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Summary

We investigate the variable selection problem for Cox’s proportional hazards model,

and propose a unified model selection and estimation procedure with desired theoretical

properties and computational convenience. The new method is based on a penalized log

partial likelihood with the adaptively-weighted L1 penalty on regression coefficients, and

is named adaptive-LASSO (ALASSO) estimator. Instead of applying the same penalty to

all the coefficients as other shrinkage methods, the ALASSO advocates different penalties

for different coefficients: unimportant variables receive larger penalties than important

variables. In this way, important variables can be protectively preserved in the model

selection process, while unimportant ones are shrunk more towards zero and thus more

likely to be dropped from the model. We study the consistency and rate of convergence

of the proposed estimator. Further, with proper choice of regularization parameters, we

have shown that the ALASSO perform as well as the oracle procedure in variable selection;

namely, it works as well as if the correct submodel were known. Another advantage of the

ALASSO is its convex optimization form and convenience in implementation. Simulated

and real examples show that the ALASSO estimator compares favorably with the LASSO.

Some key words: Adaptive LASSO (ALASSO), LASSO, Penalized partial likelihood, Proportional
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hazards model, Variable selection.

1 Introduction

One main issue in time-to-event data analysis is to study the dependence of survival time

T on covariates z = (z1, · · · , zd). Cox’s proportional hazards model (Cox 1972, 1975) is one

of the most popular models in literature and has been widely studied. To be specific, the

hazard function h(t|z) of a subject with covariates z is specified by

h(t|z) = h0(t) exp(

d∑

j=1

zjβj), (1)

where h0(t) is a completely unspecified baseline hazard function and β = (β1, · · · , βd)
′ is

an unknown vector of regression coefficients.

In practice, the number of covariates d is often large and not all the covariates contribute

to the prediction of survival outcomes. Since some components of β may be zero, the regres-

sion relationship can be described by a more compact model. An effective variable selection

often leads to parsimonious models with better risk assessment and easy interpretation.

Two desired criteria for variable selection are:

(i) The selected model contains all nonzero components of β;

(ii) The selected model has the smallest size among all the models satisfying (i).

Criterion (i) implies that no important variables are missed, while (ii) defines the optimality

of the model. When the sample size goes to infinity, an ideal model selection and estimation

procedure should be able to, on one side, identify the optimal model with probability

one, and on the other side, provide consistent and efficient estimates for the coefficients
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of important variables. In this paper, we propose a new procedure, the adaptive LASSO

estimator, and show that it satisfies all these theoretical properties.

Many variable selection techniques for linear regression models have been extended

to the context of survival models. Two popular procedures are the best subset selection

and stepwise selection. Another class of methods are asymptotic procedures based on

score tests, Wald tests, and other approximate chi-square testing procedures. Bootstrap

sampling procedures for variable selection were studied in Sauerbrei & Schumacher (1992).

Bayesian variable selection for survival data was investigated by Faraggi & Simon (1998)

and Ibrahim, Chen & MacEachern (1999). However, the theoretical properties of these

methods are generally unknown (Fan & Li 2002).

Recently a family of penalized partial likelihood methods, such as LASSO (Tibshirani

1997) and SCAD (Fan & Li, 2002), have been proposed for Cox’s proportional hazards

model. These methods shrink some coefficients to exactly zeros, and hence simultaneously

select important variables and estimate regression coefficients. The LASSO is simple and

popular but does not have the oracle properties (Fan & Li, 2002). On the other hand, the

SCAD has very nice theoretical properties but its penalty form is not convex, which makes

the method computationally difficult. In this work, we have developed a new procedure, the

adaptive LASSO (ALASSO), which combines the advantages of aforementioned methods

and overcomes their drawbacks. Compared with the LASSO, the ALASSO solutions enjoy

the theoretical properties like root-n consistency and oracle properties, resulting from the

use of adaptive penalties. Compared with the SCAD, the ALASSO penalty has a convex

formulation similar to the LASSO, and hence is much easier to solve in practice.

