A NOTE ON J. ROY'S "STEP-DOWN PROCEDURE IN MULTIVARIATE ANALYSIS"

by

V. P. Bhapkar

University of North Carolina

This research was supported partly by the Office of Naval Research under Contract No. Nonr-855(06) for research in probability and statistics at Chapel Hill and partly by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command under Contract No. AF 49(638)-213. Reproduction in whole or in part for any purpose of the United States Government is permitted.

Institute of Statistics
Mimeograph Series No. 212
December, 1958
A NOTE ON J. ROY'S "STEP-DOWN PROCEDURE IN MULTIVARIATE ANALYSIS"

By

V. P. Bhapkar

University of North Carolina

1. Introduction and Summary.

Test procedures in multivariate analysis are usually based on the λ-criterion or a criterion in terms of the largest and/or the smallest characteristic roots of certain matrices, each criterion being a special case of the general union-intersection principle. An alternative procedure, called the step-down procedure, has been used by Roy and Bargmann to devise a test of multiple independence between variates distributed according to the multivariate normal law. This procedure again can be derived as a special case of the union-intersection principle. This procedure has been recently applied to multivariate analysis of variance by Roy in deriving new tests of significance and simultaneous confidence-bounds on a number of "deviation-parameters." In this note the same procedure is applied to test multiple independence of normal variates under a general linear model.

2. Notation and Preliminaries.

In the notation of , we have a matrix $Y_{n \times p}$ of random variables, such that the rows are distributed independently, each row

This research was supported partly by the Office of Naval Research under Contract No. Nonr-855(06) for research in probability and statistics at Chapel Hill and partly by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command under Contract No. AF 49(638)-213. Reproduction in whole or in part for any purpose of the United States Government is permitted.
having a p-variate normal distribution with the same variance-covariance matrix \(\Sigma = (\sigma_{ij})_{p \times p} \) which is symmetric and positive-definite.

The expected values are given by

\[
(1) \quad \sum_{i} Y_{i} = A_{n} \times m \quad \text{where } A \text{ is a matrix of known constants of rank } r, r \leq (n-p), \text{ and } m \text{ is a matrix of unknown parameters. We want to test the hypothesis that the p-variables are independent, i.e.,}
\]

\[
(2) \quad \mathcal{H}_0: \sigma_{ij} = 0 \quad (i \neq j, i, j = 1, 2, \ldots, p).
\]

The customary likelihood-ratio test for \(\mathcal{H}_0 \) is based on \(p \times p \) matrices of random variables

\[
(3) \quad S_{e} = Y^'\Sigma Y \text{ and } S_{h} = Y^'HY
\]

called respectively the sum of products matrix due to error and the sum of products matrix due to hypothesis. Here \(E \) and \(H \) are \(n \times n \) symmetric idempotent matrices with non-stochastic elements, \(E \) of rank \(n-r \) and \(H \) of rank \(p \). The test is

\[
(4) \quad \text{accept } \mathcal{H}_0, \text{ if } L = \frac{|S_{a}|}{|S_{e} + S_{h}|} > c
\]

otherwise reject \(\mathcal{H}_0 \)

where \(c \) is a pre-assigned constant depending on the level of significance.

3. The Step-Down Procedure to Test \(\mathcal{H}_0 \).

We shall denote the \(i \)-th columns of the matrices \(Y \) and \(\Theta \) by \(Y_i \) and \(\Theta_i \) respectively and write \(Y_i = \sum_{j=1}^{r} x_j \) and \(\Theta_i = \sum_{j=1}^{r} \theta_j \).
We shall also denote the top left-hand $i \times i$ submatrix of Σ by Σ_i.

If Y_i is fixed, the n elements of y_{i+1} are distributed independently and normally with the same variance σ^2_{i+1} and expectations given by

\begin{equation}
C(y_{i+1} \mid Y_i) = \eta_{i+1} + Y_i \beta_i,
\end{equation}

where β_i is a column i-vector

\begin{equation}
\beta_i = \begin{pmatrix}
\sigma_{1,i+1} \\
\sigma_{2,i+1} \\
\vdots \\
\sigma_{i,i+1}
\end{pmatrix}
\end{equation}

and η_{i+1} is a column m-vector given by

\begin{equation}
\eta_{i+1} = \frac{C_i + \beta_i}{C_i}
\end{equation}

and

\begin{equation}
\sigma^2_{i+1} = \frac{C_{i+1}}{C_i}, \quad i = 1, 2, \ldots, p-1
\end{equation}

