ON MAXIMAL AND MINIMAL SUB-FIELDS OF CERTAIN TYPES

by

D. Basu

University of North Carolina
and
Indian Statistical Institute

Institute of Statistics Mimeo Series No. 422

January 1965

This research was supported by the National Science Foundation Grant No. GP 16-60

DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
Chapel Hill, N. C.
ON MAXIMAL AND MINIMAL SUB-FIELDS OF CERTAIN TYPES

by

D. Basu

University of North Carolina and Indian Statistical Institute

Let \((\mathcal{L}, \mathcal{A}, \mathbb{P})\) be a given statistical model. We concern ourselves with particular families of sub-fields of \(\mathcal{A}\), and, for each such family we ask ourselves whether the family has maximal and minimal elements with respect to the natural partial order of inclusion relation. For example the family \(\mathcal{S}\) of sub-fields that are sufficient for \(\mathcal{A}\) has received a great deal of attention from theoretical statisticians. Clearly, \(\mathcal{A} \subseteq \mathcal{S}\) and is the maximum element of \(\mathcal{S}\). It is known [4] that, in general, \(\mathcal{S}\) has no minimal element. However, if we assume that \(\mathbb{P}\) is dominated by a \(\sigma\)-finite measure then it can be shown [1] that \(\mathcal{S}\) has an essentially minimum element \(\mathcal{S}_0\), i.e., given any \(\mathcal{S}_1 \subseteq \mathcal{S}\) and any \(\mathcal{A} \subseteq \mathcal{S}_0\), there exists \(\mathcal{B} \subseteq \mathcal{S}_1\) such that

\[\mathbb{P}(\mathcal{A} \Delta \mathcal{B}) = 0 \quad \text{for all} \quad \mathcal{B} \subseteq \mathcal{P}, \]

where \(\Delta\) stands for the operation of symmetric difference.

Let \(\mathcal{B}\) be a fixed sub-field of \(\mathcal{A}\) and let \(\mathcal{C}\) be the family of all sub-fields that are independent of \(\mathcal{B}\), i.e., for any such \(\mathcal{C}\) it is true that

\[\mathbb{P}(\mathcal{B}\mathcal{C}) = \mathbb{P}(\mathcal{B})\mathbb{P}(\mathcal{C}) \quad \text{for all} \quad \mathcal{B} \subseteq \mathcal{B}, \ \mathcal{C} \subseteq \mathcal{C}, \ \text{and} \ \mathcal{P} \subseteq \mathcal{P}. \]

The minimum element of \(\mathcal{C}\) is the trivial sub-field consisting of the null-set and the whole space. We have the following

Theorem 1: For any sub-field \(\mathcal{C}\) that is independent of \(\mathcal{B}\), there exists at least one maximal subfield \(\mathcal{C}^*\) such that \(\mathcal{C} \subseteq \mathcal{C}^*\).

The proof of Theorem 1 is given in the next section.

For the next problem, let us suppose that the family \(\mathcal{P}\) is indexed by
two parameters \(\theta \) and \(\varphi \), i.e.,

\[
P = \{ P_{\theta, \varphi} \}, \quad (\theta, \varphi) \in \Theta \times \Phi.
\]

Consider all sub-fields \(\mathcal{D} \) that are generated by statistics whose probability distributions do not involve the parameter \(\varphi \), i.e., each \(\mathcal{D} \) is a sub-field such that, for every \(D \in \mathcal{D} \), \(P_{\theta, \varphi}(D) \) is a function of \(\theta \) only.

The trivial sub-field is again the minimum element of \(\{ \mathcal{D} \} \); but, does this family have maximal elements? We have

Theorem 2: Given any sub-field \(\mathcal{D} \) such that the restriction of \(P_{\theta, \varphi} \) to \(\mathcal{D} \) does not involve \(\varphi \), there exists a maximal such sub-field \(\mathcal{D}^* \) that contains \(\mathcal{D} \).

