ON THE ANALYSIS OF PARTIALLY BALANCED INCOMPLETE
BLOCK DESIGNS IN THE REGULAR CASE

by

Junjiro Ogawa and Goro Ishii
Nihon University, Tokyo and Osaka City
University, Osaka
Institute of Statistics Mimeo Series No. 412

December 1964

This research was supported by Air Force Office
of Scientific Research Grant No. 84-63.

DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
Chapel Hill, N. C.
On The Analysis of Partially Balanced Incomplete
Block Designs In The Regular Case

By
Junjiro Ogawa and Goro Ishii
Nihon University, Tokyo and Osaka City
University, Osaka

Contents

Summary

§1. Partially balanced incomplete block design.
§2. Properties of the association algebra.
§3. Examples of associations of certain types.
§4. The relationship algebra of a PBIBD.
§5. Analysis of PBIBD
§6. Analysis of variance of PBIBD's of certain types.
§7. A numerical illustration.

References.

Summary

Analysis of a regular partially balanced incomplete block design is investigated in connection with its association algebra and relationship algebra. Properties of the association algebra and the relationship algebra are summarized in so far as they are useful for the later discussions. Although the properties of the association algebra have been known already in another expression*, those of the relationship algebra of a PBIBD are

believed to be new. Partitions of the sum of squares due to treatments adjusted pertinent to the association being considered are given, and these are supposed to be new. As examples, explicit expressions of the partitions are given for PBIBD's of certain types. Finally a numerical example is presented for illustra-
tion.

§1. Partially balanced incomplete block design. For the sake of reader's convenience, we gave a brief description of a partially balanced incomplete block design. Reference should be made to [1], [2], [3], and [7].

Given \(v \) treatments \(\varphi_1, \varphi_2, \ldots, \varphi_v \), a relation among them satisfying the following 3 conditions is called an association with \(m \) associate classes:

(a) any two treatments are either 1st, or 2nd, \ldots, or \(m \)-th associates,
(b) each treatment has \(n_i \) \(i \)-th associates, \(i = 1, 2, \ldots, m \), and
(c) for each pair of treatments which are \(i \)-th associates, there are \(p^i_{jk} \) \((i, j, k = 1, 2, \ldots, m)\) treatments which are \(j \)-th associates of the one treatment of the pair and at the same time \(k \)-th associates of the other.

We have a partially balanced incomplete block design—PBIBD in short, if there are \(b \) blocks each containing \(k \) experimental units in such a way that

(1) each block contains \(k \) (\(\leq v \)) different treatments,
(2) each treatment occurs in \(r \) blocks, and
(3) any two treatments which are \(i \)-th associates occur together in \(\lambda_i \) blocks, \(i = 1, 2, \ldots, m \).

In a degenerate case when \(m = 1 \), a PBIBD reduces to a BIBD. Certain cases in which \(m = 2 \) have been useful in practical applications.

Parameters describing an association are

\[v, n_i \ (i = 1, 2, \ldots, m), p^i_{jk} \ (i, j, k = 1, 2, \ldots, m) \]

and additional design parameters are
\[b, r, k, \lambda_i \ (i = 1, 2, \ldots, m). \]

It should be that

\[n_1 + n_2 + \ldots + n_m = v-1, \]

and

\[p_{jk}^i = p_{kj}^i \] (symmetry with respect to subscripts).

Further it can be shown that

\[\sum_{k=1}^{m} p_{jk}^i = n_j - \delta_{ij}, \]

and

\[n_i p_{jk}^i = n_j p_{ik}^i = n_k p_{ij}^i, \]

where \(\delta_{ij} \) stands for the Kronecker delta.

There are \(r(k-1) \) treatments occurring in the blocks in which a fixed
treatment \(\varphi \) occurs and they are classified into \(m \) associate classes with
respect to \(\varphi \). On the other hand, since there are \(n_i \) \(i \)-th associates of \(\varphi
occurring in \(\lambda_i \) blocks, it follows that

\[n_1 \lambda_1 + n_2 \lambda_2 + \ldots + n_m \lambda_m = r(k-1). \]

A treatment may be regarded as the \(0 \)-th associate of its own. Thus we
add the following conventional notations:

\[n_0 = 1, \quad \lambda_0 = r, \]

\[p_{jk}^0 = n_j \delta_{jk}, \quad p_{0k}^i = p_{00}^i = \delta_{ik}. \]

Under these notations, we have the following relations

\[\sum_{i=0}^{m} n_i = v, \]

\[\sum_{k=0}^{i} p_{jk}^i = n_j, \]
and

\[\sum_{i=0}^{m} n_i \lambda_i = r_k. \]

Let \(A_0 \) be the unit matrix of order \(v \). Also let \(A_i \) be a symmetric matrix of order \(v \) such that its element \(a^\beta_{\alpha i} \) in the \(\alpha \)-th row and in the \(\beta \)-th column is 1 if \(\varphi_\alpha \) and \(\varphi_\beta \) are \(i \)-th associates, and is 0 otherwise, i.e.,

\[A_i = \begin{pmatrix}
1 & a^1_{11} & a^1_{12} & \cdots & a^1_{1v} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a^2_{11} & a^2_{12} & \cdots & a^2_{1v} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a^v_{11} & a^v_{12} & \cdots & a^v_{1v}
\end{pmatrix}, \quad i = 1, 2, \ldots, m,
\]

where

\[a^\beta_{\alpha i} = \begin{cases}
1, & \text{if } \varphi_\alpha \text{ and } \varphi_\beta \text{ are } i \text{-th associates} \\
0, & \text{otherwise.}
\end{cases} \]

\(A_0, A_1, A_2, \ldots, A_m \) are called the association matrices. It can be seen that

\[A_0 + A_1 + A_2 + \cdots + A_m = G_v \]

where \(G_v \) stands for the square matrix of order \(v \) whose elements are all unity. Hence \(A_0, A_1, A_2, \ldots, A_m \) are linearly independent with respect to the field of all real numbers.

Furthermore we have

\[A_j A_k = A_k A_j = \sum_{i=0}^{m} p^i_{jk} A_i, \quad (j, k = 0, 1, 2, \ldots, m) \]

Thus the linear closure of the matrix set \(\{ A_0, A_1, A_2, \ldots, A_m \} \) with respect to the field of all real numbers is a linear associative and commutative algebra \(\mathcal{U} \), called the association algebra. The abstract counterpart of the matrix algebra \(\mathcal{U} \) is denoted by \(\mathfrak{U} \).

Let
\[\phi_k = \begin{pmatrix}
p_{0k} & p_{1k} & \cdots & p_{mk} \\
p_{0k} & p_{1k} & \cdots & p_{mk} \\
p_{1k} & p_{1k} & \cdots & p_{mk} \\
\vdots & \vdots & \ddots & \vdots \\
p_{mk} & p_{1k} & \cdots & p_{mk}
\end{pmatrix}, \quad k = 0, 1, 2, \ldots, m,
\]

then (1.12) may be rewritten as follows:

\[A_k = \phi_k \]

Thus it follows immediately that

\[(A_i + A_k) = \phi_i \phi_k \]

and

\[A_i A_k = \phi_i \phi_k \]

In other words, the mapping of \(\mathcal{M} \) into the ring of all matrices of order \((m+1)\)
generated by

\[A_i \rightarrow \phi_i, \quad i = 0, 1, 2, \ldots, m \]
gives the regular representation \((\mathcal{M})\) of the association algebra \(\mathcal{M}\).
§2. Properties of the association algebra. The abstract algebra \(\mathcal{A} \) is completely reducible in the field of all rational numbers [10], hence it is completely reducible in any number field.

