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Abstract. The likelihood ratio test (LRT) method is a commonly used method
of hypothesis test construction. The intersection-union test (IUT) method is
a less commonly used method. We will explore some relationships between
these two methods. We show that, under some conditions, both methods yield
the same test. But, we also describe conditions under which the size-a TUT is
uniformly more powerful than the size-a LRT. We illustrate these relationships
by considering the problem of testing Ho : min{|u1], 2|} = 0 versus H, :
min{|p1|, |p2]} > 0, where 1 and pz are means of two normal populations.
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1.1 Introduction and Notation

The likelihood ratio test (LRT) method is probably the most commonly used
method of hypothesis test construction. Another method, which is appropriate
when the null hypothesis is expressed as a union of sets, is the intersection-
union test (IUT) method. We will explore some relationships between tests
that result from these two methods. We will give conditions under which both
methods yield the same test. But, we will also give conditions under which the
size-a TUT is uniformly more powerful than the size-ae LRT.

Let X denote the random vector of data values. Suppose the probability
distribution of X depends on an unknown parameter 8. The set of possible
values for § will be denoted by ©. L(f|x) will denote the likelihood function
for the observed value X = x. We will consider the problem of testing the null
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hypothesis Hy : 8 € O¢ versus the alternative hypothesis H, : 8 € ©F, where O¢
is a specified subset of ©® and O is its complement.
The likelihood ratio test statistic for this problem is defined to be

supgee, L(62)

Ma) = supgeo L(0|x) '

A LRT rejects Hy for small values of A(x). That is, the rejection region of a
LRT is a set of the form {x : A(z) < ¢}, where ¢ is a chosen constant. Typically,
¢ is chosen so that the test is a size-a test. That is, ¢ = ¢, is chosen to satisfy

sup Pp(A(X) < ¢y) = o, (1.1)
06@0

where « is the Type-I error probability chosen by the experimenter.

We will consider problems in which the null hypothesis set is conveniently
expressed as a union of k other sets, i.e., Og = UL ,0;. (We will consider
only finite unions, although arbitrary unions can also be considered.) Then the
hypotheses to be tested can be stated as

k k
Hy:0¢ U ©; versus H,:0¢ ﬂ oF. (1.2)
=1

=1

The IUT method is a natural method for constructing a hypothesis test for
this kind of problem. Let R;,2 = 1,...,k denote a rejection region for a test
of Hyg : 8 € O; versus H;, : § € ©F. Then the IUT of Hy versus H,, based on
Ry, ..., Ry, is the test with rejection region R = ﬂleRi. The rationale behind
an TUT is simple. The overall null hypothesis, Hq : § € U%_, ©;, can be rejected
only if each of the individual hypotheses, H;g : @ € ©;, can be rejected.

An IUT was described as early as 1952 by Lehmann. Gleser (1973) coined
the term IUT. Berger (1982) proposed IUTs for acceptance sampling problems,
and Cohen, Gatsonis and Marden (1983a) proposed IUTs for some contingency
table problems. Since then many authors have proposed IUTs for a variety of
problems. The IUT method is the reverse of Roy’s (1953) well-known union-
intersection method, which is useful when the null hypothesis is expressed as
an intersection.

Berger (1982) proved the following two theorems about IUTs.

Theorem 1.1.1 If R; is a level-a test of Hy;, for e = 1,...,k, then the TUT
with rejection region R = ﬂle R; is a level-a test of Hg versus H, in (1.2).

An important feature in Theorem 1.1.1 is that each of the individual tests
is performed at level-a. But the overall test also has the same level . There is
no need for an adjustment, e.g., Bonferroni, for performing multiple tests. The
reason there is no need for such a correction is the special way the individual
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tests are combined. Hg is rejected only if every one of the individual hypotheses,
Hy;, is rejected.