The above Theorem is an immediate generalization of Theorem 1 in [2].

In the next section we give the proof of the above two theorems. In the final section we comment on some further problems of the same kind.

2. Proofs of Theorems 1 and 2

We need the following well-known lemmas.

Lemma 1 (Zorn's Lemma): If for a partially ordered set it is true that every linearly ordered sub-set has an upper (lower) bound, then given any element \(x \) of the set there exists a maximal (minimal) element \(x^* \) in the set such that \(x \) is less (greater) than \(x^* \).

[The terms that are underlined are defined in terms of the partial order relation.]

Lemma 2 (Extension of Measures): Given a measure \(\mu \) defined on a field \(\mathcal{F} \) of sets there exists one and only one extension \(\mu^* \) of \(\mu \) to the Borel-extension \(\mathcal{F}^* \) of \(\mathcal{F} \).
Corollary: If the two measures μ and ν agree on a field F of sets they necessarily agree on the Borel-extension F^* of F.

Lemma 3: If the family $\{B_\alpha\}$ of sub-fields of A be linearly ordered with respect to the inclusion relation then

$$F = \bigcup B_\alpha$$

is a field of sub-sets.

We omit the proofs of the lemmas.

Now let F be a given sub-field of A and let E be the class of all sets $E \in A$ such that E is independent of F, i.e.

$$P(EB) = P(E)P(B) \text{ for all } B \in B, \ E \in E \text{ and } P \in P.$$

It is easy to check that F contains the null-set and the whole space and further that F is closed for complementation and countable disjoint unions. In case F is a σ-field there is nothing to prove in Theorem 1, as E is then the maximal sub-field for which we are searching. However, E is usually not a σ-field (see example 1).

Let $\{C_\alpha\}$ be a family of sub-fields in F and be linearly ordered with respect to the inclusion relation and let

$$C_\alpha = \bigcup C_\alpha.$$

Now, from Lemma 3, C_α is a field of sub-sets of A and, since $C_\alpha \subseteq E$, every member of C_α is independent of B. Choose and fix $B \in B$ and $P \in P$.

Consider the two measures $P(AB)$ and $P(A)P(B)$ defined for all sets $A \in A$. These two measures agree over the field C_α and hence, from the corollary to Lemma 2, they agree over the Borel-extension C_α^* of C_α.

Remembering that B and P were arbitrary members of B and P respectively, we now have
\[P(\text{AB}) = P(A)P(B) \text{ for all } A \in \mathcal{C}^*, \ B \in \mathcal{D} \text{ and } P \in \mathcal{P}. \]

Thus, \(\mathcal{C}^* \) includes every \(\mathcal{C}_\alpha \) and is independent of \(\mathcal{D} \). The conditions of Lemma 1 are satisfied and hence the proof of Theorem 1 is complete.

We now turn our attention to Theorem 2. Let \(\mathcal{F} \) be the class of all sets \(F \in \mathcal{A} \) such that

\[P_{\theta, \varphi}(F) \text{ is a function of } \theta \text{ only.} \]

Again, it is easy to check that \(\mathcal{F} \) contains the null-set and the whole space and is closed for complementation and countable disjoint unions. In example 2 we shall see that \(\mathcal{F} \) is usually not a sub-field of \(\mathcal{A} \).

Let \((\mathcal{F}_\alpha) \) be a family of sub-fields in \(\mathcal{F} \) and be linearly ordered with respect to the inclusion relation and let

\[\mathcal{L}_0 = \prod_{\alpha} \mathcal{F}_\alpha. \]

As before \(\mathcal{L}_0 \) is a field of sub-sets of \(X \). Let \(\mathcal{L}_0^* \) be the Borel-extension of \(\mathcal{L}_0 \).

