk-level access tracker has an array (32 entries)

of 1-bit counters. The 1-bit write flag is set whenever there is a write back in the chunk.

We maintain N memory access trackers in each memory partition (we use N as 8 in our

experiments). In other words, our design can concurrently monitoring N chunks in each

memory partition.

When a memory access (i.e., an L2 miss or write back) happens to a memory partition,

we check the bit vector to see whether the corresponding chunk is streaming accessed or

not. If not, the chunk is predicted as random accessed, and we will fetch the block-level

MACs for integrity verification (i.e., compared it with the MAC computed from the fetched

data block). If the chunk is predicted as streaming accessed, the chunk-level MAC will be

fetched and used. More specifically, the fetched regular data block (or the dirty eviction

block) will be used to compute the block-level MAC, which is stored in the MAC cache.

When the pattern detection (explained next) result is available, if the chunk is streaming

accessed, the block-level MACs in the MAC cache are used to produced the chunk-level

MAC, which is then compared with the chunk-level MAC fetched from memory. For a write

stream, all the blocks are verified first with the old chuck-level MAC and then each block

produces its block-level MACs, which are used to produce the new chunk-level MAC. The

updated MACs, either chunk- or block-level, are stored in the MAC caches. The updated

block-level MACs of a streaming accessed chunk are marked ’not dirty’ in the MAC cache so

as to eliminate the traffic overhead due to block-level MACs for streaming accessed chunks.

In the meanwhile of using either block- or chunk-level MAC for integrity verification,

we start monitoring the subsequent memory accesses to determine whether the chunk is

streaming accessed or not. To do so, the tag is set and only accesses to the same chunk will

update the access counters based on their chunk offsets at the cache block/line granularity.

At the end of the monitoring phase of K memory accesses, the counters in a tracker are

examined. For the chunk size of 4kB, we choose K = 32. We also introduce a time-out

scheme to prevent a randomly accessed chunk from occupying a memory access tracker

for a long time (6K cycles) without reaching the K accesses. After time out, the counters

are examined the same way as if we reach the end of a monitoring phase. The following

criterion is used to determine whether a chunk is streaming accessed or not. For an access

tracker, if all the blocks in the chunk have been accessed (i.e., all access counters are non

57

zero), the chunk is considered streaming accessed since all of its blocked are touched. If

some blocks have non-zero accesses while others in the same chunk are not accessed at all

(i.e., some access counters being 0), we consider this chunk as random-accessed. The bit

vector is then updated accordingly. Also, if the write flag is set for the chunk, we know that

there is at least one write back to the chunk. If the detected pattern is streaming, we need

to re-produce and update the chuck-level MAC.

It is possible that one random-accessed chunk is miss-classified/mispredicted as stream-

ing accessed or vice versa. The handling of mispredictions is dependent upon whether the

access is a read access or write access and whether the accessed chunk is read-only or not.

We list the different scenarios in Table III and Table IV. The read-only information of the

chuck is retrieved from the read-only bit vector (Section IV-B). For a correct prediction,

i.e., the predicted stream/random pattern matching the detected outcome, either the per

chunk MAC or per block MAC is fetched/updated and there will be no additional bandwidth

overheads.

For a read access in a read-only region, when a random pattern (i.e., detected as random)

is mispredicted as streaming (i.e., predicted as stream), besides fetching the chunk-level

MAC, the secure memory engine needs to re-fetch the per-block MAC to verify the data.

When a streaming pattern is mispredicted as random, there is no additional bandwidth

overheads since the per-block MACs are always up to date for read-only regions. For a read

access in a non-read-only region, when a random pattern is mispredicted as streaming,

the secure memory engine needs to fetch the chunk-MAC. Upon the detection of the

misprediction, however, the per-block MACs in the chunk are to be updated because the

predictor entry is updated as ’random’ and the per-block MACs will be used from now on.

To do so, all the data blocks in the chunk need to be re-fetched (and validated with the

chunk-level MAC) to produce the updated block-level MACs. On the other hand, when a

streaming pattern is mispredicted as random, the secure memory engine just re-fetches

and re-produces the corresponding chunk-level MAC as all the blocks in the chunk are

accessed and validated with block-level MACs (due to the streaming access).

Predictions from write accesses are treated similar to read accesses to a non-read-only

region. For a write access, when a random pattern is mispredicted as streaming, the secure

memory engine fetches all the blocks in the chunk from off-chip memory, and updates

all the per-block MACs. When a streaming pattern is mispredicted as random, the secure

memory engine just updates the chunk-level MAC. When updating the chunk-level MAC,

the updated block-level MACs in the MAC cache are marked ’not dirty’.

A more subtle issue, however, occurs when chunks with different access patterns conflict

58

Table 4.3: Handling Streaming Predictions for Read Accesses
Prediction Action Detection Read-Only Bandwidth

Overheads

Stream Fetch chunk
MAC

Stream Y/N Zero

Stream Fetch chunk
MAC

Random Yes Re-fetch blk-
MAC

Stream Fetch chunk
MAC

Random No Re-fetch
all the data
blocks in
the chunk

Random Fetch blk
MAC

Random Y/N Zero

Random Fetch blk
MAC

Stream Yes Zero

Random Fetch blk
MAC

Stream No Re-fetch
chunk-level
MAC

at the bit vector. For example, chunk A is streaming accessed while chunk B is random

accessed. Both A and B share the same index to the bit vector due to the limited length of

the bit vector. After chunk A updates its chunk-level MAC and the bit vector entry is set to 1

(i.e., streaming), when chunk B is accessed, its chunk-level MAC will be accessed as a result.

However, as chunk B was previously treated as random accessed, its chunk-level MAC can

be out of date although its per block MACs are up-to-date. Due to the out-of-date MAC,

the integrity verification would fail. There are two remedies for this issue. One is to always

update both chunk-level and block-level MACs. This solution essentially trades write traffic

for read traffic and may lead to performance degradation for write-intensive workloads. The

second solution is that if one integrity check fails, the other MAC needs to be checked. This

way, as long as one of the duel-granularity MACs is up-to-date, the integrity check would

be successful. If the number of such conflicts, i.e., chunks with different MAC granularity

mapping to the same entry in the bit vector, is small, the performance impact would be

limited. In our work, we choose the second solution.

4.2.4 Using L2 as Victim Cache for Security Metadata

In our study, we observe that some GPU applications do not utilize the L2 cache well. Either

it is underutilized or it suffers from very high miss rates due to poor temporal locality.

Actually, streaming accesses have little data reuse and would lead to high L2 miss rates. In

59

Table 4.4: Handling Streaming Predictions for Write Accesses
Prediction Action Detection Action Bandwidth

Overheads

Stream Produce blk
MAC

Stream Produce
and update
chunk MAC

Zero

Stream Produce blk
MAC

Random Update blk
MAC

Re-fetch
data and
produce the
blk-MAC

Random Produce blk
MAC

Random Update blk
MAC

Zero

Random Produce blk
MAC

Stream Produce
and update
chunk MAC

Zero

such cases, we propose to use the L2 cache as a victim cache for security metadata caches,

especially the MAC cache. The rationale is that a MAC block (128B) would contain sixteen

block-/chunk-level MACs (128B = 16x8B) and would provide more reuse opportunities

than a 128B data block.

To ensure that the victim cache traffic would not interfere with regular data traffic, we

dynamically enable L2 as the victim cache only if the regular data miss rate is very high

(e.g., 90%). To collect accurate data miss rates, we reserve a small portion of the L2 cache

lines such that they are only accessed with regular data accesses, similar to the set sampling

approach used in [Qur06].

4.3 Methodology

We model our proposed schemes with GPGPU-Sim v4.0 [Kha20]. Our baseline GPU config-

uration is shown in Table 4.5, which is based on the Nvidia Turing architecture [Nvi21]. We

assume a range of 4GB device memory to be protected by the secure memory engine.

Our baseline secure memory support is modeled based on PSSM [Yua21a], in which

the partition-local offset is used to construct the security metadata. The detailed MDC and

MEE organizations are listed in Table 4.6.

Our benchmarks are from the Rodinia-3.1 [Che09], Parboil [Str09] and Polybench [GG09]

benchmark suites, and cover a wide range of workloads with different memory utilization

as well as heterogeneous memory usage. Since computation intensive workloads are not

60

Table 4.5: Baseline GPU Configuration

SM config 30 SMs, 1506MHz
Register File 256KB/SM, 7.5MB in total
L1 D-Cache /
Shared Memory

96KB/SM

L2 cache 2 banks per memory partition,
each L2 cache bank is 128KB,
3MB in total. For each L2 bank,
192 MSHR entries, and each en-
try can merge 16 requests.

DRAM 3500MHz, 12 partitions, 336GB/s.

Table 4.6: MDC and MEE Organization

Counter cache 2KB / memory partition, 128B blk,
4-way sectored, 256 MSHRs, write-
allocate policy

Mac cache 2KB / memory partition, 128B blk,
4-way sectored, 256 MSHRs, write-
allocate policy.

Bonsai Merkle
Tree cache

2KB / memory partition, 128B blk,
4-way sectored, 256 MSHRs, write-
allocate policy.

Hash/Mac latency 40 cycles
AES engines 1 pipelined AES/memory partition

Table 4.7: Benchmarks
Benchmark Bandwidth Utilization Memory Space

atax 23% constant
backprop 27%-50% constant
bfs 15% -50% constant
b+tree 12%-15% constant
cfd 27%-75% constant
fdtd2d 90%-93% constant
kmeans 67%-81% constant/texture
mvt 22% constant
histo 55% constant
lbm 95% constant
mri-
gridding

30%-47% constant

sad 17% constant/texture
stencil 11%-42% constant
srad 20%-22% constant
srad_v2 72%-78% constant
streamcluster 78% constant

61

Table 4.8: Evaluated designs for GPU secure memory with both memory encryption and
integrity verification.

Scheme What It Represents

Naive Baseline GPU with secure memory, and the secu-
rity metadata is organized with physical address.

Common_ctr Secure GPU memory with common counters
[Na21] scheme, and the security metadata is con-
structed with physical address.

PSSM Secure GPU memory with PSSM scheme [Yua21a]
PSSM_cctr Secure GPU memory with common counters

scheme, and the security metadata is constructed
from local address as PSSM [Yua21a] design.