Theorem 1.1.1 asserts that the IUT is level-a. That is, its size is at most
a. In fact, a test constructed by the IUT method can be quite conservative.
Its size can be much less that the specified value a. But, Theorem 1.1.2 (a
generalization of Theorem 2 in Berger (1982)) provides conditions under which
the IUT is not conservative; its size is exactly equal to the specified a.

Theorem 1.1.2 For some i = 1,...,k, suppose R; is a size-a rejection region
for testing Ho; versus H,;. For everyj =1,...,k, 7 # t, suppose R; is a level-
a rejection region for testing Ho; versus H,;. Suppose there exists a sequence
of parameter points 6;,1 = 1,2, ..., in O; such that

llim P@l(X € RZ) =,
and, for every j=1,...,k, j # 1,
llim Pgl(X € RJ‘) =1.

Then the TUT with rejection region R = ﬂle R; is a size-a test of Hg versus
H,.

Note that in Theorem 1.1.2, the one test defined by R; has size exactly a.
The other tests defined by R;, j =1,...,k, j # ¢, are level-a tests. That is,
their sizes may be less than a. The conclusion is the IUT has size a. Thus, if
rejection regions Ry, ..., Ry with sizes aq,..., aj, respectively, are combined in
an TUT and Theorem 1.1.2 is applicable, then the TUT will have size equal to
max;{a;}.

1.2 Relationships Between LRTs and IUTs

For a hypothesis testing problem of the form (1.2), the LRT statistic can be
written as

Ne) = SUPgeo, L(0|x) _ MaXi<i<k SUPgeo, L(f|z) _ M‘
supgeo L(0|x) supgco L(0|2) 1<i<k supgee L(0|x)
But,

supgee L(0|z)
is the LRT statistic for testing H;q : 0 € ©O; versus H;, : 6 € ©F. Thus, the LRT
statistic for testing Hg versus H, is

Alx) = max A(@). (1.3)
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The LRT of Hg is a combination of tests for the individual hypotheses, Hyg, ...,
Hyo. In the LRT, the individual LRT statistics are first combined via (1.3).
Then, the critical value, ¢, that yields a size-a test is determined by (1.1).

Another way to combine the individual LRTs is to use the IUT method.
For each 7 = 1,...,k, the critical value that defines a size-a LRT of H; is the
value ¢;, that satisfies

sup Pp(Ai(X) < ¢i0) = (1.4)
€00
Then, R; = {x : M\i(z) < ¢;n} is the rejection region of the size-ar LRT of Hyg,
and, by Theorem 1.1.1, R = ﬂleRi is the rejection region of a level-a test of
Hg. If the conditions of Theorem 1.1.2 are satisfied, this IUT has size-a.
In general, the two methods of combining A(z),..., Ax(@) need not yield
the same test. But, the following theorem gives a common situation in which
the two methods do yield the same test.

Theorem 1.2.1 If the constants c14, . . ., Cko defined in (1.4) are all equal and
the conditions of Theorem 1.1.2 are satisfied, then the size-a LRT of Hg is the
same as the IUT formed from the individual size-a LRTs of Hyo, ..., Hio.

Proof: Let ¢ = ¢14 = - -+ = ¢io. The rejection region of the IUT is given by

k k
R ﬂ{a: () < o) = ﬂ{a: s (@) < ¢}

{z: [max. Ailz) < e} = {z: MNx) <}

Therefore, R has the form of an LRT rejection region. Because each of the
individual LRTs has size-a and the conditions of Theorem 1.1.2 are satisfied,
R is the size-a LRT. a

