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o | CHAPIER I » PRELIMINARIES

Is Preliminaries?
Setc A collection of points in R, (Euclidian kedimensional space) == S
Def. y Sl + 82 is the set of points in either or both sets,

Sl + 82 is the set of points in both 81 and 32’

if § is containe@ in 8, (Sl < Sa) then S, = 8, is the set of
points in 32 but not in Sl N

Exereise 1/ Show that Sa + 32 =8, + 51

o 58, = 88§

There is also the obvious extensiocn of these definiticns of set addition and multie
plication to 3 or more sets.

®
2 S_ = the set of points in at least one of the S
nelld n

®
l‘ ‘ Sn = the set of points common to all the Sn
n el .

8% 1s defined as the complement of S and is the same as R, =&

# # %
Lemmz: 1/ (Sl + 82) - 8" s
Proof: Let e denote "is an element of®

X e (Sl + SP)* means that x is not a member of either's1 or 32 )

iceo xésl,x;ﬁsa,

#

. therefore x & Sl*, Ze 8.2

since x is common to both Sl*, 82*9 Xe Sl* 82* o



To complete the proof

2* :::}xesl*andxesa*

= xisl andxisz
= x £ (5 +8,)
=> X¢ (Sl +Sz)*,

#
xeSl S

o = *
Exercise 2/ Show that S, = Sy 3231 0

° 2
Exercise g/ In R2 define Sl = {x,y . x2 +y £ l}

1.0 the set of points x,y subject to the restriction x2 * y2 8 1

52 a {x,y ° fX'S.QB, h’f& 08}
8 =[xy : x= o}
3*
Represent graphically Sl + 82,, Sl 829 8382819 8182 - SlSB 0

Dofs 2/ If 8,C8,€5; 0 o o o o (an exploding family)

©
We defines Lim G aE S,
n-—»0 nesl

And if 51332383 @ 0 o o e (a nested fa\mj.ly)

®
We defines lim Sn = ) ; .Sn
nwd o n=1

Such sequences of sets are called monotone sets.

Exercise l/

(a) Show that the closed interval in R, {x,y: ’xls 1, /y],‘..-l may be represented
as an infihite product of a set of open intervals$

0 1 1l
Ang3 Sn - {x,yo lld (l"‘ n? {)’/<l+5

(b) Show that the open interval in R, {x,y? |x]< 1, Iyl <. can be represented
as an infinite sum of closed intervals$
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Ans$ 8, = {x,yﬁ [xl< 1~ %‘, )y),sl- %

Probability is generally thought of in terms of sets, which is why we study sets .,
Def, 3/ Borel Sets == the family of sets which can be obtained from the family of
intervals in Rk by a finite or enumerable sequence of operation

of set addition, multiplivation, or complementation are called
Borel Sets,

The word multiplication could be deleted, since multiplication can be per=
formed by complementation, e.gos

3 3# *)*

(8 + 8% = 88" (8" +8M" « 5 8 (8) =8

Defe li/ A(S) is an additive set function if
1/ for each Borel Set A(S) is a real number, and
2/ if 815 855 o o o are a sequence of disjoint sets

)] 0
AR s) = 2 a(s),
ne]j

n=1"

Examples; = area is a set function B < 5

we in Rl A(S) = Jf(}:} dx Al(S) = sﬁc dx

1

Defe 5/ P(S) is a probability measure on R, if

1/ P is an additive set function
2/ P is non-negative

3/ (&) =1

@ will denote the empty set which contains no points, i.e. ff = Rk*g g+ Rk = Rk °

Ex, 5/ P(#) = 0

Ex, 6/ if S, <S5, then P(8,) < P(S,)

LSWZ/P(SI*Sz"'coo) é—P(s_L)‘!'P(Se)"'oao

Problem 1: Prove lerma 2.
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. Lemma 3/ ng },i& Sn) = ng"o“o P(Sn) if S, is a monotone sequence,

Proofs case z-slcsacs, P

- Define: S]'. = §

-

Sp = 5= 85
t
83 = 83 =8;  gte,
)] Q
These sets S. are disjointy also 2 S = 2 s'
n n n
nel n=l
: 0
P(lim§) = P 5,)
n-»co ne=1l1
o]
= P(Z 8)
ne=1
o
= > P 8} the additive property of P
n =l '

= P(S{)-PP(S;)*P(S;)*eoo

= P(Sl)*P(Szﬂsl)+P(SB‘Sz> ® o o
- B(8))
wP (Sl) + P(Sz)

) P( SZ )e:cf(SB )

= P (Sn) after n steps
= lim P(Sn)
. )

Case 2: 51382‘:8 o o e o o

Problem 2/ Prove lemma 3 for case 2.

Def, 6/ Associated with any probability measure P(S) on there is a point function
F(x) defined by f

F(X) L] P«(" 0,y x).
F(x) is called a distribution function == dofo



GS.

Theorem 1/ Any distribution function, F(x), has the following properties:
l. It is a monotone, non-decreasing sequence.
2. Flew)aO0)F (+00) =41
3« F(x) is continuous on the right.

