ON LEAST FAVORABLE SET FUNCTIONS

by

Olaf Krafft

University of North Carolina
and
Technische Hochschule Karlsruhe
Institute of Statistics Mimeo Series No. 528

This research was supported by the
Air Force Office of Scientific
Research Contract No. AF-AFOSR-760-65

Department of Statistics
University of North Carolina
Chapel Hill, N. C.
1. **Introduction and Summary.**

The concept of a least favorable distribution was introduced by Wald [14]. Lehmann and Stein [12] showed its use for testing a composite hypothesis against a simple alternative. In order to study tests of level α which minimize the maximum power Lehmann [10] introduced the notion of a pair of least favorable distributions at level α. In [8] and [9] it is shown that least favorable distributions can be considered as solutions of certain infinite linear programs.

Whereas the existence of an optimal test can be proved under mild conditions which guarantee the weak compactness of the class of all test functions, the problem of the existence of a least favorable distribution at level α requires quite a few additional considerations. The reason for that consists essentially in the fact that the action space of the statistician contains only two points whilst the parameter space in general contains infinitely many points. The main aim of this paper is to discuss some aspects of this problem. We will restrict ourselves to the case of testing a composite hypothesis \mathcal{H} at level α against a simple alternative \mathcal{K}. The results can be generalized to the case that \mathcal{K} is also composite and they are similar for the symmetrical version of the test problem described in [8], but those extensions would give no better insight into the problem. Since least favorable distributions can be useful also for non-parametric problems, see for instance Hoeffding [6], we will make as few restrictions on the parameter space as possible.

The basic lemmata for our discussion will be the representation theorems for linear functionals on certain linear topological spaces and a convergence theorem for measures which can be regarded as a generalization

1) This research was supported in part by the Air Force Office of Scientific Research Contract No. AF-AFOSR-760-65
of Helly's theorem. All of these lemmata guarantee only the existence of least favorable distributions so that our theorems will give no new method to construct least favorable distributions.

In section 2 we will introduce the definition of a least favorable set function which is more general than the traditional one in the sense that we do not require the σ-additivity of a least favorable measure. This generalization does not permit the usual interpretation of a least favorable distribution as an optimal strategy of Nature. However, this approach seems to be justified by the fact that the existence of a least favorable set function can be shown under rather mild conditions. (The advantage of such a generalization for stochastic processes is remarked and used also by Dubins and Savage [3]). The principal tool in this section will be the theorem on a separating hyperplane for convex sets. In a corollary we will give conditions under which the least favorable set functions are also σ-additive so that the common conclusions can be derived.

In section 3 we introduce the concept of a least favorable support in order to weaken the condition of the compactness of the parameter space used by Wald [14]. A least favorable support is essentially the set in the parameter space on which a least favorable distribution is concentrated. Under the assumption that there exists a compact least favorable support, a least favorable measure can be shown to be the weak limit of a sequence of measures each of which is concentrated on finitely many points of the parameter space.

The topological and measure theoretic notions used in this paper may be found in the book by Dunford and Schwartz [4].
2. Least favorable set functions.

Let \(W = \{ w_\theta : \theta \in \Theta \} \) be a class of probability measures on a measurable space \((X, \mathcal{A})\), \(w_\theta \), a probability measure on \((X, \mathcal{A})\) not belonging to \(W \). We assume that \(W + \{ w_\theta \} \) is dominated by a \(\sigma \)-finite measure \(\mu \). The corresponding densities with respect to \(\mu \) are denoted by \(p_\theta (x) \) and \(p_\theta (x) \); throughout the paper \(p_\theta (x) \) is assumed to be continuous in \(\theta \) (for \(\mu \)-almost all \(x \)) in the topology which is indicated in the conditions of the respective theorems.