SHM Our secure heterogeneous memory design, with
the PSSM scheme to construct security metadata.

SHM_cctr Our secure heterogeneous memory design, com-
bined with common counters scheme.

SHM_vL2 Our secure heterogeneous memory design, and
using L2 cache as the victim cache for all the secu-
rity metadata.

SHM_readOnly Our secure heterogeneous memory design, which
use per-blk MAC, but use shared counter to op-
timize the overheads of encryption counters and
BMT.

SHM_upper_-
bound

Our secure heterogeneous memory design, with
unlimited MATs and unlimited predictor sizes, and
the predictors are initialized with L2 miss/write
back profiling.

sensitive to secure memory, we choose 15 memory intensive workloads and report the

benchmark details in Table 4.7, including the bandwidth utilization, and different memory

spaces usage. Global and local memory are used by all workloads, and hence we only report

the constant and texture memory usage. For benchmarks with low simulation time, we

simulate the entire benchmarks; for benchmarks with long simulation time, we simulate

the first 6 million cycles.

The different secure memory designs that we evaluate in our experiments are listed in

Table 4.8. We report normalized Instructions per cycle (IPC) in our evaluation with the

baseline being the GPU with sectored data caches and without secure memory support.

By default, we assume 8B MAC per cache line. Similar to the state-of-the-art CPU secure

memory, the data fetched from memory is sent to the GPU cores without waiting for integrity

verification results. An exception will be thrown if a verification failure occurs.

62

Table 4.9: Hardware Overhead

Hardware Tag Write
Flag

Entries Entry
size

read-only predictor - - 1024 1 bit
streaming predictor - - 2048 1 bit
access tracker 20

bits
1 bit 32 1 bit

4.3.1 Hardware Overheads

The storage overhead of our proposed hardware components are listed in Table 4.9. In

our design, the read-only predictor has 1024 entries, thereby 128B in total. The read-only

predictor is maintained in the 16 KB granularity. The streaming access predictor has 2048

entries, thereby 256B in total. The streaming predictor is maintained in the granularity of 4

KB. For the access tracker, each access tracker has a 20-bit tag (32-bit local addresses and

4kB chunk size) and 32 1-bit counters to record the number of accesses, and 1-bit write

flag, which is set for a write access. To track the end of a monitoring phase, each memory

access tracker also needs a 5-bit access counter and 13 bit time-out counter. Therefore,

each access tracker needs 20 + 1 + 32 + 18 = 71 bits. We use 8 memory access trackers

in our design. To summarize, each memory partition maintains one read-only predictor

(128B), one streaming access predictor (256B), and 8 memory access trackers (8×71-bit =

71B). With 12 partitions, the total overhead is 5,460B (5.33 KB).

4.4 Evaluation

4.4.1 Read Only Prediction

We first evaluate our read-only prediction scheme. We use our read-only predictor to

predict each memory access (including all L2 misses and L2 writebacks), and compare

the predictions with the results from offline profiling. We show the accuracy of our read-

only prediction scheme in Fig. 4.8. As we can see that our scheme can capture the read-

only region reasonably well, 89.31% on average. We further break down the prediction

results into three parts: correct predictions (labeled as ’Correct-Prediction’), mispredictions

due to initialization (labeled as ’MP_Init’), mispredictions due to aliasing in the predictor

(labeled as ’MP_Aliasing’). As we can see from the figure, mispredictions due to initialization

63

contribute to most mispredictions in read-only regions, while the mispredictions due to

aliasing in the predictor are negligible.

Figure 4.8: Breakdown of read-only predictions.

4.4.2 Streaming Access Pattern Detection

We use 8 memory access trackers in each memory partition and report the results in Fig. 4.9.

We measure the accuracy of streaming pattern prediction with an oracle memory access

tracker, which has unlimited capacity to detect the pattern of every memory chunk. For

each memory access (either L2 miss or L2 write back), if the detection result agrees with the

prediction result, the prediction is considered a correct one, otherwise it is a misprediction.

We count all correct predictions and mispredictions to calculate the prediction accuracy.

The prediction accuracy results are shown in Fig. 4.9. As shown in the figure, our design

can achieve good prediction accuracy, 83.36% on average. We break down the predictions

for streaming patterns into five parts: correct predictions (labeled as ’Correct-Prediction’),

mispredictions due to initialization (labeled as ’MP_Init’), mispredictions due to runtime

pattern change in read-only regions (labeled as ’MP_Runtime_Read_Only’), mispredictions

due to runtime pattern change in non-read-only regions (labeled as ’MP_Runtime_Non_-

Read_Only’), and mispredictions due to aliasing in the predictors (labeled as ’MP_Aliasing’).

As we can see from the figure, for streaming pattern prediction, some benchmarks suffer

from high misprediction rates due to initialization of the predictor, while some other bench-

marks show high mispredictions due to runtime pattern changes. As discussed in Section

64

4.2, not all mispredictions incur the same bandwidth overheads.

Figure 4.9: Breakdown of streaming pattern predictions

4.4.3 Overall Performance

We evaluate our secure heterogeneous memory design and compare it with different previ-

ous works, as shown in Fig. 4.10. From the figure, we can make the following observations.

First, the naive design, labeled as ’Naive’, in which the security metadata is constructed with

physical addresses as conventional CPU secure memory, degrades the GPU performance by

53.9% on average. Second, compared with the naive secure memory design, the common

counters scheme (labeled as ’Common_ctr’) can improve the performance and reduce the

overheads of secure GPU memory to 49.4%. It is more effective for the workloads with a large

portion of streaming access pattern such as atax (23.1%) and mvt (19.4%). The reason is that

the common counters scheme significantly reduces the memory bandwidth for accessing

the encryption counters. However, there still exists a high overhead after common counters

optimization because the security metadata is constructed from physical addresses and the

same security metadata is accessed by different memory partitions, leading to redundant

memory traffic. Third, compared with common counters, PSSM improves the performance

significantly, reducing the performance overheads to 18.6% on average, and the reason

is that it eliminates the redundancy and adopts the sectored design to save the memory

bandwidth [Yua21a]. However, as the MAC is produced in the granularity of a cache line, it

remains to be a major overhead. Fourth, our proposed design, labeled as ’SHM’, improves

the performance significantly, and further reduces the overheads to 8.09% on average, and

65

for most workloads, SHM can reduce the overheads to less than 5%. The reason is that,

our design leverages read-only data and uses a dual-granularity MAC, and can effectively

optimize the overheads. However, for the workloads that feature random access patterns

and write-intensive memory footprints such as bfs, lbm and mri-gridding, our SHM scheme

still shows relatively high overheads. The reasons include (1) the MACs are maintained at

the block granularity, and each memory access needs to verify/update the MAC; and (2)

these benchmarks are write intensive, and the per-block counters are maintained for these

workloads. Fifth, our upper bound analysis, labeled as ’SHM_upper_bound’, shows that the

performance overheads of our SHM design are very close to the idealized design: the SHM

design with unlimited capacity of predictor sizes has 6.76% overheads on average, which is

quite close to our SHM design.

Figure 4.10: Normalized IPC of different secure GPU memory designs.

4.4.4 Performance Breakdown

To examine the effectiveness of different optimizations, we include them one at a time

and show the results in Fig. 4.11. From Fig. 4.11, we can make the following observations.

First, the combination of common counters and PSSM is beneficial. It reduces the perfor-

mance overhead by 1.2% on average compared to PSSM. Second, compared with PSSM,

our optimization for read-only region (labeled as ’SHM_readOnly’), including the constant

memory, texture memory and instruction memory can be very effective and further reduce

the performance overhead by 2.5% on average, the reason is that our SHM scheme does

66

not need to maintain per-block counters and does not need to traverse the integrity tree for

read-only regions. Consequently, the memory bandwidth for both encryption counters and

integrity tree can be saved. This scheme can be very effective for some benchmarks that

highly utilize the read-only memory spaces like constant memory and texture memory. For

example, the benchmark kmeans shows more than 14% performance improvement com-

pared with PSSM, when the optimization to read-only memory space is applied. A detailed

L2 miss breakdown shows that among all the L2 cache misses, texture memory accesses

contribute to more than 27.75% L2 misses for kmeans. Third, when our dual-granularity

MAC is applied, the MAC bandwidth is reduced for the reasons that have been discussed in

Section 4.4.3. Fourth, our SHM design is compatible with the common counters scheme. As

we can see from Fig. 4.11, adding the common counters scheme onto our SHM scheme (la-

beled as SHM_Cctr) can further reduce the performance overhead for secure GPU memory

by 0.4% on average.

Figure 4.11: Performance impacts of different optimizations.

4.4.5 Bandwidth Saving

We compare the bandwidth overhead (including all the security metadata access and

additional data accesses due to mispredictions in our SHM design) for different designs, as

shown in Fig. 4.12. The bandwidth is obtained by counting the number of bytes for different

security metadata fetched/updated from/to DRAM, and dividing them by the execution

time. Then, we normalize them to the regular data bandwidth. We can see that our SHM

67

design significantly reduces the bandwidth overhead compared to the naive design, from

189.07% (naive secure GPU memory design) to only 5.95% on average. For benchmarks

with high bandwidth utilization, the reduced bandwidth overheads directly translate to

performance gains as reported in Fig. 4.10. On the other hand, for the benchmarks with

relatively low bandwidth utilization, such as atax or mvt (Table 4.7), the high bandwidth

reduction from SHM leads to relatively small performance gains.

We also isolate the bandwidth savings from the two optimizations, i.e., read-only and

streaming data optimization, in our scheme. First, compared with PSSM design (17.1%

bandwidth overhead on average), SHM_readOnly reduce the bandwidth overheads to

13.2% because our read-only optimization can reduce the bandwidth for both encryption

counters and integrity trees. Second, compared with SHM_readOnly, our SHM design

further reduces the bandwidth overheads to only 5.95% on average because our SHM

design significantly reduces the bandwidth requirements for MACs. Taking the benchmark

fdtd2d as an example, our SHM scheme can achieve near zero (0.78% in total) bandwidth

overheads. The reasons are (1) fdtd2d has 99.87% read-only accesses in GDDR memory as

we can see from Fig. 4.3, and our read-only optimization reduces the overheads of counters

and BMTs to near zero (0.44%); (2) fdtd2d also features perfect streaming (99.35% of off-

chip memory accesses are streaming) data access patterns as we can see from Fig. 4.3.

