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Abstract

Public Key Cryptography (PKC) has been the enabling tech-
nology underlying many security services and protocols in tra-
ditional networks such as the Internet. In the context of wire-
less sensor networks, elliptic curve cryptography (ECC), one
of the most efficient types of PKC, is being investigated to pro-
vide PKC support in sensor network applications so that the
existing PKC-based solutions can be exploited.

This paper presents the design, implementation, and eval-
uation of TinyECC, aconfigurablelibrary for ECC opera-
tions in wireless sensor networks. The primary objective of
TinyECC is to provide aready-to-use, publicly availablesoft-
ware package for ECC-based PKC operations that can be
flexibly configured and integratedinto sensor network appli-
cations. TinyECC provides a number of optimization switches,
which can turn specific optimizations on or off based on de-
velopers’ needs. Different combinations of the optimizations
have different execution time and resource consumptions, giv-
ing developers great flexibility in integrating TinyECC into
sensor network applications. This paper also reports the ex-
perimental evaluation of TinyECC on several common sensor
platforms, including MICAz, TelosB, Tmote Sky, and Imote2.
The evaluation results show the impacts of individual opti-
mizations on the execution time and resource consumptions,
and give the most computationally efficient and the most stor-
age efficient configuration of TinyECC.

1. Introduction

Recent technological advances have made it possible to de-
velop wireless sensor networks consisting of a large numberof
low-cost, low-power, and multi-functional sensor nodes that
communicate over short distances through wireless links [8].
Such sensor networks are ideal candidates for a wide range
of applications such as monitoring of critical infrastructures,
data acquisition in hazardous environments, and military op-
erations. The desirable features of wireless sensor networks

have attracted many researchers to develop protocols and al-
gorithms that can fulfill the requirements of these applications.

Security services such as authentication and key manage-
ment are critical to communication security in wireless sensor
networks as well as the security of sensor network applica-
tions. In traditional networks such as the Internet, PublicKey
Cryptography (PKC) has been the enabling technology under-
lying many security services and protocols (e.g., SSL [4] and
IPsec [21, 22]). However, in wireless sensor networks, PKC
has not been widely adopted due to the resource constraints
on sensor platforms, particularly the limited and depleteable
battery power.

There has been intensive research aimed at developing
techniques that can bypass PKC operations in sensor net-
work applications. For example, there has been a substantial
amount of research on random key pre-distribution for pair-
wise key establishment (e.g., [12, 16, 17, 27, 29]) and broad-
cast authentication (e.g., [28, 30, 38]). However, these alter-
native approaches do not offer the same degree of security
or functionality as PKC. For instance, none of the random
key pre-distribution schemes can guarantee key establishment
between any two nodes and tolerate arbitrary node compro-
mises at the same time. As another example, the aforemen-
tioned broadcast authentication schemes, which are all based
on TESLA [37], require loose time synchronization, which
itself is a challenging task to achieve in wireless sensor net-
works. In contrast, PKC can address all these problems eas-
ily. Pairwise key establishment can always be achieved using,
for example, the Diffie-Hellman (DH) key exchange proto-
col [15], without suffering from the node compromise prob-
lem. Similarly, broadcast authentication can be provided with,
for example, the ECDSA digital signature scheme [9], with-
out requiring time synchronization. Thus, it is desirable to ex-
plore the application of PKC on resource constrained sensor
platforms.

There have been a few recent attempts to use PKC in wire-
less sensor networks [19, 26, 31, 40], which demonstrate that
it is feasible to perform limited PKC operations on the current



sensor platforms such as MICAz motes [2]. Elliptic Curve
Cryptography (ECC) has been the top choice among various
PKC options due to its fast computation, small key size, and
compact signatures. For example, to provide equivalent secu-
rity to 1024-bit RSA, an ECC scheme only needs 160 bits on
various parameters, such as 160-bit finite field operations and
160-bit key size [10].

Despite the recent progress on ECC implementations on
sensor platforms, all the previous attempts [19, 31, 40] have
limitations. In particular, all these attempts were developed as
independent packages/applications without seriously consid-
ering the resource demands of sensor network applications.
As a result, developers may found it difficult, and sometimes
impossible, to integrate an ECC implementation with the sen-
sor network applications, though the ECC implementation
may be okay on its own. For example, an ECC implementa-
tion may require so much RAM that it is impossible to fit both
the sensor network application and the ECC implementation
on the same node.

Moreover, various optimization techniques are available
to speed up the ECC operations. Such optimizations, how-
ever, typically will increase the ROM and RAM consump-
tions, though they may reduce the execution time and energy
consumption. It is not clear what optimizations should be used
and how they should be combined to achieve the best trade-off
among security protection, computation overheads, and stor-
age requirements. Additional research is necessary to clarify
these issues and facilitate the adoption of ECC-based PKC in
wireless sensor networks.

In this paper, we present the design, implementation, and
evaluation of TinyECC, aconfigurablelibrary for ECC oper-
ations in wireless sensor networks.1 The primary objective
of TinyECC is to provide aready-to-use, publicly available
software package for ECC-based PKC operations that can be
flexibly configured and integratedinto sensor network appli-
cations.

Targeted at TinyOS [6], TinyECC is written in nesC [18],
with occasional in-line assembly code to achieve further
speedup for popular sensor platforms including MICAz [2],
TelosB [5], Tmote Sky [7], and Imote2 [1]. A unique fea-
ture of TinyECC is itsconfigurability. TinyECC includes al-
most all known optimizations for ECC operations. Each op-
timization is controlled by a software switch, which can turn
the optimization on or off based on developers’ need. Differ-
ent combinations of optimizations have different ROM/RAM
consumptions, execution time, and energy consumption. This
gives the developers great flexibility in integrating TinyECC
in their applications.

To provide guidance in using TinyECC, we perform a se-
ries of experiments with different combinations of activated
optimizations. To understand the impact of each optimiza-

1TinyECC 1.0 and its previous versions are publicly available athttp:
//discovery.csc.ncsu.edu/software/TinyECC/.

tion technique, we compare the execution time, ROM/RAM
consumptions, and energy consumptions with and without the
given optimization enabled on MICAz [2], TelosB [5], Tmote
Sky [7], and Imote2 [1]. In addition, our experiments also
present the performance results and the resource usages forthe
most computationally efficient configuration (i.e., fastest exe-
cution and least energy consumption) and the most storage-
efficient configuration (i.e., least ROM and RAM usage) of
TinyECC on these common sensor platforms, respectively.

The contribution of this paper is two-fold: First, we de-
velop TinyECC, a configurable library for ECC operations
in wireless sensor networks, which allows flexible integration
of ECC-based PKC in sensor network applications. Second,
we perform a substantial amount of experimental evaluation
using representative sensor platforms, including MICAz [2],
TelosB [5], Tmote Sky [7], and Imote2 [1]. The experimental
results provide useful experience and guidance for developers
to choose different TinyECC optimizations for their needs.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the design principles of TinyECC. Section 4
describes the optimization techniques adopted by TinyECC.
Section 5 discusses the implementation of TinyECC. Section6
presents the experimental evaluation of TinyECC on MICAz,
TelosB, Tmote Sky, and Imote2. Section 7 discusses the re-
lated work, and Section 8 concludes this papers and points out
some future research directions.

2. Design Principles

As mentioned earlier, the primary objective of TinyECC is
to provide aready-to-use, publicly availablesoftware package
for ECC-based PKC operations that can beflexibly configured
and integratedinto sensor network applications. To make sure
we achieve this objective, we follow several principles in the
design and development of TinyECC.

Security: TinyECC should provide PKC schemes that
have proved to be secure. To follow this principle, TinyECC
only includes support for the well-studied ECC schemes
such as ECDSA, ECDH, and ECIES, which are defined
in the Standards for Efficient Cryptography [10]. More-
over, TinyECC also includes elliptic curve parameters recom-
mended by SECG (Stands for Efficient Cryptography Group),
such assecp160k1, secp160r1 andsecp160r2, as de-
fined in [11].

