
Bioequivalence Trials, Intersection-Union Tests, andEquivalence Con�dence SetsRoger L. BergerDepartment of StatisticsNorth Carolina State UniversityRaleigh, NC 27595-8203 Jason C. HsuDepartment of StatisticsThe Ohio State UniversityColumbus, OH 43210-1247October 9, 1996 { Final versionAbstractThe bioequivalence problem is of practical importance because the approval of mostgeneric drugs in the United States and the European Community (EC) requires theestablishment of bioequivalence between the name brand drug and the proposed genericversion. The problem is theoretically interesting because it has been recognized as onefor which the desired inference, instead of the usual signi�cant di�erence, is practicalequivalence. The concept of intersection-union tests will be shown to clarify, simplify,and unify bioequivalence testing. A test more powerful than the one currently speci�edby the FDA and EC guidelines will be derived. The claim that the bioequivalenceproblem de�ned in terms of the ratio of parameters is more di�cult than the problemde�ned in terms of the di�erence of parameters will be refuted. The misconception thatsize-� bioequivalence tests generally correspond to 100(1�2�)% con�dence sets will beshown to lead to incorrect statistical practices, and should be abandoned. Techniques forconstructing 100(1��)% con�dence sets that correspond to size-� bioequivalence testswill be described. Finally, multiparameter bioequivalence problems will be discussed.Key words and phrases: Bioequivalence, bioavailability, hypothesis test, con�dence in-terval, intersection-union, size, level, equivalence test, pharmacokinetic, unbiased.1 Bioequivalence ProblemTwo di�erent drugs or formulations of the same drug are called bioequivalent if they areabsorbed into the blood and become available at the drug action site at about the same rateand concentration. Bioequivalence is usually studied by administering dosages to subjectsand measuring concentration of the drug in the blood just before and at set times after theadministration. These data are then used to determine if the drugs are absorbed at thesame rate.The determination of bioequivalence is very important in the pharmaceutical industrybecause regulatory agencies allow a generic drug to be marketed if its manufacturer candemonstrate that the generic product is bioequivalent to the brand-name product. Theassumption is that bioequivalent drugs will provide the same therapeutic e�ect. If thegeneric drug manufacturer can demonstrate bioequivalence, it does not need to perform1



costly clinical trials to demonstrate the safety and e�cacy of the generic product. Yet, thisbioequivalence must be demonstrated in a statistically sound way to protect the consumerfrom ine�ective or unsafe drugs.These concentration by time measurements are connected with a polygonal curve andseveral variables are measured. The common measurements are AUC (Area Under Curve),Cmax (maximum concentration), and Tmax (time until maximum concentration). The twodrugs are bioequivalent if the population means of AUC and Cmax are su�ciently close.Descriptive statistics for Tmax are usually provided, but formal tests are not required.For example, let �T denote the population mean AUC for the generic (Test) drug and�R denote the population mean AUC for the brand-name (Reference) drug. To demonstratebioequivalence, the following hypotheses are tested:H0 : �T�R � �L or �T�R � �Uversus Ha : �L < �T�R < �U :(1)The values �L and �U are standards set by regulatory agencies that de�ne how \close" thedrugs must be to be declared bioequivalent. Currently, both the United States Food andDrug Administration (1992) and the European Community uses �U = 1:25 and �L = :80 =1=1:25 for AUC. For Cmax, the United States again uses �U = 1:25 and �L = :80, but Europeuses the less restrictive limits �U = 1:43 and �L = :70 = 1=1:43 (Hauck et al. (1995)). Notethat these limits for AUC and Cmax are symmetric about one in the ratio scale.Often, logarithms are taken and the hypotheses (1) are stated asH0 : �T � �R � �L or �T � �R � �Uversus Ha : �L < �T � �R < �U :(2)Here, �T = log(�T ), �R = log(�R), �U = log(�U) and �L = log(�L). With �U = 1:25 and�L = :80 or �U = 1:43 and �L = :70, �U = ��L, and the standards are symmetric aboutzero.In a hypothesis test of (1) or (2), the Type I error rate is the probability of declaring thedrugs to be bioequivalent, when in fact they are not. By setting up the hypotheses as in(1) or (2) and controlling the Type I error rate at a speci�ed small value, say, � = :05, theconsumer's risk is being controlled. That (1) or (2) is the proper formulation in problemslike these was recognized early on by some authors. For example, Lehmann (1959, p. 88),not speci�cally discussing bioequivalence, says, \One then sets up the (null) hypothesisthat [the parameter] does not lie within the required limits so that an error of the �rstkind consists in declaring [the parameter] to be satisfactory when in fact it is not." Butnot until Schuirmann (1981, 1987), Westlake (1981) and Anderson and Hauck (1983) werehypotheses correctly formulated as in (1) or (2) in bioequivalence problems.Despite the fact that bioequivalence testing problems are now correctly formulated as(1) or (2), many inappropriate statistical procedures are still used in this area. Tests thatclaim to have a speci�ed size �, but are either liberal or conservative, are used. Liberal testscompromise the consumer's safety, and conservative tests put an undo burden on the genericdrug manufacturer. Tests are often de�ned in terms of con�dence intervals in statisticallyunsound ways. These tests, again, do not properly control the consumer's risk.2



In this paper, we will describe current bioequivalence tests that have incorrect errorrates. We will o�er new tests that correctly control the consumer's risk. In several cases, thetests we propose are uniformly more powerful than the existing tests while still controllingthe Type I error rate at the speci�ed rate �. We will examine and criticize the currentpractice of de�ning tests in terms of 100(1� 2�)% con�dence sets. We will show that thisonly works in special cases and gives poor results in other cases. We will discuss how properlyto construct 100(1��)% con�dence sets that correspond to size-� tests. And we will discusshow our methods can be applied to complicated, multiparameter bioequivalence problemsthat have received only slight attention in the literature. The intersection-union methodof testing will be found to be very useful in understanding and constructing bioequivalencetests. Section 2 provides a more detailed outline to our discussions.Hypotheses such as (1) and (2) that specify only that population means should beclose are called average bioequivalence hypotheses. Hypotheses that state that the wholedistribution of bioavailabilities is the same for the test and reference populations are calledpopulation bioequivalence hypotheses. If a parametric form of these populations is assumed,then hypotheses such as (25) that specify that all population parameters, e.g., variancesas well as means, should be close are population bioequivalence hypotheses. Sometimesbioequivalence is de�ned in terms of parameters that more directly measure equivalence ofresponse within an individual. Good introductions to individual bioequivalence are givenby Anderson and Hauck (1990), Hauck and Anderson (1992), Sheiner (1992), Schall andLuus (1993), and Anderson (1993). Although we do not explicitly consider individualbioequivalence in this paper, many of the concepts and techniques we describe should beapplicable in that area also.In this paper, our discussion will be entirely in terms of bioequivalence testing. Butour comments and techniques apply to other problems, such as in quality assurance, inwhich the aim is to show that two parameters are close or that a parameter is between twospeci�cation limits. Because of this wider applicability, the methods we will discuss mightmore properly be referred to as equivalence tests and equivalence con�dence intervals.2 Tests, Con�dence Sets and CuriositiesVarious experimental designs are used to gather data for bioequivalence trials. Chow and Liu(1992) describe parallel designs (two independent samples), and two-period and multiperiodcrossover designs. The issues we discuss apply to all these di�erent designs. For brevity, wewill discuss only the simple parallel design and two period crossover design.2.1 Di�erence hypothesesIt is customary to employ lognormal models in bioequivalence studies of AUC and Cmax.See Section 2.2 for rationales for this model.Let X� denote a lognormal measurement from the test drug in the original scale, and letX = log(X�). Similarly, let Y � denote an original measurement and Y = log(Y �) for thereference drug. Let (�T ; �2) denote the lognormal parameters forX� and (�R; �2) denote thelognormal parameters for Y �. Then the test and reference drug means are �T = e�T+�2=23



and �R = e�R+�2=2, respectively. Therefore, the condition�L < �T�R = e�T��R < �Uis equivalent to �L < �T � �R < �U ;(3)where �L = log(�L) and �U = log(�U) are known constants. Thus, the hypothesis to betested in this lognormal model can be stated as either (1) or (2). Usually the hypotheses arestated as (2) and the test is based on log transformed data that is normally distributed withmeans �T and �R and common variance �2. The equivalence of (1) and (2) is dependent onthe assumption of equal variances. On the other hand, if �T and �R represent the mediansofX� and Y � and �T = log(�T ) and �R = log(�R), then �T and �R are the medians ofX andY , respectively. So, in terms of medians, (1) and (2) are always equivalent, and the analysiscan be carried out in either the original or log transformed scale. But, bioequivalence isalmost always de�ned in terms of means rather than medians.Westlake (1981) and Schuirmann (1981) proposed what has become the standard testof (2). It is called the \two one-sided tests" (TOST). The TOST has this general form. LetD be an estimate of �T ��R that has a normal distribution with mean �T ��R and variance�2D. Let SE(D) be an estimate of �D that is independent of D and such that r(SE(D))2=�2Dhas a �2 distribution with r degrees of freedom. Thent = D � (�T � �R)SE(D)has a Student's t distribution with r degrees of freedom. The TOST is based on the twostatistics TU = D � �USE(D) and TL = D � �LSE(D) :(4)The TOST tests (2) using the ordinary, one-sided, size-� t-test based on TL forH01 : �T � �R � �Lversus Ha1 : �T � �R > �L(5)and the ordinary, one-sided, size-� t-test based on TU forH02 : �T � �R � �Uversus Ha2 : �T � �R < �U :(6)It rejects H0 at level � and declares the two drugs to be bioequivalent if both tests reject,that is, if TU < �t�;r and TL > t�;r;(7)where t�;r is the upper 100� percentile of a Student's t distribution with r degrees offreedom. For testing (2), all the tests we will discuss are functions of (D; SE(D)). Thedistribution of (D; SE(D)) is determined by the parameter (�T ; �R; �2D).4