Theorem 1.2.1 is particularly useful in situations in which the individual
LRT statistics (or a transformation of them) have simple known distributions.
In this case, the determination of the critical values, ¢14,..., Ctq, is easy. But
the distribution of A(X) = max;<;<x A;{(X) may be difficult, and the determi-
nation of its critical value, ¢,, from (1.1) may be difficult. Examples of this kind
of analysis may be found in Sasabuchi (1980), Sasabuchi (1988a), and Sasabuchi
(1988b). In these papers about normal mean vectors, the alternative hypothesis
is a polyhedral cone. The individual LRTs are expressed in terms of t-tests,
each one representing the LRT corresponding to one face of the cone. All of the
t-tests are based on the same degrees of freedom, so all the critical values are
equal. Assumptions are made that ensure that the conditions of Theorem 1.1.2
are satisfied, and, in this way, the LRT is expressed as an intersection of ¢-tests.
Sasabuchi does not use the IUT terminology, but it is clear that this is the
argument that is used.
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Theorem 1.2.1 gives conditions under which, if ¢1, = - -+ = ¢, the size-a
LRT and size-a IUT are the same test. But, if the ¢;,s are not all equal, these
two tests are not the same, and, often, the IUT is the uniformly more powerful
test. Theorem 1.2.2 gives conditions under which this is true.

Theorem 1.2.2 Let ¢1,,...,Cko denote the critical values defined in (1.4).
Suppose that for some i with c¢;, = minj<j<p{cjo}, there exists a sequence of
parameter points 0;,1 = 1,2,... in ©; such that the following three conditions
are true:

Lo limyoo Py, (N(X) < ¢i0) = @,
. Hmyoo Py, (M(X) <€) > a, for any ¢ > ¢;q,
ili. Foranye, 0 <e<1, and any j # v, lim;_.o Py,(X;(X) <¢)=1.
Then, the following are true:
a. The critical value for the size-a LRT s ¢, = ¢4
b. The IUT with rejection region R = Nf_{x : \j(x) < ¢;a} is a size-a tesl.
c. The IUT in (b) is uniformly more powerful than the size-a LRT.

Proof: To prove (a), recall that the LRT rejection region using critical value

Cio 18
k
{z: Mz) < cia} = [z : Aj(Z) < Cin}- (1.5)
7=1
For each j = 1,...,k, because ¢;, = minj<;j<p{cjo} and {z : A\j(z) < ¢jo} is a

size-ar rejection region for testing H o versus Hj,, {@ : A\j(2) < ¢;0} is a level-a
rejection region for testing H;g versus H;,. Thus, by Theorem 1.1.1, the LRT
rejection region in (1.5) is level-a, and the size-a LRT critical value, ¢, satisfies
Co > Cig. But, for any ¢ > ¢4,

k
lim Py, (MX)<¢) = llggo Py, (ﬂ{A](X) < c})

[—co

[—co

= 1—limPgl(

.
Il ( E
—

{A(X) < C}C)

v

k
1= Jim 3 (X0 < o)
> 1—(1-—a)=a.

The last inequality follows from (ii) and (iii). Because all of the parameters,
0,0 = 1,2,..., are in O; C Og, this implies that any ¢ > ¢;, cannot be the
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size-a LRT critical value. That is, ¢, < ¢;,. This, with the earlier inequality,
proves part (a).

For each j = 1,...,k, {& : X\j(®) < ¢jo} is a level-a rejection region for
testing H;o versus H;,. Thus, Theorem 1.1.2, (i), and (iii) allow us to conclude
part (b) is true.

Because ¢;, = minj<;<xr{cjo}, for any 6 € O,

k k
P@(/\(X) < Cm) =P (ﬂ{/\](X) < Cm}) < Py (ﬂ{/\](X) < C]‘a}) . (1.6)

The first probability in (1.6) is the power of the size-a LRT, and the last
probability in (1.6) is the power of the IUT. Thus, the IUT is uniformly more
powerful. a

In part (c) of Theorem 1.2.2, all that is proved is that the power of the IUT
is no less than the power of the LRT. However, if all the ¢;,s are not equal, the
rejection region of the LRT is a proper subset of the rejection region of the IUT,
and, typically, the IUT is strictly more powerful than the LRT. An example in
which the critical values are unequal and the IUT is more powerful than the
LRT is discussed in Berger and Sinclair (1984). They consider the problem of
testing a null hypothesis that is the union of linear subspaces in a linear model.
If the dimensions of the subspaces are unequal, then the critical values from an
F-distribution have different degrees of freedom and are unequal.