Proof: 1/ For X, < X, we have to show that F(xl) $F(x2)
F(x)) = P(= o0, x,) F(x,) = P(= o0, x,)
The interval (- oo, xl) ¢ the interval (- o, xz)
From exercise 6 we have that P(Il) < P(Iz)
Therefore F(xl) < F(x2)
2/a/ If we define G, as the interval (= @, = n) n=l,2,3,50000

ThenGlDszGB O o & O »

Geling =g (the empty set)
o _F&n) = lin &) = P(n.'l:_;tglo G) From lemma 3

= P(G) = P(f) = 0
b/ Follows in a similar fashion by defining G, = (- @, n)

3/  Pick a point a == for this point we want to show
lim P(x) = F(a),
x->a
x>a

Consider a nested sequence sn—->0, &, >0,

Then ljﬂ‘f,(ooa + sn') = F(a) i3 the property to be shown,
If we define % L (" OD, a + en) n=1’2,3’oeooo

1lim H =H= terval (- o, a)
n-w

lin P(H)) = P(lim H ) = P(H) lemma 3

Therefore lri!.n_;g'o( a+ en) = F(a)



Problem 3/ Show that

F(a) = 1ip B(x) + P {[a‘]} Where [a] is the set whose only point
x<a 18 a,.
Or in familiar terms F(a) = F(x = 0) + Pr(x = a)
Where F(x = 0) is the
limit from the left,

Theorem 2/ To any point function F(x) satisfying properties 1,2, and 3 of theorem
1, there corresponds a probability measure P(S) defined for all Borel
Sets such that for any interval (= 0, x)
P(~ @, x) = P(x),
Proof omitted == see Cramer p, 53 referring to p. 22,

Theorem 3/ A distribution function F(x) has at most a countable number of dige
continuities,

Proofs Let v,be the number of points of discontinuity with a jump > %
then vV, < n which is what we have to show,

Suppose the contrary holds, i.e. L

Then if we let Sn be the set of such discontinuities, we have

ls= P(Rl) > P(Sn) > %1 (n) z1 which is a contradiction,

© o
Therefore; the total number of discontinuities = 2 v < E

n
nel B 1

o
where 2 n 1s the sum of the integers which is a countable sum,

1
Notation

[ ] ®quare brackets =~ means the end point is not included in the interval ==
i.e,, an open interval,

() round brackets =- mean the end points are included in the interval, i.e.,
a closed interval,

(ay b] is the interval a to b, including a but not b,

Defe 7¢ In Rk to each probability measure P(S) there corresponds a unique distribubic
function

F(X) = F(xl, x2,o o oy xk)

= P !interval ('m,-w,co-;xl,xz,.oo,xk)]
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. The interval is the set of points in Rk

-o< X =< x

1 i i“l,zgécc,k

Theorem L3 F(x:L s Xps 0 o ey xk) has the following propertiesS

1. It is continuous from the right in each variable

24 F(-Q,ngpoo,xk)-F(xl,-m,XBQo-o,xk).geoa“o
F(*‘m’ + Wy o 0 0y +0))=l

3¢ &4 F(al, 8oy ¢ o oy ak)> 0 see p. 79 Cramer

i.e0, the P measure of any interval is non-negative,

Conversely if F(_;mcls Xpy o o oy xk) has these properties, then there is a unique

P-measure defined by
' KI) = F(xl: Xos e o o xk).

That iS,VI is the interval [- Wy =00, ¢ o 0; xl, x2, o o o xk>0

X, 85 8, + hzg}‘
‘o —¢{a) + by, 8y o hy)
I

(a)52,) (a) + by, ay)
210827 | | B EO

|

In R,
P(I) = Flay + by, &y + by) = Play, 3y + by) = Fla) + by, 3y) + Flay, a,)
= 4 Flays 2y)



o8-
in R3
KIjwTF(a + by, a, + by ag + by)
Flays 8y + gy 2y + hy) = Flay + byy 8y, a3 + By)
~F(a, + by 8, + hy, aB)
(a5 2y ag * By) + Flay, 8, + hy, ag) + Fla; + by, 8y a3)
-F(al, Bys a3)
= 4 Flayy &y a3)
The proof of theorem L is by analogy with the linear case (theozjem 1),
F(xl,+m,...,+00)=P(C~m,xl) )
=T (=)
= the marginal distribution of X

(similarly for other dimensions)
Defq 8: .

If F is continuous and differentiable in all variable s, then

BkF “f(xl, x2, aocak)
&Ll’ &(2, e o oy &k

is ths density function of Xys Xy ; o ®y Ko

Exercise 72

In R, © F(x, ¥) =0 if x<£0 or y<0
- fx*y) for O<x €1
e y) <

Ocy =<l
=1 for x>1, y>1
Can this be a distribution function in R2?
How can the definitions be completed?



