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ABSTRACT

Fluid flow, passing at high speed over an open
cavity on a surface, interacts with the structure pro-
ducing pressure fluctuations within the cavity. If
the intensity of the acoustic pressure is large, it may
damage stored instrumentation and electronic de-
vices and induce structural vibration and fatigue.
Several experimental and numerical investigations
have been conducted with the goal of control the
acoustic oscillations. However, the full capability of
these methods have not yet been realized due to lack
of an appropriate model to use in control design.
Here we present one such mathematical model for
the acoustic field in an open cavity in a plane where
flow/acoustic interactions and nonlinear effects are
considered.

INTRODUCTION

When fluid at high speed flows over an open cav-
ity, large acoustic pressure fields inside the cavity
are produced by fluid/structure interactions at the
downstream end of the cavity. In the case of an
airplane, acoustic waves are created in wheelwells
during takeoff and landing, and in weapon and/or
surveillance bays during flight. Pressure fluctuations
can be so high as to damage stored instrumentation
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or structures (see for instance [6]). This increases the
importance of attenuating the pressure field created
within the cavity. In order to succeed in systematic
noise reduction, a mathematical model that captures
the essential features of the physical process will be
fundamental.

A number of authors have studied the physical
mechanism that induces the acoustic waves along
with different means to control it. These efforts have
involved a variety of cavity shapes and Mach num-
bers. It is now known that this physical mechanism
results in different characteristics depending on the
ratio length/depth (I/d) of the cavity. In this re-
gard, a cavity is usually classified as shallow or deep
depending on whether its ratio [/d is greater or is
less than 2, respectively. In our considerations here
we discuss flow over a shallow cavity.

In [6], H.H.Heller and D.B.Bliss consider a shal-
low cavity for analysis and experiments. They de-
scribe the fluid/cavity interaction as a six step feed-
back loop where instabilities of the shear layer cause
a mass addition/removal process at the cavity down-
stream end. They predict the mode shapes and am-
plitudes and implement suppression techniques to
reduce them. In [3], Cain, Bower, McCotter and
Romer consider the cases of supersonic and sub-
sonic/transonic flow and give a classification of the
flow type along with the corresponding pressure pro-
file for each case. They focus on the case of an “open
cavity flow” consisting of cavities satisfying the con-
dition I/d < 10, and describe the problem as a four-
step process where each step is modeled and used to
develop a code for simulation. In [8], Rockwell and
Nausdacher consider three different groups based on



what originates and sustains the oscillations in the
cavity. They discuss the physics characteristics and
mathematical models for the frequencies and ampli-
tudes in each case. In their paper they present an
extensive summary and comparison of efforts prior
to 1978 in terms of analysis, attenuation means and
experimental results.

Here we present a physical-based nonlinear
mathematical model for the fluid/structure interac-
tion in a two-dimensional shallow cavity with 2 <
I/d < 10. In this case the fluid-induced oscillation
process begins when a boundary layer separates at
the upstream end of the cavity, creating an unstable
wave. This wave propagates and amplifies down-
stream across the top of the cavity until it reaches
the downstream end of the cavity, where it interacts
with the structure, generating an acoustic field. The
acoustic wave then propagates back upstream inside
the cavity until it reaches the upstream end, feed-
ing the disturbances in the shear layer (see, e.g., [3],
[6], [8])- In most of the efforts to date, the authors
consider a linear model along with a semi-empirical
formula that predicts modal frequencies (see [3], [6],
8], [9))-

We specify the characteristics of the flow consid-
ering two large regions, one above the shear layer
and one beneath it. The governing equations are
derived where in each case the state equation for
perfect gas is considered. Boundary conditions and
shear layer interface conditions are defined. A weak
formulation suitable for finite element computations
is then given.

MATHEMATICAL MODEL
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Figure 1: Two-Dimensional Open Cavity under

High-Speed Flow

The model presented here is derived from the
conservation laws of mass and momentum and the
state equation, which relates the pressure, the den-
sity and the temperature of the fluid.

