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INTRODUCTION™

Measurement of mental characteristics is subject to
considerable error as a rule. Test scores are regarded as
having two components--a true score plus a variable error.
In the fields of psychology and education, statisticians
are concerned both with the reliability and, more import-
antly, with the correlation between true measures of differ-
ent characteristics. With regard to the latter problem, if
perfectly reliable tests were available, correlation between
two characteristics could be estimated directly from a -
sample product-moment correlation. The existence of test
errors means that correlation between test scores may not
be an adequate indication of correlation between character-
istics which the tests purport to measure.

C. Spearman, G. U. Yule, and others noted this

phenomenon around the turn of the century. In 1904,
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Spearman' [17] proposed a method for correcting the corre-
lation between test scores to obtain a better estimate of
correlation between characteristics. Errors of measurement
tend to diminish or "attenuate" the correlation estimates.
Hence Spearman's method is called a correction for atten-
uation. The correction (to be specified later) involves
reliability coefficients of the tests. Though the meaning
and method of estimating reliability has been the subject
of much discussion in the literature, Spearman's concept
was that of the "self-correlation" of a test.

Suppose, for example, that an arithmetic test is
administered twice to the same group of students and that
memory of the test items plays no part in determining the
second set of scores. Discrepancies between the two sets
of test scores are expected, and they evidence test error
in measuring the mental characteristics involved. The
sample correlation betweeen the test scores is a measure
of test reliability in the Spearman sense. Current methods
for estimating reliability are summarized and evaluated by
Kuder and Richardson [10] and Loevinger [11].

Statistical textbooks such as [7], [8], and [12]
include reliability and correlations corrected for attenu-
ation as topicse.

The Spearman correlation corrected for attenuation

is r~TiTz , where r denotes the sample correlation

_ 'Numbers in square brackets refer to bibliography
listed at the end.
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between two sets of test scores and 1r¢,Tz are measures of
self correlation for the respective tests. Two anomalies
are apparent. The modulus of the statistic may exceed
unity and the statistic may have an imaginary value.

A central difficulty in determining reliability is
an ambiguity of definition. Porvexample, the split-half
method [10] requires the test items to be divided into two
groups, each group containing half of the items. A test
containing more than 100 items, say, may be "split" in a
multitude of ways, each providing an estimate of reliability.
This difficulty has received moderate attention in the
literature of psychology, e.g. [10] and [12]; but no gen-
erally accepted methods have been found to escape it.

In Chapters I through V, we shall consider two
random variables £ and n which may be interpreted as mental
traits. The variable E, for example, might be the arith-
metic ability of college freshmen; and 1 might be the
reading comprehension ability of those students. We shall
suppose that each trait may be measured (inaccurately) in
more than one way, €.g., by more than one test. If we

denote two measures of £ by Xy and Xg, for example, we write

X1 = E + €4
Xg = E + €
where €4 and €3 are random errors which are independent of

each other and of £€. The error variables €4 and eg are
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assumed to have zero means and equal standard deviations.
The scores Xy and Xz may stem from a variety of situations.
However, we shall avoid ambiguity if we always think of
X, and Xz as having been produced by the test-and-retest
situation previously illustrated. Then the correlation be-
tween Xy and Xz may be called a reliability coefficient.
(Similar remarks pertain to the mental trait which we denote
by n.) Extension of these concepts to cases in which more
than two measures are available for each trait is straight-
forward. The correlation between £ and n is denoted by
pEﬂ and is called the correlation corrected for attenuation.

Study of correlation corrected for attenuation in-
volves two sets of variates: one set measuring € and one
set measuring n. Hotelling [5] has developed the theory of
relations between two sets of variates and has shown that,
referring to features which depend only upon correlations
and to non-singular internal linear transformations within
the sets, canonical correlations and functions of them are
the only invariants of the two sets. Texts by Anderson [1]
and Roy [15] include many subsequent developments in the
theory. The present study gives consideration to canonical
correlations for the special cases, i.e., models, which are
discussed.

The theory of simple correlation is widely known and

is included in modern texts in statistics. A historical
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account of its development is given by Hotelling along with
his research in [6].

The primary subject to be discussed herein is the
sample correlation between variates whose measurements are
subject to error. Thus, in the sense of the preceding para-
graphs, the study concerns correlations corrected for atten-
uvation. A statistic, derived from maximum likelihood con-
siderations is proposed, and its exact probability distribu-
tion is given.