In the simple parallel design, let X�1 ; : : : ; X�m denote the independent lognormal(�T ; �2)measurements on m subjects from the test drug in the original scale, and let X1; : : : ; Xmdenote the logarithms of these measurements. Similarly, let Y �1 ; : : : ; Y �n and Y1; : : : ; Yndenote the original measurements (lognormal(�R; �2)) and logarithms for an independentsample of n subjects on the reference drug. If X denotes the sample mean of X1; : : : ; Xm, Ydenotes the sample mean of Y1; : : : ; Yn, and S2 denotes the pooled estimate of �2, computedfrom both samples, then D = X � Yand SE(D) = Sr 1m + 1n:The degrees of freedom are r = m+ n� 2.In bioequivalence studies, much more common than simple parallel designs are two-period, crossover designs. In a two-period, crossover design, a group of m subjects (Se-quence 1) receives the reference drug and observations on the pharmacokinetic response aremade. After a washout period to remove any carryover e�ect, this group receives the testdrug and observations are again made. A second group of n subjects (Sequence 2) receivesthe drugs in the opposite order. After log transformation, the response of the kth subjectin the jth period of the ith sequence is modeled asYijk = 
 + Sik + Pj + F(i;j) + �ijk ;where 
 is the overall mean; Pj is the �xed e�ect of period j; F(i;j) is the �xed e�ect ofthe formulation administered in period j of sequence i, that is, F(1;1) = F(2;2) = FR andF(1;2) = F(2;1) = FT ; Sik is the random e�ect of subject k in sequence i; and �ijk is therandom error. It is assumed that P1 + P2 = FT + FR = 0. The Siks and the �ijks areall independent normal random variables with mean 0. The variance of Sik is �2S and thevariance of �ijk is �2T and �2R for the test and reference formulations, respectively. For thisdesign, D = Y 12� � Y 11� + Y 21� � Y 22�2is a normally distributed unbiased estimate of FT � FR = �T � �r with variance�2D = (�2R + �2T )14 � 1m + 1n� :The standard error of D is SE(D) = S 12r 1m + 1n;where S2 = 1m+ n � 2  mXk=1 �Y12k � Y11k � (Y 12� � Y 11�)�2+ nXk=1 �Y21k � Y22k � (Y 21� � Y 22�)�2! :5



The estimate D is the average of the averages of the intrasubject di�erences for the twosequences, and S2 is a pooled estimate of the variance of an intrasubject di�erence. Forthis crossover design, also, the degrees of freedom are r = m+ n � 2.Following Lehmann (1959), we de�ne the size of a test assize = supH0 P (reject H0):The size of the TOST is exactly equal to �, even though P (reject H0) < � for every(�T ; �R; �2D) in the null hypothesis. The supremum value of � is attained in the limit as�T � �R = �L (or �U ) and �2D ! 0. Both the FDA bioequivalence guideline (FDA, 1992)and the European Community guideline (EC-GCP, 1993) specify that bioequivalence beestablished using a 5% TOST.The TOST is unusual in that two size-� tests are combined to form a size-� test.Often, when multiple tests are combined, some adjustment must be made to the sizes ofthe individual tests to achieve an overall size-� test. Why this is not necessary for theTOST is best understood through the theory of intersection-union tests (IUTs), which wedescribe in Section 3. In Sections 4.1 and 4.2 we will show that the IUT theory is useful forunderstanding the TOST. Also, the IUT theory can guide the construction of tests for (2)that have the same size-� as the TOST but are uniformly more powerful than the TOST.2.2 Ratio hypothesesSometimes, a normal model should be used. In this model, the original measurements arenormally distributed with means �T and �R. This model is di�erent from the lognormalmodel in that now the hypothesis to be tested concerns the ratio of the means of thesenormal observations. That is, we wish to test (1). This problem has received less attentionthan (2). Dealing with the ratio �T =�R has been perceived as more di�cult than dealingwith the di�erence �T � �R.For AUC and Cmax, the FDA (1992) strongly recommends logarithmically transformingthe data and testing the hypotheses (2). They o�er three rationales for their recommenda-tion. Based on these, the FDA (1992, p. 7) states,Based on the arguments in the preceding section, the Division of Bioequivalencerecommends that the pharmacokinetic parameters AUC and Cmax be log trans-formed. Firms are not encouraged to test for normality of data distributionafter log transformation, nor should they employ normality of data distributionas a justi�cation for carrying out the statistical analysis on the original scale.The emphasis is ours.The FDA's three rationales for log transformation are labeled Clinical, Pharmacokinetic,and Statistical. The Clinical Rationale is that the real interest is in the ratio �T =�R ratherthan the di�erence �T � �R. But, the link between this fact (which we certainly do notdispute) and the log transformation of the data is based on statistical considerations. Itis that a linear statistical model can be used for the transformed data to make inferencesabout the di�erence �T � �R. These inferences then can be restated in terms of �T =�R.Thus, the justi�cation of the log transformations seems to be based mainly on the perceived6



di�culty in dealing with the ratio �T =�R, rather than the di�erence �T ��R. If appropriatestatistical procedures can be used to make inferences about the ratio �T =�R directly, thenthere seems to be no need for a log transformation.The Pharmacokinetic Rationale is based on multiplicative compartmental models ofWestlake (1973, 1988). The multiplicative model is changed to a linear model by the logtransformation. Part of the Statistical Rationale is that, in the original scale, much bioe-quivalence data is skewed and appears more lognormal than normal. We agree that thesetwo considerations suggest that the �rst method of analysis to be considered in bioequiv-alence studies is on the log transformed data, and, in most cases, this analysis will beappropriate.The Statistical Rationale consists of the previous lognormal justi�cation and two morepoints. The �rst is that,Standard parametric methods are ill-suited to making inferences about the ra-tio of two averages, though some valid methods do exist. Log transformationchanges the problem to one of making inferences about the di�erence (on thelog scale) of the two averages, for which the standard methods are well suited.The second is that the small sample sizes used in typical bioequivalence studies (20 to 30) willproduce tests for normality that have fairly low power in either the original or log scale. TheFDA recommends that no check of normality be made on the log transformed data. But, ifa low-power normality test rejects the hypothesis of normality for the log transformed data,then surely some caution is warranted in the use of procedures that assume normality. Inthis case, tests such as the TOST, based on the Student's t distribution, are inappropriate. Ifnormality of the log transformed data is rejected and the original data appear more normalthan the log transformed data, then procedures that assume normality of the original datawould seem more appropriate. In Section 4.3, we show that Sasabuchi (1980,1988a,b)described the size-� likelihood ratio test for (1). It is a simple test based on the Student'st distribution. So the FDA's statement about ill-suited standard parametric proceduresseems unfounded. We also show that the tests commonly used are liberal and have sizegreater than the nominal value of �. Furthermore, we show that the IUT method can beused in this problem, also, to construct size-� tests that are uniformly more powerful thanthe likelihood ratio test. Thus, the FDA's avoidance of (1) because of statistical di�cultiesis unwarranted.An alternative test, when normality is in doubt, might be to use a Wilcoxon-Mann-Whitney analogue of the TOST (based on the original logarithmically transformed datafor a parallel design, or the intrasubject between-period di�erences of the logarithmicallytransformed data, as proposed by Hauschke, Steinijans and Diletti (1990), for a crossoverdesign).2.3 100(1 � 2�)% con�dence intervalsOne would expect the TOST to be identical to some con�dence interval procedure: Forsome appropriate 100(1� �)% con�dence interval [D�; D+] for �T � �R, declare the testdrug to be bioequivalent to the reference drug if and only if [D�; D+] � (�L; �U).7



It has been noted (e.g., Westlake, 1981; Schuirmann, 1981) that the TOST is opera-tionally identical to the procedure of declaring equivalence only if the ordinary 100(1�2�)%,not 100(1� �)%, two-sided con�dence interval for �T � �R[D � t�;rSE(D); D+ t�;rSE(D)](8)is contained in the interval (�L; �U). In fact, both FDA (1992) as well as EC-GCP (1993)specify that the TOST should be executed in this fashion.The fact that the TOST seemingly corresponds to a 100(1�2�)%, not 100(1��)%, con-�dence interval procedure initially caused some concern (Westlake 1976, 1981). Recently,Brown, Casella and Hwang (1995) called this relationship an \algebraic coincidence." Butmany authors (e.g., Chow and Shao, 1990, and Schuirmann, 1989) have de�ned bioequiva-lence tests in terms of 100(1� 2�)% con�dence sets.Standard statistical results, such as Theorems 3 and 4 in Section 5, give relationshipsbetween size-� tests and 100(1 � �)% con�dence intervals. In Section 5, we discuss a100(1 � �)% con�dence interval that corresponds exactly to the size-� TOST. We alsoexplore the relationship between 100(1 � 2�)% con�dence intervals and size-� tests. Wedescribe situations more general than the TOST in which size-� tests can be de�ned in termsof 100(1� 2�)% con�dence intervals. But we also give examples from the bioequivalenceliterature of tests that have been de�ned in terms of 100(1� 2�)% con�dence intervals andsets that are not size-� tests. Tests de�ned by 100(1� 2�)% con�dence intervals can beeither liberal or conservative. Because of these potential di�culties, our conclusion is thatthe practice of de�ning bioequivalence tests in terms of 100(1� 2�)% con�dence intervalsshould be abandoned. If both a con�dence interval and a test are required, a 100(1� �)%con�dence interval that corresponds to the given size-� test should be used.2.4 Multiparameter problemsIn Section 6, we discuss multiparameter bioequivalence problems. We discuss two examplesin which the IUT theory can be used to de�ne size-� tests that are uniformly more powerfulthan tests that have been previously proposed. These examples concern controlling the ex-perimentwise error rate when several parameters are tested for equivalence, simultaneously.3 Intersection-Union TestsBerger (1982) proposed the use of intersection-union tests in a quality control context closelyrelated to bioequivalence testing. Tests for many di�erent bioequivalence hypotheses areeasily constructed using the IUT method. The TOST is a simple example of an IUT. Testswith a speci�ed size are easily constructed using this method, even in complicated problemsinvolving several parameters. And tests that are uniformly more powerful than standardtests can often be constructed using this method.The IUT method is useful for the following type of hypothesis testing problem. Let �denote the unknown parameter (� can be vector valued) in the distribution of the data X.Let � denote the parameter space. Let �1; : : : ;�k denote subsets of �. Suppose we wish8