By \(\Phi \) we denote the class of all test functions \(\phi \):

\[
\Phi = \{ \phi (x) : \phi (x) \text{ measurable, } 0 \leq \phi (x) \leq 1 \text{ for all } x \in X \}.
\]

The problem of testing the hypothesis \(H : \theta \in \Theta \) at level \(\alpha \), \(\alpha \in (0,1) \), against the alternative \(K : \theta = \theta' \) consists in the determination of a function \(\phi^* \in \Phi \)

\[
\phi^* \in \Phi_{\alpha, H} = \{ \phi (x) : \phi (x) \in \Phi, \phi (x) \leq \alpha \text{ for all } \theta \in \Theta \},
\]

such that \(E_{\phi^*} (X) \geq E_{\phi} (X) \) for all \(\phi \in \Phi_{\alpha, H} \).

Let \(\mathcal{M} \) be a \(\sigma \)-field over \(\Theta \), \(\lambda \) a probability measure on \((\Theta, \mathcal{M})\) and assume \(p_\theta (x) \) to be \(\mathcal{M} \times \mathcal{A} \)-measurable. If \(\lambda^* \) denotes an optimal test for testing the simple hypothesis \(H_\lambda \) that the true density is \(p_\lambda = \int_{\Theta} p_\theta (x) d \lambda (\theta) \) against \(K \) at level \(\alpha \), then \(\lambda^* \) is called a least favorable distribution at level \(\alpha \) iff

\[
E_{\phi^*} (X) \leq E_{\phi} (X) \text{ for all } \lambda.
\]

A measure \(\lambda^* \) which is defined in this way has a direct statistical interpretation. For mathematical purposes, however, it seems to be adequate to use a more general definition. This will be done by departing from the requirement that \(\lambda \) is \(\sigma \)-additive:

Definition 1. Let \(\Theta \) be a topological space and \(\mathcal{M} \) be a field on \(\Theta \) such that \(p_\theta (x) \) is \(\mathcal{M} \times \mathcal{A} \)-measurable. By \(ba (\mathcal{M}) \) we denote the class of all bounded additive set functions on \(\mathcal{M} \). Then an \(\lambda^* \in ba (\mathcal{M}), \lambda^* \geq 0, \) is called a least favorable set function (l.f.s.f.) for testing \(\mathcal{M} \) at level \(\alpha \) against \(K \).
iff for the optimal test ϕ^* and l^* the following conditions are satisfied:

\[(i) \quad E_\Theta \phi^* = \alpha \lambda^* - a.e., \]

\[(ii) E_{\Theta} \phi^* - \int_0 E_{\Theta} \phi^* d\lambda^* > E_{\Theta} \phi - \int_0 E_{\Theta} \phi d\lambda^* \text{ for all } \phi \in \Lambda. \]

To show that when γ is a σ-field and l^* is σ-additive definition l is equivalent with that given in connection with formula (1) we will use the following

Lemma 1. Necessary and sufficient for that $\phi^* \in \phi_\Theta^H$ is optimal and λ^* is a least favorable distribution is the existence of a number $c > 0$ such that

\[(2) \quad E_\Theta \phi^* = \alpha \lambda^* - a.e., \]

\[(3) \quad \phi^*(x) = \begin{cases} 1, & p_{\Theta}(x) > c \int_\Theta p_{\Theta}(x) d\lambda^* \\ \mu-a.e., & \\ 0, & p_{\Theta}(x) < c \int_\Theta p_{\Theta}(x) d\lambda^*. \end{cases} \]

The proof of this lemma which is an extension of corollary 5 by Lehmann [10], p. 92, is based on the fact that a least favorable distribution can be shown to be equal to $\tilde{\lambda} = \lambda^* / \lambda^*(\Theta)$, where λ^* is that finite measure λ for which the function

\[(4) \quad f(\lambda) = \alpha \lambda(\Theta) + \int_\Theta (p_{\Theta}(x) - \int_\Theta p_{\Theta}(x) d\lambda)^+ d\mu \]

achieves its minimum. The statement of lemma 1 then follows from the equality

\[(5) \quad E_{\Theta} \phi^*(\lambda) = \inf f(\lambda) \]

where the infimum is to be taken with respect to all finite measures λ which are concentrated on finitely many points of Θ. A proof of lemma 1 and of formula (5) which will be used also in the proof of theorem 3 may be found in [9].
Theorem 1. Let \(\mathcal{U} \) be a \(\sigma \)-field and the l.f.s.f. \(l^* \) be non-degenerate and \(\sigma \)-additive. Then \(\lambda^* = l^*/l^*(\emptyset) \) is a least favorable distribution as defined in connection with (1). If, conversely, \(\lambda^* \) is a least favorable distribution and \(c \) is the constant of lemma 1 then \(l^* = c\lambda^* \) will satisfy definition 1.