The new statistic cannot resulﬁ in an imaginary number,
as is possible with Spearman's correction. However, its
modulus may exceed unity, just as Spearman's may. This
illustrates a class of problems which has been drawn to the
author's attention by Professor Hotelling and which appar-
ently has not been treated in the literature of statistics.
Suppose, for example, that independent random variables
X and Y are observable only in the form X and X +Y .
Suppose further that information concerning X and X +Y
is obtained separately from independent samples. The vari-
ances of X and X + Y may be estimated directly from the
samples. But how should such information be used to estimate
the variance of Y? The variance of X + Y 4is the sum of
the variance of X and the variance of Y. Yet, simple sub-

traction of variance estimates for X + Y and X (based



upon independent samples) may result in a negative value.
Obviously, some modification is required if such a result
is to become the basis for estimating the variance of Y .
Apparently, similar considerations are required in appli-
cations of reliability coefficients and correlations cor-
rected for attenuation.

A mathematical model is specified in Chapter I. The
present study of reliability and correction for attenuation
postulates two sets of variates. Each set contains p 2 2
variates, and each variate includes a random error as one of
its two components. The two-component concept, with attendant
assumptions, is called the structure of the variate.

Both the case p = 2 and its generalization, p 2 2
are treated. The covariance matrix, as determined by the
assumed structures, is established for the variates in each
case, The concepts are illustrated at the end of Chapter I.

Density functions for the study are specified in
Chapter II. It is assumed that the joint distribution of
the variates is multivariate normal with zero means and
specified positive definite covariance matrix. The symbol
py (or pg) always refers to correlation between variates
in the same set; and p to that between variates of dif-
ferent sets. Canonical correlations stemming from the model

are discussed for pq # pa and for py = pg . Under the
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assumptions of Chapter II, an exact test is provided for the
hypothesis pj = ps versus the hypothesis py # pg
The covariance matrix for the variates is denoted
by ¥ or, when p1 = ps, by £ « Chapter III concerns the
estimation of elements in £ . It is assumed that the vari-
ates have a common variance 0% > 0 and that the correla-
tion between any two variates from distinct sets is p
It is shown that, if the specified structures are adopted,
pqy > 0 and ,P/P1' < 1 . These restrictions are waived
to facilitate estimation of 0%, py, and p . The maximum
likelihood estimates of py and pz, denoted by $4 and § ,
may or may not satisfy the inequalities §; > O and
/P11 <1, as is discussed at the end of Chapter III.
Asymptotic distributions of the estimators are derived,
and canonical correlations are considered. Chapter III
includes an alternate derivation of maximum likelihood
estimates and a discussion of their anomalous properties.
The next chapter, Chapter IV, provides the distri-
bution of the statistic w . It is shown that cumulative
probabilities for w can be expressed as linear functions
of four types of integrals. These integrals are evaluated
and give the cumulative distribution function, F(w), as a
terminating series which involves incomplete Beta-functions.
F(w) and the previously mentioned asymptotic distributions
are functions of p4 and qu « Methods of calculation are

illustrated by numerical example.
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Chapter V is a summary of assumptions, techniques.
and results. It includes a discussion of some possible
extensions of the results and of some problems which are

associated with the present research.



CHAPTER 1
MODEL FOR TWO SETS OF p VARIATES

1.1 Basic structure

The introductory remarks suggest the study of vari-

ables whose structures are of the form
X=E+E ’

where X is a test score, say, & is the true component, and
€ is a random error which is independent of & . We adopt
this structure and assume throughout that the expectations

of £ and & are zero.'

1.2 The 2-variate case

Suppose the random variables Xi,Xz;Xs,Xg have struc-

tures

E + ¢, i=1,2

i ’

n + €y , 1

3,4

where

(a) €1,00,€4 constitute an independent set of

It is well known [6] that for complete samples of
n +1 individuals from a p-variate normal population, the
distributions of functions of the covariances, computed by
dividing the sums of the products of deviations by the number
of degrees of freedom n , and with arbitrary population
means, is the same as if sample means were not thus eliminated
but the means were known to be zero. Accordingly we have
assumed that the population means of all variables are zero.

1



variates with means zero and variances Gg y 1 =1,400,4,
i

respectively, and

| (b) E and n are independent of the error variables

€1,+00,E4 , have zero means and variances o2 , 02 > O,

g 1
respectively, and have covariance dﬁﬂ « Denoting the vari-

ance of X, by df (1 =1,0es,4) and the covariance of X; with

Xj by dij swe have

we

o2 + g? , 1i=1,2

g s

2 4 g%
Un Uei N

2
o'i =
3,4 H

|
il

(1'1) 0'12=0'§>0

Q
w
re

i

g2 > 0
n
dij = cgn 3 1= 1,2; J = 3’4 .

Using a notation similar to that above in connection with
the letter p to indicate correlations between variates,

we note that py2, psa » O » Further,
o
p =__.€.n.. ’
En T Gg 0
1
(1.2)
054
- (1=1,2; J=3,4).