to test H0 : � 2 k[i=1�i versus Ha : � 2 k\i=1�ci ;(9)where Ac denotes the complement of the set A. The important feature in this formulation isthe null hypothesis is expressed as a union and the alternative hypothesis is expressed as anintersection. For i = 1; : : : ; k, let Ri denote a rejection region for a test of H0i : � 2 �i versusHai : � 2 �ci . Then an IUT of (9) is the test that rejects H0 if and only if X 2 Tki=1Ri.The rationale behind an IUT is simple. The overall null hypothesis, H0 : � 2 Ski=1�i canbe rejected only if each of the individual null hypotheses, H0i : � 2 �i, can be rejected.Berger (1982) proved the following two theorems.Theorem 1 If Ri is a level-� test of H0i, for i = 1; : : : ; k, then the intersection-union testwith rejection region R = Tki=1Ri is a level-� test of H0 versus Ha in (9).An important feature in Theorem 1 is that each of the individual tests is performed atlevel-�. But the overall test also has the same level �. There is no need for multiplicityadjustment for performing multiple tests. The reason there is no need for such a correctionis the special way the individual tests are combined. H0 is rejected only if every one of theindividual hypotheses, H0i, is rejected.Theorem 1 asserts that the IUT is level-�. That is, its size is at most �. In fact, a testconstructed by the IUT method can be quite conservative. Its size can be much less thatthe speci�ed value �. But, Theorem 2 (a generalization of Theorem 2 in Berger (1982))provides conditions under which the IUT is not conservative; its size is exactly equal to thespeci�ed �.Theorem 2 For some i = 1; : : : ; k, suppose Ri is a size-� rejection region for testing H0iversus Hai. For every j = 1; : : : ; k; j 6= i, suppose Rj is a level-� rejection region for testingH0j versus Haj. Suppose there exists a sequence of parameter points �l; l = 1; 2; : : :, in �isuch that liml!1P�l(X 2 Ri) = �:and, for every j = 1; : : : ; k; j 6= i, liml!1 P�l(X 2 Rj) = 1:Then the intersection-union test with rejection region R = Tki=1Ri is a size-� test of H0versus Ha.Note that in Theorem 2, the one test de�ned by Ri has size exactly �. The other testsde�ned by Rj ; j = 1; : : : ; k; j 6= i, are level-� tests. That is, their sizes may be less than�. The conclusion is the IUT has size �. Thus, if rejection regions R1; : : : ; Rk with sizes�1; : : : ; �k are combined in an IUT and Theorem 2 is applicable, then the IUT will have sizeequal to maxif�ig. We will discuss bioequivalence examples in which tests of di�erent sizesare combined. The resulting test has size equal to the maximum of the individual sizes.9



4 Old and New Tests for Di�erence and Ratio Hypotheses4.1 Two one-sided testsThe TOST is naturally thought of as an IUT. The bioequivalence alternative hypothesisHa : �L < �T � �R < �U , is conveniently expressed as the intersection of the two sets,�c1 = f(�T ; �R; �2D) : �T � �R > �Lg and �c2 = f(�T ; �R; �2D) : �T � �R < �Ug. The test thatrejects H01 : �T � �R � �L in (5) if TL � t�;r is a size-� test of H01. The test that rejectsH02 : �T � �R � �U in (6) if TU � �t�;r is a size-� test of H02. So, by Theorem 1, the testthat rejects H0 only if both of these tests reject is a level-� test of (2).To use Theorem 2 to see that the size of the TOST is exactly �, consider parameterpoints with �T � �R = �U and take the limit as �2D ! 0. Such parameters are on theboundary of H02. Therefore,P (X 2 R2) = P (TU � �t�;r) = �;for any �2D > 0. But, P (X 2 R1) = P (TL � t�;r)! 1; as �2D ! 0;because the power of a one-sided t test converges to one as �2D ! 0 for any point in thealternative. The value �T � �R = �U is in the alternative, Ha1.The advantage of considering bioequivalence problems in an IUT format is not limitedto verifying properties of the TOST. Rather, other bioequivalence hypotheses, such as(1), state an interval as the alternative hypothesis. This interval can be expressed as theintersection of two one-sided intervals. So two one-sided, size-� tests can be combined toobtain a level-� (typically, size-�) test. Furthermore, as we will see in Section 6, even morecomplicated forms of bioequivalence can be expressed in the IUT format. This allows theeasy construction of tests with guaranteed size-� for these problems.4.2 More powerful testsDespite its simplicity and intuitive appeal, the TOST su�ers from a lack of power. Theline labeled TOST in the top part of Table 1 shows the power function, P (reject H0), forparameter points with �T � �R = �U (or �L), points on the boundary between H0 and Ha.The power function is near � for �2D near 0, but decreases as �2D grows. An unbiased testwould have power equal to � for all such parameter points. The TOST is clearly biased.The bottom part of Table 1 shows the power function when the two drugs are exactly equal,�T = �R. The power is near one for �2D near zero, but decreases to zero as �2D increases.Despite these shortcomings, Diletti, Hauschke and Steinijans (1991) declared that the TOSTmaximizes the power among all size-� tests. This is incorrect.Anderson and Hauck (1983) proposed a test with higher power that the TOST. Whereasthe TOST does not reject H0 if SE(D) is su�ciently large, the Anderson and Hauck testalways rejects H0 if D is near enough to zero, even if SE(D) is large. This provides animprovement in power. However the Anderson and Hauck test does not control the Type Ierror probability at the speci�ed level �. It is liberal and the size is somewhat greater than�. Shortly after Anderson and Hauck proposed their test, Patel and Gupta (1984) and10



Table 1: Powers of three bioequivalence tests. r = 30, � = :05, and �U = log(1:25) = ��L.�D.00 .04 .08 .12 .16 .20 .30 1�T � �R = �U or �LTOST .050 .050 .050 .031 .003 .000 .000 .000BHM .050 .050 .050 .050 .050 .050 .050 .050new .050 .050 .050 .047 .049 .050 .050 .050�T � �R = 0TOST 1.000 1.000 .720 .158 .007 .000 .000 .000BHM 1.000 1.000 .721 .260 .131 .093 .066 .050new 1.000 1.000 .720 .247 .128 .092 .066 .050Rocke (1984) proposed the same test. This scienti�c coincidence was commented upon byAnderson and Hauck (1985) and Martin Andr�es (1990).Due to the seriousness of a Type I error, declaring two drugs to be equivalent whenthey are not, the search for a size-� test that was uniformly more powerful than the TOSTcontinued. Munk (1993) proposed a slightly di�erent test. Munk claims that this test is asize-� test that is uniformly more powerful than the TOST. But this claim is supported bynumerical calculations, not analytic results.Brown, Hwang and Munk (1995) constructed an unbiased, size-� test of (2) that isuniformly more powerful than the TOST. Their construction is recursive. To determine ifa point (d; se(D)) is in the rejection region of the Brown, Hwang and Munk test, a gooddeal of computing can be necessary. This may limit the practical usefulness of the Brown,Hwang and Munk test. Also, sometimes the Brown, Hwang and Munk rejection region hasa quite irregular shape. An example of this is shown in Figure 1.We will now describe a new test of the hypotheses (2). This test is uniformly morepowerful than the TOST. Unlike the Anderson and Hauck and Munk tests, our test is asize-� test. Our test is nearly unbiased. It is simpler to compute than the Brown, Hwangand Munk test. It will not have the irregular boundaries that the Brown, Hwang and Munktest sometimes possesses. The construction of this new test again illustrates the usefulnessof the IUT method.To simplify the notation in describing our test, we assume, without loss of generality, that�L = ��U and call �U = �. Following Brown, Hwang and Munk, de�ne S2� = r(SE(D))2.It is simpler to de�ne our test in terms of the polar coordinates, centered at (�; 0),v2 = (d��)2 + s2�and b = cos�1 ((d��)=v) :In the (d; s�) space, v is the distance from (�; 0) to (d; s�), and b is the angle betweenthe d axis and the line segment joining (�; 0) and (d; s�). To de�ne a size-� test, we need11
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Figure 1: Irregular boundary of Brown, Hwang and Munk test (solid line) and smootherboundary of test from Section 4.2 (dashed line). The TOST rejection region is bounded bythe triangle with vertices at ��, �, and T. Here r = 3, � = :16 and ��L = �U = 1.the distribution of (V;B) when � = �, In this case, it is easy to verify that V and B areindependent. The probability density function of B isf(b) = �((r + 1)=2)�(r=2)p� (sin(b))r�1; 0 < b < �;which does not depend on �2D. To implement our test, it is useful to note that the cumulativedistribution function of B has a closed form given byF (b) = b� � 12p� (r�1)=2Xk=1 (sin(b))2k�1 cos(b) �(k)�(k+ 12) ;if r is odd, and F (b) = 12 � 12p� r=2Xk=1(sin(b))2k�2 cos(b)�(k� 12)�(k) ;if r is even. The probability density function of V will be denoted by g�D(v).12