Proof. The proof follows immediately from lemma 1 observing that because of the \(\sigma \)-additivity of \(l^* \) condition (ii) in definition 1 becomes

\[
\int \left(p_{\varphi}(x) - \int p_{\varphi}(x)dl^* \right) \varphi(x)d\mu = \max_{\varphi \in \mathcal{U}} ,
\]

so that \(\varphi^*(x) \) satisfies (3) with \(c = l^*(\emptyset) \).

Conditions (i) and (ii) of our definition of a l.f.s.f. are closely related to formulae used in the proof of the generalized fundamental lemma by Dantzig and Wald [2], the numbers \(k_i \) given there correspond to the values of \(l^* \). We will prove the existence of a l.f.s.f. along the lines of that proof and of the proof of theorem 1 by Hurwicz and Uzawa [7].

Theorem 2. Let \(\Theta \) be a closed subspace of a normal topological space \(T, \mathcal{U} \) be the field generated by the closed sets of \(\Theta \) and \(p_{\theta}(x) \) be \(\mathcal{U} \times \mathcal{U} \)-measurable. Then there exists a regular l.f.s.f.

Proof. Since a closed subspace of a normal space is itself normal \(\Theta \) can be assumed to be a normal topological space. Let \(C(\Theta) \) be the space of all bounded continuous real functions on \(\Theta \) with norm \(\|f\| = \sup_{\theta \in \Theta} |f(\theta)| \).

Let \(\varphi^* \) be an optimal test for testing \(H \) at level \(\alpha \) against \(K \) and the subsets \(P, Q \) and \(R \) of the Cartesian product \(R^1 \times C(\Theta) \) of \(R^1 \) and \(C(\Theta) \) be defined as

\[
P = \{ (a,h(\theta)) : a \leq E_{\theta}\varphi, h(\theta) \leq \alpha - E_{\theta}\varphi \text{ for some } \varphi \in \mathcal{U} \},
\]

\[
Q = \{ (a,h(\theta)) : a > E_{\theta}\varphi^*, h(\theta) \geq 0 \text{ for all } \theta \in \Theta \},
\]