With SHM, only the chunk-level MACs (8B MAC per 4KB chunk) need to be transferred

over the GDDR memory, which reduces the MACs bandwidth overheads to 0.34%; and

(3) the streaming prediction accuracy for fdtd2d is 99.69%, meaning almost no additional

bandwidth overheads due to mispredictions.

Figure 4.12: Bandwidth overheads due to security metadata, normalized to regular data
bandwidth, of different designs.

68

4.4.6 Power Saving

We report the power efficiency of our SHM design, and compare it with the prior works,

as shown in Fig. 4.13. We extend the GPUWattch [Len13] to model the power and energy

consumption of different designs. We use CACTI_v6.5 [NM09] to evaluate the power/energy

consumption of metadata caches (32 nm technology). our energy model includes all the

GPU components and the metadata caches while the energy consumption of the AES and

MAC engines are not included. We accumulate the total energy of the kernels and calculate

the energy per instruction for different secure GPU memory designs, and normalize it to

the baseline GPU without secure memory support. As we can see from the figure, compared

to the naive secure GPU memory design, our SHM design reduces the normalized energy

consumption per instruction from 215.06% to 106.09% on average. In other words, the

energy overhead of our SHM scheme is 6.09% compared to the baseline GPU without secure

memory support.

Figure 4.13: Normalized Energy Consumption per Instruction for different designs.

4.4.7 Using L2 as a Victim Cache

We present our results of using L2 as the victim cache for security metadata caches in

Fig. 4.14. We dynamically sample the miss rate from the L2 cache in each memory partition,

and enable this feature only when the sampled L2 miss rate is higher than 90%. For bench-

marks with multiple kernels, the sampling counters are reset after each kernel execution.

From Fig. 4.14, we make the observation that using L2 as the victim cache for security

69

metadata can further reduce the performance overhead by 0.65% on average. This scheme

is more effective for memory-intensive benchmarks that suffer very high L2 miss rates, e.g.,

4% performance improvement for the benchmark lbm and 3.4% for the benchmark sad.

Figure 4.14: Normalized IPC when enabling L2 as a victim cache for security metadata.

4.5 Conclusions

Security metadata traffic is the key performance bottleneck for GPU secure memory. In this

paper, we propose adaptive security support for GPU heterogeneous memory to reduce

the performance overhead. First, we point out that read only regions do not need freshness

protections as they are immune to replay attacks. By letting all read-only regions share an

on-chip counter, we can reduce the traffic of counters and BMT. To optimize bandwidth

for MAC access, we propose dual-granularity MACs with coarse-grain MACs for streaming-

accessed regions and fine-grain MACs for random-accessed regions. Our hardware design

consists of two lightweight predictors to detect read-only regions and streaming-accessed

regions so as to adapt the security mechanisms accordingly. Our evaluation results show

that it outperforms the state-of-the-art schemes: by up to 41.63% and 9.5% on average

compared to PSSM and 84.04% on average compared to common counters for memory-

intensive workloads.

70

CHAPTER

5

DELTA COUNTER:

BANDWIDTH-EFFICIENT ENCRYPTION

COUNTER REPRESENTATION FOR

SECURE GPU MEMORY

5.1 Summary

The security of accelerators such as GPUs has recently gained significant attention with

their wide adoption in the cloud since they are vulnerable to physical attacks. To support

secure memory for GPUs, the critical performance bottleneck is the memory bandwidth

contention between the regular data and the security metadata [Yua21b]. With counter-

mode encryption, the security meta includes counters, the Bonsai Merkle Tree (BMT), and

message authentication codes (MACs).

In this work, we focus on encryption counters given their impact on the counter and

BMT traffic while leveraging prior schemes [Sai18; Taa18a] to address the MAC traffic. We

71

first analyze the characteristics of the encryption counters from a wide range of GPGPU

benchmarks and make two key observations. (1) With the split counter scheme, the cache

blocks in a large portion of the memory space, sometimes the entire GPU memory space,

share the same major counter value. (2) The difference among minor counters is fairly

limited. We then propose a novel scheme to reduce the encryption counter traffic. Our

design includes (a) a highly compact way of counter representation and (b) a verification

scheme to determine the correct minor counter values. In our design, we use a few on-chip

registers to hold the major counters and use a (7-bit) base value along with two small

(2-bit) deltas to represent the minor counters in a large memory chunk, one delta for the

most frequent delta between minor counters and the base, the other delta for the maximal

difference between a minor counter and the base. This way, for a large memory chunk (e.g.,

16kB), the counter overhead becomes nearly negligible (less than 2B). We then leverage

the existing MAC verification logic to verify the minor counters computed from the base

and deltas. Our approach essentially trades off decryption and integrity-check latency

for reduced counter-data traffic to take advantage of the latency-hiding nature of GPUs.

Compared to prior works on reducing counter traffic [Na21], our scheme handles more

counter value patterns (as we don’t restrict the counters to be the same in a memory chunk)

and is more effective in reducing counter traffic.

Our study also reveals that the GPU memory data are typically compressible. As a result,

we can co-locate the MACs with the compressed cache blocks, similar to [Taa18a]. Our

experimental results show that our proposed delta counter scheme significantly reduces the

storage and bandwidth overheads of encryption counters and achieves secure GPU memory

with an average performance overhead of 2.01% compared to GPU without security support.

Our delta scheme is also compatible with SYNERGY [Sai18], which leverages ECC chips to

store MACs, and our achieved performance overhead is 2.83%.

5.2 Motivations

To gain a better understanding of the characteristics of encryption counters, we study all the

memory-intensive workloads from multiple benchmark sets, including Parboil [Str09], Ro-

dinia [Che09], Polybench [GG09], and Pannotia [Che13].Similar to previous studies [Yua21b;

Yua21a; Yua22], we defined memory-intensive workloads as those with at least 20% peak

memory bandwidth utilization.

In the split-counter scheme, a major counter is shared by all the blocks (at the cache line

72

granularity) in a large memory chunk (usually at the page granularity), and a minor counter

is maintained for each memory block. We ran the workloads for long periods (over 15 days),

allowing them to complete the full simulation in the GPGPU-Sim performance model, and

then obtained the traces of encryption counters. Next, we analyze the characteristics of

both major and minor counters from the traces.

5.2.1 Major Counter Analysis

We conducted a kernel-level analysis of the number of unique major counter values. In the

case where a workload has multiple kernels, we report the maximum number of unique

major counter values among the kernels in the entire workload. Figure 5.1 shows the result.

From the figure, we can see that most workloads have only a single unique major counter

for the entire run. Although some workloads, such as cfd, fdtd2d, sssp, and sssp_ell, have

more than one major counter value, the number of unique major counter values is fairly

limited. Also, it is worth noting that even when a workload has multiple major counter

values, such as cfd, most of the kernels within this workload only have one or two unique

major counter values. Therefore, we conclude that only a few major counters would suffice

for GPU workloads.

Figure 5.1: Number of Unique Major Counters

73

5.2.2 Minor Counter Analysis

We observe from the encryption counter traces that minor counters for blocks in a large

memory region are similar to each other. To quantify such observation, in Figure 5.2, we

show the distribution of delta values for minor counters in the non-zero counter space,

where the delta is defined as the difference between the maximum and minimum minor

counters within a 16KB memory chunk. When the delta value is 0, it means that all minor

counters within the 16KB memory chunk are the same. From the figure, we can see that,

on average, for 58.1% of minor counters, their deltas range from 0 to 3. For workloads that

exhibit a strong streaming data access pattern, such as b+tree, sad and srad, this ratio can

reach 100%. Also, we can see that there are many regions with non-zero deltas, for which

the previous common counters failed to exploit.

Given our observation that all the minor counters in a large memory region (e.g., 16kB)

are similar to each other, we propose the following efficient (but lossy) representation. We

propose to use a counter pair, base, delta to represent all the minor counters in the region.

The base is the minimum minor counter value and delta is the difference between the

maximum and minimum counter values. As the minor counter values are similar, we limit

the size of the delta to 2 bits. When the delta is larger than 3, we change the bit flag to

indicate that the delta representation is not to be used for this region.

As our delta representation only provide a range of values for minor counters in the

region, we need to recover the exact values for decryption. To do so, we resort to the ex-

isting stateful MAC verification and leverage the latency-tolerant capabilities of GPUs. In

other words, we trade extra MAC verification latency for reduced counter traffic. Recent

studies [Yud22; Yua21b] have demonstrated that due to the massive-thread programming

model, GPUs can tolerate high latency, making such tradeoffs beneficial.

To reduce the number of trials needed to recover a minor counter from our delta counter

representation, we also look into the most common minor counter values in a memory

region and the results are shown in Figure 5.3. From the figure, we can see that the most

common minor counters have high coverage, 86.63% on average. Note that one may observe

inconsistency between Fig.3 and Fig. 4. For example, the benchmark sad shows 37.67% of

the delta value of 0, 46.02% of the delta value of 1, and 16.31% of the delta value of 2. In

Fig 5.3, 81.02% of the minor counters in a 16kB region share the same value, i.e., the same

delta. The reason is that in a region with a certain delta value (e.g., 2), most of the minor

counters share the same delta (e.g., 1).

Given the high coverage of most common deltas in 16-kB regions,we extend our delta

74

counter representation from a pair to a tuple, {base, delta-common, delta-max}. Here, delta-

common is the delta for the most common counter value within a memory chunk, and

delta-max is the delta for the maximum counter value in that memory chunk. By including

the most common counter value within the delta tuple, the secure memory engine always

tries the common counter value first, thereby reducing the number of trials to recover the

minor counter values.

Figure 5.2: Distribution of delta value that less than 4.

Figure 5.3: Average ratio of the most common counter value in a 16kB region of which the
delta among minor counters is less than 4.