The ALASSO method is based on a penalized partial likelihood with the adaptively-
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weighted L1 penalties on regression coefficients. Unlike the LASSO and SCAD methods

which apply the same penalty to all the coefficients, the ALASSO allows the penalty on each

coefficient to be individually adjusted so that unimportant covariates receive larger penalties

than important ones. To be explicit, the ALASSO used the penalty form λ
∑d

j=1 |βj |τj ,

where the positive weights τj ’s are data-driven so that small weights are chosen for big

coefficients and big weights for small coefficients. The tuning parameter λ controls the

complexity of the model. We show that in theory if the weights τj’s are chosen properly,

the ALASSO estimator will have the oracle properties. We also suggest the practical choices

of τj’s for real problems.

2 Variable Selection Using Penalized Partial Likelihood

Suppose a random sample of n individuals is chosen. Let Ti and Ci be the failure time

and censoring time of subject i (i = 1, · · · , n), respectively. Define T̃i = min(Ti, Ci) and

δi = I(Ti ≤ Ci). We use zij to denote the jth covariate value for the ith individual,

and zi = (zi1, · · · , zid)
T to denote the vector of covariates for the ith individual. Assume

that Ti and Ci are conditionally independent given zi, and the censoring mechanism is

noninformative. The data then consists of the triplets (T̃i, δi, zi), i = 1, ...n.

The proportional hazards model (1) is assumed for the failure times Ti’s. For simplicity,

assume that there are no ties in the observed failure times. When ties are present, we may

use the technique in Breslow (1974). The log partial likelihood is then given by

ln(β) ≡
n∑

i=1

δi

{
β′

zi − log[

n∑

j=1

I(T̃j ≥ T̃i) exp(β′
zj)]
}
. (2)

To select important variables under the proportional hazards model, Tibshirani (1997) and
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Fan & Li (2002) proposed to minimize the following penalized log partial likelihood function,

− 1

n
ln(β) + λ

d∑

j=1

J(βj). (3)

Tibshirani (1997) suggested the L1 penalty J(βj) = |βj |, leading to the so-called LASSO

estimates. It is known that the L1 penalty can shrink small coefficients to exactly zeros

and hence result in a sparse representation of the solution. However, the LASSO applies

the same penalty to all the coefficients. Large values of β’s may suffer from substantial

bias if λ is chosen too big, while the model may not be sufficiently sparse if λ is chosen too

small. Fan & Li (2002) proposed the SCAD (smoothly clipped absolute deviation) penalty

on β, and the resulting estimator has nice theoretical properties. However, since the SCAD

penalty is not convex in β, its implementation can be challenging in practice. In the next

section, we show how the adaptive LASSO improves the LASSO by using the data-driven

penalties and hence achieves the theoretical properties of the SCAD.

3 Adaptive LASSO Estimation

We propose the adaptive Lasso (ALASSO) procedure, which solves the following penalized

partial likelihood problem

min
β

− 1

n
ln(β) + λ

d∑

j=1

|βj |τj, (4)

where the positive weights τ = (τ1, · · · , τd)
′ are chosen adaptively by data. The τj’s can be

regarded as leverage factors to adjust penalties on individual regression coefficients, taking

large values for unimportant covariates and small values for important covariates. As we

show later in Section 4, the choice of τj ’s is essential and their appropriate values will

guarantee the optimality of the ALASSO solution. In the paper, we propose using τj =
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1/|β̃j |, where β̃ = (β̃1, · · · , β̃d)
′ is the maximizer of the log partial likelihood ln(β). Since

β̃ are consistent estimates (Tsiatis, 1981; Andersen & Gill, 1982) , their values well reflect

the relative importance of covariates. In the paper we focus on the following minimization

problem

min
β

− 1

n
ln(β) + λ

d∑

j=1

|βj |/|β̃j |. (5)

Other consistent estimates of β’s can be used as well; here β̃ is just a convenient choice.

We observe that the adaptive penalty term in (5) is closely related to the L0 penalty

∑d
j=1 I(|βj | 6= 0), also called the entropy penalty in wavelet literature (Donoho & Johnstone

1998; Antoniadis & Fan 2001). Due to the consistency of β̃j , the term |βj |/|β̃j | converges

to I(βj 6= 0) in probability as the sample size goes to infinity. Therefore the ALASSO

procedure can be regarded as an automatic implementation of the best subset selection in

some asymptotic sense.