V0412034

Now, we impose two conditions which apply to the whole of

s . . . _ =0 .
the remaining discussion, viz., 651 062 and dﬁs €a

This implies o4 =0z and 03 = 04 , so that
Pss

. =—-—-}—Q— '=”.= ,4 .
(1.3) PEn W (i =1,2; j =3,4)



Denote the variables X; + Xz and Xs + Xa by Z4
and Zg, respectively. Then, using customary notation for
correlations between variables, we have

405ﬂ

Pz.2. = ~ & ’
162
A4ct + 202 ) (402 + 202 )

(1.4)
2044

v4°§ + c?)(a: + 03)

from which

Pzyz
(1.5) Pz, = — :

@y

N +pag

1.3 A generalization

Generalization to the case of p > 2 variates in
each set is straightforward. Let X1,...,Xp;xp+1,...,X2p

be random variables with structures
+ €.
€ + e,

ﬂ+€i ’ i=p+1,ooo,2p

N i=1,ooo,p

and make assumptions which are direct extensions of (a)

s p 2p
and (b) of paragraph 1.2. If Z; =) X; and Zg = )X
1 p+i

then g1 = Ui (i = 1,0¢u,p) and 0p+1 = O'i (i = p+1,ooo,2p)

imply



pPogy
2425 = — g
V(bzag + pog ) (pR02 + po? )
p#+l
(1.6 P59y, p+1

S U(D2- D)ora +poF )l (% = p)ok,y o+ 002 ,4]

from which

P
VP12 Ppe1, pt2
and
(1.8) oy = P22,
. En "

J(_2 P12 ) P Poit1,pt2
1T +(p=-1)p T+ (p-1Jp
12 p+l,p+2

1«4 Covariance matrix

We assume hereafter, in all of the discussions, that

p22,0, =0>0 (1 =1,..,2p), and adopt the notation

P12 = P1 pp+1,p+2 = ps , and p1’p+1 = p , maintaining all
assumptions of paragraph 1.3. The parameters p; and pg may
be regarded as correlations between like forms of the same
test and will be referred to as reliability coefficients.
We denote the covariance matrix for the variables
X1,...,X2p by $ and define

211 212

(1.9) 5 = g® .
Zg1 a2

where



r
1 P1 oo Pn
P1 1 see P4
(1.10) Zyy = ’
eee 1
\31 P1 J
- N
1 P ece P2
~ Pz 1 eee P2
(1‘11) 222: esacas ceé o !
pa p2 s e 1
and - 7
r;) p eess P
P P eee P
(1.12) Z1g =221 = | ... cee s ’
P p ces P

specifying that

p1tea p1 t+ P2
1+(p-1) 5 +pp>0,1+(p-1)—-——§——-pp>0.

Now consider an orthogonal transformation of the variables:
Let X and Y be random column vectors with elements
X1,...,X2p and Y1,...,Y2p , respectively. Let these vec-

tors be related by Y = AX , where A is the orthogonal

matrix
Ay Ag
(1013) A = AS O s
0 Ag

where A, and Ap are the 2 X p submatrices



.
1 1 1 e 1
(1.14) Ay = —— ,
V3 [ 1 et
("
1 1 1 L N ) 1
(1015) Az T= enmmema ’
vV2p CLUEELIEEE -1

As and As are the (p-1) X p submatrices

r‘
PR R S, |
a; a1 a1 tar &
0 p-2 =1 =1 =
ag ag % ag ag
(1.16) As = 0 0 p:'g -oo:‘l ':l s
CF:| as as
o o0 © A
V2 V2
o
~ =~
B S et
a; a7 °° aq a4 aj

ag 4z ag aa
= = =l D=3
(1.17) A4 as as s s e aS O O ]

where ay =V {p-3)(p~3+1) » 3 =1,eee,p-1, and where

all elements of A not defined by (1913),.,.,(1.17) are zero.
We denote the covariance matrix for the elements of Y by D
and, after noting that the means of Y1,...,Y2p are zero,

state the following theorem:
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Theorem 1.1 If the elements of X have covariance matrix g ,

and other assumptions of this paragraph obtain,

B 0 0
(1.18) D= [0 0%(1-m)I 0
0 0 02(1 - pg)l

where the zeros represent zero submatrices with appropriate

numbers of rows and columns,

prtpe -
1+ (P-1)"—§-'*'PP (P-1)-J1§-E
p1-p
(P-1)-l§—£ 1'*(P-1)—l§_3-PP

and where I is a (p-1) X (p-1) identity matrix .
Proof: Since Yy = —— (Zy + Zz) , the definitions
D
of Z, and Zg, together with the structures of Xy (1=1,000,2D)

permit us to write the variance of Yy as

(1.20) [ p(p-1){p102+ pao?} + 2pa® + 2p%pu]

py t+ P
= g2[1 + (p= 1) ———

+ ppl .