Solution == consider the marginal distribution of x

F () = F(x, + @) 2 Flx, 1) = 2L

(0+1) 1
Fy (0) "‘}‘l“'i

But in fact F(0, O) = 0
F(O, y) = 0 for all y
Fl (0) =0

Therefore there is a contradiction. F cannot be a proper distribution
function,

If F(x, y) is a proper distribution function, then the two marginal
distributions

Fi(x) = F(x, + o)
Fz(y) = F(+ 00, y) must be proper and in this case
they break down,

Problem la If we define f£(x, y) = x + y 0sx<1l
0<y<l
= 0 elsewhere

Find F(x, y), Fl(x)§ and F2(Y)

Show that F(x, y) satisfies the properties of a distribution function.
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Def, 92 Random Variable
We assume we have experiments which yield a vector valued ast of observations
X= (Xl, X55 0 o o Xk) with the properties;

l. For each Borel set S in R, there is a probability measure P(S) which is
the probability that the whole vector _X' falls in the set in S

( P(8) is non-negative, additive, and P(Rk) = l), Cramer p. 1l52«}
' axioms 1 and 2

2, If }-l’ o o ey _{(n are random variables in Rkl, sz, e o ay Rkn

then the combined vector (_}gl, _ng, o o oy }n) is also a random variable
ianl"'kg“'kB Y *‘kn.

Conditional Distribution

(X Y ) are random variables in R,_ , Ry

»

2
Let S and T be setsinR.kl, sz'

Def, 108 If P( X belongs to S)>0, then we define conditional probability

P(Ych Ics) = PIIDCXTC fc8) ’

We show that P( Y« 7 , X ©8 ) does satisfy the requirements of a probability
measure

1l It is non-negative since P( YeT, Xc8 ) is non=-negative.
2= Tt is additive since P(Yc< T, X < 8) is additive in Rk .
2

P(YCTll Xcs )+« ¥ YC-TZI XCS)-P(Ych-x-TngCS)

3. MY¥<R, X €8) P(X < §)
P(X <8) P(X c8)

If (YST)> 0 we could also define

P(Xcs 1 Ter) « B C(S:z ilrcT)
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In familiar terminology what we are saying is that

Pr(a | B) = f%é%ﬁygl or Pr(a, B) = Pr(a f B) Pr(B),
If we have the corresponding distribution functions

F(x, ¥); By(x) = F(x, + ®); and Fo(y) = F(+ 0, y) then:

Def, 11: X and Y are independent random varigbles if the joint distribution
function F(x, y) factors into F, (x) Fz(y),

See p, 160 Cramer -- he goes first to
probability measures, then to d.f.

notation?

-~ Capital latin letters used for vandom variables in general,
== Small latin letters used for observations or specific values of the
random variables,

Pr(X £x) = F(x)

Def, 1l == extension?®

In the case of n random variables, ’1’ x2, o o oy Xn these are independent if
F(X1s Xp9 o o o x,) = F; (%) Fo(xy) o o & Fo(x.) o

Note? Three variables may be pairwise independent, but may not be (mutvally)
independent =~ see the example on p. 162 of Cramer.

If density functions exist, then Xl, ng 6 o ey Yh independent means that
f(xls X2, @ @& oy xn) = fl(xl) fz(xz) e o o fn(xn).

Notes The fact that the density functions factor does not necessarily mean
independence since dependence may be brought in through the limits,

y
€-8e X and Y are distributed uniformly on OAB B
£(x, y) = 2
0<x<l 7
0<y<x ‘ 4/1 //
3 X
’ A

Exercise 87 Find F(x, y); Fl(x); and Fz(y),
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‘ Functions of Random Variables:

g is a Borel measurable function if for each Borel set S, there is a set S?
such that

xeS8! —> g(z)es

y=g(x)
is also a Borel set, o Lo . f
2N

8 ~__/

N
MENTIS
=== R A

ol St at St

A notation sometimes used is that 8' = g (8) == that S' is the inverse image of
S under the mapping g,

Now consider Y = g(X) where X is a random variable,

Pr(y< 8) = Pr(x <S') == P(5!)

Therefore, any Borel measureable function, ¥ = g(X) of a random variable, X, is
itself a random variable,

Pr(y < 8) = [ g"X(s)]
. This extends readily to k dimensions.

Transformationss

We have X and Y which are random variables with distribution function F(x, ¥) and
a density function £(x, y).

Let «= (X, I) B =g, 1)

Where ¢l and 952 are 1l to 1 with £, B; are continuous, differentiable;
and the Jacobian of the transformation is non=vanishing..

23X oX
o« 2B
Jd =
Y DY
P- Kol 2B |
We then have the inverse functions X= \f’l (%, B)
T=%, %8

The density funetion f£(a, b) of the random variasbles £ B is

® f[\f/l(a, DHE SXCRSTREY
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However under the transformation the limits of the variables will be changed and
these have to be worked out in each individual case,
. (See Anderson and Bancroft .)

