
Likelihood Ratio Tests and Intersection-Union TestsbyRoger L. BergerDepartment of Statistics, North Carolina State UniversityRaleigh, NC 27695-8203Institute of Statistics Mimeo Series Number 2288September, 1996



1Likelihood Ratio Tests and Intersection-UnionTestsRoger L. BergerNorth Carolina State University, Raleigh, NC 27695-8203/USAAbstract. The likelihood ratio test (LRT) method is a commonly used methodof hypothesis test construction. The intersection-union test (IUT) method isa less commonly used method. We will explore some relationships betweenthese two methods. We show that, under some conditions, both methods yieldthe same test. But, we also describe conditions under which the size-� IUT isuniformly more powerful than the size-� LRT. We illustrate these relationshipsby considering the problem of testing H0 : minfj�1j; j�2jg = 0 versus Ha :minfj�1j; j�2jg > 0, where �1 and �2 are means of two normal populations.Keywords and phrases: likelihood ratio test, intersection-union test, size, power,normal mean, sample size.1.1 Introduction and NotationThe likelihood ratio test (LRT) method is probably the most commonly usedmethod of hypothesis test construction. Another method, which is appropriatewhen the null hypothesis is expressed as a union of sets, is the intersection-union test (IUT) method. We will explore some relationships between teststhat result from these two methods. We will give conditions under which bothmethods yield the same test. But, we will also give conditions under which thesize-� IUT is uniformly more powerful than the size-� LRT.Let X denote the random vector of data values. Suppose the probabilitydistribution of X depends on an unknown parameter �. The set of possiblevalues for � will be denoted by �. L(�jx) will denote the likelihood functionfor the observed value X = x. We will consider the problem of testing the null



2 Roger L. Bergerhypothesis H0 : � 2 �0 versus the alternative hypothesis Ha : � 2 �c0, where �0is a speci�ed subset of � and �c0 is its complement.The likelihood ratio test statistic for this problem is de�ned to be�(x) = sup�2�0 L(�jx)sup�2� L(�jx) :A LRT rejects H0 for small values of �(x). That is, the rejection region of aLRT is a set of the form fx : �(x) < cg, where c is a chosen constant. Typically,c is chosen so that the test is a size-� test. That is, c = c� is chosen to satisfysup�2�0 P�(�(X) < c�) = �; (1.1)where � is the Type-I error probability chosen by the experimenter.We will consider problems in which the null hypothesis set is convenientlyexpressed as a union of k other sets, i.e., �0 = [ki=1�i. (We will consideronly �nite unions, although arbitrary unions can also be considered.) Then thehypotheses to be tested can be stated asH0 : � 2 k[i=1�i versus Ha : � 2 k\i=1�ci : (1.2)The IUT method is a natural method for constructing a hypothesis test forthis kind of problem. Let Ri; i = 1; : : : ; k denote a rejection region for a testof Hi0 : � 2 �i versus Hia : � 2 �ci . Then the IUT of H0 versus Ha, based onR1; : : : ; Rk, is the test with rejection region R = \ki=1Ri. The rationale behindan IUT is simple. The overall null hypothesis, H0 : � 2 [ki=1�i, can be rejectedonly if each of the individual hypotheses, Hi0 : � 2 �i, can be rejected.An IUT was described as early as 1952 by Lehmann. Gleser (1973) coinedthe term IUT. Berger (1982) proposed IUTs for acceptance sampling problems,and Cohen, Gatsonis and Marden (1983a) proposed IUTs for some contingencytable problems. Since then many authors have proposed IUTs for a variety ofproblems. The IUT method is the reverse of Roy's (1953) well-known union-intersection method, which is useful when the null hypothesis is expressed asan intersection.Berger (1982) proved the following two theorems about IUTs.Theorem 1.1.1 If Ri is a level-� test of H0i, for i = 1; : : : ; k, then the IUTwith rejection region R = Tki=1Ri is a level-� test of H0 versus Ha in (1.2).An important feature in Theorem 1.1.1 is that each of the individual testsis performed at level-�. But the overall test also has the same level �. There isno need for an adjustment, e.g., Bonferroni, for performing multiple tests. Thereason there is no need for such a correction is the special way the individual