Since Y3 = —l: [Z4 - Zgz] we have the variance of Yp as
2p

(1.21) —1_:[p(p— 1){p402 + pgo?} + 2po? - 2p*po?]
v2p

+p

p
o2[1 + (p-1) —-'—-2——3 - ppl .

2

We have YiYg = é% (z7 - 22) , with expectation



1 P1 - P
(1.22) ﬁ[p(p-ﬂ(maz-pzaa)] = 0%(p-1) ———5—3- ;
which establishes the matrix B. Using customary notation

for variances and covariances, we have for Jj=1,...,p-1

(1.23) oy = L [(p- 3)%0% + (p- 3)%0?
J as
| ’ (p-ilp-3-1) 4,37,

- 2{(p-3)B042 - 5

= 0%(1 - p1)

—
-

0'2(1 - pz) ’ with

j= p,oeo,2(p-1), GY .
2+j
a, = ag ,

Similarly, for
p

the notation agreement (here and elsewhere) that

ap+1 = ag , etce.
The covariance of Y2+j and Yy (j=1,e00,p=1) 1is
2
(1.24) o, y, =——=[(p-3)(p-1)ps +(p-3)+(p-3Jlpe
. 2+3 a; v2p
- (p-3){{p-1)ps +1 +pp}] ,
= O .
We consider next the covariance of Y2+j and Y2+k
for j,k <p and j Ak . We have

(1:29) oy v " -53?-5-1;[2{(p— 5)(p-K)ayg - (p-3-1)012}

- (p- k)02 2{(p- KNp- 3)012+ (p- 3= 1)Ap-K)o13}

+ (p- k)o®

= 0 .

By similar considerations, when J,k 2 p and Ak,

(0] = 0 .
Yo+5¥24k



. The only remaining case is j < p with k 2 p . The
algebra is the same as in the previous case except that the
signs are reversed, no variances appear, and 043 (or

Gp+1’p+2 as the particular case demands) is replaced by

G1,p+1_' This gives

Yor3Yo4k '

This establishes Theorem 1.1 and a corollary follows

immediately by inspection of the matrix B .

Corollary 1.1 If py = pg , the elements of Y are

independent.

i . 1.5 Illustration

It is appropriate to illustrate Theorem 1.1, We

choose an example in which p =3 and 02 =1 . The

matrix A becomes

(1 1 4 o1 a1
VB VB VB VB VB VB
i I R DY RS A §
V6 VB VB V& V& VB
2 =t =1 o o o
VG V& VB
A =
o - =L o0 0o o
V2 V2
o o o = 2L 2
"' Ve ~B VB
ooo:-l;‘-ﬁo
L 2 )
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and is orthogonal. After transformation by A , the covari-

ance matrix for the new variables is, by Theorem 1.1,

1+(p1+p3) +3p P1 - P2 0 0 0 0
P1 =~ P2 1+(py+pg)=-3p 0 0 0 0
0 0 1-p4 0 0 0
b= 0 0 o) 1- py 0 0
0 0 0 0 1-pg O
0 0 0 0 0  1-pg

We could have established the theorem by computing
the product A S A' for the covariance matrix of the Y
elements. Hence we have the corollary [1]:

~

Corollary 1.2 AZA' =D .

We denote the inverses of £ and D by A and Q,
respectively. Then, by well known [2] properties of
matrices and determinants

Q =a"taat o,

and since A 1is orthogonal,

Theorem 1.2 Q] = |A| .




CHAPTER 11

DENSITY FUNCTIONS

2.1 Density considerations

Apart from the introduction of means, variances,
and covariances, references to distributions have been
avoided in Chapter I.

Let the variables X1,...,X2p have means zero and
positive definite covariance matrix X,the form of which is
specified by (1.9). Let the joint density be

.ip
-1 Lo xx,
(2.1) -%-’23‘-}(% o 2 ,get BT dxyeendxyy

~e

where A has elements kij and is the inverse of the matrix Z .
That is to say, we assume the variables have a joint
(2p)-variate normal distribution, with parameters as speci-
fied above. Let X be a column vector with elements
X1,...,X2p and x be a column vector with elements
e T If Y = AX , where A is defined by (1.13),
the joint density of the elements of Y is obtained from

(2.1) by means of the transformation y = Ax . A 1is orthog-
onal so that the Jacobian of the transformation is unity.

Thus, the elements of Y have joint density

"
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2p
1
y 2, Z“’ijyiyj
(2-2) 'I_S'ZJ'_' e l,J=1 dY1l lodyzp ’

(2n)P
where Q is the inverse of 5, (1.18), and whose elements are
denoted by @ 5 Here we have used Theorems 1.1 and 1.2.
By a well known theorem in multivariate analysis (page 29

of [1]), the joint density of Yy and Yz is, therefore,

N A '
(2-3) 'LB—'—'L' e i,3= dY1 dy2 ’

where B~' is the inverse of B, (1.19), and has elements

Cij.