We consider the two dimensional problem for
a rectangular shallow cavity where the ratio
length/depth is greater than 2 but less than 10 (re-
ferred to as “open cavity flow” by Cain et al.), as de-
picted in Figure 1. The freestream flow is assumed
to have a uniform mean speed denoted by U with a
Mach number M. The fluid in this region is assumed
to be a perfect gas, with small variations in density,
and thus it may be regarded as incompressible and
viscous. However, inside the cavity, it is assumed
that the viscous effects above the shear layer do not
play a key role in the creation and propagation of
the acoustic waves. Hence, as our first approximat-
ing model we assume a compressible inviscid fluid
above the shear layer, inside the cavity, and incom-
pressible viscous flow everywhere else.

We also assume that the fluid temperature is the
same outside and inside the cavity, and thus the sta-
tionary values for pressure and density are the same
inside and outside of the cavity.

Based on these considerations, we proceed to de-
rive the equations for the motion of the flow.

Governing Equations for the Freestream Flow

Consider first the freestream flow, which is as-
sumed to be viscous, incompressible with a uniform
mean speed U (see Figure 1). Therefore, its motion
may be described by the Navier-Stokes equations

Ouy 1
Yy (uyVuy = —V- [u (vuf + (vuf)T)]
ot Py
Vpy
-—, (1)
Ps
the continuity equation or conservation of mass law,
dp
== Vlprug) = Vo (2)
and the state equation for perfect gas
py = pyRT, (3)

where uy = (uy,vy) is the velocity of the flow, py
is density, p is the viscosity coefficient, py is the
pressure, R is a constant, called the gas constant,
and T is the temperature. If the fluid’s viscosity
1 is taken to be constant in space, the equation of
motion (1) becomes

0 | vy = Pau, - YPL
ot Py Py



Remark 1 If p does not depend on space we have

V- [ (Vuy + (Vap)")| = w9 (Vuy + (Tup)")
and since
V- (Vuy)" =V (Veuy),

which vanishes for incompressible flow, it turns out
that

V- [u (Vuf + (Vu,c)T)} = uV-Vuy = pAuy.

The speed of sound of a perfect gas, denoted by
¢, is given by

2
¢ =vRT, = —,
Y ; Y c,’
where (), is the specific heat at constant pressure
and C, is the specific heat at constant volume. In
particular, v = 1.4 for air. Then, the equation of
state is given by

C2

Py = =P ()
Y
Note that we assume that the temperature is con-
stant, thus the speed of sound c is also constant. By
defining

2 ¢
g =—,
Y

we may write
P = Copy- (6)
Combining the continuity equation (2) and the
state equation (6) we have
apf
T —V-(pruy) = —Vps-uyg. (7)
Since variations in fluid density in the freestream
flow are very small, we may approximate p; by its

mean value pg. Therefore, the equations of motion
for the freestream flow reduced to

duy 1 Vs
— 4+ (us-Vury = —Auy— —=% 8
51 (uy-Vuy P s
opy  _
5 =V (pruy) 9)
pr = Cpy (10)

Remark 2 Note that we approzimate py by po only
in the Navier-Stokes equations.

Governing Equations for the Acoustic Waves

The acoustic waves inside the cavity propagate
in a region determined by the shear layer and the
cavity. It was observed in experiments conducted
by Heller and Bliss, [6], that the cavity fluid can be
described by the acoustic wave equation; hence the
fluid may be regarded as compressible and inviscid as
depicted in Figure 1. In order to model the motion
of the acoustic waves we consider the basic equations
of balance of mass and momentum and the equation
of state.

Hence, the equations that describe the fluid mo-
tion are the Euler’s equations

Ou \Y
¢ 4 (uV)u, = ——2¢ (11)
ot Pe
the continuity equation
0
5= =V-(pe.) (12)
and the state equation
Pe = C(Q)pc- (13)

Here u. = (u,,v.), p. and p. are the velocity, density
and pressure of the fluid in the cavity and above the
shear layer, respectively.

