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Abstract

The bioequivalence problem is of practical importance because the approval of most
generic drugs in the United States and the European Community (EC) requires the
establishment of bioequivalence between the name brand drug and the proposed generic
version. The problem is theoretically interesting because it has been recognized as one
for which the desired inference, instead of the usual significant difference, is practical
equivalence. The concept of intersection-union tests will be shown to clarify, simplify,
and unify bioequivalence testing. A test more powerful than the one currently specified
by the FDA and EC guidelines will be derived. The claim that the bioequivalence
problem defined in terms of the ratio of parameters is more difficult than the problem
defined in terms of the difference of parameters will be refuted. The misconception that
size-ov bioequivalence tests generally correspond to 100(1 — 2a)% confidence sets will be
shown to lead to incorrect statistical practices, and should be abandoned. Techniques for
constructing 100(1 — )% confidence sets that correspond to size-o bioequivalence tests
will be described. Finally, multiparameter bioequivalence problems will be discussed.

Key words and phrases: Bioequivalence, bioavailability, hypothesis test, confidence in-
terval, intersection-union, size, level, equivalence test, pharmacokinetic, unbiased.

1 Bioequivalence Problem

Two different drugs or formulations of the same drug are called bioequivalent if they are
absorbed into the blood and become available at the drug action site at about the same rate
and concentration. Bioequivalence is usually studied by administering dosages to subjects
and measuring concentration of the drug in the blood just before and at set times after the
administration. These data are then used to determine if the drugs are absorbed at the
same rate.

The determination of bioequivalence is very important in the pharmaceutical industry
because regulatory agencies allow a generic drug to be marketed if its manufacturer can
demonstrate that the generic product is bioequivalent to the brand-name product. The
assumption is that bioequivalent drugs will provide the same therapeutic effect. If the
generic drug manufacturer can demonstrate bioequivalence, it does not need to perform



costly clinical trials to demonstrate the safety and efficacy of the generic product. Yet, this
bioequivalence must be demonstrated in a statistically sound way to protect the consumer
from ineffective or unsafe drugs.

These concentration by time measurements are connected with a polygonal curve and
several variables are measured. The common measurements are AUC (Area Under Curve),
Cax (maximum concentration), and Tpyay (time until maximum concentration). The two
drugs are bioequivalent if the population means of AUC and Cpax are sufficiently close.
Descriptive statistics for Tiax are usually provided, but formal tests are not required.

For example, let p7 denote the population mean AUC for the generic (Test) drug and
pr denote the population mean AUC for the brand-name (Reference) drug. To demonstrate
bioequivalence, the following hypotheses are tested:

Ho:'llj—]ggéLor'llj—gZ(SU
(1) versus
. “r
H,:6p < iR < oy

The values 67, and 6y are standards set by regulatory agencies that define how “close” the
drugs must be to be declared bioequivalent. Currently, both the United States Food and
Drug Administration (1992) and the European Community uses 6y = 1.25 and 67, = .80 =
1/1.25 for AUC. For Cpax, the United States again uses 6y = 1.25 and é7, = .80, but Europe
uses the less restrictive limits é7 = 1.43 and 67, = .70 = 1/1.43 (Hauck et al. (1995)). Note
that these limits for AUC and C,,,x are symmetric about one in the ratio scale.

Often, logarithms are taken and the hypotheses (1) are stated as

Ho:nr —nr < 0p or nr —nr > 6y
(2) versus
Hy,: 0 <nr—np < 0y.

Here, ny = log(pr), nr = log(ur), 6 = log(ér) and 67, = log(ér,). With éy = 1.25 and
o = .80 or 6y = 1.43 and 67, = .70, 0y = —601, and the standards are symmetric about
7ero.

In a hypothesis test of (1) or (2), the Type I error rate is the probability of declaring the
drugs to be bioequivalent, when in fact they are not. By setting up the hypotheses as in
(1) or (2) and controlling the Type I error rate at a specified small value, say, & = .05, the
consumer’s risk is being controlled. That (1) or (2) is the proper formulation in problems
like these was recognized early on by some authors. For example, Lehmann (1959, p. 88),
not specifically discussing bioequivalence, says, “One then sets up the (null) hypothesis
that [the parameter| does not lie within the required limits so that an error of the first
kind consists in declaring [the parameter] to be satisfactory when in fact it is not.” But
not until Schuirmann (1981, 1987), Westlake (1981) and Anderson and Hauck (1983) were
hypotheses correctly formulated as in (1) or (2) in bioequivalence problems.

Despite the fact that bioequivalence testing problems are now correctly formulated as
(1) or (2), many inappropriate statistical procedures are still used in this area. Tests that
claim to have a specified size a, but are either liberal or conservative, are used. Liberal tests
compromise the consumer’s safety, and conservative tests put an undo burden on the generic
drug manufacturer. Tests are often defined in terms of confidence intervals in statistically
unsound ways. These tests, again, do not properly control the consumer’s risk.



In this paper, we will describe current bioequivalence tests that have incorrect error
rates. We will offer new tests that correctly control the consumer’s risk. In several cases, the
tests we propose are uniformly more powerful than the existing tests while still controlling
the Type I error rate at the specified rate a. We will examine and criticize the current
practice of defining tests in terms of 100(1 — 2a)% confidence sets. We will show that this
only works in special cases and gives poor results in other cases. We will discuss how properly
to construct 100(1—a)% confidence sets that correspond to size-a tests. And we will discuss
how our methods can be applied to complicated, multiparameter bioequivalence problems
that have received only slight attention in the literature. The intersection-union method
of testing will be found to be very useful in understanding and constructing bioequivalence
tests. Section 2 provides a more detailed outline to our discussions.

Hypotheses such as (1) and (2) that specify only that population means should be
close are called average bioequivalence hypotheses. Hypotheses that state that the whole
distribution of bioavailabilities is the same for the test and reference populations are called
population bioequivalence hypotheses. If a parametric form of these populations is assumed,
then hypotheses such as (25) that specify that all population parameters, e.g., variances
as well as means, should be close are population bioequivalence hypotheses. Sometimes
bioequivalence is defined in terms of parameters that more directly measure equivalence of
response within an individual. Good introductions to individual biocequivalence are given
by Anderson and Hauck (1990), Hauck and Anderson (1992), Sheiner (1992), Schall and
Luus (1993), and Anderson (1993). Although we do not explicitly consider individual
bioequivalence in this paper, many of the concepts and techniques we describe should be
applicable in that area also.

In this paper, our discussion will be entirely in terms of bioequivalence testing. But
our comments and techniques apply to other problems, such as in quality assurance, in
which the aim is to show that two parameters are close or that a parameter is between two
specification limits. Because of this wider applicability, the methods we will discuss might
more properly be referred to as equivalence tests and equivalence confidence intervals.

2 Tests, Confidence Sets and Curiosities

Various experimental designs are used to gather data for bioequivalence trials. Chow and Liu
(1992) describe parallel designs (two independent samples), and two-period and multiperiod
crossover designs. The issues we discuss apply to all these different designs. For brevity, we
will discuss only the simple parallel design and two period crossover design.

2.1 Difference hypotheses

It is customary to employ lognormal models in bioequivalence studies of AUC and Cyyax.
See Section 2.2 for rationales for this model.

Let X* denote a lognormal measurement from the test drug in the original scale, and let
X = log(X™). Similarly, let Y* denote an original measurement and ¥ = log(Y ™) for the
reference drug. Let (17, 0?) denote the lognormal parameters for X* and (ng, 0?) denote the
lognormal parameters for Y*. Then the test and reference drug means are pp = enrtot/2



and pup = e”R"'UZ)/Q, respectively. Therefore, the condition

61 < BT _ nr—nr 8ur
KR
is equivalent to
(3) 0 <nr —nr < bu,

where 07, = log(6r,) and 8 = log(éy) are known constants. Thus, the hypothesis to be
tested in this lognormal model can be stated as either (1) or (2). Usually the hypotheses are
stated as (2) and the test is based on log transformed data that is normally distributed with
means n7 and nz and common variance o2, The equivalence of (1) and (2) is dependent on
the assumption of equal variances. On the other hand, if pp and ppr represent the medians
of X* and Y* and nr = log(ur) and nr = log(ur), then nr and ng are the medians of X and
Y, respectively. So, in terms of medians, (1) and (2) are always equivalent, and the analysis
can be carried out in either the original or log transformed scale. But, bioequivalence is
almost always defined in terms of means rather than medians.

Westlake (1981) and Schuirmann (1981) proposed what has become the standard test
of (2). It is called the “two one-sided tests” (TOST). The TOST has this general form. Let
D be an estimate of 7 — ng that has a normal distribution with mean ny — nr and variance
o%,. Let SE(D) be an estimate of o that is independent of D and such that 7(SE(D))?/c%
has a x? distribution with r degrees of freedom. Then

D — (nr — nR)

=S

has a Student’s ¢ distribution with r degrees of freedom. The TOST is based on the two
statistics D_2o D¢
—bU — YL
4 Ty = ——— d Tp = ——.
) UTSE(D) M "FTSE(D)

The TOST tests (2) using the ordinary, one-sided, size-a t-test based on 717, for

Hoi :pr —nr < 61
(5) versus
Hoy:nr —nr > 01

and the ordinary, one-sided, size-a t-test based on Ty for

Hoz : 1 —nr 2 U
(6) versus

Hyo i —nr < Oy

It rejects Hg at level o and declares the two drugs to be bioequivalent if both tests reject,
that is, if
(7) Ty < —tar and Ty, > tor,

where t,, is the upper 100a percentile of a Student’s ¢ distribution with r degrees of
freedom. For testing (2), all the tests we will discuss are functions of (D,SE(D)). The
distribution of (D, SE(D)) is determined by the parameter (nz,ng, 0% ).



