
A Methodology for Detection and Estimation of Software Aging

Sachin Garg�, Aad van Moorsel
Lucent Technologies

Bell Laboratories
600 Mountain Avenue

Murray Hill, NJ 07974, USA
fsgarg,aadg@research.bell-labs.com

Kalyanaraman Vaidyanathan, Kishor S. Trivedi
Center for Advanced Computing & Communicationy

Dept. of Electrical & Computer Engineering
Duke University

Durham, NC 27708, USA
fkv,kstg@ee.duke.edu

Abstract

The phenomenon of software aging refers to the accumu-
lation of errors during the execution of the software which
eventually results in it’s crash/hang failure. A gradual per-
formance degradation may also accompany software aging.
Pro-active fault management techniques such as “Software
rejuvenation” [9] may be used to counteract aging if it ex-
ists. In this paper, we propose a methodology for detec-
tion and estimation of aging in the UNIX operating sys-
tem. First, we present the design and implementation of
an SNMP based, distributed monitoring tool used to collect
operating system resource usage and system activity data at
regular intervals, from networked UNIX workstations. Sta-
tistical trend detection techniques are applied to this data to
detect/validate the existence of aging. For quantifying the
effect of aging in operating system resources, we propose a
metric “Estimated time to exhaustion” which is calculated
using well known slope estimation techniques. Although the
distributed data collection tool is specific to UNIX, the sta-
tistical techniques can be used for detection and estimation
of aging in other software as well.

1. Introduction

It is now well established that outages in computer sys-
tems are more due to software faults than due to hardware
faults [6, 19]. Recently, the phenomenon of software aging
[9] has come to light, where the error conditions actually
accrue with time and/or load, resulting in performance
degradation and/or failures. Failures of both crash/hang
type as well as those resulting in data inconsistency have
been reported. Memory bloating and leaking, unreleased

� This work was supported in part by an IBM Fellowship to CACC,
Duke University and was partly performed while the author was at Duke

y This work was supported in part by a core project of the CACC, Duke
University

file-locks, data corruption, storage space fragmentation
and accumulation of round-off errors are some typical
causes of slow degradation. Not only software used on a
mass scale (most PC users are familiar with applications
that occasionally “hang”), but also specialized software
used in high-availability and safety-critical applications
suffers from aging [9]. To counteract aging, a pro-active
approach to environment diversity has been proposed in
which the operational software is occasionally stopped and
then restarted in a “clean” internal state. Huang et. al. [9]
have proposed a technique called “software rejuvenation,”
which involves stopping the running software occasionally,
removing the accrued error conditions and restarting the
software. Some examples of cleaning the internal state of
software are garbage collection, flushing operating system
kernel tables and reinitializing internal data structures.
An extreme example of rejuvenation might be a simple
hardware reboot.

The existence of software aging has been widely
reported and observed, but has been mainly anecdotal.
For this reason, in this paper, we describe a methodology
based on well known statistical techniques for detection
and validation of the existence of software aging. It is
clear that the study of aging cannot be based on traditional
measurement techniques for dependability assessment,
which rely on data from failure events. The basic idea is
to periodically monitor and collect data on the attributes
responsible for determining the “health” of the executing
software. Statistical trend detection techniques are applied
to this data to detect and validate the existence of aging.
In this paper, we demonstrate this simple methodology for
the UNIX operating system. First, we present the design
and implementation of a distributed monitoring tool used
to collect operating system resource usage and system
activity data at regular intervals, from networked UNIX
workstations. This tool is based on the Simple Network
Management Protocol (SNMP) standard simply to be able



to inter-operate with multiple platforms. For quantifying
the effect of aging in operating system resources, we
propose a metric “Estimated time to exhaustion” which is
calculated using well known slope estimation techniques.
Although the distributed data collection tool is specific to
UNIX, the statistical techniques can be used for detection
and estimation of aging in other software as well.

The rest of this paper is organized as follows. In
Section 2, we give a brief overview of previous work
in measurement-based software dependability evaluation
and explain some differences between that and our work.
Description of the SNMP framework and the distributed
resource monitoring tool is given in Section 3. In Section 4,
we describe the experimental set up for collecting data.
Section 5 contains an overview of the statistical methods
employed to analyze the collected data. The experimental
measurement and analysis results are discussed in Section 6.