Portability: TinyECC should run on as many sensor plat-
forms as possible. Due to this reason, we choose to implement
TinyECC on TinyOS [6], which is a popular, open-source OS
for networked sensors. All the TinyECC components have
nesC [18] implementations, though some modules also in-
clude inline assembly code, which can be turned on for faster
execution on some sensor platforms. This allows TinyECC
to be compiled and used on any sensor platform that can run
TinyOS. TinyECC has been tested successfully on MICAz,
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TelosB, Tmote Sky, and Imote2.
Resource Awareness and Configurability: TinyECC

should accommodate the typical resource constraints on sen-
sor nodes. Moreover, TinyECC should allow flexible configu-
ration so that it can take advantage of the available resources
on a wide spectrum of sensor platforms. To follow this princi-
ple, TinyECC is implemented carefully to avoid unnecessary
resource usage. Moreover, TinyECC uses a set of optimization
switches, which can be turned on or off to achieve different
combinations of performance and resource consumptions.

Efficiency: TinyECC should be computationally efficient
to reduce the battery consumption as well as the delay intro-
duced by PKC operations. We make three design decisions
to improve the efficiency of TinyECC. The first is about the
type of finite fields over which the ECC operations are per-
formed. ECC can be implemented over either a prime field
Fp, wherep is a large prime number, or a binary extension
field F2m, wherem is an integer. Since arithmetic operations
overF2m are insufficiently supported by microprocessors, we
choose to support prime fieldsFp in TinyECC. Second, we
adopt almost all existing optimizations for ECC operationsin
TinyECC. As mentioned earlier, these optimizations can be
turned on or off to balance the efficiency and the resource re-
quirements. Third, we include inline assembly code in critical
parts of TinyECC for popular sensor platforms, including MI-
CAz, TelosB, Tmote Sky, and Imote2.

Functionality: TinyECC should support the typical de-
mands for PKC. To follow this principle, the current version
of TinyECC includes a digital signature scheme (ECDSA), a
key exchange protocol (ECDH), and a public key encryption
scheme (ECIES). These cover all typical uses of PKC.

3. Background on ECC

In this section, we give a brief introduction to ECC. The
reader is referred to [20,41] for more details.

Elliptic curve cryptography (ECC) is an approach to
public-key cryptography based on the algebraic structure of
elliptic curves over finite fields [41]. Elliptic curves usedin
cryptography are typically defined over two types of finite
fields: prime fieldsFp, wherep is a large prime number, and
binary extension fieldsF2m. For space reasons, we focus on
elliptic curves overFp in this paper.

An elliptic curve overFp is defined by a cubic equation
y2 = x3+ax+b, wherea,b∈ Fp are constants such that 4a3+
27b3 6= 0 [20,41]. An elliptic curve overFp consists of the set
of all pairs of affine coordinates(x,y) for x,y∈ Fq that satisfy
an equation of the above form and an infinity pointO. The
points on an elliptic curve form an abelian group withO as
the additive identity. (The formulas defining point addition
and its special case, point doubling, can be found in [20,41].)

For any point G on an elliptic curve, the set
{O,G,2G,3G, ...} is a cyclic group [20, 41]. The cal-

culation of kG, where k is an integer, is called ascalar
multiplication. The problem of findingk given pointskG
andG is called theelliptic curve discrete logarithm problem
(ECDLP). It is computationally infeasible to solve ECDLP
for appropriate parameters [20, 41]. The hardness of ECDLP
allows several cryptographic schemes based on elliptic
curves.

TinyECC includes three well-known ECC schemes:
(1) the Elliptic Curve Diffie-Hellman (ECDH) key agreement
scheme, (2) the Elliptic Curve Digital Signature Algorithm
(ECDSA), and (3) the Elliptic Curve Integrated Encryption
Scheme (ECIES). ECDH is a variant of the Diffie-Hellman
key agreement protocol [15] on elliptic curve groups. ECDSA
is a variant of the Digital Signature Algorithm (DSA) [35] that
operates on elliptic curve groups. ECIES is a public-key en-
cryption scheme which provides semantic security against an
adversary who is allowed to use chosen-plaintext and chosen-
ciphertext attacks [41]. ECIES is also known as the Ellip-
tic Curve Augmented Encryption Scheme (ECAES) or simply
the Elliptic Curve Encryption Scheme. These ECC schemes
allow smaller key sizes for similar security level to the alterna-
tives such as the original DH and DSA schemes. For each of
the schemes, a party that would like to use the scheme needs
to agree on some domain parameters such as the elliptic curve
and a pointG on the curve, and must have a key pair consisting
of a private keyd and a public keyQ = dG. The specification
of ECDH, ECDSA, and ECIES can be found in [10,20].

4. Optimizations Adopted by TinyECC

In this section, we briefly discuss the optimization tech-
niques adopted by TinyECC. We will omit the details, since
the focus of this paper is not these individual optimization
techniques. More information about these techniques can be
found in the relevant references.

4.1. Optimizations for Large Integer Operations

Barrett Reduction [33]: The most straightforward way
to perform large integer modular reductions is to use divi-
sion [23]. A nice side effect of such a method is that it reuses
the code of division, thus resulting in compact code size.

Barrett Reduction is an alternative method for modular re-
duction [33]. It converts the reduction modulo an arbitrary
integer to two multiplications and a few reductions modulo
integers of the form 2n. When used to reduce a single number,
Barrett reduction is slower than a normal division algorithm.
However, when used to reduce various numbers modulo the
same number many times, by pre-computing some value, Bar-
rett reduction can achieve faster speed than modular reduc-
tions obtained by division. Details of Barrett reduction can be
found in [33].

In TinyECC, since almost all the modular operations are

3



modulo the same prime numberp, Barrett reduction can po-
tentially speed up the computation. However, this requiresthe
implementation of a separate reduction algorithm, which im-
plies larger code size (i.e., more ROM requirement) on sensor
nodes. In addition, Barrett reduction also increases the RAM
consumption. Assume the target microprocessor has aw-bit
word size. Given a finite fieldFp, wherep is ak words long
prime number, Barrett reduction requires the pre-computation

of µ = ⌊bk

p ⌋, whereb = 2w (e.g.,b = 28 on a 8-bit processor).
This numberµ has to be stored and used throughout all the
modular reductions. Thus, to exchange for faster computa-
tion, Barrett reduction requires more ROM and RAM than the
traditional division-based modular reduction.

Hybrid Multiplication and Hybrid Squaring [19]: Stan-
dard large integer multiplication algorithms [23] store the
operands and the product in arrays. When such an algorithm is
implemented in a high-level language such as nesC, the com-
piler cannot use the registers in the microprocessor efficiently,
and the binary code usually needs to load the operands from
memory to registers multiple times [19]. Gura et al. [19] pro-
posed a hybrid multiplication algorithm, which was intended
for assembly code. This algorithm can maximize the utiliza-
tion of registers and reduce the number of memory operations.
TinyECC adopts this hybrid multiplication algorithm for MI-
CAz [2], TelosB [5]/Tmote Sky [7], and Imote2 [1]. Indeed,
the code can be used on any sensor platforms that have proces-
sors using the same instruction sets. The implementation of
hybrid multiplication has width 4 or 5 for MICAz, depending
on the curve parameters, and has width 1 for TelosB/Tmote
Sky and Imote2 due to the small number of registers on them.

In addition to hybrid multiplication, we also customize the
hybrid multiplication algorithm for squaring operations by us-
ing the fact that the two multiplicative operands in squaring
are the same. This further reduces the execution time for
squaring at the cost of larger code size.