\[
R = \{ (a,h(\theta)) : a \geq E_{\theta}\varphi^*, h(\theta) \geq 0 \text{ for all } \theta \in \Theta \}.
\]
If \((a_1, h_1)\) and \((a_2, h_2)\) are two points in \(P\) with
\[
a_1 \leq E_\theta \cdot a_1, \quad h_1(\theta) \leq \alpha - E_\theta \cdot a_1,
\]
\[
a_2 \leq E_\theta \cdot a_2, \quad h_2(\theta) \leq \alpha - E_\theta \cdot a_2,
\]
the point \((\rho a_1 + (1 - \rho) a_2, \rho h_1 + (1 - \rho) h_2)\), \(0 \leq \rho \leq 1\), will be in \(P\) since
\[
\rho a_1 + (1 - \rho) a_2 \in P, \quad \rho h_1 + (1 - \rho) h_2 \in P.
\]
Hence \(P\) and similarly \(Q\) and \(R\) is a convex set
in \(R^1 \times C(\Theta)\). Moreover \(P\) has a non-empty interior: It contains for
example the point \((a = -1, h(\theta) = -1)\) as an interior point. Let \((a'', h'')\) be
a point of \(Q\) and assume \((a'', h'') \in P\). Then there will be a \(\phi'' \in \Phi\) such that
\[
a'' \leq E_\theta \cdot a'' \quad \text{and} \quad h''(\theta) \leq \alpha - E_\theta \cdot a''.
\]
Since \(h''(\theta) \geq 0\) for all \(\theta \in \Theta\) it follows that \(\phi''\) if of level \(\alpha\) and hence
its power does not exceed the power of \(\phi^\ast: E_\theta \cdot \phi'' \leq E_\theta \cdot \phi^\ast\). The last in-
equality implies \(a'' \leq E_\theta \cdot \phi^\ast\) so that \((a'', h'')\) would not be an element of \(Q\).
This proves that \(P\) and \(Q\) are disjoint sets. Therefore \(P\) and \(Q\) satisfy the
conditions of theorem V. 2.8 in [4] which states that \(P\) and \(Q\) can be
separated by a non-zero continuous linear functional. According to
Theorem IV.6.2 in [4] the dual space of \(C(\Theta)\) can be represented by the
space \(rba(\Theta)\), i.e., by the space of all regular bounded additive set
functions on \(\nu\). Hence there exist numbers \(b\) and \(\gamma\) and \(\alpha l^\ast \in rba(\Theta)\)
such that
\[
(7) \quad ba' + \int h' d\nu \leq \gamma \leq ba'' + \int h'' d\nu
\]
holds for all \((a', h') \in P\) and \((a'', h'') \in Q\). The continuity of \((b, l^\ast)\) implies that
\[
(8) \quad \gamma \leq ba'' + \int h'' d\nu \text{ for all } (a'', h'') \in \overline{Q},
\]
\(\bar{Q} \) denoting the closed hull of \(Q \). So (8) will hold for all \((a'',h'') \epsilon \mathbb{R}\).

Since the point \((a^* = E_{\theta^*}, h^*(\theta) = \alpha - E_{\theta^*})\) lies in the intersection of \(P \) and \(R \) the number \(\gamma \) will satisfy

\[
\gamma = bE_{\theta^*} + \int_{\Theta} (\alpha - E_{\theta^*}) \, dl^* .
\]

The left side of (7) shows that \(l^* \) is non-negative since otherwise for a sufficiently small \(h' \) we would have \(\int_{\Theta} h' dl^* > \gamma \). Similarly \(b \) can be shown to be non-negative. The same inequality (7) can be used to show that \(l^* \) is non-degenerate if \(E_{\theta^*} < l^* \). (If \(E_{\theta^*} = l^* \) the conditions of definition 1 are trivially satisfied with \(l^* = 0 \).) For in the case that \(l^* \) would be degenerated \(b \) would be positive and by choosing \(a' = 1 \) it would follow that \(l^* \leq E_{\theta^*} \). Assume now \(b \) would be equal to zero. It would follow that \(l^* \) is non-degenerate and by choosing \(h' = \alpha, h'' = 0 \) formula(7) would imply

\[\alpha l^*(\theta) \leq 0 , \]

which contradicts \(\alpha \epsilon (0,1) \).

Observing that for all \(\varphi \epsilon \Phi \) the points \((a = E_{\theta^*}, h(\theta) = \alpha - E_{\theta^*})\) are elements of \(P \) and dividing by \(b \) we get from (7) and (9)

\[
E_{\theta^*} + \int_{\Theta} (\alpha - E_{\theta^*}) \, dl^* \leq E_{\theta^*} + \int_{\Theta} (\alpha - E_{\theta^*}) \, dl^* \text{ for all } \varphi \epsilon \Phi ,
\]

where \(\tilde{l}^* \) is defined by \(\tilde{l}^* = l/b \). Hence \(\tilde{l}^* \) satisfies condition (ii) of definition 1. It also satisfies condition (i) since for \((a'', h'') = (E_{\theta^*}, 0)\) we get from (8) and (9)

\[
bE_{\theta^*} + \int_{\Theta} (\alpha - E_{\theta^*}) \, dl^* \leq bE_{\theta^*}
\]

so that

\[
\int_{\Theta} (\alpha - E_{\theta^*}) \, dl^* \leq 0 .
\]