Remark 3 Note that the state equation is analo-
gous to that for the fluid below the shear layer (10).

We now apply the time derivative to Euler’s
equation (11)

0%u, 0 0 (Vp.
gz T eVl =—5 ( pe )
1 dp. 1 Op.
- — - . (14
ot P v () o

The above equation, the continuity equation (12)
and the approximated state equation (13) yield

f%u, O
ot2 + & [(UC-V)UC]
_ _ V. u, Vpe — V-, Vp.
Pe Pe Pc

Pe



By means of the following identities (see [4])
Au=V(V-u) -
X (fu) = fV x u+Vf xu

V x (V x u),

and

Vx(uxw)=uV-w—-—wV-u+ (w-V)u— (uV)w

where u,w are vector functions and f is a scalar
function, and since the flow is irrotational outside
the vortex sheet, we may write
Vv [v'(pcuc)] A(pcllc) +V x [v X (pcuc)]
A(peue) + V x (Vpe x u,)
= pAu, +2Vu,.-Vp.+ Vp:V-u,
+ (u.V)Vpe — (Vpe-Vue.
By using the above identity in the equation (15),
the nonlinear acoustic equation becomes

9%u, 0
5 + Er [(u.-V)u.] — cgAu,
— 7vpc , Vpe Ve, Vpe
Pe pe pe
. V ¢ Vpe
—|—2€5V p+0ppvllc
+ ¢t (llc':)vpc —c (Vpcp-V)m. (16)

Combining this with the state equation (13) we
find that it is equivalent to

8%u, O .
52 + g [(u.-V)u.] — cjAu,
- _ Ve . Voe s, 2V, Vp.

+ C_O [(uc'v)vpc - (Vpcv)

Cc

u]. (17)

Therefore, the motion inside the cavity may be
described by the following equations

9%u, 0 9
52 + g [(ue-V)u.] — c5Au,
- — Ve . Voe s, 2V, Vp.
c
+ — [(ue-V)Vp, — (Vpe-V)u.] (18)
dpe
ot V-(pcu,) (19)

Pe = C%pc. (20)

Boundary Conditions
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Figure 2: Boundary Conditions

We assume that the flow satisfies the no-
penetration condition at the walls of the cavity and
the no-slip condition at the walls outside the cavity,
that is,

un = 0,
uy = 0,

at cavity walls
at surfaces outside the cavity.
(21)
Here n denotes the unit vector normal to the wall
(see Figure 2) and 0 is the null vector, that is,
= (0,0).

Also, we assume that there is no change in pres-
sure magnitude in the normal direction at the walls,
either inside or outside the cavity, i.e.

Vpen =0, Vpsn =0, (22)

at the walls.

Remark 4 The conditions on the pressure follow
from the Navier Stokes equations (8) and equation
(18) by considering the normal component to the
walls of each term and assuming that the first and
second derivatives of the wvelocity components are
small and may be neglected.

Interface Conditions

The fluid is governed by different differential
equations depending on whether it is above or be-
low the shear layer. In this section we specify the
interface or coupling conditions to be satisfied by the
velocity and pressure at the shear layer.



Interface Condition for the Velocity

As stated in the introduction, the shear layer
generates and feeds acoustic waves inside the cavity
which in turn, feed disturbances in the shear layer.
This process induces different velocity distributions
in the fluid above and below the shear layer, so that
we have a fluid flowing one above the other having
different velocity profiles, which is a special case of
a Kelvin-Helmholtz instability. In particular, there
is a discontinuity of the velocity in the tangential
direction with respect to the shear layer, while the
velocity in the normal direction remains continuous.
(For more details concerning Kelvin-Helmholtz in-
stabilities see [1], pp. 511-513; [5], pp. 15-17; [7],
pp. 216 ss). Let us denote the velocity of the shear
layer by u;s and the unit vector normal to the shear
layer by n. Then, we have

U= UW;s'n = uyn.