In the simple parallel design, let X7,..., X, denote the independent lognormal(nr, c?)

measurements on m subjects from the test drug in the original scale, and let Xy,..., X,
denote the logarithms of these measurements. Similarly, let Y{*,...,¥Y* and Y7,...,Y,
denote the original measurements (lognormal(ng, c?)) and logarithms for an independent
sample of n subjects on the reference drug. If X denotes the sample mean of X;,...,X,,, Y
denotes the sample mean of Y7, ...,Y,,, and 5% denotes the pooled estimate of o2, computed
from both samples, then
D=X-Y

and

SE(D) = 51/~ + L.

m n

The degrees of freedom are r = m + n — 2.

In bioequivalence studies, much more common than simple parallel designs are two-
period, crossover designs. In a two-period, crossover design, a group of m subjects (Se-
quence 1) receives the reference drug and observations on the pharmacokinetic response are
made. After a washout period to remove any carryover effect, this group receives the test
drug and observations are again made. A second group of n subjects (Sequence 2) receives
the drugs in the opposite order. After log transformation, the response of the kth subject
in the jth period of the ith sequence is modeled as

Yijg =7+ Sk + P + Fijy + €iji

where 7 is the overall mean; P; is the fixed effect of period j; F{; ;) is the fixed effect of
the formulation administered in period j of sequence ¢, that is, F(; ) = Fy9) = FR and
Fay = Fo1y = Fr; Sig is the random effect of subject & in sequence ¢; and ;5 is the
random error. It is assumed that P, + P, = Fr + F'r = 0. The Si;s and the €5 are
all independent normal random variables with mean 0. The variance of S is U% and the
variance of €;;; is 04 and o% for the test and reference formulations, respectively. For this
design, - - - -
Yio. =Y.+ Y1 — Voo
2

is a normally distributed unbiased estimate of Fp — Fr = n7 — 1, with variance

D=

1/71 1
2 _ (.2 PN
op —(UR‘|‘UT)4 (m‘|‘ n)
The standard error of D is
1 /1 1
SE(D)=5=-y/—+ —
(D) =S54/ —+ —
where
5% = ! i(y p=Yie— (Yie. - Y ))2
2 2 12 11 12 11-
n _ _ 2
+ Z (Y21k —Yoor — (Yo1. — Y22~))
k=1



The estimate D is the average of the averages of the intrasubject differences for the two
sequences, and S? is a pooled estimate of the variance of an intrasubject difference. For
this crossover design, also, the degrees of freedom are r = m +n — 2.

Following Lehmann (1959), we define the size of a test as

size = sup P(reject Hp).
Ho

The size of the TOST is exactly equal to a, even though P(reject Hy) < a for every
(nr,mRr,0%) in the null hypothesis. The supremum value of « is attained in the limit as
nr —nr = 0, (or 8y) and % — 0. Both the FDA bioequivalence guideline (FDA, 1992)
and the European Community guideline (EC-GCP, 1993) specify that bioequivalence be
established using a 5% TOST.

The TOST is unusual in that two size-a tests are combined to form a size-a test.
Often, when multiple tests are combined, some adjustment must be made to the sizes of
the individual tests to achieve an overall size-a test. Why this is not necessary for the
TOST is best understood through the theory of intersection-union tests (IUTs), which we
describe in Section 3. In Sections 4.1 and 4.2 we will show that the IUT theory is useful for
understanding the TOST. Also, the IUT theory can guide the construction of tests for (2)
that have the same size-a as the TOST but are uniformly more powerful than the TOST.

2.2 Ratio hypotheses

Sometimes, a normal model should be used. In this model, the original measurements are
normally distributed with means gy and pgr. This model is different from the lognormal
model in that now the hypothesis to be tested concerns the ratio of the means of these
normal observations. That is, we wish to test (1). This problem has received less attention
than (2). Dealing with the ratio pur/ugr has been perceived as more difficult than dealing
with the difference ny — ng.

For AUC and Cpay, the FDA (1992) strongly recommends logarithmically transforming
the data and testing the hypotheses (2). They offer three rationales for their recommenda-
tion. Based on these, the FDA (1992, p. 7) states,

Based on the arguments in the preceding section, the Division of Bioequivalence
recommends that the pharmacokinetic parameters AUC and Cy,.x be log trans-
formed. Firms are not encouraged to test for normality of data distribution
after log transformation, nor should they employ normality of data distribution
as a justification for carrying out the statistical analysis on the original scale.

The emphasis is ours.

The FDA’s three rationales for log transformation are labeled Clinical, Pharmacokinetic,
and Statistical. The Clinical Rationale is that the real interest is in the ratio p7/ug rather
than the difference pr — pr. But, the link between this fact (which we certainly do not
dispute) and the log transformation of the data is based on statistical considerations. It
is that a linear statistical model can be used for the transformed data to make inferences
about the difference n — nr. These inferences then can be restated in terms of ur/ug.
Thus, the justification of the log transformations seems to be based mainly on the perceived



difficulty in dealing with the ratio pur/ug, rather than the difference ny—ngr. If appropriate
statistical procedures can be used to make inferences about the ratio ur/pgr directly, then
there seems to be no need for a log transformation.

The Pharmacokinetic Rationale is based on multiplicative compartmental models of
Westlake (1973, 1988). The multiplicative model is changed to a linear model by the log
transformation. Part of the Statistical Rationale is that, in the original scale, much bioe-
quivalence data is skewed and appears more lognormal than normal. We agree that these
two considerations suggest that the first method of analysis to be considered in bioequiv-
alence studies is on the log transformed data, and, in most cases, this analysis will be
appropriate.

The Statistical Rationale consists of the previous lognormal justification and two more
points. The first is that,

Standard parametric methods are ill-suited to making inferences about the ra-
tio of two averages, though some valid methods do exist. Log transformation
changes the problem to one of making inferences about the difference (on the
log scale) of the two averages, for which the standard methods are well suited.

The second is that the small sample sizes used in typical bioequivalence studies (20 to 30) will
produce tests for normality that have fairly low power in either the original or log scale. The
FDA recommends that no check of normality be made on the log transformed data. But, if
a low-power normality test rejects the hypothesis of normality for the log transformed data,
then surely some caution is warranted in the use of procedures that assume normality. In
this case, tests such as the TOST, based on the Student’s ¢ distribution, are inappropriate. If
normality of the log transformed data is rejected and the original data appear more normal
than the log transformed data, then procedures that assume normality of the original data
would seem more appropriate. In Section 4.3, we show that Sasabuchi (1980,1988a,b)
described the size-a likelihood ratio test for (1). It is a simple test based on the Student’s
t distribution. So the FDA’s statement about ill-suited standard parametric procedures
seems unfounded. We also show that the tests commonly used are liberal and have size
greater than the nominal value of a. Furthermore, we show that the IUT method can be
used in this problem, also, to construct size-a tests that are uniformly more powerful than
the likelihood ratio test. Thus, the FDA’s avoidance of (1) because of statistical difficulties
is unwarranted.

An alternative test, when normality is in doubt, might be to use a Wilcoxon-Mann-
Whitney analogue of the TOST (based on the original logarithmically transformed data
for a parallel design, or the intrasubject between-period differences of the logarithmically
transformed data, as proposed by Hauschke, Steinijans and Diletti (1990), for a crossover
design).

2.3 100(1 — 2a)% confidence intervals

One would expect the TOST to be identical to some confidence interval procedure: For
some appropriate 100(1 — @)% confidence interval [D~, DT] for 5 — ng, declare the test
drug to be bioequivalent to the reference drug if and only if [D~, DT] C (8L, 00).



It has been noted (e.g., Westlake, 1981; Schuirmann, 1981) that the TOST is opera-
tionally identical to the procedure of declaring equivalence only if the ordinary 100(1—2a)%,
not 100(1 — &)%, two-sided confidence interval for nr — ng

(8) [D — t4,SE(D), D + to ,SE(D)]

is contained in the interval (6,6 ). In fact, both FDA (1992) as well as EC-GCP (1993)
specify that the TOST should be executed in this fashion.

The fact that the TOST seemingly corresponds to a 100(1—2a)%, not 100(1 —«)%, con-
fidence interval procedure initially caused some concern (Westlake 1976, 1981). Recently,
Brown, Casella and Hwang (1995) called this relationship an “algebraic coincidence.” But
many authors (e.g., Chow and Shao, 1990, and Schuirmann, 1989) have defined bioequiva-
lence tests in terms of 100(1 — 2a)% confidence sets.

Standard statistical results, such as Theorems 3 and 4 in Section 5, give relationships
between size-a tests and 100(1 — )% confidence intervals. In Section 5, we discuss a
100(1 — a)% confidence interval that corresponds exactly to the size-a TOST. We also
explore the relationship between 100(1 — 2a)% confidence intervals and size-o tests. We
describe situations more general than the TOST in which size-« tests can be defined in terms
of 100(1 — 2a)% confidence intervals. But we also give examples from the bioequivalence
literature of tests that have been defined in terms of 100(1 — 2a))% confidence intervals and
sets that are not size-a tests. Tests defined by 100(1 — 2a)% confidence intervals can be
either liberal or conservative. Because of these potential difficulties, our conclusion is that
the practice of defining bioequivalence tests in terms of 100(1 — 2a)% confidence intervals
should be abandoned. If both a confidence interval and a test are required, a 100(1 — a)%
confidence interval that corresponds to the given size-a test should be used.