On the other hand, Shur's lemma [11] shows us that any irreducible representation of a commutative algebra in an algebraically closed number field must be linear. Hence any irreducible representation of a commutative matrix algebra in a field containing all characteristic roots of the matrices must be linear.

From the general theory of algebra [12], we know that any representation of a completely reducible algebra decomposes into irreducible representations, each of which is equivalent to one of the irreducible constituents of the regular representation of the algebra.

Since the rank of \(\mathcal{A} \) is \(m+1 \), the regular representation \((\eta) \) decomposes into \(m+1 \) inequivalent and linear representations in the field of all complex numbers. Since these linear representations are the characteristic roots of symmetric matrices, they must be all real. Thus the regular representation \((\eta) \) decomposed into \(m+1 \) inequivalent and linear representations in the field of all real numbers. Even more, if the characteristic roots of all association matrices are rational as in the cases which will be considered in the next section, then \((\eta) \) decomposes into \(m+1 \) inequivalent and linear representations in the field of all rational numbers.

On account of the fact that

\[
A_{i} G_{v} = G_{v} A_{i} = n_{i} G_{v}, \quad i = 1, 2, \ldots, m
\]

we can choose a non-singular matrix \(C \) of order \(m+1 \) in the field of all real numbers, being of the form
\[
C = \begin{bmatrix}
 c_{oo} & c_{ol} & \cdots & c_{om} \\
 c_{lo} & c_{ll} & \cdots & c_{lm} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{mo} & c_{ml} & \cdots & c_{mm}
\end{bmatrix},
\]

where \(c_{oo} = c_{ol} = \cdots = c_{om} = 1 \),

in such a way that we have simultaneously

\[
A_u = \mathcal{O}_u C^{-1} C, u = 0, 1, 2, \ldots, m,
\]

where

\[
\mathcal{O}_u = \begin{bmatrix}
 z_{0u} \\
 \vdots \\
 z_{nu}
\end{bmatrix}, z_{0u} = n_u; u = 0, 1, 2, \ldots, m
\]

Let

\[
A^* = \sum_{t=0}^{m} c_{ut} A_t,
\]

then

\[
A_1 A^* = \sum_{t=0}^{m} c_{ut} A_1 A_t = \sum_{k=0}^{m} \left(\sum_{t=0}^{m} p_{kt} c_{kt}^k \right) A_k
\]

\[
= \sum_{k=0}^{m} \left(\sum_{t=0}^{m} p_{kt} c_{kt}^k \right) A_k
\]

\[
= \sum_{k=0}^{m} \left(\sum_{t=0}^{m} p_{kt} c_{kt}^k \right) A_k^*.
\]
\[= \sum_{k=0}^{m} z_{ui} u^k A^* = z_{ui} A^* u \]

where we have put
\[C^{-1} = || c^{ij} || \cdot \]

Multiplying (2.6) by \(c_{wi} \) and summing up with respect to \(i \), we get
\[(2.7) \quad A^*_w A^*_u = \sum_{i=0}^{m} c_{wi} z_{ui} A^*_u , \]

and similarly
\[(2.8) \quad A^*_u A^*_w = \sum_{i=0}^{m} c_{ui} z_{wi} A^*_w . \]

Thus we get
\[(2.9) \quad \sum_{i=0}^{m} c_{ui} z_{wi} = 0 \quad \text{if} \quad u \neq w , \]

and
\[(2.10) \quad A^*_u = (\sum_{i=0}^{m} c_{ui} z_{ui})^{-1} \cdot A^*_u , \quad u = 0, 1, 2, \ldots, m \]

are orthogonal system of idempotent matrices. It is clear that
\[(2.11) \quad A^*_o = v^{-1} \cdot G_v , \]

and
\[(2.12) \quad l_v = A^*_o + A^* + \ldots + A^*_m . \]

Now, since the matrix algebra \(\mathcal{U} \) is also a representation of \(\mathcal{G} \), we are going to find out the multiplicities of linear representations in \(\mathcal{U} \).

Let \(\alpha_o, \alpha_1, \ldots, \alpha_m \) be the respective multiplicities of \(m+1 \) linear representations in \(\mathcal{U} \). First, by considering the trace of \(G_v \), we find that
(2.13) \[\alpha_0 = 1. \]

Next, by considering traces of \(A_0, A_1, \ldots, A_m \), we get the following system of linear equations.

\[\alpha_0 + \alpha_1 + \ldots + \alpha_m = v, \]
\[\alpha_{01} + \alpha_{11} + \ldots + \alpha_{m1} = 0, \]
(2.14)
\[\ldots \ldots \ldots \ldots \ldots \]
\[\alpha_{0m} + \alpha_{1m} + \ldots + \alpha_{mm} = 0. \]

Since \(m+1 \) vectors of dimension \((m+1) \)

\((1, n_1, n_2, \ldots, n_m), (1, z_{11}, z_{12}, \ldots, z_{1m}), \ldots, (1, z_{m1}, z_{m2}, \ldots, z_{mm})\)

are linearly independent, the coefficient matrix of (2.14) is non-singular, and consequently the multiplicities \(\alpha_0, \alpha_1, \ldots, \alpha_m \) are determined uniquely by the equations (2.14).

\[\S \text{. Examples of associations of certain types.} \]

(1) Group divisible type: The number of treatments is \(v = mn \), where \(m \) and \(n \) are positive integers. They can be divided into \(m \) groups of \(n \) elements each, such that any two treatments in the same group are 1st associates and two treatments in different groups are 2nd associates.

If the whole treatments are numbered lexicographically with respect to the order of groups and then with respect to the order of treatments in groups, i.e., the \(j \)-th treatment in the \(i \)-th group bears the number \((i-1)n + j \), then the association matrices have simple forms as follows:
(3.1) \[A_0 + A_1 = \begin{array}{c}
| G_n \cdots m \\
0 \\
G_n \cdots G_n
\end{array} \]
and \[A_1 = G_v - A_0 - A_1. \]

and

(3.2) \[n_1 = n-1, \quad n_2 = (m-1)n. \]

The regular representation \(\varphi \) of the association algebra is generated by the mappings

\[A_0 \rightarrow \varphi_0 = I, \]

(3.3)
\[A_1 \rightarrow \varphi_1 = \begin{pmatrix} 0 & 1 & 0 \\ n-1 & n-2 & 0 \\ 0 & 0 & n-1 \end{pmatrix}, \]
\[A_1 \rightarrow \varphi_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & n-1 \\ (m-1)n & (m-1)n & (m-2)n \end{pmatrix}. \]

