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1. INTRODUCTIONM-estimators are solutions of the vector equation Pni=1 (Y i; �) = 0. That is, the M-estimator b�satis�es nXi=1 (Y i; b�) = 0: (1)Here we are assuming that Y 1; : : : ;Y n are independent but not necessarily identically distributed,� is a p-dimensional parameter, and  is a known (p � 1)-function that does not depend on ior n. In this description Y i represents the ith datum. In some applications it is advantageousto emphasize the dependence of  on particular components of Y i. For example, in a regressionproblem Y i = (xi; Yi) and (1) would typically be writtennXi=1 (Yi;xi; b�) = 0: (2)where xi is the ith regressor.Huber (1964, 1967) introduced M-estimators and their asymptotic properties, and they werean important part of the development of modern robust statistics. Liang and Zeger (1986) helpedpopularize M-estimators in the biostatistics literature under the name generalized estimating equa-tions (GEE). Obviously, many others have made important contributions. For example, Godambe(1960) introduced the concept of an optimum estimating function in an M-estimator context, andthat paper could be called a forerunner of the M-estimator approach.However, our goal is not to document the development of M-estimators or to give a bibliog-raphy of contributions to the literature. Rather we want to show that the M-estimator approachis simple, powerful, and more widely applicable than many readers imagine. We want students tofeel comfortable �nding and using the asymptotic approximations that 
ow from the method. Thekey advantage is that a very large class of asymptotically normal statistics including delta methodtransformations can be put in the general M-estimator framework. This uni�es large sample ap-proximation methods, simpli�es analysis, and makes computations routine.An important practical consideration is the availability of a symbolic manipulation program2



like Maple; otherwise, the matrix calculations can be overwhelming. Nevertheless, the general theoryis straightforward.We claim that many estimators not thought of as M-estimators can be written in the formof M-estimators. Consider as a simple example the mean deviation from the sample meanb�1 = 1n nXi=1 jYi � Y j:Is this an M-estimator? There is certainly no single equation of the formnXi=1 (Yi; �) = 0that yields b�1. Moreover, there is no family of densities f(y; �) such that b�1 is a component of themaximum likelihood estimator of �. But if we let  1(y; �1; �2) = jy��2j��1 and  2(y; �1; �2) = y��2,then nXi=1 (Yi; b�1; b�2) = 0B@ Pni=1 �jYi � b�2j � b�1�Pni=1 �Yi � b�2� 1CA = 0B@ 00 1CAyields b�2 = Y and b�1 = (1=n)Pni=1 jYi � Y j. We like to use the term \partial M-estimator" foran estimator that is not naturally an M-estimator until additional  functions are added. The keyidea is simple: any estimator that would be an M-estimator if certain parameters were known, is apartial M-estimator because we can \stack"  functions for each of the unknown parameters. Thisaspect of M-estimators is related to the general approach of Randles (1982) for replacing unknownparameters by estimators.From the above example it should be obvious that we can replace b�2 = Y by any otherestimator de�ned by an estimating equation; for example, the sample median. Moreover, we canalso add  functions to give delta method asymptotic results for transformations like b�3 = log(b�1).In this latter context, there are connections to Benichou and Gail (1989).Certainly the combination of standard in
uence curve and \delta theorem" methodology canhandle a larger class of problems than this enhanced M-estimation approach. However, we believethat the combination of a single approach along with a symbolic manipulator like Maple will make3



this M-estimation approach much more likely to be used in complex problems.A description of the basic approach is given in Section 2 along with a few examples. Connec-tions to the in
uence curve are given in Section 3 and then extensions for nonsmooth  functionsare given in Section 4. Extensions for regression are given in Section 5. A discussion of some test-ing problems is given in Section 6, and Section 7 summarizes the key features of the M-estimatormethod. 2. The Basic ApproachM-estimators solve (1), where the vector function  must be a known function that does not dependon i or n. For regression situations, the argument of  will be expanded to depend on regressors xi,but the basic  will still not depend on i. For the moment we will con�ne ourselves to the iid casewhere Y1; : : : ; Yn are iid (possibly vector-valued) with distribution function F . The true parametervalue �0 is de�ned by EF (Y1; �0) = Z  (y; �0)dF (y) = 0: (3)For example, if  (Yi; �) = Yi � �, then clearly the population mean �0 = R ydF (y) is the uniquesolution of R (y � �)dF (y) = 0.If there is one unique �0 satisfying (3), then in general there exists a sequence of M-estimatorsb� such that the weak law of large numbers leads to b� p�! �0 as n!1. Furthermore, if  is suitablysmooth, then Taylor expansion of Gn(�) = n�1Pni=1 (Yi; �) gives0 = Gn(b�) = Gn(�0) +G0n(�0)(b�� �0) +Rn;where G0n(�0) = h@Gn(�)=@�T i����=�0 . For n su�ciently large, we expect G0n(�0) to be nonsingularso that we can rearrange and get:pn(b� � �0) = ��G0n(�0)��1pnGn(�0) +pnR�n: (4)4