4.2. Optimizations for ECC Operations

Projective Coordinate Systems [20]:As discussed ear-
lier, an elliptic curve consists of the infinity pointO and the
set of points in the affine coordinates(x,y) for x,y ∈ Fp that
satisfy the defining equation. Alternatively, a point on an ellip-
tic curve can be represented in a projective coordinate system
in the form of(x,y,z).

Point addition and point doubling are critical operations in
ECC, which are buidling blocks for scalar multiplications re-
quired by all ECC schemes. These operations in affine co-
ordinate system require modular inversion operations, which
are much more expensive than other operations such as modu-
lar multiplications. Using a projective coordinate system[20],
modular inversions can be removed with the compensation of
a few modular multiplications. As a result, the execution times
of point addition and point doubling based on projective coor-

dinate system are faster than those based on affine coordinate
system, respectively [20].

TinyECC uses two additional optimizations along with pro-
jective coordinate representation, which can further reduce
both the execution time and the program size. The first is a
mixed point addition algorithm[20], which adds a point in
projective coordinate and a second point in affine coordinate.
This algorithm can be used in scalar multiplications to further
reduce the number of modular multiplications and squares,
leading to smaller and faster code. The second isrepeated
Doubling [20] for scalar multiplication. If consecutive point
doublings are to be performed, the repeated doubling algo-
rithm may be used to achieve faster performance than repeated
use of the doubling formula. Inm consecutive doublings, this
algorithm tradesm−1 field additions,m−1 divisions by two,
and a multiplication for two field squarings (in comparison
with repeated applications of the plain point doubling algo-
rithm) [20].

Though reducing the execution time, the projective coordi-
nate representation requires larger code size (for more com-
plex formula) and more RAM (for storing additional vari-
ables) than the affine coordinate system.

Sliding Window for Scalar Multiplications [20]: Scalar
multiplication is a basic operation used by all ECC schemes.
It is in the form ofkP, wherek is an integer andP is a point
on an elliptic curve. In the most straightforward method to
computekP, k is scanned from the most significant bit to the
least significant bit. When each bit is scanned, the algorithm
needs to compute a point doubling. When the scanned bit is
“1”, the algorithm also needs to perform a point addition. The
sliding window method can speed up the scalar multiplication
by scanningw bits at a time. Each time when aw-bit window
is scanned, the algorithm needs to performw point doublings.
By precomputing 2P, 3P, ..., and(2w−1)P, the sliding win-
dow method only needs to perform 1 point addition everyw
bits, and thus has less computational cost.

It is easy to see that the sliding window method will in-
crease both the ROM (for additional code size) and RAM (for
storing the pre-computed points) consumptions.

Shamir’s Trick [20]: This optimization is only used for
the verification of ECDSA signatures. The verification of
ECDSA signature requires the computation of the formaP+
bQ, wherea,b are integers andP,Q are two points on an el-
liptic curve. A straightforward implementation requires two
scalar multiplications and a point addition. However, Shamir’s
trick allows us to compute the above value at a cost close
to one scalar multiplication. Specifically, with pre-computed
P+Q, we may scan the (same) bits ofa andb from the most
significant one to the least significant one. For each bit, we
need double the intermediate value, which is initialized asthe
infinity point. If the scanned bit positions are〈ai = 0,bi = 1〉,
〈ai = 1,bi = 0〉, or 〈ai = 1,bi = 1〉, we addP, Q, or P+ Q
to the intermediate value. This reduces two scalar multiplica-
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tions to a bit more expensive than one such operation.
Similar to the sliding window method, Shamir’s trick will

increase both the ROM (for additional code size) and RAM
(for storing the pre-computedP+Q) consumptions.

Curve Specific Optimization [19]: A number of elliptic
curves specified by NIST [36] and SECG [11] use pseudo-
Mersenne primes. A pseudo-Mersenne prime is of the form
p = 2n − c, wherec ≪ 2n. Reduction modulo a pseudo-
Mersenne prime can be performed by a few modular multi-
plications and additions without any division operation. As a
result, the time for modular reduction can be reduced signif-
icantly. Thus, using elliptic curves over a pseudo-Mersenne
prime can achieve additional performance gain.

5. Implementation

We implemented TinyECC on TinyOS [6], an open source
operating system designed for wireless embedded sensor net-
works. The current version of TinyECC provides support for
ECDSA (digital signatures), ECDH (pairwise key establish-
ment), and ECIES (PKC-based encryption). Most of the code
were written in nesC [18] for portability reasons. To best har-
ness the capabilities of the processors on the popular sensor
platforms such as MICAz and TelosB, we also provided inline
assembly implementation of some critical operations, suchas
large integer multiplications.

To save implementation efforts, we ported the C code of
large integer operations in RSAREF 2.0 [24] to nesC code on
TinyOS. These include modular addition, subtraction, mul-
tiplication, division, inverse, and exponentiation operations.
We then implemented all the elliptic curve operations and the
optimization techniques discussed earlier.

TinyECC has been released publicly athttp://
discovery.csc.ncsu.edu/software/TinyECC/.
Some preliminary versions have been adopted by other
researchers (e.g., [14, 25, 32]). As discussed earlier, starting
from the current version, we added a set of optimization
switches to provide flexible configuration of TinyECC so that
it can be integrated into sensor applications with different
resource consumptions and performance demands.

Table 1 lists the optimization switches available in the cur-
rent version of TinyECC. Most optimization switches can be
turned on or off by a simple configuration at compile time,
or slight modification in the source code. A few optimization
switches requires additional care. Specifically, for hybrid mul-
tiplication and squaring techniques, a macro indicating spe-
cific hardware platform (e.g., MICAz, Imote2) should be de-
fined, so that TinyECC will use the inline assembly code with
the right instruction set. Moreover, when the sliding window
method is used, an additional parameter defining the size of
the window (e.g.,w = 4) must be defined. Finally, curve spe-
cific optimizations only work for pseudo-Mersenne primes.
Thus, when curve specific optimization is enabled, a prime

number in the appropriate form must be defined as well.

6. Evaluation

We performed a series of experiments to evaluate TinyECC
on four representative sensor platforms, including MICAz [2],
TelosB [5], Tmote Sky [7], and Imote2 [1].

The objective of these experiments is three-fold: First, we
would like to measure the performance and resource con-
sumption of TinyECC on a spectrum of sensor platforms,
ranging from the low-end ones (such as MICAz, TelosB, and
Tmote Sky) to high-end ones (such as Imote2). Second,
we would like to understand the impact of the optimizations
adopted by TinyECC on the performance and resource con-
sumption. Finally, we would like to provide detailed perfor-
mance results and resource demands for the most commonly
desirable configurations, including the configuration thatpro-
vides the fastest execution time and the configuration that re-
quires the least memory consumption. The former has the
least energy consumption, while the latter is the easiest one
to integrate into sensor applications.

6.1. Methodology and Experiment Setup

Evaluation Methodology: Given seven optimization
switches, four sensor platforms, where Imote2 has multiple
CPU frequencies due to dynamic voltage scaling, many possi-
ble elliptic curves, and three ECC-based PKC schemes, there
are a large number of experiments to perform if we have to ob-
serve the differences in performance and resource consump-
tions in all cases.

To simplify the scenarios, we adopt the following method-
ology in our experiments. For each optimization switch, we
perform two sets of experiments, referred to ascase Aand
case B, respectively. In case A, we disable all the other opti-
mizations, and then obtain the performance and resource con-
sumption metrics when the given optimization is enabled and
disabled, respectively. In case B, we enable all the other op-
timizations and obtain the evaluation metrics again when the
given optimization is enabled and disabled, respectively.The
differences in these metrics reflect the impact of the given op-
timization technique.

Moreover, as discussed earlier, we also perform additional
experiments to examine in detail two commonly desirable
configurations: the one that provides the fastest execution
time, and the one that requires the least storage.