Transforming by a non-singular matrix

(3.4)
\[C = \begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1/n-1 \\
1 & -1/m-1 & 0
\end{array} \]

we get

(3.5)
\[C\varphi_1 C^{-1} = \begin{pmatrix} n-1 & 0 & 0 \\ 0 & n-1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad C\varphi_2 C^{-1} = \begin{pmatrix} (m-1)n & 0 & 0 \\ 0 & -n & 0 \\ 0 & 0 & 0 \end{pmatrix}. \]

Therefore

(3.6)
\[\sum_{j=0}^{2} c_{1j} z_{1j} = 1.1 + 1.n-1 = \frac{1}{m-1}(-n) = \frac{mn}{m-1} \]
\[\sum_{j=0}^{2} c_{2j} z_{2j} = 1.1 + \frac{1}{n-1}(-1) + 0.0 = \frac{n}{n-1} \]
Thus the three orthogonal idempotents are given by

\[A_0^\# = (mn)^{-1} [A_0 + A_1 + A_2], \]

\[A_1^\# = (mn)^{-1} [(m-1)A_0 + (m-1)A_1 - A_2], \]

\[A_1^\# = n^{-1} [(n-1)A_0 - A_1]. \]

The multiplicities of the linear representations induced by those idempotents in the matrix association algebra are

\[\alpha_0 = 1, \quad \alpha_1 = m-1, \quad \alpha_2 = m(n-1) \]

respectively, and they are nothing but the ranks of those idempotents.

(2) Triangular type: The number of treatments is \(v = n(n-1)/2 \), where \(n \) is a positive integer. We take an \(n/n \) square, and fill the \(n(n-1)/2 \) positions above the main diagonal by different \(n(n-1)/2 \) treatments, taken in order. The positions in the main diagonal are left blank, while the positions below the main diagonal are filled so that the scheme is symmetrical with respect to the main diagonal—see the following figure.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Hence

\[n_1 = 2n - 4, \quad n_2 = (n-2)(n-3)/2. \]

The regular representation of the association algebra in this case is given by
\[A_0 \rightarrow \rho_0 = I_3, \]

\[A_1 \rightarrow \rho_1 = \begin{pmatrix} 0 & 1 & 0 \\ 2n-4 & n-2 & 4 \\ 0 & n-3 & 2n-8 \end{pmatrix} \]

(3.10) ():

\[A_1 \rightarrow \rho_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & n-3 & 2n-8 \\ (n-2)(n-3)/2 & (n-3)(n-4)/2 & (n-4)(n-5)/2 \end{pmatrix} \]

Transforming by a non-singular matrix

(3.11) \[C = \begin{pmatrix} 1 & 1 & 1 \\ 2n-4 & n-4 & -4 \\ -(n-2)(n-3) & n-3 & -2 \end{pmatrix} \]

we get

(3.12) \[\rho_1 c^{-1} = \begin{pmatrix} 2n-4 & 0 & 0 \\ 0 & n-4 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \quad \rho_2 c^{-1} = \begin{pmatrix} (n-2)(n-3)/2 & 0 & 0 \\ 0 & -(n-3) & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

Therefore

\[\sum_{j=0}^{2} c_{1j}^{2} z_{1j} = (2n-4).1 + (n-4).(-4).[-(n-3)] = n(n-2) \]

(3.13)

\[\sum_{j=0}^{2} c_{2j}^{2} z_{2j} = -(n-2)(n-3).1 + (n-3).(-2) + (-2).1 = 1(n-1)(n-2). \]

Hence we get the three orthogonal idempotents as follows:

\[A_0^\# = \frac{2}{n(n-1)} \begin{pmatrix} A_0 & + A_1 + A_2 \end{pmatrix}, \]

(3.14)

\[A_1^\# = \frac{1}{n(n-1)} \begin{pmatrix} (2n-4) A_0 + (n-4) A_1 - 4A_2 \end{pmatrix}, \]

\[A_2^\# = \frac{1}{(n-1)(n-2)} \begin{pmatrix} (n-2)(n-3)A_0 - (n-3) A_1 + 2A_2 \end{pmatrix}. \]

with respective ranks
\((3.15) \quad \alpha_0 = \text{tr} A_0^\# = 1, \quad \alpha_1 = \text{tr} A_1^\# = n-1, \quad \alpha_2 = \text{tr} A_2^\# = n(n-3)/2. \)

(3) \(G_2 \) type: The number of treatments is \(v = mn \), where \(m \) and \(n \) are positive integers. They can be arranged in the form of \(m \times n \) treatments in the same column and the remaining \((m-1)(n-1)\) treatments are the 3rd associates [8]. Hence

\((3.16) \quad n_1 = n-1, \quad n_2 = m-1, \quad n_3 = (m-1)(n-1). \)

The regular representation of the association algebra is generated by

\[
A_o \rightarrow P_o = I_4
\]

\[
A_1 \rightarrow P_1 = \begin{vmatrix}
0 & 1 & 0 & 0 \\
& n-1 & n-2 & 0 \\
0 & 0 & 0 & 1 \\
& 0 & n-1 & n-2 \\
\end{vmatrix},
\]

\[
A_1 \rightarrow P_2 = \begin{vmatrix}
0 & 0 & 1 & 0 \\
& 0 & 0 & 1 \\
& m-1 & 0 & m-2 \\
& 0 & m-1 & 0 & m-2 \\
\end{vmatrix},
\]

\[
A_3 \rightarrow P_3 = \begin{vmatrix}
0 & 0 & 0 & 1 \\
& 0 & n-1 & n-2 \\
& 0 & m-1 & 0 & m-2 \\
& (n-1)(m-1) & (n-2)(m-1) & (n-1)(m-2) & (n-2)(m-2) \\
\end{vmatrix},
\]

Transforming by a non-singular matrix

\((3.18) \quad C = \begin{vmatrix}
1 & 1 & 1 & 1 \\
& n-1 & -1 & n-1 & -1 \\
& m-1 & m-1 & -1 & -1 \\
& (n-1)(m-1) & -(m-1) & -(n-1) & 1 \\
\end{vmatrix}, \)

we get
\[z_{00} = 1, \quad z_{01} = n-1, \quad z_{02} = m-1, \quad z_{03} = (n-1)(m-1), \]
\[z_{10} = 1, \quad z_{11} = -1, \quad z_{12} = m-1, \quad z_{13} = -(m-1), \]
\[z_{20} = 1, \quad z_{21} = n-1, \quad z_{22} = -1, \quad z_{23} = -(n-1), \]
\[z_{30} = 1, \quad z_{31} = -1, \quad z_{32} = -1, \quad z_{33} = 1. \]

Hence we have four orthogonal idempotents

\[A_0^* = \frac{1}{mn} [A_0 + A_1 + A_2 + A_3], \]
\[A_1^* = \frac{1}{mn} [(n-1) A_0 - A_1 + (n-1) A_2 - A_3], \]
\[A_2^* = \frac{1}{mn} [(m-1) A_0 + (m-1) A_1 - A_2 - A_3], \]
\[A_3^* = \frac{1}{mn} [(n-1)(m-1) A_0 - (m-1) A_1 - (n-1) A_2 + A_3]. \]

with respective ranks

\[\alpha_0 = \text{tr} A_0^* = 1, \quad \alpha_1 = \text{tr} A_1^* = n-1, \]
\[\alpha_2 = \text{tr} A_2^* = m-1, \quad \alpha_3 = \text{tr} A_3^* = (n-1)(m-1). \]

§4. The relationship algebra of a PBIBD. We now define the so-called relationship matrices of a PBIBD. There are \(W = bk = vr \) experimental units in the whole and they are numbered from 1 through \(W \) in any way but once for all.