We will describe the rejection region of the new test geometrically here. Exact formulasare in the Appendix. The new test will be an IUT. We will de�ne a size-�, unbiasedrejection region, R2, for testing (6). This R2 will contain the rejection region of the size-�TOST and will be approximately symmetric about the line d = 0. Then we will de�neR1 = f(d; s�) : (�d; s�) 2 R2g. R1 is R2 re
ected across the line d = 0. R1 is a size-�,unbiased rejection region for testing (5). Then R = R1\R2 is the rejection region of the newtest. Because R2 is approximately symmetric about the line d = 0, R1 is almost the sameas R2, and not much is deleted when we take the intersection. This foresight in choosingthe individual rejection regions so that the intersection is not much smaller is always usefulwhen using the IUT method.The set fV = vg is a semicircle in (d; s�) space. For each value of v, R2(v) � fV = vg\R2is either one or two intervals of b values, that is, one or two arcs on fV = vg. These arcswill be chosen so that, for every v > 0,ZR2(v)f(b) db= �:(10)Then the rejection probabilityP (R2) = Z 10 ZR2(v)f(b) db g�D(v) dv = Z 10 �g�D(v) dv = �;for every �D > 0 if �T � �R = �. This will ensure that R2 is a size-�, unbiased rejectionregion for testing (6).We now de�ne the arc(s) that make up R2(v). Refer to Figure 2 in this description. Therejection region of the size-� TOST, call it RT , is the triangle bounded by the lines s� = 0,d = ��t�;rs�=pr (call this line lU), and d = ��+t�;rs�=pr (call this line lL). Let v0 denotethe distance from (�; 0) to lL. In this description, we assume 1=2 > � > �� � 1�F (3�=4).Brown, Hwang and Munk (1995) in their Table 1 show that if r � 4, then � = :05 > ��.The new test for � � �� is given in the Appendix. Brown, Hwang and Munk did notpropose any test for � � ��. The condition � > �� ensures that the point on lL closest to(�; 0) is on the boundary of RT , as shown.Let b0 denote the angle between the d axis and lU . For 0 < v � v0, R2(v) = fb : b0 <b < �g. The arc A0 in Figure 2 is an example of such an arc. So, for v < v0, R2(v) isexactly the points in the TOST.For v0 < v, the semicircle V = v intersects lL at two points. Let b1 < b2 denote theangles corresponding to these two points. If v0 < v < 2�, let A2(v) = fb : b2 < b < �g.These are the points in RT adjacent to the d axis, and A2 in Figure 2 is an example of suchan arc. If 2� � v, let A2(v) be the empty set. Let �(v) denote the probability content ofA2(v) under F . That is, �(v) = ( 1� F (b2); v0 < v < 2�;0; 2� � v:For v0 < v, R2(v) = A1(v)[ A2(v), where to ensure that (10) is true, A1(v) must satisfyZA1(v)f(b) db= � � �(v):(11) 13
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Let (d1; s�1) denote the point where the fV = v0g semicircle intersects lU , and let v1denote the radius corresponding to (�d1; s�1). For v0 < v < v1, let bL1 be the angle de�nedby F (b1)� F (bL1) = � � �(v);(12)where b1 is as de�ned in the previous paragraph. Then A1(v) = fb : bL1 < b < b1g is thearc that satis�es (11) whose endpoint is on lL. For v0 < v < v1, R2(v) = A1(v) [ A2(v),using this A1(v). The arcs labeled A1 and A2 in Figure 2 comprise such an R2(v). Forv < v1, the cross sections R2(v) we have de�ned are the same as the cross sections for theBrown, Hwang and Munk (1995) test. They now de�ne the remainder of their rejectionregion recursively in terms of these arcs. We de�ne our rejection region in a nonrecursivemanner.For v1 � v, de�ne two values bL(v) < bU(v) such that F (bU(v))� F (bL(v)) = �� �(v),and the angle between the line joining (0; 0) and (v; bL(v)) and the s� axis is the same asthe angle between the line joining (0; 0) and (v; bU(v)) and the s� axis. This equal anglecondition is what we meant earlier by the phrase \approximately symmetric about the lined = 0." If bU(v) � b1, then A1(v) = fb : bL(v) < b < bU(v)g. But, if bU(v) < b1, then thisarc does not contain all the points in the TOST. So, if bU(v) < b1, A1(v) = fb : bL1 < b <b1g, where bL1 is de�ned by (12). For v1 � v, R2(v) = A1(v) [ A2(v). Recall, if 2� � v,A2(v) is empty, and R2(v) is the single arc A1(v). Also, for v2 � maxf4�2;�2+�2r=t2�;rg,the semicircle fV = vg does not intersect RT , and R2(v) is the arc de�ned by bL(v) andbU(v). The b1 condition never applies in this case. In Figure 2, the solid parts of the arcsA3 and A4 are examples of R2(v) for v1 � v.The cross-sections R2(v) have been de�ned for every v > 0, and this de�nes R2. R1 isthe re
ection of R2 across the s� axis, and the rejection region of the new test is R = R1\R2.This construction is illustrated in Figure 3.In Figure 1, the rejection region R with the same size as the Brown, Hwang and Munktest is the region between the dotted lines. The boundary of R is smooth compared to theirregular boundary of the Brown, Hwang and Munk test. This smoothness results from theattempt in the construction of R to center arcs around the s� axis. To determine if a samplepoint (d; s2�) is in R, two arcs, R2(v) and R1(v) = R2(v0) (v0 = (�d��)2 + s2�, computedfrom (�d; s2�)), must be constructed. If (d; s2�) is on both arcs, (d; s2�) 2 R. But, to determineif (d; s2�) is in the rejection region of the Brown, Hwang and Munk test, a starting pointis selected. Then a sequence of arcs is constructed until (d; s2�) is passed. Then anothersequence of arcs is constructed from a new starting point. This process is continued untilenough arcs in the vicinity of (d; s2�) are obtained to approximate the boundary of therejection region. From this it is determined if (d; s2�) is in the rejection region. Thus, a gooddeal more computation is needed to implement the Brown, Hwang and Munk test. Also,the Brown, Hwang and Munk test is not de�ned for � � ��. This smoothness, generalapplicability, and simplicity of computation recommends R as a reasonable alternative tothe Brown, Hwang and Munk test. But R is slightly biased whereas the Brown, Hwang andMunk test is unbiased.A small power comparison of the TOST, Brown, Hwang and Munk test, and our newtest is given in Table 1 for � = :05 and r = 30. In the top block of numbers, �T � �R = �.For these boundary values, the power is exactly � = :05 for the unbiased Brown, Hwangand Munk test. The power is also very close to .05 for our test, indicating it has only slight15
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Figure 3: Rejection region of new test. Region R2 (between solid lines) and region R1(between dashed lines). Rejection region R = R1 \R2. r = 10 and � = :05.
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bias. But the TOST is highly biased with power much less than .05 for moderate and large�D. In the bottom block of numbers, �T � �R = 0. The drugs are equivalent. Our test andthe Brown, Hwang and Munk test have very similar powers. Their powers are much greaterthan the TOST's power for all but small �D. For example, it can be seen that the powerimprovement is about 60% when �D = :12 and about 85% when �D = :16. Sample sizes forbioequivalence tests are often chosen so that the test has power of about .8 when �T = �R.In this case, Table 1 indicates there is no advantage to using the new tests over the TOST.But if the variability turns out to be larger than expected in the planning stage, the newtests o�er signi�cant power improvements.The tests of Anderson and Hauck (1983), Brown, Hwang and Munk (1995), and ournew test all have the property that, as s� !1, the width of the rejection region increases,eventually containing values of (d; s�) with d outside the interval (�L; �U). There will bevalues (d; s�1) and (d; s�2) with s�1 < s�2, but (d; s�1) is not in the rejection region while(d; s�2) is in the rejection region. This \
aring out" of the rejection region is evidentin Figures 1 and 5. This counterintuitive shape was pointed out by Rocke (1984). Therejection region of any bioequivalence test that is unbiased, or approximately unbiased,must eventually contain sample points with d outside the interval (�L; �U). Some havesuggested that such procedures should be truncated in the sense that the narrowest pointof the rejection region be determined and then the rejection region is extended along the s�axis only of this width. Brown, Hwang and Munk suggest this as a possible modi�cation oftheir test, although the resulting test will no longer be unbiased. We believe that notions ofsize, power, and unbiasedness are more fundamental than \intuition" and do not recommendtruncation. But for those who disagree, our new test could be truncated in this same way.The narrowest point will need to be determined numerically for all these tests, and thesmoother shape of our rejection region will make this determination easier. Referring toFigure 1, a numerical routine might be fooled by the irregular shape of the Brown, Hwangand Munk test.4.3 Tests for ratios of parametersUsually, data from a bioequivalence trial is logarithmically transformed before analysis. Thisleads to a test of the hypotheses (2), as described in the previous section. In the modelwe will consider now, the original data are normally distributed. Let X1; : : : ; Xm form arandom sample from a normal population with mean �T and variance �2, and Y1; : : : ; Ynform an independent random sample from a normal population with mean �R and variance�2. In this section, we will present our comments in terms of this simple parallel design.Yang (1991) and Liu and Weng (1995) describe models for this normally distributed datain crossover experiments.The bioequivalence hypothesis to be tested in this case is (1), namely,H0 : �T�R � �L or �T�R � �Uversus Ha : �L < �T�R < �U :(13)In the past, the values of �L = :80 and �U = 1:20 were commonly used (called the �20rule). But, the FDA Division of Bioequivalence (1992) now uses �L = :80 and �L = 1:25.17