Under suitable regularity conditions as n!1,�G0n(�0) = 1n nXi=1 �� @@�T  (Yi; �0)� p�! E �� @@�T  (Y1; �0)� = A(�0): (5)pnGn(�0) d�! MVN(0;B(�0)); where B(�0) = E h (Y1; �0) (Y1; �0)T i : (6)pnR�n p�! 0: (7)If A(�0) exists, the Weak Law of Large Numbers gives (5). If B(�0) exists, then (6) follows fromthe Central Limit Theorem. The hard part to prove is (7). Huber(1967) was the �rst to give generalresults for (7), but there have been many others since then. We shall be content to observe that(7) holds in most regular situations where there are su�cent smoothness conditions on  , and �has �xed dimension p as n!1.Putting (1) and (4){(7) together with Slustky's Theorem, we have thatb� is AMN��0; V (�0)n � as n!1; (8)where V (�0) = A(�0)�1B(�0)fA(�0)�1gT . AMN means \asymptotically multivariate normal."The limiting covariance V (�0) is called the sandwich matrix because the \meat" B(�0) is placedbetween the \bread" A(�0)�1 and fA(�0)�1gT .Extension. Suppose that instead of (1), b� satis�esnXi=1 (Yi; b�) = cn; (9)where cn=pn p�! 0 as n!1. Following the above arguments and noting that cn=pn is absorbedinpnR�n of (4), we can see that as long as (9) and (4){(7) hold, then (8) will also hold. This extensionallows us to cover a much wider class of statistics including empirical quantiles, estimators whose function depends on n, and Bayesian estimators.For maximum likelihood estimation,  (y; �) = @ log f(y; �)=@� is often called the score func-tion. If the data truly come from the assumed parametric family f(y; �), then A(�0) = B(�0) =5



I(�0), the information matrix. In this case the sandwich matrix V (�0) reduces to the usual I(�0)�1.One of the key contributions of M-estimation theory has been to point out what happens when theassumed parametric family is not correct. In such cases there is often a well-de�ned �0 satisfying(3) and b� satisfying (8) but A(�0) 6= B(�0), and valid inference should be carried out using thecorrect limiting covariance matrix V (�0) = A(�0)�1B(�0)fA(�0)�1gT , not I(�0)�1.Using the left-hand-side of (5), we de�ne the empirical estimator of A(�0) byAn(Y ; b�) = G0n(b�) = 1n nXi=1 �� @@�T  (Yi; b�)� :Note that for maximum likelihood estimation, nAn(b�) is the observed information matrix IY (b�).Similarly, the empirical estimator of B(�0) isBn(Y ; b�) = 1n nXi=1 (Yi; b�) (Yi; b�)T :Putting these together yields the empirical sandwich estimatorV n(Y ; b�) = An(Y ; b�)�1Bn(Y ; b�)fAn(Y ; b�)�1gT : (10)V n(Y ; b�) will generally be consistent for V (�0) under mild regularity conditions (see Iverson andRandles (1989) for a general theorem on this convegence).V n(Y ; b�) requires no analytic work beyond specifying the  function. In some problems, it issimpler to work directly with the limiting form V (�0) = A(�0)�1B(�0)fA(�0)�1gT and just plugin estimators for �0 and any other unknown quantities in V (�0). The notation V (�0) suggests that�0 is the only unknown quantity in V (�0), but in reality V (�0) often involves higher moments orother characteristics of the true distribution function F of Yi. In fact there is a range of possibilitiesfor estimating V (�0) depending on what model assumptions are used. For simplicity, we will justuse the notation V n(Y ; b�) for the purely empirical estimator and V (b�) for any of the expectedvalue plus model assumption versions.For maximum likelihood estimation with a correctly speci�ed family, the three competing6



estimators for I(�)�1 are Vn(Y ; b�), hIY (b�)=ni�1 = An(Y ; b�)�1, and I(b�)�1 = V (b�). In this casethe standard estimators hIY (b�)=ni�1 and I(b�)�1 are generally more e�cient than V n(Y ; b�) forestimating I(�)�1. (Clearly nothing can have smaller asymptotic variance for estimating I(�)�1than I(b�MLE)�1.)Now we illustrate these ideas with examples.Example 1 Let b� = (Y ; s2n)T , the sample mean and variance. Here (Yi; �) = 0B@ Yi � �1(Yi � �1)2 � �2 1CAThe �rst component, b�1 = Y , satis�es P(Yi � b�1) = 0, and is by itself an M-estimator. The secondcomponent b�2 = s2n = n�1P(Yi � Y )2, when considered by itself, is not an M-estimator. However,when combined with b�1, the pair (b�1; b�2) is a 2� 1 M-estimator so that b�2 satis�es our de�nitionof a partial M-estimator.Now let us calculate A(�0) and B(�0) where �T0 = (�10; �20):A(�0) = E �� @@�T  (Y1; �0)� = E0B@ 1 02(Y1 � �10) 1 1CA = 0B@ 1 00 1 1CAB(�0) = E h (Y1; �0) (Y1; �0)T i= E0B@ (Y1 � �10)2 (Y1 � �10) �(Y1 � �10)2 � �20�(Y1 � �10) �(Y1 � �10)2 � �20� �(Y1 � �10)2 � �20�2 1CA= 0B@ �20 �3�3 �4 � �220 1CA = 0B@ �2 �3�3 �4 � �4 1CA ;where �k is our notation for the kth central moment of Y1 and the more familiar notation �2 = �20has been substituted at the end. In this case, since A(�0) is the identity matrix, V (�0) = B(�0).7