75

5.2.3 MAC Bandwidth Requirement

As discussed above, our proposed delta counter design relies on the stateful MACs to recover

the correct minor counter value by trying different values starting from the (base + delta-

common). As a result, per-block MACs are required by our design. However, recent works

[Yua22; Yua21b; Yua21a; Yud22] identified that MACs contribute the most memory traffic

when secure memory is integrated into GPUs. As a result, SHM [Yua22] proposes to use

dual-granularity MACs to reduce the MACs bandwidth. In this approach, a large memory

chunk can use an 8B MAC when the memory access pattern is streaming, while a per-block

8B MAC is used when the memory access pattern is random. When the coarse-grain MAC

is used, the per-block MAC is not stored in off-chip DRAM. Hence, our delta counter design

is not directly compatible with it.

As an alternative, we adopt different schemes to reduce the MAC traffic, including VAULT

[Taa18b] and Synergy [Sai18]. In VAULT, a regular data block is compressed to make room

for the MAC to be embedded into the data block. In Fig. 5.4, we show the layout of data and

MAC in the DRAM. If a memory block is compressible, we can embed the 8B MAC into the

data cache line(shown in Fig. 5.4 (a)). Otherwise, the per-block MAC is still allocated (shown

in Fig. 5.4 (b)). The compressibility of a cache line in our design is defined by the size after

compression, i.e., if a 128B cache line can be compressed to less than 120B, we define it

as compressible. Otherwise, it’s uncompressible. In our design, we use a commonly used

deflate memory compression algorithm – Lempel-Ziv 77 algorithm (LZ77) [Hid19; Pan22],

for memory compression. And we assume the compression or decompression latency is

two cycles, same as the previous work [Taa18b].

In Synergy, MACs are stored in the ECC chips and can be accessed along with the

data block. We evaluate our delta counter design with both VAULT and Synergy in our

experiments.

Figure 5.4: Data and MAC layout.

76

5.3 Architecture Design

5.3.1 Overall Architecture

The overall architecture of our secure memory system for GPUs is shown in Figure 5.5.

Similar to previous works, the GPU chip forms the trusted computing base (TCB). Our

scheme builds upon the recent work of PSSM [Yua21a], where each memory controller

includes a memory encryption engine (MEE) that operates independently to protect a

single GDDR memory partition/channel. Each memory controller also contains metadata

caches (MDCs) such as the counter cache, MAC cache, and BMT cache to reduce bandwidth

consumption for accessing security metadata. The metadata is generated using the partition

local addresses to eliminate redundancy across partitions [Yua21a]. Each partition stores a

secure root for its corresponding integrity tree and operates independently. In addition, a

key generator is integrated into the GPU command processor.

In addition to the conventional security architectural support inherited from CPU

Trusted Execution Environments (TEEs), our design introduces several new features. Firstly,

we incorporate a few (e.g., four) on-chip registers to hold the major counters and their

corresponding memory ranges. Secondly, we implement a small on-chip cache to hold the

delta counters, which represent the encryption counters for a large memory chunk.With

the embeded MAC design, we include a small on-chip cache to store the compression

metadata, where each bit indicates the compressibility of the corresponding memory

block. Furthermore, one memory compressor and decompressor are incorporated in each

partition to compress and decompress the memory data blocks.

All security metadata is stored in off-chip GDDR memory and can be cached in MDCs.

Our design incurs additional memory storage for delta counters and compression metadata

if VAULT is enabled. For a 4GB device memory that needs to be protected, 384KB of delta

counter storage is required with each 12-bit delta counter protecting a 16KB memory chunk.

Additionally, 4MB of compression metadata storage is necessary if each memory block

(128B) requires 1 bit for its compressibility.

5.3.2 Management of Major Counter Registers

In our design, the major counter registers are on-chip registers holding the major counter

values. As motivated in Section 5.2, GPU workloads feature a small number of unique major

counter values. Therefore, a few such on-chip major counters would suffice. In our design,

we use four major counter registers, and each has three fields: a 32-bit counter value, the

77

Figure 5.5: Overall architecture.

base address (64-bit), and the size (64-bit) representing the memory chunk that the counter

protects. This way, a major counter register can be used for a large memory region whose

data blocks share the same major counter value. An example of this major counter entry is

shown in Fig 5.6 (a).

Based on the address of a memory access, we check the major counter register to retrieve

the major counter value and form a one-time pad with the corresponding minor counter. If

the address is not covered by any major counter register, the major counter is read from

memory. In our design, similar to previous works, we adopt the split-counter mode with a

sectored metadata cache. The layout of one counter sector (32B) is shown in Fig 5.6 (b), with

a 32-bit major counter and 32 7-bit minor counters. Each counter sector protects 4KB data

memory space. In our design, when a large memory chunk uses the same major counter,

the major counter fields will not be transferred over the memory bus to save memory

bandwidth because the value of the major counter is already on-chip. As shown in Fig 5.6

(c), each DRAM transaction to fetch/store a counter sector will be in the granularity of

24B instead of 32B. And when a counter sector is allocated in the counter cache, its major

counter will be filled by consulting the major counter registers, as shown in Fig 5.6 (d).

Next, let us discuss the management of major counter registers, which is invoked when

a minor counter overflows. In a case of a minor counter overflow, the corresponding major

counter needs to be incremented. Based on the address of the data block, we check whether

a major counter register covers the address. If so, this major counter register is split into two

or three, depending the address of data block. If the overflow happens in the middle of the

address range, three major counter registers are needed, one covering the range before the

block, one covering the 16kB region containing the block, and one for the range afterward.

If the block happens to be at the beginning or the end of the range, the major counter is

split into two. We show a major counter split example in Fig. 5.7. Assuming the address

78

Figure 5.6: Major Counter Entry and Layout of Per-Block Counter.

range of the secure memory managed by a major counter register is 0 64kB, Fig. 5.7 (a),

when a minor counter overflows due to a dirty write-back at the block with the address

0x4000, the major counter register is split into three, as Fig. 5.7 (b). During the split process,

if there are no sufficient free major counter registers, the major counter needs to be written

back to the memory for all the counter blocks within the address range. This happens very

rarely for GPU workloads as discussed in Section 5.2.1. During the split process, each newly

introduced major counter register is compared with the existing ones to see whether it can

be merged with one of them. When two major counter registers cover the address ranges

next to each other and share the same major counter value, they can be combined into

one. In our example in Fig. 5.7 (b), a subsequent overflow due to a dirty eviction starting at

address 0x8000 results in the major counter being updated for the following 32KB region,

then the second major counter register is merged with the first one, and the third register is

released. The result after the merge is shown in Fig. 5.7 (c).

Figure 5.7: An example of major counter register management

79

Given the counter sector organization, a 32-bit major counter value and 32 7-bit minor

counters, each 128B counter block has four sectors, and each sector covers 4kB space

(as each minor counter is used for one 128B data block). Here we show how the counter

values in the counter cache change in the common scenario of streaming accesses. In

Fig 5.8 (a), the initial state of a major counter register has a major counter of value 0, which

protects 16KB memory space (corresponding to 4 counter sectors in the sectored counter

cache). When the first minor counter overflows due to a memory write, the major counter

register splits into two. One has the major counter value increased to 1 and filled into

the corresponding counter sector in the counter cache, and the size is changed to 4kB, as

shown in Fig. 5.8 (b). The other keeps the counter value as zero and covers the remaining

region, which is not shown in the figure. With the streaming data access pattern, the other

three counter sectors will be gradually updated, and all the minor counter overflows will be

handled with the same procedure, as shown in Fig. 5.8 (c) to (e). Once the entire region is

covered by the first major counter register, the second one is deallocated.

Figure 5.8: Handling of Minor Counter Overflow

Note that our major counter register management is designed for streaming access

patterns. When the memory access pattern changes to totally random accesses, the major

counter registers will cover only small regions, and the major counters will be updated in

memory. When an address is not in the range covered by any major counter registers, the

major counters will be accessed from off-chip memory. In such a case, our delta counter

design will not have bandwidth benefits but will not affect the system security.

80

5.3.3 Delta Counter Entry

As described in Section 5.2, we use 12-bits delta counter representation for the encryption

counters in a large memory chunk, e.g., 16kB. In our design, each delta entry has four fields

as shown in Fig 5.9 (a). Firstly, a 1-bit flag indicates whether the minor counters in this 16KB

memory chunk follow the delta counter behavior. If so, this bit is set to 1. Otherwise, this bit

is set to 0, and the other three fields can all be set to 0s. Secondly, a 7-bit base counter, which

is the same size as the minor counter. Thirdly, a 2-bit delta value can derive the common

counter in this memory chunk. Lastly, a 2-bit delta value can derive the maximum counter

in this memory chunk.

Figure 5.9: Delta counter representation and associated access patterns.

Besides representing all the minor counters in a 16kB chunk, our delta counter can also

be used to capture a wide range of memory access patterns as shown in Fig 5.9 (b) to (f).

First, it can capture the read-only (Fig 5.9 (b)) as the base and deltas are all zero. Second,

it can detect the write-once (Fig 5.9 (c)) data with only the base value being 1. Third, our

delta counter can capture the common counter pattern with deltas being 0, as illustrated

in Fig 5.9 (d). Fourth, the delta counters can be used to capture the generic pattern where

the deltas among the minor counters in a memory region are small (less than 4), as shown

in Fig 5.9 (e). When a delta of 4 (or higher) is detected, the flag bit is reset to indicate that

the minor counters in the memory chunk do not share similar values and cannot take

advantage of our delta counter representation.

In summary, our proposed delta counter representation can detect all the write-back

patterns proposed in previous approaches, including read-only data in SHM [Yua22] and

Common counters in [Na21], making it a promising solution for memory encryption

81

counters on GPUs.

5.3.4 Dataflow of DRAM Read and Write

When used with embeded MAC proposed in VALUT [Taa18a], the memory compression

and decompression process becomes an integral part of the memory access path. For a

memory write operation, the plaintext is first compressed before encryption using the AES

engine. The encrypted ciphertext is then passed to the MAC engine to compute per-block

MACs. On the other hand, during a memory read operation, the per-block counter needs

to be recovered through the stateful MAC by trying different possible counter values from

the delta counter representation, one at a time starting from (base + delta-common). Once

the correct counter value is recovered, the decrypted data is decompressed and returned to

the L2 cache.

Figure 5.10: DRAM flow for memory read and write.