Experiment Setup: We evaluate TinyECC on the latest
CVS version of TinyOS 1.x [6]. As discussed earlier, we
choose four representative sensor platforms, MICAz, TelosB,
Tmote Sky, and Imote2, for the experiments, since they are
popular sensor platforms and cover the 8-bit, 16-bit and 32-bit
processors. Other sensor platforms (e.g., Mica2, Mica2Dot)
are expected to perform similarly to one of these platforms,
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Table 1. TinyECC Optimization Switches
Method Optimization Switch Category Description

Barrett Reduction BARRETT large number Turn this switch on to allow Barrett reduction.
Hybrid Multiplication HYBRID MULT large number Turn this switch on to allow hybrid multiplication in inlineassembly.
Hybrid Squaring HYBRID SQR large number Turn this switch on to allow hybrid squaring in inline assembly.
Projective Coordinate System PROJECTIVE EC Turn this switch on to use projective coordinate system along with mixed point addition and re-

peated doubling.
Sliding Window Method SLIDING WIN EC Turn this switch on to use sliding window method for scalar multiplication. A window size (e.g.

w = 4) has to be defined along with this switch.
Shamir’s Trick SHAMIR TRICK EC Turn this switch on to allow Shamir’s trick when verifying ECDSA signatures. A window size

(e.g.w = 2) has to be defined along with this switch.
Curve-Specific Optimization CURVE OPT EC Turn this switch on to allow curve specification optimization. This has to be used for the curves

defined over pseudo-Mersenne primes [11, 36].

due to their adoption of the same processors.
TelosB and Tmote Sky have (almost) the same hardware.

The only difference is that TelosB can only run at 4 MHz,
while Tmote Sky can run at 8 MHz when an external resis-
tor is enabled. We configure Tmote Sky to run at 8 MHz in
our experiments. As a high-end sensor platform, Imote2 uses
an XScale processor and supports dynamic voltage scaling.
To obtain a relatively complete view of Imote2, we use four
different frequencies on Imote2 in our experiments: 13MHz,
104MHz, 208MHz, and 416MHz.

By default, TinyECC includes all 128-bit, 160-bit and
192-bit ECC parameters recommended by SECG [11]. It
is well-known that 160-bit ECC has the same security
level as 1024-bit RSA. We selected a 160-bit elliptic curve
secp160r1 [11] to evaluate the impact of individual opti-
mization techniques. Note that the actual selection of curves
depends on the security needs in the sensor network applica-
tions, and is outside of the scope of this paper.

We used the following evaluation metrics in all experi-
ments: ROM consumption (byte), RAM consumption (byte),
execution time (ms), and energy consumption (millijoule).We
used thecheck size.pl script in the TinyOS distribution
to obtain the ROM and RAM sizes required by the TinyECC
components. The execution time was measured directly on the
sensor nodes. To get the overall performance result, we ran-
domly generated the parameters other than those defining the
curves (e.g., random message, random public and private key
pairs), and obtained the execution time for each data point by
taking the average of 10 test instances. The energy consump-
tion was then calculated asU × I × t based on the execution
time (t), the voltage (U), and current draw (I ) on these sensor
platforms [1,2,5,7].

6.2. Evaluation Results

6.2.1. Impact of Individual Optimizations

Public Key Generation: We first present the impact of indi-
vidual optimizations on the execution time of public key gen-
eration in ECDSA, ECIES, and ECDH, as shown in Figure 1.

SinceSHAMIRTRICK is only for ECDSA signature veri-

fication, it has no effect on public key generation. Thus, we
skip SHAMIRTRICK in Figure 1. From Figure 1, we can see
that PROJECTIVEis the most effective switch in both case
A and B. In case A,SLIDING WIN is the second most ef-
fective switch, while in case B,CURVEOPT is the second
most effective switch. In both cases,HYBRIDMULT andHY-
BRID SQRhave similar effects.

Barratt Reduction: We notice thatBARRETTis not as ef-
fective as expected. The public key generation is even slower
in case A whenBARRETTis enabled, as Figure 1(a) shows.
Barrett reduction requires 2 large number multiplicationsand
4 large number division (replaced by memory shifting). Since
memory operation is slow for low-end sensor platforms, the
Barrett reduction is not necessarily faster than division in
TinyECC whenHYBRIDMULT are disabled.

Division Barrett reduction w/o Barrett reduction w/
HYBRIDMULT HYBRIDMULT

MICAz (8 MHz) 221.07 394.59 169.79
TelosB (4 MHz) 196.50 367.68 243.04

Tmote Sky (8 MHz) 98.82 184.5 121.86
Imote2 (13 MHz) 71.29 161.28 64.80
Imote2 (104 MHz) 8.97 20.22 8.16
Imote2 (208 MHz) 4.52 10.14 4.11
Imote2 (416 MHz) 2.39 5.22 2.18

Table 2. Execution time (ms) for modular reduction
through division and Barrett reduction

To gain more insights into this issue, we perform additional
tests on the execution time of normalized division and barrett
reduction (with and withoutHYBRIDMULT) by randomly
generating a 320-bit large number and computing mod with
the modularp defined insecp160r1 for 100 rounds. The
results are given in Table 2. These results indicate that Bar-
rett reduction is slower than normalized division whenHY-
BRID MULT is disabled, but faster whenHYBRIDMULT is
enabled for MICAz and Imote2. In other words, the Bar-
rett reduction optimization should be used along withHY-
BRID MULT to be helpful for these two platforms. Since
the hardware multiplier of TelosB/Tmote Sky is not part of
MSP430 CPU, the use of this hardware multiplier involves
loading and reading peripheral registers. The Barrett reduc-
tion is slower than normalized division for TelosB/Tmote Sky
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Figure 1. Execution time of public key generation

with hybrid multiplication.
ECDSA: Now we present the impacts of individual opti-

mizations on the execution time of ECDSA. There are three
aspects of the execution time. Figures 2(a) and 2(b) show the
initialization time required to prepare for ECDSA in cases A
and B, respectively. Figures 2(c) and 2(d) show the signature
generation time in cases A and B, respectively. Figures 2(e)
and 2(f) show the signature verification time in cases A and B,
respectively.

In the initialization of ECDSA, TinyECC needs to precom-
puteµ for Barrett reduction, a few points for the sliding win-
dow method, and a few points for Shamir’s trick. In case A, as
Figure 2(a) shows, only these 3 optimization techniques have
impact on the initialization time. For MICAz, the initialization
of the sliding window method with window size 4 requires
3,587 ms, which is longer than Shamir’s trick (1,672 ms for
window size 2) and barrett reduction (6 ms). The same situa-
tion applies to TelosB, Tmote Sky, and Imote2. If we disable
all these three techniques, the initialization time of ECDSA is
close to 0. In case B, as Figure 2(b) shows, the disabling of se-
lected optimization technique doesn’t reduce the initialization
time dramatically. Only the disabling of the sliding window
method can reduce the initialization time to half.

In Figure 2, we can see thatPROJECTIVEis the most ef-
fective switch to improve the speed of signature generation
and verification. In case A, by enabling thePROJECTIVE
switch, the signature generation and verification of all plat-
forms can speed up at least 3 times. In case B, if we disable
thePROJECTIVEswitch, the signature generation and verifi-
cation has at least 6 times slowdown compared with enabling
all optimization techniques.

AlthoughPROJECTIVEis the most efficient switch, it in-
creases the ROM usage. Figures 3(a) and 3(b) show that the
when thePROJECTIVEswitch is enabled in case A, the ROM
size is increased by 1,830, 1,822, and 2,236 bytes for MI-
CAz, TelosB/Tmote Sky, and Imote2, respectively, while the
RAM size doesn’t change at all. In case B, as Figures 3(c) and

3(d) show, disabling thePROJECTIVEswitch can save 2,396,
3,880, and 2,652 bytes in ROM for MICAz, TelosB/Tmote
Sky, and Imote2, respectively. ThePROJECTIVEswitch is
the most effective switch to speed up ECDSA operations, but
it also incurs larger ROM consumption than any other opti-
mization technique.