3.1 Computational Algorithm

To solve (5), we approximate the partial likelihood function using the Newton-Raphson

update through an iterative least square procedure similar to that of Tibshirani (1997), and

at each iteration we solve the least squares subject to the weighted L1 penalty. Define the

gradient vector ∇l(β) = −∂ln(β)/∂β and the Hessian matrix ∇2l(β) = −∂2ln(β)/∂ββ′.

Let X denote the Cholesky decomposition of ∇2l(β), i.e. ∇2l(β) = X ′X, and set the pseudo

response vector Y = (X ′)−1(∇2l(β)β − ∇l(β)). By the second-order Taylor expansion,

−ln(β) can be approximated by the quadratic form 1
2(Y − Xβ)′(Y − Xβ). Thus at each
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iterative step, we minimize

1

2
(Y − Xβ)′(Y − Xβ) + λ

d∑

j=1

|βj |/|β̃j |. (6)

For solving the standard LASSO (i.e. all the weights are equal to 1), Tibshirani (1996)

suggested two algorithms based on quadratic programming techniques, and Fu (1998) pro-

posed the shooting algorithm. Recently Efron et al. (2004) showed that, under the least

squares setting, the whole solution path of LASSO can be obtained by a modified LARS

algorithm. In this paper, we have modified Fu’s shooting algorithm to take into account

different weights in the ALASSO. For any fixed λ, we propose the following algorithm:

1. Solve β̃ by minimizing the negative log partial likelihood −ln(β).

2. Initialization: k = 1 and β̂[1] = 0.

3. Compute ∇l,∇2l,X,Y based on the current value β̂[k].

4. Minimize (6) using the modified shooting algorithm. Denote the solution as β̂[k+1].

5. Let k = k + 1. Go back to step 3 until the convergence criterion meets.

3.2 Variance Estimation and Parameter Tuning

Assume the true parameter β0 = {(β(1)
0 )′, (β

(2)
0 )′}′, where β

(1)
0 consists of nonzero compo-

nents and β
(2)
0 consists of zero components. Define A(β) = diag{1/β2

1 , · · · , 1/β2
d},

D(β) = diag

{
I(β1 6= 0)

β2
1

, · · · ,
I(βd 6= 0)

β2
d

}
, and b(β) =

(
sign(|β1|)

|β̃1|
, · · · ,

sign(|βd|)
|β̃d|

)′

.

At the (k + 1)th step, the ALASSO solution can be approximated by

β̂[k+1] = β̂[k] −
[
∇2l(β̂[k]) + λA(β̂[k])

]−1 [
∇l(β̂[k]) + λb(β̂[k])

]
.
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Using similar techniques in Fan & Li (2002), the covariance matrix of the ALASSO estimator

β̂ can be approximated by the following sandwich formula:

{
∇2l(β̂) + λA(β̂)

}−1
Σ(β̂)

{
∇2l(β̂) + λA(β̂)

}−1
,

where Σ(β) = {∇2l(β)+λD(β)}{∇2l(β)}−1{∇2l(β)+λD(β)}. Write β̂ = (β̂1, β̂2), where

β̂1 consists of the r non-zero components. Correspondingly, we decompose the Hessian

matrix as

G = ∇2l(β̂) =




G11 G12

G21 G22


 ,

where G11 corresponds to the first r× r submatrix of G. Similarly, let A11 be the first r× r

submatrix of A ≡ A(β̂). Define E = G22 − G21G
−1
11 G12 and G̃11 = G11 + λA11. It is easy

to show that the covariance estimate of the nonzero components β̂1 is

ĉov(β̂1) = G−1
11 +

[
G−1

11 − G̃−1
11

]
G12E

−1G21

[
G−1

11 − G̃−1
11

]
.

To estimate the tuning parameter λ, we use the generalized cross validation (GCV)

criterion (Craven & Wahba, 1979). At convergence, the minimizer of (6) in step 4 can be

approximated by a ridge regression estimator β̂r = (G+λA)−1X ′
Y. Therefore the number

of effective parameters in the ALASSO estimator can be approximated by p(λ) = tr[(G +

λA)−1G]. The GCV-type statistic is constructed as GCV(λ) = −ln(β̂)/[n{1 − p(λ)/n}2].