LRTs and IUTs 3tests are combined. H0 is rejected only if every one of the individual hypotheses,H0i, is rejected.Theorem 1.1.1 asserts that the IUT is level-�. That is, its size is at most�. In fact, a test constructed by the IUT method can be quite conservative.Its size can be much less that the speci�ed value �. But, Theorem 1.1.2 (ageneralization of Theorem 2 in Berger (1982)) provides conditions under whichthe IUT is not conservative; its size is exactly equal to the speci�ed �.Theorem 1.1.2 For some i = 1; : : : ; k, suppose Ri is a size-� rejection regionfor testing H0i versus Hai. For every j = 1; : : : ; k; j 6= i, suppose Rj is a level-� rejection region for testing H0j versus Haj. Suppose there exists a sequenceof parameter points �l; l = 1; 2; : : :, in �i such thatliml!1P�l(X 2 Ri) = �;and, for every j = 1; : : : ; k; j 6= i,liml!1 P�l(X 2 Rj) = 1:Then the IUT with rejection region R = Tki=1Ri is a size-� test of H0 versusHa.Note that in Theorem 1.1.2, the one test de�ned by Ri has size exactly �.The other tests de�ned by Rj ; j = 1; : : : ; k; j 6= i, are level-� tests. That is,their sizes may be less than �. The conclusion is the IUT has size �. Thus, ifrejection regions R1; : : : ; Rk with sizes �1; : : : ; �k, respectively, are combined inan IUT and Theorem 1.1.2 is applicable, then the IUT will have size equal tomaxif�ig.1.2 Relationships Between LRTs and IUTsFor a hypothesis testing problem of the form (1.2), the LRT statistic can bewritten as�(x) = sup�2�0 L(�jx)sup�2� L(�jx) = max1�i�k sup�2�i L(�jx)sup�2� L(�jx) = max1�i�k sup�2�i L(�jx)sup�2� L(�jx) :But, �i(x) = sup�2�i L(�jx)sup�2� L(�jx)is the LRT statistic for testing Hi0 : � 2 �i versus Hia : � 2 �ci . Thus, the LRTstatistic for testing H0 versus Ha is�(x) = max1�i�k �i(x): (1.3)



4 Roger L. BergerThe LRT of H0 is a combination of tests for the individual hypotheses, H10; : : : ;Hk0. In the LRT, the individual LRT statistics are �rst combined via (1.3).Then, the critical value, c� that yields a size-� test is determined by (1.1).Another way to combine the individual LRTs is to use the IUT method.For each i = 1; : : : ; k, the critical value that de�nes a size-� LRT of Hi0 is thevalue ci� that satis�es sup�2�i0 P�(�i(X) < ci�) = �: (1.4)Then, Ri = fx : �i(x) < ci�g is the rejection region of the size-� LRT of Hi0,and, by Theorem 1.1.1, R = \ki=1Ri is the rejection region of a level-� test ofH0. If the conditions of Theorem 1.1.2 are satis�ed, this IUT has size-�.In general, the two methods of combining �1(x); : : : ; �k(x) need not yieldthe same test. But, the following theorem gives a common situation in whichthe two methods do yield the same test.Theorem 1.2.1 If the constants c1�; : : : ; ck� de�ned in (1.4) are all equal andthe conditions of Theorem 1.1.2 are satis�ed, then the size-� LRT of H0 is thesame as the IUT formed from the individual size-� LRTs of H10; : : : ;Hk0.Proof: Let c = c1� = � � � = ck�. The rejection region of the IUT is given byR = k\i=1fx : �i(x) < ci�g = k\i=1fx : �i(x) < cg= fx : max1�i�k �i(x) < cg = fx : �(x) < cg:Therefore, R has the form of an LRT rejection region. Because each of theindividual LRTs has size-� and the conditions of Theorem 1.1.2 are satis�ed,R is the size-� LRT. 2Theorem 1.2.1 is particularly useful in situations in which the individualLRT statistics (or a transformation of them) have simple known distributions.In this case, the determination of the critical values, c1�; : : : ; ck�, is easy. Butthe distribution of �(X) = max1�i�k �i(X) may be di�cult, and the determi-nation of its critical value, c�, from (1.1) may be di�cult. Examples of this kindof analysis may be found in Sasabuchi (1980), Sasabuchi (1988a), and Sasabuchi(1988b). In these papers about normal mean vectors, the alternative hypothesisis a polyhedral cone. The individual LRTs are expressed in terms of t-tests,each one representing the LRT corresponding to one face of the cone. All of thet-tests are based on the same degrees of freedom, so all the critical values areequal. Assumptions are made that ensure that the conditions of Theorem 1.1.2are satis�ed, and, in this way, the LRT is expressed as an intersection of t-tests.Sasabuchi does not use the IUT terminology, but it is clear that this is theargument that is used.