2.4 Multiparameter problems

In Section 6, we discuss multiparameter bioequivalence problems. We discuss two examples
in which the TUT theory can be used to define size-a tests that are uniformly more powerful
than tests that have been previously proposed. These examples concern controlling the ex-
perimentwise error rate when several parameters are tested for equivalence, simultaneously.

3 Intersection-Union Tests

Berger (1982) proposed the use of intersection-union tests in a quality control context closely
related to bioequivalence testing. Tests for many different bioequivalence hypotheses are
easily constructed using the IUT method. The TOST is a simple example of an [UT. Tests
with a specified size are easily constructed using this method, even in complicated problems
involving several parameters. And tests that are uniformly more powerful than standard
tests can often be constructed using this method.

The TUT method is useful for the following type of hypothesis testing problem. Let 6
denote the unknown parameter (€ can be vector valued) in the distribution of the data X.
Let © denote the parameter space. Let ©1,..., Oy denote subsets of @. Suppose we wish



to test A A
(9) Hgp:6¢ U®i versus I, :0 ¢ ﬂ@f,
=1

=1
where A° denotes the complement of the set A. The important feature in this formulation is
the null hypothesis is expressed as a union and the alternative hypothesis is expressed as an
intersection. Fore = 1,...,k, let R; denote a rejection region for a test of Hy; : 8 € ©; versus
Hyi @ 0 € ©F. Then an IUT of (9) is the test that rejects Hp if and only if X € ﬂle R;.
The rationale behind an IUT is simple. The overall null hypothesis, Hy : 8 € Ule 0; can
be rejected only if each of the individual null hypotheses, Hy; : 8 € ©;, can be rejected.
Berger (1982) proved the following two theorems.

Theorem 1 If R; is a level-a test of Hy;, fori=1,...,k, then the intersection-union test
with rejection region R = ﬂle R; is a level-a test of Hg versus H, in (9).

An important feature in Theorem 1 is that each of the individual tests is performed at
level-a. But the overall test also has the same level a. There is no need for multiplicity
adjustment for performing multiple tests. The reason there is no need for such a correction
is the special way the individual tests are combined. Hy is rejected only if every one of the
individual hypotheses, Hg;, is rejected.

Theorem 1 asserts that the TUT is level-a. That is, its size is at most a. In fact, a test
constructed by the IUT method can be quite conservative. Its size can be much less that
the specified value a. But, Theorem 2 (a generalization of Theorem 2 in Berger (1982))
provides conditions under which the IUT is not conservative; its size is exactly equal to the
specified a.

Theorem 2 For some i = 1,...,k, suppose R; is a size-a rejection region for testing Ho;
versus Ho;. Foreveryj=1,...,k, 7 # 1, suppose R; is a level-a rejection region for testing
Ho; versus Hg;. Suppose there exists a sequence of parameter points 0;,1 = 1,2,..., in ©;
such that

llim P@l(X € RZ) = .
and, for every j=1,...,k, j # 1,

lim Py (X € Rj) = 1.

Then the intersection-union test with rejection region R = ﬂle R; is a size-a test of Hg
versus H,.

Note that in Theorem 2, the one test defined by R; has size exactly a. The other tests
defined by R;, j =1,...,k, j # i, are level-a tests. That is, their sizes may be less than
a. The conclusion is the IUT has size a. Thus, if rejection regions Rq,..., Ry with sizes
a1, ...,ap are combined in an IUT and Theorem 2 is applicable, then the IUT will have size
equal to max;{«a;}. We will discuss bioequivalence examples in which tests of different sizes
are combined. The resulting test has size equal to the maximum of the individual sizes.



4 Old and New Tests for Difference and Ratio Hypotheses

4.1 Two one-sided tests

The TOST is naturally thought of as an IUT. The bioequivalence alternative hypothesis
H, : 0 < nr — nrp < Oy, is conveniently expressed as the intersection of the two sets,
¢S ={(nr,mRr, %) :nr —nr > 01} and O = {(n7, R, 05) : 57 — nr < O }. The test that
rejects Hoy @ 7 —p < 0p in (5) if T1, > t,,, is a size-a test of Hy;. The test that rejects
Ho2 : pr — nr > 6y in (6) if Ty < —t,,, is a size-a test of Hyy. So, by Theorem 1, the test
that rejects Ho only if both of these tests reject is a level-a test of (2).
To use Theorem 2 to see that the size of the TOST is exactly «, consider parameter
points with nr — nr = Oy and take the limit as U% — 0. Such parameters are on the
boundary of Hge. Therefore,

P(X € Ry)=P(Ty < —to,) = a,
for any ¢% > 0. But,
P(X € Ry)=P(Tp, > ty,) — 1, as o3 — 0,

because the power of a one-sided ¢ test converges to one as 0%, — 0 for any point in the
alternative. The value ny — nr = 6y is in the alternative, Hgy.

The advantage of considering bioequivalence problems in an IUT format is not limited
to verifying properties of the TOST. Rather, other bioequivalence hypotheses, such as
(1), state an interval as the alternative hypothesis. This interval can be expressed as the
intersection of two one-sided intervals. So two one-sided, size-a tests can be combined to
obtain a level-a (typically, size-a) test. Furthermore, as we will see in Section 6, even more
complicated forms of bioequivalence can be expressed in the IUT format. This allows the
easy construction of tests with guaranteed size-a for these problems.

4.2 More powerful tests

Despite its simplicity and intuitive appeal, the TOST suffers from a lack of power. The
line labeled TOST in the top part of Table 1 shows the power function, P(reject Hp), for
parameter points with nr — nr = 6y (or 01), points on the boundary between Hy and H,.
The power function is near « for 0%, near 0, but decreases as o7, grows. An unbiased test
would have power equal to a for all such parameter points. The TOST is clearly biased.
The bottom part of Table 1 shows the power function when the two drugs are exactly equal,
nr = nr. The power is near one for 0% near zero, but decreases to zero as 0%, increases.
Despite these shortcomings, Diletti, Hauschke and Steinijans (1991) declared that the TOST
maximizes the power among all size-a tests. This is incorrect.

Anderson and Hauck (1983) proposed a test with higher power that the TOST. Whereas
the TOST does not reject Hy if SE(D) is sufficiently large, the Anderson and Hauck test
always rejects Hg if D is near enough to zero, even if SE(D) is large. This provides an
improvement in power. However the Anderson and Hauck test does not control the Type 1
error probability at the specified level a. It is liberal and the size is somewhat greater than
a. Shortly after Anderson and Hauck proposed their test, Patel and Gupta (1984) and
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Table 1: Powers of three bioequivalence tests. r = 30, a = .05, and 6y = log(1.25) = —0y,.

op
.00 .04 .08 12 .16 .20 .30 o0
nr —nr =6y or O
TOST .050 .050 .050 .031 .003 .000 .000 .000
BHM .050 .050 .050 .050 .050 .050 .050 .050
new .050 .050 .050 .047 .049 .050 .050 .050

nr—nr =0
TOST 1.000 1.000 .720 .158 .007 .000 .000 .000
BHM 1.000 1.000 .721 .260 .131 .093 .066 .050
new 1.000 1.000 .720 .247 .128 .092 .066 .050

Rocke (1984) proposed the same test. This scientific coincidence was commented upon by
Anderson and Hauck (1985) and Martin Andrés (1990).

Due to the seriousness of a Type I error, declaring two drugs to be equivalent when
they are not, the search for a size-a test that was uniformly more powerful than the TOST
continued. Munk (1993) proposed a slightly different test. Munk claims that this test is a
size-a test that is uniformly more powerful than the TOST. But this claim is supported by
numerical calculations, not analytic results.

Brown, Hwang and Munk (1995) constructed an unbiased, size-a test of (2) that is
uniformly more powerful than the TOST. Their construction is recursive. To determine if
a point (d,se(D)) is in the rejection region of the Brown, Hwang and Munk test, a good
deal of computing can be necessary. This may limit the practical usefulness of the Brown,
Hwang and Munk test. Also, sometimes the Brown, Hwang and Munk rejection region has
a quite irregular shape. An example of this is shown in Figure 1.

We will now describe a new test of the hypotheses (2). This test is uniformly more
powerful than the TOST. Unlike the Anderson and Hauck and Munk tests, our test is a
size-a test. Qur test is nearly unbiased. It is simpler to compute than the Brown, Hwang
and Munk test. It will not have the irregular boundaries that the Brown, Hwang and Munk
test sometimes possesses. The construction of this new test again illustrates the usefulness
of the TUT method.

To simplify the notation in describing our test, we assume, without loss of generality, that
01, = —0y and call §y = A. Following Brown, Hwang and Munk, define S = r(SE(D))>?.
It is simpler to define our test in terms of the polar coordinates, centered at (A,0),

v? = (d— A)? + s

and

b=cos™((d—A)/v).