Problem 5 X, Y are uniformly and independently distributed on (0, 1),
Find the distribution of Z = XY and =2 1n XY,

Examples For X, Y as in problem 5, find the distribution function of Z = X + ¥,

Solutions Consider also Ww= X e ¥ ¥l

(
Consider the joint distribution of (2, W) (o, 1) 1 1)

ZmXs £(x,5) = 1
WeX-Y

¢ Z+W |
e o 2 =x ""-2""'"-Y 0 .L’O) x

11
J = 2 Tiﬂnl ul xsu.—l—
1 1 T " T 2
2 7

Density of 7, W= £(x, y) lJ, -1 °.12-..

The limits of Z and W are dependent
ZeX+7

WaoXlwl
If 2 = 2, then W takes on values from (0 = z) thru O to 2 ~ 0, so that

forZ =3 =1 -2 < W<z
° £(3,W) = 5~  with Limits =z < ¥ <42

z<l

Since we started with omly Z » and Martificially! added W to get a solution, we muset
now get the marginal distribution of 2 (this being what we desire).

+ +2 +2
Fl(z)a j'Jl dw = ﬁ,dw-u%w] -z
3 (A =2

2
2
F(z) = JF(t)d’o- -—§-—- 0<z41
0
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Z=l,1 If X =2 > 1, then ¢ takes on values from
) (2=1)=1 tol=(z=1) orfrom (a=2) to (2=z)
TSN
2=2
£,(2)= ( G-de=2-3
Z%2
2 3
F(z) = -]é'— + j(g.z) dz = -%—- —(-%E)-.J
1 ‘1

1 (2~2)° 1 2.2)?
=5 - 22) 5= l"'L‘z‘E)"

See ps 245, 6 in Cramer

1l 1l
F(z) £(z)
density
=T DoF L
7 ot e 2
4 i 2 i 2
1 2 1 2
Joint density of Z, W = -é_ 0£z2<1
£(z, w) -2 iy <2
- 5 142

Zw2 Zwg2~2
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. If the transformation is not 1 to 1 (that is J = 0) then the usual devi.e to avoid
the difficulties that may arise is to divide Rk into regions in each of which

the transformation is 1 to 1, and then work separately in each region,

1.8, consider in Rl I= X2 We sheuld consider 2 separate
cagsess
<0 Crane
X20 P 167

Riemann~Stieltjes Integrals

Let F(x) be a dafo, with at most a finite number of discontinuities in (a,b) and
let g(x) be a continuous function, then we can define

b
Cramer
j g(x) dF(x) as follows? pz; T1l=T7h

a

Divide (a, b) into n sub-intervals X5 Xps ¢ o o5 % of length < A

n
. Let fﬁ‘_‘igl [inf g(x)] (F(Xi) - F(xiul)]

|

¥l SXE

§ <T but as n—ym, A—H0 8, is increasing, ’S'; is decreasing

——
———

They can be shown to have a common limit.,

So the common limit is called the R~8 integral ,

: +o, b
Also define { g(x) dF(x) = 1lim g g(x) ar(x)
8~ =00 .
=0 b — +o0 ’

provided the limit exists

b
and in general f g{x) dF(x) has all the usual properties of the familiar Riemamn
integral,

a
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. If F(x) has density f(x) which is continuous except at a finite number of points,

then . ;
Flxg) = Flxg ;) =2 (x0) (x; = X4_1) X5 <% <x

b b '
lim S;'x = fg(x) dr(x) = fg(x)_f;_(x) dx = ordinary Riemann integral,

a a

If F(x) has only jumps at X5 Xgy 0 0 0y X and elsewhere is constant

b
J g(x) aF(x) = g(x,) Prx = xi'}

a
-C_ the Jump

If g(x) is continuous then this limit (the R-S Integral) exists.
has at most a finite number of discontinuities and so does F(x) an

coincide, then the R~S integral exists.

Also, if g(x)
d they dontt

X is a discrete random variable if there exists a countable set of
points, x,, Xps o o o5 X With Pr(X = xi) = Py andE(Pi) = 1
Eelsewhez%e F(x) is constant, i.e. F'(x) = 0].

l-}/\w#“'
o
/l/ — \N]\g(x)

b

Def. 124

a
for such a discrete random variable, the R-S integral reduces to a sumd

. b
. 1 ’
f 8(x) &F(x) = Lin 2 ex") [Flx)) - Plxy ;) |

® :
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¥here the x;. are points of division of (a; b) and x;_' is an intermediate

point in the ith interval

= lim 2 glx,) P;
n-*00

- 2 g(xi) Py summed over the set of points x
in (a, b) == the points where
there is some probability.

i

Defc. 13i X is a continuous random variable if P(x) is continuous and has a
derivative f£(x) continuous except at a countable number of points,

Fxy) = Pz, ;) = f(x;_') [—x*i < i-lj (the theorem of the mean)

1t
T $F €3y

b

@F(x) = lin 2 glx)) [F(x,) = )
f 00 ) = 1in 3 ete)) [reey - rtxyy)
a

alimEg(x‘ £ LR ] A
i ) 205 ) 4

b
= | g(x) f(x) dx

We can extend this definition to k-dimensions readily by writing$
' b |
e(x, sies x,) d_. Flxys siey X,)
- lg dedy xk

