ANALYSIS OF VARIANCE OF DEPENDENT DATA

by

Bruno Baldessari
Department of Statistics
University of North Carolina
and
Universita di Roma
Institute of Statistics Mimeo Series No. 467

March 1966

CONTENTS:

1. Introduction and notation.
2. Conditions c), d) and matrix V.
3. Conditions d), e) and matrix V.

ACKNOWLEDGMENTS

REFERENCES

This research was supported by the Mathematics Division of The Air Force Office of Scientific Research Contract No. AF-AFPSR-760-65

DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
Chapel Hill, N. C.
1. Introduction and notation

The aims of this article are: a), show that analysis of variance (ANOVA) can be performed also when the elements of the "sample" are dependent and b), establish the more general type of dependence which allows us to do an ANOVA.

To make these statements precise we need some definition and notation.

Definition: By a "sample of n dependent elements" we mean a random sample of 1 element drawn from the r. vt. (random vector) $X^* = (X^*_1, \ldots, X^*_n)'$, in which the n r.v. (random variables) $X^*_i, i = 1, \ldots, n$, may be dependent [3].

We will denote this random sample by the r. vt. $X = (X_1, \ldots, X_n)'$ and it is clear that the d.f. (distribution function) of X is the same as that of X^* so that the dependence of the n r.v. X_1, \ldots, X_n is defined by the dependence of the r. v. X^*_1, \ldots, X^*_n. If the r. vt. X^* is $N(\mu, V)$, (multivariate normal with mean vector μ and variance-covariance matrix V), where V is p.d., (positive definite), then X is $N(\mu, V)$ and the dependence of X_1, \ldots, X_n is specified by V.

In this article we extend the validity of ANOVA to the case in which X is $N(\mu, V)$ so that the elements of the sample may be dependent. More precisely, we extend the validity of the methods of the classical ANOVA, (in which X is suppose to be $N(\mu, \alpha I), \alpha > 0, I$ is the n x n identity matrix) built up to test q null hypotheses H_1, \ldots, H_q which specifies q distinct linear relations on the parameters of the general linear model of the data X, against the q alternative hypothesis: "not $H_1", \ldots, "not H_q". Of the mean vector μ we require, only, that the set of all a priori possible vectors μ contains at least one vector μ^* of the form: $\mu^* = \mu 1$, where 1 is the n-vector: $1 = (1, \ldots, 1)'$. We will suppose that H_1, H_2, \ldots, H_q are such that the total
sum squares \(X' (I - n^{-1} U) X, \) (\(U = 1 1' \)), can be decomposed into \((q+1)\) positive semidefinite quadratic forms: \(X' S_0 X, X' S_1 X, \ldots, X' S_q X, \) such that:

a). \(\sum_{j=0}^{q} S_j = I - n^{-1} U; \)

b). \(S_j^2 = S_j, j=0, \ldots, q; \)

c). \(X' S_j X \) is distributed like \(\alpha \chi^2 (n_j, 2^{-1} \mu' S_j \mu), \)

(noncentral chi-square with \(n_j \) degree of freedom and
noncentrality parameter \(2^{-1} \mu' S_j \mu), \) where \(n_j = \text{rank} (S_j), j = 0, \ldots, q; \)

d). \(X' S_0 X, \ldots, X' S_q X, \) are mutually independent;

e). \(\frac{X' S_j X}{n_j} \) is distributed like

\[
F (n_j, n_0, \mu' S_j \mu, \mu' S_0 \mu), \quad (\text{Snedecor's double non-
central F distribution with } n_j \text{ and } n_0 \text{ degrees of freedom}
\text{ and noncentrality parameters } \mu' S_j \mu, \mu' S_0 \mu), \quad j = 0, \ldots, q \text{ and for every } \mu.
\]

Actually, if \(X \) is \(N(\mu, \alpha I) \) then conditions a) and b) imply
conditions c) and d) which imply condition e).

In the present extension we regard the matrices \(S_0, \ldots, S_q \) as
fixed; typically, if \(X \) is \(N(\mu, \alpha I) \) the matrices \(S_j, j = 0, \ldots, q, \) will be
such that \(X' S_j X, j = 0, \ldots, q, \) are, in some sense, the "best" statistics
to use in order to test \(H_1, \ldots, H_q \) against these alternatives.