(1) Identity relation: Corresponding to this relation, we take
\(I = I_w \), i.e., the unit matrix of order \(W \).

(2) Universal relation: Corresponding to this relation, we take
\(G = G_w \), where \(G_w \) stands for the matrix of order \(W \) whose elements are all unity.

(3) Block relation: Let the incidence matrix of blocks be

\[\psi = \| \eta_1 \eta_2 \ldots \eta_b \|. \]
where
\[\eta_a' = (\eta_a^1, \eta_a^2, \ldots, \eta_a^m) \] with \(\eta_{af} = \{1\), if the \(f\)-th unit belongs to the \(a\)-th block,
0, otherwise,

then the block relation is represented by a \(W \times W \) matrix

\[(4.1) \quad B = \Psi \Psi'. \]

(4) Treatment relation: Let the incidence matrix of treatments be

\[\Phi = \| \zeta_1 \zeta_2 \ldots \zeta_\nu \|, \]

where
\[\zeta_\alpha' = (\zeta_{\alpha 1} \zeta_{\alpha 2} \ldots \zeta_{\alpha m}) \] with \(\zeta_{\alpha f} = \{1\), if the \(\alpha\)-th treatment occurs at the \(f\)-th unit,
0, otherwise,

then the treatment relation is represented by the following \(m+1 \) matrices of order \(W \):

\[(4.2) \quad T = T_0, T_1, T_2, \ldots, T_m \]

where

\[(4.3) \quad T_u = \| t_{ug}^u \| = \Phi A_u \Phi', \quad u = 0, 1, \ldots, m. \]

It is seen immediately that

\[(4.4) \quad \sum_{u=0}^{m} T_u = G_1. \]

Also

\[(4.5) \quad G_1^2 = w G, \quad E G = G B = k G, \quad B^2 = k B, \]

and

\[(4.6) \quad G T_u = T_u G = r n_u G, \quad u = 0, 1, \ldots, m. \]
Let $N = \| n_{\alpha \beta} \|$ be the incidence matrix of the design, then, since

$$N = \Phi \psi,$$

and

$$\text{(4.7)} \quad NN' = \sum_{u=0}^{m} \lambda_u A_u,$$

it follows that

$$\text{(4.8)} \quad NN' = \sum_{u=0}^{m} \rho_u A_u^\#,$$

where

$$\rho_o = r + n_1 \lambda_1 + \ldots + n_m \lambda_m = rk, \quad \rho_u = \sum_{j=0}^{m} z_{uj} \lambda_j^u,$$

$$u = 1, 2, \ldots, m.$$

ρ_u are the characteristic roots of the matrix NN' with multiplicities α_u respectively. \text{(4.8)} is the spectral decomposition of NN'. The design is said to be regular, if all ρ's are positive. We shall be mainly concerned with regular PBIBDs.

It can be shown that

$$\text{(4.10)} \quad T_{BT} = \Phi NN' \Phi' = \sum_{u=0}^{m} \lambda_u T_u,$$

$$\text{(4.11)} \quad T_u BT_w = \sum_{t=0}^{m} \sum_{k, k'}^{m} \lambda_{k, k'} p_{u k, k'}^t T_w,$$

and

$$\text{(4.12)} \quad T_u T_w = \sum_{t=0}^{m} p_{u w}^t T_t.$$

Hence the linear closure with respect to the field of all real numbers of the set of the following $4m + 3$ matrices
(4.13) \[I, G, B, T_u, T_B, BT_u, BT_B, \quad u = 1, 2, \ldots, m, \]
is a 1 near associative algebra \(\mathcal{R} \), which is called the relationship algebra of the PBIBD.

The relationship algebra \(\mathcal{R} \) contains a subalgebra \(\mathcal{R}^* \) generated by \(T_u, \quad u = 0, 1, \ldots, m \), which is isomorphic to the association algebra \(\mathcal{U} \).

As a special case, we get the relationship algebra of a balanced incomplete block design--BIBD in short--as the linear closure \([I, G, B, T, TB, BT, BTB]\). This algebra was investigated by A. T. James [4] in detail. H. B. Mann [6] exploited more general algebra which is associated with linear hypotheses. The relationship algebra \(\mathcal{R} \) of a PBIBD is located in between James' algebra and Mann's algebra, so to speak.

The relationship algebra \(\mathcal{R} \) of a PBIBD is not commutative in general. Since \(\mathcal{R} \) is generated by symmetric matrices, it is completely reducible. Hence all irreducible representations of \(\mathcal{R} \) are obtained by reducing its regular representation.

\([G]\), the totality of multiples of \(G \), is a one-dimensional two-sided ideal of \(\mathcal{R} \) and

\[G^2 = wG, \quad BG = GB = kG, \quad T_uG = GT_u = rn_uG. \]

Hence we obtain a linear representation \(\mathcal{R}^{(1)}_G \) induced by \([G] \) as follows:

\[
(4.14) \quad \mathcal{R}^{(1)}_G: \quad I \rightarrow 1, \quad G \rightarrow w, \quad B \rightarrow k, \quad T_u \rightarrow rn_u.
\]

Next we shall consider the factor algebra \(\mathcal{R}/[G] \), i.e., consider the algebra \(\mathcal{R} \mod G \). To this end, it is convenient to change the basis of \(\mathcal{R} \) into \([I, G, B, T_u^*, T_B^*, BT_u^*, BT_B^*, u = 1, 2, \ldots, m]\).

\[
(4.15) \quad T_u^* = \frac{1}{d} A_u^* = \sum_{j=0}^{m} c_{uj} T_j, \quad u = 1, \ldots, m,
\]
\[(4.16) \quad T_{uT_{w}}^{*} = \hat{A}_{u}^{*} \hat{A}_{w}^{*} = r \hat{A}_{u}^{*} \hat{A}_{w}^{*} = r(\sum_{i=0}^{m} c_{i} z_{ui}) \delta_{uw} T_{u}^{*}, \]

and

\[(4.17) \quad T_{u}^{*} T_{w}^{*} = \hat{A}_{u}^{*} \hat{A}_{w}^{*} \hat{A}_{u}^{*} \hat{A}_{w}^{*} = \hat{A}_{u}^{*} \hat{A}_{w}^{*} \hat{A}_{u}^{*} \hat{A}_{w}^{*} \]

\[= (\sum_{i=0}^{m} z_{ui} \lambda_{i}) \hat{A}_{u}^{*} \hat{A}_{w}^{*} = \rho_{u} (\sum_{i=0}^{m} c_{i} z_{ui}) \delta_{uw} T_{u}^{*}. \]

The following \(m\) subalgebras

\[(4.18) \quad [T_{u}^{*}, B T_{u}^{*}, T_{u}^{*} B, B T_{u}^{*} B] \mod. G, u = 1, 2, \ldots, m \]

are two-sided ideals of \(\mathfrak{g}\) mod. \(G\), and they are annihilating each other. Indeed, for instance,

\[T_{u}^{*} B \cdot T_{w}^{*} B = T_{u}^{*} B T_{w}^{*} B = \rho_{u} (\sum_{i=0}^{m} c_{i} z_{ui}) \delta_{uw} T_{u}^{*}. \]

If \(\rho_{u} = 0\), then

\[B T_{u}^{*} = T_{u}^{*} B = B T_{u}^{*} B = 0, \]

and consequently the subalgebra reduces to \([T_{u}^{*}]\) mod. \(G\).