We define the measure \(Q_\theta \) on \(\mathcal{L}_0 \) as the restriction of \(P_{\theta, \varphi} \) on \(\mathcal{L}_0 \). [Since \(\mathcal{L}_0 \subseteq \mathcal{F} \), the measure \(Q_\theta \) on \(\mathcal{L}_0 \) must be independent of \(\varphi \).]

From Lemma 2, for each \(\theta \in \Theta \), the extension \(Q_\theta^* \) of \(Q_\theta \) from \(\mathcal{L}_0 \) to \(\mathcal{L}_0^* \) is unique. From the corollary to Lemma 2, the two measures \(Q_\theta^* \) and \(P_{\theta, \varphi} \) must agree on \(\mathcal{L}_0^* \).

In other words, the restriction of \(P_{\theta, \varphi} \) to the sub-field \(\mathcal{L}_0^* \) is independent of \(\varphi \). Also, \(\mathcal{L}_0^* \) includes every \(\mathcal{L}_\alpha \). The conditions of Lemma 1 are satisfied and hence the proof of Theorem 2 is complete.
3. Examples and Comments.

The following two examples demonstrate that the maximal element is usually not unique.

Example 1: Let X consist of the four points a, b, c and d and let F consist of just one probability distribution namely the uniform distribution over the four points. Consider the three sub-fields B, C_1 and C_2 each consisting of four sub-sets of X:

- B consists of X, (a,b) and their complements,
- C_1 consists of X, (a,c)
- C_2 consists of X, (a,d)

and each of them is a maximal such sub-field. Incidentally, C_1 and C_2 are also independent of each other.

Example 2: Let X consist of the five points a, b, c, d, e and let the probability distribution over the five points be:

Points: a, b, c, d, e

Probs: $1 - \theta, \varphi, \varphi, \theta(\frac{1}{2} \varphi), \theta(\frac{1}{2} \varphi)$

where $0 < \theta < 1$ and $0 < \varphi < \frac{1}{2}$.

The family F of all sets whose probability does not involve φ consists of 12 sets, that is:

$X, \{a\}, \{b,d\}, \{b,e\}, \{c,d\}, \{c,e\}$

and their complements.

Note that F does not constitute a sub-field. There are two different maximal sub-fields in F, namely:

A_1: consisting of $X, \{a\}, \{b,d\}, \{c,e\}$

and their complements.
and \(\mathcal{E}_2 \) consisting of \(x \), \{a\}, \{b,e\}, \{c,d\}
and their complements.

Theorems 1 and 2 only establish the existence of maximal sub-fields
in \(E \) and \(F \) respectively. It would be of some interest to develop general
methods for proving the maximality of certain given sub-fields of \(E \) and \(F \).
One such method, with very limited application, is given in Theorem 7 of [2].

Consider the problem where we have \(n \) independent observations
\(x_1, x_2, \ldots, x_n \) on a real random variable \(x \) with cumulative distribution
function of the form
\[
F\left(\frac{x - \varphi}{\theta}\right), \quad -\infty < \varphi < \infty, \quad 0 < \theta < \infty.
\]
where the function \(F \) is known and \(\theta \) and \(\varphi \) are the so-called scale and
location parameters.

If \(y \) stand for the vector-valued statistic
\[
(x_1 - x_n, x_2 - x_n, \ldots, x_{n-1} - x_n)
\]
then the distribution of \(y \) does not involve the location parameter \(\varphi \). Is
\(y \) a maximal such statistic? In the language of sub-fields, if \(\mathcal{S}_y \) be the
sub-field generated by \(y \) then is it true that \(\mathcal{S}_y \) is maximal in the sense
of Theorem 2? The author does not expect the answer to be 'yes' for all \(F \).