Let the respective variances of Y; and Yz be v? and v

and the correlation between Y; and Yz be T . Theorem 1.1

indicates that

+
(2.4) v = 01 + (p-1) 22 4 pe]
+
vi = o2[1 + (p-1) 25E2 L ppl
and :
_Db~1py-p2
T _V1V2 5 .

2
2

Our assumption that ¥ is positive definite requires the right

hand sides of equations (2.4) to be positive.
Let the columns of the 2 X n matrix -

Y11 LR ] Y1n

2.
( 5) Y21 L an
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be independently and identically distributed according to

(2+3)+ The joint density of the variables is

] n 2
- 5 "2 21 Z 1°ijyiayja
(2.6) 187 12 o o=t iy dytqe.ed .
(21[)11 VAR yan
If =0 and
n
ZY1QY2C!
(2.7) g = 2= ,
n n
2 .
LYiICL vi)
a=1 a=1

we have, from the theory of simple correlation (page 64 of[1]),

V-1 T
M L

with n-1 degrees of freedom. A test of T = 0 versus = £0

the distribution of as the "Student" t-distribution

is a test of py = ps versus py # pz and may be made by
means of the standard "two-tail" t-test with n-1 degrees
of freedom (page 65, [1]).

Later in the discussion we shall adopt a model which
requires py = pg so that the above considerations provide

a partial test of that model.

- 2.2 Canonical correlations

Hotelling [5] has shown that canonical correlations
are the non-negative roots of the determinant equation which,

in terms of the present model, is
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A1 Zyg
(208) ~ = O ’
Z31 AZgp
or, by [1]:
INZq 4 -Z1a(A2e2) "' Sa1 | NZazl =0 .
From this
- ot
|211|4K211-% 2122522821 =0
and

-l ~_1
INBI =244 Z9p 232 229l =0,

a result frequently used by Roy [15], and in which I is
a p X p identity matrix.

To obtain roots of (2.9), we first examine the matrix
ZT} Zy 2 55% S2y o Let j bea 1 xp matrix with unit
elements. Then j'j is a p X p matrix with unit elements,
jj'=p, and 3'ji'j =pj'j . From (1.10), (1.11), and
(1.12), we have
(1 = p4)I + p13']

DI

~

(2.10) 2z = (1 - pa)I + paj'] ’

Zyg =21 = p3'3
Inverses of Ziy and Xgp will be obtained with the
aid of a result by Roy and Sarhan [16]. Let D be a (k X k)
diagonal matrix with diagonal elements p; let g and r
be 1 x k matrices having elements q; and 1y , respectivelys
and let A\ be a scalar. Paraphrasing the result in para-

graph 4 of [16], we have



Lemma 2.1 If

(2.11) C=D+MNqg'r ,
then
(2.12) ¢! =p~'- - A
q; Ty
1+\ =
5

15

where q and T are row matrices (1 X k) whose elements are

q;/p; and r./p; » respectively.

Direct application of the lemma gives

-1 1
211=-1—:-p—1-1-

(2.13)

£1
1 +T%F%T

P1

-5 [ - rerpemey 319

and similarly

(2.14) szl = TT}BE (1 -

Pa

T+ (

s
p-1)p2 33l

These relations together with (2.10) give

(2.15) 77 342 S3% Za

pz

<H.jp1>2j'

S

P2
- T AP ACLEAR IS ey vy P

pR pp

1

T IEET R

2
( PP1

1+ (p-1)p1

(1-p1) (1-p2)

= pp?

T 14 (p-1)ps
(1-p1)(1-p2)

'3)3'3l

PPz ___515)1,

.
3333 -

PP

"1 +(P-1)Pz

3'3

T (1-pa) (- Pa) [1+ (p-1)p1][1+ (p=1)p2l

pp?
[1+ (p-1)p1L1 + (p-1)pal

'3

(p-1)r2

)3'33v3]
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Thus the positive roots of (2.8) are simple functions (square
roots) of the characteristic roots of the matrix given by

the last line of (2.15). We denote the scalar associated
with that matrix by ¢ and write (2.9) as

2
N1 - 33l = Jo 1 - 3'3)l =0 .

Hence the square of any root of (2.8) is proportional to some
characteristic root of the matrix j'j, the proportionality
factor being ¢ . The general result A.1.18 of [15] applies;
so that the non-negative roots of j'j are the same as those
for jj'=p . Hence A® = ¢p , and

- plel
VIT+ (p-1)p1dL1 + (p-1)p2]

is the only positive root of (2.8). We have proved:

(2.16) A

< p1s Pz <1, there is a

Theorem 2.1 Provided -

p-1
unique canonical correlation ¢ , say, where

(2.17) ¢ = plpl
Vit + (p=1)p1 1+ (p-1)p2l

and the positive square root is taken.