LRTs and IUTs 5Theorem 1.2.1 gives conditions under which, if c1� = � � � = ck�, the size-�LRT and size-� IUT are the same test. But, if the ci�s are not all equal, thesetwo tests are not the same, and, often, the IUT is the uniformly more powerfultest. Theorem 1.2.2 gives conditions under which this is true.Theorem 1.2.2 Let c1�; : : : ; ck� denote the critical values de�ned in (1.4).Suppose that for some i with ci� = min1�j�kfcj�g, there exists a sequence ofparameter points �l; l = 1; 2; : : :, in �i such that the following three conditionsare true:i. liml!1 P�l(�i(X) < ci�) = �,ii. liml!1 P�l(�i(X) < c) > �, for any c > ci�,iii. For any c, 0 < c < 1, and any j 6= i, liml!1 P�l(�j(X) < c) = 1.Then, the following are true:a. The critical value for the size-� LRT is c� = ci�.b. The IUT with rejection region R = \kj=1fx : �j(x) < cj�g is a size-� test.c. The IUT in (b) is uniformly more powerful than the size-� LRT.Proof: To prove (a), recall that the LRT rejection region using critical valueci� is fx : �(x) < ci�g = k\j=1fx : �j(x) < ci�g: (1.5)For each j = 1; : : : ; k, because ci� = min1�j�kfcj�g and fx : �j(x) < cj�g is asize-� rejection region for testing Hj0 versus Hja, fx : �j(x) < ci�g is a level-�rejection region for testing Hj0 versus Hja. Thus, by Theorem 1.1.1, the LRTrejection region in (1.5) is level-�, and the size-� LRT critical value, c�, satis�esc� � ci�. But, for any c > ci�,liml!1P�l(�(X) < c) = liml!1P�l 0@ k\j=1f�j(X) < cg1A= 1� liml!1P�l 0@ k[j=1f�j(X) < cgc1A� 1� liml!1 kXj=1P�l (f�j(X) < cgc)> 1� (1� �) = �:The last inequality follows from (ii) and (iii). Because all of the parameters,�l; l = 1; 2; : : :, are in �i � �0, this implies that any c > ci� cannot be the



6 Roger L. Bergersize-� LRT critical value. That is, c� � ci�. This, with the earlier inequality,proves part (a).For each j = 1; : : : ; k, fx : �j(x) < cj�g is a level-� rejection region fortesting Hj0 versus Hja. Thus, Theorem 1.1.2, (i), and (iii) allow us to concludepart (b) is true.Because ci� = min1�j�kfcj�g, for any � 2 �,P�(�(X) < ci�) = P� 0@ k\j=1f�j(X) < ci�g1A � P� 0@ k\j=1f�j(X) < cj�g1A : (1.6)The �rst probability in (1.6) is the power of the size-� LRT, and the lastprobability in (1.6) is the power of the IUT. Thus, the IUT is uniformly morepowerful. 2In part (c) of Theorem 1.2.2, all that is proved is that the power of the IUTis no less than the power of the LRT. However, if all the cj�s are not equal, therejection region of the LRT is a proper subset of the rejection region of the IUT,and, typically, the IUT is strictly more powerful than the LRT. An example inwhich the critical values are unequal and the IUT is more powerful than theLRT is discussed in Berger and Sinclair (1984). They consider the problem oftesting a null hypothesis that is the union of linear subspaces in a linear model.If the dimensions of the subspaces are unequal, then the critical values from anF -distribution have di�erent degrees of freedom and are unequal.1.3 Testing H0 : minfj�1j; j�2jg = 0In this section, we