To develop appropriate interface conditions, the
shear layer is viewed as an infinitesimally thin sur-
face, a surface of discontinuity, separating the two
fluid flows (see Figure 3).
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Figure 3: Interface Boundary

Remark 5 It is important to note that the tangen-
tial and normal components of the velocity with re-
spect to the shear layer are not necessarily the hori-
zontal and vertical components of the velocity. This
is depicted in Figure 3.

We define H(t, z,y) = h(t, ) —y where the shear
layer interface is defined by y;s = h(¢,z) and the
y—axis is positive downward with y = 0 at the
mouth of the cavity. Then the normal to the shear
layer at any time ¢ is given by

VH

n—=- ———.

[VH]|

where

OH OH Ooh

S = (5D

or’ Oy ox

Thus the interface condition u,.m = uyn at y = h
becomes

VH = (

u@—v =u a—h—v
‘Oz ©" o !

or
Oh
(Uf - vc)‘y:h = (Uf - uc)‘y:h oz (23)
Moreover, if we consider uy as equivalent to the
freestream mean velocity U, the above identity may
be approximated by

Ooh
(W = ve)lyep = (U — uelyp) . (24)

Remark 6 From the equation (23) we can see that
vy = ve if h(t,x) is constant in x (i.e., the shear
layer is horizontal) or in the special case that the
horizontal velocities uy and u. coincide (i.e., there
is no shear layer).

Remark 7 In equation (24) we have approzimated
uy by the mean freestream velocity, U. We are, thus,
assuming that the fluid flow below the shear layer is
driven mainly by the freestream, and the perturba-
tions produced by the shear layer are small compared
to U.

Remark 8 Above the shear layer, the flow has zero
horizontal mean velocity. However, at a particular
position u. varies in direcction and magnitude, and
its value may be high compared to its mean value
0. Approzimating u. by its mean value would entail
averaging the velocity in the whole cavity and for this
reason we do not make this approximation on u..

Interface Condition for the Pressure

Another interfacial condition is given by the
stress tensor, which must have a continuous normal
component at the interface (see [1], [5], [7]). Since we
neglect viscosity effects inside the cavity, the stress
tensor inside the cavity is given by

Se = —pel,

where I denotes the identity operator. On the other
hand, the stress tensor in the freestream flow is given
by

Sy=-—prl+p (V“f + (Vuf)T) ;



and thus, the stress condition reduces to
T

—pen|,_, = —pym|,_,+un- (Vuf + (Vuy) )‘yih,
or equivalently,

+ pn- (Vuf)T
y=h v=

(25)

Furthermore, we assume that viscous terms of the

stress in the direction normal to the shear layer are
small compared to the pressure terms, i.e.

6llf
(5

and therefore it may be neglected.

allf
(pf —pc)n|y:h = Na—n

+ n- (VUf)T‘

y=h y=h

Remark 9 In other words, we are approrimating
the stress component normal to the shear layer by
the pressure in the normal direction, i.e.

n-Sf\y:h R — pfn|y:h.

Hence, we obtain the continuity condition for the
pressure at the interface

Pfly=h = Pely=n- (26)

Remark 10 If the fluid is considered inviscid ev-
erywhere, the condition of continuity for the pres-
sure follows immediately from the continuity of the
tensor.

Approximation of the Interface Surface

By considering the shear layer as the boundary
where the interface conditions are imposed, we are
dealing with a moving domain. For computational
purposes we approximate the interface surface by the
artificial boundary y = 0, which is just the straight
line connecting the ends of the cavity. Therefore, the
interface conditions are further approximated by

oh

vrl, o Vel,_o + (U— uc\yzo) . (27)

Pfly=0 = Pely=o0. (28)
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System

) << (pr —pe)nl,_,,,

Yr

r

e

Figure 4: Domain

THE FLOW-CAVITY MODEL

We collect the equations, boundary conditions
and interface conditions discussed in our proposed
flow-cavity model.