= 1dm 2 g(x.;., coay x;c) [& F(xl"'"”-‘xk)‘

n-co

For a def. of Ak see po 8 .
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Ie F(xl, Xps o o o3 xk) is continuous and the density f(xl, Xpg o o o) xk)
exists and is continuous; then

b
fg(xl’ o * xk) dxl'co Xk F(xl’ e o x‘k) =

Sy Dy
yo o e 5 g(xl, o e xk) f(xl, o o ay xk) d-?‘:lo a ‘dﬁ(
% 'y

X
In Rl J d F(x) = F(x) = F(= 00) = F(x)
00 )

b
J dF(x) = F(b) - F(a)

a

s I We let b—> + 00, 8a~yw=0

idF(x) =1

and this extends sasily to the k-dimensional case, so that we have!

+00 :
{ dxl@ ooxkF(x19 o o .,xk)=l
-0
Consider k = 2, and the marginal distributions
+00
Fi(x)) = F(xl, + @)= dez(xl, x2)
D
b

a
a-— =~
b=+
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= lim [Fl(xP b) - Py (x5 a)]

a-5 =
b‘—} +00

" R, o) =R, o)
= Fx, + o) =0
This also extends readily to Rk

Fl(xl) - F(xly 0y o6 0y * wk)

o
= fdng JCB, 3 & oy xk F(xl, x2’ © 0 s xk)
-w~
with xl held fixed,

If the density function exists;, then this reduces to a k-l integral

+00 +00
fl(xl) - S o 6 e g f(xl’ };2, © o by xk) dx2’ o ¥ ey dxk
=00 =00

Problem 6%
if X1, o v o5 X, have independent, uniform on (0, 1),distributions,

show that 2 : ' 2
-2 2 In Xi has a = distribution with 2n d.f.
1

and indicate the statistical application of this.
sees Smedecor c¢h, § '
Fisher == about p. 100
Anderson + Baneroft -~ last chapter of section 1
From problem 55 5 . 5 10 XY = =21nk +-21n¥

€ with 2 dof. each

~ oris the sum of 2
References on integrals?
== Cramer pp. 39-L0

== Sokolnikoff -- Advanced Calculus =~ ch. L



e 20 =

Chapter II
. Properties of Univariate Distributionsy Characteristic Functions
Standard Distributionss
A, Trivial or point mass (discrets)
Pr[Xaa] = 1 F(x) =0 x<a
F(x) =1 x>a
B, Uniform (contimous)
F(x) =0 x <0
F(x) = x 0=x<1
P(x) =1 x>l
C. Binomial (discrete)
n
Pr[Xak] =(k)Pk(l‘-'P)n.k k=152 ceog n O<p<l

B
Eo y )pk @ = p)™* = [(ep) + p]n =11

1_1_, Y x nek
k%) K |P (1 -p) S 1 is an identity inp, n

D. Poisson (discrete)

: k
Pr[x=k] =e.)‘ Z\-;' kal, 2, eoocy QO ).>0
ke
©0 o]
=) .k =\ k -\ A
Ee _ 2‘-—=e E}a- =g € =1
k=0 k! k=0 k!

E. Negative binomial (discrete)
k=1
Prx=k]=(r-1 )Pr(l"P)k k=1, 2y 600y ®
' 0<Lp<«l
r is an integer
Examples Draw from an urn with proportion p of red balls, with replacement, until

. we get r reds out, The random variable in this situation is the mmber of
non-reds drawn in the processy to have k black balls means that in the
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first r + k - 1 trials, we got r = 1 reds and k blacks, and then on
the last trial got a redy the probability of this is

o ( r+k-1) 11 e ) xop.
r-l

This is what is referred to as inverse sampling in that the mumber of
defectives is specified rather than specifying the sample size which
is then scrutinized for the mmber of defectives,

F. Normal distribution (contimous)

- G2

£(x) = nl e 2 & oS>0
enag -® < <00
- £ X<

Problem 7¢ Frove that
§ r+k-1> r ( )k
1=0 r=}

i.e., is an identity inr, p

‘ Hint¢ is in the name = express (a+b)’nin an infinite series,

Def, 14t If X is a random variable with distribution F(x) and if I g(x) dr(x)

exists, then we define the expectation of g(X) as
i ®
Efe®)] = § alx) dF(x)
-®

‘this being the R = S integral,
®

if X is contimous E [g(x)] = f g(x) £(x) dx
-

-®
if X is discrete . E [g(X)J -2 g(x,) p,
v=0
Problem 8s Given F(x) =0 x <0
= 1/2 x X =0
o . j 2/2
J2n 5 e db x>0

(This is a censored normal distribution == i.e., all the negative
. values are concentrated at the origin)



© 22 =

Fﬁds B(X)

Def. 155 If E [ X - B(X)]" exists it is defined %o be the k™™ central moment and
is denoted by o

If E(X)k exists it is defined as the k' moment about the origin, and is
denoted %o

Exercise 93 Find E(X) for each of the standard distributions.