2. Related Work

Most of the previous work in measurement-based
dependability evaluation was based on measurements made
at either failure times [3, 10, 14] or at times an error was
observed [11, 15, 20, 21]. Chillarege et. al. [3] gave a first
order empirical estimation of the failure rate and mean time
to failure of widely distributed software. The effect of sys-
tem workload on system failures was investigated in [10].
Iyer et. al. [11] proposed a methodology for recognizing
the symptoms of a persistent problem in large systems by
identifying and statistically validating recurring patterns
among error records produced in the system. Hansen and
Siewiorek [7] proposed a technique for coalescing error
events for data reduction in the case of multiple errors
due to a single fault. The dispersion frame technique for
failure prediction, based on an increase in observed error
rate, a threshold error number, a CPU utilization threshold
or a combination of the above factors, was described in [15].

Since software aging cannot be detected or estimated
by collecting data at failure events only, we, by contrast,
periodically monitor the behavior of software in operation.
Also, while some the above papers dealt with hardware
failures, we restrict ourselves to software failures.

Constant monitoring of system parameters was carried
out by Maxion and Feather [16], who described a method
to automatically detect anomalies in the system behavior.
While their focus was on the network (Ethernet), we aim
to detect aging and other anomalies in UNIX workstations.
They applied smoothing techniques like median filtering
and thresholding in their analysis and aimed to diagnose

the original problem caused by the observed anomaly. Our
analysis of trend detection and estimation (part of which
includes non-parametric local regression for smoothing), is
aimed towards validation of software aging and estimation
of time to exhaustion of various operating system resources
any of which will result in a failure.

3. SNMP-based Distributed Resource Moni-
toring Tool

Simple Network Management Protocol [2, 17] is an
application protocol offering network management services
in the Internet protocol suite. There are three essential
constituents to a management tool based on SNMP: the
manager, the agent and the Management Information
Base (MIB). A client-server relationship between manager
and agent is defined by the SNMP protocol and the MIB
describes the information that can be obtained and/or mod-
ified via interactions between the agent and the manager.

We have used the SNMP framework to design and im-
plement a distributed resource monitoring tool. The objec-
tive of this tool is to remotely monitor the health of UNIX
workstations at the operating system level. The data col-
lected while monitoring is then subjected to statistical anal-
ysis. The three key components of the tool are:

1. PFM MIB: The Pro-active Fault Management (PFM)
MIB module defines the objects used to determine
the “health” of a UNIX workstation. Figure 1 shows
the MIB tree for the PFM module. Note that objects
for proprietary MIBs are defined under an organiza-
tion’s subtree located under the “enterprises” branch.
The module “pfmMIB” is defined as fenterprises
2598g in the MIB tree hierarchy, where the number
2598 is arbitrarily given. The objects to be monitored
are classified in the following seven categories, each of
which is defined as a placeholder object in the module.

(a) hostID defined as fpfmMIB 1g: The
leaf objects in this category, nodeName,
osName, osRelease, osVersion and
mcHardwareName, characterize the features
of the workstation. Since the value of each
of these objects is constant, they need to be
retrieved by the remote manager/monitor only
once.

(b) timeVal defined as fpfmMIB 7g: It con-
tains two leaf objects, dateAndTime, which is
the current day and time, and hostUpStats,
which is the time the machine has been up since
last reboot.

2



root

ccitt(0)
iso(1) joint(2)

org(3)

dod(6)

internet(1)

mgmt(2) experimental(3) private(4)

enterprises(1)

hostID(1)

osResource(2) procStats(4) fileSysResource(5)

timeVal(7)

ioResource(6)

mib(1)

netResource(3)

streamsAllocation(10)

pfmMIB(2598)

Figure 1. MIB tree for the PFM module

(c) osResource defined as fpfmMIB 2g: The
leaf objects here describe the state of the re-
sources provided by the OS and so some of
the objects are operating system dependent.
Some of the objects are usedSwapSpace,
fileTableSize, realMemoryFree and
procsTotal.

(d) procStats defined as fpfmMIB 4g: It con-
tains leaf objects that describe the state of the
processes running on the machine.