In the (d,s.) space, v is the distance from (A,0) to (d,s.), and b is the angle between
the d axis and the line segment joining (A,0) and (d, s.). To define a size-a test, we need

11



Figure 1: Irregular boundary of Brown, Hwang and Munk test (solid line) and smoother
boundary of test from Section 4.2 (dashed line). The TOST rejection region is bounded by
the triangle with vertices at —A, A, and T. Here r = 3, & = .16 and —0; = 6y = 1.

the distribution of (V, B) when § = A, In this case, it is easy to verify that V and B are
independent. The probability density function of B is

_ N+ 1)/2)
- T(r/2) /7

which does not depend on ¢,. To implement our test, it is useful to note that the cumulative
distribution function of B has a closed form given by

f(b) (sin(b))"™', 0<b<m,

(r=1)/2
b 1 ) _ I'(k)
Flb)y=——- —= sin(0))?* ! cos(b) ———,
D=5 X () st
if r is odd, and
11 & T(k— 1)

F(b) = 53 kZ::I(sin(b))%_2 COS(b)W7

if r is even. The probability density function of V' will be denoted by g,,(v).
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We will describe the rejection region of the new test geometrically here. Fxact formulas
are in the Appendix. The new test will be an IUT. We will define a size-a, unbiased
rejection region, R, for testing (6). This Ry will contain the rejection region of the size-a
TOST and will be approximately symmetric about the line d = 0. Then we will define
Ry = {(d,s:) : (=d,ss) € Ry}. Ry is Ry reflected across the line d = 0. Ry is a size-a,
unbiased rejection region for testing (5). Then R = RN Ry is the rejection region of the new
test. Because R, is approximately symmetric about the line d = 0, Ry is almost the same
as Rg, and not much is deleted when we take the intersection. This foresight in choosing
the individual rejection regions so that the intersection is not much smaller is always useful
when using the [UT method.

The set {V = v} is a semicircle in (d, s, ) space. For each value of v, Ry(v) = {V = v}NR;
is either one or two intervals of b values, that is, one or two arcs on {V = v}. These arcs
will be chosen so that, for every v > 0,

(10) /R2(U)f(b) db = a.

Then the rejection probability

=[] b g () o = | agep (v =a.

for every op > 0if ny — nr = A. This will ensure that R; is a size-a, unbiased rejection
region for testing (6).

We now define the arc(s) that make up Ry(v). Refer to Figure 2 in this description. The
rejection region of the size-a TOST, call it Ry, is the triangle bounded by the lines s, = 0,
d = A—t,,5.//r (call thisline l;7), and d = —A+1, ,5,/+/7 (call this line [1,). Let vy denote
the distance from (A, 0) to {7. In this description, we assume 1/2 > a > a, = 1— F(31/4).
Brown, Hwang and Munk (1995) in their Table 1 show that if » > 4, then a = .05 > a,.
The new test for a < a, is given in the Appendix. Brown, Hwang and Munk did not
propose any test for a < a,. The condition & > a, ensures that the point on [y, closest to
(A,0) is on the boundary of Ry, as shown.

Let by denote the angle between the d axis and 7. For 0 < v < vy, Ra(v) = {b: by <
b < m}. The arc Ag in Figure 2 is an example of such an arc. So, for v < vy, Ra(v) is
exactly the points in the TOST.

For vy < v, the semicircle V = » intersects [;, at two points. Let by < by denote the
angles corresponding to these two points. If vg < v < 2A, let Az(v) = {b: by < b < 7}.
These are the points in Rr adjacent to the d axis, and Ay in Figure 2 is an example of such
an arc. If 2A < v, let Ay(v) be the empty set. Let a(v) denote the probability content of
Ay(v) under F. That is,

1= F(by), wo<wv<2A,
a(v) = 0, 2A < v.

For vy < v, Ry(v) = A1(v) U Ay(v), where to ensure that (10) is true, A;(v) must satisfy

(11) /Al(v)f(b) db= a — a(v).
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Figure 2: Arcs that define the rejection region R.
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Let (dy, s41) denote the point where the {V = v} semicircle intersects li7, and let vy
denote the radius corresponding to (—dy, s.1). For vg < v < vy, let brq be the angle defined
by
(12) F(b1) = F(bza) = a - a(v),

where by is as defined in the previous paragraph. Then Ay(v) = {b: b1 < b < by} is the
arc that satisfies (11) whose endpoint is on [r,. For vy < v < vy, Ra(v) = Aq(v) U Ag(v),
using this A;(v). The arcs labeled A; and Aj in Figure 2 comprise such an Ry(v). For
v < vy, the cross sections Ry(v) we have defined are the same as the cross sections for the
Brown, Hwang and Munk (1995) test. They now define the remainder of their rejection
region recursively in terms of these arcs. We define our rejection region in a nonrecursive
manner.

For vy < v, define two values by, (v) < by(v) such that F(by(v)) — F(br(v)) = a — a(v),
and the angle between the line joining (0,0) and (v,br(v)) and the s, axis is the same as
the angle between the line joining (0,0) and (v,by(v)) and the s, axis. This equal angle
condition is what we meant earlier by the phrase “approximately symmetric about the line
d=0." If by(v) > by, then Ay(v) = {b:br(v) < b < by(v)}. But, if by(v) < by, then this
arc does not contain all the points in the TOST. So, if byr(v) < b1, A1(v) =4{b:br1 < b <
by}, where bry is defined by (12). For vy < v, Ra(v) = A1(v) U A2(v). Recall, if 2A < v,
Ay(v) is empty, and Ry(v) is the single arc Ay(v). Also, for v* > max{4A% A2+ A?r/t2 },
the semicircle {V' = v} does not intersect Ry, and Ry(v) is the arc defined by by (v) and
bir(v). The by condition never applies in this case. In Figure 2, the solid parts of the arcs
As and A4 are examples of Ry(v) for v; < v.

The cross-sections Ry(v) have been defined for every v > 0, and this defines Ry. Ry is
the reflection of Ry across the s, axis, and the rejection region of the new test is R = RN R5.
This construction is illustrated in Figure 3.

In Figure 1, the rejection region R with the same size as the Brown, Hwang and Munk
test is the region between the dotted lines. The boundary of R is smooth compared to the
irregular boundary of the Brown, Hwang and Munk test. This smoothness results from the
attempt in the construction of R to center arcs around the s, axis. To determine if a sample
point (d,s?) is in R, two arcs, Ra(v) and Ri(v) = Ra(v') (v/ = (—=d — A)? + s%, computed
from (—d, s2)), must be constructed. If (d, s2) is on both arcs, (d, s2) € R. But, to determine
if (d,s?) is in the rejection region of the Brown, Hwang and Munk test, a starting point
is selected. Then a sequence of arcs is constructed until (d,s?) is passed. Then another
sequence of arcs is constructed from a new starting point. This process is continued until
enough arcs in the vicinity of (d,s?) are obtained to approximate the boundary of the
rejection region. From this it is determined if (d, s2) is in the rejection region. Thus, a good
deal more computation is needed to implement the Brown, Hwang and Munk test. Also,
the Brown, Hwang and Munk test is not defined for @ < a,. This smoothness, general
applicability, and simplicity of computation recommends R as a reasonable alternative to
the Brown, Hwang and Munk test. But R is slightly biased whereas the Brown, Hwang and
Munk test is unbiased.

A small power comparison of the TOST, Brown, Hwang and Munk test, and our new
test is given in Table 1 for aw = .05 and r = 30. In the top block of numbers, n7 — np = A.
For these boundary values, the power is exactly a = .05 for the unbiased Brown, Hwang
and Munk test. The power is also very close to .05 for our test, indicating it has only slight
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Figure 3: Rejection region of new test. Region R; (between solid lines) and region Ry
(between dashed lines). Rejection region R = Ry N Ry. r = 10 and a = .05.
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bias. But the TOST is highly biased with power much less than .05 for moderate and large
op. In the bottom block of numbers, nr — nr = 0. The drugs are equivalent. Our test and
the Brown, Hwang and Munk test have very similar powers. Their powers are much greater
than the TOST’s power for all but small op. For example, it can be seen that the power
improvement is about 60% when op = .12 and about 85% when op = .16. Sample sizes for
bioequivalence tests are often chosen so that the test has power of about .8 when nr = np.
In this case, Table 1 indicates there is no advantage to using the new tests over the TOST.
But if the variability turns out to be larger than expected in the planning stage, the new
tests offer significant power improvements.

The tests of Anderson and Hauck (1983), Brown, Hwang and Munk (1995), and our
new test all have the property that, as s, — oo, the width of the rejection region increases,
eventually containing values of (d,s.) with d outside the interval (6r,6;7). There will be
values (d,s«) and (d, s.2) with s,q < s.2, but (d, s,q) is not in the rejection region while
(d,sx2) is in the rejection region. This “flaring out” of the rejection region is evident
in Figures 1 and 5. This counterintuitive shape was pointed out by Rocke (1984). The
rejection region of any bioequivalence test that is unbiased, or approximately unbiased,
must eventually contain sample points with d outside the interval (8r,60y). Some have
suggested that such procedures should be truncated in the sense that the narrowest point
of the rejection region be determined and then the rejection region is extended along the s,
axis only of this width. Brown, Hwang and Munk suggest this as a possible modification of
their test, although the resulting test will no longer be unbiased. We believe that notions of
size, power, and unbiasedness are more fundamental than “intuition” and do not recommend
truncation. But for those who disagree, our new test could be truncated in this same way.
The narrowest point will need to be determined numerically for all these tests, and the
smoother shape of our rejection region will make this determination easier. Referring to
Figure 1, a numerical routine might be fooled by the irregular shape of the Brown, Hwang
and Munk test.

4.3 Tests for ratios of parameters

Usually, data from a bioequivalence trial is logarithmically transformed before analysis. This
leads to a test of the hypotheses (2), as described in the previous section. In the model
we will consider now, the original data are normally distributed. Let Xy,...,X,, form a
random sample from a normal population with mean pp and variance o?, and Y;,...,Y,
form an independent random sample from a normal population with mean pp and variance
o?. In this section, we will present our comments in terms of this simple parallel design.
Yang (1991) and Liu and Weng (1995) describe models for this normally distributed data
in crossover experiments.