Thus in the regular case, there are \(m\) inequivalent irreducible representations of the 2nd degree, each of which being induced by a one-sided ideal of the above two-sided ideals.

Now by direct calculations, we obtain

\[T_{i} [T_{u}^{*} B T_{u}^{*} B_{u}, B T_{u}^{*} B_{u}, B T_{u}^{*} B_{u}] = [T_{u}^{*} B T_{u}^{*} B_{u}, B T_{u}^{*} B_{u}] \]

\[
\begin{pmatrix}
 rz_{ui} & \rho_{z_{ui}} & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & rz_{ui} & \rho_{z_{ui}} \\
 0 & 0 & 0 & 0
\end{pmatrix},
\]

\[(4.19) \quad \text{.} \]
\[B \left[T^*_u, B T^*_u, T^*_u, B T^*_u \right] = \left[T^*_u, B T^*_u, T^*_u, B T^*_u \right] \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & k & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & k \end{bmatrix}. \]

Thus we get \(m \) irreducible representations of the 2nd degree:

\[1 \rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad G \rightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad B \rightarrow \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \]

\[\mathcal{R}^{(2)}_u: \quad T_1 \rightarrow \begin{bmatrix} r^2 u & r^2 u^2 \\ 0 & 0 \end{bmatrix}, \quad u = 1, 2, \ldots, m \]

\[i = 1, 2, \ldots, m \]

Other irreducible representations of \(\mathcal{R} \) are obtained by considering the factor algebra

\[\mathcal{R}/[G]/[T^*_u, B T^*_u, T^*_u, B T^*_u, u = 0, 2, \ldots, m]/[G]. \]

They are given by

\[\mathcal{R}^{(1)}_o: \quad I \rightarrow 1, \quad G \rightarrow o, \quad B \rightarrow o, \quad T_1 \rightarrow o, \quad i = 1, 2, \ldots, m \]

and

\[\mathcal{R}^{(1)}_l: \quad I \rightarrow 1, \quad G \rightarrow o, \quad B \rightarrow k, \quad T_1 \rightarrow o, \quad i = 1, 2, \ldots, m. \]

Since

\[1^2 + 1^2 + 1^2 + m 2^2 = 4m + 3, \]

there can be no other irreducible representations of \(\mathcal{R} \).

We shall show that

\[\mathcal{R} \sim (W-b-v+1)\mathcal{R}^{(1)}_o + (b-v)\mathcal{R}^{(1)}_l + \mathcal{R}^{(1)}_G + \sum_{u=1}^{m} \alpha^{u} \mathcal{R}^{(1)}_u \]

if the design is regular and therefore \(v \leq b \). If \(v > b \), then \(\text{NN}' \) must be
singular and hence at least one of \(\rho_u \) should vanish.

Let

\[
\mathfrak{g} \sim \gamma_0 \mathfrak{g}_0^{(1)} + \gamma_1 \mathfrak{g}_1^{(1)} + \gamma_G \mathfrak{g}_G^{(1)} + \sum_{u=1}^{m} \beta_u \mathfrak{g}_u^{(1)},
\]

then we get

\[
\text{tr } I = W = \gamma_0 + \gamma_1 + \gamma_G + 2 \sum_{u=1}^{m} \beta_u,
\]

\[
\text{tr } G = W = W\gamma_G,
\]

\[
\text{tr } B = W = k\gamma_1 + k\gamma_G + k \sum_{u=1}^{m} \beta_u,
\]

\[
\text{tr } T_i = 0 = r\gamma_1^i + r \sum_{u=1}^{m} \beta_u z_{ui}, \quad i = 1, 2, \ldots, m.
\]

From the first three equations of (4.24), we get

\[
\gamma_G = 1, \quad \gamma_0 = W - b - \sum_{u=1}^{m} \beta_u.
\]

Comparing the last \(m \) equations of (4.24) with those of (2.14), we get

\[
\beta_u = \alpha_u, \quad u = 1, 2, \ldots, m.
\]

Consequently it follows that

\[
\gamma_0 = W - b - v + 1.
\]

Let

\[
(4.25) \quad T_{u}^\# = \Phi_{u}^\# A_{u}^\#, \quad u = 1, 2, \ldots, m,
\]

then it is clear that

\[
(4.26) \quad T_{u}^\# T_{w}^\# = r\delta_{uw} T_{u}^\#.
\]

Now, let us consider the following \(m \) matrices:
(4.27) \[V_u = (T^u - \frac{1}{k} BT^u)(T^u - \frac{1}{k} T_u^B), \quad u = 1, 2, \ldots, m. \]

It can be shown that

\[V_u V_w = \delta_{uw} r(r - \frac{\rho_u}{k}) V_u, \]

and

\[\text{tr} V_u = r \cdot \text{tr}(I - \frac{1}{k} B) \mathcal{A}_u^\phi (I - \frac{1}{k} B) \]

\[= r \cdot \text{tr} \mathcal{A}_u^\phi (I - \frac{1}{k} B) \mathcal{A}_u^\phi = r \cdot \text{tr} \mathcal{A}_u^\phi (rI - \frac{\rho_u}{k} \mathcal{N}) \]

\[= r(r - \frac{\rho_u}{k}) \text{tr} \mathcal{A}_u^\phi = r(r - \frac{\rho_u}{k}) \alpha_u. \]

In other words, m matrices

(4.29) \[V_u^# = \frac{k}{r(k - \rho_u)} (T^u - \frac{1}{k} BT^u)(T^u - \frac{1}{k} T_u^B), \quad u = 1, 2, \ldots, m \]

are mutually orthogonal idempotents of rank \(\alpha_u \), \(u = 1, 2, \ldots, m \) respectively.

Thus the following expression

(4.30) \[I = (I - \frac{1}{k} B - \sum_{u=1}^{m} V_u^#) + (\frac{1}{k} B - \frac{1}{w} G) + \frac{1}{w} G + \sum_{u=1}^{m} V_u^# \]

is the decomposition of the unit of \(\mathcal{R} \) into mutually orthogonal idempotents, which will be shown to be useful from the point of view of analysis of variance.