We note that H_0 is true if and only if the hypothesis H_i that $\beta_i = 0$ holds for all $i = 1, 2, \ldots, (p-1)$. Now the elements of the vectors β_i, η_{i+1} in (5) may be regarded as unknown parameters and hence, when Y_i is fixed, the hypothesis H_i that $\beta_i = 0$ is a linear hypothesis in univariate analysis with the linear model given by (5).

\begin{equation}
\begin{cases}
\text{Now Rank } (Y_i) = i \quad \text{a.e.}
\end{cases}
\end{equation}

and

\begin{equation}
\begin{cases}
\text{Rank } (A, Y_i) = r + i \quad \text{a.e.}
\end{cases}
\end{equation}
Also

\begin{equation}
\int L_i \text{ implies } I(0, I) \left(\begin{array}{c}
\eta_{i+1} \\
\beta_i
\end{array} \right)_{x1} = 0
\end{equation}

Furthermore,

\begin{equation}
\text{Rank } \left(\begin{array}{cc}
A & Y_i \\
0 & I
\end{array} \right) = r + i = \text{Rank } (A, Y_i).
\end{equation}

Hence \(\beta_i \) is estimable and the hypothesis \(H_1 \) testable. Let \(\hat{\beta}_i \) be the estimator of \(\beta_i \), the elements of which are linear functions of elements of \(Y_{i+1} \) and also are minimum variance unbiased estimators of the corresponding elements in \(\beta_i \). Denote the variance-covariance matrix of \(\hat{\beta}_i \) by \(C_{i+1} \sigma_i^2 \), where \(C_i \) is an \(i \times i \) positive-definite matrix. Let \(s_i^2/n-r-i \) denote the usual error mean square giving an unbiased estimator of \(\sigma_{i+1}^2 \). Then it is well known that

\begin{equation}
F_i = \frac{(\hat{\beta}_i - \beta_i)' C_i^{-1} (\hat{\beta}_i - \beta_i)/i}{s_i^2/n-r-i}, \text{ } i=1,2,\ldots,(p-1),
\end{equation}

is distributed as a variance ratio with \(i \) and \(n-r-i \) degrees of freedom.

Thus the conditional distribution of \(F_i \), given \(Y_i \), does not involve \(Y_i \) and hence \(F_1, F_2, \ldots, F_{i-1} \). Therefore, the statistics \(F_1, F_2, \ldots, F_{p-1} \) are independently distributed as variance ratios with degrees of freedom \(i \) and \(n-r-i \) respectively (\(i=1,2,\ldots,p-1 \)).

For a preassigned constant \(\alpha_i, 0 < \alpha_i < 1 \), let \(f_i \) denote the upper 100 \(\alpha_i \) percent point of the variance ratio distribution with \(i \) and \(n-r-i \) degrees of freedom. Then the probability that simultaneously
(13) \[F_i \leq f_i, \quad i=1,2,\ldots,p-1, \]
is equal to \[\prod_{i=1}^{p-1} (1-\alpha_i). \]

Since \[\mathcal{H}_0 \iff \mathcal{H}_{i=1}^p: \beta_i = 0 \quad i=1,2,\ldots,p-1, \] we utilise (12)
and set up the following test procedure for \[\mathcal{H}_0: \]

(14) accept \[H_0, \text{ if } \quad u_i = \frac{\beta_i \hat{c}_i^{-1} \hat{\beta}_i / 1}{s_1^2 / n-r-1} \leq f_i \]
 otherwise reject \[\mathcal{H}_0. \]

To carry out the test one should first compute \(u_1 \). If \(u_1 > f_1, \mathcal{H}_0 \) is rejected. If \(u_1 \leq f_1, u_2 \) is computed. If \(u_2 > f_2, \mathcal{H}_0 \) is rejected. If \(u_2 \leq f_2, u_3 \) is computed and so on. The level of significance for this test is obviously \(1 - \prod_{i=1}^{p-1} (1-\alpha_i) \). One possibility is \(\alpha_1 = \alpha_2 = \ldots = \alpha_{p-1} \). We would prefer choosing \(\alpha \)'s so that \(f_1 = f_2 = \ldots = f_{p-1} \) for reasons discussed in \(\ell_2 \).

