Some Notes on the Application of
Sequential Methods in the Analysis of Variance

By

N. L. Johnson

Institute of Statistics
Mimeograph Series No. 61
Limited Distribution
November, 1952

1. This research was supported in part by THE UNITED STATES
AIR FORCE under Contract AF 18(600)-83 monitored by the Office of
Scientific Research.
SUMMARY

Sequential tests of linear hypotheses in the systematic linear model are studied. Methods of overcoming difficulties in the construction of tests when there is a random model are considered.

1. INTRODUCTION

The original methods of constructing sequential tests required problems to be formulated as discrimination between two simple hypotheses. In cases where composite hypotheses were involved a more or less arbitrary weighting function was introduced so that the problem could in effect be reduced to discrimination between simple hypotheses. Recent work by Barnard and Cox has made it possible to extend the sphere of application of sequential tests to a number of cases where composite hypotheses are to be compared. Barnard refers to unpublished work by C. M. Stein on this problem and there is a remark in which implies that both Stein and M. A. Girshick approach the problem from the same angle as Cox.

It is the purpose of these notes to discuss some points of detail arising in the application of sequential methods to the particular type of composite hypotheses associated with the analysis of variance. Tests of the general linear hypothesis in systematic (parametric) models will be discussed first, followed by a discussion of component of variance models for simple special cases.
2. THE GENERAL LINEAR HYPOTHESIS

It will be helpful to start with a brief resume of the general linear hypothesis and its likelihood ratio test in the case of samples of fixed size \(\sum_{5}^{7} \), \(\sum_{6}^{7} \).

It is assumed that

(i) \(x = (x_1, \ldots, x_N) \) are \(N \) independent Normal variables

(ii) \(\mathcal{Y}(x) = \Theta C' \)

where \(\Theta = (\theta_1, \ldots, \theta_s) = (\theta_{s-q}, \ldots, \theta_{s-q+1}, \ldots, \theta_s) \)

\[\theta = (\theta(1), \theta(2)) \]

\[C = \begin{pmatrix} c_{11} & \cdots & c_{1s} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ c_{s1} & \cdots & c_{ss} \end{pmatrix} \quad (s < N) \]

\[\Theta = (C(1), C(2)) \]

where \(C \) is partitioned between the \((s-q)\)th and \((s-q+1)\)th columns, as also is \(\Theta \).

(iii) \text{var} \(x_i = \sigma^2 \quad (i = 1, \ldots, N) \)

(iv) The \(\Theta 's \) and \(\sigma^2 \) are unknown parameters; the \(c 's \) are known constants, defined by the design of the experiment.

The hypothesis to be tested is

\[H_0 : \Theta(2) = (0, 0, \ldots, 0) = 0 \]

A likelihood ratio criterion for this test is provided by any monotonic function of \(G = S_b/S_a \), where

\[S_a \] is the minimum of \((x - \Theta C')(x - \Theta C')'\) with respect to \(\Theta \)

\[S_a + S_b \] is the minimum of \((x - \Theta(1)C(1)')(x - \Theta(1)C(1))'\) with respect to \(\Theta(1) \).
It can be shown that the probability density function of G satisfies
\[p(G \mid \Theta(2)^{-1}) = e^{\frac{1}{2}\lambda} p(G \mid 0) M(\frac{1}{2}(N-s+a), \frac{1}{2}, \frac{1}{2}\lambda G(1+G)^{-1}) \]
where
\[\lambda \sigma^2 = \Theta(2) C(2)(1) C(1) C(1) \]
and
\[M(X,Y;u) = \sum_{j=0}^{\infty} \frac{\Gamma(X)\Gamma(X+u)}{\Gamma(Y)\Gamma(Y+u)} \cdot \frac{u^j}{j} \]
is a confluent hypergeometric function.

3. SEQUENTIAL ANALYSIS FOR THE SYSTEMATIC MODEL

Now consider a sequential form of experiment in which successive x's, or sets of x's, are measured until a decision is reached. As the experiment is continued, so will C grow by the addition of further rows. The way in which it is decided to obtain each successive observation (or set of observations) will determine the numerical values of the c's in the successive rows of C. In these notes only those cases where the design is predetermined (i.e., where the c's are not random variables depending on the results of earlier measurements) will be considered, although it would appear, intuitively, that determination of the c's on the basis of results already observed would lead to improved procedures.

At each stage in the experiment a value $G^{[-N]}$ may be calculated. (The superscript $[-N]$ means 'pertaining to sample size N', and will be omitted when confusion is not likely to be incurred by such omission). The distributions of the corresponding random variables will depend on $\Theta(2)\sigma^{-1}$ through the parameters $\lambda^{[-N]}$. It might be hoped to use the sequence $G^{[-N]}$ in a test to discriminate between the hypotheses.
\[H_j : \theta(2)^{-1} = \Delta_j \quad (j = 1, 2) \]

(Evidently by taking \(\Delta_1 = 0 \) and choosing \(\theta(2)^{-1} \) suitably a sequential test discriminating between \(H_1 \) and \(H_2 \) could be compared with the likelihood ratio test of \(H_0 \)).