§5. Analysis of PBIBD. We are concerned with the linear model which is often called the \textbf{intra-block model}.

\[x = \gamma + \mathbf{\tau} + \beta + e, \]

where \(x' = (x_1, \ldots, x_w) \) stands for the observation vector, \(\gamma \) is the general mean, \(\mathbf{\tau}' = (\tau_1, \ldots, \tau_v) \) and \(\beta' = (\beta_1, \ldots, \beta_b) \) are treatment and block effects.
being subjected to the restrictions

\[\sum_{\alpha=1}^{v} \tau_{\alpha} = \sum_{a=1}^{b} \beta_{a} = 0 \]

respectively, and finally \(e' = (e_1, \ldots, e_w) \) is the error being distributed as \(N(0, \sigma^2 I) \). We have the adjusted normal equation [2]

\[(5.1) \quad \left[r(1 - \frac{1}{k}) A_0 - \frac{\lambda_1}{k} A_1 - \ldots - \frac{\lambda_m}{k} A_m \right] t = Q, \]

or

\[(5.2) \quad \sum_{u=1}^{m} \frac{rk-\rho_u}{k} A^u t = Q. \]

Let \(\alpha_u \) linearly independent column vectors of \(A^u \) be

\[a^{(u)}_{v+1}, a^{(u)}_{v+2}, \ldots, a^{(u)}_{v+\alpha_u}, v_u = 1+\alpha_1 + \ldots + \alpha_{u-1} \],

then

\[(5.3) \quad a^{(u)}_{v+\alpha}, t = \frac{rk-\rho_u}{k} a^{(u)}_{v+\alpha} t, \quad \alpha = 1, 2, \ldots, \alpha_u \]

Hence

\[(5.4) \quad a^{(u)}_{v+\alpha} t = \frac{k}{rk-\rho_u} a^{(u)}_{v+\alpha} Q, \quad E(a^{(u)}_{v+\alpha} t) = a^{(u)}_{v+\alpha} t, \quad V(a^{(u)}_{v+\alpha} t) = \frac{k}{rk-\rho_u} \sigma^2 a^{(u)}_{v+\alpha} t. \]

Balance is achieved over the set of normalized contrasts \(a^{(u)}_{v+\alpha} t / a^{(u)}_{v+\alpha} + \alpha_u \), \(\alpha = 1, \ldots, \alpha_u \).

Since

\[(5.5) \quad x' y^u \# = \frac{k}{rk-\rho_u} Q A^u Q = t'A^u Q, \quad u = 1, 2, \ldots, m, \]

and

\[\sum_{u=1}^{m} A^u \# = I - A^0 \# \]
it follows that
\[
\sum_{u=1}^{m} x'uV'_u x = t'Q = s^2_t \; ; \text{sum of squares due to treatments adjusted.}
\]

Under this present model, we have
\[
x'uV'_u x = \frac{k}{rk-\rho_u} QA^uQ = e'Ve + 2\tau'A^u(\Omega - \frac{1}{k}\Lambda^u)e + (r-\rho_u)\tau^u\tau,
\]
and therefore
\[
\chi^2_u = x'uV'_u x / \sigma^2
\]
is distributed as the non-central chi-square distribution of degrees of freedom \(\alpha_u \) and with the non-centrality parameter
\[
\delta_u = \frac{rk-\rho_u}{k\sigma^2} \tau^u\tau.
\]
The sum of squares due to error \(s^2_e \) is given by
\[
s^2_e = x'(I - \frac{1}{k}B - \sum_{u=1}^{m} V'^u) x = e'(I - \frac{1}{k}B - \sum_{u=1}^{m} V'^u)e,
\]
and therefore
\[
\chi^2_e = s^2_e / \sigma^2
\]
is distributed as the central chi-square distribution of degrees of freedom \(w-b-v+1 \). The variates \(\chi^2_1, \ldots, \chi^2_m, \chi^2_e \) are mutually independent in the stochastic sense. Hence under the null-hypothesis
\[
H_{0}^{(u)}: A^u_{\tau} = 0,
\]
the test statistic
\[
F_u = \frac{w-b-v+1}{\alpha_u} \frac{x'uV'_u x}{s^2_e}
\]
is distributed as the central F-distribution of degrees of freedom \((\alpha_u, W-b-v+1)\).

§ 6. Analysis of variance of PBIBDs of certain types. In this section, we present explicit expressions of the partition of the sum of squares due to treatments given by (5.6) and describe their statistical meanings for PBIBDS of certain types.

(1) PBIBD of group divisible type (see §3). In this case we have

\[
\begin{align*}
A_0^* &= \frac{1}{mn} \left[A_0 + A_1 + A_2 \right], \quad \alpha_0 = 1 \\
A_1^* &= \frac{1}{mn} \left[(m-1)A_0 + (m-1)A_1 - A_2 \right], \quad \alpha_1 = m-1 \\
A_2^* &= \frac{1}{n} \left[(n-1)A_0 - A_1 \right] \quad \alpha_2 = m(n-1).
\end{align*}
\]

Now, we assume the following inner structure of the treatment-effects, which seems pertinent to the association under consideration.

\[(6.1) \quad \tau_{(i-1)n+\alpha} = \theta_1 + \pi_1^\alpha, \quad \alpha = 1, 2, \ldots, n; \quad i = 1, 2, \ldots, m,
\]

which are subjected to the restrictions

\[(6.2) \quad \sum_{i=1}^{m} \theta_1 = 0, \quad \sum_{\alpha=1}^{n} \pi_1^\alpha = 0, \quad i = 1, \ldots, m,
\]

so that there are just \(mn-1\) independent parameters. \(\theta' = (\theta_1, \ldots, \theta_m)\) may be regarded as the group-effects and \(\pi_1^\alpha\) may be regarded as the interaction between the \(i\)-th group and the \((i-1)n+\alpha\)-th treatment. The structural model (6.1) may be called the inner-parametric representation of the treatment-effects.

By direct calculations we obtain the following expressions:
\[A^*_1 \]

represents the contrasts between group-effects, whereas \(A^*_2 \) represents

\[
\begin{pmatrix}
A^*_1 \\
A^*_2
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
(m-1) \theta_1 \\
\vdots \\
m \theta_m
\end{pmatrix}
\]
the contrasts between interactions.

Let

\[(6.5) \sum_{\alpha=1}^{n} Q_{(i-1)n+\alpha} = g_i, \quad i = 1, \ldots, m,\]

then since

\[x'v_1^\# x = \frac{k}{r(k-1)-(n-1)\lambda_1 + \lambda_2} Q'A_1^\# Q = \frac{k}{mn\lambda_2} Q'A_1^\# Q,\]

\[x'v_2^\# x = \frac{k}{r(k-1) + \lambda_1} Q'A_2^\# Q,\]

and

\[
A_1^\# Q = \frac{1}{n} \begin{bmatrix}
q_1 \\
\vdots \\
q_1 \\
q_m \\
\vdots \\
q_m \\
\end{bmatrix}, \quad A_2^\# Q = \begin{bmatrix}
q_1 & -\frac{1}{n} q_1 \\
q_1 & -\frac{1}{n} q_1 \\
q_{m-1} - \frac{1}{n} q_m \\
q_{m-1} - \frac{1}{n} q_m \\
\end{bmatrix}
\]

it follows that

\[(6.6) \quad x'v_1^\# x = \frac{k}{n\lambda_2^v} \sum_{i=1}^{m} g_i^2,\]

and

\[(6.7) \quad x'v_2^\# x = \frac{k}{r(k-1) + \lambda_1} \sum_{i=1}^{m} \sum_{\alpha=1}^{n} (Q_{(i-1)n+\alpha} - \frac{1}{n} q_i)^2 \\
= \frac{k}{r(k-1) + \lambda_1} \sum_{f=1}^{v} Q_f^2 - \frac{1}{n} \sum_{i=1}^{m} g_i^2.\]
In terms of \(t \), these turn out to be

\[
x'V#_1x = \frac{\lambda_v}{k} t'A_1^#t,
\]

\[
x'V#_2x = \frac{r(k-1) + \lambda_1}{k} t'A_2^#t,
\]

which were obtained by C. Y. Kramer and R. A. Bradley [5] by another method.