The bioequivalence hypothesis to be tested in this case is (1), namely,

Ho:'llj—]ggéLor'llj—gZ(SU
(13) Versus
: “r
H,:6p < 7 < oy

In the past, the values of §;, = .80 and éy = 1.20 were commonly used (called the £20
rule). But, the FDA Division of Bioequivalence (1992) now uses é67, = .80 and ¢, = 1.25.
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These limits are symmetric about one in the ratio scale since .80 = 1/1.25.
The parameter up is positive because the measured variable, AUC or Chax, is positive.
Therefore the hypotheses (13) can be restated as

Ho :pr —éppr < 0 or pr — éupr > 0
(14) versus

H, :,uT—(SL,uR>Oand ,uT—(SU,uR<0.

The testing problem (14) was first considered by Sasabuchi (1980, 1988a.,b). Let X, Y,
and $? denote the two sample means and the pooled estimate of 0%, Sasabuchi showed that
the size-a likelihood ratio test of (14) rejects Hy if and only if

Tl Z toz,r and T2 S _toz,r

where . . . .
X —-61Y X - épY

oo X0V g g A

S L_|_5_L S L_|_5_U

This will be called the Ty /T test.

The Ty/T; test is easily understood as an TUT. The usual, normal theory, size-a t-
test of Hoy : pr — épppp < 0 versus Hyy @ pup — épppp > 0 is the test that rejects Hgy if
Ty > ty,. Similarly, the usual, normal theory, size-a t-test of Hoy : 7 — éypur > 0 versus
Hyo : pr —o6upr < 01is the test that rejects Hog if 75 < —t,, . Because H, is the intersection
of Hy,y and H,2, these two t-tests can be combined, using the IUT method, to get a level-a
test of Hg versus H,. Using an argument like in Section 3, Theorem 2 can be used to show
that the size of this test is a.

Yang (1991) and Liu and Weng (1995) proposed tests closely related to the T3 /75 test for
the bioequivalence problem of testing (13) in a crossover experiment. Hauck and Anderson
(1992) also discuss the hypotheses in the form (14). But no reference to Sasabuchi’s earlier
work is given. The derivation of the confidence set for pur/ugr in Hsu, Hwang, Liu, and
Ruberg (1994) contains a mistake in the standardization. Properly corrected, their rather
complicated confidence set would lead to the rejection of (14) when the simple test described
above does. So, somehow, the value of this simple, size-a test seems to have been completely
overlooked in the bioequivalence literature. Rather, Chow and Liu (1992) and Liu and Weng
(1995) both report that the following is the standard analysis. Rewrite the hypotheses (13)
or (14) as

Ho : pr — pr < (6, — Dpr or pr — pr > (0y — pr
(15) Versus

Hy, : (6p — Dpur < pr — pr < (v — Dug.

These hypotheses look like (2), but there is an important difference. In (2), 67, and 6 are
known constants. In (15), (éy, —1)ur and (6 —1)pup are unknown parameters. Nevertheless,
the standard analysis proceeds to use the TOST with (67 — 1)Y replacing 6, in Ty and
(b — 1)7 replacing 8y in Tyr. The standard analysis ignores the fact that a constant has
been replaced by a random variable and compares these two test statistics to standard ¢
percentiles as in the TOST. This test will be called the T} /75 test.
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The statistics that are actually used in this analysis are

" Y—Y—(éL—l)Y Y—(SLY n—l—mé%
le = :Tl _—,
SyE+1L SyfL+d N ontm

1
and
" Y—Y—((ﬁ[]—l)? Y—(SUY /n—l—m(%
T2: = :T2 _
IS L_|_l IS L_|_l n+m

The statistics 7y and T3 are properly scaled to have Student’s ¢ distributions, but T}
and 73 are not. The T5/T5 test is an IUT in which the two tests have different sizes. The
test that rejects Hoq if 77 > ¢, has size

* n+m
Prur=s,pn (Tl > tofﬂ“) = Pur=6,un (Tl > \/ mta’T)

= o <aq,

n+m
72>1.
\/n—l—m(SL

On the other hand, the test that rejects Hoo if 75 < —1,, has size

" n+m
Pur=spun (I3 < =tay) = Pur=épun (T2 < _\/ mta’T)

= a2 > qQ,

n+m
72<1
Vn—l—méU

Theorem 2 can be used to show that, as a test of the hypothesis (13), the T7/T5 test has
size ag > «. It is a liberal test.

The true size of the 15 /T test, for a nominal size of a = .05, is shown in Table 2. In
Table 2 it is assumed that the sample sizes from the test and reference drugs are equal,
m = n. In this case, the size of the T /T3 test is simply

2
=P|T - 7tar 9
@2 ( < \V 1+ 62 )

where T has a students ¢ distribution with » = 2n — 2 degrees of freedom. It can be seen
that the size of the T7/T5 test is about .07 for all sample sizes. The liberality worsens
slightly as the sample size increases.

On the other hand, the T} /T5 test has size exactly equal to the nominal «. It is just as
simple to implement as the 77 /T test. Therefore the T7/T5 test should replace the T} /T3
test for testing (13).

because

because
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Table 2: Actual size of T /T3 test for nominal o = .05

m=n 5 10 15 20 30 o0
size 070 .0v1 .072 .072 .073 .073

In Section 4.2, the ITUT method was used to construct a size-a test that is uniformly
more powerful than the TOST. For the known o? case, Berger (1989) and Liu and Berger
(1995) used the IUT method to construct size-a tests that are uniformly more powerful
than the T4 /T, test. In Figure 4, the cone shaped region labeled R, is the rejection region
of the Ty /T, test for &« = .05. The region between the dashed lines is the rejection region of
Liu and Berger’s size-a test that is uniformly more powerful. We refer the reader to Berger
(1989) and Liu and Berger (1995) for the details about these tests. We believe that for the
o unknown case, size-a tests that are uniformly more powerful than the Ty /T, test will be
found.

5 Confidence Sets and Bioequivalence Tests

5.1 A 100(1 — «)% confidence interval
We will show that the 100(1 — a)% confidence interval [D;, D] given by

(16) (D =16, SE(D))™, (D + o, SE(D))"]

corresponds to the size-aw TOST for (2). Here 2= = min{0,z} and 27 = max{0,z}. The
100(1 — )% interval (16) is equal to the 100(1 — 2a)% interval (8) when the interval (8)
contains zero. But, when the interval (8) lies to the right (left) of zero, the interval (16)
extends from zero to the upper (lower) endpoint of interval (8).

The confidence interval (16) has been derived by Hsu (1984), Bofinger (1985), and
Stefansson, Kim, and Hsu (1988) in the multiple comparisons setting, and by Miiller-Cohrs
(1991), Bofinger (1992), and Hsu, Hwang, Liu, and Ruberg (1994) in the bioequivalence
setting. Our derivation follows Stefansson, Kim, and Hsu (1988) and Hsu, Hwang, Liu, and
Ruberg (1994), which makes the correspondence to TOST more explicit.

To see this correspondence, we use the standard connection between tests and confidence
sets. Most often in statistics, this connection is used to construct confidence sets from tests
via a result such as the following.

Theorem 3 (Lehmann, 1986, p. 90) Let the data X have a probability distribution that
depends on a parameter 0. Let O denote the parameter space. For each 8y € O, let A(6y)
denote the acceptance region of a level-a test of Hg : @ = 0y. That is, for each 6y € O,
Py—gy (X € A(6p)) > 1 —a. Then, C(x) = {0 € O : x € A(0)} is a level 100(1 — a)%

confidence set for 0.

But in bioequivalence testing in the past, tests have often been constructed from confi-
dence sets. A result related to this practice follows.
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Figure 4: Rejection region for T4 /T; test is cone shaped R,. Region between dashed lines
is rejection region of uniformly more powerful Liu and Berger (1995) test. The estimates
X and Y satisfy 65, < X/Y < éy in the larger cone shaped region.
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Theorem 4 Let the data X have a probability distribution that depends on a parameter
0. Suppose C(X) is a 100(1 — )% confidence set for 8. That is, for each 8 € O, Py(0 €
C(X)) > 1—a. Consider testing Hy : @ € Oy versus H, : @ € Oy where O N Oy = (.
Then, the test that rejects Ho if and only if C(X)N O = 0 is a level-a test of Hy.

Proof. Let Oy € ©g. Then
Py, (reject Hy) <1 — Py, (6p € C(X)) < a.

Unfortunately, Theorem 4 has not always been carefully applied in the bioequivalence
area. Commonly, 100(1 — 2a)% confidence sets are used in an attempt to define level-a
tests. Theorem 4 guarantees only that a level-2a test will result from a 100(1 — 2a)%
confidence set. Sometimes, the size of the resulting test is, in fact, a, but this is not
generally true. In this subsection we use Theorem 3 to show the correspondence between
the 100(1 — a)% confidence interval (16) and the size-a TOST. In the next subsection, we
criticize the practice of using 100(1 — 2a)% confidence sets to define bioequivalence tests.

Let 8 = nr — nr. The family of size-a tests with acceptance regions

(17) A(89) = {(d.se(D)) < |d — bo| < tja,5e(D)}

leads to usual equivariant confidence interval, which is of the form (8) but with ¢, , replaced
by ta/Qﬂo.