4 Theoretical Properties of ALASSO Estimator

In this section, we study the asymptotic properties of the ALASSO estimator from two

perspectives. Consider the penalized log partial likelihood function based on n samples

Qn(β) = ln(β) − nλn

d∑

j=1

|βj |/|β̃j |. (7)
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Denote the ALASSO solution of (7) by β̂n. Recall β0 = (β10, ..., βd0) = {(β(1)
0 )′, (β

(2)
0 )′}′.

Write β̂n = (β̂1n, ..., β̂dn) = {(β̂(1)
n )′, (β̂

(2)
n )′}′ accordingly. Assume the length of the true

nonzero components β
(1)
0 of β0 is s. Let I(β0) be the Fisher information matrix based on

the log partial likelihood and I1(β
(1)
0 ) = I11(β

(1)
0 ,0), where I11(β

(1)
0 ,0) is the first s × s

submatrix of I(β0) knowing β
(2)
0 = 0. We first show that β̂n is root-n consistent if λn → 0

with certain rate. Secondly, we show that the ALASSO estimator must satisfy β̂
(2)
n = 0

and β̂
(1)
n is asymptotic normal with covariance matrix I−1

1 (β
(1)
0 ) if nλn → ∞. This is the

so-called oracle property (Donoho & Johnstone, 1994), implying that the estimator works

as well as if the correct submodel were known.

Define the counting and at-risk processes Ni(t) = δiI(T̃i ≤ t) and Yi(t) = I(T̃i ≥ t),

respectively. In this section, the covariate z is allowed to be time-dependent, denoted by

z(t). Without loss of generality, we assume t ∈ [0, 1]. Then the fisher information matrix is

given by

I(β0) =

∫ 1

0
v(β0, t)s

(0)(β0, t)h0(t)dt,

where

v(β, t) =
s(2)(β, t)

s(0)(β, t)
−
(

s(1)(β, t)

s(0)(β, t)

)(
s(1)(β, t)

s(0)(β, t)

)′

,

and s(k)(β, t) = E[z(t)⊗kY (t) exp{β′
z(t)}], k = 0, 1, 2. The regularity conditions (A) - (D)

used in Anderson and Gill (1982) are assumed in the whole section.

Theorem 1. (Consistency) Assume that (z1, T1, C1), ..., (zn, Tn, Cn) are independently and

identically distributed, and Ti and Ci are independent given zi. If
√

nλn = Op(1), then the

ALASSO estimator satisfies ‖β̂n − β0‖ = Op(n
−1/2).

Theorem 2. (Oracle Property) Assume that
√

nλn → λ0 with 0 ≤ λ0 < ∞ and nλn → ∞,
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then under the conditions of Theorem 1, with probability tending to 1, the root-n consistent

ALASSO estimator β̂n must satisfy:

(i) (Sparsity) β̂
(2)
n = 0;

(ii) (Asymptotic normality)
√

n(β̂
(1)
n −β

(1)
0 ) → N{−λ0I

−1
1 (β

(1)
0 )b1, I

−1
1 (β

(1)
0 )} as n goes

to infinity, where b1 = (sign(β10)/|β10|, · · · , sign(βs0)/|βs0|)′ and β
(1)
0 = (β10, · · · , βs0)

′.

The proofs of Theorems 1 and 2 are given in the Appendix. When λ0 = 0, the ALASSO

estimator performs as well as the maximum partial likelihood estimates for estimating β
(1)
0

knowing β
(2)
0 = 0. Note that the SCAD estimator (Fan & Li, 2002) also has above two

properties under different regularity conditions for λn, but the LASSO estimator does not.

Since the proofs only require the root-n consistency of β̃, we want to emphasize that,

any root-n consistent estimates of β0 can be used for the adaptive weights τ without

changing the asymptotic properties of the ALASSO solution. In addition to this theoretical

improvement of the LASSO via the adaptive weighting scheme, in the next session we show

that the ALASSO also demonstrates much better performance on numerical examples.