Such a sequential test could certainly be obtained if

\[p(\lambda^{2-1}, \ldots, \lambda^{N-1}) = p(\lambda^{2-1} | \theta(2)^{-1}) f(\lambda^{2-1}, \ldots, \lambda^{N-1}) \]

where \(f(\lambda^{2-1}, \ldots, \lambda^{N-1}) \) does not depend on \(\theta(2)^{-1} \). Cox \(-3-7\) gives conditions under which (2) is true.

If it is possible to pick out a subsequence \(\{\lambda^{N-1}\} \) such that each of the terms in the corresponding subsequence \(\{\lambda^{N-1}\} \)
depend only on the same scalar function of \(\theta(2)^{-1} \) then it can be shown that Cox's conditions apply, and so

\[p(\lambda^{N-1}, \ldots, \lambda^{N-1} | \theta(2)^{-1}) = p(\lambda^{N-1} | \theta(2)^{-1}) f(\lambda^{N-1}, \ldots, \lambda^{N-1}) \]

Since \(p(\lambda^{N-1} | \theta(2)^{-1}) \) depends only on \(\lambda^{N-1} \) which is itself required to depend only on some scalar function \(\theta(2)^{-1} \) of \(\theta(2)^{-1} \)
we may write

\[p(\lambda^{N-1}, \ldots, \lambda^{N-1} \theta(2)^{-1}) = p(\lambda^{N-1} | \theta(2)^{-1}) f(\lambda^{N-1}, \ldots, \lambda^{N-1}) \]

It follows that

(a) all hypotheses (about \(\theta(2)^{-1} \)) which specify the same value for \(\theta(2)^{-1} \) will be, for present purposes, equivalent

(b) a sequential test for discriminating between the hypotheses

\[H' : \theta = \theta' \quad \text{and} \quad H'' : \theta = \theta'' \]

will be specified by instructions of the form
(I) "Accept \(H' \) if \[
\frac{p(\bar{G}^{N_n} | \phi''})}{p(\bar{G}^{N_n} | \phi')} \leq \frac{\beta}{1 - \alpha}
\]

Accept \(H'' \) if \[
\frac{p(\bar{G}^{N_n} | \phi'')}{p(\bar{G}^{N_n} | \phi')} \geq \frac{1 - \beta}{\alpha}
\]

Otherwise take a further set of \(N_{n+1} - N_n \) observations in accordance with the prescribed pattern

provided this sequence of operations terminates with probability one when either \(H' \) or \(H'' \) is true.

The 'prescribed pattern' will, of course, be such that \(\bar{N}_{n+1} \)
depends only on \(\phi(\bar{G}^{N_n}_2 s^{-1}) \).

4. LIMITING FORM OF THE TEST

Decision to take a further set of observations will be made if

\[
\frac{\beta}{1 - \alpha} < \frac{p(G | \phi'')}{p(G | \phi')} < \frac{1 - \beta}{\alpha}
\]

where we have, for convenience, dropped the superscript \(\bar{N}_{n+1} \).

From (1) this is equivalent to

\[
(2) \quad A + \frac{1}{2}(\lambda'' - \lambda') < \log M\left(\frac{1}{2}(N_n - q), \frac{1}{2}q; \frac{1}{2}\lambda'' y^2 \right)
- \log M\left(\frac{1}{2}(N_n - q), \frac{1}{2}q; \frac{1}{2}\lambda' y^2 \right) < B + \frac{1}{2}(\lambda'' - \lambda')
\]

where \(A = \log \frac{\beta}{1 - \alpha} ; B = \log \frac{1 - \beta}{\alpha} ; y = \frac{1}{2}(1 + G)^{\frac{1}{2}} \)

The application of tests of this type (for \(q > 1 \)) requires tables of \(M(X,Y;u) \) rather more extensive than are known to the author at present. We can, however, make certain deductions about inequalities
(2), incidentally showing that in certain important cases, the sequence does, indeed, terminate with probability one when either H' or H'' is true.

It will be assumed from now on that $\phi'' \geq \phi'$ and $\lambda'' \geq \lambda'$. As u increases from 0 to 1, \(\int \log M(X, Y; \frac{1}{2\lambda''}u) - \log M(X, Y; \frac{1}{2\lambda'}u) \) increases from 0 to \(\int \log M(X, Y; \frac{1}{2\lambda''}u) - \log M(X, Y; \frac{1}{2\lambda'}u) \) (if $X > 0$ and $Y \geq 0$). Hence (2) is equivalent to

\[G(N_n, \alpha, \beta, \lambda', \lambda'') < G < \tilde{G}(N_n, \alpha, \beta, \lambda', \lambda'') \]

G and \tilde{G} being fixed numbers defined by the quantities in brackets.

(N.B. If $A + \frac{1}{2}(\lambda'' - \lambda') \geq 0$ then $\tilde{G} = 0$ while if $B + \frac{1}{2}(\lambda'' - \lambda') \geq \log M(X, Y; \frac{1}{2\lambda''}u) - \log M(X, Y; \frac{1}{2\lambda'}u)$ then $\tilde{G} = \infty$).