We suppose that the fixed matrices \(S_0, \ldots, S_q \) satisfy conditions
a) and b) and our generalization of ANOVA consists in the fact that we establish
the set of ALL p.d. variance-covariance matrices V such that, if X is N(\(\mu, V\))
then conditions c), d), e) are also still satisfied. In fact this set of
matrices is the set of p.d. matrices V of structure:

\[V^* = 2^{-1}(A + A') + \alpha(I - U), \quad (1) \]

where the n x n matrix A is:

\[
A = \begin{pmatrix}
 a_1 & \cdots & a_1 \\
 \vdots & \ddots & \vdots \\
 a_n & \cdots & a_n \\
\end{pmatrix}
\]

with: \(a_i > 0, i = 1, ..., n\).

The proof of this fact is based on two theorems which actually
show that if X is N(\(\mu, V\)) and if a) and b) are satisfied then, Theorem I:
conditions c) and d) are equivalent to (1), and, (Theorem 2): conditions d)
and e) are equivalent to (1). We also note that, if X is N(\(\mu, V\)), formula (1)
is equivalent to saying that \(X' (I - n^{-1}U)X\) is distributed as \(\chi^2 (n-1, \mu, 2^{-1}[I-n^{-1}U]\mu),\) as follows immediately from the proof of Proportion 1 of [3].

In the following we write \(< A > \iff < B >\) to mean that the statement
\(< A >\) is equivalent to the statement \(< B >\), and \(< D[x] = D[Y] >\) for the statement
"the distribution of the r.v. X is the same as the distribution of the r.v. Y."

To avoid cumbersome formulas we will write \(< I[X'S_jX] >\) for the
statement "the r.v. \(X' S_j X, j = 0, ..., q\) are mutually independent and, also:
S for \(I-n^{-1}U; \chi^2 \mu, S_j \) for \(\chi^2 (n_j, 2^{-1}\mu, S_j \mu)\); \(F_{\mu, S_j, S_0}^i\) for \(F(n_j, n_0, \mu, S_j \mu, S_0 \mu).\)"
2. Conditions c), d) and matrix V.

Theorem 1. If X is $N(\mu,V)$ and matrices S_0, \ldots, S_q satisfy a) and b), then:

$$<V = V^*> \Leftrightarrow D[x'S_jx] = D[\alpha x'^2_{\mu, S_j}], \ j = 0, \ldots, q, \text{ and } I[x'S_jx] > \quad (2)$$

Proof of the implication: \Leftarrow.

Conditions a) and b) imply that: $\sum_{j=0}^{q} \operatorname{rank}(S_j) = \sum_{j=0}^{q} n_j = \operatorname{rank}(S) = n - 1$, so that we have:

$$<D[x'S_jx] = D[\alpha x'^2_{\mu, S_j}], \ j = 0, \ldots, q, \text{ and } I[x'S_jx] > \Rightarrow$$

$$<D[x'(\sum_{j=0}^{q} S_j) x] = D[\alpha x'^2_{\mu, \sum S_j}] > \Leftarrow <D[x'Sx] = D[\alpha x'^2_{\mu, S}] > \Leftarrow$$

$$<V = V^*> .$$

The last equivalence follows from the proof of Proportion 1 of [3].

Proof of the implication: \Rightarrow.

First we prove that:

$$<V = V^*> \Rightarrow <D[x'S_jx] = D[\alpha x'^2_{\mu, S_j}], \ j = 0, \ldots, q> .$$

In fact, from the proof of Proportion 1 of [3], Corollary 5.1 of [5], and from condition a) we have:

$$<V = V^*> \Leftrightarrow <D[x'Sx] = D[\alpha x'^2_{\mu, S}] > \Leftrightarrow$$

$$<\alpha^{-1} S V S = S > \Leftrightarrow <\alpha^{-1}(S_0 + \ldots + S_q) V (S_0 + \ldots + S_q) = S_0 + \ldots + S_q > .$$

4
so that, from condition b) we have:

\[< V = V^* > \Rightarrow < \alpha^{-1} S_j S_0 + \ldots + S_q > V (S_0 + \ldots + S_q) S_j = S_j (S_0 + \ldots + S_q) S_j >= \]

\[< \alpha^{-1} S_j S_k = S_j, \ j = 0, \ldots, q > \iff < D[x^1 S_j X] = D[\chi_{\mu, S_j}^2], j = 0, \ldots, q > . \]

Now we prove that:

\[< V = V^* > \Rightarrow < I[x^1 S_j X] > , \]

and this will complete the proof of Theorem 1.