Theoren 55 E [g(X) + h(¥)] = E[g(X)] +E [n(x)]
Proofgs Let F(x, y) be the joint ¢.f. of X, Y and F, and F, the marginal d.f.

E[e) + )] = [f [0+ bir) Ja_py) - ffewa g sJhma o)

=fg(x)dxF1(x) +jh(Y)dy Fz(y) = E [g(x)] +E [h(Y)]
Theorem 6: If X, Y are independent random variables, then

E [g(X) h(Y)] = E]:g(xi}E[h(Y)]

Proofgs See Cramer, p. 173.

Corollarys If X and Y are independent random variables, then

Var(X « Y) = Var(X) + Var(y)

Momentss < = E(X) = mean
by = E(X = p,)z = variance
My = B(X = Nk
b, = E(X = u)h’
ete,

for the normal distribution =~ N(0O, 1)

mx? /2

L

21

£(xg 0, 1) =

2
x2/2
B(xF) = == Zxke x/,d"

o

all odd moments (k odd) = 0 by a "symmetry" argument,
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E(X®) = J x" e dx = 1 from integration by parts
\/2n -0 .
B(xt) = 3
or in general 2/
® -x /2
B = =2~ [ xMe | dx=1+3+5. ..z (2=1)
2n =00

which can be shown by induction,

Theorem 78 Let 4, = 1, 4y 49y eso be the moments of a distribution funcbion
F(x), 100y

< = tj X 4 F(x)

® k
T
then if for some r>0, E :-k-;-- converges absolutely then F(x) is the
k=0 ko
only distribution with these moments,
Proofs See Cramer, p. 176,

Examples N(0, 1)

"‘2k+l =0

1
‘2k = -LEE—:—EI& = ] 3 05 LY (2k = 1)
2K"1 (1)}

w k (o}
S A .S @-nl
k=0 k! k=0 2% (k=1)! (2x)!

since odd terms drop out.

o]

‘ 2.k o 2.k
.S @) .3 )
k=0 zk-l (k-l)g .2k 2 ks
k Xk
1 (r2> E X x
® E —— now = = e
K\ 2 0 k!
2 = exponential series
-r¢/2

= e

T P

e e et e e BN N M et L s e

Cae e SR (e NSRS e
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) k '
. . E “* converges absolutely for all r, therefore the only distribution
*° ! With these moments is the d.f. with the density

£(x) = 2o e 1,0., the normal

Problem 93 Find the moments of the uniform distribut:.on and show that this is the
only d.f. with these moments.

Thegrem 83 (Tchebycheff's)

If g(X) is a nonw-negative function of X then for every X>0

pr [e(®) 2] < -E-E-;{F—(XL]

0
Proofs E[g(X)] = USg(x) dF(x)
Let S be the set of values of X where g(X) =X

B [g(X)} K] I(x) dr (x) since the smallest value of g(X) in S is K

K fcnr(x) = K Pr[g(x);x:[
1...0 Pr @(X);K] < E Lé(x)J
K

Corollarys The above (th. 8) converts readily into the more familiar form

P - u)?kcjéi-g

Proofs (See p, 182 in Cramer) setting

gX) = (X = ¥ k=¥ E[g(X)] = o

2
o

r-wra ] 2%
)

taking the square root of the left hand side
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Pr[lxe-ulzko]sﬁg

Theorem 9s If Xn is a sequence of binomial random variables with parameters n, p,
then given any £>0, 6>0 there exists an n, such that for n>n

pe((X/n=pl 36 <6

(which says that if you take larger and larger samples, then the obgerved
ratio X/n approaches the true value)

Xn = mumber of successes in n independent trials with a probability of
success in each trial = p

°2(Xn /n) = np(Jé-p) = R=p) o 1%5

Proof's 012{ = np(l-p)
n n n

From corollary to theorem 8

Pr lic-g-pl?kcr]<%
n Tk

=8 Orka-l'—

NG

k E———P-};) =& or n=E——§-—(l-)
¢

Chooses

A

Hence if n is chosen this large, from the corollary to theorem 8 the stated
probability inequality follows,

Notes Theorem 9 could be rewritten

X
o degy e

Lo 1
5 o R(1=p) ,

£

bn e

s[:
@
N}

Characteristic Functionss

oIt dr(x)

S_s

Def, 16s Characteristic functions ¢X(t) =

or since emb = cos xt + 1 sin xt

¢x(t) = oof cos xt dF(x) + i 3 sin xt dF(x)
o -
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the successive derivatives of @ (t) when evaluated at t = 0 yield the moments of
F(x) except for a factor of a power of "i',

Ly =g )= § ixe ™ a)
dt ® :

g (o) = :.fxeodF(x)sip

g (s) = g (1x)% o¥** ar(x)

¢" (0) = 5.2 3x2 dF(x) = i2-<2

in general

g (o) = 1 B(x¥) = 1K

the moment generating function operates in the same manner; except it does not include
the factor "i", and is therefore not as general in application,

| ¥ % xt
MGF = M(t) = E (e*Y) = S e*® dF(x) 4if this integral exists
-0

and operates by evaluating successive derivatives with respect to t at t = 0

lemmas if E(X ) exists, then ¢k (t) exists and is contiruous. The converse is
also true.,

Exampless

1, Trivial distributions Pr 5( = a] = ]

Oy . . .
¢ (t) = yelxt dF(X) = ela'b x1s= elat
=00 .