To estimate B(�0), we may useBn(Y ; b�) = 1n nXi=10B@ (Yi � y)2 (Yi � Y ) h(Yi � Y )2 � s2ni(Yi � Y ) h(Yi � Y )2 � s2ni h(Yi � Y )2 � s2ni2 1CA= 0B@ s2n m3m3 m4 � s4n 1CA ;where the mk are sample kth moments. Looking back at the form for V (�0) and plugging inempirical moment estimators leads to equality of the empirical estimator and the expected valueestimator: V (b�) = V n(Y ; b�) in this case.Note that b� is a maximum likelihood estimator for the normal model density f(y; �) =(2��2)�1 exp(�(y� �1)2=2�2), but  1 = Yi� �1 and  2 = (Yi� �1)2� �2 are not the score functionsthat come from this normal density. The partial derivative of this normal log density yields  1 =(Yi��1)=�2 and  2 = (Yi��1)2=2�22�1=2�2. Thus  functions are not unique|many di�erent onescan lead to the same estimator. Of course di�erent  functions associated with the same estimatoryield di�erent A and B but the same V . For example, using these latter two  functions, theresulting A and B matrices areA(�0) = 0B@ 1�2 00 12�4 1CA ; B(�0) = 0BBBB@ 1�2 �32�3�32�3 �4 � �44�8 1CCCCAIf we further assume that the data truly are normally distributed, then �3 = 0 and �4 = 3�4resulting in A(�0) = B(�0) = I(�0) = Diag(1=�2; 1=2�4). Here the expected value model-basedcovariance estimator would be V (b�) = Diag(1=s2n; 1=2s4n).Note that the likelihood score  functions,  MLE, are related to the original  functions by MLE = C , where C = diag(1=�20; 1=2�220). A little algebra shows that all  of the form C ,where C is nonsingular (but possibly depending on �0 and Y1; : : : ; Yn), lead to an equivalence classhaving the same estimator and asymptotic variance matrix V (�0).8



Example 2 Ratio Estimator Let b� = Y =X, where (Y1; X1); : : : ; (Yn; Xn) is an iid sample of pairswith means EY1 = �Y and EX1 = �X , variances var(Y1) = �2Y and var(X1) = �2X , and covariancecov(Y1; X1) = �Y X . A  function for b� = Y =X is  (Yi; Xi; �) = Yi � �Xi leading to A(�0) = �X ,B(�0) =E(Y1 � �0X1)2, V (�0) =E(Y1 � �0X1)2=�2X , An(Y ; b�) = X, andBn(Y ; b�) = 1n nXi=1 Yi � YXXi!2 :and V n(Y ; b�) = 1X2 1n nXi=1 Yi � YXXi!2 :This variance estimator is often encountered in �nite population sampling contexts.Now consider the following  of dimension 3 that yields b�3 = Y =X as the third componentof b�:  (Yi; Xi; �) = 0BBBB@ Yi � �1Xi � �2�1 � �3�2 1CCCCAThis is a quite interesting  function because the third component does not have any data involvedin it. Nevertheless, this  satis�es all the requirements of a  function and illustrates how to buildthe \delta" method into the M-estimator framework. The A and B matrices areA(�0) = 0BBBB@ 1 0 00 1 0�1 �30 �20 1CCCCA B(�0) = 0BBBB@ �2Y �Y X 0�Y X �2X 00 0 0 1CCCCAThis example illustrates the fact that B(�0) can be singular (although A(�0) generally cannot).In fact whenever a  funtion has components that involve no data, then the resulting B matrixwill be singular. In Maple we computed V (�0) = A(�0)�1B(�0)fA(�0)�1gT , and obtained for the(3,3) element v33 = 1�220 h�2Y � 2�30�Y X + �230�2Xi :This latter expression for the asymptotic variance of pnb�3 can be shown to be the same as9



E(Y1 � �30X1)2=�2X obtained earlier upon noting that �20 = �X .Sample Maple Programwith(linalg): Brings in the linear algebra packagevA:=[1,0,0,0,1,0,-1,theta[3],theta[2]]; Make a vector of the entries of AA:=matrix(3,3,vA); Create A from vAAinv:=inverse(A);vB:=[sigma[y]^2,sigma[xy],0,sigma[xy],sigma[x]^2,0,0,0,0];B:=matrix(3,3,vB);V:=multiply(Ainv,B,transpose(Ainv));simplify(V[3,3]); �y2 � 2 �3 �xy + �32 �x2�22The above display is what appears on the Maple window for the last command.Example 3 Further illustration of the \delta method." In the context of Example 1, suppose weare interested in sn = ps2n and log(s2n). We could of course just rede�ne �2 in Example 1 to be �22 andexp(�2), respectively. Instead, we prefer to add  3(Yi; �) = p�2 � �3 and  4(Yi; �) = log(�2)� �4because it seems conceptually simpler and it also gives the joint asymptotic distribution of allquantities. Now we haveA(�0) = 0BBBBBBBBB@ 1 0 0 00 1 0 00 � 12p�20 1 00 � 1�20 0 1 1CCCCCCCCCA B(�0) = 0BBBBBBBBBBB@ 1�20 �32�320 0 0�32�320 �4 � �2204�420 0 00 0 0 00 0 0 0 1CCCCCCCCCCCA10



and V (�0) = A(�0)�1B(�0)fA(�0)�1gT isV (�0) = 0BBBBBBBBBBBBBBBBB@ �20 �3 �32p�20 �3�20�3 �4 � �220 �4 � �2202p�20 �4 � �220�20�32p�20 �4 � �2202p�20 �4 � �2204�20 �4 � �2202�3=220�3�20 �4 � �220�20 �4 � �2202�3=220 �4 � �220�220
1CCCCCCCCCCCCCCCCCAThus the asymptotic variance of sn is (�4 � �220)=(4�20) = (�4 � �4)=4�2, and the asymptoticvariance of log(s2n) is (�4 � �220)=�220 = �4=�4 � 1.Example 4 Posterior Mode. Consider the standard Bayesian model in an iid framework wherethe posterior density is proportional to �(�) nYi=1 f(Yij�);and � is the prior density. Posterior mode estimators satisfy (9) with  (y; �) = @ log f(yj�)=@�the same as for maximum likelihood and cn = ��0(b�)=�(b�). Thus, as long as cn=pn p�! 0, theBayesian mode estimator will have the same asymptotic covariance matrix as maximum likelihoodestimators.Example 5 Instrumental Variable Estimation. Instrumental variable estimation is a method forestimating regression parameters when predictor variables are measured with error (Fuller, 1967;Carroll et al., 1995). We use a simple instrumental variable model to illustrate some features of theM-estimation approach. Suppose that triples (Yi;Wi; Ti) are observed such thatYi = �+ �Xi + �""1;iWi = Xi + �U"2;iTi = 
 + �Xi + ��"3;i11