5.3.5 Delta Counter Cache Management

Separate from the counter cache, our delta counter cache keeps the most recently used

delta counter representations. Initially, all the delta counters have their flag bit set to 1

and the other three fields set to 0, indicating the entire memory space is read-only. As the

program executes, minor counters are updated, and the corresponding delta counter entry

is updated accordingly and inserted into the delta counter cache if not cached yet. The

modified delta counter block is marked as dirty and must be written back to memory. To

illustrate this process, we present an example of a delta counter in Fig 5.11. Initially, the base

counter and deltas in the entry are set to 0 and marked as clean (Fig 5.11 (a)). As program

82

execution continues, the delta to the maximum minor counter is updated to 1, and the

block is marked as dirty (Fig 5.11 (b)). Subsequently, as most memory blocks within the

16KB chunk are written at least once, the delta of the common counter is also updated to 1

(Fig 5.11 (c)). Later on, some blocks may be evicted and written again, causing the delta

to the maximum minor counter to increase to 2 (Fig 5.11 (d)). When the memory access

pattern changes to a completely random pattern, the encryption counters may no longer

follow the delta pattern, and the corresponding delta entry is updated as shown in Fig 5.11

(e).

Figure 5.11: Delta Counter Management

5.3.6 Counter Cache and BMT Verification

In our delta counter design, the major counters are provided from the major counter

registers, and the minor counters are compactly represented with only 12 bits for all the

minor counters in a 16KB memory chunk. After recovering the correct version of a minor

counter with stateful MACs, it is placed in the counter cache. As a counter block/sector

has multiple minor counters, the un-accessed minor counters are set to -1, as shown in

Fig 5.12 (a). In other words, we reserve -1 and a minor counter overflows when it reaches

all 1s. As more data is accessed within the same memory chunk, the corresponding minor

counters are recovered from the delta counter entry, as shown in Fig 5.12 (b). Once all minor

counters are recovered in this counter block, the BMT is traversed to verify the integrity

of the counter block. If this fully recovered block is further updated when it resides in the

counter cache, it will be marked as dirty and is written back to memory when evicted.

In the case when not all blocks are accessed within a 16KB memory chunk, some of the

corresponding minor counter will be -1, indicating a ’partial’ recovery of the counter block,

as shown in Fig 5.12 (c). To ensure integrity verification, the memory encryption engine

must fetch this block from memory and merge it with the partially recovered counter block.

83

Similar to SHM, we set a time-out period of 6K cycles. If after 6000 cycles any minor counter

has not been recovered from the delta entry, we need to fetch the minor counters in the

counter block. Additionally, if a partially recovered counter is about to be replaced from the

counter cache, the memory encryption engine must also fetch the minor counters before

eviction.

In our delta counter design, the minor counters are always written to the DRAM when

they are in the dirty state in the counter cache. This ensures the correctness and consistency

of encryption counters. We use the delta counter entry to recover the per-block minor

counter during memory reads. Since GPU applications are typically not write-intensive, our

design reduces memory read bandwidth by avoiding the need to access per-block minor

counters, which improves the performance of secured GPU memory. Overall, our delta

counter design is efficient and robust in managing encryption counters and maintaining

memory access integrity.

Figure 5.12: Counter Cache Management

5.3.7 Data Compressibility

Our design relies on stateful MACs for recovering minor counters from our super-compact

delta counter representation. To reduce the memory bandwidth consumption caused by

accessing the MACs, we utilize a technique similar to the one used in VAULT [Taa18a].

Specifically, we compress the regular data block and embed the per-block MAC into the

same cache line. Therefore, during each memory access, the memory encryption engine

also retrieves the corresponding compressibility information of the data block to determine

where to obtain the MAC for verifying the data. If the MAC is embedded within the data

block, the data block needs to be decompressed without additional MAC access. Otherwise,

a MAC block needs to be accessed beside the data block, although the data block does not

need to be decompressed.

84

In the VAULT design, one bit is reserved in the per-block minor encryption counter to

hold the compressibility information. Although this design reduces the minor counter size

from 7 bits to 6 bits, it is a good trade-off for reducing the memory bandwidth to access

MACs. However, in our delta counter design, the per-block minor counters are not fetched

if the minor counters are represented with a delta pattern. Hence, our delta counter design

requires the compressibility information to be maintained separately.

In our design, we maintain a 1-bit flag for each 128B cache block to store the compress-

ibility information, and cache it in a small on-chip compression cache. The management

of the compression cache is illustrated in Fig 5.13. Given four consecutive memory blocks,

assume that they are all compressible in the memory, a write stream to these four memory

blocks updates the memory content. If all the memory blocks are still compressible, none

of the flag bits is flipped. Therefore, it will remain clean in the compression cache, as shown

in Fig 5.13 (a). Otherwise, when any bit is flipped to 0 (or from 0 to 1), the block will be

marked as dirty (shown in Fig 5.13 (b)), and needs to be written to the main memory.

Figure 5.13: Compression Cache Management

In our design, although the compressibility information is maintained separately and

stored in memory, it’s integrity does not need to be maintained. In other words, we do not

need to use MAC to protect these flags. The reason is that, even an attacker could flip one

compressibility flag bit. For example, if a compressibility flag bit is flipped from 1 to 0, the

memory controller would issue a memory read to fetch the per-block MAC, and get the

stale MAC. This will eventually trigger a failure in the verification process. Similarly, if a

compressibility flag bit is flipped from 0 to 1, some data bits would be used as MACs, also

leading to a verification failure.

Another way to retrieve the MAC information is to leverage ECC bits if the memory is

equipped with ECC protection, as proposed in SYNERGY[Sai18]. By storing MACs in the

ECC bits, the MAC accesses become free and do not require additional flag bits. We evaluate

our proposed delta counter scheme with both the SYNERGY and embedded MAC schemes.

85

Table 5.1: Baseline GPU Configuration

SM config 30 SMs, 1506MHz
Register File 256KB/SM, 7.5MB in total
L1 D-Cache / Shared
Memory

96KB/SM

L2 cache 2 banks per memory partition, each
L2 cache bank is 128KB, 3MB in total.

DRAM 3500MHz, 12 partitions, 336GB/s.

5.4 Methodology

We model delta counter designs with GPGPU-Sim v4.0 [Kha20]. Our baseline GPU configu-

ration is shown in Table 5.1, which is based on the Nvidia Turing architecture [Nvi21]. A

memory space of 4GB is protected by the memory encryption engine.

We build our scheme based on the state-of-the-art design, PSSM [Yua21a], in which the

security metadata is constructed with partition-local offset. The details of the simulated

secure memory engine are listed in Table 5.2. The separate metadata caches, which include

the counter cache, MAC cache, BMT cache, delta counter cache and compression cache, are

modeled in each memory partition (i.e., each memory controller). State-of-the-art secure

memory architecture in CPUs uses speculative verification and lazy update for BMT [Gas03]

verification. We also adopt these schemes on GPUs. Speculative verification means the

memory controller can supply the data to the core before the corresponding integrity check

is finished. Later on, if there is a failure in integrity verification, an exception would be

raised. Lazy update means that only when a counter block or a tree node is evicted from

the counter cache or BMT cache, its parent node will be updated in the BMT cache.

We conducted a comprehensive evaluation of our proposed secure memory designs us-

ing a wide range of GPGPU benchmark suites, including Rodinia-3.1 [Che09], Parboil [Str09],

Polybench [GG09], and Pannotia [Che13], which cover both regular and irregular workloads.

Since computation-intensive workloads are not sensitive to secure memory, we chose to

focus on all memory-intensive workloads and report the benchmark details in Table 5.3.

For benchmarks with low simulation time, we simulated the entire benchmarks, while for

benchmarks with long simulation time, we simulated the first 10 million cycles. Following

previous work [Yua21b; Yua21a; Yua22], we defined the workloads that have at least 20%

peak memory bandwidth utilization as memory-intensive.

The different secure memory designs that we evaluate in our experiments are listed in

86

Table 5.2: MDC and MEE Organization

Delta Counter cache 2KB /memory partition, 128B block, fully-
associated, write-allocate policy

Counter cache 2KB /memory partition, 128B block, 4-way
sectored, write-allocate policy

Mac cache 2KB /memory partition, 128B block, 4-way
sectored, write-allocate policy.

Compression cache 2KB /memory partition, 128B block, fully-
associated, write-allocate policy.

Bonsai Merkle Tree
cache

2KB /memory partition, 128B block, 4-way
sectored, write-allocate policy.

Unified Metadata cache 10KB /memory partition, 128B block, 5-way
sectored, write-allocate policy.

Hash/Mac latency 40 cycles
AES engines 1 pipelined AES/memory partition
Compression Latency 3 cycles [Taa18b]

Table 5.3: Benchmarks
Benchmark Suite Workloads

Rodinia backprop, bfs, b+tree, dwtd2d, cfd,
kmeans, srad_v2, streamcluster

Parboil histo, sad, stencil, lbm, mri-gridding
Polybench 2DConvolution, atax, mvt, fdtd2d
Pannotia color_max, color_maxmin, mis,

pagerank, pagerank_spmv, sssp,
sssp_ell

87

Table 5.4. We report normalized Instructions per cycle (IPC) in our evaluation, with the

same baseline GPUs architecture.

5.5 Evaluation

5.5.1 Overall Performance

We first evaluate the performance of our delta counter designs and present the results

in Figure 5.14. We compare our designs with previous works, including PSSM [Yua21a]

and SHM [Yua22]. As shown in the figure, our delta counter design, labeled as ’Delta_ctr’,

achieves low overheads for secure GPU memory design, with only 3.75% on average. This

outperforms the state-of-the-art SHM and PSSM designs, which have average overheads of

6.74% and 13.89%, respectively. However, for some workloads such as lbm and kmeans, even

the state-of-the-art SHM design still exhibits high overheads. This is due to the workloads

being extremely memory-intensive, with almost 100% bandwidth utilization. As a result,

the performance of these workloads is tightly bounded by additional memory bandwidth

due to security metadata. And for workload lbm, our delta counter design still has an

overhead of 27.4%, and the reason is that our delta counter design introduces two additional

metadata, namely, delta counter and compression metadata. Our simulation shows that

these additional metadata suffer high cache miss rates, more than 30%, resulting in further

memory bandwidth consumption and slowdowns in the performance. To address this

issue, we propose using a unified metadata cache to cache the 5 types of security metadata.