2, Binomials

n
N ditk/n k nwlk
g (t) =k§0 e (k) p (1-p)

-2 ( Q)(peit)k @-p)™% . [peﬁ' + (l-p)] n
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o)
k
N 3. Poissons § (t) = 2 eltk o=A A
6 " k=0 K}

.S A0 eibyk

k!
it
= a™M ghe

- oM (eit -1)

L. Normal (0, 1)s
® ) 2 - xa = 2itx
gy x| ST
2n =m \'2n
2 2 Y-
X = 2itx + (it) (it)
(el

1

TZn

setting y = x - it*

- JA 3 VL2 ggl 2/
® {“" -

L SR

dx

(Note the term in curly brackets is the integral of a normal density and equals one,)
|

¥ The validity of this complex transformation has to be Justified, See Problem 11,
If X is N(0o, 1)

2
g (t) = et /2
g () =2 o~to/2

B (b)) = et /2, 2 S

g (0 =-1

E(x%) =184 =1
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Problem 10 Prove

® 2
- Je-x/2 dx = 1
J2n .

Problem 1lls Show that

© R 2 2

1 g Jltx =x/f2 dx=e_'t /2
Von  =o

without using the transformation used in class

itx

Hintg e = eds tx +i sin tx

Theorem 10¢
iBt '

vhere X is a random variable with a d.f, F(x) é.nd a characteristic function

g (t)

Proof's Y = AX + B where A, B are constants

By (5) = BT « g oMK +B) ]

o g (MHE 1By | (itB A8,
¢ ¢X (At)

1Bt
= e gy (at)

if Xis N(O, 1) then Y = 0 X + p is N(u, 02)
it
pY(t’) = el u¢x(0 %)

- olth " _(_q?'e.),ie At - '('qﬁff‘ |

Def, 17¢8 The cumulant generating function, K(t), is defined to bes

K(t) = 1n P(t)

Examples For Y which is N(u, 02)

02t2
K(t-) = i‘bp, - -2—-
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Notet For further discussion of cumlants see Cramer or Kendall.
. Notes Originally cumulants = semi-invariants (British school name =

Scandanavian school name) =~ however, semie-invariants have been
extended so that now cuwmlants are a special case,

Theorem 11: If le X2, coeyg X are independent ranc}om variables, then

(t) ‘{r ¢ (8)

(the c.f, of a sum = the product of the individual c,f,) ‘
Proofs ‘ '

itx;x j

oed &

= E[ itleE [:i'bxz]’“ E[ itXn] by independence

= ,_¢(t), .¢(t)r_,.op ¢(t) H ¢(t)

\  Example: If X, are NID (""1’ A ), then the c¢.f, of ¥=2X
' i 02 2 L
t

=7T( opg = ""2“")
(20) ;2

z [.e(it 2 xl)j_ . [‘eitxl ei‘bx2

11:2“1 -

=8

n
therefore we could say that Y is N( E By o E c]?_) t
v 1l 1

To justify this last step we need to show the converse of F(X)—> ¢X (t) i.e.y that
¢X(t) —>F(X). Therefore, we need the following lemma and theorem,

Lemmas 7
-1 h<0
un 2 6{ o 4= 0 h=0
+1 h>0
T->m
Q =u
Proofs  J(«y B) = Je Bin U 4y ‘430
u
©
E—é—’ = (f( e™™ cos pu du Notes Differentiation under the
2 integral can be justified.
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= —23(-—5 see tables or integrate by parts twice

f ap y—é——z dpr:arctan-g- +C

then J(G‘, O)= 3 qud‘lgO

arc tan 0 +C =20
0+C=0
o.oC=0

J(4g B) = arc tan -E—
let «—>0, ard put B = h, then

lim J(«, h) = arc tan T depending on h + or =
K-> 0 n
= -5 h>0

=..,_’2‘. h<0

Theorem 123 If F(x) is contimmous at 2 = hy, a + h, then

T . »ita
F(a+h)mF(a-.h)==1im—3‘!- Tgs—"ﬂgﬁe g (t) at
Toe" -

0 p ~itx
Cﬂ?!(t)l dt<w then £(x) = 3= z e g(t)at

® itx
Notes Recall that ¢ (t) = cg e f(x) dx Eief, léj

Combining this with the above theorem means that given g (t) or £(x)
we can determine the other.