(1) follows from the fact that \(\varphi^* \) is of level \(\alpha \).
In the case that there exists a l.f.s.f. which is σ-additive, lemma 1 shows that the structure of an optimal test γ^* can be described by means of a l.f.s.f. A test of the form (3) will be called a likelihood ratio test with respect to l^* where $l^* = c \lambda^*$. In general the knowledge of a l.f.s.f. l^* does not permit to decide whether an optimal test is a likelihood ratio test w.r.t. l^* or not. The reason for that is that Fubini's theorem cannot be generalized to the case when one of the involved set functions is not σ-additive, see for example Yosida and Hewitt [16]. However, under certain additional conditions on Θ and $p_\theta(x)$ it is possible to represent the dual space of $C(\Theta)$ by the space of the σ-additive set functions. Some of these conditions are given in the following corollary. There the subsets $\theta(\Theta)$ and $\mathcal{E}(\Theta)$ of $C(\Theta)$ are defined respectively as the set of all $h(\theta) \in C(\Theta)$ which vanish outside compact subsets of Θ and as the set of all $h(\theta) \in C(\Theta)$ which tend to zero at infinity.

Corollary 1. Let \mathcal{M} be the σ-field generated by the closed sets of Θ and $p_\theta(x)$ be $\mu \times \mathcal{B}$-measurable. If Θ is a closed subspace of either

(a) a compact Hausdorff space and $p_\theta(x) \in C(\Theta)$ for μ-almost all $x \in X$, or
(b) a locally compact space and $p_\theta(x) \in \theta(\Theta)$ for μ-almost all $x \in X$, or
(c) a locally compact space and $p_\theta(x) \in \mathcal{E}(\Theta)$ for μ-almost all $x \in X$,

then there exists a regular σ-additive l.f.s.f.

Proof. The statement follows from the proof of theorem 2 and

in case (a) from theorem IV.6.3 in [4],
in case (b) from theorem D in [5], sec. 56,
in case (c) from exercise 9 in [1], p. 67.
Remark: Part (c) of corollary 1 is related to assumption B used by Lehmann [11]. Concerning our condition that θ should be a closed set the author was informed by Prof. Lehmann that such a condition is necessary in his paper too.

Under any of the conditions of corollary 1 the optimal test will be a likelihood ratio test w.r.t. the corresponding l.f.s.f. If none of the conditions holds an optimal test is at least approximable by a likelihood ratio test w.r.t. a least favorable measure which is concentrated on finitely many points of θ as it is shown in the following

Theorem 3. Let ψ* be an optimal test for testing H at level α against K. Then for every ε > 0 there exists a measure λ' on (θ', θ) which is concentrated on finitely many points of θ and a test ψ',

\[\varphi'(x) = \begin{cases} 1, & p_{\theta'}(x) > \int_{\theta} p_{\theta}(x) \, d\lambda' \\ 0, & p_{\theta'}(x) < \int_{\theta} p_{\theta}(x) \, d\lambda' \end{cases}, \]

(11)

\[\int_{\theta} E_{\theta} \varphi^* \, d\lambda' = \alpha' \lambda'(\theta), \]

(12)

such that

\[\epsilon \leq E_{\theta} \varphi - E_{\theta} \varphi^* \]

(13)

Proof. Formula (5) shows that for every ε > 0 we can find a λ" which is concentrated on finitely many points of θ, say on \{θ_1, θ_2, ..., θ_n\}, such that

\[f(\lambda") - E_{\theta} \varphi^* \leq \epsilon. \]

(14)

Since \{θ_1, θ_2, ..., θ_n\} is a compact set in θ we can apply corollary 1 for testing H':θ ∈ \{θ_1, θ_2, ..., θ_n\} at level α against K. Let ψ' be an optimal test and λ' a l.f.s.f. for H' against K. From (5) and (14) we get

\[E_{\theta} \psi' - E_{\theta} \varphi^* \leq f(\lambda") - E_{\theta} \varphi^* \leq \epsilon \]

so that (13) is satisfied. The equalities (11) and (12) follow from lemma 1.
3. Least favorable supports.