However, no current law or regulation states one must employ confidence sets that are
equivariant over the entire real line. Using Theorem 3 and inverting the family of size-«
tests defined by, for 8y > 0,

(18) A(Oy) = {(d,se(D)) :d — 0y > —ty,rse(D)}

and for 65 < 0,
(19) A(Oy) = {(d,se(D)): d— by < ty,se(D)}

yields the 100(1 — @)% confidence interval (16). Technically, when inverting (18) and (19),
the upper confidence limit will be open when D+t ,SE(D) < 0. This point is inconsequen-
tial in bioequivalence testing. The only value of the upper bound with positive probability
is 0, and, in bioequivalence testing, the inference ny # ng is not of interest. In terms of
operating characteristics, the confidence interval with the possibly open endpoint has cov-
erage probability 100(1 — «)% everywhere. The confidence interval (16) also has coverage
probability 100(1 — a)% except at 57 — nr = 0 where it has 100% coverage probability.

Note that the family of tests (18) contains the one-sided size-a t-test for (6), and the
family of tests (19) contains the one-sided size-a ¢-test for (5), in contrast to the family of
tests (17). The 5% TOST is equivalent to asserting bioequivalence, 81, < nr — np < Oy,
if and only if the 95% confidence interval [Dy, Df] C (6,0y). Therefore, as pointed out
by Hsu, Hwang, Liu, and Ruberg (1994), it is more consistent with standard statistical
theory to say that the 100(1 — @)% confidence interval [Dy, D{], instead of the ordinary
100(1 — 2a)% confidence interval (8), corresponds to the TOST.

Pratt (1961) showed that for the r = oo case (i.e. SE(D) = op), when 57 = np,
that is, when the test drug is indeed equivalent to the reference drug, [D7, D] has the
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smallest expected length among all 100(1 — a)% confidence intervals for n7 — nr. On the
other hand, when 5y — ng is far from zero, [D], Df] has larger expected length than the
equivariant confidence interval (8). So the bioequivalence confidence interval [D], D] can
be thought of as specifically constructed from Theorem 3 for more precise inference when
it is expected that nr is close to nr. One multi-parameter extension of this construction,
utilized by Stefansson, Kim, and Hsu (1988), gives rise to the multiple comparison with the
best (MCB) confidence intervals of Hsu (1984), which eliminate treatments that are not the
best and identify treatments close to the true best. In fact, the bioequivalence confidence
interval (16) is an MCB confidence interval because, when only two treatments are being
compared, a treatment close to the other treatment is either the true best treatment or
close to the true best treatment.

This ability of MCB confidence interval to give practical equivalence inference is useful
in another problem. Ruberg and Hsu (1992) pointed out that whether to include certain
parameters in a regression model should sometimes be formulated as a practical equivalence
problem rather than a significant difference problem. In modeling the stability of a drug,
for example, given the clear intent of the FDA (1987) Guideline that data from batches of a
drug can be pooled only if they have practically equivalent degradation rates, the decision
of which time x batch interaction terms to include in the model can logically be based on
MCB confidence intervals comparing the degradation rate of each batch with the true worst
degradation rate. Another problem which has not been but should be formulated as one
of practical equivalence is the establishment of safety of substances such as bovine growth
hormone in toxicity studies (e.g., Juskevich and Guyer, 1990), since the desired inference is
practical equivalence between the treated groups and the (negative) control group (cf. Hsu,
1996, Chapter 2).

A different multiparameter extension of the same construction was utilized by Brown,
Casella, and Hwang (1995) to obtain the confidence region for a vector parameter 8 which
has the smallest expected volume when 8 = 0, generalizing Pratt’s result. The confidence
set is constructed through Theorem 3 using the family of size-ae Neyman-Pearson likelihood
ratio tests for Hy : @ = g versus H, : @ = 0. When 0 is multivariate normal with unknown
mean vector 8 and known variance-covariance matrix 3, the acceptance regions are

A(6o) = {@) 0,5 (6 — 00)/1/065 160, > —tam},

which leads to the confidence region

(20) C(0)={0:05710/VOS10 +1,., > VO T0}.
Their paper describes and illustrates interesting geometric properties of C(é)

It should be pointed out that the utility of Theorem 3 is not restricted to the construc-
tion of confidence sets which give better practical equivalence inference. Stefansson, Kim,
and Hsu (1988) and Hayter and Hsu (1994) used Theorem 3 to construct confidence sets
associated with step-down and step-up multiple comparison methods, which are usually
thought of as specifically constructed to give better significant difference inference than
single-step methods.
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5.2 100(1 — 2a)% confidence intervals

Bioequivalence tests are often defined in terms of 100(1 — 2a))% confidence sets. That is,
if @ denotes the parameter of interest, ©@F denotes the set of parameter values for which
the drugs are bioequivalent, and C'(X) is a 100(1 — 2a)% confidence set for 8, then the
drugs are declared bioequivalent if and only if C'(X) C ©F. This practice seems to be based
entirely on the perceived equivalence between the 100(1 — 2a)% confidence interval (8) and
the size-a TOST of (2). This practice is encouraged by the fact that both FDA (1992)
and EC-GCP (1993) specify that the a = .05 TOST should be executed by constructing a
90% confidence interval. In the bioequivalence literature, when used in this way, the 90%
is called the assurance of the confidence set.

The intent of the regulating agencies is clearly to use a test with size a = .05. Un-
fortunately, bioequivalence tests have been proposed using 100(1 — 2a)% confidence sets
without any verification that the resulting tests have size-a. Theorem 4 guarantees that
the resulting test is a level-2a test, not size-a. In this section, we will explore the usage
of 100(1 — 2a)% confidence sets. We shall show that the usual 100(1 — 2a)% confidence
interval (8) results in a size-a TOST of (2) because (8)is “equal-tailed.” So the relationship
is deeper than the “algebraic coincidence” mentioned by Brown, Casella and Hwang (1995).
Hauck and Anderson (1992) discuss this fact without proof. But we shall see in examples
that the use of 100(1 — 2a)% confidence sets can result in both liberal and conservative
bioequivalence tests. Because there is no general guarantee that a 100(1 — 2a)% confidence
set will result in a size-a test, we believe it is unwise to attempt to define a size-a test
in terms of a 100(1 — 2a)% confidence set. Rather, a test with the specified Type I error
probability of a should be used. Theorem 3 might be used to construct the corresponding
100(1 — )% confidence set.

Let [C'~,C*] denote (8), the usual 100(1 — 2a)% confidence interval for ny — nr. Why
does rejecting Hp in (2) if and only if [C~,C*] C (6r,6) result in a size-a testl' The
superficial answer is that, obviously, C* < @ is equivalent to Ty < —t,,, and C~ > 6y, is
equivalent to Ty, > ¢, . Thus, the test based on [C~,C*] is equivalent to the size-ow TOST.
But a more thorough understanding of this is suggested by the following result (Exercise
9.1, Casella and Berger, 1990).

Theorem 5 Let the data X have a probability distribution that depends on a real-valued
parameter 0. Suppose (—oo, U(X)] is a 100(1 —aq)% upper confidence bound for 8. Suppose
[L(X),00) is a 100(1 — a)% lower confidence bound for 6. Then, [L(X),U(X)] is a
100(1 — oy — a2)% confidence interval for 6.

Now consider the 100(1 — 2a)% confidence interval [C~,C*] for 8 = n7 — nr. The
interval (—oo,C*] is a 100(1 — )% upper confidence bound for . From Theorem 4, the
test that rejects Hog in (6) if and only if CF < 67 is a level-a test of Ho. Likewise, [C'™, o0)
is a 100(1 — a)% lower confidence bound for  and the test that rejects Hoy in (5) if and
only if C'~ > @y is a level-a test of Hgy. Forming an IUT from these two level-a tests yields
a level-a test of Hg in (2), by Theorem 1. Thus, we see that it is not so important that
[C~,CT]is a 100(1 — 2a)% confidence interval for 6. Rather, it is the fact that (—oc, C'T]
and [C'~,00) are both 100(1 — a)% confidence intervals that yields a level-a test. That is,
it is important that [C~,C*] is an “equal-tailed” confidence interval.
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It is easy to see that 100(1 — 2a)% confidence intervals will not always yield size-a tests.
Consider an “unequal-tailed” 100(1 — 2a)% confidence interval for § = n7 — g, [CT, Ci"],
defined by
(21) (D —t, ,SE(D), D +t,, ,SE(D)],

where aj + a3 = 2a. Using (—oo0, Ci"] to define a test of Hyy yields a size-aq test. And using
[C],00) to define a test of Hyy yields a size-ay test. Therefore, by Theorem 1, the IUT that
rejects Ho if and only if [C],CF] C (01, 0p) has level max{ay,as}. That this test has size
equal to max{ay,as} can be verified using Theorem 2. This relationship between the size
of the test and the maximum of the one-sided error probabilities is alluded to by equation
(1) in Yee (1986). The size of this test can be made arbitrarily close to 2a by choosing a4
close to zero and ay close to 2a. In this problem, the only 100(1 — 2a)% confidence interval
of the form (21) that defines a size-a test happens to be the usual, equal-tailed confidence
interval, [C~,CT].

The preceding example using an unequal-tailed test simply illustrates that defining a
bioequivalence test in terms of a 100(1 — 2a)% confidence interval can lead to a liberal
test with size greater than a. But, no one has proposed using the interval (21) to define a
bioequivalence test. So we now discuss two other examples that have been proposed in the
bioequivalence literature. Both examples concern testing (1) about the ratio ur/ug.