4. Some further problems

The sub-field \(B \subset A \) is said to be sufficient for the sub-field
\(C \subset A \) if for every \(C \in C \) there exists a \(B \)-measurable function \(f(x ; C) \)
mapping \(X \) into the real line such that
\[
P(BC) = \int_B f(x ; C) \, dP(x) \quad \text{for all} \quad P \in \mathcal{P}
\]
and \(B \in \mathcal{B} \).
In other words, \(B \) is sufficient for \(C \) if, for every \(C \in \mathcal{C} \), there exists a choice for the conditional probability (function) of \(C \) given \(B \) that serves for all \(P \in \mathcal{P} \).

Now, for a fixed \(B \), let us enquire about the family \(\{C\} \) of all subfields \(C \) such that \(B \) is sufficient for \(C \). Clearly, the minimum element of \(\{C\} \) is the trivial sub-field consisting of only the null-set and the whole space. Do there exist maximal elements in \(\{C\} \)?

Let \(G \) be the class of all sets \(G \subseteq \mathcal{A} \) such that \(B \) is sufficient for \(G \) in the sense mentioned above, namely, for every \(G \in \mathcal{G} \) there exists a \(B \)-measurable \(f(x;G) \) such that

\[
P(GB) = \int f(x;G) dP(x) \quad \text{for all } P \in \mathcal{P}
\]

and \(B \in \mathcal{B} \).

The class \(\mathcal{G} \) is similar to the classes \(\mathcal{E} \) and \(\mathcal{F} \) considered before in that \(\mathcal{G} \) contains the null-set and the whole space and is closed for complementation and countable disjoint unions. As before, \(\mathcal{G} \) is usually not a sub-field. The rest of the arguments in Theorems 1 and 2 will apply if we could prove a result of the following type:

"If \(B \) is sufficient for each member of a field \(\mathcal{C} \) of sets in \(\mathcal{A} \), then \(B \) is sufficient for the Borel extension \(\mathcal{C}^* \) of \(\mathcal{C} \)."

The above statement does not seem to be true in the generality stated above.

In the particular case where \(B \) is the trivial sub-field, the question posed above has a definite answer. For, in this case, \(B \) can be sufficient for \(G \) if and only if

\[
P(G) \text{ is the same for all } P \in \mathcal{P},
\]

and therefore, Theorem 2, or rather a particular case of it, namely, Theorem 1

Fraser in [3] introduced the notation of partial sufficiency in the following manner:

If \(\mathcal{P} = \{ P_{\theta, \varphi} \} \), \(\theta \in \Theta \), \(\varphi \in \Phi \), be a family of probability measures indexed by the two independent parameters \(\theta \) and \(\varphi \), then a sub-field \(B \subset A \) will be called \(\theta \)-sufficient for \(A \) (or simply \(\theta \)-sufficient) if

1) the restriction of \(P_{\theta, \varphi} \) to \(B \) does not depend on \(\varphi \) [i.e., \(B \) is a sub-field of the type considered in Theorem 2.],

and

2) given any \(A \in A \), there exists a choice (of the conditional probability (function) of \(A \) given \(B \) that does not depend on \(\theta \), i.e., for each \(\theta \in \Theta \) there exists a \(B \)-measurable function \(f_\theta (x; A) \) such that

\[
P_{\theta, \varphi}(AB) = \int_B f_\theta (x; A) \, dP_{\theta, \varphi} \quad \text{for all } B \subset B \\
\text{and all } (\theta, \varphi).
\]

Under what conditions does a \(\theta \)-sufficient sub-field exist? Does there exist an essentially minimum such sub-field?

As a final problem on the existence of minimal sub-fields consider the following:

Given two sub-fields \(B \) and \(C \), let \(B \lor C \) stand for the smallest sub-field that contains both \(B \) and \(C \).

Now, for a fixed \(B \subset A \), let us consider the family \([C] \) of all sub-fields \(C \subset A \) such that

\[
B \lor C = A.
\]

Every \(C \in [C] \) may be called a complement of \(B \). The family \([C] \) has \(A \) as its maximum element. Does \([C] \) have minimal elements? The author expects the answer to be yes. It is easy to construct examples where there are several minimal complements to \(B \).
References