Proofs
T . «=ita
Defire J = - f Srhb o g(e) at

T . «ita © itx
ht
=—i— { -S-J‘P-E-- e ’_mf e d F(x) ldt
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Interchanging integrals (reversing the order of integration) which can be justified
this becomes

Notesg

Notes

T . «ita itx

-1 ‘j’ sin ht

T 45 —— e e dt (d FP(x)

it(x - a)
(3] T e

o S Tj gn by [cos t(x = a) +isin t(xwa)] at { dF(x)

LY O t _
The sin . t . - T

- sin term is an odd function 4% =0

Th sin . . . 2 I
e <= cos term is an even function o°. w2

t -
® T :
- -%'-. J 2 g _s_}%ﬁg cos t(x~a) dt dF(x)

2 cos A sin B = sin (A4B) = sin (A = B)

® T . .
7= ;J;__ .G{ { c; sin t(x-a+h) =~ gin t(x=a=h) dt}d F(x)

t

now take the limit as T—>w
using the lemma just proved, with that h = (x=a+h) here

I

|
brackets) (o] | n

|

|

gch x=a+h
[
For sin t(x-a+h) xwa+h0 - %~8+130
For sin t(x-a=~h) , X~a=h <0 Xwa=h>0
For x in each region both = -5 |lst part 3 | both = 3
'
} :
j2nd part = 5 |
! {
Whole integral (in ‘
' 0
|
|
|



1,80y in the region a = h<x<a + h

) Tra
Esint(x-a-l-h)dt- S-%-sint(x-a-h) dt = n

0
elsewhere = 0
a+h a=h )
There J =-:1-'-‘ f n 4F(x) + f 0. dF(x) + I 0. 4F(x)
a=h - a+h

= F(a + h) - F(a = h)

Proof of the second statement in the theorem!

Fa+h) ~Fla=h) 1 ( sinh it
o = f snht g (t) at
=00
talcing the limit of both sides as h=>0
™ . =ita
£(a) = 5= 1im ﬂ%l‘i“- e g (t) at
- h-20
"
® =1

therefore

w =ita
£(a) = J e g(t) dt

Problem 123 Let X:.L (1i=1, 2, oeos n) have a density function given by

awl
f(x) =ax a>0 0<x<1
n
Find the density of Y = ” X X, are independent

i=1 %
(may need the result of Cramer p., 126)

Problem 13¢ Define a factorial moment

B(x{r]) =B [x(x-l) ase (xwr-tl)]
Define
@ * “ x
F(t) = og (L + t)" dF(x) as the factorial moment generating function,
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Find
@ F7(t) for the binomial and use this to get the factorial moments,
-]t |

Problem lhs Ifg(t) = e find the density of £(x) corresponding to f, Find the
distribution of the mean of n independent variables with this d.f,

Theorem 13: A necessary and sufficient cordition that a sequence of distribution
funcfions.Fn tend to F at every point of contimity of F is that an, the charactere
istic function corresponding to F » tend to a function, # (t) which is continuous at

t = 0 jor tends to a function @(t) which is itself a characteristic function_] o
Prooft Omitted =~ see Cramer p. 96-98
Thisrtheorem says, if we have Fl F2 F3 vanes P

g 2, By ceees f

we go from the Fi to the ¢ g = observe that the # i tend to a limit E‘or exampl.

the normal approximation to the binomial| == observe that the limit is itself
a characteristic function [of the normal] ~= then go to F by previously
discussed technigues,

Theorem 1L (Central Limit Theorem)

. I’ Xl, X2, X3 ceses @re a sequence of independently and identically distributed
random variables with a distribution function F(x) with finite first and second
moments {say mean p and variance & ] thens

l-= the distribution of Y =Vn ( % Exi - p,)tends, as n<>w, to the
normal distribution with mean 0 and variance o

2m= for any interval (a, b)

at

. 1 bf -‘b2/202
lim Prlacy <b] = o
n-m n J2n c 4

3== the sequence [Y nvj is asymptotically N(O, 02)

Proof: Denote the c¢.f, of X, as @ (%)
A
to get the c.f, of Yn =,}n &
n NE

o o[ F @]




if we expand #(t) in a Taylor series, we have

¢('b)=1+i4lt+12¢2t2/2+remainder “ = p *2"(&2"'02

=1 a1t (48 + 6P t2/2 + R(E)

where }ﬁ_g_)_ -3»0 ag t->0
t

- t
1n {dY (t)=n[1ne i:}% +1n ¢(%.)]
=iﬁ-ut+nln¢(;i%)

ipfn t+n ln[l + i"‘i (& + gn)t (J‘%‘)]

2 3 b
Note: 1n (l+x)=x~%—+%-§u....,
2 4
=x«:2c-2.+R

t

where B’E —> 0 as x>0

@ | | N N

setting x iu\-l_n-z_l_-(u +cr) +R(—-)weget

2
10y <t>=-iﬁrm+n[iu§-;-(u + P) +R(J-?-ﬁ)

1 2
-g(iué) “"t (t)

1}
C denote this by —372

2 9 "
. t R
lim in (t) = = —-2--0 since lim V5.8 =0
n—o@ ¢’Yn n—® .
. R(st) 42
i 212 1im wﬁ)
s . - n-»
v o Jlim ¢Y (t) = e (\[—>
nyo O since as n-ym, 3-%-__——)0

which is the characteristic function of the normal
distribution N(O, 02)