(e) fileSysResource defined as fpfmMIB 5g:
It consists of four leaf objects tmpDirSize,
tmpDirUsed, tmpDirAvail and
tmpDirCapacity, which keep track of
the /tmp directory in UNIX systems.

(f) netResource defined as fpfmMIB 3g: It
is a placeholder object in PFM MIB to mon-
itor the availability and usage of network re-
lated resources provided by the operating sys-
tem. Some examples are queuesCurrent,
dblksAllocFail and streamsCurrent.

(g) ioResource is defined as fpfmMIB 6g:
It contains information about the terminal as
well as disk I/O activity such as ttyIn and
diskOneMsps. A total of fourteen leaf objects
comprise this category.

2. PFM agent: The agent process runs in the background
on each monitored workstation. A single instance for
each of the MIB leaf objects is initialized as a global

variable in the agent program. The agent then pas-
sively listens on a well advertised port number. Upon
receiving a get request from the manager, the agent
executes certain instructions to obtain the value of the
requested leaf object from the operating system, as-
signs the value to the variable and sends it back to the
manager with the value. This procedure is illustrated
in Figure 2. The values for the leaf objects are ob-
tained by the agent by executing various UNIX utility
programs made available as a standard part of the op-
erating system such as pstat, iostat, netstat,
vmstat, nfsstat, top and df.

return
(pstat) value

Operating System Kernel

Hardware

Unix Utility

return value
(22312K)

get(leaf object)
(totalSwapSpace)

Agent process

Figure 2. Working of the agent process

3. PFM Manager: The manager’s primary function is to
retrieve the values of desired objects by sending get
requests to the remote agents. We have implemented a
graphical user interface which can be operated in one
of two modes - “monitoring” and “collection”. While
in the monitoring mode, the retrieval of information is
initiated by the user (administrator), in the collection
mode, it is automated. Figure 3 shows the snapshot
of the interface with some selected objects and their
associated values.

The prototypes for the agent and the manager programs
were developed using Scotty [13]. Scotty is an extension
to the Tcl/Tk prototyping language and provides TCP/IP,
UDP, ICMP and SNMP functionality. It supports both
versions 1 and 2 of SNMP. In our implementation, we have
used only SNMP V.1.

4. Data Collection

The SNMP-based data collection tool described in the
previous section was deployed on eight heterogeneous

3



Figure 3. Snapshot of the GUI for the manager

UNIX workstations which are connected by an Ethernet
LAN at the Duke Department of Electrical and Computer
Engineering. The machines monitored and their respective
operating systems and primary functions in the department
are listed in Table 1. In our data collection, the values for
all objects are collected every fifteen minutes using the
collection mode. The data is stored in a user-specified file
in an X-Y format, where X is the name of the object and Y
is its value. Any processing on the data is done outside of
the tool. In the case of an error or timeout, a “No Response”
is recorded. The timeout interval was two minutes. When
a monitored machine fails, it is restarted/rebooted and the
agent process is also restarted.

5. Data Analysis

Using the monitoring tool, time ordered values are ob-
tained for each pfmMIB object, thus constituting a time se-
ries for that object. In this section, we introduce the time
series analysis concepts used to determine the patterns of
variation with time in the values of each of the objects. Spe-
cific issues we address are:

� Is aging present, or in other words, is there a long term
trend (increasing or decreasing) in the values?

� What is the nature of the variations in values? Does
the data exhibit periodic behavior with or without a
global/local trend?

� Can the failures during this period be related to the ob-
served values?

Table 1. Machines monitored at Duke Dept. of
ECE

Machine Name Operating System Function

ECE Solaris 2.2 WWW, FTP, mail,
NIS, DNS server

Washington Solaris 2.3 file server
for programs/packages

Lincoln Solaris 2.2 file server for directories,
research printer server

Jefferson SunOS 4.1.3 NIS secondary server
Dolphin SunOS 4.1.3 research (usr home

directories)
Datc6 Solaris 2.2 public cluster workstation
Velum SunOS 4.1.3 research (usr home

directories)
Rossby SunOS 4.1.3 research

Shannon AIX research, data collection
/monitoring station

� Can we quantify aging in UNIX?

To obtain the desired answers, we use visual cues and
classical time series analysis techniques such as linear
and periodic dependency analysis, and trend detection and
estimation [1].