SHAMIRTRICK is also an efficient option to speed up
ECDSA signature verification. From Figure 2(e), we can
see that the verification can be speed up by 2 times on all
platforms when enablingSHAMIRTRICK in case A. Both
the ROM size and RAM size are increased. In case A, the
RAM size is increased 634, 676, and 784 bytes for MICAz,
TelosB/Tmote Sky, and Imote2, respectively. Similarly, the
ROM size of MICAz, TelosB/Tmote Sky and Imote2 is in-
creased 638, 632, and 620 bytes, respectively. In case B, dis-
abling SHAMIRTRICK makes verification 1.6 times slower
but save 998, 2,068, and 876 bytes in ROM for MICAz,
TelosB/Tmote Sky, and Imote2, respectively. The RAM size
does not decrease much because the sliding window method
is used for verification whenSHAMIRTRICK is disabled.

Now let us take a look at theSLIDING WIN option. In
case A, as Figures 2(c), 2(e), 3(a) and 3(b) show, enabling
SLIDING WIN can improve signature generation and verifi-
cation 1.2 times faster at the cost of dramatic RAM increase
(1,262, 1,328 and 1,472 bytes for MICAz, TelosB/Tmote Sky,
and Imote2, respectively). In case B, as Figures 2(d), 2(f),
3(c) and 3(d) show, disablingSLIDING WIN can save 632,
668 and 752 bytes of RAM usage for MICAz, TelosB/Tmote
Sky, and Imote2 with 1.2 times slower signature genera-
tion and verification. Since MICAz and TelosB/Tmote Sky
are low-end sensor platforms, they have much smaller RAM
(4kB, 10kB) compared with Imote2 (256kB). Before enable-
ing SLIDING WIN, we should be very careful if the applica-
tion requires large RAM consumption. SinceSLIDING WIN
is the most RAM consuming switch in TinyECC, application
developers may disable it or reduce the window size to reserve
more RAM for the applications.
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(f) Sig. verification time when all other optimizations are enabled (case B)

Figure 2. ECDSA timing result

Now consider theHYBRIDMULT, HYBRIDSQR, and
CURVEOPT options. In case A,HYBRIDMULT, HY-
BRID SQRandCURVEOPT do not have big impact on the
timing result. However, in case B,HYBRIDMULT can speed
up signature generation by 1.6 times for MICAz, 1.2 times for
TelosB/Tmote Sky, and 1.2 times faster for Imote2. Similarly,
it can speed up signature verification by 1.7 times for MICAz,
1.2 times for TelosB/Tmote Sky, and 1.2 times for Imote2.
HYBRIDSQRcan speed up signature generation by 1.5 times
for MICAz, 1.2 times for TelosB/Tmote Sky, and 1.2 times
for Imote2, and speed up signature verification by 1.5 times
for MICAz, 1.2 times for TelosB/Tmote Sky, and 1.2 times

faster for Imote2.CURVEOPT can speed up signature gen-
eration by 2 times for MICAz, 1.9 times for TelosB/Tmote
Sky, and 1.7 times for Imote2. Similarly, it can speed up
signature verification by 2.1 times for MICAz, 1.9 times for
TelosB/Tmote Sky, and 1.7 times for Imote2. The reason
that HYBRIDMULT, HYBRIDSQRand CURVEOPT can-
not speed up ECDSA a lot in case A is that thePROJEC-
TIVE option is disabled when each of these switches is en-
abled. Thus, inverse operation is the major computation of
signature generation and verification. In case B, whenPRO-
JECTIVEis enabled, multiplication and squaring become the
major computation in ECDSA.
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(d) RAM size w/ all other optimizations enabled (case B)

Figure 3. Code size of ECDSA

Based on the timing results obtained for ECDSA, the ef-
fectiveness of these optimization switches in terms of ex-
ecution time can be ordered as follows:PROJECTIVE>

CURVEOPT > HYBRIDMULT > HYBRIDSQR> SLID-
ING WIN > SHAMIRTRICK > BARRETT. In terms of
RAM size, the optimization switches can be ordered as fol-
lows: SLIDING WIN> SHAMIRTRICK> BARRETT> HY-
BRID MULT = HYBRIDSQR= CURVEOPT = PROJEC-
TIVE.

In terms of ROM size, the optimization switches are or-

dered differently for different platforms. For MICAz,PRO-
JECTIVE > BARRETT≈ HYBRIDSQR > CURVEOPT
≈ SHAMIRTRICK ≈ HYBRIDMULT > SLIDING WIN.
For TelosB/Tmote Sky,PROJECTIVE > BARRETT ≈
SHAMIRTRICK > CURVEOPT ≈ SLIDING WIN > HY-
BRID SQR> HYBRIDMULT. For Imote2,PROJECTIVE
> BARRETT> SHAMIRTRICK ≥ CURVEOPT > SLID-
ING WIN > HYBRIDSQR> HYBRIDMULT.

ECIES: Let us switch our attention to the performance re-
sults of ECIES. Figures 4 and 5 show the execution time and
the storage requirements of ECIES, respectively. Since ECIES
and ECDSA share the same implementation for basic elliptic
curve operations, the effects of optimization switches aresim-
ilar. Note thatSHAMIRTRICK is not applicable here.

In ECIES, only Barrett reduction and the sliding window
method require precomputation. As Figure 4(a) shows, the
precomputation of the sliding window method with window
size 4 costs 1,795, 2,464, 1,236, and 160 ms for MICAz,
TelosB, Tmote Sky, and Imote2 (13 MHz), respectively. In
contrast, the precomputation for Barrett reduction only re-
quires 1.3, 1.7, 0.9 and 0.3 ms for MICAz, TelosB, Tmote
Sky, and Imote2 (13 MHz), respectively. This is because the
sliding window method with window size 4 needs to precom-
pute 16 points on the elliptic curve, but Barrett reduction only
precomputes one large numberµ .

The PROJECTIVEoption is the most effective switch to
speed up ECIES. As Figures 4(c) and 4(e) show, in case A,
thePROJECTIVEoption can speed up encryption 3.4, 5.2 and
3.2 times, and decryption 3.2, 4.8 and 3.0 times for MICAz,
TelosB/Tmote Sky, and Imote2, respectively. Figures 4(d) and
4(f) show that, in case B,PROJECTIVEcan speed up encryp-
tion 12.5, 10.6 and 6.0 times, can speed up decryption 9.8,
8.6 and 5.1 times for MICAz, TelosB/Tmote Sky, and Imote2,
respectively.

ThePROJECTIVEoption is also the most ROM consum-
ing switch in ECIES. In case A, as Figure 5(a) shows, the
PROJECTIVEoption increases ROM usage 1,032, 1,688 and
1,620 bytes for MICAz, TelosB/Tmote Sky, and Imote2, re-
spectively. In case B, as Figure 5(c) shows, thePROJECTIVE
option increases ROM usage 4,198, 4,310 and 4,988 bytes for
MICAz, TelosB/Tmote Sky, and Imote2, respectively. In case
A, as Figure 5(b) shows, thePROJECTIVEoption does not re-
quire additional RAM usage. In case B, as Figure 5(d) shows,
the PROJECTIVEoption increase RAM usage 315, 330 and
360 bytes for MICAz, TelosB/Tmote Sky, and Imote2, respec-
tively. Because sliding window method in projective coordi-
nate system requires additional RAM for z axis.

TheSLIDING WIN option can speed up ECIES encryption
by 1.2 times and speed up decryption by 1.1 times for all plat-
forms in both cases.SLIDING WIN is also the most RAM
consuming switch as figures 5(b) and 5(d) show. For case
A, SLIDING WIN with window size 4 increases RAM usage
1,262, 1,328, 1,472 bytes for MICAz, TelosB/Tmote Sky, and
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Figure 4. ECIES timing result

Imote2, respectively. For case B,SLIDING WIN with win-
dow size 4 requires 1,577, 1,658, 1,832 bytes for MICAz,
TelosB/Tmote Sky, and Imote2, respectively.