Tests based on 100(1 — 2a)% Fieller-type confidence intervals provide examples of tests
that are sometimes liberal. Mandallaz and Mau (1981), Locke (1984) and Kinsella (1989)
all propose using a Fieller-type (1940, 1954) confidence interval to estimate pur/upr. Neither
Locke nor Kinsella propose constructing a bioequivalence test using this interval. But
Mandallaz and Mau (1981), Yee (1986,1990), Metzler (1991) and Schuirmann (1989) all
propose defining a test of (1) using these Fieller confidence intervals, and all suggest that a
100(1 —2a)% confidence interval should be used. A test defined in this way using the Locke
100(1—2a)% confidence interval is, in fact, a size-a tests because the Locke interval is equal-
tailed. But, Metzler (1991) and Schuirmann (1989) give graphs of the power function of the
Mandallaz and Mau (1981) test that show that the test has size greater than the specified
a. For example, Figures 3 through 9 in Metzler (1991) are graphs of 1 — (power function)
based on the Mandallaz and Mau (1981) confidence interval. At éy = 1.2, the rejection
probability is about .07 for the e = .05 test, and, the power is about .15 for the @ = .10 test.
These figures cover a variety of sample sizes and variances. But in all cases the rejection
probability exceeds the nominal « at 6y = 1.2. The same liberality of the Mandallaz and
Mau test is illustrated by Figures 3-13 of Schuirmann (1989).

On the other hand, a test defined in terms of a 100(1 — 2a)% confidence set might be
very conservative. An example is the test proposed by Chow and Shao (1990) for testing
(1) about the ratio pr/pgr. Specifically, Chow and Shao considered a two period crossover
design with no carry-over, period or sequence effects. Let X denote the sample mean
vector with mean g = (u7,ur) and let S denote the sum of cross-products matrix. Let m
patients receive the first sequence, n patients receive the second sequence and n* = n + m.
Then, C' = {p : 71 < F,2,+_2} defines a 100(1 — )% confidence ellipse for p, where
Ty = n*(n* — 2)(X — p)'S (X — p)/2 and F, 4,y is the upper 100e percentile of an
F-distribution with 2 and n* — 2 degrees of freedom. Chow and Shao propose rejecting Hg
in (1) and concluding H, : 61, < pr/pr < 8u is true if and only if the 90% confidence ellipse
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is contained in the cone defined by H,. They do not comment on the actual size of this
test, but we assume 90% was chosen to be 100(1 — 2a)% where o = .05.

Chow and Shao’s test can be described much more simply by recalling the relation-
ship between the confidence ellipse, €', and simultaneous confidence intervals for all linear

functions U g (Scheffé, 1959). p € C if and only if I'X — \/QFa727n*_2l’Sl/(n*(n* —2)) <
U'p <U'X + \/QFa727n*_2l’Sl/(n*(n* — 2)) for every vector I. But, in fact, the only two
vectors needed to define Chow and Shao’s test are Iy = (1,—65)" and Iy = (1,-ép)".

The hypotheses in (1) or (14) can be written as Hg : Ipp < Oorlyp > 0 and H, :
pp < 0 < lpp. Furthermore, the ellipse C' is below the line Ij;u = 0 if and only if

X+ \/QFa727n*_2l’[]SlU/(n*(n* —2)) < 0, that is, the upper endpoint of the confidence
interval for I, is negative. Similarly, the ellipse C' is above the line 7 = 0 if and only if
I, X — \/QFa727n*_2liSlL/(n*(n* —2)) > 0. If we define

, X
L ju—
VI S1L/ (n=(n* — 2))

then Chow and Shao’s test rejects Hg if and only if

(22) T > \/QFa727n*_2 and Ty < —\/QFa727n*_2.

This simple description of Chow and Shao’s test has not appeared before. In this form, it
is apparent that this test can be viewed as an IUT. A reasonable test of Hoz, : {7 < 0
versus Hyp : I > 0 is the test that rejects Hop if T > 215 2 nr—2. A reasonable test
of Horr = lyype > 0 versus Hypr @ I < 0 is the test that rejects Hopr if Ty < —+/2F, 2 0%—2.
Thus, Chow and Shao’s test is the IUT of Hy versus H, formed by combining these two tests.
Theorems 1 and 2 then tell us that the actual size of this test is o' = P(T > \/2F, 3 +—2),
where T has a Student’s ¢ distribution with n* — 1 degrees of freedom. This is because 77,
has this ¢-distribution if I7 g = 0, and Ty has this ¢-distribution if If;pu = 0. That is, o' is
the size of each of the two individual tests. We computed o’ using a 90% confidence ellipse
as suggested by Chow and Shao. We found that ' = .017 for m = n = 5, 10, and 15, and
o' =.016 for m = n = 20, 30, and oo. Thus, if the intent of using a 100(1 — 2a)% = 90%
confidence ellipse was to produce a bioequivalence test with type I error probability of
a = .05, the result was very conservative.

A test of Hg versus H, with the desired size of @ can be obtained by replacing /21, 2 px—2
with the ¢ percentile, ¢, ,+_1 in (22). Then each of the individual tests is size-a and the
combined TUT also has size-a. This test is uniformly more powerful than Chow and Shao’s
test because the rejection region of Chow and Shao’s test is a proper subset of this one. This
test is the analogue of the TOST for this crossover model. In fact, Yang (1991) proposed
this test for this problem as an alternative to Chow and Shao’s test. But Yang did not state
that this test was uniformly more powerful nor quantify the conservativeness of Chow and
Shao’s test.

Our conclusions from the results and examples in this subsection are simple. The us-
age of 100(1 — 2a)% confidence sets to define bioequivalence tests should be abandoned.
This practice produces tests with the appropriate size only when special, “equal-tailed”

5
VSt /(n(ne = 2))

and Ty =
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confidence intervals are used, and offers no intuitive insight. The mixture of 100(1 — 2a)%
confidence sets and size-a tests is only confusing. Rather, a test with the specified Type I
error probability of a should be used. The IUT method can usually be used to construct
such a test. Then, Theorem 3 might be used to construct the corresponding 100(1 — a)%
confidence set.

6 Multiparameter Equivalence Problems

Until now, we have discussed bioequivalence testing in terms of only one parameter. In this
section, we discuss two problems in which the desired inference is equivalence in terms of
two parameters. These results immediately generalize to situations in which bioequivalence
is defined in terms of more than two parameters.

These two examples have been discussed as multiparameter bioequivalence problems
by several authors. But, in some cases, the tests that have been proposed do not have
the correct size a. The proposed tests do not properly account for the multiple testing
aspect of this problem. These two multiparameter examples vividly illustrate that the IUT
method can provide a simple mechanism for constructing tests with the correct size a, even
in seemingly complicated bioequivalence problems. Size-a tests can be combined to obtain
an overall size-a test. No adjustment for multiple testing is needed if the IUT method is
used.

6.1 Simultaneous AUC and C,,,, bioequivalence

Sections 4 and 5 discussed bioequivalence testing in terms of only one parameter. That
is, the test and reference drugs are to be compared with respect to either average AUC
or average Cmax. FDA (1992) and EC-GCP (1993) consider two drugs are bioequivalent
only if they are similar in both parameters. Westlake (1988) and Hauck et al. (1995) have
considered the problem of comparing AUC and Cyp,ay simultaneously. (Westlake actually
compares three parameters, including Ty, also. But this does not conform to current FDA
guidelines.)

Assume the measurements are lognormal so that, after log transformation, we wish to
consider hypotheses like (2). Let the superscripts A and C refer to the variables AUC and
Chax, respectively. For example, 77% denotes the mean of log(Cyay) for the reference drug.
The test and reference drugs are to be considered bioequivalent only if

0L < ng —njp < Oy
(23) H - and
0L < ng —nf < bu

Using current FDA guidelines, 6 = log(1.25) = —log(.80) = —6r. If one variable is
deemed more important than another, the limits could be different for the different variables.
For example, if AUC was considered more important than Ci,ay, then the limits Of and 0§
for AUC could be chosen to be narrower than the limits Hg and Hg for Ciax, as they are
in Europe.

The statement H}' in (23) should be the alternative hypothesis in this multivariate
bioequivalence test. The null hypothesis, Hi* should be the negation of H7*. That is, H{}
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states that one or more of the four inequalities in H}" is false. Westlake proposed testing
HE* versus H7" by doing two separate tests, one for each variable. Specifically, he proposed
using the TOST to test (2) for each variable. The drugs will be declared bioequivalent
only if each of the tests rejects its hypothesis. Furthermore, Westlake said a Bonferroni
correction should be used, and each TOST should be performed at the «/2 level to account
for the multiple testing. (Westlake actually said «/3 since he was considering three tests.)

Westlake’s procedure is conservative. The size of Westlake’s test is a/2, not a. This
is true because, although he did not use this terminology, he has proposed an IUT. The
alternative H’" is the intersection of two statements, one about each variable. Computing
two separate TOSTs and concluding H)" is true only if both TOSTs reject, is an [UT. By
Theorem 1, this test has level a/2 if each TOST is performed at level «/2. In fact, Theorem
2 can be used to show that this test has size equal to a/2.

Therefore, to test Hi* versus H]', Westlake’s procedure can be used except that each of
the two TOSTs should be performed at size-a. The resulting test has probability at most
a of declaring the drugs to be bioequivalent, if they are bioinequivalent.