5 Numerical Studies

5.1 Simulations

Several simulation studies were conducted to assess the performance of the ALASSO,

LASSO, and maximum partial likelihood estimates (MLE) under Cox’s proportional haz-

ards model. We report the average numbers of correct and incorrect zero coefficients in the

final models. Following Tibshirani (1997), we measure the prediction error of each method

with the mean of the estimated mean squared errors (MSE) (β̂ − β)T V (β̂ − β) over 100
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simulations. Here V is the population covariance matrix of the covariates. Generalized

cross validation is used to estimate the tuning parameter λ in the ALASSO and LASSO

methods. All simulations are done with R codes.

The failure times are generated from the proportional hazards model (1) with β =

(−0.7,−0.7, 0, 0, 0,−0.7, 0, 0, 0)′ . The nine covariates z = (z1, ..., z9) are marginally stan-

dard normal with the pairwise correlation corr(zj , zk) = ρ|j−k|. We consider the moderate

correlation between the covariates with ρ = 0.5. Censoring times are generated from the

uniform distribution over [0, c0], where c0 is chosen to obtain the desired censoring rate.

We consider two types of censoring rate: 25% and 40%, and two sample sizes: n = 100

and n = 200. Table 1 summarizes the mean square errors and variable selection results for

three methods under four different settings. Overall, the ALASSO outperforms the other

two approaches in terms of MSE and the correct number of zero coefficients in the solution.

For example, when n = 200 and the censoring rate is 25%, the Alasso selects important

covariates very accurately (the true model size is 3, MLE 8, LASSO 4.06, ALASSO 3.09),

and gives the smallest mean squared error (MLE 0.097, LASSO 0.101, ALASSO 0.069). In

Table 2, we show the number of times that each variable is selected among 100 replicates.

The ALASSO chooses unimportant variables with a much lower frequency than the LASSO

in all the settings.

(Insert Tables 1 and 2 here)

To test the accuracy of the proposed standard error formula given in Section 3·2, we

compare the sample standard errors with their estimates. For the LASSO estimates, we

use the formula in Tibshirani (1997) to compute their standard errors. In Table 3, we

summarize the mean of the estimated standard errors and the sample standard errors from
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Monte Carlo simulations. The estimated standard errors of all the three methods are close

to the sample standard errors. And the performance becomes better when the sample size

increases.

(Insert Table 3 here)

5.2 Primary Biliary cirrhosis Data

The primary biliary cirrhosis (PBC) data was gathered from the Mayo Clinic trial in pri-

mary biliary cirrhosis of liver conducted between 1974 and 1984. This data is provided in

Therneau and Grambsch (2000), and a more detailed account can be found in Dickson et

al. (1989). In this study, 312 patients from a total of 424 patients who agreed to participate

in the randomized trial are eligible for the analysis. For each patient, clinical, biochemical,

serologic, and histological parameters are collected. Of those, 125 patients died before the

end of follow-up. We study the dependence of the survival time on the following selected

covariates: (1) continuous variables: age (in years), alb (albumin in g/dl), alk (alkaline

phosphatase in U/liter), bil (serum bilirunbin in mg/dl), chol (serum cholesterol in mg/dl),

cop (urine copper in µg/day), plat (platelets per cubic ml/1000), prot (prothrombin time

in seconds), sgot (liver enzyme in U/ml), trig (triglycerides in mg/dl); (2) categorical vari-

ables: asc (0, absence of ascites; 1, presence of ascites), ede (0 no edema; 0.5 untreated or

successfully treated; 1 unsuccessfully treated edema), hep (0, absence of hepatomegaly; 1,

presence of hepatomegaly), sex (0, male; 1, female), spid (0, absence of spiders; 1, presence

of spiders), stage (histological stage of disease, graded 1, 2, 3 or 4), trt (1 for control, 2 for

treatment).

We restrict our attention to the 276 observations without missing values. All the sev-
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enteen variables are included in the model. Table 4 summarizes the estimated coefficients

by three methods and the corresponding standard errors. As reported in Tibshirani (1997),

the stepwise selection chooses eight variables: age, ede,bili, alb, cop, sgot, prot and stage.