From what we have just proved we have:

\[< V = V^* > \iff < \alpha^{-1} (S_0 + \ldots + S_q) V (S_0 + \ldots + S_q) = S_0 + \ldots + S_q > , \]

so that, from condition b) we have:

\[< V = V^* > \Rightarrow < \alpha^{-1} S_j (S_0 + \ldots + S_q) V (S_0 + \ldots + S_q) S_k = S_j (S_0 + \ldots + S_q) S_k, j \neq k > \]

\[< S_j V S_k = 0, j \neq k > \iff < I[x^1 S_j X] > . \]

The last equivalence follows from Craig's condition [4] in Aitken's generalization [1], from which we have that \(S_j V S_k = 0, j \neq k \) implies that the r.v. \(X^1 S_j X, j = 0, \ldots, q \) are pairwise independent. (In our particular case, pairwise independence implies mutual independence as can be seen from the relevent characteristic functions.)
3. Conditions d), e) and matrix v.

Theorem 2. If X is $N(\mu, \nu)$ and matrices S_0, \ldots, S_q satisfy a) and b), then:

\[
<V = \nu^*> \iff <D\left[\frac{X'S_jX}{n_j} \right] = D\left[F_{\frac{\nu}{n_j}, S_j, S_0} \right], j = 1, \ldots, q \text{ for all } \mu, \text{ and } I[X'S_jX] >
\]

(3)

The proof of the implication \Rightarrow is obvious from (2).

Proof of the implication \Leftarrow.

We may suppose $\mu = \mu^* = \mu_1$ because in the second statement of (3) we have "for all μ" and because of our hypothesis that in the set of all a priori possible vectors μ there is at least one μ of the form μ^*.

It is a simple calculation to verify that: $S \mu^* = \mu^* S = 0$.

From this it follows that: $S_j \mu^* = \mu^* S_j = 0, j = 0, \ldots, q$. In fact, by condition b) we have:

\[
< S \mu^* = 0 > \iff < (S_0 + \ldots + S_q) \mu^* = 0 > \iff < S_j (S_0 + \ldots + S_q) \mu^* = 0, j = 0, \ldots, q >,
\]

and similarly for: $< \mu_1^* S_j = 0, j = 0, \ldots, q >$.

Now we show that, with $\mu = \mu^*$, and for every p.d. V, we have:

\[
< I[X'S_jX] > \iff < D \left[\frac{\sum_{k=0}^{n_j} \lambda_{jk} \chi^2(k)}{\chi^2(jk)} \right], j = 0, \ldots, q >,
\]

(4)
where \(\lambda_{jk} \), \(j = 0, \ldots, q \), \(k = 1, \ldots, n_j \), are positive constants and where \(\chi^2_{jk} (1) \) is a (central) chi-square r.v. with 1 degree of freedom and, also, the chi-squares are mutually independent.

In fact, let \(\varphi(t_0, \ldots, t_q) \) be the characteristic function of the r. vt. \((x^1 S_0 x, \ldots, x^1 S_q x)\), so that we have:

\[
\varphi(t_0, \ldots, t_q) \propto \int \exp \left\{ i \sum_{j=0}^{q} t_j \left[x'^j S_j x - \frac{1}{2} (x-\mu^*)' V^{-1} (x-\mu^*) \right] \right\} dx,
\]

where \(j \) denotes n-fold integration and \(dx = dx_1 \ldots dx_n \).

From the relations: \(\mu^* S_j = S_j \mu^* = 0, j = 0, \ldots, q \), it follows that with the transformation \(y = x - \mu^* \) we have:

\[
\varphi(t_0, \ldots, t_q) \propto \int \exp \left\{ i \sum_{j=0}^{q} t_j \left[y'^j S_j y - \frac{1}{2} y' V^{-1} y \right] \right\} dy.
\]

If \(V \) is positive definite then there exists a matrix \(T \) such that: \(|T| \neq 0, V = TT' \), and the transformation \(y = T x \) gives:

\[
\varphi(t_0, \ldots, t_q) \propto \int \exp \left\{ i \sum_{j=0}^{q} t_j \left[x'^j T'S_j T x - \frac{1}{2} x' x \right] \right\} dx.
\]