Consider the open sets Qf, ). defined by

Qf = {(Tay) IS ($0;$3)7 Yy € (anf)}a

Qc = {(T/y) T x € (.’El,.’lfz), Yy € (yc,o)}
with 29 << 71 <22 << 23 and y. <0 << yy
and boundaries 99y =Ty and 0. =T..

Due to the different conditions on the bound-
aries, we subdivide I'y and I'; as follows
Iy =T, ully Ul r.=r,ury,

where T, T's, T';s and T, are given by (see Figure
4)

Fe = {(:EO:y) HENTIS (Olyf)}
U{(,9p): o € (0,23}
U{(zs,y) : y € (0,y)}

s = {(z,0): z € (xg,21) U (z2,23)}

Fis = {(’E,O) A S (.’El,.’Eg)}

Ly = {(z1,9): y € (y:,0)}
Ul(,9e) : @ € (21, 2)}
U{(:U?:y) TS (yczo)}'

We consider the interaction flow-cavity within
the domain © = Q¢ U Q.. The flow motion can be
described by combining the equations for the fluid in
each subdomain, given by equations (8)-(10), (18)-
(20), boundary conditions for velocity and pressure,
including (21) and (22), and the interface conditions
for velocity and pressure, (27),(28).
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The model then consists of a set of coupled equa-
tions given by

duy Iz Vs
— + (uy-V)uy = —Auy — — 29
5 T (arVuy oy Aur (29)
Oy _
rr V-(pruy) (30)
P = Cops (31)
9%u, .
a2 CéAllc = T [(u.-V)u,]
- Vo u, Vo + 2C%Vuc-Vpc
Pe Pe pe

4—§%KUEVQVPC—(VPUV)“J (32)

ope
o V-(peue) (33)
Pc = C%pc (34)

where uy, py, py are defined on Q¢ and u,, p., p. are
defined on 2., with boundary conditions

upfe=M, vy=0 ps =pe onl,. (35)
u; =0 Vppn=0 onI, (36)
u, n = Vpe.n=0 onT, (37)

where p, is a given pressure distribution on I',, and
coupling conditions on T';g

oh
vf|y:o UC|y:0 + (U - uC‘y:O)%:
(38)

Pfly=0 = Pely=o.

Here we have assumed that the artificial boundary,
denoted by T, is far enough from the cavity so that
there are no effects from fluid/structure interaction.

WEAK FORM

For both theoretical and computational consid-
erations it is often convenient to write a model such
as that derived above in a weak or variational form.
We do that here, following the general ideas used in
[2] and [10].

First, we define the framework for the
fluid/structure interaction model given above. Let

V} be the subspace of [Hl(ﬂf)]2 defined by

?: VU =0in Q,

U=0o0onTy—T},

vi={wen @)

equipped with the [H'(Qy)] ®_norm

2
lall?, = a2y 0,0 = 3 il o,
i=1

and ,
|“|%/f = Z ‘Vui|fL2(Qf)]2‘
i=1
Let Wy be the subspace of H!(Qy) defined by
Wy={peH (Q): $=00nT.}

equipped with the H'(€2f)-norm, and let V. be the
subspace of [Hl(Qc)]2 defined by

2

V., = {@e [Hl(ﬂc)] : Un=0onT, },

equipped with the [Hl(Qc)]2—norm.

Let W e Vi, €Wy, WeV,and ¢ € H'(Q.)
and consider the variational form of the system (29)-
(34) with uy € V¢, py and py € Wy, u, € V, and
Pc; Pe € H2(QC)

We will seek solutions that satisfy homogeneous
boundary conditions since these can be translated
into solutions satisfying (35) in a straight forward
manner (see [2]).