1.3 Testing Hy : min{|u|, |pe]} =0

In this section, we consider an example that illustrates the previous results.
We find that the size-a IUT is uniformly more powerful than the size-ar LRT.
We then describe a different TUT that is much more powerful than both of the
preceding tests. This kind of improved power, that can be obtained by judicious
use of the IUT method, has been described for other problems by Berger (1989)
and Liu and Berger (1995). Saikali (1996) found tests more powerful than the
LRT for a one-sided version of the problem we consider in this section.

Let Xy1,...,X4,, denote a random sample from a normal population with
mean gy and variance O'%. Let X51,...,Xy,, denote an independent random
sample from a normal population with mean p; and variance 3. All four
parameters, iy, g, 07, and o3, are unknown. We will consider the problem of
testing the hypotheses

Ho:pupr =0o0r pp =0 versus H, :pg # 0 and pg # 0. (1.7)
Another way to express these hypotheses is

Ho : min{|pa], |p2|} =0 versus  Hg : min{|pq|, |pe|} > 0.
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The parameters 1 and po could represent the effects of two different treatments.
Then, Hy states that at least one treatment has no effect, and H, states that
both treatments have an effect.

Cohen, Gatsonis and Marden (1983b) considered tests of (1.7) in the vari-
ance known case. They proved an optimality property of the LRT in a class of
monotone, symmetric tests.

1.3.1 Comparison of LRT and IUT

Standard computations yield that, for 7 = 1 and 2, the LRT statistic for testing
HiO 18

.2 —n; /2
Ai(xllv-"vxlnlvalv---7$2712): (1‘|’ ! ) ”

n; — 1
where 7; and s? are the sample mean and variance from the ith sample and
Ty

8i/\/Mi
is the usual t-statistic for testing H;p. Note that A; is computed from both
samples. But, because the likelihood factors into two parts, one depending
only on pq, 0, T; and s? and the other depending only on us, 03, To and s3,
the part of the likelihood for the sample not associated with the mean in H;g
drops out of the LRT statistic.

Under Hjg, t; has a Student’s ¢ distribution. Therefore, the critical value
that yields a size-a LRT of Hyg is

2 —n; /2
Cia = (1 + 704277%_1) )

n; — 1

1, =

(1.8)

where 2,,/5 .1 is the upper 100a/2 percentile of a ¢ distribution with n; — 1
degrees of freedom. The rejection region of the IUT is the set of sample points
for which Aq(x) < ¢14 and Ag(@) < cg,. This is more simply stated as reject
Hp if and only if

|t1| > toz/2,n1—1 and |t2| > toz/2,n2—1' (19)

Theorem 1.1.2 can be used to verify that the IUT formed from these in-
dividual size-a LRTs is a size-a test of Hy. To verify the conditions of Theo-
rem 1.1.2, consider a sequence of parameter points with o? and o2 fixed at any
positive values, py = 0, and let gz — oo. Then, P(A(z) < ¢14) = P(|t1] >
to/2,m-1) = @, for any such parameter point. However, P(Ay(x) < c35) =
P(|ta] > to/2,n,—1) — 1 for such a sequence because the power of the t-test
converges to 1 as the noncentrality parameter goes to infinity.

If ny = no, then ¢14 = €34, and, by Theorem 1.2.1, this IUT formed from
the individual LRTs is the LRT of Hy.
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If the sample sizes are unequal, the constants ¢;, and ¢, will be unequal,
and the TUT will not be the LRT. In this case, let ¢ = min{cy,,c24}. By
Theorem 1.2.2, ¢ is the critical value that defines a size-a LRT of Hy. The same
sequence as in the preceding paragraph can be used to verify the conditions of
Theorem 1.2.2,if ¢14 < ¢94. If €14 > €24, a sequence with po = 0 and py — o0
can be used.