consider an example that illustrates the previous results.We �nd that the size-� IUT is uniformly more powerful than the size-� LRT.We then describe a di�erent IUT that is much more powerful than both of thepreceding tests. This kind of improved power, that can be obtained by judicioususe of the IUT method, has been described for other problems by Berger (1989)and Liu and Berger (1995). Saikali (1996) found tests more powerful than theLRT for a one-sided version of the problem we consider in this section.Let X11; : : : ; X1n1 denote a random sample from a normal population withmean �1 and variance �21. Let X21; : : : ; X2n2 denote an independent randomsample from a normal population with mean �2 and variance �22 . All fourparameters, �1, �2, �21 , and �22 , are unknown. We will consider the problem oftesting the hypothesesH0 : �1 = 0 or �2 = 0 versus Ha : �1 6= 0 and �2 6= 0: (1.7)Another way to express these hypotheses isH0 : minfj�1j; j�2jg = 0 versus Ha : minfj�1j; j�2jg > 0:



LRTs and IUTs 7The parameters �1 and �2 could represent the e�ects of two di�erent treatments.Then, H0 states that at least one treatment has no e�ect, and Ha states thatboth treatments have an e�ect.Cohen, Gatsonis and Marden (1983b) considered tests of (1.7) in the vari-ance known case. They proved an optimality property of the LRT in a class ofmonotone, symmetric tests.1.3.1 Comparison of LRT and IUTStandard computations yield that, for i = 1 and 2, the LRT statistic for testingHi0 is �i(x11; : : : ; x1n1; x21; : : : ; x2n2) =  1 + t2ini � 1!�ni=2 ;where xi and s2i are the sample mean and variance from the ith sample andti = xisi=pni (1.8)is the usual t-statistic for testing Hi0. Note that �i is computed from bothsamples. But, because the likelihood factors into two parts, one dependingonly on �1, �21, x1 and s21 and the other depending only on �2, �22, x2 and s22,the part of the likelihood for the sample not associated with the mean in Hi0drops out of the LRT statistic.Under Hi0, ti has a Student's t distribution. Therefore, the critical valuethat yields a size-� LRT of Hi0 isci� =  1 + t2�=2;ni�1ni � 1 !�ni=2 ;where t�=2;ni�1 is the upper 100�=2 percentile of a t distribution with ni � 1degrees of freedom. The rejection region of the IUT is the set of sample pointsfor which �1(x) < c1� and �2(x) < c2�. This is more simply stated as rejectH0 if and only if jt1j > t�=2;n1�1 and jt2j > t�=2;n2�1: (1.9)Theorem 1.1.2 can be used to verify that the IUT formed from these in-dividual size-� LRTs is a size-� test of H0. To verify the conditions of Theo-rem 1.1.2, consider a sequence of parameter points with �21 and �22 �xed at anypositive values, �1 = 0, and let �2 ! 1. Then, P (�1(x) < c1�) = P (jt1j >t�=2;n1�1) = �, for any such parameter point. However, P (�2(x) < c2�) =P (jt2j > t�=2;n2�1) ! 1 for such a sequence because the power of the t-testconverges to 1 as the noncentrality parameter goes to in�nity.If n1 = n2, then c1� = c2�, and, by Theorem 1.2.1, this IUT formed fromthe individual LRTs is the LRT of H0.