We then have, along with the coupling equations
(38), the system

(%AI’) + ((up-Vuy, o) = (piOVS:‘I’) (39)

(%qs) (Vprug) ) =0 (40)

(ps: ) =i (pg,9) =0 (41)




pe P
c
- p_ [(UC'V)VPC - (VPC'V)UC] v
— 22 <v CVPC,\I'>:0 (42)
Pe

(%8) + (Tomd) =0 @)
(Pes @) — 4 (perd) = 0, (44)

where S is defined by

S =—psI +puVuy.

Remark 11 Recall that for p constant the diver-
gence of the stress tensor, given by

V-Sp=V- {*Pff +u [Vuf + (uf)T] } :
reduces to
V-S¢ =V-(—psl + uVuy).
(see Remark 1). Thus, we have
V-S; = V-S.
We note that

((U-V)V,W) = 7(V' (vw)T ; 11) + (V n-u, W)Fis

(45)
for u,v,w € V;. This identity follows from

V-(vu) = (uV)v +ovV-u, (46)

for v € H' (), u € [H' ()]
Green’s formula

(V¥ 0)g, = (0¥, 6)50, — (V,V)g, . (47)

, combined with

where ¥ € [Hl(Qf)]2, ¢ € H' (). The argu-
ments for (45) are given by
(uV)v,w) = ((u-V)vy,wr) + ((u-V)va, ws)
= (V-(v; u) —v;V-u,wy)
+ (V-(v2 u) — 02 V-u,ws)
= —(vi w,Vwy) + (vin-u,wi)r,
—(v2 u, Vwy) + (van-u, wa)r,

= —(v-(VW)" ) + (vnu, w)p

is?

where we recall that V-u = 01in Qf and w = 0 on
Iy — Ty

Again using Green’s formula and introducing the
coefficient of kinematic viscosity denoted by v =
i/ po, we see that the equation (39) becomes

Ou
<8—tf‘1'> - (uf‘ (V‘I')T,Uf) — (upop, ¥)p

+ (vVuy, V) + (pr/pon, ¥)p = 0. (48)

Remark 12 Note that in the above computation we
assumed

% =Vurnx0

on Fi57
so that

(S/p,w)  ~—(aps/po W)y,

is

Remark 13 In the equation (48) we have used the
fact that the outward normal vector to I';5 is pointing
upward, away form Q¢, and because of the coordinate
system chosen, we have

uf-n = 7Uf.

Consider now the equation (42) given by

(Ge7) + (510w v)

_ 2 (Au,T) + (cg Voo . Vpc@)
Pe Pe

c

—92¢2 <vuc-vpc,ﬁ> —0.

The second term on the left side can be written as

(51wl ®) = ((59)u.v)

+ <(uC-V) 8“2@) .(49)

ot

By arguments similar to those below equation (45),
we find the following identity for u,v,w € V.

(uV)v,w) = —(v-(Vw)" , u) - (vV-u,w)

+(v n-u,w)r,, . (50)

is



Applying this identity to each term on the right side
of (49), we find

(5 (w-v)al ¥)

e (a7 (22 )

_ (% (u,V-u,) W) + <% (ucn-uc) j>r

We substitute this back into equation (42) to ob-
tain

is

Ie

ot?
(e ()" ) - (e () )
- (5 a0 ) + (5 (e, W)F

Vpe  Vpe — Vpe —
+<c§ Pe L ,w)zcg (Vuc-—p,\ll>
Pc Pc Pe

8%u, — 9 — 9 _
U )+ (Vuc, V\I') + ¢ (n-VuC, \I')

- (;—3 [(4-V) Ve — (VperV)u,] T)

= 0. (51)

Therefore, by using equations (48) and (51) and
(38), the variational formulation for the system (29)-
(34) may be written as the coupling equation (38)
along with the equations

<%/\P> +(1(llf,\1') - bl (llf,\I',llf)

ot
= (upvp, O)p + (pr/pom, V), =0 (52)