Now consider the special case where successive sets of k observations are taken, so that $N_n = kn$, and each set is arranged in the same pattern, so that identical sets of rows are added to C at each stage.

In this case it is possible to take $\phi = \lambda'\frac{\gamma}{\sqrt{k}}/k$ and then $\lambda'\frac{\gamma}{\sqrt{n}} = \lambda'\frac{\gamma}{\sqrt{k}} = nk\phi$ is a function of ϕ only. (ϕ may be thought of as 'non-centrality per unit observation'). (2) now becomes

\[A + \frac{1}{2}nk(\phi'' - \phi') < \log M(\frac{1}{2}(nk-s+q), \frac{1}{2}q; \frac{1}{2}nk\phi''y^2) \]
\[- \log M(\frac{1}{2}(nk-s+q), \frac{1}{2}q; \frac{1}{2}nk\phi'y^2) < B + \frac{1}{2}nk(\phi'' - \phi') \]

Now Perron \(\sum_{\gamma} \) has shown that

\[M(X, Y; u) = \frac{\Gamma(y)}{2/\pi} e^{\frac{1}{2}u} (Xu)^{\frac{1}{4}} - \frac{1}{2}Y e^{\frac{1}{2}Xu} (1 + o(X^\frac{1}{2})) \]

Hence from (4) if n is large and $\phi' \neq 0$, we have

\[A + \frac{1}{2}nk(\phi'' - \phi') + o(n^{-\frac{1}{2}}) < \frac{1}{4}(q-1) \log(\phi'/\phi'') + \frac{1}{4}nk(\phi'' - \phi')y^2 + \]
\[n\sum_{k} k-(s-q)n^{-\frac{1}{2}} \left(\sqrt{\phi''} - \sqrt{\phi'} \right) y < B + \frac{1}{2}nk(\phi'' - \phi') + o(n^{-\frac{1}{2}}) \]
Remembering that $\phi'' > \phi'$, (5) may be rearranged to give

\[2 + \frac{(q-1)\log(\phi''/\phi') + 4B}{nk(\phi''-\phi')} + o\left(n^{-\frac{3}{2}}\right) \]

This implies

\[\left| y^2 + \frac{4}{\sqrt{\phi'' + \sqrt{\phi'}}} \right| < 0(n^{-1}) \]

As n tends to infinity, y tends to $\phi'(1+\phi)$ and y^2 tends to $\phi'(1+\phi)^{-1}$ in probability. In general, we shall not have

\[\frac{\phi}{1 + \phi} + \frac{4}{\sqrt{\phi'' + \sqrt{\phi'}}} \sqrt{\phi'} = 2 \]

for either $\phi = \phi'$ or $\phi = \phi''$ so that the sequence (I) will terminate with probability one in either case.

It is of interest to note that large samples are not likely to be reached unless (7) is satisfied, at any rate approximately. From (7)

\[\frac{1}{\phi^2(1+\phi)} = 2 \left[1 + \frac{1}{2} (\sqrt{\phi'' + \sqrt{\phi'}})^2 \right] + \frac{1}{2} \left(\sqrt{\phi'' + \sqrt{\phi'}} \right)^{-1} \]

Since $0 \leq \phi/(1+\phi) \leq 1$, (8) cannot be satisfied if $\sqrt{\phi'' + \sqrt{\phi'}} > 4$. Hence unless ϕ'' (and so also ϕ') is small enough it is likely that large sample sizes will be reached. ("Large" is here used in the sense of "large compared to the average sample size when $\phi = \phi'$ or $\phi = \phi''$".) We may note that if both ϕ'' and ϕ' are small (8) gives

\[\sqrt{\phi} = \frac{1}{2} (\sqrt{\phi''} + \sqrt{\phi'}) \]
which is not unexpected on intuitive grounds.

The argument above applies to the case $\phi' \neq 0$.

If $\phi' = 0$ then instead of (5) we obtain

$$A + \frac{1}{2} nk\phi'' + O(n^{-\frac{3}{2}}) < \frac{1}{4} (q-1) \log k \phi'' + \frac{1}{4} nk \phi'' \gamma^2 + nk \left\{ 1 - (s-q)/nk \right\} \frac{1}{2} \sqrt{\phi''}$$

$$< C + \frac{1}{2} nk\phi'' + O(n^{-\frac{3}{2}})$$

leading finally to (7) with $\phi' = 0$.