These limits are symmetric about one in the ratio scale since :80 = 1=1:25.The parameter �R is positive because the measured variable, AUC or Cmax, is positive.Therefore the hypotheses (13) can be restated asH0 : �T � �L�R � 0 or �T � �U�R � 0versus Ha : �T � �L�R > 0 and �T � �U�R < 0:(14)The testing problem (14) was �rst considered by Sasabuchi (1980, 1988a,b). Let X, Y ,and S2 denote the two sample means and the pooled estimate of �2. Sasabuchi showed thatthe size-� likelihood ratio test of (14) rejects H0 if and only ifT1 � t�;r and T2 � �t�;rwhere T1 = X � �LYSq 1m + �2Ln and T2 = X � �UYSq 1m + �2Un :This will be called the T1=T2 test.The T1=T2 test is easily understood as an IUT. The usual, normal theory, size-� t-test of H01 : �T � �L�R � 0 versus Ha1 : �T � �L�R > 0 is the test that rejects H01 ifT1 � t�;r. Similarly, the usual, normal theory, size-� t-test of H02 : �T � �U�R � 0 versusHa2 : �T ��U�R < 0 is the test that rejects H02 if T2 � �t�;r. Because Ha is the intersectionof Ha1 and Ha2, these two t-tests can be combined, using the IUT method, to get a level-�test of H0 versus Ha. Using an argument like in Section 3, Theorem 2 can be used to showthat the size of this test is �.Yang (1991) and Liu and Weng (1995) proposed tests closely related to the T1=T2 test forthe bioequivalence problem of testing (13) in a crossover experiment. Hauck and Anderson(1992) also discuss the hypotheses in the form (14). But no reference to Sasabuchi's earlierwork is given. The derivation of the con�dence set for �T =�R in Hsu, Hwang, Liu, andRuberg (1994) contains a mistake in the standardization. Properly corrected, their rathercomplicated con�dence set would lead to the rejection of (14) when the simple test describedabove does. So, somehow, the value of this simple, size-� test seems to have been completelyoverlooked in the bioequivalence literature. Rather, Chow and Liu (1992) and Liu and Weng(1995) both report that the following is the standard analysis. Rewrite the hypotheses (13)or (14) as H0 : �T � �R � (�L � 1)�R or �T � �R � (�U � 1)�Rversus Ha : (�L � 1)�R < �T � �R < (�U � 1)�R:(15)These hypotheses look like (2), but there is an important di�erence. In (2), �L and �U areknown constants. In (15), (�L�1)�R and (�U�1)�R are unknown parameters. Nevertheless,the standard analysis proceeds to use the TOST with (�L � 1)Y replacing �L in TL and(�U � 1)Y replacing �U in TU . The standard analysis ignores the fact that a constant hasbeen replaced by a random variable and compares these two test statistics to standard tpercentiles as in the TOST. This test will be called the T �1 =T �2 test.18



The statistics that are actually used in this analysis areT �1 = X � Y � (�L � 1)YSq 1m + 1n = X � �LYSq 1m + 1n = T1sn+m�2Ln+m ;and T �2 = X � Y � (�U � 1)YSq 1m + 1n = X � �UYSq 1m + 1n = T2sn+m�2Un+m :The statistics T1 and T2 are properly scaled to have Student's t distributions, but T �1and T �2 are not. The T �1 =T �2 test is an IUT in which the two tests have di�erent sizes. Thetest that rejects H01 if T �1 > t�;r has sizeP�T=�L�R (T �1 > t�;r) = P�T=�L�R  T1 > s n +mn +m�2L t�;r!= �1 < �;because s n +mn +m�2L > 1:On the other hand, the test that rejects H02 if T �2 < �t�;r has sizeP�T=�U�R (T �2 < �t�;r) = P�T=�U�R  T2 < �s n +mn +m�2U t�;r!= �2 > �;because s n +mn+m�2U < 1:Theorem 2 can be used to show that, as a test of the hypothesis (13), the T �1 =T �2 test hassize �2 > �. It is a liberal test.The true size of the T �1 =T �2 test, for a nominal size of � = :05, is shown in Table 2. InTable 2 it is assumed that the sample sizes from the test and reference drugs are equal,m = n. In this case, the size of the T �1 =T �2 test is simply�2 = P  T < �s 21 + �2U t�;r! ;where T has a students t distribution with r = 2n � 2 degrees of freedom. It can be seenthat the size of the T �1 =T �2 test is about .07 for all sample sizes. The liberality worsensslightly as the sample size increases.On the other hand, the T1=T2 test has size exactly equal to the nominal �. It is just assimple to implement as the T �1 =T �2 test. Therefore the T1=T2 test should replace the T �1 =T �2test for testing (13). 19



Table 2: Actual size of T �1 =T �2 test for nominal � = :05m = n 5 10 15 20 30 1size .070 .071 .072 .072 .073 .073In Section 4.2, the IUT method was used to construct a size-� test that is uniformlymore powerful than the TOST. For the known �2 case, Berger (1989) and Liu and Berger(1995) used the IUT method to construct size-� tests that are uniformly more powerfulthan the T1=T2 test. In Figure 4, the cone shaped region labeled Ro is the rejection regionof the T1=T2 test for � = :05. The region between the dashed lines is the rejection region ofLiu and Berger's size-� test that is uniformly more powerful. We refer the reader to Berger(1989) and Liu and Berger (1995) for the details about these tests. We believe that for the�2 unknown case, size-� tests that are uniformly more powerful than the T1=T2 test will befound.5 Con�dence Sets and Bioequivalence Tests5.1 A 100(1 � �)% con�dence intervalWe will show that the 100(1� �)% con�dence interval [D�1 ; D+1 ] given byh(D � t�;rSE(D))� ; (D + t�;rSE(D))+i(16)corresponds to the size-� TOST for (2). Here x� = minf0; xg and x+ = maxf0; xg. The100(1� �)% interval (16) is equal to the 100(1� 2�)% interval (8) when the interval (8)contains zero. But, when the interval (8) lies to the right (left) of zero, the interval (16)extends from zero to the upper (lower) endpoint of interval (8).The con�dence interval (16) has been derived by Hsu (1984), Bo�nger (1985), andStefansson, Kim, and Hsu (1988) in the multiple comparisons setting, and by M�uller-Cohrs(1991), Bo�nger (1992), and Hsu, Hwang, Liu, and Ruberg (1994) in the bioequivalencesetting. Our derivation follows Stefansson, Kim, and Hsu (1988) and Hsu, Hwang, Liu, andRuberg (1994), which makes the correspondence to TOST more explicit.To see this correspondence, we use the standard connection between tests and con�dencesets. Most often in statistics, this connection is used to construct con�dence sets from testsvia a result such as the following.Theorem 3 (Lehmann, 1986, p. 90) Let the data X have a probability distribution thatdepends on a parameter �. Let � denote the parameter space. For each �0 2 �, let A(�0)denote the acceptance region of a level-� test of H0 : � = �0. That is, for each �0 2 �,P�=�0 (X 2 A(�0)) � 1 � �: Then, C(x) = f� 2 � : x 2 A(�)g is a level 100(1 � �)%con�dence set for �.But in bioequivalence testing in the past, tests have often been constructed from con�-dence sets. A result related to this practice follows.20
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Figure 4: Rejection region for T1=T2 test is cone shaped Ro. Region between dashed linesis rejection region of uniformly more powerful Liu and Berger (1995) test. The estimatesX and Y satisfy �L < X=Y < �U in the larger cone shaped region.
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Theorem 4 Let the data X have a probability distribution that depends on a parameter�. Suppose C(X) is a 100(1� �)% con�dence set for �. That is, for each � 2 �, P�(� 2C(X)) � 1 � �. Consider testing H0 : � 2 �0 versus Ha : � 2 �1 where �0 \ �1 = ;.Then, the test that rejects H0 if and only if C(X) \�0 = ; is a level-� test of H0.Proof. Let �0 2 �0. ThenP�0(reject H0) � 1� P�0(�0 2 C(X)) � �:Unfortunately, Theorem 4 has not always been carefully applied in the bioequivalencearea. Commonly, 100(1 � 2�)% con�dence sets are used in an attempt to de�ne level-�tests. Theorem 4 guarantees only that a level-2� test will result from a 100(1 � 2�)%con�dence set. Sometimes, the size of the resulting test is, in fact, �, but this is notgenerally true. In this subsection we use Theorem 3 to show the correspondence betweenthe 100(1� �)% con�dence interval (16) and the size-� TOST. In the next subsection, wecriticize the practice of using 100(1� 2�)% con�dence sets to de�ne bioequivalence tests.Let � = �T � �R. The family of size-� tests with acceptance regionsA(�0) = n(d; se(D)) : jd� �0j � t�=2;rse(D)o(17)leads to usual equivariant con�dence interval, which is of the form (8) but with t�;r replacedby t�=2;r.However, no current law or regulation states one must employ con�dence sets that areequivariant over the entire real line. Using Theorem 3 and inverting the family of size-�tests de�ned by, for �0 � 0,A(�0) = f(d; se(D)) : d� �0 � �t�;rse(D)g(18)and for �0 < 0, A(�0) = f(d; se(D)) : d� �0 � t�;rse(D)g(19)yields the 100(1� �)% con�dence interval (16). Technically, when inverting (18) and (19),the upper con�dence limit will be open when D+t�;rSE(D) < 0. This point is inconsequen-tial in bioequivalence testing. The only value of the upper bound with positive probabilityis 0, and, in bioequivalence testing, the inference �T 6= �R is not of interest. In terms ofoperating characteristics, the con�dence interval with the possibly open endpoint has cov-erage probability 100(1� �)% everywhere. The con�dence interval (16) also has coverageprobability 100(1� �)% except at �T � �R = 0 where it has 100% coverage probability.Note that the family of tests (18) contains the one-sided size-� t-test for (6), and thefamily of tests (19) contains the one-sided size-� t-test for (5), in contrast to the family oftests (17). The 5% TOST is equivalent to asserting bioequivalence, �L < �T � �R < �U ,if and only if the 95% con�dence interval [D�1 ; D+1 ] � (�L; �U). Therefore, as pointed outby Hsu, Hwang, Liu, and Ruberg (1994), it is more consistent with standard statisticaltheory to say that the 100(1� �)% con�dence interval [D�1 ; D+1 ], instead of the ordinary100(1� 2�)% con�dence interval (8), corresponds to the TOST.Pratt (1961) showed that for the r = 1 case (i.e. SE(D) = �D), when �T = �R,that is, when the test drug is indeed equivalent to the reference drug, [D�1 ; D+1 ] has the22