5.1. Time Series Analysis and Time Plots

A time seriesis simply a set of data fyt � t � �� ���� ng in
which the subscript t indicates the time at which the datum
yt is observed. It is a sample realization of a stochastic
process fYt � t � �� ���� ng. The expectation of Yt, denoted
by �t � E�Yt� is called the trendof the series. In our case,
since the observations are made at regular fifteen minute
intervals, it suffices to indicate the index of the interval.

Plotting the time series fyt � t � �� ���� ng� against time
t � �� ���� n is the first step in data analysis. The visual cues
are helpful in determining further analysis to be performed.
For instance, periodicities may be clearly seen, indicating
the need for harmonic analysis, or a trend (increasing or
decreasing) may be visible, indicating that trend estimation
techniques may be applied. Further, if both are visible,
then it is at times necessary to use statistical methods to
remove the trend in order to perform harmonic analysis.
On the other hand, it is sometimes desirable to remove any
cyclic variations and just study the trend, particularly for

4



forecasting purposes.

5.2. Periodicity and Linear Dependence

To study linear dependency in time, the autocorrelation
functionis an important, albeit typically incomplete, sum-
mary of the serial dependence within a stationary random
function. The plot of autocorrelation against lag, called
the correlogram of the data, is very useful for exploratory
data analysis. In addition to linear dependence, periodic
dependencies may be important. To corroborate the
presence of periodicities in the data, we employ harmonic
analysis, which involves fitting a periodic function of a
particular frequency to the data. The existence of daily and
weekly periodicities in the measured data can be confirmed
via harmonic analysis.

5.3. Trend Detection and Estimation

As mentioned previously, one of the primary objectives
of our data analysis is to detect and validate the existence
of aging. Detection of trends in operating system resource
usage and system activity is the approach we follow. For
the purposes of prediction, the slope of the trend is es-
timated. The primary trend detection technique used is
smoothingof observed data by robust locally weighted re-
gression, proposed by Cleveland [4]. The process of ro-
bust locally weighted regression essentially involves fitting
a polynomial of any desired degree to a fraction of the data.
The fitting is carried out using weighted least squares es-
timates. The fraction of the data smoothed at each point,
called the window size, has a significant effect on the result.
A large window size is used to capture the overall trend by
removing local variations. With a small window size, the
smoothed data points almost follow the original data points.
We have used a window size of 2/3 (fraction of all data)
for our analysis. The robust smoothing technique provides
good visual cues for finding trends in the series yt, but it is
hard to make conclusive statements regarding presence or
absence of trend since no statistical significance levels are
attached. To overcome this limitation, we use the seasonal
Kendall test[5]. It can be used for detection of trends in the
presence of cycles. The duration of a cycle is referred to as
the periodand the durations within a cycle are called sea-
sons. We expect to see daily cycles in our data. The objec-
tive in the seasonal Kendall test is to test the null hypothesis
H� that there is no trend, against the alternative hypothe-
sis HA that there is an upward or a downward trend. To
that end, we compute for each season i the Mann-Kendall

statistic, Si, where

Si �

ni��X

k��

niX

l�k��

sgn�yil � yik�� (1)

where l � k and sgn�x� is the signum function, ni is
the number of data (over cycles) for season i and yil is
the datum for the ith season of the lth cycle. To test the
null hypothesis, H� is rejected for certain values of the Z
statistic (computed from all the Sis), for a significance level
� (see [5] for details). The seasonal Kendall test is simple,
efficient and robust against any missing values in the data.

Once the presence of a trend is confirmed by the above
procedure, its true slope may be estimated by computing
the least squares estimate of the slope by linear regression
methods. These however deviate greatly from the true
value if there are gross errors or outliers in the data. We use
a non-parametric procedure developed by Sen [18], which
is not greatly affected by outliers and is also robust against
missing values.

First, for each season i, N
�

i
slopes are calculated

for all pairs of points at l and k for which l � k� as
Qi � �yil � yik���l � k�. These N

�

�+...+N
�

K
=N � slopes,

whereK is the number of seasons, are then ranked and their
median is calculated. This median is the required slope
estimate, N . A confidence interval can also be attached to
the slope.