5. ONE-WAY CLASSIFICATION

The special case of one-way classification into k groups will now be considered. At each stage we decide whether or not to take a further set of k observations, one from each group. The usual systematic model

$$x_{ti} = a + b_t + z_{ti} \quad (t=1, \ldots, k; \ i=1, \ldots, n; \ \Sigma_t b_t = 0)$$

is included in the general linear model described in section 2. Then, in the notation of section 3, $N_n = nk$, $s = k$ and the hypothesis $b_t = 0 \ (t = 1, \ldots, k)$ implies $q = k - 1$. Further

$$Q_{nk}^{-nk} = n \Sigma_t (\bar{x}_{ti} - \bar{x})^2 / \Sigma_t (x_{ti} - \bar{x}_t)^2$$

$$Q_{nk}^{nk} = n \Sigma_t b_t^2 / \sigma^2 \quad \phi = \Sigma_t b_t^2 / k\sigma^2$$

Hence the sequence Q_{nk}^{-2n}, Q_{nk}^{-3n}, \ldots may be used in a sequential test based on discrimination between

$$H' : \Sigma b_t^2 / k\sigma^2 = \phi'$$

and $$H'' : \Sigma b_t^2 / k\sigma^2 = \phi''$$

and constructed as in (I).
6. RANDOM MODEL IN THE ONE-WAY CLASSIFICATION

It is well-known that sometimes a model different from (9) may be used. This is

\[x_{ti} = a + u_t + z_{ti} \]

(10)

where the \(u \)'s are Normal variables, each with expected value zero and standard deviation \(\sigma_R \), mutually independent and also independent of the \(z \)'s. This model is often called the 'random' or 'component of variance' model. In this case

\[p(G_{\lambda R}^{-nk}, \delta) = \frac{(1+n\delta')^{\frac{1}{2}} k(n-1)}{B(\frac{1}{2}(k-1), \frac{1}{2}k(n-1))} \frac{(G_{\lambda R}^{-nk})^{\frac{1}{2}}(k-3)}{(1+n\delta' + G_{\lambda R}^{-nk}, \delta)^{\frac{1}{2}}(kn-1)} \]

(11)

where \(\delta = \sigma^2 / \sigma^2 \). This depends only on \(\delta' \) which plays the part played by \(\delta \) in the systematic model. Cox's result shows that the sequence \(G_{\lambda R}^{-2n}, G_{\lambda R}^{-3n}, \ldots \) may be used in a sequential test based on discrimination between \(H_R^1: \delta = \delta' \) and \(H_R^2: \delta = \delta'' \) provided the procedure specified terminates with probability one.

the procedure will be

\[(\text{II}) \quad \text{"Accept } H_R^1 \text{ if } f(G, \delta', \delta'') < \beta / (1-\alpha) \]

\[\text{Accept } H_R^2 \text{ if } f(G, \delta', \delta'') > (1-\beta) / \alpha \]

Otherwise measure one further item in each of the \(k \) groups

where \(f(G, \delta', \delta'') = \left(\frac{1+n\delta''}{1+n\delta'} \right)^{\frac{1}{2}} \frac{k(n-1)}{2} \left(\frac{1+n\delta'}{1+n\delta'' + G} \right)^{\frac{1}{2}}(kn-1) \)

Under this procedure, sampling will be continued whenever

\[G_R < G < \tilde{G}_R \]
where (12) \(G_R = \alpha(\delta'' - \delta') (1 - \varepsilon)^{-1} - 1; \quad \bar{G}_R = \alpha(\delta'' - \delta') (1 - \bar{\varepsilon})^{-1} - 1 \)

\[
\varepsilon = (\frac{\beta}{1 - \alpha}) \gamma (k - 1) \left(1 + \frac{n \delta'}{1 + \alpha} \right) \left(\frac{k n - 1}{k n - 1} \right)
\]

\[
\bar{\varepsilon} = (\frac{1 - \beta}{\alpha}) \gamma (k - 1) \left(1 + \frac{n \delta'}{1 + \alpha} \right) \left(\frac{k n - 1}{k n - 1} \right)
\]

It can easily be shown that, if \(\delta'' > \delta' > 0 \)

\[
\lim_{n \to \infty} G_R = \sqrt{2A + (k - 1) \log (\delta'' / \delta')} / (k(\delta' - 1 \delta'' - 1))
\]

\[
\lim_{n \to \infty} \bar{G}_R = \sqrt{2B + (k - 1) \log (\delta'' / \delta')} / (k(\delta' - 1 \delta'' - 1))
\]

so that \(\lim_{n \to \infty} G_R \neq \lim_{n \to \infty} \bar{G}_R \)

On the other hand, if \(\delta' = 0 \) (the case considered by Cox)

\[
\lim_{n \to \infty} G_R = \lim_{n \to \infty} \bar{G}_R = 0
\]

The random model can be regarded as a mixture of systematic models in which the quantity \(\Sigma b_{t}^2 / k \sigma^2 = \phi = 0 \) is distributed as \(\mathcal{E} \chi^2_{k-1} / \phi \). For any systematic model such that

\[
\lim_{n \to \infty} G_R < \phi < \lim_{n \to \infty} \bar{G}_R
\]

there is a non-zero probability that \(G_R < a \sqrt{nk} \bar{G}_R \). If \(\delta' \neq 0 \) there will be a non-zero proportion of systematic models, in the mixture constituting the random model, for which this is the case.

Hence, the sequential procedure outlined above for \(\delta'' > \delta' > 0 \) will not conclude with probability one unless \(\delta' = 0 \).