smallest expected length among all 100(1� �)% con�dence intervals for �T � �R. On theother hand, when �T � �R is far from zero, [D�1 ; D+1 ] has larger expected length than theequivariant con�dence interval (8). So the bioequivalence con�dence interval [D�1 ; D+1 ] canbe thought of as speci�cally constructed from Theorem 3 for more precise inference whenit is expected that �T is close to �R. One multi-parameter extension of this construction,utilized by Stefansson, Kim, and Hsu (1988), gives rise to the multiple comparison with thebest (MCB) con�dence intervals of Hsu (1984), which eliminate treatments that are not thebest and identify treatments close to the true best. In fact, the bioequivalence con�denceinterval (16) is an MCB con�dence interval because, when only two treatments are beingcompared, a treatment close to the other treatment is either the true best treatment orclose to the true best treatment.This ability of MCB con�dence interval to give practical equivalence inference is usefulin another problem. Ruberg and Hsu (1992) pointed out that whether to include certainparameters in a regression model should sometimes be formulated as a practical equivalenceproblem rather than a signi�cant di�erence problem. In modeling the stability of a drug,for example, given the clear intent of the FDA (1987) Guideline that data from batches of adrug can be pooled only if they have practically equivalent degradation rates, the decisionof which time � batch interaction terms to include in the model can logically be based onMCB con�dence intervals comparing the degradation rate of each batch with the true worstdegradation rate. Another problem which has not been but should be formulated as oneof practical equivalence is the establishment of safety of substances such as bovine growthhormone in toxicity studies (e.g., Juskevich and Guyer, 1990), since the desired inference ispractical equivalence between the treated groups and the (negative) control group (cf. Hsu,1996, Chapter 2).A di�erent multiparameter extension of the same construction was utilized by Brown,Casella, and Hwang (1995) to obtain the con�dence region for a vector parameter � whichhas the smallest expected volume when � = 0, generalizing Pratt's result. The con�denceset is constructed through Theorem 3 using the family of size-� Neyman-Pearson likelihoodratio tests for H0 : � = �0 versus Ha : � = 0. When �̂ is multivariate normal with unknownmean vector � and known variance-covariance matrix �; the acceptance regions areA(�0) = ��̂ : �00��1(�̂ � �0)=q�00��1�0 > �t�;1� ;which leads to the con�dence regionC(�̂) = n� : �0��1�̂=p�0��1� + t�;1 > p�0��1�o :(20)Their paper describes and illustrates interesting geometric properties of C(�̂):It should be pointed out that the utility of Theorem 3 is not restricted to the construc-tion of con�dence sets which give better practical equivalence inference. Stefansson, Kim,and Hsu (1988) and Hayter and Hsu (1994) used Theorem 3 to construct con�dence setsassociated with step-down and step-up multiple comparison methods, which are usuallythought of as speci�cally constructed to give better signi�cant di�erence inference thansingle-step methods. 23



5.2 100(1 � 2�)% con�dence intervalsBioequivalence tests are often de�ned in terms of 100(1� 2�)% con�dence sets. That is,if � denotes the parameter of interest, �c0 denotes the set of parameter values for whichthe drugs are bioequivalent, and C(X) is a 100(1 � 2�)% con�dence set for �, then thedrugs are declared bioequivalent if and only if C(X) � �c0. This practice seems to be basedentirely on the perceived equivalence between the 100(1� 2�)% con�dence interval (8) andthe size-� TOST of (2). This practice is encouraged by the fact that both FDA (1992)and EC-GCP (1993) specify that the � = :05 TOST should be executed by constructing a90% con�dence interval. In the bioequivalence literature, when used in this way, the 90%is called the assurance of the con�dence set.The intent of the regulating agencies is clearly to use a test with size � = :05. Un-fortunately, bioequivalence tests have been proposed using 100(1 � 2�)% con�dence setswithout any veri�cation that the resulting tests have size-�. Theorem 4 guarantees thatthe resulting test is a level-2� test, not size-�. In this section, we will explore the usageof 100(1 � 2�)% con�dence sets. We shall show that the usual 100(1 � 2�)% con�denceinterval (8) results in a size-� TOST of (2) because (8) is \equal-tailed." So the relationshipis deeper than the \algebraic coincidence" mentioned by Brown, Casella and Hwang (1995).Hauck and Anderson (1992) discuss this fact without proof. But we shall see in examplesthat the use of 100(1 � 2�)% con�dence sets can result in both liberal and conservativebioequivalence tests. Because there is no general guarantee that a 100(1� 2�)% con�denceset will result in a size-� test, we believe it is unwise to attempt to de�ne a size-� testin terms of a 100(1� 2�)% con�dence set. Rather, a test with the speci�ed Type I errorprobability of � should be used. Theorem 3 might be used to construct the corresponding100(1� �)% con�dence set.Let [C�; C+] denote (8), the usual 100(1� 2�)% con�dence interval for �T � �R. Whydoes rejecting H0 in (2) if and only if [C�; C+] � (�L; �U) result in a size-� test? Thesuper�cial answer is that, obviously, C+ < �U is equivalent to TU < �t�;r and C� > �L isequivalent to TL > t�;r. Thus, the test based on [C�; C+] is equivalent to the size-� TOST.But a more thorough understanding of this is suggested by the following result (Exercise9.1, Casella and Berger, 1990).Theorem 5 Let the data X have a probability distribution that depends on a real-valuedparameter �. Suppose (�1; U(X)] is a 100(1��1)% upper con�dence bound for �. Suppose[L(X);1) is a 100(1 � �2)% lower con�dence bound for �. Then, [L(X); U(X)] is a100(1� �1 � �2)% con�dence interval for �.Now consider the 100(1 � 2�)% con�dence interval [C�; C+] for � = �T � �R. Theinterval (�1; C+] is a 100(1� �)% upper con�dence bound for �. From Theorem 4, thetest that rejects H02 in (6) if and only if C+ < �U is a level-� test of H02. Likewise, [C�;1)is a 100(1� �)% lower con�dence bound for � and the test that rejects H01 in (5) if andonly if C� > �L is a level-� test of H01. Forming an IUT from these two level-� tests yieldsa level-� test of H0 in (2), by Theorem 1. Thus, we see that it is not so important that[C�; C+] is a 100(1� 2�)% con�dence interval for �. Rather, it is the fact that (�1; C+]and [C�;1) are both 100(1� �)% con�dence intervals that yields a level-� test. That is,it is important that [C�; C+] is an \equal-tailed" con�dence interval.24



It is easy to see that 100(1�2�)% con�dence intervals will not always yield size-� tests.Consider an \unequal-tailed" 100(1� 2�)% con�dence interval for � = �T � �R, [C�1 ; C+1 ],de�ned by [D � t�2;rSE(D); D + t�1;rSE(D)] ;(21)where �1+�2 = 2�. Using (�1; C+1 ] to de�ne a test of H02 yields a size-�1 test. And using[C�1 ;1) to de�ne a test of H01 yields a size-�2 test. Therefore, by Theorem 1, the IUT thatrejects H0 if and only if [C�1 ; C+1 ] � (�L; �U ) has level maxf�1; �2g. That this test has sizeequal to maxf�1; �2g can be veri�ed using Theorem 2. This relationship between the sizeof the test and the maximum of the one-sided error probabilities is alluded to by equation(1) in Yee (1986). The size of this test can be made arbitrarily close to 2� by choosing �1close to zero and �2 close to 2�. In this problem, the only 100(1� 2�)% con�dence intervalof the form (21) that de�nes a size-� test happens to be the usual, equal-tailed con�denceinterval, [C�; C+].The preceding example using an unequal-tailed test simply illustrates that de�ning abioequivalence test in terms of a 100(1 � 2�)% con�dence interval can lead to a liberaltest with size greater than �. But, no one has proposed using the interval (21) to de�ne abioequivalence test. So we now discuss two other examples that have been proposed in thebioequivalence literature. Both examples concern testing (1) about the ratio �T =�R.Tests based on 100(1� 2�)% Fieller-type con�dence intervals provide examples of teststhat are sometimes liberal. Mandallaz and Mau (1981), Locke (1984) and Kinsella (1989)all propose using a Fieller-type (1940, 1954) con�dence interval to estimate �T =�R. NeitherLocke nor Kinsella propose constructing a bioequivalence test using this interval. ButMandallaz and Mau (1981), Yee (1986,1990), Metzler (1991) and Schuirmann (1989) allpropose de�ning a test of (1) using these Fieller con�dence intervals, and all suggest that a100(1�2�)% con�dence interval should be used. A test de�ned in this way using the Locke100(1�2�)% con�dence interval is, in fact, a size-� tests because the Locke interval is equal-tailed. But, Metzler (1991) and Schuirmann (1989) give graphs of the power function of theMandallaz and Mau (1981) test that show that the test has size greater than the speci�ed�. For example, Figures 3 through 9 in Metzler (1991) are graphs of 1� (power function)based on the Mandallaz and Mau (1981) con�dence interval. At �U = 1:2, the rejectionprobability is about :07 for the � = :05 test, and, the power is about :15 for the � = :10 test.These �gures cover a variety of sample sizes and variances. But in all cases the rejectionprobability exceeds the nominal � at �U = 1:2. The same liberality of the Mandallaz andMau test is illustrated by Figures 3{13 of Schuirmann (1989).On the other hand, a test de�ned in terms of a 100(1� 2�)% con�dence set might bevery conservative. An example is the test proposed by Chow and Shao (1990) for testing(1) about the ratio �T =�R. Speci�cally, Chow and Shao considered a two period crossoverdesign with no carry-over, period or sequence e�ects. Let X denote the sample meanvector with mean � = (�T ; �R)0 and let S denote the sum of cross-products matrix. Let mpatients receive the �rst sequence, n patients receive the second sequence and n� = n+m.Then, C = f� : T1 � F�;2;n��2g de�nes a 100(1 � �)% con�dence ellipse for �, whereT1 = n�(n� � 2)(X � �)0S�1(X � �)=2 and F�;2;n��2 is the upper 100� percentile of anF -distribution with 2 and n� � 2 degrees of freedom. Chow and Shao propose rejecting H0in (1) and concluding Ha : �L < �T =�R < �U is true if and only if the 90% con�dence ellipse25