Figures 4(c) and 4(e) show that in case A, none of the re-
maining optimization techniques help much exceptPROJEC-
TIVE option. But in case B, there are big differences, as re-
flected in Figures 4(d) and 4(f). In case B, when thePROJEC-
TIVE option is enabled, the number of inverse operations is
decreased a lot with increasing number of multiplications and
squarings. Thus, the other optimization techniques can speed
up ECIES in case B better than in case A. In case B, theHY-
BRID MULT option can speed up encryption by 1.7 times for

MICAz, 1.2 times for TelosB/Tmote Sky, and 1.4 times for
Imote2. It can speed up decryption by 1.9 times for MICAz,
1.3 times for TelosB/Tmote Sky, and 1.6 times for Imote2.
Similarly, theHYBRIDSQRoption can speed up encryption
by 1.5 times for MICAz, 1.2 times for TelosB/Tmote Sky, and
1.3 times for Imote2. It can speed up decryption by 1.4 times
for MICAz, 1.2 times for TelosB/Tmote Sky, and 1.2 times for
Imote2. TheCURVEOPT option can speed up encryption by
2.1 times for MICAz, 2.0 times for TelosB/Tmote Sky, and
1.7 times for Imote2. Similarly, it can speed up decryption by
2.0 times for MICAz, 1.8 times for TelosB/Tmote Sky, and
1.6 times for Imote2.
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Figure 5. ECIES code size

Based on the above performance results, we can give an
order of priority of the optimization switches when execution
time is the primary objective as follows:PROJECTIVE>

CURVEOPT > HYBRIDMULT > HYBRIDSQR> SLID-
ING WIN > BARRETT. In addition, the order of priority for
the purpose of RAM size reduction is given as follows:SLID-
ING WIN > PROJECTIVE> BARRETT> HYBRIDMULT
= HYBRIDSQR= CURVEOPT.

For ROM size, the optimization switches have differ-
ent orders for different cases. For case A, TelosB/Tmote
Sky and Imote2 have similar order:PROJECTIVE≈ BAR-

RETT > CURVEOPT > SLIDING WIN > HYBRIDSQR
> HYBRIDMULT. MICAz has the order: BARRETT
> HYBRIDSQR > HYBRIDMULT > PROJECTIVE>

CURVEOPT > SLIDING WIN. For case B, TelosB/Tmote
Sky have same order:PROJECTIVE> SLIDING WIN
> BARRETT > HYBRIDSQR > HYBRIDMULT >

CURVEOPT. MICAz has order: PROJECTIVE> SLID-
ING WIN > HYBRIDMULT > HYBRIDSQR> BARRETT
> CURVEOPT.

ECDH: Figures 6 and 7 show the timing result and the stor-
age requirements of ECDH, respectively. Similar to ECIES,
theSHAMIRTRICKoption is not applicable to ECDH, either.

The PROJECTIVEoption is the most efficient one for
ECDH, though it is also the most ROM consuming among
all the optimization switches. In case A, it can speed up
ECDH key establishment 3.4, 5.2, and 3.2 times with addi-
tional 984, 1,144 ,and 1,552 bytes ROM requirement for MI-
CAz, TelosB/Tmote Sky, and Imote2, respectively. In case B,
it can speed up key establishment 12.0, 10.2, and 5.8 times
with 3,920, 4,220, and 4,864 bytes more ROM usage for MI-
CAz, TelosB/Tmote Sky and Imote2, respectively.

TheHYBRIDMULT, HYBRIDSQRandCURVEOPTop-
tions do not work well in case A due to the disabling of the
PROJECTIVEoption. In case B, theHYBRIDMULT option
can speed up key agreement 1.7, 1.2, and 1.3 times with 1,345,
36, and 52 more bytes ROM usage for MICAz, TelosB/Tmote
Sky, and Imote2, respectively. TheHYBRIDSQR option
can speed up key agreement 1.7, 1.2, and 1.2 times with
1,228, 138, and 180 more bytes ROM usage for MICAz,
TelosB/Tmote Sky, and Imote2, respectively. Finally, the
CURVEOPToption can speed up key agreement 2.2, 2.0, and
1.8 times with 86 more, but 204 and 264 fewer bytes ROM us-
age for MICAz, TelosB/Tmote Sky, and Imote2, respectively.
This is reasonable because nesC compiler may do different
optimizations for different platforms. We also use more in-
line assembly code in specific curve optimization to reduce
the memory operation, but do not have such inline assembly
code specifically forCURVEOPT on TelosB/Tmote Sky and
Imote2.

The SLIDING WIN option can speed up key establish-
ment by 1.1 times faster in both cases.SLIDING WIN is the
most RAM consuming switch as figures 7(b) and 7(d) show.
For case A,SLIDING WIN increases the RAM usage 1,262,
1,328, and 1,472 bytes for MICAz, TelosB/Tmote Sky, and
Imote2, respectively. For case B,SLIDING WIN increases
the RAM usage 1,577, 1,658, and 1,832 bytes for MICAz,
TelosB/Tmote Sky, and Imote2, respectively.

According to the effectiveness of speeding up ECDH, we
should enable each optimization switches in the following or-
der: PROJECTIVE> CURVEOPT > HYBRIDMULT >

HYBRIDSQR> SLIDING WIN > BARRETT.
For required RAM size, the optimization switches has the

following order for all platforms:SLIDING WIN > PROJEC-
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Figure 6. ECDH timing result

TIVE > BARRETT> HYBRIDMULT = HYBRIDSQR=
CURVEOPT.

For required ROM size, the optimization switches has
different order for different platforms in different cases.
TelosB/Tmote Sky and Imote2 have same orders in both
cases. In case A, they have order:PROJECTIVE> BAR-
RETT> SLIDING WIN > HYBRIDSQR> HYBRIDMULT
> CURVEOPT. In case B, they have order:PROJEC-
TIVE > SLIDING WIN > BARRETT > HYBRIDSQR
> HYBRIDMULT > CURVEOPT. MICAz has differ-
ent orders. In case A, it has order:HYBRIDSQR >

HYBRIDMULT > BARRETT> PROJECTIVE> SLID-
ING WIN > CURVEOPT. In case B, it has order:PROJEC-
TIVE > SLIDING WIN > HYBRIDMULT > HYBRIDSQR
> BARRETT> CURVEOPT.

6.2.2. Most Computationally Efficient Configuration

Now let us take a closer look at the most computation-
ally efficient configuration. Apparently, TinyECC provides
the most computationally efficient configuration when all the
optimization switches are enabled. Figure 8 shows the execu-
tion time required by ECDSA initialization, signature gener-
ation, signature verification; ECIES initialization, encryption,
decryption; ECDH initialization, key establishment.

From figure 8, we can see that enabling all optimization
switches requires long pre-computation. For example, it takes
MICAz 3,493, 1,839 and 1,839 ms to do pre-computation
for ECDSA, ECIES and ECDH, respectively. Most of the
pre-computation time is for the sliding window method and
Shamir’s trick (ECDSA only). It even takes longer time for
TelosB to do pre-computation because TelosB can only run at
4 MHz. TelosB is slower than MICAz and Imote2 in ECDSA,
ECIES, and ECDH operations. Tmote Sky, which runs at 8
MHz, is two times faster than TelosB. Running at 13 MHz,
the default CPU frequency for Imote2, Imote2 is faster than
MICAz in all operations. If we set the frequency to 416 MHz,
it only takes 12 and 14 ms to generate ECDSA signature and
verify it. Moreover, it can perform ECIES encryption in 24
ms and decrypt in 15 ms. Finally, ECDH key establishment
only takes 13 ms.