Our observation is that GPU applications usually have different data patterns. Specifically,

when an application has a large portion of read-only data, the counter and BMT caches

are under-utilized. And when an application has a large portion of compressible data, the

MAC cache is under-utilized. By unifying all these 5 types of metadata caches into one

cache with the same overall capacity, the on-chip cache resource can be better utilized.

The results, labeled ’Delta_unified’, show that our delta counter design, combined with a

unified metadata cache, can further reduce performance overheads to only 2.01%. Some

workloads, e.g., lbm, can get more than 10% performance improvement.

5.5.2 Performance breakdown

To better understand our results, we present a detailed performance breakdown and com-

pare the achieved performance with upper bounds. The label "Compression_only" indicates

88

Table 5.4: Evaluated designs for GPU secure memory with both memory encryption and
integrity verification.

Scheme What It Represents

PSSM Secure GPU memory with PSSM scheme [Yua21a]
PSSM_synergy Secure GPU memory with the PSSM scheme, com-

bined with the SYNERGY [Sai18] design to address
MAC bandwidth.

SHM Secure heterogeneous memory design [Yua22],
with the PSSM scheme to construct security meta-
data.

Delta_ctr Our delta counter design for secure GPU memory,
with the memory blocks being compressed to em-
bed the MACs.

Delta_only Our delta counter design for secure GPU memory,
with all the metadata caches working in the perfect
mode (meaning that there is no additional band-
width caused by security metadata). However, the
additional encryption latency due to trying differ-
ent encryption counters is modeled.

Delta_unified Our delta counter design for secure GPU memory,
with a 10KB unified metadata cache that can hold
all the different types of metadata.

Compression_only Our delta counter design for secure GPU mem-
ory, with the memory blocks being compressed
to embed the MACs. And the per-block counters
and BMTs are enabled. However, when a memory
block is uncomressible, the per-block MAC band-
width is still paid.

Delta_synergy Our delta counter design for secure GPU memory,
combined with SYNERGY [Sai18] design to address
MAC bandwidth.

Upper_bound The upper bound analysis of delta counter design,
in which all the metadata caches work in the per-
fect mode and do not produce any memory traf-
fic. However, the per-block MAC bandwidth is still
modeled if the memory block is uncompressible.

89

Figure 5.14: Overall Performance of Different Designs

that the per-block counter and BMT are maintained, while memory blocks are compressed

to embed the MAC into the data lines, if compressible. The per-block MAC is still main-

tained if the cache line is not compressible. Compare "Compression_only" design with our

delta counter design (labeled as "Delta_ctr"), we can clearly see the performance improve-

ment. This improvement is directly coming from the counter traffic reductions. We present

the ratio of counter traffic in Fig 5.15. With the "Compression_only" design, the counter

traffic only includes per-block counters. With our delta counter design, the counter traffic

includes both delta counters and per-block counters. As we can clearly see from the figure,

the counter traffic drops from 2.12% to 0.18% on average. Some workloads, e.g., atax and

mvt, can get more than 10% counter traffic reduction. To further confirm our conclusion,

we also evaluate the approach used in another previous work, SYNERGY [Sai18], in which

the ECC chip is repurposed to address the MAC traffic. We combine this approach with both

PSSM design and our delta counter design, and we can clearly see that our delta counter

design outperforms the PSSM design.

We report the results of memory compressibility in Figure 5.16. We maintain one counter

for compressible memory accesses and one counter for uncompressible memory accesses.

If a memory access can be compressed to embed the 8B MAC into the line, we consider it

compressible and increment the counter by one; otherwise, we consider it uncompressible

and increase the other counter. At the end of the simulation, we calculate the ratio of

compressible memory access and plot the results in the figure. Most workloads have a good

90

Figure 5.15: Ratio of Counter Traffic in Memory.

ratio of compressible memory accesses. On average, the compressible memory access ratio

can reach 77.54%, resulting in a significant reduction in memory bandwidth for accessing

MACs, when embedded in data blocks, which ultimately translates to improvements in

performance.

Our delta counter tuple includes the delta values for both the common minor counter

and the maximum counter, as discussed in Section 5.2. The reason is that the encryption

engine needs to try multiple counter values until the correct one is recovered, staring from

the most common one. We plot the distribution of the number of recovery trials that each

memory access experiences in Fig. 5.17, and we can see that most memory accesses will

recover the counter value with just one try, labeled as "try_1."

Figure 5.16: Ratio of Compressible Memory Access.

91

Figure 5.17: Distribution of Number of Encryptions that Each Memory Access Needs to
Try.

5.5.3 Upper Bound Analysis

We also investigate the upper bound of the performance. We evaluate two ideal designs,

"Delta_only" and "Upper_bound". The label "Delta_only" implies that all the metadata

cache works in perfect mode, thereby eliminating any additional memory bandwidth

overheads due to accessing security metadata. However, the latency incurred due to trying

different delta values is modeled. As we can see that the overhead in this ideal design is 1.5%,

due to GPUs’ latency tolerance of trying different counter values. The label "Upper_bound",

is the design that assumes all the metadata cache except MAC cache work in perfect mode,

i.e., not incurring any additional memory traffic. However, the uncompressible memory

blocks still need to fetch/store per-block MACs under a cold miss. This design incurs only

0.49% overheads on average, and our delta counter combined with unified metadata cache

design can achieve 2.01% overheads on average, which is quite close to the upper bound.

5.6 Conclusions

The security metadata traffic is a major performance bottleneck for GPU secure memory.

This paper focuses on encryption counters due to their impact on the counter and BMT

traffic while utilizing prior schemes to address the MAC traffic. We introduce a super

compact method for encryption counter representation and a novel verification scheme

that leverages the latency-tolerance capability of GPUs to determine the correct minor

92

counter values. Our evaluation demonstrates that our delta counter scheme significantly

reduces the bandwidth overheads of encryption counters and achieves secure GPU memory

with an average performance overhead of 2.01% compared to the same GPU without

security support.

93

CHAPTER

6

CONCLUSIONS AND FUTURE WORKS

This dissertation presents our study on supporting secure memory architecture for GPUs.

We start our investigation from a detailed performance analysis, and identified the major

performance bottleneck. In the second work, we proposed a simple yet effective approach

for secured GPU memory. In the third work, we explored the heterogeneous memory space

on GPUs and streaming data access pattern for providing secure memory on GPUs. In

the fourth work, we propose a bandwidth-efficient encryption counter representation for

secure GPUs.

In the first work, we explore two secure memory architectures, counter-mode encryp-

tion and direct encryption, for GPUs, and show that we need to architect secure memory

differently from it for CPUs. Our in-depth study reveals the following insights. First, as GPUs

are designed for high-throughput computation, its secure memory needs to deliver high

bandwidth. Second, with counter-mode encryption, the memory traffic resulting from the

metadata, i.e., the counters, MACs (message-authentication codes), and integrity tree, may

cause significant performance degradation, even in the presence of metadata caches. Third,

the sectored cache structure adopted by GPUs leads to multiple sequential accesses to the

same metadata cache line, which necessitates the use of MSHRs (miss-status handling

registers) for meta-data caches. Fourth, unlike CPUs, separate/partitioned metadata caches

94

perform better than unified metadata caches on GPUs. The reason is that GPU workloads

feature streaming accesses, which cause severe contention in the unified metadata cache

and the cached counters and integrity tree nodes may be evicted before being reused. Fifth,

the massive-threaded nature of GPUs make them latency-tolerant and the performance

impact due to the extra encryption/decryption latency is limited. As a result, direct encryp-

tion can be a promising alternative for GPU secure memory. The challenge, however, lies in

memory integrity verification as the integrity tree may incur high storage overhead and

metadata traffic.

In the second work, we point out that conventional CPU secure memory architecture

can not be directly adopted to the GPUs. The key reasons include: (1) accessing the security

metadata, including encryption counters, message authentication codes (MACs) and in-

tegrity trees, requires significant memory bandwidth, which may lead to severe bandwidth

competition with normal data accesses and degrade the GPU performance; (2) contempo-

rary GPUs use partitioned memory organization, which results in storage and coherence

problems for encryption counters and integrity trees since different partitions may need

to update the same counter/integrity tree blocks; and (3) the existing split-counter block

organization is not friendly to sectored caches, which are commonly used in GPU for band-

width savings. Based on these observations, we propose partitioned and sectored security

metadata (PSSM), which has two components: (a) using the offset addresses (referred to

as local addresses) within each partition, instead of the virtual or physical addresses, to

generate the metadata so as to solve the counter or integrity tree storage and coherence

problems and (b) reorganizing the security metadata to make them friendly to the sec-

tored cache structure so as to reduce the memory bandwidth consumption of metadata

accesses. With these proposed schemes, the performance overhead of secure GPU memory

is reduced from 59.22% to 16.84% on average. If only memory encryption is required, the

performance overhead is reduced from 29.53% to 5.18%.

In the third work [Yua22], we analyze the security guarantees that used to defend against

physical attacks, and make the observation that heterogeneous GPU memory system may

not always need all the security mechanisms to achieve the security guarantees. Based on

the memory types as well as memory access patterns either explicitly specified in the GPU

programming model or implicitly detected at run time, we propose adaptive security mem-

ory support for heterogeneous memory on GPUs. Specifically, we first identify the read-only

data and propose to only use MAC (Message Authentication Code) to protect their integrity.

By eliminating the freshness checks on read-only data, we can use a single counter for such

data regions and remove the corresponding part in the Bonsai Merkel Tree (BMT), thereby

95

reducing the traffic due to counters and BMT. Second, we detect the common streaming

data access patterns and propose coarse-grain MACs for such stream data to reduce the

MAC access bandwidth. With the hardware-based detection of memory type (read-only or

not) and memory access patterns (streaming or not), our proposed approach adapts the

security support to significantly reduce the performance overhead. Our evaluation using

both memory-intensive and computation-intensive workloads shows that our scheme can

achieve secure memory on GPUs with low overheads for memory-intensive workloads while

not affecting computation-intensive workloads. Among the fourteen memory-intensive

workloads in our evaluation, our design reduces the performance overheads of secure GPU

memory from 53.9% to 10.2% on average. Compared to the state-of-the-art secure memory

designs for GPUs [Na21; Yua21a], our scheme outperforms PSSM by up to 36.8% and 10.4%

on average and outperforms Common counters by 77.5% on average for memory-intensive

workloads.