Also if py A pa and p =0, we have { =0 .

2.3 Canonical variates and quasi-canonical correlation

Assumptions of this chapter are compatible with those

of paragraph 1.3 provided oy = op+1 = 0 and the new notation

Pra = P1y  Ppyq pe2 = P2 and Py,p+1 = P is adopted. Now
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assume that the variables x,,...,x2p satisfy other require-

ments of this chapter and may be written

X g+€i ) i=1,ooo,p
. n+te » i= ptlye00,2p

where SERRITLIWY E, and n are defined by paragraph 1.3 with

01 = Oj4q = ¢ . Equation (1.3) applies and may be written
0 _ ppo?
2122 W/Tp-1)proat GEI[(p-1)pg02 ¥ 02]
_ pe
- 1}
V[T + (p-1)p1 J[1 + (p-1)p2l
p P
where 24 = Z Xi and Zg = Z X:.L . By Theorem 2.1,
1 p+1 ‘
IpZ,ZQl = ¢ , which is a unique non-vanishing, canonical

correlation if p # 0 . It is evident that, for the present
model, the population canonical variates are independent of
o®, py, and pg ; depending only upon general properties of p .
We arbitrate possible ambiguities by the following conventions:
If p is non-negative we take Zy and Zg as population canonical
variates. Otherwise, we take Z; and (-Zz).

We shall call the random variables Zy and Zp quasi-
canonical variates and their correlation (regardless of sign)

the quasi-canonical correlation, denoted by ¢* .



CHAPTER III

MAXIMUM LIKELIHOOD ESTIMATES

3.1 Likelihood function

Let the columns of the matrix

~ ~
X1 - X132 soe X1n
X21 X222 coe X2n

(3.1)

L 2N ] L s e LI ]

Ki‘zp,1 Xop,2 **° x2p,qJ

représent elements of a random sample of size n from a

population specified by (2.1) in which the population means
are known to be zero. Let the covariance matrix T be posi=-
tive definite, be defined by'(1.9) with the restriction

py = pa , and have elements whose values are unknown. We

denote the covariance matrix (with pq = ps) by £ and have

(3-2) 2 =o0% i 2 s
Z21 A

where 244, Z12, and Zg4 are defined by (1.10) and (1.12).
The likelihood function [1] of the sample is

2p
S BT
(303) —Lj'\"-—' e l’J=1
(2n)"P

where A , with elements xij’ is the inverse of X and

18
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~1o

X . In this chapter, maximum likelihood esti-

Sij ia®ja

a=1
mates of the parameters o®, py, and p are derived.
3.2 A lemma

Use of the symbol A here differs slightly from the
previous use. We have imposed the condition py = p2 ;

otherwise, the meaning of A is unchanged. We shall use the

temporary expedient of denoting the elements of Z by dij .
Lemma 3.1
If in £ we have Gij = 0} p » xij = ka .

Proof: Consider the matrix
~ “~

1 P1 s oo p1 p ses p
P 1 ees P1i P ees P

(304) 2 = 02 P P1 e 1 [y ece P .
P ces P 1 sees Py

LN .0 eos L 2N LR J s L N

p P L AL 4 P P1 se 1

e -

Cofactors of its elements (Gij) are proportional to the ele-
ments (xji) of A . The cofactors of 04, for i=1,e.0e,p are
identical by inspection of (3.4). When i > p , an even number
of row and column interchanges in the matrix which determines
the cofactor produces a matrix which is identical with the
matrix determining the cofactor of Oii for i < p . Hence,
the cofactor of Oi3 equals that for djj , 1,J=1,¢00,2p &

Consider two elements Gi‘ which lie above

J » 31
the main diagonal and which are equal by definition (3.2).

and di
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The cofactor of the former is based upon the sub-matrix ob-

th th

tained from Z by deleting the i~ row and j column. The

th ) st

i row and (j+1 columns are deleted in connection with

the element o, It is observed that the corresponding

i,ji#*
sub-matrices differ only in two rows and that they would be
equal if the appropriate two rows in one of them were inter-
changed. Hence, except for sign the corresponding deter-

minants are equal. The cofactors of o¢;,. and o, . are equal
i i, i+

J
if both elements lie above the main diagonal and are equal
by (302) .

Reference to the symmetry of Z completes the proof.