where "j;i are mutually independent random errors with common mean 0 and variance 1. Forsimplicity also assume that X1; : : : ; Xn are iid, independent of the f"j;ig and have �nite variance.In the language of measurement error models, Wi is a measurement of Xi, and Ti is an instrumentalvariable for Xi (for estimating �), provided that � 6= 0 which we now assume. Note that X1; : : : ; Xnare latent variables and not observed. Let �2S and �S;T denote variances and covariances of anyrandom variables S and T .The least squares estimator of slope obtained by regressing Y on W , b�Y jW , converges inprobability to ��2X=(�2X + �2U)	�, and thus is not consistent for � when the measurement errorvariance �2U > 0. However, the instrumental variable estimator,b�IV = b�Y jTb�W jT ;where b�Y jT and b�W jT are the slopes from the least squares regressions of Y on T and W on T ,respectively, is a consistent estimator of � under the stated assumptions regardless of �2U .The instrumental variable estimator, b�IV is a partial M-estimator as de�ned in the Introduc-tion, and there are a number of ways to complete the  function in this case. Provided interest liesonly in estimation of the �, a simple choice is (Y; W; T; �) =  �1 � T(Y � �2W )(�1 � T )! ;with associated M-estimator, b�1 = T; b�2 = b�IV:The A and B matrices calculated at the true parameters assuming the instrumental variable modelare A = 0B@ 1 0� �X; T 1CA and B = 0B@ �2T ��2T��2T �2T (�2 + �2� + �2�2U) 1CA ;12



which yield the asymptotic variance matrixA�1B �A�1�T = 0B@ �2T 00 �2T (�2� + �2�2U)=�2X;T 1CA :Under the stated assumptions the instrumental variable estimator and the naive estimatorare both consistent for � when �2U = 0, yet have di�erent asymptotic means when �2U > 0. Thuswhen there is doubt about the magnitude of �2U , their joint asymptotic distribution is of interest.The M-estimator approach easily accommodates such calculations. For this task consider the  function  (Y; W; T; �) = 0BBBBBB@ �1 � T�2 �W(Y � �3W )(�2 �W )(Y � �4W )(�1 � T ) 1CCCCCCA :Note the change in the de�nitions of �2 and the ordering of the components of this  function. Thecon�guration is primarily for convenience as it leads to a triangular A matrix. In general when thekth component of  depends only on �1; : : : ; �k, k = 1; 2; : : :, the partial derivative matrix @ =@�Tis lower triangular and so too is the A matrix.The M-estimator associated with this  function isb�1 = T; b�2 = W; b�3 = b�Y jW ; b�4 = b�IV:The A matrix calculated at the true parameters assuming the instrumental variable modelis 0BBBBBBB@ 1 0 0 00 1 0 00 �+ ��X�2U=�2W �2W 0� 0 0 �XT 1CCCCCCCA :13



The expression for the B matrix is unwieldy. However, primary interest lies in the lower2 � 2 submatrix of the asymptotic variance matrix A�1B �A�1�T . We used Maple to calculatethis submatrix and to substitute expressions for the various mixed moments of (Y;W; T ) under theassumption of joint normality, resulting in the asymptotic covariance matrix for (b�3; b�4),0B@ (�2"�2W + �2�2U�2X)=�4W ��2"�2W + �2(�2U�2X � �4U)	 =�4W��2"�2W + �2(�2U�2X � �4U)	 =�4W �2T (�2� + �2�2U)=�2X; T 1CA :The variance formula given above assumes normality of the errors "j;i and the Xi in themodel. Instrumental variable estimation works more generally and in the absence of distributionalassumptions (beyond those of lack of correlation) estimated variances can be obtained using thesandwich formula. We illustrate the calculations with data from the Framingham Heart Study. Forthis illustration Y and W are systolic blood pressure and serum cholesterol respectively measuredat the third exam, and T is serum cholesterol respectively measured at the second exam. The datainclude measurements on n = 1615 males aged 45 to 65.The 4� 1  function was used to determine the estimates (standard errors in parentheses)b�1 = T = 227:2(1:1); b�2 = W = 228:4(1:0);b�3 = b�Y jW = 0:042(0:011); b�4 = b�IV = 0:065(0:015):The empirical sandwich variance estimate (direct computer output) is1785.8453 1291.8722 -1.3658812 -3.86195191291.8722 1718.3129 -1.1578449 -2.6815324-1.3658812 -1.1578449 0.20737770 0.19878711-3.8619519 -2.6815324 0.19878711 0.35584612The estimated contrast b�IV � b�Y jW = 0:023 has standard error 0:010, resulting in the teststatistic t = 2:29. The test statistic statistic is consistent with the hypothesis that serum cholesterolis measured with non-negligible error. 14