In the fourth work, we focus on encryption counters given their impact on the counter

and BMT traffic while leveraging prior schemes [Sai18; Taa18a] to address the MAC traffic.

We first analyze the characteristics of the encryption counters from a wide range of GPGPU

benchmarks and make two key observations. (1) With the split counter scheme, the cache

blocks in a large portion of the memory space, sometimes the entire GPU memory space,

share the same major counter value. (2) The difference among minor counters is fairly

limited. We then propose a novel scheme to reduce the encryption counter traffic. Our

design includes (a) a highly compact way of counter representation and (b) a verification

scheme to determine the correct minor counter values. In our design, we use a few on-chip

registers to hold the major counters and use a (7-bit) base value along with two small

(2-bit) deltas to represent the minor counters in a large memory chunk, one delta for

the most frequent delta between minor counters and the base, the other delta for the

maximal difference between a minor counter and the base. This way, for a large memory

chunk (e.g., 16kB), the counter overhead becomes nearly negligible (less than 2B). We then

leverage the existing MAC verification logic to verify the minor counters computed from

the base and deltas. Our approach essentially trades off decryption and integrity-check

latency for reduced counter-data traffic to take advantage of the latency-hiding nature of

GPUs. Compared to prior works on reducing counter traffic [Na21], our scheme handles

more counter value patterns (as we don’t restrict the counters to be the same in a memory

chunk) and is more effective in reducing counter traffic. Our study also reveals that the

GPU memory data are typically compressible. As a result, we can co-locate the MACs with

the compressed cache blocks, similar to [Taa18a]. Our experimental results show that our

96

proposed delta counter scheme significantly reduces the storage and bandwidth overheads

of encryption counters and achieves secure GPU memory with an average performance

overhead of 2.01% compared to GPU without security support. Our delta scheme is also

compatible with SYNERGY [Sai18], which leverages ECC chips to store MACs, and our

achieved performance overhead is 2.83%.

There are still several challenges that need to be addressed in our future work. Firstly, we

need to focus on designing a secure GPU memory system for the unified memory space on

GPUs. While existing research primarily concentrates on providing memory encryption and

integrity protection for discrete GPU memory, it is essential to develop memory protection

mechanisms that are compatible with unified memory, which is a common feature in GPU

programming. Secondly, we should tackle the issue of secure memory design for multi-GPU

and GPU clusters. Workloads that utilize GPUs, such as scientific computations, machine

learning, and neural networks, often require significant computational resources. As a

result, multi-GPU and GPU clusters are commonly deployed. Although various solutions

exist for securing memory on a single-node GPU, there is currently no research addressing

memory security in the context of multi-GPU and GPU clusters. Lastly, while our current

work primarily focuses on GPUs, it is worth noting that neural processing units (NPUs)

are also widely used for deep learning workloads. In our future research, we may also

consider incorporating the security aspects of memory design for NPUs. By addressing

these challenges, we aim to enhance the security and efficiency of GPU and NPU memory

systems, thus advancing the field of high-performance computing and deep learning.

97

BIBLIOGRAPHY

[Aji11] A. M. Aji, M. Daga, and W. Feng. “Bounding the effect of partition camping in

GPU kernels”. In: Proceedings of the 8th Conference on Computing Frontiers,

2011, Ischia, Italy, May 3-5, 2011. Ed. by C. Cascaval, P. Trancoso, and V. K.

Prasanna. Italy: ACM, 2011, p. 27.

[Che09] S. Che et al. “Rodinia: A Benchmark Suite for Heterogeneous Computing”. In:

Proceedings of the IEEE International Symposium on Workload Characterization

(IISWC). 2009.

[Che13] S. Che et al. “Pannotia: Understanding irregular GPGPU graph applications”. In:

Proceedings of the IEEE International Symposium on Workload Characterization,

IISWC 2013, Portland, OR, USA, September 22-24, 2013. IEEE Computer Society,

2013, pp. 185–195.

[Cor19] I. Corporation. “Intel® 64 and IA-32 Architectures Software Developer’s Manual

(325462-071US)”. In: (2019).

[Gas03] B. Gassend et al. “Caches and Hash Trees for Efficient Memory Integrity Verifica-

tion”. In: Proceedings of the Ninth International Symposium on High-Performance

Computer Architecture (HPCA’03), Anaheim, California, USA, February 8-12,

2003. IEEE Computer Society, 2003, pp. 295–306.

[GG09] cott Grauer-Gray et al. “Auto-tuning a High-Level Language Targeted to GPU

Codes”. In: To Appear In Proceedings of Innovative Parallel Computing. 2009.

[GOO19] D. GOODIN. RAMBleed side-channel attack works even when DRAM is protected

by error-correcting code. 2019. URL:https://arstechnica.com/information-
technology/2019/06/researchers-use-rowhammer-bitflips-to-
steal-2048-bit-crypto-key/.

[Gue16a] S. Gueron. “A Memory Encryption Engine Suitable for General Purpose Proces-

sors”. In: IACR Cryptol. ePrint Arch. 2016 (2016), p. 204.

[Gue16b] S. Gueron. “Memory Encryption for General-Purpose Processors”. In: IEEE

Secur. Priv. 14.6 (2016), pp. 54–62.

[Gup15] G. Gupta. “What is Birthday attack??” In: (2015).

98

https://arstechnica.com/information-technology/2019/06/researchers-use-rowhammer-bitflips-to-steal-2048-bit-crypto-key/
https://arstechnica.com/information-technology/2019/06/researchers-use-rowhammer-bitflips-to-steal-2048-bit-crypto-key/
https://arstechnica.com/information-technology/2019/06/researchers-use-rowhammer-bitflips-to-steal-2048-bit-crypto-key/

[HAR87] D. T. HARPER and J. R. JUMP. “Vector Access Performance in Parallel Memories

Using a Skewed Storage Scheme”. In: IEEE Trans. Computers C-36.5 (1987),

pp. 1440 –1449.

[Hid19] A. Hidayat. FastLZ. 2019. URL: https://github.com/ariya/FastLZ.

[Hua20a] W. Hua et al. “GuardNN: Secure DNN Accelerator for Privacy-Preserving Deep

Learning”. In: CoRR abs/2008.11632 (2020). arXiv: arXiv:2008.11632.

[Hua20b] W. Hua et al. “MgX: Near-Zero Overhead Memory Protection with an Application

to Secure DNN Acceleration”. In: CoRR abs/2004.09679 (2020). arXiv: arXiv:
2004.09679.

[Jan18] I. Jang et al. “Heterogeneous Isolated Execution for Commodity GPUs”. In:

Proceedings of the 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI’18). 2018.

[Jia16] Z. H. Jiang, Y. Fei, and D. Kaeli. “A complete key recovery timing attack on a

GPU”. In: Symposium on High Performance Computer Architecture (HPCA).

2016.

[Jia18] Z. Jia et al. “Dissecting the NVIDIA Volta GPU Architecture via Microbench-

marking”. In: CoRR abs/1804.06826 (2018). arXiv: 1804.06826.

[Kap16] D. Kaplan, J. Powell, and T. Woller. “AMD Memory Encryption”. In: (2016).

[Kha20] M. Khairy et al. “Accel-Sim: An Extensible Simulation Framework for Validated

GPU Modeling”. In: proceedings of the 47th IEEE/ACM International Symposium

on Computer Architecture(ISCA). 2020.

[Kum20] R. Kumar et al. “A 4900−µm 2 839-Mb/s Side-Channel Attack-Resistant AES-128

in 14-nm CMOS With Heterogeneous Sboxes, Linear Masked MixColumns, and

Dual-Rail Key Addition”. In: IEEE Journal of Solid-State Circuits (Volume: 55,

Issue: 4, April 2020) (2020).

[Law82] D. H. Lawrie and C. R. Vora. “The Prime Memory System for Array Access”. In:

IEEE Trans. Computers 31.5 (1982), pp. 435–442.

[Lee05] R. B. Lee et al. “Architecture for protecting critical secrets in microprocessors”.

In: 32nd International Symposium on Computer Architecture (ISCA’05). 2005.

99

https://github.com/ariya/FastLZ
https://arxiv.org/abs/arXiv:2008.11632
https://arxiv.org/abs/arXiv:2004.09679
https://arxiv.org/abs/arXiv:2004.09679
https://arxiv.org/abs/1804.06826

[Leh18] T. S. Lehman, A. D. Hilton, and B. C. Lee. “MAPS: Understanding Metadata Ac-

cess Patterns in Secure Memory”. In: IEEE International Symposium on Perfor-

mance Analysis of Systems and Software, ISPASS 2018, Belfast, United Kingdom,

April 2-4, 2018. IEEE Computer Society, 2018, pp. 33–43.

[Len13] J. Leng et al. “GPUWattch: enabling energy optimizations in GPGPUs”. In: The

40th Annual International Symposium on Computer Architecture, ISCA’13, Tel-

Aviv, Israel, June 23-27, 2013. Ed. by A. Mendelson. ACM, 2013, pp. 487–498.

[Lie00] D. Lie et al. “Architectural Support for Copy and Tamper Resistant Software”.

In: ASPLOS-IX Proceedings of the 9th International Conference on Architectural

Support for Programming Languages and Operating Systems, Cambridge, MA,

USA, November 12-15, 2000. Ed. by L. Rudolph and A. Gupta. ACM Press, 2000,

pp. 168–177.

[Lin18] Z. Lin, M. Mantor, and H. Zhou. “GPU Performance vs. Thread-Level Parallelism:

Scalability Analysis and a Novel Way to Improve TLP”. In: ACM Trans. Archit.

Code Optim. 15.1 (2018), 15:1–15:21.

[Liu17] Y. Liu, Y. Xie, and A. Srivastava. “Neural Torjans”. In: 2017 IEEE International

Conference on Computer Design (ICCD). 2017.

[Mat11] S. K. Mathew et al. “53 Gbps Native GF(2 4) 2 Composite-Field AES-Encrypt/Decrypt

Accelerator for Content-Protection in 45 nm High-Performance Microproces-

sors”. In: IEEE Journal of Solid-State Circuits. 2011.