We found that the ALASSO identifies the same set of important variables. In our analysis,

the LASSO selects one additional variable asc.

(Insert Table 4 here)

6 Discussion

In this paper, we propose using the penalized partial likelihood with an adaptive L1 penalty

for model selection and estimation under Cox’s hazard hazards models. The proposed

ALASSO estimator has the oracle properties and is easy to solve with its convex penalty

form. Numerical examples show that the ALASSO gives better prediction performance than

the classical maximum partial likelihood estimate and selects more correct models than its

Lasso variant.

For the ALASSO procedure, the choice of the weights τj’s is very important. In the

paper, we suggest using the inverse of the absolute maximum partial likelihood estimate,

i.e. τj = 1/|β̃j | for its convenience and nice properties. However, in some complicated

situations, β̃j ’s may not be estimable, for example in high dimensional gene expression data

where the number of covariates d is much large than the sample size n; or β̃j ’s may be

unstably estimated if strong collinearity exists among covariates. In such cases, we suggest

using some robust estimates such as ridge regression estimates for the weights.
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Appendix

We follow the similar steps in the proofs of Fan & Li (2002).

A.1 Proof of Theorem 1

The log partial likelihood ln(β) can be written as

ln(β) =

n∑

i=1

∫ 1

0
βT

zi(s)dNi(s) −
∫ 1

0
log

[
n∑

i=1

Yi(s) exp{βT
zi(s)}

]
dN̄(s), (A1)

where N̄ =
∑n

i=1 Ni. By Theorem 4.1 and Lemma 3.1 of Anderson and Gill (1982), it

follows that for each β in a neighborhood of β0,

1

n
{ln(β) − ln(β0)} =

∫ 1

0

[
(β − β0)

T s(1)(β0, t) − log

{
s(0)(β, t)

s(0)(β0, t)

}
s(0)(β0, t)

]
λ0(t)dt

+ Op(
‖β − β0‖√

n
). (A2)

Consider the C-ball Bn(C) = {β : β = β0 + n−1/2
u, ||u|| ≤ C}, C > 0, and denote its

boundary by ∂Bn(C). Note that Qn(β) is strictly convex when n is large. Thus, there

exists a unique maximizer β̂n of Qn(β) for large n. It is sufficient to show: for any given

ε > 0, there exists a large constant C so that

P

{
sup

β∈∂Bn(C)
Qn(β) < Qn(β0)

}
≥ 1 − ε. (A3)

This implies with probability at least 1 − ε that there exists a local maximizer of Qn(β) in

the ball Bn(C). Hence, the maximizer β̂n must satisfy ‖β̂n − β0‖ = Op(n
−1/2).

Define sn(β) = ∂ln(β)/∂β and 5sn(β) = ∂sn(β)/∂β′. We have sn(β0)/
√

n = Op(1)

and 5sn(β0)/n = I(β0)+op(1). For any β ∈ ∂Bn(C), by the second-order Taylor expansion
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of the log partial likelihood

1

n
{ln(β0 + n−1/2

u) − ln(β0)}

=
1

n
s′n(β0)n

−1/2
u− 1

2n
u
′{5sn(β0)/n}u +

1

n
u
′op(1)u

= − 1

2n
u
′{I(β0) + op(1)}u +

1

n
Op(1)

d∑

j=1

|uj |,

where u = (u1, · · · , ud)
′. Then we have

Dn(u) ≡ 1

n
{Qn(β0 + n−1/2

u) − Qn(β0)}

=
1

n
{ln(β0 + n−1/2

u) − ln(β0)} − λn

d∑

j=1

{
|βj0 + n−1/2uj |

|β̃j |
− |βj0|

|β̃j |

}

≤ 1

n
{ln(β0 + n−1/2

u) − ln(β0)} − λn

s∑

j=1

(|βj0 + n−1/2uj | − |βj0|)/|β̃j |

≤ 1

n
{ln(β0 + n−1/2

u) − ln(β0)} + n−1/2λn

s∑

j=1

|uj |/|β̃j |

= − 1

2n
u
′{I(β0) + op(1)}u +

1

n
Op(1)

d∑

j=1

|uj | +
1√
n

λn

s∑

j=1

|uj |/|β̃j | (A4)

Using the fact that the maximum partial likelihood estimator β̃ satisfies ||β̃ − β0|| =

Op(n
−1/2), we have, for 1 ≤ j ≤ s,

1

|β̃j |
=

1

|βj0|
− sign(βj0)

β2
j0

(β̃j − βj0) + op(|β̃j − βj0|) =
1

|βj0|
+

Op(1)√
n

.