Now consider the test based on \(\delta'' > \delta' = 0 \). This will terminate with probability one both when \(\delta = \delta'' \) and when \(\delta = 0 \), and
so can be used as a sequential test. Some values of G_R and G_R for this case are given in Tables Ia and Ib. As might be expected the procedure is not very practicable for small values of k. For example, in neither of the cases covered by the tables is it possible to obtain a decision in favor of $H' (\delta = 0)$ with $n \leq 60$ if $k = 2$. In such cases it will probably be a good scheme to curtail testing at some convenient value of n and 'accept $\delta = 0$' if no previous decision has been reached.

7. ALTERNATIVE PROCEDURES

An alternative method of procedure is to keep n constant and to decide, at each stage, whether to choose another group at random and take a sample of n from it. This method, which may sometimes be practicable, has the advantage that it has in general a probability of one of concluding even when based on a non-zero value for δ' . Since the ratio $p(G | \delta')/p(G | \delta)$ will have the same mathematical expression as in (II) it follows that the appropriate values of G_R, G_R are those given by (12). Further, in the case when $\delta' = 0$ tables such as Table I may be used in carrying out the test, proceeding along the rows of the table (i.e., increasing k) instead of down the columns (i.e., increasing n).

By analogy with the case of samples of fixed size it would be expected that this latter procedure should give, in general, a lower average sample number (of individuals) than the method based on increasing n.

It is interesting to note that, while it is impossible
to construct a fixed size sample test using G as criterion if $\delta' \neq 0$
unless k exceeds a certain minimum value depending on α, β and δ''/δ',
for a sufficiently large k a fixed sample size test is available.
This suggests that there should be sequential tests, having the required properties, available for a somewhat wider range of values of k.

8. FURTHER ALTERNATIVE PROCEDURES

Owing to the method of construction of our tests it is not possible to use Wald's approximate formula for average sampling number, which applies only when the sequence of random variables used in the test are mutually independent. Barnard's approach [2] seems to be useful in this connection as it shows that the test can be considered as a limiting case of a series of sequential tests of standard form. However, this approach leads to rather intractable formulae.

It, therefore, seems worthwhile to note that the hypotheses discussed in earlier sections can be subjected to sequential tests of standard type based on sequences of independent random variables. This was pointed out to me by A. G. Baker, but the idea has also been used by O. J. Carpenter[10].

In the systematic case such a test can be constructed as follows. Successive samples of size $m(\geq 2)$ are taken from each of the k groups. A value, g, of G is calculated separately for each such sample of size km and the sequence of independent g's so obtained used in a sequential procedure constructed in the usual manner.

Such a procedure will not, however, lead to independent g's in the random model. If a new set of k groups is chosen at random each
time, and an observation taken from each, then the successive g's will be independent: If we denote the ith. value obtained by g\textsubscript{i} the procedure will be

\((III)\) "After the nth set of km observations;-

\[\frac{n}{\sum_{i=1}^{n} \log \frac{1+m \delta' + g_i}{1+m \delta'' + g_i}} \leq \frac{2A}{km-1} + \frac{nk(m-1)}{km-1} \log \frac{1+m \delta'}{1+m \delta''} \]

Accept H': \(\delta = \delta' \) if

\[\frac{n}{\sum_{i=1}^{n} \log \frac{1+m \delta' + g_i}{1+m \delta'' + g_i}} \leq \frac{2B}{km-1} + \frac{nk(m-1)}{km-1} \log \frac{1+m \delta'}{1+m \delta''} \]

Accept H'': \(\delta = \delta'' \) if

Otherwise take a further sample of n from each group."

In this case, using Wald's approximate formula for average sample number, the approximate expected number of individuals to be observed is

\[\frac{mk \{A(l-\alpha)+B \alpha \}}{E_{m,k}(\delta')} \text{ if } H' \text{ is true} \]

\[\frac{mk \{B(l-\beta)+A \beta \}}{E_{m,k}(\delta'')} \text{ if } H'' \text{ is true} \]

where \(E_{m,k}(\xi) = \int \log \frac{p(\xi' \mid \delta'' \gamma)}{p(\xi' \mid \delta'')} | \delta'' \gamma = \frac{1}{2} k(m-1) \log \frac{1+m \delta''}{1+m \delta'} + \frac{1}{2}(km-1) \int \log \frac{1+m \delta' + g}{1+m \delta'' + g} | \delta'' \gamma \)

The leading terms of a useful approximate expression for \(E_{m,k}(\xi) \), (obtained by the method of statistical differentials) are

\[E_{m,k}(\xi) = \frac{1}{2} k(m-1) \log \frac{1+m \delta''}{1+m \delta'} + \frac{1}{2}(km-1) \int \log \frac{R'}{R''} \]

\[+ \frac{m^2(k-1)}{km+1} \left\{ \frac{(\delta' - \delta'')^2}{R''^2} - \frac{(\delta' - \delta''')^2}{R''^2} \right\} \]

\[- \frac{2m^3(m-1)(k-1)(km-1)}{3(km+1)(km+3)} \left\{ \frac{(\delta' - \delta'')^3}{R''^3} - \frac{(\delta' - \delta''')^3}{R''^3} \right\} \]
where

\[R' = km - 1 + m(k-1) \delta' + m(m-1)k \delta' \]
\[R'' = km - 1 + m(k-1) \delta'' + m(m-1)k \delta'' \]

Some calculations in the case \(\delta' = 0, \delta'' = 1 \) indicate that, when \(\delta = \delta' = 0 \), the average sampling number will be minimized by taking \(m = 4 \).