4. **Confidence bounds associated with the test.**

Now \(F_i \leq f_i \implies (\hat{\beta}_i \hat{c}_i^{-1} (\hat{\beta}_i \hat{c}_i) \leq \lambda (c_i) \max \]
\[\frac{f_i}{n-r-1} \]
\[\lambda \]
\[\frac{f_i}{n-r-1} \]
\[\lambda \]
\[\frac{f_i}{n-r-1} \]

(15) \[s_i \hat{\beta}_i - \frac{f_i}{n-r-1} \]
\[\frac{s_i \hat{\beta}_i}{\lambda} \]
\[\frac{s_i \hat{\beta}_i}{\lambda} \]
\[\frac{s_i \hat{\beta}_i}{\lambda} \]

for all non-null \(a_i \) (i×1) such that \(a_i a_i = 1 \). This, therefore, implies

(16) \[(\hat{\beta}_i \hat{c}_i)^{1/2} - \frac{f_i}{n-r-1} \]
\[\frac{\lambda}{\lambda} \]
\[\frac{\lambda}{\lambda} \]
\[\frac{\lambda}{\lambda} \]

We may obtain partial statements by choosing some elements of \(a_i \) in
(15) to be zero. Thus we have the simultaneous confidence bounds given by
(16) for all possible subsets of \(\beta_i \) for all \(i=1,2,\ldots,p-1 \) with the confidence coefficient \(\geq 1 - \prod_{i=1}^{p-1} (1-\alpha_i) \).
5. **Remarks.**

(i) It can be easily seen that when Y represents a random sample of size n from \(N (\mu, \Sigma) \), (5) takes the form

\[
(17) \quad \mathbb{E} (Y_{i+1,k} | Y_1) = \mu_{i+1} + \sum_{j=1}^{i} \beta_{ij} (\bar{Y}_{ij} - \mu_j),
\]

where \(\bar{Y}_{ij} = \bar{y}_{i1}, \bar{y}_{i2}, \ldots, \bar{y}_{in} \in \mathbb{R}^i \) = \(\sum_{k=1}^{i} \beta_{ik}, \beta_{i2}, \ldots, \beta_{i1} \), \(i=1,2,\ldots,p-1 \) and \(k=1,2,\ldots,n \).

If we write \(s_{ij} = \sum_{k=1}^{n} (y_{1k} - \bar{y}_1)(y_{jk} - \bar{y}_j) \), then it is well to know that

\[
\hat{\beta}_i = s_{ii}^{-1} \begin{pmatrix} s_{i+1,1} \\ \vdots \\ s_{i+1,i} \end{pmatrix} = b_i
\]

\[C_i = s_{ii}^{-1} \text{ and} \]

\[s_i = s_{i+1,i+1} - (s_{i+1,1};\ldots;s_{i+1,i}) s_{ii}^{-1} \begin{pmatrix} s_{i+1,1} \\ \vdots \\ s_{i+1,i} \end{pmatrix} \]

so that

\[u_i = \frac{b_i^t s_{ii} b_i / n}{s_i^2 / n-1} = \frac{r_{i+1,1,2,\ldots,i}^2}{1 - r_{i+1,1,2,\ldots,i}^2} \]

where \(r_{i+1,1,2,\ldots,i} \) denotes the multiple correlation coefficient of \((i+1) \) with \((1,2,\ldots,i) \); thus giving as a special case the test procedure already obtained in (2.7). This is, of course, as it should be.

(ii) In this set up, it is of interest to investigate whether

(a) the test of the usual multivariate linear hypothesis of the type

\[
(18) \quad \hat{\mathbb{E}}_0 : \Phi = \mathbb{B} \mathbb{H} = 0 \quad (\text{Rank } B = t),
\]

\]
where ϕ is estimable, and (b) the above test of independence are quasi-independent. As shown in \int_{1}^{l}, the step-down test procedure for (18) gives, when Y_{i} is fixed,

$$F_{i} = \left(\frac{e_{i+1} - e_{i+1}'}{D_{i+1}^{-1} (e_{i+1} - e_{i+1})/t} \right) \left(\frac{\sigma^{2}}{\eta_{i+1} / s_{i}/n-r-1} \right)$$

where $e_{i+1} = B_{i+1} e_{i+1}$ and the variance-covariance matrix of e_{i+1} is $D_{i+1} \sigma_{i+1}$.

F_{i} given by (12) and F_{i}^{*} given by (19), for fixed Y_{i}, are quasi-independent if the numerators, which are marginally distributed as $\chi^{2}_{i} \sigma_{i+1}^{2}$ and $\chi^{2}_{t} \sigma_{i+1}^{2}$ respectively, are independent.

It can be easily verified that χ^{2}_{i} and χ^{2}_{t} are not independent and hence the tests for χ^{2}_{0} and χ^{2}_{0} are not quasi-independent. It may be noted that when Y_{i} is fixed, the test of $\beta_{i} = 0$ is the nature of testing significance of covariance, as seen from (5), while the test of $\phi_{i+1} = 0$ is in the nature of covariance-analysis. These two are not quasi-independent.

6. Acknowledgment.

I am indebted to Professor S. N. Roy for suggesting this problem and for suggesting improvements.

References