is contained in the cone de�ned by Ha. They do not comment on the actual size of thistest, but we assume 90% was chosen to be 100(1� 2�)% where � = :05.Chow and Shao's test can be described much more simply by recalling the relation-ship between the con�dence ellipse, C, and simultaneous con�dence intervals for all linearfunctions l0� (Sche��e, 1959). � 2 C if and only if l0X �q2F�;2;n��2l0Sl=(n�(n� � 2)) �l0� � l0X + q2F�;2;n��2l0Sl=(n�(n� � 2)) for every vector l. But, in fact, the only twovectors needed to de�ne Chow and Shao's test are lL = (1;��L)0 and lU = (1;��U)0.The hypotheses in (1) or (14) can be written as H0 : l0L� � 0 or l0U� � 0 and Ha :l0U� < 0 < l0L�. Furthermore, the ellipse C is below the line l0U� = 0 if and only ifl0UX +q2F�;2;n��2l0USlU=(n�(n� � 2)) < 0, that is, the upper endpoint of the con�denceinterval for l0U� is negative. Similarly, the ellipse C is above the line l0L� = 0 if and only ifl0LX �q2F�;2;n��2l0LSlL=(n�(n� � 2)) > 0. If we de�neTL = l0LXql0LSlL=(n�(n� � 2)) and TU = l0UXql0USlU=(n�(n� � 2)) ;then Chow and Shao's test rejects H0 if and only ifTL > q2F�;2;n��2 and TU < �q2F�;2;n��2:(22)This simple description of Chow and Shao's test has not appeared before. In this form, itis apparent that this test can be viewed as an IUT. A reasonable test of H0L : l0L� � 0versus HaL : l0L� > 0 is the test that rejects H0L if TL > p2F�;2;n��2. A reasonable testof H0U : l0U� � 0 versus HaU : l0U� < 0 is the test that rejects H0U if TU < �p2F�;2;n��2.Thus, Chow and Shao's test is the IUT of H0 versus Ha formed by combining these two tests.Theorems 1 and 2 then tell us that the actual size of this test is �0 = P (T > p2F�;2;n��2),where T has a Student's t distribution with n� � 1 degrees of freedom. This is because TLhas this t-distribution if l0L� = 0, and TU has this t-distribution if l0U� = 0. That is, �0 isthe size of each of the two individual tests. We computed �0 using a 90% con�dence ellipseas suggested by Chow and Shao. We found that �0 = :017 for m = n = 5, 10, and 15, and�0 = :016 for m = n = 20, 30, and 1. Thus, if the intent of using a 100(1� 2�)% = 90%con�dence ellipse was to produce a bioequivalence test with type I error probability of� = :05, the result was very conservative.A test of H0 versus Ha with the desired size of � can be obtained by replacingp2F�;2;n��2with the t percentile, t�;n��1 in (22). Then each of the individual tests is size-� and thecombined IUT also has size-�. This test is uniformly more powerful than Chow and Shao'stest because the rejection region of Chow and Shao's test is a proper subset of this one. Thistest is the analogue of the TOST for this crossover model. In fact, Yang (1991) proposedthis test for this problem as an alternative to Chow and Shao's test. But Yang did not statethat this test was uniformly more powerful nor quantify the conservativeness of Chow andShao's test.Our conclusions from the results and examples in this subsection are simple. The us-age of 100(1 � 2�)% con�dence sets to de�ne bioequivalence tests should be abandoned.This practice produces tests with the appropriate size only when special, \equal-tailed"26



con�dence intervals are used, and o�ers no intuitive insight. The mixture of 100(1� 2�)%con�dence sets and size-� tests is only confusing. Rather, a test with the speci�ed Type Ierror probability of � should be used. The IUT method can usually be used to constructsuch a test. Then, Theorem 3 might be used to construct the corresponding 100(1� �)%con�dence set.6 Multiparameter Equivalence ProblemsUntil now, we have discussed bioequivalence testing in terms of only one parameter. In thissection, we discuss two problems in which the desired inference is equivalence in terms oftwo parameters. These results immediately generalize to situations in which bioequivalenceis de�ned in terms of more than two parameters.These two examples have been discussed as multiparameter bioequivalence problemsby several authors. But, in some cases, the tests that have been proposed do not havethe correct size �. The proposed tests do not properly account for the multiple testingaspect of this problem. These two multiparameter examples vividly illustrate that the IUTmethod can provide a simple mechanism for constructing tests with the correct size �, evenin seemingly complicated bioequivalence problems. Size-� tests can be combined to obtainan overall size-� test. No adjustment for multiple testing is needed if the IUT method isused.6.1 Simultaneous AUC and Cmax bioequivalenceSections 4 and 5 discussed bioequivalence testing in terms of only one parameter. Thatis, the test and reference drugs are to be compared with respect to either average AUCor average Cmax. FDA (1992) and EC-GCP (1993) consider two drugs are bioequivalentonly if they are similar in both parameters. Westlake (1988) and Hauck et al. (1995) haveconsidered the problem of comparing AUC and Cmax simultaneously. (Westlake actuallycompares three parameters, including Tmax also. But this does not conform to current FDAguidelines.)Assume the measurements are lognormal so that, after log transformation, we wish toconsider hypotheses like (2). Let the superscripts A and C refer to the variables AUC andCmax, respectively. For example, �CR denotes the mean of log(Cmax) for the reference drug.The test and reference drugs are to be considered bioequivalent only ifHma : �L < �AT � �AR < �Uand�L < �CT � �CR < �U :(23)Using current FDA guidelines, �U = log(1:25) = � log(:80) = ��L. If one variable isdeemed more important than another, the limits could be di�erent for the di�erent variables.For example, if AUC was considered more important than Cmax, then the limits �AL and �AUfor AUC could be chosen to be narrower than the limits �CL and �CU for Cmax, as they arein Europe.The statement Hma in (23) should be the alternative hypothesis in this multivariatebioequivalence test. The null hypothesis, Hm0 should be the negation of Hma . That is, Hm027



states that one or more of the four inequalities in Hma is false. Westlake proposed testingHm0 versus Hma by doing two separate tests, one for each variable. Speci�cally, he proposedusing the TOST to test (2) for each variable. The drugs will be declared bioequivalentonly if each of the tests rejects its hypothesis. Furthermore, Westlake said a Bonferronicorrection should be used, and each TOST should be performed at the �=2 level to accountfor the multiple testing. (Westlake actually said �=3 since he was considering three tests.)Westlake's procedure is conservative. The size of Westlake's test is �=2, not �. Thisis true because, although he did not use this terminology, he has proposed an IUT. Thealternative Hma is the intersection of two statements, one about each variable. Computingtwo separate TOSTs and concluding Hma is true only if both TOSTs reject, is an IUT. ByTheorem 1, this test has level �=2 if each TOST is performed at level �=2. In fact, Theorem2 can be used to show that this test has size equal to �=2.Therefore, to test Hm0 versus Hma , Westlake's procedure can be used except that each ofthe two TOSTs should be performed at size-�. The resulting test has probability at most� of declaring the drugs to be bioequivalent, if they are bioinequivalent.Hauck et al. (1995) propose testing (23) using two size-� TOSTs. They recognize thatthe Bonferroni adjustment recommended by Westlake is unnecessary. But they come tothe opposite conclusion. Based on a simulation study, they conclude that this test is tooconservative and suggest that the two TOSTs might be performed using a higher error ratethan �, and the resulting test of (23) would be size-�. (They admit that more simulationsare needed to con�rm this conjecture.) But, if the two TOSTs are each size-�, then thetest of (23) is exactly size-�. To see this, use Theorem 2 by setting �L = �AT � �AR , �CT = �CR,and considering the limit as �DA ! 0 and �DC ! 0. Here, DA and DC are the estimates of�AT � �AR and �CT � �CR, respectively. In this limit, three of the four one-sided tests will haverejection probability converging to 1, because these parameter points are in the alternativehypothesis and the corresponding standard deviations are converging to 0. The forth one-sided test will have rejection probability exactly equal to �, for all such parameter points,because �L = �AT � �AR is on the boundary.A test that is uniformly more powerful, but still has size-� will be obtained if the test wepropose in Section 4.2 is used to perform the two tests, rather than using the two TOSTs.Again, both of these tests would be performed at size-�.An alternative way of assessing the simultaneous bioequivalence of AUC and Cmax isto inspect the Brown, Casella, and Hwang (1995) con�dence set (20), generalized to the� unknown case. Suppose (XAi ; XCi )0; (Y Ai ; Y Ci )0; i = 1; : : : ; n; are log-transformed i:i:d:observations on AUC and Cmax under the test and reference drugs, respectively. Let Z i =(XAi ; XCi )0�(Y Ai ; Y Ci )0; i = 1; : : : ; n;which are assumed to be multivariate normal with mean� = (�AT��AR ; �CT��CR)0 and unknown variance-covariance matrix �: Let �̂ = (ZA; ZC)0 and �̂be the sample mean vector and variance-covariance matrix of theZ is. Then �0�̂ is univariatenormal with mean �0� and variance �0��=n; while (n� 1)�0�̂�=�0�� is independent of �0�̂and has a �2 distribution with n� 1 degrees of freedom. Thus, a size-� test for H0 : � = �0is obtained using the acceptance regionA(�0) = �(�̂; �̂) : �00(�̂ � �0)=q�00�̂�0=n > �t�;n�1� ;28