In this section we will discuss one important case for which a least favorable distribution exists but where in general the conditions of the corollary in section 2 are not satisfied. It is the case in which a uniformly most powerful test turns out to be a test for two simple hypotheses. That will be true for example if the class W is such that the corresponding densities have monotone likelihood ratio and one-sided hypotheses are considered. As a simple example take the following:

Let W be the class of normal distributions with known mean μ and unknown variance σ^2, μ the Lebesgue measure, $H: \sigma^2 \leq \sigma_0^2$, $K: \sigma^2 = \sigma_1^2$, $\sigma_0^2 < \sigma_1^2$.

Here a least favorable distribution exists (it is concentrated on the point σ_0^2) but none of the conditions of the corollary in section 2 is satisfied. To study problems of that kind the following definition may be useful:

Definition 2. Let \mathcal{M} be a σ-field over Θ. An $G \in \mathcal{M}$ is called a least favorable support iff for every $\theta \notin G$ there is a $\tilde{\theta} \in G$ such that

\[(15) \quad E_{\tilde{\theta}} \varphi_G^*(x) \geq E_{\theta} \varphi_G^*(x), \]

where $\varphi_G^*(x)$ denotes an optimal test for testing $H_G: \theta \in G$ at level α against K.

Definition 2 is suggested by the following consideration: It can be shown that there exists always an optimal test φ^* such that

\[(16) \quad \sup_{\theta \in \Theta} E_{\theta} \varphi^*(x) = \alpha \]

otherwise the test

\[\tilde{\varphi}^*(x) = \left((1 - \alpha) \varphi^*(x) + \alpha - \sup_{\theta \in \Theta} E_{\theta} \varphi^* \right) / \left(1 - \sup_{\theta \in \Theta} E_{\theta} \varphi^* \right) \]

would satisfy (16) and would have at least as much power as φ^*. Because of (2) no least favorable distribution would exist if
(17) $E_{\theta^*}^G(x) < \alpha$ for all $\theta \in \Theta$.

By definition 2 we have characterized a set G for which the equality $E_{\theta^*}^G(x) = \alpha$ holds as it is seen by

Lemma 2. If G is a least favorable support then the test φ_G^* is also optimal for $H: \theta \in \Theta$ at level α against K.

Proof. Since φ_G^* is at level α for $H: \theta \in G$ we have

$E_{\theta^*}^G(x) < \alpha$ for all $\theta \in G$.

Condition (15) implies that (18) holds for all $\theta \in \Theta$. Since $\Phi_{\alpha, H}$ is a subset of Φ_{α, H_G} and φ_G^* is optimal in Φ_{α, H_G}, φ_G^* will be optimal also in $\Phi_{\alpha, H}$.

Examples of least favorable supports are for instance the sets on which the least favorable distributions derived in [10], 3.8, 3.9 and 8.2 or in [6] are concentrated. The following simple example shows that a least favorable support may not be determined uniquely.

Let W be the class of distributions which have densities $p_\theta(x) = \theta x(1-\theta)^{1-x}$ with respect to the counting measure μ, $\Gamma = \{0, 1\}$, $H: \theta \in \Theta = (0, 1/2), (1/2, 1)$, $K : \theta' = 1/2$. Here every $G(\eta) = \{\eta, 1-\eta\}$, $\eta \in \Theta$, will be a least favorable support since $\varphi_G^*(\eta)$ will be identically equal to α for every $\eta \in \Theta$.

An interesting example for that (17) holds and hence no least favorable distribution exists is given by Lehmann [11], p. 413; another typical case is discussed in [15], example 2.23.