If ¢ = €14 < €24, then the LRT rejection region, A(x) < ¢, can be expressed

t2 B nl/nQ
[t2] > tajan 1 and |t2|>{[(1+%) —1] (nz—n}
(1.10)

The cutoff value for [t,] is larger than t, /5 ,,_1, because this rejection region is
a subset of the IUT rejection region.

The critical values ¢;, were computed for the three common choices of a =
.10, .05, and .01, and for all sample sizes n; = 2,...,100. On this range it was
found that ¢;, is increasing in n;. So, at least on this range, ¢ = min{ey,, €24} is
the critical value corresponding to the smaller sample size. This same property
was observed by Saikali (1996).

as

1/2

1.3.2 More powerful test

In this section we describe a test that is uniformly more powerful than both the
LRT and the TUT. This test is similar and may be unbiased. The description
of this test is similar to tests described by Wang and McDermott (1996).

The more powerful test will be defined in terms of a set, 5, a subset of the
unit square. S is the union of three sets, .51, 52, and 53, where

S1 = Alu,uz):1l—a/2<u; <1,1—-a/2<uy; <1}
U{(ul,u2):0§u1<a/2,1—a/2<u2§1}
U{(ul,u2):1—a/2<u1§1,0§uz<a/2}
U{(ul,uz):Ogul<a/2,0§uz<a/2},

Sy = {(unu):a/2<u <1—a/2,a/2<u; <1— a2}
N ({(ur,u2) w1 — /4 < up < ug + a4}
U{(u1,m2) 1=y — /4 <up <1 —wy +a/4}),
and
Sy = {(unup)ia/2<u <1l—a/2,0/2<uy <1— a2
M (L, u2) < fug = 1/2] +1 = 30/4 < up}
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0 w u,

Figure 1.1: The set 5 for aw = .10. Solid lines are in 5, dotted lines are not.

U{(ul,u2) s —|uy — 1/2] 4+ 3a/4 > us}
U{(ul,u2) dug = 1/2]+ 1= 3a/4 < uy}
(1, m2) s —[uz = 1/2| + 3a/4 > ur}) .

The set S for a = .10 is shown in Figure 1.1. 57 consists of the four squares
in the corners. 55 is the middle, X-shaped region. S5 consists of the four small
triangles.

The set S has this property. Consider any horizontal or vertical line in the
unit square. Then the total length of all the segments of this line that intersect
with § is a. This property implies the following theorem.

Theorem 1.3.1 Let Uy and U, be independent random variables. Suppose the
supports of Uy and Uy are both contained in the interval [0,1]. If either Uy or
Uy has a uniform(0, 1) distribution, then P((Uy,Uz) € §) = a.

Proof: Suppose Uy ~ uniform(0,1). Let G5 denote the cdf of U;. Let S(ug) =
{uq : (u1,uz) € 5}, for each 0 < uy < 1. Then,

1 1
p((Ul,UQ)es):/o /S( )1du1dG2(u2):/0 a dGly(uz) = a.



10 Roger L. Berger

r
.00 .25 .50 .75 1.00 1.25 1.50 1.75 2.00

S-test  .060 .050 .050 .050 .050 .050 .050 .050 .050

10T .002 .004 .007 .013 .020 .028 .036 .041 .045

LRT .001 .002 .003 .006 .010 .013 .017 .020 .022
6=m/8

S-test  .060 .051 .066 .117 .224 384 567 .731 .849

10T .002 .006 .022 .0v4 .186 .359 555 .727 .848

LRT .001 .003 .013 .050 .141 .299 .499 .688 .829
0 =m/4

S-test .060 .052 .076 .137 .227 .329 .440 .554 .663

10T .002 .009 .044 .122 223 .329 .440 .554 .663

LRT .001 .006 .032 .106 .214 .327 .440 .554 .663
6 =3m/8

S-test .050 .051 .060 .079 .103 .133 .170 .213 .262

10T .002 .012 .043 .0v6 .103 .133 .170 .213 .262

LRT .001 .008 .036 .0v3 .102 .133 .170 .213 .262

S-test .050 .050 .050 .050 .050 .050 .050 .050 .050
10T 002 .013 .038 .049 .050 .050 .050 .050 .050
LRT .001 .009 .032 .048 .050 .050 .050 .050 .050