which leads to the con�dence regionC(�̂; �̂) = �� : �0�̂=q�0�̂�=n+ t�;n�1 > �0�=q�0�̂�=n� :(24)Brown, Casella, and Hwang (1995) applied (20) to the simultaneous AUC and Cmax problemfor illustration, assuming � is known. In practice, this assumption is perhaps unrealisticconsidering the moderate sample size typical in bioequivalence trials.6.2 Mean and variance bioequivalenceAnderson and Hauck (1990) and Liu and Chow (1992) discuss another type of multiparam-eter bioequivalence. They point out that bioequivalence should not be de�ned only in termsof the mean responses for the two drugs. Rather, the variances of the two drugs' responsesshould also be considered. If two drugs have bioequivalent means but di�erent variances,the drug with the smaller variance might be preferred. This kind of multiparameter bioe-quivalence is often called population bioequivalence.Consider a single variable, e.g., AUC. Let �T and �R denote the means of log(AUC). Let�2T and �2R denote the intrasubject variances of the test and reference drugs, respectively.The test and reference drugs will be considered bioequivalent only if �T and �R are similarand �2T and �2R are similar. To demonstrate bioequivalence, we wish to testHm0 : �T � �R � �L or �T � �R � �Uor�2T =�2R � �L or �2T =�2R � �Uversus Hma : �L < �T � �R < �Uand�L < �2T=�2R < �U :(25)The constants �L, �U , �L, and �U would be chosen to de�ne clinically important di�erences.Liu and Chow (1992) propose a size-� test ofH�0 : �2T=�2R � �L or �2T=�2R � �Uversus H�a : �L < �2T=�2R < �U :Their test is an IUT composed of two size-� tests, one for testing each inequality. Wang(1994) describe an unbiased, size-� test that is uniformly more powerful than the Liu andChow test.The hypotheses H�0 : �T � �R � �L or �T � �R � �Uversus H�a : �L < �T � �R < �Ucan be tested with a TOST. Because Hma is the intersection of H�a and H�a , the IUT methodcan be used to construct a test of Hm0 versus Hma . The test that rejects Hm0 only if the size-�29



Liu and Chow test rejects H�0 and the size-� TOST rejects H�0 is a size-� test of Hm0 versusHma .Liu and Chow, however, propose a more conservative combination of these two tests.Let � denote the desired size of the test of Hm0 . Let �1 denote the size of the TOST andlet �2 denote the size of the Liu and Chow test. They say to choose �1 and �2 so that� = 1� (1� �1)(1� �2):(26)Liu and Chow note that the test statistics use for the TOST are independent of the teststatistics used in their test. But they give no further explanation of (26). The probabilitythat H�0 is accepted, given that H�0 is true, is bounded below by 1 � �1. The probabilitythat H�0 is accepted, given that H�0 is true, is bounded below by 1� �2. So the quantity �in (26) is an upper bound for the probability that at least one of the two tests rejects itsnull hypothesis, given that both H�0 and H�0 are true. This is not the error probability ofthe proposed test. The error probability is the probability the both tests reject, given thateither H�0 or H�0 is true. Hm0 is the union of H�0 and H�0 , not the intersection.Again, it should be noted that a more powerful size-� test of Hm0 will be obtained if thetest from Section 4.2, rather than the TOST, is used to test H�0 and Wang's (1994) test isused to test H�0 .7 Concluding RemarksWe have shown that the theory of intersection-union tests is central to bioequivalence stud-ies. We have demonstrated the danger of incorrect association of con�dence sets with suchtests. Due to the traditional emphasis on signi�cant di�erence inference in statistics, manypractical equivalence problems have not been recognized as such, we believe. It is our hope(and anticipation) that the concepts and techniques discussed in this article will, in time,prove to be useful not only in bioequivalence studies, but in other practical equivalenceproblems as well.8 AcknowledgmentWe thank Dr. Hans Frick and Dr. Volker Rahlfs for references on European bioequivalenceguidelines.A Details of New Test in Section 4.2A size-�, nearly unbiased test for (2) was described geometrically in Section 4.2. In SectionA.1, formulas and computational suggestions are given for the quantities that de�ne thattest. The construction in Section 4.2 is valid for � > ��. In Section A.2 a similar construc-tion yields a size-�, nearly unbiased test for � � ��. Brown, Hwang and Munk did notpropose any test for � � ��. 30



A.1 Formulas for Section 4.2De�ne functional notation for the transformation from rectangular to polar coordinates byv(d; s�) = q(d��)2 + s2�b(d; s�) = cos�1((d��)=v(d; s�))for �1 < d <1 and s� � 0. The inverse transformation isd(v; b) = �+ v cos(b)s�(v; b) = v sin(b);for v � 0 and 0 � b � �. The point (d; s�) = (0;�pr=t�;r) is the vertex of the triangularregion RT . Therefore, b0 = b(0;�pr=t�;r);v0 = 2� sin(� � b0);(d1; s�1) = (d(v0; b0); s�(v0; b0));v1 = v(�d1; s�1):The line of length v0 in Figure 2 has b = 3�=2� b0. Therefore,b1 = 3�=2� b0 � cos�1(v0=v);b2 = 3�=2� b0 + cos�1(v0=v):The angle bL1, de�ned by (12), is easily found by a numeric root �nding method such asbisection.Finally, for any point (d; s�) on fV = vg, s� = pv2 � (d��)2. For any point (du; s�u)on fV = vg with du � 0, there is a unique point (dl; s�l) on fV = vg with dl � 0 such thatthe line joining (dl; s�l) and (0; 0) and the s� axis form the same angle as the line joining(du; s�u) and (0; 0) and the s� axis. This point satis�esdupv2 � (du ��)2 = � dlpv2 � (dl ��)2which has the solution dl = du(v2 ��2)v2 + 2du���2 :(27)Using this expression for dl in terms of du, the equationF (b(du; su))� F (b(dl; sl)) = �� �(v)is a function of the single variable du. The unique solution to this equation, in the interval� � v � du � 0 is easily found by a numeric root �nding method such as bisection. Callthe solution dU . De�ne dL by (27) using du = dU . The angles bU(v) and bL(v) arebU(v) = b�dU ;qv2 � (dU ��)2� ;bL(v) = b�dL;qv2 � (dL ��)2� :31
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A.2 New test for � � ��For small values of � � ��, a size-�, nearly unbiased test of (2), that is uniformly morepowerful than the TOST, can be constructed. The construction is very similar, and some-what simpler, than the construction in Section 4.2. The notation of Section A.1 will beused, and Figure 5 illustrates the construction.For � � ��, the point on lL closest to (�; 0) is the vertex ofRT , (d0; s�0) = (0;�pr=t�;r).Let v0 = v(d0; s�0). For v � v0, R2(v) = fb : b0 < b < �g, exactly the points in the TOST.The arc A0 is such an arc. For v0 < v < 2�, R2(v) consists of two arcs. R2(v) = fb :bL(v) < b < bU(v)g [ fb : b2 < b < �g. bL(v), bU(v) and b2 are de�ned as before. The twosolid pieces of arc A1 are examples of these arcs. The semicircle fV = vg does not intersectRT near the s� axis so there is no need to check that fb : bL(v) < b < bU(v)g covers all theTOST. For v � 2�, R2(v) = fb : bL(v) < b < bU(v)g. The solid piece of arc A3 is such anarc. In Figure 5, R2 is outlined with a solid line, R1 is outlined with a dashed line, and theintersection is the rejection region of the IUT.ReferencesAnderson, S. (1993). Individual bioequivalence: a problem of switchability (with discussion).Biopharmaceutical Report, 2(2):1{11.Anderson, S. and Hauck, W. W. (1983). A new procedure for testing equivalence in com-parative bioavailability and other clinical trials. Communications in Statistics - Theoryand Methods, 12:2663{2692.Anderson, S. and Hauck, W. W. (1985). Letter to the editor. Biometrics, 41:561{563.Anderson, S. and Hauck, W. W. (1990). Consideration of individual bioequivalence. Journalof Pharmacokinetics and Biopharmaceutics, 18:259{273.Berger, R. L. (1982). Multiparameter hypothesis testing and acceptance sampling. Tech-nometrics, 24:295{300.Berger, R. L. (1989). Uniformly more powerful tests for hypotheses concerning linear in-equalities and normal means. Journal of the American Statistical Association, 84:192{199.Bo�nger, E. (1985). Expanded con�dence intervals. Communications in Statistics - Theoryand Methods, A14:1849{1864.Bo�nger, E. (1992). Expanded con�dence intervals, one-sided tests, and equivalence testing.Journal of Biopharmaceutical Statistics, 2:181{188.Brown, L. D., Casella, G., and Hwang, J. T. G. (1995a). Optimal con�dence sets, bioe-quivalence, and the lima�con of Pascal. Journal of the American Statistical Association,90:880{889.Brown, L. D., Hwang, J. T. G., and Munk, A. (1995b). An unbiased test for the bioequiv-alence problem. Technical report, Cornell University.33
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