3. CONNECTIONS TO THE INFLUENCE CURVEThe In
uence Curve (Hampel, 1974) ICb�(y; �0) of an estimator b� based on an iid sample may bede�ned as satisfying b� � �0 = 1n nXi=1 ICb�(Yi; �0) +Rn;where pnRn p�! 0 as n ! 1. If E[ICb�(Y1; �0)] = 0 and E[ICb�(Y1; �0)ICb�(Y1; �0)T ] = �exists, then by Slutsky's Theorem and the CLT, b� is AMN(0;�)=n). It is easy to verify thatICb�(y; �0) = A(�0)�1 (y; �0) for M-estimators. Thus� = E hICb�(Y1; �0)ICb�(Y1; �0)T i = E hA(�0)�1 (Y1; �0)f (Y1; �0)gTfA(�0)�1gT i= A(�0)�1B(�0)fA(�0)�1gT = V (�0):Since the In
uence Curve approach is more general, why use the M-estimator approachof this paper? Although the two methods have similarities, we have found that the M-estimatorapproach described in this paper is easier to routinely use as a \plug and crank" method. Especiallyin messy problems with a large number of parameters, it appears easier to stack  functions andcomputeA and B matrices than it is to compute and then stack in
uence curves and then compute�. This may be largely a matter of taste, but we have seen resistance to using in
uence curves.If one has already computed in
uence curves, then de�ning  (Yi; �) = ICb�(Yi; �0) � (� ��0) allows one to use the approach of this paper. In this case A(�0) is the identity matrix andB(�0) = �. (A minor modi�cation is that for the empirical variance estimators we need to de�ne (Yi; b�) = ICb�(Yi; b�); that is, plugging in b� for both � and �0.) More importantly, this fact allowsone to combine M-estimators with estimators that may not be M-estimators but for which we havealready computed in
uence curves. The next example illustrates this.Example 6 Hodges and Lehmann (1963) suggested that estimators could be obtained by invertingrank tests, and the class of such estimators is called R-estimators. One of the most interesting R-estimators is called the Hodges-Lehmann location estimatorb�HL = median�Xi +Xj2 ; 1 � i � j � n� :15



It is not clear how to put this estimator directly in the M-estimator framework, but for distributionssymmetic around �0, that is having F (y) = F0(y � �0) for a distribution F0 symmetric about 0,Huber (1981,p. 64) gives ICb�HL(y; �0) = F0(y � �0)� 12R f20 (y)dy ;where f0(y) is the density function of F0(y). The variance of this in
uence curve is112 �R f20 (y)dy�2 ;which is easily obtained after noting that F0(Y1 � �0) has a uniform distribution.Now for obtaining the asymptotic joint distribution of b�HL and any set of M-estimators, wecan stack  (Yi; �) = ICb�HL(y; �0) � (� � �0) with the  functions of the M-estimators. The partof the A matrix associated with b�HL will be all zeroes except for the diagonal element which willbe a one. The diagonal element of the B matrix will be the asymptotic variance given above, butone will still need to compute correlations of ICb�HL(Y1; �0) with the other  functions to get theo�-diagonal elements of the B matrix involving b�HL.4. NONSMOOTH  FUNCTIONSIn some situations the  function may not be di�erentiable everywhere, thus causing a problemwith the de�nition of the A matrix as the expected value of a derivative that does not exist. Themodi�ed de�nition of A is to just interchange the order of taking the derivative and then theexpectation: A(�0) � � @@�T fEF (Y1; �)g�����=�0 : (11)It is important to note that the expectation is taken with respect to the true distribution of thedata (denoted by EF ), but � within the  function is free to change in order to take the derivative.Of course after taking the derivative, we then substitute the true parameter value �0.Example 7 Huber (1964) proposed estimating the center of symmetry of symmetric distributions16



using b� that satis�es P k(Yi � b�) = 0, where k(x) = 8><>: x when jxj � k;k when jxj > k:This  function is continuous everywhere but not di�erentiable at �k. Thus we use de�nition (11)to calculate A(�0):A(�0) = � @@� fEF k(Y1 � �)g�����=�0 = � @@� �Z  k(y � �)dF (y)������=�0= Z �� @@� k(y � �)������=�0 dF (y)= Z  0k(y � �0)dF (y)The notation  0k inside the integral stands for the derivative of  k where it exists, and for the twopoints where it doesn't exist (y � �0 = �k), we delete y = �0 � k from the integral assuming thatF is continuous at those points.For B(�0) we have B(�0) =E 2k(Y1 � �0) = R  2k(y � �0)dF (y), and thusV (�0) = R  2k(y � �0)dF (y)�R  0k(y � �0)dF (y)�2For estimating A(�0) and B(�0), our usual estimators are An(Y ; b�) = n�1Pni=1 h� 0k(Yi � b�)i andBn(Y ; b�) = n�1Pni=1  2k(Yi�b�) (or perhaps (n�1)�1Pni=1  2k(Yi�b�)). Here we can use the notation 0k(Yi � b�) because we expect to have data at Yi � b� = �k with probability 0.Example 8 The sample pth quantile b� = F�1n (p) satis�es Php� I(Yi � b�)i = cn, where �cn =n hFn(b�)� pi � 1. Thus the  function is  (Yi; �) = p � I(Yi � �) and we are using our extendedde�nition (9).This  function is discontinuous at �0, but we shall see that de�nition (11) of A(�0) continues17



to give us the correct asymptotic results:A(�0) = � @@� fEF [p� I(Y1 � �)]g�����=�0 = � @@� [p� F (�)]�����=�0 = f(�0):B(�0) = E [p� I(Y1 � �0)]2 = p(1� p):V (�0) = p(1� p)f2(�0) :Also, we could easily stack any �nite number of quantile  functions together to get the jointasymptotic distribution of (F�1n (p1); : : : ; F�1n (pk)). There is a cost, however, for the jump disconti-nuities in these  functions: we no longer can use An(Y ; b�) to estimateA(�0). In fact, the derivativeof the pth quantile  function is zero everywhere except at the location of the jump discontinuity.There are several options for estimating A(�0). One is to use a smoothing technique to estimate f(kernel density estimators, for example). Another is to approximate  by a smooth  function anduse the A(�0) from this smooth approximation.Example 9 The positive mean deviation from the median is de�ned to beb�1 = 2n nXi=1(Yi � b�2)I(Yi > b�2);where b�2 is the sample median. Thus the  function is (Yi; �) = 0B@ 2(Yi � �2)I(Yi > �2)� �112 � I(Yi � �2) 1CA :Notice that the �rst component of  is continous everywhere but not di�erentiable at �2 = Yi.The second component has a jump discontinuity at �2 = Yi. To get A(�0), we �rst calculate theexpected value of  (Y1; �) (note that � is not �0):EF (Y1; �) = 0B@ 2 R1�2 (y � �2)dF (y)� �112 � F (�2) 1CA :18