Table 1.1: Powers of S-test, IUT and LRT for ny = 5, ny = 30 and o = .05.
Power at parameters of form (1, p2) = (rcos(8), rsin(0)) with o1 = 05 = 1.

The second equality follows from the property of S mentioned before the theo-
rem

If Uz ~ uniform(0, 1), the result is proved similarly. O

Our new test, which we will call the S-test, of the hypotheses (1.7) can be
described as follows. Let [}, i = 1,2, denote the cdf of a central t distribution
with n; — 1 degrees of freedom. Let U; = Fi(t;), ¢ = 1,2, where ¢; is the ¢
statistic defined in (1.8). Then the S-test rejects Hg if and only if (U, Us) € S.

Uy and Uj are independent because t; and #; are independent. If g (u2) =0,
then Fy(¢1) (F2(t2)) ~ uniform(0, 1), and, by Theorem 1.3.1, P((Uy,U;) € §) =
a. That is, the S-test is a size-a test of Hg. The event (Uy,Usy) € Sy is the
same as the event in (1.9). So, the rejection region of the S-test contains the
rejection region of the IUT from the the previous section, and the S-test is a
size-a test that is uniformly more powerful than the size-a IUT.
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We have seen that the TUT is uniformly more powerful than the LRT, and
the S-test is uniformly more powerful than the TUT. Table 1.1 gives an example
of the differences in power for these three tests. This example is for ny = 5,
ne = 30 and @ = .05. The table gives the rejection probabilities for some
parameter points of the form (pq,p2) = (rcos(8),rsin()), where r = 0(.25)2
and # = 0(7/8)w/2. These are equally spaced points on five lines emanating
from the origin in the first quadrant. In Table 1.1, 03 = o3 = 1.

The 8 = 0 and 6 = 7/2 entries in Table 1.1 are on the py and py axes,
respectively. For the S-test, the rejection probability is equal to a for all such
points. But, the other two tests are biased and their rejection probabilities
are much smaller than o for (pq,u2) close to (0,0). For the IUT, the power
converges to « as the parameter goes to infinity along either axis. For the LRT,
this is also true along the py axis. But, as is suggested by the table, for the
LRT

lirin P(reject Holpr = p, e = 0) = P(|Te| > 2.384) = .024,
pu—foo

where Thg has a central ¢ distribution with 29 degrees of freedom and 2.384 is
the critical value for ¢; from (1.10). The power of the IUT along the p; axis is
proportional to the power of a univariate, two-sided, size-a t-test of Hg; @ pt; = 0.
Because the test of Hpy is based on 4 degrees of freedom while the test of Hpg
is based on 29 degrees of freedom, the power increases more rapidly along the
o axis.

The sections of Table 1.1 for § = 7/8, 7/4 and 37/8 (except for r = 0)
correspond to points in the alternative hypothesis. There it can be seen that the
S-test has much higher power than the other two tests, especially for parameters
close to (0,0). The IUT, which is very intuitive and easy to describe, offers some
power improvement over the LRT.

1.4 Conclusion

For a null hypothesis expressed as a union, as in (1.2), the IUT method is
a simple, intuitive method of constructing a level-a test. We have described
situations in which the IUT defined by size-a LRTs of the individual hypotheses
is a uniformly more powerful test than the size-a LRT of the overall hypothesis.
And, we have illustrated in an example how even more powerful tests might be
found by careful consideration of the specific problem at hand.
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