(2) FRIBD of triangular type (see §3). In this case, we have

\[
A_0^# = \frac{2}{n(n-1)} \begin{bmatrix} A_0 + A_1 + A_2 \end{bmatrix}, \quad \alpha_0 = 1,
\]

\[
A_1^# = \frac{1}{n(n-1)} \begin{bmatrix} (2n-4) A_0 + (n-4)A_1 - 4A_2 \end{bmatrix}, \quad \alpha_1 = n-1,
\]

\[
A_2^# = \frac{1}{(n-1)(n-2)} \begin{bmatrix} (n-2)(n-3)A_0 - (n-3)A_1 + 2A_2 \end{bmatrix}, \quad \alpha_2 = \frac{n(n-3)}{2}
\]

We assume the following inner structure of the treatment-effects:

\[n = 5, \quad v = \frac{n(n-1)}{2} = 10.\]

\(\theta_1 + \theta_2 + \pi_{12} \)	\(\theta_1 + \theta_3 + \pi_{13} \)	\(\theta_1 + \theta_4 + \pi_{14} \)	\(\theta_1 + \theta_5 + \pi_{15} \)
\theta_2 + \theta_1 + \pi_{21}	\(\theta_2 + \theta_3 + \pi_{23} \)	\(\theta_2 + \theta_4 + \pi_{24} \)	\(\theta_2 + \theta_5 + \pi_{25} \)
\theta_3 + \theta_1 + \pi_{31}	\(\theta_3 + \theta_2 + \pi_{32} \)	\(\theta_3 + \theta_4 + \pi_{34} \)	\(\theta_3 + \theta_5 + \pi_{35} \)
\theta_4 + \theta_1 + \pi_{41}	\(\theta_4 + \theta_2 + \pi_{42} \)	\(\theta_4 + \theta_3 + \pi_{43} \)	\(\theta_4 + \theta_5 + \pi_{45} \)
\theta_5 + \theta_1 + \pi_{51}	\(\theta_5 + \theta_2 + \pi_{52} \)	\(\theta_5 + \theta_3 + \pi_{53} \)	\(\theta_5 + \theta_4 + \pi_{54} \)

The inner parameters are subjected to the restrictions

\[
\sum_{i=1}^{n} \theta_i = 0, \quad \pi_{ij} = \pi_{ji}, \quad \sum_{j=1}^{n} \pi_{ij} = 0, \quad i = 1, 2, \ldots, n,
\]

so that there are just \(v-1 \) independent parameters.

By direct calculations, we obtain the following expressions:
(6.10) $A_1^\# = \frac{1}{n}$

\[
\begin{pmatrix}
(n-2)\theta_1 + (n-2)\theta_2 & -2\theta_3 & \cdots & -2\theta_{n-1} & -2\theta_n \\
(n-2)\theta_1 & -2\theta_2 + (n-2)\theta_3 & \cdots & -2\theta_{n-1} & -2\theta_n \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
(n-2)\theta_1 & -2\theta_2 & -2\theta_3 & \cdots & -2\theta_{n-1} + (n-2)\theta_n \\
-2\theta_1 + (n-2)\theta_2 & -2\theta_3 & \cdots & -2\theta_{n-1} + (n-2)\theta_n \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-2\theta_1 & -2\theta_2 & -2\theta_3 & \cdots & -2\theta_{n-1} + (n-2)\theta_n \\
1 & & & & \\
\end{pmatrix}
\]

and

(6.11) \(\alpha\)-th component of \(A_2^\tau\)

\[
= \frac{1}{(n-1)(n-2)} \begin{pmatrix} (n-1)(n-3) \end{pmatrix} \text{ interaction } \pi_{ij} \text{ (}i < j\text{) of } \tau_\alpha \\
- (n-3) \Sigma \text{ interactions corresponding to } \\
1\text{st associates of } \tau_\alpha \\
+ 2 \Sigma \text{ interactions corresponding to } 2\text{nd} \\
\text{associates of } \tau_\alpha. \\
\]

Thus \(A_1^\# \tau\) represents the contrasts between main effects \(\theta\) and \(A_2^\tau\) represents the contrasts between interactions \(\pi_{ij}\).

§7. Numerical illustration. There are \(n\) kinds of ingredients \(I_1, I_2, \ldots, I_n\) which are known to be efficient in gaining weights of hogs if added in the feed stuff. We are interested to know whether there are interactions between any two of the ingredients when the mixtures of the two are added in the feed stuff.
We make \(v = n(n-1)/2 \) mixtures of the possible pairs \((I_i, I_j), i \neq j\).

The main effects of the \(n \) original ingredients are denoted by \(\theta_i, i = 1, 2, \ldots, n \)
and the interaction between \(I_i \) and \(I_j \) is denoted by \(\pi_{ij} \). Then the inner-parametric representations of the mixtures are given by

\[
\tau_\alpha = \theta_i + \theta_j + \pi_{ij}
\]

if the \(\alpha \)-th treatment is the mixture of \(I_i \) and \(I_j \) for \(\alpha = 1, 2, \ldots, v = \frac{n(n-1)}{2} \).

Hence in this situation, the association scheme of triangular type is naturally defined among the \(v \) treatments.

Suppose by taking ten litters of \(\frac{1}{4} \) hogs each as blocks, a PBIB of triangular type with parameters

\[
n = 5, \ v = 10, \ b = 10, \ r = k = 4, \ \lambda_1 = 1, \ \lambda_2 = 2
\]

is adopted yielding the following results. Observations are the gains of weights of hogs in pounds after feeding the mixtures of ingredients for 3 months. This experiment is a hypothetical one and the data are borrowed from R. C. Bose and T. Shimamoto [3] and therefore this example should be regarded as a purely illustrative one.
Table 1