To take derivatives of the �rst component, let us write dF (y) as f(y)dy and expand it out to get2 Z 1�2 yf(y) dy� 2�2 Z 1�2 f(y) dy � �1 = 2 Z 1�2 yf(y) dy � 2�2 [1� F (�2)]� �1:The derivative of this latter expression with respect to �1 is of course �1. The derivative withrespect to �2 is �2�2f(�2) � 2 [1� F (�2)] + 2�2f(�2) = �2 [1� F (�2)] (using the FundamentalTheorem of Calculus to get the �rst term). Setting � = �0 means that F (�20) = 1=2 because �20 isthe population median. Thus the derivative of the �rst component with respect to �2 and evaluatedat � = �0 is just �1. The partial derivatives of the second component evaluated at � = �0 are 0and �f(�20), respectively. Thus A(�0) = 0B@ 1 10 f(�20) 1CA :Straightforward calculations for B(�0) yieldB(�0) = 0BBB@ b11 �102�102 14 1CCCA ;where b11 = 4 R1�20(y � �20)2f(y) dy � �210. Finally, V (�0) is given byV (�0) = 0BBBB@ b11 � �10f(�20) + 14f2(�20) �102f(�20) � 14f2(�20)�102f(�20) � 14f2(�20) 14f2(�20) 1CCCCA :5. REGRESSION M-ESTIMATORSThere are two situations of interest for M-estimator analysis of regression estimators. The �rst iswhere the independent variables are random variables and we can think in terms of iid (X; Y ) pairs.This situation �ts into our basic theory developed in Section 2 for iid sampling; see Example 5.The second situation is where the independent variables are �xed constants. This covers standardregression models as well as multi-sample problems like the one-way analysis of variance setup. Forthis second regression situation we need to introduce new notation to handle the non-iid character19



of the problem.A fairly simple setting to introduce notation is the nonlinear modelYi = g(xi;�) + ei i = 1; : : : ; n; (12)where g is a known di�erentiable function and e1; : : : ; en are independent with mean 0 and possiblyunequal variances Var(ei) = �2i , i = 1; : : : ; n; and the x1; : : : ;xn are known constant vectors. Asusual we put the vectors together and de�ne X = (x1; : : : ;xn)T . The least squares estimatorsatis�es nXi=1(Yi � g(xi; b�))g0(xi; b�) = 0;where g0(xi; b�) means the partial derivative with respect to � and evaluated at b�. Expanding thisequation about the true value and rerarranging, we getpn(b� � �0) = " 1n nXi=1� 0(Yi;xi;�0)#�1 1pnXi=1 (Yi;xi;�0) +pnR�n; (13)where of course  (Yi;xi;�0) = (Yi � g(xi;�0))g0(xi;�0). We now give general de�nitions for anumber of quantities followed by the result for the least squares estimator.An(X;Y ;�0) = 1n nXi=1 �� 0(Yi;xi;�0)� (14)= 1n nXi=1 hg0(xi;�0)g0(xi;�0)T � (Yi � g(xi;�0))g00(xi;�0)i :The notation principle is the same as before: all arguments of a quantity will be included in itsname if those quantities are required for calculation. Now taking expectations with respect to thetrue model, de�ne An(X;�0) = 1n nXi=1E �� 0(Yi;xi;�0)� (15)= 1n nXi=1 g0(xi;�0)g0(xi;�0)T :Notice that we have dropped out the Y from this quantity's name because the expectation elimi-20



nates dependence on the Yi. Also note that the second term for the least squares estimator dropsout because of the modeling assumption (12). Finally, assuming that the limit exist, we de�neA(�0) = limn!1 1n nXi=1E �� 0(Yi;xi;�0)� (16)= limn!1 1n nXi=1 g0(xi;�0)g0(xi;�0)T :In the linear regression case, note that A(�0) = limn!1XTX=n. This limit need not exist for theleast squares estimator to be consistent and asymptotically normal, but it's existence is a typicalassumption leading to those desired results. De�nition (14) leads to the purely empirical estimatorof A(�0): An(X ;Y ; b�) = 1n nXi=1 h� 0(Yi;xi; b�)i (17)= 1n nXi=1 hg0(xi; b�)g0(xi; b�)T � (Yi � g(xi; b�))g00(xi; b�)i :Since this is the negative of the Hessian in a �nal Newton iteration, this is sometimes preferredon computational grounds. But the estimated expected value estimator based on (15) is typicallysimpler: An(X; b�) = 1n nXi=1 �E �� 0(Yi;xi;�0)�	���=b� (18)= 1n nXi=1 g0(xi; b�)g0(xi; b�)T :For the \B" matrices, we have in this expanded notationBn(X;Y ;�0) = 1n nXi=1E (Yi;xi;�0) (Yi;xi;�0)T (19)= 1n nXi=1 �2i g0(xi;�0)g0(xi;�0)T :21