Hauck et al. (1995) propose testing (23) using two size-a TOSTs. They recognize that
the Bonferroni adjustment recommended by Westlake is unnecessary. But they come to
the opposite conclusion. Based on a simulation study, they conclude that this test is too
conservative and suggest that the two TOSTs might be performed using a higher error rate
than a, and the resulting test of (23) would be size-a. (They admit that more simulations
are needed to confirm this conjecture.) But, if the two TOSTs are each size-a, then the
test of (23) is exactly size-a. To see this, use Theorem 2 by setting 8, = 74t — ni, 7% = 1%,
and considering the limit as 0pa — 0 and oppc — 0. Here, DA and D¢ are the estimates of
ng — np and % — 0§, respectively. In this limit, three of the four one-sided tests will have
rejection probability converging to 1, because these parameter points are in the alternative
hypothesis and the corresponding standard deviations are converging to 0. The forth one-
sided test will have rejection probability exactly equal to «, for all such parameter points,
because 8, = 77% - nﬁ is on the boundary.

A test that is uniformly more powerful, but still has size-a will be obtained if the test we
propose in Section 4.2 is used to perform the two tests, rather than using the two TOSTs.
Again, both of these tests would be performed at size-a.

An alternative way of assessing the simultaneous bioequivalence of AUC and Cpyax 8
to inspect the Brown, Casella, and Hwang (1995) confidence set (20), generalized to the
¥ unknown case. Suppose (XA, X&), (YA, YY), i = 1,...,n, are log-transformed i.i.d.
observations on AUC and Cpax under the test and reference drugs, respectively. Let Z; =
(XA XEY (YA YY), i=1,...,n,which are assumed to be multivariate normal with mean
0 = (7 —np,n%—n%) and unknown variance-covariance matrix ¥. Let @ = (7A, 70)’ and 3
be the sample mean vector and variance-covariance matrix of the Z;s. Then 0’0 is univariate
normal with mean 6’6 and variance 8'S6/n, while (n — 1)0'$0/6'26 is independent of '8
and has a x? distribution with n — 1 degrees of freedom. Thus, a size-a test for Hy : @ = 6q
is obtained using the acceptance region

A(Bo) = {(é, $): 0,0 — 00)/1/0,500/n > —tam_l} ,
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which leads to the confidence region

(24) C(6,%) = {0 :0'0/\/0'%0/n 4ty > 0’0/\/0’20/71} :

Brown, Casella, and Hwang (1995) applied (20) to the simultaneous AUC and Cyyax problem
for illustration, assuming 3 is known. In practice, this assumption is perhaps unrealistic
considering the moderate sample size typical in bioequivalence trials.

6.2 Mean and variance bioequivalence

Anderson and Hauck (1990) and Liu and Chow (1992) discuss another type of multiparam-
eter bioequivalence. They point out that bioequivalence should not be defined only in terms
of the mean responses for the two drugs. Rather, the variances of the two drugs’ responses
should also be considered. If two drugs have bioequivalent means but different variances,
the drug with the smaller variance might be preferred. This kind of multiparameter bioe-
quivalence is often called population bioequivalence.

Consider a single variable, e.g., AUC. Let 7 and ng denote the means of log(AUC). Let
o2 and 0% denote the intrasubject variances of the test and reference drugs, respectively.
The test and reference drugs will be considered bioequivalent only if n7 and ng are similar
and 0% and o% are similar. To demonstrate bioequivalence, we wish to test

nr—nr < 0L or nr—nr >0y
Hg - or
032 /0% < Kk, or o%[oh > Ky
(25) Versus
O <nr—nr<bu
H and
KL < 043/0% < Ky

The constants 61,, 87, k1, and kK would be chosen to define clinically important differences.
Liu and Chow (1992) propose a size-a test of

HY : 0% /0% < kp, or o4/oh > Ky
Versus
HY : kp < 0% /0% < KU

Their test is an [UT composed of two size-a tests, one for testing each inequality. Wang
(1994) describe an unbiased, size-a test that is uniformly more powerful than the Liu and
Chow test.

The hypotheses

Hj:nr—nr <0 or 97 —nr >0y
versus
H7 20 <nr —nr < 0v

can be tested with a TOST. Because H" is the intersection of H? and HY, the IUT method
can be used to construct a test of HJ' versus H}'. The test that rejects H{}’ only if the size-a
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Liu and Chow test rejects HJ and the size-a TOST rejects H{ is a size-a test of HJ' versus
HI".

Liu and Chow, however, propose a more conservative combination of these two tests.
Let a denote the desired size of the test of Hf'. Let a; denote the size of the TOST and
let a3 denote the size of the Liu and Chow test. They say to choose a4 and ay so that

(26) a=1-(1-oa1)(1—ay).

Liu and Chow note that the test statistics use for the TOST are independent of the test
statistics used in their test. But they give no further explanation of (26). The probability
that H{ is accepted, given that H] is true, is bounded below by 1 — aq. The probability
that HJ is accepted, given that H is true, is bounded below by 1 — as. So the quantity a
in (26) is an upper bound for the probability that at least one of the two tests rejects its
null hypothesis, given that both Hj and H{ are true. This is not the error probability of
the proposed test. The error probability is the probability the both tests reject, given that
either Hj or HY is true. H{' is the union of Hj and HY, not the intersection.

Again, it should be noted that a more powerful size-a test of H* will be obtained if the
test from Section 4.2, rather than the TOST, is used to test H) and Wang’s (1994) test is
used to test HF.

7 Concluding Remarks

We have shown that the theory of intersection-union tests is central to bioequivalence stud-
ies. We have demonstrated the danger of incorrect association of confidence sets with such
tests. Due to the traditional emphasis on significant difference inference in statistics, many
practical equivalence problems have not been recognized as such, we believe. It is our hope
(and anticipation) that the concepts and techniques discussed in this article will, in time,
prove to be useful not only in bioequivalence studies, but in other practical equivalence
problems as well.
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A  Details of New Test in Section 4.2

A size-a, nearly unbiased test for (2) was described geometrically in Section 4.2. In Section
A.1, formulas and computational suggestions are given for the quantities that define that
test. The construction in Section 4.2 is valid for a > «.. In Section A.2 a similar construc-
tion yields a size-a, nearly unbiased test for a < a,. Brown, Hwang and Munk did not
propose any test for a < a,.
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A.1 Formulas for Section 4.2

Define functional notation for the transformation from rectangular to polar coordinates by
w(dis) = fld— D)+
b(d, s.) cos ™ ((d — A)/v(d, 54))

for —o0o < d < 00 and s, > 0. The inverse transformation is
d(v,b) = A+ wvcos(b)
s«(v,b) = wsin(b),
for v > 0 and 0 < b < . The point (d, s,) = (0, Ay/r/t, ) is the vertex of the triangular
region R7. Therefore,
bO b(07 A\/F/ta,r)v
vo = 2Asin(T — by),
(dlvs*l) (d(vo,bo),s*(vo,bo)),

v = v(—dl,s*l).

The line of length vy in Figure 2 has b = 37 /2 — bg. Therefore,

by = 37r/2—b0—cos_1(v0/v),
by = 37r/2—b0—|—cos_1(v0/v).

The angle b1, defined by (12), is easily found by a numeric root finding method such as
bisection.

Finally, for any point (d,s.) on {V = v}, s. = y/v? — (d — A)?. For any point (dy, S.,)
on {V = v} with d, <0, there is a unique point (d;, s.;) on {V = v} with d; > 0 such that
the line joining (dj, s«;) and (0,0) and the s, axis form the same angle as the line joining
(dy, S« ) and (0,0) and the s, axis. This point satisfies

d,, . dy
02— (d, - A2 v? —(d - A)?
which has the solution o 9 Az)
2
27 di = —— '
(27) ! v2 4+ 2d, A — A2

Using this expression for d; in terms of d,, the equation
F(b(dy,sy))— F(b(d;, 1)) = a— a(v)

is a function of the single variable d,. The unique solution to this equation, in the interval
A —v < d, <0 is easily found by a numeric root finding method such as bisection. Call
the solution drr. Define dy, by (27) using d,, = dy. The angles byr(v) and br(v) are

b(v) = b (dU, \/v2 — (dy — A)z) :

br(v) = b (dL, v? — (dg — A)z) .
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Figure 5: Rejection region of new test for @ < a.. Region Ry (between solid lines) and
region Ry (between dashed lines). Rejection region R = R1 N Ry. r =3 and a = .05.
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A.2 New test for a < a,

For small values of a < a,, a size-a, nearly unbiased test of (2), that is uniformly more
powerful than the TOST, can be constructed. The construction is very similar, and some-
what simpler, than the construction in Section 4.2. The notation of Section A.1 will be
used, and Figure 5 illustrates the construction.

For o < avy, the point on Iy, closest to (A, 0)is the vertex of R, (do, sx0) = (0, A/ /ts ).
Let vg = v(dp, sxq). For v < vy, Ra(v) = {b: by < b < 7}, exactly the points in the TOST.
The arc Ag is such an arc. For vy < v < 2A, Ry(v) consists of two arcs. Ro(v) = {b:
br(v) <b<by(v)}U{b:by <b< 7} br(v), by(v) and by are defined as before. The two
solid pieces of arc Ay are examples of these arcs. The semicircle {V = v} does not intersect
R near the s, axis so there is no need to check that {b:br(v) < b < by(v)} covers all the
TOST. For v > 2A, Ry(v) = {b: br(v) < b < by(v)}. The solid piece of arc As is such an
arc. In Figure 5, R is outlined with a solid line, Ry is outlined with a dashed line, and the
intersection is the rejection region of the IUT.
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