In addition, since
√

nλn = Op(1), we have

1√
n

λn

s∑

j=1

|uj |/|β̃j | =
1√
n

λn

s∑

j=1

{ |uj |
|βj0|

+
|uj|√

n
Op(1)

}

≤ Cn−1/2λnOp(1) = Cn−1(
√

nλn)Op(1) = Cn−1Op(1).

Therefore in (A4), by choosing a sufficiently large C, the first term is of the order C 2n−1.

The second and third terms are of the order Cn−1, which are dominated by the first term.

Therefore (A3) holds and it completes the proof.

15



A.2 Proof of Theorem 2

(i) Show the sparsity: β̂
(2)

n = 0.

It is sufficient to show that for any sequence β1 satisfying that ‖β1 −β
(1)
0 ‖ = Op(n

−1/2)

and any constant C,

Qn(β1,0) = max
‖β2‖≤Cn−1/2

Qn(β1,β2).

It is sufficient to show that with probability tending to 1, for any β1 satisfying that ‖β1 −

β
(1)
0 ‖ = Op(n

−1/2), ∂Q(β)/∂βj and βj have different signs for βj ∈ (−Cn−1/2, Cn−1/2) with

j = s + 1, · · · , d. For each β in a neighborhood of β0, by (A1) and Taylor expansion,

ln(β) = ln(β0) + nf(β) + OP (
√

n‖β − β0‖),

where f(β) = − 1
2(β − β0)

′{I(β0) + o(1)}(β − β0). For j = s + 1, · · · , d, we have

∂Qn(β)

∂βj
=

∂ln(β)

∂βj
− nλn

sign(βj)

|β̃j |
= Op(n

1/2) − (nλn)n1/2 sign(βj)

|n1/2β̃j |
.

Note that n1/2(β̃j − 0) = Op(1), we have

∂Qn(β)

∂βj
= n1/2

{
Op(1) − nλn

sign(βj)

|Op(1)|

}
. (A5)

Since nλn → ∞, the sign of
∂Qn(βj)

∂βj
in (A5) is completely determined by the sign of βj

when n is large, and they always have different signs.

(ii) Show the asymptotic normality of β̂
(1)
n .

Using the proof of Theorem 1, it is easy to show that there exists a root-n consistent

maximizer β̂
(1)
n of Qn(β1,0), i.e. ∂Qn(β)

∂β1
|
β={(β̂

(1)
n )′,0′}′

= 0. Let s
(1)
n (β) be the first s elements
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of sn(β) and Î
(11)
n (β) be the first s × s submatrix of 5sn(β). Then

0 =
∂Qn(β)

∂β1

|
β={(β̂

(1)
n )′,0′}′

=
∂ln(β)

∂β1|
|
β={(β̂

(1)
n )′,0′}′

− nλn

(
sign(β̂1n)

β̃1

, · · · ,
sign(β̂sn)

β̃s

)′

= s(1)
n (β0) − Î(11)

n (β∗)(β̂
(1)
n − β

(1)
0 ) − nλn

(
sign(β10)

β̃1

, · · · ,
sign(βs0)

β̃s

)′

,

where β∗ is between β̂n and β0. The last equation is implied by sign(β̂jn) = sign(βj0) when

n is large, since β̂n is a root-n consistent estimator of β0. Using Theorem 3.2 of Anderson

and Gill (1982), it can be proved that s
(1)
n (β0)/

√
n → N{0, I1(β

(1)
0 )} in distribution and

Î
(11)
n (β∗)/n → I1(β

(1)
0 ) in probability as n → ∞. In addition,

√
nλn → λ0 and β̃j → βj0 6= 0,

for 1 ≤ j ≤ s, we have

√
n(β̂

(1)

n − β
(1)
0 ) = I−1

1 (β10)

{
1√
n

s(1)
n (β0) − λ0b1

}
+ op(1).