and B(�0) is just the limit of Bn(X;�0) as n!1. A natural estimator of B(�0) isBn(X;Y ; b�) = 1n� p nXi=1 (Yi;xi; b�) (Yi;xi; b�)T (20)= 1n� p nXi=1(Yi � g(xi; b�))2g0(xi; b�)g0(xi; b�)T :Example 10 Huber (1973) discussed robust regression alternatives to least squares in the linearregression context. As a speci�c example, consider the linear model (12) with g(xi;�) = xT� andestimator of � satisfying nXi=1  k(Yi � xT b�)xi = 0; (21)where  k is the \Huber"  function de�ned in Example 7. This is a slight abuse of notation sincethe o�cial  (Yi;xi;�) =  k(Yi�xT�)xi; i.e.,  is being used as both the original Huber function k and also as the generic estimating equation function. Since  k is an odd function about zero, thede�ning equations E k(Yi � xTi �0)xi = 0 will be satis�ed if the ei have a symmetric distributionabout zero. If the ei are not symmetrically distributed and the X matrix contains a column ofones, then the intercept estimated by b� will be di�erent from that of least squares, but the othercomponents of �0 will be the same.Taking a derivative, we haveAn(X;Y ;�0) = 1n nXi=1 �� 0(Yi;xi;�0)� = 1n nXi=1  0k(ei)xixTiand An(X;�0) = n�1Pni=1 E 0k(ei)xixTi . Also, Bn(X;�0) = n�1Pni=1 E (ei)2xixTi : If we makethe homogeneity assumption that the errors e1; : : : ; en all have the same distribution, thenAn(X;�0) =E 0k(e1)XTX=n,Bn(X;�0) = E k(e1)2XTX=n, and V (X;�0) = (XTX=n)�1E k(e1)2=[E 0k(e1)]2.Example 11 Generalized linear models have score equationsnXi=1Di(�)(Yi � �i(�))Vi(�)� = 0; (22)where �i(�0) = E(Yi) = g�1(xTi �0),Di(�) = @�i(�)=@�, Vi(�0)�0 = Var(Yi), g is the link function,22



and � is an additional variance parameter. Taking expectations of the negative of the derivativewith respect to � of the above sum evaluated at �0 yields the Fisher information matrixnXi=1 Di(�0)Di(�0)TVi(�0)�0 :Note that the second term involving derivatives of Di=Vi drops out due to the assumption that�i(�0) = E(Yi). Now for certain misspeci�cation of densities, the generalized linear model frame-work allows for estimation of � and approximately correct inference as long as the the mean ismodeled correctly and the mean-variance relationship is speci�ed correctly. Details of this robusti-�ed inference may be found in McCullagh (1983) under the name \quasi-likelihood." Note, though,that only one extra parameter � is used to make up for possible misspeci�cation. Instead, Liangand Zeger (1986) noticed that the M-estimator approach could be used here without � and withonly the mean correctly speci�ed:An(X; b�) = 1n nXi=1 Di(b�)Di(b�)TVi(b�) :Bn(X;Y ; b�) = 1n� p nXi=1 (Yi � �i(b�))2Di(b�)Di(b�)TVi(b�) :Liang and Zeger (1986) actually proposed a generalized set of estimating equations thataccommodates independent clusters of correlated data. The form of the estimating equations andA and B matrices are similar to the above except that the sums are over independent clusters.Dunlop (1994) gives a simple introduction to these generalized estimating equations (GEE).In time series and spatial analyses, there is often correlation among all the Yi with no in-dependent replication. In such cases the A matrix estimates from the independent case are stillconsistent, but more complicated methods must be used in estimating the B matrix; see Lumleyand Heagerty (2000) and Kim and Boos (2001).23



Table 1: Shaquille O'Neal Free Throws in 2000 NBA Playo�sGame Number 1 2 3 4 5 6 7 8 9 10 11FT's Made 4 5 5 5 2 7 6 9 4 1 13FT's Attempted 5 11 14 12 7 10 14 15 12 4 27Prop. Made .80 .45 .36 .42 .29 .70 .43 .60 .33 .25 .48Game Number 12 13 14 15 16 17 18 19 20 21 22 23FT's Made 5 6 9 7 3 8 1 18 3 10 1 3FT's Attempted 17 12 9 12 10 12 6 39 13 17 6 12Prop. Made .29 .50 1.0 .58 .30 .67 .17 .46 .23 .59 .17 .256. APPLICATION TO TEST STATISTICSRecall thatWald test statistics forH0 : � = �0 are quadratic forms like �b� � �0�T Vn(b�)�1 �b� � �0�Thus M-estimation is directly useful for creating such statistics. Score statistics are created fromthe de�ning equations (1), but the variance estimates used to de�ne them are not as simple toderive by the M-estimation method as Wald statistics. Here we illustrate how to �nd appropriatevariances estimates for score statistics in two applications .Example 12 In the National Basketball Association (NBA) playo�s of 2000, Los Angeles Lak-ers star player Shaquille O'Neal played in 23 games. Table 1 gives his game-by-game free throwoutcomes and Figure 1 displays the results.It is often conjectured that players have streaks where they shoot better or worse. One wayto think about that is to assume that the the number of free throws made in the ith game, Yi,is binomial (ni; pi) conditional on ni, the number of free throws attempted in the ith game, andpi, the probability of making a free throw in the ith game. Having streaks might correspond tosome games having high or low pi values. Thus, a statistical formulation of the problem might be\Can the above observed game-to-game variation in sample proportions be explainedby binomial variability with a common p?" (By the way, the apparent downward trend insample proportions is not signi�cant; the simple linear regression p-value=.24.)For generality let k be the number of games. The score statistic for testing a common binomial24
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Figure 1: Shaq's Free Throw Percentages in the 2000 NBA Playo�sproportion versus some di�erencesH0 : p1 = p2 = � � �= pk = p vs. H1 : pi 6= pj for at least one pair i 6= jis given by TS = kXi=1(Yi � niep)2=niep(1� ep);where ep = PYi=Pni is the estimate of the common value of p under the null hypothesis. Thesample sizes n1; : : : ; nk were assumed �xed for this derivation (they aren't really; so this will bea conditional approach). TS is also the simple chisquared goodness-of-�t statistic with the 2k cellexpected values n1ep; n1(1� ep); : : : ; nk ep; nk(1� ep).Using the above data, we �nd TS = 35:51 and the p-value is .034 based on a chisquareddistribution with k � 1 = 22 degrees of freedom. But the chisquared approximation is based oneach ni going to in�nity, and most of the ni in our data set are quite small. Another approach thenis to use the normal approximation based on k ! 1. To �nd the asymptotic variance of TS usingthe M-estimator approach, we need to treat the expected value of TS=k as a parameter �1, and p25