REFERENCES

Table 1a

$\delta'' = 1, \; \delta' = 0, \; \alpha = \beta = 0.05$

(1) Values of G_R

<table>
<thead>
<tr>
<th>k</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>60</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.086</td>
<td>.204</td>
<td>.308</td>
<td>.398</td>
<td>.476</td>
<td>.549</td>
<td>.720</td>
<td>.918</td>
<td>1.146</td>
<td>1.414</td>
<td>1.732</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.086</td>
<td>.180</td>
<td>.256</td>
<td>.319</td>
<td>.372</td>
<td>.417</td>
<td>.455</td>
<td>.545</td>
<td>.640</td>
<td>.744</td>
<td>.855</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.037</td>
<td>.126</td>
<td>.194</td>
<td>.249</td>
<td>.292</td>
<td>.328</td>
<td>.359</td>
<td>.385</td>
<td>.444</td>
<td>.505</td>
<td>.569</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.066</td>
<td>.137</td>
<td>.190</td>
<td>.232</td>
<td>.265</td>
<td>.292</td>
<td>.315</td>
<td>.331</td>
<td>.378</td>
<td>.423</td>
<td>.469</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.080</td>
<td>.138</td>
<td>.181</td>
<td>.215</td>
<td>.242</td>
<td>.264</td>
<td>.282</td>
<td>.297</td>
<td>.331</td>
<td>.366</td>
<td>.403</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>.026</td>
<td>.088</td>
<td>.131</td>
<td>.162</td>
<td>.187</td>
<td>.206</td>
<td>.221</td>
<td>.234</td>
<td>.245</td>
<td>.269</td>
<td>.294</td>
<td>.319</td>
<td>.344</td>
<td>.370</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>.033</td>
<td>.088</td>
<td>.126</td>
<td>.159</td>
<td>.175</td>
<td>.192</td>
<td>.206</td>
<td>.217</td>
<td>.226</td>
<td>.247</td>
<td>.269</td>
<td>.290</td>
<td>.312</td>
<td>.335</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>.038</td>
<td>.087</td>
<td>.121</td>
<td>.149</td>
<td>.165</td>
<td>.180</td>
<td>.192</td>
<td>.202</td>
<td>.211</td>
<td>.229</td>
<td>.248</td>
<td>.267</td>
<td>.287</td>
<td>.306</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>.041</td>
<td>.086</td>
<td>.117</td>
<td>.139</td>
<td>.156</td>
<td>.170</td>
<td>.181</td>
<td>.190</td>
<td>.197</td>
<td>.214</td>
<td>.231</td>
<td>.248</td>
<td>.265</td>
<td>.283</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>.043</td>
<td>.084</td>
<td>.112</td>
<td>.133</td>
<td>.148</td>
<td>.161</td>
<td>.171</td>
<td>.179</td>
<td>.186</td>
<td>.201</td>
<td>.216</td>
<td>.232</td>
<td>.248</td>
<td>.263</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>-</td>
<td>.045</td>
<td>.078</td>
<td>.101</td>
<td>.117</td>
<td>.129</td>
<td>.139</td>
<td>.147</td>
<td>.153</td>
<td>.159</td>
<td>.171</td>
<td>.183</td>
<td>.195</td>
<td>.207</td>
<td>.220</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>.004</td>
<td>.044</td>
<td>.069</td>
<td>.086</td>
<td>.098</td>
<td>.107</td>
<td>.115</td>
<td>.121</td>
<td>.125</td>
<td>.130</td>
<td>.138</td>
<td>.147</td>
<td>.156</td>
<td>.165</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
<td>.011</td>
<td>.059</td>
<td>.056</td>
<td>.067</td>
<td>.076</td>
<td>.082</td>
<td>.087</td>
<td>.090</td>
<td>.094</td>
<td>.096</td>
<td>.102</td>
<td>.108</td>
<td>.114</td>
<td>.120</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
<td>.013</td>
<td>.028</td>
<td>.037</td>
<td>.042</td>
<td>.047</td>
<td>.050</td>
<td>.052</td>
<td>.054</td>
<td>.056</td>
<td>.057</td>
<td>.060</td>
<td>.063</td>
<td>.066</td>
<td>.069</td>
</tr>
</tbody>
</table>