3.3 Estimation

The maximum of the likelihood function and its loga-
rithm occur at the same point in the parameter space. Let
us denote the logarithm of (3.3) by L, adhering to the nota-

tion Gij and xij for the elements of Z and its inverse,

respectively. We have
2p
_ n 1
(3.5) L = -np log 2n + 5 log lA| - z Z 1>\ijsij ,
1,J=

and, following customary maximum likelihood technique, put

oA
6! I j
2p aj.\'.a: 2p N, .
(3.6) L -p ) AT 1) s, —l-0 .
2 i) 2
oo i, =1 | Al i,3=1 8o

The equations g% = 0 and g%—
1

By [1], (Appendix 1, Theorem 7)

= Q0 have a similar form.
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(3.7) = A..
N . 1
ii
and
alAl
ij

where Aij is the cofactor of kij , (1,5 =1,4e4,2p)s The

matrix £ is symmetric and is the inverse of A, so that

A, .
'—}"2' = ¢ 2 = P »
(3.9) A ch 613

Lemma 3.1 establishes various equalities between elements

Kij of A. Using those results, together with (3.7), (3.8),

and (3.9), the equation (3.6) may be written

2p
Ny 4 S..n ON1g S. .
(3.10) A== ) (g..-._£;> +
802 . = i1 n 802 , & i) n
i,J=1 i,JjeRy
oA ’ S..
__p._.e:f_z (G_,-_u>= 0,
do® 1J n
i,JjeRy
where the notation Z indicates summation over those

i,jER1
values of the subscripts which satisfy either of the
restrictions
1,3 <p,with i#£3,
(3.11) or
i,j>p, with i £ 3,
and Z indicates similar summation for either

1,jeRa
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i<p and ] >p,
(3.12) or
i>p and j<p .
oL 3L

Analogous development for rYYY and 5; produce results similar
1
to (3.10). Those equations and (3.10) are satisfied if
2p 2p
S.. S..
iiy - ii
Foyy - 2z opr - ] Boo
i=1 n i=t P
(3.13) ) (o,: - Eii) = 2p(p-1)p10® = ), 2 -0, and
L ij o = «p\p=1/P1 - = s
i, JeRy i,JjeR,
: Si' Si'
i,jeRg n i,jeRg °

Equations (3.13) establish

Theorem 3.1 Under our assumptions, the maximum likelihood

estimates of o2, py, and p are

2p
), Sii e .
j= + + s 0 e
(3.14) 82 - 11 7% " 2p
2pn 2pn ’

2 S12+813 +...+Sp"1,p+sp+1,p+2+.. 0+S@_1’2p’

1

p-1 SP + S§ + ..o + 8B
+ + 0o + S
(3.16) p = 2 °1,p+ 51, p+2 p,2p
2 2 2
PSP + 8§+ .. + S5

where S? =S,. (1 =1,00e,2p) »
The numerators of the rightmost expressions in (3.14),

(3.15), and (3.16) occur frequently in subsequent discussion
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and will be denoted by S, 2(5;+33), and 255, respectively,
where 51 = S45 + S1g + eee + S and

-§2=S + S

p=1,p

+ see + S

p+l,p+2 p+1,p*+3 2p-1,2p °

In passing it should be noted that the estimators
62, Py, and p give the maximum of (3.3) without regard to
the inequalities pq > 0 and |p/p4| <1 . Hence, it may

happen that $y < 0O or [8/84] > 1 or both.

3.4 Estimates using new variates

Regard the ot column of (3.1) as a column vector,

§a (¢ = 1,.00,n) and apply the transformation Vg = A §a s

where A is defined by (1.13). This gives

2p
2p Yiq T Z Xia !
i=
2p You = Z Xia = Z Xia !
i= i=p+i
with
2p
2 - 2
2p yB_ = ), xE, + 2Ty, *+ Tpy + Tgp)
i=1
(3.18) 2p
2 -
2p Y3, = Z X1 g + 2(T1a + T2a - T3a)
i=1
where
Tig = XMa¥2q¢ ¥ X1a¥3q0 T * X51,a%pa ?
(3.19 T

2a ~ xp+1,axp+2,a‘+"'”‘?.x?p-1,ax2p;a‘,

3a ~ x1axp+1,a+x1axp+2,a+ "'4'xpax2p,a *
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The subscript o will be deleted when no ambiguity arises.

We also have
p
vIp=TIp vs = (p=1)x1 - Z X3

i=2

D
VTP=ITTB-3FT) Y4y = (p-3)x5 - ) X3

i=j+
2p-J
VIB=ITTB-37T Ypu5 = (p=3)%xpp 541 - S
i=p+1
forj=1,...,p-—1 .
p-1 p-1
i 2 2
Let us examine pi Z Y544 and p! Z yp+i +» We have
i=1 i=1
p
(p-1)p y2 = (p-1)2x% + ) x3
i=2
D p=-1 P
- 2[(p~1) Z X1X5 = Z Z x;% 1
i=2 i=2 k=i+
(3.21) L I ] L . L] * L] . *
. p
. . _ . 2 2
(p-3)(p-3+1)ypyy = (p=3)xj + Z x2
i=ji+
p p-1 D
- 2[(P-j) z xjxi - Z z xixk] ’
i=j+ i=j+1 k=it

for j = 1,cee,p-1. We multiply the equation involving

Y3+j by plp-1)ees(p=j+2)*(p-j=-1)t J =1,eee,p-1 « The
p-1

coefficient of x? in p! Z y3.; 1is by » say, where
i=1
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b, = (p-2)! + p(p-3)! + p(p-1)(p=4)} + ¢cv +