as �2, and form two  functions: 1(Yi; ni; �1; p) = (Yi � nip)2nip(1� p)  2(Yi; ni; �1; p) = Yi � nip:For calculating the A and B matrices we can treat the ni like �xed constants in regression or asrandom variables with some distribution. Taking the latter approach and noting that �1 = 1 underH0, we get A11 = 1;A12 = (1� 2p)=[p(1� p)];A21 = 0;A22 = E(ni) = �n,B11 = 2 + �1� 6p+ 6p2�p(1� p) E� 1ni� ;B12 = (1� 2p);B22 = �np(1� p). We have used the assumption that conditionally under H0 thatYijni is binomial(ni ; p). The asymptotic variance of interest is thenhA�1BfA�1gTi11 = B11 � 2A12B12A22 + A212B22A222= 2 + �1� 6p+ 6p2�p(1� p) E� 1ni�� (1� 2p)2�np(1� p) :Plugging in P(1=ni) for E(1=ni) and k�1Pni for �n and comparing TS=k to a normal distributionwith mean=1 and this estimated variance divided by k leads to a p-value for the Shaq free throw dataof .026. We also ran two parametric bootstraps with 10,000 resamples: conditional on (n1; : : : ; n23)yielding p-value=.042 and also with the ni drawn with replacement from (n1; : : : ; n23) yieldingp-value=.037. So the chisquared approximation seems better than the normal approximation. Wemight add that the results are very sensitive to game 14 where Shaq made 9 free throws out of 9.Also, the related score statistic derived by Tarone (1979) from the beta-binomial model is weighteddi�erently and results in a p-value of .25.Example 13 Sen (1982) �rst derived generalized score tests based on the M-estimation formula-tion. Boos (1992) shows how the form of the test statistic arises from Taylor expansion. In thisexample we would like to point out how our M-estimation approach leads to the correct test statis-tic. In a sense, the A and B matrix formulation automatically does the Taylor expansion andcomputes the variance of the appropriate linear approximations. For simplicity we will present26



results for the iid situation; regression extensions are similar.Assume that �T = (�T1 ; �T2 ) and the null hypothesis is H0 : �1 = �10, where �1 is of dimensionr � 1 and �2 is of dimension (p � r) � 1. Assume that  T = ( T1 ; T2 ) is partioned similarly.Generalized score tests are based on P 1(Yi; e�), where e�T = (�T10; e�T2 ) satis�es P 2(Yi; e�) = 0.The goal is to �nd the appropriate variance matrix to invert and put between P 1(Yi; e�)T andP 1(Yi; e�).To that end, let b��1 = n�1Pni=1 1(Yi; e�) be an M-estimator that solvesPh 1(Yi; e�)� b��1i =0. Then, thinking of ��1 as a parameter that is the limit in probability of b��1, the parameter for thisnew problem is �� composed of ��1 and �2; �10 is �xed and not a parameter in the new problem.The associated  functions are  �1(Yi; ��) =  1(Yi; �) � ��1 and  �2(Yi; ��) =  2(Yi; �). Takingderivatives with respect to �� and expectations, we �nd thatA� = 0B@ Ir A120 A22 1CA and B� = B = 0B@ E 1 T1 E 1 T2E 2 T1 E 2 T2 1CA ;where Ir is the r � r identity matrix and A and B without *'s refer to their form in the originalproblem. Finally, inverting and multiplying leads to the asymptotic variance of P 1(Yi; e�)=pn =pnb��1 given byV 11 = B11 �A12A�122 B21 �B12fA�122 gTAT12 +A12A�122B22fA�122 gTA12;and the generalized score statistic isTGS =X 1(Yi; e�)TV �111 (e�)X 1(Yi; e�):
27



7. SummaryM-estimators represent a very large class of statistics, including for example, maximum likelihoodestimators and basic sample statistics like sample moments and sample quantiles as well as com-plex functions of these. The approach we have summarized makes standard error estimation andasymptotic analysis routine regardless of the complexity or dimension of the problem. In summarywe would like to bring together the key features of M-estimators:1. AnM-estimator b� satis�es (1):Pni=1 (Y i; b�) = 0, where is a known function not dependingon i or n. See also the extensions (2) and (9).2. Many estimators that do not satisfy (1) or the extensions (2) and (9) are components ofhigher-dimensional M-estimators and thus are amenable to M-estimator techniques using themethod of stacking. Such estimators are called partial M-estimators.3. A(�0) = E h�@ (Y1; �0)=@�T i is the Fisher information matrix in regular parametric modelswhen  is the log-likelihood score function. More generally A(�0) must have an inverse butneed not be symmetric. See also the extension (11) for non-di�erentiable  .4. B(�0) = E h (Y1; �0) (Y1; �0)T i is also the Fisher information matrix in regular parametricmodels when  is the log-likelihood score function. B(�0) always has the properties of acovariance matrix but will be singular when one component of b� is a non-random function ofthe other components of b�.5. Under suitable regularity conditions, b� is AMN (�0; V (�0)=n) as n ! 1, where V (�0) =A(�0)�1B(�0)fA(�0)�1gT is the sandwich matrix.6. One generally applicable estimator of V (�0) for di�erentiable  functions is the empiricalsandwich estimator V n(Y ; b�) = An(Y ; b�)�1Bn(Y ; b�)fAn(Y ; b�)�1gT :
28
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