6. Results

The total time period for our data collection was ap-
proximately 53 days. Three machines, Jefferson, Rossby
and Velum, did not experience any outage during this
period. The other four machines, Dolphin, ECE, Lincoln
and Datc6, suffered outages. The number of outages, the
time of occurrence of each outage and its probablecause
are listed in Table 2. The time of outage is expressed in
days:hours:minutes. The probable cause of failure is noted
simply by observing the values of the objects just before
the failure and identifying resources, if any, that are nearing
exhaustion at that time. Failures which did not show any
signs of resource exhaustion (presumably due to hardware
or other faults) are not considered in our analysis.

The time plots for the monitored objects have missing
values if there is an outage or in the case of monitor
timeouts occurring on get requests. Figure 5 illustrates the
four outages in Datc6, and Figure 6 and 7 show the outage
in ECE. We will get back to these figures when discussing

5



Table 2. Observed number, times and proba-
ble causes of failures

Machine Outages Time Cause

Dolphin 3 01:21:55 Swap Space Exhausted
20:16:45
50:09:51

ECE 1 16:17:34 Out of Memory
Lincoln 4 12:08:03 Out of Memory

30:03:55 Too many messages
38:10:13
45:12:49

Datc6 4 12:08:09 Outages
30:09:47 Correlated
38:11:03 with
45:13:44 Lincoln

Lag

A
C

F

0 5 10 15 20

0.
0

0.
4

0.
8

 Series : Current dblks

Lag

A
C

F

0 5 10 15 20

-0
.2

0.
2

0.
6

1.
0

 Series : Current queues

Figure 4. Autocorrelation function for Jeffer-
son objects: (1) current no. of allocated
streams data blocks (2) no. of stream queues

Time (days)
0 10 20 30 40 50

0
20

40
60

sw
ap

U
se

d

Time plots for Datc6 objects

Time (days)
0 10 20 30 40 50

0
50

0
15

00
tm

pD
irU

se
d

Time (days)
0 10 20 30 40 50

0
40

00
0

80
00

0
tm

pD
irA

va
il

Figure 5. Time plots for Datc6 objects: (1)
swap space in use (2) /tmp in use (3) /tmp
available

Time (days)
0 10 20 30 40 50

0
40

0
80

0
12

00
sw

ap
U

se
d

Time plots for ECE objects

Time (days)
0 10 20 30 40 50

0
10

00
00

20
00

00
tm

pD
irU

se
d

Time (days)
0 10 20 30 40 50

0
10

^6
2*

10
^6

tm
pD

irA
va

il

Figure 6. Time plots for ECE objects: (1) swap
space in use (2) /tmp in use (3) /tmp available

6



Time (days)
0 10 20 30 40 50

0
10

00
20

00
30

00
qu

eu
es

C
ur

re
nt

Time plots for ECE objects

Time (days)
0 10 20 30 40 50

0
20

40
60

80
lin

kb
lk

C
ur

re
nt

Time (days)
0 10 20 30 40 50

0
20

00
60

00
m

sg
C

ur
re

nt

Figure 7. Time plots for ECE objects: (1)
current no. of stream queues (2) linkblk
STREAMS structures allocated (to indicate a
link) (3) streams messages allocated

trends. First, we identify linear and periodic dependencies.

Figure 4 shows the autocorrelation functions plotted
against lag for two objects monitored in machine Jefferson.
Computing the autocorrelation function requires that the
time series yt be stationary. However, the time series
potentially consist of a global trend, which makes them
non-stationary. Therefore, this trend, �t is computed using
non-parametric regression smoothing and subtracted from
the original time series yt and the autocorrelation functions
are computed for these residual series yt � �t for lags of
up to approximately 20 days. Hence the lag in the plots
corresponds to days. Each plot contains two horizontal
dashed lines which correspond to 95% confidence limits.
Statistically, correlation functions lying inside these bound-
aries are considered insignificant.

6.1. Detection of Periodicities and Linear Depen-
dence

Figure 4, plots 1 and 2, show significant autocorrelation
at the lag which corresponds to a day. As the autocorre-
lation persists over all lags (visible as alternating positive
and negative peaks), it is a clear indication that the time
series has a periodic component with a periodicity of one
day. Furthermore, the envelope of the peaks in these plots
show that correlations exist at a lag of 7, which corresponds

to a week. This is indicative of the presence of weekly
periodicity exhibited by the original time series.