Therefore, by Slutsky’s Lemma,

√
n(β̂

(1)
n − β

(1)
0 ) → N{−λ0I

−1
1 (β

(1)
0 )b1, I

−1
1 (β

(1)
0 )}

in distribution as n → ∞.
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Table 1: Mean squared error and model selection results.

25% Censored 40% Censored

n Correct (6) Incorrect (0) MSE Correct (6) Incorrect (0) MSE

MLE 0 0 0.247 0 0 0.312

100 LASSO 4.87 0.00 0.190 4.67 0.00 0.203

ALASSO 5.73 0.01 0.157 5.63 0.04 0.172

MLE 0.00 0.00 0.097 0.00 0.00 0.113

200 LASSO 4.94 0.00 0.101 4.69 0.00 0.113

ALASSO 5.91 0.00 0.069 5.86 0.00 0.074

Table 2: The frequency of variables selected by LASSO and ALASSO in 100 runs.

n Censored z1 z2 z3 z4 z5 z6 z7 z8 z9

100 25% 100 100 29 15 16 100 16 15 12

LASSO 40% 100 100 27 22 22 100 23 11 18

200 25% 100 100 14 16 24 100 19 17 16

40% 100 100 21 23 31 100 21 18 17

100 25% 99 100 5 7 3 100 2 4 6

ALASSO 40% 98 99 8 5 5 99 7 5 7

200 25% 100 100 1 1 2 100 2 3 0

40% 100 100 2 3 2 100 2 3 2
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Table 3: Estimated and actual standard errors for the coefficients.

β̂1 β̂2 β̂6

n Censored SE ŜE SE ŜE SE ŜE

100 25% MLE 0.192 0.169 0.214 0.186 0.216 0.185

LASSO 0.154 0.105 0.153 0.104 0.158 0.096

ALASSO 0.206 0.155 0.201 0.155 0.175 0.138

40% MLE 0.197 0.189 0.227 0.208 0.257 0.208

LASSO 0.166 0.114 0.161 0.114 0.178 0.104

ALASSO 0.218 0.170 0.211 0.171 0.208 0.151

200 25% MLE 0.119 0.111 0.121 0.121 0.148 0.123

LASSO 0.109 0.081 0.096 0.081 0.116 0.075

ALASSO 0.128 0.107 0.116 0.106 0.131 0.096

40% MLE 0.133 0.123 0.136 0.134 0.152 0.136

LASSO 0.124 0.089 0.113 0.088 0.131 0.082

ALASSO 0.141 0.118 0.128 0.117 0.139 0.106
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Table 4: Estimated coefficients and standard errors for PBC data.

Covariate MLE LASSO ALASSO

trt -0.124 (0.215) 0 (-) 0 (-)

age 0.029 (0.012) 0.015 (0.004) 0.019 (0.010)

sex -0.366 (0.311) 0 (-) 0 (-)

asc 0.088 (0.387) 0.107 (0.052) 0 (-)

hep 0.026 (0.251) 0 (-) 0 (-)

spid 0.101 (0.244) 0 (-) 0 (-)

ede 1.011 (0.394) 0.648 (0.177) 0.671 (0.377)

bil 0.080 (0.025) 0.084 (0.013) 0.095 (0.020)

chol 0.001 (0.000) 0 (-) 0 (-)

alb -0.742 (0.308) -0.548 (0.133) -0.612 (0.280)

cop 0.003 (0.001) 0.003 (0.001) 0.002 (0.001)

alk 0.000 (0.000) 0 (-) 0 (-)

sgot 0.004 (0.002) 0.001 (0.000) 0.001 (0.000)

trig -0.001 (0.001) 0 (-) 0 (-)

plat 0.001 (0.001) 0 (-) 0 (-)

prot 0.233 (0.106) 0.125 (0.040) 0.103 (0.108)

stage 0.455 (0.175) 0.265 (0.064) 0.367 (0.142)
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