In the proof of the existence theorem of this section we will use the following

Lemma 3. Let $\{f_n(x)\}$ be a sequence of μ-integrable functions which converges pointwise μ-a.e to the μ-integrable function $f_0(x)$. Then it follows that
\[
\lim_{n \to \infty} \int_{S_n} f_\circ(x) \, d\mu = \int_{S_\circ} f_\circ(x) \, d\mu,
\]
where the sets \(S_n \) and \(S_\circ \) are defined by
\[
S_n = \{x : f_n(x) > 0\} \quad \text{and} \quad S_\circ = \{x : f_\circ(x) > 0\}.
\]

Proof. Let \(T \) be defined by \(T = \{x : f_\circ(x) = 0\} \) and let \(I_S(x) \) be the characteristic function of a set \(S \). If \(x_\circ \in \lim \sup S_n \), i.e., if \(f_n(x_\circ) > 0 \) for infinitely many \(n \), it follows that \(\lim f_n(x_\circ) = f_\circ(x_\circ) > 0 \).

Hence we have
\[
(19) \quad \lim \sup S_n \subset S_\circ \cup T.
\]

By similar arguments we can show that
\[
(20) \quad \lim \inf S_n \supset S_\circ
\]
and that for \(x_\circ \notin S_\circ \cup T \)
\[
(21) \quad \lim \inf I_{S_n}(x_\circ) = \lim \sup I_{S_\circ}(x_\circ) = 0.
\]

From formulæ (19)-(21) it follows that
\[
\lim \sup f_\circ(x) I_{S_n}(x) \leq f_\circ(x) \lim \sup I_{S_n}(x) \leq f_\circ(x) I_{S_\circ \cup T}(x), \quad \text{and}
\]
\[
f_\circ(x) I_{S_\circ}(x) \leq f_\circ(x) \lim \inf I_{S_n}(x) \leq \lim \inf f_\circ(x) I_{S_n}(x).
\]

Since \(f_\circ(x) I_{S_n}(x) \) is bounded by the \(\mu \)-integrable function \(|f_\circ(x)| \), we can apply the lemma of Fatou and get
\[
\lim \sup \int f_\circ(x) I_{S_n}(x) \, d\mu \leq \int \lim \sup f_\circ(x) I_{S_n}(x) \, d\mu \leq \int f_\circ(x) \lim \sup I_{S_n}(x) \, d\mu = \int f_\circ(x) I_{S_\circ \cup T}(x) \, d\mu \leq \int f_\circ(x) \lim \inf I_{S_n}(x) \, d\mu \leq \int \lim \inf f_\circ(x) I_{S_n}(x) \, d\mu \leq \lim \inf \int f_\circ(x) I_{S_n}(x) \, d\mu,
\]
which shows that \(\lim \int f_\circ(x) I_{S_n}(x) \, d\mu = \int f_\circ(x) I_{S_\circ}(x) \, d\mu \).

Theorem 4. Let \(\Theta \) be a complete, separable metric space and \(\mathcal{F} \) be the \(\sigma \)-field generated by the closed sets of \(\Theta \). \(f_\circ(x) \) is assumed to be \(\mu \times \Theta \)-measurable and to be bounded by a \(\mu \)-integrable function \(g(x) \) such that
\(P_\theta(x) \leq g(x) \) for all \(\theta \in \Theta \). If under these conditions there exists a compact least favorable support \(G \in \mathcal{W} \) then there exists a regular \(\sigma \)-additive l.f.s.f. \(\lambda^* \) on \(\mathcal{W} \). Moreover \(\lambda^*(\Theta) \) will be less than or equal to \(1/\alpha \).

Proof. According to the remarks made in connection with formulae (4) and (5) \(\lambda^* \) will be a l.f.s.f. if

\[
E_\theta \rho^* = f(\lambda^*).
\]

Because of lemma 2 it will be sufficient to show that a \(\lambda^* \) exists which satisfies

\[
\delta = E_\theta \rho^* = f(\lambda^*).
\]

From (5) it follows that there exists a sequence \(\{\lambda_n\} \) of finite measures \(\lambda_n \) such that

\[
\delta = \lim_{n \to \infty} (\alpha \lambda_n(G) + \int_{\mathcal{X}} (p_\theta'(x) - \int_{\mathcal{X}} p_\theta(x) d\lambda_n) d\mu).
\]