8 Roger L. BergerIf the sample sizes are unequal, the constants c1� and c2� will be unequal,and the IUT will not be the LRT. In this case, let c = minfc1�; c2�g. ByTheorem 1.2.2, c is the critical value that de�nes a size-� LRT of H0. The samesequence as in the preceding paragraph can be used to verify the conditions ofTheorem 1.2.2, if c1� < c2�. If c1� > c2�, a sequence with �2 = 0 and �1 ! 1can be used.If c = c1� < c2�, then the LRT rejection region, �(x) < c, can be expressedas jt1j > t�=2;n1�1 and jt2j > 8<:24 1 + t2�=2;n1�1n1 � 1 !n1=n2 � 135 (n2 � 1)9=;1=2 :(1.10)The cuto� value for jt2j is larger than t�=2;n2�1, because this rejection region isa subset of the IUT rejection region.The critical values ci� were computed for the three common choices of � =:10, .05, and .01, and for all sample sizes ni = 2; : : : ; 100. On this range it wasfound that ci� is increasing in ni. So, at least on this range, c = minfc1�; c2�g isthe critical value corresponding to the smaller sample size. This same propertywas observed by Saikali (1996).1.3.2 More powerful testIn this section we describe a test that is uniformly more powerful than both theLRT and the IUT. This test is similar and may be unbiased. The descriptionof this test is similar to tests described by Wang and McDermott (1996).The more powerful test will be de�ned in terms of a set, S, a subset of theunit square. S is the union of three sets, S1, S2, and S3, whereS1 = f(u1; u2) : 1� �=2 < u1 � 1; 1� �=2 < u2 � 1g[f(u1; u2) : 0 � u1 < �=2; 1� �=2 < u2 � 1g[f(u1; u2) : 1� �=2 < u1 � 1; 0 � u2 < �=2g[f(u1; u2) : 0 � u1 < �=2; 0 � u2 < �=2g;S2 = f(u1; u2) : �=2 � u1 � 1� �=2; �=2 � u2 � 1� �=2g\�f(u1; u2) : u1 � �=4 � u2 � u1 + �=4g[f(u1; u2) : 1� u1 � �=4 � u2 � 1� u1 + �=4g� ;and S3 = f(u1; u2) : �=2 � u1 � 1� �=2; �=2 � u2 � 1� �=2\�f(u1; u2) : ju1 � 1=2j+ 1� 3�=4 � u2g
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Figure 1.1: The set S for � = :10. Solid lines are in S, dotted lines are not.[f(u1; u2) : �ju1 � 1=2j+ 3�=4 � u2g[f(u1; u2) : ju2 � 1=2j+ 1� 3�=4 � u1g[f(u1; u2) : �ju2 � 1=2j+ 3�=4 � u1g� :The set S for � = :10 is shown in Figure 1.1. S1 consists of the four squaresin the corners. S2 is the middle, X-shaped region. S3 consists of the four smalltriangles.The set S has this property. Consider any horizontal or vertical line in theunit square. Then the total length of all the segments of this line that intersectwith S is �. This property implies the following theorem.Theorem 1.3.1 Let U1 and U2 be independent random variables. Suppose thesupports of U1 and U2 are both contained in the interval [0; 1]. If either U1 orU2 has a uniform(0; 1) distribution, then P ((U1; U2) 2 S) = �.Proof: Suppose U1 � uniform(0; 1). Let G2 denote the cdf of U2. Let S(u2) =fu1 : (u1; u2) 2 Sg, for each 0 � u2 � 1. Then,P ((U1; U2) 2 S) = Z 10 ZS(u2) 1 du1 dG2(u2) = Z 10 � dG2(u2) = �:



10 Roger L. Bergerr.00 .25 .50 .75 1.00 1.25 1.50 1.75 2.00� = 0S-test .050 .050 .050 .050 .050 .050 .050 .050 .050IUT .002 .004 .007 .013 .020 .028 .036 .041 .045LRT .001 .002 .003 .006 .010 .013 .017 .020 .022� = �=8S-test .050 .051 .066 .117 .224 .384 .567 .731 .849IUT .002 .006 .022 .074 .186 .359 .555 .727 .848LRT .001 .003 .013 .050 .141 .299 .499 .688 .829� = �=4S-test .050 .052 .076 .137 .227 .329 .440 .554 .663IUT .002 .009 .044 .122 .223 .329 .440 .554 .663LRT .001 .006 .032 .106 .214 .327 .440 .554 .663� = 3�=8S-test .050 .051 .060 .079 .103 .133 .170 .213 .262IUT .002 .012 .043 .076 .103 .133 .170 .213 .262LRT .001 .008 .036 .073 .102 .133 .170 .213 .262� = �=2S-test .050 .050 .050 .050 .050 .050 .050 .050 .050IUT .002 .013 .038 .049 .050 .050 .050 .050 .050LRT .001 .009 .032 .048 .050 .050 .050 .050 .050Table 1.1: Powers of S-test, IUT and LRT for n1 = 5, n2 = 30 and � = :05.Power at parameters of form (�1; �2) = (r cos(�); r sin(�)) with �1 = �2 = 1.The second equality follows from the property of S mentioned before the theo-rem.If U2 � uniform(0; 1), the result is proved similarly. 