(11) Values of \tilde{G}_R

<table>
<thead>
<tr>
<th>k</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>60</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.403</td>
<td>2.106</td>
<td>1.911</td>
<td>1.773</td>
<td>1.671</td>
<td>1.591</td>
<td>1.528</td>
<td>1.398</td>
<td>1.279</td>
<td>1.169</td>
<td>1.068</td>
</tr>
<tr>
<td>4</td>
<td>4.618</td>
<td>2.376</td>
<td>1.756</td>
<td>1.424</td>
<td>1.315</td>
<td>1.208</td>
<td>1.133</td>
<td>1.078</td>
<td>1.035</td>
<td>1.001</td>
<td>.974</td>
<td>.915</td>
<td>.866</td>
<td>.806</td>
<td>.738</td>
<td>.707</td>
</tr>
<tr>
<td>5</td>
<td>2.24</td>
<td>1.410</td>
<td>1.155</td>
<td>1.014</td>
<td>.926</td>
<td>.867</td>
<td>.825</td>
<td>.793</td>
<td>.768</td>
<td>.748</td>
<td>.731</td>
<td>.696</td>
<td>.662</td>
<td>.629</td>
<td>.597</td>
<td>.565</td>
</tr>
<tr>
<td>6</td>
<td>1.465</td>
<td>1.042</td>
<td>.873</td>
<td>.783</td>
<td>.724</td>
<td>.685</td>
<td>.657</td>
<td>.635</td>
<td>.618</td>
<td>.604</td>
<td>.593</td>
<td>.569</td>
<td>.545</td>
<td>.522</td>
<td>.499</td>
<td>.477</td>
</tr>
<tr>
<td>7</td>
<td>1.000</td>
<td>.823</td>
<td>.705</td>
<td>.610</td>
<td>.599</td>
<td>.571</td>
<td>.550</td>
<td>.534</td>
<td>.522</td>
<td>.511</td>
<td>.503</td>
<td>.485</td>
<td>.468</td>
<td>.450</td>
<td>.433</td>
<td>.416</td>
</tr>
<tr>
<td>13</td>
<td>.380</td>
<td>.303</td>
<td>.265</td>
<td>.250</td>
<td>.270</td>
<td>.262</td>
<td>.257</td>
<td>.252</td>
<td>.249</td>
<td>.246</td>
<td>.244</td>
<td>.239</td>
<td>.234</td>
<td>.229</td>
<td>.224</td>
<td>.220</td>
</tr>
<tr>
<td>15</td>
<td>.178</td>
<td>.160</td>
<td>.151</td>
<td>.146</td>
<td>.143</td>
<td>.140</td>
<td>.138</td>
<td>.137</td>
<td>.136</td>
<td>.135</td>
<td>.134</td>
<td>.133</td>
<td>.131</td>
<td>.129</td>
<td>.127</td>
<td>.126</td>
</tr>
<tr>
<td>16</td>
<td>.089</td>
<td>.084</td>
<td>.081</td>
<td>.079</td>
<td>.078</td>
<td>.077</td>
<td>.076</td>
<td>.076</td>
<td>.076</td>
<td>.075</td>
<td>.075</td>
<td>.074</td>
<td>.074</td>
<td>.073</td>
<td>.073</td>
<td>.072</td>
</tr>
<tr>
<td>n \ k</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.057</td>
<td>.168</td>
<td>.216</td>
<td>.405</td>
<td>.635</td>
<td>.904</td>
<td>1.273</td>
<td>1.732</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.030</td>
<td>.104</td>
<td>.167</td>
<td>.221</td>
<td>.269</td>
<td>.382</td>
<td>.507</td>
<td>.646</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.022</td>
<td>.088</td>
<td>.143</td>
<td>.189</td>
<td>.228</td>
<td>.261</td>
<td>.339</td>
<td>.421</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.057</td>
<td>.110</td>
<td>.153</td>
<td>.188</td>
<td>.218</td>
<td>.243</td>
<td>.302</td>
<td>.363</td>
<td>.427</td>
<td>.495</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.018</td>
<td>.074</td>
<td>.117</td>
<td>.152</td>
<td>.181</td>
<td>.206</td>
<td>.226</td>
<td>.273</td>
<td>.321</td>
<td>.371</td>
<td>.423</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.034</td>
<td>.062</td>
<td>.119</td>
<td>.149</td>
<td>.173</td>
<td>.193</td>
<td>.210</td>
<td>.249</td>
<td>.289</td>
<td>.330</td>
<td>.372</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.044</td>
<td>.066</td>
<td>.118</td>
<td>.143</td>
<td>.164</td>
<td>.182</td>
<td>.196</td>
<td>.229</td>
<td>.263</td>
<td>.298</td>
<td>.334</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.001</td>
<td>.050</td>
<td>.087</td>
<td>.115</td>
<td>.138</td>
<td>.156</td>
<td>.171</td>
<td>.184</td>
<td>.213</td>
<td>.242</td>
<td>.272</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.009</td>
<td>.054</td>
<td>.087</td>
<td>.112</td>
<td>.132</td>
<td>.149</td>
<td>.162</td>
<td>.174</td>
<td>.199</td>
<td>.225</td>
<td>.252</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.015</td>
<td>.056</td>
<td>.086</td>
<td>.109</td>
<td>.127</td>
<td>.142</td>
<td>.154</td>
<td>.164</td>
<td>.187</td>
<td>.210</td>
<td>.234</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.020</td>
<td>.057</td>
<td>.085</td>
<td>.106</td>
<td>.122</td>
<td>.136</td>
<td>.147</td>
<td>.156</td>
<td>.177</td>
<td>.198</td>
<td>.219</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.028</td>
<td>.058</td>
<td>.080</td>
<td>.096</td>
<td>.109</td>
<td>.120</td>
<td>.129</td>
<td>.136</td>
<td>.152</td>
<td>.169</td>
<td>.185</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.032</td>
<td>.055</td>
<td>.071</td>
<td>.084</td>
<td>.093</td>
<td>.101</td>
<td>.108</td>
<td>.113</td>
<td>.125</td>
<td>.137</td>
<td>.149</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.010</td>
<td>.032</td>
<td>.047</td>
<td>.058</td>
<td>.066</td>
<td>.073</td>
<td>.078</td>
<td>.082</td>
<td>.086</td>
<td>.094</td>
<td>.102</td>
</tr>
<tr>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.013</td>
<td>.025</td>
<td>.033</td>
<td>.038</td>
<td>.042</td>
<td>.046</td>
<td>.048</td>
<td>.050</td>
<td>.052</td>
<td>.056</td>
<td>.060</td>
</tr>
</tbody>
</table>