Since we can choose \(\{\lambda_n\} \) in such a way that \(\lambda_n \) is concentrated on finitely many points of \(G \), i.e. \(\lambda_n \) for fixed \(n \) is concentrated on a compact subset of \(G \), \(\{\lambda_n\} \) can be assumed to be a sequence of regular measures. For such measures a weak convergence is defined in the following way: \(\{\lambda_n\} \) converges weakly to \(\lambda_0 \) iff \(\int_{\Theta} f(\theta) d\lambda_n \) converges to \(\int_{\Theta} f(\theta) d\lambda_0 \) for all bounded continuous functions \(f \). By Prohorov [13], theorem 1.12, it is shown that \(\{\lambda_n\} \) will have a weak limit \(\lambda_0 \) iff there exists a constant \(M \) such that

\[
\lambda_n(G) \leq M \quad \text{for all } n,
\]

and for every \(\varepsilon > 0 \) there exists a compact set \(K_\varepsilon \) such that for all \(n \)

\[
\lambda_n(G - K_\varepsilon) < \varepsilon.
\]

Since \(f(\lambda_n) \geq \alpha \lambda_n(G) \) holds for all \(n \) we can choose \(\{\lambda_n\} \) so that
(24) \[1 \geq \delta \geq \alpha \lambda_n (G), \]

and hence (22) will be satisfied. From the compactness of G it follows
that (23) is also satisfied so that \{\lambda_n\} has a weak limit \lambda_\infty.

Formula (24) shows that \lambda_\infty (G) is bounded by 1/\alpha.

It remains to show that

(25) \[\lim_{n \to \infty} \int \left(p_{\theta}(x) - \int p_{\theta}(x) d\lambda_n \right) d\mu = \int \left(p_{\theta}(x) - \int p_{\theta}(x) d\lambda_\infty \right) d\mu. \]

The weak convergence of \{\lambda_n\} to \lambda_\infty implies that

(26) \[\lim_{n \to \infty} \int p_{\theta}(x) d\lambda_n = \int p_{\theta}(x) d\lambda_\infty \quad \text{\(\mu \)-a.e.} \]

Let \(f_n(x) \) and \(f_\infty(x) \) be defined by

\[f_n(x) = p_{\theta_1}(x) - \int p_{\theta}(x) d\lambda_n, \quad f_\infty(x) = p_{\theta_1}(x) - \int p_{\theta}(x) d\lambda_\infty \]

and \(S_n \) and \(S_\infty \) be defined as in lemma 3. Since by assumption

\[| f_n(x) | \leq \frac{p_{\theta_1}(x) + g(x)}{\alpha}, \]

we can for \(f_n(x) \) apply the theorem of the dominated convergence. Hence

\[\int_{S_n} f_n(x) d\mu \]

will tend to \(\int_{S_\infty} f_\infty(x) d\mu \) uniformly in \(S_n \) as \(n \) tends to infinity

so that for every \(\varepsilon > 0 \) the inequality

(27) \[| \int_{S_n} f_n(x) d\mu - \int_{S_n} f_\infty(x) d\mu | \leq \varepsilon/2, \]

holds for sufficiently large \(n \).

Since lemma 3 implies that for sufficiently large \(n \)

(28) \[| \int_{S_n} f_\infty(x) d\mu - \int_{S_\infty} f_\infty(x) d\mu | \leq \varepsilon/2, \]

(25) can be shown to be true with the help of the triangle inequality.

By defining \(\lambda^*(C) = \lambda_\infty (CG), \quad C \in \mathcal{V}, \) we get a measure which has the desired properties.

Remark 1. It is likely that the compactness condition on the least favorable support G can be weakened by a similar condition as it is given in (23).
Remark 2. Clearly the methods of section 2 can be applied also in connection with a least favorable support. On the other hand if Θ itself is compact the method used in the proof of theorem 3 is also applicable to prove the existence of a least favorable measure.
References