2Our new test, which we will call the S-test, of the hypotheses (1.7) can bedescribed as follows. Let Fi, i = 1; 2, denote the cdf of a central t distributionwith ni � 1 degrees of freedom. Let Ui = Fi(ti), i = 1; 2, where ti is the tstatistic de�ned in (1.8). Then the S-test rejects H0 if and only if (U1; U2) 2 S.U1 and U2 are independent because t1 and t2 are independent. If �1 (�2) = 0,then F1(t1) (F2(t2)) � uniform(0; 1), and, by Theorem 1.3.1, P ((U1; U2) 2 S) =�. That is, the S-test is a size-� test of H0. The event (U1; U2) 2 S1 is thesame as the event in (1.9). So, the rejection region of the S-test contains therejection region of the IUT from the the previous section, and the S-test is asize-� test that is uniformly more powerful than the size-� IUT.



LRTs and IUTs 11We have seen that the IUT is uniformly more powerful than the LRT, andthe S-test is uniformly more powerful than the IUT. Table 1.1 gives an exampleof the di�erences in power for these three tests. This example is for n1 = 5,n2 = 30 and � = :05. The table gives the rejection probabilities for someparameter points of the form (�1; �2) = (r cos(�); r sin(�)), where r = 0(:25)2and � = 0(�=8)�=2. These are equally spaced points on �ve lines emanatingfrom the origin in the �rst quadrant. In Table 1.1, �21 = �22 = 1.The � = 0 and � = �=2 entries in Table 1.1 are on the �1 and �2 axes,respectively. For the S-test, the rejection probability is equal to � for all suchpoints. But, the other two tests are biased and their rejection probabilitiesare much smaller than � for (�1; �2) close to (0; 0). For the IUT, the powerconverges to � as the parameter goes to in�nity along either axis. For the LRT,this is also true along the �2 axis. But, as is suggested by the table, for theLRT lim�!�1 P (reject H0j�1 = �; �2 = 0) = P (jT29j > 2:384) = :024;where T29 has a central t distribution with 29 degrees of freedom and 2.384 isthe critical value for t2 from (1.10). The power of the IUT along the �i axis isproportional to the power of a univariate, two-sided, size-� t-test of H0i : �i = 0.Because the test of H01 is based on 4 degrees of freedom while the test of H02is based on 29 degrees of freedom, the power increases more rapidly along the�2 axis.The sections of Table 1.1 for � = �=8, �=4 and 3�=8 (except for r = 0)correspond to points in the alternative hypothesis. There it can be seen that theS-test has much higher power than the other two tests, especially for parametersclose to (0; 0). The IUT, which is very intuitive and easy to describe, o�ers somepower improvement over the LRT.1.4 ConclusionFor a null hypothesis expressed as a union, as in (1.2), the IUT method isa simple, intuitive method of constructing a level-� test. We have describedsituations in which the IUT de�ned by size-� LRTs of the individual hypothesesis a uniformly more powerful test than the size-� LRT of the overall hypothesis.And, we have illustrated in an example how even more powerful tests might befound by careful consideration of the speci�c problem at hand.ReferencesBerger, R. L. (1982). Multiparameter hypothesis testing and acceptance sam-pling, Technometrics, 24, 295-300.
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