Enabling all optimization switches requires the largest
ROM and RAM consumptions. Figure 9 shows the ROM and
RAM requirements by all schemes. Imote2 has the largest
RAM size due to its word size. MICAz has the smallest RAM
size due to its 8-bit word size, but it has the largest ROM size
because it has additional assembly code for minimizing mem-
ory operation whenCURVEOPT option is enabled.

Now consider the energy consumption of ECDSA, ECIES
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Figure 7. ECDH code size

and ECDH on the testing platforms. We compute energy con-
sumption usingW =U × I × t, whereU is the voltage,I is the
current draw in active mode with radio off, andt is the execu-
tion time. We took the voltage and current draw (with radio
off) from the data sheet of each sensor platform [1,2,5,7], and
used the execution time obtained in our experiments. Specif-
ically, we choseU as 3v for MICAz, TelosB and Tmote Sky.
The current draw for MICAz and TelosB/Tmote Sky was 8
mA and 1.8 mA, respectively. For Imote2,U is 0.95v for 13
MHz and 104 MHz [1]. The Imote2 data sheet [1] does not
give the current draw when the node runs at 104 MHz with
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Figure 8. Execution time of ECDSA, ECIES, and ECDH
w/ all optimization switches enabled
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Figure 9. Code size of ECDSA, ECIES, and ECDH w/
all optimization switches enabled

radio off. To be conservative, we use the current draw with
radio on in our computation. That is, we chose 31 mA and 66
mA for Imote2 at 13 MHz and 104 MHz.

Figure 10 shows the energy consumption required by all
these operations. Imote2 is the most energy efficient platform
when it runs at 104 MHz. It needs 2.86 mJ and 3.51 mJ to
generate ECDSA signature and verify it; it needs 5.77 mJ and
3.65 mJ to do ECIES encryption and decryption; and it needs
3.07 mJ for the ECDH key agreement operation. MICAz is
the most energy consuming platform. TelosB is quite efficient
at energy consumption due to its low current draw with radio
off. Tmote Sky consumes half as TelosB does because Tmote
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Figure 10. Energy consumption of ECDSA, ECIES, and
ECDH w/ all optimization switches enabled

Sky (8 MHz) is two times faster than TelosB (4 MHz).

6.2.3. Most Storage-Efficient Configuration

Many TinyOS applications may use TinyECC for authen-
tication, encryption/decryption, or key establishment. Thus it
is likely that TinyECC will be loaded on sensor nodes with
other applications. Due to the resource constraint of low-end
sensor platforms (e.g., MICAz, TelosB/Tmote Sky), we may
have to reduce ROM and RAM size by disabling some opti-
mization techniques to reserve enough space for other TinyOS
applications.

For example, when all optimization switches are enabled,
ECDSA needs 17,888 bytes ROM and 1,510 bytes RAM on
MICAz, as figure 9 shows. Stack overflow may happen when
TinyECC is integrated with other programs such as TOSBase;
the available stack for local variables may not be large enough
due to the limited RAM (4K bytes) on MICAz. As another
example, TelosB only has 48K bytes ROM. If ECDSA with
all optimizations enabled is integrated with the SurgeTelos,
the total ROM size would be 40,380 bytes, leaving little space
for other applications.

We can disable all optimization switches to show how com-
pact TinyECC could be. Figure 11 shows the execution time
of ECDSA, ECIES and ECDH when all optimization switches
are disabled. In this case, no pre-computation is needed, and
the initialization time is close to 0. Imote2 running at 416
MHz is still the fastest one. It can perform ECDSA signature
generation and verification in 87 ms and 174 ms, respectively,
and perform ECIES encryption and decryption in 172 ms and
88 ms, respectively, and finish ECDH key agreement in 85
ms. TelosB is the slowest platform due to the 4 MHz running
frequency. It needs 42,583 ms and 85,728 ms for ECDSA
signature generation and verification, respectively. ECIES en-
cryption and decryption require 84,928 ms and 42,736 ms, re-
spectively. ECDH key establishment can be done in 42,198
ms. Tmote Sky is two times faster than TelosB. MICAz is
faster than TelosB but slower than Tmote Sky.

The benefit of disabling all optimization switches is the
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Figure 11. Execution time of ECDSA, ECIES, and ECDH
w/ all optimization switches disabled

compact code size. Figure 12 shows the code size of all
schemes in TinyECC when all optimization switches are dis-
abled. Due to their word size, Imote2 has the largest RAM
size, while MICAz has the smallest RAM size. The code
size has been reduced greatly. For MICAz, the ROM size has
been reduced by 7,708, 8,326, and 7,384 bytes for ECDSA,
ECIES, and ECDH, respectively; the RAM size has been re-
duced by 1,358, 1,624, and 1,624 bytes for ECDSA, ECIES,
and ECDH, respectively. For TelosB, the ROM size has been
reduced by 5,348, 5,224, and 4,446 bytes for ECDSA, ECIES,
and ECDH, respectively. Similarly, the RAM size has been re-
duced by 1,344, 1,658, and 1,658 bytes for ECDSA, ECIES,
and ECDH, respectively. The developer can further reduce
ROM size of ECDH by enablingCURVEOPT as figures 7(a)
and 7(c) show, but this does not work for ECDSA and ECIES.

Since the execution time of TinyECC is much longer, the
energy consumption of TinyECC is also increased as figure 13
shows. Even when Imote2 runs at 104 MHz, it needs 21.83 mJ
to generate ECDSA signature, which is almost 7.6 times more
than the most computation-efficient case. For MICAz, it re-
quires almost 15.4 times more energy to generate an ECDSA
signature and 25.4 times more energy to verify a signature
than it does in the most computation efficient case. Moreover,
a node needs 15.7 times more energy for ECIES encryption,
12.1 times more energy for decryption, and 14.7 times more
energy to establish a key in ECDH. For TelosB/Tmote Sky, a
node needs 13.4 and 21.2 times more energy for ECDSA sig-
nature generation and verification, 13.0 and 10.1 times more
energy for ECIES encryption and decryption, and 12.0 times
more energy for ECDH key establishment. For Imote2, it
needs 7.6 and 12.4 times more energy for ECDSA signature
generation and verification, 7.5 and 6.0 times more energy for
ECIES encryption and decryption, and 6.9 times more energy
for ECDH key establishment.
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Figure 12. Code size of ECDSA, ECIES, and ECDH w/
all optimization switches disabled
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7. Related Work

A comprehensive guide for elliptic curve cryptography is
given in [20]. A brief introduction to ECC can be found
in [41]. Additional documentation on ECC can be found
in [9–11]. There have been numerous ECC implementations
in various contexts (e.g., Crypto++ [13], OpenSSL [3], MIR-
ACL [39], NSS [34]). Most of these implementations are
aimed at traditional computing platforms such as PCs.

Several recent efforts have focused on sensor platforms,
such as the Mica series of motes. Malan et al. imple-
mented ECC over binary extension fieldsF2m on TinyOS for
Mica2 [31]. Unfortunately, due to the constraints on the typ-
ical microprocessors used by sensors, it is difficult to obtain

efficient ECC overF2m. Gura et al. implemented and com-
pared ECC and RSA on Atmel ATmega128 in assembly [19].
However, it is not clear how well their implementation can be
integrated into sensor applications. Wang et al. implemented
ECC on specific 160-bit elliptic curves on MICAz and TelosB
running TinyOS [40]. They were able to obtain very fast ex-
ecution time by hard-coding all the curve parameters into as-
sembly code.

A common limitation of all these efforts is that all these at-
tempts were developed as independent packages/applications
without seriously considering the resource demands of sensor
network applications. As a result, developers may found it
difficult, and sometimes impossible, to integrate an ECC im-
plementation with the sensor network applications (e.g., not
enough ROM or RAM), though the ECC implementation may
be okay on its own. In contrast, TinyECC provides a set of
optimization switches that allow itself to be configured with
different resource consumptions. This allows TinyECC to be
flexibly integrated into sensor network applications.