3
(3.22) [p(p=1)ese(p-3+3)1(p-3)% + p(p=1)e.c.(p-3+2) X
(p=3j-1)t(p-3)2 ;
with _
bj+1 = bj“ p(p'1)-°'(P°j+2)(p"j-1)A(P’j)z
+ p(p=1)see(p-3+2) (p-3=1)1
(3.23) + p(p=1)een(p-3+1) (p-3-2) 1 (p=3=1)2 ,
= by - p(p-1)ees(p-3+2) (p-3-1) [ (p-3)® -
{1 + (p=3+1)(p-3-1)31,
=by .
But
= (p-2)¥(p-1)2 = (p- 1,
(3.24)b1 (p-2) 4 (p-1) (p-1) (p-1)

by = (p-2)!+p(p-3)i(p-2)2 = (p-2)i[1 +p(p-2)]1 ,
= (p-1)(p-1)¢

We have completed an induction which shows that the squared
p-1
terms of pl Z Yg+i cach have coefficient (p-1)(p-1)!
i=1 '
Similarities in the last two equations of (3.20) show that
: p-1
the squared terms of pl Z y;+i have coefficient (p-1)(p-1)}.
i=1
Consider the coefficient of xij for L > j in
p-1
the sum pl Z y§+i . We follow the previous pattern and
i=1
denote this coefficient by €5 the subscript 4 being

unimportant so long as 4 > 3 . We have
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C-1

S =3+ p(pe1)unn(p342) +(p-3-1)1(p-3)
(3.25) + p(p-1)eee(p-3+2) *(p-3-1)!
= p(p-1)eee(p-3+1)*(p-3-2) 4 (p-3-1) ,

C.
= 1§ + plp=1)ese(p=3+2) *(p-j=1)t[p-3+1=(p-3+1)]1 ,

-9

This, together with

'92-1- = '(P—1)(p-2)! = _(p_’])! ,
(3.26) -%3 = (p-2)! - (p-2)p(p-3)¢ = (p-2)t[1 - p] ,

= «(p-1)1!

completes an induction which shows the coefficient of each

p-1
cross-product term in pl Z YZ+1 to be [-2(p-1)i]. Hence
i=1
p-1 , 2, p-1 p
(3.27) pb ) vS = (p=10il(p-1) Lo - 2) ) xx] o
i=1 i=1 i=1 k=1i+1

The previously mentioned similarities in equation (3.20) give

p-1 2p 2p-1  2p
(3.28) p! ) v34q = (p-1)40(p-1) Y xE-2 ) Y xx1.
i=1 i=p+i i=p+1 k=i+1
We restore the subscript a and use (3.19) to write
2p 2p T, +T
2 2 10 20
(3.29) = L Vi = ) xiy - 2 =TT
i=3 i=1

based upon (3.27) and (3.28). Also,
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]
1
x
)
+
N
Pt
~-J
el
12
+
-]
N
Q

2 2
p(Y1q * Yoq)
(3.30) i=1
p(y$a - Y%a) = 2T3a '
from (3.18).
The paragraph following (3.16) defined the sums

S, 51, gg, §3 , which refer to summation upon the subscript a .

We use the additional notation

n
Z y?a ’
a=1

2t

n
2u = Z Y8,
a=1

n 2p
- 2
2V = Z Z Yia .
a=1 i=3
n 2p
It is further observed that Z Z x?a =S5 and
a=1 i=1
(3.32) YT =5 » k=1,23.

By summation on both sides of each equation, (3.29) and

(3.30) yield
2p(t +u) =S + 2(51 + gz) s

2p(t - u) 2S5 , and

2 _ § +-§3
BTPT v =5 -2 Lt

i

(3.33)

Then
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i
ot
'

c

Equation (3.34) and Theorem 3.1 establish the following

theorem:

Theorem 3.2 The maximum likelihood estimates of o2, py and p

may be written:

ﬁ t - U
t +u+v

o = = » A A .
Since PEq —;f;; p/p1 , the ratio p/Py will be

denoted by w and proposed as an estimate of qu » the cor-

relation corrected for attenuation. We have

(3.36) w = t'“v
‘t+u--i)-:T
which reduces to
_ t - u
(3037) W-—t+u_v

1
N
L ]

in the special case p