Analysis of periodic dependencies can be done for all
objects. Not all objects show daily and weekly dependen-
cies as in plots 1 and 2 of Figure 4. Some only show weekly
dependencies (for instance caused by periodic maintenance
activities), while others show no significant indications of
the presence of periodicities or linear dependence.

6.2. Detection and Validation of the Existence of
Aging

The existence of aging is some times evident simply
from observation of some of the time plots of resources.
For instance, a gradual consistent increase in resource
usage (disregarding local variations) is visible for some
of the ECE objects in Figures 6 and 7. In the case of
other resources, however, aging is not evident simply by
visual inspection of data. Hence, we resort to the analysis
techniques described earlier to detect aging.

Smoothing of a time series by non-parametric local
weighted regression is applied to the time series of objects
for Rossby. Figure 8 shows the smoothed data superim-
posed on the original data points. Amount of real memory
free, plotted in Figure 8, plot 1, shows an overall decrease,
whereas process table size shows an increase. We have
used the smoothing technique only to get the global trend
between outages and so the resulting smoothed data might
not always follow the original data points. Plots of some
other resources not discussed here also showed an increase
or decrease. Once again, this corroborates our hypothesis
of aging with respect to various objects.

We also applied the seasonal Kendall test to each of
these time series to detect the presence of any global trends
at a significance level, �, of 0.05. The associated statistic is
listed in Table 3. With Z�=1.96, all values in the table are
such that theH� hypothesis (that no trend exists) is rejected.

The above trend analysis lends itself to failure prediction
(as we will see later in this section), but does not explicitly
deal with periodicity. Therefore, we show in Figure 9 the
seasonal trend decomposition of the time series of file table
sizeon Jefferson plotted against time in weeks. The top-
most plot in Figure 9 is the original time series. The second
one shows the global trend of increase in the size of the
file table. It is obtained by non-parametric regression. The
third plot from the top shows the periodicities, in which the
daily cycle is a harmonic of the weekly cycle. The bottom
plot shows the remainder. Summation of corresponding

7



Time

R
ea

l M
em

or
y 

F
re

e

0 10 20 30 40 50

15
00

0
25

00
0

35
00

0

Time

F
ile

 T
ab

le
 S

iz
e

0 10 20 30 40 50

14
0

16
0

18
0

20
0

22
0

24
0

26
0

Figure 8. Non-parametric regression smooth-
ing for Rossby objects: (1) free memory and
(2) file table size

Table 3. Seasonal Kendall test (Z Statistic)
for Rossby, Velum and Jefferson objects at
�=0.05

Resource Rossby Velum Jefferson
Name

Real Memory Free -13.668 -6.848 -46.977
File Table Size 38.001 17.006 47.065

Process Table Size 40.540 12.142 38.537
Used Swap Space 15.280 32.654 31.660

No. of disk data blocks 48.840 13.955 13.673
No. of queues 39.645 19.906 13.476

Time

T
ab

le
 S

iz
e

2 4 6 8

30
0

40
0

50
0

60
0

70
0

Time

S
iz

e 
(t

re
nd

)

2 4 6 8

26
0

28
0

30
0

32
0

Time

S
iz

e 
(P

er
io

di
c)

2 4 6 8

-2
0

0
20

40
60

80

Time

S
iz

e 
(R

em
ai

nd
er

)

2 4 6 8

-1
00

0
10

0
20

0
30

0

Figure 9. Trend and seasonal decomposition
for Jefferson object file table size against time
in weeks

Y values of the bottom three plots yields the original time
series. The difference in scale between the three plots is
worth noting as it gives the relative significance of the
three components. Particularly noteworthy is the sharp
spike present in the original time series as well as the
remainder component at around the 2nd day of the first
week. This remains unexplained and is attributed to random
phenomenon. Such extremely significant yet unexplained
transients are present in other time series objects as well.