A Design of Triangular Type

<table>
<thead>
<tr>
<th>Blocks Treatments</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Treatment Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = (1,2)</td>
<td>2.31</td>
<td>2.86</td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.58</td>
<td></td>
<td></td>
<td>9.40</td>
</tr>
<tr>
<td>2 = (1,3)</td>
<td></td>
<td>2.51</td>
<td></td>
<td>1.41</td>
<td>1.90</td>
<td>3.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.88</td>
</tr>
<tr>
<td>3 = (1,4)</td>
<td>2.89</td>
<td>2.29</td>
<td></td>
<td>1.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.16</td>
</tr>
<tr>
<td>4 = (1,5)</td>
<td></td>
<td></td>
<td>2.54</td>
<td>2.09</td>
<td>2.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.02</td>
</tr>
<tr>
<td>5 = (2,3)</td>
<td>2.28</td>
<td></td>
<td>2.81</td>
<td></td>
<td></td>
<td>2.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.36</td>
</tr>
<tr>
<td>6 = (2,4)</td>
<td>1.77</td>
<td>2.49</td>
<td>2.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.59</td>
</tr>
<tr>
<td>7 = (2,5)</td>
<td>2.72</td>
<td>2.29</td>
<td></td>
<td>1.57</td>
<td>2.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.18</td>
</tr>
<tr>
<td>8 = (3,4)</td>
<td></td>
<td></td>
<td>2.81</td>
<td>2.99</td>
<td>2.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.52</td>
</tr>
<tr>
<td>9 = (3,5)</td>
<td>2.54</td>
<td>2.44</td>
<td>2.23</td>
<td>2.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.33</td>
</tr>
<tr>
<td>10 = (4,5)</td>
<td>1.54</td>
<td></td>
<td>2.87</td>
<td></td>
<td></td>
<td>2.77</td>
<td>2.09</td>
<td></td>
<td></td>
<td></td>
<td>9.27</td>
</tr>
<tr>
<td>Block Totals</td>
<td>10.43</td>
<td>8.11</td>
<td>9.53</td>
<td>10.47</td>
<td>10.95</td>
<td>7.59</td>
<td>8.91</td>
<td>8.89</td>
<td>10.61</td>
<td>8.22</td>
<td>93.71</td>
</tr>
</tbody>
</table>
Table 2
Association

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1st Associates</th>
<th>2nd Associates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2, 3, 4, 5, 6, 7</td>
<td>8, 9, 10</td>
</tr>
<tr>
<td>2</td>
<td>1, 3, 4, 5, 8, 9</td>
<td>6, 7, 10</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 4, 6, 8, 10</td>
<td>5, 7, 9</td>
</tr>
<tr>
<td>4</td>
<td>1, 2, 3, 7, 9, 10</td>
<td>5, 6, 8</td>
</tr>
<tr>
<td>5</td>
<td>1, 2, 6, 7, 8, 9</td>
<td>3, 4, 10</td>
</tr>
<tr>
<td>6</td>
<td>1, 3, 5, 7, 8, 10</td>
<td>2, 4, 9</td>
</tr>
<tr>
<td>7</td>
<td>1, 4, 5, 6, 9, 10</td>
<td>2, 3, 8</td>
</tr>
<tr>
<td>8</td>
<td>2, 3, 5, 6, 9, 10</td>
<td>1, 4, 7</td>
</tr>
<tr>
<td>9</td>
<td>2, 4, 5, 7, 8, 10</td>
<td>1, 3, 6</td>
</tr>
<tr>
<td>10</td>
<td>3, 4, 6, 7, 8, 9</td>
<td>1, 2, 5</td>
</tr>
</tbody>
</table>

Now in this case, since

$$\rho_1 = z^{\lambda}_{10} + z^{\lambda}_{11} \lambda_1 + z^{\lambda}_{12} \lambda_2 = 4 + 1.1 - 2.2 = 1,$$

$$\rho_2 = z^{\lambda}_{20} \lambda_0 + z^{\lambda}_{21} \lambda_1 + z^{\lambda}_{22} \lambda_2 = 4 - 2.1 + 1.2 = 4.$$

and

$$A_1^{\#} = \frac{1}{15} (6A_0 + A_1 - 4A_2), \quad \alpha_1 = 4,$$

$$A_2^{\#} = \frac{1}{12} (6A_0 - 2A_1 + 2A_2), \quad \alpha_2 = 5.$$

it follows that

$$A_1^{\#}Q = \frac{1}{15} (6Q + A_1Q = 4A_2Q),$$

$$A_2^{\#}Q = \frac{1}{6} (3Q - A_1Q + A_2Q).$$

31
There is a relation

\[A_1^#Q + A_2^#Q = Q. \]

Finally, the sums of squares due to main-effects and interactions are given by

\[x'iV_1^#x = \frac{k}{rk - \rho_1} Q'A_1^#Q = \frac{4}{15} Q'A_1^#Q, \]

and

\[x'iV_2^#x = \frac{k}{rk - \rho_2} Q'A_2^#Q = \frac{1}{3} Q'A_2^#A, \]

respectively satisfying the relation

\[\frac{4}{15} Q'A_1^#Q + \frac{1}{3} Q'A_2^#A = t'Q. \]

Thus, we get the following table of the analysis of variance (Table 4) by use of auxiliary Table 3.

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
</table>

Adjusted Treatment Tables and Related Sums

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>A_1Q</th>
<th>A_2Q</th>
<th>A_1Q</th>
<th>A_2Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.2700</td>
<td>0.0525</td>
<td>0.2175</td>
<td>-0.1625</td>
<td>-0.1075</td>
</tr>
<tr>
<td>2</td>
<td>-0.2500</td>
<td>-0.3075</td>
<td>0.5575</td>
<td>-0.2692</td>
<td>0.0192</td>
</tr>
<tr>
<td>3</td>
<td>-0.1075</td>
<td>0.8800</td>
<td>-0.7725</td>
<td>0.2217</td>
<td>-0.3292</td>
</tr>
<tr>
<td>4</td>
<td>0.2225</td>
<td>-1.0300</td>
<td>0.8075</td>
<td>-0.1950</td>
<td>0.4175</td>
</tr>
<tr>
<td>5</td>
<td>-0.5725</td>
<td>0.6600</td>
<td>-0.0875</td>
<td>-0.1617</td>
<td>-0.4108</td>
</tr>
<tr>
<td>6</td>
<td>0.3350</td>
<td>0.3175</td>
<td>-0.6525</td>
<td>0.3292</td>
<td>0.0058</td>
</tr>
<tr>
<td>7</td>
<td>0.4250</td>
<td>-1.1225</td>
<td>0.6875</td>
<td>-0.0875</td>
<td>0.5125</td>
</tr>
<tr>
<td>8</td>
<td>1.0450</td>
<td>-1.4225</td>
<td>0.3775</td>
<td>-0.2225</td>
<td>0.8225</td>
</tr>
<tr>
<td>9</td>
<td>-0.6250</td>
<td>0.6675</td>
<td>-0.0425</td>
<td>-0.1992</td>
<td>-0.4308</td>
</tr>
<tr>
<td>10</td>
<td>-0.2025</td>
<td>1.2950</td>
<td>-1.0925</td>
<td>0.2967</td>
<td>-0.4992</td>
</tr>
<tr>
<td>Total</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4

<table>
<thead>
<tr>
<th>Sources of Variations</th>
<th>Sum of Squares</th>
<th>d.f.</th>
<th>m.s.s.</th>
<th>Variance Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocks</td>
<td>3.2284</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.7467</td>
<td>9</td>
<td>0.08295</td>
<td></td>
</tr>
<tr>
<td>eliminating blocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>main effect</td>
<td>0.1343</td>
<td>4</td>
<td>0.03357</td>
<td>0.230</td>
</tr>
<tr>
<td>interactions</td>
<td>0.6124</td>
<td>5</td>
<td>0.12248</td>
<td>0.841</td>
</tr>
<tr>
<td>Errors</td>
<td>3.0585</td>
<td>21</td>
<td>0.14550</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7.0336</td>
<td>39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