8. Conclusion

In this paper, we presented the design, implementation,
and evaluation of TinyECC, aconfigurablelibrary for ECC
operations in wireless sensor networks. A unique feature of
TinyECC is itsconfigurability. It provides a number of op-
timization switches, which can turn specific optimizationson
or off based on developers’ needs. Different combinations of
the optimizations have different execution time and resource
consumptions, and thus give the developers great flexibility
in integrating TinyECC into sensor network applications. We
also performed a series of experiments to evaluate the perfor-
mance and resource consumptions of TinyECC with different
combinations of enabled optimizations. In particular, ourex-
perimental results gave the most computationally efficientand
the most storage efficient configurations of TinyECC.

In our future work, we plan to investigate techniques that
can further speed up the execution and reduce the resource
consumption for ECC-based PKC operations. We will also
explore opportunities that can harness resources on high-end
sensors in hybrid sensor networks.

References

[1] Imote2: High-performance wireless sensor network node.
http://www.xbow.com/Products/Product_pdf_
files/Wireless_pdf/Imote2_Datasheet.pdf.

[2] MICAz: Wireless measurement system. http:
//www.xbow.com/Products/Product_pdf_
files/Wireless_pdf/MICAz_Datasheet.pdf.

[3] The openssl project.http://www.openssl.org/.
[4] SSL 3.0 specification.http://wp.netscape.com/eng/

ssl3/.

15



[5] TelosB mote platform. http://www.xbow.com/
Products/Product_pdf_files/Wireless_pdf/
TelosB_Datasheet.pdf.

[6] TinyOS: An open-source OS for the networked sensor regime.
http://www.tinyos.net/.

[7] Tmote sky: Reliable low-power wireless sensor network-
ing eases development and deployment.http://www.
moteiv.com/products-tmotesky.php.

[8] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.
Wireless sensor networks: A survey.Computer Networks,
38(4):393–422, 2002.

[9] American Bankers Association.ANSI X9.62-1998: Public Key
Cryptography for the Financial Services Industry: the Elliptic
Curve Digital Signature Algorithm (ECDSA), 1999.

[10] Certicom Research. Standards for efficient cryptography –
SEC 1: Elliptic curve cryptography.http://www.secg.
org/download/aid-385/sec1_final.pdf, Septem-
ber 2000.

[11] Certicom Research. Standards for efficient cryptography
– SEC 2: Recommended elliptic curve domain param-
eters. http://www.secg.org/collateral/sec2_
final.pdf, September 2000.

[12] H. Chan, A. Perrig, and D. Song. Random key predistribution
schemes for sensor networks. InIEEE Symposium on Research
in Security and Privacy, pages 197–213, 2003.

[13] W. Dai. Crypto++ library 5.5.http://www.cryptopp.
com/, May 2007.

[14] J. Deng, R. Han, and S. Mishra. Secure code distributionin
dynamically programmable wireless sensor networks. InPro-
ceedings of the Fifth International Conference on Information
Processing in Sensor Networks (IPSN ’06), April 2006.

[15] W. Diffie and M.E. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information Theory, IT-22:644–
654, November 1976.

[16] W. Du, J. Deng, Y. S. Han, and P. Varshney. A pairwise key
pre-distribution scheme for wireless sensor networks. InPro-
ceedings of 10th ACM Conference on Computer and Commu-
nications Security (CCS’03), pages 42–51, October 2003.

[17] L. Eschenauer and V. D. Gligor. A key-management scheme
for distributed sensor networks. InProceedings of the 9th ACM
Conference on Computer and Communications Security, pages
41–47, November 2002.

[18] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to net-
worked embedded systems. InProceedings of Programming
Language Design and Implementation (PLDI ’03), June 2003.

[19] N. Gura, A. Patel, and A. Wander. Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. InProceedings of the
2004 Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2004), pages 119–132, August 2004.

[20] D. Hankerson, A. Menezes, and S. Vanstone.Guide to Elliptic
Curve Cryptography. Springer, 2004.

[21] S. Kent and R. Atkinson. IP authentication header. IETFRFC
2402, November 1998.

[22] S. Kent and R. Atkinson. IP encapsulating security payload
(ESP). IETF RFC 2406, November 1998.

[23] D.E. Knuth. The Art of Computer Programming, volume 2:

Seminumerical Algorithms. Addison-Wesley, third edition,
1997. ISBN: 0-201-89684-2.

[24] RSA Laboratories. RSAREF: A cryptographic toolkit (version
2.0), March 1994.

[25] P.E. Lanigan, R. Gandhi, and P. Narasimhan. Sluice: Secure
dissemination of code updates in sensor networks. InProceed-
ings of the 26th International Conference on Distributed Com-
puting Systems (ICDCS ’06), July 2006.

[26] A. Liu, P. Kampanakis, and P. Ning. TinyECC: Elliptic curve
cryptography for sensor networks (version 0.3).http://
discovery.csc.ncsu.edu/software/TinyECC/.

[27] D. Liu and P. Ning. Establishing pairwise keys in distributed
sensor networks. InProceedings of 10th ACM Conference on
Computer and Communications Security (CCS’03), pages 52–
61, October 2003.

[28] D. Liu and P. Ning. Multi-levelµTESLA: Broadcast authen-
tication for distributed sensor networks.ACM Transactions in
Embedded Computing Systems (TECS), 3(4):800–836, 2004.

[29] D. Liu and P. Ning. Improving key pre-distribution withdeploy-
ment knowledge in static sensor networks.ACM Transactions
on Sensor Networks, 1(2):204–239, November 2005.

[30] D. Liu, P. Ning, S. Zhu, and S. Jajodia. Practical broadcast
authentication in sensor networks. InProceedings of the 2nd
Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous 2005), July
2005.

[31] D. Malan, M. Welsh, and M. Smith. A public-key infrastructure
for key distribution in tinyos based on elliptic curve cryptogra-
phy. InProceedings of IEEE Conference on Sensor and Ad Hoc
Communications and Networks (SECON), pages 71–80, 2004.

[32] K. Malasri and L. Wang. Addressing security in medical sensor
networks. InHealthNet ’07: Proceedings of the 1st ACM SIG-
MOBILE international workshop on Systems and networking
support for healthcare and assisted living environments, pages
7–12, 2007.

[33] A.J. Menezes, P. C. van Oorschot, and S.A. Vanstone.Hand-
book of Applied Cryptography. CRC Press, 1996. ISBN: 0-
8493-8523-7.

[34] Mozilla. Network security service (NSS).http://www.
mozilla.org/projects/security/pki/nss/.

[35] National Institute of Standards and Technology. Digital signa-
ture standard. Federal Information Processing Standard 186,
http://csrc.nist.gov/publications/., 1993.

[36] National Institute of Standards and Technology. Recommended
elliptic curves for federal government use, August 1999.

[37] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient authen-
tication and signing of multicast streams over lossy channels.
In Proceedings of the 2000 IEEE Symposium on Security and
Privacy, May 2000.

[38] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar.
SPINS: Security protocols for sensor networks. InProceedings
of Seventh Annual International Conference on Mobile Com-
puting and Networks, pages 521–534, July 2001.

[39] Shamus Software. Multiprecision integer and rationalarith-
metic c/c++ library (MIRACL). http://www.shamus.
ie/.

[40] H. Wang and Q. Li. Efficient implementation of public key

16



cryptosystems on mote sensors. InProceedings of Interna-
tional Conference on Information and Communication Security
(ICICS), pages 519–528, Dec. 2006.

[41] Wikipedia. Elliptic curve cryptography. http:
//en.wikipedia.org/wiki/Elliptic_curve_
cryptography. Visited on May 23rd, 2007.

17