(11) Values of \bar{G}_R

<table>
<thead>
<tr>
<th>k</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>60</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>71058</td>
<td>5470</td>
<td>3150</td>
<td>2342</td>
<td>1934</td>
<td>1689</td>
<td>1524</td>
<td>1.407</td>
<td>1.319</td>
<td>1.251</td>
<td>1.196</td>
<td>1.083</td>
<td>.978</td>
<td>.881</td>
<td>.791</td>
<td>.707</td>
</tr>
<tr>
<td>7</td>
<td>7645</td>
<td>2548</td>
<td>1792</td>
<td>1457</td>
<td>1263</td>
<td>1139</td>
<td>1052</td>
<td>.988</td>
<td>.939</td>
<td>.900</td>
<td>.868</td>
<td>.801</td>
<td>.738</td>
<td>.678</td>
<td>.620</td>
<td>.566</td>
</tr>
<tr>
<td>11</td>
<td>2871</td>
<td>1675</td>
<td>1271</td>
<td>1070</td>
<td>.950</td>
<td>.870</td>
<td>.814</td>
<td>.766</td>
<td>.738</td>
<td>.711</td>
<td>.690</td>
<td>.644</td>
<td>.600</td>
<td>.558</td>
<td>.517</td>
<td>.477</td>
</tr>
<tr>
<td>17</td>
<td>1964</td>
<td>1255</td>
<td>.990</td>
<td>.852</td>
<td>.767</td>
<td>.710</td>
<td>.669</td>
<td>.638</td>
<td>.613</td>
<td>.594</td>
<td>.578</td>
<td>.543</td>
<td>.510</td>
<td>.478</td>
<td>.446</td>
<td>.416</td>
</tr>
<tr>
<td>23</td>
<td>1490</td>
<td>1007</td>
<td>.814</td>
<td>.711</td>
<td>.647</td>
<td>.603</td>
<td>.571</td>
<td>.546</td>
<td>.527</td>
<td>.512</td>
<td>.500</td>
<td>.472</td>
<td>.446</td>
<td>.420</td>
<td>.395</td>
<td>.370</td>
</tr>
<tr>
<td>29</td>
<td>1203</td>
<td>.843</td>
<td>.694</td>
<td>.612</td>
<td>.561</td>
<td>.525</td>
<td>.500</td>
<td>.480</td>
<td>.464</td>
<td>.452</td>
<td>.442</td>
<td>.419</td>
<td>.398</td>
<td>.376</td>
<td>.355</td>
<td>.335</td>
</tr>
<tr>
<td>41</td>
<td>.870</td>
<td>.640</td>
<td>.539</td>
<td>.482</td>
<td>.446</td>
<td>.421</td>
<td>.403</td>
<td>.389</td>
<td>.378</td>
<td>.369</td>
<td>.361</td>
<td>.345</td>
<td>.329</td>
<td>.314</td>
<td>.298</td>
<td>.283</td>
</tr>
<tr>
<td>53</td>
<td>.564</td>
<td>.436</td>
<td>.377</td>
<td>.344</td>
<td>.322</td>
<td>.306</td>
<td>.295</td>
<td>.286</td>
<td>.279</td>
<td>.274</td>
<td>.269</td>
<td>.259</td>
<td>.249</td>
<td>.239</td>
<td>.229</td>
<td>.220</td>
</tr>
<tr>
<td>65</td>
<td>.249</td>
<td>.208</td>
<td>.185</td>
<td>.173</td>
<td>.165</td>
<td>.159</td>
<td>.155</td>
<td>.152</td>
<td>.149</td>
<td>.147</td>
<td>.145</td>
<td>.141</td>
<td>.137</td>
<td>.133</td>
<td>.130</td>
<td>.126</td>
</tr>
<tr>
<td>71</td>
<td>.120</td>
<td>.104</td>
<td>.096</td>
<td>.091</td>
<td>.088</td>
<td>.086</td>
<td>.084</td>
<td>.083</td>
<td>.082</td>
<td>.081</td>
<td>.080</td>
<td>.078</td>
<td>.077</td>
<td>.075</td>
<td>.074</td>
<td>.072</td>
</tr>
</tbody>
</table>