ON THE MINIMALITY OF A BOUNDEDLY COMPLETE
SUFFICIENT SUB FIELD

D. Basu

Institute of Statistics
Mimeograph Series No. 401
August 1964
ON THE MINIMALITY OF A BOUNDEDLY COMPLETE SUFFICIENT SUB-FIELD

by

D. Basu

University of North Carolina and Indian Statistical Institute

August 1964

This note, written for its pedagogical interest, attempts at a simplification of a proof due to R. R. Bahadur (1957) of the minimality of a boundedly complete sufficient sub-field.

This research was supported by the Mathematics Division of the Air Force Office of Scientific Research Grant No. 84-63.

Institute of Statistics
Mimeo Series No. 401
ON THE MINIMALITY OF A BOUNDEDLY COMPLETE SUFFICIENT SUB-FIELD

by

D. Basu
University of North Carolina and Indian Statistical Institute

SUMMARY

This note, written for its pedagogical interest, attempts at a simplification of a proof due to R. R. Bahadur (1957) of the minimality of a boundedly complete sufficient sub-field.

NOTATIONS AND DEFINITIONS

Let \((\mathcal{X}, \mathcal{A}, \mathcal{P})\) be our probability structure. That is, \(\mathcal{P}\) is a family \(\{P\}\) of probability measures on a \(\sigma\)-field \(\mathcal{A}\), sub-sets of a sample space \(\mathcal{X}\).

Definition 1: The set \(N \in \mathcal{A}\) is said to be \(\mathcal{P}\)-null if
\[
P(N) = 0 \quad \text{for all } P \in \mathcal{P}.
\]

Definition 2: (a) The two sets \(A\) and \(B\) belonging to \(\mathcal{A}\) are said to be \(\mathcal{P}\)-equivalent if their symmetric difference \(A\Delta B\) is \(\mathcal{P}\)-null.

(b) The two \(\mathcal{A}\)-mble functions \(f\) and \(g\) are said to be \(\mathcal{P}\)-equivalent if the set \(\{x \mid f(x) \neq g(x)\}\) is \(\mathcal{P}\)-null.

Definition 3: An \(\mathcal{A}\)-mble function \(f\) is said to be \(\mathcal{P}\)-integrable if
\[
\int |f| \, dP < \infty \quad \text{for all } P \in \mathcal{P}.
\]

\(^1\)This research was supported by the Mathematics Division of the Air Force Office of Scientific Research.

\(^\dagger\)As usual we use the term sub-field to mean a sub-\(\sigma\)-field.
Definition 4: A sub-field \mathcal{A}_* of \mathcal{A} is said to be sufficient if corresponding to each \mathcal{P}-integrable, \mathcal{A}-mble f there exists an \mathcal{A}_*-mble f_* such that, for all $B \in \mathcal{A}_*$ and $P \in \mathcal{P}$,

$$\int_B f \, dP = \int_B f_* \, dP.$$

The function f_* is then called the conditional expectation of f given \mathcal{A}_* and is determined upto a \mathcal{P}-equivalence.

Definition 5: The sub-field \mathcal{A}_0 is said to be boundedly complete if the only bounded \mathcal{A}_0-mble functions satisfying the identity

$$\int f \, dP = 0$$

for all $P \in \mathcal{P}$ are those that are \mathcal{P}-equivalent to zero.

Definition 6: \mathcal{A}_0 is said to be a minimal sufficient sub-field if each member of \mathcal{A}_0 is \mathcal{P}-equivalent to some member of every alternative sufficient sub-field \mathcal{A}_*.

Now if \mathcal{A}_* be sufficient then for each \mathcal{A}-mble and square \mathcal{P}-integrable f the conditional expectation f_* is also square \mathcal{P}-integrable and we have in addition

$$\int f^2 \, dP = \int f_*^2 \, dP + \int (f-f_*)^2 \, dP$$

for all $P \in \mathcal{P}$.

In other words,

$$\int f^2 \, dP \geq \int f_*^2 \, dP$$

for all $P \in \mathcal{P}$.

the sign of equality holding for all $P \in \mathcal{P}$ if and only if f and f_* are \mathcal{P}-equivalent.

THEOREM

Theorem: If \mathcal{A}_0 be a boundedly complete sufficient sub-field then \mathcal{A}_0 is a minimal sufficient sub-field.
Proof: Let \(\mathcal{A}_* \) be any alternative sufficient sub-field and let \(A \) be an arbitrary member of \(\mathcal{A}_o \). We have to prove the existence of a set \(B \in \mathcal{A}_* \) such that \(A \) and \(B \) are \(\mathcal{P} \)-equivalent.

Let \(f \) be the indicator of \(A \) and let \(f_* \) be the conditional expectation of \(f \) given \(\mathcal{A}_* \) and \(f_{*o} \) the conditional expectation of \(f_* \) given \(\mathcal{A}_o \).

Since \(f \) is bounded we can, without any loss of generality, assume that both \(f_* \) and \(f_{*o} \) are bounded.

Now, from definition 4 we have, for each \(P \in \mathcal{P} \),

\[
\int f \, dP = \int f_* \, dP = \int f_{*o} \, dP
\]

Thus,

\[
\int (f - f_{*o}) \, dP = 0 \text{ for all } P \in \mathcal{P}
\]

and \(f - f_{*o} \) is a bounded \(\mathcal{A}_o \)-measurable function. From the bounded completeness of \(\mathcal{A}_o \) it then follows that \(f \) and \(f_{*o} \) are \(\mathcal{P} \)-equivalent and hence

\[
\int f^2 \, dP = \int f_{*o}^2 \, dP \text{ for all } P \in \mathcal{P}
\]

But we know that for all \(P \in \mathcal{P} \)

\[
\int f^2 \, dP \geq \int f_*^2 \, dP \geq \int f_{*o}^2 \, dP
\]

Therefore,

\[
\int f^2 \, dP = \int f_{*o}^2 \, dP \text{ for all } P \in \mathcal{P}
\]

and hence \(f \) and \(f_* \) are \(\mathcal{P} \)-equivalent.

Thus, the set

\[
A = \{ x \mid f(x) = 1 \}
\]

is \(\mathcal{P} \)-equivalent to the set

\[
B = \{ x \mid f_*(x) = 1 \}
\]

and so \(B \) is the \(\mathcal{A}_* \)-measurable set we are searching after.
REFERENCES

344. Roberts, Charles D. An asymptotically optimal sequential design for comparing several experimental categories with a standard or control. 1963.
353. Naor, P. and Yadin, M. Queueing systems with a removable service stations. 1963.
356. Page, E. S. Controlling the standard deviation by cusums and warning lines. 1963.
369. Ray, S. N. Some sequential Bayes procedures for comparing two binomial parameters when observations are taken in pairs. 1963.