The matrices \(T'S_j T, j = 0, \ldots, q \) are symmetric and

\[
< I[x'^j S_j x] > \iff < S_j V S_k = 0, j \neq k >,
\]

so that:

\[
(T'^j S_j T) (T'^k S_k T) = T'^j S_j V S_k T = 0 = T'^k S_k V S_j T =
\]

\[
(T'^k S_k T) (T'^j S_j T), j \neq k, \text{ and this implies that a matrix } P \text{ exists}
\]

\[
7
\]
such that: $P' P = I$, $P' S_j P = \Lambda_j^*$, with Λ_j^* diagonal, $j = 0, \ldots, q$. Then the transformation $x = P'y$ shows that:

$$
\varphi(t_0, \ldots, t_q) \propto \int \exp \left\{ \sum_{j=0}^{q} t_j y^j \Lambda_j^* y - \frac{1}{2} y^j y \right\} \, dy.
$$

Now Λ_j^* is positive semidefinite so its diagonal elements are non-negative and there are exactly n_j positive elements in the diagonal of Λ_j^* because: $\text{rank}(\Lambda_j^*) = \text{rank}(S_j) = n_j$, $j = 0, \ldots, q$. Also Λ_j^* and Λ_k^*, $j \neq k$, do not have any positive elements in the same row: in fact, $\Lambda_j^* \Lambda_k^* = 0$. From this it follows that:

$$
\varphi(t_0, \ldots, t_q) \propto \prod_{j=0}^{q} \frac{n_j}{(1 - \text{tr} \Lambda_j^* t_j^2)} \quad (5)
$$

where λ_{jk} is the k-th positive element in the diagonal of Λ_j^*.

Since $\varphi(0, \ldots, 0) = 1$, we see that $\varphi(t_0, \ldots, t_q)$ is exactly equal to the right hand side of (5), so that formula (3) is proved.

Now we prove the implication: \Leftarrow. In fact, from (3) and (5) we have:

$$
< D \left[\frac{X^T S_j X}{n_j} \right] \frac{n_o}{x^T S_o x} = D \left[f^\prime_{\mu, S_j, S_o} \right], \quad j = 1, \ldots, q, \text{ for all } \mu, \text{ and } I[X^T S_j X] \quad \Leftarrow
$$

$$
D \left\{ \sum_{k=1}^{n_j} \lambda_{jk} X_j^2 (1) \right\} = D \left\{ \frac{n_j}{n_o} F(n_j, n_o) \right\}, \quad j = 1, \ldots, q, \text{ and } I[X^T S_j X],
$$

8
where $F(n_j, n_o)$ is a (central) Snedecor's F r.v. with n_j and n_o degrees of freedom. From that we have:

\[
< D \left(\frac{n_j}{n_j \chi^2} \frac{n_o}{n_o \chi^2} \right) = D \left\{ \chi^2 \right\}, \quad j = 1, \ldots, q, \text{ for all } \mu, \text{ and } I[x^T S_j x] >
\]

\[
< D \left(\sum_{k=1}^{\nu} \frac{\lambda_{jk}}{\chi^2} \frac{\lambda_{ok}}{\chi^2} (1) \right) = D \left\{ \chi^2 \left(\frac{n_j}{n_o} \right) \right\}, \quad j = 1, \ldots, q, \text{ and } I[x^T S_j x] >
\]

\[
< \lambda_{j1} = \ldots = \lambda_j n_j = \lambda_{o1} = \ldots = \lambda_{on_o} = \alpha > 0, \quad j = 1, \ldots, q, \text{ and } I[x^T S_j x] >
\]

\[
< D[x^T S_j x] = D(\alpha \chi^2(n_j)), \quad j = 0, \ldots, q, \text{ and } I[x^T S_j x] >
\]

\[
< D[x^T \sum_{j=0}^{q} S_j x] = D(\alpha \chi^2(n-1)) > \quad \leftrightarrow \quad < D[x^T S x] = D(\alpha \chi^2(n-1)) > \quad \leftrightarrow .
\]

\[
< V = V^* >,
\]

in which the first equivalence symbol is justified by the proportion of [2].

This completes the proof of theorem 2.
ACKNOWLEDGMENTS

The author is grateful to Professor N. L. Johnson for helpful discussions and for revising this article.
REFERENCES