6.3. Age Quantification and Estimation

Given that a global trend is present and that its slope
is calculated for a particular resource, we estimate the
time at which the resource will be exhausted because of

8



Table 4. Estimated slope and time to exhaustion for Rossby, Velum and Jefferson objects
Resource Initial Max Sen’s Slope 95% Confidence Estimated Time

Name Value Value Estimation Interval to Exhaustion (days)

Rossby
Real Memory Free 40814.17 84980 -252.00 -287.75 : -219.34 161.96

File Table Size 220 7110 1.33 1.30 : 1.39 5167.50
Process Table Size 57 2058 0.43 0.41 : 0.45 4602.30
Used Swap Space 39372 312724 267.08 220.09 : 295.50 1023.50

Velum
Real Memory Free 63276.03 116924 -188.00 -253.91 : -132.31 336.57

File Table Size 251 3628 0.67 0.58 : 0.70 5065.50
Process Table Size 60 1034 0.16 0.13 : 0.17 6168.67
Used Swap Space 17516.01 262076 418.00 394.22 : 446.00 585.07

Jefferson
Real Memory Free 67638.54 114608 -972.00 -1006.81 : -939.08 69.59

File Table Size 268.83 7110 1.33 1.30 : 1.38 5144.36
Process Table Size 67.18 2058 0.30 0.29 : 0.31 6696.41
Used Swap Space 47148.02 524156 577.44 545.69 : 603.14 826.07

aging only. Table 4 refers to several objects on Rossby,
Velum and Jefferson and lists an estimate of the slope
(change per day) of the trend obtained by applying Sen’s
non-parametric method. The values for real memory
and swap space are in Kilobytes. A negative slope, as
in the case of real memory, indicates a decreasing trend,
whereas a positive slope, as in the case of file table size,
is indicative of an increasing trend. Given the slope
estimate, the table lists the estimated time to failure of the
machine due to aging only with respect to this particular
resource. The calculation of the time to exhaustion is done
by using the initial intercept, c, the calculated slope, m,
and a standard linear approximation y � mx � c. The
value of the intercept c is taken to be the mean of the ini-
tial 5 days. The minimum value for all the resources is zero.

A comparative effect of aging on different system
resources can be obtained from the above estimates. For
example, in machine Rossby, the resource used swap
spacehas the highest slope and real memory freehas
the second highest slope. Therefore, used swap space
has the highest rate of exhaustion. However, when we
compare the estimated times to exhaustion of both these
resources, real memory freehas a gives a lower time
to exhaustion than used swap space. This is because
of the difference in the initial and maximum/minimum
values of these resources. Similar comparisons of slope
and estimated time to exhaustion can be done on other
machines. Overall, we find that the two resources file
table sizeand process table sizeare not as important as
used swap spaceand real memory freesince they have

a very small slope and high estimated times to failure
due to exhaustion. Based on such comparisons, we
can identify important and interesting resources to moni-
tor and manage, to deal with aging related software failures.

The estimated time to resource exhaustion can be taken
to be the estimated time of failure of the machine due to
that particular resource. It is important to note that this only
considers failure due to aging of a particular resource alone.
For a more general failure prediction, the occurrence of
transients in resource usage, as well as the combined effect
of aging, periodic component and transient component,
need to be modeled and understood. Additionally, the
interaction and correlation between the usage of various
resources and their impact on system availability remains
to be explored. It is precisely for these reasons that the
estimated times of failures done this way do not fully
explain the actual times of failure observed on various
machines. The estimated time to resource exhaustion and
slope however can be used to study the aging phenomena
which is a very important element in software failures.
Prediction methods based on aging become important,
especially in light of fault-tolerance techniques such as
software rejuvenation where the time of actual rejuvenation
is an issue.

7. Conclusion

In this paper, we described the design and implemen-
tation of a distributed monitoring and data collection tool.

9



Based on SNMP, the tool is inter-operable among machines
running UNIX and its variants. We also described the
data collection process accomplished via monitoring
operating system resource usage and system activity. The
primary contribution of our work is a methodology for
detecting and estimating aging in operational software.
Based on this, we proposed a metric, “Estimated time
to exhaustion”, for each resource as a quantification of
aging. The higher this metric is, lower is the effect of
aging on this resource. This metric helps in comparing
the effect of aging on different system resources and also
in the identification of important resources to monitor and
manage. This is also a first step towards predicting aging
related failure occurrences, and may help us in developing
a strategy for software fault-tolerance approaches, such
as software rejuvenation, triggered by actual measurements.