[Na21] S. Na et al. “Common Counters: Compressed Encryption Counters for Secure

GPU Memory”. In: IEEE International Symposium on High-Performance Com-

puter Architecture, HPCA 2021, Seoul, South Korea, February 27 - March 3, 2021.

IEEE, 2021, pp. 1–13.

[NM09] N. P. J. Naveen Muralimanohar Rajeev Balasubramonian. “CACTI 6.0: A Tool to

Model Large Caches”. In: 4HP Laboratories (2009).

[Nvi21] Nvidia. NVIDIA TURING GPU ARCHITECTURE. Tech. rep. USA, 2021.

[Pan22] G. Panwar et al. “Translation-optimized Memory Compression for Capacity”. In:

55th IEEE/ACM International Symposium on Microarchitecture, MICRO 2022,

Chicago, IL, USA, October 1-5, 2022. IEEE, 2022, pp. 992–1011.

[Pin19] S. Pinto and N. Santos. “Demystifying Arm TrustZone: A Comprehensive Sur-

vey”. In: ACM Comput. Surv. 51.6 (2019), 130:1–130:36.

100

[Qur06] M. K. Qureshi and Y. N. Patt. “Utility-Based Cache Partitioning: A Low-Overhead,

High-Performance, Runtime Mechanism to Partition Shared Caches”. In: 39th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-39

2006), 9-13 December 2006, Orlando, Florida, USA. IEEE Computer Society,

2006, pp. 423–432.

[Rau79] B. R. Rau. “Interleaved Memory Bandwidth in a Model of a Muyltiprocessor

Computer System”. In: IEEE Trans. Computers 28.9 (1979), pp. 678–681.

[Rog06] B. Rogers et al. “Effective Data Protection for Distributed Shared Memory Mul-

tiprocessors”. In: in Proceedings of the International Conference of Parallel Ar-

chitecture and Compilation Techniques (PACT). 2006.

[Rog07] B. Rogers et al. “Using Address Independent Seed Encryption and Bonsai Merkle

Trees to Make Secure Processors OS- and Performance-Friendly”. In: 40th An-

nual IEEE/ACM International Symposium on Microarchitecture (MICRO) (2007).

[Rog08a] B. Rogers et al. “Single-level integrity and confidentiality protection for dis-

tributed shared memory multiprocessors”. In: HPCA. 2008.

[Rog08b] B. Rogers et al. “Single-Level Integrity and Confidentiality Protection for Dis-

tributed Shared Memory Multiprocessors”. In: in Proceedings of the 14th Inter-

national Symposium on High Performance Computer Architecture (HPCA-14.

2008.

[Sai18] G. Saileshwar et al. “SYNERGY: Rethinking Secure-Memory Design for Error-

Correcting Memories”. In: IEEE International Symposium on High Performance

Computer Architecture, HPCA 2018, Vienna, Austria, February 24-28, 2018. Aus-

tria: IEEE Computer Society, 2018, pp. 454–465.

[Sin19] A. Singh et al. “Improved Power/EM Side-Channel Attack Resistance of 128-Bit

AES Engines With Random Fast Voltage Dithering”. In: IEEE Journal of Solid-

State Circuits (2019).

[Str09] J. A. Stratton et al. “Parboil: A Revised Benchmark Suite for Scientific and Com-

mercial Throughput Computing”. In: IMPACT Technical Report. 2009.

[Suh03] G. Suh et al. “Efficient Memory Integrity Verification and Encryption for Secure

Processors”. In: Proceedings. 36th Annual IEEE/ACM International Symposium

on Microarchitecture, 2003. MICRO-36. 2003.

101

[Suh07] G. E. Suh, C. W. O’Donnell, and S. Devadas. “AEGIS: A Single-Chip Secure Pro-

cessor”. In: IEEE Design Test of Computers (2007).

[Taa18a] M. Taassori, A. Shafiee, and R. Balasubramonian. “VAULT: Reducing Paging

Overheads in SGX with Efficient Integrity Verification Structures”. In: Proceed-

ings of the Twenty-Third International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS 2018, Williamsburg,

VA, USA, March 24-28, 2018. Ed. by X. Shen et al. ACM, 2018, pp. 665–678.

[Taa18b] M. Taassori, A. Shafiee, and R. Balasubramonian. “VAULT: Reducing Paging

Overheads in SGX with Efficient Integrity Verification Structures”. In: Proceed-

ings of the Twenty-Third International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS 2018, Williamsburg,

VA, USA, March 24-28, 2018. USA: ACM, 2018, pp. 665–678.

[Vol18] S. Volos, K. Vaswani, and R. Bruno. “Graviton: Trusted Execution Environments

on GPUs”. In: Proceedings of the 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’18). 2018.

[Yan03] J. Yang, Y. Zhang, and L. Gao. “Fast Secure Processor for Inhibiting Software

Piracy and Tampering”. In: Proceedings of the 36th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture. 2003.

[Yan06] C. Yan et al. “Improving Cost, Performance, and Security of Memory Encryption

and Authentication”. In: Proceedings of the 33rd Annual International Sympo-

sium on Computer Architecture (ISCA). 2006.

[Yan10] Y. Yang et al. “A GPGPU compiler for memory optimization and parallelism

management”. In: Proceedings of the 2010 ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI 2010, Toronto, Ontario,

Canada, June 5-10, 2010. Ed. by B. G. Zorn and A. Aiken. Canada: ACM, 2010,

pp. 86–97.

[Yua21a] S. Yuan, Y. Solihin, and H. Zhou. “PSSM: achieving secure memory for GPUs

with partitioned and sectored security metadata”. In: ICS ’21: 2021 International

Conference on Supercomputing, Virtual Event, USA, June 14-17, 2021. Ed. by

H. Zhou et al. USA: ACM, 2021, pp. 139–151.

[Yua21b] S. Yuan et al. “Analyzing Secure Memory Architecture for GPUs”. In: IEEE Inter-

national Symposium on Performance Analysis of Systems and Software, ISPASS

2021, Stony Brook, NY, USA, March 28-30, 2021. IEEE, 2021, pp. 59–69.

102

[Yua22] S. Yuan et al. “Adaptive Security Support for Heterogeneous Memory on GPUs”.

In: IEEE International Symposium on High-Performance Computer Architecture,

HPCA 2022, Seoul, South Korea, April 2-6, 2022. IEEE, 2022, pp. 213–228.

[Yud22] A. W. B. Yudha et al. “LITE: a low-cost practical inter-operable GPU TEE”. In:

ICS ’22: 2022 International Conference on Supercomputing, Virtual Event, June

28 - 30, 2022. Ed. by L. Rauchwerger et al. ACM, 2022, 7:1–7:13.

[Zha00] Z. Zhang, Z. Zhu, and X. Zhang. “A permutation-based page interleaving scheme

to reduce row-buffer conflicts and exploit data locality”. In: Proceedings of the

33rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO

33, Monterey, California, USA, December 10-13, 2000. USA: ACM/IEEE Computer

Society, 2000, pp. 32–41.

[Zha05] Y. Zhang et al. “SENSS: Security enhancement to symmetric shared memory

multiprocessors”. In: in Proceedings of the International Symposium on High-

Performance Computer Architecture (HPCA). 2005.

[Zou19] Y. Zou and M. Lin. “FAST: A Frequency-Aware Skewed Merkle Tree for FPGA-

Secured Embedded Systems”. In: 2019 IEEE Computer Society Annual Sympo-

sium on VLSI (ISVLSI). 2019.

[Zuo20] P. Zuo et al. “SEALing Neural Network Models in Secure Deep Learning Acceler-

ators”. In: CoRR abs/2008.03752 (2020). arXiv: arXiv:2008.03752.

103

https://arxiv.org/abs/arXiv:2008.03752

	List of Tables
	List of Figures
	INTRODUCTION AND BACKGROUNDS
	Introductions
	Background
	Threat Model and Scope of Work
	Security Mechanisms

	GPU Security

	Analyzing Secure Memory Architecture for GPUs
	Introduction
	Methodology
	Counter-Mode Encryption
	Performance Overhead
	MSHRs for Metadata Caches
	Metadata Cache Size
	Unified vs. Separate Metadata Caches
	AES Engine Throughput
	Die Area

	Direct Encryption
	Performance Overheads of Direction Encryption
	Direct Encryption vs. Counter-mode Encryption
	Integrity Protection

	Conclusions

	PSSM: Achieving Secure Memory for GPUs with Partitioned and Sectored Security Metadata
	Motivations
	Performance Impacts of Naive Design
	Problem Diagnosis
	Coarse-Grain Interleaving
	Sectored MDC
	Sectored Data Cache and MAC Verification

	Architecture Design
	Overall Architecture
	Using Local Addresses for Security Metadata
	Making Metadata Friendly to Sectored Caches
	Encryption and MAC Engine
	Bandwidth for Accessing MACs

	Evaluation
	Methodology
	Performance

	Conclusions

	SHM: Adaptive Security Support for Heterogeneous Memory on GPUs
	Motivation and Design Principles
	Heterogeneous Memory on GPUs
	Seed Generation in Counter-Mode Encryption
	Overhead of MAC Accesses

	Architecture Design
	Overall Architecture
	Detecting Read-only Regions
	Detecting Streaming Accessed Chunks
	Using L2 as Victim Cache for Security Metadata

	Methodology
	Hardware Overheads

	Evaluation
	Read Only Prediction
	Streaming Access Pattern Detection
	Overall Performance
	Performance Breakdown
	Bandwidth Saving
	Power Saving
	Using L2 as a Victim Cache

	Conclusions

	Delta Counter: Bandwidth-Efficient Encryption Counter Representation for Secure GPU Memory
	Summary
	Motivations
	Major Counter Analysis
	Minor Counter Analysis
	MAC Bandwidth Requirement

	Architecture Design
	Overall Architecture
	Management of Major Counter Registers
	Delta Counter Entry
	Dataflow of DRAM Read and Write
	Delta Counter Cache Management
	Counter Cache and BMT Verification
	Data Compressibility

	Methodology
	Evaluation
	Overall Performance
	Performance breakdown
	Upper Bound Analysis

	Conclusions

	CONCLUSIONS AND FUTURE WORKS