)
(%"‘5) —e(uy,ps, ¢) = (ps vy, O)ri, = 0(53)

(pr — 5 py.0) =0 (54)

0%u, — ‘ —
< Btl; ,\I'> + ¢k a(u,, )

_ — Ou, - (Ou, —
- |:bl <u67\1’7 ot > +b1 ( ot 7\I'7uc>:|
u, — - ou, —
—tallc,‘1'> + b2 (umﬁaql>:|

+ 0(2) E (uc; vpc /T> o 268 511 <u67 vpcaﬁ>

pe

o T8) 5 ()
0

+cy (nVu, ¥) + <% (u.v.), lI') =

Tis
(55)
0p. — _ — —
(a—i,qs) (e, 9oy B) + (vepes B)rs, =0 (36)
(pc - Cg pc:a) =0, (57)

XVhere the_ forms G/g','), b]('7_'7')7 e(':_'): a('a')a
b]('7'7')7 bl](':':'): b2('7'7')7 b3('7'7')7 d(7)
e(-,,-) are defined as follows

a(u,v) = (vVu,Vv),
bi(u,v,w) = (u- (Vv)T,w) ,
e(u,p,q) = (pu,Vg),

(=l
-

S
e —_
&
<
g

withu,v,w € Vy, p,g € Wy, u,v,w € V., and 7,q €
HY(Q,).
REFERENCES

[1] G.K. Batchelor, An Introduction to Fluid Dy-
namics, Cambridge University Press, 1967.

[2] H.T. Banks and K. Ito, “Structural Actuator
Control of Fluid/Structure Interactions,” Proc. 33"¢
Conference on Decision and Control, Lake Buena
Vista, Fl, Dec. 1994, pp.283-288.

[3] A.B. Cain, W.W. Bower, F.McCotter and
W.W.Romer, “Modeling and Prediction of Weapons
Bay Acoustic Amplitude and Frequency,” P.O.
P61100-5016, Technical Report Submitted to VEDA
Inc., Feb. 1996.



[4] A.J. Chorin and J.E. Marsden, A Mathe-
matical Introduction to Fluid Mechanics, Springer-
Verlag, NY, 1990.

[5] P.G. Drazin and W.H. Reid, Hydrodynamic
Stability, Cambridge University Press, 1981.

[6] H.H. Heller and D.B. Bliss, “Flow-Induced
Pressure Fluctuations in Cavities and Concepts for
their Suppression,” AIAA 2"? Aero-Acoustics Con-
ference, Hampton, VA, March 1975, Paper 75-491.

[7] D.Y. Hsieh and S.P. Ho, Wave and Stability
in Fluids, World Scientific Pub., Singapore, 1994.

[8] D. Rockwell and E. Naudascher, “Review—
Self-Sustaining Oscillations of Flow Past Cavities,”
Journal of Fluids Engineering, Vol. 100, June 1978,
pp-152-165.

[9] R.L. Sarno and M.E. Franke, “Suppression
of Flow-Induced Pressure Oscillations in Cavities,”
Journal of Aircraft, Vol. 31, No. 1, Jan.-Feb. 1994,
pp-90-96.

[10] R. Temam, Navier Stokes Equations: The-
ory and Numerical Analysis, North-Holland, Ams-
terdam, 1971.

\\\\\\\\\\\\\\\\ \ & NN
\\ i va_n =0 \\\\ §
NN o= Nonlinear Acoustic Eqns.\: =0 \\\\\\\\\\\\\\\\\\\\\\i&
u=(u,v) Al Vpcn =0y T ) e Al T
e =0 N interface Conditions u =0 :
y v;;-n=0 V;}n =0
Y fe=M i Navier-Stokes Equations
=0
pf =p %
....................................... ufUJ{C==Mpf=pg

Figure5: Flow-Cavity Model

10

uf/c=M
vf=0
Pr=R