References

[1] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series
Analysis: Forecasting and Control. Prentice Hall, Englewood
Cliffs, NJ, 1994.

[2] J.D. Case, M. Fedor, M.L. Schoffstall, C. Davin, M. T. Rose,
and K. McCloghrie. Simple Network Management Protocol.
RFC 1157, May 1990.

[3] R. Chillarege, S. Biyani, and J. Rosenthal. Measurement of
failure rate in widely distributed software. In Proc. of 25th
IEEE Intl. Symposium on Fault-Tolerant Computing, pages
424-433, Pasadena, CA, July 1995.

[4] W. S. Cleveland. Robust locally weighted regression and
smoothing scatterplots. Journal of the American Statistical
Association, 74(368):829-836, December 1979.

[5] R. O. Gilbert. Statistical Methods for Environmental Pollution
Monitoring. Van Nostrand Reinhold, New York, NY, 1987.

[6] J. Gray and D. P. Siewiorek. High-availability computer sys-
tems. IEEE Computer, pages 39-48, September 1991.

[7] J.P. Hansen and D.P. Siewiorek. Models for time coalescence
in event logs. In Proc. of 22nd IEEE Intl. Symposium on Fault-
Tolerant Computing, pages 221-227, 1992.

[8] Y. Huang, P. Jalote, and C. Kintala. Lecture Notes in Com-
puter Science, Vol. 774, Two techniques for transient software
error recovery, pages 159-170. Springer Verlag, Berlin, 1994.

[9] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software
rejuvenation: Analysis, module and applications. In Proc.
of 25th IEEE Intl. Symposium on Fault-Tolerant Computing,
pages 381-390, Pasadena, California, June 1995.

[10] R.K. Iyer and D.J. Rossetti. Effect of system workload on op-
erating system reliability: a study on IBM 3081. IEEE Trans-
actions on Software Engineering, SE-11(12):1438-1448, Dec.
1985.

[11] R. K. Iyer, L. T. Young, and P. V. K. Iyer. Automatic recog-
nition of intermittent failures: An experimental study of field
data. IEEE Transactions on Computers, 39(4):525-537, April
1990.

[12] P. Jalote, Y. Huang, and C. Kintala. A framework for under-
standing and handling transient software failures. In Proc. of
2nd ISSAT Intl. Conf. on Reliability and Quality in Design,
Orlando, Florida, 1995.

[13] H. Langendorfer J. Schonwalder. Tcl extensions for network
management applications. In Proc. of 3rd Tcl/Tk Workshop,
Toronto (Canada), July 1995.

[14] I. Lee, R. K. Iyer, and A. Mehta. Identifying software prob-
lems using symptoms. In Proc. of 24th IEEE Intl. Symposium
on Fault-Tolerant Computing, Toulouse, France, June 1994.

[15] T-T. Lin and D. P. Siewiorek. Error log analysis: Statistical
modeling and heuristic trend analysis. IEEE Transactions on
Reliability, 39(4):419-432, October 1990.

[16] R. A. Maxion and F. E. Feather. A case study of Ether-
net anomalies in a distributed computing environment. IEEE
Transactions on Reliability, 39(4), 1990.

[17] M. T. Rose and K. McCloghrie. Structure and Identifica-
tion of Management Information for TCP/IP-based Internets.
RFC 1155, May 1990.

[18] P. K. Sen. Estimates of the regression coefficient based on
Kendall’s tau. Journal of the American Statistical Associa-
tion, 63:1379-1389, 1968.

[19] M. Sullivan and R. Chillarege. Software defects and their
impact on system availability - a study of field failures in op-
erating systems. In Proc. of 21st IEEE Intl. Symposium on
Fault-Tolerant Computing, pages 2-9, 1991.

[20] D. Tang and R. K. Iyer. Dependability measurement model-
ing of a multicomputer system. IEEE Transactions on Com-
puters, 42(1), January 1993.

[21] A. Thakur and R. K. Iyer. Analyze-NOW – an environment
for collection and analysis of failures in a network of work-
stations. In Proc. of 7th IEEE Intl. Symposium on Software
Reliability Engineering, pages 14-23, White Plains, NY, April
1996.

10


